
Edited by  

Bahram Mohajer and Jasper Nijkamp

Published in  

Frontiers in Oncology

Methods in 
cancer imaging and 
image-directed 
interventions

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/research-topics/40246/methods-in-cancer-imaging-and-image-directed-interventions
https://www.frontiersin.org/research-topics/40246/methods-in-cancer-imaging-and-image-directed-interventions
https://www.frontiersin.org/research-topics/40246/methods-in-cancer-imaging-and-image-directed-interventions
https://www.frontiersin.org/research-topics/40246/methods-in-cancer-imaging-and-image-directed-interventions


November 2023

Frontiers in Oncology frontiersin.org1

About Frontiers

Frontiers is more than just an open access publisher of scholarly articles: it is 

a pioneering approach to the world of academia, radically improving the way 

scholarly research is managed. The grand vision of Frontiers is a world where 

all people have an equal opportunity to seek, share and generate knowledge. 

Frontiers provides immediate and permanent online open access to all its 

publications, but this alone is not enough to realize our grand goals.

Frontiers journal series

The Frontiers journal series is a multi-tier and interdisciplinary set of open-

access, online journals, promising a paradigm shift from the current review, 

selection and dissemination processes in academic publishing. All Frontiers 

journals are driven by researchers for researchers; therefore, they constitute 

a service to the scholarly community. At the same time, the Frontiers journal 

series operates on a revolutionary invention, the tiered publishing system, 

initially addressing specific communities of scholars, and gradually climbing 

up to broader public understanding, thus serving the interests of the lay 

society, too.

Dedication to quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include 

some of the world’s best academicians. Research must be certified by peers 

before entering a stream of knowledge that may eventually reach the public 

- and shape society; therefore, Frontiers only applies the most rigorous 

and unbiased reviews. Frontiers revolutionizes research publishing by freely 

delivering the most outstanding research, evaluated with no bias from both 

the academic and social point of view. By applying the most advanced 

information technologies, Frontiers is catapulting scholarly publishing into  

a new generation.

What are Frontiers Research Topics? 

Frontiers Research Topics are very popular trademarks of the Frontiers 

journals series: they are collections of at least ten articles, all centered  

on a particular subject. With their unique mix of varied contributions from  

Original Research to Review Articles, Frontiers Research Topics unify the 

most influential researchers, the latest key findings and historical advances  

in a hot research area.

Find out more on how to host your own Frontiers Research Topic or 

contribute to one as an author by contacting the Frontiers editorial office: 

frontiersin.org/about/contact

FRONTIERS EBOOK COPYRIGHT STATEMENT

The copyright in the text of individual 
articles in this ebook is the property 
of their respective authors or their 
respective institutions or funders.
The copyright in graphics and images 
within each article may be subject 
to copyright of other parties. In both 
cases this is subject to a license 
granted to Frontiers. 

The compilation of articles constituting 
this ebook is the property of Frontiers. 

Each article within this ebook, and the 
ebook itself, are published under the 
most recent version of the Creative 
Commons CC-BY licence. The version 
current at the date of publication of 
this ebook is CC-BY 4.0. If the CC-BY 
licence is updated, the licence granted 
by Frontiers is automatically updated 
to the new version. 

When exercising any right under  
the CC-BY licence, Frontiers must be 
attributed as the original publisher  
of the article or ebook, as applicable. 

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 
others may be included in the CC-BY 
licence, but this should be checked 
before relying on the CC-BY licence 
to reproduce those materials. Any 
copyright notices relating to those 
materials must be complied with. 

Copyright and source 
acknowledgement notices may not  
be removed and must be displayed 
in any copy, derivative work or partial 
copy which includes the elements  
in question. 

All copyright, and all rights therein,  
are protected by national and 
international copyright laws. The 
above represents a summary only. 
For further information please read 
Frontiers’ Conditions for Website Use 
and Copyright Statement, and the 
applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-8325-3835-7 
DOI 10.3389/978-2-8325-3835-7

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/
https://www.frontiersin.org/about/contact
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


November 2023

Frontiers in Oncology 2 frontiersin.org

Methods in cancer imaging and 
image-directed interventions

Topic editors

Bahram Mohajer — Department of Radiology and Radiological Science, School of 

Medicine, Johns Hopkins Medicine, United States

Jasper Nijkamp — Aarhus University, Denmark

Citation

Mohajer, B., Nijkamp, J., eds. (2023). Methods in cancer imaging and 

image-directed interventions. Lausanne: Frontiers Media SA. 

doi: 10.3389/978-2-8325-3835-7

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/
http://doi.org/10.3389/978-2-8325-3835-7


November 2023

Frontiers in Oncology frontiersin.org3

05 Editorial: Methods in cancer imaging and image-directed 
interventions
Jasper Nijkamp and Bahram Mohajer

08 Multiparametric MRI-based nomograms in predicting positive 
surgical margins of prostate cancer after laparoscopic radical 
prostatectomy
Shuang Meng, Lihua Chen, Qinhe Zhang, Nan Wang and Ailian Liu

21 Frontiers and hotspots of 18F-FDG PET/CT radiomics: A 
bibliometric analysis of the published literature
Xinghai Liu, Xianwen Hu, Xiao Yu, Pujiao Li, Cheng Gu, Guosheng Liu, 
Yan Wu, Dandan Li, Pan Wang and Jiong Cai

38 Novel small 99mTc-labeled affibody molecular probe for PD-L1 
receptor imaging
Zhigang Liang, Xianwen Hu, Hongyu Hu, Pan Wang and Jiong Cai

48 Visualising spatial heterogeneity in glioblastoma using 
imaging habitats
Mueez Waqar, Petra J. Van Houdt, Eline Hessen, Ka-Loh Li, 
Xiaoping Zhu, Alan Jackson, Mudassar Iqbal, James O’Connor, 
Ibrahim Djoukhadar, Uulke A. van der Heide, David J. Coope and 
Gerben R. Borst

65 Applications of T
1
 and T

2
 relaxation time calculation in tissue 

differentiation and cancer diagnostics—a systematic 
literature review
Marta Micek, David Aebisher, Justyna Surówka, 
Dorota Bartusik-Aebisher and Michał Madera

83 Diagnostic value of [68Ga]Ga-FAPI-04 in patients with 
colorectal cancer in comparison with [18F]F-FDG PET/CT
Xinfeng Lin, Yingjie Li, Shuailiang Wang, Yan Zhang, Xuetao Chen, 
Maomao Wei, Hua Zhu, Aiwen Wu, Zhi Yang and Xuejuan Wang

96 Magnetic resonance imaging radiomics to differentiate 
ovarian sex cord-stromal tumors and primary epithelial 
ovarian cancers
Meiying Cheng, Shifang Tan, Tian Ren, Zitao Zhu, Kaiyu Wang, 
Lingjie Zhang, Lingsong Meng, Xuhong Yang, Teng Pan, 
Zhexuan Yang and Xin Zhao

106 Dose accumulation for MR-guided adaptive 
radiotherapy: From practical considerations to 
state-of-the-art clinical implementation
Brigid A. McDonald, Cornel Zachiu, John Christodouleas, 
Mohamed A. Naser, Mark Ruschin, Jan-Jakob Sonke, 
Daniela Thorwarth, Daniel Létourneau, Neelam Tyagi, Tony Tadic, 
Jinzhong Yang, X. Allen Li, Uffe Bernchou, Daniel E. Hyer, 
Jeffrey E. Snyder, Edyta Bubula-Rehm, Clifton D. Fuller and 
Kristy K. Brock

Table of
contents

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/


November 2023

Frontiers in Oncology 4 frontiersin.org

120 A CT-based radiomics approach to predict immediate 
response of radiofrequency ablation in colorectal cancer 
lung metastases
Haozhe Huang, Dezhong Zheng, Hong Chen, Chao Chen, 
Ying Wang, Lichao Xu, Yaohui Wang, Xinhong He, Yuanyuan Yang 
and Wentao Li

134 Lesion-specific 3D-printed moulds for image-guided tissue 
multi-sampling of ovarian tumours: A prospective pilot study
Maria Delgado-Ortet, Marika A. V. Reinius, Cathal McCague, 
Vlad Bura, Ramona Woitek, Leonardo Rundo, Andrew B. Gill, 
Marcel Gehrung, Stephan Ursprung, Helen Bolton, Krishnayan Haldar, 
Pubudu Pathiraja, James D. Brenton, Mireia Crispin-Ortuzar, 
Mercedes Jimenez-Linan, Lorena Escudero Sanchez and Evis Sala

149 Correlation between ADC, ADC ratio, and Gleason Grade 
group in prostate cancer patients undergoing radical 
prostatectomy: Retrospective multicenter study with 
different MRI scanners
Johan Bengtsson, Erik Thimansson, Erik Baubeta, Sophia Zackrisson, 
Pia Charlotte Sundgren, Anders Bjartell and Despina Flondell-Sité

160 Segmentation stability of human head and neck cancer 
medical images for radiotherapy applications under 
de-identification conditions: Benchmarking data sharing and 
artificial intelligence use-cases
Jaakko Sahlsten, Kareem A. Wahid, Enrico Glerean, Joel Jaskari, 
Mohamed A. Naser, Renjie He, Benjamin H. Kann, Antti Mäkitie, 
Clifton D. Fuller and Kimmo Kaski

170 Intrafraction tumor motion monitoring and dose 
reconstruction for liver pencil beam scanning proton therapy
Saber Nankali, Esben Schjødt Worm, Jakob Borup Thomsen, 
Line Bjerregaard Stick, Jenny Bertholet, Morten Høyer, Britta Weber, 
Hanna Rahbek Mortensen and Per Rugaard Poulsen

181 Breaking down the RECIST 1.1 double read variability in lung 
trials: What do baseline assessments tell us?
Antoine Iannessi and Hubert Beaumont

195 The synergized diagnostic value of VTQ with chemokine 
CXCL13 in lung tumors
Xu Zhang, Yejian Lu, Kenan Huang, Qingfang Pan, Youchao Jia, 
Baoshuan Cui, Peipei Yin, Jianhui Li, Junping Ju, Xiangyu Fan and 
Rui Tian

204 A novel approach for automatic segmentation of prostate 
and its lesion regions on magnetic resonance imaging
Huipeng Ren, Chengjuan Ren, Ziyu Guo, Guangnan Zhang, 
Xiaohui Luo, Zhuanqin Ren, Hongzhe Tian, Wei Li, Hao Yuan, 
Lele Hao, Jiacheng Wang and Ming Zhang

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/


Frontiers in Oncology

OPEN ACCESS

EDITED AND REVIEWED BY

Lizhi Liu,
Sun Yat-sen University Cancer Center
(SYSUCC), China

*CORRESPONDENCE

Jasper Nijkamp

jaspernijkamp@clin.au.dk

RECEIVED 12 September 2023

ACCEPTED 10 October 2023
PUBLISHED 17 October 2023

CITATION

Nijkamp J and Mohajer B (2023)
Editorial: Methods in cancer imaging
and image-directed interventions.
Front. Oncol. 13:1293020.
doi: 10.3389/fonc.2023.1293020

COPYRIGHT

© 2023 Nijkamp and Mohajer. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Editorial

PUBLISHED 17 October 2023

DOI 10.3389/fonc.2023.1293020
Editorial: Methods in
cancer imaging and image-
directed interventions

Jasper Nijkamp1,2* and Bahram Mohajer3

1Department of Clinical Medicine, Aarhus University, Aarhus, Denmark, 2Danish Center for Particle
Therapy, Aarhus University Hospital, Aarhus, Denmark, 3Russell H. Morgan Department of Radiology
and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
KEYWORDS

methods, cancer imaging, image-directed interventions, image-guidance, radiotherapy,
radiology, radiomics
Editorial on the Research Topic

Methods in cancer imaging and image-directed interventions
Introduction

The methods we employ to visualize, analyze, and intervene in cancerous tissues

rapidly evolve. These methods, which include various imaging modalities and image-

guided therapies, play a vital role in the accurate diagnosis, precise treatment planning, and

targeted interventions for cancer patients.

We are glad to see a total of 16 high-quality papers published in this Research Topic, of

which twelve original articles, three reviews, and one methods paper, from various countries

and regions. As can be expected from the broad topic, a wide range of papers is presented.
Molecular, magnetic resonance, and ultrasound
imaging

For molecular imaging, Liang et al. presented a novel molecular probe for imaging

programmed death ligand 1 (PD-L1) with single-photon emission computed tomography

(SPECT). Their PD-L1 targeting affibody with 99mTc labelling showed high in vivo affinity

and quick blood clearance.

Lin et al. performed a prospective study comparing 18FDG-PET/CT with 68Ga-FAPI-

04 PET/CT on colorectal cancer staging. Differences in staging between both scans were

investigated in 61 patients. FAPI-PET led to TNM upstaging in 10, and downstaging in 5

patients, which consecutively altered the treatment course in 13 patients, primarily due to

better nodal and metastasis detection.

Three studies assessed use of MRI in tumor grading and tissue characterization.

Apparent diffusion coefficient (ADC) is often suggested as biomarker of prostate tumor

aggressiveness. Bengtsson et al. addressed the challenges in generalizing ADC cut-off values

between scanners and centers with regard to tumor aggressiveness. They showed that ADC
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(and its ratios) did not correlate with tumor Gleason Grade, and

should therefore be used with caution as biomarker.

Secondly, Waqar et al. focused their narrative review on current

status of habitat MR-imaging in glioblastoma. With habitat

imaging, tumors can be subdivided into regions that express

similar imaging characteristics, assuming that these regions

represent different tumor biology. They provide an overview of

the current work, challenges of producing relevant and reproducible

habitats, and clinical applications for personalized treatment.

Finally, Micek et al. reviewed the current applications of non-

contrast-enhanced quantitativeMRI parameters, specifically T1 and T2

relaxation time, for tissue characterization. They focused on epithelium

in breast cancer, but also reviewed studies on lung, prostate, skin,

kidney, and liver malignancies. They concluded that in most studies

only T1 or T2 relaxation times were reported, resulting in limited

groundwork to the value of combining the two in differentiating tissues.

In another study, Zhang et al. show the diagnostic value of

virtual touch tissue quantification (VTQ) ultrasonography in

combination with pleural effusion chemokine expression

quantification (CXCL13) for detection of malignant lung nodules.

They show a synergistic diagnostic potential of CXCL13 and VTQ

for differentiating malignant and benign pleural effusions.
Image segmentation and validation

Ren et al. provide a novel prostate and prostate lesion

segmentation model, based on UNet, but using dense blocks, a

convolution block attention module, and group norm-Atrous spatial

pyramidal pooling. Their input data was DWI imaging only, and they

show that their approach outperforms other well-known architectures.

Sahlsten et al. investigated the effect of defacing CT and MRI scans

on segmentation accuracy of organs at risk in the head and neck area.

Defacing imaging data without affecting the segmentation accuracy could

help to overcome challenges in data sharing. Of the eight available

defacing models, only 3 performed acceptably on MRI, none did well on

CT. Segmentation accuracy was influenced by the defacing tools, and

improvements are needed to assure safe data sharing.

With an innovative design and with the aim of correlating imaging

findings with histology in ovarian tumors, Delgado-Ortet et al.

presented a method for designing and 3D printing molds. The work

is inspired by similar workflows presented in imaging validation of

prostate cancer but applied in the challenging setting of ovarian tumors.
Response assessment, radiomics, and
prediction models

Iannessi and Beaumont evaluated the effect of observer variation in

standardized response assessment (RECIST) in clinical trials of patient

with lung cancer with blinded independent central review. They show

that even with standardization, there are substantial variabilities at

baseline and provide evidence of observer dependent reading patterns.

In the field of radiomics, Liu et al. provide an bibliometric

overview of the research that is being conducted in the area of FDG-

PET/CT radiomics. They included 361 original articles and 96
Frontiers in Oncology 026
reviews, and provide which countries, institutes, and individuals

are the drivers of the research in this area.

In a diagnostic application, Cheng et al. developed an MRI

radiomics model to differentiate between ovarian sex cord-stromal

tumors and epithelial ovarian cancers. They showed best

performance when combining clinical characteristics, conventional

MRI parameters (e.g. ADC), and a radiomics score based on 9

features. For ease of use, they also developed a nomogram.

Huang et al. aimed to predict response to radiofrequency

ablation (RFA) of colorectal lung metastasis using radiomics.

Their model contained combinations of CT-radiomics features of

the pre-RFA metastasis and the ablation zone, plus cancer antigen

19-9 and location of the metastasis as clinical features. With an

accuracy of 82.6%, this work shows potential to guide personalized

follow-up in these patients.

In another study, using multiparametric (mp)MRI, without

radiomics, Meng et al. provided an approach to predict the surgical

resection margins after laparoscopic prostatectomy. This approach

could help choosing optimal treatment for prostate cancer patients.

They presented nomograms based on clinical parameters, mpMRI,

and a combination, with the latter as most accurate (AUC=0.756).
Radiotherapy

In the field of radiotherapy, McDonald et al. provided a

comprehensive review of dose accumulation for MR-guided

adaptive radiotherapy. They cover the whole range from practical

considerations to state-of-the-art clinical implementation.

Finally, Nankali et al. describe a method to monitor intrafraction

tumor motion and accumulate the fraction dose during liver pencil

beam scanning proton therapy. The illustration of the method on

three patient cases is impressive, but the pathway to broad clinical

implementation is challenged by integration needs.

This Research Topic provides a cross-sectional snapshot of a

rapidly evolving field. We are excited to observe where the field

progresses in coming years.
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Multiparametric MRI-based
nomograms in predicting
positive surgical margins
of prostate cancer after
laparoscopic radical
prostatectomy

Shuang Meng, Lihua Chen, Qinhe Zhang, Nan Wang
and Ailian Liu*

Department of Radiological, First Affiliated Hospital of Dalian Medical University, Dalian, China
Background: Positive surgical margins (PSMs) are an independent risk factor of

biochemical recurrence in patients with prostate cancer (PCa) after

laparoscopic radical prostatectomy; however, limited MRI-based predictive

tools are available. This study aimed to develop a novel nomogram combining

clinical and multiparametric MRI (mpMRI) parameters to reduce PSMs by

improving surgical planning.

Methods: One hundred and three patients with PCa (55 patients with negative

surgical margins [NSMs] and 48 patients with PSMs) were included in this

retrospective study. The following parameters were obtained using GE

Functool post-processing software: diffusion-weighted imaging (DWI);

intravoxel incoherent motion model (IVIM); and diffusion kurtosis imaging

(DKI). Patients were divided into different training sets and testing sets for

different targets according to a ratio of 7:3. The least absolute shrinkage and

selection operator (LASSO) regression algorithm was used to analyze the data

set to select the optimal MRI predictors. Preoperatively clinical parameters

used to build a clinical nomogram (C-nomogram). Multivariable logistic

regression analysis was used to build an MRI nomogram (M-nomogram) by

introducing the MRI parameters. Based on the MRI and clinical parameters,

build an MRI combined with clinical parameters nomogram (MC-nomogram).

Comparisons with the M-nomogram and MC-nomogram were based on

discrimination, calibration, and decision curve analysis (DCA). A 3-fold cross-

validation method was used to assess the stability of the nomogram.

Results: There was no statistical difference in AUC between the C-nomogram

(sensitivity=64%, specificity=65% and AUC=0.683), the M-nomogram

(sensit iv ity=57%, specificity=88% and AUC=0.735) and the MC-

nomogram (sensitivity= 64%, specificity=82% and AUC=0.756). The

calibration curves of the three nomograms used to predict the risk of PSMs
frontiersin.org01
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in patients with PCa showed good agreement. The net benefit of the MC-

nomogram was higher than the others (range, 0.2-0.7).

Conclusions: The mpMRI-based nomogram can predict PSMs in PCa patients.

Although its AUC (0.735) is not statistically different from that of the clinical-

based nomogram AUC (0.683). However, mpMRI-based nomogram has higher

specificity (88% VS. 63%), model stability, and clinical benefit than clinical-

based nomogram. And the predictive ability of mpMRI plus clinical parameters

for PSMs is further improved.
KEYWORDS

prostate cancer, positive surgical margins, MRI, nomogram, laparoscopic
radical prostatectomy
Introduction

Laparoscopic radical prostatectomy (LRP) has been widely

used in clinical practice and is currently the main way to treat

localized prostate cancer (PCa) (1). Of note, 29.1%-34% of

patients who undergo LRP have positive surgical margins

(PSMs) (2–4), which is an independent risk factor for

biochemical recurrence (BCR) in patients after prostatectomy

(5, 6). And the results of a cohort study showed that PSMs poses

a substantial financial burden (7). Therefore, it is necessary to

predict PSMs so that optimal treatment strategies can

be implemented.

In previous studies it was reported that there are some

preoperative parameters correlate with PSMs after prostatectomy,

including age, clinical stage, free prostate specific antigen (FPSA)/

total PSA (TPSA), Gleason score, percent of positive cores (PPC),

and extra-prostatic extension (3, 8). To predict the risk of advanced

PCa, clinicians also often use staging nomograms, such as

D’AMICO or CAPRA (9, 10). However, most studies only

included the clinical characteristics, and a lack of knowledge

about the predictive value of multiparametric MRI (mpMRI).

An mpMRI is considered a common examination for the

diagnosis of PCa; specifically, reduces false-negative biopsies

(11) and identify risk factors associated with PSMs (12). An

mpMRI mainly consists of T2-weighted imaging (T2WI),

diffusion-weighted imaging (DWI), and dynamic contrast-

enhanced MRI. DWI reflects the PCa histopathologic tissue

composition (13) and has the potential to predict abnormal

pathologic features after prostatectomy. Over the last two

decades, several advanced DWI models have been developed

to improve assessment of PCa, including (14). No systematic

research studies have shown if advanced DWI models can help

clinicians predict PSMs after LRP are lacking. Therefore, the aim

of the present study was to develop a novel nomogram
02
9

combining clinical and mpMRI parameters to predict PSMs

after LRP to guide decision-making.
Materials and methods

Study population

This single-center, retrospective study included 1055

consecutive male inpatients who underwent pelvic mpMRI

between January 2016 and November 2021.

Participants who met the following inclusion criteria were

included in our study: ① confirmed diagnosis of PCa by systemic

biopsies; ② patients with complete clinical data, including age,

Prostate Imaging Reporting and Data System version 2 (PI-

RADS v2) score, TPSA, biopsy-based Gleason score, PPC,

clinical TNM (cTNM), postoperative Gleason score, pathologic

TNM (pTNM), and PSMs locations; and ③ LRP performed on

PCa patients by urologists who have performed 500 radical

prostatectomies within 3 months after MRI and systemic

biopsies. Urologists recommend systematic biopsy of patients

before surgery based on PI-RADS and PSA levels. And referring

to the mpMRI report to formulate a surgical plan.

Of the participants, those who met at least one of the

following criteria were excluded: ① history of PCa treatment;

② incomplete MRI sequences; ③ prostate lesions with poorly-

defined boundaries on T2WI and apparent diffusion coefficient

(ADC) images, according to PI-RADS v2 (15).

PSMs were defined by cancer cells involving the inked

surface of the specimen (16) and divided into negative surgical

margins (NSMs) and PSMs groups according to marginal status.

One hundred three patients with PCa (55 patients with NSMs

and 48 patients with PSMs) were included in our

study (Figure 1).
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The study was approved by the Institutional Review Board of

First Affiliated Hospital of Dalian Medical University, informed

consent was waived.
MRI protocols

A 3.0 TMRI scanner (GE-Signa HDXT; GE, Milwaukee, WI,

USA) with an eight-channel phased-array body-coil was used in

this study. MRI scan was done before the biopsy. The MRI

scanning protocol included T1-weighted imaging (T1WI),

T2WI, DWI, intravoxel incoherent motion model (IVIM), and

diffusion kurtosis imaging (DKI). Sagittal and axial high-

definition T2WI sequences were used for prostate tumor

location. DWI was performed with high b values (up to a

maximum of 1000 s/mm2). IVIM with b values of 0, 20, 50,

100, 150, 200, 400, 800, 1200, 2000, and 3000 s/mm2 was

performed with a single-shot echo planar (SS-EPI) sequence.

DKI with b values of 0 and 1500 s/mm2 were performed in the

oblique axial plane using a SS-EPI sequence with comparable

parameters. The diffusion gradients were applied simultaneously

along with 15 orthogonal directions. The MRI scanning

parameters (DWI, IVIM, DKI, and T2WI) are shown in

Table 1, supporting information. The images were transferred

to an AW 4.4 workstation (GE Healthcare) and reconstructed

using GE Functool post-processing software.

For analysis of images obtained with DWI, parameter maps

were generated by fitting the following models to the pixel signal

intensities at the different b values, as follows.

For the mono-exponential DWI model (17),

Sb=S0 =  exp ð − b �  ADCÞ
Frontiers in Oncology 03
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where Sb is the mean signal intensity with diffusion gradient b, S0
is the mean signal intensity without a diffusion gradient, the b

value of ADCME is 0 and 1,000 s/mm2, and the b value of ADCBE

is (0, 20, 50, 100, 150, 200, 400, 800, 1200, 2000, and

3000 s/mm2).

For the bi-exponential DWI model (18),

Sb=S0 = ð1 − f Þexpð−bDÞ +  f  exp( − bD*)

where Sbrepresents the mean signal intensity with diffusion

gradient b and S0 is the mean signal intensity. When b = 0 s/

mm2, D (Dmono, DBi) is the true molecular diffusion coefficient.

D* (D*mono, D*Bi) is the pseudodiffusion coefficient and f (fmono,

fBi) is the perfusion fraction.

For the stretched exponential DWI model (19),

Sb=S0 =  exp −  b·DDCð Þ½ � a

where a represents an anomalous exponential term of the intra-

voxel water molecule ranging and DDC represents a mean intra-

voxel diffusion coefficient.

For the DKI model (20),

1n ðSb) =  1n S0 − b •D +  1=6 • b2 •D2 •K

where Sb is the MR signal intensity at the particular b value used,

S0 is the MR signal intensity without a diffusion gradient, K

(FAk, MK, Ka, Kr) is the apparent diffusion kurtosis, and D (FA,

Da, Dr, MD) is the ADC revised for non-Gaussian behavior.
MRI measurements

MRI measurements were performed by two experienced

radiologists (with 5 and 6 years of experience in abdominal
FIGURE 1

Flowchart of the patient population.
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radiology) using the double-blinding method. Prostate MRI

interpretation was based on the PI-RADS v2 (15). The region

of interest (ROI) was placed by observers in the slice of the

largest prostate cancer lesion, and covered the entire lesion while

avoiding obvious necrotic or fibrotic areas. The ROI locations on

the IVIM and DKI pseudo-color maps were consistent with

T2WI and ADC to the greatest extent possible (Figures 2 and 3).
Statistical analysis

All statistical analyses were performed using SPSS (version

25.0; IBM Corp., Armonk, NY, USA), MedCalc (version 15.2.2;

Digimizer, Belgium), and R software (version 3.6.1; https://www.

R-project.org).

The normality of the data was tested using the Shapiro-Wilk

test. Normally distributed continuous variables are expressed as

the means ± standard deviations. Non-normally distributed

continuous variables are expressed as medians and ranges

(25th and 75th percentiles). Nominal variables are expressed as

frequencies with percentages.

The differences between two groups were analyzed using two-

sided t-tests or the non-parametric Mann-Whitney U test for

normally or non-normally distributed data for continuous

variables and the Wilcoxon rank-sum test for categorical variables.

The inter-observer agreement of the MRI measurements was

analyzed by calculating the intraclass correlation coefficient (ICC).

The least absolute shrinkage and selection operator (LASSO)

regression algorithm was used to analyze the data set to select the

optimal predictors among the mpMRI quantitative parameters.

Then, preoperatively clinical parameters used to build a clinical

nomogram (C-nomogram), multivariable logistic regression

analysis was used to build an MRI nomogram (M-nomogram)

and MRI combined with the clinical nomogram (MC-

monogram). Further, several kinds of validation methods were

used to estimate the accuracy of the nomograms. The receiver

operating characteristic (ROC) curve was used to evaluate the
Frontiers in Oncology 04
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discrimination abilities. The area under the curve (AUC) was

compared using the DeLong test. The calibration curve was used

to evaluate the calibration of the nomogram, and decision curve

analysis (DCA) was used to assess the net benefit of nomogram-

assisted decisions. A 3-fold cross-validation method was used to

randomly split the training cohort into 3 sets, where every two

sets were the training sets and the remaining set was the

validation set. The average AUC values of the 3 results were

used to assess the stability of the nomogram. A two-tailed P<

0.05 was considered statistically significant.
Results

Participant characteristics

One hundred and three PCa patients with mean age of 71

years (range, 54-83 years) were included in our study. The

overall PSMs incidence was 46.6% (48/103). There were

significant differences between the two groups with respect to

TPSA, PPC and pathological extra-prostatic extension (P< 0.05),

but not differences in age, PI-RADS v2 score, prostate volume,

lesion diameter, biopsy-based Gleason score, cTNM,

postoperative Gleason score and pTNM (P > 0.05). The

clinical characteristics are shown in Table 2. A stratified

sampling method was used to divide the data into the training

set and testing set at a ratio of 7:3. Of the 103 patients in this

study, 72 were assigned to the training set, and 31 were assigned

to the testing set. There were no significant differences in clinical

characteristics between the training and testing sets. The details

are shown in Tables 3 and 4.
Consistency analysis

As shown in Table 5, supporting information, the ICC values

were > 0.9, which suggested excellent inter-observer agreement.
TABLE 1 MR sequences parameters of DWI, IVIM, DKI and T2WI.

Parameter DWI IVIM DKI Axial T2WI Coronal T2WI Sagittal T2WI

Pulse sequence name EPI EPI EPI FRFSE FRFSE FRFSE

TR / TE (ms) 4200 / 95 2800 / 90 2500 / 80 5140 / 139 2460 / 128 2660 / 118

Flip angle (°) 90 90 90 90 90 90

FOV (cm) 30 × 30 35 × 31 35 × 35 30 × 30 30 × 30 30 × 30

Voxel (mm) 1.2 × 1.2 1.4 × 1.4 1.4 × 1.4 0.6 × 0.6 0.6 × 0.6 0.6 × 0.6

Matrix 128 × 128 128 × 128 128 × 128 320 × 224 320 × 224 320 × 224

Slice/Thickness (mm) 4.0 / 1.0 7.0 / 1.0 7.0 / 1.0 4.0 / 1.0 5.0 / 1.0 4.0 / 1.0

ETL – – – 23 18 19

Scan Duration(s) 109 151 178 161 101 101

NEX 8 2 2 4 4 4
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Correlations between mpMRI
parameters and PSMs

There were four potential predictors selected on the basis of

the data from the 103 patients with non-zero coefficients in the

LASSO regression model, including Da, Dmono, DBi, and

DDC (Figure 4).
Prediction model development

Introducing preoperatively clinical parameters TPSA, PPC,

and cTNM as independent predictors, a C-nomogram was

developed and is presented in Figure 5A. Introducing the Da,

Dmono, DBi, and DDC as independent predictors, an M-

nomogram was developed and is presented in Figure 5B.

Introducing the MRI and preoperatively clinical parameters as

independent predictors, an MC-nomogram was developed and

is presented in Figure 5C.
Frontiers in Oncology 05
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Comparison of predictive
model performance

The ROC of the C-nomogram (sensitivity=64%,

specificity=65% and AUC=0.683), the M-nomogram

(sensitivity=57%, specificity=88% and AUC=0.735) and the MC-

nomogram (sensitivity= 64%, specificity=82% and AUC=0.756)

were shown in Figures 5D, H, L. The models had moderately

good performance. Although there was no statistical difference in

AUC between the three models (C-nomogram VS. M-nomogram,

p=0.71, C-nomogram VS. CM-nomogram, p=0.05, M-nomogram

VS. CM-nomogram, p=0.1). However, the specificity of M-

nomogram was better than that of C-nomogram, and the model

was optimized after MRI parameters was combined with clinical

parameters, and the optimal sensitivity and specificity were

obtained (sensitivity= 64%, specificity=82%).

The calibration curves of the three nomograms used to

predict the risk of PSMs in patients with PCa also showed

good agreement (Figures 5E, I, M).
FIGURE 2

Pathologic and MR parametric maps of a 77-year-old patient (PSA level, 46.4 ng/mL; postoperative Gleason score, 3 + 4 = 7) with negative
surgical margins. No neoplastic cells are seen at the ink mark of the margin indicated by the black star on the histologic map (20 × 10
magnification). (A). T2WI map is shown (B), lesion is indicated by pink arrows. ADC map is shown (C), IVIM maps are shown (D–L) and DKI maps
are shown (M–T). Lesions are indicated by pink ROI. ADCME value is 0.989×10-3mm2/s, ADCBE value is 0.716×10-3mm2/s, Dmono value is
0.462×10-3mm2/s, D*mono value is 0.0046 mm2/s, fmono value is 0.426%, DBi value is 0.417×10-3mm2/s, D*Bi value is 0.0044 mm2/s, fBi value is
0.486%, DDC value is 0.975×10-3mm2/s, a value is 0.671, FA value is 0.261, MD value is 1.22 um²/ms, Da value is 1.55 Am²/ms, Dr value is 1.06
um²/ms, FAk value is 0.404, MK value is 0.791, Ka value is 0.91, and Kr value is 0.659.
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The decision curve analysis for the PSMs risk nomograms were

presented in (Figures 5F, J, N). The decision curve showed that it

would be more accurate to use MC-nomogram in the current study

to predict the risk of PSMs in the range from 0.2 - 0.7.

The 3-fold cross-validation of the nomograms demonstrated

its stability in predicting PSMs (Figures 5G, K, O).
Frontiers in Oncology 06
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Discussion

PSMs in PCa patients are commonly associated with BCR

and a higher risk for secondary treatment (21, 22). Therefore,

identifying predictive factors may help urologists select the at-

risk patients who are more likely to benefit from LRP therapy
FIGURE 3

Pathologic and MR parametric maps of a 70-year-old patient (PSA level, 23.2 ng/mL; postoperative Gleason score, 4 + 5 = 9) with positive
surgical margins. Neoplastic cells are indicated by black arrows breaking through the edge of the ink blot on the histologic map (20 × 10
magnification). (A). T2WI map is shown (B), lesion is indicated by pink arrows. ADC map is shown (C), IVIM maps are shown (D–L) and DKI maps
are shown (M–T). Lesions are indicated by pink ROI. ADCME value is 0.788×10-3mm2/s, ADCBE value is 0.592×10-3mm2/s, Dmono value is
0.439×10-3mm2/s, D*mono value is 0.0039mm2/s, fmono value is 0.303%, DBi value is 0.285×10-3mm2/s, D*Bi value is 0.008 mm2/s, fBi value is
0.476%, DDC value is 0.692×10-3mm2/s, a value is 0.743, FA value is 0.134, MD value is 1.06 um²/ms, Da value is 1.25 um²/ms, Dr value is 0.963
um²/ms, FAk value is 0.25, MK value is 1.03, Ka value is 1.11, and Kr value is 0.948.
TABLE 2 Clinical characteristics of patients with negative and positive margins.

Characteristics NSMs (n = 55) PSMs (n = 48) P value

Age (year), median [IQR] 72 (67–77) 71 (67–76) 0.743

TPSA (ng/ml), median [IQR] 15.53 [10.17-26.35] 25.52 [14.85-56.22] 0.004*

PI-RADS v2, n (%) 0.336

4 54 (98) 45 (94)

5 1 (2) 3 (6)

Prostate volume (ml) 34.36(IQR,47.18-23.38) 34.16(IQR,54.05-27.71) 0.248

Lesion diameter (cm) 1.45 (IQR,1.97-1.00) 1.10 (IQR,1.80-0.60) 0.061

Biopsy Gleason score, n (%) 0.133

ISUP 1 18 (33) 7 (15)

ISUP 2 4 (7) 5 (10)

ISUP 3 6 (11) 5 (10)

ISUP 4 19 (35) 16 (33)

ISUP 5 8 (15) 15 (32)

(Continued)
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and the optimal surgical procedure can be planned. For high-risk

patients, who can choose to retain one side or not to retain the

neurovascular bundle during surgery, or to combine ADT before

surgery to reduce the rate of PSMs. Previous studies have shown

that several clinical and pathologic factors have the potential of

predicting PSMs (4, 8, 23). Zhang et al. (8) conducted a
Frontiers in Oncology 07
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comprehensive meta-analysis and systematic review with a

sample of 50,014 patients, and showed that TPSA, biopsy-

based Gleason score, postoperative Gleason score, pTNM,

positive lymph nodes, extra-prostatic extension, and seminal

vesicle invasion are independent prognostic factors for PSMs.

None of the studies, however, have systematically predicted the
TABLE 2 Continued

Characteristics NSMs (n = 55) PSMs (n = 48) P value

Percent of positive cores, median [IQR] 0.33 [0.17-0.58] 0.63 [0.33-0.83] < 0.001*

cTNM, n (%) 0.280

T2a 47 (85) 39 (81)

T2b 2 (4) 0

T2c 6 (11) 9 (19)

Postop Gleason score, n (%) PSM NSM 0.083

ISUP 1 7 (13) 6 (12.5)

ISUP 2 12 (22) 6 (12.5)

ISUP 3 4 (7) 11 (23)

ISUP 4 10 (18) 13 (27)

ISUP 5 22 (40) 12 (25)

pTNM, n (%) 0.334

pT2 43 (78) 39 (81)

pT3a 3 (6) 0

pT3b 9 (16) 9 (19)

Pathological extra-prostatic extension 0.001*

No 30 (62.5) 52 (94.5)

Yes 18 (37.5) 3 (5.5)

Positive margin position, n (%) —

Peripheral margin — 31

Tip incisal margin — 19

Basal margin — 21
front
NSMs, negative surgical margins; PSMs, positive surgical margins, TPSA, total prostate specific antigen. *P value is statistically significant.
TABLE 3 Clinical characteristics of the training and testing sets for MRI nomogram predicting PSMs.

Variable Training set Testing set p-value

NSMs 38 (52.8) 17 (54.8) 0.847

PSMs 34 (47.2) 14 (45.2)

Age, y 71 ± 7 71 ± 6 0.816

TPSA, ng/ml 17.7 (IQR,44.3-11.2) 19.1 (IQR,44.9-14.0) 0.326

Biopsy Gleason score, n (%) 0.542

ISUP 1 17 (23.6) 8 (25.8)

ISUP 2 5 (6.9) 4 (12.9)

ISUP 3 7 (9.7) 4 (12.9)

ISUP 4 24 (33.3) 11 (35.5)

ISUP 5 19 (26.4) 4 (12.9)

Percent of positive cores, median [IQR] 0.46 (IQR,0.81-0.17) 0.42 (IQR,0.67-0.17) 0.610

Postop Gleason score, n (%) 0.463

ISUP 1 9 (12.5) 4 (12.9)

(Continued)
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TABLE 3 Continued

Variable Training set Testing set p-value

ISUP 2 12 (16.7) 6 (19.4)

ISUP 3 11 (15.3) 4 (12.9)

ISUP 4 13 (18.1) 10 (32.3)

ISUP 5 27 (37.5) 7 (22.6)

pTNM, n (%) 0.196

pT2 54 (75.0) 28 (90.3)

pT3a 3 (4.2) 0 (0.0)

pT3b 15 (20.8) 3 (9.7)

cTNM, n (%) 0.210

T2a 58 (80.6) 28 (90.3)

T2b 2J (2.8) 0 (0.0)

T2c 12 (16.7) 3 (9.7)

PI-RADS 1.000

4 69 (95.8) 30 (96.8)

5 3 (4.2) 1 (3.2)
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NSMs, negative surgical margins; PSMs, positive surgical margins, TPSA, total prostate specific antigen.
TABLE 4 Clinical characteristics of the training and testing sets for MRI combined with clinical parameters nomogram predicting PSMs.

Variable Training set Testing set p-value

NSMs 38 (53) 17 (55) 0.847

PSMs 34 (47) 14 (45)

Age, y 72 ± 6 70 ± 7 0.248

TPSA, ng/ml 19.4 (IQR,53.1-12.5) 17.3 (IQR,30.6-8.5) 0.052

Biopsy Gleason score, n (%) 0.602

ISUP 1 17 (23.6) 8 (25.8)

ISUP 2 6 (8.3) 3 (9.7)

ISUP 3 8 (11.1) 3 (9.7)

ISUP 4 22(30.6) 13(41.9)

ISUP 5 19(26.4) 4(12.9)

Percent of positive cores, median [IQR] 0.50 (IQR,0.83-0.19) 0.42 (IQR=0.58-0.17) 0.178

Postop Gleason score, n (%) 0.542

ISUP 1 9 (12.5) 4 (12.9)

ISUP 2 11 (15.3) 7 (22.6)

ISUP 3 11 (15.3) 4 (12.9)

ISUP 4 14 (19.4) 9 (29.0)

ISUP 5 27 (37.5) 7 (22.6)

pTNM, n (%) 0.068

pT2 53 (73.6) 29 (93.5)

pT3a 3 (4.2) 0 (0.0)

pT3b 16 (22.2) 2 (6.5)

cTNM, n (%) 0.889

T2a 60 (83.3) 26 (83.9)

T2b 2 (2.8) 0 (0.0)

T2c 10 (13.9) 5 (16.1)

PI-RADS 1.000

4 69 (95.8) 30 (96.8)

5 3 (4.2) 1 (3.2)
NSMs, negative surgical margins; PSMs, positive surgical margins, TPSA, total prostate specific antigen.
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post-LRP margin status based on mpMRI. Currently, mpMRI is

widely recommended for detection and localization of PCa, and

studies have indicated that mpMRI improves the predictions of

preoperative clinical nomograms (24, 25). And the application of

artificial intelligence (26) and mpMRI-3D model (27) also

provides more possibilities to reduce the rate of PSMs. Herein,

we developed three nomograms based on clinical, mpMRI and

mpMRI combined with clinical parameters. Further, the

performance of the three prediction models was compared.

First, the PSMs rate was 46.6%, which was higher than the

results reported by Qu et al. (4) (PSMs rate = 34%). The reason for

the difference may be that the patients in our study were diagnosed

at a later stage; specifically, 56.3% of the patients had a biopsy-based

Gleason score ≥4 compared to 38% of patients in their study.

Moreover, we showed that Da, Dmono, DBi, and DDC were

associated with PSMs risk in PCa patients based on LASSO

regression analysis. The M-nomogram achieved a higher AUC

(0.735) compared to C-nomogram (0.683) for PSMs prediction,

and suggested that lower Da, Dmono, DBi, and DDC were the key

parameters that determined the risk of PSMs for PCa patients.

Because as tumors grow, both cell overcrowding and changes in

stroma production alter cell-stroma and cell-cell associations in an

ongoing dynamic process that disturbs the microarchitecture (28).

These microstructural changes promote the proliferation of tumor

cells and the interstitial transition of tumor cells, resulting in

restricted diffusion of water molecules. Moreover, Da, Dmono, DBi
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and DDC reflect the diffusion of water molecules in and out of cells.

Therefore, the decrease in Da, Dmono, DBi, and DDC values in the

PSMs group may be related to an increase in cell number and the

loss of interstitial matrix. This is consistent with the previous

parameters of Alessi et al. (29), who also showed that ADC

performs well in PSMs prediction, with lower ADC values

observed in PSMs patients. The ADC model, however, tends to

oversimplify the complexity of prostate tissue while ignoring the

biological specificity of PCa, which results in poor predictive

performance (30). Bourne et al. (31) compared the information

content of four phenomenologic diffusion models in whole prostate

tissue ex-vivo using the Akaike information criterion. Bourne et al.

(31) found the biexponential and DKI model to have a higher

information content than the mono-exponential DWI model.

Therefore, we attempted to construct a preoperative prediction

model of PSMs using a more complex model that might provide a

richer informative description of DWI signals in PCa and obtain

better predictive power.

Recent studies have also found that preoperative mpMRI can be

used to predict PSMs and appears to have a significant favorable

impact on surgical planning. A retrospective study of 179 patients

with in-house robotic assisted LRP, M. Quentin et al. found that

length of capsular tumor contact was the best MRI predictor for

PSMs at the capsule and distance to the membranous urethra for

tumorswithPSMsat the apical urethra (32). IriniYoussef et al. found

that pathologic T-stage, anteroposterior pelvic outlet and pelvic
TABLE 5 Two-observer measurement consistency.

Variable NSMs (n = 55) PSMs (n = 48)

Observer 1 Observer 2 ICC Observer 1 Observer 2 ICC

ADCME (×10-3mm2/s) 0.943 ± 0.03 0.941 ± 0.028 0.993 0.876 ± 0.021 0.875 ± 0.0209 0.993

IVIM

ADCBE 0.725 ± 0.019 0.723 ± 0.02 0.993 0.636 ± 0.014 0.638 ± 0.014 0.99

Dmono (×10
-3mm2/s) 0.517 ± 0.014 0.517 ± 0.015 0.991 0.455 ± 0.009 0.457 ± 0.009 0.984

D*mono (mm2/s) 0.0192 ± 0.006 0.0187 ± 0.006 0.998 0.01 ± 0.003 0.009 ± 0.002 0.993

f mono (%) 0.385 ± 0.013 0.384 ± 0.013 0.992 0.338 ± 0.009 0.337 ± 0.009 0.973

DBi (×10
-3mm2/s) 0.478 ± 0.025 0.479 ± 0.026 0.985 0.343 ± 0.02 0.37 ± 0.027 0.875

D*Bi (mm2/s) 0.0254 ± 0.007 0.0248 ± 0.007 0.997 0.0183 ± 0.004 0.0178 ± 0.004 0.996

f Bi (%) 0.444 ± 0.018 0.448 ± 0.019 0.991 0.436 ± 0.017 0.437 ± 0.017 0.985

DDC (×10-3mm2/s) 0.966 ± 0.043 0.947 ± 0.046 0.96 0.754 ± 0.032 0.762 ± 0.034 0.982

a 0.705 ± 0.012 0.71 ± 0.013 0.99 0.706 ± 0.012 0.705 ± 0.011 0.995

DKI

FA 0.214 ± 0.009 0.214 ± 0.008 0.993 0.213 ± 0.008 0.213 ± 0.008 0.996

MD (um²/ms) 1.171 ± 0.029 1.177 ± 0.03 0.972 0.415 ± 0.131 0.414 ± 0.137 0.996

Da (um2/ms) 1.426 ± 0.035 1.43 ± 0.036 0.972 0.415 ± 0.131 0.414 ± 0.137 0.996

Dr (um2/ms) 1.03 ± 0.029 1.43 ± 0.036 0.972 0.415 ± 0.131 0.414 ± 0.137 0.996

FAk 0.30 ± 0.013 0.30 ± 0.013 0.992 0.31 ± 0.015 0.31 ± 0.014 0.985

MK 0.904 ± 0.021 0.904 ± 0.021 0.987 0.969 ± 0.024 0.969 ± 0.024 0.991

Ka 0.973 ± 0.023 0.971 ± 0.023 0.994 1.081 ± 0.03 1.079 ± 0.031 0.989

Kr 0.809 ± 0.02 0.809 ± 0.02 0.993 0.87 ± 0.022 0.868 ± 0.021 0.992
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A B

FIGURE 4

Variable selection based on the LASSO regression model. A coefficient profile plot was produced against the log(lambda) sequence (A). Four
variables with non-zero coefficients were selected by optimal lambda. By verifying the optimal parameter (lambda) in the LASSO model, the
partial likelihood deviance (binomial deviance) curve was plotted versus log(lambda) and dotted vertical lines were drawn based on 1 standard
error criterion (B).
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FIGURE 5

Development of C-nomogram (A), M-nomogram (B) and MC-nomogram (C) predicting PSMs after laparoscopic radical prostatectomy. (D, H, L)
ROC validation of the PSMs risk nomogram prediction. The blue area represented the performance of the nomogram. (E, I, M) Calibration
curves of the PSMs risk nomogram prediction. The y-axis represents the actual diagnosed PSMs. The x-axis represents the predicted risk of
PSMs. The diagonal dotted line represents a perfect prediction by an ideal model. The solid line represented the performance of the C-
nomogram (D), M-nomogram (H) and MC-nomogram (L), which indicated that a closer fit to the diagonal dotted line represented a better
prediction. (F, J, N) Decision curve of the PSMs risk nomogram prediction. The y axis represents the net benefit and the x axis represents the
risk threshold. The thick solid line represents the assumption that all patients had no PSMs. The thin solid line represents the assumption that all
patients had PSMs. The red line represents the risk nomogram. (F) From C-nomogram, (J) the M-nomogram and (N) MC-nomogram. The net
benefit of the MC-nomogram is highest in the range from 0.2-0.7.). (G, K, O) Mean ROC curve of the nomogram to predict PSMs after 3-fold
cross-validation. TPSA, total prostate specific antigen; PPC, percent of positive cores.
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depth were risk factors for positive margins (33). The findings were

consistent with our study. However, our study highlights the

application of functional sequences. We combine different DWI

models to screen for optimal functional parameters. The focus is on

the predictive power of the biological behavior of the tumors

themselves for positive margins, which has rarely been addressed

in previous studies.

In addition, by incorporating preoperative clinical indicators, a

combined risk MC-nomogram was created. The MC-nomogram

also had a higher AUC (0.756). Comparison of the calibration curve

and DCA, showed that MC-nomogram demonstrated relatively

good calibration power and clinical net benefit. This finding

indicates that the ability of MRI-based nomogram to predict PSMs

was optimized after combining clinical indicators. He et al. (34)

reported that radiomics signatures based on ADC predict PSMs

(AUC=0.733), and when combined with clinical parameters,

improves the model efficiency (AUC=0.766). This finding is

consistent with our parameters. Preoperative mpMRI can be used

topredictPSMsandappears tohave a significant favorable impact on

surgical planning (35, 36). However, previous studies mostly used

mpMRI to predict pathologic extra-prostatic extension (37), and

there were limited studies to predict PSMs. Model performance was

improved when clinical parameters were included in the mpMRI

prediction model. A recent study showed that the nomogram

described by Gandaglia et al. (38) using an MRI combined with

clinical parameters as a staging method improved discrimination in

predictingpostoperative adversepathologic factors (38). Therefore, it

is difficult topredictPSMsonlyusingpreoperativempMRIor clinical

parameters, and a combination of the them is necessary.

Our study had some significant limitations. First, this was a

single-center retrospective study, and thus, the limited sample size

may cause selection bias and other confounding factors. Second, the

MC-nomogram lacked external validation. Third, we constructed

predictive models based on mpMRI parameters obtained from

complex DWI models, which may have limited the application and

multicenter generalization of the MC-nomogram. And more our

study did not include robot-assisted LRP, so results could be not

applicable in robotic-assisted LRP.
Conclusions

The mpMRI-based nomogram can predict PSMs in PCa

patients. Although its AUC (0.735) is not statistically different

from that of the clinical-based nomogram AUC (0.683).

However, mpMRI-based nomogram has higher specificity
Frontiers in Oncology 11
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(88% VS. 63%), model stability, and clinical benefit than

clinical-based nomogram. And the predictive ability of

mpMRI plus clinical parameters for PSMs is further improved.
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Glossary

ADC apparent diffusion coefficient

ADCME Monoexponential apparent diffusion coefficient

ADCBE bi-exponential apparent diffusion coefficient

AUC area under the curve

BCR biochemical recurrence

cTNM clinical TNM

Da axial diffusion

Dr radial diffusion

DCA decision curve analysis

DDC mean intra-voxel diffusion coefficient

DKI diffusion kurtosis imaging

DWI diffusion-weighted imaging

FA fractional anisotropy

FAK fractional anisotropy kurtosis

FPSA free prostate specific antigen

ICC intraclass correlation coefficient

IVIM intravoxel incoherent motion model

Ka axial kurtosis

Kr radial kurtosis

LASSO least absolute shrinkage and selection operator

LRP laparoscopic radical prostatectomy

M-nomogram MRI nomogram

MC-monogram MRI combined with the clinical nomogram

MD mean diffusion

MK mean kurtosis

mpMRI multiparametric MRI

NSM negative surgical margin

PCa prostate cancer

PPC percent of positive cores

PSMs positive surgical margins

pTNM pathologic TNM

ROC receiver operating characteristic curve

SS-EPI single-shot echo planar

T1WI T1-weighted imaging

T2WI T2-weighted imaging

TPSA total prostate specific antigen1
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Xinghai Liu1,2†, Xianwen Hu1†, Xiao Yu1,2†, Pujiao Li1,2,
Cheng Gu1,2, Guosheng Liu1,2, Yan Wu1, Dandan Li3*,
Pan Wang1* and Jiong Cai1*

1Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China,
2The First Clinical College, Zunyi Medical University, Zunyi, China, 3Department of Obstetrics, Zunyi
Hospital of Traditional Chinese Medicine, Zunyi, China
Objective: To illustrate the knowledge hotspots and cutting-edge research

trends of 18F-FDG PET/CT radiomics, the knowledge structure of was

systematically explored and the visualization map was analyzed.

Methods: Studies related to 18F-FDG PET/CT radiomics from 2013 to 2021

were identified and selected from the Web of Science Core Collection

(WoSCC) using retrieval formula based on an interview. Bibliometric methods

are mainly performed by CiteSpace 5.8.R3, which we use to build knowledge

structures including publications, collaborative and co-cited studies, burst

analysis, and so on. The performance and relevance of countries, institutions,

authors, and journals were measured by knowledge maps. The research foci

were analyzed through research of keywords, as well as literature co-citation

analysis. Predicting trends of 18F-FDG PET/CT radiomics in this field utilizes a

citation burst detection method.

Results: Through a systematic literature search, 457 articles, which weremainly

published in the United States (120 articles) and China (83 articles), were finally

included in this study for analysis. Memorial Sloan-Kettering Cancer Center and

Southern Medical University are the most productive institutions, both with a

frequency of 17. 18F-FDG PET/CT radiomics–related literature was frequently

published with high citation in European Journal of Nuclear Medicine and

Molecular Imaging (IF9.236, 2020), Frontiers in Oncology (IF6.244, 2020), and

Cancers (IF6.639, 2020). Further cluster profile of keywords and literature

revealed that the research hotspots were primarily concentrated in the fields

of image, textural feature, and positron emission tomography, and the hot

research disease is a malignant tumor. Document co-citation analysis

suggested that many scholars have a co-citation relationship in studies

related to imaging biomarkers, texture analysis, and immunotherapy

simultaneously. Burst detection suggests that adenocarcinoma studies are

frontiers in 18F-FDG PET/CT radiomics, and the landmark literature put

emphasis on the reproducibility of 18F-FDG PET/CT radiomics features.
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Conclusion: First, this bibliometric study provides a new perspective on 18F-FDG

PET/CT radiomics research, especially for clinicians and researchers providing

scientific quantitative analysis to measure the performance and correlation of

countries, institutions, authors, and journals. Above all, there will be a continuing

growth in the number of publications and citations in the field of 18F-FDG PET/

CT. Second, the international research frontiers lie in applying 18F-FDG PET/CT

radiomics to oncology research. Furthermore, new insights for researchers in

future studies will be adenocarcinoma-related analyses. Moreover, our findings

also offer suggestions for scholars to give attention to maintaining the

reproducibility of 18F-FDG PET/CT radiomics features.
KEYWORDS

bibliometric analysis, 18F-FDG, PET/CT, radiomics, hot topics
Introduction

Fluorine-18 fluorodeoxyglucose positron emission

computed tomography (18F-FDG PET/CT) is one of the most

widely used metabolic imaging methods in nuclear medicine,

which can reflect the heterogeneity of glucose metabolism

between tumor cells and normal cells in an early and

quantitative manner (1). Generally, this technique is widely

used to evaluate the differential diagnosis of benign and

malignant tumors, the staging and restaging of malignant

tumors, the evaluation of treatment efficacy, prognosis

prediction, and so on (2, 3). Radiomics is a relatively broad

concept, and its application includes traditional imaging

techniques, such as computed tomography (CT), magnetic

resonance imaging (MRI), and ultrasound. As the frontier of

molecular imaging, nuclear medicine, represented by single-

photon emission CT (SPECT) and PET/CT, has significant

advantages in a series of clinical problems including efficacy

evaluation of refractory malignant tumors, differential diagnosis

of heterogeneous cells, and disease prognosis and survival

evaluation (4, 5). Recent studies have demonstrated the

advantages or superior performance of radiomics over

traditional manual readings (6–8). As far as manual reading is

concerned, the accuracy and reliability of the image report

largely depend on the clinical experience and expertise of the

doctor. Doctors who are inexperienced and unskilled in using

image analysis tools often produce low-quality inspection

reports, which may lead to misdiagnosis or even missed

diagnosis. That might be the reason why the result of PET/CT

diagnosis varies from doctor to doctor. For senior doctors, it is a

basic literacy to accurately describe the examination results

according to the visible imaging changes at the lesions.

Unfortunately, human eyes cannot distinguish the subtle

changes specific to each pixel in an image, whereas this can be
02
22
done entirely through formal machine learning and machine

recognition. In previous clinical studies, CT and MRI radiomics

analysis has shown high accuracy in distinguishing benign and

malignant tumors and in evaluating the efficacy and prognosis

after treatment (9–12). In recent years, radiomics has also been

used to assist in the diagnosis of endoscopic ultrasound images

and to identify whether it is a COVID-19 infection by chest x-ray

(13, 14). Up to now, radiomics-related literature has been

analyzed by knowledge visualization maps from a macroscopic

perspective. Nonetheless, bibliometric methods have not yet

been used to summarize the literature on specific metabolic

imaging technology.

PET/CT imaging can clearly and intuitively reflect the

metabolic changes of tumor cells and detailed metabolic image

changes in the establishment of treatment plans for malignant

tumors, identification of benign and malignant pulmonary

nodules (15), identification of radiation necrosis and tumor

recurrence in glioma patients (16), non-invasive prediction of

epidermal growth factor receptor (EGFR) mutations in lung

adenocarcinoma (17), and other clinical problems; the

diagnostic accuracy of PET/CT radiomics analysis is expected

to be superior to traditional methods. As the process of precision

medicine deepens, scholars have been interested in analyzing
18F-FDG PET/CT metabolic images according to the core

technologies of radiomics to assist in clinical diagnosis, the

establishment of treatment decisions and prediction of

prognosis, etc. and have achieved promising results with the

number of related research publications increasing year by year

(18–22).

Bibliometric is a science that uses quantitative methods such

as mathematics and statistics to study the distribution laws and

quantitative relationships of documents. In order to encourage

researchers from various disciplines to actively and creatively

participate in the practice of 18F-FDG PET/CT radiomics, this
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present study mainly uses the CiteSpace software to visualize and

analyze the related research of 18F-FDG PET/CT radiomics,

sorting out the current situation and future development trend

of this field. The aim of this study is to offer clinicians an

objective summary of the development processes and research

hotspots and provide reference and scientific bases for scholars

to refine the research direction.
Methods

Data retrieval strategy

Before searching the literature, we contacted the Information

Department of the Zunyi Medical University Library to

interview professional workers about data search strategies.

