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Editorial on the Research Topic
Computational drug discovery of medicinal compounds for cancer
management

Cancer remains a major public health concern, with it ranking as the leading cause of
death worldwide. Despite significant advances in biotechnology, developing practical
and innovative small-molecule drugs remains a hard, time-consuming, and costly
process. This endeavor necessitates the collaboration of experts from a variety of
disciplines, including computational biology, drug metabolism, and clinical research.
Hence, there is a pressing need for novel drug development processes that save time and
cost while improving overall efficiency. Computer-aided drug design (CADD)
methodologies are becoming increasingly crucial in drug discovery, particularly in
their ability to identify promising drug candidates cost-effectively. In this area of study,
we launched a Research Topic in Frontiers in Chemistry journal titled “Computational
Drug Discovery of Medicinal Compounds for Cancer Management.” This Research
Topic attracted the interest of researchers, and a large number of manuscripts were
submitted. Among these submissions, 15 Original Research articles have been published
covering a wide range of CADD topics and elucidating advanced in silicomethodologies
applicable to the field of drug discovery.

The following is a summary of the published articles:
Dain Md Opo et al. used structure-based pharmacophore modeling and virtual

screening to identify potentially natural lead compounds that can inhibit BRAF and
thus inhibiting cancer. Promising candidate compounds targeting the upregulated
BRAF gene have been identified using in silico drug design methodologies and
computational tools. The study identified four potential compounds by utilizing
these computational methods. The investigation suggests that these compounds
may be useful against a range of cancers by specifically targeting the overexpressed
BRAF gene.

Ashraf et al. presented a comprehensive study on potential inhibitors of Tyrosine
Threonine Kinase (TTK), a target in a variety of human cancers including breast,
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colorectal, and thyroid carcinomas. They used computational
techniques like 3D-QSAR modeling and structure-based
alignment. The study identified key factors influencing
compound activity (electrostatic, steric, HBA, HBD, and
hydrophobic fields). New compounds with predicted binding
modes and structural stability were designed using molecular
docking and molecular dynamics (MD) simulations, displaying
promising TTK protein binding affinity as potential TTK
inhibitor candidates.

Li et al. investigated LSD1, a protein methylation oxidase linked
to gene expression and tumor initiation. Compound 17i showed
promise as an LSD1 inhibitor and anti-tumor agent, but solubility
issues hampered clinical validation. A carrier-free 17i nano assembly
made with DSPE-PEG2000 improved therapeutic efficacy. In CT-26
mice with colorectal tumors, these nano assemblies matched 17i′s
cytotoxicity in vitro but had better therapeutic efficacy, anti-tumor
immune response, and lower systemic toxicity. A novel drug
nanoassembly method may improve the effects of poorly soluble
anti-tumor compounds.

He et al. computationally screened a library of 700 antiviral
compounds against the 3CL protease (3CLP) of human noroviruses.
The researchers discovered three compounds that had higher
binding energy with 3CLP than the control (Dipeptidyl inhibitor
7). These hits’ estimated physicochemical and ADME properties
were in the favorable range. According to the findings, these
compounds could be used as 3CLP inhibitors in the treatment of
gastroenteritis.

Mert-Ozupek et al. conducted an insilico screening of bioactive
compounds from Caulerpa spp. against the colorectal cancer enzymes
glucose-6-phosphate dehydrogenase and 6-phosphoglutarate
dehydrogenase. Caulerpin, monomethyl caulerpinate, and caulersin
bind to these enzymes strongly. They proposed that the identified
compounds be tested for their potential efficacy against enzymes in the
pentose phosphate pathway.

Ahmad et al. investigated the anticancer and apoptotic effects of
carvacrol (CAR) on C33A cervical cancer cells. The antiproliferative
and apoptotic effects of CAR were mostly observed in C33A cervical
cancer cells in vitro. ROS production in C33A mitochondria
triggered a chain of events that resulted in mitochondrial
apoptosis. CAR also influences extrinsic or death receptor
pathway signaling. CAR inhibited hedgehog signaling, causing
apoptosis and inhibiting cell proliferation in cervical carcinoma
cells. These findings imply that CAR could be used to treat cervical
cancer.

Guo et al. explored 422 targets and 29 active ingredients from
Astragali Radix (AR) and Spreading Hedyotis Herb. They
demonstrated how AR-SH reduces lung adenocarcinoma
(LUAD) symptoms by targeting EGFR, MAPK1, and KRAS.
Molecular docking and dynamics simulations showed that AR-
SH’s main active components bind to the right proteins,
especially EGFR, suggesting it is more effective than Gefitinib.
These findings show that AR-SH can improve LUAD treatment
and prognosis.

Almukadi et al. identified novel and efficacious therapeutics
for PIM-1 kinase by employing structure-based and machine-
learning approaches. Four potential molecules were discovered
to modulate PIM-1. Additionally, the MD simulation study

revealed that these compounds interacted with the PIM
kinase stably.

Alsukaibi et al. investigated the phytochemical and biological
properties of two date fruit cultivars from Saudi Arabia’s Ha’il
region, Shishi M1 and Majdool M2. In vitro, both cultivars
inhibited HCT-116 colon cancer cells. Procyanidin B2 and
luteolin-7-O-rutinoside were identified as active constituents by
computational analysis.

Ali et al. used insilico techniques to predict how rare genetic
variations would affect HRAS protein function. Fifty
nonsynonymous single nucleotide polymorphisms (nsSNPs)
were discovered, 23 of which were in the HRAS gene exon,
implying that they are potentially harmful. Ten of the twenty-
three tested substances were the most dangerous. This study
lends credence to the notion that nsSNPs may increase HRAS
expression and activate carcinogenic signaling pathways in
cancer.

Ali et al. utilized phytocompounds targeting TP53 from
Amomum subulatum seed extract, focusing on major alkaloids
and saponins. The antioxidant activity was confirmed by DPPH
analysis, particularly in methanol, BHT, and n-hexane extracts.
Additionally, the computational analysis revealed that top
phytocompounds had strong binding affinities to TP53,
implying potential anti-cancer actions. This study presents
novel cancer treatment drug discovery insights using A.
subulatum seed compounds.

Binsaleh et al. investigated the effect of depression on breast
cancer and prostate cancer patients during the COVID-19
pandemic. Cancer patients, especially those suffering from
depression, had higher levels of proinflammatory cytokines
and oxidative stress markers than healthy people. Elevated
levels of specific serum antibodies in cancer patients suggested
increased oxidative stress. The findings highlight the importance
of addressing mental health concerns in cancer patient care and
disease management.

Rashid et al. investigated the potential of imidazole derivatives as
MCF-7 inhibitors for the treatment of breast cancer. Using Flare’s
machine learning, they developed a 3D-QSAR and activity atlas
model that classified compound datasets as active or inactive in
comparison to a reference drug. Molecular docking analysis
discovered active compound interactions with TTK, HER2, GR,
NUDT5, MTHFS, and NQO2. The most promising cancer inhibitor
was identified as compound C10, paving the way for new approaches
to breast cancer treatment.

Hua et al. computationally screened 4,222 anti-cancer
compounds against GSK3β. They observed that two potent
compounds, BMS-754807 and GSK429286A, had high
affinities for binding to GSK3β. These compounds also have
promising drug-like properties. This study proposed that BMS-
754807 and GSK429286A undergo experimental validation to
assess their potential as anti-cancer agents.

Mukhtar et al. screened 9,923 compounds from the ChEMBL
database against Tropomyosin-receptor kinase A (TrkA). Among
the screened compounds, Delanzomib and Tibalosin, the two
leading compounds demonstrated great potential. At 200 ns MD
simulations, these compounds demonstrated stable interactions
with the TrkA protein. This study proposed that additional
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research be conducted to determine the viability of Delanzomib and
Tibalosin as TrkA inhibitors.

Finally, the authors and editors of this Research Topic hope
that the Research Topic of articles will highlight the advances made
in the use of computational methodologies for facilitating the
design of pharmaceutical compounds directed at various
protein targets implicated in cancer management. Furthermore,
it is expected that these articles will contribute to a deeper and
more comprehensive understanding of the intricate biological
processes that underpin cancer, potentially leading to novel
therapeutic interventions for this disease. We hope that these
articles will serve as a source of motivation, information, and
guidance for researchers and scholars working in this field.
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Carrier-free supramolecular
nanoassemblies of pure
LSD1 inhibitor for effective
anti-tumor therapy

Boao Li1, Xiangyu Zhang2* and Jibin Li1*
1Department of Colorectal Surgery, Liaoning Cancer Hospital, Shenyang, China, 2State Key Laboratory
of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China

The LSD1 protein is an oxidase that regulates protein methylation, which

regulates gene expression and triggers tumors. Previously, inhibiting

LSD1 has been found to be an effective treatment strategy for opposing

tumors caused by overexpression of LSD1. Our recent study found that

compound 17i was a suitable LSD1 inhibitor with potential anti-tumor

activity. However, its extremely insoluble nature limits further validation of its

anti-tumor activity at the clinical level. In this study, a unique carrier-free

supramolecular nanoassemblies of pure compound 17i is expected to

enhance therapeutic efficacy. Aqueous-insoluble compound 17i was mixed

with a small quantity of DSPE-PEG2000 into an organic solvent andwas prepared

as nanoassemblies in water via the one-step nanoprecipitationmethod. The 17i

nanoassemblies have a similar effect on its cytotoxicity when comparedwith 17i

solution in vitro. Importantly, the PEGylated 17i nanoassemblies exhibit

significant superiorities over 17i solutions in therapeutic efficiency, anti-

tumor immune response and systemic toxicity in BALB/c mice bearing CT-

26 colorectal tumors. We envision that the fabrication of pure drug

nanoassemblies offers an efficient platform for reforming the undesirable

characteristics of drug-like compounds to potentiate the anti-tumor

therapeutic effect.

KEYWORDS

drug delivery, supramolecular nanoassemblies, therapeutic efficiency, systemic
toxicity, drug-like compound

Introduction

In histone lysine specific demethylase 1 (LSD1), the methyl groups are removed

from the lysine residues (H3K4 and H3K9) by an oxidative enzyme (Shi et al., 2004;

Suzuki and Miyata, 2011; Schmitt et al., 2013; Sorna et al., 2013; Tortorici et al., 2013;

Zheng et al., 2013). As an epigenetic regulator, gene expression and cancer initiation

are influenced by LSD1 (Ma et al., 2015; Zheng et al., 2015; Vianello et al., 2016).

Therefore, inhibiting LSD1 is an effective strategy for anti-tumor treatment (Wu

et al., 2016; Mould et al., 2017). In our previous study, various LSD1 inhibitors were

reported (Wang X. et al., 2020; Zhang et al., 2021), in which the compound 17i
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(Figure 1) (IC50 = 0.065 μM) exhibited a significant effect on

target LSD1. The solubility of compound 17i in organic

solvents was good. However, it has been tested that 17i is

almost insoluble in water. This impeded further validation of

its anti-tumor activity at the clinical level.

The wide application of nanotechnology in the medical

field has significantly enriched the delivery strategies of anti-

tumor drugs (Sun M. et al., 2019; Sun et al., 2022). Especially,

the construction of a novel nanodrug delivery system can

significantly improve the druggability of chemotherapeutics,

prolong the systemic circulation time and enhance tumor-

specific accumulation by increasing permeability and

retention (EPR) effect, thus augmenting the anti-tumor

effect and reduce the side effects (Sun B. et al., 2019; Wang

Q. et al., 2020; Yang et al., 2020; Zhang et al., 2020; Zhao et al.,

2021). Herein, to solve the dilemma of clinical transformation

of compound 17i, we put forward a fascinating nanoassembly

based on compound 17i for effective anti-tumor therapy.

Firstly, we confirm tight interactions between LSD1 and

compound 17i through molecular docking and molecular

dynamic simulation, elaborating that compound 17i had

effective inhibitory activity for LSD1. The supramolecular

nanoassemblies of 17i were fabricated by a one-step

nanoprecipitation approach. A small amount of 1,2-

distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy

(polyethyleneglycol)-2000] (DSPE-PEG2000) (Supplementary

Figure S3) was attached on the surface to improve surface

hydrophilicity of nanoassemblies and extend the period of

blood circulation. The PEGylated 17i nanoassemblies

exhibited comparable cytotoxicity when compared with 17i

solution in vitro, but showed particular superiorities in terms

of efficient anti-tumor therapy and anti-tumor immune

response and less side effect in BALB/c mice bearing CT-26

tumors. As far as we are aware, this is the first time pure

LSD1 inhibitor has been fabricated into nanoassemblies

without the addition of carrier excipients. Such a potent

nanoplatform holds promising clinical application

prospects for drug-like compounds.

Materials and methods

Materials

Compound 17i was self-prepare. 2-(4-Amidinophenyl)-6-

indolecarbamidine dihydrochloride (DAPI) and 3-(4,5-Dimthyl-

2-thiazolyl)-2,5-dipphenyl-2H-terazolium bromide (MTT) were

obtained from Dalian Meilun Biotech Co., Ltd. (Dalian, China).

Cell culture media RPMI 1640, penicilline-streptomycin, and

fetal bovine serum were available from GIBCO, (Carlsbad,

United States). 1,2-distearoyl-sn-glycero-3-

phosphoethanolamine-N-[methoxy (polyethyleneglycol)-2000]

(DSPE-PEG2000) was purchased from Shanghai Advanced

Vehicle Technology Co., Ltd. All other chemical components

and solvents applied in this study are of analytical grade.

Molecular docking

To predict the binding mode of the target molecule with the

binding site, we performed molecular docking using Glide

9.7 module (Friesner et al., 2004; Friesner et al., 2006), which

the protein structure PDB 5YJB (residues 172–833) used for

docking. The inhibitor 17i was docked into the binding pocket of

LSD1 using the standard precision module to get initial binding

predictions and docking sores.

MD simulation

The 100 ns MD simulations were carried out of LSD1-17i

complex by using Desmond v3.8 (Wang et al., 2019). This system

is dissolved in a cubic box (8 Å✕30 Å✕8 Å) with a simple point

charge (SPC) water, adding an appropriate amount of Na+

counter ions to achieve neutralization. Based on the OPLS-

2005 force field, the energy of the system was minimized.

Finally, the 100 ns MD simulations were performed in NPT

ensemble. Other parameters are default.

Preparation of supramolecular 17i
nanoassemblies

Nanoassemblies based on pure 17i compound were prepared

by the one-step nanoprecipitation method. 8 mg 17i was

dissolved in 1 ml methanol to acquire 17i methanol solution.

Then, 500 μL mixtures were dropped slowly into the 2 ml

aqueous solution under the stirring for 5 min. Following that,

methanol was removed from the colloidal solution in a vacuum at

37°C. The PEGylated 17i nanoassemblies were prepared in above

protocol using a mixed methanol solution of 17i and DSPE-

PEG2000 (15%, w/w). The prepared nanoassemblies would be

stored at 4°C. In addtion, the 17i reagents were dissolved in

FIGURE 1
Two-dimensional chemical structure, physicochemical
properties, three-dimensional structures and sizes of compound
17i (Å, angstrom).
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0.5 ml acetonitrile. Then, the mother liquor was diluted with PBS

(1:9), prepared as the 17i solution.

Characterization of supramolecular 17i
nanoassemblies

The dynamic light scattering particle size of 17i

nanoassemblies was measured through a Zetasizer (Malvern

Co., UK). The prepared nanoassemblies were diluted with

phosphate buffer solution (PBS) and the particle size was

measured three times. The 17i nanoassemblies were diluted 1/

20 with deionized water and dropped onto a copper mesh

(300 mesh) covered by carbon film. After natural drying,

negative staining was performed with 2% phosphotungstate

acid. Transmission electron microscopy (TEM) (Hitachi,

HT7700, Japan) was used to observe the appearance and

morphology of 17i nanoassemblies.

Binding conformation and binding energy of two molecules

of 17i together was calculated with molecular docking. Docking

was performed using Glide module in Schrödinger. One

molecule of 17i was selected as the receptor and receptor grid

was set to cover the whole receptor molecule, and then another

molecule of 17i was docked onto 17i receptor, and binding

energy were calculated.

Molecular dynamic (MD) simulation was performed with

Materials Studio Program (Accelrys Inc.). First, amorphous

cell module was used to construct molecular aggregation

models in which 16 17i molecules and 11170 water

molecules were put into cubic box with side length equals

7ns. Then 50000 steps energy minimization were performed

followed with 50 ns molecular dynamic with compass force

field in temperature of 298K, pressure of 1.01325 bar and

NPT ensemble. Root mean square derivation (RMSD) value

were calculated using forcite module.

Simulation study of assembly

Computational simulations of intermolecular interactions

between 17i molecules were performed. The two-dimensional

(2D) structure of 17i was established by Marvin sketch software,

and the three-dimensional (3D) structure of 17i was optimized

by Sybyl 6.9.1 software package. In the previous work, we have

introduced the runtime simulation environment and other

method parameters in detail.

Cell viability

CT-26 cells were cultured with RPMI-1640 cells containing

10% FBS and 100 μg/ml 3 × 103 cells were cultured in 96-well

plates for 12 h to evaluate the cellular viability of 17i nanoparts.

Next, the medium was replaced with different concentrations of

17i solutions and 17i nanocomposites containing 10% alcohol.

24 or 48 h later, MTT solution (1 mg/ml) was placed in an

incubator for further incubation for about 4 h. Drained from

supernatant, DMSO was then added to each well, and the purple

crystals were fully dissolved by slowly shaking for 5 min. The

absorbance value of each well was measured at 492 nm by the

multifunctional microplate analyzer.

Animal studies

All animal protocols were evaluated and approved by the

Animal Laboratory Ethics Committee of the Liaoning Cancer

Hospital. The BALB/c mice bearing CT-26 tumors were

established. PBS, 17i solution and PEGylated 17i

nanoassemblies (20 mg/kg 17i) were intraperitoneal-injected

into the mice separately. The drug was administered every

other day for five times, and the tumor volume was measured

FIGURE 2
(A) In LSD1, 17i (green) binds to its active site. (B) 17i represents the binding surface of the LSD1 pocket (PDB: 5YJB).
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and weighed daily. On the last day of the efficacy trial, animals

were killed, and tumor tissues were isolated, weighed, and

photographed to compare the effects of different preparations

on tumor growth.

Flow cytometry analysis

Tumor tissues after different treatments were extracted and

collected from CT-26-bearing BALB/c mice. Tumor tissue were

conducted to prepare a single-cell suspension. Then, the cells

were stained with fluorescence-labeled antibodies CD3, CD4 and

CD8 in compliance with the instructions of manufacturers. The

proportion of stained cells from tumor tissues were measured

using flow cytometry and data were analyzed using FlowJo

software.

Statistical analysis

Statistical analysis was carried out using Graphpad Prism

software. All data results were showed as mean ± standard

deviation (SD). Student’s T-test was used to analyze

differences between groups. The p < 0.05 was deemed

statistically significant (Sun B. et al., 2019; Sun M. et al., 2019;

Wang Q. et al., 2020; Sun et al., 2022).

Results

Computational simulation studies

The binding affinity of inhibitor 17i in LSD1 (PDB code

5YJB) was first evaluated using a combined docking and

molecular dynamics protocol. Figure 2 illustrates the possible

binding schema between 17i and LSD1 was predicted by glide

9.7 software with a high binding affinity (SP score = -9.109 kcal/

mol), consisting of its bioactivity (IC50 = 65 nM).

Next, 100 ns MD simulations of the protein-ligand complex

(LSD1 protein and compound 17i) were performed to predefined

binding modes using Desmond v3.8. As depicted in Figure 3A,

the LSD1-17i complex reached equilibrium at about 80 ns and

the fluctuation of RMSD values (Å) was found to be 2–4 Å,

indicating that compound 17i was stabilized favorably with the

FIGURE 3
(A) Time evolution of the RMSD value of compound 17i analyzed by 100 ns molecular dynamic (MD) simulations. (B) Statistical protein-ligand
contacts of compound 17i and (C) Two-dimensional interactions of compound 17i during the whole MD simulations.
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active site during the binding process. Meanwhile, the

contributions of amino acid interactions were also analyzed

during the MD simulation in Figures 3B,C. Hydrogen bonds

were formed between the piperidine-3-amine moiety of 17i and

Asp555 and Pro808, accounting for 100 and 51% respectively.

The nitrogen atom on the piperidine ring also interacted with

Ala539 through water molecules to form the hydrogen bond,

counting for 16%. Surprisingly, the Lys661-mediated hydrogen

bond interaction was weak (less than 10%). There was little that

Lys661 contributed to the activity of the compound 17i during

the binding process. In addition, some new residues not

determined by molecular docking were observed, such as

His564. It was positioned in proximity of compound 17i and

participated in π-π stacking interactions with the ring of

benzofuran ring.

Preparation and characterization of 17i
nanoassemblies

For the fabrication of 17i nanoassemblies, one-step

nanoprecipitation was used. The hydrophobic 17i molecules

spontaneously assembled into uniform 17i nanoassemblies

formed without the aid of any carrier excipients. We constructed

PEGylated 17i nanoassemblies with a small quantity DSPE-PEG2000

(15 wt%). Obviously, nanoassemblies composed of 17i molecules

were obviously the main components, and PEGylated 17i

nanoassemblies loaded drugs more than 80 wt% efficiently.

17i molecules themselves were the main component of

nanoassemblies, and the drug loading efficiency of the

PEGylated 17i nanoassemblies was more than 80 wt%. The

hydrated particle size of the nanoassemblies by dynamic light

scattering (DLS) was 188.4 ± 0.332 nm. The image showed the

irregular spheres and a particle size of <200 nm in dehydrated

diameter, as determined by transmission electron microscopy

(TEM) (Figures 4A,B). The critical aggregation concentration

(CAC) of 17i-based nanoassemblies was equal to 1 μg/ml

compound 17i. Subsequently, the assembly mechanisms of

pure compound 17i were then evaluated using molecular

docking. Multiple intermolecular interactions led to the

formation of hydrogen bonds, hydrophobic interactions, and

stacking interactions in this nanosystem (Figure 4C). It was

assumed that the hydrophobic interactions among compound

17i molecules could drive to gather, and the hydrophilic amino

groups in 17i molecules were exposed and coexisted stably with

water by hydrogen bonds.

FIGURE 4
(A) Particle size distribution and TEM images of PEGylated 17i nanoassemblies. (B) Docking diagram of the assembly mechanism of compound
17i. (C) Root Mean Square Deviation (RMSD) values of the nanoassembly system. (D) The aggregation process of 17i in water at (a) 0 ns, (b) 2.5 ns, (c)
6.1 ns, (d) 14 ns, (e) 50 ns and (f) 50 ns contained water beads (red beads).
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Next, we investigated the cellular uptake of PEGylated 17i

nanoassemblies by measuring the amount of 17i after incubation

withCT-26murine colorectal tumor cells. Figure 5A shows that, with

the passage of time, 17i nanoassemblies treated with PEGylated

nanoparticles produced stronger red intracellular fluorescence. In

addition, aMTTassaywas conducted to determine the cytotoxicity of

17i solution and PEGylated 17i nanoassemblies in vitro (Figure 5B).

For CT-26 cells, the cytotoxicity of PEGylated 17i nanoassemblies

was comparable to that of 17i compound solutions, demonstrating

that 17i nanoassemblies had a negligible effect on its in vitro

cytotoxicity. The wound healing assay and apoptosis induction

was also used to investigate the anti-cancer activity in vitro

(Supplementary Figure S4). Similar to results of the cytotoxicity

experiment, the anti-cancer ability of 17i nanoassemblies make it a

potent candidate for further in vivo evaluation.

In vivo antitumor studies

This part evaluated the anti-tumor activity of CT-26 in vivo. PBS,

17i solution and PEGylated 17i nanoassemblies (20 mg kg−1 of 17i)

were treated by intraperitoneal administration for a total of five times.

As shown in Figure 6, the PBS group could not inhibit the rapid

growth of the tumor. In contrast, both 17i solution and PEGylated

17i nanoassemblies had an anti-tumor effect, and the tumor growth

rate was significantly slowed down. The PEGylated 17i

nanoassemblies had a much stronger anti-tumor effect than the

17i solution. Like the intraperitoneal administrated model, the anti-

tumor activity of 17i nanoassemblies in the intravenous

administrated model was better than the other groups

(Supplementary Figure S5). In addition, as illustrated in Figure 7,

In immunofluorescence staining and flow cytometry, C57 mice

bearing CT-26 were significantly infiltrated by CD8+ T cells in

tumor regions after receiving PEGylated 17i nanoassemblies. It is

speculated that the appropriate particle size of PEGylated 17i

nanoassemblies was more conducive to drugs enrichment in the

tumor site via the EPR effect. An enhanced anti-tumor efficacy was

demonstrated by the presence of enriched 17i at tumor sites, resulting

in an increased number of CD8+ T cells infiltrating the tumor site.

The PEGylated nanoassemblies showed stronger anti-tumor activity

than the solution, which is determined by the pharmacologic

advantages of nanoassemblies: 1) extremely high drug loading

(more than 80%); 2) long circulation time in the body; 3) strong

ability of tumor-targeted accumulation. These factors lead to the large

FIGURE 5
(A) Cellular uptake: confocal laser scanning microscopy (CLSM) images of CT-26 cells after being treated for 0.5 and 4 h with 17i
nanoassemblies. Scale bar = 20 μm. (B) Viability of CT-26 cells after treated with various concentrations of 17i solution and 17i nanoassemblies for
24 and 48 h, respectively (n = 3).
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area of apoptosis and necrosis in tumor tissue, showing a great anti-

tumor effect. In our previous study, the body weight of the nudemice

after the treatment of compound 17i at a high dose (20 mg/kg/d) was

loss to some extent during the treatment (Zhang et al., 2021). In this

study, H&E stained images are provided, and blood tests are

conducted to demonstrate the safety of PEGylated 17i

nanoassemblies in Supplementary Figure S6, S7. This is mainly

due to their biophysical targeting properties and little distribution

to other tissues.

Discussion

In the clinical setting, poorly soluble drug molecules often have

low bioavailability issues and absorption problems. Thus, almost

70% of potential drugs were discarded because of their poorly

soluble. As the number of poorly soluble drugs increases from

discovery, developing technology to enhance their solubility as well

as control their release is one of the many challenges facing the

pharmaceutical industry. Reducing the size of insoluble molecules is

an effective solubilization method. However, there is no simple and

reliable technology to manufacture and stabilize nanoparticles in

aqueous solution. Polymer carriers are used to load insoluble drug

molecules, but they still face problems such as low drug loading

capacity. In addition, their pharmacokinetic characteristics are closer

to the properties of carrier which also affect key parameters such as

distribution and drug release. Further evaluation and modification

of carriers are always needed.

Carrier-free supramolecular nanoassemblies of pure compound

17i is expected to enhance its solubility without causing problems

such as low drug loading capacity as mentioned above. The drug

content is greater than 80%, and the preparation process is

controllable and simple. Importantly, the preparation process

does not involve the use of organic solvents for dissolving

hydrophobic precursors, thereby solving safety issues (such as

possible toxicity) from carriers or organic solvents. On the one

hand, 17i nanoassemblies showed similar in vitro antitumor activity

to free drugs. On the other hand, PEGylated 17i nanoassemblies

showed longer circulation times than free drugs. We speculate that

its nanostructure are not substrates for some enzymes, thus the

adverse metabolism of 17i nanoassemblies caused by enzymes are

reduced, which prolong the blood circulation time. In addition, we

found that 17i nanoassemblies exhibit satisfactory targeting ability,

possibly due to the EPR effect.We also observed that tumors regions

FIGURE 6
In vivo anti-tumor efficacy of 17i solution and PEGylated 17i nanoassemblies against CT-26 tumors. (A) Therapeutic protocol on mouse
CT26 subcutaneous tumor xenograft. (B) Tumor volume growth curve after different treatments. (C) Tumor weight (G) of mice after 12 days in
different treatments (n = 5). (D) After repeated administration, excised tumors of different groups are shown. (E) Changes in body weight of mice
during different treatments (n = 5).
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in C57 mice were significantly infiltrated by CD8+ T cells after

treatment of PEGylated 17i nanoassemblies in immunofluorescence

staining and flow cytometry. Obviously, 17i nanoassemblies elevated

tumor immune response when killing tumor cells. The principle of

this pure nano-drugsmay open up theway to provide inspiration for

maximizing the therapeutic potential of drug-like compounds.

Conclusion

In this paper, insoluble LSD1 inhibitor, pure compound 17i, was

prepared into nanoassemblies by one-step nano-precipitation

method without the addition of carrier material, and DSPE-

PEG2000 was modified on the surface to improve stability and

prolong blood circulation time. The characterization of the DLS

and TEM proved that the ~200 nm PEGylated 17i nanoassemblies

were successfully constructed. Multiple intermolecular forces in

assemblies were observed using computational simulation. The

PEGylated 17i nanoassemblies had a negligible impact on the

cytotoxicity of 17i solution. As expected, the PEGylated 17i

nanoassemblies exhibited distinct advantages over 17i solution in

terms of therapeutic efficiency, anti-tumor immune response and

side effects in vivo. This is the first time that the one-step

nanoprecipitation method overcomes the problem of low water

solubility of anti-tumor drug-likeness LSD1 inhibitor. Such a simple

and practical nanoplatform of pure LSD1 inhibitor holds a

promising application prospect for clinical cancer therapy.
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stained images of tumor slices. The nuclei were stained with DAPI
(blue) and CD8 antibody (green). Scale bar = 50 μm.
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Human noroviruses (NV) are the most prevalent cause of sporadic and

pandemic acute gastroenteritis. NV infections cause substantial morbidity

and death globally, especially amongst the aged, immunocompromised

individuals, and children. There are presently no authorized NV vaccines,

small-molecule therapies, or prophylactics for humans. NV 3 C L protease

(3CLP) has been identified as a promising therapeutic target for anti-NV

drug development. Herein, we employed a structure-based virtual screening

method to screen a library of 700 antiviral compounds against the active site

residues of 3CLP. We report three compounds, Sorafenib, YM201636, and

LDC4297, that were revealed to have a higher binding energy (BE) value

with 3CLP than the control (Dipeptidyl inhibitor 7) following a sequential

screening, in-depth molecular docking and visualization, physicochemical

and pharmacological property analysis, and molecular dynamics (MD) study.

Sorafenib, YM201636, and LDC4297 had BEs of -11.67, -10.34, and -9.78 kcal/

mol with 3CLP, respectively, while control had a BE of -6.38 kcal/mol.

Furthermore, MD simulations of the two best compounds and control were

used to further optimize the interactions, and a 100 ns MD simulation revealed

that they form stable complexes with 3CLP. The estimated physicochemical,
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drug-like, and ADMET properties of these hits suggest that they might be

employed as 3CLP inhibitors in the management of gastroenteritis. However,

wet lab tests are a prerequisite to optimize them as NV 3CLP inhibitors.

KEYWORDS

noroviruses, gastroenteritis, protease, natural compounds, molecular dynamics

Introduction

Human noroviruses (NV), which are members of the

Caliciviridae family, are the leading cause of acute

gastroenteritis globally, with substantial morbidity and a

significant economic burden (Koo et al., 2010; Lopman

et al., 2016). NV infections are difficult to combat because

of their easy food and waterborne transmission, their genomic

diversity, and environmental stability (Hall, 2012). The

situation is aggravated further by the absence of diagnostics

and NV-specific treatments and prophylactics, such as

vaccinations (Kaufman et al., 2014; Rocha-Pereira et al.,

2014). Therefore, the discovery of anti-NV small-molecule

therapies and prophylactics, as well as efficient vaccinations, is

an imperative and unmet medical need.

The NV genome is made up of a positive-strand RNA with

three open reading frames encoding: i) polyprotein, ii) minor

capsid protein, and iii) main capsid protein. The polyprotein is

processed by a virally encoded 3 C L protease (3CLP), a cysteine

protease having cysteine139-histidin30-glutamate54 catalytic

triad, an extended binding cleft, and a major substrate

selectivity for a P1 glutamine (or glutamate) residue, yielding

six nonstructural proteins required for NV replication (Hussey

et al., 2011; Muhaxhiri et al., 2013). NV 3CLP is important in the

virus’s life cycle, making it ideal for the development/discovery of

anti-norovirus treatments and prophylactics (Chang et al., 2019;

Netzler et al., 2019). Peptidyl and macrocyclic transition state

inhibitors, as well as transition state mimics, are only a few of the

3CLpro inhibitors that have been found to exhibit anti-NV

activity (Deng et al., 2013; Galasiti Kankanamalage et al.,

2015; Damalanka et al., 2016; Weerawarna et al., 2016). In

addition, a dipeptidyl transition state inhibitor of the NV

3CLpro has also been shown to work in a mouse model

(Galasiti Kankanamalage et al., 2015).

Traditional drug development is time-consuming and

costly, taking an average of 10–15 years to reach the

market and costing an probably 58.8 billion USD in 2015

(Mullard, 2016). These figures represent a dramatic 10% rise

over previous years for both the biotechnology and

pharmaceutical sectors. The high failure rate and high

expense of this conventional approach to drug development

have necessitated the adoption of computer-assisted drug

development (Schaduangrat et al., 2020). The various

adverse effects of drugs that result in severe toxicity

necessitate the screening of drug likeness and

physicochemical properties at the early stage of drug

development process to maximize success and minimize the

time spent screening candidates (Hughes et al., 2011). Here,

we aimed to find novel NV 3CLP inhibitors using the in silico

approach to combat gastroenteritis.

Methodology

Retrieval and preparation of 3CLP and
compound library

The 3D structure of 3CLP, which has the PDB ID 5T6F,

was taken from the protein data bank (PDB) (Galasiti

Kankanamalage et al., 2017). In order to clean up the

complex, the hetero atoms and water molecules had to be

removed. Whereupon, using the steepest descent method

with an RMS gradient of 0.1, energy minimization of protein

was performed for 1,000 steps. This study employs a unique

collection of 700 compounds known to target HCV protease,

HIV protease, Integrase, Reverse Transcriptase, and other

enzymes, including some FDA-approved compounds. The

antiviral compounds were retrieved in ‘sdf’ format, prepared

by minimization, and converted to ‘pdbqt’ format for virtual

screening (VS.).

Structure-based virtual screening

The prepared library of compounds in pdbqt format was

used for VS. against the active site residues of the 3CLP with

the PyRx 0.8 program (Dallakyan and Olson, 2015). The grid

center of the protein was set as X = 4.963, Y = 67.188, and Z =

-6.787.

Molecular docking simulations

The top 20 compounds, including the control (Dipeptidyl

inhibitor 7) (Supplementary Table S1), were subjected to an in-

depth molecular docking simulation following the virtual

screening to optimize the binding conformations of these

compounds. Autodock4.2 was used to do a docking analysis

with the default settings and the same grid center as virtual

screening.
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Prediction of physicochemical, drug-
likeness, and ADMET properties

By identifying lead molecules, computational approaches

help improve the success rate of experimental drug trials. The

computational prediction of pharmacokinetic and ADMET

properties of small molecules provides the clue to narrowing

down the screening and their potential to be drug-like molecules.

The efficacy and safety profiles of the selected hits and their

pharmacokinetics were predicted using SwissADME (Daina

et al., 2017) and the DataWarrior tool (López-López et al., 2019).

The attributes of the bioactivity score predict the overall

potential of the three best selected hits to be an effective lead

candidate. An online tool ‘Molinspiration chemoinformatics’

(https://www.molinspiration.com), was used to evaluate the

drug score of selected hits in relation to various human

receptors such as ion channels, GPCRs, enzymes, kinases,

proteases, and nuclear receptors. On the whole, a greater

bioactivity score specifies that the active compound is more

likely to be active.

Molecular dynamics simulation

GROMACS 5.1.2 (Van Der Spoel et al., 2005) was used for

MD simulations on 3CLP -control, 3 C L Protease-Sorafenib, and

3CLP -YM201636 at 300 K, with the GROMOS96 43a1 force-

field (Pol-Fachin et al., 2009). The PRODRG server was used to

produce the compound’s topology and force-field parameters

(Schuttelkopf and Van Aalten, 2004). Charges were manually

corrected in the topology file, new compound atoms were added

to the complex topology files, and all of the compounds’

attributes were included in the system topology. 3CLP-control,

3CLP-Sorafenib, and 3CLP -YM201636 were immersed in a

‘cubic box’ of water molecules with an initial diameter of

8 nm using the ‘gmx editconf’ module for boundary

conditions and the ‘gmx solvate’ module for solvation. Adding

Na+ and Cl-ions to preserve neutrality and a physiological

concentration using the gmx genion module (0.15 M)

neutralized the charges on the complexes. PyMOL and VMD

have been used to generate all visualizations of the 3D models

(Humphrey et al., 1996; Amarnath Jonniya et al., 2021).

Results and discussion

Proteases are a type of enzyme that plays an important role in

a several biological processes in living organisms ranging from

viruses to mammals. NV 3CLP is a major viral target for anti-NV

drug development due to its critical role in viral replication

(Thorne and Goodfellow, 2014). This study screened

700 antiviral compounds against NV 3CLP. Sorafenib,

LDC4297, and YM201636 were identified as potential lead

compounds after sequential screening and interaction analysis

of the complexes, as they interacted strongly with 3CLP

(Figure 1). Sorafenib interacted with Glu54, Ile109, Gln110,

Arg112, Val114, Leu132, Gly133, Thr134, Gly137, Ala158,

His30, Ala159, Ala160, and Lys162 residues of 3CLP with a

binding energy (BE) of -11.67 kcal/mol (Figure 2; Table 1).

LDC4297 had a BE of -9.78 kcal/mol, and interacted with

FIGURE 1
Structural alignment of screened lead compounds (sorafenib, LDC4297, YM201636) and dipeptidyl inhibitor seven in the 3CLP binding
pocket (A,B).
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Thr28, His30, Glu54, Arg108, Ile109, Gln110, Arg112, Val114,

Ile135, Pro136, Gly137, Cys139, Ala158, Ala159, Ala160, Thr161,

Lys162, and Val168 residues of 3CLP (Figure 3; Table 1). Further,

YM201636 interacted with His30, Ala105, Met107, Arg108,

Ile109, Gln110, Ser118, Thr134, Ile135, Pro136, His157,

Ala158, Ala159, Ala160, Thr161, Lys162, and Val168 residues,

and has a BE of -10.34 kcal/mol with 3CLP (Figure 4; Table 1).

The 3CLP protease residues Ala158, Ala160, Val168, and

FIGURE 2
Surface view of sorafenib in the 3CLP binding pocket (A), 3D (B) and 2D (C) interacting residues of 3CLP with sorafenib.

TABLE 1 BE of lead compounds with NV 3CLP.

Compounds Structure Binding energy (kcal/mol) H-bonds interacting resides

Sorafenib -11.67 His30, Gln110, and Leu132

LDC4297 -9.78 Ala158, and Ala160

YM201636 -10.34 His30 and Ala160

Dipeptidyl inhibitor 7a -6.38 His30, Gln110, Thr134, Ala158, and Ala160

aReference inhibitor.
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Ile109 have been shown to important in inhibitor binding

(Galasiti Kankanamalage et al., 2017). Consistent with this,

the hits Sorafenib, LDC4297, and YM201636 have been found

to interact with these 3CLP residues.

NV 3CLP’s mode of action is similar to that of comparable

cysteine proteases, in which Cys139 functions as a nucleophile,

His30 acts as a general acid/base, and Glu54 aids in the alignment

of His30 and stimulates the deprotonation of Cys139 (Chang

et al., 2019). Interestingly, this study showed that the lead

compounds sorafenib, LDC4297, and YM201636 interacted

with these residues (His30, Glu54, and Cys139) of NV 3CLP,

possibly inhibiting the 3CLP.

Moreover, to obtain a better picture of 3CLP interacting

residues with leads (sorafenib, LDC4297, and YM201636), 3CLP

interacting residues with its co-crystallized inhibitor (dipeptidyl

inhibitor seven; PDB ID: 5T6F) were analyzed, which showed

FIGURE 3
Surface view of LDC4297 in the 3CLP binding pocket (A), 3D (B) and 2D (C) interacting residues of 3CLP with LDC4297.

FIGURE 4
Surface view of YM201636 in the 3CLP binding pocket (A), 3D (B) and 2D (C) interacting residues of 3CLP with YM201636.
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that Gln110, Arg112, Val114, His130, Thr134, Glu54, Met107,

Arg108, Ile109, Ile135, Pro136, Gly137, Cys139, Lys152, His157,

Ala158, Ala159, Ala160, Thr161, Lys162, and Val168 residues

were important in binding with dipeptidyl inhibitor 7 (Figure 5).

Interestingly, Ile109, Gln110, Ala158, Ala159, Ala160, and

Lys162 were the common binding residues of 3CLP with

sorafenib, LDC4297, YM201636, and the dipeptidyl inhibitor

7 (Figure 2, 3, 4, and 5), revealing that the binding mode of these

compounds in the 3CLP catalytic pocket was similar to that of the

reference inhibitor.

The intention of ligand-protein docking is to anticipate the

most probable binding modes of the ligand with the catalytic

pocket residues of the target protein, with a high BE value (more

negative) implying an effective interaction between ‘inhibitor-

protein’ complexes (Meng et al., 2011). Sorafenib, LDC4297, and

YM201636 have higher BEs than the control dipeptidyl inhibitor

7 (Table 1), indicating that these leads bind to the NV 3CLP

strongly.

Despite advances in developing effective antiviral

therapies, the currently available antiviral agents have

various issues, including high prices, drug resistance, safety,

and effectiveness limits (Antonelli and Turriziani, 2012).

Further, we predicted the physicochemical, drug-likeness,

and ADMET properties of these selected hits. Table 2

shows the bioactivity scores predicted by the

Molinspiration web tool for sorafenib, LDC4297, and

FIGURE 5
Surface view of dipeptidyl inhibitor seven in the 3CLP binding pocket (A), 3D (B) and 2D (C) interacting residues of 3CLP with dipeptidyl
inhibitor 7.

TABLE 2 Bioactivity score of top three hits.

Properties Top 3 hits

Sorafenib YM201636 LDC4297

Ligands GPCR 0.18 0.03 0.04

Nuclear receptor -0.07 -0.81 -0.55

Ion channel modulator 0 -0.38 -0.27

Inhibitors Kinase 0.44 0.39 0.36

Protease 0.11 -0.32 -0.23

Enzyme 0.08 0.27 -0.11
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TABLE 3 Physicochemical and druglikeness properties of selected hits.

Selected hits Sorafenib YM201636 LDC4297

Physicochemical Properties Molwt 464.83 467.488 432.53

cLogP 4.1428 2.7535 1.7767

cLogS -6.689 -7.308 -4.913

H-Acceptors 7 10 9

H-Donors 3 2 2

TPSA 92.35 132.29 94.19

Lipophilicity iLOGP 3.42 3.08 4.04

XLOGP3 4.07 2.46 3.43

WLOGP 6.32 2.94 2.45

MLOGP 2.91 1.18 2.63

Silicos-IT Log P 3.78 2.47 1.65

Consensus Log P 4.1 2.43 2.84

Water Solubility ESOL Log S -5.11 -4.49 -4.68

Solubility (mg/ml) 3.62E-03 1.52E-02 8.97E-03

Class Moderately soluble Moderately soluble Moderately soluble

Ali Log S -5.71 -4.88 -5.09

Solubility (mg/ml) 8.98E-04 6.13E-03 3.53E-03

Class Moderately soluble Moderately soluble Moderately soluble

Pharmacokinetics GI absorption L H H

BBB permeant N N N

Pgp substrate N Y Y

Inhibitor CYP1A2 Y Y Y

CYP2C19 Y Y N

CYP2C9 Y Y Y

CYP2D6 Y Y Y

CYP3A4 Y Y Y

log Kp (cm/s) -6.25 -7.41 -6.5

Druglikeness Violations Lipinski 0 0 0

Ghose 1 1 0

Veber 0 0 0

Egan 1 1 0

Muegge 0 0 0

Bioavailability Score 0.55 0.55 0.55

Mutagenic N N N

Tumorigenic N N N

Reproductive Effective N N N

Irritant N N N

Druglikeness score -5.1185 2.2644 4.0968

(Y=Yes, N=No, None, H=High, L = Low).
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FIGURE 6
Structural stability studies of complexes. 3CLP-Sorafenib, 3CLP-YM201636, and 3CLP-control complexes were depicted in red, green, and pink
color, respectively. RMSD plot of backbone of protein with complexes (A), RMSD plot of ligands within pocket of protein (B), SASA plot of complexes
(C), and RMSF plot of backbone of protein (D).

FIGURE 7
Radius of gyration plot of complexes (A), Hydrogen bond interaction (B), and 2D plot of projection (C).

FIGURE 8
GFE landscape of 3CLP-control (A), 3CLP-Sorafenib (B), and 3CLP-YM201636 (C) complexes.
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YM201636. The chemical compound is active if its bioactivity

score is greater than 0.0; moderately active if it is between

-5.0 and 0.0; and inactive if it is less than -5.0. As per

calculated values, the identified hits, Sorafenib, YM201636,

and LDC4297 are physiologically active/moderately active

substances and meet the criteria mentioned here.

The pharmacokinetics viability and druglikeness

characteristics of identified hits computed using the

SwissADME and DataWarrior tools indicated that they should

be promising lead candidates. Table 3 displays the values of the

different properties, viz., physicochemical properties,

pharmacokinetics, and druglikeness of the Sorafenib,

YM201636, and LDC4297.

Evaluation of pharmacokinetic properties for a success

therapeutic in the early stages of drug design by in silico

ADME assays is critical to achieve druglikeness and decrease

risk attrition in the advanced stages. The predicted

compounds had acceptable drug-likeness and

pharmacokinetic features, and they could not be

P-glycoprotein substrates (P-gp). The cytochrome

P450 monooxygenase (CYP) enzyme superfamily, which

includes cytochrome CYP1A2, CYP2C19, CYP2C9,

CYP2D6, and CYP3A4, is crucial in drug metabolism in

the liver, and drug biotransformation by O-type oxidation

processes, particularly those of 2D6, 2C9, and 3A4, has been

anticipated. Sorafenib, YM201636, and LDC4297 were shown

to be CYP1A2, CYP2D6, and CYP2C9 inhibitors rather than

CYP2C19 inhibitors. These three compounds had substantial

lipophilicity and were moderately soluble in water.

Finally, based on BE, sorafenib and YM201636 including the

control were chosen for MD simulation studies to assess the

stability of complexes. The root mean square deviation (RMSD)

is a protein stability metric; the slighter the deviations, the more

stable the protein structure (Aier et al., 2016). 3CLP-control,

3CLP-Sorafenib, and 3CLP-YM201636 had RMSD average

values of 0.21, 0.23, and 0.32 nm, respectively. The RMSD

figure revealed that 3CLP-control and 3CLP-Sorafenib binding

increased 3CLP stability and resulted in fewer structural

aberrations from its normal conformation. The bound

structure of the 3CLP-YM201636 complex is highly deviated

(Figure 6A); it showed that the catalytic pocket of 3CLP not

forming well interaction with YM201636, therefore it showed

high deviation. In addition, the ligand RMSD also exhibits that

control and Sorafenib bind better than YM201636 and they

showed more stability (Figure 6A).

The 3CLP-Sorafenib and 3CLP-YM201636 backbones

displayed consistent fluctuations in the 3CLP catalytic

pocket, most probably due to differing orientations, with

the biggest fluctuation regions found between 25–30 and

120–125 residues (Figure 6D). The vibrations around the

equilibrium are not random; rather, they are determined by

the flexibility of the local structure. The average fluctuation

of all residues throughout the simulation, as well as the root

mean square fluctuation (RMSF) of 3CLP during binding of

3CLP-control, 3CLP-Sorafenib, and 3CLP-YM201636, were

plotted as a function of 3CLP protease residue numbers. The

RMSF plot revealed that 3CLP has residual variants in

various protein domain areas. Due to their close

interaction with the 3CLP. 3CLP-control, and 3CLP-

Sorafenib have been shown to reduce the residual

fluctuations of the protease.

The solvent-accessible surface area (SASA) of a protein is

the area of its surface that is involved in the interaction with its

solvent molecules. Average SASA values for 3CLP-control,

3CLP-Sorafenib, and 3CLP-YM201636 complexes were

recorded during the 100 ns simulation. The SASA values

for the 3CLP-control, 3CLP-Sorafenib, and 3CLP-

YM201636 complexes were 88.02, 84.01, and 85.30 nm2,

respectively (Figure 6C). SASA analysis showed that upon

binding of Sorafenib, surface exposure has been reduced.

Further to gain insight of the complex stability/

compactness profile in a biological system, we applied the

Radius of gyration (Rg). The 3CLP-control, 3CLP-Sorafenib,

and 3CLP-YM201636 complexes had average Rg values 1.50,

1.53, and 1.47 nm, respectively. Stable Rg trajectories were

observed within the catalytic pocket of 3 C L protease

(Figure 7A).

The hydrogen bond is vital to the stability of the ligand-target

complex (Hubbard and Kamran Haider, 2001). Between protein

and ligand, hydrogen bonds were formed within 0.35 nm. The

stability of docked complexes was tested using 100 ns simulations

of 3CLP-control, 3CLP-Sorafenib, and 3CLP-YM201636 in a

solvent environment. 3CLP-control, 3CLP-Sorafenib form 3-

6 hydrogen bonds with the 3CLP catalytic pocket, whereas

3CLP-YM201636 forms 1-2 hydrogen bonds with the 3CLP

catalytic pocket (Figure 7B).

The Gibbs free energy (GFE) landscape of the 3CLP -control,

3CLP-Sorafenib, and 3CLP-YM201636 complexes has been

plotted. The blue color represents the location with the least

amount of energy. The 3CLP-control and 3CLP-Sorafenib

complexes have two distinct global energy minima basins (in

blue) (Figures 8A,B), but the 3CLP-YM201636 complexes have

three global energy minima states (Figure 8C). More blue spots

imply changes in the protein structure followed by a

thermodynamically more favorable state, whereas increased

blue areas suggest more stability.

Conclusion

Given the clinical relevance of NV, the study presented here

focuses on a high-throughput virtual screen of an antiviral natural

compound library against the NV 3CLP using computational

technique. The lead compounds sorafenib, LDC4297, and

YM201636 met ADMET criteria and interacted with key 3CLP

residues. Based on BE, sorafenib and YM201636 were chosen for
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MD simulation studies, and these compounds displayed stability

with the 3CLP. Therefore, these compounds have the potential to

be useful in the development of 3CLP inhibitors, and further

testing in wet laboratory is warranted.
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The BRAF gene is responsible for transferring signals from outside of the cell to

inside of the nucleus by converting a protein namely B-Raf through the RAS/

MAPK pathway. This pathway contribute to cell division, proliferation, migration,

and apoptotic cell death of human and animal. Mutation in this gene may cause

the development of several cancers, including lung, skin, colon, and

neuroblastoma. Currently, a few available drugs are being used that has

developed by targeting the BRAF mutated protein, and due to the toxic side

effects, patients suffer a lot during their treatment. Therefore this study aimed to

identify potentially lead compounds that can target and block the expression of

BRAF and subsequently inhibit the cancer. The hits were generated through the

pharmacophore model-based virtual screening, molecular docking,

pharmacohore model validation, ADME (absorption, distribution, metabolism,

and excretion) analysis molecular dynamics (MD) simulation to find more

suitable candidate against the overexpress BRAF gene. The pharmacophore
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based screening initially identified 14 k possible hits from online database which

were further screened by ligand scout advance software to get hit compound.

Based on molecular docking score of ZINC70454679 (-10.6 kcal/mol),

ZINC253500968 (-9.4 kcal/mol), ZINC106887736 (-8.6 kcal/mol), and

ZINC107434492 (-8.1 kcal/mol), pharmacophore feature and toxicity

evaluation, we selected four possible lead compounds. The dynamic

simulation with Schrodinger Maestro software was used to determine the

stability of the potential lead candidates with target protein (PDB ID: 5VAM).

The results showed that the newly obtained four compounds were more stable

than the control ligand (Pub Chem ID: 90408826). The current results showed

that the ZINC70454679, ZINC253500968, ZINC106887736, and

ZINC107434492 compounds may be able to work against several cancers

through targeting the BRAF overexpressed gene. To develop a novel drug

candidate, however the evaluation of the web lab based experimental work are

necessary to evaluate the efficiency of the each compound against the BRAF

target gene.

KEYWORDS

pharmacophore modeling, virtual screening, molecular docking, molecular dynamics
simulation, BRAF, B-Raf

1 Introduction

BRAF also known as the proto oncogene highly responsible for

the signal transduction inside the cells for growing the cell number

through maintaining the signaling pathway known as MAP/ERK

pathway (McCubrey et al., 2007) (Guo et al., 2020). BRAF

participates in cell division by activating phosphorylation by

binding to Ras-GTP and eventually producing ADP,

phosphorylated protein. (Cope et al., 2018). EGF (Epidermal

Growth Factor) bind to the cytoplasmic serine and activate the

EGFR receptor. In the presence of the two adaptor protein (SOS and

GRB2) EGFR knock KRAS to release the GDP. This KRAS allow to

bind cystolic BRAF and activate the MEK kinase. Finally through

simulating transcription factors contribute in cellular proliferation,

differentiation, apoptosis and cell survival (Fanelli et al., 2020).

Genetic mutations of BRAF gene are more common and

responsible for developing cardiovascular defects, retardation of

mental growth, and also lead to the development of several

cancers (A. Richards and Garg, 2010). Mutations in this gene are

responsible for more than 80% of skin cancers known as

melanomas; others are lung cancer, colon cancer, and also

neuroblastoma (Hussain et al., 2015). BRAF mutation in position

V600E, which carried about 80% of alteration and V600 K about

10–20%, were responsible for development of cancer in young

people, mainly the tumors appear in the parts of body that were

not commonly exposed to sunlight (Menzies et al., 2012) (Ascierto

et al., 2012) (Luu and Price, 2019). Smokers as well as non-smokers

can be radially affected by the cancer, although the cancer in

smokers can develop more aggressively and quickly. It has been

reported that the BRAF mutation developed in lung

adenocarcinoma in people who were never addicted to smoking.

The treatment of the lung adenomas is difficult in the case of this

mutation as it has been observed as a resistance mutation

(Cardarella et al., 2013) (Nguyen-Ngoc et al., 2015). The

incidence of colon cancer due to such mutations is higher in

females, those over the age of 50, and those with no history of

genetically colon cancer. The mutation in chromosome seven from

valine to glutamine at position 600 was developed for right-sided

colon cancer (Barras, 2015) (Grassi et al., 2021). Both BRAF and

KRAF mutations were linked to the development of CRC in two

ways: one activated the expression of the KRAS/mTOR/AKT and

the other caused instability in cell cycle regulation. (Morkel et al.,

2015) (Merz et al., 2021).

The combination target therapy with encorafenib, binimetinib

and cetuximab are in the clinical trial phases and showed to more

effective rather than the using two drugs (irinotecan + cetuximab)

(Roviello et al., 2020) (Geel and Iersel, 2022). One of the aggressive

tumors, thyroid cancer, was also developed by the mutation in the

BRAF gene.Most of the BRAFmutations occur in the position of the

T1799A and others, including the mutation in the K601E in thyroid

cancer (Rowe et al., 2007) (Tran et al., 2020). Through examining the

total 75 samples, among whom 17 patients developed KRAS

mutation and 26 were examined for BRAF mutation, it has been

identified that BRAF mutation may lead to developing ovarian

cancer in females (Turashvili et al., 2018). Two common mutations

were identified, including BRAF in codon 599, and at codon 12 and

13, the KRAS mutation. This mutation is less common (less than

3%) in carcinomas of the stomach, esophagus, and glioma

(Ayatollahi et al., 2018).

The BRAF positive mutated patients were under

chemotherapy or immunotherapy besides using the targeted

therapy. Combination with two drugs (combine therapy) and

three drugs (triple therapy) are common in the treatment of

BRAF mutations and are also in clinical trial phase (Eroglu and
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Ribas, 2016) (Patel et al., 2020). Several drugs, such as

vemurafenib, dabrafenib, and encorafenib, currently available

to treat BRAF mutated cancer based on targeting the mutations

V600E and V600K, two types of possible mutations in several

cancers. Drugs known as checkpoint inhibitors are being used in

triple therapy. Use of these drugs for target therapy has been

shown to produce several side effects, including urine in blood,

fever, joint pain, skin ulceration, and so on (Proietti et al., 2020)

(Tanda et al., 2020). The number of other drugs that can be used

during treatment are limited due to drug-drug interactions. Due

to their long-time use, most of the BRAF/KRAS mutated tumors

are showing resistance to these treatments. A 60 year old female

patient was identified the BRAFmutation and treatment with the

vemurafenib showed less efficient. A new mutation was also

observed after the 11 months of treatment and through the

multiple organ failure patient died after 12 months (Wang

et al., 2022).

So the development of new drugs with less side effects and

also possible to overcome resistance are the first choice for

researchers, caused by the BRAF mutations. In our study, we

focused on computational drug design to develop more efficient

compounds that can be used as drugs through further

experiments and validation results. Currently computer based

drug discovery are the popular tool for designing a new

compounds against the specific target area. For rapid lead

compounds identification this pathway follow the

pharmacophore modeling, molecular docking, virtual

screening, ADMET (absorption, distribution, metabolism,

excretion, and toxicity) analysis, molecular dynamics (MD)

simulation, and MM-GBSA method (Opo et al., 2021)

(Bouback et al., 2021). Molecular docking result usually

express the binding possibility between the ligand and

receptor, which is the important part for drug efficacy.

ADMET analysis by the online database and tool showed the

possibility of toxic effect of a lead compound inside the body are

more easier to determine rather the conventional method,

whereas the toxicity development from the blood sample,

stool or urine might create a risk for drug failure (Valasani

et al., 2014). As the CADD approach are more convenient, cheap

in comparison to the conventional drug design this study aimed

to discover lead compound against the BRAF mutations. The

identified potentially lead compounds through the in-silico drug

design might be able to reduce the BRAF mutated carcinoma.

2 Materials and methods

2.1 Pharmacophore modelling

To interact with natural molecules, a ligand with a protein

structure was retrieved (PDB ID: 5VAM), as well as a three-

dimensional structure (Nishiguchi et al., 2017). For identification

of the protein structure screening has been performed based on

the organism source, X- Ray diffraction method, and refinement

resolution also the release date. The attached ligand IC50 was

already established by several experimental analysis and the

toxicity of the attached ligand was low with higher LD50 value

(2000 mg/kg). PubChem database was used to get the chemical

ID of the attached ligand 92J to the target protein (Pub Chem ID:

90408826) (S. Kim et al., 2021). A structure-based

pharmacophore model was created using Ligand Scout

4.4.8 advanced software. This powerful software created the

interaction between inhibitors and crucial amino acids at the

active sites in our target protein. Different pharmacophore

properties, such as hydrogen bond donors, charge transfer,

hydrophilic and hydrophobic areas, and hydrogen bond

acceptors, were used to interpret ligand-receptor interactions.

Other parameters such as the quantity of aromatic rings,

hybridization state, binding pattern, and receptor molecule

distance have been discovered using stepwise algorithms.

Using ligand scout, we provided hydrophilic characteristics to

the protein to improve the measurement of protein binding. The

number of active sites was also measured by using the CASTp

(sts.bioe.uic.edu/castp/) software for further analysis

(Supplementary Figure S1).

2.2 Pharmacophore model verification

A set of active compounds (Supplementary Table S1) were

identified from the ChEMBL database (https://www.ebi.ac.uk/

chembl/) with an active IC50 value (Gaulton et al., 2017). The

DUD-E decoy set (obtained from the DUD-E decoys database)

was used to evaluate the known active compounds in order to

more accurately distinguish between the active and inactive

compounds (Mysinger et al., 2012). All the active known

compounds and the extracted decoy set were transferred to

the ligand scout 4.4.8 advance software to make an “idb” file.

Models were generated from the protein-ligand complex through

the screening of all active compounds in correspondence of the

4,094 decoy sets. The quality of our selected structure based

model was assessed by the AUC value, GH score, and enrichment

factor (Wolber and Langer, 2005).

2.3 Pharmacophore based virtual
screening

A freely assessable database was used to identify the

potential lead compounds, including the ZINC Pharmer

(http://zincpharmer.csb.pitt.edu/pharmer.html) and

ambinter data base (https://www.ambinter.com/#search)

(Koes & Camacho, 2012). Both databases were the available

source for the determination of the physical and chemical

properties such as 2D and 3D structure determination, the

boiling point, the melting point, molecular weight, and

Frontiers in Chemistry frontiersin.org03

Dain Md Opo et al. 10.3389/fchem.2022.986376

30

https://www.ebi.ac.uk/chembl/
https://www.ebi.ac.uk/chembl/
http://zincpharmer.csb.pitt.edu/pharmer.html
https://www.ambinter.com/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.986376


biological activity of the compounds (Opo et al., 2021). The

screening was performed in the Zinc Purchasable database

and natural database based on the pharmacophore features

generated by the ligand Scout software and previously saved as

‘pml’ file. The chosen compounds had the most similar

pharmacophore features to our query compounds. The

selected compounds were then subjected to a series of tests,

including molecular weight, hydrogen bond donor, hydrogen

bond acceptor, and LogP value, all of which were based on

Lipinski’s rule of five. All the selected compounds were

preserved with their Canonical SMILES ID obtained from

PubChem database (https://pubchem.ncbi.nlm.nih.gov/) and

proceeded to further study (S. Kim et al., 2021). The database

generated from the Zinc and ambinter was validated based on

structure based pharmacophore features. A freely accessible

ZINC database and also an ambinter database were used to

find the most similar compounds. We identified our specific

protein structure and a previously prepared library with 14 k

compounds was inserted into the Ligand Scout 4.4.8 advance

software. The library was screened based on the created

pharmacophore features, with the addition of the 1 h bond

donor feature. Fitted hit compounds were further subjected to

validation based on the relative pharmacophore fit score.

2.4 Protein and ligand preparation

The selected protein structures were prepared for docking

purposes. The downloaded ‘sdf’ file was opened by the discovery

studio and removed the water molecule and also the hetatm. The

addition of any necessary bond and deletion of the water molecules

was not part of the structural refinement process. The desired

protein structure (PDB ID: 5VAM) was obtained and analyzed

for the R value-free (0.223), resolution (2.0Å), and observed R-value

(0.194). We discovered that a few bonds in the currently selected

protein were missing; therefore, we used BIOVA Discovery Studio

Tool 16.1.0 to construct a new bond by using the force field

(CHARMm). Generally, this force field contribute distinctive

effects including electronegativity, stereo electrical effects,

polarization, bond stretching and angle bending, on the other

hand, are characterized by simple harmonic motion (Hwang

et al., 2020).

2.5 Grid generation and active site
identification

The active site of our protein has been identified and analyzed by

the UniProtKB and PrankWeb (https://prankweb.cz/) (Gray et al.,

2021) (Jendele et al., 2019). The number of active pockets was also

determined using CASTp (CASTp 3.0: Computed Atlas of Surface

Topography of Proteins (uic.edu) (Supplementary Figure S1,

Supplementary Table S2) (Tian et al., 2018). The presence of

hydrogen bonds, lipophilic or hydrophilic interactions, and

ionizable charges all affect the protein and ligand’s binding

affinity. The PyRx software was used to generate the grid by

selecting the active sites of the proteins (Dallakyan and Olson,

2015). The server-generated binding sites were utilized to create a

receptor grid box in center with the following coordinates: X = -29.

1124, Y = 42.6919, and Z = 8.227 and with the exhaustiveness of 8.

2.6 Binding affinity determination by
docking

All the selected hit compounds “sdf” files were

downloaded from the PubChem database. The compounds

and also previously prepared the protein 3D structure were

transferred to the PyRx software and docking was conducted

by AutoDock Vina. A prominent tool being used in drug

design for selecting drugs against various animal diseases

and identifying new therapeutic candidates (Dallakyan and

Olson, 2015). The compounds were then submitted to the

BIOVA Discovery Studio Visualizer Tool 16.1.0 for analysis

based on the binding affinity and RMSD value. The

validation of the docking has been performed several

times with the above mentioned grid generation for the all

selected ligands.

2.7 ADME profile evaluation

The metabolism and pharmacokinetic properties of a drug are

important parameters in determining drug efficacy (Benedetti et al.,

2009). Approximately fifty percent of drug candidates fail due to their

lack of efficacy and toxicity at the time of the drug development, so

the ADME profile analysis is crucial part before drug development.

(Opo et al., 2021). Usually elimination of drugs from the body occur

through urine and faces, several physiochemical features such as

hydrophobicity, lipophilicity, gastrointestinal environment, and

blood brain barrier have a direct impact on the ADME profile

before elimination of drugs. The bioavailability of a medicine also are

being affected by its sex, age, disease state, lipophilicity,

hydrophobicity, microbiota, body enzymes, and administration

method (Stillhart et al., 2020). For evaluating the ADME profile,

such as solubility, GIT absorption, and bioavailability in the case of

the ligand, we used the freely available Swiss-ADME server (http://

www.swissadme.ch/). Swiss ADME sever is a popular online database

for determination of the compound physicochemical and

pharmacokinetic properties (Daina et al., 2017).

2.8 Evaluation of toxicity

In-silico approaches for analyzing the safety profile of the

required chemicals have been developed by computational
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research (Bouback et al., 2021). Otherwise, these substances

could have a negative impact on discovery of new compounds

and lead to the failure of drug discovery in the middle of

research. The toxicity profile such as hepatic failure,

carcinogenicity, immunological response, membrane

potential route was easily quantified and qualitatively

determined to see the possibility of toxicity before going to

the lab based experiment. The computer aided toxicity

measurement tools (Toxicity Estimation Software Tool,

TEST version 4.2.1) usually commonly used to estimate a

chemical’s harmful effect based on its molecular structure. In

our study we measured the fathead minnow LC50 (96 h), 48-h

daphnia magna LC50, developmental toxicity, oral rat LD50,

bioaccumulation factor, and water solubility (at 25°C). Freely

access database ProTox-II server (https://tox-new.charite.de/

protox II/) was used to detect hepatotoxicity, carcinogenicity,

mutagenicity, immunogenicity, and numerous toxicological

pathways for selected antagonist (Banerjee et al., 2018).

2.9 Protein and ligand preparation for
simulation

The simulation of the protein ligand complex tells us the

binding pattern and characteristics between the atoms and

amino acid residues (Opo et al., 2021). The 100ns dynamic

simulation was used to validate our ligand binding to the

protein, which had been obtained through the docking

studies. The stability of the complex must be assessed to

see the possible effect inside the body, as well as the

projection of every atom bonding behavior both of ligand

and protein molecules during a given time period. Using the

Linux command, we conducted our dynamic simulation

through utilizing software Schrödinger Release 2020-3

(Academic version) (Bowers et al., 2006). The water model

was used to solve the ligand and protein interaction, as well as

provide the orthorhombic box shape boundary. By combining

the Na+ and Cl-with a 0.15 M salt concentration, the

complicated atom buffer box calculation approach was

applied. The simulation was run with an ambient

temperature of 300 K and a pressure of 1.01325 bar, with a

record interval time of 50 ps. The OPLS-2005 force field was

used to execute the simulation (Shivakumar et al., 2010).

2.9.1 Trajectory file analysis from ligand protein
interaction

The MD simulation’s quality was confirmed, and the

simulation scenario was investigated utilizing Schrödinger

package’s simulation interaction diagram (SID). The

Simulation Interaction Diagram (SID) of the Desmond

module was used to evaluate all of the simulation’s data sets

(Bowers et al., 2006). Depending on the RMSD, RMSF value, and

ligand-protein complex, the simulation trajectory file offered

information about the integrity of the protein-ligand

interaction complex. The ligand torsion profile has been

evaluated to find the rotatable bond were present in the

ligand during the simulation trajectories (Jin et al., 2020).

Radius of gyration has been used to evaluate the structural

compression changes and intra molecular hydrogen bond

analysis was performed to identify the presence of internal

hydrogen bonds within a ligand molecule.

2.9.2 MM-GBSA analysis

A common technique for determining the free binding

energy of ligands is the calculation of molecular mechanics

with generalized born surface area (MM/GBSA). Typically this

analysis based on the receptor ligand complex that are more

precise unlike many docking studies grading algorithms and

computationally fewer taxing other molecular free energy

techniques (Genheden and Ryde, 2015). We estimated the

binding free energy of four potentially leads compound and

control ligand using the Schrödinger Prime MM/GBSA package

(released 2020-3) (Bouback et al., 2021).

3 Results

3.1 Protein analysis based on
pharamacophore features

The 3D structure of a protein is important to facilitate the

possible drug interaction with the biological activity and is necessary

to predict the possibility of efficacy prior to synthesis. The protein

was bound to a single ligand, and the structure was determined by

x-ray diffraction with a resolution of 2.10, R value free (0.223), R

value observed (0.194), and R value work (0.192). The IC50 value was

calculated from the several assays and was minimum 0.4nM with

maximum 1.8 nM and the toxicity of the attached ligand was low

with higher LD50 value (2000 mg/kg). For determining an active

series of inhibitors, it is important to look for enough interaction to

attain better biological activity than the current one. The important

chemical characteristics were generated using Ligand Scout

4.4.8 advanced critical molecular design software, which was

based on a pharmacophore model. Total seven chemical features

were observed, including three hydrophobic bonds, three H-bond

acceptors, and oneH-bond donor without the inclusion of exclusion

volume (Figure 1).

Analysis of the interaction with the protein ligand contact

indicated the number of hydrophobic interactions were most

predominant type of bond among the twelve amino acids. The

red arrows represented the interaction of the H-bond acceptors

ASP594, HOH917, HOH972, and CYS532. One H-bond donor

bond was formed with the GLU501 position of the amino acids

(Supplementary Figure S1B).
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3.2 Pharmacophore model validation

Validation is necessary to evaluate the model quality and to

obtain an accurate pharmacophore analysis. Validation of the

derived pharmacophore model was performed using 24 active

known BRAF antagonists in correspondence with 4,094 decoy

molecules obtained from the online decoy database. The quality

of the curve is represented by the area under the curve (AUC) and

the EF value. The early enrichment factor (EF1%) was 17.2,

referring to an excellent curve, and the average AUC value was

0.89, indicating good to excellent results (Figure 2).

3.3 Dataset generation

The development of data sets is critical for distinguishing the

lead compounds. The ZINC and ambinter database are the most

commercially available database, with 730 million compounds

including natural and chemical compounds, as well as 3D

structures and current clinical development conditions (Irwin

et al., 2020) (Bouback et al., 2021). The Ligand Scout

4.4.8 advance tool was used to produce pharmacophore

features and was submitted to the online database for further

screening to identify the potentially active lead compounds. We

followed the rule of five in the case of screening the database, the

RMSD value was less than or equal to one.

3.4 Pharmacophore based virtual
screening

Ligand Scout 4.4.8 advanced software was used to create

pharmacophore characteristics, which were then transferred to

the ZINC database through a ‘mol’ file. We add one H bond

features to get the more suitable drug candidate after screening.

The search has been completed based on the following rules: The

Rule of Five. A total of 155 hits were retrieved when the RMSD

FIGURE 1
3D structure based on pharmacophore model of BRAF protein ligand complex. Arrangement of the pharmacophore features along with the
selected protein structure (A), and the observed pharmacofeatures in the absence of the protein chain (B). Three hydrophobic interactions
represented by yellow spheres, red arrows demonstrated H-bond acceptor, and one green arrows depicted the presence of the H- bond donor.

FIGURE 2
Ligand Scout 4.3 Advance software was used to create a
receiver operating characteristic (ROC) curve. The total number of
active decoy sets was determined using the dude decoy database’s
predefined decoy sets.
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FIGURE 3
Protein-ligand interaction prediction (BRAF: 5VAM) and the binding site identification. The most predominant type bond was the van der Waals
bond and the second more common bond pi-alkyl bond with also the halogen bond. Herein, (A) representing the 3D protein-ligand interaction and
(B) representing 2D interaction of the protein with the ligand.

TABLE 1 The binding score generated from the docking with the protein (PDB ID: 5VAM) along together with the compound structure, molecular
formula. The compound were selected based on the binding energy and also by evaluating toxicity.

ZINC ID Compound structure Binding affinity (kcal/mol) Molecular formula

ZINC70454679 -10.6 C30H34O6

ZINC253500968 -9.4 C34H44O19

ZINC106887736 -8.6 C33H38O8

(Continued on following page)
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FIGURE 4
3D interaction of the selected antagonist with the protein complex (PDB ID: 5VAM). Our ligands (A) ZINC70454679, (B) ZINC253500968, (C)
ZINC106887736, and (D) ZINC107434492 shown the better interaction with the 5VAM protein. Based on the binding affinity score and also the
toxicity analysis, four compounds were selected.

TABLE 1 (Continued) The binding score generated from the docking with the protein (PDB ID: 5VAM) along together with the compound structure,
molecular formula. The compound were selected based on the binding energy and also by evaluating toxicity.

ZINC ID Compound structure Binding affinity (kcal/mol) Molecular formula

ZINC107434492 -8.1 C23H32N2O3
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value was set to around 1, with a relative pharmacophore fit score

of 0.82. The molecules were then docked with the Autodock vina

and selected the compounds with the highest binding energy for

further investigation and through initially toxicity analysis.

3.5 Binding site identification and ligand-
protein interaction

Based on the structure generated by X-ray crystallography,

the selected protein has one attached ligand and separate

attachment sites for interacting with the target ligand. A total

of seven bond formations with the active sites were observed with

multiple amino acid residues indicated by the discovery studio

program by analysis of the protein-ligand complex (Figure 3A).

The number of active sites has also been determined based on the

CASTp software (Supplementary Figure S1A).

