About this Research Topic
Clinically, human sleep and sleep pathology are defined based upon scalp recorded electrical potentials (electroencephalography, EEG), which have provided seminal information on changes of brain electrophysiology associated with pathologies that adversely affect, or are pathologies of, sleep. However, no single method can examine all aspects of the neural control of sleep or its disruption in pathology. Early studies of normal sleep network activity utilizing positron emission tomography (PET) imaging provided fundamental information on the global network changes associated with specific stages of sleep, much of which has been confirmed recently using functional magnetic resonance imaging (fMRI). Studies employing simultaneous EEG/fMRI have extended these findings to explore specific electrical signatures of sleep, such as sleep spindles. This technique has also contributed new information on the reconfiguration of functional brain networks during normal human sleep using graph theoretical approaches, showing that shifts in these networks are a hallmark of different sleep stages. Studies using EEG and transcranial magnetic stimulation (TMS) have provided new information on the propagation of slow waves in deep sleep, and mechanisms by which sensory information entering the brain during deep sleep is prevented from reaching higher cortical levels. These studies have been extended recently by use of electrocorticography (ECoG), showing that sleep is not solely a global change in functional brain activity, but can also occur locally. These findings may provide a mechanism for the cognitive dysfunction seen in sleep deprivation, where local brain regions may “sleep” even during behavioral wake.
Thus, modern sleep medicine requires a multi-modal approach to the investigation of brain changes occurring in response to or as causative mechanisms of sleep-related neuropathology. In this issue electromagnetic (EEG, magnetoencephalography (MEG), and ECoG), functional imaging (PET,(fMRI), anatomical (morphometry and diffusion imaging (DTI, DWI, DTT)) imaging and network modeling approaches will be utilized to study sleep across the lifespan and to examine changes associated with pathologies of sleep.
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.