Based on the interview, we expanded the synonyms and

subordinate terms based on the MeSH database (https://www.

ncbi.nlm.nih.gov/mesh, USA), and, finally, we determined the

search terms and the combined search form. The retrieval

formula can be described as follows: TS=((18F-FDG OR FDG

OR Fluorodeoxyglucose OR Fluorine 18 fluorodeoxyglucose OR

2 Fluoro 2 deoxy D glucose) AND (Positron Emission

Computed Tomography OR PET OR PET/CT OR PET-CT)

AND Radiomic*). TheWeb of Science (WOS) database was used

to search the Science Citation Index Expanded (SCI-E) from its

core collection (WoSCC) database, all data were searched by our

corresponding authors independently (Prof. Pan Wang and Dr.

Jiong Cai, Affiliated Hospital of Zunyi Medical University,

Zunyi, China). Relevant data published between 2013 and

2021 were obtained. The process of data downloading and

literature searching was all completed on 1/3/2022, in order to

preclude potential bias caused by frequently updated data. The

proofreading notices, editing materials, conference papers, and

retraction notices were excluded, and, by reading the titles and

abstracts, obviously irrelevant literatures were excluded as well.

Original articles and reviews were included for utilization for the

bibliometric analysis. Details of data searching were presented in

Supplementary Figure 1, and general data from WoSCC were

shown in Supplementary Tables 1, 2. In case that a disagreement

occurs during the execution of the above steps, either the two

corresponding authors discussed with each other to resolve

problems or they consulted the third author to assist

in judgment.
Analysis method

All WoSCC data were transformed into text containing

information of authors, research institutions, subjects, years,

keywords, abstracts, journals, volumes, and page numbers. We

created a spider map and bar charts to identify publication

volumes and annual trends by using OriginPro 2021 (OriginLab
Frontiers in Oncology 03
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Corporation, USA). CiteSpace 5.8.R3 (Drexel University, USA)

was applied to identify visualized map: 1) Analyzation map of the

overall research status was generated by illustrating the

distribution of disciplines, journals, countries/regions,

institutions, and the contribution of authors; 2) keyword co-

occurrence and clustering analysis were performed to anchor

research hotspots; and 3) co-citation and citation burst analysis

were performed to target frontiers in the field. VOSviewer 1.6.16

(Leiden University, Netherlands) was used to assist in

constructing visualization maps of countries/regions and

keyword co-occurrence. Scimago Graphica 1.0.18 (https://www.

graphica.app/, USA) was applied to form a world map depicting

the publication counts of each country. All software used in this

study was performed on Windows 10 (64-bit) Chinese version

operating system (Microsoft, USA).When importing the data into

bibliometric analysis, we set the parameters as default to obtain

original maps. We checked the original maps to see if the

intellectual structure matched the results of data searching.

After that, adjusted parameters to ensure the generated graphs

were clear enough to highlight key points. After all analyses were

finished, we invited three nuclear medicine physicians to review if

the results are objective and fit the developing trends in this field

based on their professional knowledge. The flow chart of this

bibliometric analysis is shown in Figure 1.
Results

Temporal trends of publications

A total of 552 publications were initially generated through

the WoSCC search (Figure 2A). After excluding 95 publications,

457 publications were finally included in this study, comprising

361 original articles and 96 reviews. From 2013 to 2015, there

were few relative studies, indicating low research interest in this

area. From 2016 onward, the number of papers on 18F-FDG

PET/CT radiomics began to increase rapidly. In 2021, the

importance of 18F-FDG PET/CT radiomics research has been

noticed, with 146 publications annually—an increase of more

than 40% over the same period in the previous year. It is the first

high-yield stage in this field, showing a significant trend of

steady growth in the number of publications (Figure 2B).
Distribution of disciplines and
productive journals

All articles in this study were published in 134 journals, 13 of

which were with more than 10 articles published (Figure 2C).

The impact factor (IF) and journal quartile were obtained from

Journal Citation Reports 2020 (23). The top 3 prolific journals

were European Journal of Nuclear Medicine and Molecular

Imaging (IF9.236), Frontiers in Oncology (IF6.244), and
frontiersin.org
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Cancers (IF6.639). The top journal with the highest IF was

Journal of Nuclear Medicine (IF10.057). In addition, journals

with more than 10 publications were all classified in Q1 or Q2.

Specifically, with 53.84% (7/13) being Q1 and 46.15% (6/13)

being Q2 among these journals, the results indicate that the

above journals have strong academic performance in 18F-FDG

PET/CT radiomics research.

Academic journals are an important mass media for the

academic communication of disciplinary knowledge, and the

journal distribution of literature reflects the information related

to the research status to a certain extent. Scholars can gain a

simple understanding of the current research status by

considering the number of publications in different journals.

In the dual-visualization map (Figure 3A), there are two main

links identified, with green color: Medicine/Medical/Clinical

journals frequently cite studies published in Health/Nursing/

Medicine journals and studies published in Medicine/Medical/

Clinical journals are also cited in the studies published in

Molecular/Biology/Genetics journals. More clear details can be

seen in Figure 3B, showing the connection between disciplines.
Cooperation between countries/regions
and institutions

All publications were distributed among 45 countries (or

regions) and 214 institutions. The nodes in the visualization map

represent countries/regions/institutions, and the connection line

represents the strength of the relationship between the two
Frontiers in Oncology 04
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nodes. The larger the circle of the node, the greater the

volume of published documents. The thicker the connection,

the closer the cooperative relationship.
Active countries

The top contributor was the United States (120 publications,

26.26%), followed by China (100 publications, 21.88%), France

(58 publications, 12.69%), Italy (56 publications, 12.25%), and

Netherlands (43 publications, 9.40%) (Figure 4A). Although

neither China (centrality = 0.28) nor Germany (centrality =

0.25) have the highest publication frequency, we still identify the

three countries as critical nodes according to their high centrality

(Figure 4B), which means that they play a significant role in the

field of 18F-FDG PET/CT radiomics. The above results

demonstrate that 18F-FDG PET/CT radiomics is increasingly

receiving widespread attention from global scholars and that

extensive research has been conducted recently, especially in the

United States. Other high-quality publications were mainly

completed by Chinese, French, German, and Dutch

researchers. The cooperation between countries/regions across

the world was shown in Figure 4C.
Productive institutions

The visualization map shows the 214 institutes which made

contributions to 18F-FDG PET/CT radiomics research
FIGURE 1

Flow chart of this bibliometric analysis. (Step 1) Data retrieval strategy of published literatures, showing the detailed process of screening and
inclusion. (Step 2) Data analysis of this study, including bibliometric analysis and data processing. (Step 3) Interpretation of results, containing a
brief view of results and the final process of drawing conclusions.
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(Figure 5). Institutions with the highest frequency were shown in

Table 1, and full names of the institutions are shown in

Supplementary Table 3. The Memorial Sloan-Kettering Cancer

Center and Southern Medical University are the most productive

institutions with 17 publications, followed by Maastricht

University (frequency = 14), H. Lee Moffitt Cancer Center and

Research Institute (frequency = 13), and Humanitas University

(frequency = 12). We investigated the possible impact of

research published by institutions according to the centrality

of the visualization map. The German Cancer Research Center

(centrality = 0.13), the University of Groningen (centrality =

0.13), and the Memorial Sloan-Kettering Cancer Center
Frontiers in Oncology 05
25
(centrality = 0.11) tend to be the leading driving force and still

dominate in this research field among top institutions.
Contribution of authors

Focusing on the research contributions of authors helps us to

quickly classify scholars who are active in the discipline at this stage.

A total of 288 authors have made contributions to 18F-FDG PET/

CT radiomics research. The top 10 prolific authors and top 10 cited

authors were listed in Supplementary Tables 4, 5. Mathieu Hatt, the

most productive author from Australia, published 16 articles,
B

C

A

FIGURE 2

Temporal trends of publications of 18F-FDG PET/CT radiomics research. (A) Category of all published literatures. (B) Annual publications and
temporal trends of 18F-FDG PET/CT radiomics research. (C) Bubble plot of journals with more than 10 publications. The size of bubbles
represents classification from Journal Citation Reports and the colors are related to the number of publications.
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followed by Dimitris Visvikis (11 articles, France), Lijun Lu (9

articles, China), Arman Rahmim (9 articles, USA), and Martina

Sollini (8 articles, Italy) (Figure 6A). Among the authors with a

relatively larger number of publications, Mathieu Hatt and Esther

G. C. Troost have greater influence in the field, with the centrality

≥0.1 in the visualized map of our bibliometric analysis (Figure 6B).
Research of keyword

Keywords are a high-level summary and condensation of the

topic in an article. Those with high frequency in different periods

reflect the core issues in the field, whereas their clustering view

highlights key nodes and important connections, revealing the

research theme of a knowledge field and its evolution process.
Keyword co-occurrence

The visualized/visualization map constructed based on the

literature includes 298 nodes, and the nodes are closely related to

form a complex relationship network, indicating that the literature

has a wide range of research (Supplementary Figure 2A). According

to the density map, keyword nodes represented by “radiomics”,

“CT”, “images”, “diagnosis”, and “features” are closer to red color

(Supplementary Figure 2B), suggesting that they are the frequently

occurring keywords of 18F-FDG PET/CT radiomics.
Keyword clusters

The high-frequency keywords and their clusters at different

times are shown in Figure 7. Analysis of keywords found that the
Frontiers in Oncology 06
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content of the literature mostly focused on the research

methodology of radiomics (keywords: positron emission

tomography, FDG PET, F 18 FDG PET/CT, computed

tomography, etc.), and scholars were very concerned about the

core analysis content of PET/CT radiomics (keywords: texture

analysis and textural feature). Data related to diagnosis and

prognosis are valued in terms of evaluation indicators (keywords:

heterogeneity, survival, and prognostic value). On the basis of the

co-occurrence network, the log-likelihood ratio (LLR) algorithm

was used to cluster the keywords. In the timeline view clusters, the

Silhouette (S) value refers to the average contour value of the cluster.

It is generally considered that, with an S > 0.5, the cluster is

reasonable, whereas with an S > 0.7, the cluster is convincing. In

our study, S = 0.9316, indicating that the clustering is efficient and

convincing. Around 2013, scholars had just started to contact 18F-

FDG PET/CT radiomics research, and they were typically interested

in “standardized uptake value”, “computed tomography”, and

“image”; by 2016, the keywords involved in the research had

changed and were mainly clustered as “reconstruction”, “artificial

intelligence”, “risk stratification”, “lung adenocarcinoma”, and

“lung cancer”. We can see that lung cancer is the first single

disease to be cited in 18F-FDG PET/CT radiomics field; since

then, 18F-FDG PET/CT radiomics research topics have become

increasingly broad and have begun to focus on different directions,

such as “hepatocellular carcinoma”, “cervical cancer”, and “prostate

cancer”. The actual frequency numbers of each term of clusters can

be seen in Supplementary Table 6.
Literature co-citation analysis

Normally, looking into the co-citation relationship allows

us to explore the development and evolutionary dynamics of a
BA

FIGURE 3

Distribution of disciplinaries. (A) Dual-visualization map. The left part was the targeted literature, whereas the right part was the source literature.
Each dot represents one journal. On the left, there are the citing journals of this field and, on the right, lay the cited journals in this field. The
waves linking to two sides mean that the publications on the journals on the left side may cite publications from the journals on the right-hand
side. (B) Sankey diagram. The numbers on the graph show the amounts of publications in each disciplinary. Disciplinaries shown on the left are
the subjects of citing literature and on the right-hand side lays the subjects of cited ones. The color represents citation relationships of
corresponding disciplinaries.
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particular study (24). Each node in the visualization map

represents a paper and the first author’s information was

listed briefly. The connection between the nodes represents

the closeness in the relationship. The tighter the relationship

is, the thicker the line is. The blue “#” labels show the cluster

name, and the blocks of the same color are divided into

studies on the same topic. Most of the studies were divided

into 11 core clusters, and to be specific, radiation oncology

(#3) is the subject most related to 18F-FDG PET/CT radiomics

research, indicating that the broad application of artificial

intelligence analysis based on machine learning plays a

significant role in the evaluation of tumor radiation therapy

efficacy, target delineation, prognosis evaluation, etc. CT (#1)

and texture analysis (#4) are the basic method or technology
Frontiers in Oncology 07
27
of medical examination required for carrying out 18F-FDG

PET/CT radiomics research. Imaging biomarkers (#0) are

core evaluation methods of radiomics. Hepatocellular

carcinoma (#6), lymphoma (#5), lung cancer (#9), and

esophageal cancer (#10) are the most researched diseases at

this stage. Neoadjuvant chemotherapy (#8) and prognosis

(#7) indicate that scholars pay close attention to the

application of 18F-FDG PET/CT radiomics on efficacy

assessment and prognostic analysis (Figure 8). Generally

speaking, in a cluster analysis, 0 ≤ Q ≤ 1 and Q > 0.3

indicate that there are significant differences in the divided

clusters. In this study, the Q-value is 0.8764, indicating that

the visualization map has a vital effect of dividing clusters.

The top 12 highly cited papers are sorted by the number of
B

C

A

FIGURE 4

Visualization map of cooperation between countries. (A) Collaboration visualization map of countries of bibliometric app (CiteSpace), N = 641,
E = 560 (N represents the number of visualization map nodes. E represents the number of connections). The nodes in the visualization map
represent countries/regions/institutions, and the connection line represents the strength of the relationship between the two nodes. The larger the
circle of the node, the greater the volume of published documents. The thicker the connection, the closer the cooperative relationship. (B) Top 10
most productive countries involved in 18F-FDG PET/CT radiomics research. (C) Collaborative research relationships between countries based on
VOSvieser and Scimago Graphica.
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citations, as shown in Table 2. The top 10 co-citation

references were shown in Supplementary Table 7.
Citation burst analysis

Keywords with the strong citation burst can show the

transfer of research frontiers in different periods and judge

potential development trends and frontier research.

As shown in Figure 9, begin and end indicate the start time

and end time of the mutation, respectively, and strength is the

keyword mutation strength. The higher the strength, the greater

the influence. The keyword citation burst map contains the 18

most essential keywords in 18F-FDG PET/CT radiomics field.

The keyword with the highest strength is “F 18 FDG PET”

(strength = 4.12), pointing out the theme of research. The most

crucial keyword might be “radiation therapy” and “quantitative

assessment” with the intensity of 3.38 and 3.16, respectively.
Frontiers in Oncology 08
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They started to become important from 2016 to 2018. The

extended duration of each keyword is no more than 3 years,

suggesting that new hot topics burst rapidly, while research on a

specific topic is not very persistent. Exploring the timeline view,

from 2013 to 2016, the main focus was on the methodologies of
18F-FDG PET/CT radiomics in the identification of tumor

heterogeneity and tumor volume measurement; many studies

focus on the determination of the efficacy of radiotherapy by 18F-

FDG PET/CT radiomics in 2016. During this period, computer-

aided tools gradually became one of the research hotspots. Since

2017, many studies on a specific type of tumor have begun to

emerge. On a constant basis, the 18F-FDG PET/CT radiomics

research of head and neck tumors, gynecological tumors, and

adenocarcinoma has continued growth. Observing the citation

burst of references, we find that Lambin et al. (2012) represented

that literature has the highest intensity value of 18.91. The

articles by Zwanenburg A (2016) and Sollini M (2017) have

seen a surge in citations starting in 2019.
FIGURE 5

Map of active institutions from 2013 to 2021. The size of each circle is proportional to the article counts. The thickness of the curved
connecting line represents the collaborative intensity between institutions.
TABLE 1 Institutions with the highest frequency related to 18F-FDG PET/CT radiomics.

Rank Institution Country Frequency Degree Centrality

1 Memorial Sloan-Kettering Cancer Center USA 17 11 0.11

2 University of Groningen Netherlands 11 12 0.13

3 Leiden University Netherlands 11 12 0.19

4 German Cancer Research Center Germany 11 17 0.13

5 Stanford University USA 9 9 0.19

6 Chinese Academy of Sciences China 7 8 0.15

7 Helmholtz-Zentrum Dresden Rossendorf Germany 7 21 0.21

8 Vrije University Amsterdam Medical Center Germany 5 14 0.13

9 University of Michigan USA 2 12 0.16
fro
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Discussion

PET/CT radiomics can be defined as the transformation of

PET/CT images into massive quantitative imaging features with

the help of computer software and quantitative analysis using

statistical and/or machine learning methods to screen out the

most valuable radiomics features, so as to serve the clinic. At

present, a large number of studies have focused on the

application and value of various texture features in PET

images, and satisfactory results have been achieved for tumors

such as lymphoma, lung cancer, liver cancer, breast cancer,

nasopharyngeal cancer, and cervical cancer (18, 25, 26). When
Frontiers in Oncology 09
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the number of patients is insufficient, some studies use technical

means, such as external cohort verification or even deep learning

technology to obtain constructive results (27, 28). In addition,

the PET radiomics signature model also showed good

performance in gene prediction, assessment of tumor patient

prognosis, and risk stratification (29, 30).
General data

In recent years, 18F-FDG PET/CT radiomics research is

getting active, and the temporal trends show continuing
BA

FIGURE 6

Visualization map of active authors in the field of 18F-FDG PET/CT radiomics. (A) Cooperation of authors. (B) Authors with more than five publications.
FIGURE 7

Analysis of all keywords in studies related to 18F-FDG PET/CT radiomics research. In the timeline view of keyword cluster analysis, there are N =
298 and E = 598.
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FIGURE 8

Analysis of author co-citation related to 18F-FDG PET/CT radiomics research. N = 482, E = 837. The connection between the nodes represents
the closeness in the relationship. The tighter the relationship is, the thicker the line is. The blue “#” labels show the cluster name, and the blocks
of the same color are divided into studies on the same topic.
TABLE 2 Top 12 highly cited papers in 18F-FDG PET/CT radiomics research from WoSCC.

Rank First
Authors

Article Titles Source Hot
Paper
Status

Times
Cited

Document
Type

1 Zwanenburg
A

The Image Biomarker Standardization Initiative: Standardized
Quantitative Radiomics for High-Throughput Image-based Phenotyping

Radiology Yes 613 Original
Article

2 Yip SS Applications and Limitations of Radiomics Physics in medicine and
biology

No 496 Review

3 Coroller TP CT-Based Radiomic Signature Predicts Distant Metastasis in Lung
Adenocarcinoma

Radiotherapy and oncology No 427 Original
Article

4 Nioche C LIFEx: A Freeware for Radiomic Feature Calculation in Multimodality
Imaging to Accelerate Advances in the Characterization of Tumor
Heterogeneity

Cancer research No 344 Original
Article

5 Chicklore S Quantifying Tumor Heterogeneity in 18F-FDG PET/CT Imaging by
Texture Analysis

European journal of nuclear
medicine and molecular
imaging

No 313 Review

6 Leijenaar RT Stability of FDG-PET Radiomics Features: An Integrated Analysis of
Test-Retest and Inter-Observer Variability

Acta oncologica No 279 Original
Article

7 Vallieres M Radiomics Strategies for Risk Assessment of Tumor Failure in Head-
and-Neck Cancer

Scientific reports No 191 Original
Article

8 Larue RT Quantitative Radiomics Studies for Tissue Characterization: A Review of
Technology and Methodological Procedures

British journal of radiology No 180 Review

9 Lee G Radiomics and Its Emerging Role in Lung Cancer Research, Imaging
Biomarkers and Clinical Management: State of the Art

European journal of
radiology

No 161 Original
Article

10 Orlhac F A Postreconstruction Harmonization Method for Multicenter Radiomic
Studies in PET

Journal of nuclear medicine No 142 Original
Article

11 Lucia F Prediction of Outcome Using Pretreatment 18F-FDG PET/CT and MRI
Radiomics in Locally Advanced Cervical Cancer Treated With
Chemoradiotherapy

European journal of nuclear
medicine and molecular
imaging

No 117 Original
Article

12 Valdora F Rapid Review: Radiomics and Breast Cancer Breast cancer research and
treatment

No 112 Review
Frontier
s in Oncolog
y 10
30
f
rontiersin.org

https://doi.org/10.3389/fonc.2022.965773
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liu et al. 10.3389/fonc.2022.965773
growth in the number of publications and citations, with the

number reaching 146 and 302 in 2021. The reason may be that

the application of PET/CT in a tumor is more and more affirmed

by clinicians. As a prominent media for academic

communication, 134 journals have published research on 18F-

FDG PET/CT radiomics. European Journal of Nuclear Medicine

and Molecular Imaging (IF9.236), Frontiers in Oncology

(IF6.244), and Cancers (IF6.639) were the most productive

ones, and Journal of Nuclear Medicine (IF10.057) had the

highest IF. We found that most of the productive journals

were classified as Q1 or Q2, which suggests that the

aforementioned journals published high-quality research with

convincing and mature results.

As the leading force, the United States is the most prolific

country with the highest centrality. We identified the United

States, China, Germany, Netherlands as double-high nodes of

the visualization map, which means that the authors of these

countries have completed high-level research. According to the

cooperation relationship, scholars from the United States, Japan,

and South Korea have close cooperation in 18F-FDG PET/CT

radiomics, and, at the same time, American researchers also

maintain close ties with researchers from European countries.

Brazilian scholars, from South America, often work with

scholars from Western Europe and East Asia. Scientists from

China, Australia, and European countries collaborate the most.

It is worth noting that the research in the two major countries in

North America has a cooperation relationship with the research

in the Middle East country (Iran). Another interesting point is

that, even with the countries’ large volume of publications and

despite some countries being geographically adjacent,

collaboration in East Asia was still rare and limited. The

research capabilities of most developing countries in the field

of 18F-FDG PET/CT radiomics should be improved.

Throughout the visualization map, research was primarily
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done by authors from European countries, North American

countries, and East Asian countries. In South America, only

Brazilian scientists are now paying attention to the 18F-FDG

PET/CT radiomics-related topics; in the Middle Eastern and

African countries, only Iran was included in our analysis based

on WoSCC status.

For the research institutions, Memorial Sloan-Kettering

Cancer Center and Southern Medical University, Maastricht

University, H. Lee Moffitt Cancer Center and Research Institute,

and Humanitas University have led numerous high-quality

studies. Among the top 5 institutions, the Memorial Sloan-

Kettering Cancer Center was the foremost, with a frequency of

120. Among the high-impact institutions, University of

Groningen and Leiden University were from Netherlands. One

possible reason might be attributed to the well-developed

medical device industry in Netherlands (31). Companies, such

as Royal Dutch Philips Electronics Ltd., have long maintained a

global leading edge in the field of medical imaging, allowing

Dutch scientists to continuously access cutting-edge

technologies. As is acknowledged, the concept of radiomics

was just proposed by Dutch scientists Lambin et al. (32) from

the Maastricht University Medical Center (Netherlands) in 2012.

University Hospital (USA), the Memorial Sloan-Kettering

Cancer Center (USA), and Southern Medical University

(China) served as an outstanding bridge of communication in

our visualization map, suggesting that multi-central innovative

research in the future might be conducted under the cooperation

of these institutions.

We found that nine authors published more than 10 papers,

who have high academic reputations in 18F-FDG PET/CT

radiomics research and analog research and have contributed

significantly to developments and advances. Mathieu Hatt at the

University of Brest in France was the most productive author,

followed by Dimitris Visvikis, one of the group members of
BA

FIGURE 9

Detection of citation bursts. (A) Top 18 keywords with the strongest citation bursts. (B) Top 25 reference with the strongest citation bursts.
Begin and end indicate the start time and end time of the mutation, respectively, and strength is the keyword mutation strength. The higher the
strength, the greater the influence.
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Mathieu, indicating that a net of collaborations centered on

Mathieu and his team has been formed in this field. Mathieu was

dedicated to the application of machine learning in PET/CT in

oncology, and one of his studies was placed in the top 0.1% of

papers in the academic field of Clinical Medicine by WoSCC

(33). This hot paper standardized a set of 174 radiomic features,

finding that 169 of the features were able to standardize widely,

for example, mean, skewness, excess kurtosis, and a minimum of

the intensity-based statistics family. Another study (34), cited

117 times, found that radiomics features of PET have higher

prognostic power than usual clinical parameters and can be

regarded as independent predictors of recurrence and loco-

regional control of locally advanced cervical cancer.
Research hotspots and Frontiers

The core content of radiomics is extracting features from

quantitative imaging through AI-based high-throughput

analysis and evaluating the metabolic biological behavior of

particular tissues non-invasively. The comprehensive workflow

of radiomics follows these steps: 1) acquisition and

reconstruction of image, 2) establishment of data sets, 3)

segmentation of image, 4) extraction of feature, 5) dimension

reduction, 6) construction of a predicting model, and 7)

validation of models using internal and/or external data sets.

What is particular is that 18F-FDG PET/CT radiomics has a

special attribute, distinct from other medical imaging modalities,

e.g., CT radiomics, MRI radiomics, or radiomics in endoscopic

examinations. Above all, when dealing with the quantitative

imaging segment, PET functional imaging should be integrated

with CT anatomical imaging. Then, during image acquisition,

routine calibration of PET/CT equipment needs attention to

avoid systematic errors caused by equipment status. We can

clearly summarize the overall research contents of 18F-FDG

PET/CT radiomics into two aspects. One is studying the

technical know-how, i.e., accurate tumor segmentation and

annotation, massive feature extraction and screening, and

artificial intelligence model construction. The other is a

discussion on typical clinical applications in oncology, i.e.,

intelligent diagnosis, efficacy evaluation, prognosis, and

survival prediction. For example, Vallières et al. (35) used

machine learning to develop a model to predict treatment

effects based on 18F-FDG PET/CT images of 300

nasopharyngeal carcinoma patients and found that the

developed model could predict local recurrence and distant

metastasis with AUC of 0.69 and 0.86, respectively. Li et al.

(36) analyzed the overall survival of 127 glioma patients using

the Kaplan-Meier curve and log-rank test and concluded that

there was a significant difference in predicting overall survival

between high-risk and low-risk groups in their study.

Keywords that appear frequently can represent areas of focus

in a given field (37), and the most cited papers are usually a
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concentrated expression of hot topics. Generally speaking,

keywords with higher frequency of co-occurrence were

radiomics, quantitative imaging, prediction, features, survival,

and so on. One of the major concerns in 18F-FDG PET/CT

radiomics is what extract features are used over time. There is no

unified standard in extracting features of radiomics used in

clinical practice. To match different research aims, scholars focus

on various kinds of features (18). Commonly used ones include

intensity feature, shape feature, texture feature, wavelet feature,

clinical feature, etc. The intensity feature is a description of the

concentration of PET/CT metabolic imaging agents, and the

shape feature offers an insight into morphological change. These

features are usually used in conjunction with textures

(commonly including first-order gray histogram features and

second-order high order). Almost all of the highly cited

documents in the WOS database involve texture feature

analysis. Among texture indicators, the gray-level co-

occurrence matrix (GLCM) is the most commonly used

feature calculation matrix, followed by the gray-level run-

length matrix (GLRLM) and gray-level zone matrix (GLSZM).

Due to the large amount of data, one of the most important tasks

before modeling is dimensionality reduction. Wavelet features

enhance certain characteristics of the image based on its

frequency domain information. Studies use the wavelet feature

in pretreatment and dimensionality reduction steps to increase

the number of data input. Lue et al. (38) pointed out that features

from high-frequency wavelet components were useful for the

prediction of response to therapy. In their prognostic

stratification model, the high-intensity run emphasis of PET in

GLRLM wavelets serves as an independent predictive factor for

treatment response. Other dimensionality reduction methods

mainly include principal components analysis (PCA), linear

discriminant analysis (LDA), and Laplace feature mapping.

We analyzed the clustering maps, finding that the hot

research disease in 18F-FDG PET/CT radiomics studies is a

malignant tumor and mainly contains lung cancer (45 articles),

lymphoma (29 articles), hepatocellular carcinoma (26 articles),

esophageal cancer (22 articles), breast cancer (19 articles), etc.

suggesting that 18F-FDG PET/CT radiomics is likely to be a

better tool for oncology research. According to the primary site

of the tumor, the application of PET/CT radiomics in different

diseases was categorized as follows: (i) Head and Neck Oncology:

Applications in the field of head and neck oncology focus on the

precise diagnosis of recurrence of carcinoma by 18F-FDG PET

radiomics. A trial (39), covering 76 patients with nasopharyngeal

carcinoma after treatment, showed that the AUC of PET

radiomics features selection method and device cross-

validation was 0.867~0.892 for distinguishing tumor

recurrence from inflammatory response, which was excellent

better than traditional metabolic parameters (AUC = 0.817).

Wang et al. (16) performed an individualized diagnosis of tumor

recurrence from radiation necrosis in glioma patients using an

integrated 18F-FDG PET radiomics–based model, proposing
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that the AI model demonstrated good discrimination (AUC =

0.988, 95% CI: 0.975~1.000), and predictors contained in the

individualized diagnosis model included the radiomics

signature, the mean tumor-background ratio (TBR) of 18F-

FDG, the maximum TBR of 11C-MET PET, and patient age.

(ii) Thoracic and Chest Oncology: The research on thoracic

cancer started early in the field of lung cancer and the related

technologies are becoming relatively mature. With clustering

keywords, i.e., survival and tumor heterogeneity, our analysis

indicates that 18F-FDG PET/CT radiomics is commonly used to

improve the ability to distinguish benign and malignant lung

lesions, and the technology is also helpful in the prognostic

analysis of lung cancer patients. Radiomics features derived from
18F-FDG PET/CT were associated with local control in patients

with non–small cell lung cancer (NSCLC) undergoing

stereotactic body radiation therapy (SBRT), and radiomics

data can be used as predictors of overall survival (OS),

disease-specific survival, and regional control (40).

Quantitative imaging features of lung cancer, such as volume,

density, and metabolic activity, have been employed to enhance

interpretation and improve the prognostic value (41). As to

tumor heterogeneity, the deep learning score of EGFR mutation

provides a non-invasive method for identifying NSCLC patients

sensitive to EGFR tyrosine kinase inhibitors or immune

checkpoint inhibitors treatments (19). Another significant

application of 18F-FDG PET/CT radiomics in thoracic

oncology is in esophageal cancer studies. Radiomics-guided
18F-FDG PET/CT scans can accurately predict the response of

neoadjuvant chemoradiotherapy in esophageal cancer patients

(42). Combining the radiomic features and traditional

parameters, 18F-FDG PET/CT radiomics may also enable

better stratification of patients with esophageal squamous cell

carcinoma treated with neoadjuvant chemoradiotherapy and

surgery into subgroups with various survival rates (43). 18F-

FDG PET/CT radiomics is helpful in pathological classification,

differential diagnosis, and prognosis prediction of breast cancer.

A significant correlation exists between imaging features and the

histological type of breast cancer. These features include

standard parameters such as mean standard uptake value

(SUVmean), total glycolysis of lesions (TLG), metabolic tumor

volume (MTV), and advanced imaging features (histogram-

based and shape and size features). As for chest tumors,

Cheng et al. (44) retrospectively analyzed the PET-based

radiomics machine learning model to predict axillary lymph

node status in early-stage breast cancer, finding that the PET-

based robust machine learning model integrating the clinical

characteristics can predict the pathological node status and

improve the true positive and true negative rate of

pathological classification. The key to differential diagnosis

using PET/CT images is to examine changes in tissue

metabolism and uptake, and radiomics can extract quantitative

variables that cannot be visually assessed in medical images (45).

A preliminary study (46) of differential diagnosis used machine
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learning to differentiate breast carcinoma from breast

lymphoma, finding that models based on clinical, SUV, and

radiomics features of 18F-FDG PET/CT images have promising

discriminative abilities. Lymphadenopathy is commonly found

after the injection of the COVID-19 mRNA vaccine. Based on K-

nearest neighbors and random forest models, Eifer et al. (47)

considered that 18F-FDG PET/CT radiomics may have a role in

differentiating benign nodes from malignant ones. Studies also

keep on trying to identify radiomic prognosis predictors from

PET/CT in breast cancer patient therapeutic efficacy. As for

some prognostic factors, e.g., human epidermal growth

factor receptor 2 (HER2)–positive, P53 mutation, Ki-67

proliferation index, and 18F-FDG PET/CT radiomics, data

have the predictive and prognostic ability for personalized

management. PET parameters showed stronger correlations

with immunohistochemical factors and immunohistochemical

subtype of breast cancer. Texture analysis indicates that HER2-

positive tumors had significantly higher uptake of FDG, whereas

luminal B–like/HER2+ and HER2-positive non-luminal tumors

also showed more regional heterogeneity than Luminal A–like

tumors on breast PET image (48). In the situation of the

presence of p53 mutation, the use of 18F-FDG PET/CT

radiomics data is believed to contribute to breast cancer

management (49). Ha et al. used unsupervised clustering to

figure out imaging biomarkers for estimation of intratumoral

heterogeneity in locally advanced breast cancer, proposing that

metabolic radiomics patterns are associated with Ki-67

expression (50). (iii) Abdominopelvic Oncology: The highly

cited papers of abdominal tumor studies focused on cervical

cancer, verifying that the radiomics model has higher prognostic

power than usual clinical parameters (51), and Lucia et al. (26)

put forward that entropy GLCM and GLRLM from functional

imaging PET might be independent predictors of recurrence and

loco-regional control in cervical cancer patients. Liu et al. (52)

developed a predictive model by including 351 patients with

stages IB to IIA squamous cell carcinoma of the uterine cervix

and found that squamous cell carcinoma antigen level and pelvic

lymph node SUVmax were independent predictors of pelvic

lymph node metastasis, and the resulting line graph showed high

sensitivity (70.5%), specificity (94.4%), and positive predictive

value (93.9%). Other research on abdominopelvic cavity

demonstrates that 18F-FDG PET/CT texture analysis can

effectively differentiate renal cell carcinoma from renal

lymphoma, and differential response after the first-line

treatment of colorectal cancer patients (53, 54). On the basis

of citation bursts analysis, we list some recent research status of

different clinical applications of 18F-FDG PET/CT radiomics

studies below: (i). The most crucial keyword “18F-FDG PET”

started to become important in 2016, indicating that medical

workers have started to place emphasis on clinical applications

of 18F-FDG PET/CT radiomics ever since 2016. (ii) Intelligent

diagnosis (keyword: computer-aided diagnosis, burst:

2016~2018), response evaluation (keyword: quantitative
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assessment, burst: 2017~2018), and survival prediction for

cancer prognosis (keyword: prognostic factor, burst:

2015~2017) are regarded as typical applications of radiomics.

One of the most cited studies concerned about whether the

composite textures from the combination of FDG-PET and MR

imaging information could quantitatively identify aggressive

tumors at diagnosis (55). It verified that assessing lung

metastasis risk of soft-tissue sarcomas through 18F-FDG PET/

CT radiomics could improve patient outcomes. In some

respects, response assessment after treatment can provide a

reliable basis for predicting expected survival. The most cited

study (56) on efficacy assessment and survival prediction

reported that baseline 18F-FDG PET scan uptake in NSCLC,

showing abnormal texture as measured by coarseness, contrast,

and busyness , i s as soc ia ted wi th nonresponse to

chemoradiotherapy by response evaluation criteria in solid

tumors and with poorer prognosis. (iii) The 18F-FDG PET/CT

radiomics analysis in adenocarcinoma can be speculated to

become an emerging academic trend in clinical practice.

During the last 3 years, the keyword “adenocarcinoma” was

the most concerned and frequently cited. Adenocarcinoma

research involves a primary focus on identification and image

segmentation, identification of heterogeneity, prediction of

recurrence and metastasis, evaluation of treatment efficacy,

and prediction of survival (57–59). In clinical practice, the

research puts out that the accuracy of the PET/CT imaging

analyzed by radiomics in pathological pattern and staging is

close to or even equal to the “gold standard” of pathological

biopsy (60). We can speculate that 18F-FDG PET/CT radiomic is

providing promising performance to move the post-operative

pathological characterization analysis of adenocarcinoma

forward to pre-operation.

In the co-citation map, it is worth mentioning that many

scholars have a co-citation relationship in studies related to

imaging biomarkers, texture analysis, and immunotherapy

simultaneously. Texture analysis has long been used in the

classification of correlations between imaging parameters of

glucose metabolism and the expression levels of genomic

biomarkers from cancers (55, 61). Furthermore, there are

pros and cons in a variety of 18F-FDG PET/CT radiomic

research. By convention, traditional machine learning

methods, represented by the random forest, decision tree,

and regression algorithms, are most commonly used to

segment images. Such kind of manual segmentation is easy

to operate, and we can obtain intuitive images for radiomics

analysis. However, Ding et al. (37) pointed out that these

algorithms mostly require a huge amount of matrix

manipulations. It takes too much time and the results are

unavailable to repeat. To note, the landmark literature of our

citation burst especially put emphasis on the reproducibility of

FDG-PET radiomics features, which indicates that it is of great

necessity to control the variability between test-retest and

inter-observer to make sure that all features are robustly
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measured. Learning-based algorithms are developed to solve

this problem. Tixier et al. (62) studied the reproducibility of

tumor uptake heterogeneity characterization through the fuzzy

locally adaptive Bayesian (FLAB) algorithm; meanwhile, they

used parameters on local and regional scales to replace simple

SUV measurements, attaining similar or better reproducibility

than simple SUV measurements. Learning-based algorithms

have made substantive progress. Notwithstanding, it is

important to pay attention that the results of these

algorithms remain to be interpreted carefully, for most of the

machine learning evaluations included insufficient numbers of

patients and few studies have external validation on those

developed AI models. Accessibility of data and software

should be improved for researchers to expand the sample to

verify the previous research results (27).
Strengths and limitations

Although there has been a surge in bibliometric studies,

knowledge visualization maps of PET/CT imaging are still very

rare. We often find limitations such as unprofessional literature

retrieval, lack of quality control in map interpretation, and

incomplete reporting of original data, which affected the

credibility of literature results and conclusions. Note that this

study carried out quality control through interviews with

librarians, and we listened to the literature retrieval strategies

and suggestions provided by professionals. During the literature

retrieval process, we included literature as comprehensive and

complete as possible. When interpreting the co-occurrence

analysis results, we invited three nuclear medicine physicians

to offer suggestions to improve the reliability of the study. After a

series of quality control procedures, it is reasonable to believe

that the results of this study truthfully reflect the current

research hotspots and frontiers of 18F-FDG PET/CT

radiomics, and the research conclusions are true and reliable.

This study is the first comprehensive literature analysis focusing

on PET/CT radiomics research with a specific imaging

technique. We hope that this study can provide a practical

reference for scholars to use 18F-FDG imaging tracer to carry

out PET/CT radiomics practice.

At the same time, we also recognize that there are some

shortcomings and deficiencies in this research. For example,

WoSCC was the only database to collect literature, and

PubMed, Embase, CNKI, or other databases would be further

needed in a comprehensive analysis. It is worth noting that

WoSCC is the most commonly used database in bibliometrics

research. Due to the limited number of documents available

from the WoSCC, our study is likely not to contain an

exhaustive number of records. Additionally, our research is

conducted on an annual basis, so studies published in the first

half of 2022 were not included, which may lead to missing

some real-time hot issues.
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Conclusions

In conclusion, the current research status revealed that 18F-

FDG PET/CT radiomics research has great development

potential, with an increasing number publications and

citations. So far, it has received significant attention in

intelligent diagnosis, response evaluation, and survival

prediction for cancer prognosis. European Journal of Nuclear

Medicine and Molecular Imaging, Frontiers in Oncology, and

Cancers were considered the top journals. United States, China,

Germany, and Netherlands contribute a lot and have played vital

roles in developing and expanding this field. The hot research

topics in 18F-FDG PET/CT radiomics studies are malignant

tumors. It is also necessary to focus on ensuring the

reproducibility of 18F-FDG-PET radiomics features.

Adenocarcinoma was the most concerned and frequently cited

research direction. It is expected to become the frontier and

development trend in the future.

For the first time, this study comprehensively screened

literature associated with 18F-FDG PET/CT radiomics and

provided a theoretical basis for the field of it, which may

benefit researchers to deeply understand the current status of

the field and encourage them to engage in the hotspots and

frontiers. 18F-FDG PET/CT radiomics provides clinicians with a

more accurate evaluation of treatment outcomes and more

meaningful prognostic risk scores. It is foreseeable that using
18F-FDG PET/CT radiomics is expected to rapidly advance the

development of molecular imaging on the basis of existing

mature technology and further integrate nuclear medicine

findings into cl inica l diagnosis and treatment aid

decision-making.
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Novel small 99mTc-labeled
affibody molecular probe for
PD-L1 receptor imaging

Zhigang Liang †, Xianwen Hu †, Hongyu Hu, Pan Wang*

and Jiong Cai*

Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi,
Guizhou, China
Objective: The in vivo imaging of programmed death ligand 1 (PD-L1) can

monitor changes in PD-L1 expression and guide programmed death 1 (PD-1) or

PD-L1-targeted immune checkpoint therapy. A 99mTc-labeled affibody

molecular probe targeting the PD-L1 receptor was prepared and evaluated

its tracing effect in PD-L1-overexpressing colon cancer.

Methods: The PD-L1 affibody was prepared by genetic recombineering. The
99mTc labeling of the affibody was achieved by sodium glucoheptonate and an

SnCl2 labeling system. The labeling rate, radiochemical purity, and stability in

vitrowere determined by instant thin-layer chromatography; MC38-B7H1 (PD-

L1-positive) and MC38 (PD-L1-negative) colon cancer cells were used to

evaluate its affinity to PD-L1 by cell-binding experiments. The biodistribution

of the 99mTc-labeled affibody molecular probe was then determined in C57BL/

6J mice bearing MC38-B7H1 tumors, and tumor targeting was assessed in

C57BL/6J mice with MC38-B7H1, MC38 double xenografts.

Result: The nondecayed corrected yield of the 99mTc-PD-L1 affibody

molecular probe was 95.95% ± 1.26%, and showed good stability both in

phosphate-buffered saline (PBS) and fetal bovine serum within 6 h. The affinity

of the 99mTc-PD-L1 affibodymolecular probe for cell-binding assays was 10.02

nmol/L. Single photon emission–computed tomography imaging showed a

rapid uptake of the tracer in PD-L1-positive tumors and very little tracer

retention in PD-L1-negative control tumors. The tracer was significantly

retained in the kidneys and bladder, suggesting that it is mainly excreted

through the urinary system. Heart, liver, lung, and muscle tissue showed no

significant radioactive retention. The biodistribution in vitro also showed

significant renal retention, a small amount of uptake in the thyroid and

gastrointestinal tract, and rapid blood clearance, and the tumor-to-blood

radioactivity uptake ratio peaked 120 min after drug injection.

Conclusion: The 99mTc-PD-L1 affibody molecular probe that we prepared can

effectively target to PD-L1-positive tumors imaging in vivo, and clear in blood
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quickly, with no obvious toxic side effects, which is expected to become a new

type of tracer for detecting PD-L1 expression in tumors.
KEYWORDS

programmed death receptor-ligand 1, affibody, SPECT imaging, colon cancer, 99mTc
Introduction

A blockade targeting PD-1/programmed death ligand 1 (PD-

L1) is one of the most promising cancer treatments in cancer

therapy, but not all cases respond to these drugs (1–3). The

molecular imaging of the immune checkpoint receptor PD-1

and its ligand PD-L1 is receiving increasing attention as a

strategy to guide and monitor PD-1/PD-L1-targeted immune

checkpoint therapy (4). Compared to the long imaging times of

radionuclide-labeled monoclonal antibody (mAb) tracers due to

slow blood clearance, low-molecular-weight ligands, such as

adherends, nanobodies, or peptides, tend to show faster blood

clearance and can be labeled with radioisotopes with shorter

half-life, allowing same-day imaging (5). Affibody probes

targeting the human epidermal growth factor receptor 2

(HER2) and epidermal growth factor receptor (EGFR) have

demonstrated rapid blood clearance and good imaging in vivo

targeting properties in clinical and preclinical studies (6–12).

González Trotter et al. (13) reported the first affibody ligand 18F-

AIF-NOTA-ZPD-L1_1 for detecting PD-L1 expression, and PET

imaging showed a good targeting of LOX tumors with high PD-

L1 expression.
99mTc is produced by a molybdenum technetium generator,

has a suitable gamma ray energy (140.5 KeV) with a short

physical half-life (approximately 6 h), and is the most commonly

used and ideal radionuclide tracer for single-photon emission

computed tomography (SPECT) imaging. In the present study,

we developed a new small 99mTc-labeled PD-L1 affibody

molecular probe (99mTc-PDA) for SPECT imaging and

evaluated its binding properties in vitro and in vivo,

biodistribution, and targeting properties in PD-L1 receptor-

positive tumor models. The results demonstrated that the

molecular probe has rapid blood clearance and high in vivo

targeting specificity in PD-L1-overexpressing xenograft tumors.
Materials and methods

Materials

Sodium glucoheptonate dihydrate was obtained from TCI

(Shanghai, China), dithiothreitol (DTT) from Beijing Xinjingke
02
39
Biotechnology Co., Ltd. (Beijing, China), tin (II)-chloride

dehydrate (SnCl2) and hydroxyethyl piperazine ethanesulfonic

acid (HEPES) were purchased from J&K Scientific (Beijing,

China), and Ni Sepharose 6FF and Q-Sepharose FF from

Beijing Solarbio Science & Technology Co., Ltd. (Beijing,

China). MC38 and MC38-B7H1 mouse colon cancer cells

were acquired from BMCR (Beijing, China), the instant thin-

layer chromatography silica gel (iTLC-SG) chromatography

paper was purchased from Agilent Technologies (Palo Alto,

CA, USA) and NAP-5 size exclusion columns from GE

Healthcare (Uppsala, Sweden), C57BL/6J Mice were purchased

from Hunan SJA Laboratory Animal Co (Changsha, China). The

GC-2010 gamma radiation counter was purchased from USTC

ZONKIA (Hefei, China), the Infinia V Hawkeye 4 SPECT/CT

imaging system was purchased from GE Healthcare (Chicago,

IL, USA), and 99mTc was obtained as pertechnetate from an
99Mo/99mTc Generator (HTA, Beijing, China) eluted with sterile

0.9% sodium chloride.
Preparation of programmed death ligand
1 affibody

Escherichia coli BL21 cells were transformed with plasmids

pET26b (+) containing a gene fragment encoding PD-L1

targeting affibody (shorted for PDA) with a histidine–

glutamate–hist idine–glutamate–hist idine–glutamate

(HEHEHE)-tag at the amino terminus and a glycine–glycine–

glycine–cysteine (GGGC) chelator at the carboxyl terminus,

with the amino acid sequence of MAHEHEHEAEAKYAKE

RNKAAYEILYLPNLTNAQKWAFIWKLDDDPSQSSELLS

EAKKLNDSQAPKGGGSGGGC. Cells were cultivated in an LB

medium containing 50 mg/ml kanamycin at 37°C, and protein

expression was induced by 1 mmol/L isopropyl-b-D-

thiogalactoside (IPTG). After harvesting, cells were disrupted

by sonication followed by centrifugation to remove cell debris,

and the clarified cell lysate was heat-treated at 60°C for 10 min to

precipitate a portion of endogenous E. coli proteins. The heat-

treated cell lysate was then centrifuged and filtered through a

0.22 mm filter. Affibodies were recovered by immobilized metal

affinity chromatography (IMAC, Ni Sepharose 6FF) and further

purified by anion exchange (Q-Sepharose FF).
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The purified affibodies were identified by sodium dodecyl

sulfate–polyacrylamide gel (SDS-PAGE) and matrix-assisted

laser desorption ionization–tandem time-of-flight mass

spectrometry (Maldi-TOF/TOF).
Radiolabeling and in vitro stability of
99mTc-PDA

The purified PDA was added with DTT at a final

concentration of 30 mmol/L, reduced at 37°C for 2 h to

destroy the spontaneously formed intermolecular disulfide

bonds between cysteines, desalted on a NAP-5 column, and

stored at 4°C.

A sterile vial was added with 200 ml of an argon-degassed

labeling buffer (10 mM HEPES, 20 mM sodium glucoheptonate,

pH 6.6), 100 ml of a reducing affibody (approximately 80 mg), 100
ml of 99mTcO4 (typically, 37 MBq), and 0.5 µl of a freshly

prepared SnCl2 solution (0.4 mg/ml, in 0.5 mmol/L

hydrochloric acid). The reaction solution was incubated at 90°C

for 10 min and then cooled at room temperature for 15 min,

followed by filtered through a 0.22-micron filter and diluting

with PBS.

TLC was performed as described in the reference (14). A

small aliquot of samples (~ 0.5 ml) was taken for the TLC analysis

of the labeling yield using iTLC-SG with the PBS mobile phase

and of reduced hydrolyzed technetium colloid levels using iTLC-

SG with a 10:6:3 ratio (pyridine:acetic acid:water) as the

mobile phase.

To test the labeling stability in vitro, three 100-ml aliquots of
99mTc-PDA were mixed with 900 ml of either PBS or fetal bovine
serum. Each 0.5 ml sample was taken for TLC analysis,

respectively, after incubation for 0.5, 1.0, 2.0, 4.0, and 6.0 h at

37°C.
Cell lines

Colon cancer MC38 cells and human PD-L1 gene-

transfected MC38 cells (MC38-B7H1) were cultured in

Roswell Park Memorial Institute (RPMI) 1640 medium

containing 10% fetal bovine serum and 1% penicillin–

streptomycin at 37°C in a 5% CO2 incubator. While they

reached confluence, cells were passaged using a trypsin

containing 0.25% ethylene diamine tetraacetic acid (Trypsin-

EDTA) solution.
Binding specificity and cellular uptake

The binding affinity and specificity of 99mTc-PDA to human

PD-L1 were determined in MC38-B7H1 cells using MC38 cells

as a negative control. MC38-B7H1 and MC38 cells were seeded
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into 24-well plates at a density of 2 × 105 cells/well and cultured

overnight at 37°C. At confluency, cells were treated with

increasing concentrations (0.02, 0.10, 0.52, 2.62, 13.11, 65.53,

327.63, and 1638.14 nM, three wells for each concentration) of
99mTc-PDA. After incubation at 4°C for 2 h, the medium was

discarded, the cells were washed three times with ice-cold PBS

and then lysed with 0.1 M NaOH, and cell lysates were collected.

The radioactivity of 99mTc-PDA that was bound to the cells was

measured by a gamma counter. The dissociation constant (KD)

values were calculated by nonlinear fitting (one-site total and

nonspecific binding) using GraphPad Prism 6 software.

The specific binding of 99mTc-PDA to human PD-L1 was

also confirmed in a competitive binding experiment using

MC38-B7H1 cells with high PD-L1 expression. A set of six

dishes containing a cell monolayer (106 cells/dish) were

incubated with 1.5 nM 99mTc-PDA for 1 h; cells in three

dishes were added a 100-fold excess of an unlabeled affibody

5 min before the addition of 99mTc-PDA. After incubation, the

medium was collected and the cells were washed three times

with ice-cold PBS followed by treatment with 0.1 M NaOH to

collect cellular bound radioactivity, and the percentage of cell-

bound radioactivity was calculated.

Cellular uptake and the internalization of 99mTc-PDA were

studied using PD-L1-expressing colon cancer MC38-B7H1 cells.

Briefly, cells (106 cells/dish) were incubated with labeled

conjugates (1.5 nM) at 37°C. At predetermined time points (1,

2, 4, 8, 12, and 24 h after incubation started), the supernatant

from a set of three dishes was collected and the cells were washed

twice with ice‐cold PBS; the combined fractions represent the

unbound radioligand. The cells then were treated with a buffer

containing 4 M urea and 0.2 M glycine, pH 2.5 for 5 min on ice,

and membrane-bound radio conjugates were collected. The

internalized affibodies were collected after the cells were lysed

with 1 M NaOH finally. The percentage of membrane-bound

and internalized radioactivity was calculated for each time point.
Animal models

All animal experiments were approved by the principles of

the Ethics Committee of Affiliated Hospital of Zunyi Medical

University (grant number, KLLYA-2021-019). Female C57BL/6J

mice, 7 weeks old, were housed in ventilated filter-topped cages

with free access to a standard diet and water. Approximately 106

of MC38-B7H1 cells (in 100 ml PBS) were implanted

subcutaneously in the right armpit. The mice were used for

biodistribution studies approximately 2 weeks after injection,

when the tumor reached a volume of approximately 1 cm3.

Dual-tumor xenograft mice were generated by the

implantation of 106 of both MC38-B7H1 cells and MC38 cells

in each armpit, which allows 99mTc-PDA to assess radioactive

uptake in tumors with low and high PD-L1 receptor expression in

the same animal. SPECT imaging is performed when the tumor
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volume reaches approximately 1 cm3, The expression of PD-L1 in

these tumors was determined by immunohistochemistry with a

rabbit anti-human PD-L1 monoclonal antibody (ZR3).
Ex vivo biodistribution studies

MC38-B7H1 tumor-bearing mice were injected with

approximately 1.85 MBq of 99mTc-PDA via the lateral tail

vein, which corresponds to approximately 4 mg of peptide.

Mice were sacrificed immediately (approximately 10 s), 30, 60,

120, 180, and 360 min after injection. The tumor, heart, liver,

spleen, lung, kidney, brain, thyroid, muscle, bone (femur),

stomach, duodenum, and eyeball blood were collected and

weighed, and radioactivity was measured using a gamma

counter. Biodistribution measurements were expressed as

percent injected dose rate per gram tissue (%ID/g).
SPECT imaging

Dual-tumor xenograft mice were anesthetized with

isoflurane (4%–5% induction, 1%–3% maintenance), and

approximately 3.7 MBq of 99mTc-PDA (approximately 8 mg
PDA) was injected via the lateral tail vein. SPECT imaging

was performed at 30, 60, and 120 min after injection, and 200 K

counts were collected. Mice in the blocking group were injected

with 400 mg of unlabeled affibodies 5 min before the tail vein

injection of 99mTc-PDA, and SPECT imaging was performed

60 min later.
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Statistical analysis

Statistical analysis was performed using Statistical Product

and Service Solutions (SPSS) software version 25.0, and the mean

± standard deviation (x ± s) was used to represent the

measurement data conforming to the normal distribution. The

comparison between two groups was performed by an

independent sample t-test, and the comparison among multiple

groups was performed by one-way analysis of variance (one-way

ANOVA). If P<0.05, the pairwise mean difference test (i.e., least

significant difference method) was further used for pairwise

comparison when the variances were equal, Tamhane’s T2 test

or Dunnett’s T3 test was used when variances were unequal, and

P<0.05 was considered statistically significant for differences.
Results

Production, purification, and
characterization of PDA

PDA was expressed in E. coli and recovered by IMAC. The

imidazole gradient was further divided, and it was found that

elution with 60 mM imidazole yields a purity more than 90% (as

shown in Figure 1A), which was further purified by anion

exchange and was eluted with 200 mM NaCl to a purity of

>95% (as shown in Figure 1B). The purified affibodies were

confirmed by Maldi-TOF/TOF (as shown in Figure 2), showing

that the amino acid coverage was 95%, and the molecular mass

was 8,227 Da.
A B

FIGURE 1

Sodium dodecyl sulfate–polyacrylamide gel analysis during the purification of PDA. (A) Purification of affibodies by immobilized metal affinity
chromatography. Lane M, the protein molecular marker (kDa), Lanes 1~9 are cell lysate after heat treatment, unbound protein, 5, 10, 20, 30, 40,
60, and 300 mM imidazole-eluted product, respectively. (B) Purification of affibodies by anion exchange. Lane M, the protein molecular marker
(kDa); Lane 1~7 sequentially are sample eluted with 60 mM imidazole and 50, 200, 500, 800, 1,200, and 4,000 mM NaCl-eluted products.
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Radiolabeling and in vitro stability of
99mTc-PDA

99mTc-PDA was obtained with a high labeling yield (95.95% ±

1.26%); reduced hydrolyzed technetium colloid (3.21% ± 0.37%)

(n=10) could be used for biological experiments without additional

purification. Bacterial endotoxin assay results show less than 1 EU/

ml. TLC analysis showed that 99mTc-PDA had good stability, and

the radiochemical purity was decreased slightly after 4~6 h of

incubation in PBS and serum at 37°C (p<0.05) and still greater than

90% (as shown in Figure 3).
Binding specificity and cellular uptake

Radioactivity was significantly higher in MC38-B7H1 than

in MC38 cells at all concentration points (P<0.01), and

competitive binding assays showed that excess unlabeled

affibodies obviously reduced the binding of 99mTc-PDA to

MC38-B7H1 cells,which suggests that the binding of 99mTc-

PDA to living PD-L1-expressing cells was receptor mediated (as
Frontiers in Oncology 05
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shown in Figure 4A). 99mTc-PDA had a high affinity to MC38-

B7H1 cells with a KD value of approximately 10.02 nM (as

shown in Figure 4B).
FIGURE 2

Amino acid sequence of PDA determined by matrix-assisted laser desorption ionization–tandem time-of-flight mass spectrometry (Maldi-TOF/TOF).
FIGURE 3

Stability of 99mTc-labeled PD-L1 affibody molecular probe
(99mTc-PDA) in phosphate-buffered saline and serum.
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Binding of 99mTc-PDA to MC38-B7H1 cells increased

rapidly during the first 1 h of culture; only a minor increase

was observed after this time. The internalization of 99mTc-PDA

by MC38-B7H1 cells increased with time; about 24.25% ± 2.99%

of the total cell-associated radioactivity was internalized after

24 h of incubation (as shown in Figure 4C).
Identification of MC38/MC38-B7H1
xenograft model

Immunohistochemistry (IHC) confirmed the strong positive

expression of PD-L1 in MC38-B7H1 xenograft tumors and the

negative expression of PD-L1 in MC38 tumors (as shown

in Figure 5).
Biodistribution in MC38-B7H1 xenograft-
bearing mice

The data concerning the biodistribution of 99mTc-PDA in

MC38-B7H1 xenograft mice are presented in Table 1. The
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molecular probe 99mTc-PDA showed rapid clearance from the

blood (14.13 ± 1.59%ID/g at 10 s after injection, whereas 0.50 ±

0.12%ID/g at 60 min after injection). The heart, spleen, and lung

also showed the highest 99mTc-PDA uptake immediately after

injection and then gradually decreased along with time. Renal

retention was obvious; the uptake was the highest at 30 min after

injection (%ID/g=87.53 ± 15.09) and gradually decreased with

time and decreased to at 360 min (%ID/g=5.63 ± 1.61).