3.6 Molecular docking

Docking is a technique used in drug development to assess

the binding affinity of a protein and its ligand (Salmaso and

Moro, 2018). With the addition of one ligand, the BRAF protein

was linked to two chains, and we selected the protein through the

removal of the water and hetatm. The protein was prepared by

combining the force field (CHARMm) and the receptor grid was

generated in the PyRx software based on the previously identified

FIGURE 5
The selected antagonist’s 2D interaction with the protein complex (PDB ID: 5VAM). Our ligands (A) ZINC70454679, (B) ZINC253500968 (C)
ZINC106887736, and (D) ZINC107434492 had the best protein interaction. Four compounds were chosen based on the docking score as well as the
toxicity analysis.
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active sites (Dallakyan and Olson, 2015). The hits identified

through obtained compound library screening as well as the

selected known antagonist were sent for docking. The binding

affinity score for known antagonist were shown in

Supplementary Table S1. For generated hits were selected

based on the best binding affinity containing ligands with

fewer side effects. These selected potentially lead compounds

were considered for further interaction evaluation (Table 1). The

docking for the each compound validated to get the exact binding

scenario of our selected four compounds, which were showed

FIGURE 6
Analysis of four compounds with the target BRAF protein using 2D and 3D pharmacophore characteristics. The pharmacophore features of the
(A) ligand (Pub Chem ID 90408826) coupled to the protein (PDB ID: 5VAM) were less than the (B) ZINC70454679, (C) ZINC253500968, (D)
ZINC106887736, and (E) ZINC107434492 our selected four antagonist.

TABLE 2 Different features of the four selected compounds we chose were identified. The table depicts the several physical, chemical,
pharmacokinetic, and drug likeness aspects.

Properties Parameters ZINC70454679 ZINC253500968 ZINC106887736 ZINC107434492

Physico-chemical properties MW (g/mol) 490.59 756.70 562.65 357.44

Heavy atoms 36 53 41 25

Arom. heavy atoms 16 12 10 0

Rotatable bonds 8 13 9 12

H-bond acceptors 5 19 8 6

H-bond donors 4 11 3 3

Molar Refractivity 147.01 174.81 162.34 94.98

Lipophilicity Log Po/w 4.52 2.95 4.94 2.58

Water Solubility Log S (ESOL) Poor Soluble poor Soluble

Pharmacokinetics GI absorption Low Low Low High

CYP3A4 inhibitor No Yes Yes No

BBB permeant No No No No

Drug likeness Lipinski, Violation Yes Yes, 3 Yes, 1 Yes

Bioavailability Score 0.55 0.17 0.56 0.55

Medi. Chemistry Synthetic accessibility 4.78 7.28 5.27 4.40
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that all antagonists would be able to bind to the target protein

(Supplementary Figure S2).

3.7 Identification of the protein-ligand
interaction

The protein-ligand interaction is important to observe the

possibility of achieving better biological functions (Opo et al.,

2021). In our experiment, we discovered that the higher the

binding affinity, the greater the interaction with the amino acids’

various targets. In the interaction analysis, ZINC70454679 showed

the formation of six bonds with the various amino acids, such as six

van derWaals bonds (SER536, SER535, ASN580, LEU597, GLY596,

THR529), one conventional hydrogen bond (ASP594), five pi-sigma

bonds (ILE463, VAL471, PHE583), pi-pi T shaped (PHE595), three

alkyl bonds (ALA481, LEU514, CYS532), and four pi-alkyl bonds

(PHE595, ALA481, VAL471, LYS483). In ZINC253500968, seven

conventional hydrogen bonds were formed and interacted with

GLY596, ASN581, CYS532, PHE595, one carbon hydrogen bond

(SER536), one Pi-Sigma bond (VAL471), one Pi-Pi T-shaped bond

(PHE595), and two Pi-Alkyl bonds (CYS532, LYS483), but the

maximum amino acids showed van der Waals bonds (TRP531,

GLN530, PHE583, LEU514, ALA481, ILE463, THR529, GLU501,

ASN580, ASP536, GLY464, ASP594, LEU597). ZINC106887736 has

been shown to interact with several amino acids such as van der

Waals bonds (SER536, ASN580, ASN581, LYS578, GLY596,

LEU597), conventional hydrogen bonds (PHE595), Pi-Sigma

(PHE583), Pi- Sulfur (CYS532), Pi-Pi Stacked (PHE583), Pi-Pi

T-shaped (TRP531), two alkyl bonds (LEU514, CYS532), and Pi-

alkyl bonds (VAL471). ZINC107434492, on the other hand, formed

a van der Waals bond with ten amino acid residues (LEU514,

ILE463, ALA481, VAL471, LYS483, LEU597, THR529, GLY596,

GLU501, ILE527, CYS532), one conventional hydrogen bond

(ASP594), one carbon hydrogen bond (PHE595), two Pi-Sigma

bonds (TRP531, PHE583) and one alkyl bond (LEU505) with the

BRAF protein (Figure 4 and Figure 5).

3.8 Pharmacophore features analysis

Lead development screening is an important aspect of the

biopharmaceutical industry prior to the development of a

medication, and these features predict the possibility of

binding with the macromolecule. The analysis of

pharmacophore features predicts the H, AR, HBA or HBD,

PI, and NI characteristics among the compounds, which are

essential parts of predicting binding capacity among the

proteins (Batool et al., 2019). By using the rule of five, we

were able to interpret the drug-likeness and non-drug aspects

of the top four higher binding energy molecules:

ZINC70454679, ZINC253500968, ZINC106887736, and

ZINC107434492. The pharmacophore characteristics

generated by the examined ligands were superior to or

comparable to the antagonist attached to the protein (PDB

ID: 5VAM) (Figure 6).

3.9 Pharmacokinetic (ADME) evaluation

For computational drug design, it enabled us to get the

absorption, distribution, metabolism, excretion, and toxicity

analysis before going to establish a molecule as a drug

candidate. From administration to excretion by sweat,

urine, or stool, the key pathways for a drug showing

efficacy inside the body are absorption, distribution,

metabolism, and excretion (Watanabe et al., 2019). For

higher bioavailability, the drug’s volume of distribution to the

tissue and target site must be increased, and to lessen side effects

and toxic effects, the drug should be washed out easily through

following the metabolic pathway. We evaluated ADME properties

such as lipophilicity, water-solubility, drug-likeness, and medicinal

chemistry by using the online Swiss ADME database (http://www.

swissadme.ch/) (Daina et al., 2014). The characteristics of the drugs

provide us with important information regarding the formulation

(tablet, ointment, capsule, injection, and inhaler) and its route of

administration (Table 2).

3.10 Toxicity prediction

Because of its accuracy, efficiency, and availability for both

synthetic and natural chemicals, toxicity analysis is a common

technique to choose a suitable therapeutic candidate using

computer-based drug discovery. TEST and ProTox-II are two

free tools that can be used to test a compound’s toxicity. The drug

candidate must be chosen based on toxicity, as the less toxic

drugs are better for disease intervention. Table 3 showed the

results of the cytotoxicity, mutagenicity, carcinogenicity,

hepatotoxicity, and LD50 (mg/kg) tests based on software

analysis. Three compounds, such as ZINC70454679,

ZINC253500968, and ZINC106887736, were shown to have

immunologic reactions, except ZINC107434492. Other toxicity

data was not available for these compounds, although some data

was missing in the case of ZINC106887736.

3.11 Protein ligand complex structure
analysis

The interaction between the protein and ligand with the same

environmental factors inside the human body is predicted by

molecular simulation. It also tells us how many different sorts of

bonds there are and how they interact with the different amino

acids throughout time. The concentration of the ion, pH all were

kept near to the same environment of human body before
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FIGURE 7
Protein RMSD value of all selected compounds ZINC70454679 (gray), ZINC253500968 (orange), ZINC106887736 (blue), and ZINC107434492
(green). The Apo–Protein has been shown by the light blue color and control ligand CID 90408826 indicated through gold color.

TABLE 3 Various toxicities (Organ Toxicity, Toxicity Class, Tox21-Nuclear receptor signaling pathways, Tox21-Stress response pathway, Fathead
minnow LC50 (96 h), Developmental toxicity, Water solubility, Oral rat LD50, and Bioaccumulation factor of selected four compounds) were
investigated.

Endpoint Target ZINC70454679 ZINC253500968 ZINC106887736 ZINC107434492

Organ Toxicity Hepatotoxicity Inactive Inactive Inactive Inactive

Toxicity Endpoints Carcinogenicity Inactive Inactive Inactive Inactive

Immunotoxicity Active Active Active Inactive

Mutagenicity Inactive Inactive Inactive Inactive

Cytotoxicity Inactive Inactive Inactive Inactive

LD50 (mg/kg) 159 5,000 300 8,300

Toxicity Class 3 5 3 6

Tox21-Nuclear receptor signaling
pathways

Androgen Receptor (AR) Inactive Inactive Inactive Inactive

Aryl hydrocarbon Receptor (AhR) Inactive Inactive Inactive Inactive

Tox21-Stress response pathway Heat shock factor response
element

Inactive Inactive Inactive Inactive

Mitochondrial Membrane
Potential (MMP)

Inactive Active Active Inactive

Phosphoprotein (Tumor
Supressor) p53

Inactive Inactive Inactive Inactive

Fathead minnow LC50 (96 h) mg/L 267.57 N/A N/A 18.40

48-h Daphnia magna LC50 mg/L 11.58 149.64 N/A 85.90

Developmental toxicity value 1.19 N/A N/A 0.72

Oral rat LD50 mg/kg 151.54 N/A N/A 124.33

Mutagenicity Result Negative Negative N/A Negative

Water Solubility (25°C) mg/L (predicted Value) 489.55 6,263.21 N/A 805.91
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proceeding to simulation. The ‘pdb’ files of the compounds were

chosen for simulation based on the binding score generated by

docking. The protein secondary structure elements were

analyzed in each trajectory frame at the time of simulation

(Supplementary Figure S3).

3.11.1 Analysis of the protein RMSD
The RMSD value showed us the number of atoms that were

not fitted properly. Most of the compounds have shown that they

were stable with the interaction between the protein and ligands.

The values of more than 3Å indicated the conformational

changes of the protein and the system were unstable. The

analysis of all selected proteins ZINC70454679,

ZINC253500968, ZINC106887736, and

ZINC107434492 revealed that most of the 100ns are stable,

with the exception of the apo protein, which fluctuated at

89.6ns and again at 90.5ns. The selected compound has

shown lower fluctuations (Figure 7) in contrast to the control

protein (5VAM).

3.11.2 Ligand RMSD analysis
Binding of the ligand with the protein and their stability

is the important parameters for the proper efficacy of a

drugs. The selected compound ZINC225978444 was found

to be the most unstable in the interaction with the protein-

ligand complex in our experiment. In 49.2ns it showed

instability and again was stable until 66.6ns and again

unstable from 66.2 to 68.7ns. Finally, it comes to the

stability of the 89.5ns through slight unstability at

88.7ns. In 56.6ns, the compound

ZINC253500968 showed slight unstability and again

came to stable 57.3ns. On the other hand, all other

FIGURE 8
Protein compatibility-RMSD value determined from the ligand interaction. Several colors such as (A) ZINC70454679 (gold), (B) ZINC253500968
(grey), (C) ZINC106887736 (orange), and (D) ZINC107434492 (blue) indicate the number of ligands and their expression patterns in comparison to
control ligand (CID: 90408826).
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compounds showed good stability within the protein-

ligand interaction complex (Figure 8).

3.11.3 RMSF analysis
RMSF analysis showed that the local conformational changes

in the protein and the compounds were used as antagonists. The

local fluctuations of the protein with the interaction of our

selected compounds were determined by the Cα residue index

(Figure 9). In our experiment, all the selected compounds, CID

90408826 (BRAF: 5VAM), ZINC253500968, ZINC106887736,

and ZINC107434492, showed a stable RMSF value within the 1-

3Å except ZINC70454679, which showed a little fluctuation at

position 157 amino acid residue (PHE610).

ZINC253500968 showed a slight fluctuation at the same

amino acid position of 157 and then came to a stable position

again.

3.11.4 Identification of protein-ligand interaction
For consideration of a compound as a drug molecule, it

should have the properties to bind with the target protein by

several bonds, such as conventional hydrogen bonds,

hydrophobic, hydrophilic interactions, pi-sigma interactions,

pi-sigma bonds, etc (Varma et al., 2010). The majority of the

amino acid residues in all compounds came into contact with the

ligands during the various interactions. In ZINC70454679, three

amino acids did not come into contact, such as GLY466,

GLU533, SER535 and six amino acid residues (GLN461,

ARG462, GLU533, TYR538, and ARG662) did not bind with

the protein in the case of ZINC253500968 (Figure 10).

To comprehend how the selected four antagonists’ structural

evolution were changed across the simulation trajectories

analysis from 0 to 100ns, the torsional conformations of each

rotatable bond in the ligand were determined (Supplementary

Figure S4). Gyration analysis showed that the all the compounds

were compressed throughout the simulation time except

ZINC253500968. Structural transformation occurred from

10 to 40ns as sudden dropped was observed for the

ZINC253500968. In case of other compounds sharp, sudden

dropped and peak were not observed, which indicated the low

structural change (Figure 11A). The number of the intra

molecular hydrogen bond was present overall compounds and

the higher in ZINC253500968 (Figure 11B). The temperature

variations has been mentioned during the simulation and the

showed the fluctuations was low during 100ns simulation time

(Figure 11C).

3.11.5 MM-GBSA analysis
Usually MM/GBSA analysis are being used to determine the

binding free energy of the selected anatomist from the protein-

ligand complex from the trajectory simulation file. Analysis of the

FIGURE 9
RMSF value identification of all the selected compounds from the obtained Cα value. The color of the graph indicated the compounds RMSF
value such as control ligand CID 90408826 (black), ZINC70454679 (orange), ZINC253500968 (gold), ZINC106887736 (blue), and ZINC107434492
(green). N- and C-terminal showed fluctuation more than the other but the value with the 3Å.
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free binding energy in our selected compounds such as

ZINC70454679, ZINC253500968, ZINC106887736, and

ZINC107434492 showed the higher net negative binding

energy free value (Figure 12). The complex analysis showed

the binding energy -18.12 kcal/mol, -24.17 kcal/mol,

-20.30 kcal/mol, -22.64 kcal/mol respectively for

ZINC70454679, ZINC253500968, ZINC106887736, and

ZINC107434492. The result depicted that all four potentially

lead compounds maintained good interaction with the protein

complex. At the same time screening, physical and chemical

FIGURE 10
Protein ligand interaction of among the selected compounds by histogram and 2 days summary. All compounds (A) ZINC70454679, (B)
ZINC253500968, (C) ZINC106887736, and (D) ZINC107434492 shown better contact with the protein. Several colors indicated the bond types such
as hydrogen bond (green), hydrophobic (gray), ionic (red) and water bridges (blue), negative charge (gold).
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components of our selected ligands were indicated a significant

contribution of coulomb energy and Van Der wall interaction

energy.

4 Discussion

BRAF mutation in the metastatic colorectal cancer showed

poor chemotherapeutic response and shorter the survival rate

for patients. V600E mutation in BRAF overexpressed

carcinoma consist of near about 80% and other 20%

remain in V600 K. Activation of the mitogen-activated

protein kinase pathway are responsible for accelerating the

RAF (Rapidly accelerated Fibro sarcoma and conduct signal to

the signal regulated kinase (MEK), and finally participate cell

proliferation and survival through activating the ERK kinase

(Extra cellular signal Regulated Kinase) (Leonetti et al., 2018).

Holderfield et al. (2014). It has been identified BRAF

mutations as the most frequent mutations related to human

carcinomas such as thyroid cancer, ovarian cancer, hepatic

carcinoma, and hairy cell leukaemia. The most common

mutation has been observed at V600E by sequencing (Yan

et al., 2022). The discovery against this BRAF mutation target

are in some clinical trial phase and currently using the drugs

showing the side effects after administration to the patients

(A. Kim and Cohen, 2016) (Holderfield et al., 2014). However,

no drugs are available with fewer side effects and to cure

cancer as well. Therefore, our study aim was to find potentially

lead compounds through computer based drug design that

would be effective against the overexpression of the BRAF

protein. For computer aided drug design, the BRAF protein

structure identified from the online protein database

screening and selected protein based on the resolution,

R-value free and R-value observed (Ormö et al., 1996). The

FIGURE 11
Radius of gyration (A), intra molecular hydrogen bond (B), and temperature changes (C) for the protein-ligand complex during the 100ns
dynamic simulation.
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ligand attached to the protein were also evaluated by the

toxicity software Swiss ADME and also by the ProTox II

database (Daina et al., 2017) (Opo et al., 2021) (Rella et al.,

2006). The active antagonists were currently available on the

market, as well as the literature search was considered for the

virtual screening, molecular docking, and also the comparison

with the selected compounds. The ZINC and Ambinter

databases were further screened for getting the natural

compounds with the generation of the pharmacophore

features from the Ligand Scout 4.4.8 advanced software

(Wolber and Langer, 2005). We arranged all the structures

for antagonists with their IC50 values and further generated

the ROC curve from the ligand scout software, and our

obtained ROC curve indicated the satisfactory identification

capability. The obtained compounds were docked with the

PyRx tool, and compounds were selected based on the docking

results (Dallakyan and Olson, 2015).

All the selected four compounds in our in-silico drug design,

PubChem ID: 90408826, ZINC253500968, ZINC106887736, and

ZINC107434492, indicted the least toxicity based on the

evaluation of the ADME profile. Although immunotoxicity is

more common in the cases of control ligand (PubChem ID:

90408826), ZINC253500968, and ZINC106887736, the ADME

profiling of ZINC107434492 revealed no toxicity. The compound

ZINC253500968 violated three of the five Lipinski rules but was

not harmful to humans or animals due to its low toxicity. For the

further protein ligand complex stability evaluation of lead

compounds, we used molecular dynamic simulation for

100 ns. The trajectory files obtained from the simulation were

analyzed based on the RMSD, RMSF value, protein–ligand

interaction, intra molecular hydrogen bond, radius of

gyration, ligand torsion profile were been evaluated and

showed the stability of our four lead compounds. As our

potentially lead drug candidates having lower toxicities profile

so it could be provided an opportunity to develop lower toxic

drug for the researcher and possible to treat BRAF

overexpression related cancer. The overall workflow by the in-

silico drug design has been mentioned in Figure 13, from the

starting of the selection of protein, selected antagonist and

molecular dynamic simulation analysis. The majority of the

patients were identified as having mutations in BRAF-V600E

and were most predominant in thyroid carcinoma, colon cancer,

FIGURE 12
Representation of the several energy components of ligands and net MM-GBSA binding free energy from the protein and selected potentially
lead compounds i.e., (A) ZINC70454679 (B) ZINC253500968 (C) ZINC106887736 and (D) ZINC107434492.
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FIGURE 13
Overall the workflow in our computer aided drug design. The figure has mentioned from the beginning of the starting of the protein selection,
virtual screening, protein-ligand interaction and stability analysis.
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and skin cancer (Tufano et al., 2012) (Lasota et al., 2014)

(Ascierto et al., 2012). As a result, the development of a BRAF

antagonist will alter treatment options in cancer treatment from

the early to late-stage carcinoma andmay aid in overcoming drug

resistance.

5 Conclusion

In this study, four identified compounds were selected

ZINC70454679, ZINC253500968, ZINC106887736, and

ZINC107434492 through the virtual screening as a potential

lead candidates for BRAF protein overexpression related

carcinoma. It may be able to increase apoptosis in several

cancer cells by targeting the BRAF protein. The higher

binding affinity with the protein showed the docking score

from -8.1 to -10.6 kcal/mol and have higher possibilities to

bind the target area. The stability of the protein and four

ligand complexes were validated through using the dynamic

simulation and trajectory file analysis indicated the four key

amino acid residues i.e., PHE583, CYS532, VAL471, LEU597,

ILE463 based on the interactions. The binding energy was

calculated based on the MM-GBSA method and predicted

that the lower binding energy due to more stable hydrogen

bonds among the protein-ligand complex. Based on the

evaluation ADME and toxicity profile of potentially lead

compounds, they have lower toxic effects and

ZINC107434492 is the most suitable candidate for further

analysis as it had no toxicity. Evaluating the in-silico toxicity

profile of the other available marketed drugs against the BRAF

overexpression cancer such as sorafeniib, TAK-632 our selected

antagonist would have the more possibility to reduce the side

effects currently possible anti-cancer treatments. The use of

virtual screening, molecular docking, pharmacophore model

validation, ADMET profile analysis, protein-ligand binding

analysis by discovery studio, and dynamic simulation revealed

that these compounds should go for further in-vitro as well as in-

vivo work, which may be able to discover new BRAF antagonists.
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Tyrosine threonine kinase (TTK) is the key component of the spindle assembly

checkpoint (SAC) that ensures correct attachment of chromosomes to the

mitotic spindle and thereby their precise segregation into daughter cells by

phosphorylating specific substrate proteins. The overexpression of TTK has

been associated with various human malignancies, including breast, colorectal

and thyroid carcinomas. TTK has been validated as a target for drug

development, and several TTK inhibitors have been discovered. In this study,

ligand and structure-based alignment as well as various partial charge models

were used to perform 3D-QSAR modelling on 1H-Pyrrolo[3,2-c] pyridine core

containing reported inhibitors of TTK protein using the comparative molecular

field analysis (CoMFA) and comparative molecular similarity indices analysis

(CoMSIA) approaches to design better active compounds. Different statistical

methods i.e., correlation coefficient of non-cross validation (r2), correlation

coefficient of leave-one-out cross-validation (q2), Fisher’s test (F) and

bootstrapping were used to validate the developed models. Out of several

charge models and alignment-based approaches, Merck Molecular Force Field

(MMFF94) charges using structure-based alignment yielded highly predictive

CoMFA (q2 = 0.583, Predr2 = 0.751) and CoMSIA (q2 = 0.690, Predr2 = 0.767)

models. The models exhibited that electrostatic, steric, HBA, HBD, and

hydrophobic fields play a key role in structure activity relationship of these

compounds. Using the contour maps information of the best predictive model,

new compounds were designed and docked at the TTK active site to predict

their plausible bindingmodes. The structural stability of the TTK complexes with

new compounds was confirmed using MD simulations. The simulation studies

revealed that all compounds formed stable complexes. Similarly, MM/PBSA

method based free energy calculations showed that these compounds bind

with reasonably good affinity to the TTK protein. Overall molecular modelling

results suggest that newly designed compounds can act as lead compounds for

the optimization of TTK inhibitors.
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Introduction

The dual specificity kinase TTK (Also known as monopolar

spindle 1 or MPS1) is the core component of spindle assembly

checkpoint that ensures accurate segregation of chromosomes

during mitosis. TTK controls the bipolar attachment of

chromosomes to spindle microtubules by regulating the

spindle assembly checkpoint (Wei et al., 2005; Lindberg and

Meijer, 2021; Xing et al., 2021). TTK is activated at the

unattached kinetochores and recruits’ components of the

mitotic checkpoint complex (MCC), thereby initiating SAC

(Fisk and Winey, 2001; Stucke et al., 2002; Laufer et al., 2014;

Huang et al., 2021). MCC hinders metaphase to anaphase

transition by inhibiting the activation of Anaphase Promoting

Complex/Cyclosome (APC/C) until all the kinetochores are

correctly attached to the microtubules, which is prerequisite

for accurate chromosome division (Wengner et al., 2016).

TTK is composed of 857 amino acids with double lobed

protein kinase structure. It comprises C terminal catalytic and

activation loops having residues ranging from 515-794. The N

terminal lobe (Glu 516-Met602) is smaller than the C terminal

lobe (Asn606-Gln794) and has six beta sheets and one alpha

helix. The larger C-terminal lobe, however, is more complex and

consists of 2 beta sheets, 7 alpha helices together with the

activation, catalytic and p + 1 loops. Both lobes join the hinge

region through the amino acid residues Glu603 and Gly605. In its

dormant state TTK is catalytically inactive as the activation loop

is locked. However, phosphorylation at the activation loop

enables the TTK to adopt an active conformation and elevate

its catalytic activity (Wang et al., 2009). Besides its role in mitosis,

it also plays a role in meiosis, cell transformation and cytokinesis

(Maia et al., 2015; Sugimoto et al., 2017b). TTK overexpression is

detected in many cancer types including, breast, hepatocellular

and thyroid carcinomas (Maia et al., 2015; Lu and Ren, 2021).

Overexpression of TTK is associated with high serum AFP

(alpha-fetoprotein) levels, large tumor size, advanced TNM

stage (tumor, nodes, and metastases), and distant metastases.

Enhanced expression can also lead to centrosome duplication,

genomic instability, mitotic check point failure, abrogated

kinetochore attachment, incorrect spindle stress, and

chromosomal misalignment (Liu and Winey, 2012; Liu et al.,

2015a; Liu et al., 2015b; Sugimoto et al., 2017a). Due to its major

role in mitotic checkpoint and overexpression in different

malignancies, TTK is considered a potential anti-cancer drug

target.

Studies involving RNA interference-mediated knockdown or

chemical inhibition of TTK have validated it as a target for cancer

therapeutics (Schmidt et al., 2005; Brough et al., 2011; Daniel

et al., 2011). Several TTK inhibitors, therefore, have been

discovered during the last decade. This includes NMS-P715,

CCT251455, CFI-402257, BOS172722, S81694,

BAY1161909 and BAY 1217389 with last five progressing to

clinical evaluations (Chen et al., 2018). Similarly, some other

small-molecule inhibitors i.e., Diaminopyridine,

pyrrolopyrimidine and quinazolines containing compounds

have shown low nano-molar activities with reasonably well

growth inhibition of cell lines (Kusakabe et al., 2012;

Bursavich et al., 2013).

In the current study Pyrrolo pyridine derivatives were used to

develop 3D-QSAR models for designing of TTK inhibitors with

improved activity. To the best of our knowledge so far, no QSAR

modeling and docking simulations have been performed on this

class of compounds. CoMFA and CoMSIA models were

developed using different alignment schemes and charge

models which were then validated using various statistical

methods. The information derived from the models were

exploited in designing of new compounds that are predicted

to have better biological activities than the existing compounds in

this class. The stability of binding modes and interactions of

newly designed compounds with TTK protein were confirmed by

MD Simulations.

Materials and methods

Data collection

Different reported inhibitors of TTK protein sharing similar

scaffolds but different biological activities were retrieved from the

literature (Naud et al., 2013). The IC50 values of all inhibitors

were converted into pIC50 values. The 39 retrieved compounds

were randomly divided into two groups: training

(28 compounds) and test (11 compounds) datasets (Puzyn

et al., 2011). The pIC50 values were used as dependent

variable while CoMFA and CoMSIA descriptors were taken as

independent variables (Balasubramanian et al., 2014).

Structure preparation and alignment

The 2D structures of inhibitors were sketched by 2D builder

tool of Maestro implemented in Schrödinger’s suite (Bhachoo

and Beuming, 2017). The structures of all compounds were

minimized by Conjugate gradient and Powell methods, while

the partial charges were computed by Gasteiger Huckel (GH),

Gasteiger Marsili (GM), Pullman, and MMFF94 charges (Sainy

and Sharma, 2015; Shiri et al., 2016). The compound with the

highest biological activity among all the inhibitors was selected as

a template for ligand and structure-based conformer alignment

of all compounds.
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CoMFA and CoMSIA field calculations

The CoMFA electrostatic and steric fields were

calculated through SYBYL software using a 3D grid

having a 2.0 Å spacing (Ghosh et al., 2021). A fixed

energy value of 30 kcal/mol was set to avoid energy

clashes. A carbon with sp3 hybridization and an atom

with +1.0 charge were used as steric and electrostatic

probes, respectively. A probe atom having a radius of

1.0 Å was used to calculate the CoMSIA fields. The

attenuation factor (α) with a default value 0.3 was used

to calculate the distance dependent similarities. The Eq. 1

was used to calculate the indices. All computations were

carried out in the same way as the CoMFA analysis (Hu

et al., 2009; Li et al., 2017).

Aq
F,K(j) � ∑ωprobe, kωike−ar

2
iq (1)

Aq = similarity index

K = physiochemical properties of CoMFA fields descriptors

ωprobe = the probe atom

i = summation index of molecule

jωik = observed value k of a specific property of the atom

ir = atomic radius

The efficiency of SAR model was determined by Partial Least

Square regression. The CoMFA and CoMSIA descriptors

were selected as dependent variables while IC50 value was

selected as an independent variable in PLS regression (Tahir

et al., 2018). The cross validation using the leave-one-out

method was used to select the best model that had high

prediction power. The cross-validation (q2) analysis is

defined by Eq. 2.

q2 � 1 − ∑y(ypred − yobs)
2

∑y(yobs − ymean)2
(2)

ypred = predicted values

yobs = experimental values

ymean = mean values

For non-cross validation, the column filtering was set to

2.0. Standard error estimation (SEE) values were also

calculated along cross and non-cross validation. To

evaluate the effectiveness of the generated models,

bootstrapping was used up to 100 runs. Predictive r2 was

used to express the predictive ability of the developed models,

that was based on the test set compounds. The predictive r2

was calculated using Eq. 3.

r2pred �
(SD − PRESS)

SD
(3)

SD = sum of squared deviations between pIC50 values of the test

set and mean pIC50 values of the training set

PRESS = sum of squared deviations between the test molecules

observed and expected activities

Designing of new compounds

Based on the information obtained from the contour maps of

best predictive CoMFA and CoMSIA models, ten new

compounds were designed by substitution of specific

electrostatic, steric, hydrophobic, hydrogen bond donor, and

hydrogen bond acceptor groups to enhance their inhibitory

activities against TTK protein. The newly designed

compounds belong to the synthetic class of compounds and

their biological activities were predicted using the best predictive

models (Lorca et al., 2018; Ghosh et al., 2021).

Molecular docking

The co-crystal structure of TTK (PDB ID: 4C4J) was

prepared by protein preparation wizard implemented in

Maestro. The receptor was preprocessed by adding hydrogens,

removing water, adding charges and fixing residues side chain

atoms. The unnecessary ligands and chains were removed while

the tautomeric states were generated at pH 7.0. The structure of

the receptor was further optimized and minimized by

OPLS_2005 forcefield [34]. The grid was generated by

selecting the co-crystal ligand to perform site-specific docking.

To soften the potential of non-polar sections of the receptor, the

van der Waals radii of the receptor atom were scaled to 1.0 and

the partial charge cutoff value was set to 0.25. The values for the

X, Y, and Z coordinates were 0.8, 17.52, and 45.37 respectively.

After grid generation, newly designed compounds were prepared

by LigPrep tool of Maestro prior to docking [35]. Different

ionization states were generated at pH 7 by using Epik [35].

The stereoisomers of compounds with specified chirality were

generated by using OPLS_2005 forcefield. The prepared ligands

were then docked to the prepared receptor by using the Glide

docking tool and the binding poses were analyzed based on the

glide gscore.

MD simulations

The binding poses of each compound were used to make

complexes with the TTK protein. The stability of each protein-

ligand complex was estimated by running MD simulation

using NAMD (Acun et al., 2018). All the complexes were

prepared by using LeaP module of AMBER21 tools (Case

et al., 2021). The parameters of the ligands were generated by

antechamber program by semi-empirical calculation. The

PDB4amber module was used to convert the amino acid

residues to amber format. The forcefield parameters for

protein and ligands were AMBER ff14SB force field and

general amber forcefield, respectively (Duan et al., 2003).

The parameters of ligands and receptor were connected by

tleap program. All the complexes were solvated in a water box

Frontiers in Chemistry frontiersin.org03

Ashraf et al. 10.3389/fchem.2022.1003816

51

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.1003816


of size 10 Å using TIP3P water model. To neutralize the

system, counter ions Na+ and Cl− were added by using

LeaP. The systems were minimized by conjugating gradient

and steepest descent method for 10,000 times. The water

equilibration was done for 5,000 steps, followed by the

three-temperature equilibration from 0 to 200 K,

200–250 K, and 250–300 K for 5,000 steps. After

equilibration of the system at different temperatures, the

production of systems was run for 25 ns with constant

temperature 310 K and pressure of 1 atm using NPT

ensemble. The trajectories of all the systems were analyzed

to get RMSD, RMSF, Radius of gyration, SASA, PCA, by using

VMD tcl commands, CPPTRAJ (Roe et al., 2013) and R

package.

Binding free energy calculation

The binding free energy of the system was calculated by using

molecular mechanics-based scoring methods MM/PBSA (Sun

et al., 2014). The calculations were based on a total of

300 snapshots of the complex, taken at 2 ps interval from the

last 2 ns stable MD trajectories. The binding free energy was

determined as the difference between the total free energy

(ΔGcom) of the ligand-receptor complex and the sum of free

energy of individual receptors (ΔGpro) and ligand (ΔGlig) using

the equation provided below:

ΔGbind � ΔH − TΔS � ΔGcom − [ΔGpro + ΔGlig]

The ΔG for the complex, receptor and ligand can be

calculated by the following equation:

ΔG � ΔEMM + ΔGsol − TΔS

ΔEMM = Molecular Mechanics Energy

ΔGsol = Solvation Free Energy

TΔS = Entropy at given Temperature

ADMET analysis

The physicochemical properties i.e., molecular weight,

Hydrogen bond donors and acceptors along with the ADMET

properties of the newly designed compounds were predicted by

QikProp tool of Maestro (Koç et al., 2021).

Results and discussion

An essential stage in ‘3D-QSAR’ is the systematized

assortment of compounds and their division into training and

test datasets. Compounds and their biological activities in terms of

pIC50 values are mentioned in Supplementary Table S1. They

were classified into two categories with respect to their activity

range from high to low while maintaining structural variations. All

the selected compounds possess a common sub-structure 1H-

Pyrrolo[3,2-c] pyridine as shown in Figure 1A. These compounds

have mainly hydrophobic (halogens Cl and Br) and hydrophilic

substituents (amine and amides) attached to the core scaffold 1H-

Pyrrolo[3,2-c] pyridine. Hydrogen bond donors like NH and OH,

hydrogen bond acceptors like N, O and F and steric groups like

CH3 and Cl have been attached to enhance the activities of the

compounds. By changing the substituent at main scaffold, the

activity of the compounds predicted by the developed models, was

affected. The quality of the models is affected by multiple factors

like the conformation of the molecules and their assigned partial

charges (Muddassar et al., 2009; Wang et al., 2015). Therefore,

different conformations of dataset molecules using ligand and

structure-based approaches were generated along with different

charge models i.e., GH, GM, MMFF. For structural alignment,

compounds were aligned on a common sub-structure to get the

best predictive “CoMFA” and “CoMSIA” models (Figure 1).

The best models were obtained with Merck Molecular Force

Field charges using structure-based conformation alignment as

shown in Figure 1B. The correlation coefficient q2 of leave-one-

out cross validation for CoMFA fields was 0.589, with 3 optimum

FIGURE 1
Alignment of dataset compounds: (A) Common Substructure and (B) Structure-based alignment of docked compounds.
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number of components, the standard error of estimation was 0.088,

non-cross validated coefficient (r2ncv) = 0.902, F-value = 73.624 and

r2pred = 0.751 as mentioned in Table 1. The electrostatic and steric

fields contributed 68.3% and 31.7% respectively to the model.

However, ligand-based conformations yielded the poor predictive

models. Powell method generated conformation with MMFF

charges produced best CoMFA model with q2 = 0.268 value for

3 optimum number of components (other data shown in

Supplementary Table S2). Similarly Conjugate Gradient

conformation method with MMFF charges using 2 optimum

number of components yielded q2 = 0.191 value for steric and

electrostatic fields (Supplementary Table S3). In the ligand-based

alignment technique, the effects of different charges on the models

are shown in Supplementary Table S3. The reasons for superior

performance of one charge method over the other in “CoMFA” and

“CoMSIA” predictive models are still unknown, as the literature

shows variable performance of these charge models on compounds

targeting different proteins. As for as COMSIA models are

concerned, structure-based alignment with Merck Molecular

Force Field charges produced q2 = 0.690 with N = 3, SEE =

0.109, F-value = 108.296, r2ncv = 0.931, and r2pred =

0.767 shown in Table 1. The CoMSIA fields like steric,

electrostatic, hydrophobic, hydrogen bond donor and acceptor

contributions were 12.9%, 23.1%, 25.1%, 17.7% and 21.2%

respectively. The results exhibited that electrostatic and

hydrophobic interactions and hydrogen bond donors played

major role in CoMSIA model. In CoMSIA modeling GH, GM,

PM, andMMFF94 charges did not significantly influence the quality

of models. Using the best predictive CoMFA and CoMSIA models,

the biological activities of the training and test dataset compounds

were predicted as shown in Figures 2A–B , respectively. The

scattered plots show that the predicted values are similar to the

TABLE 1 Statistical parameters of structure based CoMFA and CoMSIA models with different charge schemes.

Gasteiger Huckel
charges (GH)

Gasteiger Marsili
Charges (GM)

Pullman
charges (PM)

Merck molecular
force field
(MMFF94)

Parameters CoMFA CoMSIA CoMFA CoMSIA CoMFA CoMSIA CoMFA CoMSIA

N 3 3 3 3 3 3 3 3

q2 0.583 0.705 0.584 0.665 0.575 0.663 0.589 0.690

r2(NoV) 0.891 0.946 0.888 0.918 0.893 0.950 0.902 0.931

SEE 0.090 0.075 0.090 0.068 0.093 0.087 0.088 0.109

F 65.535 139.223 63.112 89.516 66.594 152.924 73.624 108.296

Pred (r2) 0.638 0.814 0.767 0.804 0.619 0.721 0.751 0.767

r2bs 0.928 0.959 0.913 0.937 0.942 0.930 0.919 0.941

SDbs 0.215 0.168 0.216 0.179 0.206 0.201 0.216 0.187

Fields contribution

Steric (S) 0.714 0.126 0.724 0.139 0.670 0.128 0.683 0.129

Electrostatic(E) 0.286 0.227 0.276 0.192 0.330 0.216 0.317 0.231

Hydrophobic (H) ----- 0.263 ----- 0.258 ----- 0.272 ----- 0.251

Donor (D) ----- 0.171 ----- 0.166 ----- 0.172 ----- 0.177

Acceptor (A) ----- 0.213 ----- 0.245 ----- 0.212 ----- 0.212

N, “Optimal number of components; q2, cross-validated correlation coefficient; r2, determination coefficient; r2 nov, non-cross validated correlation coefficient; SEE, standard error of

estimate; F, Fischer’s test F-value; Pred-r2, predictive r2 for test set compounds; r2 bs, r2 obtained after 100 bootstrapping runs; and SDbs, bootstrapping standard deviation.

FIGURE 2
Correlation plots between experimental and predicted biological activities (A) From CoMFA Model (B) From CoMSIA Model.
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experimental values except one compound (Outlier). Outliers can

occur as a result of incorrectly measured inhibitory concentrations,

variable binding confirmations, or major physicochemical variances.

Similarly, external validation (higher r2pred values of test set

compounds) of both models shows their highly predictive nature.

Internal validations such as r2ncv, F-values, and r2bs values revealed

their reliability and precision to design and improve new

compounds. As any individual field can influence the quality of

the model, therefore models with good statistical significance were

used to design new compounds for improved activity as shown in

Table 2.

CoMFA contour maps

Contour maps of the best predictive models were

generated on the most active compound, and then this 3D

information was exploited to create new compounds predicted

TABLE 2 Comparison of parent and modified compounds activities.

Parent compounds Actual pIC50 Modified compounds Predicted-pIC50

9 6.92 NDC1 7.04

19 7.63 NDC2 6.96

9 6.92 NDC3 7.36

2 7.29 NDC4 7.10

15 6.19 NDC5 7.24

16 5.36 NDC6 7.13

10 6.34 NDC7 7.13

26 7.03 NDC8 7.913

37 7.56 NDC9 8.062

39 7.68 NDC10 8.063
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to have improved biological activities. The contour maps of

CoMFA fields for the best model are shown in Figures 3A,B.

The steric contour maps are shown in Figure 3A, the

green contour denotes the favored area for bulky group

substitution, whereas the yellow contour shows the

disfavored area for bulky group substitutions. The

replacement of bulky groups at R4 position will increase

the activity of compounds. For example, compound 27

(pIC50 = 8.1) with azetidine amide at R4 is predicted to

be more active than compound 17 (pIC50 = 7.13) which

has nothing at same position. Figure 3B shows the

electrostatic field contour maps. The red and blue contours

represent the effect of the electrostatic field on the biological

activity of compounds. The large blue contour near

R1 position shows that the substitution of electron

donating group will increase the activity of compound

that’s why the activity of compound 1 (pIC50 = 7.60)

having electron donating nitrogen at R1, is better than

compound 10 (pIC50 = 6.34) that has electron with

drawing difluromethyl at the same position. Similarly, the

red contour near the R2 indicates that the replacement with

electron withdrawing group will increase the bioactivity of the

compounds. These observations are in agreement with

previously published results (Vaidya et al., 2017).

FIGURE 3
“Structure-based model of the most active compound represented through contour maps (36). (A) Contour maps of CoMFA steric field; (B)
Contour maps of CoMFA electrostatic fields; (C)Contour maps of CoMSIA hydrophobic field; (D)Contour maps of CoMSIA hydrogen bond acceptor
fields; (E) Contour maps of CoMSIA hydrogen bond donor fields; (F) Structure activity relationship representation of contour groups.”

Frontiers in Chemistry frontiersin.org07

Ashraf et al. 10.3389/fchem.2022.1003816

55

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.1003816


CoMSIA contour maps

The contour maps of CoMFA and CoMSIA showed the

similarity in steric and electrostatic fields. The remaining fields of

CoMSIA i.e., hydrophobic, HBA and HBD are shown in Figures

3C,D,E. Figure 3C shows the hydrophobic contour, where yellow

contour at the R3 position indicates that the substitution of the

hydrophobic group is favorable to increase the activity while white

contour near R1 position shows that the activity can be increased by

replacing the hydrophilic group at this position. Therefore,

compounds 22, 23, 28-30 and 33-39 with hydrophobic groups at

the R3 position showed significant predicted biological activities.

Figure 3D indicates the hydrogen bond acceptors contour. Magenta

contour shows the area which is favorable for hydrogen bond

acceptor group substitution while red region is favorable for

hydrogen bond donor group substitution to increase the activity

of compounds. Similarly, the purple contour in Figure 5E shows the

disfavored area for hydrogen bond donor group substitution. So, the

substitution of hydrogen bond donor groups at R1 and R4 position

will increase the biological activity of compounds, while the

substitution of hydrogen bond acceptor groups at R2 position will

increase the activity. In the contour maps, hydrogen bond acceptors

and donors shared 80% for favored regions while 20% for unfavored

regions to increase the biological activity of compounds. The

structure-activity relationship diagram (Figure 3F) was obtained

from the CoMFA and CoMSIA contour maps. In order to design

new compounds with better biological activities, the regions R1, R2,

R3, and R4 are favorable for substitutions of electron donating

groups, hydrogen bond acceptor groups, hydrophobic groups and

bulky groups, respectively. In order to design new compounds,

FIGURE 4
Docking protocol validation studies. The redocking of co-crystal ligands of three TTK X-rays crystal structures, (A) redocked pose of ligand in PDB
ID: 3WZK is shown in cyan sticks, (B) redocked pose of ligand in PDB ID: 4C4J isshown in green sticks, (C) redocked pose of ligand in PDB ID: 5AP7 is
shown in yellow sticks. The RMSD of redocked poses was less than 1Å. (D) The estimation of docking accuracy by AUC curve with a value of 0.80.
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FIGURE 5
The binding interactions of newly designed compounds with the key residues of TTK binding pocket. The hydrogen bonds are denoted with
black dash lines. The distance between the compounds and binding site residues is measured in Å.
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different modifications in the parent structures have been introduced

based on the best CoMFA and CoMSIA models contours. For

example, pyrazole ring of compound 9 showed favorable region

for electron donating groups, so by replacing the methyl group with

hydroxyl group, new compounds showed better predicted activity

than parent compound. Similarly, a hydroxyl group was added to the

compound 2 to get a new molecule with better activity. All new

compounds were designed by adding specific groups at the favorable

electron donating, hydrogen bond acceptor and steric group regions

for better activities.

FIGURE 6
Root Mean Square Deviations in backbone of TTK bound to newly designed compounds; (A)TTK-NDC1 (red), TTK-NDC2 (green), TTK-NDC3 (blue),
TTK-NDC4 (yellow), TTK-NDC5 (violet) (B)TTK-NDC6 (cyan), TTK-NDC7 (magenta), TTK-NDC8 (orange), TTK-NDC9 (indigo) and TTK-NDC10 (turquoise).
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Binding mode elucidation of newly
designed compounds

Newly designed compounds NDC1-10 were docked into the

active site of TTK protein to identify their plausible binding modes.

Prior to the docking of newly designed compounds, the glide

docking protocol was validated by calculating the RMSD of

redocked poses of co-crystal ligands (Muddassar et al., 2010).

The co-crystal ligands were extracted from the co-crystal

structures (PDB IDs: 3WZK, 4C4J, 5AP7) and docked again at

the same binding position where cocrystal ligands were making the

hydrogen bonding interactions with the hinge region residues. The

FIGURE 7
(A,B). Root Mean Square Fluctuations of amino acid residues of TTK protein and its complexes to compare the flexibility of protein structures.
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docked pose was then aligned on the native ligand which showed

identical interaction with <1.0 Å deviation from original pose. The

redocking of representative co-crystal ligands can be observed in

Figures 4A–C.Moreover, the accuracy of glide tool was estimated by

area under curve studies. A decoy dataset of 917 compounds was

used along with active compounds of TTK. The AUC curve value of

0.80 showed that the true positive rate was higher than the false

positive results produced by the glide scoring scheme as shown in

FIGURE 8
(A,B). Radius of gyration of Cα atoms of TTK protein with bound compounds to analyze the relative compactness of protein complexes.

Frontiers in Chemistry frontiersin.org12

Ashraf et al. 10.3389/fchem.2022.1003816

60

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.1003816


Figure 4D. After validation of docking method, newly designed

compounds were docked in the active site of TTK protein. All

compounds showed good binding affinities in terms of glide scores

given in Supplementary Table S4. The binding interactions of the

newly designed compounds were analyzed and it was observed that

all compounds were making hydrogen bonds with the hinge region

FIGURE 9
(A,B). Solvent accessible surface area (SASA) calculation of TTK protein and its complexes throughout the simulation to find the exposed surface
of protein to solvent during simulation.
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residues especially Gly110. The other interacting residues were Ile36,

Lys58, Glu76, Met107, Cys109, Asn111, Ile112, Ser116, Lys120,

Asp169, Met176 and Pro178. In case of hydrogen bonding,

NDC1 made two hydrogen bonds with Glu76 and Gly110 with a

distance of 1.7 and 2.8 Å respectively. NDC2 made one hydrogen

bond with Gly110, while NDC3 was making two hydrogen bonds

with Gly110. The same bonding pattern was observed in all

complexes i.e., hydrogen bonding with Gly110, Glu76. Moreover,

the residues Ile36, Ile112, Met105, Met176 and Pro178 were

involved in hydrophobic interactions with the newly designed

compounds. The hydrogen bonds and the distances between the

ligands and key residues are given in Figure 5.

MD simulation analysis

MD simulations were carried out to estimate the steady nature

and stability of the protein and ligand complexes. The protein-ligand

complex stability was estimated by the Root Mean Square Deviation

(RMSD) of the complexes in 25 ns long simulation. The RMSD

FIGURE 10
The representation of proportion of variance % (TTK-NDC1) against eigenvalue calculated by Principal Component Analysis. Three PCs are
showing the fluctuating regions. The fluctuations in PC1, PC2, and PC3 are 29.54%, 15.39% and 6.92% respectively. The overall fluctuations are
51.85%.
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trajectories of ten complexes are shown in Figures 6A,B. The ideal

range for the stable complex in terms of RMSD is 2–3 Å. It can be

observed that all the complexes showed a stable RMSD value i.e., less

than ~2.5 Å as compare to the apo TTK which showed higher

deviation in confirmation than complexes. All the complexes

equilibrated at ~ 2 ns and then got stability till the end of the

simulation. Some complexes showed higher stability than others

i.e., TTK-NDC4 and TTK-NDC5 with a RMSD values less than

~1.5 Å. Additionally, the behavior of apo protein was also tested

which showed that the protein complexes weremore stable than apo

protein.

The fluctuations in the amino acid residues were calculated by

Root Mean Square Fluctuation (RMSF). The residues with high

RMSF values showed higher flexibility, or the residues that form

loop regions showed higher RMSF values. Similarly, the residues

with lower RMSF values remained rigid during the simulation.

Figures 7A,B describes the RMSF plots of all complexes. The C and

N terminals showed highest RMSF values while the loop regions also

showed relatively higher values than the rigid residues. All the

complexes showed almost the same trend in RMSF values, with

two regions having major fluctuations except for TTK-NDC3 and

TTK-NDC6 complex. The major fluctuations were observed in the

regions 85 to 115 and 210 to 225 residues. These correspond to the

loop regions in the TKK protein while the other residues remained

rigid having only a minor fluctuation in RMSF values.

Rg (radius of gyration) is used to show the change in the

structure compactness of subjected protein during simulations. The

compactness shows that bound small molecules did not induce any

conformational in the protein over the simulation time period

(Seeliger and de Groot, 2010). Rg analysis represents how the

FIGURE 11
The Dynamic Cross-Correlation map of TTK-NDC1 complex. The positive and negative correlation among the residues is shown by cyan and
purple color, respectively.
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secondary structures are compactly packed in 3D structure of

proteins. The Rg plots of all complexes and apo TTK are shown

in Figures 8A,B. TTK-NDC1 (black) had shown highest Rg during

~5–8 ns, with Rg value reaching16.6 Å, while TTK-NDC2 (red) had

shown the second highest value of ~16.6 Å during first 5 ns

simulations. The remaining complexes showed the stable Rg

values throughout the simulation period. The stable Rg values

indicated that the protein remained compact, and less unfolding

was observed in all protein-ligand complexes as compare to the apo

protein which showed higher Rg values than complexes throughout

the simulation period (Grutsch et al., 2014).

SASA (solvent accessible surface area) is the surface area of a

biomolecule that is accessible to a solvent. It determines how

much an amino acid is exposed to its environment. Lower SASA

values represent compact structure of protein while high values

represent unfolded structures. SASA values of all TTK protein

and its complexes were analyzed to predict the changes in the

structure of the protein Figures 9A,B. The Figure shows that the

proteins with ligands NDC2, NDC3 and NDC5 have higher

SASA values while proteins with rest of the ligands have lowest

SASA values. These results indicate that ligand binding can affect

the protein’s tertiary structure. Increased values of SASA

represent distortion in the structures.

PCA (Principal Component Analysis) characterizes the

dynamic behavior of proteins (David and Jacobs, 2014). It helps

to identify collective motions of the trajectories during MD

simulations. In the graph of TTK-NDC1 (Figure 10), eigenvalues

of the proteins were plotted against the corresponding eigenvector

index for the first twenty modes of motion. The eigenvalues

represent eigenvector fluctuations in hyperspace. In simulations

overall movement of the proteins is controlled by eigenvectors

with higher eigenvalues. In our systems, the first five eigenvectors

exhibited dominant movements with a higher eigenvalue

(29.5–70.3%), whereas the remaining eigenvectors had low

eigenvalues. The plotted first three PC1, PC2 and PC3 covered

themore than 50%of total variations. The Figure 10 plots shows that

PC1 clusters possessed highest variability of 29.54%, PC2 depicted

the variability of 15.39%, while PC3 exhibited minimal variability

which is 6.92%. Minimal variability suggests that PC3 has the most

stabilized protein ligand binding and occupies less region in phase

TABLE 3 Components of the binding free energies of TTK and designed compounds complexes.

Complexes ΔEvdW ΔEele EPB ΔGNP ΔGDIS ΔGgas ΔGsolv ΔGbind

TTK-NDC1 −59.30 ± 0.34 −5.85± 0.30 18.54 ± 0.38 −28.92± 0.05 56.32 ± 0.20 −65.16 ± 0.46 45.95 ± 0.54 −19.20 ± 0.81

TTK-NDC2 −59.19 ± 0.30 0.39 ± 0.21 16.74 ± 0.33 −30.64± 0.13 61.17 ± 0.17 −58.84 ± 0.38 47.27 ± 0.40 −11.57 ± 0.43

TTK-NDC3 −54.15 ±0.20 −4.09 ± 0.23 18.27 ± 0.24 −27.20 ± 0.04 53.56 ± 0.09 −58.25 ± 0.31 44.63 ± 0.29 −13.61 ± 0.42

TTK-NDC4 −58.18 ± 0.20 −2.38 ± 0.18 16.47 ± 0.27 −28.00 ± 0.03 56.23 ± 0.08 −60.56 ± 0.24 44.70 ± 0.34 −15.86 ± 0.46

TTK-NDC5 −60.40 ± 0.25 −8.55 ± 0.23 30.06 ± 0.42 −28.38 ± 0.04 57.43 ± 0.09 −68.95 ± 0.32 59.10 ± 0.46 −9.85 ± 0.53

TTK-NDC6 −64.34 ± 0.33 −2.05 ± 0.17 27.69 ± 0.45 −33.11 ± 0.06 62.10 ± 0.11 −66.41 ± 0.34 56.68 ± 0.50 −9.73 ± 0.55

TTK-NDC7 −56.79 ± 0.26 −2.57 ± 0.20 14.23 ± 0.24 −27.97 ± 0.04 54.40 ± 0.10 −59.36 ± 0.30 40.65 ± 0.33 −18.71 ± 0.38

TTK-NDC8 −29.34 ± 0.21 −19.18 ± 0.45 48.81 ± 0.51 −39.58 ± 0.09 70.59 ± 0.12 −78.53 ± 0.51 79.82 ± 0.56 1.28 ± 0.40

TTK-NDC9 −78.76 ± 0.28 −5.04 ± 0.26 26.06 ± 0.28 −38.91 ± 0.08 75.29 ± 0.11 −83.80 ± 0.42 63.07 ± 0.35 −20.72 ± 0.55

TTK-NDC10 −72.07 ± 0.34 −5.22 ± 0.18 27.94 ± 0.37 −36.57 ± 0.12 73.83 ± 0.20 −77.30 ± 0.39 65.21 ± 0.47 −12.08 ± 0.41

TABLE 4 Predicted physicochemical properties of the newly designed molecules.

Compounds MW HBD HBA QPlogPo/w QPlogHERG QPCaco QPlogBB QPlogKhsa

NDC1 320.35 3 5 13.329 −6.193 620.519 −0.945 0.086

NDC2 349.391 2 4 10.346 −6.155 2019.982 −0.427 0.545

NDC3 307.311 5 4 15.776 −5.889 66.578 −1.9 −0.152

NDC4 305.338 4 5 16.231 −6.195 145.681 −1.599 −0.155

NDC5 324.385 5 4 15.72 −5.619 366.227 −1.176 −0.038

NDC6 388.351 4 4 14.646 −5.949 291.298 −1.059 0.217

NDC7 307.354 5 3 14.015 −5.518 189.325 −1.36 0.091

NDC8 504.73 8 8 −0.743 −7.367 1.276 −1.203 −0.007

NDC9 470.573 4 6 15.944 −5.648 401.322 −1.072 0.759

NDC10 482.584 4 6 16.905 −7.032 244.531 −1.612 0.947

“QPlogPo/w recommended range = “−2.0 to 6.5,” QPlogHERG recommended range = “<-5,” QPCaco2 recommended range “<25 poor,” “> 500 great,” QPlogBB recommended range =

“−3.0 to 1.2,” QPlogKhsa recommended range = “−1.5 to 1.5.”
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space; hence its structure is compact as compare to PC1 and PC2.

Through simple clustering in PC subspace, the PCA analysis

revealed conformational changes in all clusters, blue regions

showed most significant movement, white regions show

intermediate movement while red regions show that there is less

movement of flexibility. The PCA plots of remaining complexes are

given in Supplementary Figures S1A–S1I.

The cross-correlation map showed the pairwise correlation of

NDC1 with the TTK protein by the value of pairwise cross-correlation

coefficient (Figure 11). The correlated residues are more than 0.8 and

are shown in cyan color, while the anti-correlated residues (<-0.4) are
indicated with magenta color. The high percentage of pairwise

correlated residues indicated the stable binding of the ligand with

the TKK protein. The cross-correlation maps of other complexes are

given in Supplementary Figures S2A–S2I.

The binding free energy estimation

The MM/PBSA is a significant method to estimate the binding

free energy of protein-ligand complexes. The ΔGbind values for all

complexes were estimated using this method. The ΔG is the

outcome of tcontribu-tion of various protein-ligand interactions

such as van derWaals energy (ΔEvdW), electrostatic energy (ΔEele)
and EPB (electrostatic contribution to solvation free energy by

Poisson-Boltzmann) energy. The ΔEvdW of NDC9 and

NDC10 complexes are found to be -78.76 kcal/mol and-

72.07 kcal/mol respectively and contributing more in binding

affinities as compared to other designed compounds. Whereas

NDC8 complex having −29.34 kcal/mol showing its limited

contribution whereas in remaining complexes it contributed

more. In case of ΔEele contribution, the energy component

is −5.85 kcal/mol in NDC1, 0.39 kcal/mol in NDC2, −4.09 kcal/

mol in NDC3, −2.38 kcal/mol in NDC4, −8.55 kcal/mol in

NDC5, −2.05 kcal/mol in NDC6, −2.57 kcal/mole in

NDC7, −19.18 kcal/mol in NDC8, −5.04 kcal/mol in NDC9,

and −5.22 kcal/mol in NDC10. ΔEele energy contribution of

NDC8 complex is highest among all other complexes. Moreover,

the PB contribution of all complexes are showing that NDC8 has

higher PB value than other complexes. The calculated binding free

energies of all the complexes are shown in Table 3. The binding free

energies ΔGbind of NDC1 (−19.20 kcal/mol), NDC7(−18.71 kcal/

mol) and NDC9 (−20.72 kcal/mol) are quite better than other

complexes. The differences in the binding energies are due to the

difference in the contribution of electrostatic, polar, and non-polar

energies in the protein-ligand complexes.

Calculations of physicochemical
properties

QikProp software was used to estimate the

physicochemical parameters (Table 4). With almost one

rule violation, the majority of newly created

molecules followed the Lipinski’s rule. The predicted

octanol/water partition coefficient ‘QPlogPo/w’ values range

(10.346–16.905), HERG K+ channels “QPlogHERG”

blocking IC50 values range (−7.032 to −5.518), caco-2

cell permeability “QPPCaco’” values range

(66.578–2019.982), brain/blood partition coefficient

“QPlogBB” values range (−1.9 to −0.427), and human

serum albumin binding “QPkhsa” values range

(−0.155–0.947) are within the acceptable ranges for

95 percent oral drugs (Kumar et al., 2016). Within the

recommended ranges, physicochemical qualities such as

‘QPlogPo/w and QPlogHERG’ showed smooth diffusion of

drug and protection against unexpected cardiac arrest (Kumar

et al., 2016).

Conclusion

TTK is an important mitotic kinase whose loss of function

results in chromosomal segregation defects that can lead to

aneuploidy and cell death, making it an attractive drug target

for cancer. Using different partial charges and alignment

methods, structure-based 3D-QSAR models on

MMFF94 charges yielded best CoMFA and CoMSIA

models. Using these predictive models and contour maps

information ten new compounds were designed and their

biological activities were predicted. The newly designed

compounds showed better predicted activities than their

parent compounds, demonstrating that structure-based

approaches using MMFF94 charges can be used to design

better active TTK inhibitors. Further MD simulations

described the stability of protein-ligand complexes.

Similarly computational binding free energy calculations

suggest that newly designed compounds can bind to

TTK protein with better binding affinity than reported

compounds.
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Caulerpa spp. secretemore than thirty different bioactive chemicals which have

already been used in cancer treatment research since they play a pivotal role in

cancer metabolism. Colorectal cancer is one of the most common cancer

types, thus using novel and effective chemicals for colorectal cancer treatment

is crucial. In the cheminformatics pipeline of this study, ADME-Tox and drug-

likeness tests were performed for filtering the secondary metabolites of

Caulerpa spp. The ligands which were selected from the ADME test were

used for in silico molecular docking studies against the enzymes of the

oxidative branch of the pentose phosphate pathway (glucose-6-phosphate

dehydrogenase and 6-phosphoglutarate dehydrogenase), which is of great

importance for colorectal cancer, by using AutoDock Vina. Pharmacophore

modeling was carried out to align the molecules. Molecular dynamic

simulations were performed for each target to validate the molecular

docking studies and binding free energies were calculated. According to the

ADME test results, 13 different secondarymetabolites were selected as potential

ligands. Molecular docking studies revealed that vina scores of caulerpin and

monomethyl caulerpinate for G6PDH were found as −10.6 kcal mol-

1, −10.5 kcal mol-1, respectively. Also, the vina score of caulersin for 6PGD

was found as −10.7 kcal mol-1. The highest and the lowest binding free energies

were calculated for monomethyl caulerpinate and caulersin, respectively. This

in silico study showed that caulerpin, monomethyl caulerpinate, and caulersin

could be evaluated as promising marine phytochemicals against pentose

phosphate pathway enzymes and further studies are recommended to

investigate the detailed activity of these secondarymetabolites on these targets.
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1 Introduction

Caulerpa, a green siphonous macroalgae, belongs to the

Caulerpaceae family with 97 species. It was first described by

J V Lamourox in 1809 and derived from the Greek words caulos

(stalk/stem) and erpos (creep) (Mehra et al., 2019). Especially, C.

taxifolia and C. cylindracea (previously known as C. racemosa

var. cylindracea) have attracted attention for the last 30 years due

to their invasive properties (Montefalcone et al., 2015) and, more

importantly, the various properties of bioactive (especially

secondary metabolites) chemicals for defense, communication,

growth and development regulation, reproduction, competition,

and infection (Erb and Kliebenstein, 2020; Ramawat and Goyal,

2020).Caulerpa secrete linear or monocyclic terpenoids that have

aldehyde and enol-acetate functional groups (Mehra et al., 2019).

The structure of caulerpin (C24H18N2O4), a secondary metabolite

and pigment of the C. cylindracea species, was first described by

Aguilar-Santos in 1970 (Aguilar-Santos, 1970). Its molecular

weight is 398.418 g/mol and its characterized structure is

‘dimethyl-6,13-dihydrodibenzo [b,i] phenazin-5,12-

dicarboxylate methyl ester. Caulersin (C21H14N2O3) is another

bis-indole alkaloid which is isolated from C. serrulata (Su et al.,

1997) and from C. racemosa (Yang et al., 2014). Its isomers are

caulersin A, B, and C. The molecular weight of caulersin is

342.1004 g/mol (Su et al., 1997). It is characterized by its “central

troponoid bridging” bisindole structure (Su et al., 1997).

Caulerpenyne is a sesquiterpenoid-structured secondary

metabolite which has some bioactivities such as

antiproliferative and apoptotic activities (Cavas et al., 2006)

and inhibitors of lipoxygenase (Cengiz et al., 2011) and 5-

lipoxygenase (Richter et al., 2014), etc. Secondary metabolites

of genus Caulerpa are responsible for complex modulation

network induced in AMPK, ER Stress, mitochondrial stress,

PTP1B inhibition and cell cycle stop pathways, metabolic

reprogramming in cancer cells, apoptosis and cell cycle arrest

in cancer metabolism (Mehra et al., 2019).

Colorectal cancer (CRC) is the second and third most

common diagnosed cancer type in women and men in the

world, respectively (Dekker et al., 2019). According to the

World Health Organization data, in 2018, CRC caused

1.80 million new cases and 862,000 deaths all around the

world (WHO, 2018). Since CRC is a common and fatal

cancer type, using novel and effective chemicals for treatment

is essential.

The pentose phosphate pathway (PPP) is the pivotal

pathway for ribonucleotide synthesis and is the main

source of NADPH (the reduced form of Nicotinamide

Adenine Dinucleotide Phosphate) (Stincone et al., 2015),

which is of great importance for fatty acid synthesis and

reactive oxygen species scavenging. PPP branches from

glycolysis, and it plays a key role in cancer cells (Patra and

Hay, 2014). The oxidative phase of PPP is initiated with

hexokinase, which converts glucose to glucose 6-phosphate

(G6P). G6P oxidizes (dehydrogenated) to 6-

phosphogluconolactone by the rate-limiting enzyme

(glucose 6-phosphate dehydrogenase (G6PDH)) to yield

NADPH (by reducing NADP+) (Stincone et al., 2015). The

other NADPH source of PPP is the conversion of 6-

phosphogluconate into ribose (ribulose) 5-phosphate by 6-

phosphogluconate dehydrogenase (6PGD). Eventually, the

regeneration of GSH, synthesis of DNA, fatty acids, and

sterols is achieved by producing 2 mol of NADPH per mole

of G6P entering the oxidative phase of PPP (Patra and Hay,

2014). In many solid tumors, overexpression of PPP

(especially the enzyme 6PGD) has already been observed

(Patra and Hay, 2014; Jin and Zhou, 2019). Furthermore,

targeting oxidative phase of PPP for mutant KRAS colorectal

carcinomas prevents the recurrence (Gao et al., 2019). Thus,

targeting the PPP is a potentially new target for CRC

treatment.

In-silico computer-aided methods are commonly used to

predict and elucidate the molecular-level behavior of a

compound (Dege et al., 2022). Molecular docking is a

convenient in-silico method which can be used to evaluate the

binding affinity of the ligand on the receptor and can predict the

position of the these molecules (Trott and Olson, 2010; Mert

Ozupek and Cavas, 2017). ADME provides information about in-

silico ADME behavior which is important for medicinal

chemistry (Bocci et al., 2017; Dege et al., 2022; Gokce et al.,

2022; Pantaleão et al., 2022). Drug-likeness analysis using in-

silico is of great importance for evaluating the pharmacokinetic

features of fast and cheap (Gokce et al., 2022; Hasan et al., 2022).

In this study, the anticancer activity of phytochemicals of

Caulerpa spp. were tested on potential targets (G6PDH and

6PGD) against CRC by using in-silico pharmacokinetic and

pharmacodynamic tools. The aim of this study was to

investigate the potential Caulerpa-based phytochemicals

against fundamental targets (G6PDH and 6PGD) for

colorectal cancer treatment.

2 Materials and methods

2.1 Ligand preparation

The secondary metabolites found in Caulerpa spp. Were

selected from the literature and organism-specific natural

product lists of PubChem; Lotus-the natural products

occurrence database (https://pubchem.ncbi.nlm.nih.gov). The

three-dimensional (3D) structures of chemicals found in

Caulerpa spp. were extracted from the PubChem Database.

The Canonical smiles formats of the secondary metabolites

were drawn using ACD/ChemSketch software. To optimize

the geometry and minimize the energy for the selected ligands

(secondary metabolites), Open Babel (O’Boyle et al., 2011)

minimization tool was used. As force field, uff (universal force
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field) was selected. Conjugate gradients were selected as

optimization algorithm, and total number of steps was set as 200.

2.2 Protein preparation

The proteins used in the molecular modeling studies were

retrieved from the RCSB Protein Data Bank (https://www.rcsb.

org/). The crystal structure of receptors against human colorectal

cancer G6PDH (PDBID: 6E08; resolution: 1.90 Å) and 6PGD

(PDBID: 4GWK; resolution: 1.534 Å) were extracted. The crystal

structures were rebuilt and both water and small molecules were

removed. To perform energy minimization and geometry

optimization, polar hydrogens were added, and non-polar

hydrogens were merged into the molecules by using

AutoDock Tools-1.5.6. Before the docking studies, Kollman

charges were added, and the related receptors were saved in

the PDBQT format.

2.3 In silico analysis of pharmacokinetic
ADME, drug-likeness and toxicity test

The drug-likeness of the compounds found in Caulerpa

spp. was calculated using SwissADME (http://www.swissadme.

ch/)(Daina et al., 2017). The molecular structures of

compounds were converted into SMILES format. Only the

ligands that could Lipinski’s five rule variations (calculated

Log P (CLog P) should be less than five, polar surface area,

the number of hydrogen bond donors should be less than five,

hydrogen acceptors should be less than ten and the molecular

weight should be less than 500) with no more than one violation

were used for molecular docking experiments. Toxicity

Estimation Software Tool (T.E.S.T.) (Martin et al., 2008) and

ProTox-II (http://tox.charite.de/protoc_II; Banerjee et al.,

2018) server were used to determine the toxicity estimation

of secondary metabolites of Caulerpa which were selected from

ADME results.

2.4 Molecular docking studies

To examine the selected ligands on related receptors,

molecular docking experiments were carried out with

AutoDock Vina. After the minimization process, the grid box

resolution was set at 29.7030, 17.7197, and 29.5355 along the x, y,

and z points, respectively, for G6PDH (PDBID: 6E08). To define

the binding site for conducting the docking for 6PGD (PDBID:

4GWK), grid box resolution was set at 21.6405, 23.5892,

and −2.9280 along the x, y, and z points, respectively. The

grid dimensions of all receptors were adjusted to 25 ×

25×25 for all molecular docking studies. DHEA and

6aminonicotinamide (6ANA) were used as control ligands.

The results of the graphical representations were prepared via

Maestro Schrödinger.

2.5 Pharmacophoremodel generation and
pharmacophore screening

The compounds of Caulerpa spp. that showed binding

affinities less than −10 kcal/mol (threshold value), were

analyzed for pharmacophoric features using the PharmaGist

web server (Schneidman-Duhovny et al., 2008). For further

studies, ZINCPharmer server (Koes and Camacho, 2012) was

used to visualize the best pairwise alignment of ligands

(compounds from Caulerpa spp.) with the pivot molecule

(DHEA or 6ANA). Scores were calculated for each

pharmacophore feature by PharmaGist server.

2.6 Molecular dynamic simulation for
docking validation

The molecular docking simulations of caulerpin,

monomethyl caulerpinate and caulersin with glucose-6-

phosphate dehydrogenase (G6PDH) and 6-phosphogluconate

dehydrogenase (6PGD) proteins were performed using a web-

based MD simulation package WebGRO for Macromolecular

Simulations (https://simlab.uams.edu/) Simlab, the University of

Arkansas for Medical Sciences (UAMS), Little Rock,

United States provided by GROMACS-2019.2 (Abraham et al.,

2015). PRODRG server (Schüttelkopf and Van Aalten, 2004) was

used for the generation of the ligand topology files. GROMOS96

43a1 force field was used for the approximation of the protein-

ligand (G6PDH-caulerpin; G6PDH-monomethylcaulerpinate;

6PGD-caulersin) interactions. The triclinic box was filled with

SPC water and 0.15 M NaCl (counter ions) to neutralize the

system for each ligand-protein complex. The equilibration type

was NVT/NPT and Parrinello-Danadio-Bussi thermostat and

Parrinello-Rahmanbarostat were used to control the temperature

(300 K) and the pressure (atmospheric pressure-1 bar).

5,000 steepest descent was used to minimize the energy of the

system. Each protein-ligand complex (G6PDH-caulerpin;

G6PDH-monomethyl caulerpinate; 6PGD-caulersin) was

simulated for 100 ns. H bonds, the Radius of gyration (Rg),

Root Mean Square Deviation (RMSD) and SASA were tested to

estimate the complex stability.

2.7 Calculation of binding free energy by
MM/PB(GB)SA

The best docking poses for each ligand (caulerpin,

monomethyl caulerpinate, and caulersin) were rescored. In

this study, the binding free energy of the ligands was
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TABLE 1 List of pharmacokinetic properties of 36 compounds from Caulerpa spp.

Properties Physicochemical properties Lipophilicity Water
solubility

Pharmacokinetics Drug-
likeness

Medicinal
chemistry

Parameters Molecular
weight
(g/mol)

Number
of heavy
atoms

Number
of
aromatic
heavy
atoms

Number
of
rotatable
bonds

Number
of
H-bond
acceptors

Number
of
H-bond
donors

Molar
reflactivity

TPSA
(Å)

Log P0/w LogS
(ESOL)

GI absorbtion Lipinski/
violation

Synthetic
accessibility

Compound

Caulerpin 398.41 30 22 4 4 2 116.54 84.18 2.98 -5.30 High Yes/0 2.32

Caulerpenyne 374.43 27 0 10 6 0 103.18 78.90 3.79 -4.19 High Yes/0 4.69

Caulersin 342.35 26 21 2 3 2 102.72 74.95 2.61 -4.97 High Yes/0 2.34

10,11-epoxycaulerpenyne 390.43 28 0 10 7 0 102.67 91.43 3.95 -3.30 High Yes/0 5.22

Flexilin 320.42 23 0 11 4 0 94.12 52.60 3.69 -4.24 High Yes/0 3.90

Trans-phytol 296.53 21 0 13 1 1 98.94 20.23 4.71 -5.98 Low Yes/1 4.30

Alpha tocopherol quinone 446.71 32 0 15 3 1 140.05 54.37 5.83 -7.14 Low Yes/1 5.74

Taraxerol 426.72 31 0 0 1 1 134.88 20.23 4.77 -8.34 Low Yes/1 6.04

Beta-sitosterol 414.71 30 0 6 1 1 133.23 20.33 4.79 -7.90 Low Yes/1 6.30

Palmitic acid 256.42 18 0 14 2 1 80.80 37.30 3.85 -5.02 High Yes/1 2.31

Sulfoquinovosyldi
acylglycerol

834.15 57 0 37 12 4 228.17 197.33 0 -7.12 Low No/2 9.02

Racemosin C 372.37 28 18 2 4 3 105.83 95.18 2.15 -4.65 High Yes/0 3.71

Caulerchlorin 374.82 27 22 2 2 2 110.27 57.88 2.97 -5.83 High Yes/1 2.26

Racemosin A 345.33 26 12 2 4 2 101.16 92.34 2.97 -5.83 High Yes/1 2.26

Racemosin B 314.34 24 20 2 2 2 96.45 57.88 2.74 -5.23 High Yes/0 3.30

Caulerprenylol B 248.36 18 6 3 2 2 75.08 40.46 2.93 -3.64 High Yes/0 3.30

Caulerprenylol A 258.36 19 6 0 2 2 80.88 40.46 2.91 -3.59 High Yes/0 4.14

AmBiosome 924.08 65 0 3 18 12 239.06 319.61 3.76 -5.37 Low No/3 10

Monomethyl caulerpinate 384.38 29 22 3 4 3 112.22 95.18 2.11 -5.09 High Yes/0 2.21

4′,5′-
dehydrodiodictyonema A

461.68 33 0 18 4 1 142.05 72.47 5.00 -6.81 High Yes/1 5.28

Racemobutenolid A 308.5 22 0 11 2 0 96.95 26.30 4.63 -5.47 High Yes/1 4.65

Racemobutenolid B 308.5 22 0 11 2 0 96.95 26.30 4.63 -5.47 High Yes/1 4.65

(23E)-3β-hydroxy-
stigmasta-5,23-dien-28-one

426.67 31 0 5 2 1 133.21 37.30 4.54 -6.58 Low Yes/1 6.04

(3b,24R)-stigmasta-5,28-
diene-3,24-diol

430.66 31 0 6 3 2 130.08 57.53 4.13 -6.01 High Yes/1 6.05

(3β,24S)-stigmasta-5,28-
diene-3,24-diol

430.66 31 0 6 3 2 130.08 57.53 4.04 -6.01 High Yes/1 6.05

(22E)-3β-hydroxy-cholesta-
5,22-dien-24-one

398.62 29 0 4 2 1 123.6 37.30 4.28 -6.12 High Yes/1 5.82

(Continued on following page)
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TABLE 1 (Continued) List of pharmacokinetic properties of 36 compounds from Caulerpa spp.

