Seed germination is the most sensitive stage of plant life history. Studying its response to drought and salinity can analysis the response and adaptation characteristics of desert plants to the environment. In this experiment, the seeds of four common desert ephemeral plants in Xinjiang (Ixiolirion tataricum, Nepeta micrantha, Lepidium apetalum, and Plantago minuta) were used as materials. To study the germination characteristics of seeds under drought, we used salt stress, and coupled salt-drought stress under treatments and explored the germination recovery ability of rehydrated seeds after salt and drought stress treatments. The results showed that: (1) Under salt stress, the germination ability of four plant seeds was inhibited in different degrees. Overall, the degree of inhibition was proportional to the concentration of NaCl solution. (2) Drought stress slowed the seed germination process, and the greater the degree of stress, the more pronounced the slowdown; PEG treatment showed no significant effect on the germination of the four seeds at low concentrations and significant inhibition at medium and high concentrations. (3) The coupled salt-drought treatment significantly alleviated the stress effect of one factor and improved the germination characteristics of seeds. (4) Seeds that did not germinate under different concentrations of salt stress, drought stress, and coupled stresses rapidly recover germination when the stress was relieved or lifted. Ephemeral plants are sensitive to environmental changes, and this study aims to provide a reference basis for vegetation restoration and ecological rehabilitation in arid and semi-arid areas.
Seed dispersal is critical to the ecological performance of sexually reproducing plant species and the communities that they form. The Mammalian order Carnivora provide valuable and effective seed dispersal services but tend to be overlooked in much of the seed dispersal literature. Here we review the literature on the role of Carnivorans in seed dispersal, with a literature search in the Scopus reference database. Overall, we found that Carnivorans are prolific seed dispersers. Carnivorans’ diverse and plastic diets allow them to consume large volumes of over a hundred families of fruit and disperse large quantities of seeds across landscapes. Gut passage by these taxa generally has a neutral effect on seed viability. While the overall effect of Carnivorans on seed dispersal quality is complex, Carnivorans likely increase long-distance dispersal services that may aid the ability of some plant species to persist in the face of climate change.