Tumors exhibited rapid uptake, with a significant increase in

tracer tumor uptake after 30 min followed by a slow increase and a

gradual decrease after peaking at 120 min. The %ID/g ratio of

tumors compared with blood, the liver, and muscle reached a peak

at 120min after injection, and the ratios were (32.40 ± 10.18), (7.79

± 1.54), and (42.72 ± 12.44), respectively (as shown in Figure 6).
SPECT imaging of dual-flank MC38-
B7H1/MC38 xenograft-bearing mice

The SPECT imaging of tumor-bearing mice used an imaging

system for the human body; the spatial resolution of the images
A B C

FIGURE 4

Binding specificity and cellular uptake. (A) Binding specificity of 99mTc-PDA to PD-L1 in competitive binding assays. (B) Affinity analysis of 99mTc-
PDA to PD-L1-expressing MC38-B7H1 cells. (C) Uptake and internalization of 99mTc-PDA at 37°C by MC38-B7H1 cells.
FIGURE 5

ZR3 immunohistochemical staining of MC38-B7H1 and MC38 xenograft tumors Scale bar: 50 mm; (A) Membranous staining was observed in
MC38-B7H1 samples. (B) There was no signal in MC38 tumors.
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was therefore limited. However, the radiosonde accumulation in

the MC38-B7H1 tumor was clearly observed 30 min after

injection, while the MC38 tumor was never visible. The

highest radioactive accumulation was demonstrated in bilateral

kidneys and the bladder, indicating that 99mTc-PDA was mainly

excreted through the urinary system, as previously observed in

the biodistribution studies. The thyroid and stomach were not

visualized, conjecturing that 99mTc-PDA had good stability in

vivo within 120 min. A blockade with 400 mg of PDA caused a

significant reduction of 99mTc-PDA uptake in MC38-B7H1

tumors (as shown in Figure 7). We manually demarcated the

tumor and lower extremity (representing the radioactivity of the

muscle) and obtained the mean of the radioactivity counts per

unit volume, and the ratio of radioactivity counts of the tumor to

muscle was 17.84 ± 2.80 at 120 min after injection, which is

lower than in biodistribution.
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Discussion

High PD-L1 expression is associated with a poor prognosis in

various malignant tumors (15, 16); blockades targeting the PD-1/

PD-L1 pathway have shown controllable safety and durable

remissions in lung cancer, melanoma, bladder cancer, and other

tumors (17–28). However, 30%–60% of patients do not respond to

the PD-1/PD-L1 blockade (2). In addition, considering the

immune-related adverse events of the drugs (29, 30) and the

high cost of treatment, it is of great significance to screen patients

who can benefit from these drugs before treatment.

The efficacy of PD-1/PD-L1 blockade therapy differs

significantly between PD-L1-positive and PD-L1-negative

patients (31). The expression of PD-L1 is currently one of the

most important predictive biomarkers, and the detection of

PD-L1 expression in the tumor environment by IHC is the
TABLE 1 Biodistribution of 99mTc-labeled PD-L1 affibody molecular probe in MC38-B7H1 xenograft-bearing mice (%ID/g, x ± s).

Organ or tissue 10 s (n = 3) 30 min (n = 7) 60 min (n = 6) 120 min (n = 7) 180 min (n= 8 ) 360 min (n = 3)

Blood 14.13 ± 1.59 2.11 ± 0.58 1.04 ± 0.25 0.50 ± 0.12 0.33 ± 0.08 0.11 ± 0.003

Heart 3.01 ± 0.13 1.98 ± 0.36 0.85 ± 0.12 0.57 ± 0.05 0.30 ± 0.07 0.09 ± 0.01

Liver 2.71 ± 0.46 3.50 ± 0.53 2.51 ± 0.24 2.00 ± 0.31 2.03 ± 0.32 2.01 ± 0.04

Spleen 2.32 ± 0.44 1.70 ± 0.35 0.81 ± 0.14 0.77 ± 0.17 0.71 ± 0.11 0.58 ± 0.02

Lung 5.55 ± 1.47 4.10 ± 0.68 2.03 ± 0.27 1.66 ± 0.41 0.87 ± 0.26 0.43 ± 0.08

Kidney 8.37 ± 1.54 87.53 ± 15.09 35.27 ± 3.08 17.86 ± 2.13 12.96 ± 1.94 5.6 3± 1.61

Brain 0.55 ± 0.07 0.14 ± 0.03 0.11 ± 0.03 0.11 ± 0.02 0.04 ± 0.01 0.02 ± 0.005

Thyroid 2.45 ± 0.28 3.63 ± 0.56 3.69 ± 0.26 4.50 ± 0.89 2.75 ± 0.74 0.41 ± 0.09

Gastrointestinal 1.59 ± 0.09 4.19 ± 0.94 4.24 ± 1.03 4.82 ± 1.09 2.71 ± 0.73 0.17 ± 0.04

Tumor 1.03 ± 0.15 12.06 ± 1.61 14.97 ± 3.47 15.50 ± 3.68 8.77 ± 2.70 0.98 ± 0.07

Muscle 0.57 ± 0.09 1.34 ± 0.22 0.77 ± 0.15 0.37 ± 0.07 0.29 ± 0.07 0.09 ± 0.02

Bone 1.80 ± 0.28 2.09 ± 0.47 1.62 ± 0.31 0.38 ± 0.07 0.88 ± 0.24 0.18 ± 0.04
A B

FIGURE 6
99mTc-PDA uptake in MC38-B7H1 tumors (A) and comparison of 99mTc-PDA in tumor to tissue (B). (A) Tumor uptake was significantly higher at
all time points after 30 min than 10 s post-99mTc-PDA injection (P < 0.01). (B) Significant difference in tumor-to-blood ratios were observed at
30 min vs. 120 min and 60 min vs. 120 min after injection (P < 0.01); the tumor-to-liver ratios were significantly higher at 120 min compared to
30 and 180 min (P < 0.01), and the tumor-to-muscle ratios were significantly higher at 120 min compared to 30 and 60 min.
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most widely used patient screening method for immunotherapy

at present. However, IHC results are adversely affected by biopsy

sampling errors and the consistent ratio of PD-L1 expression in

primary tumors and metastatic lesions (32, 33), and static

biopsies cannot dynamically monitor changes in PD-L1

expression during treatment. Molecular imaging using

radiolabeled enables a noninvasive, comprehensive, and

dynamic assessment of PD-L1 expression in vivo.

Currently, commonly used molecular imaging probes targeting

PD-L1 include antibodies, small peptides, or proteins that

specifically bind to the receptor. Monoclonal antibodies have high

affinity and specificity; however, due to their large molecular weight

and weak tissue penetration, which has long circulation retention

time, the needed labeling with isotopes with a longer half-life and

high-contrast imaging can often only be performed after multiple

days and with a risk of false-positive results due to the remaining

blood pool activity. Furthermore, the use of long-lived isotopes risks

increasing the exposure of subjects to radiation (34–36). Proteins

that bind specifically to receptors such as affibodies is an artificial

non-immunoglobulin molecule derived from the B domain of

staphylococcal A protein with a molecular weight of

approximately 6.5 kDa, consisting of 58 amino acid residues and

lacking cysteine (37). The introduction of cysteine can provide a

binding site for the specific site binding of thiol-reactive

radionuclides or chelates. In our present study, the GGGC

sequence was introduced into the carboxyl terminus of the PD-L1

affibody, and the thiol group of cysteine together with the amide

nitrogen of the adjacent amino acid formed anN3S chelate structure,

thereby realizing the stable labeling of 99mTc (14, 38, 39). Moreover,

a hydrophilic HEHEHE-tag was introduced at the N-terminus of

the PD-L1 affibody, on one hand, to facilitate the recovery of protein

by IMAC; on the other hand, the hydrophobicity of the HEHEHE-

tag reduces the hepatic retention of the tracer (40–42).
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99mTc-PDA exhibits very rapid blood clearance, which is

associated with its rapid excretion through the urinary system.

The uptake of the molecule probe in the heart and lung was

highest immediately after injection, which was related to the

abundant blood supply of these organs. Both biodistribution

studies and in vivo imaging showed low uptake in the spleen,

indicating that PDA does not cross-react with murine PD-L1. In

addition, increased radioactive uptake in the thyroid and

gastrointestinal tract was observed within 30–120 min

postinjection; this was presumably associated with a small

amount of unconjugated 99mTcO in the labeled compound.
99mTcO can be absorbed by a normal thyroid and gastric

mucosa and secreted by the gastric mucosa and then enter the

intestinal tract. Sustained decrease was observed over the

subsequent time, indicating that 99mTc-PDA was stable in vivo.
99mTc-PDA has a high affinity for the PD-L1 receptor, and

the KD value reaches the nM level, similar to the previously

reported PD-L1 affibody molecular probes (13, 43). Compared

with 18F and 68Ga labeled affibodies, 99mTc-PDA had lower renal

retention, which may be explained by differences in

radioisotopes and the use of bifunctional chelators.

We had tested the detection ability of 99mTc-PDA for PD-L1

expression at different times after injection, and the results

showed that 99mTc-PDA could quickly penetrate into the

tumor tissue after injection; high-contrast tumor imaging

could be obtained within 30 min. Combined with the

characteristics of biodistribution, it is speculated that the

optimal imaging time is 1~2 h after injection, comparable to

the imaging time of peptide- or nanobody-based imaging agents

(44–46), which is associated with the rapid blood clearance and

tumor penetration of small-molecular-weight ligands.

Compared with mAb-based tracers (35, 47), imaging time was

significantly shortened, and liver retention was also reduced due
FIGURE 7

Representative single photon emission–computed tomography maximum-intensity projection images of 99mTc-PDA in dual-flank MC38-B7H1/
MC38 xenograft-bearing mie; long arrows indicate MC38-B7H1 tumors, and short arrows indicate MC38 tumors. (A) Images at 30 min. (B)
Images at 60 min. (C) Images at 120 min. (D) Blocking images at 60 min.
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to the different metabolic pathways between affibodies

and antibodies.

There were still some shortcomings in this study such as

unsatisfactory image quality due to SPECT imaging using an

imaging system for the human body and a higher uptake of the

tracer in the kidneys, which would limit the injected activity, resulting

in reduced sensitivity to low-expressing lesions. The alteration of the

affibody structure is needed to reduce renal uptake in future research.

Furthermore, the uptake of tracers in the thyroid and gastrointestinal

tract was relatively high although significantly lower than in tumors,

optimizing the formulation of the labeling system, so improving the

labeling rate is an effective method to solve such problems.

In a nutshell, our developed molecular probe 99mTc-PDA

showed rapid blood clearance and good targeting in vivo and is

expected to be a candidate drug for the SPECT/CT imaging of PD-L1

expression in cancer patients. Further clinical studies are needed to

clarify its metabolic characteristics and imaging potential in humans.
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18. Gandhi L, Rodrıǵuez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F,
et al. Pembrolizumab plus chemotherapy in metastatic non-Small-Cell lung cancer.
N Engl J Med (2018) 378(22):2078–92. doi: 10.1056/NEJMoa1801005

19. Socinski MA, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami
N, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC.
N Engl J Med (2018) 378(24):2288–301. doi: 10.1056/NEJMoa1716948

20. Armand P, Rodig S, Melnichenko V, Thieblemont C, Bouabdallah K,
Tumyan G, et al. Pembrolizumab in relapsed or refractory primary mediastinal
Large b-cell lymphoma. J Clin Oncol (2019) 37(34):3291–9. doi: 10.1200/
JCO.19.01389

21. Kato K, Cho BC, Takahashi M, Okada M, Lin CY, Chin K, et al. Nivolumab
versus chemotherapy in patients with advanced oesophageal squamous cell
carcinoma refractory or intolerant to previous chemotherapy (ATTRACTION-
3): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol (2019) 20
(11):1506–17. doi: 10.1016/S1470-2045(19)30626-6

22. Shi Y, Su H, Song Y, Jiang W, Sun X, Qian W, et al. Safety and activity of
sintilimab in patients with relapsed or refractory classical Hodgkin lymphoma
(ORIENT-1): a multicentre, single-arm, phase 2 trial. Lancet Haematol (2019) 6(1):
e12–9. doi: 10.1016/S2352-3026(18)30192-3

23. Cortes J, Cescon DW, Rugo HS, Nowecki Z, Im SA, Yusof MM, et al.
Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for
previously untreated locally recurrent inoperable or metastatic triple-negative
breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind,
phase 3 clinical trial. Lancet (2020) 396(10265):1817–28. doi: 10.1016/S0140-6736
(20)32531-9

24. Finn RS, Ikeda M, Zhu AX, Sung MW, Baron AD, Kudo M, et al. Phase ib
study of lenvatinib plus pembrolizumab in patients with unresectable
hepatocellular carcinoma. J Clin Oncol (2020) 38(26):2960–70. doi: 10.1200/
JCO.20.00808

25. Geoerger B, Kang HJ, Yalon-OrenM, Marshall LV, Vezina C, Pappo A, et al.
Pembrolizumab in paediatric patients with advanced melanoma or a PD-L1-
positive, advanced, relapsed, or refractory solid tumour or lymphoma
(KEYNOTE-051): interim analysis of an open-label, single-arm, phase 1-2 trial.
Lancet Oncol (2020) 21(1):121–33. doi: 10.1016/S1470-2045(19)30671-0

26. Hughes B, Munoz-Couselo E, Mortier L, Bratland Å, Gutzmer R, Roshdy O,
et al. Pembrolizumab for locally advanced and recurrent/metastatic cutaneous
squamous cell carcinoma (KEYNOTE-629 study): an open-label, nonrandomized,
multicenter, phase II trial. Ann Oncol (2021) 32(10):1276–85. doi: 10.1016/
j.annonc.2021.07.008

27. Sun JM, Shen L, Shah MA, Enzinger P, Adenis A, Doi T, et al.
Pembrolizumab plus chemotherapy versus chemotherapy alone for first-line
treatment of advanced oesophageal cancer (KEYNOTE-590): a randomised,
placebo-controlled, phase 3 study. Lancet (2021) 398(10302):759–71. doi:
10.1016/S0140-6736(21)01234-4

28. Zsiros E, Lynam S, Attwood KM, Wang C, Chilakapati S, Gomez EC, et al.
Efficacy and safety of pembrolizumab in combination with bevacizumab and oral
metronomic cyclophosphamide in the treatment of recurrent ovarian cancer: A
phase 2 nonrandomized clinical trial. JAMA Oncol (2021) 7(1):78–85. doi: 10.1001/
jamaoncol.2020.5945

29. Baxi S, Yang A, Gennarelli RL, Khan N, Wang Z, Boyce L, et al. Immune-
related adverse events for anti-PD-1 and anti-PD-L1 drugs: systematic review and
meta-analysis. BMJ (2018) 360:k793. doi: 10.1136/bmj.k793
Frontiers in Oncology 10
47
30. Wang Y, Zhou S, Yang F, Qi X, Wang X, Guan X, et al. Treatment-related
adverse events of PD-1 and PD-L1 inhibitors in clinical trials: A systematic review
and meta-analysis. JAMA Oncol (2019) 5(7):1008–19. doi: 10.1001/
jamaoncol.2019.0393

31. Liu W, Huo G, Chen P. Efficacy of atezolizumab for advanced non-small cell
lung cancer based on clinical and molecular features: A meta-analysis. Front
Immunol (2022) 13:909027. doi: 10.3389/fimmu.2022.909027

32. Patel SP, Kurzrock R. PD-L1 expression as a predictive biomarker in cancer
immunotherapy. Mol Cancer Ther (2015) 14(4):847–56. doi: 10.1158/1535-
7163.MCT-14-0983

33. Doroshow DB, Bhalla S, Beasley MB, Sholl LM, Kerr KM, Gnjatic S, et al.
PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat Rev Clin
Oncol (2021) 18(6):345–62. doi: 10.1038/s41571-021-00473-5

34. Jagoda EM, Vasalatiy O, Basuli F, Opina A, Williams MR, Wong K, et al.
Immuno-PET imaging of the programmed cell death-1 ligand (PD-L1) using a
zirconium-89 labeled therapeutic antibody, avelumab. Mol Imaging (2019)
18:1536012119829986. doi: 10.1177/1536012119829986

35. Jung KH, Park JW, Lee JH, Moon SH, Cho YS, Lee KH. (89)Zr-labeled anti-
PD-L1 antibody PET monitors gemcitabine therapy-induced modulation of tumor
PD-L1 expression. J Nucl Med (2021) 62:656–64. doi: 10.2967/jnumed.120.250720

36. Smit J, Borm FJ, Niemeijer AN, Huisman MC, Hoekstra OS, Boellaard R,
et al. PD-L1 PET/CT imaging with radiolabeled durvalumab in patients with
advanced-stage non-small cell lung cancer. J Nucl Med (2022) 63(5):686–93.
doi: 10.2967/jnumed.121.262473

37. Braisted AC, Wells JA. Minimizing a binding domain from protein a. Proc
Natl Acad Sci USA (1996) 93:5688–92. doi: 10.1073/pnas.93.12.5688

38. Mitran B, Altai M, Hofström C, Honarvar H, Sandström M, Orlova A, et al.
Evaluation of 99mTc-z IGF1R:4551-GGGC affibody molecule, a new probe for
imaging of insulin-like growth factor type 1 receptor expression. Amino Acids
(2015) 47(2):303–15. doi: 10.1007/s00726-014-1859-z

39. Yang Y, Zhao X, Xing Y, Yu T, Zhang J, Wang J. Preclinical evaluation of
(99m)Tc direct labeling Z(HER2:V2) for HER2 positive tumors imaging.Oncol Lett
(2018) 16(4):5361–6. doi: 10.3892/ol.2018.9279

40. Lindberg H, Hofström C, Altai M, Honorvar H, Wållberg H, Orlova A, et al.
Evaluation of a HER2-targeting affibody molecule combining an n-terminal
HEHEHE-tag with a GGGC chelator for 99mTc-labelling at the c terminus.
Tumour Biol (2012) 33(3):641–51. doi: 10.1007/s13277-011-0305-z

41. Orlova A, HofströmC, Strand J, Varasteh Z, SandstromM, Andersson K, et al.
[99mTc(CO)3]+-(HE)3-ZIGF1R:4551, a new affibody conjugate for visualization of
insulin-like growth factor-1 receptor expression in malignant tumours. Eur J Nucl
Med Mol Imaging (2013) 40(3):439–49. doi: 10.1007/s00259-012-2284-8

42. Dahlsson Leitao C, Rinne SS, Mitran B, Vorobyeva A, Andersson KG,
Tolmachev V, et al. Molecular design of HER3-targeting affibody molecules:
Influence of chelator and presence of HEHEHE-tag on biodistribution of 68Ga-
labeled tracers. Int J Mol Sci (2019) 20(5):1080. doi: 10.3390/ijms20051080

43. Rubins DJ, Meng X, McQuade P, Klimas M, Getty K, Lin SA, et al. In vivo
evaluation and dosimetry estimate for a high affinity affibody PET tracer targeting
PD-L1. Mol Imaging Biol (2021) 23(2):241–9. doi: 10.1007/s11307-020-01544-2

44. Xing Y, Chand G, Liu C, Cook G, O’Doherty J, Zhao L, et al. Early phase I
study of a (99m)Tc-labeled anti-programmed death ligand-1 (PD-L1) single-
domain antibody in SPECT/CT assessment of PD-L1 expression in non-small
cell lung cancer. J Nucl Med (2019) 60:1213–20. doi: 10.2967/jnumed.118.224170

45. Bridoux J, Broos K, Lecocq Q, Debie P, Martin C, Ballet S, et al. Anti-human
PD-L1 nanobody for immuno-PET imaging: Validation of a conjugation strategy
for clinical translation. Biomolecules (2020) 10:1388. doi: 10.3390/biom10101388

46. Robu S, Richter A, Gosmann D, Seidl C, Leung D, Hayes W, et al. Synthesis
and preclinical evaluation of a (68)Ga-labeled adnectin, (68)Ga-BMS-986192, as a
PET agent for imaging PD-L1 expression. J Nucl Med (2021) 62:1228–34.
doi: 10.2967/jnumed.120.258384

47. Bensch F, van der Veen EL, Lub-de Hooge MN, Jorritsma-Smit A, Boellaard
R, Kok IC, et al. (89)Zr-atezolizumab imaging as a non-invasive approach to assess
clinical response to PD-L1 blockade in cancer. Nat Med (2018) 24:1852–8.
doi: 10.1038/s41591-018-0255-8
frontiersin.org

https://doi.org/10.1007/s00726-018-2571-1
https://doi.org/10.1038/s41598-020-66257-6
https://doi.org/10.1007/s00384-020-03734-4
https://doi.org/10.1016/S1470-2045(17)30007-4
https://doi.org/10.1056/NEJMoa1801005
https://doi.org/10.1056/NEJMoa1716948
https://doi.org/10.1200/JCO.19.01389
https://doi.org/10.1200/JCO.19.01389
https://doi.org/10.1016/S1470-2045(19)30626-6
https://doi.org/10.1016/S2352-3026(18)30192-3
https://doi.org/10.1016/S0140-6736(20)32531-9
https://doi.org/10.1016/S0140-6736(20)32531-9
https://doi.org/10.1200/JCO.20.00808
https://doi.org/10.1200/JCO.20.00808
https://doi.org/10.1016/S1470-2045(19)30671-0
https://doi.org/10.1016/j.annonc.2021.07.008
https://doi.org/10.1016/j.annonc.2021.07.008
https://doi.org/10.1016/S0140-6736(21)01234-4
https://doi.org/10.1001/jamaoncol.2020.5945
https://doi.org/10.1001/jamaoncol.2020.5945
https://doi.org/10.1136/bmj.k793
https://doi.org/10.1001/jamaoncol.2019.0393
https://doi.org/10.1001/jamaoncol.2019.0393
https://doi.org/10.3389/fimmu.2022.909027
https://doi.org/10.1158/1535-7163.MCT-14-0983
https://doi.org/10.1158/1535-7163.MCT-14-0983
https://doi.org/10.1038/s41571-021-00473-5
https://doi.org/10.1177/1536012119829986
https://doi.org/10.2967/jnumed.120.250720
https://doi.org/10.2967/jnumed.121.262473
https://doi.org/10.1073/pnas.93.12.5688
https://doi.org/10.1007/s00726-014-1859-z
https://doi.org/10.3892/ol.2018.9279
https://doi.org/10.1007/s13277-011-0305-z
https://doi.org/10.1007/s00259-012-2284-8
https://doi.org/10.3390/ijms20051080
https://doi.org/10.1007/s11307-020-01544-2
https://doi.org/10.2967/jnumed.118.224170
https://doi.org/10.3390/biom10101388
https://doi.org/10.2967/jnumed.120.258384
https://doi.org/10.1038/s41591-018-0255-8
https://doi.org/10.3389/fonc.2022.1017737
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Frontiers in Oncology

OPEN ACCESS

EDITED BY

Bahram Mohajer,
Johns Hopkins Medicine, United States

REVIEWED BY

Chunhao Wang,
Duke University Medical Center,
United States
Santiago Cepeda,
Hospital Universitario
Rı́o Hortega, Spain

*CORRESPONDENCE

Mueez Waqar
Mueez.waqar@manchester.ac.uk

†These authors share senior authorship

SPECIALTY SECTION

This article was submitted to
Cancer Imaging and
Image-directed Interventions,
a section of the journal
Frontiers in Oncology

RECEIVED 06 September 2022
ACCEPTED 31 October 2022

PUBLISHED 24 November 2022

CITATION

Waqar M, Van Houdt PJ, Hessen E,
Li K-L, Zhu X, Jackson A, Iqbal M,
O’Connor J, Djoukhadar I, van der
Heide UA, Coope DJ and Borst GR
(2022) Visualising spatial heterogeneity
in glioblastoma using imaging habitats.
Front. Oncol. 12:1037896.
doi: 10.3389/fonc.2022.1037896

COPYRIGHT

© 2022 Waqar, Van Houdt, Hessen, Li,
Zhu, Jackson, Iqbal, O’Connor,
Djoukhadar, van der Heide, Coope and
Borst. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Systematic Review
PUBLISHED 24 November 2022

DOI 10.3389/fonc.2022.1037896
Visualising spatial heterogeneity
in glioblastoma using
imaging habitats
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Glioblastoma is a high-grade aggressive neoplasm characterised by significant

intra-tumoral spatial heterogeneity. Personalising therapy for this tumour

requires non-invasive tools to visualise its heterogeneity to monitor

treatment response on a regional level. To date, efforts to characterise

glioblastoma’s imaging features and heterogeneity have focussed on

individual imaging biomarkers, or high-throughput radiomic approaches that

consider a vast number of imaging variables across the tumour as a whole.

Habitat imaging is a novel approach to cancer imaging that identifies tumour

regions or ‘habitats’ based on shared imaging characteristics, usually defined

using multiple imaging biomarkers. Habitat imaging reflects the evolution of

imaging biomarkers and offers spatially preserved assessment of tumour

physiological processes such perfusion and cellularity. This allows for

regional assessment of treatment response to facilitate personalised therapy.

In this review, we explore different methodologies to derive imaging habitats in

glioblastoma, strategies to overcome its technical challenges, contrast

experiences to other cancers, and describe potential clinical applications.
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Introduction

Glioblastoma is the most common form of primary brain

cancer with a median survival of just 15 months (1). The

treatment outcome of this tumour has not changed in decades

and there are increasing efforts to personalize care for

glioblastoma patients. This includes novel strategies that

deliver intensified upfront treatment around the time of

diagnosis, such as preoperatively, to prevent the phenomenon

of rapid early progression, a strongly negative prognostic factor

(2, 3). These approaches could improve the treatment outcome

and require robust non-invasive tools to monitor treatment

response. For glioblastoma, this should be on a regional basis

given its significant spatial heterogeneity (4).

Intra-tumoral spatial heterogeneity is a well-recognised

phenomena in glioblastoma, especially at the genomic and

transcriptomic levels (5, 6). Studies utilising multiple regional

sampling have described spatially distinct expression of key driver

mutations including Epithelial Growth Factor Receptor (EGFR),

TP53 and neurofibromatosis type 1 (NF1), and also the presence

of at least two transcriptomic Verhaak classes within the same

tumour in up to 60% of cases (5). At the microscopic level, spatial

heterogeneity can also be appreciated by the presence of distinct

tumour niches, which are groups of cells localising to particular

regions within the tumour microenvironment. The perivascular

niche for example, includes endothelial cells in close proximity to

glioblastoma cancer stem cells (7). Tumour niches are

characterised by distinct gene expression patterns that could

influence response to treatment (8). On a macroscopic level,

there is currently no robust method to detect glioblastoma’s

spatial heterogeneity, which could otherwise aid patient

stratification for early time-point clinical trials for example.

Magnetic resonance imaging (MRI) is used to guide

glioblastoma treatment including surgery and radiotherapy,

and could be used to monitor treatment response on a

regional basis. To date, most efforts utilising MRI data in

glioblastoma have focussed on radiomic approaches to extract

innumerable quantitative imaging metrics with less emphasis on

spatially relating these to the tumour microenvironment.

Habitat imaging is an emerging imaging technique to delineate

the tumour into distinct spatial regions with shared imaging

characteristics. These regions can be visualised and interrogated

longitudinally to characterise tumour regions and monitor their

treatment response (Figure 1).

Traditional approaches to delineating imaging habitats in

glioblastoma have considered regions based on their location on

structural MRI sequences (optimised for visualising brain

anatomy). For example, at least five habitats could be defined

by considering just two structural imaging sequences – T1 with

gadolinium and Fluid Attenuated Inversion Recovery (FLAIR):

the necrotic core, peri-necrotic enhancing rim, enhancing core,

enhancing rim and the ‘infiltrative zone’ defined by FLAIR
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hyperintensity in the absence of contrast enhancement (9, 10).

However, these regions are not always easy to segment and their

size is defined by arbitrary and subjective thresholds. The regions

themselves are also inherently heterogeneous – for example, the

non-enhancing FLAIR hyperintensity is a mixture of oedema

and infiltrative tumour with no clear delineation between them.

There is therefore a need for alternative methods of deriving

imaging habitats in glioblastoma.

In this review, we will provide an overview of the current status

of habitat imaging in glioblastoma, highlighting its potential use as a

non-invasive tool for more personalised treatment. We will explore

different methodologies to derive imaging habitats, strategies to

overcome its technical challenges, contrast experiences to other

cancers, and describe potential clinical applications.
Imaging biomarkers

A biomarker is defined as a characteristic that is measured as an

indicator of normal biological processes, pathogenic processes or

responses to an exposure or intervention, including therapeutic

interventions (11). Imaging biomarkers are biomarkers that are

derived from clinical imaging sequences such as MRI. Examples of

conventional imaging biomarkers used in glioblastoma derived

from diffusion and perfusion MRI are listed in Table 1.

In addition to conventional imaging biomarkers, it is

possible to apply data-mining approaches to imaging data to

yield quantifiable data, under the theme of radiomics. Radiomics

typically produces a vast set of imaging features that are derived

from the tumour as a whole. This feature set is a distinct imaging

biomarker in its own right that is useful for aiding in diagnosis,

prognostication and predicting treatment response (13).

Although this may have advantages to histopathological

analysis by decreasing the likelihood of intraoperative under-

sampling by considering the tumour as a whole (14), it does not

typically relate imaging metrics to individual tumour regions.

Tumour subregion radiomic analyses have also focused on

relating radiomic features to patient related outcomes, relaying

little about the underlying tumour microenvironment limiting

its use in guiding novel treatment strategies (15). This limitation

of assessing regional response may be overcome by enhanced use

of conventional imaging biomarkers used in isolation/together.

Imaging biomarkers provide information about tumour

biological characteristics with varying specificity. In current

practice, imaging biomarkers are largely used in isolation,

which is advantageous given the simplicity of this approach.

However, there may be benefit in combining different

biomarkers using the additional and differential information

provided by considering their overlapping areas. In one study for

example, the positive predictive value (PPV) of relative cerebral

blood volume (rCBV; defined in Table 1), apparent diffusion

coefficient (ADC; defined in Table 1) and the FLAIR signal, to
frontiersin.org
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predict disease recurrence in glioblastoma was evaluated. The

PPV for recurrence was improved by considering the overlap of

high FLAIR, rCBV and low ADC (PPV = 31.9%), versus

individual biomarkers alone (PPV for rCBV = 21.6%) (16).
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Habitat imaging utilises imaging biomarkers to delineate

distinct spatial regions with homogenous biological and physical

characteristics within an individual tumour (17). This has specific

applications in glioblastoma as identification of more aggressive/
FIGURE 1

Clinical utility of habitat imaging in glioblastoma: assessment of changes pre and post-radiotherapy. This figure demonstrates the clinical utility
of habitat imaging in glioblastoma pre and post-radiotherapy. Top row – structural imaging (T1 with contrast) demonstrates no significant
changes in tumour anatomy. Middle two rows – diffusion and perfusion MRI scans demonstrate changes in tumour physiology with treatment
with a decrease in rCBV for example (red to yellow represents low to high values for each biomarker). Bottom row – imaging habitats map
where each voxel is labelled according to both rCBV and ADC values. This method produced 16 different habitats for this patient. After
radiotherapy, the biggest increase was in a habitat defined by low rCBV and low ADC (10.5% increase). The biggest decrease was in a habitat
defined by high rCBV and medium ADC (5.7% decrease). Habitats that are more resistant to treatment can be spatially visualised and offered
targeted therapy. RT, radiotherapy; T1C, T1 with contrast; rCBV, relative cerebral blood volume normalised to contralateral white matter; ADC,
apparent diffusion coefficient.
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treatment resistant habitats could enable locally targeted treatment,

such as targeted resection for hypoxic areas for example, that

correlate with a shorter survival (18). Habitat imaging could also

overcome limitations in the sensitivity of individual imaging

biomarkers in assessing and monitoring multiple physiological

processes, and provide a more accurate representation of the

tumour molecular profile non-invasively (19, 20).
Habitat imaging definition

Cancer exhibits marked spatial heterogeneity at the

anatomical, physiological and molecular levels (21). Imaging can
Frontiers in Oncology 04
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be interrogated to visualize this spatial heterogeneity and identify

imaging habitats (17). Imaging habitats are tumour regions with

distinct imaging characteristics that arise from their unique

intrinsic cell populations and/or local environmental conditions.

Although individual imaging biomarkers could be used in theory

to define habitats, based on analysis of voxel signal intensity

distributions for example, it is more conventional to use the

term when tumour regions are defined using multiple imaging

biomarkers. Thus, for the purposes of this review, imaging habitats

will refer to tumour regions defined using multiple imaging

biomarkers. As each imaging biomarker assesses a different

aspect of tumour biology, a multiple biomarker approach also

increases the degree of tissue heterogeneity that can be assessed.
TABLE 1 Conventional imaging biomarkers in glioblastoma (12).

Imaging
biomarker

Details

Apparent
diffusion
coefficient
(ADC)

Measurement of inferred (‘apparent’ rather than actual) water diffusion with DWI. It is a measure of the relative decrease in the transverse
magnetization induced by additional dephasing and rephasing magnetic field gradients. Net dephasing and therefore signal loss is greater in freely
diffusive tissue. Quantitatively, the ADC is the slop of a line plotting the natural logarithm of the MRI signal (y-axis) per unit of applied magnetic field
strength (b-value plotted on x-axis; units mm2/s).

Mean diffusivity
(MD)

This is the magnitude of mean diffusion in a given voxel obtained with diffusion tensor imaging (DTI). ADC may not be uniform at all orientations.
MD is the average diffusivity from the three eigenvalues of the diffusion tensor. It is often regarded as an approximation of the overall ADC (units
mm2/s).

Fractional
anisotropy (FA)

DTI provides FA values which indicate the overall directionality of water diffusion within a voxel. FA is a scalar value between 0-1 that describes the
degree of anisotropy of the diffusion process. A value of zero means that diffusion is isotropic (i.e. equal in all directions, and the diffusion ellipsoid is
a sphere). A value of one means that diffusion is totally anisotropic (i.e. diffusion occurs only along one axis and is fully restricted along all other
directions).

Cerebral blood
volume (CBV)

CBV is the volume of blood in a given amount of brain tissue, most commonly millilitres of blood per 100 g of brain tissue. CBV can be calculated by
assessing the area under the concentration-time curve, which in turn can be generated from signal intensity-time curves generated using Dynamic
Contrast Enhanced (DCE) MRI (measuring T1 signal recovery) or Dynamic Susceptibility Contrast (DSC) MRI (measuring T2 signal loss),
respectively (units ml/100g).

Cerebral blood
flow (CBF)

Cerebral blood flow is the volume of blood passing through a given amount of brain tissue per unit of time, most commonly millilitres of blood per
minute per 100 g of brain tissue. Alternatively, one may express CBF in terms of flow per unit volume of brain tissue, thus in ml blood/min/100 ml
tissue.

Mean transit
time (MTT)

Mean transit time is the average period of time that blood spends within the blood vessels in a particular part of the brain (units seconds).

Volume transfer
constant (Ktrans)

Ktrans is the volume transfer constant for contrast agent between blood plasma and the tissue extravascular extracellular space (EES). Ktrans is derived
from a pharmacokinetic model and represents a mix of flow and permeability. It most commonly serves as a measure of permeability/vascular leak
under permeability-limited conditions (units min-1).

Rate constant
(kep)

kep determines the washout rate of contrast agent from the extravascular extracellular space back into the blood plasma (kep = Ktrans/ve; units min-1).

Extravascular
extracellular
space fractional
volume (ve)

ve is defined as the volume of the extravascular extracellular space (EES) per unit volume of tissue, and thus is a dimensionless number between 0 and
1. The parameter ve reflects the amount of “room” available within the tissue interstitium for accumulating contrast agent. Note that ve is different
from Ve, which represents the total volume of extravascular extracellular space in ml.

Fractional
plasma volume
(vp)

Represents the volume of blood plasma per unit volume of tissue (therefore unitless). It is derived from a pharmacokinetic model.

Native
longitudinal
relaxation rate
(R1N)

R1 is the longitudinal relaxation rate of the protons of tissue water (R1 = 1/T1). R1N is the baseline tissue R1 in the absence of the contrast agent. The
R1N measurement inversely reflects the free water content of tissue (units s-1).
This table provides an overview of the most commonly cited imaging biomarkers used in glioblastoma patients. Note that the prefix of ‘r’ before these imaging biomarkers represents
comparison to a reference region, that is usually the contralateral normal appearing brain parenchyma, but defined differently from study to study.
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Habitat imaging in glioblastoma:
Status and potential

Current experience

Several studies have investigated the potential of habitat

imaging for predicting relevant clinical endpoints in glioblastoma

(Table 2). Supplementary Figure 1 outlines the search strategy and

methodology used for this section. In general, there are two main

approaches to habitat imaging (Figure 2). The first (‘one step’)

involves using bioinformatics to cluster multi-dimensional imaging

biomarker datasets. In this approach, data from multiple imaging

biomarkers is combined into a common data table and clustering

methods such as hierarchical clustering are used to identify groups

(27, 30). The second approach involves two steps, in which data

from each individual biomarker is firstly split into data clusters and

multiple combinations of those clusters can be used to define

habitats (26).

The one step approach to deriving habitats is akin to clustering

across a genomic dataset. You et al. derived habitats using

hierarchical clustering in 21 glioblastoma patients and were able

to relate these to survival and tumour biology descriptively. They

found three main biomarker clusters that were named based on the

most clinically relevant biomarker of the group: ‘FLAIR’ cluster –

FLAIR, quantitative T1 and T2 signal, and ADC; MET cluster -

methionine positron emission tomography (MET PET; methionine

is an amino acid PET tracer that localises to metabolically active

tumour), CBV and KTrans (marker of permeability; defined in

Table 1); and diffusion-weighted imaging (DWI) cluster – DWI

and fractional anisotropy (FA; defined in Table 1). The necrotic

core was represented by the FLAIR cluster, surrounded by the core

cellular component represented by both the FLAIR and DWI

clusters, in turn encircled by a metabolically active rim

represented by the methionine cluster. This method was therefore

able to capture a degree of glioblastoma’s heterogeneity. The clinical

utility of their method was limited in detecting tumour recurrence,

localised to the methionine cluster in only 5 out of 10 cases (27).

Other studies have also found utility in applying the one-step

approach. Juan-Albarracı́ n et al. developed an automated

method of habitat generation using gaussian mixture

modelling applied to rCBV and relative cerebral blood flow

(rCBF; defined in Table 1) to produce four habitats – two in the

enhancing core (high/low angiogenic) and two in the oedema

(infiltrated and vasogenic). They demonstrated that the median

rCBVmax or rCBFmax values in the high and low angiogenic

habitats were predictive of survival (35). These findings were

subsequently validated in a multi-centre study (30). This group

has made their technique to generate habitats into a standardised

and adaptable pipeline for other centres (36).

The two step approach to generating habitats is more

commonly used in the literature (16, 22–26, 28, 29, 34). The

first step of biomarker clustering itself can be done using simple
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methods, such as by dividing intensity values based on average

values/quartiles, or using machine learning methods. Habitats

are then visualised as the overlaps of individual biomarker

clusters. For example, Lee et al. used this approach in 74

glioblastoma patients from The Cancer Genome Atlas

(TCGA), using Gaussian mixture modelling to cluster

biomarkers (enhancement on T1 with contrast and FLAIR),

which were then used to produce four habitats. Spatial features

of these habitats were predictive of survival and had a high

sensitivity for predicting glioblastoma transcriptomic subtype –

highest for the proneural subtype with an area under curve value

of 93% (22).

Only few studies have attempted to relate habitats to specific

histological or molecular signatures (Table 2) (25, 26, 28, 29).

Dextraze et al. analysed 85 glioblastoma patients from TCGA,

and reported that the volume of a habitat localised to necrotic

regions was positively correlated with an upregulation in

Nuclear factor kappa B signaling, for example (26). Bailo et al.

is the only study that attempted to directly sample characterised

habitats (34). They studied 17 high grade glioma patients and

used the two step approach with three biomarkers: vp - plasma

volume (a DCE-MRI biomarker; defined in Table 1), mean

diffusivity (defined in Table 1) and uptake of a PET tracer that

localizes to hypoxic regions. They undertook multi-regional

tumour sampling and related habitats to histopathological

features. Although conclusions were difficult to draw in view

of the sample size, they identified habitats correlated with more

aggressive histological features such as high cellularity and

neovascularization (34).

In summary, current experience with habitat imaging in

glioblastoma has mostly focused on the prognostic value of the

technique applied to preoperative imaging and, in general,

correlating habitat frequencies with global tumour biological

features/molecular pathways. Existing studies have not explored

technical considerations that are of critical importance to habitat

imaging and its validation, including derivation method,

biomarker selection, imaging acquisition parameters and tissue

sampling. These will be explored in the following sections to

provide a framework for future studies.
Technical considerations

There are several technical considerations of relevance to

habitat imaging.

One versus two step approach. Habitat generation has been

described using two main methods (Figure 2). The one step

approach clusters data from multiple imaging biomarkers

directly, whereas the two step approach has an intermediate

clustering step for each imaging biomarker selected. Both

techniques are dependent on accurate image registration,

which refers to the process of aligning different MRI scans.

Quantitative maps represent imaging biomarker values on each
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oblastoma. T1 + C, T1 with contrast; FLAIR, Fluid Attenuated Inversion Recovery; ADC, Apparent Diffusion Coefficient; DWI, Diffusion Weighted Imaging; FA,
ission tomography; FAZA PET, 8F-labeled fluoroazomycinarabinoside PET, localises to hypoxic regions; EPT, Electrical Properties Tomography imaging.
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pixel (instead of signal intensity) and are produced from MRI

sequences to which they are inherently aligned (e.g. an ADC/

rCBV image is aligned to the DWI/dynamic susceptibility

contrast MRI from which it was derived, respectively). When

biomarker values are extracted from a three-dimensional image

to a two-dimensional table of data for clustering, they are done

so in pixel-order (i.e. from one edge of the image to the other),

which will differ from sequence to sequence due to differences in

resolution and therefore the number of potential ‘rows of data’.

In order to correct for this, image registration is performed to

spatially align and transform two images, but this results in

distortion of individual values. The newly aligned images will

include pixel values that were not present in the original data-set

but derived from neighbouring values through interpolation

(37). It is not ideal to register the whole quantitative map

therefore as it creates artificial data values and can amplify

artifacts, but this has been universally done in studies utilising

the one step approach to habitat imaging (34). A workaround is

to use multiple imaging biomarkers from the same MRI

sequence – such as with dynamic contrast enhanced (DCE)

MRI (demonstrated in Figure 2 – top panel). DCE-MRI offers a
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multitude of imaging biomarkers that can assess several aspects

of brain tumour physiology including vessel permeability

(KTrans), vascularity (vp - plasma volume), blood flow and cell

density (ve - extravascular extracellular space) (38). These have

been validated for use in other brain tumours such as vestibular

schwannomas (38), though DCE-MRI is under-utilised in

glioblastoma literature (39). Another solution is to use the two

step approach, which clusters each biomarker individually prior

to habitat generation. Registration is done on clustered data

which minimises the effect of extreme/artifactual values (which

would otherwise be present in the up-scaled, registered data at a

higher frequency). It is also predominantly the edge voxels

between different clusters that are affected by spatial

transformation steps. A comparison between the one and two

step techniques is required in future studies.

Biomarker choice. A significant limitation of most existing

studies is their reliance on imaging biomarkers derived from

non-quantitative, structural MRI sequences (e.g. T1- and T2-

weighted MRI). These sequences were developed for

visualisation of gross anatomy and for this purpose, there is a

high degree of consistency in brain structural morphology (40).
FIGURE 2

Habitat imaging methods in glioblastoma. This figure provides an overview of the two main approaches to deriving imaging habitats utilising
local preoperative data from 12 patients with glioblastoma undergoing surgery. (A) one step approach: a multi-dimensional dataset can be
produced utilising multiple imaging biomarkers from the same MRI acquisition (to avoid interpolation/registration errors), in this case Dynamic
Contrast Enhanced (DCE) MRI. Data from R1N – defined in Table 1 and three DCE-MRI imaging biomarkers (Ktrans, vp and ve) were input into a
machine learning K-means clustering algorithm to produce four distinct imaging habitats, that were distinct on Principal Component Analysis
(PCA; right). A disadvantage of this approach is its ‘black-box’ nature, such that it is not straightforward to define each habitat for prospective
validation. (B) Two step approach: this step first requires clustering of individual imaging biomarkers, in this case ADC and rCBV (left). Each pixel
is then assigned to a habitat based on its ADC/rCBV cluster, with multiple cluster combinations defining each habitat (grey box). The advantage
of this approach is that imaging biomarkers from different MRI acquisitions (e.g. diffusion and perfusion MRI) can be utilised. It is also easier to
define each habitat as the definition of each is derived from its individual ADC/rCBV cluster composition. This approach therefore allows for
prospective validation with pre-defined cluster thresholds.
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However, their signal intensity values are affected by hardware

factors, such as magnetic field strength inhomogeneity, head

placement within the receiver coil, image intensity scaling

factors and image acquisition parameters (41). It is difficult to

completely negate these effects or correct them using a

normalisation step (41). Habitats derived from functional MRI

sequences (e.g. diffusion/perfusion) have demonstrated the

greatest external validity and this approach should therefore be

favoured (30). The functional imaging biomarkers to consider

for habitat generation depend on the purpose of the exercise. If

this is a clinical aim, such as the identification of treatment-

resistant habitats, then robust biomarkers of cellularity and

perfusion are important. The imaging biomarkers should also

be readily available across centres to allow external validation/

adoption. In this case, we hypothesise that ADC, rCBV and

KTrans are good candidates to further explore, given their

sensitivity to treatment-related change and widespread use (42).

Biomarker calculation. The calculation method is an

important consideration for functional imaging biomarkers.

For example, the numerical value of DCE-MRI biomarkers

such as KTrans can vary in the same dataset depending on the

pharmacokinetic model used, due to different underlying

physiological assumptions (43). For DCE-MRI analysis in

glioblastoma, an extended Toft’s model is usually employed

that models contrast leakage between intra/extravascular tissue

compartments, modified ( ‘extended ’) for appropriate

contribution of the intravascular compartment (44). This can

be combined with new processing techniques such as the Legatos

method, described and validated by our group, which combines

high temporal and high spatial resolution DCE-MRI data, to

facilitate habitat imaging (used for Figure 2 top panel) (38, 45).

Different model assumptions also also apply to diffusion-derived

biomarkers such as ADC, which can be defined using a mono-

exponential model (fits a straight line through a graph of signal

intensity versus b-values - usually 0 and 1000 s/mm2; b-values

denote the strength of the magnetic field gradient applied in

diffusion MRI studies) and more complex exponential models

(fits a more complex function involving multiple b-values), with

the latter typically producing more accurate results (46).

However, to date, studies using ADC for habitat imaging have

used monoexponential models (16, 27). The Quantitative

Imaging Biomarkers Alliance (QIBA) is an ongoing effort that

aims to produce standards for use of specialist imaging such as

diffusion/perfusion MRI in clinical and research environments

(47). This work could help to standardise biomarker calculation

methods, which are currently diverse, poorly understood and

not robustly validated (47). As an example, although rCBV is

frequently cited in glioblastoma literature, the variation in how it

is derived is often not acknowledged. Indeed, it can be derived

from dynamic susceptibility contrast enhanced MRI (DSC-MRI)

using almost any major imaging analysis software package

(including FMRIB Software Library, 3D slicer©, Matlab© and

Osirix©) and each uses a different calculation method (48). In
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general, we recommend utilisation of robust biomarker

calculation methods that are amenable to external uptake and

therefore validation.

Image acquisition. Habitat generation requires a relatively

high spatial resolution. This should be small enough with respect

to the size of the tumour to avoid partial volume effects, which

occur with larger voxel sizes (i.e. thicker MRI slices) that average

MR signal from multiple tissue components included in each

voxel (49). However, there is a trade-off between spatial

resolution and the signal-to-noise ratio (SNR) that is needed

for accurate estimation of imaging biomarker values on a voxel-

level, like ADC and Ktrans (47, 50). The SNR is proportional to

voxel volume as larger voxels contain a higher number of

protons that subsequently produce a greater MR signal (49).

The imaging time must also be considered, as longer durations

can result in motion artifacts. Initiatives like QIBA provide

guidance for the acquisition of quantitative imaging

biomarkers and the use of such MR acquisition parameters

would allow a more robust comparison of habitats across

centres, especially in the case of multi-centre tissue sampling

(47). Scan angulation is another important consideration for the

two step approach to remain consistent between functional and

anatomical sequences (50). Where data from multiple

acquisitions is being utilised, if scan angulations are not

aligned, then potentially all data will be resampled and

interpolated during image registration. In summary, habitat

imaging requires a relatively high spatial resolution (2-3.5mm

slice thickness in our experience) that preserves the SNR, and

utilises sequences with relatively consistent angulation to

structural sequences.

Individual versus group level data. This is of particular

relevance to glioblastoma given its significant inter-patient

heterogeneity. The techniques described above consider

imaging biomarker data on an individual patient level.

Biomarker clustering is performed using threshold values

defined per patient, rather than the larger group. This is

largely because they utilize structural MRI sequences alone,

which are not validated for scaled comparisons between

patients. However, for quantitative imaging biomarkers, this is

an important consideration for glioblastoma given its significant

inter-patient heterogeneity. In our previous meta-analysis for

example, the mean tumoral blood flow relative to normal

appearing white matter across glioblastoma patients in the

literature varied from 1.6-7.9 (39). To demonstrate the

importance of group-level data, Figure 3 demonstrates

differences in ADC thresholds when clustering is performed at

the individual patient versus group level. The advantage of

group-level definitions is that they allow for reproducibility

across both retrospective and prospective datasets. Group-level

definitions should therefore be utilised in future studies.

Machine learning. Unsupervised machine learning

techniques can be used for clustering purposes. Studies have

used two main approaches:
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• Imaging sciences approaches: Otsu thresholding

analyses the distribution of pixel intensity values to

de t e rmine thr e sho ld va lue ( s ) to max imi s e

discrimination between (usually two) pixel classes (51).

This has been utilised in studies using structural as well

as quantitative MRI sequences (25, 28, 34). Both

commercial and open-source software packages are

also capable of applying predetermined thresholds to

automatically segment a region of interest into different

classes. For example, the open-source FMRIB’s

Automated Segmentation Tool (‘FAST’) can segment

brain images into white matter, grey matter and

cerebrospinal fluid (52). Although this tool was used in

one study investigating glioblastoma habitats, it is not

designed to segment tumour regions (24). These

techniques are usually applied to individual MRI

sequences and do not therefore account for inter-

patient heterogeneity.

• Classical approaches: k-means clustering separates data

into clusters by iteratively allocating data points to
tiers in Oncology 11
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cluster ‘centroids’ (numerical points that represent a

group of adjacent data points) and updating centroids

to minimise the sum of squared distances between data

points and corresponding cluster centroids to which

they are assigned. This algorithm is very simple and

efficient, but sensitive to extreme values, given its

reliance on the mean for centroids. It also requires the

user to specify the number of clusters required (53).

Most existing studies using k-means clustering to

generate habitats have not described how the number

of clusters (i.e. habitats) was determined (26). This

typically requires additional analysis such as the within

cluster sum-of-squared or ‘Elbow plot’ method (54).

This method plots the number of clusters (x-axis)

against the sum of squared distance between each

point and the centroid (y-axis). The optimal number

of clusters is the point of maximal ‘bend’ or ‘elbow’ (33,

54). Gaussian mixture modelling clusters data by

identifying gaussians (i.e. normal distributions) within

the data distribution and it can perform hard or soft
FIGURE 3

The importance of considering group level data during clustering. This figure demonstrates the necessity of combining patient data for
clustering. The top panel shows preoperative ADC data from 12 glioblastoma patients after clustering, demonstrating a histogram with a smooth
gaussian shape. The bottom panel shows the results of clustering when data from only one individual patient is considered, revealing a more
irregular histogram and different cut off values for each cluster. Corresponding cluster regions are displayed visually on the left of each panel.
This technical consideration is of particular importance as it has implications for prospective habitat generation in validation cohorts, which is
dependent on robust predefined cut offs.
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clustering of data to different gaussians (53). The

presence of multiple gaussians is therefore an

assumption of this technique, which may not be

accurate. For example, Figure 3 shows only one

smooth ADC gaussian when data from all patients is

considered. Hierarchical clustering groups together

datapoints based on local proximity (53). This method

has only been applied to individual patient data rather

than group-level data, for which it was designed (27).
In summary therefore, the use of machine learning

techniques to generate imaging habitats in glioblastoma

requires further evaluation using robust methodology. In

particular, studies should justify the number of clusters

selected, rather than basing this figure on an arbitrary value.

The role of machine learning techniques should also be clarified

through comparison to simpler techniques such as ‘binning’ of

data-values into clusters based on quartile or mean values.

Deep-learning. Deep learning (DL) is a subfield of machine

learning that is capable of learning which features are most

relevant for classification/clustering problems. It is classically

described in three stages (55, 56):
1. Input of labelled training data – this is high-dimensional

data, which has been assigned labels manually. For

example, for a tumour segmentation task, this may be

pixels assigned as tumour or brain.

2. Development of neural network – this comprises an

input layer, one or more hidden layers and an output

layer. In simple terms, the input is mathematically

mapped to the output by a series of functions

(contained in hidden layers) that try to model the

relationship between the two. In imaging research, a

‘convolutional’ neural network (CNN) is typically used

which applies an additional convolution function (also

referred to as a kernel) to the input to provide an

estimation of spatial relationships (55).

3. Validation of neural network – this step utilises an

additional validation dataset to validate the neural

network that has been developed.
DL can be implemented in habitat imaging pipelines in at

least three ways:
1. Tumour segmentation: habitat imaging requires

accurate three-dimensional delineation of the tumour

and/or peritumoral oedema, to allow precise monitoring

of longitudinal changes and treatment planning (57).

Manual segmentation is time consuming and subjective,

even in expert hands, with a high inter-rater variability.

This was best illustrated in the Multimodal Brain
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Tumour Image Segmentation Benchmark (BRATS)

challenge, which compared glioma segmentation

algorithms against expert labelling. The authors found

a high degree of disagreement between human raters

(58). Approaches utilising a CNN can achieve/exceed

performance of experts. For example, in habitat

imaging, the ONCOhabitats algorithm proposed by

Juan- Albarracı́ n et al. utilises an initial segmentation

step incorporating a CNN. The authors developed this

utilising 210 high grade glioma scans from the BRATS

dataset, basing segmentation on structural sequences

(T1 pre and post gadolinium, T2-weighted and FLAIR-

MRI). Their method achieved a high sensitivity of up to

87% for whole tumour, and very high specificity of 99%

for all tumour regions (enhancing tumour/oedema/

whole tumour) (36).

2. Pharmacokinetic model fitting: this is of relevance to

techniques such as DCE-MRI. Traditionally, a non-

linear least square (NLLS) method is used to fit

pharmacokinetic models to the four-dimensional data

obtained from DCE-MRI (i.e. 3D volumes acquired

serially with time). DL methods such as CNN can

produce more precise parameter estimates with less

noise, although they are also prone to systematic

errors (59).

3. Habitat generation: a difficulty in using DL for habitat

generation in glioblastoma is its reliance on labelled data

and as a result, DL has not yet been used for this

purpose. A comprehensive reference resource with

labelled habitats would facilitate the development of

robust DL methods for habitat generation (see

Discussion).
In summary, DL is an evolving and exciting field, whose

methodology could be incorporated into the first arm of habitats

pipeline to allow semi-automated tumour segmentation.

However, at present, experience with DL is limited and its role

remains to be defined.

Habitat volume and sampling. This factor is of particular
clinical relevance to validate habitat methodology. In theory, any

number of imaging biomarkers can be clustered and combined

to produce habitats. However, an increasing number of

biomarkers and biomarker clusters decreases the habitat

volume limiting the possibility to cross validate the habitat

with tumour sampling. Furthermore, the conceptual meaning

of habitats may decrease the more biomarkers are used to define

them. Bailo et al. utilised image-guided biopsies to sample

habitats derived from three biomarkers clustered into two

categories each (low/high). However, only 19/31 biopsies they

performed contained a single habitat, whereas others contained

multiple habitats (34). This would suggest that even fewer
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biomarkers should be utilised to allow a large enough volume to

allow accurate histological sampling. In the context of

glioblastoma, this should be at least 1 mm3, which is the

minimum volume of a brain biopsy (60). In reality, the

sampled area is likely to be even larger than this and therefore,

without adjusting habitat size, sampling of tissue will include

multiple habitats that will confound results. Relating habitats to

autopsy specimens should be avoided as these may be obtained

several months after the imaging study and sampled areas can be

much larger than habitat (24). As habitat samples are likely to be

small, efforts must be taken to preserve tumour cell viability.

This includes transporting them on dry ice and fixing/snap

freezing samples at the earliest possible convenience (61). An

alternative strategy to validating habitats, as utilised in other

cancers, relates to correlation with metabolic imaging such as

PET, although this less widely available (62). In summary, for

heterogenous tumours like glioblastoma, habitat sampling and

validation is important to guide the development of

personalised therapy.

These technical considerations highlight the need for future

studies to evaluate divergent methodologies that are not fully

explored, to provide reproducible habitats across centres.
Clinical application

A robust and reproducible method of defining glioblastoma

habitats has several clinical applications.

Tumour sampling. Habitat guided tumour sampling is

possible as habitat maps can be imported into conventional

neuronavigation software used in neurosurgical planning (34).

This software is capable of image registration but is optimised

for structural and functional MRI sequences. To avoid registration

errors in this specialist setting, it is therefore important for the final

habitat output map to be registered to a structural MRI sequence

(typically T1 post gladolinium) prior to its export into

neuronavigation software. It can then be used to direct surgical

sampling. The location of intra-operative biopsies can be mapped

back to MRI scans using the FMRIB Software Library’s upcoming

Tensor Imaging Registration Library (TIRL) tool, which can act as

a bridge between imaging and histopathology (79). Habitat-guided

tumour sampling has the potential to reduce spatial heterogeneity

between acquired specimens. Furthermore, in glioblastoma

patients undergoing biopsy alone, which comprise around 40%

of all cases (63), the tumoral yield could be increased by targeting

more cellular habitats - with lower ADC values for example. This is

also potentially advantageous for genomic sequencing analyses.

Treatment resistant habitats could also be sampled, especially in

the case of multi-focal and ‘butterfly’ glioblastomas (that cross the

corpus callosum) where a surgical target for biopsy is not

always clear.
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Diagnostics. Habitat imaging provides an additional tool for

radiologists to define a lesion’s imaging signature, which could

aid diagnostics. This is of particular relevance at present given

the increasing emphasis on early time point interventions for

newly-diagnosed glioblastoma, including preoperative therapies,

which may require imaging diagnosis alone (2). As an example,

PreOperative Brain Irradiation in Glioblastoma (POBIG -

NCT03582514) is an ongoing phase I trial (led by the senior

author of this review) that will evaluate the safety and feasibility

of preoperative radiotherapy in newly-diagnosed glioblastoma

patients based on imaging diagnosis alone (64). Confirmation of

diagnosis is of critical importance in preoperative treatment

studies and some have implemented a first step of a pre-

resection tumour biopsy to offset the risk of a misdiagnosis (65).