Properties Physicochemical properties Lipophilicity Water
solubility

Pharmacokinetics Drug-
likeness

Medicinal
chemistry

Parameters Molecular
weight
(g/mol)

Number
of heavy
atoms

Number
of
aromatic
heavy
atoms

Number
of
rotatable
bonds

Number
of
H-bond
acceptors

Number
of
H-bond
donors

Molar
reflactivity

TPSA
(Å)

Log P0/w LogS
(ESOL)

GI absorbtion Lipinski/
violation

Synthetic
accessibility

Fucosterol 410.67 30 0 4 1 1 132.54 20.23 4.28 -6.12 High Yes/1 5.82
24R,28S-epoxyfucosterol 426.67 31 0 4 2 1 132.02 32.76 4.87 -6.63 Low Yes/1 6.35

24S,28R-epoxyfucosterol 426.67 31 0 4 2 1 132.02 32.76 4.97 -6.63 Low Yes/1 6.35

(3β,23E)-stigmasta-5,23-
dien-3,28-diol

428.69 31 0 5 2 2 134.18 40.46 4.82 -6.78 High Yes/1 6.37

α-tocoxylenoxy 552.87 40 12 14 3 1 176.97 38.69 0 -10.13 Low No/2 6.14

Cacospongionolide C 324.5 23 0 12 3 1 98.11 46.53 4.29 -5.30 High Yes/1 4.81

α-tocospiro A 462.7 33 0 13 4 1 139.58 63.60 5.18 -6.53 Low Yes/0 6.88

α-tocospirone 462.7 33 0 12 4 1 139.58 63.60 5.45 -6.99 Low Yes/0 6.65

Furocaulerpin 272.34 20 5 5 3 0 79.86 39.44 3.79 -4.11 High Yes/0 4.08

Trifarin 390.56 28 0 15 4 0 118.16 52.60 5.14 -5.87 High Yes/1 4.46

Caulerpicin 622.10 44 0 39 2 2 203.36 49.33 9.57 -12.63 Low No/2 5.88

aThe bold values indicate the chemicals that fit Lipinski's Rule of 5.
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identified to determine the performance of MM/PB(GB)SA by

using Amber package (Fast Amber Rescoring for PPI inhibitors-

farPPI; http://cadd.zju.edu.cn/farppi; (Wang et al., 2019). The

input files were generated using AutoDock Tools. The force field

parameter was set as GAFF2 (for ligand) + ff14SB (for a receptor)

and the rescoring procedure was set as PB3 (radii = parse, γ = 0.

00542, β = 0.9200). AM1-BCC method was used to calculate the

partial charge of the ligands by using antechamber module of

Amber.

3 Results

3.1 Drug-likeness analysis, ADME and
toxicity test analysis of ADME properties

Lipophilicity, water solubility, drug-likeness, medicinal

chemistry (leadlikeness) values of 36 metabolites from

Caulerpa spp. Were obtained using the SwissADME server.

The results reveal that the logP of 31 compounds were in the

range of 0–5, on the other hand, five of the secondary metabolites

(transphytol, alpha-tocospiroA, alpha-tocospirone, trifarin and

caulerpicin) were not in the range of Lipinski’s Rule of five

(LRo5): 2≤logP≤5). According to the rule of 5, the molecular

weight should be 200 ≤MW ≤ 500. The molecular weights of the

32 compounds were in the acceptable range. However, the MW

of sulfoquinovosyldiacyl glycerol, amBiosome, alpha-

tocoxylenoxy and caulerpicin do not satisfying the Lipinski

Ro5. The number of H-bond acceptors (≤10) and donors (≤5)
for 34 (except sulfoquinovosyldiacyl glicerol and amBiosome)

and 35 (except sulfoquinovosyldiacyl glicerol) compounds falling

in acceptable range, respectively. All the compounds (except

sulfoquinovosyldiacyl glicerol) were found to be the range of

topological polar surface area (TPSA; <140). The minimum and

themaximum numbers of rotatable bonds were found to be 0 and

39, respectively (Table 1). Only the chemicals that were

acceptable for LRo5 with no violation were selected for the

cheminformatic pipeline and further pharmacodynamic

studies. Considering all the obtained results, 13 Caulerpa-

based phytochemicals (caulerpin, caulerpenyne, caulersin,

10,11-epoxycaulerpenyne, flexilin, racemosin C, racemosin B,

caulerprenylol B, caulerprenylol A, monomethyl caulerpinate, α-
tocospiro A, α-tocospirone and furocaulerpin) were chosen and

used in subsequent steps.

In the cheminformatic pipeline of the study, computational

based in-silico toxicity was also used. T.E.S.T. tool and ProTox-II

servers were used to identify the adverse effects and toxicity of the

13 selected compounds to evaluate several toxicological

parameters (acute toxicity, carcinogenicity, cytotoxicity,

hepatotoxicity, immunotoxicity, predicted median lethal dose;

LD50 and mutagenicity). ProTox-II results revealed that

caulerpin, caulerpenyne, caulersin, flexilin, racemosin C,

racemosin B and monomethyl caulerpinate belonging to the

toxicity class 4, LD50 range from 500 to 1760 mg/kg, these

would be harmful in case oral delivery. (Table 2).

3.2 Molecular docking studies

In this study, molecular docking studies were applied for the

investigation of anticancer activity of caulerpin, caulerpenyne,

10,11-epoxycaulerpenyne, caulersin, flexilin, racemosin C,

racemosin B, caulerprenylol B, caulerprenylol A, monomethyl

caulerpinate, α-tocospiro A, α-tocospirone and furocaulerpin.

For anticancer studies, G6PDH and 6PGD, which are crucial for

CRC, were selected as receptors.

3.2.1 Glucose 6-phosphate dehydrogenase
G6PDH is a cytosolic rate-limiting enzyme that converts G6P

into 6-phosphoglucono-δ-lactone in the pentose phosphate

pathway. In this study, human G6PDH (PDBID:6E08) was

selected as a target. Both caulerpin and monomethyl

caulerpinate, which have docking scores less

than −10 kcal mol−1 were selected as ligands with the highest

activity. According to the results, the lowest and the highest

binding energies on G6PDH were found as −10.6 and −5.8 kcal/

mol for caulerpin and 6-aminonicotinamide, respectively

(Table 3). Inside the binding cavity of G6PDH, the methyl

ester group of caulerpin makes H-bond with Lys171. Also, the

indole ring of caulerpin docked in G6PDH makes pi-pi staking

with Phe253 (Figure 1A). Furthermore, the indole ring of

monomethyl caulerpinate makes pi-pi stacking with Phe253

(Figure1B).

3.2.2 6-Phosphogluconate dehydrogenase
The molecular docking studies on 6PGD reveal that the

lowest binding score was found as −10.7 kcal/mol for

caulersin as given in Table 3. Also, the highest binding energy

was found as −5.8 for 6-aminonicotinamide. Inside the binding

cavity of 6PGD, Trp266 forms pi-pi stacking with both the pirole

ring of the indole ring of caulersin. Also, Thr263 makes hydrogen

bond with double bond oxygen of the methyl ester group of the

central traponoid of caulersin. Related information is given in

Figure 1C.

3.3 Docking validation by molecular
dynamic simulations

In the MD simulations, RMSD (Root Mean Square

Deviation) values, the starting position of the backbone of all

amino acid residues, were calculated using WebGRO to clarify

the stability and overall conformational dynamics of receptor-

ligands (G6PDH-caulerpin, G6PDH-monomethyl caulerpinate,

6PGD-caulersin). The results reveal that the average RMSD

values for caulerpin-G6PDH, monomethyl caulerpinate-
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TABLE 2 List of toxicity properties of selected Caulerpa-based phytochemicals.

Endpoint Caulerpin Caulerpenyne Caulersin 10,11-
Epoxycaulerpenyne

Flexilin Racemosin
C

Racemosin
B

Caulerprenylol
B

Caulerprenylol
A

Monomethyl
caulerpinate

α-
tocospiro
A

α-
tocospirone

Furocaulerpin

Organ toxicity Hepatotoxicty IA IA IA IA IA IA IA IA IA IA IA IA IA

Toxicity Carcinogenicity IA IA IA IA IA IA IA IA IA IA IA IA IA

Cytotoxicity IA IA IA IA IA IA IA IA IA IA IA IA IA

Immunotoxicity IA IA IA A IA A A IA IA IA IA IA IA

LD50 (mg/kg) 1760 500 500 2,000 710 1760 4,425 5,500 4400 1760 300 300 5000

Mutagenicity A IA A A IA A IA IA IA IA IA IA IA

Toxicity class 4 4 4 5 4 4 4 5 5 4 3 3 5

AR IA IA IA IA IA IA IA IA IA IA IA IA IA

AhR IA IA IA IA IA IA A IA IA IA IA IA IA

PPARgamma IA IA IA IA IA IA IA IA IA IA IA IA IA

P53 IA IA IA IA IA IA IA IA IA IA IA IA IA

Heat shock

protein

IA IA IA IA IA IA IA IA IA IA IA IA IA

Bioconcentration

factor

Log10 0.74 N/A N/A N/A 0.93 N/A 1.10 2.20 1.81 0.36 1.24 1.55 N/A

Daphnia magna

toxicity (48 h)

mg/L 0.67 0.16 0.71 4.27 E-02 0.76 2.15 0.78 3.43 5.74 0.66 0.85 0.70 0.19

Developmental

toxicity value

0.90 0.68 0.88 0.68 0.68 0.93 0.82 0.79 0.74 0.97 0.77 0.76 0.62

Fathead minnow

(LC50 96h)

mg/L 8.61 E-03 0.32 7.15 E-03 0.12 0.30 3.98 E-03 6.69 E-02 13.52 0.53 3.33 E-02 1.20 0.68 0.44

Mutagenicity

(AMES)

N/A - N/A + - + + - + N/A - - -

Oral rat LD50) mg/L 215.30 N/A 759.69 N/A 8193.16 268.66 N/A 764.83 1857.98 288.29 143.00 268.08 N/A
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G6PDH and caulersin-6PGD were found as 0.31, 0.46, and

0.43 nm respectively. All the values were comparable and in

the physiological environment, indicating the stability of ligand-

protein interaction. RMSF (Root Mean Square Fluctuation)

values, the standard deviation of atomic positions of each

amino acid residues, were also calculated. 0.06, (Figures

2A,E,I). The results from RMSD showed that CPN,

MMCPNT and CSN remained positioned at the active sites of

the G6PDH and 6PGD with stable interactions.

Radius of gyration (Rg) computes the structural

compactness and dynamic adaptability of the ligand-

protein complex about the x-, y- and z-axes, as a function

of time. In Figures 2B,F,J, Rg values of CPN, MMCPNT and

CSN with G6PDH and 6PGD receptors ranged

between −2.35 and 2.45 nm, −2.30–2.43,

and −2.32–2.60 nm, respectively. The overall RG results

revealed that, G6PDH-CPN receptor-ligand complex had

minimum structural compactness variations and this result

indicates the stability of the complexes. SASA is an

approximate structural stability of the ligand-protein

interaction that is accessible to a solvent (water) with

respect to simulation time (100 ns). It was observed that

the frequencies of SASA of all G6PDH complexes were

decreased around 210 nm2 (Figures 2C,G), on the other

hand, SASA result of 6PGD-CSN complex was restricted

around 190 nm2 (Figure 2K). The maximum numbers of

H-bonds of caulerpin-G6PDH, monomethyl caulerpinate-

G6PDH, and caulersin-6PGD per time frame were found to

be 2, 3 and 4, respectively. Furthermore, H-bond formation

dynamics between ligands and proteins reveal that for all

complexes, at least one H-bond was found as long-lived all

through the simulation (100 ns) (Figures 2D, H, L).

3.4 Pharmacophore modeling

In this study, combined structure- and ligand-based

pharmacophore modeling was performed to evaluate

Caulerpa-based phytochemicals with potential activity against

G6PDH and 6PGD. PharmaGist server was used for

pharmacophore modeling to enlighten the three-dimensional

pharmacophoric features of top hit ligands for each receptor.

Pharmacophore modeling is of great importance for specific

receptors to elucidate if the interaction blocks or triggers a

biological response.

In this study, top hits (caulerpin and monomethyl

caulerpinate for G6PDH and caulersin for 6PGD) were used

for each compound in the same orientation at the same binding

pocket. The pairwise structural alignment details are given in

Table 4. DHEA and 6-aminonicotinamide (6ANA) were used as

pivot molecules for G6PDH and 6PGD, respectively. The hit

compounds, “caulerpin and monomethyl caulerpinate” and

“caulersin” were modeled for G6PDH and 6PGD, respectively.

The results revealed that both caulerpin and monomethyl

caulerpinate shared the maximum feature number with

DHEA. The pairwise structural alignment of DHEA and

6ANA with the top hits is shown in Figure 3.

3.5 Binding free energy calculations

The binding free energies of caulerpin and monomethyl

caulerpinate with G6PDH using MM-PB(GB)SA were calculated

as -38.43 and -40.94 kcal/mol, respectively (Figures 4A,B). Also, the

binding free energy of caulersin with 6PGD using MM-PB (GB) SA

was calculated as −20.20 kcal/mol (Figure 4C).

FIGURE 1
2-D interaction network among (A) CPN and amino acid residues of G6PDH, (B) MMCPNT and amino acid residues of G6PDH, (C) CSN and
amino acid residues of 6PGD.
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TABLE 3 Docking scores with G6PDH and 6PGD and the top 13 selected compounds from Caulerpa spp.

Docking score
(kcal/mol)
compounds

Glucose-6-phosphate dehydrogenase
(G6PDH)
(PDBID:6E08)

6-Phosphogluconate dehydrogenase
(6PGD)
(PDBID:4GWK

Caulerpin −10.6 −8.7

Caulerpenyne −9.5 −6.8

Caulersin −9.5 −10.7

10,11-epoxycaulerpenyne −7.9 −6.5

Flexilin −6.8 −5.9

Racemosin C −9.8 −9.1

Racemosin B −9.2 −9.5

Caulerprenylol B −8.3 −8.3

Caulerprenylol A −8.8 −7.7

Monomethyl caulerpinate −10.5 −9.8

α-tocospiro A −9.8 −7.3

α-tocospirone −8.3 −7.4

Furocaulerpin −7.6 −6.9

DHEA −7.8 −6.2

6 aminonicotinamide −5.8 −5.8
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4 Discussion

In this study, 13 of 36 different secondary metabolites of

Caulerpa (caulerpin, caulerpenyne, 10,11-epoxycaulerpenyne,

caulersin, flexilin, racemosin C, racemosin B, caulerprenylol B,

caulerprenylol A, monomethyl caulerpinate, α-tocospiro A, α-
tocospirone and furocaulerpin) against crucial targets (glucose-6-

phosphate dehydrogenase and 6-phosphogluconate

dehydrogenase) for colorectal cancer were carried out by

using in-silico pharmacokinetic and pharmacodynamic

methods. Caulerpin and monomethyl caulerpinate were found

to be the most effective metabolites against G6PDH. Caulersin

had the lowest affinity score against 6PGD. The pentose

phosphate pathway is fundamental for colorectal cancer, thus

caulerpin, monomethyl caulerpinate and caulersin play

important roles in colorectal cancer treatment through the

pentose phosphate pathway.

ADME is an important medicinal chemistry tool that

provides information about in-silico ADME behavior (Bocci

et al., 2017; Pantaleão et al., 2022). The detailed

pharmacokinetic ADME-Tox and drug-likeness results are

given in Table 1 and Table 2. The physicochemical properties

(molecular weight (g/mol), the number of heavy atoms, the

number of aromatic heavy atoms, the number of rotatable

bonds, number of H-bond acceptors, the number of H-bond

donors, molar refractivity and TPSA (Å)) were calculated for

36 Caulerpa-based phytochemicals. ADME results reveal that the

compounds with low molecular weight (≤500 g/mol) tend to

absorb well (Daina et al., 2017). In our study, 4 of

36 phytochemicals (sulfoquinovosyldiacyl glycerol,

amBiosome, alpha-tocoxylenoxy and caulerpicin) from

Caulerpa spp. have high molecular weight (low absorption

capacity). The flexibility of bioactive molecules is determined

using the number of rotatable bonds (Daina et al., 2017) which

FIGURE 2
MD simulation of CPN, MMCPNT and CSN with G6PDH and 6PGD; (A), (E), and (I) RMSD line plots, (B), (F), and (J) Radius of gyration (Rg) line
plots, (C), (G), and (K) SASA line plots, (D), (H), and (L): Line plots of Ligand-protein H bonds for G6PDH-CPN, G6PDH-MMCPNT and 6PGD-CSN,
respectively.
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should be between 0 and 9. In this study, all the chemicals except

sulfoquinovosyldiacyl glycerol and caulerpicin are in the range of

this value. Topological polar surface area (TPSA) is based on the

fragmental system of phosphorous atoms and polar sulfur. TPSA

value should be between 20 and 130 Å for polarity (Daina et al.,

2017). In this study, all the 13 phytochemicals were found in this

range. Lipophilicity (logP) is crucial for clarifying the effect of

chemicals’ absorption, distribution, transportation on

physiological systems. In this study, all the samples (36) out

of 5 phytochemicals were in the range of logP (-2≤logP≤5). For
water solubility, logS (ESOL) was tested. Daina et al. defined the

scale of water solubility as insoluble <−10 < poorly <−6 <
moderately <−4 < soluble <−2 < very <0 < highly (Daina

et al., 2017). The results reveal that caulerpin, caulerpenyne,

TABLE 4 Pairwise structural alignment showing common pharmacophoric features of secondary metabolites (pivot molecule) and top hit
compounds against G6PDH and 6PGD

Score Features Spatial
features

Aromatic Hydrophobic Donors Acceptors Negatives Positives Molecules

2.430
4 4 0 3 0 1 0 0 DHEA(pivot molecule of G6PDH)-

caulerpin (hit compound of
G6PDH)

2.431
4 4 0 3 0 1 0 0 DHEA(pivot molecule of G6PDH)-

monomethyl caulerpinate (hit
compound of G6PDH)

6.016
3 3 1 0 1 1 0 0 6ANA (pivot molecule of 6PGD

-caulersin(hit compound of 6PGD)

FIGURE 3
Structural alignment of pivot molecule, (A) DHEA (gray) with CPN (red), (B) DHEA (gray) with MMCPNT (blue), and (C) 6ANA (gray) with CSN
(violet). DHEA and 6ANA were displayed in ball and stick style, CPN, MMCPNT and CSN were shown in sticks style. (A,B) yellow spheres represent
hydrogen bond acceptors, green spheres represent hydrophobic features, (C) white spheres represent hydrogen bond donors, yellow spheres
represent hydrogen bond acceptors, and purple spheres specify aromatic features.

FIGURE 4
MM-PB(BB)SA results of (A) CPN, (B) MMCPNT, and (C) CSN.
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caulersin, flexilin, racemosin C, racemosin B, monomethyl

caulerpinate, and furocaulerpin were found as moderately

soluble; 10,11-epoxycaulerpenyne, caulerprenylol B and

caulerprenylol A were found as soluble and α-tocospiro A and

α-tocospirone were found as poorly soluble.

Before the clinical trials of drug candidates, in-silico toxicity

measurement procedure is quite important for better selecting

the lead compound (Han et al., 2019). These computational-

based toxicity measurement procedures are accurate, accessible,

rapid, and common. Both ProTox-II and T.E.S.T servers (freely

accessible) were used to identify the adverse effects and toxicity

(acute toxicity, carcinogenicity, cytotoxicity, hepatotoxicity,

immunotoxicity and mutagenicity) of selected phytochemicals

from ADME results. Our results reveal that the toxicity classes of

the selected phytochemicals were found to be more than three.

For all selected phytochemicals, hepatotoxicity, carcinogenicity,

cytotoxicity androgen receptor results were found as inactive.

Drug design and discovery is a step-by-step process, which is

costly for companies (Opo et al., 2021). The bioavailability and

drug-likeness analysis using in-silico is of great importance for

evaluating the pharmacokinetic features of fast and cheap (Hasan

et al., 2022).

In this study, the selected metabolites (ligands) have the

potential anticancer activity against the selected receptor targets

for CRC. According to the results, among the commercial drugs

(DHEA and 6ANA), for G6PDH, the best docking energy was

exhibited by caulerpin with a vina score of −10.6 kcal/mol, while

for G6PDH, the other best docking energy was exhibited by

monomethyl caulerpinate with a vina score of −10.5 kcal/mol.

For 6PGD, the best docking score among the secondary

metabolites of Caulerpa was exhibited by caulersin

(−10.7 kcal/mol). (Table 3). In the literature, limited studies

are related to the activities of caulerpin on different targets in-

silico. In the study by Lorenzo et al. (2015), in-silico molecular

docking study of caulerpin and its nine analogs against

monoamine oxidase B was carried out. Their results reveal

that moldock energy, predicted probability (%) and drug-like

score of caulerpin were found as −152%, 58%, and 0.77,

respectively. However, the analogs of caulerpin which have

non-polar and polar groups showed different moldock energy,

predicted probability (%) and drug-like scores. The methods that

they used (Volsurf descriptors, structure-based methodology and

Random Forest algorithm) are crucial for finding the good drug

candidates (caulerpin and its analogs) against monoamine

oxidase B (Lorenzo et al., 2015). In the literature, Vitale et al.

(2018) carried out an in silico molecular docking evaluation of

caulerpin against PPARalpha and PPAR gamma. Their study

reveals that the main interaction between ligand (caulerpin) and

protein is a hydrophobic interaction. Also, according to their

molecular dynamics results, caulerpin makes intermolecular

H-bonds with S289 (VI) and S342/R288 (V) (Vitale et al.,

2018). Furthermore, antiviral activity of caulerpin against

SARS-CoV-2 was tested using in-silico tools (Abdelrheem

et al., 2020; Ahmed et al., 2020; Çavaş et al., 2020; El-Mageed

et al., 2021).

MM-PBSA analysis is an important and popular method in

drug candidate filtration since it is an easy method, and the

speed-accuracy balance of the information is high. Estimation of

binding free energies with MM-PB(GB) SA for the ligands is

automated with the farPPI web server. In our study, the highest

and the lowest binding free energies were calculated for

monomethyl caulerpinate and caulersin, respectively.

Caulerpin also has some biological activities such as anticancer

activity onmelanoma cells (Rocha et al., 2007), HIF-1 activation and

inhibition of mitochondrial respiration (Liu et al., 2009), antiviral

activities against bovine viral diarrhea virus in cattle and herpes

simplex virus (Macedo et al., 2012; Pinto et al., 2012; Zhang et al.,

2015), pain-sensitizing and spasmolytic effect (Cavalcante-Silva

et al., 2014), antituberculosis activity (Canché Chay et al., 2014),

antiproliferative activity (Movahhedin et al., 2014), monoamine

oxidase inhibitory activity against Alzheimer’s and Parkinson’s

disease (Lorenzo et al., 2015), activity on cisplatin-resistant

overian cancer and inhibition respiratory complex II activity

(Ferramosca et al., 2016), AMPKα1 pathway activation in

colorectal cancer cells (Yu et al., 2017) and PPARα and PPARγ
agonist activity on hepatocellular cell line (Vitale et al., 2018).

Caulersin is a known human protein tyrosine phosphatase-1B

inhibitor, which regulates insulin signaling negatively (Yang et al.,

2014). The anticancer activity of caulerpin, caulersin, caulerpenyne

and 10,11-epoxycaulerpenyne for colorectal cancer data reveal that

caulerpin and caulersin are promising anticancer agents against

CRC targets and G6PDH and 6PGD could be important targets

for CRC.

Inhibition of PPP-enzymes is related with AMPK-activation,

HIF-1α degradation, impaired folate metabolism and PP2A-

activation (Meskers et al., 2022). G6PDH is the main NADPH

production and redox homeostasis contributor (Ghergurovich

et al., 2020). The expression level of G6PDH is upregulated and

negatively correlated with patients with cancer (Ghergurovich

et al., 2020). In different CRC cell lines, the expression levels of

G6PDH and 6PGD are quite different. In the study of Polat et al.

(2021), the highest and the lowest G6PDH levels were found in

HT29 and Caco-2 cell lines, respectively (Polat et al., 2021). Thus,

the effectiveness of the selected secondary metabolites could be

changed depending on the colorectal cancer cell type.

For the prospects, the not only the in-silico analysis but also

the in-vitro experiments of these targets for caulerpin,

monomethyl caulerpinate and caulersin should be performed.

5 Conclusion

Global warming and human activities change the ecosystem

structures. Alien members of Genus Caulerpa are widely studied

marine algae due to their invasive properties. The present paper

proposes an alternative utilization method in medicinal
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chemistry. The secondary metabolites of Caulerpa spp. attract

attention due to their bioactivities. Using the ADME-tox and

drug-likeness tests, 13 of 36 secondary metabolites were selected

and molecular docking, and molecular dynamics analysis were

performed. Caulerpin, monomethyl caulerpinate, and caulersin

were found the hit compounds of Caulerpa spp. Against G6PDH

and 6PGD, which may play pivotal roles in CRC. Thus, instead of

eradication of these algae, the secondary metabolites proposed in

this paper (caulerpin, monomethyl caulerpinate) might further

be evaluated as promising agents that can be obtained from

pharmacy of nature.
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extrinsic apoptosis with
abrogation of cell cycle
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cells: Inhibition of Hedgehog/GLI
signaling cascade
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Recent times have seen a strong surge in therapeutically targeting the

hedgehog (HH)/GLI signaling pathway in cervical cancer. HH signaling

pathway is reported to be a crucial modulator of carcinogenesis in cervical

cancer and is also associated with recurrence and development of

chemoresistance. Moreover, our previous reports have established that

carvacrol (CAR) inhibited the proliferation of prostate cancer cells via

inhibiting the Notch signaling pathway and thus, it was rational to explore its

antiproliferative effects in cervical cancer cell lines. Herein, the present study

aimed to investigate the anticancer and apoptotic potential of CAR on C33A

cervical cancer cells and further explore the underlying mechanisms. We found

that CAR significantly suppressed the growth of C33A cells, induced cell cycle

arrest, and enhanced programmed cell death along with augmentation in the

level of ROS, dissipated mitochondrial membrane potential, activation of

caspase cascade, and eventually inhibited the HH signaling cascade. In

addition, CAR treatment increased the expression of pro-apoptotic proteins

(Bax, Bad, Fas-L, TRAIL, FADDR, cytochrome c) and concomitantly reduced the

expression of anti-apoptotic proteins (Bcl-2 and Bcl-xL) in C33A cells. CAR

mediates the activation of caspase-9 and -3 (intrinsic pathway) and caspase-8

(extrinsic pathway) accompanied by the cleavage of PARP in cervical cancer

cells. Thus, CAR induced apoptosis by both the intrinsic and extrinsic apoptotic

pathways. CAR efficiently inhibited the growth of cervical cancer cells via

arresting the cell cycle at G0/G1 phase and modulated the gene expression

of related proteins (p21, p27, cyclin D1 and CDK4).Moreover, CAR inhibited the

HH/GLI signaling pathway by down regulating the expression of SMO, PTCH

and GLI1 proteins in cervical carcinoma cells. With evidence of the above

results, our data revealed that CAR treatment suppressed the growth of
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HPV−C33A cervical cancer cells and further elucidated the mechanistic insights

into the functioning of CAR.

KEYWORDS

beta-glucan, antioxidant activity, apoptosis, anticancer, cervical cancer, ROS
generation

1 Introduction

With approximately 600,000 newly diagnosed cases and

342,000 demises reported globally during 2020, cervical

carcinoma remains the fourth most routinely diagnosed

cancers in women and the fourth leading cause of mortality

and morbidity in females (Sung et al., 2021). Persistent infection

with Human papilloma Virus (HPV) (subtypes 16, 18, 31, 33, 35,

39, 45, 51, 52, 56, 58, and 59) along with other risk factors,

including increased parity, infection with HIV and smoking

causes cervical cancer (Bosch et al., 2002). Regional

discrepancies in the burden of cervical cancer are bleak and

reveal the availability, coverage, and quality of preventative

interventions and the prevalence of risk factors.

Approximately 9/10 women who dies from cervical cancer

live in low- and middle-income countries (L/MICs). Inequities

are broadening since high-income countries have witnessed a

steep decline in the incidence rates, along with some nations

moving ahead towards eliminating cervical carcinoma in the

upcoming decades (Simms et al., 2019). In contrast, the incidence

rate has increased in some sub-Saharan African countries. In

these nations, the rate of incidence have either increased or

remained mostly at high levels in various eastern European and

west-Asian countries (Arbyn et al., 2011; Vaccarella et al., 2017;

Arbyn et al., 2020).

Although the management of worldwide screening programs

has reduced the occurrence and mortality of cervical carcinoma,

however, the incidence of this dreaded disease within the young

female population remains a grievous public health concern.

Moreover, the systemic use of chemotherapeutic drugs leads to

the development of drug resistance which eventually results in

poor gynecological outcomes (Moss and Kaye, 2002; Lin et al.,

2016). However, there is a constant need of novel drug

development which could combat with drug resistance and

adverse aftermath associated with the current treatment

(Datta et al., 2019).

Phytocompounds are usually non-toxic, proven effective

against numerous diseases, and considered a safe, cheap and

effective alternative against cancer (Lai and Roy, 2004). Carvacrol

(CAR) is a phenolic monoterpenoid abundantly present in the

essential oils of oregano and thyme and is well-known for

exerting multiple pharmacological effects such as

antimicrobial, anticancer, insecticidal, anti-angiogenic, and

anti-tumor activity (Sökmen et al., 2004; Baser, 2008).

Notably, the Food and Drug Administration (FDA) has

authorized the usage of CAR as a food supplement which

testifies its non-toxic nature (Zotti et al., 2013). Furthermore,

it is reported that CAR exerts cytotoxic effects on breast, lung,

and colon cancer cells; however, the effect of CAR on the

proliferation and apoptosis of cervical cancer and its

underlying mechanism is not deciphered yet (Dai et al., 2016).

Infection with HPV is regarded as an initial strike that causes

cervical carcinoma. Despite that, this factor is not individually

sufficient for cancer development. Several additional cellular

alterations are needed to commend the action of HPV.

Correspondingly, in the present report, we have investigated

the effect of CAR on the functionality of Hedgehog (HH)

signaling in cervical cancer cells (Samarzija and Beard, 2012).

The HH signaling cascade has been demonstrated to play an

imperative role in the proliferation, metastasis, recurrence,

invasion, drug resistance, and radioresistance of cervical

cancer (Liu and Wang, 2019). The binding of HH ligand to

its receptor patched (PTCH) activates the HH pathway. This

binding relieves the repression from its second receptor

Smoothened (SMO), which relocates to the cell membrane

and drives a range of reactions leading to the translocation of

transcription activators encoded by Glioma associated oncogenes

(GLI1, GLI2 and GLI3) into the nucleus and subsequent

transcription of target genes (Wu et al., 2020). Previous

studies have established that molecular alterations in HH

signaling cascade leads to various cancers such as

medulloblastoma, basal cell carcinoma, small cell lung cancer,

and prostate cancer. Reportedly, HH pathway is found to be

hyper activated in cervical cancer and is associated with poor

prognosis (Wang et al., 2010).

In this report, we studied the effect of CAR on regulating HH

signaling cascade in HPV− C33A cervical cancer cells via

apoptosis induction and abrogation of cell cycle progression.

However, to the best of our knowledge, we are reporting for the

first time that CAR suppresses the progression of cervical cancer

by inhibiting the HH signaling pathway.

2 Materials and methods

2.1 Reagents and chemicals

Carvacrol (CAR), DAPI (4, 6-diamidino-2-phenylindole),

propidium iodide (PI), and 2, 7-dichlorodihydrofluorescein

diacetate (DCFH-DA) were purchased from Sigma (St. Louis,

MO, United States). Caspase-9, -8 and -3 colorimetric assay kit

with catalogue numbers K119, K113–25 and K106-100 were
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procured from BioVision, United States. Acridine orange,

Ethidium bromide, RPMI-1640, fetal bovine serum (FBS), 1%

antibiotic-antimycotic solution, RNase A, 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

(MTT) and HiPurATM Total RNA Miniprep Purification Kit

were purchased from Himedia India, Ltd., Mumbai, India. JC-1

mitochondrial membrane potential (MMP) assay kit was

purchased from G-Biosciences, United States. All the primer

sequences utilized during the study were procured from IDT,

United States. FITC Annexin V Apoptosis Detection Kit was

procured from BD Bioscience, PharMingen (San Diego,

United States of America). DyNAmoColorFlash SYBR Green

qPCR Kit and Verso cDNA synthesis kit were obtained from

Thermo-Scientific, United States.

2.2 Cell line maintenance

Human cervical cancer cell line (C33A) was procured from

the national repository division of the National Centre for Cell

Sciences (NCCS), Pune, India. C33A cells were grown and

maintained in RPMI-1640 completed with FBS (10%) and

antibiotic-antimycotic solution (1%) under optimal culture

conditions (temperature: 37 °C and 5% CO2).

2.3 Methods

2.3.1 Cell proliferation assay
Cell viability was assessed by using MTT assay as described

previously (Ansari et al., 2021). Briefly, C33A cells were cultured

in 96-well plates (5 × 103cells/well). C33A cells were maintained

in the presence of CAR for 24 and 48 h. 10 µl MTT working dye

(5 mg/ml) was added to the cultured C33A cells and then

incubated for an additional 4 h. After that, media was

removed and 100 μl DMSO was added to dissolve MTT

crystals. Absorbance intensity was analyzed at 570 nm by an

ELISA microplate reader (Bio-Rad, United States of America).

Viability of C33A cells was calculated as a ratio of the optical

density of treated and untreated cells.

2.3.2 LDH assay
Human cervical cancer cells (C33A) were cultured into a 96-

well plate with a growth medium. LDH activity was determined

in CAR-treated C33A cells according to the manufacturer’s

protocol. The LDH activity in treated and untreated cells was

determined by evaluating the optical density of the cells at

490 nm using the ELISA reader (Bio-Rad, United States).

2.3.3 Observation of cell morphology
C33A cells plated on 96-well plate were treated with CAR

doses (25, 50, 75 and 90 μM) for 24 and 48 h. The CAR-

treated and control cells were then observed for

morphological alterations within the C33A cervical cancer

cells using a fluorescence microscope (Thermo-Scientific,

United States of America), and photomicrographs were

captured.

2.3.4 Colony formation assay
C33A cells were allowed to attach in each well on a 6-well

plate at low counts of approximately 400–500 cells/well and were

subsequently used for colony formation assay. Initially, the stated

number of C33A cells was exposed to a previously stated

concentration of CAR and were left undisturbed under

optimum tissue culture conditions for 2 weeks. The colonies

were treated and stained using crystal violet stain (0.1%).

Aggregates of 40 or more cells were included in the counting

as an individual colony.

2.3.5 ROS assay
The intracellular levels of ROS were determined in C33A

cervical cancer cells after treatment with various doses of CAR by

H2DCFDA staining protocol, as described briefly (Ahmad and

Ansari, 2021). Briefly, following drug treatment for 12 h, cells

were subsequently re-exposed to H2DCFDA (25 µM) for 30 min

in darkness at 37°C. The fluorescent micrographs were captured

under the green fluorescence channel of the FLoid Imaging

Station, Thermo-Fischer Scientific, United States.

In addition, ROS generation post-CAR exposure was also

quantified through flow cytometric evaluation, as stated

previously (Ahmad and Ansari, 2021). 5 × 105 C33A cells

were allowed to adhere in each well of a 6-well plate and after

that, exposed to state concentrations of CAR as stated above. The

cells were then pelleted, resuspended in 25 µM H2DCFDA and

incubated briefly for 30 min in the dark at RT. Post-incubation,

the cells were re-pelleted and re-suspended in PBS (1X). The

suspension was eventually analyzed using the FITC channel of

the FACSCalibur flow cytometer (BD Biosciences, United States

of America).

2.3.6 GSH analysis
Reduced GSH or glutathione levels were quantified using a

commercially available GSH kit (BioVision, Mountain View, CA,

United States of America) following the supplier’s instructions.

Briefly, CAR-treated and untreated C33A cells were exposed to

ice-cold GSH buffer (100 µl) for homogenization. The resulting

homogenate was placed in a separate test tube containing chilled

HClO₄ (10 ml) and vortexed for nearly 1 min. Subsequently, the

homogenate was pelleted (13,000 × g for 2 min). The supernatant

was collected and mixed with KOH in a ratio of 2:1, and after

5 min, the suspension was re-pelleted at the same force (13,000 ×

g), followed by the collection of supernatant for the remaining

assay protocol. During the concluding steps, 10 ml of

supernatant from different groups was diluted by

reconstitution in 80 ml of assay buffer. Finally, the absorbance

of fluorescence intensity was read at an excitation/emission ratio
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of 340/450 nm using a fluorimeter (Thermo-Fischer Scientific,

United States of America).

2.3.7 DAPI/PI staining
C33A cells treated with different CAR doses (25, 50, 75, and

90 μM) were collected and fixed in ice-cold methanol for 15 min

at −20°C. The cells were stained with DAPI and PI for 30 min at

37°C and analyzed for blue and red merged fluorescence using

FLoid Imaging Station, Thermo-Fischer Scientific,

United States.

2.3.8 Qualitative staining for apoptosis
assessment

CAR-treated and untreated C33A cells at the above-stated

concentrations for 24 h were carefully washed using tissue

culture grade PBS (1X) and then treated with solution

constituted by equal concentrations (100 μg/ml) of Acridine

orange (AO) and Ethidium bromide (EtBr) for 30 min. The

cells were carefully washed after incubation, visualized, and

their red/green merged fluorescence was recorded using FLoid

Imaging Station, Thermo-Fischer Scientific, United States.

2.3.9 Assessment of mitochondrial membrane
potential (ΔΨm)

C33A cells were exposed to the different concentrations of

CAR (25, 50, 75, and 90 μM) for 24 h and then stained with JC-1

dye (200 µM) which gets accumulated within mitochondria

following a potential-dependent trend. After that, the cells

were pelleted and washed with pre-warmed 1X MMP buffer,

and image acquisition was performed by FLoid Imaging Station,

Thermo-Fischer Scientific, United States of America.

Furthermore, alteration in ΔΨm was quantified using a FACS

Calibur flow cytometer (BD Biosciences, United States of

America) as per the instructions of the manufacturer JC-1

MMP assay kit. Increased green fluorescence with

concomitantly reduced levels of red fluorescence signified

dissipated ΔΨm.

2.3.9 Measurement of caspase activities
CAR treatment was given to C33A cells as per above-stated

concentration for 24 h in a 96-well plate. The activities of

caspase-3, -8 and -9 was assessed using colorimetric kit

available commercially and following the instructions supplied

by the manufacturer. The observations were interpreted as

percentage (%) change in the activities of stated key caspases

in comparison with CAR untreated control C33A cells.

2.3.10 Assessment of caspase inhibitors pre-
treatment

Cervical cancer cells were initially treated with inhibitors

(50 μM; 2 h) specific for caspase-3, -8 and -9, namely Z-DEVD-

FMK, Z-IETD-FMK and Z-LEHD-FMK, respectively. Then,

C33A cells were treated with the above -stated concentrations

of CAR for 24 h. Finally, the viability of cells was calculated using

MTT assay as stated in 2.3.1.

2.3.11 PARP estimation
Quantitative assessment of cleaved PARP levels was assessed

in C33A cells using a Human PARP ELISA kit as per the

manufacturer’s instruction. The absorbance of cleaved PARP

was analyzed using a spectrophotometer (Bio-Rad,

United States) at 450 nm.

2.3.12 Cytochrome-c release assay
The total concentration of cytochrome-c present within the

total protein content of CAR-treated and untreated C33A cells

was quantified using an ELISA kit (Thermo-Fischer Scientific,

United States) by following the instruction from the

manufacturer.

2.3.13 Apoptosis quantification
Apoptosis instigated in C33A cells upon exposure to CAR

was quantified through flow cytometry as per the manufacturers’

protocol. Approximately 5 × 105 C33A cells were exposed to the

above-stated concentrations of CAR for 24 h. Subsequently, the

cells (including the detached ones) were collected and pelleted.

Subsequently, the pellets were re-suspended in Annexin V–FITC

and PI solution of apoptosis detection kit according to the

manufacturer’s recommendations (BD Biosciences,

United States). The suspension was then promptly evaluated

through FACS Calibur (BD Biosciences, United States), and the

interpretation of results was made as a percentage (%) live cells,

early apoptotic and late apoptotic or necrotic cells based on

Annexin V−, PI−; Annexin V+, PI− and Annexin V+, PI +

staining respectively. Moreover, total apoptosis induced in

C33A cells was expressed as a percentage of early and late

apoptotic C33A cells.

2.3.14 Assessment of cell cycle progression
As previously described, the analysis of cell cycle progression

with CAR-treated C33A cells was quantified using a flow

cytometer (Ahmad et al., 2022). For the assessment,

C33A cells (5 × 105 cells/well) were treated with the above-

stated CAR concentrations for 24 h. After that, the cells from

each group were trypsinized and fixed using chilled methanol

(–20°C for 15 min). Subsequently, the cells were treated with

RNase A for 30 min at RT, followed by incubation with PI for 1 h.

Eventually, the samples were evaluated through FACSCalibur

(BD Biosciences, United States of America.

2.3.15 Real-time PCR (qPCR) analysis
After treatment of 1 × 106 C33A cells/group with the above-

stated concentrations of CAR, the total RNA content was isolated

using a commercially available RNA isolation kit. The extracted

RNA (2 µg) was used to prepare cDNA using the Verso cDNA

synthesis kit per the manufacturer’s instructions. qPCR analysis
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was performed on ABI-7500 real-time PCR (Applied

Biosystems) as per the stated instructions of

DyNAmoColorFlash SYBR Green qPCR Kit. The sequence of

all the primers involved in the investigation was optimized using

the NCBI pick tool, as listed in table 1. The normalizations were

made using GAPDH as a housekeeping gene and the results were

interpreted using the 2−ΔΔCT method.

2.3.16 In silico analysis
To determine the binding effect of the protein and ligands, GLI

(PDB ID: 2GLI) and SMO (PDB ID: 4JKV) were docked with

Carvacrol (PubChem ID:10,364), Itraconazole (PubChem ID:

55,283), and Cyclopamine (PubChem ID: 442,972). All these 3-

dimensional structures were retrieved from the PDB database

(https://www.rcsb.org/) and PubChem (https://pubchem.ncbi.

nlm.nih.gov/). AutoDock Vina four was used for molecular

docking. AutoDock Vina is a flexible molecular docking

program that has generated nine different docked poses for

protein-ligand complexes. The best-docked position was chosen

from nine conformations depending on the interacting residues,

such as hydrogen bonds with a high binding affinity (kcal/mol).

The protein-ligand interaction of docked complexes was presented

in two dimensions for interaction analysis of the protein-ligand

complex by using LigPlus (Ahmad et al., 2022). The proteins,

ligands, and their binding pockets for the protein’s three-

dimensional structure were generated using PyMol (Ahmad

et al., 2014; Hassan et al., 2014; Baig et al., 2016; Khan et al.,

2016; Khan et al., 2021; Khan et al., 2022a; Khan et al., 2022b).

2.3.17 Statistical inferences
The quantitative observations reported are the mean ± SEM

of individual experiments performed thrice in triplicate.

Statistical significance was calculated after applying one-way

ANOVA followed by Dunnett post hoc and two-tailed, paired

Student’s t-test as per the suitability. *, ** and *** represents p <
0.05; p < 0.01 and p < 0.001 respectively in comparison with

untreated control.

3 Results

3.1 CAR inhibits proliferation and
clonogenic potential of C33A cervical
cancer cells

We studied the antiproliferative effects of CAR in human

cervical cancer cells. C33A cells were cultured with increasing

concentrations of CAR (15, 25, 50, 75, and 90 μM) for 24 h. CAR

significantly inhibited the viability of C33A cells to 86.47 ±

2.62%, 64.56 ± 2.25%, 50.75 ± 3.28%, 36.39 ± 2.68%, and

22.56 ± 3.02%, respectively, as compared to the control cells,

and the population of viable C33A cells declined with increase in

CAR concentration (Figure 1A). This effect was more

pronounced after treatment of CAR for 48 h and the viability

was further reduced to 67.82 ± 3.72%, 54.15 ± 2.50%, 46.81 ±

3.92%, 28.50 ± 2.87%, and 12.56 ± 1.82% (Figure 1A) respectively

as compared to the untreated control cells. Subsequently, the

TABLE 1 List of primers used for qPCR.

S. No. Target gene Sequence of primers

Forward (5′-3′) Reverse (3′-5′)

1 GAPDH GAAATCCCATCACCATCTTCCAGG GAGCCCCAGCCTTCTCCATG

2 Bcl2 GATTGTGGCCTTCTTTGAG CAAACTGAGCAGAGTCTTC

3 Bcl-XL CAGAGCTTTGAACAGGTAG GCTCTCGGGTGCTGTATTG

4 Bax GCCCTTTTGCTTCAGGGTTT TCCAATGTCCAGCCCATGAT

5 c-myc AGCGACTCTGAGGAGGAACAAG GTGGCACCTCTTGAGGACCA

6 Cyclin D1 CCGTCCATGCGGAAGATC GAAGACCTCCTCCTCGCACT

7 PTCH1 GGGTGGCACAGTCAAGAACAG TACCCCTTGAAGTGCTCGTACA

8 SMO1 CTATTCACTCCCGCACCAAC CAGTCAGCCCACAGGTTCTC

9 GL11 GAAGTCATACTCACGCCTCGAA CAGCCAGGGAGCTTACATACAT

10 Fas CGGACCCAGAATACCAAGTG CCAAGTTAGATCTG

11 Fas-L GGGG GTGGCCTAT

ATGTT TCAGCTCTTCC-3 TTG CTT CTCCA

12 CDK4 CCTGGCCAGAATCTACAGCTA ACATCTCGAGGCCAGTCATC

13 Bad CCTCAGGCCTATGCAAAAAG AAACCCAAAACTTCCGATGG
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release of LDH in CAR-treated C33A cells was quantified. We

observed a significant release of LDH to approximately 2.08 folds

in C33A cells post-exposure to CAR. Thus, these results of MTT

and LDH assays suggested that CAR suppressed the growth and

proliferation of cervical cancer cells.

The morphological analysis of CAR-treated C33A cells also

showed several morphological alterations compared to the

untreated cells. It was observed that the treatment with increasing

doses of CAR induced substantial morphological aberrations such as

cell shrinkage, rounding of cells, and blebbing of the plasma

membrane and disintegration of cell organelles in cervical cancer

cells (Figures 1C,D). Thus, CAR exerts antiproliferative effects by

inhibiting the proliferation of cervical cancer cells.

Moreover, we performed colony formation assay to study the

effect of CAR on cervical cancer C33A cells. Our data showed

that C33A cells treated with CAR at indicated concentrations

(25–90 µM) for 24 h demonstrated small and few colonies

relative to the control cells. Thus, these findings implicated

that CAR treatment suppresses cervical cancer cell growth and

clonogenic potential (Figure 1E).

3.2 Assessment of ROS and GSH levels in
CAR-treated C33Acells

Several physiological and biochemical processes occurring

during homeostatic conditions are responsible for ROS

production. It is established that ROS play an imperative role

in the pathobiology of multiple diseases (Shamas-Din et al.,

2013). ROS-inducing property of CAR in C33A cells was

assessed qualitatively and quantitatively by fluorescence

microscopy and fluorometrically, respectively. It was observed

that the amount ROS levels increased by nearly 5-fold in

C33A cells, whereas in the untreated cells, the levels of ROS

were found to be 60.73% which augmented to 290.25% in treated

C33A cells (Figures 2A,B).

GSH is a well-reputed member of the antioxidant family

involved in imparting protection against ROS-mediated injury to

the cell by inhibiting lipid peroxidation and eliminating

hydrogen peroxide (H2O2). Thus, to find out the effects of

CAR on the cellular redox environment, GSH levels were

studied. It was noted that CAR treatment reduced the GSH

levels in cervical cancer cells (Figure 2C).

3.3 CAR promotes apoptosis in C33Acells

To delineate the practical implications of CAR treatment as a

plausible therapeutic against cervical cancer, cell-based apoptosis

was investigated. We primarily studied the morphological

alterations under the microscope occurred within the CAR-

treated C33A cells. As shown in Figure 3A, treatment with

CAR induced condensation, fragmentation and margination of

chromatin around the nucleus of C33A cells, which is indicative

FIGURE 1
CAR effectively suppressed the growth and colony formation of cervical cancer cells. (A) Bar graph represents the percent (%) viability of
C33A cells as compared to the vehicle-treated cells after treatment with CAR for 24 and 48 h (B) Bar graph represents the percent (%) LDH released
as analyzed by LDH assay in CAR-treated C33A cell. (C,D)Morphological alterations in C33A cells after treatment with CAR (25–90 µM) for 24 and 48
h as indicated by red, blue and green arrows representing swelling, shrinkage and disintegration of cell organelles. (E) CAR treatment reduced
the number of colonies in a dose-dependent manner after treatment with various doses of CAR. Photomicrographs were captured
at 20X magnification (scale bar = 100 µm). Each value in the bar graph represents the mean ± SEM of three independent experiments. Significant
difference among the treatment groups were analyzed by one-way ANOVA followed by Dunnett post-hoc test (*p < 0.05, **p < 0.01, ***p < 0.001
represent significant difference compared with control).
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of programmed cell death evaluated by DAPI/PI staining. An

enhanced number of C33A cells were observed exhibiting bright

blue and red fluorescence indicating condensed or fragmented

nuclei, considered as marked characteristics of apoptosis after the

treatment with CAR (Figure 3A).

Furthermore, to investigate the underlying reason for the

increase in cell death in cervical carcinoma cells, AO/EB

staining was performed in CAR-treated and untreated cervical

cancer cells. AO and EB dyes were used to distinguish between live

and dead cells based on membrane integrity. AO is reported to

infuse within the live DNA and subsequently gives green

fluorescence to the cells. Contrastingly, EB uptake occurs only

in non-viable cells, where it also infuses in the cellular DNA and

gives the nucleus of dead cells characteristic red fluorescence. The

fluorescent micrographs, untreated control cells displayed normal

morphology of nucleus exhibiting bright green and diffused red

fluorescence, whereas CAR-treated cells exhibited bright red

fluorescence and diffuse green fluorescence indicating

condensed and fragmented nuclei as shown in Figure 3A. Thus,

treatment with CAR induced cell death in cervical carcinoma cells.

Moreover, apoptosis was also reaffirmed by performing

Annexin V-FITC/PI cells. The total amount of apoptosis in

CAR-treated C33A cells was calculated by summation of cells

undergoing early and late apoptosis characterized by Annexin

V-FITC+, PI− and Annexin V-FITC+ and PI+ respectively. The

observations indicated that apoptosis escalated within CAR-

treated C33A cells, which was dependent on the concentration

and time of exposure to CAR compared with untreated control

(Figures 3B,C).

3.4 CAR exposure augmented caspase
activities in C33Acells

Apoptosis, or programmed cell death, is pivotal for

maintaining a homeostatic environment within a multicellular

organism. Mechanistically apoptotic cell death is primarily

classified as intrinsic- and extrinsic apoptosis. The intrinsic

apoptosis pathway is also known as the mitochondrial

pathway and is characterized by the dissipated potential of

mitochondrial membrane leading to apoptosome formation,

caspase activation, and activation of downstream effector

caspases (caspase-3) (Birben et al., 2012; Zorov et al., 2014).

The activities of caspase−3, −8, and −9 was considerably elevated

FIGURE 2
CAR mediates the generation of ROS in cervical cancer cells. (A) Fluorescence photomicrographs exhibiting ROS in CAR-treated C33A cells
stained with DCFH-DA dye (B) Flow cytometric representation of augmented levels of DCFH-DA dye denoting ROS generation (C) Percent (%) mean
fluorescence intensity (MFI) of DCFHDA-stained after treatment with various concentrations of CAR (25–90 µM). Fluorescent micrographs were
captured at ×20magnification [scale bar = 100 µm]. Each value in the bar graph represents the mean ± SEM of three independent experiments.
Significant difference among the treatment groups were analyzed by one-way ANOVA followed by Dunnett post hoc test (**p < 0.05 represent
significant difference compared with control).
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by 41.36 ± 3.30%, 67.46 ± 4.15%, 97.54 ± 4.20%, and 158.67 ±

2.47%; 13.54 ± 4.55%, 29.76 ± 3.93%, 55.05 ± 2.84%, and ±

96.30 ± 3.75% and 32.98 ± 4.12%, 54.06 ± 4.56%, 77.25 ± 4.80%,

and 122.51 ± 2.10%, respectively in comparison with CAR

untreated control C33A cells (Figure 4A). The data

demonstrated that treatment of CAR increased

caspase−8, −9 and −3 activities in a dose-proportional

manner. Cells were pre-exposed with specific caspase

inhibitors to affirm that the activation of caspase is mediated

by the treatment of CAR in C33A cells. The result revealed that

pretreatment with caspase inhibitors completely abrogated the

CAR-induced apoptosis in C33A cells (Figure 4B), which directly

indicated that CAR-instigated apoptosis in C33A cells strongly

correlates with the activation of key caspases.

Dissipated mitochondrial membrane potential (ΔΨm) is a

major event occurring in mitochondria that leads to apoptosis

(Shamas-Din et al., 2013). The ΔΨm disruption results in the

altered potential of the mitochondrial membrane resulting in

imbalanced oxidation-reduction potential within mitochondria.

To examine whether CAR could disrupt ΔΨm, membrane-

permeant JC-1 dye was used to detect alteration in ΔΨm in

CAR-treated C33A cells. JC-1 is highly sensitive to mitochondrial

potential, which gives red and green fluorescence for polarized and

non-polarized mitochondria. JC-1 exhibits a shift from green to red

fluorescence corresponding to approximately 529–590 nm. As a

result, the dissipation of ΔΨm is characterized by reduced red: green

ratio of JC-1mediated fluorescence intensity due to the generation of

J-aggregates. The merged fluorescent photomicrographs

demonstrated that treatment with CAR (25, 50, 75, and 90 µM)

for 24 h resulted in mitochondrial depolarization suggested by the

decrease in the red to green intensity ratio in C33A cervical

carcinoma cells. With the increase in CAR concentration, ΔΨm
decreased in cervical cancer C33A cells (Figure 4E). Furthermore,

ΔΨm dissipation was also quantitatively measured in CAR-treated

cells by flow cytometry (Figure 4F). In C33A cells, 12.73% and

76.52% cell population was found positive for dissipated ΔΨm in

CAR untreated control and treated cells respectively, showing a

5.01 fold increase in the depolarized cell population. The results

showed that CAR treatment dissipated ΔΨm in C33A cells

proportionally with its concentration (Figures 4E,F).

Moreover, treatment of CAR significantly enhanced the level

of PARP by 3.94 folds, a well-knownmarker of apoptosis in a dose-

related manner, along with an enhanced level of cytochrome c by

four folds in C33A cells, validating the involvement of

mitochondria in CAR-induced apoptosis (Figures 4C,D).

3.4 Crosstalk between cell survival/death
genes in CAR treated C33Acells

The pro- (Bad, Bax) and anti-apoptotic genes (Bcl-XL, Bcl-2,

Mcl-1) are members of the Bcl-2 protein family that tightly regulates

the mitochondrial viability, caspase activation and the release of

cytochrome c (Wang et al., 2019). Therefore, we performed real-

FIGURE 3
Detection of CAR-mediated apoptosis by fluorescence microscopy in C33A cells. (A) C33A cells were treated with various concentrations of
CAR for 24 h. Cells were stained with DAPI, PI, AO and EtBr as indicated on the left side of the panels. Fluorescent micrographs were captured
at ×20magnification [scale bar = 100 µm] (B)Cells were cultured with various doses of CAR for 24 h and analyzed by flow cytometry using Annexin V
and PI dyes. (C)Graphical representation of total apoptosis induced in C33A cervical cancer cells during Annexin V-FITC/PI assay. Each value in
the bar graph represents the mean ± SEM of three independent experiments. Significant difference among the treatment groups were analyzed by
two tailed Paired Student’s t-test and one-way ANOVA followed by Dunnett post hoc test (*p < 0.05, **p < 0.01, ***p < 0.001 represent significant
difference compared with control).
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time PCR to evaluate themRNA expression of Bcl-2 family proteins.

As demonstrated in Figures 5A,B, an increased expression of pro-

apoptotic genes with a concomitant decline in anti-apoptotic gene

expression after CAR exposure in C33A cells. In treated C33A cells,

Bcl-2 and Bcl-XL expression level was decreased (by 0.29 and

0.26 folds), while Bax and Bad expression were elevated (by

4.50 and 5.14 folds) (Figures 5C,D). The exposure of C33A cells

with CAR considerably elevated pro-apoptotic gene expression and

significantly reduced anti-apoptotic gene expression. These findings

revealed that members of the Bcl-2 family played a central role

during CAR-mediated apoptotic cell death in C33A cells.

The extrinsic pathway is initiated through transmembrane death

receptors through the involvement of FasL and TRAIL. These activate

the death receptorwith subsequent downstreamactivation of FADDR

and caspase-8, resulting in the onset of apoptosis. After treatment of

C33A cells with increased mRNA levels of FasL, TRAIL and FADDR

by 5.26, 4.26 and 5.46 folds expression in CAR-treated C33A cervical

cancer cells (Figures 5E–G).

3.6 Quantification of G0/G1 phase
population in CAR-treated C33Acells

Cell cycle arrest is a plausibly effective therapeutic target for the

clinicalmanagement of various cancers (Chen et al., 2002). Exposure

of C33A cells to CAR increased the number of C33A cells by 59.11 ±

4.10%, 62.94 ± 5.19%, 66.49 ± 3.27% and 72.55 ± 4.55% in the G0/

G1 phase of the cell cycle, respectively comparatively with untreated

control C33A cells (55.94 ± 3.79%) (Figures 6A,B). The qRT-PCR

analysis also reaffirmed the above results by indicating that CAR

exposure decreased cyclin D1, c-myc and cyclin-dependent kinase 4

(CDK4) expression in C33A cells. Furthermore, our data also

exhibited that CAR treatment dose-proportionally enhanced the

mRNA levels of p21 in C33A cells as compared to untreated groups

(Figures 7A–D).

3.7 CAR impeded HH/GLI signaling and
mediated loss of C33Acell viability

To investigate the involvement of CAR-mediated inhibition

of the HH signaling pathway in the underlying molecular

mechanism of CAR on C33A cervical cancer cells, we studied

the mRNA expression of key components of the HH signaling

pathway by qRT-PCR analysis. As the results shown in Fig., CAR

treatment (25–90 μM) for 24 h reduced GLI1 and SMO mRNA

levels in C33A cells dose-dependently. The reduction in mRNA

levels of GLI1 and SMO was found to be 0.84 ± 0.04, 0.65 ± 0.19,

and 0.24 ± 0.05 fold; 0.79 ± 0.03, 0.57 ± 0.13, and 0.34 ± 0.03 fold

for 25, 50, 75, and 90 μM of CAR treatment respectively in

FIGURE 4
CAR induces apoptosis in C33A cells through caspase activation. (A)CARmediates activation of caspase-8, -9 and -3 (B) Percent (%) cell viability
of C33AVcells pre-treated with a Z-DEVD-FMK (caspase-3 inhibitor), caspase-8 inhibitor (Z-IETD-FMK) and Z-LEHD-FMK (caspase-9 inhibitor) (C)
CAR mediates PARP cleavage (D) release of cytochrome c in C33A cells (E) Fluorescent photomicrographs exhibiting dissipated MMP in JC-1-
stained C33A cells after treatment with CAR (25–90 µM) (F) Flow cytometric analysis of the ratio of red dimer to greenmonomer fluorescence.
Fluorescent micrographs were captured at ×20 magnification [scale bar = 100 µm]. Each value in the bar graph represents the mean ± SEM of three
independent experiments. Significant difference among the treatment groups were analyzed by two tailed Paired Student’s t-test and one-way
ANOVA followed by Dunnett post hoc test (*p < 0.05, **p < 0.01, ***p < 0.001 represent significant difference compared with control).
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comparison to the control cells (Figures 8A,B). Moreover, CAR

treatment also reduced the mRNA expression of PTCH1 by

0.82 ± 0.05, 0.54 ± 0.12, and 0.27 ± 0.06 fold in C33A cervical

cancer cells (Figure 8C). Thus, the results suggested that CAR

inhibited hyper activated HH signaling in C33A cervical cancer

cells.

FIGURE 5
Effect of CAR on the mRNA expression of intrinsic and extrinsic apoptotic signaling molecules in C33A cells. Fold change in the mRNA
expression of antiapoptotic proteins and proapoptotic proteins such as (A) Bcl-2, (B) Bcl-XL (C) Bax (D) Bad (E) FADDR (F) Fas-L and (G) TRAIL genes
were analyzed by real-time PCR using SYBR Green dye. Target gene expression is normalized to GAPDH mRNA expression and the results are
expressed as fold change from control. Data reported are mean ± SEM of three separate experiments each of which were performed in
triplicates. Significant difference among the treatment groups were analyzed by two tailed Paired Student’s t-test and one-way ANOVA followed by
Dunnett post hoc test (*p < 0.05, **p < 0.01, ***p < 0.001 represent significant difference compared with control).

FIGURE 6
CAR-induced cell cycle arrest in cervical cancer cells (A) Cell cycle distribution of propidium iodide-stained C33A cells treated with CAR
(25–90 μM) for 24 h observed by flow cytometric analysis. Data shown are representative of three independent experiments. (B) Graphical
representation of percent cell cycle distribution in C33A cervical carcinoma cells as determined by flow cytometric analysis. Data reported are
mean ± S.E.M of three individual experiments performed in triplicate. Significant difference among the treatment groups were analyzed by one-
way ANOVA followed by Dunnett post-hoc test (**p < 0.05 represent significant difference compared with control).
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FIGURE 7
Effect of CAR on the mRNA expression of cell cycle regulatory genes in C33A cells. Fold change in the mRNA expression of antiapoptotic
proteins and pro-apoptotic proteins such as (A) cyclinD1 (B) CDK4 (C) c-myc and (D) p21genes were analyzed by real-time PCR using SYBR Green
dye. Target gene expression is normalized to GAPDHmRNA expression and the results are expressed as fold change from control. Data reported are
mean ± SEM of three separate experiments each of which were performed in triplicates. Significant difference among the treatment groups
were analyzed by two tailed Paired Student’s t-test and one-way ANOVA followed by Dunnett post hoc test (*p < 0.05, **p < 0.01, ***p < 0.001
represent significant difference compared with control).

FIGURE 8
Effect of CAR on mRNA expression of key components of HH signaling pathway in cervical carcinoma cells. The graphs show fold change in
mRNA expression of GLI1, SMO1 and PTCH1 relative to control in C33A cells after treatment with CAR (25–90 µM) as measured by qPCR using SYBR
Green dye. Target gene expression is normalized to GAPDH mRNA expression and the results are expressed as fold change from control. Data
reported are mean ± SEM of three separate experiments each of which were performed in triplicates. Significant difference among the
treatment groups were analyzed by two tailed Paired Student’s t-test and one-way ANOVA followed by Dunnett post hoc test (*p < 0.05, **p < 0.01,
***p < 0.001 represent significant difference compared with control).
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3.4 CAR showed high binding affinity
toward GLI and SMO protein

Cyclopamine is a steroidal alkaloid with intrinsic teratogenic

and anticancer attributes, which results from its ability to impede

HH signaling. Cyclopamine inhibits HH pathway activation by

binding directly to SMO (Deng et al., 2020). Furthermore,

itraconazole is an antifungal drug primarily used as an

antimycotic. Recent reports have demonstrated the efficacy of

Cyclopamine in impeding HH signaling by inhibiting

smoothened receptors (SMO), glioma-associated oncogene

homologs (GLI), and subsequent downstream effectors. The

3D structures of ligands of interest, such as carvacrol (CAR),

Cyclopamine and itraconazole, are shown in Figures 9A–C. The

crystal structures of proteins such as GLI and SMO are depicted

in Figures 9D,E. Initially, different types of interaction studies

were performed between CAR, Cyclopamine and itraconazole

with GLI and SMO. In this study, we have taken Cyclopamine

and itraconazole as a reference to compare the interaction of

CAR with GLI and SMO. It was observed that CAR showed high

binding affinity towards SMO with a binding energy value of

-6.9 kcal/mol.

In contrast, Cyclopamine exhibited a binding energy value of

-9.3 kcal/mol (Figures 10A,B and Figures 11A,B). Similarly, CAR

also showed high binding affinity towards GLI protein with a

binding energy of −6.4 kcal/mol. In contrast, itraconazole

showed binding energy of −6.4 kcal/mol (Figures 12A,B and

Figures 13A,B). However, it is critical to note that the CAR

exhibited higher binding energies with SMO and GLI protein, as

compared to their standard inhibitors Cyclopamine and

itraconazole. Moreover, the amino acid residues of SMO and

GLI proteins interacting with Cyclopamine and itraconazole are

similar to CAR (Table 2). Furthermore, in silico findings

concluded that CAR interacted with the GLI-DNA complex to

deregulate the HH signaling pathway. However, the exact

mechanism has yet to be discovered. Therefore, we tried to

corroborate our qPCR results with in silico results to establish

that CAR downregulated HH signaling pathway and exhibited

strong binding affinity towards HH components (SMO andGLI).

Furthermore, these results support real-time PCR results and

provide a strong rationale for why CAR strongly inhibited the

HH signaling in cervical carcinoma cells. The plausible

mechanism of action of CAR against cervical cancer is

summarized in Figure 14.

4 Discussion

Cervical cancer is the most common gynecological

malignancy, which is a reason behind cancer-associated

fatalities among women worldwide. Even though numerous

screening programs and anticancer therapeutic strategies have

improved the prognosis of cervical cancer patients, they still

suffer from metastasis and recurrence with a low survival rate.

Thus, there is an urge to develop novel drugs or therapeutic

interventions to improve patient prognosis.

Earlier reports have outlined the efficacy of CAR in impeding

the growth, proliferation and instigation of apoptosis in several

cancer cells. In view of these inferences, the investigators of this

study focused on elucidating the efficacy of CAR in impeding

growth and instigating apoptosis in HPV-negative C33A cells.

Rapid proliferation and apoptosis resistance are essential

FIGURE 9
3D chemical structures of (A) Carvacrol (CAR) (B) Cyclopamine and (C) Itraconazole and crystal structures of (D) GLI and (E) SMO.
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biological attributes of malignant tumors, and most cancer

therapies aim to mitigate proliferation and provoke apoptosis

on transformed cells. The findings from our practical

investigation suggested that CAR was competent in

suppressing the proliferation rate of cervical cancer cells. It

was observed that CAR exposure significantly reduced the

FIGURE 10
(A) 3D Interaction complex of cyclopamine with SMO protein; where blue shows the hydrophobic interactions and green shows the ligand
molecule (B) 2D Interaction complex of cyclopamine with SMO protein; where red shows the hydrophobic interactions and purple shows the ligand
molecule.

FIGURE 11
(A) 3D Interaction complex of carvacrol (CAR) with SMO protein; where blue shows the hydrophobic interactions and green shows the ligand
molecule (B) 2D Interaction complex of carvacrol (CAR) with SMO protein; where red shows the hydrophobic interactions and purple shows the
ligand molecule.
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viability of C33A cells as witnessed by MTT and LDH assays,

which were well supported by clonogenic assay. Treatment with

CAR induces various morphological aberrations within the

cervical cancer cells, such as cell shrinkage, blebbing in the

cell membrane and detachment of cells from the surface,

which collectively indicates apoptosis induction. To our

FIGURE 12
(A) 3D Interaction complex of itraconazole with GLI-DNA protein; where blue shows the hydrophobic interactions and green shows the ligand
molecule (B) 2D Interaction complex of itraconazole with GLI-DNA; where red shows the hydrophobic interactions and purple shows the ligand
molecule.

FIGURE 13
(A) 3D Interaction complex of carvacrol with GLI-DNA protein; where blue shows the hydrophobic interactions and green shows the ligand
molecule (B) 2D Interaction complex of carvacrol with GLI-DNA; where red shows the hydrophobic interactions and purple shows the ligand
molecule.
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understanding, no study has demonstrated the inhibition of the

HH signaling pathway mediating apoptosis induction and cell

cycle arrest in cervical cancer cells.

Subsequently, the mechanistic insight of CAR-mediated

growth inhibition of cancerous cells was further investigated.

From a biochemical perspective, apoptosis is a complex

physiological process which is characterized by depolarization

as a result of excess ROS generation (Riedl and Salvesen, 2007).

Previously, we have reported that CAR could be a plausible

therapeutic intervention against HPV-positive cervical cancer

cells by targeting ROS-mediated apoptosis and cell cycle arrest

(Khosravi-Far and Esposti, 2004). To decipher the functioning of

CAR at the molecular level behind its impeding effect on

C33A cells, fluorescent microscopy, FACS and qRT-PCR

based investigations to ascertain whether the treatment of

CAR altered the levels of mitochondrial ROS levels. The

results of DAPI/PI and AO/EtBr double staining

demonstrated peculiar attributes of apoptosis, including

condensation and fragmentation of the nuclei. Further, the

increased number of Annexin V-stained cells and cleaved

PARP levels in cervical cancer cells indicate that CAR acts as

an apoptosis-inducing agent.

Intrinsic apoptosis is instigated by the depolarization of

mitochondria, which releases apoptogenic factors such as

cytochrome c into the cytosol, eventually mediating the

activation of caspase-3 (Jimeno et al., 2008). We found that

CAR treatment instigates mitochondria-centered intrinsic

apoptosis pathway by activating caspase-3 and -9, dissipation

of Δψm with concomitant release of cytochrome c in cervical

cancer cells. Additionally, CAR treatment upregulated the

TABLE 2 Binding energy of carvacrol, cyclopamine and itraconazole with Gli1 and Smo1.

Interacting molecules Binding energy (Kcal/mole) Interacting residues

SMO-Cyclopamine −9.3 Leu376, Val373, Leu410, Phe369, Ala406, Leu405, Gln477, Gln477, Phe471, Phe467, Phe474, Ala377 Pro306

SMO-Carvacrol −6.9 Gln477, Trp480, Leu221, Glu481, Phe484, Met301, Leu303, Tyr394, Pro513, Lys395

GLI-Itraconazole −9.5 Adenine14,15,16, guanine10,11, thymine9, cytosine13, Arg163

GLI-Carvacrol −6.4 Cytosine12,13, adenine10 are the nucleotide, and Tyr181, Asn186, Thr189, His190, Asn213, Asp216

FIGURE 14
Schematic representation of the mechanism of action of CAR against cervical cancer. CAR downregulates the gene expression of key
components of HH pathway, which might be associated with the cell cycle arrest and apoptosis induction in cervical carcinoma cells.
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mRNA expression of pro-apoptotic proteins and downregulated

the expression of anti-apoptotic proteins in cervical cancer cells.

The extrinsic apoptosis is activated through transmembrane

death receptors including the targets for FasL and TRAIL.

DR4 and DR5 activation primarily culminates in DISC

(death-inducing signaling complex) formation by interacting

with FADD via the death domain. Activation of FADD

subsequently results in the recruitment of caspase-8 facilitated

by interaction with death effector domains (DEDs), resulting in

the activation of caspase-8 (Traverso et al., 2013). In this report,

CAR mediates the activation of caspase-8 and increases the

mRNA expression level of extrinsic signaling molecules such

as FasL, FADDR and TRAIL in C33A cervical cancer cells.

Glutathione (GSH) is pivotal for regulating several processes,

such as cell differentiation, cell proliferation, and apoptosis

modulation. Intriguingly, alterations within the cellular levels

of GSH often lead to the onset and progression of various

ailments, including cancer. Elevated levels of GSH are

frequently observed in tumors, which subsequently aids in

developing chemotherapeutic resistance in neoplastic cells

(Circu and Aw, 2012). In the present report, we found a

significant depletion of endogenous GSH in C33A cells after

the treatment with CAR. Moreover, previous reports have

established that GSH depletion is an imperative marker for

apoptosis induction in response to various apoptotic stimuli

(Thayyullathil et al., 2011). Thus, our data demonstrated that

CAR mediates apoptosis in cervical cancer cells, which supports

the principle that GSH depletion may favor apoptotic cell death.

Multiple studies have established that targeting drugs/agents

responsible for exerting cell cycle arrest could be a plausible

therapeutic for treating and managing different cancers,

including cervical cancer (Vishnoi et al., 2016). Abrogation of

the cell cycle at the G1 phase prevents DNA repair and inhibits

entry into S phase. Thus, the G1 checkpoint appeared as a

propitious therapeutic target for cancer treatment. The results

from this study exhibited that CAR induced a powerful growth-

suppressing effect on cervical cancer C33A cells by restricting their

progression to G0/G1 phase. Moreover, it is also known that both

cyclins and CDKs are pre-requisite for regulating the progression

of the cell cycle and their deactivation results in cell cycle arrest.

We found inhibitory effects of CAR on cyclin D1 and CDK4 in

cervical cancer cells suggesting its interference with cell cycle

regulatory proteins. CDK inhibitors, namely p21/WAF1 and

p27/KIP1 families of proteins, regulate the CDK activity. Our

findings indicate that CAR enhanced the p21 and p27 expression

levels in HPV-negative cervical cancer C33A cells. Taken together,

the present observations substantiated that CAR was competent in

impeding the progression of the cell cycle at G0/G1 phase via

altering the expression of genes involved in cell cycle regulation in

cervical cancer cells. These results further suggested that CAR

treatment mediates the inhibition of C33A cells by obstructing the

replication of DNA followed by its repair and thereby instigating

cell cycle arrest and apoptosis.

