Mechanisms of abiotic stress responses and tolerance in plants: physiological, biochemical and molecular interventions

1.3M
views
679
authors
121
articles
Editors
5
Impact
Loading...
56,079 views
285 citations
Review
13 September 2016
Methylglyoxal: An Emerging Signaling Molecule in Plant Abiotic Stress Responses and Tolerance
Tahsina S. Hoque
4 more and 
Lam-Son P. Tran
A diagrammatic representation of methylglyoxal (MG) synthesis and detoxification in plants (modified from Ko et al., 2005; Hossain et al., 2011). MG is primarily produced as a by-product of carbohydrate metabolism, with small amount produced during protein and lipid metabolism. Cytotoxic MG is efficiently degraded to form D-lactate by the action of the enzymes Gly I and Gly II, with the help of GSH. In addition, GSH-independent Gly III is able to convert MG to D-lactate. D-lactate dehydrogenase finally converts D-lactate into pyruvate, which enters TCA cycle via acetyl CoA. The broken line separates the synthesis and detoxification pathways of MG. For further discussion, see the text. Abbreviations are defined in the text.

The oxygenated short aldehyde methylglyoxal (MG) is produced in plants as a by-product of a number of metabolic reactions, including elimination of phosphate groups from glycolysis intermediates dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. MG is mostly detoxified by the combined actions of the enzymes glyoxalase I and glyoxalase II that together with glutathione make up the glyoxalase system. Under normal growth conditions, basal levels of MG remain low in plants; however, when plants are exposed to abiotic stress, MG can accumulate to much higher levels. Stress-induced MG functions as a toxic molecule, inhibiting different developmental processes, including seed germination, photosynthesis and root growth, whereas MG, at low levels, acts as an important signaling molecule, involved in regulating diverse events, such as cell proliferation and survival, control of the redox status of cells, and many other aspects of general metabolism and cellular homeostases. MG can modulate plant stress responses by regulating stomatal opening and closure, the production of reactive oxygen species, cytosolic calcium ion concentrations, the activation of inward rectifying potassium channels and the expression of many stress-responsive genes. MG appears to play important roles in signal transduction by transmitting and amplifying cellular signals and functions that promote adaptation of plants growing under adverse environmental conditions. Thus, MG is now considered as a potential biochemical marker for plant abiotic stress tolerance, and is receiving considerable attention by the scientific community. In this review, we will summarize recent findings regarding MG metabolism in plants under abiotic stress, and evaluate the concept of MG signaling. In addition, we will demonstrate the importance of giving consideration to MG metabolism and the glyoxalase system, when investigating plant adaptation and responses to various environmental stresses.

16,519 views
217 citations
Fetching...