Targeted treatment. The habitat profile of a tumour may

correlate with key molecular changes such as O6-methylguanine-

DNA methyltransferase (MGMT) promotor methylation, which

could non-invasively aid the selection of patients for future

neoadjuvant trials (2, 66). In addition, interventional approaches

would benefit from prior knowledge of habitats that have

associated aggressive histopathological tumour signatures such

hypoxia. Notably, this cancer hallmark is present both

microscopically in tumour niches around palisading necrotic

regions, but also macroscopically, in hypoperfused areas such as

the peri-necrotic rim (8, 67). Treatment-resistant habitats could be

targeted with regional dose-boost radiotherapy and/or surgical

resection, such as in the case of butterfly lesions where there is

discrepancy in surgical decision making (68). This is an important

area to explore given the negative results from dose escalation

based on structural imaging and the ongoing attempts to improve

the outcome by escalating the dose in tumour areas identified on

functional imaging (69–71). Habitat-guided radiotherapy dose

boost is already being prospectively evaluated in prostate cancer

(72). Dynamic assessment of habitat treatment response offers a

more personalised approach that allows intensification of

treatment only when required, on a regional basis (Figure 1).
Discussion

Habitat imaging in glioblastoma has several potential clinical

benefits and applications but there remain a number of technical

challenges. Based on the imaging biomarker roadmap, suitable

data does not currently exist to evaluate this strategy towards

validation and more robust data is required (11).

Existing studies that have derived imaging habitats in

glioblastoma patients and studied their associated histological/

molecular characteristics are not comprehensive or sufficiently

robust (26, 34). There are multiple technical considerations of

relevance to both the process of imaging habitat generation and

subsequent histological validation, that require further study.
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The methodology employed to generate imaging habitats should

offer low variation/high repeatability within the same patient in

the absence of clinical change when imaging is performed

longitudinally. Such repeatability depends on the underlying

imaging biomarkers selected and has been demonstrated for

quantitative imaging biomarkers derived from diffusion and

perfusion MRI (73, 74).

Habitat volume is a key challenge that should be overcome

prior to histological validation. Multiple habitat inclusion in image-

guided biopsies can lead to non-specific results. For example, the

usual inverse correlation between mean diffusivity and cellularity

was not observed in the study by Bailo et al., in which over one third

of biopsies contained multiple habitats (34). Better characterisation

of the biology of habitats could also pave the way for DL techniques

to optimize habitat generation. As reviewed above, DL techniques

depend on labelled data points. A comprehensive investigation that

spatially links histopathological features (e.g. cellularity, perfusion

and necrosis) to multi-modal imaging would allow a CNN to be

trained that can provide parameter maps relating to these features.

This step is of primary importance towards translation and clinical

use of habitat imaging, which is otherwise time consuming and

reliant on specialist software/expertise.

Habitat imaging in other cancer types including breast,

prostate and sarcoma has reached histological or preclinical

validation, and even clinical use (62, 72, 75). Some experiences

have utilised additional strategies to those reviewed above that

merit discussion. Xing et al. described an initial step of

qualitatively defining five habitats based on radiologists’

assessment of T2/diffusion weighted MRI in 18 patients with

biopsy-proven soft tissue sarcoma. As a second step, they then

utilised gaussian mixture modelling to create quantitative

definitions that described the probability of a pixel belonging

to one of these specific habitats. This approach identified a

validated necrotic habitat that correlated well with preoperative

fluorodeoxyglucose-(FDG)-PET, which increased after

preoperative radiotherapy (62). Another approach utilised in a

preclinical sarcoma mouse model involves registering fine cut

tissue sections to multiparametric imaging, to identify imaging

signatures predictive of specific histologically defined habitats

(76). This is challenging in glioblastoma patients as it requires

en-bloc resection, which is only feasible in limited locations

within the brain and in most cases will not capture infiltrative

components of the tumour periphery (77), or the availability of

temporally correlated post-mortem specimens. However, unlike

experiences in glioblastoma patients, both of these strategies

limit the number of imaging habitats to those apparent clinically.

Understanding the biological meaning of habitats is of

direct clinical importance and experience in prostate cancer

has demonstrated its value. Stoyanova et al. defined habitats

based on DCE/ADC MRI and correlated them with Gleason

scores on finely cut prostate cancer sections. Their prior work

had identified thresholds based on DCE/ADC that correlated
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with higher Gleason scores. They identified a habitat that

correlated well with a Gleason score of ≥7, representing

increased likelihood of cancerous tissue, with an area under

curve of 0.8. This habitat is now being prospectively targeted

with regional dose boost radiotherapy in a phase II randomised

trial (72).

A limitation of concepts presented in this work is reliance on

relatively small studies with largely un-validated methodologies.

There is wide scope for refinement and validation of imaging

habitat techniques in glioblastoma patients specifically given that

firstly, multiparametric MRI is a standard of care, and secondly that

MRI-guided surgery is routine in the brain (78). Future studies

should therefore focus on histologically validating robustly-derived

imaging habitats. A generic limitation of studies in other cancer

types is the lack of real-time tissue sampling from habitats and

reliance on registration of histological sections with imaging. This is

not always reliable, given the gantry angle of MRI machines and

potential for tissue distortion during slice extraction

and preparation.
Conclusion

Habitat imaging is a relatively novel concept that reflects

the evolution of imaging biomarkers, to potentially offer a

superior means to assess tumour biology and response to

treatment in glioblastoma. At present, literature is limited

and further studies are required to both robustly generate and

validate this technique. This is an important area of research

given the multiple clinical applications of habitat imaging

that could facilitate more personalised therapy Glioblastoma.

Future studies should investigate clustering techniques

(machine learning vs. simpler strategies), choice of imaging

biomarkers, habitat reproducibility/external validity and

means to histologically validate findings, towards the

common goal of identifying strategies to overcome

treatment-resistance of habitat defined regions.
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SUPPLEMENTARY FIGURE 1

Search strategy. To review the current evidence on imaging habitats,

MEDLINE was queried systematically using the search terms described by
two independent authors (MW, PVH) with discrepancies resolved through

discussion with a third (EH). A total of 15 articles were included in the final
review relating to imaging habitats that are summarised in .
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Introduction: The purpose of this review was to summarize current applications

of non-contrast-enhanced quantitative magnetic resonance imaging (qMRI) in

tissue differentiation, considering healthy tissues as well as comparisons of

malignant and benign samples. The analysis concentrates mainly on the

epithelium and epithelial breast tissue, especially breast cancer.

Methods: A systematic review has been performed based on current

recommendations by publishers and foundations. An exhaustive overview of

currently used techniques and their potential in medical sciences was obtained

by creating a search strategy and explicit inclusion and exclusion criteria.

Results and Discussion: PubMed and Elsevier (Scopus & Science Direct) search

was narrowed down to studies reporting T1 or T2 values of human tissues, resulting

in 404 initial candidates, out of which roughly 20% were found relevant and fitting

the review criteria. The nervous system, especially the brain, and connective tissue

such as cartilage were the most frequently analyzed, while the breast remained one

of the most uncommon subjects of studies. There was little agreement between

published T1 or T2 values, and methodologies and experimental setups differed

strongly. Few contemporary (after 2000) resources have been identified that were

dedicated to studying the relaxation times of tissues and their diagnostic applications.

Most publications concentrate on recommended diagnostic standards, for example,

breast acquisition of T1- or T2-weighted images using gadolinium-based contrast

agents. Not enough data is available yet to decide how repeatable or reliable analysis

of relaxation times is in diagnostics, so it remainsmainly a research topic. So far, qMRI

might be recommended as a diagnostic help providing general insight into the

nature of lesions (benign vs. malignant). However, additional means are generally

necessary to differentiate between specific lesion types.
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MRI, cancer, diagnostics, T1 relaxation time, T2 relaxation time
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1 Introduction

Magnetic resonance imaging (MRI) has been widely used

since the seventies, and since almost the same time, quantitative

magnetic resonance imaging (qMRI) techniques have been

developed to assess the relaxatory parameters of tissues

(Figure 1). Relaxation time calculation can nowadays be used

in various applications, starting with relatively simple cases of

cartilage degradation and ending up helping diagnose and

contain the most dangerous cancers.

qMRI departs pretty significantly from the original

approach, dedicated at best to obtain single T1- or T2-

weighted images. In opposition to performing a single

acquisition with set parameters of echo and repetition time, a

series of scans are acquired in time with varying echo times for

transverse relaxation or repetition times for longitudinal

relaxation. Such an approach allows tracking the relative

change of magnetization, beginning with the maximum (T2)

or minimum (T1) signal strength at the beginning of a study and

then calculating 33% (T2) or 67% (T1) of it, passing through

consecutive time points. As a result, a signal change in time is

acquired, and it is possible to calculate other parameters, such as

the T1/T2 ratio or relaxation rates R1 and R2. Obtained results

can be standardized, making it easy to compare relaxation curves

and parameters between samples, devices, and studies.

As much as this description is simplified due to the

multiplicity of sequences and practices in use, it should give an

impression of one strength of qMRI: mathematics and models

can, in certain cases, describe biological phenomena in more

detail or maybe even completely different than a human eye. Due

to that fact, the review has been written to get an overview of the

potential usefulness of qMRI in clinical settings, as it might one

day provide support for medical practitioners when it comes to

tissue characterization and differentiation.

In this review, breast cancer and breast tissues were of

primary interest. Due to limited literature on studies without

the use of contrast agents, other tissues and organs were also

considered; such an approach might be justified by the

heterogeneous structure of the breast, built of epithelium, fat,

and being very diverse when it comes to proportions of these

components, which might affect results of relaxation time

calculation. A few publications report successful differentiation

or diagnosis of breast features when using qMRI, contrast-

enhanced or not.
Abbreviations: BOLD MRI, blood oxygenation level-dependent MRI; CT,

computer tomography; DCE-MRI, dynamic contrast-enhanced MRI; DWI,

diffusion-weighted imaging; FSE, fast spin echo; MRI, magnetic resonance

imaging; MT, magnetization transfer; PAI, photoacoustic imaging; PET,

positron emission tomography; qMRI, quantitative magnetic resonance

imaging; ROI, a region of interest; T1w, (images) T1-weighted; T2w,

(images) T2-weighted.
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It must be stated that qMRI currently is not a recommended

diagnostic method according to different authorities and

organizations. The European Society of Breast Cancer

Specialists (EUSOMA) 2008 produced a statement regarding,

in their opinion, the best practices for diagnosing and treating

breast cancer (1). While the publication mentions the acquisition

of T1- and T2-weighted images using gadolinium-based contrast

agents, all other practices are considered experimental and might

be used, at best, as support for the basic analysis. Such

techniques included diffusion-weighted imaging (DWI) and

analysis of apparent diffusion coefficient (ADC), but there was

no mention of qMRI, no matter the application.

Apart from these guidelines, the American Society of Breast

Surgeons reminds us that MRI is not a modality of the first

choice when screening or diagnosing patients unless other

methods, such as x-ray mammography or ultrasonography,

fail (2).

The European Commission Initiative on Breast Cancer

(ECIBC) Guidelines Development Group (GDG) also presents a

series of recommendations and suggestions regarding breast cancer

screening, diagnosis, and treatment (3). Magnetic resonance

imaging is generally described as a method “with very low

certainty of evidence” compared with mammography (4).

It should be mentioned that qMRI is not the only modality

currently being tested when it comes to screening for or

diagnosing breast cancer. This is caused mainly by low

mammography performance when applied to dense or

extremely dense breast tissue. In such cases, many approaches

have been tested, including ultrasound or X-ray-based

techniques (5). Dynamic contrast-enhanced magnetic

resonance imaging (DCE-MRI), currently a standard for high-

sensitivity breast screening, comes with certain disadvantages,

such as the need for intravenous contrast agent administration,

which might result in rare, although possible, allergic reactions

and is considered a more inconvenient protocol than

mammography—a golden standard in screening programs.

Diffusion magnetic resonance imaging (dMRI) may be

implemented in breast cancer imaging. The European Society

of Breast Radiology (EUSOBI) recommends dMRI as a

technique complementary to DCE-MRI. The organization opts

for including standardized dMRI protocols in the Breast

Imaging Reporting and Data System (BI-RADS). The main

advantage of using dMRI together with other modalities is the

acquisition of additional information on tissue metabolism and

processes related to tissue perfusion, whereas the low resolution

of dMRI makes it less informative if not used in conjunction

with more precise imaging protocols.

Partridge et al. (6) described in detail the procedures and

challenges related to dMRI. Fat suppression is essential but

difficult due to its abundance in the breast. Despite that, and

frequent other visual artifacts populating diffusion-weighted

images, it still performs satisfyingly. One meta-analysis (7)

reports pooled sensitivity of 84% when using dMRI to
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discriminate benign from malignant lesions. Another meta-

analysis confirms good dMRI performance in supporting the

analysis of DCE-MRI data (8). Multiple publications report

correlations existing between dMRI-derived apparent diffusion

coefficient (ADC) and tissue structure, where malignant

changes, because of their cellular structure, result in lower

ADC values (9, 10). Similar processes take part in non-

malignant changes, such as ductal carcinoma in situ (DCIS),

which can be differentiated from surrounding tissues with the

use of dMRI (11).

The ADC has been suggested as a diagnostic biomarker in

therapy assessment, allowing to differentiate between responders

and non-responders to neoadjuvant treatment before changes in

lesion size became visible (12). The ADC values obtained from

samples were deemed repeatable, and their changes were

significant after a month since the beginning of the therapy.

In one study, dedicated to performance assessment of

mammography, DCE-MRI, and diffusion-weighted images, it

was discovered that DCE-MRI was the most useful modality in

cancer detection by professionals (13). The use of mammography

resulted in the least precise predictions by observers, whereas

decisions based on mammography together with diffusion-

weighted and T2-weighted images were moderately correct. It

means that if no DCE-MRI examination is possible, other

techniques might still increase the sensitivity of screening.

Another review, by Amornsiripanitch et al. (14), talks

specifically about non-enhanced MRI (without the use of

contrast agents). Due to restricted water particle movement

in cancerous tissues, malignant changes appear hyperintense in

dMRI. The use of diffusion-weighted imaging, requiring less

time, effort, and financial resources than DCE-MRI, seems to

be a promising supporting technique for mammography

screening with 89% effectiveness of contrast-enhanced

methods (15). It also seemed that dMRI was resistant to

factors affecting other modalities and consisting of
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menopausal status, menstrual cycle, breast density, or lesion

size, although the last one might still be important due to the

low resolution of dMRI (16, 17).

Other approaches to breast imaging involve coupling MRI

together with positron emission tomography (PET) or

performing multiparametric MRI (mpMRI), based on a

simultaneous analysis of images from complementary

modalities (18).

The use of complementary imaging methods is also possible

in the screening and diagnosis of prostate and brain cancers and

tumors (19, 20). Specific methods have not yet gained similar

popularity but seem to be employed in specific clinical trial

settings (21). These methods include dynamic susceptibility

contrast MRI (DSC-MRI), chemical exchange saturation

transfer (CEST), and hyperpolarized MRI.

The scarcity of qMRI publications regarding breast tissues

may be a result of factors such as accessibility to equipment and

software capable of making high-quality measurements.

Performing non-standard procedures requires highly trained

staff, and any studies involving patients by engaging them in

full or by using samples obtained from biopsies requires

additional approvals from relevant ethics committees, not to

mention the patients’ consent.

By performing this review, we tried to get an overview of

possible applications and capabilities of qMRI as well as verify how

easy or difficult it is to query scientific databases and how much

relevant information can be acquired. By carefully preparing search

phrases and specification of acceptable search criteria, such as tissue

and modality type, multiple unrelated publications were filtered out

not because of their improper quality but often due to unfortunate

wording or unspecific writing. Through a systematic review, it is

also possible to learn predominant practices when performing

qMRI experiments, which might be a suggestion for future

researchers, as there are numerous possible combinations of

qMRI scan parameters and procedures.
FIGURE 1

Number of entries in PubMed regarding “quantitative MRI”, by year of publication.
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The systematic literature review methodology used in this

work is presented in Section 2. Outlined was the justification for

the literature review with the research questions and search

query statements. The overview of the search process was

summarized with the PRISMA diagram shown in Section 3.

Next, Section 4 shows previous work related to reviews on the

main subject topic, followed by the analysis of the original

publications. The conclusions are presented in Section 5,

which provides information on good practice and research

trends in applications of calculating the relaxation times T1

and T2 in tissue differentiation and cancer diagnosis.
2 Structure of the review

An attempt was made to follow recommendations regarding

conducting systematic reviews, although not all were met due to

limited time and resources. As guidance, the Cochrane

Handbook (22) served as a valuable source of knowledge and

suggestions from BioMed Central (23).
2.1 Justification for the review

Application of qMRI might result in numerous benefits

when properly applied, such as
Fron
- ease of data standardization and comparison due to

calculation of relative signal intensity and T1/T2

proportions,

- support in ROI selection based on tissue properties,

especially in areas where it is difficult to tell apart

tissue types or malignant changes on weighted and

other MRI scans,

- no need for contrasting agents when assessing patients

with allergy to gadolinium or kidney issues; go-to

solution for ex vivo studies, where DCE-MRI (dynamic

contrast-enhanced MRI) cannot be applied.
All the promises and benefits make it necessary to ask

questions such as the following: is qMRI really that efficient

when differentiating tissues, or could it cause more harm than
tiers in Oncology 04
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good when applied, especially incorrectly and without sufficient

knowledge? Are T1 and T2 constants uniform or diverse enough

across tissues, samples, and patients to be indicators

of malignancies?
2.2 Questions asked

Before the beginning of the review process, the following

questions were formulated:
1. What approaches are in use when applying qMRI to

tissue differentiation?

2. Which tissues and organs are the most frequently

analyzed?

3. Does practice or efficiency differ for epithelial tissue

compared with other tissue types?

4. Are T1 and T2 time calculation results significant and

comparable between samples, patients, and studies?

5. Which database or search engine is the complete source

of topic-related literature?
The reasoning behind categorizing by tissue was forced

due to the diverse structure of the human body. Depending on

the tissue, different approaches might be used to compensate

for specific phenomena, such as blood flow in the

myocardium or oxygen and carbon dioxide exchange in

the lungs.

A more detailed description of subjects of interest is found in

Table 1, where the research questions were formulated to fit the

Population-Intervention-Comparison-Outcome-Context

(PICOC) scheme.
2.3 Source selection

Based on personal experience and suggestions from

specialists, the largest biomedical databases were chosen for

the review:
- PubMed (24)

- Elsevier [Scopus (25)/Science Direct (26)]
TABLE 1 Review questions in light of the PICOC scheme.

Population Patients and study participants of all genders and ages; any human tissue samples being analyzed—healthy and bearing signs of pathological processes.
Exceptionally, human cell cultures.

Intervention Calculation of T1 and T2 constants and/or T1/T2 ratio based on qMRI data to identify or differentiate tissues.

Comparison Between different tissues or in a single tissue before and after treatment. Intra- or inter-patient.

Outcomes A positive outcome of a study would be a way to efficiently differentiate between samples using qMRI techniques and individually formed criteria.

Context Quantitative experiments take place mostly in clinical settings, which makes it difficult to obtain a large number of participants and later access acquired
data due to their sensitivity. As a result, there is a risk of sample groups being limited or too small to be significant. Relaxation time analysis is also not a
diagnostic standard, so it is most often a subject of academic studies, not clinical studies and trials.
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2.4 Search strategy
The search was performed in English, using queries formed

and refined to retrieve as many relevant studies as possible.

Although it would be possible to include other languages, they

might not necessarily be known by readers, and thus it would

not be easy to follow and validate such references.

Sensitivity was more critical than specificity, so there was a

higher tendency to include irrelevant sources in initial lists than

unintentionally discard relevant papers.

The following queries were used in all databases:
Fron
1. “(t1 relaxation OR t2 relaxation) AND (malignant OR

benign)”

2. “(t1/t2 ratio OR t1 relaxation or t2 relaxation) AND

differentiation”

3. “(t1/t2 ratio OR t1 relaxation or t2 relaxation) AND

differentiation AND (benign OR malignant)”

4. “t1/t2 AND relaxation AND breast”

5. “breast AND (t1 relaxation OR t2 relaxation) AND

differentiation

6. “breast AND qMRI”

7. “breast AND (quantitative MRI)”

8. “magnetic resonance imaging AND breast AND

quantitative”
The search was narrowed to sources published in or after the

year 2000. Sporadically earlier publications or articles not

meeting all of the criteria might be mentioned in the literature

review part and results due to their overall value as reviews or

novelties, but such cases are clearly stated.

Matches were valid only when found in titles, abstracts, and

keywords. Additionally, references used in relevant

publications were manually analyzed in search of further

related sources, and their relatedness was again assessed

based on title, abstract, and, if necessary, full-text analysis, as

their numbers were lower while it was more likely that some of

them would be relevant.

Queries based on elimination, using “not” and terms

referring to modalities and technologies, were discarded due to

the unverifiable elimination of seemingly too many results.

The final collection of publications was assembled after

performing all queries and eliminating duplicate entries.
2.5 Inclusion and exclusion criteria

Inclusion and exclusion criteria were defined to extract a set

of similar qMRI techniques with diagnostic potential.

It was expected that every primary publication provided

sufficient information about the hardware and software used

(scanner brand and basic parameters like operating magnetic
tiers in Oncology 05
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field and type of coil used, image acquisition, and data

processing software) as well as applied signal sequences.

T1 and T2 constants should be calculated based on a series of

qMRI scans performed over time without using contrasting

agents, at least in part of a study. Using gadolinium, iron or

any other substances would make a potential comparison of

study results difficult, as contrasting agents work by altering the

relaxation times of tissues. In that case, T1 and T2 values and

their ratio would be different than during normal measurements.

There was no requirement to report exact formulas used to

calculate T1 and T2 for as long as possible to trace down software

used for calculations and methodology applied if there was any

freedom to use software modules. This did not apply to

computing environments and programs where users needed to

provide their code. In such cases, the formula or model should

have been referenced optimally with a fitting algorithm and

other operations affecting the data.

Approaches targeted at healthy tissue differentiation were

included, as well as differentiation between healthy and benign

or malignant changes. Statistical analysis of researched

differences was not required but considered a disadvantage if

missing. Comparisons of T1/T2 acquisition methods with other

diagnostic techniques were also accepted if all other criteria were

met but were not analyzed due to not being the main topic of

the review.

No meta-analysis was attempted, and the purpose of the

review was not to grade existing works in any way. Efficiency and

appropriateness of described techniques were noted in the form

of comments in tables based on the precision of reporting, size of

the study group, and results of any statistical analyses if present.

Diagnostic aspects of studies were also noted whenever available.

Some of them, especially human-dependent factors, might

significantly affect obtained results. Table 2 contains

information regarding the reasoning behind operations such as

ROI selection, which can be directed purely by human judgment

or computer-assisted.

3 Search strategy summary

Identification of topic-related publications has proven more

complicated than was initially assumed. Although many original

articles were identified based on a defined search strategy

utilizing titles, abstracts, and keywords, further analysis

showed that roughly 20% of initially included articles were

relevant to the review’s topic. That finding aligns somewhat

with the review strategy, putting more significance on sensitivity

than specificity.

The most frequent feature leading to the elimination of an

article was unspecific vocabulary. Authors frequently used T1

and T2 relaxation time-related terms, but their works described

only the acquisition of T1- or T2-weighted images; another case

was low precision of titles and abstracts when it came to

describing modalities—multiple original publications were
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TABLE 2 Methodology and approaches to analysis in the detailed review studies.

Publication ROI selection Conclusions

Breast

Relaxation times of breast tissue at 1.5T and
3T measured using IDEAL (27)

Menstrual cycle considered: patients
scanned no more than 2 days apart each;
ROI: average of three points in fat or
glandular area. Size varied—drawn to
maximize the area of homogeneous tissue.

An increase in a magnetic field leads to relaxation time decrease; IDEAL in
the same field increased relaxation times. because it removes the water signal
from adipose tissue (leaving only signal from actual fat). Significant
differences between fields and tissues ONLY for T1, not significant for T2.

Longitudinal and Multi-Echo Transverse
Relaxation Times of Normal Breast Tissue at
3 Tesla (28)

Single 3-mm-thick coronal slice midway
between nipple and chest wall. Voxel-wise
relaxation maps.

Knowledge of fat and water T1 times allows efficient fat and water signal
suppression. The resulting values were 15%-30% higher than in a similar
study using 3T (18), but the earlier one used only two-time points for T2.
Very few participants (5-6). Better contrast against fat visible for very dense
fibroglandular tissue.

T1 and T2 temperature dependence of
female human breast adipose tissue at 1.5T:
groundwork for monitoring thermal
therapies in the breast (29)

Contained 30 voxels (2 × 2 × 10 mm)?,
manual placement in adipose regions

Dependence of T1 and T2 on temperature showed little inter-sample
variation

Changes of T2 relaxation time from
neoadjuvant chemotherapy in breast cancer
lesions (30)

Consensus between two radiologists;
drawn on T2 images if lesions were visible
or on a fusion of T2 and DWI images.
Avoiding necrotic and cystic areas. Mean
value from three different regions of a
lesion.

Significant differences before and after; also significant between responders
and non-responders after, but not before

Role of quantitative analysis of T2 relaxation
time in differentiating benign from
malignant breast lesions (31)

1-9 cm2, depending on tumor size, based
on STIR

Large overlap between T2 range for benign and malignant samples.
Significant differences between malignant and benign samples, but not
between different types of malignancies; shorter T2 for malignant. Large
overlap between groups makes clustering inefficient.

Lung

T2 mapping of CT remodeling patterns in
interstitial lung disease (32)

“as large as possible, not less as 100 mm2,
and positioned to avoid major
heterogeneities: large blood vessels, main
airways, or motion mismatch that could
not be corrected”, with reference to CT
scans

Significant differences in T2 times depending on the amount of fibrous
tissue; differentiation between healthy and pathological tissue.Significant
differences between normal and pathological tissues; between values of
parenchymal features (GGO, RE, HC);also, between left and right lung for
GGO and RE

Prostate

Measurements of T1-relaxation in ex-vivo
prostate tissue at 132µT (33)

Classified into normal and cancerous
based on expert’s observation. Mix of
qMRI and NMR to obtain better SNR

T1 contrast is increased at very low field (below 1mT), but low SNR is an
issue. Large T1 variability between patients, but it should be sufficient to
have enough intrapatient contrast to tell cancer apart from normal tissue.
Shorter T1 for cancer.

Relationship between T2 relaxation and
apparent diffusion coefficient in malignant
and non-malignant prostate regions and the
effect of peripheral zone fractional volume
(34)

Freehand ROI around dominant tumor
nodule, with reference to ADC maps

Significant differences in T2 for prostate zones and tumorSignificant
differences between tissue areas around tumors, and additionally correlation
between T2 values and diffusion coefficients.

Changes in apparent diffusion coefficient
and T2 relaxation during radiotherapy for
prostate cancer (35)

By a radiologist/based on the decreased
intensity of T2 signal, DCE, and
consistency with the previous biopsy

In some cases, therapy resulted in significant changes in T2

Rotating frame relaxation imaging of
prostate cancer: Repeatability, cancer
detection, and Gleason score prediction (36)

“drawn on TRAFF, T1rcw,and T2 images
using anatomical T2wi and
prostatectomysections as the reference”

T2 can be used as a parameter to discriminate between healthy and
malignant prostate tissues.

Skin

In vivo morphological characterization of
skin by MRI micro-imaging methods (37)

“linear regions of interest of 40 × 1 pixels
parallel to the surface (6 mm × 50 µm)
located in the center of the area imaged to
a depth of 2.5mm”

qMRI, especially at high resolution, allows for efficient skin assessment.Mean
values for skin layers are provided, but no statistical analysis was performed.

Kidney

Quantitative versus qualitative methods in
evaluation of T2 signal intensity to improve
accuracy in diagnosis of pheochromocytoma
(38)

Images evaluated by two radiologists;
lesions classified as homo-or
heterogeneous. ROIs were approaching,
but not including borders of lesions.

Lesion intensity was analyzed as relative to CSF and other organs, with no
values assumed as arbitrary. An unusual approach among other studies, but
allowed to achieve good classification results (adrenal to muscle (81%) and
adrenal to liver best) when distinguishing from other adrenal lesions.

(Continued)
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discarded due to using nuclear magnetic resonance (NMR) or

magnetic resonance spectroscopy (MRS) instead of qMRI.

The review was primarily targeted toward breast and

epithelial tissue, so specific searches were done to investigate

these matters in detail. It seems possible that specific searches

toward other organs and tissues would result in an even more

extensive collection of original works of interest. Also, many

additional results were retrieved when using the last query

(“quantitative magnetic resonance imaging”) instead of the

abbreviation (qMRI). It could suggest that using the full names

of technologies in queries might be a good practice.

Unfortunately, in this case, it resulted in 228 positions either

not being related to relaxometry at all (interpreting only

“magnetic resonance imaging” probably without a match for

“quantitative”) or involving the use of contrast agents (about

42% of 228). The rest of the publications did not meet the other

requirements, leaving only two papers seemingly relevant: one

about breast cancer-related lymphedema (BCRL) and the other

one (discarded) based on human cel l culture and

rat xenografts.
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The Preferred Reporting Items for Systematic reviews and

Meta-Analyses (PRISMA) diagram (45) was included to provide

an overview of the search process and is presented in Figure 2.

The diagram shows results obtained after using the initial set of

queries listed in point 2.4 and results from the query

“quantitative magnetic resonance,” which was added later. No

automation tools were used to perform the identification or

screening of retrieved publications.
4 Literature review

4.1 Reviews and systematic reviews so far

Five reviews that meet the search criteria have been

identified (46–50). The first one summarizes current

techniques of T1 and T2 time calculation at a magnetic field of

3T. It also reports T1 and T2 values for different tissue types—

white/gray matter, CSF, muscle, myocardium, fat, and others.

The authors describe multiple aspects to consider when
TABLE 2 Continued

Publication ROI selection Conclusions

Alternatively, in some cases, lesion discovery failed at all, whereas they were
visible in qualitative analysis.

Liver

Characterization of focal liver lesions using
quantitative
techniques: comparison of apparent diffusion
coefficient
values and T2 relaxation times (39)

ROI included the largest possible part of a
lesion, avoiding blood vessels, necrosis,
artifacts, and partial volume effects. ROC
to define ADC and T2 cutoff between
benign and malignant lesions.

T2 had much better AUC than ADC for differentiating between benign and
malignant lesions.Mean T2 was lower for malignant than benign
lesions.AUC for diagnosing malignancy was 0.932 with sensitivity of 99%
and specificity of 80.8%. No possibility of differentiating between specific
lesion types due to large overlap.

Differentiation of Hepatocellular Carcinoma
and
Hepatic Metastasis From Cysts and
Hemangiomas
With Calculated T2 Relaxation Times and
the T1/
T2 Relaxation Times Ratio (40)

Manual placement of the largest
rectangular ROI within a lesion, by a
single investigator. If regions of increased
T2 (cysts/necrosis) were present, the ROI
was placed along the border, without the
center.

The T1/T2 ratio allows differentiating between cysts, hemangiomas, and solid
lesions. No overlap between ratios for benign and malignant lesions. Almost
100% sensitivity and specificity for classification based on a ratio. Only
lesions larger than 1cm in the largest dimension.

Discrimination of benign from malignant
hepatic lesions based on their T2-relaxation
times calculated from moderately T2-
weighted
turbo SE sequence (41)

Two measurements for each lesion. Largest
possible ROI, excluding cysts and necrotic
regions. Also, reference ROIs from normal
liver tissue.

Differentiation with the threshold between 67 and 116 ms resulted in a
classification of benign and malignant lesions with a sensitivity of 90% and
specificity of 94%. Statistically significant differences between malignant and
benign lesions. Despite this fact, the authors still recommend using qMRI as
support for other techniques, such as DCE-MRI due to T2 range overlap.

Hepatic malignant tumor vs. cavernous
hemangioma: differentiation on multiple
breath-hold turbo spin echo MRI sequences
with different T2-weighting and T2-
relaxation time measurements on a single
slice multi-echo sequence (42)

Largest lesion of a patient selected for
assessment. Section with the largest tumor
dimension. An elliptical or circular region
with maximal inclusion of tumor but
excluding partial volume averaging with
the surrounding liver.

Not only T2 values were compared but also changes in signal intensity along
the entire timeline, and intensity at certain echo times showed better
clustering potential than others. Fat suppression provided better results than
when not applied.

Recurrent hepatocellular carcinoma versus
radiation-induced hepatic
injury: differential diagnosis with MR
imaging (43)

ROIs included parenchyma, irradiated
areas, and HCCs.

Patterns of hypo- and hyper-intensity are different for studies with and
without contrast. To make HCCs stand out in the irradiated area (after
radiation therapy), the use of contrast was beneficial (no significant
differences in intensity without it).

Differentiation of focal hepatic lesions in MR
imaging with the use of combined
quantitative and qualitative analysis (44)

For each of two echoes two measurements
were taken and averaged. ROI covering as
much tumor as possible, limited to solid
parts of tissue

Qualitative analysis was used to differentiate between solid tumor types by
the agreement of two radiologists.Significant differences between solid
tumors and other lesion types – optimal threshold of 116 ms (96%
sensitivity, 93% spec.)
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calculating relaxation constants, such as signal noise, partial

volume effects, or magnetic field inhomogeneity as sources of

large differences between reported T1 and T2 values for

different tissues.

Another review has been mentioned as a reference in (46),

related to methods of calculation of T1 (51). It is not related to

tissue classification and is dated outside the chosen time range

(2000–now), but it provides a complex overview of the literature

describing approaches up until 1999. It might be of interest to

those investigating differences between T1 times acquired with

different techniques.

Wolf et al. (47) presented a review of relaxation time analysis

in kidneys, reporting multiple studies and their results regarding

both longitudinal and transverse relaxation. Basic qMRI principles
Frontiers in Oncology 08
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and sequences used for renal imaging are mentioned. Multiple

factors affect possible results, such as fasting, hydration or

oxygenation level, modulating diuresis speed, and fluid retention

in necrotic tissue. Such factors are highly specific and do not apply

to the imaging of most other organs. In general, the authors

conclude the potential usefulness of renal qMRI, although it is

strongly susceptible to physiological and pathological alterations,

which should always be accounted for.

For cartilage degradation studies, a review has been

published (50) that investigates the impact of preexamination

activity and exercise on the results of T2 measurement. The

review shows that activity might cause water particle movement

in cartilage, which affects its relaxatory parameters. Thus, pre-

scan procedures should be implemented to reduce patient
FIGURE 2

The review process is summarized on a PRISMA diagram.
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movement, as it could be a source of variability in T2 values

obtained by different teams.

The last review, published in two parts, provides complex

information about current cardiac imaging standards concerning

T1 estimation. The authors summarize methodological aspects of

myocardial T1 and ECV, such as sequence choice (with MOLLI or

SASHA being the most popular ones) or motion correction. It is

emphasized in the paper that precise comparisons between studies

are possible when the same protocols are being used to obtain

results. Due to that fact, T1 analysis has a significant supportive

value in cardiac studies, but it cannot be used as a standalone

diagnostic parameter.
4.2 Original publications

The number of relevant sources retrieved was not high but

sufficient to draw basic conclusions on the use of relaxation times

in diagnostics and tissue differentiation. Based on the material, it

can be seen that relaxation analysis is practiced more often on

some tissues than others. Most of the 59 publications (25%) were

dedicated to the nervous system, particularly the brain. qMRI was

also frequently used when studying connective tissues, such as

cartilage (17%) or muscle tissue, including myocardium (22%).

Another 10% of studies treated the liver. Studies dedicated to

quantification of other tissues and organs (breasts, prostate,

kidneys, and others) were encountered sporadically when using

queries 1–3 (see Search strategy), as shown in Figure 2. Queries

formulated specifically to retrieve breast-related studies allowed us

to identify a higher number of valuable articles (Figure 3).

The structure and data provided by authors of publications

were strongly diverse, which suggests no “golden rule” for

conducting this kind of study. Tables 3, 4 summarize

experimental setups from articles chosen for the detailed review.
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4.3 Information required in the review

The content required by review rules was generally provided,

which means reporting the mean or median T1/T2 value with

standard deviation. A single exception was a study reporting

only relative signal intensity between adrenal lesions and

abdominal organs (38), but it provided interesting insights

anyway. Most of the studies utilized magnetic fields of

strength of 1.5 or 3 T. Other field strengths were rather

uncommon—single cases of 2 T (37) and 4.7 T (52). The MRI

scanner model was always reported, in most cases together with

coil type and software used for later data analysis.
4.4 Additional information

Age—at least mean or median—of participants was

always stated, as well as sex (for mixed groups). Only in a

single study (31), the authors tried to classify analyzed tissues

and reported classification parameters. Otherwise, when

investigating differences between tissues [all except (37)], a

tes t of s ignificance was performed, wi th p-values

reported afterward.

The publications chosen for the detailed review are listed in

an attachment (ReviewResults.ods).

Due to anatomical and physio-chemical differences

between human tissues, all original publications included in

the review were grouped by tissue type or organ type. Because

of special interest in them, the breast and selected other tissues

were summarized separately from other tissues. Because of

special conditions present in cell cultures and their lack of

resemblance to the real tissue environment, any studies using

cell cultures had to be discarded, even when they used breast

cancer cells (52).
FIGURE 3

The number of studies in a detailed review, grouped by organs and tissues, total = 59.
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TABLE 3 Technical aspects of publications chosen for the detailed review.

Publication Year Field Scanner Sequences Scanner or data
analysis software

T1 T2 Other

Breast

Relaxation times of breast tissue at 1.5T and 3T
measured using IDEAL (27)

2006 1.53 Echospeed
whole-body
magnet, GE
Healthcare,
Waukesha, WI,
USA)

FSE-IR Two Hahn echo
scans

IDEAL Matlab (The
MathWorks, Natick,
MA)

Longitudinal and Multi-Echo Transverse Relaxation
Times of Normal Breast Tissue at 3 Tesla (28)

2010 3 Philips Intera 3T
(Philips
Healthcare, Best,
the Netherlands)

Inversion
recovery-
prepared
multi-shot
spin-echo EPI

Spin echo Matlab (The
MathWorks, Natick,
MA)

T1 and T2 temperature dependence of female
human breast adipose tissue at 1.5T: groundwork for
monitoring thermal therapies in the breast (29)

2015 1.5 Achieva (Philips
Healthcare, Best,
the Netherlands)

Two-
dimensional
inversion
recovery TSE
scans with
SPIR-WS

Multi-spin echo T2TSE

Changes of T2 relaxation time from neoadjuvant
chemotherapy in breast cancer lesions (30)

2016 1.5 GE Signa,
Milwaukee, WI,
USA

FSE, STIR FSE T1W, T2W;
3D after
contrast

SPSS software, ver.
11.5 (SPSS Inc.,
Chicago, Il, USA),
Functool T2 mapping
software

Role of quantitative analysis of T2 relaxation time in
differentiating benign from malignant breast lesions
(31)

2018 1.5 SIGNA™
Infinity; GE
Medical Systems

Axial FSE T1-
weighted

Sagittal fat-
suppressed T2-WI

Axial DWI,
axial short-
time
inversion
recovery
(STIR)

Functool (Advantage
Workstation 4.3 (GE
Medical Systems));
SPSS Inc., Chicago, IL,
USA

Lung

T2 mapping of CT remodeling patterns in interstitial
lung disease (32)

2015 1.5 Magnetom Aera,
Siemens Medical
Systems

Multi-echo single-
shot turbo spin echo
sequence

CT MRmap for IDL8.3
Software,R 2.15.1 (R
Foundation for
Statistical Computing,
Vienna)

Prostate

Measurements of T1-relaxation in ex-vivo prostate
tissue at 132µT (33)

2012 132µT Techmag Orion
system

SQUID No data/exponential fit
for T1

Relationship between T2 relaxation and apparent
diffusion coefficient in malignant and non-malignant
prostate regions and the effect of peripheral zone
fractional volume (34)

2013 3 Achieva (Philips
Medical Systems,
Best,
Netherlands)

FSE T1W, T2W SPSS® v. 19 for
Windows (IBM
Corporation,
Portsmouth, UK)

Changes in apparent diffusion coefficient and T2
relaxation during radiotherapy for prostate cancer
(35)

2013 1.5 Signa, General
Electric Medical
Systems,
Waukesha, WI

Magnetization‐
prepared spiral
imaging pulse
sequence

2‐weighted
fast‐spin‐
echo (FSE),
DWI

MIPAV (National
Institutes of Health,
Bethesda, MD), Origin
software (OriginLab,
Northampton, MA)

Rotating frame relaxation imaging of prostate
cancer: Repeatability, cancer detection, and Gleason
score prediction (36)

2016 3 Ingenuity PET/
MR, Philips,
Cleveland, OH

GraSE T2W,
T1rho

GraphPad Prism,
version 5.00
(GraphPad Software,
San Diego, CA),
MATLAB (MathWorks
Inc., Natick, MA)

Skin

(Continued)
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4.5 Methodology

Multiple factors can affect the results of relaxation time

analysis. Some of them result from equipment choice and

experimental conditions, such as strength of magnetic field

used or type of coil. There are also other nuances present,

important from a diagnostic point of view.

Two scenarios were the most common among analyzed

studies: differentiating between tissue types (normal/

pathological or organ parts, e.g., white and gray matter) or

comparing results before and after therapy. To do so, different

approaches were applied, some of them strongly susceptible to
Frontiers in Oncology 11
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human error. As seen in Table 2, often actions were taken to

eliminate risk of a radiologist mistakenly selecting an incorrect

region for analysis. In most cases, another type of MRI image or

modality (CT) was used to identify the region of interest, which

then underwent analysis and could potentially be refined based

on the results.

Only sporadically, authors mentioned the stage of the

menstrual cycle in the case of breast studies, which might

affect T1 or T2 values obtained due to periodic variations in

tissue structure in this area. Such processes might affect not only

normal experiments but also those using contrasting agents

(53) (Table 5).
TABLE 3 Continued

Publication Year Field Scanner Sequences Scanner or data
analysis software

T1 T2 Other

In vivo morphological characterization of skin by
MRI micro-imaging methods (37)

2004 2 Magnex Scientific
Ltd., Oxford,
England

GE MT, T1W,
T2W

Customized imaging
console (SMIS Ltd.)

Kidney

Quantitative versus qualitative methods in evaluation
of T2 signal intensity to improve accuracy in
diagnosis of pheochromocytoma (38)

2015 1.5 Signa, GE
Healthcare

Breath-hold SSFSE
or respiratory-
triggered frequency-
selective fat-
suppressed fast
recovery FSE

RARE
T2W,
chemical
shift
imaging

SPSS (SPSS Inc.,
Chicago, IL, USA),
Matlab (version 2014b,
MathWorks).

Liver

Characterization of focal liver lesions using
quantitative
techniques: comparison of apparent diffusion
coefficient
values and T2 relaxation times (39)

2012 1.5 Magnetom
Avanto, Siemens
Medical
Solutions,
Erlangen,
Germany)

Breath-hold dual
echo T2W TSE (with
AND without
contrast)

DW-SS-
EPI,
3D DCE-
MRI

ADC: Leonardo
Workstation, Siemens
Medical Solutions,
Erlangen, Germany),
Statistica 10.0,
Microsoft Excel

Differentiation of Hepatocellular Carcinoma and
Hepatic Metastasis From Cysts and Hemangiomas
With Calculated T2 Relaxation Times and the T1/
T2 Relaxation Times Ratio (40)

2006 1.5 Philips Intera,
Philips Medical
Systems of North
America,
Andover, MA,
USA)

Mixed-TSE Mixed-TSE DICOM processing on
PC using MathCAD
2001i (MathSoft,
Cambridge, MA, USA),
SAS 8.02 (SAS
Institute, Cary, NC,
USA)

Discrimination of benign from malignant
hepatic lesions based on their T2-relaxation
times calculated from moderately T2-weighted
turbo SE sequence (41)

2002 1.5 Gyroscan ACS
NT, Philips,
Eindhoven, The
Netherlands

Double echo TSE

Hepatic malignant tumor vs. cavernous
haemangioma: differentiation on multiple breath-
hold turbo spin echo MRI sequences with different
T2-weighting and T2-relaxation time measurements
on a single slice multi-echo sequence (42)

2002 1.5 Gyroscan ACS
NT, Philips
Medical Systems,
Best, The
Netherlands

8-echo TSE With or
without fat
suppression

Recurrent hepatocellular carcinoma versus radiation-
induced hepatic
injury: differential diagnosis with MR imaging (43)

2001 1.5 Signa Advantage
(GE Medical
Systems,
Milwaukee, WI,
USA)

Spin-echo Spin-echo DCE-MRI,
T1W, T2W

T2 fitting with scanner
built-in software

Differentiation of focal hepatic lesions in MR
imaging with the use of combined quantitative and
qualitative analysis (44)

2007 1.5 Gyroscan ACS
NT, Philips

T1
FSMPGRE

TSE, dual-echo TSE,
T2 STIR

Dynamic
FSMPGRE

Microsoft Excel,
Statistica 6.0 (StatSoft
Poland)
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TABLE 4 Biomedical aspects of publications chosen for the detailed review.

Publication Tissue/
organ

Subject Environment Reported T2 values [ms] Reported T1 values
[ms]

Participants:
number/age

[years]

Breast

(27) Breast adipose
and
fibroglandular
tissue

Normal tissue
characterization

In vivo Fat 1.5T IDEAL 296.01 ± 12.94 5/36.4 ± 12.6

Non-
IDEAL

53.33 372.04 ± 8.6

3T IDEAL 366.78 ± 7.75

Non-
IDEAL

52.96 449.27 ± 26.09

Glandular 1.5T IDEAL 1,266.18 ± 81.8

Non-
IDEAL

57.51 1,135.98 ± 151.37

3T IDEAL 1,444.8 ± 92.7

Non-
IDEAL

54.36 1,324.42 ± 167.63

(28) Adipose and
fibroglandular
tissue

Normal tissue
characterization

In vivo 154 ± 9 adipose,71 ± 6
fibroglandular

423 ± 12 adipose,1,680 ± 180
fibroglandular

6/34 ± 6, 38-49

(29) Connective
(adipose)
tissue in
breast

Dependence of adipose
tissue T2 on temperature

ex vivo 55 to 100 for temp. 25°C–65°C 200–550 ms for temp. 25-65 21-56, mean 30

(30) Breast Lesion response to
neoadjuvant therapy
measured with T2
constant

In vivo 81.34 ± 13.68 ms pretreatment,
64.50 ± 8.71 ms posttreatment

34-70, mean 55.2

(31) Breast benign and malignant
changes in breasts, mostly
invasive ductal carcinomas

In vivo Benign:fibrodenomas:
92.53 ± 22.76papillomas:84.36 ±
14.69fibrocystic adenosis:103.56
± 4.17Malignant:inv. ductal
carc.: 80.64 ± 10.16inv. Lobular
carc.: 76.87 ± 14.01ductal carc.
in situ: 82.29 ± 12.51

67/mean 50.7 ±
17.3,(26-74)

Lung

(32) Epithelium—

lung
Differentiation and
characterization of lung
tissues in pneumonia

In vivo Median 41, 38-49 Six men and six
women, with a
mean age of 62
(47-81)

Prostate

(33) Prostate Contrast between normal
and cancerous prostate
tissue

Ex vivo 41–86, according to authors
shorter for cancer, but
randomly checked samples
often show opposite results

No data, 35 ex
vivo specimens

(34) Prostate Malignant vs. non-
malignant prostate regions

In vivo PZ: 149 ± 49 ms, TZ: 125 ±
26 ms, tumor: 97 ± 23 ms PZ =
peripheral zone, TZ = transition
zone

48–83 years (mean
age 67 ± 8 years)

(35) Prostate Prostate cancer response
to radiotherapy—before
and after

In vivo Multiple values for different
features reported; approx. 70–
114, generally around 80–90

Median age 66;
min: 54; max: 77

(36) Prostate Prostate cancer detection
and differentiation

In vivo 79 ± 9 (cancer), 124 ± 38
(peripheral zone), 87 ± 7
(central gland)

63 ± 6 (42‐73)

Skin

(Continued)
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TABLE 4 Continued

Publication Tissue/
organ

Subject Environment Reported T2 values [ms] Reported T1 values
[ms]

Participants:
number/age

[years]

(37) Epithelium—

skin
Identification and
characterization of skin
layers

In vivo/
phantoms

Stratum corneum: = 135 ± 10,
epidermis = 347 ± 27,
papillary dermis = 356 ± 22,
reticular dermis = 290 ± 10
and other

Seven normal
subjects, five
women, two men
with mean SD of
32 ± 6 years

Kidney

(38) Adrenal gland Differentiation between
pheochromocytoma and
other malignant and
benign changes in an
adrenal gland

In vivo Only stated as relative to
cerebrospinal fluid intensity
(CSF) and abdominal organs

74, 39 women, 35
men

Liver

(44) Liver Classification of benign
and malignant liver
lesions, including
carcinomas

In vivo Benign: hemangioma: 124.3Cyst:
1007FNH: 62.8Abscess:
406.8Cystadenoma:
459Malignant: metastasis: 65.3
HCC (carcinoma):
59.1Hemangioendothelioma:
64.9Cholangiocarcinoma:
55.7Cystadenocarcinoma: 117.5

73 (34 men, 39
women)/54.2 (18-
84)

(40) Liver Differentiation between
different types of lesions
with T2 and T1/T2 ratio

In vivo,
phantoms

Cysts: 371 ± 118Hemangiomas:
204 ± 70 HCCs/metastases: 83
± 17

Cysts: 691 ±
215Hemangiomas: 653 ± 152
HCCs/metastases: 609 ± 133

36 (22 men, 14
women)/60 (30-
86)

(41) Liver Differentiation of liver
lesions with T2

In vivo Liver: 54 ± 8FNH: 66 ±
7Malignant lesions: 85 ±
17Hemangiomas: 155 ± 35Cysts:
583 ± 369

52 (28M, 24F)
with 114 lesions

(42) Liver Differentiation of
malignant and benign
liver lesions

In vivo Malignant: 40–102, mean
73Hemangiomas: 68–233, mean
165

34 (26M, 8F)/55
(38-70)

(43) Liver Differentiation between
HCCs and radiation
effects

In vivo Liver parenchyma: 42 ±
1.60Irradiated area: 56.4 ± 3.19
Hepatocellular carcinoma: 58.7
± 3.19

X/65

(44) Liver Differentiation of lesions
with combined
quantitative and
qualitative analysis

In vivo Liver: 53 (41-74)Solid tumors:
84.1 (54-148)Other lesions:
250.5 (82-1241) HCC: 75.3 (56-
91)

292 lesions in 168
patients (80M,
88F)/53 (17-83)
Frontiers in On
cology
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TABLE 5 Relaxation times reported for epithelial tissue.

Relaxation time [ms]

Breast Lung

Identification (depending
on the type of

pathological changes)

Invasive ductal and lobular carcinomas Normal Pathological
(pneumonia)NAC responders NAC non-responders

Benign Malignant Pathological before
treatment

Pathological after
treatment

Pathological before
treatment

Pathological after
treatment

T2 Approx. 84-
103

Approx.
77-82

80.93 ± 14.4 63.18 ± 8.37 84.57 ± 6.06 74.62 ± 2.32 41 (28-49)
(median)

66.5/74.3/79.5
(median)
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4.5.1 Tissues other than epithelium
A basic review (consisting of abstract, methodology, and

conclusion scan) of relevant literature showed a variety of

applications of relaxation time analysis. The most commonly

studied subjects were the nervous system, especially the brain,

and connective tissues such as cartilage (Table 6).

Techniques used for quantitative imaging differed strongly

depending on the body area. Some studies implemented

relatively simple protocols, using general-purpose whole-body

coils (54), whereas others used complex and tailored approaches

to cardiac (55–57) or vessel imaging (58). Moderate magnetic

fields dominate the literature, such as 1.5 or 3 T, but attempts

were made to visualize human tissue at ultra-low or ultra-high

fields, e.g., imaging of the hippocampus at 7 T (59) or of the

meniscus at 9.4 T (60). Similarly, in the case of gray matter (61)

or prostate study mentioned further (33), this time using very

low fields, field manipulation is used to achieve better contrast

between features of interest, which might be more visible in

specific conditions.

A multiplicity of qMRI applications exists, ranging from the

analysis of wear and tear of cartilage with age (60) to assessment

of pathological changes responsible for conditions such as

Alzheimer’s or Parkinson’s diseases (62). Relaxation time

analysis is often applied to visualize abnormalities present in

the brain, and instead of being used as a direct measure of tissue

state (healthy/abnormal), imaging is used to calculate organ part

volumes, which in neurology or cardiology are considered

important indicators of health. Sometimes different sequences

showed different efficiencies depending on the organ part

imaged, as in the case of one brain study (63).

Not only T1 or T2 analysis was often performed, but

correlations were searched for between them and other

parameters, such as ADC (64); T2*, T1rho, T1, and T2

obtained after contrast medium application (non-native

relaxation times), diffusion tensor or magnetization transfer

imaging (65); or optical coherence tomography results (66).

Such measurements complemented the diagnosis made by

histological or macroscopic sample assessment.
Frontiers in Oncology 14
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4.5.2 Epithelium, especially in the breast
Out of 59 accepted original publications, 18 were related to

epithelial tissue, including two describing the breast. Apart from

those, one publication described breast adipose tissue properties.

Because of only these few positions, a decision was made to

include other tissues in the comparison, such as the prostate and

lung. Although lung parenchyma does not seem to be very similar

to breast epithelial regions, there might exist scientific background

suggesting genetic likeness between them (67–69).

Studies of epithelial lung and breast tissue did not seem

comparable. The same magnetic fields were used, but

experimental setups and results differed significantly. As seen

in Table 7, T2 ranges of epithelium do not overlap for breast and

lung. On the other hand, means of T2 registered for breast

epithelium show significant differences (according to

corresponding publications), but actual results still overlap,

even when only standard deviations are accounted for. That

makes any clustering attempts difficult.
TABLE 6 T2 values reported by prostate studies.

Relaxation time [ms]

Study A—1.5 T, exterior torso coil Study B—3 T, endorectal coil Study C—3T, cardiac coil

Before therapy Week 8 Identification of regions Identification of regions

T2 Prostate 86 ± 10 78 ± 4 – –

Central gland 78 ± 8 76 ± 5 – 87 ± 7

Peripheral zone 114 ± 27 89 ± 13 149 ± 49 (82-290) 124 ± 38

Tumor 82 ± 15 75 ± 9 97 ± 23 (62-177) 79 ± 9

Transition zone – – 125 ± 26 (84-186) –
TABLE 7 Review inclusion and exclusion criteria for original studies.

Inclusion criteria qMRI

Human tissues in vivo/ex vivo

T1 and/or T2 time calculation

Full text available

Original publications since the
year 2000

Final publication stage

Languages: English

Exclusion criteria Animal tissues or phantoms, cell
cultures

Use of contrasting agents

No free or academic access

MRS, NMR, CT, etc.

Only parameters other than T1/T2

(T2*, T1rho, etc.)

Only T1/T2-weighted images

Case reports, case series
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The structural and pathogenic likeness is better established

between breast and prostate cancer, which makes them often

studied together (70–73). Similar treatment approaches may be

used for both (74).

All studies regarding prostate reported the significance of

differences between T2 values of at least some analyzed areas, as

shown in Table 4. There was no straight correlation between magnetic

field strength and measured relaxation times, but their values suggest

more similarity to breast tissue than the lung epithelium showed.

There was no consensus on experimental design in this

group of studies, but instead, different types of coils were used

depending on external circumstances or other choices.

One novel (for breast) publication was found (75), regarding

the calculation of T1/T2 ratios in breast tissues. Unfortunately, it

seems that a contrasting agent was used during the scan. It

suggests that T1/T2 ratios might change proportionally and be

significantly correlated with pathological breast cancer stage.

The majority of studies, reports, and analyses were based only on

one of two constants, which is shown in Table 7. A similar

approach, based on T1/T2 ratios, was earlier used in 2006

regarding liver lesions (40), and this one was included in the

detailed review as the authors did not use contrasting agents.

The study regarding breast adipose tissue was included in

this part because, while it might not be an area susceptible to

typical breast carcinomas, it might have the potential to affect

relaxation measurements due to its abundant presence.

Additionally, there was a chance that a significant difference in

relaxation times between epithelium and fat would occur, which

could help during ROI selection and tissue differentiation. A

series of T1 and T2 values was reported for temperatures ranging

from 25°C to 65°C with approximate T2 values for body

temperature (37°C) between 65 and 70 ms. The T1 range was

between 270 and 320 ms for 37°C. Unfortunately, there were no

T1 values reported for breast to compare them with.

In addition to prostate and lung epithelium, other organs

were included in this part if their corresponding carcinomas

were studied, as they originate from epithelial tissue.

Experiments regarding healthy kidney or liver tissue were

considered not related to the main topic.

Publication by Cieszanowski et al. (41) provides an

exhaustive insight into techniques used for quantitative

imaging of liver lesions.

One study (42) presented a slightly different approach than

others because not only T2 values were compared but also changes

in signal intensity along the entire timeline. Intensity at certain

echo times showed better clustering potential than others, as well

as relative intensity change compared with the initial tissue state.
5 Conclusions

Reporting only one of the constants might be caused by

limited resources or assessment of other parameters than the
Frontiers in Oncology 15
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most known ones. There might be some beliefs present,

suggesting better efficiency of one or another parameter when

differentiating tissues, as considering the number of available

publications, it cannot be at this point verified whether any of

them is better than the other. In such a situation, it could be

profitable to search for correlations between different tissue

behaviors instead of sticking to one. It is also possible that

many teams tried to analyze both T1 and T2 data, but negative

results could have lower chances of getting published than

positive findings, as they do not seem as important or

revolutionary. Disappointing or inconclusive results were

rarely reported (5 out of 59), suggesting areas in which

relaxation analysis is, at least currently, not efficient (58, 76–

78). Otherwise, multiple reports of high clustering efficiency

have been reported.

In cases when the menstrual cycle was not considered or

otherwise noted, it could be a source of high intrapatient

variation in breast cancer and healthy tissue studies.

Only two studies reported the use of T1/T2 ratios, one examining

the liver (without contrasting agents) and the other breast (with

contrast), but presented classification results suggest that such an

approach might be worth investigating. It is not common nowadays,

especially since most researchers perform only one kind of analysis; it

is T1 or T2 only, sometimes supported by other sequences or

modalities (ADC, CT, T1W, T2W). Classification sensitivity and

specificity were much higher for the T1/T2 ratio (close to 100%) than

for any of these parameters used separately (~80%).

According to an analyzed study of liver lesions (39), relaxation

time analysis has high potential in differentiating between benign

and malignant lesions, for example telling apart carcinomas from

cysts and hemangiomas. For a more detailed analysis, especially of

solid tumors, additional means are necessary, such as dynamic

studies with contrasting agents or confirmation by biopsy. qMRI

could be thus used just as one of the steps on the way to

presurgical diagnosis and treatment choice.

While there was only a single study that mentioned how a

patient’s activity before MR scan affects obtained T2 values (50),

it should be noted that preexamination procedures might affect

studies of different organs depending on mechanical load,

oxygen exchange, or blood flow. Additionally, the treatment of

ex vivo samples could also leave its mark on the samples studied.

Such samples also tend to be studied at lower temperatures than

body temperature, so correction for that factor could be

necessary when attempting comparisons with in vivo studies.