The HH/GLI signaling represents an evolutionarily

conserved signaling cascade involved in regulating normal

development and determination of cell fate. It has been

observed that HH signaling contributes to increased

chemoresistance, stemness and metastasis. Various

components of HH signaling are present in the advanced

stages of cervical cancer, indicating that constitutive HH

signaling is associated with the development of cervical cancer

along with chemoresistance and recurrence (Li et al., 2019). We

further studied the CAR-mediated inhibition of HH signaling in

C33A cells. The mRNA expression of key proteins such as

PTCH1, SMO, and GLI1 was downregulated significantly,

indicating that CAR may prevent cervical cancer by

modulating hedgehog signaling powerfully.

These findings further intrigued us to investigate the

mechanism of CAR-mediated cytotoxic effects in comparison to

cyclopamine and itraconazole. The interactions between CAR,

cyclopamine and itraconazole with SMO and GLI proteins were

studied by in silico techniques. It was found that the binding energies

(BE) of cyclopamine and SMO protein was -9.3 kcal/mol, which is

nearby and comparable to BE of CAR and SMO (-6.9 kcal/mol).

Similarly, the BE of itraconazole and GLI protein was -9.5 kcal/mol,

whereas CAR and GLI were -6.3 kcal/mol and were also observed

near each other. Furthermore, our in silico studies have substantiated

that the amino acid residues involved in the interaction of CARwith

SMO and GLI were considerably similar as compared to the

reference drugs (cyclopamine and itraconazole). Thus, our in

silico findings corroborated RT-PCR results and concluded that

CAR could inhibit the HH signaling cascade in cervical cancer cells.

After an exhaustive literature review, the authors of the present

manuscript are confident that this is the report which demonstrated

the CAR-mediated apoptosis via inhibition of HH signaling cascade

in the C33A cell line. Nevertheless, a more exhaustive study using

appropriate in vivomodels is further warranted to establish the pre-

clinical efficacy of CAR against cervical cancer.

5 Conclusion

Collectively our findings conclude that CAR principally exerted

antiproliferative and apoptotic effects in C33A (HPV-) cervical

cancer C33A cells in vitro by inducing the production of ROS

inside mitochondria of C33A cells, which provoked multiple

cellular events leading to mitochondrion-centered intrinsic

apoptosis. Furthermore, CAR also modulates the key signaling

components of extrinsic or death receptor pathways. Thus, CAR

could suppress cell proliferation and induce apoptosis in cervical

carcinoma cells by inhibiting HH signaling pathway. The

investigators believe that this is a novel report elucidating the

best of our understanding. This is the first report demonstrating

the antiproliferative and apoptotic potential of CAR against human

cervical carcinoma C33A cells via targeting the HH signaling

pathway. Nevertheless, our present report is still restricted to the
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in vitro evidence; yet due to the significant anticancer potential of

CAR, we propose it as a suitable drug for cervical cancer therapy

after sufficient pre-clinical and clinical trials.
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Background: Dates palm (Phoenix dactylifera L.) fruits are among the most widely
used fruits in the Middle East and African nations. Numerous researchers
confirmed the presence of phytochemicals in P. dactylifera L. fruit and its by-
products with broad-ranging biological activities.

Objectives: In the present work, phytochemical and biological assessments of two
different cultivars of date fruit (ShishiM1 andMajdoolM2 grown in the Ha’il region
of Saudi Arabia) have been carried out.

Methods: Date fruits were extracted and analyzed by gas chromatography-mass
spectrometry (GS-MS),liquid chromatography-mass spectrometry (LC-MS) and
Fourier-transform infrared spectroscopy (FT-IR)techniques. The lyophilized
methanolic extracts were analyzed for their in-vitro antiproliferative
andcytotoxicity against colon cancer (HCT116) cell line. To identify the possible
constituents responsible for the bioactivity, in-silico molecular docking and
molecular dynamics (MD) simulation studies were carried out.

Results: Both cultivars exhibited in-vitro anticancer activity (IC50 = 591.3 μg/mL
and 449.9 μg/mL forM1 andM2, respectively) against colon cancer HCT-116 cells.
The computational analysis results indicated procyanidin B2 and luteolin-7-O-
rutinoside as the active constituents.

Conclusion: Based on these results, we conclude that these cultivars could be a
valuable source for developing health promoter phytochemicals, leading to the
development of the Ha’il region, Saudi Arabia.

KEYWORDS

date fruits, extraction, GC-MS, Ha’il region, molecular docking, molecular dynamics, P.
dactylifera L.

Introduction

Natural products (NPs) play an instrumental role in drug design and remain an inspiration
for discovering new drug candidates (Newman and Cragg, 2016). Being the largest source of new
pharmacophores, 60%–70% of drugs used today are based directly or indirectly on NPs
(Atanasov et al., 2021). Indeed, enormous diversity in their chemical structure, broad-
ranging bioactivity, low toxicity, and ability to bind with different proteins (targets) gives
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natural compounds an edge over synthetic ones (Ali et al., 2010). In the
quest for new drug candidates, research is being carried out on the
extraction, isolation, and identification of bioactive compounds found
in plants, animals and microbes (Altemimi et al., 2017). Among a large
pool of NPs, the dates palm (Phoenix dactylifera L.), a member of the
Asteraceae family, has garnered an immense interest (Al-Alawi et al.,
2017; Maqsood et al., 2020). Date fruits of the date palm tree (P.
dactylifera L.) is one of the most consumed fruits worldwide, especially
in theMiddle East and Asian countries (Complexity, 2022). Apart from
their high nutritional and commercial values (Mia et al., 2020), date
fruits and their by-products have also attracted researchers due to their
potential health benefits (Maqsood et al., 2020). Their antibacterial,
antifungal, antiviral, antidiabetic, anticancer, anti-inflammatory,
antioxidant, antiangiogenic and other protective effects along with
negligible side effects, are particularly interesting (Vayalil, 2002;
Maqsood et al., 2020). It has been demonstrated that date fruits are
rich in carbohydrates, protein, fibres, minerals, vitamins, phenolic acids,
flavonoids, and other phytochemicals responsible for bioactivities. The
chemical composition depends on various factors, including the type of
cultivar, geographical location, irrigation method, ripening stage,
processing time, extracting solvents, etc. (Borochov-Neori et al.,
2013) Based on this knowledge, various groups investigated the
chemical composition of date fruits and seeds native to different
regions (Vayalil, 2012; Al-Alawi et al., 2017; Mia et al., 2020;
Echegaray et al., 2021; Ibrahim et al., 2021). The group led by
Aviram (Borochov-Neori et al., 2013) has conducted studies on the
chemical and biological analysis of several varieties of date fruits
(Maqsood et al., 2020). They, along with others, confirmed that the
phytoconstituents and bioactivity of the date fruits are the function of
the parameters mentioned above. For example, a pilot study showed
that Medjool or Hallawi varieties of date fruits vary in phenolics,
catechins and quercetin derivative content and antioxidant effect
(Rock et al., 2009). The same group reported anti-atherogenic
properties of acetone extracts of Hallawi in addition to the eight
other variants (Borochov-Neori et al., 2013). As per the group,
phenolic compounds exerted anti-atherogenic properties via low-
density lipoprotein (LDL) oxidation and serum-mediated cholesterol
efflux. On the other hand, alcoholic extract of the Tunisian variety was
found to inhibit α-glucosidase and α-amylase enzymes with low IC50

values (El Abed et al., 2017). Zhang et al. (2013) performed an extensive
chemical and biochemical profiling of Ajwa date fruits. They identified
several new compounds such as bis (2-ethylhexyl) terephthalate and bis
(2-ethylheptyl) phthalate) in addition to glycoside, terpenoids,
triglyceride, phthalates, etc. They noted that the aqueous and
organic extract exerts dose-dependent antioxidant and anti-
inflammatory effects.

In Saudi Arabia, more than 400 varieties of date fruit are cultivated,
which vary in appearance, nutrition, and nutritional value (Zhang et al.,
2017). Several researchers reported that the varieties such as Barni,
Khalas, and Ajwa show unique biological activities (Eid et al., 2013;
Assirey, 2015; Hamad et al., 2015). Recently, Amir and co-workers
(Alghamdi et al., 2018) studied the nutritional value of several varieties
of date fruits found in Ha’il province; however, the biological activity of
the date fruits remains unclear. Prompted by this, we carried out
extraction, characterization, in-vitro antiproliferative and cytotoxicity
assay of two varieties of date fruits (ShishiM1 andMajdoolM2) grown
in the Ha’il region of Saudi Arabia). Then, to further identify the
possible potential constituent present, ligand-based virtual screening

was performed. This is followed by molecular dynamics simulation
studies to identify the stability of promising compounds with possible
receptor.

Materials and methods

General

All solvents used for isolation and purification were of ACS reagent
grade (Sigma-Aldrich Chemical Co., St. Louis, MO, United States).
Lyophilization was carried out on BenchTop Manifold Freeze Dryer
(MILLROCK, United States) for 24 h at a condenser temperature
of −45°C equipped with Edward pump. Attenuated-total-reflectance
IR spectra were recorded on pure samples on diamond using a
Shimadzu IRSpirit-T spectrometer.

Sample collection, extraction, and sample
preparation

Two different varieties of date fruits (Tamr stage, Supplementary
Table S1) grown in Ha’il province were collected from the local
market. Authors (AKDA and KMA) and local farmers authenticated
the samples, and a voucher specimen was deposited. The samples
were stored and kept in a−20°C freezer. First, three pieces of date
fruits from each variant (Supplementary Table S1) were pitted to
remove seeds and cut into small pieces. Then, cold extraction was
performed by shaking and mixing fruit materials in methanol
(MeOH) overnight at room temperature, followed by filtration.
The residue was further extracted twice with MeOH for 1 h.
Finally, the extracts were combined and concentrated using
rotatory evaporation at room temperature. The resulting viscous
honey-like liquid was lyophilized to afford light yellow water-soluble
powder and stored at −20°C till further analysis.

Chromatographic studies

Date fruit extracts were analyzed by LC-MS system using a reverse
phase C18 column (Accucore, 150 × 4.6, 2.6 μm). The LC-MS system
comprised a Waters Alliance 2695 HPLC pump, an autosampler, a
vacuum degasser, and a column compartment attached to a XEVO-
TQD detector with electrospray ionization (ESI). The following
gradient of solvents were used: acetonitrile (mobile phase A) and
5 mM acetic acid (mobile phase B); ratio of A to B, 0–1 min, 5:95;
1–10 min, 5:95 to 30:70; 10–16 min, 30:70 to 60:40; 16–24 min, 60:40 to
80:20; 24–32 min, 80:20; 32–40 min, 5:95. In all cases, the columns were
reequilibrated between injections with the equivalent of 5 mL of the
mobile phase. During the full scan by MS/MS, mass acquisition was set
from 150 to 2000 Da. Thismethod utilized ESI-LC/MS/MS operating in
MRM mode. The ESI settings were the following capillary voltage,
3.5 kV; cone voltage, 40 V; the flow of desolvation gas (Argon gas),
650 L/h; flow of cone gas, 30 L/h. Gas Chromatography-Mass
Spectrometry (GC-MS) analysis was carried out using Agilent 8890/
5977B Series (Agilent 5977B EI/CI MSD) spectrometer. The segments
were recognized by examination of their delay times and mass spectra
with those of the NIST 11 mass spectral database.
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Cell culture and maintenance

The human colon cancer cell HCT116 was acquired from
American Type Culture Collection (ATCC). McCoy’s 5 A media
supplemented with 10% v/v Fetal Bovine Serum (FBS), and 1%
antibiotic-antimycotic solution (1 mL contains 10,000 U Penicillin,
10 mg Streptomycin and 25 µg Amphotericin B) was used to grow
andmaintain HCT116 cells. A humidified environment constituted the
standard conditions for cell culture at 37°C with 5% CO2.

Cell viability assay

To determine the cytotoxicity of M1 and M2 extracts on colon
cancer HCT-116 cell line, MTT assay was used. In a 96-well plate,
the cells (5 × 103 cells/well) were cultured for 24 h. The cells were
treated with M1 and M2 at varied concentrations (100, 500, 1,000,
and 5,000 μg/mL) for 24 h, respectively. Each well received 10 µL of
MTT solution (5 mg/mL) and was subjected to further 3 h
incubation at 37°C. In order to dissolve the purple formazan
crystals, 100 µL of dimethyl sulfoxide (DMSO) was added to each
well. A microplate reader measured absorbance at 570 nm (Bio-Rad,
United States). The cell viability was expressed as a percentage (%)
over the untreated control. For calculating the IC50 value, GraphPad
Prism Professional software was used.

Morphological analysis

The effects ofM1 andM2 extract treatment on the morphology
of HCT-116 cells were investigated using a phase contrast
microscope. Briefly, HCT-116 cells (5 × 103) were cultivated in a
96-well plate before M1 andM2 (100, 500, 1,000, and 5,000 μg/mL)
treatment. The alteration in morphology ofM1 andM2-treated cells
was then examined using a phase contrast microscope (Labomed,
United States).

Trypan blue exclusion assay

Trypan blue dye exclusion assay was performed further to
confirm the M1 and M2-mediated cytotoxicity in HCT-116 cells.
A hemocytometer and a microscope were used to count the cells (5 ×
104) after they had been co-cultured with and without M1 and M2
(100, 500, 1,000, and 5,000 μg/mL), respectively for 24 h. The
proportion of dead cells in each treatment set from studies done
in triplicates was used to express the results.

Lactate dehydrogenase release assay

In accordance with the manufacturer’s instructions, the lactate
dehydrogenase (LDH) release assay kit was used to measure the level
of cellular cytotoxicity. First, M1 and M2 were applied to the HCT-
116 cells using a 96-well plate at different doses (100, 500, 1,000, and
5,000 μg/mL) for 24 h. LDH release kit was then used to detect
released LDH in both theM1 andM2—treated HCT-116 cells in the
incubation medium.

Computational details

Computational calculations were carried out on a Dell
workstation (Galax GeForce GTX 1660 Ti) equipped with 8-core
processors, 64 GB Ram, and NVIDIA graphics card.

Receptor and ligands preparation

The co-crystal structure of Bcl-2 complex (PDB ID: 5JSN) was
selected for virtual screening and molecular dynamics studies. In the
crystallographic structure of this complex, there is a gap at position
33–86, which was fixed by homology modelling using the Swiss
modeller tool. Based on literature reports (Mia et al., 2020), a total
of ninety-four (n = 94) phytoconstituents of different chemical classes
(Supplementary Table S2) were selected. Chemical structures (.sdf
format) of the compounds were retrieved from the NCBI PubChem
database (Wang et al., 2009). The downloaded files were converted to
.pdb format using the Open Babel software. The ligand files were
prepared usingAutoDockTools 1.5.7 (the Scripps Research Institute, La
Jolla, CA, United States) software and finally written as .pdbqt file
format for docking studies (Ahamad et al., 2021a).

Active site prediction

The Bcl-2 protein (PDB ID: 5JSN) was given as input to identify
the active site, which gives significant insight into recognizing
surface structural pockets, shape and volume of every pocket,
internal cavities of protein and surface areas. Next, the active site
and the interactive residues were selected using PDBsum and
CASTp online tools (Laskowski et al., 2018; Tian et al., 2018).
The ligands were prepared using AutoDock Tools (ADT), and
saved in pdbqt format (Trott and Olson, 2010).

Protein preparation and grid generation

The 3D structure of Bcl-2 was prepared using the ADT protein
preparationwizard. The polar andmissing hydrogen atomswere added,
while watermolecules and hetero-atomswere deleted (Forli et al., 2016).
Energy minimization was performed with a default constraint of 0.3 Å
root mean square (RMS) and charges were assigned. After protein
preparation, clean structure was saved as pdbqt file. Grid box (84 Å ×
82 Å × 84 Å) was generated around the centroid of compounds with
assigned X, Y, and Z axis.

Virtual screening and binding affinity
calculation

To identify the potential compounds found in P. dactylifera
L., a dataset of ninety-four compounds was utilized for the virtual
screening. The pdbqt files were provided as input and screened
against Bcl-2 (Duffy and Avery, 2012). Top two compounds
(ranked based on the binding energy scores and the docking
poses) were selected for further studies (Trott and Olson, 2010;
Forli et al., 2016). The compounds with favourable binding poses
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were identified with the help of the lowest free energy (ΔG),
defined using the equation as follows,

ΔG � ΔGcomplex – ΔGenzyme + ΔGligand( )

Where (ΔGcomplex), (ΔGreceptor), and (ΔGligand) are the average values of
Gibbs free energy for the complex, receptor, and ligand, respectively.
The stability of the docked complex between the receptor-ligand
exhibits more negative scores, revealing the high potency of the
inhibitor. All the other docking parameters were kept default, and
the docked complexes final visualization was performed using PyMOL
tool (DeLano, 2002). The active pocket of Bcl-2 and docked pose of the
top-ranked compounds were compared to find interactive orientations.

Molecular dynamics (MD) simulation

MDsimulations were performed for the best-docked complexes with
maximum binding affinity scores using GROningen MAchine for
Chemical Simulations (GROMACS) version 5.18.3. Package (Abraham
et al., 2015). The topology of Bcl-2 was generated using
GROMOS9643a1 force field (Van Der Spoel et al., 2005). Due to the
lack of suitable force field parameters for a drug-like molecule in the
GROMACS software, the PRODRG server was used for the generation of
molecular topologies and coordinate files (Schüttelkopf and Van Aalten,
2004). All the systems were solvated using a simple point charge model
(SPC/E) in a cubic box. To neutralize the system 0.15M counter ions
(Na+ and Cl−) were added. The energyminimization of all the neutralized
systemswas performedusing the steepest descent and conjugate gradients
(50,000 steps for each). The constant number of particles, volume, and
temperature (NVT) ensemble and constant number of particles, pressure,
and temperature (NPT) ensemble were run for system equilibration
(Ahamad et al., 2021b). Steepest descent followed by conjugate gradient
algorithmswas utilized on enzyme-ligand complexes. TheNVTensemble
was employed at a constant temperature of 300 K and a constant pressure
of 1bar. The SHAKE algorithm was used to confine the H atoms at their
equilibrium distances and periodic boundary conditions. Moreover, the
Particle Mesh Ewald (PME) method defines long-range electrostatic
forces (Abraham et al., 2015). The cut-offs for van der Waals and
columbic interactions were set as 1.0 nm. LINC algorithm was used to
constrain the bonds and angles. Using the NPT ensemble, production
runs were performed for 500 ns, with time integration. The energy,
velocity, and trajectory were updated at the time interval of 10 ps The
analysis is performed by using Cα-atom deviations of the protein
calculated using root mean square deviations (RMSD). The relative
fluctuations of each amino acid were defined with root mean square
fluctuations (RMSF). To measure the compactness of a given molecule
radius of gyrations (Rg) is implemented, and the solvent accessible surface
area (SASA) was employed to know the electrostatic contributions of
molecular solvation (Ahamad et al., 2018; Ahamad et al., 2019).

Results

Extraction and characterization of Shishi
(M1) and Majdool (M2) fruits

Aqueous, organic or mixture solvents can extract a natural product,
depending upon the analyte of interest (Nematallah et al., 2018). In the

past, it has been demonstrated that when date fruits are extracted with
an organic solvent, it yields bioactive compounds able to inhibit colon,
liver and cervical cancerous cell lines in vitro (Mansour et al., 2011; Ravi,
2017). Especially, using a polar solvent such as methanol allows the
extraction of various components (MHM et al., 2015). It was found that
the alcoholic extract of the date fruits effectively inhibits α-glucosidase
and α-amylase enzymes with low IC50 values in both in-vitro and in-
vivo (El Abed et al., 2017). In 2016, Khan et al. (2016) demonstrated that
the methanolic extract of Ajwa Date (Saudi origin) inhibits breast
cancer (MCF-7) cell lines via cell cycle arrest and apoptosis. Motivated
by this, we selected methanol as the extracting solvent in this study too.
Cold extraction of finely cut M1 (36.11 gm) and M2 (46.22 gm)
followed by concentration and lyophilization yielded M1 and M2 as
a light-yellow water-soluble powder (9.1 and 15 gm of M1 and M2,
respectively). To identify the extract components, chromatographic
(LC-MS & GC-MS) and spectroscopic (FT-IR) techniques
(Supplementary Figures S1, S2) were employed.

Lyophilized products were analyzed by LC-MS (negative mode)
using gradient mobile phase as it allows easy detection of phenolic acids
& flavonoids as they contain acidic hydroxy group. It has been reported
that the methanolic extract contains phenolic acids, flavonoid
diglucosides, monoglucosides, acylated monoglucosides, free
aglycones, lipids and others when analyzed under similar conditions
(Farag et al., 2014). Table 1 collects the identities and molecular/
fragment ions of some major components present in M1 and M2 as
identified by comparing LC-MS (negative mode, Figure 1) results with
the literature. Both varieties exhibit similar chromatograms, with M1
having relatively more fraction than M2.

GC-MS analysis further indicated the presence of several
phytochemical belongings of different classes. For example,
quinic acid, oleic acid, trans-13-octadecenoic acid, stearic acid,
O-caffeoyl shikimic acid, luteolin, trihydroxy-octadecenoic acid,
stearic acid linoleic acid, 6-hydroxy 7 methoxy coumarin, 4-
hydroxy 6-methylcoumarin and amino acids were tentatively
identified (Supplementary Table S3). These components and
other metabolites have been well-identified in different varieties
of date fruits (Farag et al., 2016; Abdul-Hamid et al., 2019; Perveen
and Bokahri, 2020; Souda et al., 2020; Ibrahim et al., 2021).

The FTIR spectrum of the methanolic extracts (Supplementary
Figure S1) is also consistent with previous literature (Alam et al., 2022).
It has been reported that IR spectrum of dates extracts exhibits multiple
peaks responsible for functionalities present in lipid (2,960–2,850 cm−1),
amide (3,299–3,399 cm−1 and 1,591–1,529 cm−1 for amine and
1,619–1,691 for carbonyl) and carbohydrates (900–1,200 cm−1). As it
is clear, the IR spectra ofM1 andM2 are identical. The spectrum shows
a stretching vibrations band at 3,280 cm−1 attributed to -OH group,
bands at 2,888 and 2,930 cm−1 attributed to Csp3-H stretching vibration,
aromatic C=C stretching vibrations at 1,622 cm−1 and C–O
deformation vibrations of aliphatic alcohols at 1,009 cm−1 (Alam
et al., 2022).

Biological studies

Antiproliferative and cytotoxic effect
Using theMTT test, the antiproliferative and cytotoxic effects of the

M1 and M2 date extract were assessed against colon cancer
HCT116 cells for 24 h (Figures 2A, B). The M1 and M2 extracts
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exhibited strong and dose-dependent cytotoxic potential in
HCT116 cells. The % cell viability of M1-and M2-treated
HCT116 cells were found to be 88.80% ± 1.33%, 63.26% ± 3.47%,
45.24% ± 2.80%, and 15.28 % ± 1.53%; and 83.07% ± 2.37%, 59.35% ±
4.72%, 28.90%± 1.49% and 10.63%± 1.47% at a dose of 100, 500, 1,000,
and 5,000 μg/mL, respectively. IC50 values were determined to be
591.3 μg/mL and 449.9 μg/mL for M1 and M2, respectively,

revealing the inhibitory potential (Figures 2C, D). Our findings thus
demonstrated that both the M1 and M2 inhibit colon cancer cell
proliferation in a dose-dependent manner.

Morphological alterations
Under a phase contrast microscope, the images of control andM1

& M2-treated HCT-116 cells revealed discernible morphological

TABLE 1 LC-MS (negative mode) results of M1 and M2.

S. No M-H Mol. Form. Identification Ref.

1. 180.1 C6H12O β-D-Glucopyranose Najm et al. (2021)

2. 341.1 C15H18O9 Caffeic acid hexoside Farag et al. (2014)

3. 179.1 C16H15O8 O-Caffeoyl shikimic acid Otify et al. (2019)

4. 322.0 C12H19O10 Anhydro dihexose Otify et al. (2019)

5. 425.3 C17H29O12 Acyl sucrose Najm et al. (2021)

6. 463.1 C21H20O12 Isoquercetin Farag et al. (2014)

7. 476.0 C12H21O12 Isorhamnetin-3-O-glucoside Najm et al. (2021)

8. 476.0 C23H43NO7P Sphingolipid conjugate I Otify et al. (2019)

9. 311.3 C18H31O4 Dihydroxy linolenic acid Farag et al. (2014)

10. 277.4 C18H29O2 Linolenic acid Farag et al. (2014)

11. 255.6 C16H31O2 Palmitic acid Farag et al. (2014)

12. 279.4 C18H31O2 Linoleic acid Farag et al. (2014)

13. 283.2 C18H36O2 Stearic acid Eid et al. (2013)

14. 195.0 C10H10O4 ferulic acid Nematallah et al. (2018)

15. 326.3 C18H32O5 Trihydroxy octadecadienoic acid Nematallah et al. (2018)

16. 311.4 C18H32O4 Dihydroxy octadecadienoic acid Nematallah et al. (2018)

17. 594.9 C27H30O15 Luteolin-7-O-rutinoside Nematallah et al. (2018)

FIGURE 1
LC-MS (negative mode) traces of methanolic extracts of M1 (A) and M2 (B).
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alterations. The control cells showed increased cell growth and intact
cell shape. However, in a dose-dependent manner (100, 500, 1,000, and
5,000 μg/mL), significant morphological modifications were observed
in the M1 and M2-treated HCT-116 cells (Figures 3A, B). Moreover,
M1 and M2-treated HCT-116 cells showed increased detachment and
cytoplasmic shrinkage, which led to a rise in the number of floating cells.
The findings thus support the hypothesis that treatment with M1 and
M2 causes cytotoxicity in HCT-116 colon cancer cells.

M1 and M2 causes cell death in HCT-116 cells
Trypan blue dye exclusion assay was used to assess how M1

and M2-treated HCT-116 cells lost viability. Figures 4A, B
illustrates the considerable increase in cell mortality in HCT-
116 cells after exposure toM1 andM2 at various doses (100, 500,
1,000, and 5,000 μg/mL) for 24 h. This result supported the
cytotoxic action of M1 and M2 on colon cancer cells.

Release of cellular LDH in HCT-116 cells
LDH release assay displayed that treatment with both theM1

and M2 in HCT-116 cells mediated significant release of LDH,
which showed the degree of cellular membrane damage post-
treatment. Higher M1 and M2 concentrations were found to be
significantly more cytotoxic, as evidenced by increased

cytotoxicity in HCT-116 cells (Figures 5A, B). The percentage
cytotoxicity inM1-treated HCT-116 cells, after 24 h of treatment,
was found to be 112.08% ± 3.42%, 145.78% ± 3.88%, 174.07% ±
2.25%, and 190.03% ± 2.64% at 100, 500, 1,000, and 5,000 μg/mL
dose, respectively. Similarly, after 24 h of treatment with M2,
HCT-116 cells exhibited percent cytotoxicity of 120.53% ± 3.13%,
144.07% ± 3.00%, 168.46% ± 4.29%, 192.15% ± 1.98% at 100, 500,
1,000, and 5,000 μg/mL dose, respectively. Thus, our results
suggest that both the M1 and M2 were able to decrease the
viability and proliferation in colon cancer cells.

In Silico studies

Virtual screening

It has been demonstrated that the Phoenix dactylifera L. extract
exhibits anticancer activity by modulating Bcl-2-family proteins (Khan
et al., 2021). To identify the critical component(s) responsible for the
anticancer activity, we conducted exhaustive in silico studies. To this
end, ligand-based virtual screening was performed using ninety-four
compounds found in P. dactylifera against the receptor (PDB: 5JSN). It
has been reported that the small molecule may interact with the various

FIGURE 2
Effect of date extracts M1 and M2 on HCT-116 cells. (A, B) Percent (%) cell viability of HCT-116 cells treated with different doses of M1 and M2
(100–5,000 μg/mL) for 24 h. The results shown are the mean ± SEM of three independent experiments performed in triplicate (ns > 0.01, *p < 0.01, **p <
0.001, and ***p < 0.0001 represent significant differences compared with control). (C, D) Graph showing IC50 of M1 and M2 against HCT-116 colon
cancer cell at 24 h.
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receptors of Bcl-2 protein via multiple non-covalent interactions
(Khosravi et al., 2022; Taghizadeh et al., 2022). Among others,
Lys22, Arg26, Asp102, Ser105, Arg106, Arg109, Phe112, Val156,
Val159, Asp163, Glu160, and Glu209 which participates in H-bonds
and steric interactions (Khosravi et al., 2022). Based on the free binding
energies and docking poses, virtual screening of the ligands resulted in
procyanidin B2 and luteolin-7-O-rutinoside as the most potent
candidates (Table 2). As depicted in Figure 6A, procyanidin
B2 interacted with various amino acid residues via H-bonding
(Ala100, Arg107, Asn143, Gly145, and Arg146) and other non-
covalent interactions (such as hydrophobic and Van der Waal’s)
with a total binding energy of −9.3 kcal/mol. On the other hand,
luteolin-7-O-rutinoside formed H-bond with Asp111, Asn143 and

Arg146 amino acids and yielded a binding energy of −9.1 kcal/mol
(Figure 6B). Overall results revealed that the proposed two compounds
have an edge over the Bcl-2 complexes attributable to more potent
binding abilities.

Molecular dynamics (MD) simulations

To understand the complex stability and interaction profile of the
most promising hit compounds inside the active site of Bcl-2, MD
simulations of Bcl-2-native, procyanidin B2 and luteolin-7-O-rutinoside
complexes were performed on a 500 nanosecond (ns) scale. In addition,
structural parameters, including RMSD, RMSF, SASA, and Rg were

FIGURE 3
(A): Phase-contrast images of HCT-116 cells treatedwith either vehicle or different doses ofM1 (100–5,000 μg/mL) for 24 h. The photomicrographs
shown are the representatives of three independent experiments. (B): Phase-contrast images of HCT-116 cells treated with either vehicle or different
doses of M2 (100–5,000 μg/mL) for 24 h. The photomicrographs shown are the representatives of three independent experiments.
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FIGURE 4
Trypan blue dye exclusion assay. Percent (%) dead cells in HCT-116 cells treated with different doses of (A) M1 and (B) M2 (100–5,000 μg/mL) for
24 h. The results shown are the mean ± SEM of three independent experiments performed in triplicate (ns > 0.01, *p < 0.01, **p < 0.001, and ***p <
0.0001 represent significant difference compared with control).

FIGURE 5
LDH release assay. Percent cytotoxicity in HCT-116 cells treated with different doses of (A)M1 and (B)M2 (100–5,000 μg/mL) for 24 h. The results
shown are the mean ± SEM of three independent experiments performed in triplicate (ns > 0.01, *p < 0.01, **p < 0.001, and ***p < 0.0001 represent
significant differences compared to control).

TABLE 2 Ligands name, 3D structures, SMILE format and the virtual screening outputs.

S.
No.

Ligand 3D structure SMILE format Binding
score

(kcal/mol)

H-bond residues

1 Procyanidin B2 C1C(C(OC2=C1C(=CC3 =C2C4C(C(O3)(OC5= CC(=CC(=C45)O)O)
C6=CC(=C(C=C6)O)O)O)O)C7=CC(=C(C=C7)O)O)O

−9.3 Ala100, Arg107,
Asn143, Gly145, and
Arg146

2 Luteolin-7-
O-rutinoside

C1=CC(=C(C=C1C2=CC(=O)C3=C(C=C(C=C3O2)OC4C(C(C(C(O4)
COC5C(C(C(C(O5)CO)O)O)O)O)O)O)O)O)O

−9.1 Asp111, Asn143 and
Arg146
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evaluated as a function of time and discussed in the following sub-
sections.

RMS-deviation and RMS-fluctuations

The docked complexes were subjected to RMSD analysis to
assess the residual flexibility of the Bcl-2 receptor. It was noted that
the native protein exhibits higher RMSD fluctuation and reaches
equilibrium between 0.8 nm and 1.0 nm. However, in the presence
of procyanidin B2, it reached an equilibrium at 0.6 nm and showed
steady RMSD (average RMSD value 0.92 nm, Table 3), which
remained stable over the 500 ns MD simulation (Figure 7A).
Similarly, luteolin-7-O-rutinoside and Bcl-2 complexes showed
stable equilibrium at 0.6 nm–0.7 nm. Furthermore, they displayed
minimal fluctuation over the 500 ns MD simulation. The average
RMSD of Luteolin-7-O-rutinoside and Bcl-2 complexes was
0.71 nm. Overall, both procyanidin B2 and luteolin-7-O-
rutinoside complexes exhibit stable RMSD values and have a

stable binding with Bcl-2 under the given simulation conditions.
This also indicates that the studied compounds reached stable
and reliable dynamic equilibriums, which bolstered the docking
results.

Furthermore, RMSF analysis was implemented to identify the
flexible and rigid regions of the complexes and to measure the
average atomic flexibility of the Cα-atoms of native Bcl-2 and
docked complexes. In the case of native Bcl-2, amino acids residues
such as Pro46 ~0.53 nm, Gly47 ~ 0.71 nm, Ile48 ~ 0.64 nm, Arg63
~ 0.58 nm, Asp64 ~ 0.65 nm, Pro65 ~ 0.73 nm and Val66 ~
0.67 nm showed higher fluctuations (Figure 7B). However,
fluctuation at 104–112, 162–163 and 201–207 amino acids
residue also was found to be higher while other amino
acids remain stable. For example, in a complex with
procyanidin B2, RMS fluctuations were found in the region
Gly79 ~ 0.60 nm and Ala80 ~0.57 nm, which is acceptable as
these amino acids did not participate in the binding. Similarly,
the complex with luteolin-7-O-rutinoside showed RMS-
fluctuations at Gly54 ~0.57 nm, Ala61 ~0.55 nm and Arg63
~0.66 nm values. Overall, the RMSF displayed the highest
degree of flexibility, exhibiting stable active site residues
interaction compared to the native protein.

Hydrogen bond monitoring

To underpin the stability of the ligand-protein complex, the
number of H-bond was monitored by analyzing the MD trajectories

FIGURE 6
Surface view of the ligand-binding pocket (left), binding poses and interacting fragments (centre) and the H-bonds, hydrophobic interactions, van
der Waal’s interactions around 4.0 �Å of the binding cavity (right) of procyanidin B2 (A) and luteolin-7-O-rutinoside (B) with Bcl-2 (PDB ID: 5JSN).

TABLE 3 The average RMSD, Rg, and SASA of the native and ligand-protein
complexes.

System RMSD (nm) Rg (nm) SASA (nm)2

Native 0.92 1.56 111.73

Procyanidin B2 0.63 1.65 112.77

Luteolin-7-O-rutinoside 0.71 1.57 115.39
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(Figures 7C, D). As can be seen, both compounds procyanidin
B2 and luteolin-7-O-rutinoside formed 17 and 22 hydrogen bonds,
respectively, which increased/remained the same during the 500 ns
MD simulation.

Radius of gyration (Rg) and solvent
accessible surface area (SASA)

Rg helps determine protein folding and unfold upon
ligand binding, thus giving an idea about the stability of the
complex during the simulation. A higher Rg indicates a less
compact structure, while a lower Rg means more compactness
(Sharma et al., 2022). We found that the average Rg values for
the native Bcl-2 protein (1.56 nm) and luteolin-7-O-rutinoside
complex (1.57 nm) were almost similar, indicating that the
protein will likely maintain a relatively steady value and is stably
folded (Figure 8A; Table 2). However, in the case of the procyanidin
B2 complex, the average Rg value was 1.65 nm, indicating unfolded
structure.

SASA was also conducted to ascertain the interactions between
the protein-ligand complex and solvent during the 500 ns MD
simulation (Figure 8B; Table 2). It was noted that the average
SASA value for the complexes (112.77 and 115.39 nM2) of
procyanidin B2 and luteolin-7-O-rutinoside, respectively, was
better than the native Bcl-2 protein (111.73 nM2).

Discussion

It has been long understood that the phytochemicals found in
Phoenix dactylifera L. target and inhibit several important biochemical
pathways contributing to disease development (Farag et al., 2014;
Lamia andMukti, 2021). The ethnopharmacological significance of P.
dactylifera L., such as antioxidant, anti-inflammatory anticancer,
antimicrobial, etc., is now well established (El Abed et al., 2018).
The amount of phytoconstituents, and thus the bioactivity, depends
on several factors, including the part of the plant (fruits, seeds, etc.),
stage, geographical location, and others. For example, it has been
demonstrated that date fruit seeds extract shows anticancer activity
against pancreatic (Habib et al., 2014), colorectal (Rezaei et al., 2015),
liver (Al-Sheddi, 2019), lung (Al-Sheddi, 2019), and breast (Al-Sheddi,
2019) and other (Al-Zubaidy et al., 2016; Hilary et al., 2021; Habib
et al., 2022; Khan et al., 2022) cancer cell lines. On the other hand,
Siddiqui et al. (2019) reported that the pulp extract of theAjwa variety
exhibit antiproliferative activity against human liver cancer cells
(HepG2, IC50 = 20.03 and 16.78 mg/mL at 24 and 48 h periods,
respectively). Moreover, Khan et al. (2021) demonstrated the
apoptosis-inducing potential of Ajwa date pulp extract against
human triple-negative breast cancer cells (MDA-MB-231, IC50 =
17.45 and 16.67 mg/mL at 24 and 48 h, respectively). Khattak et al.
(2020) have reported the antiproliferative property of Emirati date
fruits extract on human triple-negative breast cancer cell line MDA-
MB-231. Besides, the antioxidant and apoptotic potentials of the

FIGURE 7
RMSD and RMSF analysis of the complexes of native protein Bcl-2, complexes of shortlisted ligands (A), combined RMS fluctuations (B). The number
of hydrogen bonds formed by procyanidin B2 (C) and luteolin-7-O-rutinoside (D).
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whole fruit (flesh and pit extracts) is also known (Shahbaz et al., 2022).
In addition to the above-mentioned factors, the polarity of extracting
solvents also plays an important role; therefore both aqueous and
organic solvent systems have been investigated in the past. In a study,
it was found that the aqueous extract of a number of date varieties
(Saudi Arabian origin) was less bioactive than the methanolic
counterparts (Zhang et al., 2017). In a remarkable study, Khan
et al. (2016) noted that the methanolic extract of Ajwa date fruits
exhibit strong anticancer effect on human breast adenocarcinoma
(MCF7) (Khan et al., 2016). Besides, other researchers also noted the
antitumor activity of methanolic extracts (Mansour et al., 2011;
Thouri et al., 2019). Therefore, in the present study, we selected
methanol as the solvent to extract date fruits of Shishi (M1) and
Majdool (M2) cultivars grown in Ha’il region of Saudi Arabia.

As mentioned, (vide-infra), the methanolic extract concentrates
were subjected to lyophilization and the resulting water-soluble
products were used for further studies without any further
purification. LC-MS (negative mode) and GC-MS analyses of the
extract revealed the presence of various phytochemicals in both
varieties. We noted that the chromatograms ofM1 have more peaks
than M2; therefore, the former has relatively more constituents.
Among the main constituents identified were flavonoids,
sphingolipids, and fatty acids classes of phytochemicals. Several
researchers already report the presence of these constituents in a
wide variety of date fruits (see references in the result section). At the
same time, we firmly believe the presence of other components
escaped the detection. MTT assay of the extracts against colon
cancer cells (HCT-116) revealed a dose-dependent inhibitory nature
of the compounds (IC50 = 591.3 μg/mL and 449.9 μg/mL forM1 and
M2 at 24, respectively).

It has been demonstrated that the P. dactylifera L. extract exhibits
anticancer activity by modulating Bcl-2-family proteins which is also
expressed in the HCT-116 cell line (El-Far et al., 2021). Considering
this, attempts have been made to identify the principal agent(s)
present in the extract using computational approaches, including
virtual screening and MD studies. Ligand-based virtual screening
identified procyanidin B2 and luteolin-7-O-rutinoside as the most

probable candidates since they could bind with Bcl-2 protein
efficiently through various amino acids. MD simulation study
further strengthens this observation. Considering the earlier
reported values and inhibition mechanism on other cell lines, we
believe that the anticancer potential of both Shishi and Majdool date
extracts against colon cancer cells is interesting and requires further
biochemical investigation.

Conclusion

In conclusion, the anticancer activity of methanolic extract
of two varieties of dates fruits (Shishi M1 and MajdoolM2) grown
in the Ha’il region of Saudi Arabia has been compared. The
results of GC-MS and Ft-IR studies indicated the presence of
various components in the M1 and M2 extracts, which are
responsible for dose-dependent cytotoxicity against colon
cancer cells (HCT116 cells) through morphological
modifications, including cellular membrane damage. The IC50

value was 591.3 μg/mL and 449.9 μg/mL for M1 and M2,
respectively. Furthermore, Trypan blue dye exclusion assay
further supported the cytotoxic action of M1 and M2 on colon
cancer cells. Extensive virtual screening combined with MD
simulations studies at 500 ns revealed that procyanidin B2 and
luteolin-7-O-rutinoside could be possible agents for the
bioactivities. Overall, our data strongly suggest that the
consumption of date fruits might prove helpful against colon
cancer. Moreover, we also believe that these varieties of date
fruits could be utilized as a source of bioactive phytochemicals,
leading to the development of Ha’il, Saudi Arabia.
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FIGURE 8
Rg (A) and SASA plot (B) during 500 ns MD simulations docked complexes of native Bcl-2, and complexes with procyanidin B2 and luteolin-7-
O-rutinoside.
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Introduction: PIM kinases are targets for therapeutic intervention since they are
associated with a number of malignancies by boosting cell survival and
proliferation. Over the past years, the rate of new PIM inhibitors discovery has
increased significantly, however, new generation of potent molecules with the
right pharmacologic profiles were in demand that can probably lead to the
development of Pim kinase inhibitors that are effective against human cancer.

Method: In the current study, amachine learning and structure based approacheswere
used to generate novel and effective chemical therapeutics for PIM-1 kinase. Four
different machine learning methods, namely, support vector machine, random forest,
k-nearest neighbour and XGBoost have been used for the development of models.
Total, 54 Descriptors have been selected using the Boruta method.

Results: SVM, Random Forest and XGBoost shows better performance as compared to
k-NN. An ensemble approach was implemented and, finally, four potential molecules
(CHEMBL303779,CHEMBL690270,MHC07198, andCHEMBL748285)were found tobe
effective for themodulationof PIM-1 activity.Molecular docking andmolecular dynamic
simulation corroborated the potentiality of the selected molecules. The molecular
dynamics (MD) simulation study indicated the stability between protein and ligands.

Discussion: Our findings suggest that the selected models are robust and can be
potentially useful for facilitating the discovery against PIM kinase.

KEYWORDS

PIM kinase, classification models, virtual screening, molecular docking, cancer drug
treatment

Introduction

Proto-oncogene PIM-1 kinase is a member of the serine/threonine protein kinase family
(Narlik-Grassow et al., 2014). PIM kinases are involved in cancer cell survival, proliferation,
and tumor growth and are overexpressed in a number of hematological malignancies, in
addition to solid cancers such as pancreatic, prostate, and colon cancers (Amson et al., 1989;
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Li et al., 2006; Nawijn et al., 2011). PIM-1, PIM-2, and PIM-3 are the
three highly homologous genes that make up the PIM family. This
kinase family is highly homologous with the kinase domains,
especially in the linker region and the ATP-binding sites (Warfel
and Kraft, 2015). These enzymes are constitutively expressed in
tumors and are becoming more widely acknowledged as crucial
survival signal mediators in malignancies, stress responses, and
neurological development. PIM-1 kinase is a genuine oncogene
that is the focus of drug development research initiatives since it
has been linked to the emergence of leukemias, lymphomas, and
prostate cancer (Li et al., 2011; Le et al., 2015; Huang et al., 2022).
PIM kinases regulate the network of signaling pathways that are
critical for tumorigenesis and development, making them attractive
drug targets (Drygin et al., 2012; Tursynbay et al., 2016).

The crystal structure of PIM-1 has been published by numerous
independent groups in both the presence and the absence of its
inhibitors (Wang et al., 2013; Nonga et al., 2021). Structural research
on PIM-1 has found a number of distinctive characteristics that set it
apart from other kinases with known structures. The catalytic
domain of PIM-1 kinase spans amino acid positions 38 to
290 and includes a conserved glycine loop motif at positions
45 to 50, phosphate-binding sites at positions 44 to 52 and 67,
and a proton acceptor site at position 167. The hunt for small-
molecule ATP-competitive inhibitors with the potential to develop
into novel targeted oncology treatments has been sparked by the
involvement of the PIM kinases in important cancer hallmarks. The
majority of PIM-1 inhibitors have failed to evolve into a new
anticancer medication despite having excellent biochemical
potency, largely because they were found to have subpar
pharmacological qualities (Dakin et al., 2012; Drygin et al., 2012;
Ogawa et al., 2012; Vivek et al., 2017; Zhao et al., 2017; Park et al.,
2021). Due to their therapeutic value in cancer, the discovery of
PIM-1 inhibitors has increasingly attracted much attention in past
few years. The rate of new PIM inhibitor discovery has increased
significantly, and there has been demand for a new generation of
potent molecules with the right pharmacologic profiles that can
probably lead to the development of PIM kinase inhibitors that are
effective against human cancer.

This work was undertaken to develop machine learning-based
classification models to identify a new class of PIM-1 inhibitors.
Under this approach, four different machine learning methods were
applied to develop the classification models. These models were
further used to screen chemical libraries to retrieve novel potent
PIM-1 inhibitors. In addition, we also carried out molecular docking
and molecular dynamics simulations to investigate the interaction
and stability within the catalytic site of PIM-1 kinase. This
multistage approach allows us to screen large chemical libraries
efficiently and effectively in a reasonable time. Moreover, it can also
help us identify novel chemical scaffolds for potent PIM-1
inhibitors.

Materials and methods

Data collection and model building

All chemical compounds with activity against PIM-1 were
collected from the literature and the ChEMBL database (Gaulton

et al., 2012). Inorganic and duplicate compounds were removed
from the list. Generally, compounds with IC50 ≤ 10 μMwill likely be
“active,” predicting a large number of active molecules. However,
such a high fraction of active compounds cannot be expected from
any experimental platform. Therefore, in order to make the most
efficient use of costly experimental validation, the optimal model
should identify compounds with affinity higher than 10 μM. The
higher the value, the higher the drug dose needed to achieve the
required potency and, thus, the higher the chance of “off-target”
activity. To address this issue, we chose to set the decision boundary
at IC50 ≤ 1 μM for active molecules. Molecular descriptors were
calculated using the PaDEL software (Yap, 2011). A two-tier
selection procedure was applied to select the best descriptors.
First, we randomly selected one descriptor from a pair
showing >0.85 correlation. Second, descriptors were reduced
using the Boruta method (Kursa et al., 2010). We used four
different machine learning methods, namely, Support Vector
Machine (SVM) (Mitchell, 1997), random forest (Breiman, 2001),
Extreme Gradient Boosting (XGBoost) (Chen and Guestrin, 2016),
and kappa nearest neighbor (kNN) (Voulgaris andMagoulas, 2008),
to build the classification models. All the classification experiments
and calculations were conducted using the R.3.0.2 environment
(http://www.R-project.org/) and Python (http://www.python.org/)
platform. The compounds used in training and test sets are given in
Supplementary Tables S1 and S2, respectively.

Model validation

A receiver operating characteristic (ROC) plot and area under the
curve (AUC) were used to assess the performance of themodel (Hanley
andMcNeil, 1983; Park et al., 2004). In Table 1, the terms precision (Eq.
1), recall (Eq. 2), accuracy (Eq. 3), and F1 score (Eq. 4) are defined along
with their relationships to the statistical performance calculations used
to assess the quality of the model.

Precision � True positive

True positive + FalseNegative
, (1)

Recall � True positive

True positive + FalseNegative
, (2)

Accuracy � TP + TN

TP + TN + FP + FN
, (3)

F1 � 1.
PrecisionXRecall

Precision + Recall
. (4)

Applicability domain

In order to highlight the region of the chemical space that contains
the chemicals for which the model is expected to make accurate
predictions, a well-validated predictive model needs to have a defined
applicability domain (AD) (Rakhimbekova et al., 2020). Any predictive
model must verify its constraints in terms of its structural domain and
response space. As a result, determining amodel’s AD and evaluating the
accuracy of its predictions are both challenging tasks. These QSAR
models typically use the training set to cover a certain chemical space.
The model’s predictions are accurate if any query compound falls within
this definition of AD. If not, the prediction might not conform to the
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model’s presumptions. Principal component analysis (PCA) (Sushko
et al., 2010) has been employed in our work to define the AD of the
compounds used in this study.

Y-randomization

To test the robustness of the proposed models, y-randomization
was applied. This technique involves randomly mixing up the values
of the target variable in the training set (Rücker et al., 2007; Lipiński
and Szurmak, 2017). The same parameters used in the initial model
are then applied to a new prediction generated with the scrambled
data. Every estimate of the model’s accuracy was recorded. In total,
50% of the compounds in the training set were resampled and used
in a 500-run y-randomization test.

Similarity calculations

The Tanimoto coefficient (Tc) (Eq. 5) was computed using
MACCS-166 fingerprints to quantify chemical similarity. The
active and inactive chemicals in the training set were compared
against false and true positive compounds in systematic pairwise
similarity computations.

Tc � C

A + B − C
. (5)

Substructure analyses

Molecular substructures related to PIM activity were analyzed
using the distribution of MACSS fingerprints in active and inactive
compounds (Eq. 6).

Frequency � ∑N
i FP 1|0( )

N
X100. (6)

Analysis of probability scores

Additionally, the probability scores of the developed
classification models were examined. In general, a molecule
is defined as inactive if its probability score is lower than 0.5,
while a compound with a probability score of 0.5 is considered
active (Ponzoni et al., 2019). The more this score approaches 1,
the more confident we are in our prediction. Here, we examined
the probability score distributions for TP (true positive), TN

TABLE 1 Evaluation metrics for the test set.

Method Descriptors Precision Recall Accuracy (Q) F1 score AUC

XGBoost All descriptors 0.82 0.81 0.83 0.97 0.89

Boruta 0.81 0.79 0.85 0.80 0.88

MACCS 0.80 0.76 0.81 0.77 0.92

Random forest All descriptors 0.85 0.81 0.86 0.98 0.91

Boruta 0.86 0.81 0.87 0.83 0.92

MACCS 0.80 0.76 0.82 0.78 0.90

SVM All descriptors 0.74 0.73 0.78 0.86 0.83

Boruta 0.75 0.72 0.78 0.71 0.82

MACCS 0.70 0.73 0.70 0.69 0.82

kNN All descriptors 0.77 0.75 0.80 0.75 0.84

Boruta 0.72 0.67 0.75 0.68 0.78

MACCS 0.81 0.76 0.82 0.77 0.82

TABLE 2 Probability scores and docking scores of the selected compounds.

Compound ID Classifier probability Binding energy

XGBoost Random forest SVM kNN

CHEMBL303779 0.82 0.74 0.84 0.78 −8.34

CHEMBL690270 0.76 0.70 0.92 0.85 −7.56

CHEMBL748285 0.72 0.74 0.68 0.63 −9.78

EBM-MPC 0.81 0.75 0.71 0.71 −8.45
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(true negative), FP (false positive), and FN (false negative)
results.

Chemical database screening

The developed models were used to screen the hits against PIM-
1. The NCI library and Maybridge databases were used for virtual
screening. The National Cancer Institute maintains a repository of
compounds that have been evaluated as potential anticancer agents.
These compounds represent unique structural diversity based on
synthetic and natural products. The Maybridge library consists of a
highly diverse set of over 53,000 lead-like compounds. Maybridge
Hit-to-Lead was designed for medicinal chemistry, allowing SAR
development and hit-to-lead optimization. The following filters
were used to select the hits: Filter 1: compounds predicted to be
active by all the validated models; Filter 2: compounds having a
probability score; and Filter 3: compounds falling within the
chemical space of the training set. These compounds were
further processed for molecular docking, followed by molecular
dynamics simulations. Finally, compounds with the best affinity and
conformance within the active site were selected and analyzed.

Molecular docking

Molecular docking was implemented to identify the best
physical confirmation of inhibitor binding within the active site
of PIM-1 kinase. The PIM kinase enzyme structure was taken from
the Protein Data Bank (PDB ID: 5KZI). All of the docking
simulations for this work were performed using AutoDock Vina
(Trott and OlsonAutoDock, 2009) with a 1 spacing, default
exhaustiveness, and full ligand flexibility. The grid resolution was
internally set to 1Å. We set the number of binding modes to 10 and
exhaustiveness to 8. A cubical grid of size 60 × 60 × 60 size with
0.375 Å spacing was used around the active sites of the protein. To
acquire the structure in the PDBQT format, polar hydrogen atoms
were added using AutoDock Tools 92.

Molecular dynamics simulations

Selected best compounds were further subjected to molecular
dynamics (MD) simulations using Groningen Machine for
Chemical Simulations (GROMACS v5.1.5) (Pronk et al., 2013).
The parameters and coordinate files for PIM-1 kinase and
selected potential hit compounds were generated using the
CHARMM27 forcefield in GROMACS and PRODRG,
respectively. The TIP3P water model was used for each
simulation system, which was neutralized by the addition of Na+

ions in a dodecahedron periodic box. Energy minimization was
performed for 50,000 nstep using the steepest descent algorithm to
avoid steric clashes. Equilibration of each system was performed in
two stages: the first phase was carried out with a constant number of
particles, volume, and temperature (NVT) ensemble for 500 ps at
300 K, using the V-rescale thermostat (Bussi et al., 2007); and in the
second phase, the pressure of each system was equilibrated for
500 ps at a constant number of particles, pressure, and temperature

(NPT) at 1 bar using a Parrinello–Rahman barostat (Parrinello and
Rahman, 1981). Each equilibrated system was simulated for 30 ns
under periodic boundary conditions to avoid edge effects.
Electrostatic interactions were handled by the particle mesh
Ewald (PME) method, while the heavy-atom bonds were
restrained using the LINCS algorithm.

Results

Model development and evaluation

In total, 54 descriptors from the set of 240 were eventually
selected using the Boruta method (Supplementary Table S3). All
these descriptors belonged to 12 different classes. The descriptors
include autocorrelation, information content, atom-type
electrotopological state, Burden modified eigenvalues, molecular
distance edge, carbon type, and molecular linear free energy
relation. The models were trained using four machine learning
methods (SVM, random forest, XGBoost, and kNN). Evaluation
metrics for the developed models are given in Table 1, including
accuracy, recall, precision, F1 Score (a measure of a model’s
accuracy, which takes into account both precision and recall),
and Area Under the Curve (AUC) values. SVM, random forest,
and XGBoost performed than kNN according to these metrics in
combination with the selected descriptor set. Among the three,
random forest achieved the best accuracy, at 0.87 for the test set
(with selected descriptors), as compared to SVM (0.78) and
XGBoost (0.84). In addition, these models also had significant
AUC values (Figure 1).

Applicability domain and y-randomization

An applicability domain (AD) analysis was performed to
check the reliability of the generated classification models.
Figure 2 shows a scatter plot of the PC1 and PC2 coordinates
derived from the set of selected PIM-1 compound descriptors.
The training and test compounds share similar PC1 and
PC2 coordinates, suggesting that predictions were within the
applicability domain (AD) of both the training and test sets. To
check the robustness of the developed models, y-randomization
tests were performed (Rücker et al., 2007). Y-randomization test
accuracies were found to be lower, and none of the random trials
achieved higher scores than our main models (Figure 3). The
average accuracy across all randomly generated models were
found to be less than 0.58. This confirms that the selected
models are robust and reliable and were not generated by
chance correlations. A pairwise comparison of the compounds
in each cluster was found to reflect reasonable Tanimoto
coefficient similarities between them.

Probability analyses

Probability scores of the selected models, reflecting the
probability of belonging to each class, were also analyzed. It is
known that a compound with a probability score of ≥0.5 is classified
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as active, whereas a molecule with a probability below <0.5 is
classified as inactive. As this score approaches 1, the higher the
value, the higher the model’s confidence in the prediction is
(Minerali et al., 2020; Esposito et al., 2021). In our study, we
analyzed the distribution of probability scores among TN (true
negative), FP (false positive), TP (true positive), and FN (false
negative) results. For the SVM model, compounds with a
probability score of more than 0.80 (an average value) were more
likely to be active, whereas compounds with a probability score of
0.36 were more likely to be inactive. In the case of the random forest
model, a compound with a probability score of more than 0.87 was
more likely to be active, whereas a compound with a probability
score of 0.24 was more likely to be inactive. Random forest achieved

values of 0.95 and 0.11 for active and inactive compounds,
respectively, indicating greater success in predicting compound
activity with the desired probability score (Supplementary Figure
S1). False positive compounds were predicted with probability
scores of 0.63, 0.65, and 0.69 for the random forest, XGBoost,
and SVM models, respectively. In contrast, false negative
compounds were found to have probability scores of 0.31, 0.42,
and 0.14 for the random forest, SVM, and XGBoost models,
respectively. Each predictive model’s effectiveness in the early
recognition of hits was visually evaluated using a cumulative gain
plot (Table 2). The cumulative gain curve is an evaluation curve that
evaluates the model’s performance and contrasts the outcomes with
a random selection. It displays the percentage of targets identified

FIGURE 1
ROC curves of the models based on four machine learning approaches for (A) all descriptors; (B) selected descriptors (Boruta method); (C)MACCS
fingerprints.

FIGURE 2
Applicability domain plot based on principal component analysis (PCA) for (A) training set and (B) test set.
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when taking into account a particular portion of the population that
has the highest likelihood of being a target based on the model. The
comparison showed that the XGBoost and random forest methods
performed better than SVM and kNN in terms of early recognition
of hits (Figure 4).

MACCS fingerprint analyses

Molecular substructures related to the PIM-1 activity of the
compounds can be identified by analyzing the bits in the MACCS
fingerprints. We analyzed the MACCS fingerprints showing a
reasonable difference between active and inactive compounds
(Supplementary Table S4). The occurrence of MACCS fingerprints
differed significantly between active and inactive compounds in the
training dataset, suggesting that the substructures represented by these
features may be closely related to PIM-1 activity. Descriptions and the
number of occurrences of these substructures are listed in Supplementary
Table S4. It was found that MACCS38, MACCS52, MACCS92,
MACCS98, MACCS107, MACCSFP142, etc. are prevalent in active
molecules. This is consistent with previous studies, which shows that

compounds with such functional groups have therapeutic potential
against PIM kinase (Tsuganezawa et al., 2012; El-Hawary et al., 2018;
Park et al., 2021).

Database screening and molecular
interaction analyses

The NCI and Maybridge databases were used to screen the potential
hits from validated models. Commonly predicted active compounds with
high probability scores were selected and further filtered out within the
applicability domain (AD) of the training set. These compounds were
further subjected to molecular docking simulation (Table 2). Finally, four
compounds (CHEMBL303779, CHEMBL690270, CHEMBL748285, and
N-[(1-ethylbenzimidazol-2-yl)methyl]-3-(4-methoxyphenyl)-1H-
pyrazole-4-carboxamide (EBM-MPC)) were observed to have reasonable
binding affinity and stable interaction with the catalytic residues in the
active site (Table.3 and Figure 5). A literature survey revealed that Leu44,
Lys67, Glu121, and Asp186 are crucial for the interaction of inhibitors
(Tsuganezawa et al., 2012; El-Hawary et al., 2018; Park et al., 2021). It can
be observed in Figure 4 that CHEMBL690270, CHEMBL303779, and
EBM-MPC form hydrogen bond interactions with Lys67 and
hydrophobic interactions with Asp186 (Figure 6). In contrast,
CHEMBL748285 forms hydrogen bonds with Asp186 (Figure 6). The
quinazoline ring of compounds was involved in multiple p–alkyl
interactions. In addition, a number of hydrophobic contacts,
particularly residues Leu44, Gly47, Phe49, Ile104, and Leu120, stabilize
interaction with hits. PIM inhibitors fall into two broad categories: ATP
mimetics, which form hydrogen bonds with the glutamate residue that
serves as the hinge (Glu121), andnon-ATPmimetics, which bind far from
the hinge or interact with the hinge through hydrophobic interactions
with a number of residues in the specific hydrophobic pocket that serves
as the hinge environment (El-Hawary et al., 2018; Park et al., 2021). The
Tanimoto coefficient (Tc) similarity score of these selected hits was found
to be ≤ 0.5 with high-activity compounds (Figure 5B).

MD simulation analyses

By analyzing 100-ns MD trajectories, the structural changes to
PIM-1 upon inhibitor binding were studied. We examined the RMSD

FIGURE 3
Y-randomization models. (A) Accuracy; (B) AUC values. A total of 500 y-randomization runs were performed.

FIGURE 4
Probabilistic distribution plot showing cumulative gain for the
developed models.
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of the protein backbone and the RMSF of the protein’s alpha-carbon
atoms. As shown in Figure 6, all the systems exhibited stability
throughout the 100-ns simulation. The average RMSD value for all
four systems was observed to be below 0.31 nm, which indicated that
simulated complexes displayed RMSD values below the threshold. The
average RMSD values further showed that the CHEMBL690270 PIM-1
complex displayed less deviation (0.26 nm), whereas
CHEMBL303779 and CHEMBL748285 demonstrated similar
average values of 0.34 nm (Figure 7A). RMSF is a significant value,
used to characterize each residue’s fluctuation rate upon ligand binding.
It was observed that the inhibitor binding residues (Leu44, Phe49,
Lys67, Glu121, and Asp186) did not fluctuate significantly (Figure 7B).

Discussion

This study was designed with the aim of building a classification
model to predict potential hits for PIM-1 kinase. Four different
machine learning approaches were used to build the models. Our

proposed models performed well in terms of accuracy, F1 score,
precision, and recall. We used the area under the receiver operating
characteristic curve approach to compare classifiers. The ROC curve
is a graphical representation that contrasts a classifier’s true
positive rate and false positive rate at various threshold levels.
The area under this curve, or AUC, is thus a useful metric for
assessing machine learning algorithms, since it shows the degree of
separability (Parrinello and Rahman, 1981). A ROC curve with a
higher AUC value implies greater sensitivity in identifying
active molecules and specificity in rejecting inactive compounds
(Figure 1). In addition, our study also distinguished and ranked
the top 18 variables, including 2D autocorrelation, Burden modified
eigenvalues, and topological charge. These descriptors have the
capacity to distinguish between active and inactive compounds.

QSAR Classification models must undergo an extensive
validation process, and the reliability of those models must be
objectively determined. The OECD guidelines state that a model
must have a clearly defined domain of applicability (Dwyer et al.,
2013). Additionally, the dataset for such models with a defined AD

TABLE 3 Binding mode analysis of the four selected inhibitors.

Compound Hydrogen
bonding

Hydrophobic interaction H-bond
range (Å)

Hydrophobic interaction
range (Å)

CHEMBL303779 Lys67 and Arg122 Gly45, Gly47, Gly48, Phe49, Ala65, Lys67, Ile104, Leu120, Glu121,
Arg122, Pro123, Val126, and Leu174

2.7–3.2 3.3–4.9

CHEMBL690270 Lys67 and Asp186 Leu44, Gly45, Phe49, Lys67, Ile104, Val126, Asp128, Glu171, Asn172,
Leu174, and Asp186

2.4–2.6 3.3–4.7

EBM-MPC Lys67 and Glu121 Gly47, Val52, Lys67, Ile104, Leu120, Glu121, Pro123, Val126, Leu174,
and Asp186

2.8–3.0 3.6–4.89

CHEMBL748285 Asn172 and Asp186 Leu44, Val52, Phe49, Asn172, Leu174, Leu182, Leu184, and Asp186 1.6–3.1 3.6–4.4

FIGURE 5
Chemical space and similarity analyses for selected compounds. (A)Chemical space of selected compounds; (B) heatmap of the distancematrix for
the selected compounds and active compounds in the training set.
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should cover a broad chemical space and a diverse range of
structural types. The AD of PIM kinase inhibitors has been
defined using a principal component analysis-based approach for
model development. A sufficient level of assurance in the produced
models can be seen in the 2D plot obtained from the first two PCs,
which represents the training and test set compounds, illustrating
their structural variety and similar chemical space (Figure 2). To
assess the likelihood of a random correlation for a chosen descriptor,
y-randomization was utilized. This technique is used to assess the
reliability or robustness of QSAR models and is recognized as one of
the most effective validation processes (Rücker et al., 2007). By
comparing a developed model’s performance to the average measure
of 500 random models, which are obtained by using the same
parameters as those used to construct the original model along
with a randomly scrambled target variable class, the statistical
significance of the developed model can be examined. The results
of the y-randomization tests demonstrated that the models created

for this study did not exhibit these connections by chance and that a
true structure–activity relationship existed (Figure 3).

Fingerprints describe the molecular makeup of a compound. The
description of each molecule is given as a string of binary substructures
called a fingerprint. The corresponding fingerprint bit is set to 1 if the
specified substructure is present in the given molecule; otherwise, it is
set to 0. In our study, we used MACCS fingerprints to represent the
presence of structures and their representative substructures in active
and inactive compounds. These molecules contained MACCS65,
MACCS128, and MACCS90. Compounds having such substructures
were found to exhibit reasonable levels of activity toward PIM-1 kinase
(Akué-Gédu et al., 2010; Dwyer et al., 2013; Hu et al., 2015; Wurz et al.,
2015; Li et al., 2016).

To identify potent PIM-1 inhibitors, virtual screening of the NCI
and Maybridge databases was performed using the validated models.
To gain structural insight relevant to the inhibitory activities of the
newly identified inhibitors, their binding modes in the binding site of

FIGURE 6
Binding mode analyses of selected compounds within the active site of PIM-1 kinase. Active site residues are shown as gray sticks; the protein
backbone is shown as a light gray wire; hydrogen bonds are shown with a green dashed line.
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PIM-1 were examined. Figure 6 shows the most stable binding
configurations of selected four compounds derived via docking
simulations with potent inhibitors. These compounds appear to be
accommodated in a similar way in the binding site of PIM1 (Xia et al.,
2009; Abdelaziz et al., 2018; Ibrahim et al., 2022). The necessity of the
interactions with the hinge region and Gly-loop residues (Qian et al.,
2005; Pogacic et al., 2007; Tsuganezawa et al., 2012; Casuscelli et al.,
2013; Fan et al., 2016; Abdelaziz et al., 2018; Bima et al., 2022; Ibrahim
et al., 2022; Shaik et al., 2022) for tight binding to PIM-1 was also
implicated with potent inhibitors (Xia et al., 2009; Ibrahim et al., 2022).
Moreover, these four compounds can also interact with the activation
loop including the Asp186 residue. A hydrophobic cavity is formed
among the Ala65, Ile104, Phe187, Val52, Lys67, and Leu120 residues,
and this maintains molecular stability through various hydrophobic
forces. Similar interactions have also been noted in earlier published
investigations, highlighting the significance of these amino acids for the
assembly of PIM-1 inhibitor complexes (Tsuganezawa et al., 2012; El-
Hawary et al., 2018; Park et al., 2021). Residue Lys67 is known to be
significant in stabilizing the interaction with the compound and to play
an important role in the catalytic activity of PIM-1 (Pogacic et al., 2007;
Fan et al., 2016). In our study, we found that all four compounds
interacted with Lys67, either with hydrogen bonds or through
hydrophobic contact. Compared to the currently available PIM-1
inhibitors, the four selected compounds exhibit low Tanimoto
coefficient (Tc) similarities, highlighting their structural novelty and
druggability. Moreover, all these compounds were found to have a
similar chemical boundary (Figure 5). Therefore, models constructed
using these selected descriptors have good interpretability and
reliability.

Molecular docking studies were conducted to analyze the binding
mode of inhibitors at the PIM-1 catalytic domain. Notably, these
inhibitors are positioned in the active site, between the residues Leu44,
Gly45, Phe49, Lys67, Ile104, Lys67, Leu172, Leu174, and Asp186
(Table 3). These inhibitors were found to have stabilized the complex
with hydrogen and hydrophobic interactions with residues, namely,
Lys67 and Asp186. This is consistent with earlier research that
revealed that these amino acid residues were essential for the
catalytic activity of PIM-1 kinase (Qian et al., 2005; Banaganapalli
et al., 2016; Shaik et al., 2021; Bima et al., 2022; Shaik et al., 2022).

Although molecular docking has strong computational
capabilities, its predictions of the shape of the protein–ligand
binding are frequently inaccurate. Thus, in this study, we

performed 100-ns MD simulations to test the stability of the
chosen compounds in the PIM-1 binding pocket. It was
determined that selected compounds remained stable in the
binding pocket, as analyzed through the RMSD, RMSF, and
hydrogen bonds. Most notably, stable hydrogen bonds with the
residues Lys67 and Asp186 were observed in the complexes with the
compounds (namely, CHEMBL748285, and CHEMBL690270).

Conclusion

The PIM kinase family has become a focus of attention in drug
discovery. In particular, the search for inhibitors simultaneously
targeting PIM-1 isoforms is of great interest because it opens new
horizons toward the discovery of new chemicals capable of
therapeutically modulating many biochemical pathways involved in
the emergence and development of various cancers. In the present
study, ensemble learning based on four different machine learning
approaches, together withmolecular docking andmolecular dynamics
simulation, was successfully utilized to identify novel scaffold
inhibitors against PIM kinase. By combining machine learning and
structure-based approaches, it was possible to evaluate the
quantitative contributions of the molecules to the activity. This
permitted the guided design of four new molecules, predicted to
be potential PIM-1 inhibitors. The molecular docking analyses
showed that the active inhibitors were able to interact with the
amino acids (Lys67, Asp186, Leu44, Glu171, etc.) crucial for
catalytic activity of PIM kinase. The interactions were found to be
stable, as investigated through 100-nsmolecular dynamics simulation.
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Mechanism exploration and
prognosis study of Astragali
Radix-Spreading hedyotis herb for
the treatment of lung
adenocarcinoma based on
bioinformatics approaches and
molecular dynamics simulation

Junfeng Guo1†, Yuting Zhao2†, Xuanyu Wu1, Ganggang Li1,
Yuwei Zhang1, Yang Song1* and Quanyu Du1*
1Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China, 2Laboratory of
Metabolomics and Drug-Induced Liver Injury, Frontiers Science Center for Disease-related Molecular
Network, West China Hospital, Sichuan University, Chengdu, China

Background: Herb pair of Astragali Radix (AR) and Spreading Hedyotis Herb (SH)
has been frequently prescribed in clinical for the treatment of lung cancer owing
to its favorable efficacy. Yet, the mechanism under the therapeutic effects
remained unveiled, which has limited its clinical applications, and new drug
development for lung cancer.

Methods: The bioactive ingredients of AR and SH were retrieved from the
Traditional Chinese Medicine System Pharmacology Database, with the targets
of obtained components predicted by Swiss Target Prediction. Genes related to
lung adenocarcinoma (LUAD) were acquired from GeneCards, OMIM and CTD
databases, with the hub genes of LUAD screened by CTD database. The
intersected targets of LUAD and AR-SH were obtained by Venn, with David
Database employed to perform Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment analyses. Survival analysis of the hub
genes of LUAD was carried out using TCGA-LUAD dataset. Molecular docking of
core proteins and active ingredients was performed by Auto-Dock Vina software,
followed by molecular dynamics simulations of protein-ligand complexes with
well-docked conformations.

Results: 29 active ingredients were screened out with 422 corresponding
targets predicted. It is revealed that AR-SH can act on various targets such
as EGFR, MAPK1, and KARS by ursolic acid (UA), Astragaloside IV(ASIV), and
Isomucronulatol 7,2′-di-O-glucoside (IDOG) to alleviate the symptoms of
LUAD. Biological processes involved are protein phosphorylation, negative
regulation of apoptotic process, and pathways involved are endocrine
resistance, EGFR tyrosine kinase inhibitor resistance, PI3K-Akt, and HIF-1
pathway. Molecular docking analysis indicated that the binding energy of
most of the screened active ingredients to proteins encoded by core genes
was less than −5.6 kcal/mol, with some active ingredients showing even lower
binding energy to EGFR than Gefitinib. Three ligand-receptor complexes
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including EGFR-UA, MAPK1-ASIV, and KRAS-IDOG were found to bind relatively
stable by molecular dynamics simulation, which was consistent with the results
of molecule docking.

Conclusion:We suggested that the herb pair of AR-SH can act on targets like EGFR,
MAPK1 and KRAS by UA, ASIV and IDOG, to play a vital role in the treatment and the
enhancement of prognosis of LUAD.

KEYWORDS

Astragali Radix, spreading hedyotis herb, prognosis, network pharmacology, molecular
docking, molecular dynamics simulation

1 Introduction

Lung cancer, themajor cause of cancer-relatedmortality around the
world, resulted in 1.6 million deaths each year with a poor 5-year
survival rate of only 19% (Bray et al., 2018; Siegel et al., 2019). Lung
cancer can be categorized into small cell lung cancer (SCLC) (15%) and
non-small cell lung cancer (NSCLC) (85%) based on the pathological
characteristics and differentiation degree of cancer cells, where the latter
is further divided into adenocarcinoma, squamous cell carcinoma, and
large cell carcinoma (Sher et al., 2008). Lung adenocarcinoma (LUAD)
is one of the common types of lung cancer, accounting for
approximately 40% of all lung cancers, which originates from small
airway epithelial, type II alveolar cells that secrete mucus and other
substances (Noguchi et al., 1995; Zappa andMousa 2016). Expression of
mutated oncogenes in cells can lead to the activation of downstream
signaling molecules that drive the abnormal proliferation and
differentiation of cells to form tumor cells eventually. Various target
agents have been developed that are effective and have low toxicity, but
the therapeutic effect of targeted therapy remains unsatisfactory (Eguchi
et al., 2008; Yue et al., 2018; Zhong et al., 2021). Although great efforts
have been made over the decades, LUAD remains a persistent disease,
making it increasingly imperative to search for more effective therapies
and drugs for LUAD.