Based on analyzed studies, the choice of protocols, technologies,

and tissue parameters to assess should be made based on previous

publications, which might suggest which approaches have proved

successful and what did not work. There are no universal rules for

qMRI as too many factors need to be considered when designing an

experiment, and thus authors need to try andmake informed choices

regarding qMRI of any tissue or organ. Some “good practices” are

recognized in certain applications, especially for brain and cardiac

imaging, so they should be researched beforehand.
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Diagnostic value of [68Ga]Ga-
FAPI-04 in patients with
colorectal cancer in comparison
with [18F]F-FDG PET/CT

Xinfeng Lin1, Yingjie Li2, Shuailiang Wang1, Yan Zhang1,
Xuetao Chen1, Maomao Wei1, Hua Zhu1, Aiwen Wu2*,
Zhi Yang1* and Xuejuan Wang1*

1Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA
Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products
Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute,
Beijing, China, 2Department of Gastrointestinal Cancer Centre, Unit III, Key Laboratory of
Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer
Hospital and Institute, Beijing, China
Purpose: This study aimed to compare the diagnostic performance of [68Ga]

Ga-FAPI-04 PET/CT and [18F]F-FDG PET/CT in primary and metastatic

colorectal cancer (CRC) lesions.

Methods: This single-center preliminary clinical study (NCT04750772) was

conducted at the Peking University Cancer Hospital & Institute and included

61 participants with CRC who underwent sequential evaluation through PET/

CT with [18F]F-FDG and [68Ga]Ga-FAPI-04. Their PET/CT images were analysed

to quantify the uptake of the two tracers in the form of maximum standardised

uptake (SUVmax) values and target-to-background ratio (TBR), which were then

compared using Wilcoxon’s signed-rank test. The final changes in the tumour–

node–metastasis (TNM) stage of all participants were recorded.

Results: Of all the participants, 21 were treatment naïve and 40 had been

previously treated. In primary CRC lesions, the average TBRs of [68Ga]Ga-FAPI-

04 and [18F]F-FDGwere 13.3 ± 8.9 and 8.2 ± 6.5, respectively. The SUVmax of [
68Ga]

Ga-FAPI-04 in signet-ring/mucinous carcinomas (11.4 ± 4.9) was higher than that

of [18F]F-FDG (7.9 ± 3.6) (P = 0.03). Both median SUVmax in peritoneal metastases

and TBR in liver metastases of [68Ga]Ga-FAPI-04 were higher than those of [18F]F-

FDG (5.2 vs. 3.8, P < 0.001; 3.7 vs. 1.9, P < 0.001, respectively). Compared with [18F]

F-FDG PET/CT, clinical TNM staging based on [68Ga]Ga-FAPI-04 PET/CT led to

upstaging and downstaging in 10 (16.4%) and 5 participants (8.2%), respectively.

Therefore, the treatment optionswere changed in 13 participants (21.3%), including

9with additional chemo/radiotherapy and/or surgery and otherswith avoidance or

narrowed scope of surgery.
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Conclusion: [68Ga]Ga-FAPI-04 showed potential as a novel PET/CT tracer to

detect lymph nodes and distant metastases, which improved CRC staging, thus

prompting the optimisation or adjustment of treatment decisions.
KEYWORDS

fibroblast-activation protein inhibitor, colorectal cancer, fibroblast-activation
protein, inhibitor, positron emission tomography
1 Introduction

Colorectal cancer (CRC) was reported as the fifth most

common cause of cancer-related deaths in the United States in

2022 (1). At diagnosis, 22% of patients with CRC have

metastases, and 50% develop metastases during their lifetime.

The overall 5-year survival of patients with CRC largely depends

on the stage at presentation, varying from 80%–90% in the early

stages to 13% in the advanced stage (2, 3). Currently, the key

challenge is to establish optimal treatment plans according to the

patients’ disease stage. Optimal imaging for CRC is crucial for

accurate initial staging and the selection of primary therapy as

well as during follow-up examinations for the accurate and

timely detection of local recurrence and/or metastasis.

Non-invasive molecular imaging novel PET tracers is being

increasingly used in the field of clinical oncology. Flourine-18

fluorodeoxyglucose ([18F]F-FDG) PET/CT, which uses altered

glucose metabolism in cancer cells, is a valuable imagingmodality

in CRC management (4, 5). Compared with the routinely

recommended conventional imaging modalities, [18F]F-FDG

PET/CT can reflect cancer cells activity and the whole-body

tumour burden. However, [18F]F-FDG PET/CT has several

limitations, including low specificity, inability to detect small-

volume lesions and lack of isotope uptake inmucinous and signet-

ring cell carcinomas (6, 7). Tumour microenvironment imaging

beyond the detection of tumour metabolism is a novel approach

to elucidate in vivo tumour biology, with potential translational

implications in clinical oncology. Fibroblast-activation protein

(FAP) is a membrane-anchored peptidase that is highly expressed

in cancer-associated fibroblasts (CAFs) in >90% of epithelial

tumours, including CRC, and contributes to disease progression

and worsening prognosis in various cancers (8–11). Several

recently developed quinolone-based FAP inhibitors (FAPIs)

coupled to chelators, including gallium-68 (68Ga)-labelled FAPI,

are advantageous in staging and restaging many cancers,

including peritonitis carcinomatosis, compared with [18F]F-

FDG PET/CT (9–11). Koerber et al. (12) and Pang et al. (13)

reported the avidity of [68Ga]Ga-FAPI in PET/CT imaging of

CRC, supporting the potential use of FAP-targeted imaging in

advanced CRC. We hypothesised that [68Ga]Ga-FAPI-04 PET/
02
84
CT could contribute to CRC staging than conventional [18F]F-

FDGPET/CT. Thus, we assessed the avidity of [68Ga]Ga-FAPI-04

in patients with CRC to compare the clinical impact of [68Ga]Ga-

FAPI-04 PET/CT on tumour–node–metastasis (TNM) staging

with that of standard-of-care [18F]F-FDG PET/CT imaging in

participants with primary and recurrent/metastatic CRC.
2 Materials and methods

2.1 Participants

This preliminary clinical trial was approved by our Institutional

Review Board (no. 2019KT95) and registered on ClinicalTrials.gov

(NCT04750772). Written informed consent was obtained from all

participants who were consecutively recruited from the study

institution. The inclusion criteria were as follows: age >18 years,

histologically confirmed CRC referral to the Nuclear Medicine

Department for both [18F]F-FDG and [68Ga]Ga-FAPI-04 PET/CT

scans for staging or restaging to aid optimal clinical decision

making and provision of written informed consent. Pregnant or

lactating women and those with severe liver or kidney dysfunction

were excluded. The final cohort comprised 61 participants with

CRC. The diagnosis was confirmed through surgery in 25

participants and through endoscopic biopsy in others. All

suspicious metastatic lesions were confirmed by histopathology

or follow-up for 3–6 months. Histopathology was served as a gold

standard reference for the confirmation of the imaging findings by

the means of rebiopsy or surgery. If pathological diagnosis was not

applicable, conventional imaging (such as CT and MRI, etc.)

follow-up for anatomical abnormalities of lesions was performed.

Lesions were diagnosed of malignant based on any of the following

follow-up criteria: 1) typical malignant features demonstrated by

other imaging, especially the contrast-enhanced CT/MRI referred

to as thefirst-line imaging. 2) posttreatment shrinkage or expansion

of a suspicious lesion on follow-up imaging indicating

improvement or progression, periodic plain CT/MRI scan used

as the second-line imaging. 3) Density changes of lesions, such as

cortical breakthrough for bonemetastases. The finial observation of

significant malignant features of suspicious lesions was the follow-
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up imaging end-point. The study flowchart of participant

enrolment is presented in Supplementary Figure 1.
2.2 Synthesis of [18F]F-FDG and [68Ga]
Ga-FAPI-04

[18F]F-FDG was manufactured in accordance with the

standard method described by our laboratory using the

coincidence [18F]F-FDG synthesis module. The FAPI

precursor (DOTA-FAPI-04) was purchased from Huayi

Technology Co., Ltd. (China), and synthesis and radiolabelling

of [68Ga]Ga-FAPI-04 were performed as previously described

(14). The radiochemical purity exceeded 95% for both [18F]F-

FDG and [68Ga]Ga-FAPI-04. The final products underwent

sterility testing before administration via intravenous injection.
2.3 PET/CT imaging

All enrolled participants underwent routine [18F]F-FDG

PET/CT and subsequent [68Ga]Ga-FAPI-04 PET/CT within 1

week. All participants fasted for at least 6 h before [18F]F-FDG

PET/CT, and a blood glucose level of <10 mmol/L was

confirmed before tracer injection. Contrastingly, participants

on a normal diet were intravenously injected with 1.85–2.96

MBq/kg [68Ga]Ga-FAPI-04 and underwent imaging using a

hybrid PET/CT scanner (Biograph mCT Flow 64; Siemens

Healthineers USA, Knoxville, TN, USA) after approximately 1

h. The acquisition was commenced in 6–8 bed positions (1 min/

bed) covering the area between the top of the skull and upper

thigh. Non-contrast-enhanced CT was performed using 100-mA

modulation at 120 kV with a 3-mm slice thickness for

attenuation correction and anatomical localisation. All data

were transferred to the Syngo MultiModality Workplace

(version VE40F; Siemens Healthineers) and reconstructed

using the ordered subset expectation maximum algorithm to

construct display images in the coronal, axial and sagittal planes.
2.4 Safety

Vital parameters, including blood pressure, heart rate,

temperature and respiration rate, of all participants were

carefully monitored during the examination. Any abnormal

symptoms (e.g. allergy) were addressed as soon as possible.
2.5 Image analysis

All the images were reviewed by two groups of physicians with

at least 10 years of experience in nuclear medicine and radiology.

The physicians in group 1 (X.C. and M.W.) and group 2 (X.L. and
Frontiers in Oncology 03
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X.W.) independently reviewed the [18F]F-FDG and [68Ga]Ga-

FAPI-04 PET/CT images, respectively. Reference information

from the other group and all other images and clinical data,

including CT, MRI, endoscopic and pathological results, were

absent. All differing opinions were interpreted and discussed

within the groups until a consensus was reached. The inter-reader

agreement within the two groups was expressed using the k value.

Visual assessment was performed, and positive uptake was

defined as focal tracer uptake exceeding background uptake.

Circular volumes of interest within tumour lesions and healthy

tissues were used to quantify radiotracer biodistribution. Tracer

uptake was quantified using maximum standardised uptake

(SUVmax) values, which was measured by drawing regions of

interest around the tumours on transaxial slices that were

automatically adapted to a three-dimensional volume of

interest with the system software at an 80% isocontour. The

normal organs were evaluated using a 1–2-cm-diameter circular

sphere. Primary lesions, lymph nodes and distant metastases

were analysed. The lymph nodes were classified according to

their location as cervical–supraclavicular, thoracic, abdominal

and pelvic. The target-to-background ratios (TBRs) of the

primary lesions; lymph nodes; and liver, lung, bone and

peritoneal metastatic tumours were calculated (the normal

transverse colon without physiological uptake, blood pool of

the aorta, normal liver tissue, normal lung tissue, L5 and normal

mesenterium were used as backgrounds, respectively).

We used TNM classification based on the National

Comprehensive Cancer Network (NCCN) guidelines (15, 16).

In all participants, changes in the TNM stage, metastases

localisation and previous oncologic or radio-oncologic

management history were recorded.
2.6 Statistical analyses

All statistical analyses were performed using SPSS 23.0 (IBM,

Armonk, NY, USA). Inter-reader agreement was evaluated using

Kappa test. The uptakes of positive lesions in [18F]F-FDG and

[68Ga]Ga-FAPI-04 PET/CT were compared using Wilcoxon’s

signed-rank test. SUVmax and TBR were the main parameters

for evaluating the two PET/CT scans, and normally distributed

and skewed variables were expressed as means (95% confidence

intervals) andmedians (ranges), respectively. A two-tailed P value

of <0.05 was considered statistically significant.
3 Results

3.1 Participant characteristics

Table 1 summarises the clinical characteristics of the 61

participants. The median age of the participants was 62 (range,

32–81) years, and 42 (68.9%) participants were men. The most
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common histologic grade was moderate differentiation in 35

(57.4%) participants, whereas 8 (13.1%) and 7 (11.5%)

participants had mucinous/signet-ring cell carcinoma and

adenocarcinoma with a mucinous component, respectively.

Overall, 21 (34.4%) participants underwent PET/CT for initial

assessment and staging; the remaining 40 (65.6%) underwent

PET/CT for restaging or therapeutic evaluation.
3.2 Safety

All participants tolerated [68Ga]Ga-FAPI-04 PET/CT

without any complications. No signs of drug-related side effects

were reported during the entire observation period of >5 h.
3.3 Distribution

The inter-reader agreement between groups 1 and 2 was

nearly perfect, and the k value was >0.8 (Supplementary
Frontiers in Oncology 04
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Tables 1–4). SUVmax was determined for normal tissues/

organs and primary tumours after [68Ga]Ga-FAPI-04 and

[18F]F-FDG PET/CT, which were sequentially performed for

all the participants. [68Ga]Ga-FAPI-04 activity was significantly

lower than [18F]F-FDG activity in several normal organs (P <

0.001), especially the brain (SUVmax, 0.3 ± 0.2 vs. 10.0 ± 2.8, P <

0.001) and liver (SUVmax, 1.4 ± 0.4 vs. 2.9 ± 0.5, P < 0.001),

leading to significantly high TBRs of >2 in both organs (P <

0.001). Further, [68Ga]Ga-FAPI-04 uptake was higher than [18F]

F-FDG uptake in the salivary and thyroid glands and the

pancreas (P < 0.001 for all). The detailed distribution of [18F]

F-FDG and [68Ga]Ga-FAPI-04 uptakes is presented in Figure 1.
3.4 Primary tumours

The histopathological data of the primary tumours were

available for all treatment-naïve participants (n = 21) and for

those who received neoadjuvant treatment (n = 15). Only 1 of

these 36 participants had two primary lesions. Therefore, 37

primary lesions were measured. The sensitivity was 100% (37/

37) for both [68Ga]Ga-FAPI-04 and [18F]F-FDG PET/CT. The

average SUVmax and median SUVmax (range) of all primary

lesions were 9.7 ± 5.4 and 9.7 (2.0–25.5), respectively, on [68Ga]

Ga-FAPI-04 PET/CT and 11.4 ± 7.6 and 10.3 (2.4–35.1),

respectively, on [18F]F-FDG PET/CT (P = 0.09). The average

TBR of all 37 primary lesions was significantly higher on [68Ga]

Ga-FAPI-04 PET/CT than on [18F]F-FDG PET/CT (13.3 ± 8.9

and 8.2 ± 6.5, respectively; P < 0.001). The average SUVmax

values for [68Ga]Ga-FAPI-04 and [18F]F-FDG were 12.3 ± 4.6

and 14.1 ± 7.3, respectively, in the treatment-naïve group (P =
TABLE 1 Participants’ characteristics.

Characteristic Value

Participants (n) 61

Age (years), median (range) 62 (32–81)

Sex (male:female) 42:19

Colon cancer 26 (42.6%)

Rectal cancer 35 (57.4%)

Treatment status

Treatment-naïve 21

Neoadjuvant treatment 15

Chemotherapy 5

Radiotherapy 3

Chemotherapy + radiotherapy 7

Chemotherapy/radiotherapy after surgery 25

Pathology

Adenocarcinoma (poorly differentiated) 8

Adenocarcinoma (moderately differentiated) 35

Adenocarcinoma (well-differentiated) 3

Mucinous/signet-ring cell carcinoma 8

Adenocarcinoma with mucinous component 7

Purpose of PET/CT

Staging 21

Restaging/therapeutic evaluation 40

CT, computed tomography; PET, positron emission tomography.
FIGURE 1

PET-based biodistribution analysis of 61 participants evaluated
using [68Ga]Ga-FAPI-04 PET/CT and [18F]F-FDG PET/CT 1 h after
tracer injection.
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0.21) and 5.9 ± 4.1 and 7.4 ± 6.5, respectively, in the neoadjuvant

radio-chemotherapy group (P = 0.18). The average TBR of the

treatment-naïve lesions was significantly higher on [68Ga]Ga-

FAPI-04 PET/CT than on [18F]F-FDG PET/CT (17.6 ± 8.5 vs.

10.5 ± 7.2, P = 0.002), whereas the average TBR was not different

between the imaging modalities for the post-treatment lesions

(7.0 ± 5.0 vs. 5.0 ± 3.4, P = 0.061).

The analysis of treatment-naïve primary tumours revealed

that the avidity of [68Ga]Ga-FAPI-04 (11.4 ± 4.9) was

significantly higher than that of [18F]F-FDG (7.9 ± 3.6) in

signet-ring/mucinous carcinomas (P = 0.03; Figure 2).

Additionally, [68Ga]Ga-FAPI-04 uptake was significantly lower

than [18F]F-FDG uptake in poorly differentiated carcinomas

(average SUVmax, 12.7 ± 3.7 vs. 18.1 ± 4.1; P = 0.04). There

was also a significant difference in the SUVmax of primary lesions

between [68Ga]Ga-FAPI-04 and [18F]F-FDG PET/CT among

well-differentiated and moderately differentiated carcinomas

(average SUVmax, 10.8 ± 3.0 vs. 16.2 ± 8.6; P = 0.025).

Although the uptake of [68Ga]Ga-FAPI-04 was higher in

poorly differentiated carcinomas (12.7 ± 3.7) than in

moderately-well differentiated carcinomas (10.8 ± 3.0), no

significant difference was noted between them (P = 0.074).

Interestingly, in the neoadjuvant chemotherapy group, there

was no significant difference in the SUVmax of primary lesions

between [68Ga]Ga-FAPI-04 and [18F]F-FDG PET/CT among all

carcinoma types (P = 0.182).
Frontiers in Oncology 05
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3.5 Changes in TNM stage

Compared with staging based on [18F]F-FDGPET/CT, [68Ga]

Ga-FAPI-04 PET/CT revealed additional findings in 34 of the 61

participants, which led to changes in staging in 15 participants.

Particularly, 6 (28.6%) of the 21 treatment-naïve participants were

upstaged and 2 (9.5%) were downstaged (Table 2).

Among all participants who were upstaged based on [68Ga]

Ga-FAPI-04 PET/CT findings (10/61, 16.4%), the changes were

based on the detection of new or additional distant metastases in

one or more organ systems. All additional findings were

confirmed through biopsy or surgery (10/34, 29.4%) or

through other conventional imaging modalities (24/34, 70.6%).

Moreover, in 16 participants, new lymph node metastases were

detected but did not lead to changes in the stage (Table 2). The

median uptake of [68Ga]Ga-FAPI-04 was higher than that of

[18F]F-FDG in both abdominal (6.4 vs. 4.2, P < 0.001) and pelvic

lymph nodes (4.6 vs. 2.7, P < 0.001; Table 3, Figure 3). The TBRs

of both abdominal (3.5 vs. 2.1, P < 0.001) and pelvic lymph

nodes (2.9 vs. 1.2, P < 0.001) were also significantly higher in

[68Ga]Ga-FAPI-04 PET/CT images than in [18F]F-FDG PET/CT

images. However, the median uptake (3.0 vs. 4.7, P < 0.001) and

TBR (1.4 vs. 2.4, P < 0.001) of [68Ga]Ga-FAPI-04 were lower

than those of [18F]F-FDG in thoracic lymph nodes (Table 3).

Imaging with [68Ga]Ga-FAPI-04 PET/CT led to upstaging

based on the detection of peritoneal and bone metastases in four
FIGURE 2

Images of a 49-year-old man with rectal mucinous carcinoma for staging. (A) Mean intensity projection images of [68Ga]Ga-FAPI-04 PET/CT
scan. (B–D) Axial CT, PET and fused images of [68Ga]Ga-FAPI-04 PET/CT scan. (E–G) Axial CT, PET and fused images of [18F]F-FDG PET/CT
scan. (H) Mean intensity projection images of [18F]F-FDG PET/CT scan. Compared with [18F]F-FDG PET/CT, [68Ga]Ga-FAPI-04 PET/CT exhibits
the primary lesion (hollow black and red arrows) and suspicious lymph nodes (hollow black and blue arrows) more clearly because of the higher
tracer uptake. The SUVmax of primary lesions was 14.6 for [68Ga]Ga-FAPI-04 and 4.4 for [18F]F-FDG PET/CT. The [68Ga]Ga-FAPI-04 PET/CT
images also depict more intense tracer uptake in suspicious lymph nodes than [18F]F-FDG PET/CT images, with SUVmax values of 5.6–6.0 and
1.5–2.0, respectively.
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TABLE 2 Comparison of FDG PET-based and FAPI PET-based TNM staging of 34 CRC participants with additional findings.

Number Treatment
status

TNM stage
(FDG PET-
based)

TNM stage
(FAPI PET-
based)

Additional finding in
FAPI PET Reference standard Change

in staging

2 Treatment-
naïve

T4aN2bM0 (III B) T4aN2bM1c (IV C) Peritoneal metastasis Contrast-enhanced MRI Upstage

4 Treatment-
naïve

T4aN2bM1c (IV C) T4aN2bM1c (IV C) 2 LNs Shrinkage after treatment
(contrast CT)

None

5 Treatment-
naïve

T1/2N0M1a (IV A) T1/2N0M0 (I) No rectal metastasis Endoscopic biopsy Downstage

6 Treatment-
naïve

T4aN2aM1c (IV C) T4aN2aM1c (IV C) 2 LNs Shrinkage after treatment
(contrast CT)

None

11 Neoadjuvant
treatment

yT0N0M1a (IV A) yT0N0M0 No small intestinal metastasis Endoscopic biopsy Downstage

15 Treatment-
naïve

T3N1bM1a (IV A) T3N1bM1a (IV A) 1 LN Shrinkage after treatment
(contrast CT)

None

16 Treatment-
naïve

T4bN2bM0 (III C) T4bN2bM0 (III C) 5 LNs Shrinkage after treatment
(contrast CT)

None

17 Treatment-
naïve

T4aN1bM0 (III B) T4aN1bM0 (III B) 1 LN Shrinkage after treatment
(contrast CT)

None

20 Treatment-
naïve

T3N2aM1a (IV A) T3N2aM1a (IV A) 1 LN Shrinkage after treatment
(contrast CT)

None

21 Treatment-
naïve

T4aN1bM0 (III B) T4aN1bM0 (III B) 1 LN Surgery None

22 Treatment-
naïve

T3N1bM0 (III B) T3N1bM1c (IV C) 1 LN + Peritoneal metastasis Surgery Upstage

23 Treatment-
naïve

T3N1bM0 (III B) T3N1bM0 (III B) 1 LN Surgery None

24 Post-operation M1 M0 No metastatic recurrence in
anastomotic stoma

Endoscopic biopsy Downstage

26 Treatment-
naïve

T3N1bM0 (III B) T3N1bM0 (III B) 1 LN Shrinkage after treatment
(contrast CT)

None

27 Treatment-
naïve

T3N0M0 (II A) T3N1aM0 (III B) 1 LN Surgery Upstage

28 Treatment-
naïve

T3N1cM0 (III B) T3N1cM1a (IV A) 1 LN + Left acetabulum
metastasis

Staging surgery and shrinkage
after treatment (contrast CT)

Upstage

30 Neoadjuvant
treatment

yT3N1aM0 (III B) yT3N1bM0 (III B) 1 LN Shrinkage after treatment
(contrast CT)

None

33 Treatment-
naïve

T4bN2bM0 (III C) T4bN2bM0 (III C) 2 LNs Shrinkage after treatment
(contrast CT)

None

35 Treatment-
naïve

T4aN1aM0 (III B) T4aN2bM0 (III C) 7 LNs Shrinkage after treatment
(contrast CT)

Upstage

36 Treatment-
naïve

T4aN2aM0 (III C) T4aN2aM1a (IV A) 2 LNs + Liver metastasis Contrast-enhanced MRI Upstage

37 Post-operation M1c M1c No 2 right axillary and
internal mammary LN
metastases

No change in size (follow-up by
CT)

None

38 Treatment-
naïve

T4aN1aM0 (III B) T4aN1bM0 (III B) 1 LN Surgery None

(Continued)
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and two participants, respectively (Table 2). In all 20

participants, the SUVmax (5.2 vs. 3.8, P < 0.001) and TBR (6.9

vs. 3.8, P < 0.001) of [68Ga]Ga-FAPI-04 were higher than those

of [18F]F-FDG in peritoneal metastases (Table 3). Compared

with the [18F]F-FDG PET/CT images, the peritoneal metastases

were clearly visible in the [68Ga]Ga-FAPI-04 PET/CT images

(Figures 4, 5). There was no significant difference in SUVmax

between [68Ga]Ga-FAPI-04 and [18F]F-FDG in positive lung

lesions (P = 0.484), but the TBR of [68Ga]Ga-FAPI-04 was

significantly lower than that of [18F]F-FDG (P = 0.017; Table 3).

Although there was no significant difference in the SUVmax

of [68Ga]Ga-FAPI-04 and [18F]F-FDG in positive liver lesions

(3.9 vs. 4.6, P = 0.951), the number of positive liver lesions

detected using [68Ga]Ga-FAPI-04 PET/CT was higher than that

detected by [18F]F-FDG PET/CT because of the lower

background SUVmax of [
68Ga]Ga-FAPI-04. Further, 30 positive

liver lesions detected using [68Ga]Ga-FAPI-04 PET/CT were

confirmed as metastases through surgery/biopsy and other

imaging modalities. Only 16 of these positive liver lesions were

detected by [18F]F-FDG PET/CT (53.3%, 16/30). The TBR of

[68Ga]Ga-FAPI-04 was significantly higher than that of [18F]F-
Frontiers in Oncology 07
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FDG (3.7 vs. 1.9, P < 0.001), and the liver metastases were clearly

visible in [68Ga]Ga-FAPI-04 PET/CT images and finally

demonstrated using contrast-enhanced MRI (Figure 6).

Table 3 presents the detailed comparison of liver metastases

detected using [68Ga]Ga-FAPI-04 and [18F]F-FDG PET/CT.

The final staging changes in 15 participants were verified

based on the reference standards; thus, 13 participants’

treatment options were changed from their pre-examination

or originally planned regimens based on the changed stage.

Chemo/radiotherapy and/or surgery was added in nine

participants (#2, #22, #28, #35, #47, #49, #50, #53 and #55),

and surgery was avoided or its scope was narrowed in the other

participants (#5, #11, #24 and #41).
4 Discussion

FAP is an excellent target for tumour stroma, and 68Ga-

FAPIs, as newer imaging tracers, present a promising alternative

to [18F]F-FDG. This preliminary clinical study investigated the

avidity of [68Ga]Ga-FAPI-04 in CRC and explored the potential
TABLE 2 Continued

Number Treatment
status

TNM stage
(FDG PET-
based)

TNM stage
(FAPI PET-
based)

Additional finding in
FAPI PET Reference standard Change

in staging

40 Post-operation M1c M1c No 1 right hilar LN metastasis No change in size (follow-up by
CT)

None

41 Post-operation M1b M0 No 7 mediastinal and hilar LN
metastases

No change in size (follow-up by
CT)

Downstage

44 Post-operation M1c M1c 1 left hilar LN metastasis Shrinkage after treatment
(contrast CT)

None

46 Post-operation M1c M1c No metastatic recurrence in
anastomotic stoma

Endoscopic biopsy None

47 Post-operation M1b M1c Peritoneal metastases Expansion after drug resistance Upstage

49 Post-operation M0 M1a Left 11th rib metastasis Changes in bone density
(contrast CT)

Upstage

50 Post-operation M1a M1c Peritoneal metastases (liver
capsule)

Contrast-enhanced MRI Upstage

52 Post-operation M1c M1c > 7 peritoneal metastases Shrinkage after treatment
(contrast CT)

None

53 Neoadjuvant
treatment

yT3N0M0 (II A) yT3N1bM1b (IV B) 9 LNs Shrinkage after treatment
(contrast CT)

Upstage

55 Treatment-
naïve

T3N0M1a (IV A) T3N0M0 (II A) No 1 left hilar LN metastasis No change in size (follow-up by
CT)

Downstage

58 Neoadjuvant
treatment

yT1/2N0M1b (IV
B)

yT1/2N0M1a (IV
A)

No 4 cervical LN metastases No change in size (follow-up by
CT)

None

59 Post-operation M1c M1c No metastatic recurrence in
anastomotic stoma

Endoscopic biopsy None

T1/2, inability to differentiate T1 and T2 stages using PET/CT; LN, lymph node; FDG, fluorodeoxyglucose; FAPI, fibroblast-activation protein inhibitor; SUVmax, maximum
standardised uptake value; TNM, tumour–node–metastasis.
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TABLE 3 Comparison of [18F]F-FDG and [68Ga]Ga-FAPI-04 uptake in colorectal tumour sites.

Tumour sites and parameters [18F]F-FDG PET/CT [68Ga]Ga-FAPI-04 PET/CT P-value

Primary tumour

No. of lesions (participants) 37 (36) 37 (36)

Mean SUVmax (95% CI) 11.4 (9.1, 13.8) 9.7 (8.0, 11.4) 0.09

Mean TBR (95% CI) 8.2 (6.4, 10.6) 13.3 (10.5, 16.2) <0.001

Involved lymph nodes

Cervical–supraclavicular

No. of lesions (participants) 6 (2) 4 (2)

Median SUVmax (range) 3.2 (2.1–4.3) 2 (1.8–2.5) 0.027

Median TBR (range) 1.6 (1.3–2.3) 1.2 (1.1–1.5) 0.027

Thoracic*

No. of lesions (participants) 26 (13) 18 (13)

Median SUVmax (range) 4.7 (2.4–10.2) 3.0 (1.9–12.9) <0.001

Median TBR (range) 2.4 (1.0–4.9) 1.4 (1.0–5.4) <0.001

Abdominal†

No. of lesions (participants) 26 (9) 38 (9)

Median SUVmax (range) 4.2 (2.1–9.4) 6.4 (2.7–20.5) <0.001

Median TBR (range) 2.1 (1.2–6.3) 3.5 (1.5–13.7) <0.001

Pelvic§

No. of lesions (participants) 37 (15) 72 (15)

Median SUVmax (range) 2.7 (2.0–6.6) 4.6 (2.5–17.6) <0.001

Median TBR (range) 1.2 (0.7–3.3) 2.9 (1.5–9.8) <0.001

Involved distant lesions

Liver

No. of lesions (participants) 16 (9) 30 (9)

Median SUVmax (range) 4.6 (2.5–9.9) 3.9 (1.7–12.2) 0.951

Median TBR (range) 1.9 (0.6–4.7) 3.7 (1.6–7.6) <0.001

Lung

No. of lesions (participants) 24 (9) 23 (9)

Median SUVmax (range) 2.1 (0.9–11.0) 2.1 (1.0–11.2) 0.484

Median TBR (range) 4.1 (1.3–22.0) 3.5 (1.2–22.4) 0.017

Bone

No. of lesions (participants) 6 (5) 8 (5)

Median SUVmax (range) 5.5 (4.0–8.8) 7.9 (2.8–14.0) 0.036

Median TBR (range) 3.4 (2.9–5.0) 8.7 (3.1–10.9) 0.017

Peritoneum

No. of lesions (participants) 45 (20) 60 (20)

(Continued)
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utility of [68Ga]Ga-FAPI-04 PET/CT as the sole imaging

modality for assessing primary and recurrent/metastatic CRC.

Our analyses indicated that [68Ga]Ga-FAPI-04 PET/CT

improved tumour staging in patients with CRC owing to

favourable tumour/background activity and low tracer uptake

in the gastrointestinal tract. Moreover, signet-ring/mucinous

carcinomas accumulated more [68Ga]Ga-FAPI-04 than [18F]F-

FDG, whereas FAPI avidity was lower than FDG avidity in

poorly differentiated carcinomas.

As key constituents of the tumour stroma, CAFs can support

the immunosuppressive microenvironment, tumour cell growth,

progression andmetastatic potential. Expressed by CAFs, FAP is an

attractive diagnostic and therapeutic target (8, 10, 17). [68Ga]Ga-
Frontiers in Oncology 09
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FAPI-04 PET/CT is characterised by high tumour/background

activity and is more sensitive than [18F]F-FDG PET/CT for

identifying primary gastrointestinal carcinoma lesions (12, 13).

The origin, number and distribution of FAP-expressing CAFs

and the number of FAP molecules per cell may differ among

tumours. Mona et al. (18) reported a strong correlation between

tumour [68Ga]Ga-FAPI-46 uptake intensity and histopathological

FAP expression in colon cancer. We expected variations in intra-

tumoural tracer distribution in treatment-naïve patients with

specific histopathologic types of CRC. In this study, we

demonstrated additional FAP expression in signet-ring/mucinous

carcinomas, which normally exhibit low [18F]F-FDG uptake (6, 7,

19). The results revealed that [68Ga]Ga-FAPI-04 PET/CT would
TABLE 3 Continued

Tumour sites and parameters [18F]F-FDG PET/CT [68Ga]Ga-FAPI-04 PET/CT P-value

Median SUVmax (range) 3.8 (1.1–16.4) 5.2 (2.1–12.6) <0.001

Median TBR (range) 3.8 (1.8–29.0) 6.9 (2.6–31.5) <0.001

Brain

No. of lesions (participants) 1 (1) 1 (1)

Median SUVmax (range) 6.9 (6.9) 2.1 (2.1) NA

Median TBR (range) 0.9 (0.9) 21 (21) NA

*Lymph nodes in the thoracic regions include mediastinal or/and hilar, axillary and internal mammary lymph nodes.
†Lymph nodes in the abdominal regions include para-aortic, retroperitoneal and celiac lymph nodes.
§Lymph nodes in the pelvic regions include pelvic, iliac and inguinal lymph nodes; 18F, fluorine 18; 68Ga, gallium 68; FDG, fluorodeoxyglucose; FAPI, fibroblast-activation protein
inhibitor; SUVmax, maximum standardised uptake value; NA, not applicable.
fron
FIGURE 3

Images of a 64-year-old woman with colon cancer for staging. (A) Mean intensity projection images of [68Ga]Ga-FAPI-04 PET/CT scans. (B–D)
Axial fused images of suspicious lymph nodes at different levels of the body in [68Ga]Ga-FAPI-04 PET/CT. (E–G) Axial fused images of suspicious
lymph nodes at different levels of the body in [18F]F-FDG PET/CT. (H) Mean intensity projection images of [18F]F-FDG PET/CT scan. [68Ga]Ga-
FAPI-04 uptake (blue arrows in B–D) was higher than [18F]F-FDG uptake (blue arrows in E–G) in both the diaphragmatic and retroperitoneal
metastatic lymph nodes, with SUVmax values of 5.9–12.0 and 3.4–4.3, respectively.
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FIGURE 4

Images of a 64-year-old woman with rectal cancer for staging. (A) Mean intensity projection images of [68Ga]Ga-FAPI-04 PET/CT scan. (B–D)
Axial CT, PET and fused images of [68Ga]Ga-FAPI-04 PET/CT scan. (E–G) Axial CT, PET and fused images of [18F]F-FDG PET/CT scan. (H) Mean
intensity projection images of [18F]F-FDG PET/CT scan. Pelvic peritoneal carcinoma is distinctly observed in [68Ga]Ga-FAPI-04 PET/CT images
(blue arrows in b–d) because of intensive tracer uptake (SUVmax 5.5). Conversely, little [18F]F-FDG (SUVmax 1.1) uptake results in the small lesion
being hardly detectable (blue arrows in E–G).
FIGURE 5

Images of a 60-year-old woman with colon cancer and metastatic peritoneal carcinoma for restaging after treatment. (A) Mean intensity
projection images of [68Ga]Ga-FAPI-04 PET/CT scans. (B–D) Axial fused images of metastatic peritoneal carcinomas at different body levels in
[68Ga]Ga-FAPI-04 PET/CT. (E–G) Axial fused images of metastatic peritoneal carcinomas at different body levels in [18F]F-FDG PET/CT. (H-h)
Mean intensity projection images of [18F]F-FDG PET/CT scan. [68Ga]Ga-FAPI-04 uptake (blue arrows in B–D) was higher than the [18F]F-FDG
uptake (blue arrows in E–G) in peritoneal carcinomas, and SUVmax values for [

68Ga]Ga-FAPI-04 and [18F]F-FDG PET/CT were 4.6–8.8 and 3.1–
3.5, respectively.
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have a lower false-negative rate than [18F]F-FDG PET/CT in

detecting primary and metastatic CRC lesions. Although Solano-

Iturri et al. (20) reported that CRC tissues with poor differentiation

exhibited a higher percentage of FAP staining than those with

moderately-well differentiation, the poorly differentiated

carcinomas exhibited moderately higher [68Ga]Ga-FAPI-04

uptake without significant differences between these subtypes in

our study. Moreover, we found that poorly differentiated

carcinomas exhibited significantly lower [68Ga]Ga-FAPI-04

uptake than [18F]F-FDG uptake, although this subtype showed

avidity for both [68Ga]Ga-FAPI-04 and [18F]F-FDG.

The TNM classification provides standard guidelines to

classify the extent of cancer metastasis. The degree of tumour

progression and invasion at the time of surgical resection as well

as patient outcomes are estimated on the basis of this staging

system for CRC. This study demonstrated that [68Ga]Ga-FAPI-04

PET/CT could detect both primary tumours and metastases

arising from CRC. The sensitivity was 100% for both [68Ga]Ga-

FAPI-04 and [18F]F-FDG PET/CT, and no significant differences

in SUVmax were found between [68Ga]Ga-FAPI-04 and [18F]F-

FDGPET/CT images in both treatment-naïve and post-treatment

lesions. However, the average TBR of treatment-naïve lesions was

significantly higher on [68Ga]Ga-FAPI-04 PET/CT than on [18F]

F-FDGPET/CT. This result was consistentwith the recently study

reported by Halil et al. (21). Thus, [68Ga]Ga-FAPI-04 PET/CT

might be more advantageous than [18F]F-FDG PET/CT to

improve detecting efficiency in T stage.

The superiority of [18F]F-FDG PET/CT is evident in the

detection of lymph node and distant metastases in CRC, and

the detection of additional metastases can significantly change

treatment plans (22, 23). However, several studies demonstrated

that the detection of metastatic regional nodes was low/moderate
Frontiers in Oncology 11
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using [18F]F-FDG PET/CT, illustrating the limitations of this

method (24, 25). Several studies suggested that CRC commonly

harbours CAF-expressing FAP. Sugai et al. (26) suggested that

high FAP expression is correlated with lymph node metastasis in

submucosal invasive CRC. Solano-Iturri et al. (20) observed a

significant positive correlation between FAP expression in

primary CRC tumours and their corresponding local and

distant metastases. Thus, this study examined the reliability of

[68Ga]Ga-FAPI-04 PET/CT for detecting metastatic CRC lesions.

Our results showed that [68Ga]Ga-FAPI-04 PET/CT identified

additional findings in 41 metastatic and 15 inflammatory lymph

nodes of 24 participants with CRC and improved the N staging in

these participants. Additionally, [68Ga]Ga-FAPI-04 uptake was

higher than [18F]F-FDG uptake in abdominal and pelvic lymph

nodes. However, cervical–supraclavicular and thoracic FDG-avid

inflammatory/age-related lymph nodes were FAPI-negative.

According to the M stage, the early detection of isolated

metastases in the liver or other sites often improves survival

following radical resection (27). Owing to moderate FDG uptake

in the liver, [18F]F-FDG PET/CT was not the first choice for

identifying liver metastasis. Our data revealed that the hepatic

background intensity was significantly lower in [68Ga]Ga-FAPI-

04 PET/CT than that in [18F]F-FDG PET/CT, corroborating the

findings of previous studies (9, 11, 21). The TBR values of liver

metastases were higher in [68Ga]Ga-FAPI-04 than those in [18F]

F-FDG PET/CT in this study. Thus, FAPI-imaging might be

advantageous for patients with suspected liver metastases,

resulting in a potentially high detection rate. In this study, the

smallest lesion detected had a diameter of approximately 0.7 cm.

However, Halil et al. (21) found that both the SUVmax and TBR

values of liver metastases were signifcantly higher in [18F]F-FDG

than those in [68Ga]Ga-FAPI-04 PET/CT. We believe that this
FIGURE 6

Images of a 63-year-old man with colon cancer for staging. (A) Mean intensity projection images of [68Ga]Ga-FAPI-04 PET/CT scans. (B–D)
Axial CT, PET and fused images of [68Ga]Ga-FAPI-04 PET/CT scan. (E–G) Axial CT, PET and fused images of [18F]F-FDG PET/CT scan. (H) Mean
intensity projection images of [18F]F-FDG PET/CT scan. (I, F) Images of contrast-enhanced MRI, T2WI (delay phase) and DWI (b = 1000). The
suspicious metastatic lesion in the right liver lobe is clearly visible in [68Ga]Ga-FAPI-04 PET/CT images (blue arrows in A–D; SUVmax 5.0) but
absent in [18F]F-FDG PET/CT images. Its presence was confirmed by contrast-enhanced MRI (blue arrows in I, J).
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issue can be clarified with future studies involving larger and

homogeneous cohorts. Reportedly, the peritoneum is another

common site of CRC metastasis (28), and the degree of

peritoneal metastasis determines the choice of treatment (23,

29). The detection rate of peritoneal metastasis using [18F]F-

FDG PET/CT is not high, primarily because of intestinal

inflammatory uptake, small lesions and other factors,

including rare pathological types. [68Ga]Ga-FAPI-04 is an

active fibroblast-targeted imaging agent, and the development

of peritoneal metastases is primarily because of active fibroblasts

(28), which is supported by the significantly higher [68Ga]Ga-

FAPI-04 uptake in peritoneal metastatic lesions compared with

[18F]F-FDG uptake observed in this study. This result was also

consistent with the previous studies (13, 21).

In addition, we found that [68Ga]Ga-FAPI-04 uptake was

significantly higher than [18F]F-FDG uptake in the uterus, which

may be attributed to the presence of active fibroblasts in the uterus

(30); this suggests that the SUVmax of lesions (primary or/and

metastatic lesions) located in the pelvic area is affected by high

[68Ga]Ga-FAPI-04 uptake, a potential limitation of [68Ga]Ga-FAPI-

04 PET/CT imaging.

This study has several limitations. First, the cohort size was

small, and the number of participants with brain and bone

metastases was low. Second, the cohort was heterogeneous and

included participants with different treatment statuses, which

could have affected the SUVmax values of lesions. Third, the

period of follow-up was set to 3–6 months based on previous

experience. Although most of lesions could be observed obvious

changes indicating their benign or malignant features, a few

lesions might be taken longer to be followed up. Lastly, we

could not pathologically confirm all suspicious lesions without

considering ethics; thus, neither accurate sensitivity nor specificity

could be established. Future studies with larger and homogeneous

cohorts are warranted to provide a more comprehensive analysis

of the utility of [68Ga]Ga-FAPI-04 PET/CT in CRC.
5 Conclusion

[68Ga]Ga-FAPI-04PET/CThas several obvious advantages over

[18F]F-FDG PET/CT, including the detection of lymph nodes and

distant metastases, thereby improving the staging of patients with

CRC. This improved staging is helpful for the timely revision of

clinical treatment strategies and improvementofpatients’prognoses.

Additionally,patientsmight feelmorecomfortableduring [68Ga]Ga-

FAPI-04 PET/CT as it does not require fasting.
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Magnetic resonance imaging
radiomics to differentiate ovarian
sex cord-stromal tumors and
primary epithelial ovarian cancers
Meiying Cheng1, Shifang Tan1, Tian Ren2, Zitao Zhu3,
Kaiyu Wang4, Lingjie Zhang1, Lingsong Meng1, Xuhong Yang5,
Teng Pan6, Zhexuan Yang1 and Xin Zhao1*

1Department of Radiology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,
2Department of Information, Third Affiliated Hospital of Zhengzhou University, Zhengzhou,
Henan, China, 3Medical College, Wuhan University, Wuhan, China, 4Magnetic resonance imaging (MRI)
Research, GE Healthcare (China), Beijing, China, 5Department of Research, Huiying Medical Technology
Co., Ltd., Beijing, China, 6Department of Research, Third Affiliated Hospital of Zhengzhou University,
Zhengzhou, Beijing, China
Objective: To evaluate the diagnostic ability of magnetic resonance imaging (MRI)

based radiomics and traditional characteristics to differentiate between Ovarian

sex cord-stromal tumors (SCSTs) and epithelial ovarian cancers (EOCs).

Methods:Weconsecutively included a total of 148 patients with 173 tumors (81 SCSTs

in 73 patients and 92 EOCs in 75 patients), who were randomly divided into

development and testing cohorts at a ratio of 8:2. Radiomics features were

extracted from each tumor, 5-fold cross-validation was conducted for the selection

of stable features based on development cohort, and we built radiomics model based

on these selected features. Univariate and multivariate analyses were used to identify

the independent predictors in clinical features and conventional MR parameters for

differentiating SCSTs and EOCs. And nomogram was used to visualized the ultimately

predictive models. All models were constructed based on the logistic regression (LR)

classifier. The performance of each model was evaluated by the receiver operating

characteristic (ROC) curve. Calibration and decision curves analysis (DCA) were used

to evaluate the performance of models.

Results: The final radiomicsmodel was constructed by nine radiomics features, which

exhibited superior predictive ability with AUCs of 0.915 (95%CI: 0.869-0.962) and

0.867 (95%CI: 0.732-1.000) in the development and testing cohorts, respectively. The

mixed model which combining the radiomics signatures and traditional parameters

achieved the best performance, with AUCs of 0.934 (95%CI: 0.892-0.976) and 0.875

(95%CI: 0.743-1.000) in the development and testing cohorts, respectively.

Conclusion: We believe that the radiomics approach could be a more objective

and accurate way to distinguish between SCSTs and EOCs, and the mixed model

developed in our study could provide a comprehensive, effective method for

clinicians to develop an appropriate management strategy.

KEYWORDS

ovarian sex cord-stromal tumor, epithelial ovarian cancer, magnetic resonance imaging,
radiomics, prediction model
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Introduction

Ovarian sex cord-stromal tumors (SCSTs) are rare nonepithelial

neoplasms, and represent about 7% of all primary ovarian tumors (1,

2). According to the classification of ovarian tumors by World Health

Organization (WHO) (2020), SCSTs are divided into the following

three clinicopathologic subcategories: pure stromal tumors, pure sex

cord tumors, and mixed sex cord-stromal tumors (3). Fibromas,

thecomas, and granulosa cell tumors account for the majority

of SCSTs.

Morphologically, SCSTs usually present as solid masses (4),

resembling malignant tumors. Although some of the SCSTs, such as

fibromas, have a few specific characteristics on conventional imaging

features, diagnostic dilemmas may often arise if the tumor shows

increased cellularity, or due to necrosis, hemorrhage, edema, or cystic

degeneration (2, 4). Other types are even more confusing on account

of morphological complexity. Moreover, the rarity of SCSTs

contributes to a low degree of suspicion, which makes it susceptible

to misdiagnosis as the more common epithelial ovarian cancer

(EOC). Clinically, SCSTs most commonly present at early stages (I)

and are primarily surgically treated with an overall favorable

prognosis (2, 5), while epithelial tumors usually present at advanced

stages (III or IV) and are treated with chemotherapy and surgical

debulking (2). Hence, a more accurate and objective assessment

method to identify SCSTs from ovarian cancers is imperative.

Magnetic resonance imaging (MRI) has been widely used to

detect and evaluate adnexal lesions, especially for the indeterminate

adnexal masses on ultrasonography (6, 7). The high soft-tissue

resolution and ability to characterize the composition of different

fluid types allow it to characterize the lesion types more accurately (7).

However, all the evaluation by MRI requires the subjective

interpretation of radiologists, in addition to the complexity and

overlap in imaging characteristics of different diseases, it is still a

challenge to differentiate the types of tumors with MRI alone (6).

Radiomics is an emerging method for postprocessing any type of

medical image and generating new quantification metrics which have

proven to provide important insights into tumor biology, shifting

radiology from the traditional visual analysis to a more objective and

automated analysis (6). Recently, radiomics studies on adnexal

tumors have demonstrated some encouraging advances, including

clinical outcomes in ovarian cancer (6, 8, 9), tumor category (9, 10),

and subtype differentiation (9, 11). However, there are few studies

involving SCSTs. In this study, we developed an MR image-based

radiomics diagnostic model to prove that SCSTs and EOCs

are separable.
Patients and methods

Patient population

This retrospective pilot study was approved by our Institutional

Review Board with a waiver of informed consent. From January 2017

to December 2021, we retrospectively retrieved all MRI pelvic

examinations referring to ovarian or adnexal lesions from our

Institutional Picture Archiving and Communication System (PACS)
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and obtained 1867 results. Every report was analyzed by the

researchers. Then we identified patients who met the following

inclusion criteria (1): pathologically confirmed as SCSTs or EOCs;

(2) MRI was performed within 1 month before pelvic or laparoscopic

surgery at our institution; (3) no chemotherapy, radiotherapy, or

previous gynecological operation prior to MRI examination. The

exclusion criteria were: (1) poor MR image quality, so that the

focus cannot be clearly observed or delineated; (2) multiple nodules

that the primary focus cannot be identified due to a mutual fusion and

extensive adhesion pattern or any other reason. Finally, we

consecutively reviewed a total of 148 patients with 173 tumors (81

SCSTs in 73 patients and 92 EOCs in 75 patients) as the primary

cohort. Details of histopathology are presented in Table 1. Then the

primary dataset was randomly split into the development and testing

cohorts with a fixed ratio of 8:2 in each category, resulting in 137

tumors (64 SCSTs and 73 EOCs) for the development cohort and 36

tumors (17 SCSTs and 19 EOCs) for testing cohort. A flowchart of the

patient selection process is shown in Figure 1.

Clinical characteristics such as patient age, menstrual status,

endocrine level, cancer antigen 125 (CA125), and risk of ovarian

malignancy algorithm (ROMA), were obtained from the hospital

information system.
MR image acquisition and interpretation

MR examinations were performed on the 3.0 T system (SIGNA

Pioneer, GE Healthcare, and Skyra, Siemens Healthcare) with the

phased-array abdominal coil. The conventional MR sequences

included T1 weighted imaging (T1WI) in the axial plane, T2

weighted imaging (T2WI) in the axial and sagittal plane, fat-

suppressed T2WI (FS-T2WI) in the axial and coronal plane,

diffusion-weighted imaging (DWI) with the b value of 1000 s/mm2

in the axial plane, and multiphase contrast-enhanced fat-suppressed

T1WI in the axial, sagittal, and coronal plane. Detailed information

about the acquisition parameters is presented in Table S1.

Two radiologists (reader 1 and reader 2, with 7 and 15 years of

experience in MRI, respectively) independently recorded the

conventional imaging features while blinded to the histological

results. The recorded features include (1) Maximum diameter (MD)

(measured at the lesion slice with the maximum diameter of the

tumor in the three-dimensional measurements); (2) Visibility of

hemorrhagic component; (3) Solid and cystic components

(predominantly cystic, cystic-solid, and predominantly solid

corresponding to less than 1/3, 1/3-2/3, and more than 2/3 solid

component, respectively); (4) Signal intensity (SI) of the solid

components on T2WI (Hypo-, iso-, or hyperintense was relative to

the external myometrium; A few purely cystic lesions were not

recorded); (5) Apparent diffusion coefficient (ADC) value

(measured manually on the DWI derived ADC maps; regions of

interest were placed at target areas of the tumor, and areas such as

necrosis, hemorrhage, vascular structures were avoided as much as

possible; three measurements were obtained and averaged).

Discrepancies were resolved by a consensus, or a third radiologist

(reader 3 with more than 20 years of experience in gynecologic

imaging) would serve as an arbitrator.
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Tumor segmentation

In order to reduce the discrepancies related to various scanning

parameters and eliminate the internal dependence of image radiomics

features on voxel size, all images were set to a fixed voxel size

(1mm×1mm×1mm) with linear interpolation algorithm.

The 3D segmentation was performed on open-source software

(ITK-SNAP version 3.8.0, http://www.itksnap.org). The volume of

interest (VOI) for each lesion on each slice was manually delineated
Frontiers in Oncology 0398
on FS-T2WI by a reader 1. Then, reader 3 confirmed all the regions.

To examine the reproducibility of extracted radiomics features and to

obtain more robust radiomics features, the intra-class correlation

coefficient (ICC) was used to assess the intra- and inter-observer

agreement of VOI delineation. So, four weeks later, 30 patients (15

SCSTs and 15 EOCs) were randomly selected. Reader 1 then re-

delineated the VOI for intra-consistency testing, in the meantime,

reader 2 outlined the VOI according to the same procedure to test

inter-consistency. The feature with an ICC > 0.75 was selected for

further analysis (12). ICC can be obtained from the following

equation:

ICC =
(MSR −MSE)

MSR + ( MSC−MSE
n )

;

where MSR is mean square for rows, MSC is the mean square for

columns, MSE is mean square for error and n represents the number

of subjects.
Feature extraction

The extraction of radiomics features was conducted in the

Radcloud software (Huiying Medical Technology Co., Ltd, Beijing,

China). A total of 1,409 features were extracted from the FS-T2WI

sequences using the pyradiomics function package (https://

pyradiomics.readthedocs.io/). These features could be divided into

the following three categories. First, first-order statistical features,

such as peak value, mean, and variance, quantitatively describe the

voxel intensity distribution of the lesion area in MR images through

common basic indicators. Second, two-dimensional morphological

features, describe the two-dimensional shape and size of the lesion.

Third, texture features, such as Gray Level Co-occurrence Matrix

(GLCM), Gray Level Run Length Matrix (GLCM), and Gray Level

Size Zone Matrix (GLSZM), quantify the heterogeneity of the lesion

texture. In addition, several filters, such as exponential, logarithm,

square, square root, and wavelet (including wavelet-LHL, wavelet-

LHH, wavelet-HLL, wavelet-LLH, wavelet-HLH, wavelet-HHH,

wavelet-HHL, and wavelet-LLL) filters, were applied to calculate the

first-order statistical features and texture features of the

transformed image.
Feature selection

Before the selection of radiomics features, normalization

processing was performed for all extracted features, and the features

were normalized to the normal distribution by mean and

variance scaling.

We run a 5-fold cross validation to select features, where each fold

we did feature selection and model building on 80% of the

development data (the training cohort), and evaluated on the

remaining 20% (the validation cohort). In each fold, we implement

the dimensionality reduction process in three steps. Features with a

variance value of >0.8 were first selected. Then SelectKBest was

applied to select the features with a p-value less than 0.05. Finally,

the Lassolars algorithm was used to screen the optimal radiomics
FIGURE 1

Flowchart for the patient selection process in this study.
TABLE 1 Histopathological types of the selected samples.

Pathological type Numbers

SCST 81

Thecoma 4

Fibroma 18

Cellular fibroma 2

Fibrothecoma 28

Granulosa cell tumor 25

Sclerosing stromal tumor 2

Sertoli-Leydig cell tumor 2

EOC 92

High grade serous carcinoma 42

Low grade serous carcinoma 17

Endometrioid carcinoma 12

Clear cell carcinoma 12

Mucinous carcinoma 6

Seromucinous carcinoma 3

Total 173

SCST, sex cord-stromal tumors; EOC, epithelial ovarian cancer
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features, among which the top 10 features with the best contribution

would be selected. The least absolute shrinkage and selection operator

(LASSO) is a regression analysis method that can perform both

variable selection and regularization to improve the identification

accuracy and interpretability of the model. Regression algorithm least

angle regression (LARS) provides variables through the linear

combination of high-dimensional data. It is related to positive

stepwise regression. Lassolars algorithm used in this paper is a

combination of Lars algorithm and lasso model, which can

automatically select the optimal parameters l and have better

performance than LASSO algorithm alone (13). Finally, we counted

the frequency of each feature selected in the 5 folds, the features that

get selected three or more times repeatedly were considered stable

features, and different models were built using various combinations

of those selected features.
Classifier modeling

Univariate analysis and multivariate logistic regression analysis

were successively performed based on development data to screen the

clinical and conventional MR features. Based on the selected

radiomics features, clinical features, and conventional MR

parameters, five prediction models (clinical model, conventional

MR model, traditional model, radiomics model and mixed model)

were constructed by using the LR classifier. LR classifier includes

classification, function establishment, solving optimal model

parameters through optimization iteration, and verifying the model

performance. In addition, the nomogram was also constructed to

visualize the results of the logistic regression. The nomogram

develops scoring criteria based on the magnitude of the regression

coefficients for all independent variables. It scores each value level of

each independent variable, giving an overall score and finally

calculating the probability of disease risk for each patient through a

conversion function between the score and the outcome probability.

The calibration curve was drawn to assess the agreement between the

predicted results and actual presence. The detailed process of

radiomics analysis is presented in Figure 2.
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The performance of the model was estimated by using receiver

operating characteristic (ROC) curves and confusion matrix analysis, and

the area under the curve (AUC), sensitivity, specificity, and accuracy were

calculated. The DeLong test was used to compare the performance of

different models. The decision curve analysis (DCA) was used to evaluate

the clinical utility of the prediction models by quantifying the net benefits

at different threshold probabilities in the dataset.
Statistical analysis

Statistical analysis was performed using SPSS version 25.0 (IBM).

Quantitative variables are shown as mean ± standard deviation.

Categorical variables were assessed by Chi-square tests or Fisher exact

test, and differences in continuous variables were assessed by t-test or

Mann-Whitney U test. P< 0.05 was considered statistically significant.

Model construction was executed using R software 3.5.3 (https://cran.r-

project.org/) and Python 2.7 software (https://www.python.org/). The

packages of “pyradiomics” (https://pyradiomics.readthedocs.io/),

“scikitlearn” (https://scikit-learn.org/), and “matplotlib” (https://

matplotlib.org/) were used for feature selection, model building, and

plotting in this study.
Results

Patients and tumor characteristics

The comparisons of the clinical data and MR parameters between

SCSTs and EOCs groups in the primary and development cohorts are

summarized in Table 2. Age, ROMA index, serum CA125, ADC value,

MD, SI on T2WI, solid and cystic components showed significant

differences between the SCSTs and EOCs groups, while no significant

difference was observed in menstrual status, endocrine level, and

hemorrhagic component. Among the variables with significant

differences, only ROMA index (P< 0.001), ADC value (P = 0.004),

solid and cystic components (P = 0.043) remained as independent

predictors on the multivariate logistic regression analysis.
FIGURE 2

Process of radiomics analysis in this study.
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Feature extraction and selection

Of all the extracted radiomics features, the median ICC was 0.90,

and 1277 of 1409 features (91%) were robust and were selected for

subsequent analysis, with ICC > 0.75. Lassolars algorithms on feature

selection for each fold are shown in Figure S1. The selected radiomic

features and the corresponding coefficients in each fold are shown in

Figure 3 and Table S2. We did model building in every fold, the AUCs

for the 5-fold cross validation are reported in Table S3 and Figure S2,

and the mean AUCs were 0.883 ± 0.018 in the training cohort and

0.849 ± 0.021 in the validation cohort. Finally, there were three

features got selected in 3 of the 5 folds, three features got selected in 4
Frontiers in Oncology 05100
of the 5 folds, and three features got selected in every fold. The

frequencies of the radiomics features are summarized in Table 3.
Construction and performance of the
prediction models

Based on the selected clinical variable ROMA index, a clinical

model was established. Based on parameter ADC, solid and cystic

components, a conventional MR model was established. Then, based

on the combination of the above clinical factors and conventional MR

parameters, a traditional model was established. The AUCs of the
TABLE 2 The clinical data and MR parameters of the primary and development cohorts.