Traditional Chinese Medicine (TCM) pays attention to the
enhancement of healthy Qi in patient and individuated therapy
for each person in the treatment of lung cancer, which has been
widely applied in clinical practice. The advantages of TCM therapy
for cancer are extensive, including the improved survival quality of
patients (Duflos et al., 2002; Efferth et al., 2007), enhanced physical
fitness of patients, alleviation of clinical symptoms, minimum side
effects, reduced side effects by radiotherapy, prolonged survival with
tumor (Tian and Liu, 2010), and extended survival time (Liao et al.,
2017). Modern pharmacological research have demonstrated that
TCM and its extracts can act on tumor cells through multiple targets
to inhibit the proliferation and migration of tumor cells, playing an
essential role in all stages of tumor therapy. TCM has shown
potent therapeutic effects to enhance efficacy and reduce
toxicity in the complementary treatment of lung cancer, but the
underlying molecular mechanisms are too complex and have yet to
be revealed.

Through data mining, we discovered that herb pair of AR-SH
was most frequently used in the treatment of lung cancer in clinical
(Chen et al., 2022). AR, one of the most commonly used tonic herbs
in clinical practice, can strengthen the spleen, and enhance the body,
where modern pharmacological studies have shown that AR has a
wide range of effects including hepatoprotective, diuretic,

hypotensive, and immunomodulatory functions (Bedir et al.,
2000). Extracts of AR has been widely used as alternative
therapies in the treatment of various diseases, including fatigue,
anorexia, anemia, fever, allergies, gastric ulcers, and cancer
(Astragalus, 2003; Fu et al., 2014). SH is a famous herb with
heat-clearing and detoxifying properties, possessing several
biological activities, such as neuroprotection (Kim et al., 2001)
and antitumor activity (Lee et al., 2011). The anti-tumor effect of
SH is generally recognized. SH has been shown to inhibit
angiogenesis of tumor (Lin et al., 2011), combat HepG2 cancer
cells through inducing apoptosis (Li et al., 2016), effectively kill
human colorectal cancer cells (Lin et al., 2015) and breast cancer
cells (Liu et al., 2010).

Network pharmacology is a popular method for predicting the
underlying mechanism of herbal medicines. Prognostic analysis is
an essential way to evaluate the efficacy of antitumor drugs, and
molecular docking (Wang and Zhu 2016), and molecular dynamics
simulations (De Vivo et al., 2016) can be used to validate and
complement the network pharmacological results. In this study, a
systemic pharmacology strategy (Figure 1) integrating network
pharmacology, molecular docking and molecular dynamics
simulations, was employed to explore the active components of
AR-SH, and their corresponding targets and signaling pathways in
the treatment of LUAD, with prognostic analysis used to examine
key targets of AR-SH so as to provide scientific evidence for the
complementary therapeutic effect of AR-SH in LUAD.

2 Materials and methods

2.1 Collection of active compounds and
targets prediction of AR-SH

The active compounds of AR-SH were searched using the
Traditional Chinese Medicine Systems Pharmacology (TCMSP,
https://old.tcmsp-e.com/tcmsp.php) with the criteria set as oral-
bioavailability (OB) ≥ 30% and drug-likeness (DL) ≥ 0.18. In
addition, bioactive ingredients of AR-SH were supplemented
from relevant literature. Pubchem database (https://pubchem.
ncbi.nlm.nih.gov/) were employed to acquire the 2D structure of
the ingredients, which were further uploaded to Swiss Target
Prediction (http://www.swisstargetprediction.ch/) for target
prediction with screening standard as Probability≥0.1. We
calculated the similarity matrix of the molecules by Morgan
Fingerprint in the RDKit toolkit, and the similarity was evaluated
using the Tanimoto score (Hert et al., 2004; Rogers and Hahn 2010).
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2.2 Acquisition of LUAD genes and screening
of hub genes

LUAD related genes were obtained using the keyword “lung
adenocarcinoma” in various databases, including GeneCard

(https://www.genecards.org/), Online Mendelian Inheritance in
Man (OMIM, https://omim.org/) and Comparative
Toxicogenomics Database (CTD, http://ctdbase.org/). The
genes retrieved from the databases were integrated and de-
duplicated, and the protein names were normalized using the

FIGURE 1
Flow chart of the employed systemic pharmacology strategy.
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Uniprot (https://www.uniprot.org/) database. Through the CTD
database, the common targets with the highest “Inference Score”
and “References” were selected as hub genes of LUAD.

2.3 Gene ontology (GO) and kyoto
encyclopedia of genes and genomes (KEGG)
pathway enrichment analyses

The screened targets of AR-SH and LUAD genes were
imported into the Venny2.1 online platform to capture the
common targets of active compounds and LUAD. GO
enrichment analysis of the intersected targets was performed
in terms of the biological process (BP), cellular component
(CC), and molecular function (MF) based on the David
database. KEGG was selected for target pathway annotation
analysis with P set less than 0.05, and the top 20 KEGG signal
pathways were ranked according to the results in descending
order of enrichment value.

2.4 Survival analysis of hub genes of LUAD

Gene expression data and survival information obtained from
the Cancer Genome Atlas (TCGA) database were assessed by
Kaplan-Meier survival analysis, and a log-rank test was
performed using the survival package version 2.44-1.1 in R software.

2.5 The molecular docking of active
compounds of AR-SH with core proteins of
LUAD.

The 2D structure of the screened ingredients were downloaded
from the PubChem database, which were imported into Chem3D
software to draw the 3D structure of the compounds and optimize
the energy of the ligand structure. The processed structure was saved
in PDB format, and AutoDockTools-1.5.6 software was then applied
to add charge and display rotatable keys, with the final structure
saved in PDBQT format.

Next, the protein crystal structures encoded by hub genes
were obtained from the PDB database (https://www.rcsb.org/),
which were imported into PyMOL software to remove solvent
and ligand. AutoDockTools-1.5.6 software was then employed to
add hydrogen atoms, and the structure was saved in PDBQT
format, with their active pockets searched. Molecular docking was
performed by adjusting the X-Y-Z coordinates and grid size of the
protein and optimizing the position of the protein structure
binding sites. Processed active compound and the protein were
docked for ten times by AutoDock Vina with the minimum
binding energy of each docking taken as the final result.
Docking results of the clinically used epidermal growth factor
receptor-tyrosine kinase inhibitor (EGFR-TKI) Gefitinib with the
core proteins were compared with those of the screened
compounds with the core proteins. Docked ligand-protein
complexes with lower docking binding affinity and research
value for each protein were selected for further detailed
demonstration.

2.6 Molecular dynamic (MD) simulation

The conformations of core protein-ligand complexes with
lower docking binding affinity and research significance in the
molecular docking results were further analyzed by MD
simulations. MD simulation was carried out using GROMACS
(version 2021-2). Protein topology file was generated using the
AMBER99SB-ILDN force field, whereas ligand topology file was
generated by ACPYPE script using the AMBER14SB force field.
MD simulation was carried out in a dodecahedral box filled with
TIP3 water molecules, and periodic bounding conditions were
applied. The system was neutralized with NaCl counter ions.
Energy minimization was achieved using the steepest descent
algorithm, with cutoff of 1.4 nm for Coulomb interactions and
Van der Waals interactions.

Before the simulation, each system was equilibrated for 100 ps
at 310 K for NVT (constant atomic number, volume, and
temperature) using a V-rescale thermostat (Bussi et al., 2007)
and for 100 ps at 1.0 bar for NPT (constant atomic number,
pressure, and temperature) via a Parrinello-Rahman barometer.
The protein backbone was inhibited, while the solvent and
countercharge ions were allowed to move during the
equilibrium phase. The LINCS algorithm was used for all
binding constraints. The particle-mesh Ewald (PME) method
was used for long-range electrostatic processing. During the
simulation, the positional constraints were removed. Finally,
simulations were performed for 100 ns for each system under
periodic boundary conditions at 310 K temperature and
1.0 bar pressure, and snapshots of the trajectories were taken
every 10 ns.

2.7 Free binding energy calculations

The calculation of the free binding energy of protein-ligand
complexes is an important way to verify the strength of
intermolecular interactions, providing insight into the relative
importance of various chemical energies that contribute to the
overall stability. The molecular mechanics Poisson-Boltzmann
surface area (MM-PBSA) method is a simple technique for
quantifying the binding free energy of a ligand docked to an
acceptor (Miller et al., 2012). The g_mmpbsa (Miller et al., 2012)
tool was used to calculate the binding affinity of simulated protein-
ligand complexes.

In general, Formula 1 can be used to calculate the free binding
energy of a protein to a ligand in a solvent (Kollman et al., 2000):

ΔGbind � Gcomplex − Gprotein + Gligand( ) (1)

Gprotein and Gligand denote the total free energy of the isolated
protein and ligand in the solvent, respectively, and Gcomplex

represents the total free energy of the protein-ligand complex. In
addition, the free energy of each entity can be obtained using
Formula 2:

Gx � EMM( ) − TS + Gsolvation( ) (2)
X denotes protein or ligand or protein-ligand complex. (EMM)

represents the average molecular mechanical potential energy in
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vacuum. (Gsolvation) denotes the solvation free energy (Kollman
et al., 2000; Kumari et al., 2014). TS represents the entropic
contribution of the free energy in vacuum, where T and S denote
temperature and entropy, respectively. The TS term is the
conformational entropy term associated with complex, and
isolated protein is calculated in the vacuum environment.
Instead of considering absolute binding free energy, we
focused on the contribution of individual residues of
protein and ligands to the individual components of EMM and

Gsolvation terms. The change in entropy term was neglected
owing to that it does not affect the relative binding energy of
ligands.

The molecular mechanics potential energy EMM is the vacuum
potential energy and includes both bonded and non-bonded
interactions. It is calculated using molecular mechanics (MM)
force field parameters, as in Formula 3

EMM � Ebonded + Enonbonded � Ebonded + EvdW + Eelec( ) (3)

TABLE 1 Active components of AR-SH.

Num PubChem CID Molecule name Source MW OB (%) DL

1 10380176 (R)-Isomucronulatol AR 302.35 67.67 0.26

2 15976101 (24S)-24-Propylcholesta-5-ene-3beta-ol AR 428.82 36.23 0.78

3 11869658 3-Epioleanolic acid SH 456.78 32.03 0.76

4 14077830 Astrapterocarpan AR 300.33 64.26 0.42

5 5316760 1,7-Dihydroxy-3,9-dimethoxy pterocarpene AR 314.31 39.05 0.48

6 2782115 2-(Chloromethyl)-4-(4-nitrophenyl)-1,3-thiazole AR 254.69 \ \

7 162906151 2,3-dimethoxy-6-methyanthraquinone SH 282.31 34.86 0.26

8 10514946 2-methyl-3-methoxyanthraquinone SH 252.28 37.83 0.21

9 15689655 3,9-di-O-methylnissolin AR 314.36 53.74 0.48

10 162842488 5′-hydroxyiso-muronulatol-2′,5′-di-O-glucoside AR 642.67 41.72 0.69

11 15689652 7-O-methylisomucronulatol AR 316.38 74.69 0.3

12 101679160 9,10-dimethoxypterocarpan-3-O-β-D-glucoside AR 462.49 36.74 0.92

13 222284 beta-sitosterol SH 414.79 36.91 0.75

14 108213 Bifendate AR 418.38 31.1 0.67

15 5280448 Calycosin AR 284.28 47.75 0.24

16 6037 FA AR 441.45 68.96 0.71

17 5280378 formononetin AR 268.28 69.67 0.21

18 73299 hederagenin AR 414.79 36.91 0.75

19 15689653 Isomucronulatol 7,2′-di-O-glucoside AR 626.67 49.28 0.62

20 5281654 isorhamnetin AR 316.28 49.6 0.31

21 5318869 Jaranol AR 314.31 50.83 0.29

22 5280863 kaempferol AR 286.25 41.88 0.24

23 64971 Mairin AR 456.78 55.38 0.78

SH

24 10494 Oleanolic acid SH 456.78 29.02 0.76

25 5281330 Poriferasterol SH 412.77 43.83 0.76

26 5280343 quercetin AR 302.25 46.43 0.28

SH

27 5280794 Stigmasterol SH 412.77 43.83 0.76

28 64945 ursolic acid SH 456.78 16.77 0.75

29 122130319 AstragalosideIV AR 785.09 17.74 0.15
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The value of Ebonded energy can be taken as zero under the
assumption that the bound and unbound forms of protein and
ligand conformations in the single trajectory method are similar
(Homeyer and Gohlke 2012). Non-bonded interactions
(Enonbonded) include electrostatic (Eelec) and van der Waals
(EvdW) interactions.

The free energy of dissolution is the energy required to transfer
the solute from the vacuum to the solvent. In the MM-PBSA
method, the free energy of dissolution is calculated using the
following solvent model, as in Formula 4:

Gsolvation � GPB + GSA (4)
GPB and GSA denote the electrostatic and non-electrostatic

contributions to the free energy of dissolution, respectively. The
electrostatic term Gpolar was calculated by solving the Poisson-
Boltzmann (PB) equation (Wang et al., 2004), and the GSA term
was calculated using the solvent accessible surface area (SASA). We
also performed studies related to the energy decomposition of each
residue, which help to estimate the MM-PBSA binding energy of the
ligand in the protein-ligand complex.

3 Results

3.1 The active compounds and targets of
AR-SH

The active compounds and targets of AR-SH were obtained by
searching the TCMSP platform and the Swiss Target Prediction
database, respectively. Among them, 29 active compounds of AR
were retrieved with 361 targets predicted, and 2 compounds
supplemented from literature were Astragalus polysaccharide
(Bamodu et al., 2019) and AstragalosideIV (Zhang et al., 2018;
Chen et al., 2021). 7 active compounds of SH were retrieved, with
227 targets predicted, and 3 compounds supplemented from
literature included ursolic acid, Mairin and oleanolic acid (Liang
et al., 2022), as shown in Table 1. 21 of the 29 obtained active
compounds were found to possess a diversity index less than 0.8 and

an average score of 0.178, which indicated a favorable diversity, as
shown in Supplementary Table S1.

3.2 Acquisition of LUAD-related genes and
screening of hub genes of LUAD

Using Gene Cards, OMIM and CTD databases, 1091, 227 and
157 LUAD-related genes were acquired respectively, with a total
1381 LUAD-related genes obtained after de-duplication. The
422 active compounds targets and 1381 LUAD genes were
analyzed by Venn, and 127 common targets were obtained,
which maybe the potential targets of AR-SH for LUAD
treatment, as shown in Figure 2.

Based on CTD database, 10 hub genes were selected as docking
targets for the next simulation experiments according to their
“Inference Score” and “References” scores as well as lung
adenocarcinoma-related research hotspots. As shown in the
Table 2, the proteins coded by the 10 hub genes are Epidermal
growth factor receptor (EGFR), Fas cell surface death receptor
(FAS), Growth differentiation factor 15 (GDF15), Thymidylate
synthetase (TYMS), AKT serine/threonine kinase 1 (AKT1),
Cyclin dependent kinase 1 (CDK1)), Mitogen-activated protein
kinase 1 (MAPK1), KRAS proto-oncogene, GTPase (KRAS),
Signal transducer and activator of transcription 3 (STAT3), and
Matrix metalloproteinase-9 (MMP9).

3.3 GO and KEGG pathway enrichment
analysis

GO is a bioinformatics analysis tool that defines the input genes
by describing the function of the gene and the relationship between
the enriched terms. GO functional analysis divides the gene
functions into three parts: cellular component (CC), molecular
function (MF), and biological process (BP), among which, BP
can best reflect changes in biological function within the body.

In total, 775 GO entries of the GO functional enrichment
analysis were obtained from DAVID database, including

FIGURE 2
Venn diagram of AR-SH and LUAD intersected targets.

TABLE 2 The inference score and reference score of the hub genes.

Gene symbol Inference score References

EGFR 41.93 38

FAS 39.02 23

GDF15 35.62 22

TYMS 35.01 24

AKT1 34.17 34

CDK1 33.91 26

MAPK1 32.37 39

KRAS 32.07 33

STAT3 30.93 29

MMP9 28.3 29
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556 entries in BP, 89 entries in CC, and 130 entries related to MF.
Figure 3A shows that the potential targets were mainly enriched
in BP such as protein phosphorylation, negative regulation of
apoptotic process, response to xenobiotic stimulus, peptide-
tyrosine phosphorylation and response to drugs. The involved
terms of CC shown in Figure 3B are cyclin-dependent protein
kinase holoenzyme complex, receptor complex, cytoplasm and
plasma membrane accounted for a significant proportion. As for
MF, ATP binding, protein kinase activation, transmembrane
receptor protein tyrosine kinase activity, protein tyrosine
kinase activity and protein serine/threonine kinase activity
were ranked in the top, as shown in Figure 3C. Using KEGG
pathway enrichment analysis, 147 pathways were screened out
based on the threshold of p < 0.05. As shown in Figure 3D, the
pathways with the highest significance, involve a variety of cancer
pathways, including non-small cell lung cancer, prostate cancer,
pancreatic cancer, colorectal cancer, etc. Cancer-related cell
alterations, including endocrine resistance, EGFR tyrosine

kinase inhibitor resistance, central carbon metabolism and
proteoglycans in cancer are also enriched significantly.
Signaling pathways including PI3K-Akt and HIF-1 also are
shown to be important.

3.4 Survival analysis of important targets

TCGA-LUAD dataset consisting of 526 LUAD samples and
59 normal samples were obtained from the TCGA database. We
divided the LUAD samples into high and low expression groups
according to the expression levels of the ten hub genes, and further
investigated the correlation between the expression of the ten hub
genes and the prognosis of LUAD patients by Kaplan-Meier survival
analysis. As shown in Figure 4, the expression of FAS (p = 0.046),
GDF15 (p = 0.023), TYMS (p < 0.001), CDK1 (p < 0.001), MAPK1
(p = 0.027) and KRAS (p = 0.028) showed significant correlation
with prognosis. The survival analysis revealed that the correlation

FIGURE 3
Gene Ontology functional and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. (A) Biological Processes. (B) Cellular
Component. (C) Molecular Function. (D) KEGG analysis. The size of the dots represents the number of genes; the larger is the dot, the higher is the
number of genes in the corresponding process. p values indicate the importance of enrichment; the lower is the p values, the redder is the color of the
graph.
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between the expression of other hub genes and the survival is not
statistically significant. However, EGFR has been proven to be a
determinant driving lung adenocarcinoma growth and treatment
response in vivo (Foggetti et al., 2021), thus subsequent analysis will
also be performed for EGFR.

3.5 Molecular docking

The molecular docking results are illustrated in Figure 5 (the
unit of measurement are kcal/mol). The redder the color, the lower

binding energy and stronger affinity of the ligand-protein complex.
The bluer the color, the higher the binding energy and weaker
affinity of the ligand-protein complex. It is generally accepted that a
compound with a binding energy less than −5.6 kcal/mol to the
receptor protein indicates a strong binding (Hsin et al., 2016). The
molecular docking results showed that the binding energy of most of
the screened active compounds to core proteins was lower
than −5.6 kcal/mol, with the binding energy of some active
compounds to important targets being even less than that of
Gefitinib. So, we assume that the active compounds of AR-SH
can effectively treat LUAD via multiple targets. The complexes

FIGURE 4
Kaplan-Meier Survival analysis of the correlation between expression of important target genes (A–J) and prognosis of LUAD in TCGA database.
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with lower binding energy and better conformation in each group of
docking results, which were shown in Figure 5, were selected for
detailed demonstration to investigate the stability of the binding, as
shown in Figure 6; Figure 7 The box co-ordinates and grid size
information of the protein-ligand binding sites were shown in
Supplementary Table S2.

We observed that UA and Gefitinib enter the same EGFR binding
cavity. UA interacted with Thr-854 and Asp855 via hydrogen bonding
and forms hydrophobic contacts with Ala722, Phe723, Val726, Ala743,
Leu792, Met793 and Leu844. The interaction of UAwith these residues
may be the reason for its action on the target EGFR. Gefitinib forms
hydrogen bonds with Asp855, as well as two π-H bonds with
Leu718 and interacts with Val726, Ala743, Leu792, Met793,
Leu844 and Met1002 through hydrophobic bonds.

3.6 MD simulation

EGFR-ursolic acid (UA), MAPK1-AstragalosideIV (ASIV) and
KRAS-Isomucronulatol 7,2′-di-O-glucoside (IDOG), which are the
complexes with favorable conformations and research value in the
docking results, were selected for further MD simulations. MD
simulations can provide a digital environmental condition like those
of human cells for us, involving temperature, pressure, solvents and

ions, to investigate the effects of temperature and environmental
conditions on the binding process. Therefore, data obtained from
MD simulations can offer valuable insights into the mechanism,
dynamics, and nature of ligand-protein interactions (Wang et al., 2001).

For the information of the equilibrium time of each simulated
protein-ligand complex during the MD simulation, the Root Mean
Square Deviation (RMSD) of the protein backbone was calculated.
RMSD is a valuable parameter for estimating changes or variations
in molecular conformation, whose plots are commonly used to
assess the time it takes for a system to reach structural equilibrium
and to estimate the duration of the run. During the period of
dramatic change in the initial structural conditions, a sudden
increase of the RMSD values of the simulated complexes
including the reference is expected, because the protein is rigid
and would return to its dynamic motion when it is solventized in the
water box in the crystal structure.

As shown in Figure 8A–C, the horizontal coordinates represent the
time, while the vertical coordinates represent the specific values of
RMSD. Sharp fluctuations of the RMSD of the three receptor-ligand
complexes were witnessed in the initial stage. As the simulation
proceeds, the RMSD of the three complexes tends to be smooth and
stable after 20 ns. EGFR and UAwere stable near 0.25 nm and 0.04 nm,
MAPK1 and ASIV were stable near 0.17 nm and 0.03 nm after 50 ns,
and KRAS and IDGO were stable near 0.25 nm and 0.1 nm. This

FIGURE 5
Docking results of active ingredients of AR-SH with core proteins.
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phenomenon suggests that the three complexes were relatively stable in
stimulated conditions (Martínez 2015). It is necessary to note that the
higher the RMSD value, the more unstable the complexes (Zhao et al.,
2015). Therefore, EGFR-UA exhibited greater stability.

Root Mean Square Fluctuation (RMSF) is used to examine areas
with high levels of volatility, where a higher RMSF value indicates a less

stable protein-ligand complex. As shown in Figures 8D–F, KRAS and
the tail of MAPK1 exhibit high RMSF values, which may due to the
presence of a large number of tightly coiled structures (e.g. a-helix and
ß-sheet). In addition, the lower RMSF value can be caused by the loss of
the corresponding structures in the complex.

Hydrogen bonding facilitates the binding capability between
proteins and ligands, and the number of hydrogen bonding can
reflect the induced binding affinity (Dichiara et al., 2020). As shown
in Figures 8G–I, KRAS forms 6 hydrogen bonds with the ligand on
average, MAPK1 forms an average of 3 hydrogen bonds with the
ligand, and EGFR creates 2 hydrogen bonds on average with ligands,
all of which contribute to the stable binding of the complexes.

The radius of gyration (Rg) is directly associated with the tertiary
structure and overall conformational state that has been utilized to
determine whether a structure has a stable, compact and folded
conformation. The Larger Rg value, the more flexible proteins, and
the more unstable the complexes of ligand-protein. In contrast,
lower Rg values indicate densely and tightly packed protein
structures (Islam et al., 2021; Dey et al., 2022). As shown in
Figure 8J, EGFR and MAPK1 exhibit low Rg values, from which
we thought that they are stable.

The solvent accessible surface area (SASA) can be used to
describe the effective interaction between ligand complexes and
receptors (Geierhaas et al., 2007), which represents the
interconnection between the water molecules and the surface of
the complex submerged in water molecules. SASA is based on the
ratio of the total area to energy. Compounds with high SASA values
form unstable protein-ligand complexes due to their easy access to
solvent, while complexes with low SASA values are considered to be
stable (Patel et al., 2021). Through the hydrophobic interactions in
non-polar amino acids, the SASA value of the complex can be
maximally reduced (Shivanika et al., 2022). In Figure 8K, EGFR and
MAPK1 possess low SASA values, indicating their better stability.

Molecular mechanics Poisson-Boltzmann surface area (MM/
PBSA) is an effective and reliable method for calculating the free
binding energy of small inhibitors to their protein targets (Wang
et al., 2017). The free binding energies of the three complexes and
their changes within 100 ns of simulation are shown in Figure 8L. The
average free binding energy of KRAS is −53.08 kJ/mol, the average free
binding energy of MAPK1 is −85.81 kJ/mol, and the average free
binding energy of EGFR is −139.21 kJ/mol. From Table 3 we could
propose the complex of EGFR-UA with the best binding energy, of
which the EvdW and Eele were both lower than that of MAPK1-ASIV.
Although the EvdW and Eele of KRAS-IDOGwere the lowest, the highest
EPB hindered the binding of receptor and ligand.

The contribution of protein residues to free binding energy was
calculated. As shown in Figures 8M–O, in the 100 ns simulation, the
EGFR complex has more amino acid residues that can provide binding
energy compared to the KRAS andMAPK1 complexes, indicating higher
binding of ligands and receptors of the EGFR complex. Residues
contributing to the free binding energy of the EGFR complex were
LYS716, LYS746, ARG795, ARG841, LYS897 and SER972. Residues
contributing to the binding energy of the MAPK1 complex were VAL36,
ILE81, THR102 and LEU153. ASN26 VAL44 and ARG149 made
significant energy contributions to the KRAS complex. These amino
acid residues contributing to the free binding energy play a pivotal role in
the interactionwith the ligand and are the active sites for binding, which is
consistent with the molecular docking results.

FIGURE 6
Docking complexes with the lowest binding energy: (A) EGFR-
ursolic acid; (B) FAS-ursolic acid; (C)GDF15-Oleanolic acid; (D) TYMS-
9,10-dimethoxypterocarpan-3-O-β-D-glucoside; (E) ATK1-Oleanolic
acid; (F) CDK1-Oleanolic acid; (G) MAPK1-AstragalosideIV; (H)
KRAS-isomucronulatol-7,2’-di-O-glucosiole; (I) STAT3-ursolic acid;
(J) MMP9-isorhamnetin.
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The secondary structure analyses of 100 ns simulated
trajectory were shown in Figures 8P–R. We identified that the
number of secondary structures of the three complexes including
a-Helix, ß-Sheet, ß-Bridge, Bend, Turn and Coil is kept relatively
steady, and the fluctuations get smaller as the simulation
proceeds, indicating that the complexes are relatively stable.

100 ns MD simulations analysis revealed that all three
complexes were stable during the simulation. Based on the
RMSD, RMSF, RG, SASA, hydrogen bonding number and free
binding energy, the EGFR complex emerged as the most stable
complex, followed by MAPK1, which might be because of Van der
Waals forces and electrostatic potential energy. KRAS complex was
slightly less stable may be attributed to its more flexible protein and
denser convoluted structures.

The simulation trajectory of the EGFR-UA complex with the best
stability was chosen for visualization. As displayed in Figure 9, UA can
interact flexibly and gradually stabilize in the docking pocket of EGFR,
with the snapshots of complexes obtained every 10 ns. As the simulation
proceeded, the stability of the complex system did not change, and the
ligand and protein were in a relatively static state of motion.

Free energy landscape (FEL) diagram was drawn to study the
relationship between structural transitions or conformational changes
of proteins and free binding energy through appropriate conformational
sampling procedures. RMSD and Gyrate were selected to construct 3D
landscapemaps to detect and explore their steady-state structures. As we
can see in Figure 10, the FEL plot of EGFR-UA has a minimum in a
single lowest energy well, and the free energy values are below 0 kJ/mol,
indicating that the system has good stability.

4 Disscussion

Targets chemotherapy remains to play a leading role in the
treatment for the majority of patients with advanced-stage LUAD,

and EGFR-TKI is the first line drug for lung cancer patients
harboring an EGFR mutation in routine clinical practice
(Ciuleanu et al., 2012). EGFR-TKI has been confirmed to
significantly prolong disease free survival (DFS) but not overall
survival (OS) of patients compared to conventional
chemotherapeutic agents (Wu et al., 2022). Nowadays, Chinese
herbal medicines have been demonstrated by several studies to
increase therapeutic efficiency and reduce the adverse effects of
chemotherapy drugs (Tseng et al., 2016; Yang et al., 2019a; Zhang
et al., 2020; Wei et al., 2022).

Herb pair of AR and SH were found to be most frequently used
in the treatment of lung cancer in clinical (CHEN.H.F et al., 2022).
AR, one of the most commonly used tonic herbs in clinical practice,
can strengthen the spleen, and enhance the body, where modern
pharmacological studies have shown that AR has a wide range of
effects including hepatoprotective, diuretic, hypotensive, and
immunomodulatory functions (Bedir et al., 2000). AR may
inhibit the progression and metastasis of LUAD by regulating
immune system such as modulating macrophage polarization (Xu
et al., 2018). SH possesses heat-clearing and detoxifying properties,
with several biological activities, such as neuroprotection (Kim et al.,
2001) and antitumor activity (Lee et al., 2011). But there is no
systematic study on the bioactive ingredients of AR-SH and the
underlying mechanism of AR-SH compounds in the treatment of
LUAD by now. Therefore, a network pharmacology strategy and
molecular docking approach as well as molecular dynamics
simulations were adopted to identify the potential targets and
elucidate mechanisms of action of AR-SH in the treatment
of LUAD.

A total of 29 active compounds were acquired from TCMSP
using ADME parameters, and literature, with 422 targets
obtained. 1381 LUAD-related targets were collected from
GeneCards, OMIM and CTD databases. There are
127 common targets of AR-SH and LUAD. Among the

FIGURE 7
Cartoon representation of EGFR in complex with: (A) Ursolic acid; (B) Gefitinib. The binding site is shown as surface representation with the ligands
shown as sticks.
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bioactive compounds, UA is a natural pentacyclic triterpenoid
with anticancer activity against a variety of cancers in vitro and in
vivo (Shanmugam et al., 2011; Yang et al., 2016; Yang et al.,

2019b). Wang et al. (2020) proved that UA can suppress the
proliferation of various lung cancer cells, including human
NSCLC cells H460, H1975, A549, H1299 and H520.

FIGURE 8
Molecular dynamics simulations. (A–C) The RMSD plot of EGFR-UA, MAPK1-ASIV and KRAS-IDOG. (D–F) The RMSF plot of EGFR-UA, MAPK1-ASIV
and KRAS-IDOG. (G–I) The hydrogen bond numbers of EGFR-UA, MAPK1-ASIV and KRAS-IDOG. (J,K) Rg and SASA plots of EGFR-UA, MAPK1-ASIV and
KRAS-IDOG. (L) Binding Free Energy plots of EGFR-UA, MAPK1-ASIV and KRAS-IDOG. (M–O) Binding energy contribution plots of amino acid residues of
EGFR-UA, MAPK1-ASIV and KRAS-IDOG. (P–R) The secondary structure analysis plot of EGFR-UA, MAPK1-ASIV and KRAS-IDOG.
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Yang et al. (2019b) found that UA can inhibit the expression of
CT45A2, and suppress the proliferation and motility of tumor
cells while promoting apoptosis in NSCLC carrying the EGFR
T790M mutation with this mutation being the main cause of drug
resistance to EGFR. ASIV is a naturally occurring tetracyclic
triterpene saponin that has been shown to be free of any
significant hepatotoxic or nephrotoxic effects. Studies have

shown that ASIV enhances the Bax/Bcl-2 ratio and induces
intrinsic apoptosis in a variety of cancer cells, including cells
of colorectal, breast, lung, vulvar squamous cell carcinoma, and
hepatocellular carcinoma (Jia et al., 2019; Sun et al., 2019; Zhao
et al., 2019; Zheng et al., 2019; Cui et al., 2020). Li et al. (2017a)
suggested that ASIV can inhibit glioma progression by interfering
with the MAPK/ERK signaling pathway, which is consistent with

TABLE 3 Binding free energies of complexes in kJ/mol.

Complexes Gbind (±SEM) EMM (±SEM) EvdW (±SEM) Eele (±SEM) EPB (±SEM) ESA (±SEM)

EGFR-UA -139.21 ± 2.596 -212.0 ± 3.003 -167.8 ± 1.153 -44.15 ± 2.801 99.70 ± 2.732 -26.94 ± 0.1091

MAPK1-ASIV -85.81 ± 1.284 -164.2 ± 1.078 -145.2 ± 0.8670 -18.97 ± 0.6718 97.60 ± 1.176 -19.23 ± 0.05296

KRAS-IDOG -53.08 ± 2.546 -368.6 ± 3.087 -247.2 ± 2.245 -121.3 ± 1.926 348.3 ± 2.051 -32.83 ± 0.08525

FIGURE 9
Snapshots of molecular dynamics simulations taken at 10-ns intervals that point to the movement of UA inside the binding site of EGFR.

FIGURE 10
3D representation of binding free energy landscape as a function of RMSD and Gyrate. Energy distribution is shown by the coloring pattern: Blue
defines the conformational space with minimum energy (stable state) while red defines a conformational space with maximum energy (unstable state).
Transient local energy states are defined by intermediate color patterns.
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the high and stable MAPK1-ASIV binding ability in the present
study, making ASIV a promising anti-cancer candidate. IDOG
showed a strong binding affinity with KARS, indicating it may be
a potentially active compound against cancer. Further studies
should be conducted to investigate the anti-tumor effects of
IDOG. In addition to the tumor suppressive function, we
found that UA and ASIV can also co-regulate immune
function. UA could reduce Th1 cytokine expression (IL-2, IL-
6, IL-12, IFN-γ and TNF-α) and induce Th2 (IL4, IL5) cytokine
expression (Raphael and Kuttan 2003; Ahmad et al., 2006). ASIV
was thought to act as an immune adjuvant (Hong et al., 2011) to
enhance cellular immune function by activating the NF-κB/
MAPK signaling pathway (Li et al., 2017b). The cooperative
anticancer activity of UA and ASIV, and the modulation of
the immune system demonstrated the synergistic effect of the
AR-SH drug pair.

GO enrichment analysis showed that the biological processes
involved in AR-SH treatment of LUAD mainly include protein
phosphorylation, negative regulation of apoptotic process, response
to xenobiotic stimulus, peptide-tyrosine phosphorylation and
response to drugs. KEGG pathway analysis associated with AR-
SH against LUAD includes pathways of a variety of cancers, such as
non-small cell lung cancer, prostate cancer, pancreatic cancer, and
colorectal cancer. Cancer-related cellular alterations include
endocrine resistance, EGFR tyrosine kinase inhibitor resistance,
central carbon metabolism, and proteoglycans in cancer. PI3K-
Akt, HIF-1 and other signaling pathways were also engaged. The
emergence of drug resistance remains a major issue for EGFR-TKIs
treatment of lung cancer. PI3K-Akt, an important signaling pathway
present in normal human cells, is involved in a variety of
physiological and pathological processes and plays a central
regulatory role in cell growth and proliferation. Furthermore,
PI3K-Akt pathway can also affect the development of NSCLC by
inducing apoptosis, inhibiting cell proliferation, invasion and
migration, and regulating tumor angiogenesis (Wang et al., 2019;
Chen et al., 2020; Hu et al., 2020). HIF-1 is a key transcriptional
activator that mediates the adaptive response of the organism to
hypoxia, which regulates gene expression through changes in
intracellular oxygen concentration and exerts an influential role
in tumor cell hypoxia adaptation, energy metabolism, tumor
angiogenesis, and invasion and metastasis, with its expression of
HIF-1 closely related to invasive metastasis of lung cancer (Hua
et al., 2020). During rapid tumor cell multiplication in patients with
non-small cell lung cancer, tumor cells are in a relatively hypoxic
state, making HIF-1αmore likely to be activated and stay in a highly
expressed stage.

Based on the reference “Inference Score” and “References” scores of
each target in the CTD database and the hot spots of LUAD-related
research, 10 targets were selected and considered as core targets of AR-
SH for LUAD treatment, including EGFR, FAS, GDF15, TYMS, AKT1,
CDK1, MAPK1, KRAS, STAT3 and MMP9. Survival analysis of core
targets revealed a significant correlation between the expression of FAS
(p = 0.046), GDF15 (p = 0.023), TYMS (p < 0.001), CDK1 (p < 0.001),
MAPK1 (p = 0.027) and KRAS (p = 0.028) and prognosis of LUAD.
However, it is undeniable that EGFR is a determinant driving lung
adenocarcinoma growth and treatment response in vivo (Foggetti et al.,
2021). EGFR andKRAS are the twomost frequentlymutated oncogenic
driver genes (Rodenhuis et al., 1987; Lynch et al., 2004; Paez et al., 2004)

that occur in the presence of multiple identified tumor suppressor gene
alterations (Cancer Genome Atlas Research Network, 2014; Politi and
Herbst 2015; Campbell et al., 2016; Skoulidis and Heymach 2019).
EGFR, a receptor-type tyrosine kinase, is overexpressed and/or mutated
in LUAD and controls tumor growth through signaling regulation. The
expression of EGFR is closely associated with neo-angiogenesis, tumor
invasion and metastasis (Cancer Genome Atlas Research Network,
2014), whose mutations are a major causative factor for LUAD in East
Asian countries (accounting for approximately 60% of LUAD) (Dong
et al., 2018). Remarkable advances have been made in the treatment of
advanced NSCLC with molecularly targeted EGFR-TKIs, yet patients
are highly susceptible to drug resistance (Tan et al., 2017; Dong et al.,
2018). Mutation of KRAS was first initiated in lung cancer in the 1980s
(Santos et al., 1984), which is a gene that is hard to target. Mutations in
the KRAS gene directly trigger the EGFR-Ras-Raf-MAPK pathway in
the EGF signaling pathway, followed by activation and overexpression
of MAPK1 to further promote tumor cell migration and invasion,
increase cell viability and participate in epithelial mesenchymal
transition, allowing the rapid progress of LUAD and rendering
targeted drugs against the EGFR upstream pathway ineffective (Lee
et al., 2014). There exist a close relationship betweenmutations of KRAS
andMAPK1 and the resistance of NSCLC to EGFR-TKI targeted drugs
such as Gefitinib and Erlotinib, which can cause sustained activation of
the EGFR signaling pathway and accelerate tumor cell proliferation (Zer
et al., 2016).

What’s more, as one of the most commonly used tonic herbs, AR
is not negligible for its modulating effect on the immune system. We
found that the core targets EGFR, MAPK1 and KRAS are closely
related to the regulation of immune system function. In the EGFR-
positive genetic state, tumors exhibit a relatively
immunosuppressive microenvironment, as evidenced by a
decrease in CD8+ T cells and an increase in regulatory T cells
(Treg) (Xiao et al., 2023). Of note, KRAS-mutant tumors showed a
marked immune activation status in LUAD, exemplified by an
elevated abundance of CD8+T cells, Cytotoxic T Lymphocyte
cells (CTL), and Follicular helper T cells (Tfh), and reduced
immunosuppressed M2-macrophage. In primary lung cancer, a
retrospective study found KRAS-mutant tumors had a
significantly higher PD-L1 expression, high CD8+T cells
infiltration and higher TMB than EGFR-mutant tumors (Liu
et al., 2020). Therefore, the high response rate of KRAS-positive
tumors to immunotherapy may be related to the activated immune
microenvironment (Lee et al., 2018). Zfp831, as a downstream
molecule of MAPK1, directly binds to the Tfh cells signature
gene Bcl6 and thus promotes Tfh cells differentiation (Wan et al.,
2021). Consequently, we suggest that AR can modulate the immune
system by acting on the core targets EGFR, MAPK1 and KRAS, thus
improving the tumor immune microenvironment.

Molecular docking results showed that the binding affinities of
the screened active compounds to the core targets ranged
from −4.9 to −11.2 kcal/mol, with most of the ingredients
exhibiting binding energies less than −5.6 kcal/mol. The binding
energy of UA and oleanolic acid of SH to EGFR was even less than
that of Gefitinib, while ASIV and IDOG of AR showed stronger
binding to MAPK1 and KARS, respectively. It is drug pair formed
from AR and SH that the effect could be reached, therefore, the
synergistic effects of AR-SH on the targets may be responsible for the
treatment of LUAD. Three docked complexes including UA-EGFR,
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ASIV-MAPK1 and IDOG-KRAS exhibited favorable docking
conformations and low binding energies, and molecular
dynamics simulations further suggested stability of the binding of
docked complexes, with hydrogen bonding being the most critical
factor for their stable binding. It was found that KRAS protein
functions as a molecular switch, as it activates and regulates the
downstream MAPK pathway in response to upstream EGFR, which
amplifies the signaling efficiency of the MAPK pathway in KRAS
mutations, ultimately controlling tumor cell proliferation and
metastasis, and thus promoting tumor growth (Ponsioen et al.,
2021). In this study, we found that the active ingredients of AR-
SH can stably bind to EGFR, MAPK1 and KRAS to trigger or
suppress their protein functions, thus contributing to the treatment
of LUAD.

Although molecular dynamics simulation can be used to
describe the motion of ligand-protein complex in one system, it
lacks the ability to simultaneously show the interactions between the
compound and other proteins which are unavoidable in human
body. So, many unknown variables that cannot be controlled are
stand in the way, which may have an impact accuracy of result.
Despite these limitations, the molecular level analysis in this study
provides a reference and guidance for further exploration of the
mechanism of AR-SH for LUAD treatment. What’s more, we also
found that the main active compounds of AR-SH were not acquired
from databases but from literature supplementation, so we suggest
that we should not rely on the database alone for active ingredient
mining.

5 Conclusion

In conclusion, we suggested that the herb pair of AR-SH can act
on targets like EGFR, MAPK1 and KRAS by UA, ASIV and IDOG,
to play a vital role in the treatment and the enhancement of
prognosis of LUAD.
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Cancer management is highly dependent on the immune status of the patient.
During the COVID-19 pandemic, a large number of people suffered from anxiety
and depression, especially cancer patients. The effect of depression on breast
cancer (BC) and prostate cancer (PC) patients, during the pandemic has been
analyzed in this study. Levels of proinflammatory cytokines (IFN-γ, TNF-α, and IL-
6) and oxidative stressmarkersmalondialdehyde (MDA) and carbonyl content (CC)
were estimated in patients’ serum samples. Serum antibodies against in vitro
hydroxyl radical (•OH) modified pDNA (•OH-pDNA-Abs) were estimated using
direct binding and inhibition ELISA. Cancer patients showed increased levels of
proinflammatory cytokines (IFN-γ, TNF-α, and IL-6) and oxidative stress markers
(MDA and CC levels), which were further significantly enhanced in cancer patients
with depression compared to normal healthy (NH) individuals. Increased levels of
•OH-pDNA-Abs were detected in breast cancer (0.506 ± 0.063) and prostate
cancer (0.441 ± 0.066) patients compared to NH subjects. Serum antibodies were
found to be significantly elevated in BC patients with depression (BCD) (0.698 ±
0.078) and prostate cancer patients with depression (PCD) (0.636 ± 0.058).
Inhibition ELISA also exhibited significantly high percent inhibition in BCD
(68.8% ± 7.8%) and PCD (62.9% ± 8.3%) subjects compared to BC (48.9% ±
8.1%), and PC (43.4% ± 7.5%) subjects. Cancer is characterized by enhanced
oxidative stress and increased inflammation, which may be exaggerated with
COVID-19 related depression. High oxidative stress and compromised antioxidant
homeostasis exerts alterations in DNA, leading to formation of neo-antigens,
subsequently leading to the generation of antibodies. COVID-19 pandemic related
depression needs to be addressed globally for improved cancer patient care and
cancer disease management.
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1 Introduction

Cancer is a chronic inflammatory disease and one of the leading
causes of death worldwide. According to the latest data by WHO
(world Health Organization), one in eleven females and one in eight
males died due to cancer worldwide in 2022 (World Health
Organization, 2020). During the COVID-19 pandemic, due to
burden on the healthcare system, many cancer patients suffered
delays in treatment, arising from limited access to necessary medical
facilities.

At the start of 2020, the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) spread around the world at a very fast
pace, and was declared a pandemic by the WHO (Cucinotta and
Vanelli, 2020). The pandemic caused a negative impact on social life
styles, healthcare systems and economic conditions of individuals
worldwide leading to distress, stress and anxiety (Choi et al., 2020;
Daly and Robinson, 2022). Infected individuals present mild to severe
symptoms, which may include respiratory distress, and in severe cases
multi-organ failure or even death. The primary reason for inflammatory
changes is the excessive production of cytokines (Sherwani and Khan,
2020). Extended periods of lockdown, social distancing norms and
other mandatory protective practices at home and in the workplace
impacted levels of physical activity as well as the mental health of
individuals, subsequently leading to anxiety and depression among a
large population (Trabelsi et al., 2021; van derWerf et al., 2021). Several
studies have already been published on depression during
unprecedented COVID-19 pandemic (Wan Mohd Yunus et al.,
2021; Bueno-Notivol et al., 2021). Depression rates were found to
increase in several countries impacting the mental health status of
populations (Bueno-Notivol et al., 2021). All age groups were affected
due to an overall increase in physiological stress, fear, anxiety and
depression (Rodríguez-Hidalgo et al., 2020; Saraswathi et al., 2020).

The burden of a cancer diagnosis itself causes immense
psychological and physiological stress in patients, which might have
been further aggravated due to the stress and uncertainty of the
pandemic too. Increased oxidative stress is found in cancer patients
as well as in depressed individuals. Increased generation of reactive
species cause non-repairable damage in cells, causing cell death (Hussain
et al., 2016). Inflammatory cytokines directly and indirectly play an
important role in enhancing oxidative stress and through multiple
pathways support tumor cell progression (Kartikasari et al., 2021).
Extensive production of reactive species and disease induced redox
homeostasis imbalance (Hussain et al., 2016) may cause alterations and/
or degradation of biomolecules (DNA, proteins, lipid etc.)

Taking all these into account, this study has been designed to
analyze the inflammatory and oxidative stress, as well as antibodies
against hydroxyl radical (•OH) treated plasmid-DNA in males with
BC and PC patients alone or with depression (BCD and PCD). The
estimation of humoral immune status in these cancer patients with
or without COVID-related depression might provide an insight into
the immune imbalance associated with COVID-19 and better cancer
management and palliative care.

2 Materials and methods

Complete and incomplete Freund’s adjuvant, Dialysis tubing
cellulose membrane pUC18 plasmid DNA, hydrogen peroxide, PBS

solution, catalase, mannitol, EDTA, SOD, IgG-alkaline phosphatase
conjugate, p-nitrophenyl phosphate (Aldrich Sigma, United States).
Cytokine kits (IL-6, IFN-γ and TNF-α) were purchased from R&D
Systems, Minneapolis, MN, United States.

2.1 Free radical modification of plasmid DNA

Plasmid DNA (1 mg/mL) was treated with hydrogen peroxide
(10 mM) and the reaction mixture was exposed to UV light at
254 nm for 30–45 min at room temperature under dark conditions.
The reaction was carried out in 10 mM PBS solution at pH 7.4. The
reaction induced formation of hydroxyl radicals and the reaction
mixture was dialyzed against PBS solution to remove unwanted free
radicals. The resultant modified plasmid DNA was stored at −80°C
for further experiments (Khan et al., 2011).

2.2 Analysis of pDNA modification by
spectroscopic studies

UV analysis: Both native and •OH modified pDNA were
screened under UV-spectrophotometer (UV-1700, Shimadzu,
Kyoto Japan) to determine change in UV intensities at 260 nm
wavelength. Quenching studies using catalase (500 units/mL),
mannitol (100 mM), EDTA (100 mM) and SOD (500 units/mL)
were performed for the changes in the percent modifications of UV
intensities at 260 nm.

2.2.1 Thermal stability
Native and modified pDNA were analysed for their stability. All

the samples were treated with varying temperatures ranging from
30°C to 96°C. UV spectrophotometer was connected with a thermal
chamber to increase the temperature of the sample at a rate of 1.0°C/
min. All absorbance was analysed and recorded at 260 nm.

2.2.2 Fluorimetry
Fluorescence intensities were observed for both native and

modified pDNA. A wavelength range of 350–600 nm was used to
record the fluorescence spectra for both samples on
spectrofluorometer (RF-5301, Shimadzu, Tokyo Japan) (Binsaleh
et al., 2022).

2.3 Sera samples collection

Nintey sera samples were collected from patients and normal
healthy subjects from June 2021—December 2021. The research
study was conducted according to the Declaration of Helsinki
(1964). Serum samples collected from normal healthy male (n =
15) and female (n = 15) individuals were from individuals who did
not show any signs or symptoms of any disease. Fifteen serum
samples were collected for each of the following groups; prostate
cancer (PC), breast cancer (BC), prostate cancer with depression
(PCD), and breast cancer with depression (BCD). Samples were
collected from volunteers with their full written consents as per the
approval of the Research Ethics Committee at the University of
Ha’il; study protocol H-2021-122. Patients and healthy controls
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were checked using similar diagnostic procedures and the disease
was confirmed by an oncologist based on the recommended
procedures for prostate cancer (e.g., physical examination,
antigen tests, and histopathology analysis, etc.) and breast cancer
(e.g., physical examination, antigen tests, mammography,
histopathology, etc.). All cancer patients included in this study
exhibited metastasis at the time of diagnosis.

Demographic (age and gender) and clinical data such as fasting
blood glucose (FBG), glycated hemoglobin (HbA1c), basal metabolic
index (BMI), C-reactive protein (CRP)) data fasting blood glucose
(FBG), glycated hemoglobin (HbA1c), basal metabolic index (BMI),
C-reactive protein (CRP) etc. were also collected. FBG, HbA1c, and
BMI were analyzed by the recommended prescribed procedures
applied in the diagnostic clinics. Levels of CRP were measured using
the latex agglutination reaction method.

Volunteers were completed a modified version of a self rating
questionnaire to screen the individuals and determine their level of
depression (Kroenke and Spitzer, 2002). The depression index score
was evaluated as the total score from 20 questions divided by 80 (the
maximum possible score). The questionnaire was discussed with a
physiatrist in the College of Medicine.

Serum samples were isolated from blood collected (3–5 mL)
from volunteers and serum complement proteins were deactivated
by heating the samples at 56°C for half an hour and then stored
at −80°C.

Exclusion criteria for the individuals and patients included
individuals aged less then 18 years, pregnancy or lactation,
patients using antibiotics, alcohol drinkers and smokers.
Individuals with any previous history of COVID-19 disease or
associated complications were excluded from this study.

2.4 Detection of carbonyl compounds

Amount of protein bound carbonyl was detected in the sera
samples of cancer patients and healthy individuals, as described by a
published procedure (Levine et al., 1990). Briefly, 100 μL of serum
sample was mixed with 400 μL of dinitrophenyl hydrazine (DNPH).
Control samples were devoid of DNPH. The mixture was incubated
for 1 h at 25°C and then precipitation of DNP-hydrazones was done
by adding 500 μL of trichloroacetic acid (4% w/v). The sample was
centrifuged for 3–5 min at 13,000 g. To remove the non-reacted
DNPH, pellet was dissolved in ethanol-ethylacetate (1:1, v/v) and
then centrifuged. The centrifugation was repeated about 3–4 times,
and pellet was dissolved in 0.6 mL guanidinium HCl (6M, pH 2.3).
To dissolve the hydrazones completely, the sample mixture was
frozen at −20 C and thawed. A 200 μL from the aliquot was read at
379 nm using ELISA reader (MR9600-415 Accuris, NJ,
United States). The results were evaluated as nanomoles of
carbonyl per mg of protein using a ε379 nm = 22,000 M−1cm−1.

2.5 Serum malondialdehyde contents

Serum MDA levels were identified using a comercially available
ELISA kit (Elabscience, United States). Lipid oxidative stress was
assessed by measuring MDA levels in serum samples. Sampes were
analysed as instructed in the ELISA kit manual. Absorbance of test

samples was measured at 532 nm on a microplate reader. MDA
contents were calculated with the following formula:

MDA � X1
X2

× C

X1; OD of test sample—OD of control.X2; OD of standard—OD of
blank.C; Standard concentration (10 nmol/mL).

2.6 Cytokine estimation

Detection and analysis of levels of inflammatory cytokines IL-6, IFN-
γ and TNF-α in serum samples of cancer patients and NH subjects, was
done using quantitative ELISA (sandwich) (R&D System, Minneapolis,
MN, United States), with a sensitivity of less than 0.5 pg/mL for all
cytokines. Each sample was assayed in three different wells.

2.7 Antibodies raised against native and •OH-
pDNA

Antibodies against native and •OH-pDNA were raised in female
rabbits as mentioned previously (Alouffi et al., 2018; Khan et al., 2019a).
Briefly, first dose of antigens (50 μg) were emulsified with equal volume
of Freund’s adjuvant (complete), and injected intramuscularly into the
experimental animals. Subsequently, similar amount of antigens (50 μg)
mixed with equal volume of Freund’s adjuvant (incomplete) were
injected into the animals. A dose of about 400 μg antigens was
received by each animal. Blood samples were collected regularly, and
serum samples were separated asmentioned above and stored at −80°C.
Blood samples were also collected before immunization as pre-immune
sera to be used as negative controls.

2.8 Serum IgG purification

Pre-immune and immunized experimental animals serum samples
were used to isolate purified IgGs using Protein-A Agarose column
(Sigma-Aldrich, United States) by using a published procedure
(Goding, 1978). A ratio of 1:1 (1 mL) serum sample and phosphate
buffer saline (pH 7.4) were applied to Protein-A Agarose column
(5 mL). Then column was cleaned 2–3 times with PBS buffer to
remove unbound IgG. Acetic acid (0.6%) and NaCl (0.9%) were
used to elute the bound IgGs from the column. Eluted samples were
neutralized by adding 1 mL of Tris-HCl (1M, pH 8.5). Eluted fractions
were analyzed on a spectrophotometer at wavelength of 251 nm and
278 nm, to calculate the concentration of IgG. The optical density of
1.4 at 280 nm is equivalent to 1.0 mg/mL of purified IgG.

2.9 Enzyme-linked immunosorbent assay

Direct binding ELISA was performed to detect the presence of
antibodies against native and pDNA in healthy individuals and
patients’ sera (Sherwani et al., 2022; Sherwani and Khan, 2022).
Levels of antibodies against both native and modified pDNA were
screened in immunized animals, as described elsewhere (Khan et al.,
2020).
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Competition ELISA was also done to evaluate recognition of
specific antibodies from healthy control and cancer patient sera
samples, as well as immunized antibodies to native and modified
pDNA (Khan et al., 2020; Binsaleh et al., 2022; Sherwani et al., 2022).
Briefly, both the antigens (pDNA and •OH-pDNA) at a
concentration of 5 μg/mL were added to the 96 well ELISA plates
and kept at room temperature for 3–4 h. ELISA plates were washed
with TBS-T (Tris Buffer Saline with Tween 20) and plates were
blocked with bovine serum albumin (1%). Immune complexes,
formed in the test tubes using sera samples (1:100 dilutions) and
varying concentrations (0–10 μg/mL) of antigens, were added and
incubated for 4 h and then overnight in a refrigerator at 4°C. These
immune complexes (100 µL) were transferred to the ELISA plates
and incubated at room temperature for 3–4 h. ELISA plates were
washed with TBS-T and anti-human IgG-alkaline phosphate
conjugate was added for 1 h and again ELISA plates were
washed. Then the substrate p-nitrophenyl phosphate was added,
and within 20 min the microplates were read at 410 nm, using a
microplate reader (MR9600-415 Accuris, NJ, United States).

2.10 Statistical analysis

Results are presented as mean ± SD. Normality tests and
multiple comparison were performed using a software SPSS
(16.0, Chicago, United States). Significance was calculated using
the Student’s t-test. All significances were represented as p-value
of <0.05.

3 Results

3.1 Clinical characterization

Clinical investigations were carried out for patients with cancer
alone or with depression as well (Table 1). There was slight increase
in FBG and HbA1c levels in cancer patients compared to their
respective healthy controls, however, the changes were not
significant. Similarly, BMI and waist-to-hip ratios of cancer
patients were found to be slightly higher than the healthy

controls. No significant differences were observed in FBG,
HbA1c, BMI and waist-to-hip ratios in patients with cancer
alone or with depression.

Furthermore, clinical analyses were conducted for the sera
samples of prostate and breast cancer patients for CRP, cytokines
levels (IFN-γ, TNF-α and IL-6), and oxidative stress level markers
(MDA and carbonyl contents) (Table 2). A significant increase (p <
0.001) in the levels of CRP was observed in prostate and breast
cancer patients, which was further enhanced with accompanying
depression. Also, a substantial increase (p < 0.001) in the levels of IL-
6 was observed in prostate and breast cancer patients when
compared to the healthy controls. However, no respectable
difference in the IL-6 levels was observed in patients with cancer
alone or cancer with depression. In contrast, there was a significant
increase in the levels of IFN-γ and TNF-α in cancer patients with
depression compared to the cancer patients (postrate and breast
cancer) alone.

Oxidative stress markers were estimated in the serum samples to
understand the patients’ oxidative stress levels. Postrate and breast
cancer patients exhibited significantly higher levels of MDA and
carbonyl contents compared to the healthy individuals. The levels of
these markers were found to further increase in cancer patients with
depression (Table 2).

3.2 Hydroxyl radical modification of pDNA

Native pDNA was modified using hydroxyl radicals in in vitro
reaction. Modified pDNAwas analyzed for structural alterations due
to the presence of •OH radicals. Native and •OH-pDNA were
analyzed using spectrophotometer at a wavelength 260 nm. The
UV intensity was observed to increase in •OH-pDNA as compared
to native pDNA (Table 3). This may be due to the exposure of the
nitrogenous bases of the pDNA, upon free radical damage.

The stability of the native and modified DNA samples was also
subjected to high temperatures (30°C—96°C) and UV intensities of
treated samples were observed. Increased fluorescence intensity was
recorded at 520 nm after the hydroxyl modification of pDNA
(Table 3). This may be due to the breakdown and unwinding of
pDNA and exposure of nitrogenous bases.

TABLE 1 Clinical and demographic presentation of cancer and healthy subjects.

Groups Gender Age Menopausal
status (number)

Disease
duration

Fasting blood
glucose
(mg/dL)

HbA1C
(%)

BMI (kg/m2) Waist-to-
hip ratio

M/F

NH-M 15 48 ± 12.1 — — 84.3 ± 7.1 5.34 ± 0.08 23.61 ± 2.87 0.78 ± 0.073

NH-F 15 47 ± 11.7 8 — 85.5 ± 6.3 5.37 ± 0.09 23.21 ± 2.93 0.79 ± 0.076

Prostate cancer 15 49 ± 12.6 — 8 ± 4.1 87.1 ± 8.5 5.53 ± 0.11 24.11 ± 3.04 0.81 ± 0.074

Breast cancer 15 48 ± 13.3 7 7 ± 3.6 86.9 ± 8.5 5.51 ± 0.13 24.91 ± 2.93 0.82 ± 0.079

Prostate cancer
with depression

15 58 ± 14.5 — 9 ± 4.5 87.8 ± 8.4 5.55 ± 0.12 25.11 ± 3.09 0.81 ± 0.073

Breast cancer
with depression

15 51 ± 16.3 6 8 ± 4.7 88.8 ± 7.6 5.53 ± 0.13 26.71 ± 2.98 0.82 ± 0.078

All the patients included were of metastasis stage at the time of diagnosis. All the patients were on chemotherapy with other medications. Subcategories of any cancer is not defined. Each sample

was run in triplicate. All data is given as mean ± standard deviation (SD).
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3.3 Quenching studies

Quenching studies were conducted using various antioxidants
(mannitol, catalase, and SOD) and a metal chelating agent (EDTA),
used in pDNA modification reaction mixtures (Figure 1). After the
reactions all the samples were dialyzed against the PBS and the

percent modifications were observed using an Absorbance of
260 nm. The modified sample, devoid of any quenching agent,
was considered as positive control (100% modification). Results
showed highest decrease in the modification by catalase and
mannitol, both specific antioxidants for •OH and H2O2

molecules. This shows the involvement of H2O2 and •OH in
pDNA modification.

3.4 Antigenicity of pDNA and •OH modified
pDNA

Antigens pDNA and OH-pDNA were administered to female
rabbits for up to 8 weeks (details are provided in the methods
section). Blood samples were collected before the administration
of antigens (pre-immune sera) and afterwards at different intervals.
Immunoglobulin G was isolated from pre-immune and immune
rabbit serum samples using Protein A-Agarose column. Purity was
assessed for different IgG samples on 7% SDS-polyacrylamide using
gel electrophoresis (data not shown).

Direct binding ELISA was used to assess the antibody production
against respective antigens. IgGs raised against modified p-DNA,
exhibited significantly high titre (>1:25,600) (Figure 2A). IgGs raised
against native p-DNA also showed high titre (~1:12,800) (Figure 2B).
However, antibody production against the •OH-pDNA showed
almost two-fold higher titre than native pDNA in immune sera
samples of experimental animals. Pre-immune sera IgG exhibited
low number of antibodies against both antigens.

Induced antibodies were isolated as mentioned above and
specificities were analyzed against their immunogens using

TABLE 2 Oxidative stress, inflammatory marker, and inflammatory cytokines analysis of cancer patients and healthy subjects.

Groups MDA
(nmol/mL)

Carbonyl content (nmol/
mg protein)

C-reactive protein
(mg/L

IFN-γ
(pg/mL)

TNF-α
(pg/mL)

IL-6
(pg/mL)

HC-M (n = 15) 2.61 ± 0.16 0.78 ± 0.084 0.92 ± 0.077 3.0 ± 0.21 0.94 ± 0.09 1.97 ± 0.16

HC-F (n = 15) 2.58 ± 0.17 0.93 ± 0.089 0.93 ± 0.071 3.2 ± 0.29 0.90 ± 0.11 1.99 ± 0.17

Prostate cancer (n = 15) 4.11 ± 0.12* 2.84 ± 0.16* 5.01 ± 0.47*** 4.0 ± 0.32* 1.33 ± 0.18* 7.3 ± 0.61***

Breast cancer (n = 15) 4.39 ± 0.21* 2.22 ± 0.18* 5.24 ± 0.54*** 4.2 ± 0.29* 1.39 ± 0.13* 7.1 ± 0.65***

Prostate cancer with
depression (n = 15)

5.41 ± 0.19** 3.64 ± 0.25** 7.13 ± 0.66*** 4.9 ± 0.30** 2.73 ± 0.21*** 7.5 ± 0.62***

Breast cancer with depression
(n = 15)

5.97 ± 0.23** 3.92 ± 0.23** 7.67 ± 0.62*** 5.3 ± 0.35** 2.99 ± 0.22*** 6.8 ± 0.59***

Each sample was run in three different wells. Values are presented as mean ± standard deviation. *p < 0.05, **p < 0.01, ***p < 0.001. Statistical values were evaluated by comparing healthy

controls with gender matched patients.

TABLE 3 Characterization of hydroxyl radical modified plasmid DNA.

Groups Native p-DNA •OH-pDNA

Absorbance at 260 (37°C) 2.04 ± 0.09 2.88 ± 0.014**

Percent hyperchromacity at 260 nm (95°C) 20.9 ± 0.13 34.7 ± 0.19**

Fluorescence (Exc. 520 nm) 589 ± 8.8 AU 837 ± 11.4***

Significant changes were representing as **p < 0.01; ***p < 0.001. Exc. and nm represent excitation and nanometre. For statistical analysis native p-DNA, values were compared with
•
OH-

pDNA, values.

FIGURE 1
The OH-pDNA was considered as 100% modification based on
the UV analysis at 260 nm. Quenching studies were performed using
catalase (500 units/mL), mannitol (100 mM), EDTA (100 mM) and SOD
(500 units/mL). Antioxidant were co-incubated with the reaction
during modification of the pDNA and samples were analysed at
260 nm. All the reactions were carried out in triplicates. Significance
presented as p < 0.01.
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inhibition ELISA. The maximum percent inhibition (MPI) for IgGs
against •OH-pDNA was determined to be 79.3% at 20 ug/mL
(Figure 3A), whereas, IgGs against pDNA showed 66.1%
(Figure 3B). Moreover, IgGs against •OH-pDNA showed 50%
inhibition at 12.1 ug/mL. However, IgGs against pDNA exhibited
50% inhibition at 17.7 ug/mL of the antigen.

These results indicate high production of antibodies (IgGs)
against •OH-pDNA in experimental animals as compared to
native pDNA. Raised antibodies were also highly specific for the
modified antigen as compared to the native antigen.

3.5 Detection of serum antibodies against
•OH-pDNA

The sera samples (1:100 dilutions) of all subjects were analyzed
for the presence of antibodies (IgG) against native and •OH-pDNA
antigens (Figure 4). Direct binding ELISA was used to screen for the

FIGURE 2
Direct binding ELISA of OH-pDNA (A) and native pDNA (B) from preimmune (▲) and immune sera (■) sera samples from immunized animals.
Microtitre plates were coated with 5 μg/mL of respective antigens.

FIGURE 3
Inhibition ELISA of IgGs raised against OH-pDNA (A) and pDNA (B) (■) and IgGs from pre-immune sera (▲) samples. The 96-well plates were coated
with pDNA and OH-pDNA (5 μg/mL). All the samples were run in triplicates.

FIGURE 4
Direct binding ELISA of serum antibodies against native and

•
OH-

pDNA antigen. ELISA plates were coated with the respective antigen
(5 μg/mL). All the samples were tested in triplicates. Significance was
represent as p < 0.05 and p < 0.01.
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levels of the antibodies against •OH-pDNA (anti-•OH-pDNA
antibodies). Direct binding data showed highest binding of serum
antibodies against modified antigen in breast cancer patients with
depression (OD; 0.698 ± 0.078), followed by prostate cancer patients
with depression (0.636 ± 0.058), breast cancer patient alone (0.506 ±
0.063) or prostate cancer patients (0.441 ± 0.066) alone. Normal
human subjects did not show respectable binding against either of
the antigens.

Serum antibody-antigen interaction specificities were tested
by inhibition ELISA. In inhibition ELISA, serum samples (1:
100 dilutions) were co-incubated with varying concentrations
of antigens (0–10 μg/mL) for 4 h at room temperature and

overnight at 4°C. Then the reaction mixture was added to the
antigen coated wells. The maximum percent of inhibition at
10 μg/mL for both antigens are presented in Figure 5 for all
the samples. Inhibition against modified antigen yielded
highest percent inhibition in breast cancer patients with
depression (68.8% ± 7.8%) (Figure 5A), followed by prostate
cancer patients with depression (62.9% ± 8.3%) (Figure 5B),
breast cancer patients (48.9% ± 8.1%) (Figure 5C), and
prostate cancer patients (43.4% ± 7.5%) (Figure 5D). Native
antigen showed negligible inhibition in all the groups. Normal
human subjects did not exhibit significant inhibition with any of
the antigens (Figure 5E).

FIGURE 5
Inhibition ELISA for cancer and normal human subjects against native and modified antigens (10 μg/mL). maximum percent inhibition at 10 μg/mL
were assessed for serum samples from BCD (A), PCD (B), BC (C), PC (D) and NH serve as controls (E). Each sample was tested in triplicates and the values
given are in mean ± SD.
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4 Discussion

Cancer disease has multifactorial etiology with concomitant
involvement of several molecular components. Breast and
prostate cancers are major cancer types in female and males,
respectively. Cancer patients have faced several challenges during
the unprecedented COVID-19 pandemic. Some of the major issues
included non-availability of timely and specialized medical
healthcare, limited availability of prescribed medications, and
delays in follow-up procedures, etc. COVID-19 related depression
further added to complications in such patients. Unnatural stress
environment, which all the human beings were subject to during
extended lockdown, social distancing, work from home policies
extensively affected the mental health of individuals. These
conditions induced anxiety and depression in large populations
(Trabelsi et al., 2021; van der Werf et al., 2021). Depression was
found to increase many-fold during the pandemic period, with
associated negative impacts on cancer patients (Hussain et al.,
2016; Bueno-Notivol et al., 2021).

Several factors may contribute to the development of cancers
including lifestyle factors leading to hormone level imbalances,
family history, exposure to carcinogens and pollutants, altered
redox homeostasis, etc. (Anand et al., 2008). Cancer cells disrupt
signaling pathways to alter oxidative metabolism (Schiliro and
Firestein, 2021). Thus, there are increased levels of free radicals.
Excessive free radicals have the potential to induce nucleic acid,
protein and lipid degradation as well as post-translational
modifications, leading to tumorigenesis (Wang et al., 2017).
Serum samples of cancer patients in this study exhibited
significantly high levels of oxidative stress markers such as MDA
and carbonyl contents.

Cancer is a dangerous disease and patients are extremely
fearful about its diagnosis and prognosis, causing high levels of
distress (Smith, 2015). Long durations of anxiety and psychological
distress in cancer patients lead to depression, with subsequent
higher rates of mortality (Colleoni et al., 2000; Pinquart and
Duberstein, 2010). One study showed various levels of
depression can increase mortality rate by up to 39% (Satin
et al., 2009). Considering these findings, we have designed this
study, with two major types of cancer patients, i.e., breast and
prostate alone or along with depression, for which clinical and
immunological investigations were carried out to determine the
impact and role of depression in such patients.

Cytokines play an important role in imbalance of oxidative levels
and promote free radical production, which can alter DNA structure
and lead to DNA mutations (Kartikasari et al., 2021). Furthermore,
inflammatory cytokines are directly involved in epigenetic (Yasmin
et al., 2015) and post-translational modifications (Louis and
Bohjanen, 2017). In our results, cancer patients with depression
exhibited higher levels of inflammatory cytokines (IFN-γ, TNF-α,
and IL-6), as compared to the cancer patients without any depression.
Other clinical factors (FBG, HbA1c, and BMI) were also analyzed,
however, no remarkable changes were observed between patients and
the healthy controls. An important inflammatory marker, CRP, was
also found at significantly elevated levels in BC, PC, BCD, and PCD
compared to NH. However, the levels of CRP were higher in breast
and prostate cancer patients with depression as compared to BC and
PC patients, respectively.

Plasmid DNA was modified using hydroxyl radical, and the
structural alterations were observed using various biophysical
characterizations (spectroscopy and fluorometry). Significant
changes were found after the •OH modification of pDNA, as
compared to the native form.

Modified and native antigens were introduced into experimental
animals to check their antigenicity. •OH-pDNA exhibited a twofold
higher antibody titre after eight doses of the antigen as compared to
native pDNA. Antibody raised against •OH-pDNA was found to be
more specific to its antigen and gave 50% inhibition at lower
concentrations as compared to its native form. These results
showed •OH-pDNA is more immunogenic and produced higher
amounts of antibodies in animal model.

Previous studies showed the presence of autoantibodies against
various antigens in cancer patients with depression (Khan et al.,
2019b; Khan and Khan, 2020). In this study pDNA and •OH-pDNA
were used as antigens and cancer patients’ sera samples were
screened for the presence of antibodies against these antigens.
Direct binding ELISA showed, antigen •OH-pDNA was
recognized by higher levels of antibodies in cancer patients.
Highest levels of anti-•OH-pDNA Abs were detected in breast
cancer patients with depression followed by prostate cancer
patients with depression. Comparatively, breast cancer and
prostate cancer patients showed significantly lower levels of
antibodies against the modified antigen. However, this level was
still higher than the level of antibodies in normal human subjects.
Serum anti-•OH-pDNA Abs were tested for their specificity using
inhibition ELISA, which further ascertained direct binding results.
Highest levels of percent inhibition were detected in BCD followed
by PCD.

The findings from our study indicate that COVID-19 related
depression in male (Prostate cancer) and female (breast cancer)
cancer patients caused increased levels of oxidative stress, resulting
in alterations in nucleic acid molecules. Additionally, higher levels of
proinflammatory cytokines in depressed cancer patients further
exaggerated destruction due to molecular alterations. Modified
antigen showed high recognition of serum antibodies compared
to the native antigen. Cancer patients with depression showed the
higher levels of anti-•OH-pDNA Abs compared to the cancer
patients without depression.

5 Conclusion

Cancer management has been extremely challenging during
COVID-19 pandemic as there have been a lack of medical
facilities and oncologists or physicians as well as limited
availability of prescribed medications. Additionally, COVID-19
induced depression in a large population, including cancer
patients. Increased serum levels of oxidative stress markers,
inflammatory cytokines and an inflammatory marker were
detected in BCD and PCD as compared to BC and PC patients.
High levels of serum antibodies against •OH-pDNAwere detected in
BCD and PCD as compared to BC and PC patients. Furthermore,
inhibition ELISA also substantiated results of binding studies for the
presence of antibodies against hydroxyl radical modified pDNA in
BCD and PCD, as compared to BC and PC subjects. Thus, elevated
levels of oxidative stress and inflammatory conditions, concomitant
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with depression in cancer patients cause increased generation of
circulatory antibodies against autoantigens, which could lead to
disease progression and development of additional complications.
Thus, it is high time to address the impact of COVID-19 pandemic
related depression on the mental health of cancer patients in an
effort to provide focused medical care, treatment options and better
overall disease management.
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TheHRAS gene plays a crucial role in regulating essential cellular processes for life,
and this gene's misregulation is linked to the development of various types of
cancers. Nonsynonymous single nucleotide polymorphisms (nsSNPs) within the
coding region of HRAS can cause detrimental mutations that disrupt wild-type
protein function. In the current investigation, we have employed in-silico
methodologies to anticipate the consequences of infrequent genetic variations
on the functional properties of the HRAS protein. We have discovered a total of 50
nsSNPs, of which 23 were located in the exon region of the HRAS gene and
denoting that they were expected to cause harm or be deleterious. Out of these
23, 10 nsSNPs ([G60V], [G60D], [R123P], [D38H], [I46T], [G115R], [R123G], [P11OL],
[A59L], and [G13R]) were identified as having the most delterious effect based on
results of SIFT analysis and PolyPhen2 scores ranging from 0.53 to 69. The DDG
values −3.21 kcal/mol to 0.87 kcal/mol represent the free energy change
associated with protein stability upon mutation. Interestingly, we identified that
the three mutations (Y4C, T58I, and Y12E) were found to improve the structural
stability of the protein. We performed molecular dynamics (MD) simulations to
investigate the structural and dynamic effects of HRAS mutations. Our results
showed that the stable model of HRAS had a significantly lower energy value of
−18756 kj/mol compared to the initial model of −108915 kj/mol. The RMSD value
for the wild-type complex was 4.40 Å, and the binding energies for the G60V,
G60D, and D38Hmutants were −107.09 kcal/mol, −109.42 kcal/mol, and −107.18
kcal/mol, respectively as compared to wild-type HRAS protein had −105.85 kcal/
mol. The result of our investigation presents convincing corroboration for the
potential functional significance of nsSNPs in augmenting HRAS expression and
adding to the activation of malignant oncogenic signalling pathways.
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1 Introduction

The HRAS gene is identified as the Harvey rat sarcoma viral
oncogene homolog and is responsible for encoding a GTPase
protein of small stature that belongs to the RAS family. A
plethora of cellular processes, comprising proliferation,
differentiation, and survival, are subject to regulation by this
particular intracellular signalling pathway (Rajalingam et al.,
2007). Genetic alterations in RAS genes, notably in HRAS, are
among the most common mutations detected in human cancers
(Kawazu et al., 2013). The aberrant functioning of the HRAS protein
instigates the activation of downstream signalling pathways, namely,
MAPK/ERK and PI3K/AKT, which are critical in promoting cell
proliferation and survival. Notably, these pathways are often
disrupted in cancer, thereby underscoring their significant
contribution to the disease’s pathogenesis (De Luca et al., 2012;
Asati et al., 2016). Several studies have confirmed the involvement of
HRAS mutations in various cancers, including bladder, colon, head
and neck, lung, and thyroid cancers (Ngan et al., 2022). For instance,
activating HRAS mutations have been found in up to 10% of thyroid
cancers, linked with aggressive disease and poor prognosis (Garcia-
Rostan et al., 2003).

Similarly, in bladder cancer, HRAS mutations have been
detected in 1%–2% of cases and are associated with high-grade
tumours and advanced disease (Nagata et al., 2016). Identifying and
characterizing HRAS mutations are vital for cancer diagnosis and
treatment. HRAS mutations may serve as biomarkers for cancer
diagnosis or prognosis or as targets for cancer therapies to inhibit
RAS signalling (Kompier et al., 2010). Research on HRAS and its
role in cancer remains an active area of investigation, with ongoing
efforts to identify new mutations and decipher their functional
consequences.

The HRAS gene and its protein product have significant
roles in tumour genesis by regulating fundamental cellular
processes such as growth, differentiation, and viability. In its
wild-type cellular context, the expression and activity of HRAS
are under the precise control of several signaling pathways,
especially the RAS-MAPK axis, which is vital for cellular
differentiation and growth. However, genetic mutations in
the HRAS gene can disrupt the balance of the RAS-MAPK
pathway, leading to unregulated cellular proliferation and
neoplastic transformation (Rezatabar et al., 2019; Ullah et al.,
2022). Such HRAS mutations have been consistently observed
in several types of cancer, including squamous cell carcinoma of
the head and neck, bladder cancer, and thyroid carcinoma
(Jefferies and Foulkes, 2001; Gilardi et al., 2020). Moreover,
the involvement of HRAS in cancer is not restricted to the RAS-
MAPK pathway alone, as it extensively interacts with other
pivotal signaling pathways and cellular processes, including but
not limited to the PI3K-AKT pathway, Wnt signaling pathway
and cytoskeleton. These intricate interactions facilitate the
promotion of a multitude of oncogenic processes, such as
cell survival, invasion, and metastasis. Therefore, the role of
HRAS in cancer is multifaceted and cannot be limited to a single
pathway or mechanism (Rezatabar et al., 2019; Shorning et al.,

2020). The intricate protein-protein interaction network
between HRAS and its downstream effectors in cancer cells
comprises several signaling molecules, kinases, and
transcription factors that are essential for malignant
transformation and disease progression. A comprehensive
understanding of this network can provide crucial insights
into the mechanisms of HRAS-driven cancer and facilitate
the development of innovative therapeutic interventions
targeted at HRAS and its downstream effectors (Khan et al.,
2020; Odeniyide et al., 2022).

Proteins exhibit nsSNPswhich can result in alterations in the
amino acid sequence. It is well-established that such modifications
have been linked to the initiation and advancement of cancer
(Masoodi et al., 2013; Wang et al., 2019). These variations can
arise in genes involved in cell growth regulation, such as oncogenes
or tumour suppressor genes. They may impede normal cellular
processes such as cell division and programmed cell death,
associated with malignant transformation. One of the
prototypical oncogenes affected by nsSNPs is the RAS gene
family, encompassing HRAS, which encodes small GTPases
involved in signalling pathways that control cellular proliferation,
differentiation, and survival (Khan and Bisen, 2013; Makrides et al.,
2017). Mutations in RAS genes, including nsSNPs, can activate these
pathways and subvert normal cellular regulation, thereby instigating
tumorigenesis. HRAS regulates several essential cellular processes,
including cell differentiation, division, and programmed cell death.
Mutations in HRAS have been observed in various cancers,
including bladder cancer, pancreatic cancer, and lung cancer.
NsSNPs within the coding region of HRAS may yield deleterious
mutations that impair the normal function of the HRAS protein
(Backwell and Marsh, 2022). Identifying and
characterisingIdentifying and characterising nsSNPs in cancer-
associated genes, including HRAS, is critical for comprehending
the mechanisms underlying cancer pathogenesis and devising
personalized cancer therapies (Pang, 2018). Computational tools
can aid in predicting the impact of nsSNPs on protein function and
can facilitate a deeper understanding of the contribution of these
genetic variations to cancer onset and progression (Jubb et al., 2017;
Ahmad et al., 2022).

The main objective of our research is identifying and
characterising nsSNPs in the HRAS gene and their potential
impact on the structure and function of the HRAS protein.
Specifically, we explore in silico approaches to predict the
effects of rare genetic variants on HRAS protein function,
identify the most deleterious nsSNPs, and investigate the
consequences of these mutations on the stability, flexibility,
and compaction of the HRAS protein using molecular
dynamics simulations. In this study, we also analyze the
binding energies of the wild-type and mutant HRAS protein
with docked complexes to understand the potential impact of
these mutations on the activation of oncogenic signalling
pathways. Our research provides compelling evidence for the
potential functional role of nsSNPs in up-regulating HRAS
expression and contributing to the development of various
types of cancers.
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2 Material and methods

2.1 Collecting and preparing SNP data

The ensuing discourse delineates the origins and manipulation
of Single Nucleotide Polymorphism (SNP) data garnered from
sundry databases like dbSNP (https://www.ncbi.nlm.nih.gov/snp/),
ENSEMBLE (https://ensemblgenomes.org/), SNP500 cancer
(https://pubmed.ncbi.nlm.nih.gov/), GeneCards (https://www.
genecards.org/), and UniPort (https://www.uniprot.org/), which
are periodically refreshed with new information. In particular, the
ENSEMBLE repository was availed to obtain the nucleotide and
protein sequences germane to the HRAS gene as per the methods
of earlier researchers (Buljan et al., 2018; Zafar et al., 2022). This
undertaking holds the promise of research prospects for exploring
genetic variations and their potential implications (Rajaram et al.,
2001).

2.2 Prediction of deleterious nsSNPs

The SIFT tool (https://sift.bii.a-star.edu.sg/) was employed to
forecast the impact of non-synonymous SNPs on the mutant protein
(Bromberg and Rost, 2007). This technique bifurcated the SNPs into
two categories, intolerant and tolerant, based on homologous
alignment (Seal et al., 2014). Precisely, amino acids with
normalization probabilities falling beneath the designated
threshold value were ascertained as intolerant, whilst those with a
tolerance index measuring over >0.05 were considered tolerant
(Dakal et al., 2017). The implications of this approach hold
potential research prospects in assessing genetic variations and
their resultant phenotypic outcomes (Pauls et al., 2013).

2.3 Structural homology-based approach:
Coding of nsSNPs

The PolyPhen2 tool (http://genetics.bwh.harvard.edu/pph2/)
was leveraged to predict the pernicious ramifications of nsSNPs
on the structural and functional aspects of proteins. This prediction
was based on the naive Bayesian algorithm, which involves
classifying scores from 0 to 1. Mutations were partitioned into
three categories, depending on the scores, with those possessing a
score closest to 1 being identified as probably damaging and
exhibiting a significant impact on protein structure.
Implementing this tool could potentially open up research
opportunities in the realm of genetic variability and its influence
on protein conformation and function.

2.4 Categorization of functional nsSNPs

Identifying functional nsSNPs was executed with the aid of
online servers, including SNP&GO (https://snps-and-go/), PhD-
SNP (https://snps.biofold.org/), PROVEAN (https://bio.tools/
provean), PANTHER (http://www.pantherdb.org/), and P-Mut
(https://bio.tools/pmut). In particular, PhD-SNP relied on
support vector systems to classify and depict the effects of non-

synonymous SNPs on proteins. This method divided nsSNPs into
deleterious or neutral categories (Li et al., 2006; Pauls et al., 2013).
Furthermore, the ROVEAN tool was utilized to identify damaging
SNPs by classifying mutations into deleterious or neutral depending
on a threshold score of −2.5. At the same time, SNP&GO relied on
the support vector machine algorithm (Sharma et al., 2022). Lastly,
P-MUT employed the neural networking algorithm to segregate
mutants into disease or neutral based on probability statistics of the
sequences (Shinwari et al., 2022). These techniques could potentially
unlock research opportunities in the sphere of genetic variations and
their ramifications on protein function and structure (Singh et al.,
2007).

2.5 Identification of nsSNPs on the coding
area of protein

The SNP SnpEff and SnpSift (http://pcingola.github.io/SnpEff/)
tool box was implemented to foretell the impact of nsSNPs on the
coding region of the HRAS protein as per earlier researchers
(Hossain et al., 2020). Apart from exhibiting the outcomes in
conservation scores, the program also identified the protein
homeostasis landscape (Han et al., 2020). The SNP effect used
several software and tools to discover the propensity, including
the aggregation tendency of the mutant via TANGO (https://
switchlab.org/software/), amyloid propensity through WALTZ
(https://switchlab.org/software/), and chaperone binding with
LIMBO as per investigation of the earlier researcher (De Baets
et al., 2012). These sophisticated methodologies can foster new
research avenues for exploring the complex interplay between
genetic variations and protein homeostasis.

2.6 Influence of non-synonymousmutations
on protein stability (INPS)

The I-MUTANT 3.0 suit (https://bio.tools/i-mutant_suite) was
utilized to prognosticate the impact of mutations on the stability of
the HRAS protein, with the MUpro program (https://mupro.
proteomics.ics.uci.edu/) being employed to validate the outcomes
(Venkata Subbiah et al., 2020). Both servers rely on the same
algorithm and are designed to evaluate the influence of
mutations on protein stability, whether it is enhancing or
diminishing it (Dehouck et al., 2011). Furthermore, the SRide
server (http://sride.enzim.hu/) was leveraged to pinpoint the
stabilizing residues of the native and mutant proteins (Kotha,
2010). The integration of these advanced computational
techniques holds great promise for driving further research in
protein stability and its response to genetic variations.

2.7 Conservational analysis of HRAS protein

The ConSurf server (https://consurf.tau.ac.il/consurf_index.
php) was deployed to thoroughly analyze each amino acid’s
conservation and evolutionary aspects in the HRAS protein
(Kumar et al., 2021). The outcomes were presented as diverse
conservation scores, ranging from 1 to 9. Scores from 1 to
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3 corresponding to variable positions, while scores from 4 to
6 indicated amino acid positions that were moderately conserved.
Furthermore, scores falling within the range of 7–9 represented
highly conserved positions of amino acids. Utilizing this cutting-
edge technology can pave the way for further protein evolution and
conservation research, thereby expanding our knowledge of the
complex interplay between genetics and protein function
(Gourbal et al., 2018).

2.8 Molecular docking

We investigated the effects of mutations on the structure and
function of the HRAS protein employing molecular docking analysis
(Hossain et al., 2020). To achieve this, they acquired the three-
dimensional configuration of the HRAS protein (PDB ID: 6MQT)
from the Protein Data Bank. They transferred it into the MOE
software (https://www.chemcomp.com/Products.htm) as per the
method of the earlier researcher (Bhattacharya et al., 2017).

For the docking process, we excluded heteroatoms, ligands, and
aqueous molecules from the structure. We conducted structural
refinement employing definite parameters, such as energy
minimization concerning 0.1 gradients, addition of hydrogen atoms,
and utilization of the MMFF94X force field. We recognized an active site
within the protein, encompassing a critical area of interacting residues.

Utilizing the MOE software, we performed molecular docking
simulations for both standard and mutated molecules, storing the
results in mdb format for further analysis (Ahmad et al., 2015). The
highest-ranking postures underwent further refinement and
calculation of binding free energies (ΔG) by employing the
scoring function (GBVI/WSA dg). The scoring function is
grounded on several molecular interactions, such as pi, hydrogen,
and hydrophobic interactions. It presents a dependable scoring
method that yields the docking score of the correct binding
postures (Jin et al., 2023).

We meticulously surveyed the docked complex’s MOE database
to understand the mode of binding interactions of the wild-type and
mutated complex (Niranjan et al., 2021). This exploration enabled
the research team to identify possible impacts of mutations on the
protein’s structure and function, providing insightful discoveries for
further investigations in the field.

2.9 Molecular dynamics (MD) simulation

We employed the Schrodinger 2021.2 software suite for their
computational investigations (Kutzner et al., 2022)., The initial
structures were drawn using Maestro 12.8 and subsequently
ionized with Epik 3.2 program at a pH of 7.4 using Ligprep 3.4
(https://www.schrodinger.com/products/ligprep) as per the analysis
of (Santana-Romo et al., 2020). This protocol was carried out to
produce the requisite starting structures for molecular dynamics
(MD) simulations.

We perform calculations to produce MD simulation trajectories
across various intervals during the simulation run (Galindo-Murillo
et al., 2015). After docking, the conformational study of three
complexes was executed with the MacroModel 10.8 module
(Kellici et al., 2019). This module employs a torsional sampling

approach for all conformational searche:a Monte Carlo multiple
minimum method (Li and Scheraga, 1987). The highest energy
conformers were removed using a 21 kJ mol1 energy limit. Each
conformer was reduced for a maximum of 2,000 steps using the
Polak-Ribiere conjugate gradient technique, with a gradient
convergence threshold of 0.001 kJ mol1 A˚ 1, and the
OPLS3 force field was utilized for this process. The OPLS3 force
field is advantageous for small molecules because it delivers accurate
energy minimization potential functions (Harder et al., 2016).

The team employed MD simulation to appraise the stability of
the enzyme-inhibitor complex and explore the conformational
aspects of protein-ligand interactions (Amaral et al., 2017). The
conformational variations and stability index of secondary structural
components of the simulated complexes were assessed utilizing data
reduction techniques such as root-mean-square deviation (RMSD),
root-mean-square fluctuation (RMSF), the radius of gyration (Rg),
and beta-factor values as per earlier researcher (Kumar et al., 2019).
We employed a suite of computational software to perform
molecular dynamics simulations and scrutinize the
conformational aspects of protein-ligand interactions. They used
diverse techniques to appraise the stability and conformational
variations of the simulated complexes.

3 Results and discussion

3.1 Compilation of a single nucleotide
polymorphism (SNP) library

We aimed to construct a comprehensive SNP database for the
HRAS gene, a human gene that encodes for the protein HRAS
(Hossain et al., 2020). The team utilized various bioinformatics tools
and databases to achieve this goal, including the Ensemble genome
browser, Gene card, Uniprot, and NCBI db-SNP (Phillips, 2009).
These resources provide access to various genetic and protein-
related information, which the team could use to identify and
analyze SNPs in the HRAS gene (Kohl et al., 2015). Our analysis
was on non-synonymous SNPs (nsSNPs), which are genetic
variations that change the amino acid sequence of the protein
encoded by the HRAS gene (Chai et al., 2022). These variations
are more likely to impact the structure and function of the HRAS
protein, potentially leading to changes in protein activity and, in
turn, contributing to disease development.

We specifically looked for nsSNPs located within the HRAS
gene’s exon region, which is the coding region translated into
protein (Tarek et al., 2021). They identified the location and
nature of each nsSNP and determined its frequency in different
populations. However, during their analysis, we observed that many
SNPs were located in the intron region of the HRAS gene (Estep
et al., 2006). Intron regions are non-coding regions of the gene and
traditionally were thought to be non-functional. However, recent
studies have suggested that intronic SNPs could also have a role in
regulating gene expression and splicing and may contribute to
disease susceptibility (Meyer et al., 2008). Therefore, we also
analyzed the potential impact of these intronic SNPs on HRAS
gene expression and splicing as per earlier investigations (Vornholt
et al., 2021). The distribution of SNPs in a different region of human
HRAS gene is represented in Figure 1.
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Our work involved using various bioinformatics tools and
databases to map a comprehensive SNP dataset for the HRAS
gene, focusing on non-synonymous SNPs in the exon region
(Rivera et al., 2005). This dataset could provide valuable insights
into the genetic variations contributing to disease development and
help develop personalized medicine approaches (Hamburg and
Collins, 2010).

3.2 Evaluation of non-synonymous (nsSNP)
SNPs

We use the SIFT (Sorting Intolerant from Tolerant) algorithm
to predict the impact of non-synonymous SNPs (nsSNPs) on the
structure of the HRAS protein (Chai et al., 2022). The SIFT
algorithm uses homologous protein sequences to determine
which amino acid substitutions are likely to be tolerated and
which are likely deleterious (Ng and Henikoff, 2001). The
algorithm’s output is a tolerance index (TI) score, ranging from
0 to 1, with lower scores indicating a greater likelihood of harmful
consequences. We submitted 50 nsSNPs to the SIFT algorithm for
analysis (Savas et al., 2004). The of 23 SNPs were identified with TI
scores ranging from 0 to 0.04, with 28 having a TI score of 0,
indicating highly deleterious consequences. This means that these

nsSNPs are likely to impact the structure and function of the HRAS
protein significantly and the result matched with earlier research
(Chai et al., 2022). Multiple SNPs had a TI score of 0.01, one had a
score of 0.02, and one had a score of 0.004, suggesting only minor
importance.

We noted a high frequency of substitutions involving cytosine
and thymine or guanine and adenine, while substitutions involving
adenine and thymine or adenine and cytosine were rare (Kim et al.,
2019). This information could provide important insights into the
mechanisms by which these nsSNPs affect HRAS protein function
and may be helpful in developing targeted therapies for diseases
caused by HRAS mutations as per the investigation of the earlier
researcher (Chai et al., 2022). Overall, the use of the SIFT algorithm
provides valuable information for understanding the impact of
nsSNPs on the HRAS protein and could potentially contribute to
the development of new treatments for diseases caused by HRAS
mutations (Hossain et al., 2020).

3.3 Identification of functional modifications
in coding nsSNPs

We describe the results of further analysis of 50 selected
nsSNPs submitted to a server and utilized the

FIGURE 1
SNP distribution in a different region of the human HRAS gene.
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PolyPhen2 algorithm to predict the impact of nsSNPs on
protein structure. The algorithm provides a score between
0 and 1, with a higher score indicating a greater likelihood of
deleterious consequences. Out of the 50 nsSNPs submitted, only
10 had a probabilistic score greater than 0.97, indicating that
they were probably damaging nsSNPs. The total of 10 nsSNPs
had scores higher than 0.83, which were classified as possibly
damaging. We exactly identified seven nsSNPs (G75R, P34S,
G60D, G60V, T58I, G60D, and A146P) with a maximum score
of 1, indicating a high probability of being damaging. Most of
the remaining mutations had scores in the range of
0.98 to −0.99. We also compared the results obtained from
SIFT and PolyPhen2 and observed that ten nsSNPs were
identified as common between the SIFT and
PolyPhen2 analyses, despite using different methods to
obtain results. The SIFT algorithm utilizes structural detail
to yield results, while PolyPhen2 is based on structure and
has shown a good correlation with the SIFT approach. Finally,
we observed that most nsSNPs had a SIFT tolerance index of
0.00, indicating that they were highly intolerant to variation,
while their PolyPhen2 scores were >0.90 and based on these

findings, we concluded that these alterations may be responsible
for disease.

3.4 Phenotypic impact of mutations

The SNP-effect tool assesses the potential effects of genetic
variants on protein structure and function. We also evaluate the
phenotypic impact of alterations within the HRAS molecule.
Specifically, the approach evaluated chaperone binding
propensity, aggregation propensity, and amyloid tendency.
Chaperones are a class of proteins that assist in properly folding
and assembly of other proteins. A protein’s chaperone binding
propensity can provide insight into its stability and folding
efficiency. Aggregation propensity refers to the tendency of
proteins to form aggregates or clumps, which can interfere with
proper cellular function. The amyloid tendency measures a protein’s
ability to form amyloid fibrils, which are associated with several
diseases, including Alzheimer’s and Parkinson’s and Cancer. The
results of the SNP-effect analysis showed that the selected mutations
had little to no impact on chaperone binding propensity,

TABLE 1 Screening of most deleterious SNPs by using different software.

No. Variant ID Alleles Amino acid changes SIFT Polyphen2 Provean deleterious P-mut disease

1 rs756190012 C/T G75R 0.03 1 −7.893 0.69

2 rs730880460 C/A/T G60V 0 1 −6.760 0.66

3 rs121917758 G/A T58I 0 1 D −5.798 0.66

4 rs104894231 C/G/T A146P 0 1 −4.427 0.53

5 rs730880460 C/A/T G60D 0 1 −8.689 0.69

6 rs770492627 T/G T58P 0 0.999 −5.797 0.53

7 rs755488418 A/C M72R 0 0.999 −5.873 0.66

8 rs755322824 G/C S89C 0 0.999 −4.711 0.64

9 rs764622691 T/C Y4C 0 0.999 −6.949 0.66

10 rs730880464 C/G R123P 0 0.998 −5.560 0.69

11 rs750680771 C/G/T D38H 0 0.998 −6.461 0.66

12 rs1564789700 A/G I46T 0 0.998 −4.596 0.64

13 rs1554885139 C/T G15D 0 0.996 −5.631 0.63

14 rs1564789063 A/G M111T 0 0.995 −4.376 0.64

15 rs121917757 G/A/T Q22K 0 0.993 −3.341 0.62

16 rs917210997 C/T G115R 0 0.993 −7.193 0.69

17 rs1370566417 A/T C80S 0 0.992 −7.008 0.64

18 rs1204223913 G/A G60V 0 0.99 −9.167 0.69

19 rs727504747 GC/AG A59L 0 0.988 −4.756 0.69

20 rs1427823770 A/C V112G 0 0.97 −6.172 0.67

21 rs104894228 C/A/G G13R 0 0.975 −6.676 0.66

22 rs898057728 G/A/S S65R 0 0.947 −4.536 0.67

23 rs727503094 GC/AG G12E 0.01 0.942 −6.114 0.66

Frontiers in Chemistry frontiersin.org06

Ali et al. 10.3389/fchem.2023.1173624

156

http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=209970891
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=205097900
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=108708025
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=90533204
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=205097900
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=233071580
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=209656939
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=209606626
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=230585591
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=205097986
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=207551923
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=620831009
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=618805037
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=620830254
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=108707861
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=280885458
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=561949826
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=452337085
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=205097090
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=592006764
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=90533015
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=259559463
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=205094948
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1173624


aggregation propensity, or amyloid tendency. However, it is essential
to note that this approach only evaluates a limited set of
characteristics and does not comprehensively assess all possible
effects. The findings suggest that the selected mutations may
have other potential impact on the structure and properties of
the HRAS protein, which could have significant implications for
biological organisms. Further experimental studies would be
necessary to fully understand the impact of these mutations and
their potential role in disease. Screening of most deleterious SNPs
using different software’s are mentioned in Table 1; the HRAS gene
encodes HRAS protein and plays an essential role in various cellular
processes, including cell proliferation, differentiation, and survival.
SNPs in the HRAS gene have been associated with multiple diseases,
including cancer, and can impact protein structure and function.
Therefore, identifying deleterious SNPs in the HRAS gene is crucial
for understanding disease mechanisms and developing potential
treatments.

Screening potentially deleterious SNPs in the HRAS gene is
essential to understanding the possible impact of genetic variations
on the protein’s function (Chai et al., 2022). Several software tools
have been developed to analyze the potential effect of SNPs on
protein structure and function (Paniri et al., 2021). We applied SIFT,
PolyPhen2, and SNP-effect to predict the impact of nsSNPs on the
HRAS protein. The SIFT algorithm is a sequence-based tool that
utilizes sequence homology to predict the potential effect of nsSNPs
on protein function. SIFT analysis identified 23nsSNPs with TI
scores ranging from 0.53 to 69, suggesting highly deleterious
consequences. PolyPhen2 is a tool that combines sequence-based
and structure-based predictions to predict the effect of nsSNPs on
protein structure and function. We found that G75R, P34S, G60D,
A59L, G60V, I46T, D38H, T58I, and A146P had a maximum score

of 1, while most mutations had scores in the range of 0.98 to −0.99. A
total of 10 nsSNPs were identified as standard between the SIFT and
PolyPhen2 analyses, despite using different methods to obtain
results.

The SNP-effect tool is a computational pipeline that assesses the
effect of SNPs on protein properties, such as chaperone binding
propensity, aggregation propensity, and amyloid tendency (Ji et al.,
2021). We found that the selected alternate variants did not
significantly impact these characteristics. However, they suggested
that variations in protein structure and properties resulting from
these SNPs could still significantly impact biological organisms. In
summary, the use of multiple software tools to predict the effects of
nsSNPs on the HRAS protein provides a more comprehensive
understanding of the potential consequences of genetic variations,
where earlier researchers (Hossain et al., 2020; Chai et al., 2022) also
explore and indicate exact predictions. The SIFT and
PolyPhen2 analyses identified several nsSNPs with a high
likelihood of deleterious consequences. In contrast, the SNP-
effect study showed that the selected nsSNPs did not significantly
affect the protein’s chaperone binding, aggregation propensity, or
amyloid tendency. These findings could have implications for
understanding the role of HRAS mutations in developing various
diseases.

3.5 Effect of mutation on stability of HRAS

The stability of a protein is crucial for its proper function, and
destabilizing mutations can lead to the misfolding and aggregation
of the protein, resulting in various diseases (Gámez et al., 2018). We
explored the effect of different mutations on the stability of the
HRAS protein and assessed using I-MUTANT and MUpro for final
results and validations. The Delta Gibbs free energy (DDG) values
were calculated to determine the stability of the protein, and a DDG
value lower than 0 indicated a destabilizing mutation. The
I-MUTANT (https://folding.biofold.org/i-mutant/i-mutant2.0.
html) server predicted that most modifications can decrease the
stability of the HRAS protein, with DDG values ranging from −3.
21 kcal/mol to 0.87 kcal/mol. The most significant effect was
observed with the I46T mutation, which had a DDG value of −3.
21 kcal/mol. Only three mutations, Y4C, T58I, and Y12E, showed
perfection in the structural stability of the protein. The MUpro
server (https://mupro.proteomics.ics.uci.edu/) provided similar
results, except for the Y4C, G12E, and T58I mutations, which
showed a decrease in stability. The G15D mutation showed an
increase in strength in the MUpro prediction, while I-MUTANT
predicted a reduction in stability and the results are summarized in
Table 2.

The differences in predictions between the two servers can be
attributed to their different calculation methods. I-MUTANT uses a
support vector regression algorithm based on various structural
properties of the protein, such as solvent accessibility and secondary
structure, to predict the DDG values. In contrast, MUpro employs a
neural network-based approach that incorporates sequence and
structural information, as well as evolutionary conservation, to
predict the effects of mutations on protein stability. The results
of this study indicate that several mutations within the HRAS gene
can destabilise the protein, potentially resulting in disease.

TABLE 2 Non-synonymous single nucleotide polymorphisms (nsSNPs) and
their predicted effects on protein function.

Variant ID Position Wild type Mutant DDG value

rs730880460 60 G D −2.19

rs121917758 58 T I 0.28

rs730880460 60 G V −1.22

rs764622691 4 Y C 0.62

rs730880464 123 R P −1.13

rs750680771 38 D H −1.57

rs1564789700 46 I T −3.21

rs1554885139 15 G D −0.4

rs917210997 115 G R −0.98

rs369106578 123 R G −1.01

rs1204223913 110 P L −0.87

rs727504747 59 A L −0.32

rs104894228 13 G R −1.27

rs1564789552 64 Y H −0.94

rs727503094 12 G E 0.87
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Identifying these destabilizing mutations can provide insights into
the molecular mechanisms of HRAS-associated diseases and may
aid in developing new therapeutic strategies.

Our results indicated that most of the mutations decreased the
stability of the HRAS protein, while only a few improved it. The
mutation with the most significant effect on stability was I46T, with
a DDG value of −3.21 kcal/mol. The I-MUTANT server predicted
that 15 mutations, including Y4C, G12E, G13R, G15D, D38H, I46T,
T58I, A59L, G75R, P34S, G60D, G60V, G115R, R123G, and R123P,
decreased the stability of the protein, while Y4C, T58I, and Y12E
improved it. The MUpro server provided similar results, except for
Y4C, G12E, and T58I mutations, which showed decreasedd stability,
contrary to the I-MUTANT prediction. Additionally, MUpro
predicted I-MUTANT predicted a decrease inincreased stability
for the G15D mutation, and I-MUTANT predicted decreased
stability. The DDG values of most mutations ranged
from −3.21 kcal/mol to 0.87 kcal/mol, indicating reduced protein
stability with a DDG value lowers than 0. The results suggest that
mutations can significantly affect the HRAS protein’s stability,
which may impact the biological organism. Further research may
be required to understand the specific effects of each mutation on
HRAS protein stability and its overall impact on biological systems.

3.6 Conservation analysis

The ConSurf server (https://consurf.tau.ac.il/consurf_index.
php) is a valuable tool for determining the evolutionary
conservation of protein residues across a set of homologous
sequences. The conservation scores of HRAS protein residues
were analyzed using ConSurf to evaluate the impact of the
10 deleterious mutations on the protein structure and
function. Out of the 10 deleterious mutations, 6 missense
mutations (G13R, D38H, A59L, G60V, G60D, G115R, R123P,
and R123G) were located in highly conserved regions (7–8–9).
This finding suggests that mutations in these regions could
significantly affect the function and structure of the HRAS
protein. Additionally, G13R, D38H, and I46T were predicted
to be exposed, while mutants such as A59L, G60V, G60D,

Q60D, R123P, and R123G were expected to be functional
and revealed mutations.

The conservation analysis showed that onemutation was located
in a variable region (1–2–3) and one in an average part, indicating
that these mutations may have a milder effect on the protein
structure and function. These findings suggest that highly
conserved regions of HRAS protein are more sensitive to
mutations that could impact the protein function. These results
provide insights into the functional and structural effects of the
10 selected deleterious mutations on the HRAS protein. By
identifying the regions that are highly conserved and sensitive to
mutations, this study can help researchers better understand the
consequences of HRAS mutations and may lead to new treatments
for diseases associated with HRAS mutations.

3.7 3D structures

The Protein Data Bank (https://www.rcsb.org/) provides an
extensive collection of experimentally determined protein
structures that can be used for structural analysis (Protein Data
Bank, 2019). In this study, we obtained the wild-type entire structure
of the HRAS protein with its PDB ID: (6MQT) from the PDB. The
protein structure was analyzed to identify features such as active
sites, protein-protein interface sites, domain motifs, and ligand-
binding affinities. The three-dimensional structure of HRAS was
visualized in Figure 2, where the protein’s helices, beta-sheets, and
coils were represented by yellow, cyan, and green colors,
respectively. The structure of HRAS showed that it consists of
five alpha-helices and six beta-strands, which are arranged in a
characteristic fold called the G-domain as per earlier researcher
investigations (Korzeniecki and Priefer, 2021). The G-domain
contains the nucleotide-binding site, which is responsible for the
hydrolysis of GTP to GDP, and plays a crucial role in regulating
HRAS activity (Liu et al., 2019).

The protein structure was further analyzed to identify potential
active sites and protein-protein interface sites, which can be targeted
for drug design as per the results of researchers (Velazquez et al.,
2018; Lin et al., 2020). In addition, the ligand-binding affinities of

FIGURE 2
3D Structure of HRAS protein.

Frontiers in Chemistry frontiersin.org08

Ali et al. 10.3389/fchem.2023.1173624

158

https://consurf.tau.ac.il/consurf_index.php
https://consurf.tau.ac.il/consurf_index.php
https://www.rcsb.org/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1173624


HRAS were predicted to identify potential small molecule inhibitors
that can be used to target the protein in various diseases. The three-
dimensional structure of HRAS provides essential insights into this
protein’s function and regulation. It can be used to guide the design
of new therapeutics for the treatment of HRAS-related diseases, as
shown in an earlier exploration by Ahmad et al. (2022).

3.8 Mapping of most deleterious nsSNPs on
HRAS gene

The mapping of the 10 most deleterious nsSNPs on the HRAS
protein structure using mutagenesis techniques in Pymol software (as
shown in Figure 3) provides a visual representation of the location and
distribution of these mutations on the protein. The mutations were
distributed throughout the protein structure, with several mutations
located in the Group-I (G12E, G13R, G15D) and Group-II (Q61L,
A59L) regions, which are known to play a crucial role in HRAS
activation. Mutations in these regions can potentially lead to impaired
GTPhydrolysis, affecting the normal functioning of HRAS.Moreover,
several mutations were located in or near the protein’s active site
(D38H, G60D, G60V), which could interfere with HRAS’s ability to
interact with its downstream effectors and may impair its biological
functions. The mutagenesis techniques used in Pymol also showed
that some of the mutations (I46T, D38H, A59L, G60V) could form
hydrogen bonds with neighbouring residues, suggesting a possible
alteration of the protein’s conformation and potential effects on
protein stability. Mapping these deleterious mutations in HRAS
protein structure provides insights into how these mutations could
potentially impact the protein’s structure and function, providing a
foundation for further experimental investigation.

3.9 Structural analysis of HRAS protein

The native complete structure of HRAS was retrieved from the
Protein Data Bank, and the Swiss Model server (https://swissmodel.
expasy.org/) was used to predict the mutated form using homology
modelling approaches. The ten most deleterious mutations,

indicated by all the analyzing tools, were mapped in their
respective region of HRAS using mutagenesis techniques in
Pymol software, as shown in Figure 4. The mutated models were
generated to further investigate the effect of these mutations on the
HRAS protein structure, and energy minimization was carried out
using Schrodinger. The energy minimization process minimized the
energy and force acting on each atom in a gathering of atoms to
obtain the most thermodynamically stable HRAS structure. The
final and stable model of HRAS had an energy value of −18,756 kj/
mol, which was significantly lower than the energy value of the
initial model, which was −108915 kj/mol. This indicates that the
mutated models had a more stable conformation than the initial
models, after the energy minimisation process.

The deleterious mutated models of HRAS, including
rs730880460 (G60V), rs730880460 (G60D), rs730880464
(R123P), rs750680771 (D38H), rs1564789700 (I46T),
rs917210997 (G115R), rs369106578 (R123G), rs1204223913
(P11OL), rs727504747 (A59L), and rs104894228 (G13R), were
generated using Pymol software and compared with the native
HRAS protein structure. The mutations were observed to cause
structural changes in different regions of HRAS, and the energy
minimization process helped achieve more stable configurations.
The results suggest that these mutations could potentially affect the
function of HRAS and contribute to cancer development.

Each mutation can have different effects on the structure and
function of the protein. The specific effects of each mutation can
depend on a variety of factors, such as the location of the mutation in
the protein, the surrounding amino acid residues, and the protein’s
function as per the investigation of the earlier researcher (Cain et al.,
2020). For example, the G60Vmutation, predicted to be deleterious in
our analysis, is located in the Group-II region of the protein and can
cause problems in protein folding due to the larger size of the mutant
residue compared to the wild-type residue. This can prevent the
mutant residue from fitting correctly in the core region of the protein,
potentially leading to the destabilization of the protein structure.

Similarly, the G115R mutation, also predicted to be deleterious,
can lead to an incorrect conformation and disturbance of the local
structure of the protein due to the larger size of the mutant residue,
as a result, compare with (Wang S et al., 2022), and this result in loss
of protein function. The G13R mutation located in the G-domain in
the G-domain can cause loss of interaction because the mutant
residue is more minor and has a different hydrophobicity compared
to the wild-type residue as per earlier researchers (O’Bryan, 2019).
This can affect the interaction between HRAS and its downstream
effectors proteins, potentially leading to downstream signalling
defects. The D38H mutation can cause loss of interaction or
repulsion due to changes in charge, as the positively charged
histidinepositively charged histidine replaces the negatively
charged aspartic acid replaces the negatively charged aspartic
acid. This can affect the interaction of HRAS with its upstream
activators, potentially leading to downstream signaling defects.

3.10 Molecular docking of HRAS

Molecular docking is a computational method used to predict
the binding mode and affinity of small molecules to a protein as per
earlier researchers (Luo et al., 2019). In this study, molecular

FIGURE 3
Mapping of most deleterious nsSNPs.
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docking was applied to understand the effect of three deleterious
mutations, G60V, G60D, and D38H, on the binding pocket of the
HRAS protein. The HRAS protein structure with PDB ID: 6MQT
was imported into MOE software (https://www.chemcomp.com/
Products.htm), and the docked complexes of the wild-typeand
mutated protein with ligands were generated. The docked
complexes were analyzed for their docked score, hydrogen bonds,
and pi-interactions within the 4.5 Å. The active binding site residues
GLU62, GLY10, THR58, ASP33, ILE36, GLU63, TYR64, ALA11,
TYR96, GLY13, and LYS16 were identified to be involved in pi-
interactions and generate hydrogen bonds. The docked complexes
showed significant binding affinity and interactions with the active
binding site residues.

When the three deleterious mutations, G60V, G60D, and D38H,
were docked into the same binding pocket, the D38H residue was
found to be involved in the binding interactions. With G60V, three
hydrogen bonds were generated by the D38H residue, while one
hydrogen bond with D38H and two with G60D were observed. This
suggests that the D38H residue plays an important role in stabilizing
the conformation of the mutated HRAS protein and results were
compared with the investigation of the earlier researcher (Chai et al.,
2022). The docked complexes were further subjected to MD
simulation to analyze the stability and conformation of the wild-
type and mutated complexes as shown in Figure 5. The MD
simulation analysis revealed that the wild-type and mutated
complexes were stable during the simulation. The RMSD and
RMSF values were calculated, and it was observed that the

mutated complexes had higher RMSD and RMSF values
compared to the wild-type complex. This indicates that the
mutated complexes had a slightly different conformation than
the wild-type complex.

The -protein residues are shown as sticks, and the ligands are
shown in space-filling mode. The wild-typel protein and the three
mutated proteins are shown in different colors. The two-
dimensional plot of interacting target residues shows the residues
of the protein that areprotein residues involved in important
interactions with the ligands. The residues involved in hydrogen
bonding, Pi, and hydrophobic interactions are shown as circles in
different colors. The Non-mutant protein is shown in blue color, and
the residues involved in interactions with the ligands are labelled
with their residue numbers. The plot in Figure 5 shows that the
residues involved in interactions with the ligands are distributed
throughout the protein’s active site. The residues involved in
hydrogen bonding are mainly located in the loops and helices of
the protein. The residues involved in Pi interactions are primarily
situated in the helices and strands of the protein. The hydrophobic
residues are mainly located in the core of the protein as mentioned in
Figures 5A-D. For the G60V mutation, the plot shows that the
mutation affects the hydrogen bonding with residue D38H and
G60D mutation; the plot shows that the mutation affects the
hydrogen bonding with residue D38H and generates two new
hydrogen bonds with residue G60D. In D38H mutation, the plot
shows that the mutation affects the hydrophobic interactions with
the residues in the core of the protein. The plot provides valuable

FIGURE 4
Muatantstructure of HRAS protein.
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insights into the specific residues of the protein involved in the
interactions with the ligands and how the mutations affect these
interactions.

The 3D interaction study of the docked complexes of G60V,
G60D, and D38H with Non-mutant protein was performed to
visualize the interactions and understand the binding mechanism
of the mutated proteins with the Non-mutant protein as shown in
Figure 6. The results showed that the mutated residues interacted
with different residues compared to the Non-mutant protein. In the
case of G60V, the mutated residue interacted with residues GLY13,
ILE36, and GLU63. The GLU63 precipitate, which was involved in
Pi-interactions and hydrogen bonding in the Non-mutant protein,
did not form any interactions with the G60V mutated residue.
Instead, GLY13 and ILE36 residues formed new interactions with
the G60V mutated residue. This suggests that the G60V mutation
might have altered the interaction pattern in the active site of the
HRAS protein, which could affect the protein function.

In the case of G60D, the mutated residue interacted with
residues ALA11, GLY10, and TYR96. The ALA11 residue,
involved in Pi-interactions and hydrogen bonding in the Non-
mutant protein, formed new interactions with the G60D mutated
residue. Similarly, GLY10 and TYR96 residues also included new
interactions with the G60D mutated residue. This indicates that the
G60Dmutation might have altered the binding pattern of the HRAS
protein with ligands. In the case of D38H, the mutated residue
interacted with residues GLU62, GLY10, and TYR64. The
GLU62 residue, involved in Pi-interactions and hydrogen
bonding in the Non-mutant protein, formed new interactions
with the D38H mutated residue.

Similarly, GLY10 and TYR64 residues also formed new
interactions with the D38H mutated residue. This suggests that
the D38H mutation might have affected the ligands’ binding in the
HRAS protein’s active site. Overall, the 3D interaction study
revealed that the mutated residues interacted with different

FIGURE 5
Visualizing structural changes in active site of HRAS protein due to mutations: Insights from hydrogen bonding and hydrophobic interactions.
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residues compared to the Non-mutant protein, which could affect
the protein-ligand interactions and the function of the HRAS
protein.

3.11 Molecular dynamic simulations

The RMSD analysis is an essential tool for understanding the
structural stability of a protein-ligand complex over a given time
interval. The present study focused on analyzing the root-mean-
square deviation (RMSD) values of protein-ligand complexes of
HRAS in both APO and docked states, to examine the impact of
three mutations, namely, G60V, G60D, and D38H, on the stability of
the complexes. The findings of this study revealed that the wild-type
HRAS complex demonstrated a greater degree of fluctuation
compared to both the APO and mutated complexes. These
results provide valuable insights into the effects of specific
mutations on the stability of protein-ligand complexes and
contribute to a better understanding of the dynamics of HRAS
proteins in different states. The mean RMSD value of the wild-
typecomplex was 4.40 Å, indicating that the protein underwent
secondary structure changes with high loop regions compared to
the average RMSD values of the mutated models. The mutated
models (G60V, G60D, and D38H) decreased mean square
calculation upon mutation, indicating a more stable environment
and compactness of the whole system. The RMSD of the apoprotein
was themost durable among all the protein models (Roy et al., 2022),
with a value of 3.14 Å, as shown in Figure 7.

The results suggest that the mutations in the HRAS protein can
lead to a more stable protein-ligand complex structure. The RMSD

analysis also revealed that the ligand remained fixed throughout the
simulation time interval, indicating that the mutations did not cause
any significant changes in the ligand’s position or displacement. The
RMSD analysis supports the conclusion that the mutations have a
stabilizing effect on the protein-ligand complex. The minor
fluctuations observed in the wild-type complex may indicate a
higher degree of flexibility, potentially leading to changes in the
protein-ligand complex’s structural framework.

FIGURE 6
The 3D interaction of the docked complexes (G60V, G60D and D38H with Non-mutant protein).

FIGURE 7
The RMSD of the APO protein was TheMost Stable among All the
Protein Models, with a Value of 3.14 Å as Shown in Figure 7.
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The RMSF plot was generated to understand the fluctuation and
stability of protein residues over the simulation period of 100 ns. The
RMSF graph showed that the residues of the normal HRAS complex
exhibited higher instability in comparison to the mutated and APO
models, indicating more flexibility and conformational changes in
the normal complex. The residues that showed higher RMSF values
in the wild-type HRAS complex include Ser157, G12E, ILE46, and
ASP47, which experienced significant structural changes concerning
APO protein. On the other hand, the mutated complexes (G60V,
G60D, and D38H) showed decreased RMSF values compared to the
wild-type HRAS complex, indicating higher stability and less
conformational changes, which are shown in Figure 8. The
residues that exhibited high RMSF values in the mutated models
were similar to those in the wild-type HRAS complex, including
ILE46 and ASP47, but with lower fluctuations.

Notably, the residues ASN26 and ASP33 of the mutated
complexes showed higher RMSF values than the wild-typw
HRAS complex, indicating more fluctuations and conformational
changes. These residues also showed significant structural changes
during the simulation time, which may affect the stability and
binding affinity of the mutated HRAS complex with ligands. The
RMSF plot indicated that the mutated HRAS complexes were more
stable than the wild-type complex, as evidenced by the lower RMSF
values. However, some residues still experienced fluctuations and
conformational changes, which could affect the stability and
functionality of the protein-ligand complex.

The RMSF analysis provides information about the flexibility
and fluctuation of each residue in the protein structure. The RMSF
analysis revealed that the fluctuations occurred at the residual level,
leading to the s system stability. The RMSF values showed changes
occurring in regions other than the active site, which resulted in
relatively more significant fluctuations. The loops in the protein
structure are flexible regions, and upon ligand binding during MD
simulations, they start changing their configuration at different
intervals. The fluctuations in the loops and other flexible regions

can be observed in the RMSF analysis. It can provide valuable
information about the changes in the protein structure that occur
during the simulation.

The radius of gyration measures the compactness of the protein
structure (Ahmed et al., 2020). It provides information about the
average distance of all the atoms in the protein structure from the
centre of mass. In this study, the radius of gyration analysis showed
that the protein structure remained stable throughout the simulation
time intervals. Although the radius of gyration values did not show
any significant difference among all the proteins, it still provided
helpful information about the compactness of the protein structure.
The RMSF and radius of gyration analyses offered valuable
information about the stability and structural changes in the
protein-ligand complex during the MD simulations as mentioned
in Figure 9. These analyses can be helpful in understanding the
dynamic behaviour of the protein-ligand complex and provide
insights into the binding mechanism of the ligand to the protein
target.

The beta (B)-factor, also known as the temperature factor,
measures a protein’s thermal stability and flexibility as per earlier
researcher (Mao et al., 2020). It is calculated from the atomic
displacement parameters obtained from X-ray crystallography
experiments. The B-factor reflects a protein’s atomic vibrations
and thermal motion, with higher values indicating greater
mobility and lower stability (Wang W et al., 2022). The B-factor
is often used to identify regions of a protein that are flexible or
disordered (Vander Meersche et al., 2021). The root-mean-square
fluctuation (RMSF) is another measure of a protein’s thermal
stability and flexibility, based on the atomic changes of a protein
over time (Khan et al., 2021). It indicates the amount of localized
atomic fluctuations in a protein, which contribute to its overall
vibration movement and thermal stability.

The study used the B-factor and RMSF to investigate the thermal
stability and flexibility of different HRASmodels, including the APO
(no ligand bound), wild-type, and mutant (G60V, G60D, and
D38H) HRAS models. The average B-factor values were

FIGURE 8
Conformational changes in structure that occurred in the
docked protein complex at different time intervals.

FIGURE 9
The protein Structure’s Stability throughout Simulation Time
Interval.
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determined for each model, and the RMSF results were compared
with the B-factor data. The results showed that the average B-factor
values were highest for the G60D and wild-type HRAS models,
indicating that these proteins had greater mobility and lower
stability as mentioned in Figure 10. The lowest B-factor value
was observed for the apo HRAS model, suggesting that this
protein was the most stable. The G60V and D38H HRAS models
had intermediate B-factor values, indicating moderate thermal
instability.

The RMSF results also showed that the thermal instability was
higher at specific residues in the different HRAS models. These
results were consistent with the B-factor data, as shown in Figure 11.
In particular, residues 7, 13, 27, 38, and 50 had higher RMSF and
B-factor values, indicating that these residues were more flexible and
less stable in all the HRAS models. The study suggests that the
B-factor and RMSF analyses can provide valuable insights into
proteins’ thermal stability and flexibility. The results can be used
to identify protein regions that are likely to be flexible or disordered,
which could be important for understanding protein structure and
function and drug design and development.

Hydrogen bonds are weak interactions between a hydrogen
atom bonded to an electronegative atom (such as oxygen or
nitrogen) and another electronegative atom in a nearby molecule
(Karas et al., 2020). In biological systems, hydrogen bonds play a
crucial role in determining the specificity and directionality of
molecular recognition between molecules such as proteins,
nucleic acids, and carbohydrates (Vladilo and Hassanali, 2018).
In the study, the number of hydrogen bonds in the APO protein
and all four HRAS complexes (including the G60V, G60D, and
D38H mutants) were analyzed over time. The average number of
hydrogen bonds was recorded for each system, and the results were
presented in a time-dependent manner. The goal was to test the
degree of intermolecular association across the simulation period
and to investigate the effect of mutations on hydrogen bonding in
the active site of the HRAS protein.

The results showed that the average number of hydrogen bonds
was highest for the D38H mutant (138.9) and lowest for the G60V
mutant (127.5), with the APO protein (133.6) and G60D mutant
(136) having intermediate values. This suggests that the mutations
can affect the number of hydrogen bonds formed within the active
site of the HRAS protein. The hydrogen bond analysis also revealed
that the number of hydrogen bonds decreased upon the D38H
mutation and increased significantly upon the G60V, G60D, and
D38H mutations. This suggests that the modifications can affect the
hydrogen bonding patterns within the active site of the HRAS
protein and potentially alter its structure and function. Figure 11
visually represents the number of hydrogen bonds formed in all
three complexes over time. The data in the figure shows that the
number of hydrogen bonds fluctuates over time, indicating that the
interactions between the molecules are dynamic and can change
with time. The analysis of hydrogen bonding patterns in the HRAS
protein provides valuable insights into the molecular recognition
and specificity of the protein. The results suggest that mutations can
significantly affect the number of hydrogen bonds formed in the
protein’s active site, which could impact its function and potentially
lead to disease.

3.12 MM-GBSA analysis

In molecular docking and drug design studies, it is essential
to estimate a ligand’s binding affinity to its target protein. One
commonly used method for calculating binding energies is the
molecular mechanics/generalized born surface area (MM-
GBSA) approach (Pang et al., 2021). This method combines
molecular mechanics force fields with implicit solvent models
and can provide estimates of the relative binding free energies of
different ligands to a target protein. In the study mentioned, the
MM-GBSA approach was used to calculate the binding energies
of the G60V, G60D, and D38H mutants and the normal HRAS
protein. The results showed that all four systems had highly
favourable binding energies, with the mutants having the

FIGURE 10
The beta (B)-factor, also known as the temperature factor,
measures the thermal stability and flexibility of a protein.

FIGURE 11
Presenting the number of hydrogen bonds of all three complexes
with the time interval of 100 ns.
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highest. The table presented in the study (Table 3) showed that
the binding energies for the G60V, G60D, and D38H mutants
were −107.09, −109.42, and −107.18 kcal/mol, respectively. The
Wild-type HRAS protein had a binding energy
of −105.85 kcal/mol.

In addition to examining the RMSDvalues, this study delved deeper
into the binding energies of the protein-ligand complexes by
scrutinizing their components. This comprehensive analysis
facilitated a meticulous investigation of the specific interactions that
play a role in determining the overall binding affinity, including van der
Waals forces, electrostatic interactions, and hydrogen bonding. The
outcomes of this investigation furnished valuable insights into the
fundamental nature of the protein-ligand interactions, unravelling
the intricacies of the underlying mechanisms that govern the
binding affinity of these complexes. These findings have far-reaching
implications for developing novel therapeutics targeting HRAS and
allied proteins. An enhanced understanding of the binding energies can
optimize drug efficacy and specificity and pave the way for developing
more potent and targeted treatments. The results showed that the
favourable Van der Waals and Coulombic interactions were the main
contributors to the high binding energies in all four systems. Van der
Waals interactions are attractive forces between atoms and molecules
nearby, while Coulombic interactions are electrostatic forces between
charged particles. The study also noted that Coulombic interactions
reduced the binding affinity of some ligands towards the active site
residues. This is because electrostatic repulsion between negatively
charged ligands and negatively charged residues in the active site
can decrease the strength of the binding. MM-GBSA calculations
performed in this study provided insights into the binding energies
and components of the G60V, G60D, and D38Hmutants, as well as the
normal HRAS protein.

Table 3 illustrates the prime MM-GBSA calculations for the
G60V, G60D, and D38H mutants and the normal HRAS protein.
The results exhibit various constituents of the binding energies,
comprising Coulomb solute, Coulomb solvent, VDW (van der
Waals) solute, VDW solvent, ΔG (change in Gibbs free energy)
binding, and Solvent GB (Generalized Born) energy. Coulomb
solute and Coulomb solvent indicate the electrostatic interaction
energies between the protein and solvent molecule. In contrast,
VDW solute and VDW solvent imply the van der Waals interaction
energies between the protein and solvent molecules. ΔG binding
represents the overall binding energy of the protein-ligand complex,
which shows the free energy change upon binding the ligand to the
protein. Solvent GB energy reflects the energy contribution from the
solvent Generalized Born model.

The outcomes manifest that all four systems exhibit highly
favourable binding energies, with the mutants displaying slightly
higher binding energies than the normal HRAS protein. This

suggests the mutations could intensify ligands’ binding to the
protein’s active site. The Coulomb solute and Coulomb solvent
energies were identified to be the highest in all four systems,
indicating that electrostatic interactions play a significant role in
the binding of ligands to the protein. The VDW solute and VDW
solvent energies were also substantial, with the VDW solvent energy
being the highest for the normal HRAS protein. This suggests that the
solvent molecules have a part in stabilizing the protein-ligand
complex. Regarding the particular mutants, the G60D mutant was
observed to have the highest Coulomb solvent energy, while the D38H
mutant had the lowest Coulomb solute and VDW solute energies.
This implies that the mutations may affect the electrostatic and van
der Waals interactions between the protein and solvent molecules,
potentially influencing the binding of ligands to the active site.

The ΔG binding free energies of all the systems, including the wild-
typesystem, were determined to be quite favourable, ranging
from −4,902.33 to −5,068.6 kcal/mol, indicating that the binding of
ligands to the HRAS protein is energetically stable. The favourable
binding energies were due to the highly favourable Coulombic and Van
der Waals interactions between the ligands and the protein. The
Coulombic interactions between the ligands and the protein were
more favourable in all the systems, resulting in lower binding
energies. The electrostatic solvation energy of Generalized Born was
compensated by the Coulombic interactions, which were less favourable.
This suggests that the Coulombic interactions play a significant role in
ligand binding towards the active site residues in the HRAS protein.

All four complexes displayed a clear pattern, which was
considerably similar, indicating that the mutations did not
significantly affect the binding energy. This observation is
intriguing and prompts further investigation into the
conformational characteristics of the systems, i.e., the interaction
between the ligands and the receptor. The molecular docking and
dynamics results may explain the in vitro findings logically. Overall,
the MM-GBSA calculations provide valuable insights into the
thermodynamic stability of the ligand-protein complex, which is
crucial for understanding the binding affinity and specificity of the
ligand towards the protein. The favourable binding energies and
strong Coulombic interactions observed in this study suggest that
the ligands are likely to bind tightly to the active site residues of the
HRAS protein, which may have implications for the design of novel
HRAS inhibitors with improved efficacy and specificity.

3.13 3D modeling and structural analysis of
HRAS protein

The study aimed to investigate the impact of mutations on the
structure and stability of the HRAS protein. To achieve this, the native

TABLE 3 Summary of the calculated binding free energies utilizing the MM/GBSA algorithm.

Protein complex Coulomb solute Coulomb solvent VDW solute VDW_Solvent ΔG binding Solvent GB

G60V −4,908.6 −637.9 −299.437 −448.99198 −5,067.99 −633.999

G60D −4,909.7 −685.6 −298.622 −86.0249567 −5,068.6 −683.333

D38H −4,723.4 −620.7 −296.619 −80.1992073 −4,882.6 −620.903

HRAS-Normal −4,758.06 −681.1 −144.27 −383.163312 −4,902.33 −678.231
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structure of the HRAS protein was obtained from the Protein Data Bank
(PDB), and homology modeling approaches were used to predict the
mutated structure of the protein. The mutations were identified using
various Single Nucleotide Polymorphism (SNP) databases, including
rs730880460 (G60V), rs730880460 (G60D), rs730880464 (R123P),
rs750680771 (D38H), rs1564789700 (I46T), rs917210997 (G117R),
rs369106578 (R123G), rs1204223913 (P11OL), rs727504747 (A59L),
rs104894228 (G13R), and rs1564789552 (Y64H). The PyMOL software
was utilized to generate the mutated models of HRAS.

The energy minimization process was carried out using
Schrödinger, a method that minimizes the energy and force load
applied upon every atom in a gathering of atoms to obtain the best
thermodynamically stable HRAS structure. The final and stable model
of the HRAS protein was obtained after energy minimization, and the
energy value was reported to be −17,755 kJ/mol, significantly lower
than the initial energy value of −107916 kJ/mol. This indicates that the
energy minimization process significantly improved the stability of the
protein structure. The results of this study suggest that mutations can
dramatically alter the structure and stability of the HRAS protein. The
homology modelling approach successfully predicted the mutated
models of the protein, and the energy minimization process further
improved the stability of the predicted structures. The energy
minimization process revealed a remarkable reduction in the energy
value of the predicted protein structures. This significant decrease in
energy strongly suggests that the systems are thermodynamically stable
and likely to represent the native conformation of the protein. The
observed reduction in energy value serves as a reliable indicator of the
stability and accuracy of the predicted structures, bolstering confidence
in the findings of this study.

The study is significant in providing insights into the impact of
mutations on the stability of the HRAS protein. The mutated models
generated in this study can be used for further studies to understand
the effect of mutations on protein function and interactions. Overall,
the results of this study provide a foundation for developing new
HRAS inhibitors that can target the mutated forms of the protein
with improved efficacy and specificity.

3.13.1 Residue substitutions and HRAS protein
function

In the case of R123P, substituting R with P at position 123 may
result in a significant loss of interaction due to the marked disparity
in size and hydrophobicity between the wild type and mutant
residues. The smaller size of the mutant residue may significantly
impede the protein’s interactions with other molecules. In D38H,
the mutation of D to H at position 38 can potentially disturb the
protein’s interaction with other parts of the protein. The loss of the
charge of the wild type residue due to this mutation may
significantly impact the protein’s functionality. In I46T,
substituting I with T at position 46 can cause the core region of
the protein to lose its hydrophobic interactions. This is because the
mutant residue is, more minor, but more hydrophobic than thewild-
type residue. In G117R, the mutation of G to R at position 117 could
result in a protein folding problem. Introducing a charge in a buried
region of the protein due to the mutant residue, which is normally
flexible, may disrupt the local structure of the protein. In R123G, the
mutation of R to G at position 123 could cause the protein to lose its
ability to interact with other molecules due to the charge difference
amongmutant and wild-type res and. In G60V, substituting P with L

at position 110 can result in the loss of external interactions with
other proteins in a pathway due to the difference in size between the
mutant and wild-type residues. The native residue is embedded in
the core region, which may make it difficult for the more
considerable mutant residue to fit. In A59L, the mutation of A to
L at position 59 can potentially cause the mutant residue, which is
larger than the wild-type residue, to not fit in the protein’s core
region. This could result in a loss of external interactions. In G13R,
substituting G with R at position 13 may significantly impede the
protein’s interaction with other molecules. Introducing a charge due
to the mutant residue may cause a repelling effect between the
mutant and adjacent residues, which are typically found on the
protein’s surface. In Y64H, converting Y to H at position 64 may
result in a loss of external interactions at this point has potential
result in the loss of hydrophobic interactions with other molecules.

4 Discussion

Single nucleotide polymorphisms (SNPs) are a type of genetic
variation in the human genome that can result in amino acid
substitutions, leading to alterations in protein structure and
function (Stalin et al., 2022). Non-synonymous SNPs (nsSNPs)
result in an amino acid substitution, and they have been
implicated in many genetic disorders. Therefore, it is essential to
understand the functional impact of nsSNPs on protein structure and
function. Bioinformatics approaches have become an essential tool for
predicting the practical impact of nsSNPs (Yazar and Özbek, 2021).
These approaches can be broadly classified into two categories: in
silico and experimental. Experimental approaches involve biochemical
and biophysical techniques, such as X-ray crystallography, NMR
spectroscopy, and site-directed mutagenesis, to directly measure
the functional impact of nsSNPs. However, these methods are
time-consuming, expensive, and require specialized expertise. In
contrast, in silico approaches use computational methods to
predict the functional impact of nsSNPs, making them a faster and
more cost-effective way to screen for potentially deleterious variants.

SIFT (Sorting Intolerant from Tolerant) and PolyPhen-2
(Polymorphism Phenotyping v2) are widely used in silico tools for
predicting the functional effects of nsSNPs. SIFT uses a sequence
homology-based approach to predict the impact of an amino acid
substitution on protein function. It compares the protein sequence of
interest to a database of related protein sequences and determines the
degree of conservation of the substituted amino acid. If the amino acid
is highly conserved, it is predicted to be intolerant to substitution, and
the variant is classified as damaging. PolyPhen-2, conversely, uses a
combination of sequence- and structure-based approaches to predict
the impact of amino acid substitutions on protein structure and
function. It considers factors such as the physicochemical properties
of the substituted amino acid, the local protein structure, and the
conservation of the substituted amino acid across different species.
Variants are classified as damaging if they are predicted to affect protein
function, stability, or interaction with other molecules. Both SIFT and
PolyPhen-2 have been shown to have high accuracy in predicting the
functional impact of nsSNPs. However, they use different algorithms
and approaches, which can lead to differences in their predictions.
Therefore, it is recommended to use both tools to increase the accuracy
of predictions. In addition, other tools, such as PROVEAN, MutPred,
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andMutPred-LOF, are also available and can be used in combination to
improve the accuracy of predictions.

Other tools, such as SNP&GO, P-Mut, Phd SNP, and ROVEAN,
have also been developed to predict the functional effects of nsSNPs.
These tools use different algorithms and approaches to predict the
impact of nsSNPs on protein structure and function. They can
provide complementary information to other tools. In recent
research, a comprehensive analysis of nsSNPs in the HRAS gene
was performed using various in silico tools to identify potentially
deleterious SNPs that may be associated with the disease. After
searching the SNP databases, 50 hits were found, and the mutants’
rsIDs were submitted to SIFT and PolyPhen-2 for functional
analysis. Of the 50 SNPs, 24 were found to be non-tolerable by
SIFT, and 28 were predicted to be possible or probably damaging by
PolyPhen-2. The results were then validated using other tools, and
11 SNPs were identified as deleterious by all of the tools. The impact
of these deleterious SNPs on protein structure was analyzed using
software such as PyMOL and SNP effect. In conclusion, in silico
approaches and tools have become powerful tools for identifying
and characterizing the functional effects of nsSNPs and predicting
their potential association with various diseases. While no single tool
can accurately predict the practical effects of nsSNPs, a combination
of tools can provide more accurate and reliable predictions.
Moreover, detailed analysis of the impact of deleterious SNPs on
protein structure and function can provide important insights into
the development of genetic disorders and may lead to the
development of novel therapeutic approaches.

Bioinformatics is an essential tool for analysing genetic
variations, including non-synonymous single nucleotide
polymorphisms (nsSNPs) (Wang et al., 2020). In-silico
approaches have been developed to predict the functional impact
of nsSNPs on protein structure and function and to distinguish
between neutral and deleterious variants. One of the widely used
approaches for predicting the deleterious effect of nsSNPs is SIFT
which predicts whether an amino acid substitution is likely to affect
protein function based on sequence conservation. Another approach
is PolyPhen (Polymorphism Phenotyping), which is a tool for
predicting the functional effect of amino acid substitutions on
protein structure and function (Seifi and Walter, 2018). It uses
both sequence-based and structure-based features to predict the
impact of a variant on protein function. In addition, machine
learning-based methods such as Random Forest and Support
Vector Machines (SVM) have also been developed to classify
nsSNPs as deleterious or neutral (Ge et al., 2021). These methods
use a combination of sequence, structural and evolutionary features
to predict the functional impact of nsSNPs.

In a recent study by Behairy et al. (2022), various SNPs of the
HRAS gene were assessed to identify those potentially deleterious and
associatedwith disease development using computational approaches.
We searched for nsSNPs against HRAS in SNP databases and found
138 hits. The rsIDs of these mutants were submitted to two widely
used computational tools, SIFT and PolyPhen2, to determine the
functional effects of the nsSNPs. SIFT identified 15nsSNPs as non-
tolerable, while PolyPhen2 showed 23 nsSNPs as possible and
probably damaging. To validate the results, the authors submitted
the rsIDs of the 23 nsSNPs to several other tools, including SNP&GO,
P-Mut, Phd SNP, and ROVEAN. Among these, 10 SNPs, with rsIDs
of rs730880460, rs730880460, rs730880464, rs750680771,

rs1564789700, rs917210997, rs369106578, rs1204223913,
rs727504747, rs104894228, and rs1564789552, were identified as
deleterious by all the tools. The authors highlighted that the
association of these damaging nsSNPs with disease development
has not been reported in any other study yet. Therefore, further
research is required to validate the functional significance of these
nsSNPs in HRAS and their association with disease development.

The authors emphasized that combining multiple algorithms
frequently is a powerful tool for selecting candidate functional
nsSNPs. In a previous study by Falahi et al. (2021), it was
reported that among various Insilico tools, Polyphen 2 and
SNAP show better performance for identifying functional
nsSNPs. Thus, using multiple computational tools and
integrating their results can provide more reliable predictions of
functional nsSNPs, which can aid in understanding the molecular
basis of diseases caused by nsSNPs. Overall, the study by Behairy
et al. (2022), highlights the importance of using computational
approaches to identify potential deleterious nsSNPs in genes and
their association with disease development. The study also
underscores the significance of using multiple computational
tools to validate the functional relevance of nsSNPs and the need
for further research to establish their association with disease
development.

In our study, we utilized SNP effect to assess the impact of
SNPs on the aggregation tendency, amyloid propensity, and
chaperone binding of HRAS protein. The outcomes of SNP
effect revealed that rs1204223913 increases the aggregation
propensity of HRAS protein with a dTANGO score of 547.61,
while rs1564789700 decreases the aggregation propensity with a
dWALTZ score of −106.36. However, we observed that most of the
variations did not affect the molecular phenotype of the protein.
Although these variations may convey some damaging mutation
on HRAS protein, they seem unrelated to the protein’s aggregation
tendency, amyloid propensity, or chaperone binding tendency,
according to the outcomes of the SNP effect. To further investigate
the impact of deleterious nsSNPs on the protein structure of
HRAS, we retrieved the tertiary structure of HRAS from PDB
with PDB id (6MQT). We mapped all 10 deleterious nsSNPs using
PyMOL software. Our findings indicate that these nsSNPs are
located in different regions of the protein structure and may affect
the protein function by altering its stability or interactions with
other molecules.

Several previous studies have also investigated the impact of
nsSNPs on protein structure and function. For instance, a survey by
Taghvaei et al. (2021) utilized in silico tools to predict the effects of
nsSNPs on protein function and reported that these tools aid in
identifying deleterious nsSNPs associated with human diseases.
Additionally, a study by Teng et al. (2009) utilized molecular
dynamics simulations to investigate the impact of nsSNPs on
protein stability and interactions. Our study highlights the
importance of using computational approaches to identify
deleterious nsSNPs and their potential effects on protein
structure and function. Our findings also suggest that combining
multiple in silico tools can provide a more accurate prediction of the
functional impact of nsSNPs on proteins.

Using computational methods, our investigation aimed to detect
harmful single nucleotide polymorphisms (SNPs) in the HRAS gene.
By examining several SNP databases and employing different
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analytical tools, we identified 10 damaging SNPs. Our study is
significant because mutations in HRAS are associated with
various diseases, including cancer. Recognizing potentially
harmful SNPs in HRAS can help us understand the genetic
basis of these diseases and facilitate the development of
personalized treatments. Moreover, using computational
methods to identify functional nsSNPs can considerably
reduce the time and cost required for experimental
validation. Our findings emphasize combining various
algorithms and tools to pinpoint candidate functional
nsSNPs. In conclusion, our research offers a valuable
contribution to the genetics field and can assist in developing
personalized medical interventions.

5 Conclusion

We investigate the potential impact of nsSNPs in the HRAS
gene on the structure and function of the HRAS protein, as well as
their potential contribution to the development of various types
of cancers. Specifically to identify and characterize nsSNPs within
the coding region of HRAS that can cause detrimental mutations,
disrupt normal protein function, and activate oncogenic signaling
pathways. To decrease expenses and enhance the efficiency of
genetic association studies, We applied in silico approaches,
including SIFT analysis, PolyPhen2 scores, and TI scores, to
predict the potential impact of rare genetic variants on HRAS
protein function, and identified 50 nsSNPs in total, of which
23 were located in the exon region of the HRAS gene and were
likely to be deleterious. Among these 23 nsSNPs, 10 had the most
destructive impacts, including G60V, G60D, R123P, D38H, I46T,
G115R, R123G, P11OL, A59L, and G13R, with DDG values
ranging from −3.21 to 0.87 kcal/mol. We conducted molecular
dynamics (MD) simulations to analyze the stability, flexibility,
and compaction of the HRAS protein to investigate the
consequences of specific non-synonymous single nucleotide
polymorphisms (nsSNPs). Our predicted results indicated that
the stable model of HRAS had a significantly lower energy value
than the initial model, suggesting that these nsSNPs may alter the
stability of the protein. Furthermore, we analyzed the binding
energies of both the wild-type and mutant HRAS protein with
docked complexes to understand the potential impact of these
mutations on the activation of oncogenic signalling pathways.
Our findings indicated that the G60V, G60D, and D38H mutants
had higher binding energies than the wild-type HRAS protein,
potentially leading to the activation of oncogenic signalling
pathways and contributing to the development of various types

of cancers. Our systematic study analysis provides essential
insights into the potential functional role of nsSNPs in the
HRAS gene in cancer development. It could inform future
studies aimed at developing targeted therapies for cancer
treatment.
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Cancer is a primary global health concern, and researchers seek innovative
approaches to combat the disease. Clinical bioinformatics and high-
throughput proteomics technologies provide powerful tools to explore cancer
biology. Medicinal plants are considered effective therapeutic agents, and
computer-aided drug design (CAAD) is used to identify novel drug candidates
from plant extracts. The tumour suppressor protein TP53 is an attractive target for
drug development, given its crucial role in cancer pathogenesis. This study used a
dried extract of Amomum subulatum seeds to identify phytocompounds targeting
TP53 in cancer. We apply qualitative tests to determine its phytochemicals
(Alkaloid, Tannin, Saponin, Phlobatinin, and Cardic glycoside), and found that
alkaloid composed of 9.4% ± 0.04% and Saponin 1.9% ± 0.05% crude chemical
constituent. In the results of DPPH Analysis Amomum subulatum Seeds founded
antioxidant activity, and then we verified via observing methanol extract (79.82%),
BHT (81.73%), and n-hexane extract (51.31%) found to be positive. For Inhibition of
oxidation, we observe BHT is 90.25%, and Methanol (83.42%) has the most
significant proportion of linoleic acid oxidation suppression. We used diverse
bioinformatics approaches to evaluate the effect of A. subulatum seeds and their
natural components on TP53. Compound-1 had the best pharmacophore match
value (53.92), with others ranging from 50.75 to 53.92. Our docking result shows
the top three natural compounds had the highest binding energies
(−11.10 to −10.3 kcal/mol). The highest binding energies (−10.9 to −9.2 kcal/
mol) compound bonded to significant sections in the target protein’s active
domains with TP53. Based on virtual screening, we select top
phytocompounds for targets which highly fit based on pharmacophore score
and observe these compounds exhibited potent antioxidant activity and inhibited
cancer cell inflammation in the TP53 pathway. Molecular Dynamics (MD)
simulations indicated that the ligand was bound to the protein with some
significant conformational changes in the protein structure. This study provides
novel insights into the development of innovative drugs for the treatment of
cancer disorders.
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1 Introduction

Cancer is a multifaceted ailment that has the potential to impact
any anatomical structure, and it is the result of a combination of
genotypic, environmental, and lifestyle determinants (Pandya et al.,
2021; Mazhar et al., 2023). Although cancer may manifest in any
individual, specific predisposing factors, such as advanced age,
familial history, and exposure to carcinogenic substances, can
augment the likelihood of developing the disease. Cancerous cells
are atypical cells that multiply and proliferate in an unbridled
fashion (Hossain et al., 2022). They can generate neoplasms,
infiltrate adjacent tissues, and disseminate to other body regions
via a phenomenon known as metastasis. Cancerous cells can disrupt
the normal functioning of organs and tissues in the body, resulting
in various symptoms and complications. Managing cancer is
challenging because it isn’t a single disease but a group of
illnesses with different causes, such as evidence from clinical
presentations and treatment options (Lu et al., 2020). The
treatment of cancers varies depending on their type and stage.
Cutaneous carcinoma and haematological malignanciesrequire
special treatments. Research in the field of cancer is ongoing,
with new therapies and curative methods being developed
continuously. The most promising areas of cancer research
currently include immunotherapy, which uses the immune
system to target and destroy cancer cells, and personalized
medicine, which tailors treatment to the unique genomic and
molecular characteristics of an individual’s cancer. These
innovative approaches can potentially transform cancer
treatment, leading to more effective and precise therapies that
may improve outcomes and increase survival rates (Kaminski
et al., 2020). Prevention is equally critical in combatting the
ubiquitous impact of cancer, and this includes efforts to reduce
exposure to known carcinogens, such as tobacco smoke and UV
radiation, as well as promoting healthy lifestyles, such as regular
exercise and a balanced diet (Balwan and Kour, 2021; Klein et al.,
2022). In-depth, cancer is a complex and challenging disease. Still,
with ongoing research, prevention efforts, and advances in
treatment provides a hope for improving outcomes and reducing
the impact of this disease on individuals and communities
worldwide.

The p53 gene is responsible for encoding a vital transcription
factor protein called p53 (Sharma et al., 2023), plays a crucial role in
regulating essential cellular mechanisms such as DNA repair, cell
cycle arrest, and programmed cell death (apoptosis). Upon sensing
signals of DNA damage or similar stressful stimuli, the p53 protein
can galvanize or inhibit the expression of sundry downstream genes,
predicated on the prevailing cellular ambience. The p53 protein
interacts with a vast spectrum of alternative proteins to form a
labyrinthine network of interplays, which help to govern its activity
and fuse its reaction to distinct stress signals (Chen L et al., 2020).
These interactions and networks are complex and context-
dependent, with a range of downstream targets and regulators
that can influence its activity and function. Some essential
proteins and networks associated with p53 include MDM2,

ATM/ATR, p21, BAX, and NF-kB (Karimian et al., 2019;
Samavarchi Tehrani et al., 2019; Marei et al., 2021). Anomalies in
the TP53 gene have the potential to compromise the efficacy of the
p53 protein, thereby inciting uncontrolled cellular multiplication
and a heightened susceptibility to cancer. However, therapeutic
techniques that target the p53 pathway are being pioneered to
ameliorate curative alternatives for cancer patients. These
comprise minuscule molecule medications that can rejuvenate or
stabilize the p53 protein, gene manipulation methodologies that
introduce operative copies of the TP53 gene into neoplastic cells, and
immunotherapeutic manoeuvres that utilize the immune system to
attack cancer cells bearing TP53 gene aberrations. A comprehensive
comprehension of the interplays and networks linked with p53 is
indispensable for the evolution of precision therapies and the
augmentation of clinical outcomes for patients who have cancer
or related ailments (Otohinoyi et al., 2022).