Characteristics

Primary cohort Development cohort

EOCs
(n = 92)

SCSTs
(n = 81) P value

EOCs
(n = 73)

SCSTs
(n = 64) P value

Age (year) a 51.78 ± 10.35 46.33 ± 15.76 0.017* 52.22 ± 10.41 46.58 ± 16.16 0.015*

ROMA (%) a 32.07 ± 26.71 16.03 ± 12.20 <.001* 33.65 ± 27.32 16.08 ± 12.91 <.001*

CA125 (mg/L) b <.001* <.001*

<35 38 (41.3%) 55 (67.9%) 27 (37.0%) 46 (71.9%)

35-200 26 (28.3%) 23 (28.4%) 23 (31.5%) 15 (23.4%)

200-500 13 (14.1%) 1 (1.2%) 10 (13.7%) 1 (1.6%)

>500 15 (16.3%) 2 (2.5%) 13 (17.8%) 2 (3.1%)

Menstrual status b 0.543 0.205

Premenopausal 45 (48.9%) 44 (54.3%) 32 (43.8%) 35 (54.7%)

Postmenopausal 47 (51.1%) 37 (45.7%) 41 (56.2%) 29 (45.3%)

Endocrine level b 0.788 0.588

Normal 85 (92.4%) 73 (90.1%) 67 (91.8%) 57 (89.1%)

Abnormal 7 (7.6%) 8 (9.9%) 6 (8.2%) 7 (10.9%)

ADC (×10-3mm2/s) a 0.98 ± 0.26 1.13 ± 0.34 0.001* 1.00 ± 0.28 1.12 ± 0.34 0.023*

MD (cm) a 8.72 ± 4.21 7.03 ± 4.28 0.001* 8.95 ± 4.42 7.31 ± 4.41 0.032*

SI on T2WI b 0.002* 0.003*

Hypo-intensity 5 (5.4%) 19 (23.5%) 2 (2.7%) 14 (21.9%)

Iso-intensity 40 (43.5%) 20 (24.7%) 34 (46.6%) 17 (26.6%)

Hyperintensity 30 (32.6%) 23 (28.4%) 23 (31.5%) 17 (26.6%)

Mixed 11 (12%) 15 (18.5%) 9 (12.3%) 13 (20.3%)

Solid and cystic components b 0.004* 0.002*

Predominantly cystic 30 (32.6%) 12 (14.8%) 26 (35.6%) 10 (15.6%)

Cystic-solid 21 (22.8%) 13 (16.1%) 17 (23.3%) 9 (14.1%)

Predominantly solid 41 (44.6%) 56 (69.1%) 30 (41.4%) 45 (70.3%)

Hemorrhage b 0.188 0.154

Present 16 (17.4%) 8 (9.9%) 13 (17.8%) 6 (9.4%)

Absent 76 (82.6%) 73 (90.1%) 60 (82.2%) 58 (90.6%)

EOC, epithelial ovarian cancer; SCST, sex cord-stromal tumors; ROMA, Risk of Ovarian Malignancy Algorithm; CA125, Cancer antigen 125; ADC, apparent diffusion coefficient; MD, maximum
diameter; SI, signal intensity; T2WI, T2 weighted imaging; a Data are the mean ± standard deviation, P values calculated by sample t test. b Date are the case (%), P values calculated by Chi-square
tests or Fisher exact test. * P values< 0.05 were considered statistically significant.
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clinical model, conventional MR model, and traditional model were

0.729 (95%CI: 0.645-0.812), 0.737 (95%CI: 0.654-0.819), 0.755 (95%

CI: 0.677-0.834) in the development cohort, respectively, and 0.680

(95%CI: 0.498-0.862), 0.693 (95%CI: 0.515-0.872), 0.735 (95%CI:

0.569-0.902) in the testing cohort, respectively (Figure 4 and Table 4).

Three different radiomics models (Models 1-3) were developed

using the following combinations of the radiomics features: 3 features

(got selected in every fold), 6 features (got selected 4 or more times

repeatedly) and 9 features (got selected 3 or more times repeatedly).

Among them, Model 3 showed the best performance, which was

determined as the final radiomics model, with the AUCs of 0.915

(95% CI: 0.869-0.962) and 0.867 (95% CI: 0.732-1.000) in the
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development and testing cohorts, respectively (Figure 4 and

Table 4). However, no significant differences were observed between

Model 3 and the other two models. The AUCs of the three models and

the comparisons in terms of diagnostic performance among them

were shown in Table 5. Rad-score based on 9 features were weighted

by their respective coefficients, the calculation formula for the Rad-

score is provided in the Supplementary Materials page 7.

Finally, we established a mixed model based on the Rad-score,

clinical characteristics (ROMA), and conventional MR parameters

(ADC, solid and cystic components). The AUCs of the mixed model

were 0.934 (95%CI: 0.892-0.976) and 0.875 (95%CI: 0.743-1.000) in the

development and testing cohorts, respectively (Figure 4 and Table 4).
TABLE 3 Details of the selected features in the developed radiomics models.

Number Radiomics feature name Frequency

1 wavelet-HLL-GLSZM-ZoneEntropy 5

2 wavelet-LHL-GLSZM-HighGrayLevelZoneEmphasis 5

3 logarithm-firstorder-10Percentile 5

4 logarithm-firstorder-InterquartileRange 4

5 gradient-firstorder-Maximum 4

6 wavelet-HL-GLSZM-SmallAreaHighGrayLevelEmphasis 4

7 original-firstorder-Kurtosis 3

8 wavelet-HLH- GLSZM -ZoneEntropy 3

9 wavelet-LHL- GLSZM -ZoneEntropy 3

GLSZM, Gray-Level Size Zone Matrix
B

C D

E

A

FIGURE 3

The selected radiomic features in each fold. (A) 6 radiomic features selected in fold 1. (B) 9 radiomic features selected in fold 2. (C) 10 radiomic features
selected in fold 3. (D) 10 radiomic features selected in fold 4. (E) 10 radiomic features selected in fold 5.
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The difference between the traditional model and radiomics

model was statistically significant in the testing cohort (traditional

model AUC vs. radiomics model AUC: 0.735 vs. 0.867, Delong test P<

0.001); however, there was no evidence of a difference in the testing

set between the radiomics model compared with the mixed model

(radiomics model AUC vs. mixed model AUC: 0.867 vs. 0.875, Delong

test P = 0.561).

A radiomics nomogram was constructed by using the selected

variables from multivariate logistic regression and Rad-score to
Frontiers in Oncology 07102
provide a visualized outcome measure (Figure 5A). The total score

for this nomogram was calculated using the formula: Nomo-score =

-1.5402 + 11.4118 × Rad-score -0.0335 × ROMA + 1.3928 × ADC +

0.3532 × Components. The calibration curves demonstrated good

diagnostic consistency between the predictions of the radiomics

nomogram and the actual observations of the samples (Figure 5B).

DCA revealed that the radiomics model and the mixed model

provided a better net benefit than the traditional model across the

majority of the range of reasonable threshold probabilities (Figure 6).
BA

FIGURE 4

ROC curves of conventional MR model, clinical model, traditional model, radiomics model and mixed model within the development (A) and testing (B) cohorts.
TABLE 4 Predictive performances of the final models in the development and testing cohorts.

Model

Development cohort Testing cohort

AUC
(95% CI) SEN SPE ACC P value AUC

(95% CI) SEN SPE ACC P value

Conventional MR model
0.737

(0.654-0.819)
0.758 0.528 0.638 <0.001

0.693
(0.515-0.872)

0.600 0.650 0.629 0.039

Clinical model
0.729

(0.645-0.812)
0.812 0.541 0.667 <0.001

0.680
(0.498-0.862)

0.600 0.650 0.629 0.048

Traditional model
0.755

(0.677-0.834)
0.727 0.542 0.630 <0.001

0.735
(0.569-0.902)

0.706 0.611 0.657 0.017

Radiomics model
0.915

0.869-0.962)
0.701 0.873 0.790 <0.001

0.867
(0.732-1.000)

0.714 0.857 0.800 <0.001

Mixed model
0.934

(0.892-0.976)
0.814 0.868 0.841 <0.001

0.875
(0.743-1.000)

0.727 0.750 0.743 <0.001

AUC, area under curve; SEN, sensitivity; SPE, specificity; ACC, accuracy; p values on the AUCs are difference from AUC=0.5
fron
TABLE 5 Predictive performances of the three developed radiomics models.

Model

Development cohort Testing cohort

AUC
(95% CI) SEN SPE ACC P value AUC

(95% CI) SEN SPE ACC P value

Model 1
0.837

(0.765-0.909)
0.672 0.838 0.761 0.073

0.817
(0.662-0.971)

0.800 0.55 0.657 0.631

Model 2
0.873

(0.814-0.932)
0.683 0.853 0.775 0.269

0.846
(0.707-0.985)

0.769 0.818 0.800 0.832

Model 3
0.915

(0.869-0.962)
0.701 0.873 0.790 1.000

0.867
(0.732-1.000)

0.714 0.857 0.800 1.000

AUC, area under curve; SEN, sensitivity; SPE, specificity; ACC, accuracy; P values calculated by Delong test, compared with Model 3.
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Discussion

SCSTs are composed of a heterogeneous group with complicated

image manifestation. Although a few cases are mainly cystic, most

SCSTs are predominantly solid masses (2, 4, 5). In MRI, the presence

of solid tissue in an adnexal lesion is the primary cause of increased

risk stratification (7, 14), so the particular lesion that requires to be

differentiated is EOC. With the optimization of various diagnostic

schemes, multiple methods have been gradually combined to evaluate

adnexal tumors (15). In the current study, we assessed the ability of

the clinical model, conventional MR model, traditional model, and

the radiomics model to distinguish SCSTs and EOCs. As shown in the

result, radiomics model yielded prominent predictive performance,

significantly higher than that of the traditional model. The mixed

model stood out among all the models.

Generally, SCSTs are considered to be clinically different from

epithelial tumors to some extent, they occur across a wide age range

and some patients may have clinical signs of hormone production (5,
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16). In our study, only 8 in 73 patients with SCSTs showed elevated

hormone levels, mainly presenting as a slight increase in prolactin. No

significant difference was observed in menstrual status or endocrine

level between the two groups. In previous studies (17, 18), serum

CA125 and ROMA index have been proven to be effective diagnostic

markers for EOCs, which could be used to differentiate between

benign and malignant lesions. The present results were consistent

with the previous studies, revealing that serum CA125 and ROMA

index in the SCSTs group were significantly lower than those in

EOCs, owing to the blunt nature of SCSTs. And in the multivariate

logistic regression analysis, ROMA index was an independent

predictor. However, the diagnostic efficacy of the clinical model was

not satisfactory (AUCs = 0.729 and 0.680 in the development and

testing cohorts, respectively), suggesting that clinical characteristics

can only provide limited information for the differential diagnosis.

Conventional MR images could provide abundant information

regarding the pathological features of tumors. Yin et al. (19) reported

their results of 36 thecomas/fibrothecomas and 40 malignant pelvic
BA

FIGURE 5

(A) Radiomics nomogram with Rad-score, two conventional MR findings and a clinical factor, including components, ADC, and ROMA. (B) Calibration
curves of radiomics nomogram. The diagonal line represented the perfect prediction of the radiomics nomogram. The black solid line represented the
calibration curve of nomogram in the testing cohorts. The calibration curves were close to the diagonal line, which indicated good prediction
performance of the nomogram.
BA

FIGURE 6

Decision curve analysis (DCA) for the three models within the development (A) and testing (B) cohorts. The net benefit versus the threshold probability
was plotted. The x-axis represented the threshold probability, while the y-axis represented the net benefits. The sensitivity and specificity of the model
were calculated at each threshold to determine the net benefit. The DCAs showed that the net benefits of the mixed model (black line) and the
radiomics model (red line) were superior to the benefits of the traditional model (blue line) with the threshold probability range from 0 to 1.
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solid tumors via conventional MRI and DWI examinations. They

found that signal intensity on T2WI, capsule, and the lowest ADC

value were important indicators in discriminating thecomas/

fibrothecomas from malignant pelvic solid tumors. Their study

lacked other types of sex cord tumors, and they didn’t build

predictive models. In our study, ADC value, solid and cystic

components were independent predictors for differentiating EOCs

and SCSTs. The ADC value of SCSTs was relatively higher than that

of EOCs, and SCSTs were more likely to be dominated by solid

masses. Conventional MR model showed that the discrimination

ability of MR parameters was also limited. Moreover, after

negotiation, most conventional MR parameters required subjective

interpretation by the radiologist, resulting in a poor inter-observer

agreement in the assessment of these features.

In this study, we used different combinations of the selected

radiomics features to establish three radiomics models, all of which

achieved good prediction efficiency. When combining the most

efficient group of radiomics features and the traditional parameters,

we found that the diagnostic performance of the final radiomics

model was comparable to that of the mixed model. To date, in a few

studies, radiomics have been applied to patients with adnexal tumors,

such as evaluating the ability of texture features to characterize the

histopathological classification of ovarian cancer (9–11) and to

predict prognosis (8, 9, 20). However, SCSTs have been rarely

discussed. To our knowledge, this study was the first one to

establish an MR-based radiomics model focusing on the

differentiation of SCSTs from others. The results are encouraging,

and show great potential to improve the prediction accuracy for

ovarian tumors and derive predictive imaging biomarkers.

Misdiagnosis could thus be further avoided.

Radiomics extracts high-throughput quantitative data from

medical images, which is helpful for disease diagnosis, staging,

management, and prognostication. In the current study, we ran a 5-

fold cross validation setup during the feature selection, where each

fold we did feature selection and model building to provide stable

features. Nine radiomics features were finally selected, mainly

including first-order statistical features and Gray Level Size Zone

Matrix (GLSZM). The features contain a variety of traceable image

information. First-order statistics are based on histograms of the

original image and describe the distribution of voxel intensities within

the image region (21, 22). The GLSZM features quantify the Second-

Order joint probabilities of images (21). For example, Zone Entropy

(ZE) of GLSZM measures the randomness in the distribution of zone

sizes and gray levels, a higher value indicates more heterogeneity in

the texture patterns; High Gray Level Zone Emphasis of GLSZM

measures the distribution of the higher gray-level values, with a higher

value indicating a greater proportion of higher gray-level values and

size zones in the image. In our study, GLSZM is a quite important set

of features for differentiating SCSTs and EOCs, the intrinsic definition

of these features imply that they may capture the presence of necrotic,

edematous or cellular regions within the tumors (22).

To date, there is no consensus on which or how many MRI

sequences should be used to establish a radiomics model. Some studies

(11, 15, 23) have included several individual sequences at the same time

or combined multiple sequences to establish a radiomics model for
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evaluation, suggesting that the multi-sequence combination model may

have better performance. Only FS-T2WI sequences were used in our

radiomic analysis, considering that FS-T2WI is an important and

common sequence in the conventional pelvic MRI scanning protocol

with the highest spatial resolution which would improve the visualization

of ROIs. Sufficient predictive performance has been achieved for

differentiating SCSTs and EOCs. Further research with more sequences

such as DWI, ADC, and T1WI+C, would be carried out to improve our

radiomics classifier.

Several limitations should be noted. First, for a radiomics study,

the sample size was relatively small, so the results might be biased.

Second, this study is a single-center study without external

verification, so the reproducibility and generalizability of the

models need to be further tested. In the future, a multicenter study

with a larger dataset size should be conducted to perform an optimal

radiomics analysis. Third, the majority of patients in the EOC group

were in advanced stages, resulting in a demonstrated advantage of the

radiomics model. Future research should include more indeterminate

adnexal masses.

In conclusion, by comparing various models, we found the MR-

based radiomics model achieved excellent prediction performance for

differentiating SCSTs and EOCs. The mixed model which combining

the radiomics features and traditional parameters achieve a

performance comparable to the radiomics model. Therefore, we

believe that the radiomics approach could be a more objective and

accurate way for discriminating SCSTs and EOCs. Meanwhile, the

mixed model developed in our study could provide a comprehensive,

effective manner for clinicians to diagnose and develop appropriate

management strategies.
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Dose accumulation for MR-
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From practical considerations to
state-of-the-art clinical
implementation
Brigid A. McDonald1*, Cornel Zachiu2, John Christodouleas3,
Mohamed A. Naser1, Mark Ruschin4, Jan-Jakob Sonke5,
Daniela Thorwarth6, Daniel Létourneau7,8, Neelam Tyagi9,
Tony Tadic7,8, Jinzhong Yang10, X. Allen Li11, Uffe Bernchou12,13,
Daniel E. Hyer14, Jeffrey E. Snyder14, Edyta Bubula-Rehm3,
Clifton D. Fuller1† and Kristy K. Brock10,15†

1Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston,
TX, United States, 2Department of Radiotherapy, University Medical Center Utrecht,
Utrecht, Netherlands, 3Elekta AB, Stockholm, Sweden, 4Department of Radiation Oncology, University of
Toronto, Sunnybrook Health Sciences Centre, Toronto, ON, Canada, 5Department of Radiation
Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands, 6Section for Biomedical Physics,
Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany, 7Radiation Medicine
Program, Princess Margaret Cancer Centre, Toronto, ON, Canada, 8Department of Radiation Oncology,
University of Toronto, Toronto, ON, Canada, 9Department of Medical Physics, Memorial Sloan-Kettering
Cancer Center, New York, NY, United States, 10Department of Radiation Physics, The University of Texas
MD Anderson Cancer Center, Houston, TX, United States, 11Department of Radiation Oncology, Medical
College of Wisconsin, Milwaukee, WI, United States, 12Laboratory of Radiation Physics, Department of
Oncology, Odense University Hospital, Odense, Denmark, 13Department of Clinical Research, University
of Southern Denmark, Odense, Denmark, 14Department of Radiation Oncology, University of Iowa
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MRI-linear accelerator (MR-linac) devices have been introduced into clinical practice

in recent years and have enabled MR-guided adaptive radiation therapy (MRgART).

However, by accounting for anatomical changes throughout radiation therapy (RT)

and delivering different treatment plans at each fraction, adaptive radiation therapy

(ART) highlights several challenges in terms of calculating the total delivered dose.

Dose accumulation strategies—which typically involve deformable image registration

between planning images, deformable dose mapping, and voxel-wise dose

summation—can be employed for ART to estimate the delivered dose. In MRgART,

plan adaptation on MRI instead of CT necessitates additional considerations in the

dose accumulation process because MRI pixel values do not contain the quantitative

information used for dose calculation. In this review, we discuss considerations for

dose accumulation specific to MRgART and in relation to current MR-linac clinical

workflows. We present a general dose accumulation framework for MRgART and

discuss relevant quality assurance criteria. Finally, we highlight the clinical importance

of dose accumulation in the ART era as well as the possible ways in which dose

accumulation can transform clinical practice and improve our ability to deliver

personalized RT.

KEYWORDS

dose accumulation, MR-guided radiation therapy, adaptive radiation therapy, deformable
image registration, MR-linac
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1 Introduction

In the current era of image-guided radiation therapy (RT), many

technological advances in on-board imaging systems and treatment

delivery techniques have enabled the delivery of highly conformal RT

(1, 2). One major development in recent years has been the

integration of magnetic resonance imaging (MRI) with linear

accelerators (linacs) to form hybrid systems known as MR-linacs

(3–5). MRI offers enhanced visualization of both tumor and normal

tissue structures compared to other on-board imaging systems such as

kV or MV planar x-ray, computed tomography (CT), and cone beam

CT (6). The ability to clearly visualize the anatomy during patient

setup has accelerated the development of on-line adaptive RT (ART),

in which a new treatment plan is created each day based on the

patient’s daily setup image while the patient is on the treatment table

(7–9).

Daily MR-guided ART (MRgART) offers many dosimetric

advantages over the traditional single-plan RT workflow, including

the ability to conform the high-dose region to the tumor as the

anatomy changes throughout the course of RT (9, 10). However,

MRgART brings to the forefront a number of challenges in terms of

calculating and interpreting the delivered dose that have largely been

ignored in the past. In contrast to conventional RT, where dose

estimates are calculated on a single pre-treatment simulation image,

ART uses multiple plans created on longitudinal images reflecting

anatomical variations throughout the treatment course. Currently,

most clinical implementations of ART simply create new plans

meeting the original treatment constraints and do not use advanced

dose accumulation strategies to sum the doses from individual plans

and account for these anatomical changes. Without using deformable

image registration to truly sum the dose, the contributions of

individual plans cannot be interpreted in the context of the total

delivered dose and statements regarding over- or under-dosage of

tissues cannot be accurately made. The ability to accurately quantify

delivered dose allows clinicians to evaluate whether dosimetric

criteria are being met in aggregate over multiple fractions and

enables adaptation throughout RT to ensure that therapeutic goals

are achieved. Dose accumulation also allows us to relate delivered

dose to clinical outcomes when evaluating the clinical effectiveness of

any ART intervention. In MRgART, plan adaptation on MRI instead

of CT adds an additional layer of complexity to the dose accumulation

process because the pixel values of MR images do not contain electron

density information needed for dose calculation and are subject to

signal intensity fluctuations depending on coil setup, magnetic field

inhomogeneities, and other factors. Currently, a wide range of

research-grade solutions are available for dose accumulation (11–

16), but few have been thoroughly validated for clinical use and/or

implemented into commercial systems, and none have been

specifically optimized for MRgART.

Thus, the development of a robust and accurate dose

accumulation solution for MRgART is a subject of active research,

particularly within the MR-Linac Consortium (17). In this article, we

review and discuss the current status, practical challenges, and

potential role of dose accumulation for MRgART and outline a

framework for quality assurance of proposed solutions.
Frontiers in Oncology 02107
2 Definition and clinical relevance of
dose accumulation

“Dose accumulation” is a term that encompasses a range of

techniques for summing multiple RT dose distributions for a single

patient (18, 19). The goal is to arrive at a better estimate of the

delivered dose compared to standard RT practices, in which a single

plan is generated and the dose is calculated only on a static pre-

treatment representation of the anatomy. Dose distributions in

conventional RT are modeled on the often-flawed assumption that

the tumor and surrounding anatomy remain static throughout the

course of RT. While it is well understood that the pre-treatment

planned dose is not equal to the true delivered dose due to both RT-

induced anatomical changes over time and positional uncertainties

during each RT fraction, our current treatment plan acceptability

criteria and clinical outcome models are based only on the planned

dose (19). Dose accumulation can help us arrive at a more realistic

depiction of the delivered dose, but uncertainties in the dose

accumulation process make the calculated dose distributions, at

best, estimates of the delivered dose. Nonetheless, dose

accumulation remains a vital mechanism for quantifying delivered

dose and evaluating the benefit of various ART strategies used in

clinical practice.

Dose accumulation is most often considered in the context of ART,

where adaptive plans are generated on either on-board setup images (i.e.

on-line ART) or simulation images acquired throughout RT (i.e. off-line

ART). In a general dose accumulation pipeline, the dose distribution for

each plan is scaled to the number of fractions delivered, the planning

images are co-registered, and the dose distributions are then mapped

according to the estimated displacements and added voxel-by-voxel (12,

16, 20). Dose accumulation most often utilizes deformable image

registration (DIR), which creates a spatial correspondence between two

images that accounts for anatomical deformations (21). Doses may be

mapped backward onto the pre-treatment anatomy or forward to any

time point during treatment, depending on the intended use case for the

accumulated dose. Furthermore, dose accumulation techniques may be

classified as either inter-fraction or intra-fraction approaches. Inter-

fraction dose accumulation uses only the setup image at each fraction

(12, 20, 22, 23), while intra-fraction methods account for motion during

beam delivery using continuous or periodic motion monitoring imaging

such as cine MRI (11, 14). Despite the broad range of methods to

perform dose accumulation, we will limit our discussions in this paper to

inter-fraction DIR-based methods, as, presumably, any multi-fraction

treatment regimen would profit from accurate serial dose estimation.

Finally, dose accumulation can be performed either as dose back

projection onto the pre-treatment anatomy or forward projection onto

the anatomy at any time during or after RT. Both scenarios will be

discussed in this article, but the general steps of a dose accumulation

workflow remain the same.

Dose accumulation is valuable from a clinical standpoint for a

number of reasons, both during and after RT. MRgART allows

physicians to set complex goals for treatment personalized for each

individual patient, and dose accumulation helps us determine

whether the intended goals are being met. These intentions may

include sparing dose to specific organs at risk (OARs), escalating dose
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to target structures, or modifying target volumes as the tumor shrinks

to spare tumor-adjacent OARs (24). During a course of treatment, the

ability to accumulate dose informs clinicians as to whether or not the

daily dose distributions are representative of the cumulative dose. For

example, if the dose to an OAR exceeds tolerance on one day, it is

clinically relevant to know whether the cumulative dose is in excess, as

this may inform the optimization strategy for subsequent fractions

(25–27). Alternatively, if OAR doses are sufficiently low after a certain

number of fractions, the physician may choose to increase the target

dose or add an extra fraction based on individualized treatment

response (28–30). When any adaptive modification is made during

a course of RT without using a validated dose accumulation method

to accurately quantify total delivered dose, potential risks to the

patient include overdosing OARs and underdosing target volumes

(thus increasing the risk of incomplete treatment response or cancer

recurrence). Dose accumulation can enable us to evaluate the safety

and efficacy of various ART strategies, which will allow clinicians to

personalize RT for each patient while maintaining our field’s

commitment to safe, evidence-based treatment approaches.

Dose accumulation may also lead to opportunities to reevaluate

normal tissue complication probability (NTCP) and tumor control

probability (TCP) models (31–35). The existing dose-response

models are largely based on doses calculated on the pre-treatment

simulation anatomy, which is often assumed to be static. If we can

more accurately quantify the delivered dose after the conclusion of RT

in a systematic way, there is an opportunity to refine the current

NTCP and TCP models and develop a novel set of planning

constraints for the era of ART and personalized medicine (18, 36).
3 Considerations for dose
accumulation with on-line MR-guided
adaptive RT

There are currently twoMR-linac systems commercially available:

the Elekta Unity (Elekta AB; Stockholm, Sweden) and the ViewRay

MRIdian (ViewRay, Inc.; Cleveland, OH, USA). The Unity system

combines a modified 1.5 T Philips diagnostic MRI scanner (Philips

Healthcare; Best, Netherlands) with a 7 MV flattening filter-free (FFF)

linac, while the MRIdian system uses a 0.35 T MRI with a 6 MV FFF

linac. Although the specific workflows of the two systems differ, both

systems are capable of on-line ART by registering a prior reference

(i.e. planning) image to the daily setup image and adapting the

reference plan. The MRIdian workflow offers the choice between

adapting the reference plan to the current anatomy and delivering the

reference plan without modification (8). After the reference and setup

images are registered, the user views the predicted dose of the

reference plan on the current anatomy and decides whether to treat

with the reference plan or adapt. In contrast, the Unity workflow

provides two workflow options: Adapt to Position (ATP) and Adapt

to Shape (ATS) (9). ATP virtually accounts for the isocenter shift by

rigidly registering the reference and setup images but recalculates the

dose on the reference image (which can be either a CT or MRI), while

ATS involves a full plan adaptation on the setup image (MRI). In

either workflow, the original multileaf collimator segments and
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monitor units can be kept the same to deliver the reference plan

without modification.

Although the end-to-end MRgART process differs among MR-

linac platforms, these workflows can be summarized as three general

classes of solutions: i) treat with the initial plan (e.g. ViewRay

MRIdian workflow or Elekta Unity workflows), ii) shift the

reference plan to a new position (virtual isocenter shift) and

recalculate the dose on the reference plan anatomy (e.g. Elekta

Unity ATP workflow), and iii) perform a full re-optimization of the

treatment plan on the anatomy of the day (e.g. ViewRay MRIdian

workflow or Elekta Unity ATS workflow).

In the absence of commercially available dose accumulation tools

that can be run in parallel with the on-line MRgART workflows, there

is currently no standardized mechanism for summing and tracking

delivered dose over the course of RT. In this section, we will outline a

general framework for a potential dose accumulation process for on-

line MRgART and discuss considerations and challenges for

each step.

A possible workflow for an inter-fraction DIR-based dose

accumulation for on-line MRgART would include the following

four steps:
1. Autosegmentation of daily setup images for electron density

mapping (optional)

2. Recalculation of adaptive plan doses on daily images (optional)

3. DIR between daily images & reference image

4. Deformable dose mapping and dose summation
For each step of the general framework (Figure 1), there may be

multiple techniques that may be used to accomplish the same goal,

each of which must be thoroughly evaluated for each anatomical site

and application. (Depending on the on-line adaptive workflow used,

steps 1 and 2 may or may not be necessary; they are most relevant in a

virtual isocenter shift workflow where adaptive plan doses are

calculated on the reference image rather than daily image. In this

case, the delivered dose can be calculated on the daily setup image by

segmenting the image to produce an electron density map and

recalculating the dose.) We present many of the common

approaches that are being investigated for each dose accumulation

step as well as considerations for each technique in the realm

of MRgART.
3.1 Step 1: Autosegmentation of daily
setup images for electron density
mapping (optional)

To generate an adaptive treatment plan on MRI, the target

volume(s) and OARs must be segmented on the image used for

dose calculation to create planning constraints and to approximate an

electron density map for dose calculation on MRI. Depending on the

on-line MRgART workflow used, an autosegmentation step may be

necessary for electron density mapping to accurately reconstruct the

delivered dose on the daily images prior to implementing a DIR-based

dose accumulation approach. This step is particularly relevant in on-
frontiersin.org

https://doi.org/10.3389/fonc.2022.1086258
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


McDonald et al. 10.3389/fonc.2022.1086258
line workflows where the daily image is not contoured and the dose is

calculated on the reference image rather than the daily image (e.g.

virtual isocenter shift workflow) (9). Otherwise, if segmentation is

done during the on-line workflow, this step would not be necessary.

Several autosegmentation methods are appropriate for MRgART,

including DIR-based contour propagation from the reference image

as well as atlas-based and deep learning approaches. In the first

method, DIR is used to generate a spatial correspondence between the

daily image and the reference image or some other prior image, and

the contours are mapped according to the established transformation

(37). The quality of the segmentations depends on the DIR algorithm

performance; specific considerations for DIR with MRgART are

discussed in Step 3 below.

Next, atlas-based autosegmentation uses a small collection of

contoured image sets (i.e. “atlases”) which serve as templates for

contouring the image set of interest (i.e. “patient”) (38). Each atlas is

aligned with the patient, and contours are propagated via DIR to

produce one structure set per atlas on the patient. These intermediate

results are combined into a final structure set using either a method to

combine all structure sets such as a STAPLE algorithm (38–40) or a

voting mechanism which selects the best contour for each structure

such as Majority Vote (38, 41) or Random Forest (42, 43). Atlas-based

approaches have historically used atlases from other patients (i.e.
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“inter-patient”), but serial imaging for on-line ART introduces the

possibility of using a patient’s own images from prior fractions as

atlases (i.e. “intra-patient”) (44). Using multiple intra-patient atlases

has the potential to improve performance over both inter-patient

atlas-based approaches and intra-patient DIR from the reference plan

image—especially for later fractions when anatomical changes from

the simulation image may be quite large—but requires further

validation. Intra-patient methods can also produce comparable

performance to inter-patient methods with fewer atlases, which

speeds up execution time considerably.

Another promising autosegmentation approach, deep learning,

uses a large number of contoured image sets to train a computer

algorithm called a deep neural network to contour unlabeled input

images (45–47). Most deep learning autosegmentation methods use a

convolutional neural network architecture such as U-Net (48), which

is formed by stacking multiple hidden layers, including convolutional

layers, that each learn a feature of the training data. After a model is

trained and validated, it can be used to contour unseen input images

at rapid speeds. While atlas-based approaches typically reach peak

performance using 5-15 atlases (49–52), deep learning generally

requires dozens to hundreds of images as training data for optimal

performance (53, 54). As more patients are treated on MR-linac

devices with standardized MR sequences, we can leverage vendor-
A B
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FIGURE 1

The proposed dose accumulation framework for MRgART. (A) Step 1 (virtual isocenter shift workflow only): Because the virtual isocenter shift workflow
calculates dose on the reference image rather than the daily setup MRI, the daily images are not contoured during the treatment and must be
segmented off-line. (B) Step 2 (virtual isocenter shift workflow only): The doses for each fraction must be recalculated on the daily setup images off-line
to reconstruct the delivered dose at each fraction. (C) Step 3 (all workflows): The geometric correspondence between each daily image and the
reference image set (i.e. simulation or any other established time point) is created via deformable image registration (DIR) and represented by a
deformation vector field (DVF). (D) Step 4 (all workflows): The DVFs are applied to the corresponding dose distributions to map the doses onto the
reference image set, then the doses are summed to calculate the final accumulated dose. (This figure describes a general workflow where a
transformation is established that links the daily image to the reference image through a DVF for the purpose of dose mapping. The details of the
implementation depend on the DIR algorithm and mechanism for mapping the dose. The DVFs in this figure are demonstrating the direction of the
mapping from the daily images into the reference frame. Whether the dose is “pushed” or “pulled” and whether an inverse DVF is required depend on the
implementation of the algorithm created by the user).
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supported data repositories such as the MOMENTUM study (55) to

aggregate curated, high-quality imaging data in a coordinated,

efficient manner to train these models (56).

There are a few nuances to autosegmentation on MR rather than

CT. MR demonstrates enhanced soft tissue contrast, rendering many

OAR boundaries more clearly visible on MR than on CT and thus

potentially improving the quality of autosegmentation (57). However,

unlike CT, pixel values in T1- and T2-weighted MRIs are not

inherently quantitative and are subject to variations due to coil

positioning, radiofrequency and electronic noise, and magnetic field

inhomogeneities (58–60). The arbitrary pixel value scaling and image

intensity variations may affect the performance of autosegmentation

algorithms, which rely on intensity and/or contrast similarities

between training data/atlases and the image sets to be segmented.

These effects can be minimized on the acquisition side by using

consistent pulse sequence parameters, immobilization, and coil setup

during MRgART and on the post-processing side by performing

image intensity standardization on the images (61, 62). Furthermore,

while one advantage of MR is the wide array of image contrast

mechanisms obtained by using different pulse sequences, each of the

aforementioned autosegmentation techniques is pulse sequence-

specific, meaning that they should be trained and executed on

images with identical pulse sequence parameters for optimal

performance (63, 64). However, aggregating data across different

patients and/or institutions for deep learning models will require

adoption of consistent protocols across sites or the implementation of

data augmentation techniques to generalize trained models to

multiple sequences (65, 66).
3.2 Step 2: Recalculation of adaptive plan
doses on daily images (optional)

Depending on the workflow used, the dose distributions for

adaptive plans may need to be recalculated on the daily setup

image off-line prior to accumulating the doses. Like Step 1, this step

would be required if the dose is calculated on the reference image

rather than the daily setup image during on-line plan adaptation (e.g.

virtual isocenter shift workflow).

Unlike CT, where the pixel values represent physical

measurements of photon attenuation in Hounsfield units (HU) and

are easily converted to relative electron density (ED) maps to calculate

dose, dose calculation on MRI requires approximation of the ED

values for each voxel. Currently, the most common ED

approximation method is called bulk density assignment: for each

structure contoured on the planning CT, the mean ED value of the

structure on CT is assigned to all voxels in the structure onMRI (8, 9).

These values may be overridden with user-defined values when

corrections are needed or if no CT is available in an MR-only RT

workflow. Bulk density assignment has been shown to be accurate

across disease sites, resulting in minimal deviations in dose volume

histogram parameters compared to doses calculated on CT (37–39),

but may not adequately handle largely heterogeneous volumes such as

spinal vertebrae (40), femoral heads (39), or lung (41). An alternative

approach is to deformably register the planning CT into the MR

frame of reference to create an ED map (42, 43). While this method

preserves the heterogeneity of ED values throughout each structure,
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CT-to-MR DIR may have limited accuracy due to the different signal

and contrast characteristics of the two modalities (44, 45), and it will

likely fail in situations with large deformations such as lung collapse.

As researchers move toward MR-only treatment planning,

alternative ED approximation methods are also being explored that

do not require any CT input and would eliminate the need for

segmentation of daily MRIs for ED mapping (46). Synthetic CTs

can be generated directly from MRIs using specialized MR sequences

such as Dixon MRI, which separates signal from fat and water and

enables clusters of voxels to be assigned discrete tissue classes with

associated ED values, similar to the bulk density assignment (47, 48).

Another option is to apply a calibration curve relating MRI signal

intensities to HU values on a voxel-wise basis to generate a synthetic

CT that preserves tissue inhomogeneities (49, 50). This method can be

used directly on the T1- or T2-weighted images used for setup and

plan reoptimization rather than requiring an additional MR sequence.

However, MR pixel values are subject to intensity variations, and

depending on the contrast mechanism of the pulse sequence, the

calibration curve is unlikely to follow a simple linear or logarithmic

fit. Deep learning models may also be trained to generate

heterogeneous synthetic CTs from Dixon or T1- or T2-weighted

MRIs. Several studies have demonstrated excellent performance of

such models (51–54).

It should also be noted that a shift invariance approach, which

involves a simple shift of the dose distribution to account for the

isocenter shift, may be used instead of a full dose recalculation. This

approach has been shown to be a good approximation of the delivered

dose for many deep lying tumors but fails for shallow tumors in the

build-up region and when anatomical changes are substantial

(55, 56).
3.3 Step 3: DIR between daily images &
reference image

Once the dose distributions for each adaptive plan have been

accurately calculated on each daily setup image, the next step is to

establish a geometric transformation between each daily image and

the reference image via DIR. This step of dose accumulation is

required regardless of the on-line MRgART workflow used.

There are several DIR approaches with varying degrees of

complexity, which are summarized in the literature (57–59). Most

implementations of DIR share three main components: 1) a

transformation, or a mathematical model, that establishes the

geometric correspondence between the source and target images; 2)

an objective function, which typically includes a similarity metric

used for evaluating the alignment between the images and a

regularization term to impose constraints on the deformation field;

and 3) an optimization method that optimizes the parameters of the

transformation model to maximize the similarity between the source

and target images under the imposed constraints (57–59). In this

section, we will focus on the first two elements and their implications

for dose accumulation in MR-guided adaptive RT.

A number of transformation models are available for DIR,

including B-spline and several non-parametric models. The B-

spline transformation is a commonly used non-linear parametric

model generated using a weighted sum of a set of spline functions
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defined at a set of control points spaced evenly throughout the source

and target images (21, 57, 60). In contrast, non-parametric models

such as elastic, fluid and optical flow and finite element methods can

generate much more complex transformations to model anatomical

changes (58, 59, 61–64). Unlike B-spline models, which represent the

image deformation using parameters defined at each control point,

non-parametric transformation models are usually represented by

more complex deformation vector fields (DVFs) where the

displacement in all three directions is defined for each individual

image voxel. When selecting a transformation model to use for dose

accumulation, one must consider the expected degree of deformation

in the anatomical site of interest as well as the complexity and

underlying assumptions of the model. This choice is particularly

important for dose accumulation, as the transformation model

impacts the registration accuracy within contrast-devoid regions

and, implicitly, the accuracy of the accumulated dose.

The second component of any registration algorithm is the

similarity metric, which is used to evaluate the alignment between

the registered images throughout successive iterations in the

optimization process. Similarity metrics are classified as either

intensity-based or feature-based (58, 59). Intensity-based metrics

evaluate the alignment of intensity patterns (i.e. gray-scale

information) between the source and target images. Feature-based

metrics use anatomical landmarks such as points, lines, and surfaces

to obtain the correspondence between the source and target images.

The choice of similarity metric depends on the intensity ranges

and modalities of the source and target images. In the context of MR-

guided adaptive RT, intensity-based metrics such as sum of squared

intensity differences (65) and/or cross correlation (66) typically work

well for images of the same modality and intensity range, such as the

daily MRIs, as long as the same MRI pulse sequence is used for setup

at each fraction of a patient’s treatment. Registration across

modalities such as CT-to-MR and registration across different MR

sequences such as T1-to-T2 present a more complex problem due to

intensity inconsistencies between the images. Despite the different

contrast mechanisms and intensity ranges, most of the recently

developed multi-modality registration approaches still use certain

intensity-based metrics such as normalized mutual information (67)

over feature-based metrics. Normalized mutual information is based

on global histogram matching (i.e. the distribution of intensity values

across the entire image). Several alternative approaches have been

proposed for multi-modality registration, including normalized

gradient fields and modality independent descriptors. The

normalized gradient fields metric uses the gradient (i.e. derivative)

of the intensity in each image rather than the image intensities

themselves (68, 69). In the modality independent descriptors

approach, the images are pre-processed into a modality-

independent format that preserves local image feature information

and can be directly compared using established similarity metrics

(70, 71).

While the field of multi-modality DIR has made great progress in

recent years, many of these newer techniques have yet to be

implemented into commercial treatment planning systems for

MRgART. Recent studies have shown that the CT-to-MR

registration currently used for the 1.5T MR-linac workflow

underperforms compared to same-sequence MR-to-MR registration

in both prostate (45) and head and neck cancers (72). This
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discrepancy has implications for daily plan adaptation and dose

accumulation. Many clinics create the reference plan on the CT

simulation, while others acquire a CT for electron density

information but create the reference plan on the MR simulation.

The latter method may improve the quality of the DIR in the on-line

workflow, which will likely reduce the time spent manually editing

contours. For dose accumulation, if doses are mapped back to the pre-

treatment time point for comparison to the reference plan, the DIR

quality may improve if the daily MRIs and daily fraction doses are

registered to the MR simulation image or first fraction MRI rather

than the CT. However, the implementation of state-of-the-art

algorithms may improve the performance of multi-modality image

registration, and rigorous evaluation of both CT-to-MR and MR-to-

MR DIR quality is needed for all organ sites.

In addition to the similarity metric, DIR algorithms must impose

constraints on the deformation field by adding a regularization term

to the objective function. When a regularization term is used, the final

solution (i.e. the estimated deformation field) will be a tradeoff

between maximizing the similarity between the source and target

images and satisfying the constraints. Some examples of constraints

include preserving topology, ensuring a smooth deformation field,

and penalizing non-physical deformations given prior knowledge of

the underlying anatomy (e.g. preventing the warping of rigid

structures such as bones) (59, 73). In anatomical regions with

sliding tissues such as the lung and chest wall, regularization terms

that allow a discontinuity in the DVF can be used (74, 75). Another

constraint with particular relevance to dose accumulation is inverse

consistency, which ensures that the forward and backward

transformations, computed simultaneously, are direct inverse

mappings of one another. Inverse consistency would be an

important consideration if clinicians are interested in evaluating

accumulated dose in both the forward and backward directions.

(See “Interpretation of Accumulated Dose” section for a more

detailed discussion on forward and backward mapping.)

While the myriad of deformable image registration algorithms

enable us to model anatomical changes in a wide range of clinical

scenarios, these algorithms are all based on fundamental assumptions

about the anatomy that do not always hold true throughout a course

of RT. For example, assumptions that the deformations are smooth/

continuous and invertible are violated in scenarios such as organ

sliding and tissue gain/loss. While these assumptions are necessary for

estimating deformations in an anatomically plausible matter, they

also fundamentally limit the ability of DIR to accurately characterize

the true anatomical changes.

An additional consideration for DIR in the context of dose

accumulation for daily MRgART is that image sets from up to

dozens of fractions will need to be registered, but image registration

occurs as a separate operation between only two sets of images. If all

doses are being mapped back to the simulation image, the simplest

options for composing registrations are 1) registering each daily

image to the reference image, or 2) registering each image onto the

previous fraction’s image in a sequential fashion to create a “DVF

chain” (76). The second option is particularly advantageous when

anatomical changes between the beginning and end of the course of

RT are substantial because it minimizes the change between each

image set being registered. However, if the performance of the DIR

algorithm is poor despite the minimal anatomical change from day to
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day, this approach compounds the error throughout the chain of

registrations and dose deformations (76).
3.4 Step 4: Deformable dose mapping and
dose summation

Once the daily image sets are registered, the doses are mapped by

applying the transformations defined by the image registrations to the

dose grids. If the doses of each adaptive plan are scaled to the

prescription dose throughout the entire course of RT, then they

must be scaled down to the dose delivered at each fraction. Finally,

the mapped doses are summed voxel-by-voxel to calculate the

delivered dose distribution. (If large variations exist in the dose

delivered to each structure from day to day, fractionation effects

should also be taken into account using linear quadradic models.)

While this process is, in effect, a simple computational task after

the DVFs between each corresponding image set have been

calculated, the discrete nature of voxels/dose grids and the

deformations occurring between each time point make it infeasible

to assume that the same individual cells are contained within the same

matched voxels from day to day. For this reason, tri-linear

interpolation is often employed: each voxel is divided into sub-

volumes before dose mapping, and the values of the mapped sub-

volumes corresponding to the same voxel on the reference dose grid

are averaged and assigned to that voxel (21, 77, 78). The interpolation

method is fast, which may be highly advantageous in the context of

MRgART when there is a different treatment plan for each fraction.

However, this method is less accurate in steep dose gradients and

treats dose as an imaging voxel intensity rather than a physical

quantity (i.e. energy per unit mass) (79, 80).

It’s important to note that the details of the algorithm that

performs the DIR and dose mapping will specify the direction of

the DVF and whether the dose mapping is done by “pushing” the dose

from the image it’s calculated on to the summed image or “pulling” it.

In many scenarios, one direction of the DVF is sufficient for DIR and

dose mapping, but how that is implemented depends on the specifics

of the algorithm. The combination of the DIR algorithm and dose

mapping mechanism will dictate whether an inverse DVF is required.

While this issue is not unique to MR-guided therapy, no

discussion on dose accumulation would be complete without

mentioning the difficulties in accurately accumulating dose when

tumors or OARs exhibit volumetric changes throughout RT.

Conceptually, one must consider what happens to the dose

delivered to a small volume of tissue if that tissue disappears before

the end of treatment, which routinely occurs for certain tumor types

such as human papillomavirus-positive oropharyngeal cancers (16).

This dilemma is illustrated mathematically by Zhong & Chetty (79),

who demonstrate that simply deformably mapping dose violates the

fundamental physics principle of conservation of energy. Energy/

mass transfer methods have been proposed to account for

conservation of energy, whereby the energy deposited in each voxel

and the mass of each voxel are mapped separately onto the reference

dose grid then divided to calculate the dose (21). The initial

implementations of energy/mass transfer-based dose accumulation

used Monte Carlo methods to simulate the energy deposition in each

voxel (81, 82), which required significant computational power. In
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Monte Carlo techniques that can be interfaced with commercial

treatment planning systems (83) and run in real-time (84).

Finally, it is important to remember when designing a dose

accumulation workflow that translation of the couch after the

image acquisition must be incorporated into the dose accumulation

process. The MR-linac on-line treatment adaptation workflows

already account for this through either a physical couch shift

(ViewRay MRIdian) or a virtual isocenter shift (Elekta Unity).

However, if images and doses are exported outside of the closed

system of the MR-linac device and its associated treatment planning

system, one must ensure that the dose accumulation algorithm

accounts for the isocenter shift prior to dose mapping.
4 Validation and quality assurance of
DIR for dose accumulation

4.1 General considerations

To use DIR within the dose accumulation workflow, the employed

DIR algorithms must fulfill particular validation benchmarks and must

be subjected to stringent quality assurance (QA) criteria to ensure

patient safety and the attainment of the therapeutic endpoint. A

distinction has to be made, however, whether the aim is the

commissioning of a DIR solution prior to clinical use or whether the

QA of the estimated deformations at the time of treatment needs to be

ensured. Depending on the situation, different criteria may be

considered in favor of others. For example, criteria which require

known inputs such as expert contours, landmarks and/or deformations

are more suitable for commissioning, whereas QA at the time of

treatment preferably relies on criteria with a higher degree of

automation. In this section, we will briefly describe several classes of

criteria which can be used for this purpose, while, where applicable, also

indicating value ranges for these criteria where DIR algorithms may be

considered reliable. It is important to note, however, that while the

discussed criteria provide a practical starting point for evaluation of

DIR, acceptability criteria for any metric are necessarily driven by

specific application considerations. A summary of the criteria discussed

below and recommended tolerances are provided in Table 1.
4.2 Qualitative criteria

A simple approach for both validation and QA of DIR is visual

inspection of the post-registration alignment of organ boundaries

and/or high-contrast anatomical landmarks (73, 85, 98). This can

typically be performed by the radiation oncologist, physicist, and/or

radiation therapy technologist as soon as the registration step is

completed and can help identify gross potential mis-registrations. For

same-contrast images, this may be complemented by a visualization

of intensity-based maps such as the absolute image difference or

structural similarity (99–101), which contain brighter or darker

voxels, depending on the degree of alignment between the

registered images. However, visual inspection is typically subject to

interpretation, and two registrations can be visually identical while
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having completely different anatomical mappings. While visual

assessment of the DIR result is necessary, it alone is not sufficient,

and therefore additional objective complementary criteria

are required.
4.3 Contour-based criteria

A feasible solution towards the commissioning of DIR is the

evaluation of the algorithm’s capability for aligning organ boundaries.

If a DIR algorithm consistently fails to provide a satisfactory

boundary alignment, then that is a good indicator that its

performance may be insufficient for an accurate dose accumulation.

In this sense, the Dice similarity coefficient (DSC) (73, 102, 103) and

the Jaccard index (103, 104) provide an objective manner of

evaluating an algorithm’s capability for organ boundary alignment.

Using the DSC and the Jaccard index as a DIR validation criterion

requires expert-drawn contours of the same anatomical structure(s)

on the images to be registered for ground truth comparison. The DIR-

estimated deformations are used to map the contour(s), and the two

criteria can be used to evaluate the overlap between the expert-drawn

and the DIR-mapped contour(s). The values of both the DSC and the

Jaccard index range from zero to one, with zero indicating no overlap

and one corresponding with perfect overlap. In the scope of image-

guided radiotherapy, a DIR algorithm that provides consistent DSC

and Jaccard index values of 0.8 – 0.9 is generally considered to be

reliable (73, 85–88). However, the values of the DSC and Jaccard

index depend heavily on the volume of the structure; a large structure

such as brain could have a DSC or Jaccard index close to 1 and a small

structure such as the optic chiasm close to 0 for the same geometrical

distance. Therefore, tolerance values for DSC and Jaccard index

should be based on structure size and cannot be generalized.

In addition to the DSC and the Jaccard index, complementary

criteria such as the Hausdorff distance (HD) (103, 105) and the mean

distance to agreement (MDA) (73, 86, 103) are also recommended for
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inclusion. Instead of evaluating the post-registration contour overlap,

the HD and the MDA are used to compute an actual distance between

the mapped and the expert-drawn contours, providing further

information on the validity of the DIR-estimated deformations in

the vicinity of organ boundaries. Acceptable values for both the HD

and MDA should be within the uncertainty of the contouring process,

typically in the 2 – 3 mm range (73, 85). However, it should be noted

that the HD represents the maximum distance between associated

boundary points in the contours and is therefore more prone to

outliers than the MDA; alternatively, the 95% HD, which reports the

95th percentile of distances between boundary points, can be used

instead to limit the effects of outliers.

As previously stated, criteria such as the DSC, Jaccard index, HD

and/or MDA provide an evaluation of the organ boundary alignment

and/or volume overlap capabilities of DIR algorithms. However, they

are limited in their ability to provide a comprehensive evaluation of

the estimated deformations because they provide no information

about the accuracy within organ boundaries. Moreover, criteria such

as the DSC and the Jaccard index are strongly dependent on the size

of the evaluated contours and may thus lead to an interpretation bias.

On the other hand, it has to be taken into consideration that the MR-

Linac allows for a more accurate definition and delineation of

anatomical structures due to the high soft tissue contrast present in

the MR images. This is a considerable advantage in areas containing a

large number of small anatomical structures (e.g. head and neck), thus

allowing a more consistent evaluation of the DIR algorithm

performance via contour-based criteria.
4.4 Criteria employing known
displacements/deformations

The target registration error (TRE) (73, 106) allows a quantitative

evaluation of a DIR method’s accuracy and precision in any

anatomical region showcasing identifiable anatomical landmarks
TABLE 1 Summary of quality assurance metrics for deformable image registration (DIR) and recommended tolerances.

Metric Tolerance/Ranges Reference

Dice Similarity Coefficient
Structure size-dependent
(~ 0.8 – 0.9)

(73, 85)

Jaccard Index
Structure size-dependent
(~ 0.8 – 0.9)

(86–88)

Hausdorff Distance,
Mean Distance to Agreement

Maximum voxel size
(~2 – 3 mm)

(73, 85)

Target Registration Error
Maximum voxel size
(~2 – 3 mm)

(73, 85)

Distance to Discordance Metric
Maximum voxel size
(~2 – 3 mm)

(89, 90)

Jacobian Determinant
Tissue-dependent
(~0.8 – 1.2 for biological soft tissues)

(73, 91, 92)

Curl Magnitude
Tissue-dependent
(~0 – 0.2 for biological soft tissues)

(91, 93)

Biomechanical Criteria with Thresholds on Mechanical Stresses Tissue-dependent (91)

Dosimetric criteria Application-dependent (94–97)
f
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and is thus not limited to organ boundaries. The calculation of the

TRE requires an expert to manually indicate the location of the same

anatomical landmarks on the images to be registered. The DIR-

estimated deformations are then used to map the landmarks

annotated on one of the images onto the second image. The

distance between the mapped and the manually annotated

landmarks on the second image is then calculated to evaluate the

registration errors. For a DIR algorithm to be considered reliable for

clinical use, the average TRE calculated for the annotated landmarks

should consistently reside under the maximum image voxel size,

typically in the 2-3 mm range (73, 85). Similar to defining anatomical

boundaries, the manual annotation of anatomical landmarks is also

facilitated by the high soft tissue contrast provided by MR images. In

turn, this may lead to an improved landmark-based evaluation of a

DIR solution compared to imaging modalities such as CT/CBCT, in

the absence of contrast administration. Still, while such an approach

can aid in evaluating the typical accuracy and precision of DIR

methods in the vicinity of high-contrast anatomical landmarks, it

has limited validation capabilities for homogeneous image areas due

to the intrinsic difficulty of defining and annotating landmarks in

such regions. Also, many landmarks are defined at extreme positions

of an organ and can therefore represent different anatomy if the organ

slides or rotates (107, 108). Moreover, the landmarks themselves are

often used by the data similarity term of the DIR algorithm and

therefore may not be a completely independent measure.

These limitations can be addressed, for example, by the use of

physical (96, 109–111) and/or digital phantoms (92, 111, 112).

Physical phantoms typically consist of tissue mimicking materials

which are displaced/deformed in a controlled manner under the effect

of a mechanical actuator (e.g. a piston) such that the displacements/

deformations of the phantom are (partially) known (potentially by the

use of implanted fiducials). While physical phantoms which can be

effectively and safely operated within an MR-Linac are commercially

available, the design, development and optimization of MR-visible

phantoms is an ongoing area of investigation.
4.5 Criteria based on tissue biomechanics

The QA of DIR algorithms can also be performed by employing

criteria based on the mechanical properties of the observed anatomy

(87, 91). Depending on individual physical properties, the

deformations of the various anatomical tissues have a limited

number of degrees of freedom. For example, elastic biological soft

tissues are near-incompressible due to their high water content, and

therefore, strong compressions and expansions within such regions

are anatomically implausible. In effect, if such implausible

deformation patterns are estimated by the employed DIR

algorithm, a misregistration has most likely occurred.

To determine the amount of compression or expansion present in

the estimated deformations, a voxel-wise evaluation of the Jacobian

determinant of the deformations can be performed (73, 92). It is

known from continuum mechanics that the Jacobian determinant of

incompressible materials is equal to 1. Thus, large deviations from 1

within the deformations estimated for elastic biological soft tissues are

indicative of misregistration. Similarly, during typical anatomical

motion, strong local torsions are not expected to occur deep within
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the boundaries of elastic soft tissues and can also indicate the

occurrence of misregistration. Such torsions can be quantified, for

example, by evaluating the curl magnitude of the deformations, with

large local deviations from zero being anatomically implausible (93).

Typical values of these metrics for the liver and kidneys have been

determined to be between 0.8-1.2 for the Jacobian and 0-0.2 for the

curl magnitude (91). We do not expect the deformations within other

elastic soft tissues to deviate significantly from these values.

Alternatively, QA criteria relying on the biomechanical properties

of the observed anatomy can be even further individualized for

specific tissues. By providing the elastic modulus and Poisson ratio

of the structures of interest as input during the planning/re-planning

phase of treatment, the mechanical stress occurring as a result of the

estimated deformations can be evaluated within these regions (91).

The two parameters can be extracted either from look-up tables,

following mechanical tests performed in previous studies, or from

quantitative functional imaging such as MR elastography (113).

During typical anatomical motion, the mechanical stress within the

observed tissues is not expected to lead to tissue rupture or occlusion

of blood circulation. Therefore, if such occurrences are detected

within the DIR-estimated deformations, they are most likely

indicative of misregistration and have been shown to be correlated

with errors within the accumulated dose map (91). Such tissue-

damaging mechanical stress limits are tissue-specific and can again

be extracted from look-up tables generated on the basis of previous

studies which have performed the required mechanical tests.
4.6 Dosimetric criteria

While it is generally agreed that geometric DIR uncertainties play

a determining role in the accuracy of deformable dose accumulation,

the precise manner in which such uncertainties relate to dose

accumulation errors is the topic of ongoing research. For example,

DIR errors within isodose areas will most likely have less of an impact

on the overall accumulated dose compared to registration errors

occurring within regions containing steep dose gradients. In this

sense, previous studies propose establishing a non-linear relationship

between the DIR and the warped/accumulated dose uncertainties (94,

95). The challenge is hereby the selection of the criteria used to

evaluate the DIR accuracy as well as the dosimetric parameters to be

used as an input for the non-linear model. An additional challenge is

determining the model itself, which could, for example, imply an

empirical selection of a composition of a set of mathematical

functions or an estimation of the model by means of machine

learning. An alternative approach, which bypasses the construction

of such a model, consists of the use of deformable phantoms made of

radiosensitive gels (96, 97). The design paradigm for such phantoms

is similar to the one used for phantoms evaluating DIR uncertainties

(as described above) with, for example, the additional inclusion of

radiosensitive materials whose MR signal is dependent on the

absorbed radiation dose. Irradiating such phantoms while

undergoing deformations, followed by an MR-based readout of the

delivered dose, provides a theoretical gold standard for the warped

dose, which can be subsequently compared to the one estimated by

the DIR algorithm. For the purpose of commissioning DIR algorithms

for dose accumulation, this provides a direct estimation of the
frontiersin.org

https://doi.org/10.3389/fonc.2022.1086258
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


McDonald et al. 10.3389/fonc.2022.1086258
expected dose accumulation errors of the algorithm under evaluation.