Herbal medicine utilizes natural compounds that interact
harmoniously with our bodies, while conventional medicine relies
on synthesized and artificial molecules. Herbal medicineHerbal
medicine practitioners stress the importance of combining
various medicinal ingredients instead of isolating a single
component (Xijun et al., 2016; Ali et al., 2018). Herbal
medications are often preferred by individuals who cannot
tolerate pharmaceuticals or experience adverse reactions to them.
Natural medicine target the underlying cause of symptoms in certain
conditions, whereas medications only alleviate the symptoms.
Synthetic treatments are associated with a range of adverse
effects, from minor to severe, and cause harm to the body’s
internal organs and external features, including the skin, hair,
and teeth. Previous research {Sharifi-Rad, 2020 #2712} has shown
that herbal medicine may be slower in producing results, but the
outcome is healthier when using natural compounds and
treatments. Artificial processing of natural substances can result
in toxicity concerns, and ensuring that the proper dosage is
administered is essential to guarantee safety. However, if herbal
medicine is used carefully, it may be possible to develop more
effective and less toxic pharmaceuticals than those solely relying on
refined medications (Saad et al., 2017).

Traditional medicine heavily depends on plants and their
bioactive constituents to treat various ailments, including cancer
(Matowa et al., 2020). An estimated two-thirds to three-quarters of
the global population utilize herbal remedies for therapy, leading to
an upsurge in interest in studying phytomedicines and their active
biological properties. Phytochemicals are non-nutrient bioactive
molecules found in plant-based foods like fruits and vegetables
and have been associated with reduced risks of chronic diseases
(Wu et al., 2021). Plants contain approximately 25,000 terpenoids,
12,000 alkaloids, 8,000 phenolics, and other compounds, providing a
bountiful source of active molecules. Understanding how essential
compounds like flavonoids, chlorogenic acids, alkaloids,
carotenoids, minerals, and toxic substances affect health results
can be learned from data on these compounds. Recent studies by
(de Carvalho and Conte-Junior, 2021) indicate that the potential
health advantages of phytochemicals found in fruits and vegetables
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could be more significant than previously assumed. Antioxidants,
for example, can help mitigate oxidative stress caused by free
radicals, which can contribute to the progression of chronic
diseases. However, many phytochemicals remain unidentified,
requiring identification and measurement before assessing their
health risks. Amomum subulatum is a short-lived herbal plant
widely used globally for its culinary and medicinal properties. Its
health-promoting effects have been documented in Ayurveda and
traditional Chinese medicine, and in-vivo and in-vitro studies have
validated its anticancer potential.

The domain of cancer research has undergone a revolution
through in-silico approaches, which present a cost-effective and
time-efficient alternative to traditional experimental methods
(Rahman et al., 2022). In-silico approaches involve describing
and simulating biological processes, predicting drug-target
interactions, and using computational tools and algorithms to
develop new antitumor drugs. Researchers can explore vast
chemical regions and identify potential cancer-targeting drugs by
utilizing molecular docking, molecular dynamics models, and
virtual screening methods. These methods also enable the
prediction of medication metabolic and toxicity characteristics,
thereby reducing the risk of failure during clinical studies.
Moreover, in-silico methods facilitate the detection of genomic
and epigenetic alterations in cancer cells, which can aid in
developing more personalized treatments. These techniques have
shown tremendous potential in identifying new targets and creating
innovative cancer therapies. In organic plant molecules,
bioinformatics plays a critical role in detecting and treating
cancer (Tabrez et al., 2022). Using computational tools and
databases, scientists can proficiently explore the chemical space
of natural plant compounds and their interactions with
cancerous targets. Bioinformatics approaches also allow the
discovery of potential synergistic amalgamations of plant
compounds that enhance efficacy and mitigate toxicity
(Fokunang and Fokunang, 2022). By scrutinizing the gene
expression profiles of cancerous cells, bioinformatics can help
recognize biomarkers that predict the response to plant-based
therapies (Ahmad et al., 2022; Satpathy, 2022). Additionally,
bioinformatics approaches can expedite the repurposing of
existing drugs for cancer treatment and the detection of new
targets for drug development. All in all, bioinformatics offers a
powerful platform for leveraging the therapeutic potential of natural
plant compounds for cancer therapy.

The principal aim of our study is to explore the feasibility of
employing novel phytocompounds originating from the A.
subulatum seeds as anti-cancer drugs by targeting the
TP53 receptor. To attain this objective, we implement
computational techniques for structure prediction and validation,
molecular docking, and simulation studies to scrutinize the
interaction between the selected phytocompounds and TP53. The
investigation includes cherry-picking a set of phytocompounds from
the A. subulatum plant with the potential to combat cancer. It will
then assess their three-dimensional structures and accuracy
verification through computational methods. The molecular
docking analyses are carried out to scrutinize the binding
interactions between the chosen phytocompounds and TP53. The
primary goal is to recognize new phytocompounds with high
binding affinity and specificity towards TP53. The outcomes

obtained from the molecular docking studies are further
endorsed through simulation studies to ascertain that the binding
interactions are steady and biologically significant. To evaluate the
potential of phytocompounds as anti-cancer medications, their
ADMET characteristics, including uptake, diffusion, metabolism,
elimination, and toxicity, are closely examined. Based on the results
of these studies, phytocompounds with optimal pharmacokinetic
and toxicity profiles are identified. In addition, by investigating the
interactions of these phytocompounds with the TP53 receptor and
analyzing their ADMET characteristics, researchers aim to gain new
insights into the potential of phytocompounds derived from the A.
subulatum seeds as anti-cancer agents. The findings of this study
could pave the way for developing more sophisticated and effective
cancer treatments.

2 Materials and methods

2.1 Plant materials

The A. subulatum seeds were randomly gathered from a
particular location of the agricultural lands in Faisalabad.
They were washed and dried at room temperature to ensure
an optimal outcome and prevent impurities. For powder
extraction, 75 g of the seeds were pulverized, mixed with
Methanol, and agitated on an orbital shaker for 7 mins using
the maceration method. As per the method of the earlier
researcher (Kumar et al., 2022), we used maceration permits
the solvent to infiltrate the plant material and dissolve the
targeted components. The aqueous filtrate, which consists of
the desired compounds extracted from the plant material, was
attained by sieving the mixture to eliminate unwanted particles
or impurities. To precisely measure the number of active
compounds in the A. subulatum seeds, the extracted material
was converted into a solid form utilizing an evaporation
technique, which included heating the methanol solution to
evaporate the solvent and leaving behind the solid
components of the A. subulatum seed extraction. The aim of
obtaining a solid form of the extraction is to simplify weighing
and quantifying, thus making it more convenient for analysis.

2.2 Phytochemical Screening

We performed Phytochemical Screening to determine the
presence of particular chemical compounds in the A. subulatum
seeds, utilizing traditional techniques by the approach employed
by preceding investigators (Cabero Pérez, 2020). These
constituents consist of tannins, flobatannins, saponins,
steroids, and terpenoids, which are all important bioactive
compounds frequently present in plants and can offervarious
health advantages. To discern the presence of tannins, the
pulverized, desiccated seeds of A. subulatum were subjected to
boiling in water, and the resultant admixture was filtered. A
minute quantity of 0.1% FeCl3 was then appended, and the
manifestation of a brown-green tint denoted the existence of
tannins. Tannins are a polyphenolic compounds recognized for
their antioxidative and antimicrobial characteristics (Leite et al.,
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2021). To identify flobatonins, a 0.5 g specimen of the seeds was
boiled with 1% aqueous HCl and the presence of flobatonins was
indicated by the emergence of a crimson precipitate. Flobatonins
are a type of tannin that is present in various plant species and are
acknowledged for their astringent properties. To detect saponins,
2 g of the specimen was heated in distilled water to extract the
compounds. After filtration, 5 mL of distilled water was added to
10 mL of the filtrate, and the mixture was vigorously shaken to
produce stable foam. Olive oil droplets were added to the frothy
mixture and promptly mixed to form an emulsion. Saponins are a
glycoside compound with diverse pharmacological activities,
including anti-inflammatory and anti-cancer effects (El Aziz
et al., 2019). 0.5 g of the ethanol extract was added into test
tube with 2 mL of H2SO4 and 2 mL of acetic anhydride to screen
for steroids. The change in colour from violet to green indicated
the presence of steroids, a type of lipid molecule with diverse
physiological functions, including the regulation of metabolism,
immune response, and development (Morales-Lázaro et al.,
2019). For terpenoids analysis, 5 mL of each extract was
delicately mixed with 2 mL of chloroform and 3 mL of
concentrated sulfuric acid to generate a layer. The reddish-
brown staining of the interface suggested that terpenoids are a
large class of natural compounds known for their diverse
biological activities, including anti-inflammatory, anti-cancer,
and anti-microbial effects (Fan et al., 2023).

2.3 DPPH analyses

DPPH radical scavenging is a commonly employed procedure
for gauging the antioxidative efficacy of natural substances,
including plant-based extracts as per earlier researchers
(Amarowicz et al., 2004). DPPH is a stable radical that exhibits
a unique absorption peak at 517 nm and can be rendered neutral
by antioxidants, leading to a decrement in absorption intensity. To
evaluate the antioxidant potential of A. subulatum seeds, their
ability to neutralize DPPH (2,2-diphenyl-1-picrylhydrazyl)
radicals were investigated. To achieve this, a solution of DPPH
in Methanol was mixed and resulting mixture was then incubated
for 30 min, after which the absorbance was measured at a
wavelength of 517 nm. The scavenging ability of the extract
against DPPH radicals was inferred from the reduction in
absorption of the reaction mixture, and the percentage of
DPPH radical scavenging activity was calculated accordingly. In
this investigation, the synthetic antioxidant BHT was utilized as a
positive control to compare the antioxidative activity of A.
subulatum seeds with a recognized antioxidant. A higher
percentage of DPPH radical scavenging activity corresponded to
a more tremendous antioxidative potential of the extract
(Pyrzynska and Pękal, 2013).

2.4 Reducing power determination

To assess the plant specimen’s ability to reduce, a modified
rendition of the technique, initially presented by Matanjun et al.
(2008), was utilized. Various dissolvable extractions of A. subulatum

seeds were concocted at convergences that fluctuated between
2.5 and 1.0 mg/mL. Sodium phosphate buffer (5.0 mL) and
potassium ferricyanide (5.0 mL, 1.0% in 0.2 M, pH 6.6) were
added to every extraction. The resultant mixture was then left to
incubate at a temperature of 50°C for 20 min. After incubation, the
mixture was centrifuged at 980 g and 5°C for 10 min. The resulting
supernatant was then treated with 5 mL of 10% trichloroacetic
acidvia applying second round of centrifugation. The top layer of
the resultant solution (roughly 5 mL) was diluted with 5 mL of
distilled water and 1.0 mL of 0.1% ferric chloride. The
spectrophotometer was then used to measure the absorbance of
the solution at a wavelength of 700 nm. This protocol was conducted
in order to ascertain the plant sample’s reducing power Pasaribu
et al. (2021).

2.5 Hemolytic activity

The hemolytic efficacy of A. subulatum seeds was assessed using
a customized methodology as delineated by Pasaribu et al. (2021).
To prevent coagulation, 3 mL of human blood was collected into a
heparinized tube and centrifuged at 850 g for 5 min. The resulting
supernatant was discarded, and the red blood cells (RBCs) were
washed three times with 5 mL of chilled sterile isotonic phosphate-
buffered saline (PBS) solution at pH 7.4. The RBCs were then
suspended in 20 mL of chilled PBS and counted using a
hemacytometer. The RBC count was adjusted to 7.068 ×
108 cells per mL to prepare for the assay. Plant extracts (20 µL)
were instilled into 2 mL Eppendorf tubes, succeeded by adding
diluted blood cell suspension (180 µL). The samples were
incubated for 35 min at 37°C, followed by placing the tubes on
ice for 5 min and centrifuging for 5 min at 1,310 g. After
centrifugation, the supernatant (100 µL) was withdrawn from
each tube and diluted with chilled PBS (900 µL). The mixture
from each Eppendorf (200 µL) supernatant was then added to
96-well plates. For each test, 0.1% Triton X-100 was utilized as a
positive control and PBS as a negative control. For hemolysis %, the
absorbance was measured at 576 nm via appyingformula: %
hemolysis = (sample absorbance/control absorbance) × 100.
Tomaintain consistency during the assay, all Eppendorf tubes
were kept on ice.

2.6 Structure prediction

The amino acid sequence of TP53, having accession number
(P04637), was obtained from the UniProt database (https://www.
uniprot.org/) in the FASTA format. Then we performed a BLASTp
query against the Protein DataBank (https://www.rcsb.org/search)
to locate fitting templates (6IU7, 6IUA, 6MY0, 5Z78, 5ZCJ, 6I3V,
7LIN, and 7LIO) for the desired protein. Utilizing SWISS model
(https://swissmodel.expasy.org/) and ITASSER (https://zhanggroup.
org/I-TASSER/) server, multiple 3D structures were prognosticated
and validated. To appraise the quality of the envisaged 3D structures,
numerous online validation tools, including ERRAT (https://saves.
mbi.ucla.edu/), Verify3D, and Rampage (http://www.scfbio-iitd.res.
in/software/proteomics/protsav.jsp), were employed. Chimaera was
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afterwards tooptimize the 3D structures of the selected compounds
intermingled with TP53. While conducting the simulation studies,
the protein secondary structure elements (PSSE) were thoroughly
scrutinized and determined. These techniques facilitated the
foreknowledge and validation of TP53’s 3D structures and the
revelation of undiscovered phytocompounds possessing potential
anti-cancer properties.

2.7 Docking analysis

For in-silico analysis, we utilized a reservoir of autochthonous
compounds obtained from the Asinex database (https://www.asinex.
com/). We select phytocompounds based on their pharmacophore
fit score using AutoDock Vina and employed LigandScout for
pharmacophore modelling (Wolber and Langer, 2005; Heider
et al., 2022). We utilized AutoDock Vina for targeted molecular
docking and meticulously examined and visualized the docking
investigations employing UCSF Chimera v1.12 and Discovery
Studio. We identified 2D structures from databases like
PubChem (https://pubchem.ncbi.nlm.nih.gov/) to create plant-
based molecules and employed ChemDraw and Chimera. We
performed 100 docking runs for each docking experiment and
added polar hydrogen atoms to all targeted proteins. We chose
TP53 as the grid size for docking investigations. To ensure drug-
likeness, we rigorously examined Lipinski’s Rule of Five (RO5) as per
the method of earlier researcher Chen X et al. (2020), by utilizing the
online mcule server (https://mcule.com/) and computed the drug
characteristics of all specified compounds. To evaluate the ADMET
properties (Absorption, Distribution, Metabolism, Excretion, and
Toxicity), we utilized the AdmetSAR tool (http://lmmd.ecust.edu.
cn/admetsar2) to scrutinize the bioavailability of the selected
compounds.

2.8 Molecular dynamic simulation

Molecular Dynamic (MD) simulations have investigated the
interplay between the protein and ligand (Salo-Ahen et al., 2020).
The preeminent docked complex was handpicked, and various
modules from the Schrodinger suite were utilized to execute the
MD simulations (Páll et al., 2020). An NPT ensemble was
implemented to prepare a rudimentary simulation milieu for
the docked systems, held at a temperature of 300 K for a duration
of 100 nanoseconds (ns) as per the method of earlier researcher
Prunotto (2020). In protein-ligand docking, the docked
conformers underwent root mean square deviation (RMSD)
and root mean square fluctuation (RMSF) plot analysis to
evaluate the stability and fluctuations of the protein-ligand
complex during the MD simulation. The RMSD analysis
quantifies the structural aberration between the docked
complex and the MD trajectory, whereas the RMSF analysis
gauges the residue-wise fluctuation of the complex throughout
the simulation as per the methods of earlier researchers (Rather
et al., 2020; Tabti et al., 2023). The MD simulation outcomes were
assessed utilizing various visualization tools, including VMD and
Chimera, to acquire perspicacity into the protein-ligand

interactions and recognize prospective binding sites and vital
residues implicated in the interaction.

3 Results and discussion

3.1 Phytochemical Screening of Amomum
subulatum seeds

This study scrutinised the existence of phytochemicals in A.
subulatum seeds by conducting various qualitative tests to assess
their plausible therapeutic advantages. Qualitative phytochemical
analysis was executed, which divulged the presence of tannins,
saponin, steroids, and cardiac glycosides in the seeds, whereas
phlorotannins, terpenoids, and alkaloids were not detected.
Phytochemicals such as saponin and tannins are renowned for
their inherent antibiotic properties and are frequently employed
to combat pathogenic strains. Alkaloids exhibit confirmed
antioxidant activities and have been noted as efficacious
therapeutic agents in ethnomedicine. Tannin has been
implemented as an active compound in pharmaceuticals and
beverages, primarily because of its antioxidant effects, as per the
investigation by Saxena et al. (2013). Flavonol glycosides, among
others, are potent inhibitors of lipid peroxidation. Steroids can
scavenge free radicals and convert them into more stable
molecules, arresting the chain reaction. Cardiac glycosides have
been utilized to treat moderate to severe myocardial infarctions by
inhibiting the Na+/K+ pump and increasing Ca++ concentrations.
These phytochemicals offer myriad health benefits, such as
anticancer properties, cholesterol-lowering effects, promotingng
strong bones, and boosting the immune system (Felth et al.,
2009). Saponins possess many activities, including anti-
inflammatory, antifungal, hemolytic, fungistatic, molluscicidal,
and foaming properties. The results of this study are consistent
with previous studies (Wang et al., 2011; Abbas et al., 2015),
suggesting that A. subulatum seeds are rich in phytochemical
constituents that may be responsible for the antioxidant and
anticancer activities of plant-based foods. The present study on
A. subulatum has identified several therapeutically active
components in the plant, as exhibited in Table 1. Alkaloids,
tannins, saponins, and cardiac glycosides were detected in the
plant, while steroids and terpenoids were absent.

In this study, the crude chemical constituents of A. subulatum
seeds were quantitatively estimated, as shown in Table 2. At the
same time, qualitative parameters were evaluated to distinguish
between closely related plant species or varieties with similar
pharmacological activities. The plant contained alkaloids,
tannins, and saponins, which possess medicinal properties and
are used in various antibiotics to treat common pathogenic
strains. Previous research has also demonstrated the presence
of alkaloids in leafy vegetables, such as the bitter leaf, which have
been reported to alleviate headaches associated with
hypertension.

Alkaloids are a group of nitrogen-containing chemical
substances that frequently have medicinal effects. Alkaloids have
a wide range of molecular structures in numerous organisms.
Amomum subulatum has an estimated alkaloid concentration of
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9.40.04%, which is a substantial quantity. This shrub contains
alkaloids like piperine, amomumine, and aphylline. Another
family of chemical substances discovered in vegetation are
saponins. They have a range of biological functions and are
distinguished by their capacity to produce steady froths when
agitated with water. Researchers have discovered that saponins
have antifungal, antibacterial, and anti-inflammatory properties.
According to reports, A. subulatum contains 1.90.05% saponin.
Cardamonin, quercetin, and kaempferol are a few saponins that
can be found in this plant. Further research is required to fully
comprehend the molecular components’ precise impacts and
possible applications in A. subulatum, which may have
therapeutic qualities.

3.2 Percentage yield of plant extracts

The study found that the amount of plant compounds present
varied between 2.72 and 3.97 mg/100 g of dried plant material. The
methanol extract of A. subulatum seeds, which is known to be
effective in extracting phytochemical components, yielded the
highest amount of compounds. However, the choice of solvent
can significantly impact the number of recovered substances
since different solvents can extract distinct phytochemical
components depending on their charges. Therefore, it is crucial
to carefully consider the choice of the solvent when removing plant
chemicals to ensure the best output and effectiveness of the extracted
components. The percentage yield of plant extracts, which
represents the number of separated chemicals produced from a
specific volume of starting plant material, is anessential factor to
consider in the extraction process. Since various solvents with
different phases can extract distinct phytochemical components,
the solvent option for plant extraction can substantially impact the
number of recovered substances. Plant extract output in this
situation differed according to the extraction fluid. For instance,
the output for n-hexane was only 1.5, which isn’t very high. This is
because n-hexane is a non-polar solvent that works well to remove
non-polar substances like triglycerides and essential oils. However,
removing polar substances like flavonoids and phenolics might not
be as efficient.

On the other hand, the output of chloroform was 3.5, which is a
significant value. A reasonably neutral fluid like chloroform can be
used to remove a variety of chemicals from plant matter successfully.

The use of chloroform should be avoided if feasible because it is a
dangerous chemical. With yields of 2.5, acetone and butanol can
remove plant chemicals with a tolerable efficiency level. While
butanol is a less polar solvent that is effective in extracting non-
polar substances like terpenoids and alkaloids, acetone is a polar
solvent that removes polar substances like flavonoids and phenolics.
According to Figure 1, Methanol had the most incredible output out
of the 4. Various phytochemical components can be extracted from
plant material using the neutral liquid Methanol. Methanol is
poisonous and explosive, so it should be closely regulated and
supervised.

3.2.1 Total flavonoids content
Table 3 (A) presents the cumulative flavonoid matter (CFM)

detected in arid essences of A. subulatum seeds through varying
solvents employed for the extraction phase. CFM is expressed in
catechin equivalencies (CE) per 100 g of arid core, where our results
divulge that CFM values are contingent on the solvent selected for
the extraction process. Our data indicate that the CFM for the
n-hexane extract was found to be the least at 4.47 ± 0.05 mg/100 g
dry extract, whereas the CFM for the methanol extract was the
highest at 127.51 ± 0.76 mg/100 g dry extract. The chloroform, ethyl
acetate, and n-butanol extracts exhibited CFM values of 32.17 ± 0.52,
17.48 ± 0.17, and 25.98 ± 0.50 mg/100 g dry extract, respectively.
Our results signify that Methanol is the most proficient solvent for
flavonoid extraction from A. subulatum seeds, whereas n-hexane is
the most inefficient. Flavonoids are vital secondary metabolites in
plants that augment plant colouration and exhibit diverse salutary
biological activities, including anti-inflammatory, anti-allergic, and
anti-cancer properties (Ekalu and Habila, 2020). Our findings
suggest that the solvent preference for plant extraction can
significantly influence the cumulative flavonoid content in the
extract. Therefore, it is imperative to cautiously consider the
solvent selection for each extraction to guarantee optimal
efficiency and yield of the extracted flavonoids.

3.2.2 Total phenolics content
Our research study explored the total phenolic content (TPC) of

extracts obtained from A. subulatum seeds using different solvent
mediums, primarily focusing on methanol extraction. TPC was
quantified in milligrams of gallic acid equivalents (GAE) per
100 g of dry plant material. Findings showed that the TPC varied
considerably across different solvent systems, with the highest TPC

TABLE 1 Qualitative analysis of the phytochemicals of the Amomum subulatumseeds extracts.

Plant Alkaloid Tannin Saponin Steroid Phlobatinin Terpenoid Cardic glycoside

Amomum subulatum + + + — + — +

TABLE 2 Quantitative estimation of the percentage crude chemical constituents in Amomum subulatum seeds extracts.

Chemical constituents of Amomum subulatum Percentage (%) of crude chemical constituent

Alkaloids 9.4 ± 0.04

Saponin 1.9 ± 0.05
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being recorded in the methanol extract (134.39 ± 0.589 mg GAE/
100 g). In contrast, the n-hexane extract recorded the lowest TPC
(23.25 ± 0.102 mg GAE/100 g) as elaborated in Table 3 Colum (B).
Phenolic compounds are well-known for their remarkable
antioxidant properties. The higher TPC content in the extracts
significantly contributes to improved, reducing power and radical
scavenging effect on DPPH radicals (Muzolf-Panek and Stuper-
Szablewska, 2021). We used the Folin-Ciocalteu method to measure
TPC, a sensitive, interference-free, and rapid method for quantifying
the number of phenolics present in plant extracts. Phenolics are
extensively found in plants and have been associated with diverse
biological activities, including antioxidant activity (Karak, 2019).
They act as reducing agents, hydrogen donors, and oxygen
quenchers, thereby effectively decreasing oxidative stress. Our
analysis concludes that the TPC of the extracts varied
significantly across different solvent systems, with methanol

extraction resulting in the highest TPC and phenolic content
significantly contributing to their antioxidant activities.

3.3 DPPH analysis of Amomum subulatum
seeds for antioxidant activity

The DPPH test is a popular technique for evaluating the
antioxidant activity of natural substances. It considers a
material’s capacity to bind free radicals and convert them to a
rigid state. The more free radicals the material scavenges, the more
antioxidant activity it exhibits. The DPPH% scavenging technique
was used in this study to assess the antioxidant potential of different
formulations of A. subulatum seeds. The results demonstrate
variations in the antioxidant activity of A. subulatum seed
products. The methanol extract (79.82%) and BHT (81.73%), a

FIGURE 1
Percentage yield of Amomum subulatum seeds extracts.

TABLE 3 3 (A) explore the Total flavonoid contents, 3 (A) Total phenolic contents, 3 (B) Total phenolic contents, 3 (C) DPPH percentage scavenging assay, 3 (D)
linoleic acid percentage inhibition and oxidation and 3 (E) explore the hemolytic activity in the percentage of hemolysis in extracts of Amomum subulatum seeds
extracts.

Labels 3-A 3-B 3-C 3-D 3-E

Sample Total Flavonoid Contents (CE
Mg/100 G) Dry Extracts

Total Phenolic Contents (GAE Mg/
100 G) In Dry Seeds Extracts

DPPH Percentage
Scavenging

Linoleic Acid Percentage
Inhibition and Oxidation

Percentage Of
Hemolysis

n-Hexane 4.47 ± 0.05 23.25 ± 0.102 51.31 ± 0.38 23.68 ± 0.53 1.44 ± 0.019

Chloroform 32.17 ± 0.52 111.55 ± 0.136 60.02 ± 0.58 56.92 ± 0.61 3.11 ± 0.024

Ethyl acetate 17.48 ± 0.17 26.95 ± 0.056 72.41 ± 0.76 45.70 ± 0.32 4.19 ± 0.043

n-Butanol 25.98 ± 0.50 125.09 ± 0.101 68.96 ± 0.66 73.50 ± 0.53 6.10 ± 0.05

Methanol 127.51 ± 0.76 134.39 ± 0.589 79.82 ± 0.54 83.42 ± 0.87 8.50 ± 0.072

BHT/Titron
X 100

— — 81.73 ± 0.79 90.25 ± 0.90 99.64 ± 0.92

Frontiers in Chemistry frontiersin.org07

Ali et al. 10.3389/fchem.2023.1174363

178

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1174363


synthetic antioxidant used as a standard, had the highest percentage
of scavenging activity. The least quantity of scavenging activity was
demonstrated by the n-hexane extract (51.31%). These results
suggest that the methanol seed extract of A. subulatum has
considerable antioxidant activity.

The TPC and TFC assays reveal that phenolic and flavonoid
compounds are what give the products their antioxidant properties.
The preparation’s high content of total phenols may be responsible
for their better results in terms of reducing power and radical
cooling effect on DPPH radicals. The antioxidant qualities of
phenolic compounds are due to their ability to give electrons,
which allows them to combat free radicals and serve as reducing
agents. Our findings of this study point out the significant
antioxidant activity of A. subulatum seed products, with the
methanol extract having the highest antioxidant capacity. These
discoveries depend on developing organic antioxidants and using
Amomum subulatum seeds in foods and medications.

The proportion of DPPH free radical scavenging activity of
various solvent preparations of A. subulatum seeds, such as
n-hexane, chloroform, ethyl acetate, n-butanol, Methanol, and
BHT, is shown in Table 3 Column (C) as a synthetic antioxidant.
The methanol extract had the most significant proportion of
antioxidant action (79.82%), followed by BHT (81.73%). The
reducing activity of the n-hexane extract was the lowest (51.31%).
According to the study, the antioxidant potential of the
compounds, especially phenolics, relies on their capacity to
function as hydrogen-donating species. Their lowering ability
may also influence the antioxidant activity of the compounds.
The findings indicate that various liquid preparations of A.
subulatum seeds had different antioxidant effects on DPPH
(Rafique et al., 2020). The total phenol concentration,
flavonoid content, radical scavenging activity, and %
suppression of linoleic acid oxidation were all at their highest
levels in the methanol extract. Due to their capacity to serve as a
supply of antioxidant compounds, the results imply that the seeds
of A. subulatum have strong antioxidant activity.

The results demonstrate that the DPPH test is an accurate
technique for detecting phenolic and flavonoid components in
natural goods and the antioxidant capabilities of mass
preparations. In percentage words, the extract’s capacity to
absorb free radicals was concentration-dependent, and this
capacity increased with extract volume and hydroxylation
level. The methanol extract had the highest scavenging
activity, but it had slightly lower antioxidant activity than the
synthetic antioxidant BHT. The study concludes that A.
subulatum seeds have a variety of antioxidant impacts on
DPPH, with the methanol extract having the strongest
lowering action. It is advised to use the DPPH test as a
valuable tool to assess the antioxidant capabilities of mass
products. The study highlights the potential of A. subulatum
seeds as an antioxidant chemical source (Pyrzynska and Pękal,
2013).

3.4 Inhibition of oxidation

The current study work’s findings imply that preparation
from A. subulatum seeds has antioxidant qualities that can

prevent oxidative damage, a phenomenon that can harm
biological cells. Linoleic acid was used as a model system in
the research to evaluate the degree to which compounds inhibited
oxidation. According to the study’s findings, the various A.
subulatum seed preparations inhibited oxidation to differing
degrees. According to Table 3 Colum (D), methanol extract
had the most significant proportion of oxidation suppression,
suggesting the most potent antioxidant activity. This outcome
might result from the methanol extract having a higher quantity
of phytochemical components.

In contrast, n-hexane extract exhibited the lowest percentage of
suppression, likely due to the non-polar solvent’s reduced phenolic
and other phytochemical components content. It’s important to
note that BHT, a manufactured antioxidant frequently employed in
the food business, was used to compare the antioxidant activity of
the compounds to that of BHT. According to the findings, only the
methanol extract’s antioxidant activity was marginally lower than
that of BHT’s, while that of all other extracts was noticeably lower.
The findings imply that the extract from Amomum subulatum seeds
has antioxidant qualities that can prevent lipid degradation. The of
phytochemical components in the extract and the extraction liquid
affect how much suppression occurs.

The proportion suppression of linoleic acid oxidation in
various liquids is shown in Table 3 Colum (D), along with a
positive control of BHT (butylated hydroxytoluene). A mixed
fatty acid called linoleic acid is vulnerable to oxidation, which
creates free radicals that can harm cells and tissues through
oxidative stress. N-hexane, formaldehyde, ethyl acetate,
n-butanol, and Methanol were among the solvents examined.
Methanol (83.42%) has the most significant proportion of linoleic
acid oxidation suppression, followed by n-butanol (73.50%),
ethyl acetate (45.70%), chloroform (56.92%), and n-hexane
(23.68%). The percentage reduction for the positive control,
BHT, is 90.25%. These findings imply that the examined
solvents can block linoleic acid oxidation to varying degrees,
with Methanol and n-butanol exhibiting the greatest inhibiting
action. The well-known antioxidant BHT is most suppressed,
demonstrating its potent antioxidant activity. These findings may
significantly impact the application of solvents and antioxidants
in the culinary, medicinal, and skin care sectors.

FIGURE 2
Reducing power by Amomum subulatumseedsextracts.
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3.5 Reducing power

According to the study’s results, A. subulatum seeds’ natural
antioxidant properties appear significant. They can be used to
prevent the harm that free radicals and lipid breakdown cause to
living cells. To evaluate how well the various formulas stopped lipid
breakdown, linoleic acid was used as a model system. As shown in
Figure 2, our findings revealed that the methanol extract had the
largest% oxidation decrease, suggesting the most potent antioxidant
activity. The greater quantity of phytochemical components in the
methanol solution may be responsible for this outcome. Due to the
low content of phenolic and other phytochemical components in
this non-polar fluid, the n-hexane extract had the lowest proportion
of oxidation suppression. These findings imply that the number of
phytochemical components in the extract, which can impact the
extract’s antioxidant activity, can be influenced by the pH of the
liquid used during the extraction process.

It is also notable that BHT, a synthetic antioxidant frequently
used in the food business, was used to measure the goods’
antioxidant activity. The findings revealed that all compositions
had considerably reduced antioxidant activity than BHT, except the
methanol extract, which had marginally lower antioxidant training
than BHT. This contrast demonstrates the effectiveness of using
natural antioxidants, such as those present in A. subulatum, instead
of manufactured ones. The combined findings imply that the seeds
combination of A. subulatum may be used as a natural supply of
antioxidants to prevent lipid degradation and free radical harm.
Additional investigation is required to determine the most efficient
extraction technique and pinpoint the particular phytochemical
components accountable for the purported antioxidant activity.

3.6 Hemolytic activity for cytotoxicity assay

According to our findings, A. subulatum seeds have naturally
existing antioxidants that can stop lipid peroxidation, a process that
can be harmful to living cells. When using linoleic acid as a model
system to assess the ability of the different extracts to avoid
oxidation, the study results showed that the methanol extract had
the highest antioxidant activity. The greater concentration of
phytochemical components in the methanol extract may cause
the extract’s enhanced antioxidant activity, which is noted in
Table 3 Colum 3 (E). The decreased antioxidant activity observed
in the n-hexane extract is presumably due to the lower concentration
of phenolic and other phytochemical components in this non-polar
liquid. These findings suggest that the extraction solvent may affect
the amount of phytochemical components in the extract and, as a
result, on the extract’s antioxidant activity.

Comparing the antioxidant activity of the molecules to that of
BHT, a synthesised antioxidant, provides a helpful insight into the
potential use of natural antioxidants as an alternative to
manufactured antioxidants. The potential that natural
antioxidants could be used as effective alternatives to synthetic
antioxidants is raised by the methanol extract’s slightly decreased
antioxidant activity compared to BHT. However, the significantly
reduced antioxidant activity discovered in the other formulations
suggests that additional research is needed to determine the most
effective extraction method and to identify the same phytochemical

elements responsible for the reported antioxidant activity.
According to our research findings, A. subulatum seeds contain
natural antioxidants that can stop lipid degradation and protect cells
from damage caused by free radicals. More research is necessary to
fully understand the potential of these natural antioxidants and
determine the most efficient extraction and application techniques.

3.7 Virtual screening analyses

Computer-aided drug design (CADD) has emerged as a
promising approach for discovering novel plant-based cancer
treatments. Computational drug design involves using
computational methods to identify potential drug candidates
from libraries of natural plant compounds. Natural compounds
with anticancer properties can be starting points for drug design
studies. The TP53 protein, which plays a crucial role in cancer, is a
key therapeutic target. In this study, homology-based modelling was
used to create 3D structures of the TP53 protein based on its
sequence and protein templates with high sequence identity and
query coverage were selected, as shown in Figure 3. The top 10 lead
hits from virtual screening analyses were subjected to
pharmacophore modelling to identify the 3D arrangement of
chemical features necessary for these compounds to interact with
the TP53 protein. The resulting pharmacophore models could guide
the design of new small molecule inhibitors of the TP53 protein for
the treatment of cancer.

Pharmacophore refers to a 3D arrangement of chemical features
necessary for a molecule to interact with a specific biological target.
In the case of virtual screening of P53 protein, the top 10 lead hits are
likely small molecules that have been predicted to bind to the protein
based on their expected shape, electrostatic properties, and other
characteristics. Based on previous studies of the P53 protein, it is
known that the protein has several pockets and grooves on its
surface that are important for interactions with other molecules.
These pockets and grooves have specific shapes and electrostatic
properties that can be used to guide the design of small molecule
inhibitors. The pharmacophore matches findings for the chosen
substances revealed encouraging outcomes, as shown in Table 4. Out
of all the implications, Compound-1 had the best pharmacophore
match value (53.92). In summary, the pharmacophore of the top
10 lead hits from virtual screening analyses of P53 protein likely
includes features that allow them to interact with specific pockets
and grooves on the protein’s surface.

A pharmacophore is a molecular model that describes the spatial
arrangement of the functional groups in a molecule that is
responsible for its biological activity. It can identify small
molecules that share similar structural features to known ligands
or bind to a specific target. In this case, a pharmacophore model was
generated for the top 50 lead hits identified in the virtual screening
study, and the highest-scoring compounds among the top 10 were
selected. The table lists with the highest score for each of the top
10 compounds identified in the virtual screening study. The score
reflects the fit of the compounds to the pharmacophore model, with
higher scores indicating a better fit. Based on the table, the top
10 lead hits have scores ranging from 50.75 to 53.92, with
compound-1 having the highest score. These compounds were
selected as the most promising hits based on their high scores
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and are thus expected to have a higher likelihood of binding to the
target protein with high affinity. It is important to note that a high
pharmacophore score does not guarantee that a compound will be
an effective drug. Further studies, such as molecular docking and
molecular dynamics simulations, are necessary to assess the binding
and stability of the compounds to the target protein and evaluate
their potential as drug candidates.

3.8 Molecular docking analyses

The top three compounds identified by a simulated screening of
possible antitumor compounds underwent further investigation
based on their drug-likeness, binding preferences, and energies.
The top ten compounds’ binding values, ranging

from −11.10 to −6.9 kcal/mol, assessed each substance’s ability to
attach to the TP53 protein. The best three matches had the lowest
binding strengths and most favourable binding energies of all the
produced anchored complexes. As seen in Figure 4, these substances
were discovered to bind to the same active areas of the TP53 protein.
This indicates that these substances might block the protein’s action
and might even be turned into effective antitumor medications.

Based on the docking findings, the top three natural compounds
(Compound-1, Compound-2, and Compound-3) showed the
highest binding energies (−11.10 to −10.3 kcal/mol) in contrast to
the other compounds looked at (Table 4). Additionally, the top three
compounds interacted with critical areas, suggesting a potential for
particular binding to the target protein, P53. We also investigated
these compounds’ binding energies and concentrations and their
drug-like properties. The compounds with the lowest binding

FIGURE 3
3D representation of pharmacophore modelling.

TABLE 4 Pharmacophore of top 10 lead hits from virtual screening analyses and Calculated binding affinities of 10 lead hits docked compounds against P53.

Sr # Top leads hit from virtual screening Highest score of top 10 leads hits Binding affinities (kcal/mol)

1 Compound-1 53.92 −11.10

2 Compound-2 51.05 −10.7

3 Compound-3 51.09 −10.3

4 Compound-4 51.07 −8.4

5 Compound-5 51.78 −6.9

6 Compound-6 50.75 −7.7

7 Compound-7 51.06 −7.6

8 Compound-8 51.07 −7.10

9 Compound-9 51.80 −7.6

10 Compound-10 50.75 −7.7
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strengths were found to be the most effective at clinging to the active
portions of the P53 protein. The selected compounds displayed
potential drug-like properties. The P53 protein sequence was also
analysed, and the best protein models with the most significant
amounts of identity and query coverage were selected for homology-
based modelling. Simulation studies of the P53 protein were
conducted to identify the top 50 lead matches, and their

pharmacophore characteristics were analyzed. We explore that
the top 10 lead hits have a pharmacophore fit with particular
pockets and loops on the protein’s surface. The findings suggest
the possibility of developing these top three natural compounds into
influential P53 protein-targeting antitumor drugs.

The binding affinity parameter measures how strongly a ligand—a
particle or other small substance—binds to a target protein. The bound

FIGURE 4
All 3 ligands attached at same binding pockets.

FIGURE 5
3D docked possess of leading hits.
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sensitivities of ten lead hits against the P53 protein were discovered in
this instance. The binding strengths were calculated by considering the
drug’s and protein’s intermolecular interactions, including hydrogen
bonds, hydrophobic, and electrostatic interactions as shown in Figure 5.
The binding energies are expressed in kcal/mol units, with lower
numbers indicating stronger binding. With a value of −11.10 kcal/
mol, Compound 1 had the highest binding affinity in this instance,
suggesting that out of the 10 compounds examined, it attaches to the
P53 protein the most firmly. Compound-3 had a slightly lower binding
affinity than compound-2, which also had a value of −10.7 kcal/mol,
with a value of −10.3 kcal/mol. Compound 4 had the lowest binding
affinity of the 10 compounds, with a weight of −8.4 kcal/mol;
subsequent compounds had progressively lower binding affinities.
More than binding, strengths can affect a drug’s or ligand’s
effectiveness; when developing new medicines, thought must also be
given to variables like metabolism and toxicity.

The top three natural compounds (Compounds 1, 2, and 3)
from the docking analysis of the top 10 lead hits against the
P53 protein were discovered to be the most active based on their
binding affinities and common chemistry interactions (Table 5).
These compounds had the highest binding energies
(−10.9 to −9.2 kcal/mol) and bonded to significant sections in
the target protein’s active domains. Fewer correlations and
weaker binding energies were observed for the other
compounds under study. Overall, the results indicate that
these top 3 natural ingredients could be used to develop novel
cancer therapy drugs. The potent binding sites and common
chemical interactions that the bound compounds disclose can be
used to create effective inhibitors against the P53 protein.

Using Lipinski’s rule of five, which evaluates the drug-likeness of
small compounds, the morphological attributes of the best three hits
were examined. The molecules had a molecular weight within the

permissible range of 500 g/mol, 10 hydrogen acceptors, 5 hydrogen
donors, and 5 LogP values. The LogP number determines the
absorption and membrane permeability of the substances. The
best three hits’ LogP values varied from 2.06 to 9.02 and were
within the permissible absorption range. Additionally, the
compounds have a sufficient number of flexible bonds, hydrogen
bond acceptors, and donors, which suggests that they have excellent
drug action. The best three results’ physical characteristics are
shown in Table 6, and it was found that these substances met
most of the expected characteristics and lacked cancer potential.
According to a study of the ADMET characteristics, the gut can
readily take the chemicals. The best three results are good prospects
for antitumor medicines based on their physical characteristics and
drug-likeness traits.

The details mentioned in Table 6 provide the
physicochemical properties of the top 3 selected compounds,
where Compound-1, Compound-2 and Compound-3
molecular weight (g/mol) represents the sum of the atomic
weights of all atoms in a molecule, which are composed of
420.3877, 403.4048, and 526.7162 g/mol, respectively. LogP (o/
w) is a measure of the solubility of a compound in water (o)
compared to octanol (w). The three Compound’s LogP values
are 2.0649, 3.8989, and 9.0248, respectively. H-bond acceptors
and H-bond donors are related to the hydrogen bonding
capacity of a compound with other molecules. Compound-1,
Compound-2, and Compound-3 have 6, 6, and 2 H-bond
acceptors, and 3, 3, and 2 H-bond donors, respectively.
Rotatable bonds indicate the number of bonds that can
rotate around their axis within a molecule. Compound-1,
Compound-2, and Compound-3 have 5, 5, and 1 rotatable
bond, respectively. Polar Surface Area (PSA) measures the
size of the polar or charged atoms and groups of atoms in a
molecule. Compound-1, Compound-2, and Compound-3 have
74.9200, 92.0500, and 30.2300 PSA values, respectively. The
number of atoms and rings in a molecule can influence the
properties and interactions of a compound. Compound-1,
Compound-2, and Compound-3 have 54, 50, and 91 atoms,
and 5, 4, and 6 rings, respectively. The values of these
physicochemical properties indicate that the top
3 compounds are drug-like and satisfy Lipinski’s rule of five,
which suggests they may have a good chance of becoming a
viable drug candidate. The ADMET analysis indicates that

TABLE 5 The binding affinities (kcal/mol) of top-ranked 3 compounds
against P53.

Compounds Binding affinities (kcal/mol)

Compound-1 −10.9

Compound-2 −9.6

Compound-3 −9.2

TABLE 6 The analyses of physicochemical Properties of the top 3 selected compounds.

Properties Compound-1 Compound-2 Compound-3

Molecular weight (g/mol) 420.3877 403.4048 526.7162

Logp (o/w) 2.0649 3.8989 9.0248

H-bond acceptors 6 6 2

H-bonds donors 3 3 2

Rotatable bonds 5 5 1

PSA 74.9200 92.0500 30.2300

Atoms 54 50 91

Rings 5 4 6
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these compounds are non-carcinogenic and can be easily
absorbed by the intestine.

3.9 MD simulation

Molecular dynamics (MD) simulations are an effective tool for
investigating the dynamic behavior of proteins at biologically
relevant timescales (Rather et al., 2020). In this study, MD
simulations were used to examine how the presence of ligands
affects the stability and conformational changes of the
TP53 protein. The RMSD plot is a widely used method for
evaluating the structural stability of proteins during MD
simulations, which measures the deviation of the protein
backbone conformation from the starting structure as a function
of time. According to the results of this study, the RMSD plot for the
TP53 protein displayed an initial increase in the C-α backbone from
1 ns to 25 ns, indicating significant structural rearrangement. This
was followed by a gradual decrease in RMSD from 26th ns to 30th
ns, indicating that the protein was becoming more stable. Peaks in
the RMSD values from 35 ns to 40 ns suggested that the protein was
undergoing further conformational changes. The gradual decrease
in RMSD from 65 ns to 100 ns suggested that the protein had finally
achieved a stable conformationas shown in Figure 6.

As shown in Figure 6A, the ligand’s RMSD variations were
congruent with those of the protein C-backbone, proving that the
ligand was stablely attached to the protein throughout the
experiment. The bound complex’s average RMSD over the course
of the 100 ns exercise was 3.2 Å, showing that the protein-ligand
complex was largely steady. Because the bound complex’s average
RMSF was 4 Å, some structural changes may have occurred in the
protein during the experiment. Another popular technique for
examining the kinetics of proteins in MD models is the RMSF
image. Each protein residue’s departure from its typical location is
tracked during the exercise. In this research, the TP53 protein’s

RMSF histogram for positions 1–95 revealed a rise, with a highest
value of 5 Å.This indicates that these residues were more malleable
during the exercise and experienced more structural changes. Other
positions showed modest variations with an average RMSF of 3 Å.
Residues with a value of 4.8 showed an increase in peaks 3 and 4 Å,
suggesting that these residues were experiencing substantial
structural changes. Altogether, the outcomes of the MD models
indicate that the chosen substances can attach to TP53 and maintain
its shape, thereby preventing the development of cancer cells. The
protein-ligand complex’s stability was examined using a number of
metrics, such as the RMSD, RMSF, and ligand characteristics, and it
was found to be a stable, closely bonded structure with a high degree
of density. These discoveries shed light on the protein-ligand
interaction process and may help create new cancer treatments.

The departure of the shape of the ligand-protein complex from
the initial structure over time is depicted by the RMSD (Root Mean
Square Deviation) diagram for a ligand-protein complex during a
100 ns Molecular Dynamics (MD) simulation. The RMSD, which is
used to track the stability and progress of the simulation, is a
measurement of the average distance between the atoms of the
simulation structure and the reference structure (typically the
beginning structure). The RMSD figure frequently exhibits an
early rise, a peak, and a steady rise over time. While the peak
shows the stability of the complex throughout the exercise, the initial
rise results from the system relaxing from its original structure. The
steady rise over time results from the system’s tiny variations adding
up, which can have a significant systemic impact.

The main peaks and valleys of the ligand-protein combination
during the experiment are depicted in the RMSF (Root Mean Square
Fluctuation) Figure 6B. The complex’s most malleable areas or those
undergoing the greatest structural changes during the exercise are
indicated by the peaks in the RMSF image. The average departure of
each residue’s location from its normal position throughout the
experiment is represented by the RMSF, which is computed for each
residue in the protein or ligand. The complex’s area of high flexibility

FIGURE 6
RMSD and RMSF plots for a ligand-protein complex during 100 ns of MD simulation. (A) Representation of ligand–protein complex. (B) Major
fluctuations at peak 1, 2, 3, and 4.
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FIGURE 7
Visualization of the secondary structures of alpha helices, beta-strands, and other secondary structures in protein structure. (A) SSE distribution by
residue index: red peaks = helices, blue peaks = beta-strands. (B) SSE composition for each trajectory frame and assignment for each residue over time.

FIGURE 8
A schematic of ligand-ligand interactions. (A) Protein-ligand contacts categorized by interaction. (B) Timeline of H-bond and hydrophobic contacts
between protein and ligand. (C) Schematic diagram of ligand atom interactions with protein residues.
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or movement is indicated by peak 1 Å in the RMSF image, while the
region of moderate flexibility is demonstrated by peak 2 Å, Peaks
3 Å, and 4 Å, could be localised structurally changing areas that
interact with fluid molecules or other regions of the complex. The
analysis of these peaks can reveal details about the dynamics of the
complex and point out areas crucial to its stability or functionality.

The root mean square distance of all parts from the protein’s
centre of mass is known as the radius of gyration (Rg), which gauges
how dense a protein’s structure is. It shows how crowded and how
much room the protein’s auxiliary components fill. Proteins with
bigger Rgs have structures that are longer or more open, whereas
proteins with smaller Rgs have structures that are closer together. A
closely bonded complex in the context of protein-ligand binding
denotes intimate interaction between the protein and the ligand,
resulting in a lower total Rg of the complex than the isolated protein
or ligand. This could mean a high propensity for the protein and
receptor to bind. The stability and kinetics of protein-ligand
interactions are frequently assessed using MD models and the
RMSD (Root Mean Square Deviation) and RMSF (Root Mean
Square Fluctuation) studies. The RMSF measures the average
variation in each molecule or peptide throughout the experiment,
while the RMSD determines how much the protein-ligand
combination deviates from its original structure. The protein-
ligand complex is physically stable, and the protein and ligand
are closely attached if the RMSD/RMSF of the protein-ligand
complex stays constant throughout the exercise. On the other
hand, if the complex is experiencing structural alterations or the
protein-ligand association is feeble, the RMSD/RMSF ratios are
significant.

We analyze the phytochemicals based on the absence of
significant structural changes in the RMSD/RMSF plot during
the simulation. This indicates that the compounds are
structurally stable and not undergoing any major
conformational changes, per earlier researchers (Hafiz
Muhammad et al., 2022). This is a significant result as it
suggests that the phytochemicals aren’t degrading or becoming
unstable during the simulation. Therefore, the observed
interactions with the protein likely represent their actual
behaviour in vivo. The study’s results suggest that the protein-
ligand complex is tightly bound, structurally stable, and compact,
indicating a strong binding affinity between the protein and
ligand. These findings are consistent with previous research
and provide insights into the structure-function relationships
of the complex.

3.10 Protein structure prediction analyses

The study of secondary structure elements (SSE) offers details
about the protein’s molecular alterations during the MD
simulation. As you pointed out, the findings in Figure 7 shows
that the protein’s helices and strands experienced a major shape
shift, which raises the possibility that the protein endured a
substantial structural reorganisation. The protein was highly
dynamic and many areas experienced significant structural
changes, as evidenced by the fact that 43.78% of the protein’s
SSE were impacted during the 100 ns simulation. The study of
several ligand about radius of gyration, intramolecular hydrogen

bonds, molecular surface area, solvent-accessible surface area,
and polar surface area, showed ligand is firmly attached to the
protein despite these structural alterations (PSA). The fact that
these characteristics barely changed suggests that the ligand was
firmly attached to the protein and that its interactions with the
protein were very steady. According to these results, the protein-
ligand complex is highly stable and closely bonded even though
the protein underwent substantial structural changes during the
MD simulation. This aligns with earlier research’s findings and
emphasises the importance of comprehending the kinetics and
stability of protein-ligand interactions to create more successful
drug design methods. Overall, data offers insightful information
about the stability and structural changes of a protein-
ligand complex during an MD simulation, and these
discoveries can be used to guide future studies into the
creation of new medicines.

The secondary structure components of the protein are
represented visually in the protein structure by the SSE
distribution by residue index (Figure 7A). In the diagram,
alpha helices are represented by the crimson peaks and beta
strands by the blue peaks. Plotting the spread of these
components along the protein chain enables a rapid evaluation
of the protein’s general secondary structure. The SSE makeup for
each motion frame throughout the experiment is shown in the
figure below (Figure 7B). This diagram displays the spread of beta
strands, alpha helices, and other secondary structures at various
modelling time points. It makes it possible to see how the SSE
makeup varies over time and can be helpful in pinpointing
instances of instability or structural change. The image at
Figure 7 bottom tracks each residue’s SSE designation over
time. This image thoroughly examines how each residue’s SSE
evolves throughout the exercise. The image can help find the
stability of particular secondary structures or locate specific acids
that may be engaged in structural shifts. Overall, the SSE
representation offers essential knowledge about the secondary
structure components of the protein and how they evolve
throughout the MD simulation. Researchers can learn more
about the protein’s stability and structural changes that may
be crucial for ligand binding and function by examining changes
in the SSE makeup.

The information regarding the ligand components involved
in interactions and their interaction with protein residues,
specifically amino acids, is depicted in (Figure 8A). This
information, which illuminates the critical relationships
between the ligand and protein, can help develop novel
ligands or improve already existing ones. The ligand features
graphic shows the ligand’s radius of gyration (rGyr), molecular
surface area (MolSA), solvent accessible surface area (SASA), and
polar surface area (PSA) as shown in (Figure 8B). These traits can
provide details regarding the ligand’s stability and protein
interactions. A safe ligand, for instance, should have a
minimum radius of gyration to form intramolecular hydrogen
bonds. The ligand’s molecular surface area can be used to
estimate its size. Its polar surface area and liquid accessible
surface area can be used to determine its solubility and
polarity. Figure 8C shows the interactions in protein-ligand
junctions and categorises them by category. They illustrate the
ligand’s interactions with specific protein areas containing amino
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acids. Among the different types of interactions that can occur
are electrostatic interactions, hydrophobic contacts, and
hydrogen bonds. The hue labelling in the picture represents
the number of distinct connections of a specific peptide with
the ligand. Darker orange indicates that a peptide has been
exposed to the receptor more than once. The links between
the ligand and the protein can be improved by identifying key
amino acid sequences implicated in ligand binding.

4 Conclusion

The study investigated the presence of phytochemicals and
antioxidant properties in the Amomum subulatum seeds. We
confirmed the presence of critical phytochemical groups
(alkaloids, tannin, saponin, phlobatinin, and cardic glycoside)
responsible for the plant’s medicinal properties. The A.
subulatum plant’s ability to scavenge reactive oxygen species
(ROS) makes it a potential candidate for therapeutic use,
particularly in treating cancer. In this study, our results
revealed that the extract comprised 9.4% ± 0.04% alkaloid and
1.9% ± 0.05% saponin. We also performed DPPH analysis and
found that the methanol extract (79.82%), BHT (81.73%), and
n-hexane extract (51.31%) exhibited considerable antioxidant
activity.

Furthermore, we assessed the extract’s ability to inhibit
oxidation and observed that Methanol (83.42%) and BHT
(90.25%) had the most significant inhibitory effects. We found
that Compound-1 had the best pharmacophore match value
(53.92), with others ranging from 50.75 to 53.92, where
docking results showed that the top three natural compounds
had the highest binding energies (−11.10 to −10.3 kcal/mol) and
bound to significant regions in the target protein’s active
domains. The Molecular Dynamics (MD) simulations
indicated that the ligand was tied to the protein with
substantial conformational changes in the protein structure.
The study also identified three compounds that exhibit
promising effects against cancer cells, with marked effects on
the TP53 protein and the P53 pathway.

The computational models provide insight into protein-ligand
interactions and binding affinities. They may serve as a model for
developing innovative, less toxic, and highly effective drugs for

cancer treatment. The study’s findings highlight the potential of
natural compounds for the development of novel cancer therapies.
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Glycogen synthase kinase-3 (GSK3β), a serine/threonine protein kinase, has been
discovered as a novel target for anticancer drugs. Although GSK3β is involved in
multiple pathways linked to the etiology of various cancers, no specific GSK3β
inhibitor has been authorized for cancer therapy. Most of its inhibitors have toxicity
effects therefore, there is a need to develop safe andmore potent inhibitors. In this
study, a library of 4,222 anti-cancer compounds underwent rigorous
computational screening to identify potential candidates for targeting the
binding pocket of GSK3β. The screening process involved various stages,
including docking-based virtual screening, physicochemical and ADMET
analysis, and molecular dynamics simulations. Ultimately, two hit compounds,
BMS-754807 and GSK429286A, were identified as having high binding affinities to
GSK3β. BMS-754807 and GSK429286A exhibited binding affinities of −11.9,
and −9.8 kcal/mol, respectively, which were greater than that of the positive
control (−7.6 kcal/mol). Further, molecular dynamics simulations for 100 ns
were employed to optimize the interaction between the compounds and
GSK3β, and the simulations demonstrated that the interaction was stable and
consistent throughout the study. These hits were also anticipated to have good
drug-like properties. Finally, this study suggests that BMS-754807 and
GSK429286A may undergo experimental validation to evaluate their potential
as cancer treatments in clinical settings.
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1 Introduction

Cancer, a hyperproliferative condition, is characterized by excessive
cell division and, eventually, metastasis. Protein kinases are essential
regulators of many biological processes and are targets for a wide range
of human disorders (Greten and Grivennikov, 2019). Glycogen
synthase kinase-3 (GSK3β), a serine/threonine protein kinase, has
been discovered as a novel target for anticancer drugs. It was
originally thought to be the most significant enzyme involved in the
metabolism of glycogen, but it is now largely recognized as a regulator of
various cellular processes, such as the activity of several metabolic and
signaling proteins when it phosphorylates (Cohen and Frame, 2001;
Dickey et al., 2011). It promotes tumor cell survival in several cancers by
using different pro-survival pathways regulated by NF-κB (Zhang et al.,
2014; Saud et al., 2016), Hh/Gli (Trnski et al., 2015), mTOR (Pal et al.,
2014), and STAT3 (Gao et al., 2017). GSK3β inhibitors are now being
used to treat a variety of conditions, including Alzheimer’s disease,
diabetes, and cancer (Klamer et al., 2010; Medina and Avila, 2010; Zeng
et al., 2014). Several inhibitors of GSK3β have been developed and
progressed to early-stage clinical trials for various types of cancer (Sahin
et al., 2019). One such inhibitor is Tideglusib, which was initially
developed to target tau phosphorylation in Alzheimer’s disease.
However, studies have shown that it can increase proapoptotic
proteins in murine models of human neuroblastoma, indicating its
potential efficacy in cancer treatment (Mathuram et al., 2016). Another
GSK3β inhibitor, LY2090314, has demonstrated antiproliferative
properties in preclinical studies involving melanoma and
neuroblastoma. This ATP-competitive inhibitor has shown
promising results in clinical trials for cancer treatment (Palomo and
Martinez, 2017; Kunnimalaiyaan et al., 2018). Additionally, Solasodine,
a naturally occurring aglycone of glycoalkaloid, has been shown to
inhibit the GSK-3 pathway and induce apoptosis in various types of
malignancies (Zhuang et al., 2017). Although GSK3β is involved in
multiple pathways linked to the etiology of various cancers, no specific
GSK3β inhibitor has been authorized for cancer therapy.

GSK3β is a 433-residue protein with three different structural
domains. The first 134 residues form a 7-strand beta-barrel in the
N-terminal domain. Residues 135–151 form a brief linker
connecting the N-terminal domain to the alpha-helical domain.
Residues 152–342 comprise the alpha-helical domain, and residues
343–433 make up the C-terminal domain. The ATP-binding site is
located between the N-terminal and alpha-helical domains (Jacobs
et al., 2012).

Drug development is a multidisciplinary, costly, and time-taking
process. Computer-assisted drug discovery (CADD) is a
constructive approach to drug development that hastens the
process and decreases expenses. By reducing the need for animal
models in pharmacological research and aiding in the rational
design of safe drug candidates, CADD supports medicinal
chemists and pharmacologists throughout drug discovery (Paul
et al., 2021). The use of CADD has proven crucial to several
projects across a range of contexts and research environments.
CADD has played a substantial role in the identification and
optimization of successful compounds that have moved to
further stages of the drug development pipeline or
commercialization (Talele et al., 2010). CADD has limitations
due to the accuracy of computational models, the scarcity of
structural data, the limited chemical diversity, the complexity of

drug targets, and the lack of experimental validation (Sliwoski et al.,
2014).

To identify possible candidates for targeting the binding pocket
of GSK3β, we employed computational approaches to screening a
diverse library of therapeutically active potential candidates for
targeting the binding pocket of GSK3β.

2 Methodology

2.1 Retrieval and preparation of GSK3β
protein

The GSK3β protein (PDB: 4AFJ) was retrieved from the PDB
database (Gentile et al., 2012). Heteroatoms, water molecules, and
co-crystallized ligands were extracted, and the protein was saved
in.pdb format. The heteroatoms were proto-oncogene frat, a
30 amino acid short peptide, SO4, GOL, and SJJ. The clean
protein was finally prepared using Discovery Studio 2021 for
further studies.

2.2 Compound library preparation and
virtual screening

The process of identifying new compounds with specific
bioactivity has been transformed by virtual screening methods,
which use computer simulations to assess large structure libraries
against a biological target (Macalino et al., 2015). This study
employed a library of 4,222 anti-cancer compounds (retrieved
from https://www.selleckchem.com), including both FDA-
approved drugs and naturally occurring substances. The
collection included compounds that were cell-permeable,
therapeutically active, and diverse in terms of their chemical
structure. The compound library was downloaded in ‘sdf’ format
and then processed in ‘PyRx 0.8’ program (Dallakyan and Olson,
2015). The compounds library was minimized utilizing ‘UFF’ force
field as the energy minimization parameter and finally saved in the
‘pdbqt’ format for further analysis. The grid coordinates of the
GSK3β were set as X = 104.048, Y = 26.822, and Z = −12.474. The
best hits were carefully chosen based on the binding affinity and
interaction analysis toward GSK3β.

2.3 Physicochemical and ADMET properties

The DataWarrior tool was used to predict the drug-likeness and
physicochemical properties of the top ten compounds, and the
ProTox-II (Banerjee et al., 2018) and pkCSM web servers (Pires
et al., 2015) were used for ADMET and pharmacokinetic properties.

2.4 MD simulations

The GROMACS 2021.4 software and GROMOS96 43a1 force-
field were used to perform MD simulations of three complexes:
GSK3β-control, GSK3β-BMS-754807, and GSK3β-GSK429286A, all
at 300 K (Pol-Fachin et al., 2009). The topology and force-field
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factors of the compounds were generated using the PRODRG server,
and their atoms were combined in the complex topology files. Na+

and Cl− ions were introduced to neutralize the charges on the GSK3β
protein complexes using the ‘gmx_genion’ module (0.15 M)
(Schuttelkopf and van Aalten, 2004). The ‘particle-mesh Ewald’
method was employed to analyze the interactions of GSK3β with
these selected compounds. The system (for MD simulation) was
minimized employing the ‘steepest descent’ method (1,500 steps)
and equilibrated over a 100-ps period at constant volume in two
stages: NVT and NPT ensembles. The total simulation of 100 ns was
conducted at 300 K. Trajectories were analyzed using GROMACS
modules, and 3Dmodels were created using VMD (Humphrey et al.,
1996) and PyMOL (Yuan et al., 2017).

3 Results and discussion

GSK3β dysfunction has been reported in various cancer types
(Domoto et al., 2020), and has been identified as being at the

crossroads of various biochemical pathways, including cancer-
related pathways (Duda et al., 2020). Here in this study, a unique
collection of 4,222 anti-cancer compounds were screened against the
active pocket of GSK3β. Based on binding affinity, we chose the top
ten screened compounds for further visual inspection and
interaction studies (Table 1).

The drug-likeness and physicochemical attributes of these top
10 compounds were anticipated using the DataWarrior tool, which
employs several parameters including LogP, LogS, H-bond donors
and acceptors, relative PSA, and the presence of structures with
particular pharmacological properties. Both GSK429286A and
BMS-754807 retain an adequate range of drug-likeness properties
(Table 2). GSK429286A was discovered to be a selective inhibitor of
Rho-associated coiled-coil protein kinase 1 (ROCK1) and ROCK2.
These kinases are involved in a several cellular activities, which
include cell motility, contraction, and adhesion, and have been
associated to cancer, cardiovascular disease, and neurological
disorders (Kim et al., 2021). BMS-754807 efficiently and
irreversibly inhibits both insulin receptor (IR) family kinases and
the insulin-like growth factor 1 receptor (IGF-1R). These kinases
have a high binding affinity for it (Ki, 2 nmol/L), which is important
for controlling cell growth, survival, and metabolism. BMS-754807
is now in phase I clinical trials for the treatment of multiple types of
human cancer (Carboni et al., 2009).

The robust stability of the hit compounds within the GSK3β
active site was attributed to the presence of various Van der Waals
and H-bonding interactions (Table 3). These interactions aided in
the intercalation of the compounds into the active site, increasing
their binding affinity and overall stability (Figures 1A–E). BMS-
754807 interacted with several residues like Ile62, Gly63, Asn64,
Gly65, Val70, Ala83, Lys85, Leu132, Tyr134, Val135, Pro136,
Glu137, Thr138, Arg141, Lys183, Gln185, Asn186, Leu188,
Cys199, and Asp200 and residues of GSK3β. The Van der Waals
interaction involves a set of amino acid residues, namely, Gly63,
Asn64, Gly65, Ala83, Lys85, Leu132, Tyr134, Val135, Pro136,
Glu137, Thr138, Arg141, Lys183, Leu188, Cys199, and Asp200;
while Gln185 and Asn186 residues were involved in H-bonding
(Figure 1C). Further, GSK429286A interacted with Ile62, Gly63,
Asn64, Ala83, Lys85, Glu97, Val110, Leu132, Tyr134, Val135,

TABLE 1 Binding affinity of top 10 screened compounds.

S. No Ligand Binding affinity (kcal/mol)

1 YM201636 −10.6

2 OSI-906 −10.3

3 BMS-754807 −10.2

4 Tipifarnib −10

5 VX-809 −10

6 INCB28060 −9.8

7 GSK429286A −9.5

8 Limonin −9.1

9 Icotinib −8.7

10 AZ628 −8

11 AR-AO-14418 (Positive control) −7.5

TABLE 2 Physicochemical assessment of top 10 screened compounds.

Molecule name Mol
Weight

cLogP cLogS H-acceptors H-donors Relative PSA Drug likeness Mut Tum Rep Irr

Icotinib 391.41 2.9067 −3.673 7 1 0.23718 −12.415 NO NO NO NO

INCB28060 412.41 2.2964 −3.284 7 1 0.24682 4.3136 NO NO NO NO

OSI-906 421.49 4.0356 −6.927 6 2 0.2212 1.7312 NO NO NO NO

GSK429286A 432.37 3.3102 −5.084 6 3 0.24809 −1.5348 NO NO NO NO

AZ628 451.51 4.6632 −6.584 7 2 0.21932 −3.6106 NO NO NO NO

VX-809 452.40 5.632 −6.513 7 2 0.26229 −1.4961 NO NO NO NO

BMS-754807 461.49 2.3302 −5.859 10 3 0.31262 6.8809 NO NO NO NO

YM201636 467.47 2.7535 −7.308 10 2 0.32145 2.2644 NO NO NO NO

Limonin 470.51 1.0279 −4.073 8 0 0.32001 −3.0035 NO NO NO NO

Tipifarnib 489.39 4.03 −5.185 5 1 0.14038 2.4006 NO NO NO NO
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Pro136, Thr138, Arg141, Val70, Lys183, Gln185, Asn186, Leu188,
Cys199, Asp200, and Phe201 residues of GSK3β. Gly63, Val70,
Ala83, Lys85, Glu97, Val110, Leu132, Val135, Thr138, Lys183,
Asn186, Leu188, and Phe201 residues participates in Van der
Waals interactions; while Lys85, Pro136, and Asp200 residues
were involved in H-bonding (Figure 1D). Several amino acid
residues of the GSK3β have alrady been described to play an
essential role in inhibitor binding. These residues include Ile62,
Gly63, Asn64, Val70, Ala83, Lys85, Glu97, Leu132, Tyr134, Val135,
Leu188, Cys199, Asp200, and Phe201 (Mishra et al., 2019). It is

noteworthy that the compounds (BMS-754807, and GSK429286A)
have been observed to bind with these GSK3β residues.

N-(4-methoxybenzyl)-N0-(5-nitro-1,3-thiazol-2-yl) urea (AR-
AO-14418) is a selective inhibitor of GSK3β (Bhat et al., 2003),
and was used as a positive control in this study. In vitro,
ARA014418 inhibited GSK3β without significantly inhibiting
other kinases, reducing tau phosphorylation at Ser-396. In vivo, it
induced antidepressant-like effects in rats by decreasing immobility
time and both spontaneous and amphetamine-induced activity
(Gould et al., 2004). AR-AO-14418 interacted with Ile62, Gly63,

TABLE 3 H-bonded and other interactions residues.

Compounds H-bonded residues Number of
H-bond

Other interactions

BMS-754807 Asn186, and Gln185 2 Ile62, Gly63, Asn64, Gly65, Val70, Ala83, Lys85, Leu132, Tyr134, Val135, Pro136, Glu137,
Thr138, Arg141, Lys183, Leu188, Cys199, and Asp200

GSK429286A Lys85, Pro136, and Asp200 3 Ile62, Gly63, Asn64, Ala83, Glu97, Val110, Leu132, Tyr134, Val135, Thr138, Arg141, Val70,
Lys183, Gln185, Asn186, Leu188, Cys199, and Phe201

AR-AO-14418 Ser66, Phe67, Lys85, and
Asp200

4 Ile62, Gly63, Asn64, Gly65, Val70, Ala83, Tyr134, Val135, Lys183, Leu188, and Cys199

FIGURE 1
Visualization of hits and positive control in the GSK3β binding pocket (A, B); 2D view of GSK3β residues interacting with BMS-754807 (C),
GSK429286A (D), and AR-AO-14418 (E).
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Asn64, Gly65, Ser66, Phe67, Val70, Ala83, Lys85, Tyr134, Val135,
Lys183, Leu188, Cys199, and Asp200 residues of GSK3β (Figure 1E).
Interestingly, Ile62, Gly63, Asn64, Val70, Ala83, Lys85, Tyr134,
Val135, Lys183, Leu188, Cys199, and Asp200 GSK3β residues were
observed to be common interacting residues with both the hits
(BMS-754807, and GSK429286A) as well as the AR-AO-14418
(Figure 1C-1E). In addition, Lys85, and Asp200 were the
common H-bonded residues with GSK429286A and the AR-AO-
14418.

BMS-754807 oral toxicity prediction results were as follows:
pLD50: 500 mg/kg, pToxicity Class: 4, average similarity: 39.97%,
pAccuracy: 23%; while GSK429286A oral toxicity prediction
results were as follows: pLD50: 50 mg/kg, pToxicity Class: 2,
Average similarity: 45.44%, pAccuracy: 54.26%. BMS-754807
falls into the category of ‘harmful if swallowed’ while
GSK429286A falls into the category of ‘fatal if swallowed’ as
its LD50 value is greater than that of BMS-754807. In addition,
multiple toxicity endpoints, including acute toxicity,
hepatotoxicity, cytotoxicity, carcinogenicity, mutagenicity,
immunotoxicity, etc., were within the acceptable range for
these two compounds (Figure 2). Further, multiple
pharmacokinetic properties including ADMET of both
GSK429286A and BMS-754807 were predicted by the pkCSM
web server, which results that both compounds are satisfactorily
appropriate in several parameters of ADMET (Table 4).

MD simulation studies were carried out to evaluate complex
stability. Protein stability can be measured using the root mean
square deviation (RMSD), where a lower RMSD value indicates a
more stable protein structure. GSK3β-control, GSK3β-BMS-
754807, and GSK3β-GSK429286A had RMSD average values
of 0.42, 0.31, and 0.35 nm, respectively. The RMSD plot
revealed that GSK3β-BMS-754807 and GSK3β-GSK429286A
complex showed more binding stability than the control
compound. The ‘GSK3β-control’ complex showed high
deviation from its original conformation, it showed that the

active site pocket of GSK3β formed quite stable interaction
with both of the selected compounds. In addition, the ligand
RMSD exhibits GSK3β-BMS-754807 and GSK3β-GSK429286A
high deviation, and interestingly, the GSK3β-control complex
showed low deviation (Figure 3A-B).

The fluctuation of each residue during the simulation was
averaged, and the root mean square fluctuation (RMSF) of
GSK3β was calculated while binding to GSK3β-control, GSK3β-
BMS-754807, and GSK3β-GSK429286A. These values were plotted
against the residue numbers of GSK3β. The GSK3β-control and
GSK3β-GSK429286A backbones presented steady fluctuations in
the catalytic pocket of GSK3β, presumably due to different
orientations and the GSK3β-BMS-754807 complex indicated high
fluctuation in region 230–260 residues (Figure 3C). On the other
hand, GSK3β-control, and GSK3β-GSK429286A complexes showed
the least overall fluctuations.

By measuring the distribution of atoms around the axis of a
protein, the radius of gyration (Rg) provides insight into the
compactness profile of a complex in a biological system. The
GSK3β-control, GSK3β-BMS-754807 and GSK3β-
GSK429286A complexes had average Rg values of 2.13, 2.15,
and 2.17 nm, respectively. Rg plot showed lesser compactness
in GSK3β-control and GSK3β-BMS-754807 than GSK3β-
GSK429286A complexes. It contingent that after binding,
these compounds make GSK3β stable, due to GSK3β
showing less Rg trajectories (Figure 3D). Among both
compounds, BMS-754807 showed better stability in the
catalytic pocket of GSK3β.