However, it is important to take into consideration the high sensitivity

of existing gels to environmental factors such as temperature, as well

as phantom deformations in the absence of irradiation. This can in

turn introduce uncertainties within the readout process and therefore

bias the evaluation of the DIR algorithm. Consequently, the

construction of robust radiosensitive phantoms is the subject of

ongoing research.
5 Interpretation of accumulated dose

For simplicity, we have assumed until this point that the dose

distributions from each adaptive plan are always mapped back onto

the reference (i.e. simulation) image for comparison between the

planned and delivered doses. In clinical practice, doses may be

mapped either forward or backward to any time point (i.e.

simulation, any fraction during RT, or post-RT), as illustrated in

Figure 2. However, the aforementioned issues in dealing with

volumetric changes and tissue gain/loss will inevitably cause

differences in the accumulated dose depending on the direction of

dose mapping (79). Rather than considering which direction is “more

accurate,” we can regard forward- and backward-mapping as two

distinct perspectives for understanding accumulated dose, each

designed to answer different clinical questions.

When doses are mapped backward and accumulated in the pre-

treatment simulation image frame of reference, it is straightforward to

compare the planned dose to the accumulated dose over the entire

course of RT. For an individual patient, this type of analysis primarily

serves to determine whether the intended goals of therapy were met in

the aggregate of all adaptive plans. In cases where the intent of

adaptive RT was to reduce dose to OARs or escalate dose to the

tumor, comparison to the planned dose on the pre-treatment

anatomy can also determine whether OAR doses were indeed

lowered or whether tumor doses were indeed increased,

respectively. One drawback of such a comparison, performed for an

individual patient post-RT, is that it is too late to modify the

treatment if the intended goals were not met. Still, such

comparisons may inform clinicians as to how to approach future

patients by establishing a relationship between dose of the day and

accumulated dose.

Instead, the post-RT backward-mapped accumulated dose is

perhaps a more useful quantity when analyzing side effects and

treatment response on large cohorts of patients. Although we have

already entered the era of daily MR-guided adaptive replanning,

many questions remain regarding the degree of OAR dose sparing

and reduction in clinical side effects that can be achieved with this

technique, as well as how we can identify the individual patients who

stand to benefit the most from treatment on an MR-linac. To answer

these questions, we may analyze cumulative delivered dose in the

same perspective in which we have historically conceptualized RT: in

the frame of reference of the pre-treatment simulation scan.

Furthermore, as previously mentioned, the OAR dose constraints

and prescription doses that we use for planning are derived from

NTCP and TCP models, respectively, which are based on planned

doses on the pre-treatment simulation anatomy. In the era of adaptive
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RT and dose accumulation, more research is needed to determine

whether these models remain accurate for delivered dose and whether

dose constraints should be redefined in the context of adaptive RT

(18, 36).

While this type of post-treatment analysis may be advantageous

for answering many research questions, there may still be instances

when we want to use a patient’s cumulative delivered dose at some

point during RT to adapt the remaining fractions. Backward mapping

may be used in this scenario, whereby the accumulated dose over a

certain number of delivered fractions can be compared to the

proportion of the total planned dose for the same number of

fractions. However, if the ultimate intention is to use the

accumulated dose to modify the treatment plans for subsequent

fractions, it may be more appropriate to map the dose forward into

the frame of reference in which the next fraction will be planned.

If forward dose mapping can be automated and integrated into

the MR-linac on-line clinical workflow, it may radically change how

we approach daily MRgART. In current commercial MR-linac

systems, adaptive plans are currently generated via warm start

optimization using the reference plan as a starting point (9, 13,

114). A previous adaptive plan may be used as a new reference plan

rather than the pre-treatment reference plan, but the IMRT objectives

and dose constraints remain the same for each adaptive plan unless

they are manually modified. We have seen with this process that there

is a reasonable degree of dosimetric variability between plans from

day to day despite the same objectives being used for planning. For

example, even if an OAR dose constraint is violated in one or more

fractions, that constraint may still be met in the cumulative delivered

dose if doses to that OAR fall far enough below the constraint

threshold for all other fractions (72). If we could accumulate the

dose at each fraction in the frame of reference of the daily setup

image, then we could adapt the plan using modified and/or re-

prioritized planning objectives based on knowledge of the

cumulative delivered dose. In other words, a dose constraint that is

routinely met may be de-prioritized in the set of IMRT planning

objectives in favor of a dose constraint that is routinely violated. This

approach may also be useful if the clinical intent is to escalate dose to

the tumor because the physician can make an informed decision

about how much the tumor dose can be increased without exceeding

the OAR constraints.

In summary, we propose that dose accumulation for purposes of

toxicity assessment should be reported on the planning image, as that

represents the anatomy at the time of planning and is necessary for

useful implementation of toxicity models. However, for ART

purposes, we propose that the accumulated dose should be

represented on the most recent anatomy so that replanning can be

assessed and applied.

As a final note, as with every step of the radiation therapy process,

cumulative dose has an associated uncertainty that is a combination

of the uncertainties in each step of the dose accumulation process.

Understanding these uncertainties and how they impact the use of the

cumulative dose is critical to clinical decision making. Thus, prior to

clinical implementation of any dose accumulation workflow, it is

essential for clinicians to clinicians to fully understand the process

and the inherent uncertainties so that they can make the best

decisions for their patients.
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6 Discussion

High-frequency on-treatment imaging and target volume serial

assessment with MR-linac devices now affords clinicians the

opportunity to move past the historical concept of planned dose

into an era where delivered dose can be used for individual response

assessment and dose-optimized adaptive RT. However, the

implementation of dose accumulation requires a basic

understanding of key considerations and careful validation of dose

accumulation solutions tailored to distinct clinical scenarios. In this

review article, we have outlined four general steps for dose

accumulation—autosegmentation, dose calculation, deformable

image registration, and dose mapping/summation—and discussed

considerations specific to MR-linac/MRgART workflows. Additional

efforts to standardize best practices are imperative to ensure that we

move towards a future of adaptively optimized dose as patient-specific

precision radiotherapy evolves.
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A CT-based radiomics approach
to predict immediate response
of radiofrequency ablation
in colorectal cancer
lung metastases
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Chao Chen1,2, Ying Wang1,2, Lichao Xu1,2, Yaohui Wang1,2,
Xinhong He1,2, Yuanyuan Yang3,4* and Wentao Li1,2*

1Department of Interventional Radiology, Fudan University Shanghai Cancer Center, Shanghai, China,
2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China, 3Laboratory
for Medical Imaging Informatics, Shanghai Institute of Technical Physics, Shanghai, China, 4Department
of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences,
Beijing, China, 5Department of Medical Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong
University School of Medicine, Shanghai, China
Objectives: To objectively and accurately assess the immediate efficacy of

radiofrequency ablation (RFA) on colorectal cancer (CRC) lung metastases, the

novel multimodal data fusion model based on radiomics features and clinical

variables was developed.

Methods: This case-control single-center retrospective study included 479 lung

metastases treated with RFA in 198 CRC patients. Clinical and radiological data

before and intraoperative computed tomography (CT) scans were retrieved. The

relative radiomics features were extracted from pre- and immediate post-RFA CT

scans by maximum relevance and minimum redundancy algorithm (MRMRA). The

Gaussian mixture model (GMM) was used to divide the data of the training dataset

and testing dataset. In the process of modeling in the training set, radiomics model,

clinical model and fusion model were built based on a random forest classifier.

Finally, verification was carried out on an independent test dataset. The receiver

operating characteristic curves (ROC) were drawn based on the obtained

predicted scores, and the corresponding area under ROC curve (AUC), accuracy,

sensitivity, and specificity were calculated and compared.

Results: Among the 479 pulmonary metastases, 379 had complete response (CR)

ablation and 100 had incomplete response ablation. Three hundred eighty-six

lesions were selected to construct a training dataset and 93 lesions to construct a

testing dataset. The multivariate logistic regression analysis revealed cancer

antigen 19-9 (CA19-9, p<0.001) and the location of the metastases (p< 0.05) as

independent risk factors. Significant correlations were observed between

complete ablation and 9 radiomics features. The best prediction performance

was achieved with the proposed multimodal data fusion model integrating

radiomic features and clinical variables with the highest accuracy (82.6%), AUC

value (0.921), sensitivity (80.3%), and specificity (81.4%).
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Conclusion: This novel multimodal data fusion model was demonstrated efficient

for immediate efficacy evaluation after RFA for CRC lung metastases, which could

benefit necessary complementary treatment.
KEYWORDS

computed tomography (CT), radiomics, clinical variables, colorectal cancer, lung
metastasis, radiofrequency ablation (RFA), efficacy evaluation
Introduction

Colorectal cancer (CRC) is one of the most common malignant

tumors and a leading cause of cancer-related mortality worldwide (1).

About 25% of CRC patients present with distant metastases at the

time of initial diagnosis, with the most common sites including liver

and lung (2, 3). In addition, patients with rectal cancer are more likely

to have lung metastases because of anatomical differences (4, 5).

However, not all patients meet the criteria for surgical resection due to

lesion location, tumor burden, comorbidity, or the presence of extra-

pulmonary disease. For this group, thermal ablation, including

radiofrequency (RFA) or microwave (MWA), is considered a safe

alternative (6).

RFA has been proven safety and efficacy in lung metastases from

CRC (7–9). However, there is no pathological histological evidence of

complete ablation after RFA, and recent studies demonstrated that the

incomplete RFA promoted increased tumorigenesis (10) and

hindered the efficacy of anti-programmed cell death protein-1

immunotherapy (11). In addition, the existence of remnant tumor

masses was associated with earlier new metastases and poor survival

(11). Therefore, it is crucial to clarify the local recurrence factors and

assess the early-stage efficacy. To achieve complete ablation of lung

cancer, any peritumoral lung parenchyma within 5 to 10 mm needs to

be ablated (12–14). This area presents as necrosis, effusion and

congestion from the inner zone to the outer zone on

histopathology, accordingly (15), and manifests as ground-glass

opacity (GGO) on CT, which is the typical post-ablation

presentation and the crucial area in the early assessment after RFA

(16). Previous studies based on the morphological changes of

unenhanced CT found that the size of GGO was associated with

residual tumor and recurrence (17, 18). However, intraoperative

complications such as intra-alveolar hemorrhage (IAH) or

atelectasis, make it impossible to determine the extent of ablation

(9, 12, 19, 20). Therefore, the observation and measurement of the

intraoperative GGO range to ascertain whether ablation is complete is

subjective and uncertain as such an approach is easily influenced by

doctors with differences experience.

The modified response evaluation criteria in solid tumors

(mRECIST) are used to evaluate the efficacy of lung tumor ablation

(21–23). However, the inflammatory response surrounding the lesion

make it difficult to clearly evaluate the early efficacy. The lesions do

not stabilize or shrink until at least six months after ablation,

eventually manifesting in the form of disappearance, fibrosis,

nodules, and cavities (24, 25). This time-lapse evaluation method
02121
may also result in a missed opportunity for the optimal

complementary therapy for patients, thus affecting their survival

benefits. Therefore, there is an urgent need for objective and

reliable characteristic metrics or models to evaluate the immediate

ablative efficacy of RFA for pulmonary metastases.

Radiomics can mine high-dimensional quantitative imaging

features of medical images, which contain information related to

tumor heterogeneity and microenvironment (26–29), allowing for

more accurate quantification of phenotypic features and assessment

of treatment response (30–33). Radiomics analysis includes target

lesion segmentation, feature extraction, machine learning classifier

training, and performance evaluation (34–36). However, the

radiomics feature analysis approach just takes full advantage of a

single mode of radiological data which is incomplete and noisy whilst

ignoring other modalities data, such as histopathology, genomics, or

clinical information, leaving multimodal data integration relatively

underdeveloped (37).

In this study, we developed novel multimodal data fusion models

integrating radiomics features based on radiological data with clinical

variables originating from textual data to assist interventional

physicians in evaluating the immediate efficacy of RFA for CRC

lung metastases, so as to make necessary supplementary treatment

during operation.
Materials and methods

Data collection

CRC patients with lung metastases who underwent percutaneous

RFA under CT guidance between August 2016 and January 2019 were

enrolled in this study. Patients were recruited based on the following

eligibility criteria: (1) histologically confirmed CRC; (2) ablated lung

metastases with maximum diameter ≤3 cm; (3) chest enhanced CT

examination within 4-6 weeks before RFA; (4) complete CT images

during the procedure; (5) re-examination by chest enhanced CT at

least 6 months after RFA; (6) technically successful ablation; (7)

adequate normal organ function. Exclusion criteria, based on the

European Society for Medical Oncology (ESMO) guidelines (38)

were: (1) > 5 lung metastases; (2) maximum diameter > 3 cm; (3)

other local or regional treatments such as radiotherapy before or after

RFA; (4) incomplete clinical data; (5) second ablation (i.e., re-

ablation). We allowed the inclusion of patients with multiple

nodules and analyzed each nodule individually. A cohort of 198
frontiersin.org
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patients with 479 lung metastases who received RFA was

retrospectively selected (Figure 1).

The following clinical data were retrieved: age at diagnosis,

gender, serum tumor markers, including carcinoembryonic antigen

(CEA) and cancer antigen 19-9 (CA19-9). The radiological data were

recorded as follows: the location of pulmonary metastases, proximity

to the heart, great blood vessels (diameter > 3 mm), pleura or

diaphragm (within 1 cm) through the preoperative CT images; the

IAH or pneumothorax were acquired.

All CT examinations (United Imaging uCT 760, Shanghai

United Imaging Medical Technology Inc., China and Philips

Brilliance 64 slice, Philips Medical Systems Inc., USA) were

performed with a fixed tube current of 200 mA and a tube

voltage of 120 kVp. The pixel spacing ranged from 0.684 to 0.748

mm, and the slice thickness was 1 mm or 1.5 mm. The

intraoperative CT images were of fixed tube current of 200 mA,

tube voltage of 120 kVp, and slice thickness of 1 mm or 3 mm. The

image reconstruction method of both CT scanners is iterative

reconstruction. Radiological follow-up consisted of chest-

enhanced CT scans performed at 1, 3, 6, 12 months, and every 6

months after that. The shortest follow-up time was over 6 months.

This study was approved by the Institutional Review Board of the

Ethics Committee of Fudan University Shanghai Cancer Center.

Written informed consent was obtained from all patients.
RFA procedures and local
efficacy assessment

RFAmainly utilizes 460 ~ 480 kHz high-frequency current to heat

a tissue volume around a needle electrode and induce focal

coagulative necrosis with minimal injury to surrounding tissues (39,

40). Here, RFA was performed using a radiofrequency applicator

(MedSphere International), with the mode of temperature control or

impedance control for choice. The power settings were adjusted

according to the manufacturer’s protocols: 5 min for a 2.0 ~ 2.5 cm
Frontiers in Oncology 03122
active tip at 30 W, 8 min for a 3.0 ~ 3.7 cm active tip at 50 W, and 10

min for a 4.0 ~ 4.7 cm active tip at 60 W, respectively.

All the operations were performed by three senior interventional

radiologists (L.X., Y.W. and X.H. with over 10 years of experience in

thoracic interventions under CT guidance). Depending on the

location of the target nodules, patients were placed in a prone

position, lateral position or supine position to ensure the best

puncture site and entry route and avoid important structures,

including ribs, interlobular fissures, and blood vessels. Lidocaine

was administered at the puncture site to induce local anesthesia of

the pleura. With CT monitoring, the radiofrequency electrode was

punctured according to the predetermined direction and angle. The

ablation was not performed until the CT scan confirmed that the

electrode hooked the lesion. Considering tumor shape and size, one or

two needle ablations with a constant antenna position were usually

acceptable to achieve complete ablation. The operators strived to

achieve ablation range greater than the lesions by at least 5 mm. If the

intraoperative complications such as intra-alveolar hemorrhage

(IAH) or atelectasis, made it impossible to determine the extent of

ablation, at least 2 cycles of ablation would be performed to raise the

impedance until ablation stopped. After completion of the RFA

session, the ablation electrode was withdrawn, and a repeat CT

(same parameters) scan was performed to evaluate whether the

ablation zones covered the tumor and the occurrence of ablation-

related complications, mainly including pneumothorax

and hemorrhage.

Local efficacy was assessed by two radiologists who were blind to

clinical data (H.C. and H.H. with over 5 years of experience) through

chest enhanced CT examination at least 6 months after RFA

according to mRECIST criteria (24, 41). If they had disagreements,

it would be determined in consultation with the senior expert (W.L.

with over 20 years of experience). The follow-up CT examination one

month after ablation was taken as the baseline (42). Based on the

mRECIST criteria, CR was defined if any of the following

manifestations on CT were seen: the disappearance of the lesion,

cavity, fibrosis or nodule without enhancement. If two consecutive CT
FIGURE 1

Study flow chart. CRC, colorectal cancer; CR, complete response; Non-CR, Non-complete response.
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examinations demonstrated the target lesions had irregular

enlargement or enhanced solid components, they were classified as

a non-complete response (non-CR).
Pre-processing of CT images, radiomics
feature extraction, selection and
data division

In order to avoid the data bias due to the difference in scanning

spacing and slice thickness between preoperative and immediately

postoperative CT images, the following preprocessing steps were

adopted: the CT images were uniformed to a common resolution of

1 mm × 1 mm × 1 mm by B-spline interpolation algorithm, and then

the window width was adjusted within the range of - 1200 Hu to 600

Hu and the intensity was scaled within the range of 0 ~ 255. After

normalization of all CT images, the samples containing pulmonary

metastases were trimmed to 3D cubes with the size of 40 mm × 40

mm × 40 mm. Finally, the gray values of sample cubes were

normalized between 0 and 1 (Figure 2).

To objectively and accurately delineate the target lesions in the

preoperative CT images and the boundary of the ablation area

immediately after RFA, A 3D U-Net model (43) was used to

segment the lesions and ablation region automatically, and two

junior radiologists (H.C.and H.H.) verified the segmentations and

made the necessary adjustments to guarantee the accurancy and

repeatability (Figure 3). If they had disagreements, it would be

determined in consultation with the senior expert (W.L.).

For each segmented preoperative lesions and ablation region,

1252 radiomics features were extracted through the open-source

feature toolboxes PyRadiomics (44) and PREDICT. The radiomics

features were comprised of 13 intensity features, 35 shape features, 9

orientation features and 507 texture features which contained 144

Gray Level Co-occurence Matrix (GLCM) features, 16 Gray Level Size

Zone Matrix (GLSZM) features, 16 Gray Level Run Length Matrix

(GLRLM) features, 14 Gray Level Dependence Matrix (GLDM)
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features, 5 Neighborhood Grey Tone Difference Matrix (NGTDM)

features, 156 Gabor filters features, 39 Laplacian of Gaussian (LoG)

filters features, 39 Local Binary Patterns (LBP) features (32, 44–47),

and 688 wavelet features.

In order to reduce unnecessary, redundant information and

complexity in the process of calculation and modeling, the

maximum correlation and minimum redundancy algorithm

(MRMRA) (48) was used for features selection. There are five

common variants under the MRMRA framework (49): mutual

information difference (MID), mutual information quotient (MIQ),

F-test correlation difference (FCD), F-test correlation quotient (FCQ),

and random-forest correlation quotient (RFCQ). The formulas were

as follows:

Assuming that there were m features in total, for a given feature

Xi, i∈ (1, 2,…, m), the importance of the feature could be determined

by MRMRA, commonly in the following five forms:

f MID(Xi) = I(Y ,Xi) −
1
jSjoXs ∈ SI(Xs,Xi)

f MIQ(Xi) = I(Y ,Xi)=½ 1jSjoXs ∈ SI(XS,Xi)�
f FCD(Xi) = F(Y ,Xi) −

1
jSjoXS ∈ SP(XS,Xi)

f FCQ(Xi) = F(Y ,Xi)=½ 1jSjoXS ∈ SP(XS,Xi)�
f RCQ(Xi) = IRF(Y ,Xi)=½

1
Sj joXS ∈ SP(XS,Xi)�

where, Y is the category label corresponding to the variable, S is the

selected feature set, |S| is the size of the feature set, Xs∈S is a feature

outside the feature set S, and Xi represents a feature that was not

currently selected; the functionI(·,·) represents mutual information,p(·,·)

is the Pearson correlation coefficient, F(·,·) is the Fstatistics, and IRF(·,·)

is the random forest feature importance score. Since inconsistent results

of various methods under different super parameter conditions, we

utilized the above 5 methods to filter features. The frequency of the top

5, top 10, and top 15 features was counted in the importance ranking,

and the experiments were conducted from 5 to 15 features with the

highest frequency to obtain the best performance, and eventually to

confirm the 9 selected features.

As the Gaussian mixture model (GMM) had good performance

in the evaluation of sample distribution and similarity in high-
FIGURE 2

Flow chart of image preprocessing.
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dimensional space (50–52), we used distance metric learning based

on the Gaussian mixed model (DML-GMM) rather than random

splitting to divide data according to our previous research results

(53). We demonstrated that when the sample size was large, there

was little difference between random splitting and the DML-GMM

model. As for a smaller sample size, however, the DML-GMM

model could obtain more stable results than random splitting.

Therefore, the log-likelihood of the extracted radiomic features

was calculated by DML-GMM model to describe the distribution,

the data was split into multiple clusters and then was divided into 5

groups by stratified sampling. One group was selected as the testing

set and the remaining 4 groups were used as the training set.

Actually, we did five-fold cross-validation and chose a single split

data including 386 lesions for the training set and 93 for the

testing set.
Model building and performance evaluation

Due to the unbalanced distribution of case counts in CR and non-

CR, we adopted the oversampling method (synthetic minority over-

sampling technique, SMOTE) (54) to mitigate the biased impact of

data imbalance on the models during training.

Clinical model: all the clinical and radiological features were

included in the univariate Logistic regression analysis, after which

the variables with P< 0.1 were included in the multivariate analysis.

Finally, the independent factors with P< 0.05 were selected for

modeling. The random forest technique was a regression tree

technique which utilized bootstrap aggregation and randomization

of predictors to achieve a high degree of predictive accuracy (55).

Since the random forest algorithm has been proven to be effective and

superior in building clinical models (56, 57), our clinical model was

also built on it.
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Radiomics model: A random forest, which was the most common

classifier used for radiomics features classification, contained multiple

decision trees, and the total output result was determined by the

subcategories of each decision tree. When processing high-dimensional

data, it had a strong ability of anti-interference and anti-overfitting,

especially for unbalanced medical data. Several studies have confirmed

that the random forest model could be used to predict the survival rate,

recurrence risk, and efficacy evaluation of lung cancer patients (58–

60).Multimodal data fusion models: the random forest model was

integrated based on radiomics and clinical models (Figure 4). The

weighted fusion strategy (61) adopted in our study was decision level

fusion (late fusion) (62). This level of fusion allowed features from

different representations to be combined in the same format of

representation, which had more and better scalability and flexibility

(63). The exact formula was confidence=w1·confidenceimage

+w2·confidenceclinical· The fusion prediction score was calculated to

obtain the final prediction result.

In order to evaluate the performance of various models, we

validated them on an independent test dataset, drew receiver

operating characteristic curves (ROC) with the obtained prediction

scores and calculated the corresponding area under curve (AUC). The

difference in the predictive performance of models was compared by

the Delong test (64). Meanwhile, the accuracy (ACC = TP+TN
TP+FP+TN+FN ),

sensitivity (Sensitivity =   TP
TP+FN ), and specificity (Specificity =   TN

TN+FP )

were also calculated. In the formula, TP was true positive, FP was false

positive, TN was true negative and FN was false negative.
Statistical analysis

Statistical analyses were performed using IBM SPSS (version 26.0,

Chicago, USA). Man-Whitney U test was used for continuous

variables which were presented as mean ± standard deviation (SD).
A

B

FIGURE 3

Segmentation of metastasis and ablation area. (A) Flow chart of the 3D U-Net model; (B) CT images and segmentation images of colorectal cancer lung
metastasis and ablation area immediate after RFA.
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Chi-square or Fisher test was used for categorical variables. All

statistical tests were conducted at a two-sided significance level of

P<0.05. All the medical image processing procedures and evaluation

processes were performed on Python 3.6. In order to build the models

and calculate the evaluation scores, we used publicly available

packages such as SimpleITK, PyTorch, scikit-learn, numpy, and scipy.
Results

Characteristics of patients and lesions

A total of 198 patients with 479 lung metastases from CRC were

enrolled; the detailed demographic characteristics are listed in

Table 1. After RFA treatment, there were 379 CR lesions and 100

non-CR lesions. Due to the small sample size, we analyzed each lesion

individually in the same patient with multiple metastases as the recent

literatures (20, 65–67). Through the GMM method, 386 lesions (305

CR and 81 non-CR) were selected to constitute the training dataset,

and 93 lesions (74 CR and 19 non-CR) were chosen to constitute the

independent testing dataset (Figure 1). There were 227 lesions

(47.4%)< 10 mm, and most lesions (399, 83.3%) were not close to

the mediastinum or great vessels (diameter greater than 3 mm), but

close to the pleura or diaphragm (287, 59.9%). The incidences of IAH

and pneumothorax were 25.9% (124/479) and 24.0% (115/

479), respectively.
Clinical and radiomics feature selection

Univariate logistic regression analysis in Table 2 showed that

CEA, CA19-9, lesion location (including upper lobe of the right lung,

right lower lobe, and left lower lobe), and intra-alveolar hemorrhage

(P< 0.1) could completely identify ablated lesions. Furthermore,
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multivariate regression analysis demonstrated that CA19-9 (odds

ratio [OR] = 1.007, P< 0.001) and lesion location (including right

upper lobe [OR = 1, P = 0.005], right lower lobe [OR = 2.997, P =

0.003], and left lower lobe [OR = 2.498, P = 0.011]) were independent

risk factors for incomplete ablation. These two clinical variables were

used to construct a clinical model.

In order to prevent the model from overfitting because of the

small sample size, 5 to 15 vital features with the highest scores were

selected by MRMRA, and the five forms of MRMRA features

importance scores were calculated separately, and compared with

the default important feature s of the random forest model as the

benchmark. The results demonstrated that the important features

selected by MRMRA in the form of MID, MIQ, FCQ, and RFCQ had

better performance than the features automatically selected by

random forest, and the experimental model with 9 selected features

had achieved better stability and smaller deviation. The selected

feature results are shown in Table 3.
Prediction performance comparison

The AUC values of each model were calculated in an independent

testing dataset, and the DeLong test compared the corresponding P

values (Tables 4, 5 and Figure 5). When radiomics features were

integrated with clinical variables, and the coefficient of the radiomics

model was 0.7 and the coefficient of clinical model was 0.3, the

resulting AUC value achieved the highest (0.921) with the statistically

significant difference (P values of 0.043) compared with the clinical

model alone (0.830). In addition, the accuracy, sensitivity, and

specificity of this multimodal data fusion model were also the best

(82.6%, 80.3%, and 81.4%, respectively).

Figure 6 presents one example of a patient with post-lung RFA CR,

with a nodule in contact with a vessel, complicated by IAH. In contrast,

Figure 7 illustrates another example with post-lung RFA non-CR.
FIGURE 4

Fusion framework of radiomics features and clinical information.
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Discussion

In 2016, the ESMO proposed a toolbox for oligometastases of

CRC, which emphasized the clinical value of local therapy (38). In
Frontiers in Oncology 07126
patients who are not eligible for surgery, RFA seems to have more

evidence as a locoregional alternative for tumors< 3 cm (6).

After ablation, lung tumors undergo a natural evolution of the

outcome process: in the early stage (within 1 week), the lesions are
TABLE 1 Characteristics of patients and colorectal cancer lung metastases.

Characteristics Training dataset(N= 386) Testing dataset(N=93) P Total(N=479)

Pre-RFA clinical features

Gender Male 221 48 0.0347 269

Female 165 45 210

Age (years, mean ± SD) 57.9±10.3 57.3±11.1 0.5860

Tumor markers CEA (ng/ml) 4.6±4.1 3.9±3.6 0.4594

CA19-9 (U/ml) 10.8±6.2 10.9±6.4 0.8112

Pre-RFA characteristics of the lung metastasis

Nodule size (mm) < 10 186 41 0.0622 227

10–19 141 37 178

20 - 30 59 15 74

Location RUL 91 21 0.0011 112

RML 41 11 52

RLL 76 12 88

LUL 72 36 108

LLL 106 13 119

Distance 1 (cm) > 1 329 70 0.3997 399

< 1 57 23 80

Distance 2 (cm) > 1 151 41 0.0739 192

< 1 235 52 287

Immediate post-RFA features

Pneumothorax Yes 92 23 0.2932 115

No 294 70 364

Intra-alveolar Yes 100 24 0.2654 124

Hemorrhage No 286 69 355
RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe; LUL, left upper lobe; LLL, left lower lobe; SD, standard deviation; Distance 1, the distance between the lesion and the large vessels
or mediastinum; Distance 2, the distance between the lesion and the pleura or diaphragm.
TABLE 2 Uni- and multi-variate analysis of clinical and radiological characteristics.

Characteristics
Univariate analysis Multivariate analysis

OR (95% CI) P OR (95% CI) P

Clinical features

Gender Male 1.259 (0.803-1.974) 0.316

Female 1

Age 0.994 (0.974-1.015) 0.588

Tumor biomarkers
CEA 1.007 (1.001-1.012) 0.028 1.004 (0.999-1.009) 0.166

CA 19-9 1.006 (1.002-1.009) 0.001 1.007 (1.003-1.011) <0.001

(Continued)
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covered by GGO, with larger scopes than the lesions, and the interior

of the lesions presents a low-density honeycomb appearance. In the

middle stage (1 week to 2 months), the ablation area becomes larger,

and an enhanced ring appears due to the absorption of inflammation

around the lesion. Finally, in the late stage (after 2 months), the

ablation area remains relatively stable or slightly larger, gradually

shrinking or stabilizing after 6 months (24, 25). Therefore, contrast-

enhanced CT of the chest at least 6 months after RFA was used to

evaluate the efficacy of RFA in this study, so as to determine whether

the lesions were completely ablated.

We found that the level of CA19-9 and location of the metastases

were significant correlations with complete ablation. In terms of

recurrence and survival prognosis, the combined evaluation of CEA
Frontiers in Oncology 08127
and CA19-9 could obtain more relevant information than the

evaluation of CEA alone (68, 69). However, this study found no

significant association between CEA levels and complete ablation

based on the multivariate logistic regression analysis. On the other

hand, the location of nodules, including lung lower lobes, was an

independent risk factor with values of OR > 2, possibly due to the

influence of patient’s respiratory movement on the correct

positioning of the probe. Also, IAH was associated with a higher

risk of local recurrence, which reached significance in the univariate

analysis, likely because of the increasing difficulties in locating the

target nodule in the background of the dense and radiopaque zone. In

addition, the heat sink effect was associated with a higher risk of

incomplete ablation for tumors with blood vessel contact resulting

from the blood flow and microscopic extension (12, 70, 71). However,

our variables relating to vessels did not reach significance, probably

with the influence caused by the enrolled cases close to

the mediastinum.

In contrast to conventional CT-based imaging features, radiomics

analysis enables a greater degree of information reflecting underlying

biologic heterogeneity to be derived and qualified at a low cost (27,

46). A radiomics signature, as a panel of multiple features, has been

regarded as a more powerful prognostic biomarker, which could

provide additional information to clinical data, and has reportedly

been a significant predictor for clinically relevant factors (72–74).

Previous studies have demonstrated that the size and shape of

metastases are the important risk factors for local recurrence (9, 12,

75), as the shape feature selected by MRMRA. In addition, GLRLM

features could quantify gray level runs, defined as the length in a
TABLE 3 Radiomics features selected by MRMRA.

pre-RFA radiomics features post-RFA radiomics features

shape_Elongation GLCM_Idmn

GLCM_Idmn GLRLM_RunEntropy

GLCM_Imc1 GLCM_Imc2

GLCM_InverseVariance

GLCM_ClusterShade

GLDM_DependenceEntropy
MRMRA, maximum relevance and minimum redundancy algorithm; RFA, radiofrequency
ablation; GLCM, Gray Level Co-occurence Matrix; GLDM, Gray Level Dependence Matrix;
GLRLM, Gray Level Run Length Matrix.
TABLE 2 Continued

Characteristics
Univariate analysis Multivariate analysis

OR (95% CI) P OR (95% CI) P

Pre-RFA features of the lung metastases

Location

RUL 1 0.013 1 0.005

RML 1.323 (0.538-3.253) 0.542 0.949 (0.357-2.525) 0.917

RLL 2.968 (1.468-6.002) 0.002 2.997 (1.442-6.23) 0.003

LUL 1.293 (0.615-2.718) 0.497 1.216 (0.557-2.654) 0.624

LLL 2.23 (1.125-4.419) 0.022 2.498 (1.228-5.08) 0.011

Distance 1 (cm)
> 1 1

< 1 0.693 (0.402-1.197) 0.189

Distance 2 (cm)
> 1 1

< 1 0.957 (0.608-1.506) 0.848

Immediate post-RFA features

Pneumothorax
Yes 1.08 (0.652-1.789) 0.764

No 1

IAH
Yes 0.612 (0.354-1.059) 0.079 0.644 (0.364-1.138) 0.130

No 1 1
frontie
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number of consecutive pixels that have the same gray level value (76)

and could reflect the volumetric texture of the early ablation zone

(77). A GLCM feature, which could reflect and quantify homogeneity

to reflect the risk of local recurrence, is a common method of

describing texture by studying the spatial correlation characteristics

of gray levels (78). A GLDM feature quantifies gray level

dependencies, which correspond the number of connected voxels

within distance d dependent on the center voxel (79), likely reflecting

the difficulties in identifying the nodule.

Recent work has highlighted important efficacy and prognostic

information captured in radiological, clinicogenomic, and

histopathological data, which can be exploited through machine

learning. However, little is known about the capacity of combining

features from these disparate sources to improve the prediction of

treatment response. Therefore, we combined radiomics with patients’

clinical variables to construct multimodal data fusion models to

objectively and accurately evaluate the immediate efficacy of RFA

for CRC lung metastases.

An observer study was conducted by testing an independent dataset

to validate the performance of models (i.e., results shown in Tables 4, 5

and Figure 5). Compared with the baseline model only based on clinical

variables, the radiomics-based models showed further improvement in

performance with a significant statistical difference (P<0.05).

Compared with the model only based on radiomics features, the

corresponding performance indicators of the multimodal data fusion

model (Radiomics + Clinical) were higher, but the Delong test did not

confirm significant difference (P>0.05) between the models, indicating

that the radiomics features have a dominant role in the models. At the

same time, it suggests that the clinical variables could provide

supplementary information to improve the predictive performance of

the models, although they could not reach significance, possibly

because of the limited sample size.

The main advantages of this study are as follows: first of all,

different types of data might contain complementary information;
TABLE 5 Comparison of prediction performance of different models in the
testing dataset.

Models ACC
(%) AUC Sensitivity

(%)
Specificity

(%)

Clinical 71.4 0.830 69.6 75.3

Radiomics 80.8 0.887 79.1 80.6

Radiomics +
Clinical

82.6 0.921 80.3 81.4
ACC, accuracy; AUC, area under ROC curve.
The bold values mean the best performance of the multimodal data fusion model integrating
radiomic features and clinical variables.
FIGURE 5

Comparisons of ROC curves of different models. ROC, receiver
operating characteristic; AUC, area under the curve.
TABLE 4 AUC values of different models in the testing dataset.

Models AUC

Clinical 0.830

Radiomics 0.887

Radiomics + clinical 0.921

0.1× Radiomics + 0.9 × clinical 0.839

0.2× Radiomics + 0.8 × clinical 0.852

0.3× Radiomics + 0.7 × clinical 0.869

0.4× Radiomics + 0.6 × clinical 0.885

0.5× Radiomics + 0.5 × clinical 0.904

0.6× Radiomics + 0.4 × clinical 0.913

0.7× Radiomics + 0.3 × clinical 0.921

0.8× Radiomics + 0.2 × clinical 0.916

0.9× Radiomics + 0.1 × clinical 0.903
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therefore, we developed novel multimodal data fusion models

integrating radiomics features based on radiological data and

clinical variables originating from textual data for evaluating early

ablation efficacy. In the second place, we proposed an information

fusion scheme based on preoperative and immediately postoperative

CT images, which could integrate the characteristics of the same

target area in different periods. Finally, we adopted the GMMmethod

(80) proposed in the previous study to conduct more reasonable data

division to improve the model’s stability, accuracy and generalization,

and minimize the deviation problem resulting from limited sample

size when training the model.

There are few studies on the application of artificial intelligence

methods to evaluate the efficacy of radiofrequency ablation for CRC lung

metastases. A recent study (81) has retrospectively observed the

instantaneous changes in intratumor density heterogeneity after MWA

of pulmonary tumors via radiomics-based CT features and determined

the prognostic value in predicting treatment response and local tumor
Frontiers in Oncology 10129
progression (LTP). However, only 50 patients with different diseases (39

primary and 11 metastatic) were enrolled, which could not guarantee a

sufficient sample size and the homogeneity of disease. In addition, it was

not appropriate to evaluate ablation efficacy by chest contrast-enhanced

CT afterablation, which was usually used as the baseline for evaluation

(82). Another retrospective study (20) utilized radiomics, clinical,

radiological, and technical features to access local control of 48 CRC

patients with 119 lung metastases treated by RFA. In order to observe the

nodule position in the ablation zone (categorized as nodule seen and

remote from borders, or not [i.e., hidden or marginal]), patients

underwent chest CT 48 hours after RFA. However, the related results

might be subjective among doctors because of different experiences, so

they could not assist operators in evaluating the ablation efficacy during

the operation, thus allowing for more timely interventions, and in turn,

reducing tumor load and prolonging overall survival (83).

Despite the promising results, our study has several limitations.

Firstly, the sample size was relatively small because of strict exclusion
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FIGURE 6

Example of a patient with post-lung RFA complete response. The multimodal data fusion model predicted the results: CR: 0.87, Non-CR: 0.13. (A) A 77-
year-old female pT2N1M1R0 rectal cancer patient with a lung metastasis one year after rection, which was located in the left upper lobe (red arrow). (B)
The mediastinal window of enhanced CT showed that the lesion was enhanced and adjacent to the blood vessel, with a maximum diameter of 6 mm
(red arrow). (C) The histogram of the densities within this nodule on the pre-RFA CT scans displayed an asymmetric, skewed distribution corresponding
to intra-tumoral enhancement (x-axis: attenuation in Hounsfield units, y-axis: number of voxels). (D) The RFA was performed under CT guidance. (E) IAH
occurred after RFA (red arrowhead). (F) The histogram of the densities within the ablation zone on the immediate post-RFA CT scans was rather flat,
without peak among the high tissular atenuations (x-axis: attenuation in Hounsfield units, y-axis: number of voxels). (G) Chest CT scan showed high
density patch shadow in the ablation area one month after RFA (red arrowhead). (H–J) One year, two years and five years after RFA, chest CT scans
showed that the lesion disappeared (red arrowhead). RFA, radiofrequency ablation; CR, complete response; IAH, intra-alveolar hemorrhage.
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criteria regarding imaging follow-up. Secondly, the immediate chest

CT after RFA was a non-contrast-enhanced CT which might result in

the loss of some potentially valuable information related to

efficacy. Thirdly, the absent of deep learning algorithm which could

identify non-specific features of target lesions and surrounding tissues

through automatic learning to achieve information complementation.

Thus, a larger patient population from multicenter with deep learning

algorithm might further improve the performance in future studies.

In conclusion, the novel multimodal data fusion model

(combining radiomics features and clinical variables) was developed

to assess the early ablation efficacy. Based on these promising results,

our study provides evidence that could assist interventional

physicians in objectively and accurately evaluating the immediate

efficacy of RFA for CRC lung metastases so as to make necessary

supplementary treatment during operation.
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FIGURE 7

Example of a patient with post-lung RFA non-CR. The multimodal data fusion model predicted the results: CR: 0.06, Non-CR: 0.94. (A) A 52-year-old female
pT4N1M1R0 rectal cancer patient with a lung metastasis eight months after rection, which was located in the left lower lobe (red arrow). (B) The mediastinal
window of enhanced CT showed that the lesion was accompanied by small cavities with a maximum diameter of 9 mm (red arrow). (C) The histogram of the
densities within this nodule on the pre-RFA CT scans was flat, without peak among the high tissular attenuations (x-axis: attenuation in Hounsfield units, y-
axis: number of voxels). (D) The RFA was performed under CT guidance. (E) GGO occurred after RFA (red arrowhead). (F) The histogram of the densities
within the ablation zone on the immediate post-RFA CT scans displayed an asymmetric, skewed distribution (x-axis: attenuation in Hounsfield units, y-axis:
number of voxels). (G) Chest CT scan showed high density GGO with clear boundary one month after RFA (red arrowhead). (H) Five months after RFA, the
GGO became a high-density nodule (red arrowhead). (I) Seven months after RFA, the high-density nodule shrank, but there was an irregular nodule near the
vessel in the ablation area (red arrowhead). (J) Nine months after RFA, the irregular nodule was progressively enlarged and the recurrence was considered
(red arrowhead). RFA, radiofrequency ablation; CR, complete response; GGO, ground glass opacity.
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Lesion-specific 3D-printed
moulds for image-guided
tissue multi-sampling of
ovarian tumours: A
prospective pilot study

Maria Delgado-Ortet1,2†, Marika A. V. Reinius2,3,4,5†,
Cathal McCague1,2,4, Vlad Bura1,2,4,6, Ramona Woitek1,2,4,7,
Leonardo Rundo1,2,8, Andrew B. Gill 1,4, Marcel Gehrung2,3,
Stephan Ursprung1,2,4, Helen Bolton4, Krishnayan Haldar4,
Pubudu Pathiraja4, James D. Brenton2,3,4,5,
Mireia Crispin-Ortuzar2,5, Mercedes Jimenez-Linan2,4,
Lorena Escudero Sanchez1,2 and Evis Sala1,2,4,9,10*

1Department of Radiology, University of Cambridge, Cambridge, United Kingdom, 2Cancer Research UK
Cambridge Centre, Cambridge, United Kingdom, 3Cancer Research UK Cambridge Institute, University
of Cambridge, Cambridge, United Kingdom, 4Cambridge University Hospitals NHS Foundation Trust,
Cambridge, United Kingdom, 5Department of Oncology, University of Cambridge, Cambridge, United
Kingdom, 6Department of Radiology, Clinical Emergency Children’s Hospital, Cluj-Napoca, Romania,
7Research Center for Medical Image Analysis & Artificial Intelligence (MIAAI), Danube Private University,
Krems, Austria, 8Department of Information and Electrical Engineering and Applied Mathematics,
University of Salerno, Fisciano, SA, Italy, 9Dipartimento Diagnostica per Immagini, Radioterapia
Oncologica ed Ematologia, Policlinico Universitario A. Gemelli IRCCS, Rome, Italy, 10Dipartimento di
Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
Background: High-Grade Serous Ovarian Carcinoma (HGSOC) is the most

prevalent and lethal subtype of ovarian cancer, but has a paucity of clinically-

actionable biomarkers due to high degrees of multi-level heterogeneity.

Radiogenomics markers have the potential to improve prediction of patient

outcome and treatment response, but require accurate multimodal spatial

registration between radiological imaging and histopathological tissue samples.

Previously published co-registration work has not taken into account the

anatomical, biological and clinical diversity of ovarian tumours.

Methods: In this work, we developed a research pathway and an automated

computational pipeline to produce lesion-specific three-dimensional (3D) printed

moulds based on preoperative cross-sectional CT or MRI of pelvic lesions. Moulds

were designed to allow tumour slicing in the anatomical axial plane to facilitate

detailed spatial correlation of imaging and tissue-derived data. Code and design

adaptations were made following each pilot case through an iterative refinement

process.

Results: Five patients with confirmed or suspected HGSOC who underwent

debulking surgery between April and December 2021 were included in this

prospective study. Tumour moulds were designed and 3D-printed for seven

pelvic lesions, covering a range of tumour volumes (7 to 133 cm3) and

compositions (cystic and solid proportions). The pilot cases informed
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innovations to improve specimen and subsequent slice orientation, through the

use of 3D-printed tumour replicas and incorporation of a slice orientation slit in the

mould design, respectively. The overall research pathway was compatible with

implementation within the clinically determined timeframe and treatment pathway

for each case, involving multidisciplinary clinical professionals from Radiology,

Surgery, Oncology and Histopathology Departments.

Conclusions: We developed and refined a computational pipeline that can model

lesion-specific 3D-printedmoulds from preoperative imaging for a variety of pelvic

tumours. This framework can be used to guide comprehensive multi-sampling of

tumour resection specimens.
KEYWORDS

precision oncology, ovarian cancer, cancer imaging, radiogenomics, co-registration, 3D-
printing, custom tumour moulds, tumour sampling
1 Introduction

High-Grade Serous Ovarian Carcinoma (HGSOC) is the most

prevalent and lethal subtype of ovarian cancer (1). While high levels

of genomic complexity and clonal expansion are associated with poor

outcome (2), comprehensive tissue multisampling to quantify cellular

and molecular tumour heterogeneity is beyond the scope of current

clinical diagnostic workflows, thereby limiting our understanding of

the landscape of drug resistance mechanisms and potentially

actionable targets in HGSOC.

Biomarkers that integrate routinely collected radiological data

with molecular features may improve prediction of patient outcome

and treatment response (3, 4). However, radiogenomic studies to date

predominantly rely on retrospective cohorts and a single tumour

sample from a single site per case – thus introducing an unquantified

risk of sampling bias, and offering limited insight into the spatial

relationship between radiomic features (5) and molecular

heterogeneity at the whole-tumour level. This represents one major

barrier to clinical implementation of radiogenomic biomarkers.

Biological validation of radiomic habitats –regions that share

quantitative imaging characteristics (6, 7) – requires fine co-

registration between tissue and imaging coordinates to allow

systematic multi-sampling between as well as within radiomic

habitats (8) emphasising the need for dedicated and improved co-

registration methods. Patient-specific three-dimensional (3D) moulds

have been proposed to allow co-registration between tumour tissue

biopsies and preoperative imaging for subsequent multimodal data

correlation and radiogenomic (6, 7) studies in several tumour-types,

counting prostate (9–16), hepatic (17, 18) and renal (7, 19) cancers as

well as a case report in ovarian cancer (6). These approaches represent

important steps toward a detailed 3D spatial understanding of the

wide relationship between molecular and radiomic heterogeneity.

In practice, however, two major factors limit wider

implementation of 3D mould-based methods across institutions.

First, most published works discuss only the end product and not

the technical development process. Second, key anatomical, biological

and clinical pathway-related aspects of ovarian tumour diagnosis and
02135
treatment present unique challenges to the implementation of

previously proposed methods. For example, once adnexal tumours

are resected, the orientation of those specimens for tissue sampling is

often challenging due to the lack of anatomical landmarks. The

purpose of this paper is therefore to provide a detailed,

comprehensive illustration of the stages of development performed

for our use case, to benefit future 3D mould-based work in the

gynaecological cancer research community.

To generate a framework for 3D mould-based tumour sampling

that can cater for the diversity of ovarian tumours encountered in

clinical practice, we conducted a pilot study of five illustrative cases in

their primary diagnostic phase. Through an adaptive process described

in this work, we have developed and refined an automated

computational pipeline that computes the shape and size of tumour

delineated on routine computed tomography (CT) or magnetic

resonance imaging (MRI) to inform lesion-specific mould printing

prior to planned surgical resection. Our method is specifically aimed to

allow for detailed spatial correspondence between imaging and tissue-

derived data. Multidisciplinary work of this kind is inherently

operationally complex – to maximise the reproducibility of our work,

we provide a detailed overview of case selection and evaluation,

computational modelling, tissue processing and critical

considerations around the research pathway development.
2 Methods

2.1 Study design and patient cohort

Five patients with confirmed or suspected HGSOC undergoing

debulking surgery between April and December 2021 at

Addenbrooke’s Hospital (Cambridge University Hospital NHS

Foundation Trust, Cambridge, UK) were enrolled in this

prospective pilot study. Inclusion required informed written

consent to the CTCR-OV04 observational study (Cambridgeshire

and Hertfordshire Research Ethics Committee approval reference 08/

H0306/61).
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Representative cases of the two major treatment pathways in

HGSOC (3), i.e. immediate (IPS) and delayed primary surgery (DPS),

were included to explore unique challenges associated with each.

Inclusion of DPS cases required prior histopathological confirmation

of HGSOC. IPS procedures are often performed both as a diagnostic

and therapeutic intervention if prior laparoscopic biopsy had not

been indicated or possible. The IPS cases without prior histological

diagnosis were selected on the basis of clinical suspicion for HGSOC

due to significantly elevated serum CA125 (> 4 times upper limit of

normal at 35 units per millilitre) and CT imaging features highly

suspicious for HGSOC assessed by a Consultant Radiologist with

special expertise in gynaecologic oncological imaging (RW/ES).
2.2 Imaging review and segmentation

Preoperative CT and MRI scans were anonymised prior to

downloading from the hospital PACS system. This included

removal of all directly identifiable information from the images

themselves, and deletion of all directly identifiable information

from the DICOM headers in the accompanying image metadata.

De-identified images were then downloaded in DICOM format from

the hospital PACS system and separated into different series using

OsiriX DICOM Viewer (version 12.0, Pixmeo SARL, Geneva, CH).

Manual segmentations were performed by a Radiologist in

training (CM: 3 years’ experience; VB: 6 years’ experience) using

Microsoft Advanced Medical Image Labeler (version 1.0.0.0, project

InnerEye, Microsoft, Redmond, WA, USA) or the Open Health

Imaging Foundation viewer (Open Health Imaging Foundation,

Massachusetts Institute of Technology, Cambridge, MA, USA,

version 3.2.0) via its plugin to XNAT, hosted at the local node of

the repository established by the CRUK National Cancer Imaging

Translational Accelerator (NCITA, https://ncita.org.uk) (20).
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Challenging segmentations were verified by a board certified

Gynaecological Radiologist (RW: 8 years’ experience as Consultant

Radiologist). Pelvic lesions representing confirmed or suspected

tumour were segmented as the region(s) of interest (ROIs) in each

case. To automate the tumour rotation steps of the computational

pipeline (see Section 2.3), the optimal location of the base of the

mould (the surface where the tumour will sit on) for the final two

cases was added to the manual segmentations by the radiologist as an

extra ROI (Figure 1). Optimal base positioning was selected upon

tumour shape and composition on imaging to maximise specimen

stability within the mould for increased slicing accuracy, prioritising

smooth and solid tumoural surfaces to be on the lowest portion.
2.3 Computational pipeline

A computational pipeline was implemented to generate a mould

to specifically hold and slice the segmented lesion in the axial plane,

using the input DICOM images and the DICOM-RT file containing

the segmented ROIs. A series of tunable values (e.g. slice thickness for

tumour dissection, mould height) allows the user to customise the

final design to case-specific requirements. The pipeline runs on

Python with an interface to OpenSCAD for building the mould

structures. All code is available on https://github.com/mariadeor/

3d-moulds-for-ovarian-cancer.

2.3.1 Tumour rotation
The first step of the pipeline re-slices and interpolates the input

images to a standardised isotropic voxel size of 1×1×1 mm using zero-

order spline interpolation to homogenise the process independently

of the reconstructed slice thickness of the scans. From there, the

tumour segmentation is orientated such that it complies with (a) the

imposed base of the mould location and (b) the slicing direction, in
FIGURE 1

Initial steps of the pipeline to re-slice and re-orientate the segmentation to build the mould complying with the imposed base of the mould location
(manually segmented, in cyan) and the slicing direction (in the anatomical axial plane). When transforming the image to the world coordinate system
(WCS), the slicing direction is perpendicular to the x axis.
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the anatomical axial plane (Figure 1). During step (a), the

segmentation mask is rotated on the DICOM axial plane to ensure

the tumour region adjacent to the segmented optimal location for the

base of the mould sits at the bottom. This step could only be

automated after the additional ROI outlining the positioning of the

base of the mould was added to the input manual segmentation. Step

(b) involves the transformation from the DICOM coordinate system

to the world coordinate system (WCS), fixed in relation to the

print bed.

2.3.2 Tumour modelling
Once the tumour segmentation is appropriately oriented in the

WCS, the 3D tumour volume is reconstructed from the 2D

segmentations. To minimise the layered appearance of the stack of

2D segmentations and increase the resemblance to the actual

specimen, two algorithms are sequentially applied. First, the 3D

surface mesh of the tumour volume is extracted using the Lorensen

and Cline marching cubes algorithm (21). Next, the mesh is smoothed

using Laplacian smoothing (l = 1, defined empirically to ensure the

smoothing of the tumoural volume while avoiding excessive

shrinkage) (22, 23) (Figure 2). The resulting volume (tumour

replica) is 3D-printed for improved orientation and visual

assessment purposes.

2.3.3 Mould modelling
The mould is designed to aid tumour slicing in the axial plane,

which is the standard view for radiological assessment of the

abdomen and pelvis. The final mould is an ensemble of three

structures: (i) the mould cavity, (ii) the slicing guide and (iii) the

orientation guide (Figure 3). Baseline structural design choices (open

mould cavity and slicing guide on a single side) were based upon

previous optimisation for renal cancers (7) and adapted to the

challenges uniquely posed by pelvic lesions throughout this work. A

single-sided mould (open cavity) was preferred as changes in the

upper side (e.g. cyst rupture, specimen deformation due to the gravity

effect on change of orientation) do not affect the accuracy and fitting

of the specimen to the mould. Additionally, it requires shorter

printing times, especially relevant for the integration of the research

pathway in the clinical setting.
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First, the cavity of the mould is carved around the convex hull of

the tumour replica (Figure 2) and its height is defined through a

tunable parameter specifying the percentage of tumour height to

cover (Figure 3).

Next, the slicing guide is modelled: it covers the whole length of

the tumour on the x axis (the equivalent on the WCS to the patient’s

craniocaudal axis) and it has the number of slicing slits resultant from

dividing the tumour length by the slice width (tunable). The central

slicing slit is aligned with the centre of the modelled tumour, and

further slicing slits are placed at set intervals on either side of this. The

slicing slits have tunable width and are projected to the mould cavity

in order to guide the tissue knife all the way through the tumour upon

slicing. In parallel to this process, the slicing slits positions are used to

extract the 2D outlines of each tissue slice based on the segmentation.

These can be printed in real size, have overlaid the base of the mould

and the position of the “orientation incision” –explained below– and

are fundamental for allowing the co-registration between the tissue

and the imaging slices (See Results, Case 5).

The last structures to be built are the two orientation guides,

which are single-slit guide walls located perpendicularly to the x axis

at each end of the tumour. They have the purpose of determining the

course of the “orientation incision” across the top part of the tumour,

to ensure the correct orientation of the slices when removed from the

mould. This is key for the registration of histopathological samples

with imaging (see Results, Cases 3-4).

Finally, the structures are assembled onto a common baseplate. In

order not to increase the printing time and minimise the waste of

printing material, the baseplate is not a solid block but a tunable offset

to the mould cavity and the walls attached.
2.4 3D-printing

All moulds and tumour replicas were 3D-printed using the Prusa

i3 MMU2S MK3S (Prusa Research, Prague, Czech Republic) printer

loaded with PLA filament. Preceding 3D model slicing and print

preparation was done with PrusaSlicer software (PrusaSlicer version

2.3.1, Prusa Research, Prague, Czech Republic), setting the infill value

to 20% and the layer height to 0.3 mm.
FIGURE 2

Steps for the modelling of the tumour from the 2D segmentations on the preoperative imaging.
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2.5 Intra- and post-operative workflow

Upon resection by a Specialist Gynae-Oncology Surgeon (HB,

KH, PB), tissue specimens were immediately checked visually against

their respective tumour replicas and placed within their respective

moulds in the operating theatre. As an additional layer of

confirmation of correct orientation, orientation sutures were placed

by the surgeon prior to resection for the third and subsequent cases.

Following confirmation of stability, specimen-bearing moulds were

placed in designated clinical specimen containers and transferred to

the Cambridge Human Research Tissue Bank (HRTB) following

routine tissue transfer procedures.
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At the HRTB, all specimens were reviewed and processed by a

Consultant Histopathologist specialising in gynaecological cancers

(MJ-L) according to standard procedures. Tumours were sliced

within their corresponding moulds. Frozen sections were taken for

cellularity assessment or to evaluate or confirm likely diagnosis in

suspected or confirmed HGSOC, respectively. Benign pathology

precluded further tissue processing for research purposes. Malignant

tissue sampling for research use was restricted to tissue regions not

required for diagnostic purposes in the patient’s clinical care.
3 Results

3.1 Clinical characteristics

Five patients were included in this pilot study (Table 1). Mean and

median age were 53.8 and 54, respectively, with a range of 47 years

between the eldest and youngest patient. Two IPS cases were found to

have benign tumours following histopathological review of the IPS

resection specimens, while the third IPS case was confirmed to have

non-serous high grade pathology. Both DPS cases were treated with

four cycles of neoadjuvant carboplatin paclitaxel chemotherapy prior

to surgery for HGSOC confirmed on initial diagnostic biopsy. The

time interval between imaging and surgery ranged from nine to 53

days (mean: 32.2, median: 40) reflecting individual clinical factors and

health system pressures during the COVID-19 pandemic.
3.2 Image segmentation

For two cases undergoing neoadjuvant chemotherapy (NACT)

following histopathological confirmation of HGSOC (Cases 1 and 5),

routine NACT response assessment images were used for segmenting

tumour regions corresponding to expected specimens from DPS. For

the remaining three cases undergoing IPS, baseline diagnostic

imaging was used.

Tumours were delineated using CT for the majority of cases (Cases

1-4, six moulds). For one patient (Case 5, two moulds) who underwent

CT for NACT response assessment, as well as additional MRI prior to

surgery, theMRI was used as it was acquired closer to the time of surgery

(nine days for MRI, 30 days for CT) (Figure 4). Relevant imaging

acquisition parameters are summarised in Supplementary Tables 1, 2.

Segmentations were performed between two and six days before

surgery (median five days prior). Segmentation times varied between
FIGURE 3

3D rendering of the final version of a mould. The tumour sits on the
mould cavity and it is sliced by passing a knife through each of the slits
of the slicing guide. Two single-slit guide walls are built parallel to the
slicing direction for the slitting of the orientation line at the top of the
specimen. The orientation guide determines the position of the
orientation incision, which facilitates the correct orientation of the
slices when removed from the mould. The mould is customisable and
the tunable parameters for mould design are in purple.
TABLE 1 Clinical characteristics of the pilot cohort.