The Solvent-accessible surface area (SASA) of a protein refers
to the portion of its surface area that interacts with its
surrounding solvent molecules. The average SASA values for
GSK3β-control, GSK3β-BMS-754807, and GSK3β-GSK429286A
complexes were plotted during the 100 ns simulation. The SASA
values for the GSK3β-control, GSK3β-BMS-754807, and GSK3β-
GSK429286A complexes were 170.51, 178.10, and 180.42 nm2,

FIGURE 2
Toxicity radar chart of BMS-754807 and GSK429286A.
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respectively (Figure 4A). Further, GSK3β-control and GSK3β-
BMS-754807 overlapped each other in 2D projection analysis,
whereas GSK3β-GSK429286A showed a different pattern
(Figure 4B). SASA exploration indicated that upon binding of
control, BMS-754807, surface exposure has been reduced and the
GSK429286A compound increases the surface area of solvent
accessibility. Further, hydrogen bond analysis was performed of
the docked complexes. To evaluate the stability of the docked
complexes, 100 ns simulations of GSK3β-control, GSK3β-BMS-

754807, and GSK3β-GSK429286A were conducted in the
presence of a solvent environment. The control and BMS-
754807 compound showed an average 2–7 H-bond with
GSK3β protein whereas, the GSK429286A compound showed
2–6 H-bond. It inferred that the BMS-754807 compound showed
more stable interaction and might work as a potential drug
against the GSK3β protein (Figure 4C-E).

Next, Mean square displacement (MSD) was determined. It
found that the GSK3β-BMS-754807 complex had a higher

TABLE 4 ADMET calculation of GSK429286 A and BMS-754807.

Property Model name Predicted value Unit

GSK429286A BMS-754807

Absorption Water sol −4.068 −2.92 log mol/L

Caco2 per 0.699 1.256 log Papp in 10–6 cm/s

Intestinal abs 88.306 87.281 % Absorbed

Skin Per −2.761 −2.735 log Kp

P-glycoprotein (P-gp) substrate Y Y

P-gp I inhibitor Y N

P-gp II inhibitor Y N

Distribution VDss (human) −0.148 0.847 log L/kg

Fraction unbound 0 0.143 Fu

Per −1.129 −1.747 −0.528 log BB

−2.193 −3.615 −1.665 log PS

Metabolism substrate N N N

Y N Y

inhibitor N N N

Y N N

Y N N

N N N

Y N N

Excretion Total Clearance −0.02 −0.393 log mL/min/kg

Renal OCT2 substrate N N

Toxicity AMES toxicity N N

Max. Tolerated dose (human) −0.205 0.738 log mg/kg/day

inhibitor N N N

Y Y N

LD50 2.192 2.446 mol/kg

LOAEL 1.717 1.859 log mg/kg_bw/day

Hepato Y Y

Skin Sensitization N N

T. Pyriformis 0.349 0.285 log mM

MinNw 1.501 1.63

(per. = permeability; sol. = solubility; Y=Yes; N=No).
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displacement than the control and the GSK3β-GSK429286A
complex (Figure 5A). The Gibbs’ free energy (GFE) landscape
was computed using GROMACS analysis modules, and the first

(PC1) and second (PC2) eigenvectors were projected to generate a
Comparable GFE contour map, where darker blue shades indicate
lower energy levels. During the simulations, the global minima of

FIGURE 3
MD simulation studies of complexes. RMSD plot (A), RMSD plot of ligands (B), RMSF plot (C), and Rg plot (D) of GSK3β protein with the ligands.

FIGURE 4
SASA plot (A), 2D projection of complexes (B), and number of H-bonds in complexes (C–E).
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GSK3β fluctuated due to the binding of the complexes to the GSK3β
protein. The GSK3β-control and GSK3β-GSK429286A were
showing similar projections; and GSK3β-BMS-754807 was
showing dissimilar global minima, demonstrating that BMS-
754807 global minima drastically changed during the
simulation (Figure 5B-D). The above results suggested that the
BMS-754807 compound might be used as a possible drug for the
GSK3β protein.

Several small-molecule inhibitors of GSK3β, such as CHIR-
99021, CHIR-98014, SB216763, SB415286, AR-A011418,
CG701338, and CG202796, have been utilized in preclinical
studies involving cell and animal models to investigate the
potential involvement of GSK3β in cancer pathogenesis (Walz
et al., 2017). These compounds, however, are primarily classified
as “toolkit compounds” due to a lack of adequate ADMET
properties required for advancement as drug candidates to
clinical trials. To date, clinical trials on GSK3β inhibitors,
including tideglusib and LY2090314, have demonstrated their
tolerability, indicating that concerns about GSK3β inhibition
causing widespread metabolic toxicity were not justified.
LY2090314 has a suboptimal pharmacokinetic profile, so the lack
of toxicity observed could be attributed to inadequate systemic
exposure (Zamek-Gliszczynski et al., 2013). The selected
compounds in this study demonstrated promising drug-like
properties and have been proposed to inhibit cancer progression
via their interaction with GSK3β.

4 Conclusion

In this study, an insilico screening approach was employed to
investigate potential anti-cancer compounds targeting the
GSK3β protein. BMS-754807 and GSK429286A were
discovered to have high binding affinity and stability to the
GSK3β protein. The favorable interactions were found to be
attributed to various Van der Waals forces and H-bonding
interactions. Additionally, both compounds exhibited
promising drug-like properties. These findings provide a basis
for further investigation in vitro and in vivo to develop potent
GSK3β inhibitors for cancer management.
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Tropomyosin-receptor kinase A (TrkA) is the primary isoform among the
tropomyosin-receptor kinases that have been associated with human cancer
development, contributing to approximately 7.4% of all cancer cases. TrkA
represents an attractive target for cancer treatment; however, currently
available TrkA inhibitors face limitations in terms of resistance development
and potential toxicity. Hence, the objective of this study was to identify new
allosteric-approved inhibitors of TrkA that can overcome these challenges and be
employed in cancer therapy. To achieve this goal, a screening of 9,923 drugs from
the ChEMBL database was conducted to assess their repurposing potential using
molecular docking. The top 49 drug candidates, exhibiting the highest docking
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scores (−11.569 to −7.962 kcal/mol), underwent MM-GBSA calculations to evaluate
their binding energies. Delanzomib and tibalosin, the top two drugs with docking
scores of −10.643 and −10.184 kcal/mol, respectively, along with MM-GBSA dG
bind values of −67.96 and −50.54 kcal/mol, were subjected to 200 ns molecular
dynamic simulations, confirming their stable interactions with TrkA. Based on these
findings, we recommend further experimental evaluation of delanzomib and
tibalosin to determine their potential as allosteric inhibitors of TrkA. These drugs
have the potential to provide more effective and less toxic therapeutic alternatives.
The approach employed in this study, which involves repurposing drugs through
molecular docking andmolecular dynamics, serves as a valuable tool for identifying
novel drug candidates with distinct therapeutic uses. This methodology can
contribute to reducing the attrition rate and expediting the process of drug
discovery.

KEYWORDS

cancer, tropomyosin-receptor kinase A, repurposing, molecular docking, molecular
dynamics, drug discovery, health and wellbeing

1 Introduction

Tropomyosin-receptor kinases (Trks), a subfamily of the
protein kinase superfamily, belong to the receptor tyrosine
kinases and consist of three isoforms: TrkA, TrkB, and TrkC.
These isoforms function as receptors for the neurotrophin
family, which includes high-affinity growth factors such as
nerve growth factor (NGF), which binds to TrkA, brain-
derived neurotrophic factor (BDNF) and neurotrophin-4/5
(NT4/5), which bind to TrkB, and neurotrophin-3 (NT3),
which binds to TrkC (Wang et al., 2009).

Previous experimental research has provided cumulative data
indicating the involvement of Trks in the pathogenesis of a diverse
range of human cancers, which has led to their recognition as
promising targets for cancer treatment (Wang et al., 2009; Alam
et al., 2017). TrkA, in particular, is considered oncogenic, with
mounting evidence pointing to its overexpression and involvement
in cancer development (Griffin et al., 2020). It is the most common
isoform of Trks and is frequently associated with gene mutations or
fusions, which result in the formation of oncogenes responsible for
approximately 7.4% of all human cancer cases (Guo et al., 2022).

Trk inhibitors can be classified into four categories based on
their binding interactions: type I, type II, type III, and type IV (Wu
et al., 2015). Type I inhibitors are ATP-competitive and bind to the
ATP active site. Type II inhibitors, on the other hand, are ATP non-
competitive and exhibit pseudo-competitive binding kinetics by
extending into a deep hydrophobic pocket within the ATP-
binding site. Type III inhibitors are allosteric and bind adjacent
to the ATP-binding site, while type IV inhibitors bind to regions
other than the kinase domain of the protein (Yan et al., 2019). Type
II inhibitors offer higher selectivity than type I inhibitors, but their
large molecular size limits their druggability. However, both type I
and type II inhibitors face challenges due to the emergence of
secondary mutations in the ATP active site of Trks, particularly
TrkA. Type III and type IV inhibitors provide isoform selectivity,
although the effectiveness of type IV inhibitors as anticancer agents
remains uncertain (Yan et al., 2019). Therefore, this study aims to
identify allosteric TrkA selective inhibitors (type III) to overcome
the existing limitations of TrkA inhibitors. These inhibitors could

potentially be used in the management of various cancers associated
with TrkA activation, such as lung, breast, cervix, thyroid, and oral
cavity cancers (Lagadec et al., 2009; Sasahira et al., 2013; Faulkner
et al., 2018; Gao et al., 2018; Faulkner et al., 2020).

Similar to other RTKs, TrkA comprises three domains: an
extracellular domain responsible for ligand binding, a
transmembrane domain, and an intracellular catalytic domain
(Amatu et al., 2019). The region between the transmembrane
domain and the catalytic domain, known as the juxtamembrane
(JM) region, consists of approximately 60 residues. Interestingly, this
region exhibits approximately 36% similarity with TrkB and 40%
similarity with TrkC (Su et al., 2017; Furuya et al., 2017). In the
inactive state, the Asp–Phe–Gly (DFG) motif of TrkA’s activation
loop adopts an “out” conformation. This conformation is stabilized
by edge-to-face interactions involving three phenylalanine residues:
DFG motif Phe669, gatekeeper Phe589, and back pocket Phe575.
Together, they form a unique FFF motif, along with the
Leu564 residue in the α-C helix and the JM region. This
combination generates an allosteric site adjacent to the ATP-
binding site of TrkA (Bagal et al., 2019). X-ray crystallography
studies have revealed that this allosteric site binds type III inhibitors,
effectively maintaining TrkA in an inactive conformation (Simard
et al., 2009; Heinrich et al., 2010). Therefore, this study leverages the
knowledge of this allosteric site to identify type III TrkA inhibitors,
utilizing its potential for modulating TrkA activity.

The process of drug discovery and development is known for its
high attrition rate, involving significant time, cost, and effort,
making the introduction of a new drug to the market a
challenging endeavor (Mohammed et al., 2022; Gowtham et al.,
2022). In the field of cancer research, the strategy of drug
repositioning or repurposing has gained widespread application.
This strategy involves repurposing approved or investigational drugs
for new indications that were not initially intended for their use
(Pushpakom et al., 2018; Gazerani, 2019; Omer et al., 2022). By
leveraging existing drugs, the drug repositioning approach
significantly reduces the time required for the drug discovery
process by 3–5 years, lowers costs by $0.3 billion, and reduces
failure rates in the later stages of development. This is because
the drugs being investigated have already demonstrated sufficient
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safety profiles, enabling them to swiftly enter phases II and III of
clinical trials (Fu et al., 2022; Issa et al., 2021).

Computational techniques play a vital role in drug repurposing,
encompassing various approaches, such as molecular docking,
genetic association, pathway mapping, data mining, and signature
matching (Fu et al., 2022).

In this study, molecular docking coupled with MM-GBSA
calculations and molecular dynamics (MD) simulations were
employed to investigate drugs from the ChEMBL database. The
aim of this study was to assess their potential for repurposing as drug
candidates for cancer treatment, specifically targeting the TrkA
allosteric site.

2 Materials and methods

All in silico studies, with the exception of the molecular
dynamics (MD) simulations, were conducted using Maestro
v12.8 from Schrödinger. The MD simulations were performed
using Academic Desmond v6.5 by D.E. Shaw Research.

2.1 Protein and ligand preparation

The crystallographic structure of TrkA, along with the co-
crystallized ligand (PDB ID: 6D20) (Bagal et al., 2019), was
obtained from the Protein Data Bank (PDB) (https://www.rcsb.
org/). To prepare the TrkA structure for subsequent calculations, a
three-step processing procedure was performed using the Protein
Preparation Wizard in Maestro.

In the first step, basic adjustments were made to the protein
structure, including assigning bond orders, adding hydrogen atoms
to those that were missing, creating zero-order bonds for metals and
disulfide bonds, converting selenomethionines to methionines,
filling in missing side chains and loops, removing water
molecules beyond 5.00 Å from heterogroups, and generating
potential ionization states of heteroatoms at a pH of 7 ± 2.

The second step involved optimizing hydrogen bonds and
assigning orientations to the crystalized water molecules. The
protonation states of the residues were also determined using the
PROPKA tool at a pH of 7.0.

Finally, the third step involved restrained minimization, which
was performed using the OPLS4 force field (AbdElmoniem et al.,
2023). This step aimed to achieve a more stable and energetically
favorable conformation of the TrkA structure for subsequent
calculations.

We downloaded the drugs library from the ChEMBL database at
https://www.ebi.ac.uk/chembl/. Specifically, we focused on the
category of drug molecules. Within this category, we narrowed
our focus to small molecules, which encompass various types,
such as FDA-approved, world-approved, and investigational
compounds. In total, we selected 9,923 small molecules from this
category, representing a diverse range of therapeutic classes. To
prepare the library for further analysis, the LigPrep tool in Maestro
was employed (Alzain and Elbadwi, 2021). LigPrep not only
generated low-energy three-dimensional structures for the input
compounds but also produced multiple output structures for each
compound. This was achieved by considering various factors, such

as possible ionization states, tautomers, and stereoisomers. The
LigPrep process was executed with the default settings, ensuring
comprehensive exploration of the chemical space represented by the
drug library.

2.2 Grid generation and molecular docking

The prepared protein structure underwent the receptor grid
generation process, a crucial step for ligand docking. This process
generated a grid file representing the site on the receptor where the
ligand docking would occur. The receptor grid generation panel in
Maestro was utilized to configure the grid generation job (Mohamed
et al., 2022). The ligand molecule that bound to the TrkA allosteric
site was identified and excluded from the grid generation process.
This step helped define the position and size of the allosteric site
surrounding the ligand. The van derWaals scaling and other options
in the panel were kept at their default settings, and the grid
generation process was initiated.

To evaluate the strength and affinity of the compounds toward
the target’s allosteric site, the prepared library underwent
molecular docking using the ligand docking panel in the Glide
tool of Maestro (Elbadwi et al., 2021; Alzain et al., 2022). Initially,
the library was subjected to a high-throughput virtual screening
(HTVS) mode. The top compounds were then filtered based on
their docking scores and subsequently subjected to an extra-
precision (XP) docking mode. This multi-step docking process
enabled the identification of potential compounds that exhibited
favorable binding characteristics and affinity for the TrkA allosteric site.
As a reference, the co-crystallized ligand was also docked onto the
allosteric site.

2.3 MM-GBSA calculations

The ligand that poses with the best docking scores were selected
and subjected to free-binding energy calculations using the
molecular mechanics-generalized born surface area (MM-GBSA)
method. These calculations were performed using the Prime tool in
Maestro. The MM-GBSA method was utilized to estimate the free-
binding energy of the ligand–receptor complex. The specific
equation employed in these calculations to determine the free-
binding energy is as follows:

ΔE � Ec–ER–EL,

where ΔE is the free-binding energy, Ec is the ligand–receptor
complex energy, ER is the receptor energy, and EL is the ligand
energy (Obubeid et al., 2022). The force field and the solvent model
were set to be OPLS4 and VSGB, respectively.

2.4 MD simulation

The two ligand–protein complexes with the best docking scores
and free-binding energy, as well as the co-crystallized ligand, were
chosen for the molecular dynamics (MD) simulation study. The MD
simulations were conducted using Desmond software (Alzain et al.,
2022).
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Prior to the simulation process, the biological system was set up
using the System Builder panel in Desmond. This involved solvating
the ligand–protein complexes with 12,437 TIP3P water molecules in
an orthorhombic-shaped box with dimensions of 10 × 10 × 10 Å.
Additionally, 51.167 mM of Na+ ions (with a total charge of +35)
and 51.167 mM of Cl−ions (with a total charge of −35) were added as
salt to maintain the system’s electrostatic neutrality. The
OPLS4 force field was employed to minimize the energy of the
system. Subsequently, the system underwent equilibration in two
ensembles: isothermal–isochoric (NVT) and isothermal–isobaric
(NPT). During the NVT ensemble, the system’s temperature was
maintained at 300 K, while during the NPT ensemble, both
temperature and atmospheric pressure (1 bar) were kept
constant. The Nose–Hoover chain thermostat and the
Martyna–Tobias–Klein barostat methods were employed to
maintain the desired temperature and pressure conditions,
respectively. The trajectory was recorded at a 100-ps interval,
resulting in a total of 2,000 frames.

The analysis of the simulation results was performed using the
Simulation Interaction Diagram tool provided by Desmond.

3 Results and discussion

Figure 1 provides an overview of the research workflow, which
employed various in silico methods to investigate the potential
discovery of drug candidates from FDA-approved drugs for the
inhibition of TrkA protein kinases. In the drug discovery process,
molecular docking and molecular dynamics simulations play crucial

roles in understanding ligand–receptor interactions. These
computational approaches are particularly valuable for
developing medications targeting new and challenging diseases
such as cancer. The research also utilized virtual screening and
drug repurposing strategies to identify potential drug candidates. By
leveraging these in silico techniques, the study aimed to uncover
promising candidates for TrkA inhibition.

3.1 Molecular docking

The molecular docking analysis was performed using the Glide
module of Schrödinger. Glide is a powerful tool that accurately
determines the positions and orientations of ligands within the
active site of the receptor, providing valuable information on the
compounds’ affinity and activity (Alzain and Elbadwi, 2021; Meng
et al., 2011). It employs various scoring functions to rank and
select the best poses for further analysis (Friesner et al., 2004).
Glide offers three levels of docking methodologies: high-
throughput virtual screening (HTVS), standard precision (SP),
and extra-precision (XP). Each methodology differs in accuracy,
with HTVS being the fastest but least accurate and XP being the
most accurate but time-consuming. The docking time for
screening one compound ranges from 2 s (HTVS) to 2 min
(XP) (Eltaib and Alzain, 2022). These methodologies can be
used sequentially to efficiently filter a large number of
compounds. Furthermore, the molecular docking performed
by Glide sets the stage for predicting the free-binding energy
using methods such as MM-GBSA calculations.

FIGURE 1
Overall work summary.
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After preparing the library of FDA-approved drugs
(9,923 molecules) using the LigPrep tool, we generated a total of
23,334 conformers and tautomers. These compounds were subjected
to molecular docking against the TrkA allosteric site using the high-
throughput virtual screening (HTVS) mode. Among them,
230 structures with docking energies below −7 kcal/mol were
identified as potential ligands. Since this number was manageable
for further analysis, these 230 structures were directly subjected to
molecular docking using the extra-precision (XP) mode, bypassing
the standard precision (SP) level. Among the XP docking results,
49 structures were selected based on their docking scores, which
ranged from −11.569 to −7.962 kcal/mol, for subsequent free-
binding energy prediction.

3.2 MM-GBSA calculations

Docking results provide insights into whether ligands bind to the
active site of the target protein. However, to determine if this binding
is stable and capable of eliciting a response, it is crucial to assess the
free-binding energy of the receptor–ligand complex (Lyne et al.,
2006). Therefore, the top 49 structures from the docking results were
further analyzed using the MM-GBSA method, which accounts for
the solvent’s influence on the ligand–protein complex binding. For
comparison, the co-crystallized ligand of TrkA was also subjected to
XP and MM-GBSA calculations as a reference.

Among the 49 structures, nine drugs were selected based on
their docking scores (<−9) and MM-GBSA dG bind energies
(<−50 kcal/mol) for further investigation (Table 1). As shown
in Table 1, none of the nine chosen drugs achieved better
docking scores or MM-GBSA dG bind energies than the
reference compound, which had a docking score
of −10.689 and MM-GBSA dG bind of −105.51 kcal/mol.
However, the results are considered satisfactory since the
difference in docking scores between the selected compounds
and the reference is minimal, and their MM-GBSA dG bind
energies are highly favorable.

Among the chosen drugs, delanzomib and tibalosin, with
docking scores of −10.643 and −10.184 kcal/mol and MM-GBSA
dG bind energies of −67.96 and −50.54 kcal/mol, respectively, stood
out as representatives for further analysis of their interaction
patterns.

3.3 Ligand–residue interaction analysis

The delanzomib/TrkA complex exhibited three hydrogen bonds
with LEU486, LYS544, and GLY670 residues, along with
hydrophobic contacts with LEU486, PHE521, LEU564, LEU567,
ILE572, VAL573, PHE575, PHE589, LEU641, PHE646, ILE666, and
PHE669 (Table 2; Figure 2A), while the tibalosin/TrkA complex
formed one hydrogen bond with ASP668, one salt bridge with
ASP668, and hydrophobic contacts with LEU486, PHE521,
LEU564, LEU567, PHE589, ILE572, VAL573, LEU641, PHE646,
ILE666, and PHE669 (Table 2; Figure 2B). On the other hand, the
reference/TrkA complex exhibited six hydrogen bonds, involving
GLY483, SER484, LEU486, ARG673, and ASP668 residues.
Additionally, it formed one halogen bond with HIE648, one
pi–cation interaction with LYS544, and hydrophobic contacts
with LEU486, LEU564, LEU567, MET587, PHE589, ILE572,
VAL573, PHE575, LEU641, PHE646, ILE666, and PHE669
(Table 2; Figure 2C).

The ligand–residue interaction analysis provides insights into
the differences observed in the docking scores and MM-GBSA dG
bind energies among the reference, delanzomib, and tibalosin
complexes. The reference compound showed the highest number
of hydrogen bonds (6), followed by delanzomib (3) and Tibalosin
(1). This highlights the importance of hydrogen bond interactions in
contributing to the binding affinity of ligands (Klebe and Böhm,
1997; Chen et al., 2016; Anandan et al., 2022).

It is worth noting that the interactions observed between
delanzomib, tibalosin, and specific residues in the TrkA protein
align with findings from previous research articles investigating
small molecules as TrkA allosteric inhibitors (Furuya et al., 2017; Su

TABLE 1 Docking scores and MM-GBSA dG bind energies of the nine selected best ligand poses and the reference bound to TrkA allosteric site.

Compound name Docking score kcal/mol MM-GBSA dG bind kcal/mol

Delanzomib −10.643 −67.96

Tibalosin −10.184 −50.54

Vismodegib −9.948 −53.56

Hexoprenaline −9.666 −62.39

Merestinib −9.342 −64.24

Etanterol −9.146 −55.76

Ractopamine −9.117 −53.23

Primidolol −9.084 −54.35

Cliropamine −9.022 −52.04

TrkA–ligand −10.689 −105.51
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et al., 2017; Bagal et al., 2019; Subramanian et al., 2019; Guo et al.,
2022). For instance, ASP668 has been reported to form hydrogen
bonds with several top inhibitors discovered by different scientific
groups. In the case of tibalosin, ASP668 interacts with the hydroxyl
group and the amino group of the (2R)-2-[(4-phenylbutyl)amino]
propan-1-ol moiety through hydrogen bond and salt bridge
interactions, respectively. Although delanzomib does not form a
hydrogen bond with ASP668, it establishes hydrogen bond
interactions with LEU486, LYS544, and GLY670, which have also
been documented in previous studies (Furuya et al., 2017; Bagal
et al., 2019; Subramanian et al., 2019; Guo et al., 2022).

Furthermore, previous studies by Guo et al. (2022) and Bagal
et al. (2019). have emphasized the significance of hydrophobic
interactions with LYS544, LEU564, and PHE589 in TrkA

allosteric inhibitors. In the case of delanzomib and tibalosin, both
compounds form hydrophobic contacts with LEU564 and
PHE589 and establish a charged positive contact with LYS544.

Additionally, a thorough review of the identity and previous
records of delanzomib and tibalosin was conducted to determine
if any documented activity or correlation with cancer treatment
exists.

Delanzomib is an orally active boronate-based proteasome
inhibitor that specifically targets the chymotrypsin-like activity
of the proteasome (Dolloff, 2015). While information regarding
delanzomib’s impact on bone remodeling is limited, one study
has explored its effects on osteoclasts (Zangari and Suva, 2016).
In a study by Mopei et al., delanzomib demonstrated promising
efficacy and antimutagenic properties in human multiple

TABLE 2 Ligand–residue interactions of delanzomib and tibalosin at the TrkA allosteric site.

Compound
name

H-bond Salt
bridge

Hydrophobic interaction Other interaction

Delanzomib LEU486, LYS544, and
GLY670

- LEU486, PHE521, LEU564, LEU567, ILE572, VAL573, PHE575,
PHE589, LEU641, PHE646, ILE666, and PHE669

Polar interaction: SER484 and
HIE648

Charged negative: ASP668

Charged positive: LYS482, LYS544,
and ARG673

Tibalosin ASP668 ASP668 LEU486, PHE521, LEU564, LEU567, PHE589, ILE572, VAL573,
LEU641, PHE646, ILE666, and PHE669

Polar interaction: SER484 and
HIE648

Charged negative: ASP668 and
ASP650

Charged positive: LYS544 and
ARG673

Reference GLY483, SER484, LEU486,
ASP668, and ARG673

- LEU486, LEU564, LEU567, MET587, PHE589, ILE572, VAL573,
PHE575, LEU641, PHE646, ILE666, and PHE669

Polar interaction: SER484 and
HIE648

Charged negative: GLU560 and
ASP668

Charged positive: LYS482, LYS544,
ARG574, and ARG673

Halogen bond: HIE648

Pi–cation: LYS544
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myeloma cell lines and patient-derived cells (Wang et al., 2019).
Additionally, delanzomib has shown significance in the
treatment of renal cell carcinoma (RCC). When combined

with ritonavir, these two drugs exhibited synergistic effects in
suppressing colony formation and inhibiting the growth of renal
cancer (Isono et al., 2018).

FIGURE 2
2D and 3D interactions of the best three hits with the TrkA allosteric site (PDB ID: 6D20) using Glide software. (A) Delanzomib. (B) Tibalosin. (C)
Reference.
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Tibalosin, a phenylethylamine derivative, has been shown to
reduce arterial pressure in hypertension animal models (Staessen
et al., 1983). It exhibits potent antihypertensive effects; however, side
effects prevent its clinical use at a daily dose of 150 mg. Combination

therapy with a beta-adrenoceptor-blocking medication appears to be
more effective in treating hypertension than thiazide therapy alone
(Staessen et al., 1986). Currently, there is no available data linking
tibalosin to cancer or its anticancer properties.

FIGURE 3
Protein–ligand RMSD plot of the top three compounds and the reference complexed with the TrkA allosteric site (PDB ID: 6D20) during 200 ns
molecular dynamics simulation using Desmond software. (A) Delanzomib. (B) Tibalosin. (C) Reference.
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In conclusion, based on the docking, MM-GBSA, and
interaction pattern analysis results, delanzomib and tibalosin
demonstrate promise as TrkA inhibitors. Delanzomib has
reported an anticancer activity, while tibalosin presented a
potential anticancer activity as a TrkA inhibitor, which is being
reported for the first time in this study. Furthermore, both drugs
were subjected to a 200 ns molecular dynamics (MD) simulation
study to further explore their behavior and interactions.

3.4 MD simulations

The previous techniques employed rigid structures for proteins
and ligands, whereas molecular dynamics (MD) simulation takes
into account the conformational changes in the receptor and ligand.
MD simulation provides a more realistic representation of the
dynamic behavior occurring under physiological conditions,
allowing for a thorough investigation of the complex’s stability,

flexibility, and binding interactions (Kumar et al., 2019; Jordaan
et al., 2020; Aghajani et al., 2022; Gowtham et al., 2023).

In this study, MD simulations were conducted for the
complexes of the two best compounds, delanzomib and
tibalosin, with TrkA, as well as the reference structure (the
co-crystallized ligand of 6D20). The analyzed data include the
root mean square deviation (RMSD), the root mean square
fluctuation (RMSF), and the protein–ligand contacts observed
during the 200 ns simulation.

Starting with the RMSD analysis of the protein’s Cα atoms
(Figure 3), it can be observed that the protein exhibited a similar
pattern of deviations with an average RMSD of 4.31 Å when
complexed with the two compounds and the reference. This
average RMSD value is relatively compatible, as an RMSD of
1–3 Å is generally acceptable for small globular proteins
(Obubeid et al., 2022). It indicates the overall stability of the
TrkA–ligand complexes. Delanzomib exhibited the lowest range
of RMSD values, indicating greater stability than tibalosin and the

FIGURE 4
Plot of protein RMSF showing the top three ligands and the reference bound to the TrkA allosteric site (PDB ID: 6D20) during 200 ns molecular
dynamics simulation using Desmond software. (A) Delanzomib. (B) Tibalosin. (C) Reference.

Frontiers in Chemistry frontiersin.org09

Mukhtar et al. 10.3389/fchem.2023.1205724

207

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1205724


reference. Delanzomib also showed minimal fluctuations along the
simulation duration, with an average ligand RMSD of 2.81 Å. It is
worth noting that the behavior of delanzomib closely resembled that
of the reference.

On the other hand, tibalosin initially exhibited high fluctuations
during the first 100 ns of the simulation, but its behavior became
more similar to the reference in the second half of the simulation.
Although tibalosin showed higher fluctuations, its average ligand
RMSD of 1.63 Å was the smallest among delanzomib (2.81 Å) and
the reference (2.61 Å).

The flexibility of the TrkA protein and the movement of its
residues were assessed by monitoring the RMSF value of the Cα
atoms. A lower RMSF value indicates less flexibility and greater
stability (Alzain, 2022). As shown in Figure 4, the protein
exhibited similar RMSF patterns with both compounds and
the reference, with an average RMSF value of 1.59 Å. The low
average RMSF value, combined with the previously discussed
average RMSD values, confirms the stability of the studied
complexes.

The protein–ligand contact histogram (Figure 5) provided
information about the binding and non-binding interactions
between the protein and the two compounds, as well as the
reference, during the simulation. The delanzomib–TrkA complex
formed contacts with SER484 (H-bond 10% and water bridges 50%),
VAL647 (H-bond 25%, hydrophobic 3%, and water bridges 22%),
HIS648 (hydrophobic 60% and water bridges 40%), ASP650 (water
bridges 25%), and PHE704 (hydrophobic 30%).

The tibalosin–TrkA complex interacted with LEU486 (hydrophobic
40%), LEU567 (hydrophobic 20%), PHE646 (hydrophobic 70%), and
PHE669 (water bridges 5%). Considering the significant role of H-bonds
in the binding of an inhibitor to a kinase (Wu et al., 2021), these results
suggest that delanzomib exhibits higher inhibitory activity than tibalosin.
This conclusion is supported by the protein–ligand contact histogram,
which shows that delanzomib forms H-bonds with two residues,
whereas tibalosin does not form any H-bonds.

The reference–TrkA complex had contacts with LEU567
(hydrophobic 15%), VAL573 (hydrophobic 35%), PHE589
(hydrophobic 30%), LEU641 (hydrophobic 20%), ASP668 (H-bond

FIGURE 5
Protein–ligand contact histogram of the top three compounds and the reference complexed with the TrkA allosteric site (PDB ID: 6D20) during
200 ns molecular dynamics simulation using Desmond software. (A) Delanzomib. (B) Tibalosin. (C) Reference.
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70% and water bridge 30%), PHE669 (hydrophobic 45%), and ARG673
(H-bond 2%, hydrophobic 3%, and water bridges 37%).

In conclusion, based on the MD results, delanzomib and
tibalosin were identified as type III inhibitors, as they
exhibited similar effects on the protein compared to the
reference molecule (a potent, selective, and allosteric type III
TrkA binder named molecule 23) in terms of RMSD and RMSF
plots (Bagal et al., 2019).

4 Conclusion

TrkA, the most prevalent isoform associated with a wide
range of human malignancies, is a crucial target for cancer
therapy. This study aimed to identify potential allosteric TrkA
inhibitors for the treatment of cancer. To achieve this objective,
multiple computational approaches were employed to screen a
library of 9,923 approved drugs from the ChEMBL database,
assessing their repurposing potential as allosteric inhibitors
against the TrkA protein. Initially, the library was docked
into the allosteric site of TrkA using HTVS and XP modes.
This screening process yielded 49 compounds with favorable
docking scores, which were further evaluated through MM-
GBSA calculations to determine their free-binding energies.
Among the 49 compounds, nine exhibited MM-GBSA dG bind
energies below −50 and were selected for detailed analysis in
this study. The interaction patterns of the top two drugs,
delanzomib and tibalosin, were examined. These compounds
displayed several common interactions with previously
identified TrkA allosteric inhibitors, and notably, delanzomib
has been reported to possess antimutagenic and anti-cancer
effects. Subsequently, delanzomib and tibalosin underwent MD
simulations, demonstrating good stability at the protein’s
allosteric site. Based on these findings, delanzomib and
tibalosin are considered promising hits against TrkA. Further
experimental investigations are warranted to validate their
potential as inhibitors of this protein, holding significant
prospects for future cancer therapies.
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Breast cancer covers a large area of research because of its prevalence and high
frequency all over the world. This study is based on drug discovery against breast
cancer from a series of imidazole derivatives. A 3D-QSAR and activity atlas model
was developed by exploring the dataset computationally, using the machine
learning process of Flare. The dataset of compounds was divided into active
and inactive compounds according to their biological and structural similarity with
the reference drug. The obtained PLS regression model provided an acceptable
r2 = 0.81 and q2 = 0.51. Protein-ligand interactions of active molecules were
shown by molecular docking against six potential targets, namely, TTK, HER2, GR,
NUDT5, MTHFS, and NQO2. Then, toxicity risk parameters were evaluated for hit
compounds. Finally, after all these screening processes, compound C10 was
recognized as the best-hit compound. This study identified a new inhibitor
C10 against cancer and provided evidence-based knowledge to discover more
analogs.

KEYWORDS

breast cancer, drug discovery, imidazole, virtual screening, MCF-7

Introduction

Cancer is the abnormal and uncontrolled growth of cells that is caused by the mutation of
genes. This mutation may lead to an accelerated rate of cell division, so it is the major cause of
death worldwide (Ali et al., 2017). A frequently occurring cancer in women is breast cancer and
approximately 1 million women are affected by it every year. Obesity, consumption of alcohol,
genetics, aging, menopause, diabetes mellitus (type 2), high estrogen levels, radiation exposure,
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smoking, menarche, sex, and physical activity are the major risk factors
responsible for causing breast cancer (Ataollahi et al., 2015; Escala-
Garcia et al., 2020; Anandan et al., 2022).

The genetic mutation causes the development and progression
of breast tumors. Anomalous amplification and mutation of genes
cause the initiation of tumors such as a mutation in the Breast
Cancer gene (BRCA1/2), RB Transcriptional Corepressor 1 (RB1),
Human epidermal growth factor receptor 2 (HER2), Fragile
Histidine Triad Diadenosine Triphosphatase (FHIT), tumor
protein P53, Epidermal Growth Factor Receptor (EGFR),
extracellular signal-regulated kinase (ERK), Mitogen-activated
protein kinase (MEK), and Rat sarcoma (Ras) genes that can lead
to breast cancer (Figure 1) (Dickson, 1990; Sun et al., 2017;
Lakshmithendral et al., 2019a).

Endogenous estrogen and exogenous estrogen can both cause
breast cancer. Hormone replacement therapy (HRT; the process in
which endogenous estrogen is administered in menopausal females)
also increases the risk of breast cancer (Sun et al., 2017). Androgen
hormone is converted to estrogen through an enzyme complex,
aromatase. Aromatase is detected in the stromal cell component of
the breast; it is also located in the breast epithelial cells. Studies have
shown that the level of aromatase was higher in breast tumor cells
than in normal cells (Brueggemeier et al., 2003; Pasqualini and
Chetrite, 2005). Leptin is another hormone involved in breast
cancer; its overexpression causes an increase in cell proliferation
and thus leads to breast cancer (Jardé et al., 2011).

Breast cancer is a serious problem that needs to be solved. For
this purpose, considerable advances have beenmade in breast cancer
treatment (Howell et al., 2014). Till now, many drugs have been
synthesized to cure this deadly disease. Breast cancer-targeted
medication utilizes molecules or drugs that suppress breast
cancer cell growth in various ways (Maruthanila et al., 2017).
Targeted drugs either kill the cancer cells or retard their growth.
For example, the expression of abnormal genes such as HER2 (which

stimulates breast cancer cell growth) can be blocked by using this
medication (Masoud and Pagès, 2017; Lakshmithendral et al.,
2019b).

The most commonly targeted breast cancer cell line is MCF-7
because it has been proven to be the most suitable cell line for the
investigation of breast cancer all over the world (Lee et al., 2015).
MCF-7 cells are universally used for experiments on ER (estrogen
receptor) positive breast cancer cells. They are cultured easily,
and they maintain their ER expression during treatment with a
targeted drug. For this reason, they are highly suitable for anti-
hormone therapy resistance studies. MCF-7 cells are very well
distinguished and an excellent experience of this cell line permits
researchers to utilize these cells to bring more insights into the
treatment of breast cancer through viable in vitro assays (Comşa
et al., 2015).

The use of machine learning has created a revolutionary impact
on chemical sciences by quickening the use of computational
chemistry methods (Keith et al., 2021). Computer-aided drug
designing aims at the discovery and analysis of suitable
medications and biologically active compounds by computational
approaches. In structure-based drug designing (SBDD), 3D
structural information of proteins is utilized to design new drugs
by identifying the sites and their interactions that are useful for the
biological activity of ligands. In ligand-based drug designing
(LBDD), ligand information is utilized to set up an interrelation
between their physiochemical characteristics and biological
activities. This information is useful for designing new drugs and
for the optimization of already known drugs to enhance their
activity.

Drug discovery is a costly procedure and time-consuming
process; therefore, we have employed computational processes for
drug discovery. The advancements in computational methods and
high-throughput virtual screening have developed a remarkable
pharmaceutical approach that does not only reduce the time
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phase but also introduces highly efficient drugs, having efficient
biological activity and minimum side effects for a specific disease
(Lakshmithendral et al., 2019b).

Imidazole is the core of FDA-approved drugs with acceptable
activities in practice. Several compounds having imidazole core
have been utilized for their medicinal uses in clinical trials for
several diseases. There is an increasing trend towards imidazole-
based medicinal chemistry which has added promising and
potential therapeutic values of imidazole-derived compounds
for treating incurable diseases. The compounds with imidazole
scaffold provide electronic-rich characteristics responsible for
binding with a variety of enzymes, proteins, and receptors
compared to the other heterocyclic rings. In this study, the
role of imidazole drugs as anti-breast cancer agents have been
discussed using the computational approach (Chopra and Sahu,
2019). Heterocyclic compounds are very well-known molecules
in organic chemistry because they show remarkable medicinal
properties as well as anticancer properties (Ali et al., 2017).
Imidazoles are very important heterocyclic compounds that
are widely utilized all over the world for drug discovery
processes and are compounds of interest for researchers for
centuries (Gaba and Mohan, 2016). Previous studies have
proved the vital role of imidazole and its derivatives in
medicinal chemistry because of their efficient uses as anti-
coagulant, anti-cancer, anti-parasitic, anti-helmintic, anti-
fungal, antimicrobial, anti-inflammatory, antibacterial, anti-
viral, anti-diabetic, anti-malarial, antihypertensive, and anti-
tubercular drugs (Abbasov et al., 2012; Verma et al., 2013;
Mumtaz et al., 2016; Ali et al., 2017). Some FDA-approved
anticancer imidazole derivatives are shown in Figure 2.

In spite of extensive studies on imidazole derivatives and
their in vitro potential activity, their in-vivo and, specifically, in

silico activity of breast cancer has not been carried out. The
computer-based methodologies, i.e., in silico approaches are
powerful tools for the recognition of synthetic imidazole
compounds and their potential to inhibit breast cancer. Using
these approaches, the new drug candidates can be evaluated in a
faster way, reducing costs and accelerating drug discovery
(Gowtham et al., 2023). This study aimed to investigate the in
silico anticancer activities of imidazole derivatives (Rizzo et al.,
2014).

In this study, maximum tools used for structure- and ligand-
based drug designing have been used, and key regularity features
governing the toxicity and anticancer activity of imidazole
derivatives have been studied. By discovering and
characterizing potential imidazole derivatives as anti-breast
cancer agents, this research will contribute to the growing
repertoire of drug candidates, expanding the possibilities for
future therapeutic interventions. It has the potential to
revolutionize the therapeutic landscape by providing new and
effective options for breast cancer patients, deepening our
understanding of the disease, and inspiring further
advancements in the field. It will provide some more valuable
insights into the virtual screening and drug designing process and
will demonstrate the drug designing process which will lead to
drug discovery containing a pharmacophore against breast
cancer which is a harmful disease affecting millions of lives all
over the world (Alam and Khan, 2017).

Materials and methods

In this study, the 3D-QSAR modeling has been accomplished
using the Forge V6.0 software. A total of 84 compounds

FIGURE 1
Anomalous amplification and mutation of genes for the initiation of tumor.
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(Supplementary Table S1) with reported anti-breast cancer activity
were used while developing the model. An FDA-approved drug
Fulvestrant which is a steroidal anti-estrogen used to treat hormone-
receptor-positive metastatic breast cancer is used as a reference
compound.

The development of the 3D-QSAR model

Data collection and structure preparation
The dataset of imidazole compounds was collected from prior

reports/literature. Their structures were drawn in Chem Draw
professional (Perkin Elmer), and 2-Dimentional structures were
converted into 3-Dimentional structures using Chem3D Ultra
(Version 19.1.0.8, Perkin Elmer). The value of enzyme inhibition
(experimental activity) was expressed as (IC50) for the training
dataset which was then altered to its positive logarithmic scale
using the formula: pIC50 = −log(IC50) and defined as a
dependent variable. The database of compounds was generated in
Microsoft Excel as a CSV output file (comma delimited).

Conformation hunt and pharmacophore
generation

To demonstrate a hypothesis for 3D conformation, the Field
Template module of Forge V6.0 software was used as no structural
data was attainable for imidazole derivatives in their target-bound

state. For this purpose, the information about field and shape was
utilized by the template from the library of 84 compounds. The
hypothesis was developed by generating the three-dimensional field
point pattern and calculating the field points of bioactive
conformation.

Compound alignment and the development of the
3D-QSAR model

At the connexion point of a 3D grid, the 3D-QSAR method
calculates various molecular properties as molecular descriptors.
This methodology covers the complete data of aligned training set
compounds. The pharmacophore template was transported into the
Forge V6.0 software, followed by the alignment of compounds with
the associated template. After the alignment of 84 compounds with
known IC50 values, the 3D-QSAR model was built using the Field
point-based descriptors. While building the model, the maximum
distance of sample points was set to 1.0Å, the maximal number of
components was set to 20, Y scrambles were adjusted to 50, and
volumetric as well as electrostatic fields were also used. For overall
resemblance, 50% dice volume similarity and 50% field similarity
were achieved using the Forge software. The experimental activity
(IC50) of compounds was changed to pIC50 which is equal to the
negative log of IC50. The set of 84 compounds was divided into the
training set and test set with a ratio of 80% and 20%, respectively,
and one compound was selected as the reference drug to assess the
QSAR modeling using the activity stratified method.

FIGURE 2
FDA-Approved imidazole derivatives.
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QSAR model validation
The model was verified by q2 (cross regression coefficient), r2

(regression coefficient), and similarity score of conformers for every
ligand. LOO technique (leave-one-out) was used to assess the derived
3D-QSARmodel. The LOO cross-validation technique is thought to be
one of the most efficient techniques for the validation of the regression
model having a small training dataset. The data size of N-1 was used for
training and the remaining one was tested; N identifies the complete
dataset. In the LOOCV technique, the process of testing and training
was repeated for the N number of times, and in this way, each data was
passed through the testing method. Then, the test data which is not in
the training set is used to derive the 3D-QSAR model.

SAR activity-atlas models visualization
The global aspect of training data was studied quantitatively by

using the Bayesian approach. The hydrophobicity, electrostatics, and
shape attributes, which lie beneath the SAR of a particular set of
compounds, are better understood by this approach. These 3D
models were viewed to achieve valuable information. The three
types of interconnected biochemical evaluated data including
regions explored analysis, activity cliff summary, and average of
actives were revealed by the Activity-atlas study. The regions
explored analysis exhibited the areas of aligned and fully
explored compounds. The details about negative and positive
electrostatic sites, appropriate and inappropriate hydrophobicity,
and appropriate shape of actives were provided by the activity cliff
summary. On the other hand, an average of actives helped in
showing the common parts in active compounds which were
selected.

Target prediction analysis by molecular
docking

The preparation of protein
The 3D structures of target proteins (PDB ID: 7CHM, 3PP0,

4UDD, 5NWH, 3HY3, and 4ZVM) (Supplementary Table S2) were

downloaded from the RCSB PDB database (https://www.rcsb.org/).
The protein preparation was performed to accomplish various
tasks such as identifying the active site, deleting alternate
conformations, interpolating missing atoms in incomplete
residues, protonating titratable residues, modeling the missing
loop areas, and removing the water molecules and heteroatoms
(Alam and Khan, 2019). The ligands of proteins were used to
identify the active sites from the “Define and Edit Binding Site”
option in Discovery Studio, and SBD_Site_Sphere was generated
(Figure 3).

The preparation of active ligands
Active ligands along with reference Fulvestrant (standard

drug) having known inhibitory potentials were collected from
literature, and SDF files of some of the compounds were
downloaded from PubChem while others were generated from
the Chem3D software where they were optimized through
MM2 and MMF9 force field. For ligand preparation, the
“Open Babel” software was used. For this purpose, the input
file was imported in the form of sdf–MDL MOL format and the
output path was selected in pdb format. Then the ligand was
converted into the desired form.

Protein-ligand docking studies
PDBQT files of proteins and ligands were prepared, and by

using the Graphical User Interface program AutoDock Tools,
grid box creation was accomplished. Fragmental volumes to the
protein, polar hydrogens, united atom Kollman charges, and
solvation parameters were assigned by AutoDock tools. After
preparation, all files were saved as PDBQT. Preparation of the
grid map was done by using a grid box via AutoGrid. The grid size
was selected as 60 × 60 × 60 XYZ points with a grid spacing of
0.375Å. Default settings were used for all other parameters.
Autodock was used for docking protocol and information
about proteins and ligands was used along with grid box
features in the configuration file. Both ligands and proteins are
considered rigid when using Autodock. The results lower than

FIGURE 3
Generation of binding site by using discovery studio.

Frontiers in Chemistry frontiersin.org05

Rashid et al. 10.3389/fchem.2023.1197665

215

https://www.rcsb.org/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1197665


1.0Å in the root-mean-square deviation were assembled and were
depicted by the result with the most suitable free-binding energy
while the results with the lowest binding affinity or binding
energy were extracted and subjected to further analysis (Azam
and Abbasi, 2013).

Molecular dynamics simulation

MD simulation was accomplished via the iMOD server
(https://imods.iqfr.csic.es/) to assess the physical movement
and stability of protein-ligand complexes (Sumera et al.,
2022). The structural dynamics of the protein-ligand
complexes were analyzed using iMODS and the molecular
motion was also determined. The iMOD server employs
Normal mode analysis (NMA) to calculate the internal
coordinates of protein to evaluate its stability. In this study,
the conformational fluctuations of docked complexes were
demonstrated and their slow dynamics were investigated using
NMA (Kirar et al., 2022).

FIGURE 4
3-Dimenssional Field points for QSAR model development. The red colour indicates positive electrostatic potential while negative electrostatic
potential is represented by the blue colour. The orange color shows hydrophobicity and the yellow color denotes van der Waals descriptors localization.

FIGURE 5
Conformational alignment of active compounds.
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TABLE 1 Active compounds obtained after the 3D-QSAR model development.

Sr No Compounds Structure IC50 (µM) PIC50 References

1 C6 0.30 6.5228 Meenakshisundaram et al. (2019)

2 C7 0.38 ± 0.08 6.4202 Fan et al. (2020)

3 C10 0.38 ± 0.04 6.4202 Al-Blewi et al. (2021)

4 C21 0.018 ± 0.0039 7.7447 Edukondalu et al. (2021)

5 C22 0.10 ± 0.028 7 Edukondalu et al. (2021)

6 C68 0.074 ± 0.017 7.1307 Romagnoli et al. (2016)

7 C69 0.0015 8.8239 Romagnoli et al. (2016)

8 C70 0.0034 8.4685 Romagnoli et al. (2016)

9 C71 0.0007 9.1549 Romagnoli et al. (2016)

(Continued on following page)
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Toxicity prediction

The toxicity of the compounds was determined using
ProTox-11 (Banerjee et al., 2018). With the help of this tool,
the toxicity of compounds can be freely estimated by inserting
the name of the compound or by simply writing its canonical
smiles. The 2-Dimensional structure of the compound is used as
input for this webserver. ProTox-11 is distributed in different
classes depending on the toxicity such as Organ toxicity,

immunotoxicity, carcinogenicity, cytotoxicity, and
mutagenicity.

Geometry optimization and reactivity
determination

The DFT calculations were performed using Gauss view 06 and
Gaussian. The 2D structure of the molecule was drawn by using

TABLE 2 Binding energy values in kcal/mol.

Proteins PDB IDs

Compounds 4ZVM 5NWH 7CHM 3HY3 4UUD 3PP0

C6 −10.3 −8.7 −9.4 −8.1 −8.8 −7.6

C7 −7.2 −6.2 −8.6 −8.2 −6.4 −10.0

C10 −7.9 −7.8 −10.5 −9.0 −8.0 −8.1

C21 −8.3 −7.8 −9.2 −9.7 −9.1 −7.2

C22 −8.9 −7.5 −9.2 −8.7 −8.8 −9.0

C68 −6.6 −5.9 −8.3 −6.6 −5.4 −8.3

C69 −6.2 −6.1 −7.6 −6.7 −5.1 −7.6

C70 −6.6 −5.8 −8.1 −6.9 −5.2 −8.1

C71 −6.1 −5.9 −7.5 −6.1 −5.1 −7.5

C74 −6.1 −6.1 −7.6 −6.4 −5.3 −7.6

C75 −6.2 −6.6 −8.3 −6.1 −6.5 −8.3

C76 −7.5 −6.9 −8.9 −8.5 −6.2 −10.3

References −6.8 −6.2 −7.9 −8.2 −6.1 −6.6

TABLE 1 (Continued) Active compounds obtained after the 3D-QSAR model development.

Sr No Compounds Structure IC50 (µM) PIC50 References

10 C74 0.23 6.6382 Romagnoli et al. (2016)

11 C75 0.0046 8.3372 Romagnoli et al. (2016)

12 C76 6.4 ± 0.18 8.1938 Khayyat et al. (2021)
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Perkin-Elmer ChemDraw and then converted into a 3D structure
through the Chem3D software. Geometrical optimization was done
with B3LYP (an exchange-correlation function) and basic sets of 6-
311G (Türker et al., 2010). The reactivity and stability of the
compound were determined by calculating the energy gap
between the HOMO-LUMO orbitals.

Results and discussion

3D-QSARmodeling on imidazole derivatives

Conformation hunt and pharmacophore
generation

A three-dimensional structure-activity relationship (3D-QSAR)
was performed to throwmore light on a series of imidazoles. For this
purpose, a conformational hunt was carried out on these
compounds (C1-C84). (Alam and Khan, 2017). The three-
dimensional pattern of field points (Figure 4) was identified by
illustrating the derived conception of bioactive conformation with
its calculated field points. Four distinct molecular fields were
calculated, namely, negative and positive electrostatic potential,
hydrophobicity, and shape/van der Waal descriptors. To draw a
pharmacophore template resembling the bioactive conformation
(for further virtual screening), a molecular field-based similarity
approach was employed.

Figure 4 shows that the compounds with similar filed points
bind at the same target site. This characteristic provides a linear
correlation between biological activity and structural similarity of
ligands (Low et al., 2005). Based on the parameter, Figure 4 shows
the active ligands, and their similarity metric was found within the
range of 56% to 42%.

Alignment and development of the 3D-QSAR
model

The ligand alignment in the protein context is required to use
the 3D similarity metric for activity atlas model development. To
ensure accurate model development, this alignment must be
inspected. The compounds in the training set were aligned to
ensure that the molecules being compared were in the same
relative orientation (Figure 5). This alignment is necessary
because molecules can adopt different conformations or spatial
arrangements due to the freedom of rotation around single
bonds. After it, the 3D-QSAR model was built by using the Field
points-based descriptors. The activity interactive graph plot was
used to represent the fitness of the derived 3D-QSAR model. This
graph displays the comparison between predicted and actual activity

with cross-validation data points. Fairly good activity-descriptors’
relationship accuracy of 81% was achieved by the derived 3D-QSAR
model as the regression coefficient was r2 = 0.81. Similarly, as
mentioned by the cross-validation regression coefficient (q2 =
0.51), a high activity-prediction accuracy of 51% was attained.
The derived 3D-QSAR model was proved to be very reliable to
predict the anticancer and cytotoxic activity of imidazole derivatives
as an MCF7 cell-line inhibitor (Table 1).

Figure 5 shows that there were displayed little spaces in ligands
to accommodate small conformation changes and variations of
moieties present in aligned molecules. High molecules have tight
alignment to restrict the substitution or replacement of any group
present in them. Low-active molecules, in comparison, lack steric
tightness and have the capacity to substitute any moiety in the
context of an activity enhancer (Low et al., 2005).

The regulation of the SAR mechanism of
imidazole derivatives by field points

The identification of field points (coefficient and
variance) governing the anticancer activity

The QSAR model was also viewed in a 3D form to unveil the
structure-activity relationship (SAR) mechanism of imidazole
derivatives. The field points named coefficient and variance
(associated with the bioactivity of training set compounds) were
analyzed in a 3D structural form for the purpose. The derived model
points for QSAR were contrasted with the reference compound for
better comprehension of space field point localization (Alam and
Khan, 2014). In a robust model, the high coefficient and variance
field points were proved to be the highly essential correlating
parameters. According to the results, electrostatic and steric
coefficients both play a major role in modulating the anticancer
activity as represented by the large size of red, cyan, green, and pink
field points (Figure 6). Field points containing high steric and
electrostatic variance indicated regions of high changes while the
field points containing low variance represented the regions with less
changes or no changes (Figure 6).

Field contribution in activity prediction
“View field contributions to predicted activity” study was done

on imidazole derivatives. This evaluates the extent to which
imidazole derivatives fit the derived field-based 3D-QSAR model
and regions of structural field points governing the predicted
activity. These field contributions (Figures 6A, B) were
represented by purple, blue, and red color regions. According to
the results, the orange- and purple-colored areas denote the region

TABLE 3 Toxicity risk parameters.

Compounds Hepatotoxicity Carcinogenicity Immunotoxicity Mutagenicity Cytotoxicity

C6 −0.60 −0.61 −0.99 +0.54 −0.86

C10 −0.54 −0.51 −0.99 −0.55 −0.71

C21 +0.56 +0.5 +0.85 +0.66 −0.56

C76 +0.62 +0.55 −0.99 +0.62 −0.86
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of electrostatics and steric field points, respectively, having the
negative regulation capability on predicted activity (decrease
anticancer activity). Whereas the green- and zinc-colored areas

denote the regions of electrostatics and steric field points,
respectively, with a positive regulation capability on the predicted
activity (increased anticancer activity).

FIGURE 6
(A) Coefficients and variance field points of Fulvestrant; (a) Electrostatic coefficient; (b) Electrostatic variance; (c) Steric coefficients; (d) Steric
variance; (e) Field contributions to the predicted activity. (B) Field contributions to the predicted activity.
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Activity-atlas visualization for SAR mechanism
identification

SAR study was practiced through the activity-atlas
visualization technique and was used to unveil the key features
of imidazole, regulating the anticancer activity and designing
more novel drugs. For this purpose, an activity cliffs summary

and an average of actives study were performed on imidazole
derivatives.

Average of actives model
On the basis of this model, imidazole compounds having a pIC50

value higher than 6.4 were classified as active compounds while the

FIGURE 7
(A) Positive and negative electrostatic regions (B) The hydrophobic interaction regions of active compounds.
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rest of the compounds were considered inactive. This model
(Figure 7; Fig. S1) represents the areas of high activity that
reference drugs and active ligands have in common.

In Figure 7A, the positive and negative electrostatic regions
represented by the red color sites and cyan color sites,
respectively, correlate with the anticancer activity, i.e., more of

FIGURE 8
(A) Cliff summary of electrostatics. (B) The areas of favorable and unfavorable hydrophobics. (C) Favourable shape region and unfavorable shape
region.
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these regions indicate more anticancer activity. Figure 7B shows
the hydrophobic interaction regions of active compounds as
indicated by the yellow color, and Supplementary Figure S1
shows the shape regions of active compounds as represented
by the white color.

Activity cliff summary
The activity cliff summary diagrams as indicated by Figure 8A

correlate with the biologically active parts of imidazole drugs with
the reference drug. The cliff summary of electrostatics in Figure 8A
is visualized in two colors: red and cyan. The presence of the red
color indicating the positive electrostatic field and the cyan color
indicating the negative electrostatic field is favorable for high
anticancer activity. Figure 8B shows the areas of favorable and
unfavorable hydrophobics represented by the green and purple
colors, respectively. Whereas in Figure 8C, the green color shows
a favorable shape region, and the purple color shows an unfavorable
shape region.

Regions explored
The descriptive features of compounds were explored in this

model aside from their biological activities (Attiq et al., 2022). The
more red and cyan colors indicating positive and negative fields,
respectively, show the areas of strong SAR with the reference drug.
The average regions explored also represent the areas of active
compounds that would not take part in an anticancer activity
(Figure 9).

Validation of the 3D-QSAR model
Molecular characteristics regulating the active compounds as

anticancer agents were retrieved for further prediction of their
anticancer activity based on derived SAR models. Before that,
prediction performance was analyzed on the test set and training
set compounds by predicting their anticancer activity. This
prediction was done by means of derived models and then the
distance value (error) was compared. In order to perform the
comparison, predicted activity and distance to models’ columns

were examined for each derived model. The important ligand
fields were illustrated for each derived model through this study
and after that, these characteristics were utilized for virtual
screening.

Ligand-based virtual screening

To predict hits, a series of ligand-based virtual screening
experiments were performed. Only high-hit compounds were
selected having the value of ‘excellence’. The excellence of hits
was set by taking a threshold of docking score −8.7 kcal/mol to
compare the biological activity. The predicted activities were
expected to be reliable because most of the characteristics in
compounds were the same as the training set. In contrast,
compounds having poor field point similarities were excluded to
evade the false positive compounds by ineffective predicted
activities. Also, the derived QSAR model was used to predict the
hit compounds for anticancer activity (Lakshmithendral et al.,
2019b).

Structure-based virtual screening (SBVS)
SBVS of selected compounds was performed to discover new

valuable drugs in order to treat breast cancer (El Aissouq et al.,
2021). AutoDock Tools provided notable results with overall
binding energy of all the selected compounds ranging
from −5.1 to −10.5 kcal/mol. Most of the compounds have
binding free energy greater than the reference compound
Fulvestrant when observed with all the selected proteins as
shown in Table 2.

The docking results explain that compounds C6, C10, C21, and
C76 are the most hit compounds giving excellent results, so only
these compounds will be subjected to further study.

Molecular Interaction and Binding Mode. The top hit
compounds represented by the shaded area in Table 2 were
selected to evaluate the binding site interactions between the
ligand and the target protein.

FIGURE 9
Regions explored for Fulvestrant by active molecules in the activity atlas model. (A) Regions explored in negative electrostatics, (B) Regions explored
in positive electrostatics, (C) Regions explored in Hydrophobic, and (D) Shape explored.
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FIGURE 10
(A) Molecular docking of compound C6 with PDB ID: 4ZMV; (a) 3D view of the best-selected conformation, (b) 2D Interactions, (c) Ligand
interactions, and (d) Hydrophobicity. (B)Molecular docking of compound C76 with PDB ID: 3PP0 (a) 3D view of the best-selected conformation. (b) 2D
Interactions. (c) Ligand interactions. (d) Hydrophobicity.
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FIGURE 11
A 3-dimensional view of the best-docked pose of the ligand that fitted into the binding pocket of the protein receptor binding site.

FIGURE 12
RMSF profiles of (A) H3Y3, (B) 4UUD, and (C) 7CHM.
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Compound C6 was fixed in the binding pocket of protein (PDB
ID: 4ZVM) (Figure 10A) by undergoing electrostatic interactions
(Pi-Anion) with GLU193 and hydrophobic interactions (Pi-Sigma,
Pi-Pi Stacked, and Alkyl) with PHE17, TYR104, and PRO192
(Supplementary Table S3).

The docking of compound C6 with protein (PDB ID: 5NWH)
is described in Supplementary Figure S2. C6 undergoes
interactions with the protein by hydrophobic interactions (Pi-
Sigma and Pi-Alkyl) with VAL 49, VAL29, and PRO86, Pi-Cation
electrostatic interactions with ARG196, and other interactions (Pi-
Sulfur) with CYS91 (Supplementary Table S3).

Supplementary Figure S3 describes the docking of compound
C10 with the protein having PDB ID: 7CHM. The compound fits
in the binding pocket of the protein through hydrogen bonding
(Conventional Hydrogen Bond and Carbon Hydrogen Bond) with
amino acids ASP608, SER611, GLN530, ASP674, and ILE607;
hydrophobic interactions (Pi-Sigma, Pi-Pi Stacked, Alkyl, and
Pi-Alkyl) with ILE531, ILE607, LEU654, ALA651, PRO673,
VAL539, ILE663, and ALA551; and miscellaneous interactions
(Pi-Sulfur) with MET602, CYS604, and MET671 (Supplementary
Table S4).

However, the docking of compound C21 with PDB ID: 3HY3
provided different results (Supplementary Figure S4). C10
interacted by forming a conventional hydrogen bond with
TRP109 and hydrophobic interactions (Pi-Pi Stacked, Pi-Pi
T-shaped, Alkyl, and Pi-Alkyl) with TYR83, TRP109, PRO81,

MET90, TYR152, TYR153, and LYS150 (Supplementary Table
S4) (Elancheran et al., 2023a).

Compound C21 fits in the binding pocket of protein (PDB ID:
4UDD) (Supplementary Figure S5) through hydrogen bonding
(conventional hydrogen bond and carbon-hydrogen bond) with
GLN642, GLN738, and PRO637, hydrophobic interactions (Pi-Pi
Stacked) with TRP557 and TYR735, and miscellaneous interactions
(Pi-Sulfur) with MET745 (Supplementary Table S2). Docking
results of Compound C76 with PDB ID: 3PP0 are described in
Figure 10B. C76 interacted by forming conventional hydrogen bond
with LYS753 and hydrophobic interactions (Pi-Sigma and Pi-Alkyl)
with LEU726, VAL734, THR798, LEU852, ALA751, and LYS753
(Supplementary Table S2).

Validation of docking

The re-docking of the native ligand with the protein receptor
binding site was performed to validate the docking process by using
the PyMOL molecules graphic system, version 2.4.1. The crystal
structures were aligned to compare their changes in conformation
and displacement. The results were reported in root-mean-squared
deviation (RMSD) to calculate the deviation between analogous
atoms of two proteins, i.e., the docked pose and the corresponding
crystal conformer. Redocking of all hit compounds with PDB IDs
4ZVM, 5NWH, 7CHM, 3HY3, 4UUD, and 3PP0 resulted in the

FIGURE 13
Deformability and B-factor of docked complexes. (A) 3HY3-C10, (B) 4UUD-C10, and (C) 7CHM-C10.
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RMSD values shown in Supplementary Table S5. The lower value of
RMSD revealed that the ligands were bound to target very closely to
the original conformation, hence, signifying the accuracy of results.
The RMSD value close to zero was considered to be ideal. A
superimposed view is displayed in Figure 11.

Molecular dynamics simulation
The RMSF graph provides insight into the flexibility of

individual atoms or residues in the protein. It shows how much
they deviate from their average positions during the simulation. The
maximum value of RMSF indicates greater flexibility, while the

FIGURE 14
Eigenvalue and variance of docked complexes (A) 3HY3-C10, (B) 4UUD-C10, and (C) 7CHM-C10.

FIGURE 15
Covariance matrix of complexes (A) 3HY3-C10, (B) 4UUD-C10, and (C) 7CHM-C10.
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smallest value denotes the system’s restricted motion across the
simulation course. In all of our proteins, the RMSF graph showed a
number of areas having high flexibility (Figure 12). The complex of
C10 with H3Y3 showed a maximum number of peaks, indicating
more flexible movements. All three docked complexes showed a
maximum RMSF of 1.0. It indicated that the atoms or residues are,
on average, deviating from their average positions by around 1 Å
(Angstrom).

The B-factor, eigenvalue, deformability, covariance matrix,
variance map, and elastic network model of the protein serves as

a representation of its stability. The mobility characteristics of
the docked proteins are determined by the deformability and
B-factor. The peaks are associated with the protein regions with
deformability whereas the areas with the highest peaks are those
with the greatest deformability (Santra and Maiti, 2022). In
B-factor graphs, the comparison between the PDB field and
NMA of the docked complexes is provided. The B-factor
graphs of 3H3Y-C10 and 7CHM-C10 complexes showed that
the PDB data predicted higher B-factors compared to the NMA
data. It suggested that the B-factor values predicted by the

FIGURE 16
Elastic maps of docked proteins (A) 3HY3-C10, (B) 4UUD-C10, and (C) 7CHM-C10.

FIGURE 17
(A) FMOs of C6 along with energy gap (ΔE), (B) MEP structure and scale of C6 based on SCF energy, and (C) Optimized geometry of C6.
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FIGURE 18
(A) FMOs of C10 along with energy gap (ΔE), (B) MEP structure and scale of C10 based on SCF energy, (C) Optimized geometry of C10.

FIGURE 19
(A) FMOs of C21 along with energy gap (ΔE), (B) MEP structure and scale of C21 based on SCF energy, and (C) Optimized geometry of C21.

Frontiers in Chemistry frontiersin.org19

Rashid et al. 10.3389/fchem.2023.1197665

229

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1197665


computational simulations using NMA showed lower mobility
or flexibility than what was predicted by the experimentally
determined B-factor values from the Protein Data Bank.
Figure 13 illustrates the deformability and B-factor of 3HY3-
C10, 4UUD-C10, and 7CHM-C10, respectively.

The eigenvalue indicates motion stiffness which is directly
connected to the energy needed to deform the structure. If the
eigenvalue is low, it means that the complex is more easily
deformable. The eigenvalues of 3H3Y, 4UUD, and 7CHM
complexes with C10 are 3.231587e-04, 7.624966e-05, and
2.479516e-04, repectively. It means that all of our docked
complexes showed low eigenvalues, indicating a considerable
amount of deformability and, hence, good flexibility and stability
of the molecular motion. The individual variance is shown by
purple-shaded bars in the variance graph of C10 with target
proteins, while the bars with green shading show cumulative
variance. The eigenvalue and variance graphs of protein-ligand
complexes (H3Y3-C10, 4UUD-C10, and 7CHM-C10) are shown
in Figure 14.

The covariance matrix indicates correlations among the pairs
of residues in a protein-ligand complex (Figure 15). The red and
white colors showed correlated and uncorrelated motion,
respectively, while anticorrelations are represented by the blue
color. Greater correlation means the formation of a better
complex. The covariance matrices for H3Y3-C10, 4UUD-C10,
and 7CHM-C10 complexes exhibited good correlations and
minimal anticorrelations.

The elastic network model of docked proteins shows
relationships between the atoms where the stiffer regions are
indicated by the darker grey areas (Figure 16). All protein elastic
maps yielded reliable results.

Toxicity prediction
Toxicity results provided valuable information related to the

toxicological profile of selected compounds after molecular docking
studies and thus may be useful for drug designing (to select the
dosage and preferred route of administration (Banerjee et al., 2018).
However, all these results are preliminary and must be confirmed by
experiment (Table 3).

As shown in Table 3, among all the hit compounds, C10 was
found to be inactive in all toxicity parameters and, thus, it was
considered the best-hit compound.

Density functional theory

Frontier molecular orbitals
Very useful information about the compounds can be provided by

Frontier molecular orbitals (FMO) such as electronegativity, stability,
reactivity, and chemical hardness and softness (Elancheran et al.,
2023b). The HOMO and LUMO parameters are used to compute
the chemical reactivity descriptors and to assess the molecular reactivity
(Al-Janabi et al., 2021). The energy values of HOMO and LUMO were
determined by the DFT method as shown in Supplementary Table S6.
Contour diagrams of FMOs are shown in Figures 17–20.

The geometry optimization was done to minimize the energy
and to find the most stable atomic arrangement. Optimized
geometries of all compounds are shown in Figures 17–20 along
with the numbering system and the vector of dipole moment.

Computational description
The DFT calculations for ionization energy, electron affinity,

energy gap, electronegativity, chemical potential, electrophilicity

FIGURE 20
(A) FMOs of C76 along with energy gap (ΔE), (B) MEP structure and scale of C76 based on SCF energy, and (C) Optimized geometry of C76.
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index, chemical softness and hardness, additional electronic charges,
maximum charger transfer index, and dipole moment were
performed as explained in Supplementary Table S6).

A high EHOMO indicates that the molecule is a strong electron
donor and can easily donate electrons to the receptor, increasing
biological activity. According to this concept, the activity ranking of
the hit compounds is given below with an increasing EHOMO value.

C10 > C21 > C76 > C6

A low ELUMO value indicates that the compound can easily
accept electrons from the donor molecule, increasing biological
activity (Mu and Gao, 2022). According to this criterion, an
increase in the biological activity of compounds is as follows:

C6 > C76 > C10 > C21

The third parameter is the energy gap (ΔE) between Homo and
Lumo. If the energy gap is small, it indicates that the molecule is soft,
biologically active, less stable, and has a high chemical reactivity. In
other words, the biological activity increases with a decrease in the
energy gap. The order of ranking should be

C21 > C10 > C76 > C6

A high chemical potential (CP) or Lower electronegativity X)
value indicates electron delocalization. It means that the molecule
can easily form bonds and coordinate easily with the biological
system. So according to our calculated DFT data, an increase in the
biological activity of compounds is given below:

C21 > C10 > C76 > C6

The dipole moment also affects the biological activity of the
compound. The high value of the dipole moment indicates the
strong ligand-protein interaction, thus increasing the biological
activity (Sayin and Üngördü, 2018). Supplementary Table S6

shows that the dipole moment of our hit compounds are in the
order of

C10 > C21 > C76 > C6

Molecular electrostatic potential (MEP)
In order to determine a chemical mechanism,MEPmaps andMEP

contours play a very important role. Molecular electrostatic potential
helps to determine the hydrogen bonding interactions and to interpret
the nucleophilic as well as electrophilic reactions (Horchani et al., 2020).
MEP can be used to indicate the shape of the molecule and the sizes of
the negative, positive, and neutral electrostatic potential. The molecular
structure of drugs along with the interaction among different
physicochemical properties can be predicted by the MEP scale (Al-
Janabi et al., 2021). The MEP of compounds C6, C10, C21, and C76 is
determined under the basis set of B3LYP/6-311G. The negative charge
is indicated by red and yellow areas that represent the electrophilic
attack sites. The green color indicated a neutral charge while the blue
region indicating the positively charged areas represented the
nucleophilic reactivity (Bendjeddou et al., 2016). The MEP structures
and MEP scales of compounds are shown in Figures 17–20.

Conclusion

After the virtual screening,C10was found to be the best imidazole
derivative clearing all the filters. The 3D-QSAR models generated in
this study provided valuable insights into the structural features and
molecular interactions that contribute to the compounds’ activity
against breast cancer cells. The derived PLS regression model
confirmed a fairly acceptable value of regression coefficient (r2 =
0.81) and cross-validation regression coefficient (q2 = 0.51). Docking
results based on the binding free energy values were found to support
the best-hit compounds. The DFT calculations also confirm the best
alternative cancer inhibitor. These predictions aided in rationalizing

Parameters C6 C10 C21 C76

EHOMO(EV) −5.6396 −5.9786 −5.9533 −5.6489

Elumo(EV) −1.2697 −2.41256 −2.4975 −2.068

ENERGY GAP ΔE (Ev) 4.3699 3.566 3.4558 3.5809

IONIZATION POTENTIAL (I = -EHOMO) 5.6396 5.9786 5.9533 5.6489

ELECTRON AFFINITY (A = -ELUMO) 1.2697 2.41256 2.4975 2.068

ELECTRONEGATIVITY (χ = (I+A)
2 ) (Ev) 3.4546 4.195 4.2254 3.8584

CHEMICAL POTENTIAL (Μ= -(I+A)2 ) (EV) −3.4546 −4.195 −4.2254 −3.8584

CHEMICAL HARDNESS (Η = (I−A)
2 ) (EV) 2.1849 1.78 1.7279 1.79

CHEMICAL SOFTNESS (S = 1
2η) (EV) 0.2288 0.28 0.2893 0.2793

ELECTROPHILICITY INDEX (Ω = µ2
2η) (EV) 2.731 4.94 5.1663 4.1584

NUCLEOPHILICITY INDEX (N = 1
ω) (EV) 0.366 0.2024 0.1936 0.2405

MAXIMUM CHARGER TRANSFER INDEX (ΔNMAX = −µ
η ) (EV) 1.581 2.3567 2.4454 2.155

DIPOLE MOMENT (DEBYE) 3.970092 7.126807 6.225672 4.797580
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the observed biological activities and potential mechanisms of action
of these compounds against breast cancer cells. MD simulation study
supported the docking results of C10 to its target proteins or
receptors. This study showcased the lead compound’s stability and
robustness, suggesting its suitability for further preclinical and clinical
evaluations. The compound’s favorable binding profile, coupled with
its ability to sustain its interactions over extended simulation periods,
instills confidence in its potential as a promising candidate for
subsequent stages of drug development. The results acquired from
the present study may be utilized in the future to develop more
imidazole-based therapeutics against cancer. The identification of
Compound C10 as a lead compound opens up avenues for further
drug development and optimization and offers valuable insights and
potential directions for future research and clinical applications.
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