Case 1 2 3 4 5

Prior histology HGSOC NA NA Insufficient sample but invasive component noted HGSOC

FIGO stage IIIC NA NA IIB IIIB

Surgery type DPS IPS IPS IPS DPS

Disease laterality/distribution Unilateral (left ovary) + peritoneal Unilateral (right ovary) Bilateral Multifocal Bilateral

Tumour characteristics Cystic with limited solid component Solid Solid Large cyst with large solid component Solid

Final histology HGSOC Benign Benign High grade endometrioid HGSOC
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cases depending on complexity, taking up to one hour for particularly

complex cases.
3.3 Mould generation and refinement

Eight lesion-specific moulds were designed and 3D-printed for a

total of seven lesions, covering a range of tumour volumes (7 to 133
Frontiers in Oncology 06139
cm3) and compositions (cystic and solid proportions) (Table 2).

Tumour replicas were also 3D-printed to visually confirm accurate

representation of the shapes and sizes of the resected specimens

(accurate in six out of seven lesions).

The computational pipeline for mould design took under two

minutes to run in each case. 3D-printing took a median of 4 hours

and 41 minutes (range 2-10 h) for the lesion-specific moulds and 2

hours and 32 minutes for the tumour replicas (32 min-7 h).
FIGURE 4

Coronal and axial imaging with overlaid tumour segmentations for each case (3D volume rendering from Microsoft Advanced Medical Image Labeler).
TABLE 2 Mould and pathway characteristics.

Case 1 2 3 4 5

Mould site(s) Left
ovary

Left
ovary

Left ovary
Right ovary

Anterior inferior solid mass within cystic lesion (two
moulds covering the interior and exterior surface)

Left ovary Right
ovary

Tumour volume (cm3) 125.6 132.9 Left: 69.1 Right:
104.8

Solid mass: 129.8 Left: 10.2
Right: 7.0

Imaging modality CT CT CT CT MRI

Time between imaging and surgery 40 days 43 days 15 days 53 days 9 days

Time from study inclusion to surgery 6 days 3 days 3 days 8 days 16 days

Time from image segmentation to surgery 5 days 3 days 3 days 8 days 16 days

Mould 3D-printing time [hours:minutes] 04:30 04:56 Left: 04:13 Right:
04:52

Internal: 10:02 External: 10:30 Left: 02:36 Right:
02:16

Tumour replica 3D-printing time [hours:
minutes]

02:36 02:54 Left: 02:12 Right:
02:32

Mass: 06:49 Left: 00:35 Right:
00:32
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3.3.1 Case 1
The main aims for the first case were: (a) to build a local research

pathway that can be implemented without altering existing standard of

care pathways (see Section 3.4); (b) to determine which anatomical

structures to include in the mould design; and (c) to test if the meshing

and smoothing of the image segmentations producedmoulds and tumour

replicas that matched the actual size and shape of the resected specimen.

A post-NACT HGSOC case with a sufficiently large lesion to span

at least three specimen slicing positions (with a slice width of 10 mm)

was selected. Specimen collapse following tissue slicing was expected

due to the cystic nature of the lesion of interest, and sufficient tissue

for sampling was not anticipated based on imaging features. Instead,

overall mould design alone (rather than sampling) was the focus of

this first pilot case.

A lesion-specific (left ovary only) mould was 3D-printed and used

(an en bloc mould design which was trialled and deemed unsuitable as

detailed in Supplementary Material). Given the lack of anatomical

landmarks for orientation, the 3D-printed tumour replica was key in

facilitating rapid specimen orientation once the tumour was detached

from surrounding structures (Figure 5A). Confirming tumour

orientation within the mould using the tumour replica also minimised

subsequentmanipulation of the specimen and the associated risk of cyst

rupture. The replica allowed visual confirmation that the modelled

volume accurately resembled the actual shape and size of the resected

specimen (Figure 5B).

Although the specimen was stable in the mould, slicing resulted in

the release of cystic fluid, causing the mass to collapse as expected

(Figure 5C). Histopathological review confirmed the lack of sufficient

tumour tissue for sampling, as anticipated based on pre-operative CT

imaging. However, the test slicing proved useful in highlighting the

need for the 0.5 mm knife slots to be widened to accommodate the full

depth of the tissue knife.

The smooth symmetric tumour contour, in addition to the lack of

anatomical landmarks, made the orientation of the meshed and
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smoothed tumour replica particularly challenging. While the position

of the optimal base of the mould was agreed upon multidisciplinary

discussion, it was not included in the segmentation which would have

allowed automated processing. Consequently, the computational

pipeline required manual input for tumour rotation, a step that could

potentially be automated by adding such annotation as shown in later

iterations (Cases 4 and 5). Despite the fact that manual rotation on the

axial plane was successful, the subsequent transformation to the WCS

was unsuccessful, implying that the slicing axis was not aligned to the

axial plane. This highlighted the importance of ensuring accurate

transformation to the WCS as per enabling specimen slicing along

the desired anatomical plane.

3.3.2 Case 2
To test specimen slicing and slice orientation, a suspectedmalignant

right ovarian tumour for IPS resection was selected on the basis of

predominantly solid tumour composition. While frozen section

assessment and subsequent review of diagnostic formalin-fixed

paraffin-embedded (FFPE) blocks confirmed benign tumour pathology

and thereby precluded tissue analysis for research purposes, the case

provided key learning to improve the mould creation process.

We successfully incorporated our learning from Case 1, including:

specimen orientation using the tumour replica, which closely

resembled the resection specimen (Figures 6A, B), and tumour

slicing through the entire lesion diameter in every slit following

increased knife slit width to 1 mm (Figure 6C).

Three key mould design challenges were highlighted by this case.

Firstly, insufficient depth and thereby lateral support produced slices

that spilled over the mould edge. This led to decreasingly accurate

slicing with each cut due to lateral slice movement (Figure 6C). This

resulted from setting the maximum mould cavity height to the widest

xy dimension of the tumour in the original version of the pipeline –the

rationale being that increasing the mould wall height upwards to the

level of a narrower point would constrict the mould brim diameter and
A B C

FIGURE 5

Case 1. (A) Upper panel: en bloc resection specimen. Lower panel: en bloc resection specimen with left ovarian tumour next to its 3D-printed tumour
replica. (B) Upper panel: left ovarian tumour in its 3D mould, next to its tumour replica. Lower panel: specimen knife placed in slit prior to slicing. The
5 mm slits were too narrow for the knife. (C) Upper panel: the cystic tumour collapsed immediately on capsule rupture as expected, releasing cystic
fluid.Lower panel: Tumour tissue was insufficient for research sampling as expected based on the pre-operative CT imaging.
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impede specimen placement. Secondly, tissue retrieval from the mould

after slicing highlighted that slice orientation is easily lost without a

method to mark slice orientation in relation to each other and to the

mould whilst inside the mould (Figure 6C). Finally, this case also

highlighted the need for accurate orientation to WCS as in Case 1.

3.3.3 Case 3
A further case with solid ovarian disease was chosen to address

mould design improvements indicated by Case 2.

Firstly, we tested whether the problem with insufficient mould

height was an isolated or recurrent problem. When mould cavity

height was set to the maximum allowed by the original pipeline

algorithm (i.e. the widest xy slice), similarly to the case above, the slice

overspill issue recurred. This demonstrated that the mould height

would need to be increased perpendicularly upwards (rather than

following the narrowing tumour contour) from the widest xy

dimension of the tumour (Figure 7) to avoid overspilling (Figure 8B).

Secondly, the loss of slice orientation in relation to each other on

removal from the mould was addressed by placing a partial-depth

perpendicular incision across the tissue slices while remaining in the

mould – we refer to this as the “orientation incision” (Figure 8C). This
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simultaneously placed a notch in each slice, serving as a physical mark

that prevents inadvertent tissue slice rotation on removal from the

mould. Additionally, if the position and depth of the orientation

incision is known and dictated by the mould, it can also be used as a

physical landmark for precise image-tissue co-registration. To achieve

this, the orientation guide (Figure 3) was added to the mould

structure to aid the slitting of the orientation incision, ensuring that

it is both centred to the specimen and at a suitable depth to place a

partial notch in the tissue slices without bisecting them (Figure 9).

Thirdly, accurate rotation and transformation to the WCS to

orient the mould in relation to the intended slice alignment (axial

plane) was once again hampered by the lack of anatomical landmarks

or distinctive tumour shape features. An extra ROI drawn during

segmentation, marking the optimal base location, was planned

for the following case to automate accurate tumour rotation and

transformation to WCS.

Additionally, this case presented an opportunity to test pathway

compatibility with bilateral disease, with doubled modelling and 3D-

printing time. The two moulds and replicas were completed in time for

the planned surgery, and tumour replicas closely resembled the

corresponding resection specimens as with previous cases (Figure 8A).
A B C

FIGURE 6

Case 2. (A) Upper panel: lesion-specific mould on the print bed. Determining tumour specimen placement based on the shape of the mould cavity alone
is challenging, hence a tumour replica is also printed (lower panel). A temporary scaffolding to support the emerging replica during printing is added and
easily removed when printing is complete. (B) Upper panel: the tumour replica fits the mould closely as the mould and replica are both printed based on
the same segmentation. Lower panel: the resection specimen is placed directly into its correct position based on the placement of the replica. (C) Upper
panel: the tumour was successfully sliced, but the shallow tumour cavity led to tissue slices overspilling. Lower panel: even with a tumour with
macroscopically visible substructures, slice orientation in relation to the mould and to each other is lost on retrieval from the mould.
FIGURE 7

Schematic of the design of the mould cavity for cases in which the height of the cavity is greater than the height where the widest surface of the tumour occurs.
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3.3.4 Case 4

Cases 2 and 3 highlighted a challenge in terms of being unable to

perform tissue sampling when applying this pathway to IPS cases

which are only found to be benign at the time of frozen section post-

operatively. Given this, a case with confirmed high grade malignant

features on biopsy was selected next.

This was an illustrative case of mixed cystic and solid composition

often encountered with ovarian tumours (Figure 10A). As the main

solid lesion of interest was located adjoining the wall of a very large

(233×181×136 mm) cyst which would collapse on slicing, the solid

part alone was segmented. Two alternative locations for the mould

base were also marked during the segmentation step to enable
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creation of two alternative moulds to hold this solid component –

one each for the external and internal projections of the solid mass in

relation to the cyst (Figure 10A). This accounted for preoperative

unpredictability regarding the optimal specimen orientation to

preserve tissue integrity and stability for this case.

The mould cavity algorithm was modified to allow for the extension

of the mould cavity height beyond the point of maximum tumour width

to reduce tissue slice overspill as discussed for Cases 2 and 3. Nonetheless,

while the resection specimen resembled the tumour replica in shape and

contour, the size exceeded the mould dimensions (Figures 10B, C). This

reflects the longer time elapsed between the CT imaging used for

segmentation and IPS due to individual clinical circumstances

(Table 2). Meanwhile, the transformation to WCS was successful for
A B C

FIGURE 8

Case 3. (A) Upper panel: bilateral specimens with respective moulds and replicas. Lower panel: both specimens were sliced within their respective
moulds. (B) Upper panel: due to shallow mould cavities and slice overspill, accurate cutting into 10 mm slices was challenging, and resulted in unequal
slice thickness (lower panel). (C) Upper panel: an orientation cut was trialled to mark slice orientation. Lower panel: the orientation cut keeps track of
slice orientation to each other.
A

B

FIGURE 9

Schematic demonstrating the utility of the “orientation incision”. (A); Without an orientation incision, any rotation of the tissue slices when removed from
the mould cannot be quantified, and co-registration if radiological imaging is lost. (B); a partial-thickness orientation incision across tissue slices allows
orientation of slices to each other, and to their corresponding coordinates on the radiological imaging.
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this case, demonstrating the utility of adding the ROI of the optimal base

of the mould location during the segmentation step.

3.3.5 Case 5
As a final proof of concept of the technical pipeline, we selected a

typical HGSOC case with low-volume disease following response

to NACT.

The bilateral lesions were segmented on MRI which was

performed closer to the time of surgery than CT by 21 days (see

Section 3.2). From a technical perspective, the transition from CT to

MRI was seamless and did not require any alterations to the pipeline,

as the inputs from both modalities are a DICOM set of images and a

DICOM-RT file containing the segmented ROIs.

Both lesions were of small size and approximately ovoidal in shape,

with their longest axis along the craniocaudal axis (both below 4 cm).

Thismeant that only a limited number of slices with a high thickness-to-

diameter ratio would result from using the original slice thickness of

10mm,whichwouldbeunideal formultisamplingwithin tissue slices. To

enable the option of increasing tissue sampling resolution, the impact of

reducing the intervals between slits was explored in preparation for Case

5.A testmouldof thepreviouscasewas re-modelledand3D-printedwith

reduced slice thickness from 10 mm to 5 mm, which confirmed that

mould sturdiness was retained.

The two moulds and corresponding tumour replicas for this case

were successfully printed in time for the resection procedure

(Figure 11A). Structural robustness of the final moulds was

maintained with the updated slice thickness of 5 mm, and these slits

were successfullyused for specimen slicing forboth lesions (Figures 11B–

E). Whilst tumour cellularity was below the fresh tissue sampling

threshold, the reduced slice thickness allowed all slices from each

ovary to be placed in tissue cassettes for processing into FFPE blocks.

The orientation cut was essential in enabling orientation of tissue

sections resulting from these FFPE blocks Figures 11F, L.
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3.4 Prospective research
pathway development

In addition to providing proof of concept of 3D mould-based

multi-sampling in a variety of ovarian lesions, this pilot study sought

to test the feasibility of prospective implementation of the method in a

busy clinical setting at a tertiary hospital. With patient care remaining

the central priority throughout, clinical workflow constraints dictated

the following absolute requirements for an ovarian 3D mould

research pathway (1): to be compatible with standard clinical

procedures without any interference or delay to patients’ standard

of care treatment pathways (2); to be able to adapt to a variety of real-

world timelines, including short treatment planning intervals for

cases scheduled for elective surgery on an urgent basis (3); to have

no or negligible impact on clinical workload (4); to maximise

efficiency and effectiveness of communication between clinical and

research team members from diverse disciplines.

To achieve this, we developed a research pathway that fits entirely

around the standard clinical care pathway for patients with suspected

or confirmed ovarian cancer (Figure 12). Following case identification

and research consent by a member of our research team, potential cases

were selected via rapid case review between the Research Radiology

team and key members of each research discipline. A designated clinical

research fellow (MR: Medical Oncologist in training) coordinated case

selection and all communication with clinical teams as a single point of

contact, disseminating required case information and confirming

availability for participation by each team. Case confirmation

triggered the research pathway which interfaces with the clinical care

pathway across two phases: from the point of specimen retrieval

intraoperatively through to tissue sampling in Histopathology, both

coordinated by the same clinical fellow for consistency. The surgical

and histopathology teams were briefed at their convenience on the day

of surgery with no additional workload or delay.
A B C

FIGURE 10

Case 4. (A) Upper panel: sagittal MRI image showing large cystic lesion with solid component in anterior wall (arrow). Lower panel: axial MRI image
showing the same lesion (arrow) and positions of external (blue) and internal (green) mould bases. Note CT imaging was used for segmentation (MRI
images used here for illustrative purposes only). (B) Upper panel: internal (left) and external (right) moulds with guides (circled) for orientation cut (dotted
line). Lower panel: tumour replica and specimen with size discrepancy. (C) Upper panel: the ruptured cyst was removed en bloc –two orientation sutures
(orange arrow, other suture on underside of specimen) and the resected cervix (blue arrow) were used for specimen orientation. Lower panel: ultimately,
specimen size exceeded predicted mould dimensions due to an unusual interval of 53 days between imaging and surgery during which the tumour had
increased in size.
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The interval between case confirmation and surgery ranged between

3 and 16 days, and the shortest window for segmentation,modelling and

3D-printingwas two and a half days.We demonstrated that all elements

of the pathway required for producing moulds and tumour replicas in

time for surgery could be completed for every clinical timeline

encountered in this pilot study (Figure 13).
4 Discussion

The high levels of heterogeneity at the radiomic, cellular and

genomic levels in HGSOC are individually known to carry prognostic

significance (24–26), however the spatial relationship between these

multiscale features has not been defined. In this work, we developed a

computational pipeline for generating lesion-specific 3D-printed

moulds to allow for the co-registration of imaging and tissue regions,

based directly on insights drawn from a prospective pilot study.

3Dmoulds have been used in preclinical and translational studies for

correlating imaging and tissue-derived data in a number of tumour-types,
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including ovarian (6), prostate (9–16), hepatic (17, 18) and renal cancers

(7, 19). However, no previous study has investigated a variety of ovarian

lesion characteristics seen in practice to generate a pipeline that caters to

this diversity. Furthermore, most published works to date have presented

a final method, without detailing intermediate technical insights relating

to both successful and unsuccessful aspects of the mould development

process which could be key to reproducing or building upon these

existing pipelines. Given this, we provided a detailed account of our entire

iterative process of pipeline development, and highlighted critical disease-

specific challenges that should be considered in any future 3D mould-

based studies of ovarian tumours and HGSOC in particular.

A key anatomical challenge in achieving accurate image-tissue co-

registration in ovarian tumours is the lack of universal anatomical

structures that can reliably be utilised for computational tumour

rotation and specimen orientation. This contrasts with other tumour

types for which anatomical contexts are inherently preserved post-

resection, as exemplified by the use of the tumour-hilum contact

point of radical nephrectomy specimens in determining mould base

position and confirming correct specimen positioning (7). We
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FIGURE 11

Case 5. (A–F) Demonstration of 3D mould-based histological processing workflow, with the right ovary as a representative example. Yellow arrow:
Fallopian Tube. (G–L) Overview of co-registration between radiology and tissues. (A) Right and left moulds and corresponding tumour replicas. (B) Right
ovary placed within corresponding mould. (C) Partial orientation incision placed across specimen using in-built orientation guide. (D) Specimen sliced
within mould. (E) Fresh 5mm thickness tissue slices resulting from slicing within mould. Notches from orientation incision allow slices to be orientated in
relation to each other. (F) Tissue slices following formalin fixation. (G) MRI image. (H) MRI image with bilateral ovarian segmentations overlayed (orange:
right ovary, red: left ovary). (I) Magnified image of segmented right ovary. (J) Computationally derived expected outline of the corresponding tissue slice
and mould base position, rotated on the xy plane to correspond to the base position specified at the segmentation step. The red arrow and segment
represent the angle and depth of the in-built orientation incision. (K) Right ovarian segmentation with tissue outline and mould base overlayed. (L) The
orientation incision allowed tissue lice orientation to be preserved across processing steps, from the fresh, fixed to sectioned tissue stages (haematoxylin
and eosin stained section shown).
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demonstrated that the utility of en bloc resection for orientation is

limited in ovarian tumours (Case 1, Supplementary Material),

particularly given the highly tortuous and mobile nature of the

Fallopian tube, as well as the separation of ovarian tumours from

adjoining structures prior to slicing during standard histopathological

tissue processing. Instead, we addressed this through two innovations.

Firstly, we achieved automated tumour rotation by introducing an

additional annotation to mark optimal base of the mould location at

the segmentation stage. This had the advantage of allowing the slicing

to be constrained to an anatomical plane of choice. Secondly, by

creating 3D-printed tumour replicas, we were able to conduct visual

comparison of predicted and actual resection specimen characteristics

and guide correct specimen placement in the mould.

From a clinical perspective, the main challenge in implementing

3D mould-based sampling of resection specimens in HGSOC is that

an increasing proportion of patients are treated with NACT followed

by DPS (27). While the majority of HGSOC cases are diagnosed at an

advanced stage and often with large-volume disease (28), tumours

resected at DPS in the context of NACT response can be of markedly

small volume. The volume of the lesions was of particular relevance
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during computational tumour modelling, as meshing and smoothing

processes have greater effects on small volumes. The use of tumour

replicas was thereby key in confirming that the modelled tumour

volumes accurately resembled the shape and size of the resected

specimen for six out of the seven lesions, including those below 15

cm3. Unfortunately, given the scope and size (five cases, seven lesions)

of the pilot study, we could not establish a meaningful volumetric

tolerance to quantitatively study the suitability of a lesion for our

mould design. However, other lesion characteristics beyond volume

are crucial for the mould design. For instance, the length of the

tumour in the axial plane (slicing direction) highlights the importance

of the presence of tunable parameters including slice thickness, in

order to allow the granularity of tissue sampling to be adjusted on a

case-by-case basis and ensure that a sufficient number of slices can be

acquired for meaningful tissue multisampling. We have shown that

the structural integrity of moulds was retained when halving slice

thickness from 10 mm to 5 mm while increasing knife slits from

0.5 mm to 1 mm. This was of particular importance in Case 5, in

which the post-NACT tumour was found to have negligible tumour

cellularity below the threshold required for fresh tissue-based
FIGURE 13

Pathway timelines for each case. All baseline CT imaging took place prior to case identification (see Figure 12).
FIGURE 12

Multidisciplinary research pathway for malignant pelvic ovarian tumours. Interface with clinical pathway shown in purple. DPS, (delayed primary surgery);
IPS, (immediate primary surgery); NACT, (neoadjuvant chemotherapy).
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genomic analysis. By reducing the slice thickness, all slices could be

placed in standard tissue cassettes to be made into FFPE blocks, which

can instead be sectioned and subjected to other analyses such as

computational pathology approaches.

Accurate image-tissue co-registration relies on two further technical

properties of mould design, namely stability and orientation of tissue

slices while within the mould. Firstly, as shown by Cases 2 and 3, the

accuracy of specimen slicing is dependent on the stability and support

afforded by its mould, which requires both the robustness of the mould

itself, as well as a sufficient mould height to provide lateral support. To

avoid specimen overspill, we therefore do not constrain mould height to

the point at which the widest xy dimension of the tumour occurs (7), but

rather allow the percentage height covered by the mould cavity to be

tunable according to case-specific requirements. Specimen stability is also

dependent on the structural composition across the specimen itself,

whichmay not be possible to determine preoperatively, particularly based

on CT imaging alone. The ability to determine mould base location

during segmentation, and to specify multiple options in order to 3D-print

alternative moulds in advance of surgery, is therefore a key strength that

contributes to the flexibility of our pipeline, as confirmed by Case 4.

Secondly, without a method to mark tumour slices within the

mould, their orientation to each other and to the radiological imaging

is immediately lost upon removal from the mould, particularly for ovoid

tissues lacking obvious shape or substructure characteristics (Figure 9).

Our in-built partial-thickness perpendicular orientation slit is therefore a

powerful improvement on existing co-registration pipelines which

allows slice orientation to be maintained both before and after fixation

and embedding, but crucially is simple and rapid enough to be

implemented in a clinical setting (Figure 11). To perform co-

registration, we generated slice-by-slice outlines of tissue slices

expected from each slicing position in the mould (Figure 11J). These

outlines include the positions of the mould base and orientation incision

(the depth of this partial incision is marked in red in Figure 11J), such

that the physical orientation incisions of tissue slices can be used to

orient them against the slice-by-slice outlines. A critical mould design

feature here is that the tissue slicing corresponds to axial slices in the

segmented radiological imaging, meaning that each slice outline and

corresponding tissue slice simply requires a single rotation by a fixed

angle along the xy plane to be aligned with the mould base position as

specified at the image segmentation step (Figures 11G–K). Given the

persisting physical presence of the orientation incision, this orientation

process can be undertaken at the fresh or post-fixation stages of tissue

processing. In our final case, we were able to extend this co-registration

approach to the subsequent whole-slide histological sections generated

from the FFPE blocks, given the context of low-volume residual disease

post-NACT where the 5mm-thickness tissue sections could be

embedded in full within standard tissue cassettes (Figure 11L). The

ability to perform coregistered sampling before or after sample fixation

allows an important level of flexibility in being able to adapt tissue

sampling to post-operative findings – for instance, when frozen section

review of the fresh specimen in Case 5 demonstrated insufficient

histopathological tumour cellularity for genomic analysis by taking

fresh tissue biopsies, it was possible to make a rapid real-time decision

to prioritise whole-slice analyses of FFPE blocks at the next stage of

routine clinical tissue processing.

In practice, a research pathway of this kind must be highly adaptable

to the requirements of a patient’s individual treatment pathway and
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tumour characteristics, and be implemented efficiently with minimal to

no impact on resources and professional workloads within the wider

healthcare setting. While previous work has used multiparametric MRI

and PET/CT (6, 29), we were able to successfully implement our

framework based on more routinely available CT (N = 4), as well as

MRI (N = 1). In addition to addressing the aforementioned technical and

anatomical challenges by implementing a range of tunable parameters,

our research pipeline was able to accommodate further clinical scenarios

including mould generation for bilateral disease (Cases 3 and 5) and for

the solid component of a large mixed solid-cystic mass (Case 4). All

research components were completed in time for each patient’s surgical

procedure without interference with individual treatment timelines, with

a minimum interval of three days between case selection and debulking

surgery. Focused and coordinated communication between

multidisciplinary clinical professionals from the Radiology, Surgery,

Oncology and Histopathology departments was key in enabling timely

research pathway implementation.

Our approach is based on clinical standard-of-care imaging and

did not include any dedicated imaging sessions for optimising mould

design. This was the likely reason for the mismatch between the

segmented tumour and actual specimen volume in Case 4, who had

the longest elapsed time between imaging and surgery. Of note, in

most routine clinical settings, cross-sectional imaging is undertaken

in prior preparation for but not on the day of surgery, and the cost of

further imaging or risk of radiation exposure is not justified without

unique clinical indications. An additional scan, ideally an MRI

including T2-weighted images, close to the day of surgery could

easily solve this problem in cases with a long delay between the last

preoperative standard-of-care scan and surgery. However, we found

that all other segmentations generated tumour replicas which closely

resembled the resected specimen, including that of a post-NACT case

whose imaging was performed 40 days prior to surgery.

A second limitation is that these pilot cases did not yield HGSOC

tissue for multi-site genomic profiling. This highlights the inherent

challenges of case selection in the context of standard treatment

pathways for advanced pelvic ovarian tumours. For cases undergoing

IPS, tumours are likely to be of greater volume and cellularity for

sampling, but histological diagnosis is often lacking preoperatively. An

IPS case may be benign despite significantly elevated CA-125 and

suspicious qualitative radiological features (as we found with Cases 2

and 3), however a significant proportion of tumour will be required for

diagnostic purposes and may leave a small proportion for research

purposes even if malignancy is confirmed. DPS cases are more likely to

have limited remaining tumour tissue for sampling (Case 5), or have

greater cystic components with or without sufficient tissue for sampling

as a feature of NACT response (Case 1). With regard to tumours

containing cystic components, we have shown that moulds can be

modelled for a discrete solid component, and this can be extended to

multiple distinct areas of solid disease. The majority of cases for which

tumours are predominantly cystic with minimal or no residual tumour

tissue after NACT will be identifiable at the preoperative imaging stage.

The manual base placement step allows the base to be placed by the

surface with the largest proportion of solid components to maximise

stability – however specimen stability would remain challenging in very

complex masses containing a large number of discrete cystic and solid

areas. Future case selection will be informed by these clinical factors, and

may benefit from focusing on IPS cases with prior tissue diagnosis from
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laparoscopic biopsy or DPS cases with predominantly solid residual

disease post-NACT.

This work was motivated by the need to guide comprehensive multi-

sampling of pelvic tumour resected specimens for correlation of imaging

and genomic features. A key strength of our work is that the pipeline

facilitates direct co-registration of tissue coordinates and imaging slices

on the same transverse axis by constraining tissue slicing to the axial

plane. Our pipeline is thereby highly suited to implementing systematic

grid-based sampling, by aligning a grid-based system with the orientation

cut of each tissue slice in order to directly map sample coordinates onto

spatial coordinates of the corresponding image slice. Such a coordinate-

based system will be well-suited to larger-scale prospective biological

validation of previously described radiomic ‘habitats’ (6).

5 Conclusion

We developed a computational pipeline for modelling lesion-specific

3D-printed moulds to guide slicing and multi-sampling of solid pelvic

tumour resection specimens. This work provides a framework for

obtaining spatially co-registered imaging and multi-sampled tissue

data, thus aiming to perform detailed multi-level characterisation of

intratumoural heterogeneity of pelvic gynaecological tumours. We

highlight specific challenges pertaining to ovarian tumours, propose a

highly tunable design that is adaptable to the specific requirements of a

given case, and provide recommendations for pathway implementation.

This pipeline can be implemented alongside clinical treatment pathways

for patients with newly diagnosed HGSOC and other ovarian tumours.
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Sité. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 20 February 2023

DOI 10.3389/fonc.2023.1079040
Correlation between ADC, ADC
ratio, and Gleason Grade group
in prostate cancer patients
undergoing radical
prostatectomy: Retrospective
multicenter study with different
MRI scanners

Johan Bengtsson1,2*, Erik Thimansson3,4, Erik Baubeta2,3,
Sophia Zackrisson3,5, Pia Charlotte Sundgren1,2,6,
Anders Bjartell3,7 and Despina Flondell-Sité 3,7

1Department of Clinical Sciences, Radiology, Lund, Lund University, Lund, Sweden, 2Department of
Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden, 3Department of
Translational Medicine, Lund University, Malmö, Sweden, 4Department of Radiology, Helsingborg
Hospital, Helsingborg, Sweden, 5Department of Medical Imaging and Physiology, Skåne University
Hospital, Malmö, Sweden, 6Lund Bioimaging Center (LBIC), Lund University, Lund, Sweden,
7Department of Urology, Skåne University Hospital, Malmö, Sweden
Background: MRI is an important tool in the prostate cancer work-up, with

special emphasis on the ADC sequence. This study aimed to investigate the

correlation between ADC and ADC ratio compared to tumor aggressiveness

determined by a histopathological examination after radical prostatectomy.

Methods: Ninety-eight patients with prostate cancer underwent MRI at five

different hospitals prior to radical prostatectomy. Images were retrospectively

analyzed individually by two radiologists. The ADC of the index lesion and

reference tissues (contralateral normal prostatic, normal peripheral zone, and

urine) was recorded. Absolute ADC and different ADC ratios were compared to

tumor aggressivity according to the ISUP Gleason Grade Groups extracted from

the pathology report using Spearman’s rank correlation coefficient (r). ROC curves

were used to evaluate the ability to discriminate between ISUP 1-2 and ISUP 3-5

and intra class correlation and Bland-Altman plots for interrater reliability.

Results: All patients had prostate cancer classified as ISUP grade ≥ 2. No

correlation was found between ADC and ISUP grade. We found no benefit of

using the ADC ratio over absolute ADC. The AUC for all metrics was close to 0.5,

and no threshold could be extracted for prediction of tumor aggressivity. The

interrater reliability was substantial to almost perfect for all variables analyzed.
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Conclusions: ADC and ADC ratio did not correlate with tumor aggressiveness

defined by ISUP grade in this multicenter MRI study. The result of this study is

opposite to previous research in the field.
KEYWORDS

MRI, MR-diffusion, ADC, neoplasms, prostate
Introduction

Prostate cancer (PCa) is the most common cancer in men

worldwide (GLOBOCAN 2020) (1). However, most men with PCa

have low-grade, indolent tumors. Therefore, discriminating between

indolent and aggressive tumors is a diagnostic issue. With the

traditional diagnostic approach, which includes a blood test of

prostate specific antigen (PSA), digital rectal examination, and

systematic transrectal ultrasound-guided biopsies, only a small and

randomly distributed fraction of the gland is examined, resulting in a

substantial risk of both over- and under-sampling. A more modern

pathway involves magnetic resonance imaging (MRI) to detect

clinically significant prostate cancer (csPCa) and rule out other

causes of elevated PSA levels. On pathology, csPCa is defined as a

Gleason score ≥7 (including 3 + 4 with a prominent but not

predominant Gleason 4 component), volume ≥0.5 mL, and/or extra

prostatic extension (2). Today, the International Society of Urological

Pathology (ISUP) grade is often used to categorize different Gleason

score patterns (3). When using MRI as a triage tool, unnecessary

biopsies can be avoided, and targeted when required. This approach

was investigated in the PRECISION study, which showed that MRI

followed by targeted biopsies detected more significant tumors (38%

versus 26%, p=0.005) and fewer insignificant tumors (9% versus 22%,

p<0.001) compared to systematic biopsies (4). In the group that had an

MRI in the work up, 28% had a negativeMRI and, thus, did not have to

undergo biopsy. These results changed the work-up routine, and MRI

is now a cornerstone of PCa diagnosis. Therefore, the demands onMRI

are high in terms of technical quality and radiological interpretation for

correctly detecting or excluding csPCa.

Prostate Imaging – Reporting and Data System (PI-RADS,

version 2.1) is a system that describes how to perform, interpret,

and report MRI of the prostate (2). The most important MRI

sequence is diffusion-weighted imaging (DWI), which is the

deciding sequence in the peripheral zone (PZ) and the secondary

sequence in the transition zone (TZ). DWI provides information on

tissue composition and tumor cellularity (5). The signal intensity on

DWI reflects the motion of water molecules in the tissue. The

concept is based on the theory that a tumor consists of more dense

tissue than normal prostatic tissue.

Several studies have shown that the ADC value inversely

correlates with ISUP grade and is often used as a marker of

aggressiveness (5–9). Several cut-off values have been proposed; in

PIRADS 2.0, a threshold of 750-900 µm2/s was suggested as a

pathological ADC value, but no consensus has been reached (8, 10).
02150
The concept is associated with several difficulties. First, the ADC

varies substantially depending on several factors, including the b-

values used, scanner field strength, patient and coil geometry,

temporal fluctuations in the magnet, and variations in

measurements between readers. Furthermore, non-cancerous

lesions, such as benign prostate hypertrophy, may also exhibit

decreased ADC values, and there is a substantial overlap in ADC

values and PCa (11). ADC is sometimes used as a marker of

aggressiveness in other organs and diseases. For example, in rectal

adenocarcinoma, a lower ADC value is associated with a more

aggressive tumor and poorer survival rate. Similar correlations have

been found in certain types of breast cancer, ovarian cancer, lung

cancer, and gliomas (12–15).

A common way to overcome the differences in absolute ADC

values is to normalize the ADC by using different ADC ratios (10,

16). The ADC ratio is expressed as the ratio between the ADC value

of the tumor and the ADC value of another location, such as non-

cancerous tissue in the same organ or other organs in the same

patient (5, 17).

In recent years, several studies have investigated the potential

benefit of using the ADC ratio over absolute ADC values. Some

authors have affirmed that the ADC ratio is the preferred method

and demonstrated significant capability in discriminating Gleason 3 + 4

from 4 + 3 PCa (5, 8, 9, 16, 18). Other authors have been more

doubtful (19).

The aim of the present study was to investigate, in a consecutive

patient cohort imaged using different MRI scanners, how absolute

ADC value and ADC ratios correlate with ISUP grade following

robot-assisted laparoscopic prostatectomy (RALP). A secondary

aim was to assess the potential inter-observer variability.
Material and methods

The study was a retrospective cohort study approved by the

local ethics review committee at Lund University (Dnr 2014-886)

and the Swedish ethical review authority (entry no. 2019-03674).
Study population

All consecutive patients who underwent RALP for biopsy

proven PCa at Skåne University Hospital in Malmö, Sweden,

during 2018 were identified and assessed for eligibility. Patients
frontiersin.org
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were included if they had undergone MRI less than 1 year before

surgery at five different hospitals. Patients were excluded if the

index lesion described in the pathology report was not identified on

MRI, severe artifacts were present on MRI, the MRI was performed

outside of Region Skåne, or the patient opted out. Lesions were

excluded based on consensus between two readers (JB and ET). The

data collection algorithm is presented in Figure 1. Patient data were

obtained from medical records.
Pathological examination

The surgical specimens were handled according to clinical routines

and fixed in formalin. Lesions were examined by experienced

pathologists using hematoxylin and eosin staining. Pathological data

and whole mount (WM) tumor maps were obtained from the

pathology report. The location and Gleason score of the index lesion

were recorded using the ISUP category classification (Table 1).
Frontiers in Oncology 03151
MRI acquisition and image analysis

Preoperative MRI of the prostate was performed within Region

Skåne using one of eight MRI scanners at five sites. Both 3T and

1.5T scanners were used. According to local routines, different

imaging acquisition parameters were used at different sites. All

protocols included transverse, coronal, and sagittal T2-weighted

turbo spin-echo images, transverse T1-weighted images, diffusion-

weighted images with a high b-value of 1500 s/mm2, and a

calculated ADC map. A list of MRI scanners and imaging

acquisition parameters for the DWI are presented in Table 2.

Two readers, both specialists in radiology with 4 and 5 years of

experience in reading prostate MRI, performed all imaging analyses

as described below. The examinations were reviewed using the

clinical Picture Archiving and Communication System,

Sectra IDS7.

First, and in consensus, the two readersmatched the index lesion in

the surgical specimen with the corresponding lesion on MRI using the
FIGURE 1

Flow diagram of patient selection.
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pathological report and the whole-mount tumor map. In a second step,

the remaining interpretation and image analyses were performed

individually. For the index lesion, each reader recorded the

maximum diameter in millimeters, zone location (PZ or TZ), and

PI-RADS score (version 2.1). A circular region of interest (ROI) was

placed in the index lesion in the ADC map on the slice with the largest

cross-sectional area of tumor (ADClesion). The ROI was drawn to

include only the lesion without any surrounding parenchyma. The size

of the ROI was not fixed, it was drawn as big as possible within the

defined lesion. A second ROI (ADCcontralat ref) of the same size was

placed at the contralateral position on the same slice, that is in the same

zone as the index lesion. A third and fourth ROI was placed in the most

homogenous area in the PZ (ADCPZ ref) and in the urinary bladder

(ADCurine ref), respectively. For each ROI, the mean ADC value was

recorded (Figure 2).
Statistical analysis

Descriptive statistics were used to present the study population.

Box plots and Spearman’s rank correlation coefficient (r) were used to

evaluate the association between ISUP grade and ADC variables.

Measurements from reader 1 were used for the analyses of ADC

metrics. These analyses were repeated and stratified by scanner field

strength (1.5 vs. 3T) and tumor location (PZ vs. TZ). Receiver

operating characteristic (ROC) curves were used to evaluate the

ability to discriminate between ISUP 1-2 and ISUP 3-5 based on

ADC variables. Interrater reliability was evaluated using Bland-Altman

plots and intraclass correlation (ICC) based on the formula for random

effects, absolute agreement, and single rater measurements. The ICC

values were rated as follows: slight agreement, 0 – 0.20; fair agreement,

0.21 – 0.40; moderate agreement, 0.41 – 0.60; substantial agreement,

0.61 – 0.80; almost perfect agreement, 0.81 – 1.

All statistical analyses were performed in R version 4.0.2. The

pROC package was used for ROC curves and the irr package to

calculate ICC.
Results

A total of 144 men underwent RALP due to biopsy proven PCa

and had an MRI prior to the procedure. After exclusion for different

reasons (Figure 1), 98 patients were included in the final study

analysis. The patient and tumor characteristics are presented in
Frontiers in Oncology 04152
Table 3. No specimen was classified as ISUP 1. Most index lesions

were located in the PZ of the prostate. Patients with different ISUP

grades were relatively evenly distributed over the eight scanners,

details are available in Supplementary Table 1.
ADC measurements vs. ISUP grade

The average ADClesion was 652×10-6 mm2/s (range 396×10-6

mm2/s to 1271×10-6 mm2/s), whereas the average ADCcontralat ref

tissue was 1275×10-6 mm2/s (range 779×10-6 mm2/s to 1794×10-6

mm2/s). The average ADCPZ ref was 1478×10-6 mm2/s (range

779×10-6 mm2/s to 2155×10-6 mm2/s) and of ADCurine ref was

2021×10-6 mm2/s (range 861×10-6 mm2/s to 3368×10-6 mm2/s;

Figure 3). We found no significant negative correlation, between

absolute the ADC value of the index lesion and the ISUP grade. The

observed spearman correlation between the ADC of the index lesion

and ISUP grade was low (r= -0.18) and not significant.

Furthermore, the ADC of the index lesion did not perform well

in discriminating between ISUP 1-2 and ISUP 3-5 (AUC= 0.62

[95% CI 0.51-0.74]). A tendency for a negative correlation

was observed when the results from the 3T scanners were

analyzed separately (r= -0.27; p<0.05), but not for the 1.5

T scanners (r= -0.01). Tables reporting the correlation values

stratified by field strength are available in Supplementary Table 2.

We found no correlation in separate analyses of the PZ and TZ.

The three different ADC ratios were calculated for each lesion

(ADClesion/ADCcontralat ref, ADClesion/ADCurine ref, and ADClesion/

ADCPZ ref in relation to tumor aggressiveness. None of them

showed any discriminatory effect (Figures 3, 4).

The agreement between the two readers in the ADC

measurements was almost perfect for ADClesion (ICC of 0.80

[95% CI 0.72 – 0.86]), ADCcontralat ref (ICC of 0.82 [95% CI

0.75 – 0.88]), and ADCurine ref (ICC of 0.96 [95% CI 0.94 –

0.97]). For ADCPZ ref, the agreement was substantial (ICC of 0.75

[95% CI 0.65 – 0.86], Figure 5).
Discussion

This multi-scanner cohort study of 98 consecutive patients with

MRI of the prostate before RALP showed no correlation between

the absolute ADC value of the tumor and tumor aggressivity

determined by pathology. No improvement was noted when the

ADC value was normalized by applying different ADC ratios. Thus,

no threshold values for ADC or ADC ratio were determined to

discriminate significant from non-significant PCa. The inter-reader

agreement between the two observers was substantial to

almost perfect.

Different methods of interpretation have been applied to predict

whether a lesion found on MRI represents benign tissue, non-

significant cancer, or significant cancer. When comparing the

results from the different studies, the definition of csPCa is

crucial, as most authors try to define a threshold value for

different ADC metrics in relation to tumor aggressivity. Some
TABLE 1 ISUP grade groups and the corresponding Gleason scores
and patterns.

ISUP grade group Gleason score Gleason pattern

1 ≤6 ≤3+3

2 7 3+4

3 7 4+3

4 8 4+4, 3 + 5, 5 + 3

5 9 or 10 4+5, 5 + 4, or 5 + 5
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TABLE 2 Overview of scanners and diffusion-weighted imaging (DWI) acquisition parameters.
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papers have used ISUP grade 1 as non-significant and ISUP 2 and

higher as significant (20–24), whereas others have included ISUP 2

in the non-significant group. One study even included all ISUP 2

and 3 in the more harmless group and used the terms intermediate

and high-risk cancer as the border between the two groups (25).

Boesen et al. performed their analyses on two different cut-offs with

ISUP 2 in both the significant and non-significant groups (8). In our

study, all resected prostates were ISUP 2 or higher, which gave us no

choice to use only ISUP 1 in the non-significant group. This was

also true for the 23 patients in whom the index lesion could not be

identified on MRI.

Regardless of which definition of csPCa is used, several

authors have reported a strong inverse correlation between ADC

metrics and tumor aggressivity, with a reported AUC of up to 0.94

(26) or 0.96 (17). This contrasts with the results of our study, as we

found an AUC of 0.62, which would suggest that the absolute

ADC value is not useful for predicting the presence of csPCa. The

reasons for these results can be debated. We used eight different

MRI scanners with different acquisition parameters. Disparate
Frontiers in Oncology 06154
absolute ADC values are not unexpected with these settings.

Barret et al. calculated different ADC values from the same

scans by combining four b-values in different ways, thereby

simulating different parameters (5). Most combinations showed

a relatively good inverse correlation with tumor aggressivity.

When they used the ratio between tumorous and non-tumorous

ADC values, the differences in acquisition parameters were less

obvious. Thus, they stated that the ADC ratio may be considered a

more robust tool for assessing restricted diffusion in the prostate

(5). With the same intention, we evaluated whether the disparate

ADC values between our scanners could be more useful when

different ratios were applied. However, despite using three

different tissues as denominators in the creation of the ratios, no

added value or better performance were found for the metrics. In

fact, the AUC was even smaller, close to 0.5 for all three ratios,

which is slightly smaller than for the absolute ADC. For the 1.5T

scanners there was a tendency of positive correlation, instead of

the expected negative correlation, between ADC ratio and

ISUP grade.
FIGURE 2

Example of a whole mount pathology specimen and placement of a region of interest (ROI) in the ADC map. The specimen was from a 70-year-old
man with prostate cancer, PSA level 6.2 ng/mL, and clinical stage T3b. Systematic biopsies showed Gleason 4 + 5 (ISUP grade 5) in 7 of 12 cores.
MRI was performed for staging and revealed a 2 x 3 cm PI-RADS 5 lesion in the right peripheral zone (PZ) with findings in line with extraprostatic
extension (EPE) and seminal vesicle invasion (SVI). The final staging was pT3a. (A) Midgland whole mount specimen with a large tumor in the right PZ
(blue border) with 37 mm EPE (red line). (B) Circular ROI in tumor (ADClesion = 474 x 10-6 mm2/s) and in contralateral non-tumorous tissue
(ADCcontralat ref = 1213 x 10-6 mm2/s). (C) Circular ROI drawn in non-tumorous PZ (ADCPZ ref = 1638 x 10-6 mm2/s). (D) Circular ROI in urinary
bladder (ADCurine ref = 2216 x 10-6 mm2/s). Tumor to non-tumor ratio = 0.36, tumor to PZ ratio = 0.29, and tumor to urinary bladder ratio = 0.21.
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Several other authors have claimed that the ratio, often tumor

versus the contralateral normal appearing tissue, is better than the

absolute ADC value. Lebovici et al. showed the usefulness of an

ADC ratio in differentiating low-grade and high-grade disease (25).

Similar results were reported by Boesen et al. and Litjens et al. (8,

27). Interestingly, both absolute ADC values and the ADC ratios

differed considerably between these studies. Itatani et al. assessed 58

men who underwent RALP after MRI and used the internal

obturator muscle as the ADC reference, finding superior use of

the ratio (AUC 0.85 vs. 0.71) (28). Bajgiran et al. concluded that the

ADC ratio is a more robust biomarker of PCa aggressiveness (21).

Conversely, Rosencrantz et al. found no benefit of using the ADC

ratios with urine ADC as the denominator for differentiating benign

and malignant tissue in the PZ (17). Woo et al. (20) included 165

men, and DeCobelli 72 men (26), with contralateral prostatic tissue

as the reference and found no benefit of the ADC ratio compared to

standalone ADC.

Woo et al. pointed out several reasons why the use of the ADC

value for internal reference organs may not yield helpful ADC ratios

and thereby add, rather than reduce, sources of error in the

interpretation (20). For example, they emphasize that the ADC

value of the non-tumor PZ can vary according to age, and that the

intrinsically organized chaos of the TZ results in a wide range of

normal ADC values (29). Moreover, post-biopsy changes can alter

the signal intensity of DWI in the prostatic tissue for several weeks.

Finally, as hypothesized by DeCobelli, non-tumorous tissue can be

affected by nearby non-visible tumor infiltration or by peritumoral

fibrosis and inflammation, which all affect the ADC (26). The b-

values that were used to estimate the ADC (Table 2) varied across

MRI systems and sites, and several were inconsistent with PI-RADS

recommendations (2). For example, the estimation of ADC based

on data acquired at low b-values (<100 s/mm2) may introduce a

positive bias due to incoherent blood perfusion (30). Furthermore,

when the ADC is based on high b-values (>1000 s/mm2), the

estimation in normal tissue may be negatively biased due to the

rectified noise floor (31). These factors may explain why the ratio

did not show a better inverse correlation with cancer aggressiveness

than standalone ADC. Moreover, in a systematic review of 39

papers with 2457 patients, Surov et al. identified only a moderate

correlation between ADC and Gleason score in PCa located in the

PZ, and an even worse correlation in the TZ (32).

Harmonizing MRI parameters between centers is important,

especially since the ADC values are used for deciding PI-RADS

category and hence, affects the clinical decision. In 2007, the

Radiological Society of North America organized The Quantitative

Imaging Biomarkers Alliance ® (QIBA). QIBA strives for

standardization of image acquisition and assesses whether imaging

metrics have clinical value (33). Their ongoing work includes

evaluation and standardization of DWI in for example MRI Prostate.

In our study, the interrater agreements for different ADC

metrics were strong, suggesting that factors other than differences

in radiologists’ measurements are the reason for the lack of

correlation with pathology. Our results are in line with similar

previous studies (19, 23, 34).
TABLE 3 Patient characteristics (n=98).

Characteristic Mean ± SD (min – max)

Age, years 66.3 ± 6.4 (45 – 76)

Time between MRI and RALP, months 4.08 ± 2.6 (1 – 11)

Preoperative PSA, ng/mL 9.26 ± 6.8 (1.8 – 39.0)

n (%)

Clinical T-stage

T0 4 (4.1)

T1 13 (13.3)

T1c 29 (29.6)

T2 36 (36.7)

T2b 4 (4.1)

T2c 2 (2.0)

T3 9 (9.2)

T3a 1 (1.0)

Pathological T-stage

T1 0 (0)

T2 51 (52.0)

T3a 34 (34.7)

T3b 12 (12.2)

T3 0 (0)

Missing 1 (1.0)

Biopsy ISUP grade

1 7 (7.1)

2 41 (41.8)

3 24 (24.5)

4 9 (9.2)

5 17 (17.3)

Pathological ISUP grade

1 0 (0)

2 39 (39.8)

3 41 (41.8)

4 3 (3.1)

5 15 (15.3)

MRI field strength

1.5 Tesla 38 (38.8)

3 Tesla 60 (60.1)

Zone location

Peripheral zone 68 (69.4)

Transitional zone 30 (30.6)
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FIGURE 3

Box-and-whisker plots of apparent diffusion coefficient (ADC) metrics for tumors stratified by ISUP grade. (*) Normal represents the absolute ADC
value of the normal appearing tissue in the contralateral position of the index lesion.
FIGURE 4

ROC curves comparing absolute ADC and three different ADC ratios in discriminating ISUP 1-2 from ISUP 3-5.
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Our study has several limitations. First, the study group was

small. In addition, the quality of the MRI scans was generally lower

than would have been acceptable today. Another limitation is that

all included patients had csPCa; therefore, we only obtained data

from the more advanced and aggressive tumors. In contrast to

previous articles on this topic, no patients with ISUP 1 tumors were

subject to prostate resection. This is in line with current clinical

treatment guidelines (35). Furthermore, we did not have

information on the fraction of Gleason 4 in the ISUP 2 group

(Gleason 3 + 4). A lower percentage of Gleason 4 could have put

these patients in the group with non-significant cancers. Moreover,

the results from pathology were extracted from the original

pathology reports, which were produced in a clinical setting by

different pathologists with different levels of experience. That is, no

study-dedicated pathology examination was performed.

There is potential for improvement, which we will

implement in a forthcoming study. Most important is to

include the whole range of benign to the most aggressive

tumors. This can be achieved by including core biopsies
Frontiers in Oncology 09157
performed using the MR – ultrasound fusion technique.

Furthermore, with new digital pathology archives, high

precision correlations can be made between the WM RALP

specimen and corresponding MR slice. A dedicated revaluation

of a specific location in the WM specimen, including tumor

subtype and tumor cell growth pattern, can be made.
Conclusions

In conclusion, our study did not find any correlation between

the ADC value and ISUP grade in a multi-scanner setting. We

found no benefit of using ADC ratios, so-called normalized ADC

values, even with good agreement between the two experienced

readers. This contradicts previous single-center studies published

research in the field. Therefore, in a clinical situation with different

MRI scanner types, measurements of ADC must be used with

caution. It also highlights the importance of harmonizing the

parameters of the MRI sequences across centers.
FIGURE 5

Bland-Altman plots. The dotted lines represent no difference between readers, the solid lines represent mean differences between readers, and the
dashed blue lines represent limits of agreement, calculated as the mean difference ± 1.96SD of the mean difference. *Mean differences between
readers (95% limits of agreement).
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Segmentation stability of human
head and neck cancer medical
images for radiotherapy
applications under de-
identification conditions:
Benchmarking data sharing and
artificial intelligence use-cases

Jaakko Sahlsten1, Kareem A. Wahid2, Enrico Glerean3,
Joel Jaskari1, Mohamed A. Naser2, Renjie He2,
Benjamin H. Kann4, Antti Mäkitie5, Clifton D. Fuller2*

and Kimmo Kaski1*

1Department of Computer Science, Aalto University School of Science, Espoo, Finland, 2Department
of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United
States, 3Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland,
4Artificial Intelligence in Medicine Program, Brigham and Women’s Hospital, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA, United States, 5Department of Otorhinolaryngology,
Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
Background: Demand for head and neck cancer (HNC) radiotherapy data in

algorithmic development has prompted increased image dataset sharing.

Medical images must comply with data protection requirements so that re-use

is enabled without disclosing patient identifiers. Defacing, i.e., the removal of

facial features from images, is often considered a reasonable compromise

between data protection and re-usability for neuroimaging data. While

defacing tools have been developed by the neuroimaging community, their

acceptability for radiotherapy applications have not been explored. Therefore,

this study systematically investigated the impact of available defacing algorithms

on HNC organs at risk (OARs).

Methods: A publicly available dataset of magnetic resonance imaging scans for

55 HNC patients with eight segmented OARs (bilateral submandibular glands,

parotid glands, level II neck lymph nodes, level III neck lymph nodes) was utilized.

Eight publicly available defacing algorithms were investigated: afni_refacer,

DeepDefacer, defacer, fsl_deface, mask_face, mri_deface, pydeface, and

quickshear. Using a subset of scans where defacing succeeded (N=29), a 5-

fold cross-validation 3D U-net based OAR auto-segmentation model was

utilized to perform two main experiments: 1.) comparing original and defaced

data for training when evaluated on original data; 2.) using original data for

training and comparing the model evaluation on original and defaced data.

Models were primarily assessed using the Dice similarity coefficient (DSC).
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Results: Most defacing methods were unable to produce any usable images for

evaluation, while mask_face, fsl_deface, and pydeface were unable to remove

the face for 29%, 18%, and 24% of subjects, respectively. When using the original

data for evaluation, the composite OAR DSC was statistically higher (p ≤ 0.05) for

the model trained with the original data with a DSC of 0.760 compared to the

mask_face, fsl_deface, and pydeface models with DSCs of 0.742, 0.736, and

0.449, respectively. Moreover, the model trained with original data had

decreased performance (p ≤ 0.05) when evaluated on the defaced data with

DSCs of 0.673, 0.693, and 0.406 for mask_face, fsl_deface, and pydeface,

respectively.

Conclusion: Defacing algorithms may have a significant impact on HNC OAR

auto-segmentation model training and testing. This work highlights the need for

further development of HNC-specific image anonymization methods.
KEYWORDS

anonymization, radiotherapy, head and neck cancer, MRI, medical imaging, artificial
intelligence (AI), autosegmentation, defacing
Introduction

The landscape of data democratization is rapidly changing. The

rise of open science practices, inspired by coalitions such as the

Center for Open Science (1), and the FAIR (Findable, Accessible,

Interoperable, and Reusable) guiding principles (2), has spurred

interest in public data sharing. Subsequently, the medical imaging

community has increasingly adopted these practices through

initiatives such as The Cancer Imaging Archive (3). Given the

appropriate removal of protected health information through

anonymization techniques, public repositories have democratized

the access to medical imaging data such that the world at large can

now help develop algorithmic approaches to improve clinical

decision-making. Among the medical professions seeking to

leverage these large datasets, radiation oncology has the potential

to vastly benefit from these open science practices (4). Imaging is

crucial to radiotherapy workflows, particularly for organ at risk

(OAR) and tumor segmentation (5, 6). Moreover, in recent years

public data competitions, such as the Head and Neck Tumor

Segmentation and Outcome Prediction in positron emission

tomography/computed tomography (PET/CT) Images

(HECKTOR) challenge (7–9), have been targeted to improve the

radiotherapy workflow. However, there is a particular facet of

medical image dissemination for radiotherapy applications that

has spurred controversy, namely the anonymization of head and

neck cancer (HNC) related images.

While the public dissemination of HNC image data is

invaluable to improve the radiotherapy workflow, concerns have

been raised regarding readily identifiable facial features on medical

imaging. Importantly, the U.S. Health Insurance Portability and

Accountability Act references “full-face photographs and any

comparable images” as a part of protected health information

(10). This policy introduces some uncertainty in the
02161
dissemination of high-resolution images, where the intricacies of

facial features can be reconstructed to generate similar or

“comparable” visualizations with relative ease. Several studies

have shown the potential danger in releasing unaltered medical

images containing facial features, as they can often be easily

recognized by humans and/or machines (11–15). For example,

using facial recognition software paired with image-derived facial

reconstructions, one study found up to 83% of research participants

could be identified from their magnetic resonance imaging (MRI)

scans (13). Similar alarming results have been demonstrated for CT

images (14). While brain images are often processed such that

obvious facial features are removed (i.e., skull stripping), these

crude techniques remove large anatomic regions necessary for

building predictive models with HNC imaging data. “Defacing”

tools, where voxels that correspond to the areas of the patient’s

facial features are either removed or altered, offer one solution.

However, they may still engender the potential loss of voxel-level

information needed for predictive modeling or treatment planning,

thereby prohibiting their use in data resharing strategies for

radiotherapy applications. While several studies have investigated

the effects of defacing for neuroimaging (16–21), there have not yet

been any systematic studies on the effects of defacing tools for

radiotherapy applications.

Inspired by the increasing demand for public HNC imaging

datasets and the importance of protecting the privacy of patients, a

systematic analysis of a number of existing methods for facial

anonymization on HNC MRI images was performed. Through

qualitative and quantitative analysis using open-source datasets

and tools, the efficacies of defacing approaches on whole images

and structures relevant to radiation treatment planning were

determined. Moreover, the effects of these approaches on auto-

segmentation, a specific domain application that is increasingly

relevant for HNC public datasets, were also examined. This study is
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an important first step towards the development of robust

approaches for the safe and trusted democratization of HNC

imaging data.
Methods

Dataset

For this analysis, a publicly available dataset hosted on the

TCIA, the American Association of Physicists in Medicine RT-

MAC Grand Challenge 2019 (AAPM) dataset (22), was utilized.

The AAPM dataset consists of T2-weighted MRI scans of 55 HNC

patients that are labeled for OAR segmentations of bilateral: i)

submandibular glands, ii) level II neck lymph nodes, iii) level III

neck lymph nodes, and iv) parotid glands. Structures were

annotated as being on the right or left side of the patient

anatomy. The spatial resolution of the scans is 0.5 mm × 0.5 mm

with 2.0 mm spacing. Additional technical details on the AAPM

images and segmentations can be found in the corresponding data

descriptor (22). Defacing experiments were also attempted using

the HECKTOR 2021 training dataset (8) containing 224 HNC

patients with CT scans. Additional technical details on the

HECKTOR dataset can be found in the corresponding overview

papers (8, 9).
Defacing methods

For defacing the images, the same methods as taken into

consideration by Schwartz et al. (16), as well as novel tools that

benefit from recent advances in deep learning were used. The most

popular tools use a co-registration to a template in order to identify

face and ears and then identify those structures in the original

image, which should be removed or blurred. The following 6 co-

registration based methods: afni_refacer, fsl_deface (23), mask_face

(24), mri_deface (18), pydeface (25), and quickshear were

implemented. Two more recent methods using deep learning

technology were also included: defacer (26) and DeepDefacer (27).

These methods utilize pre-trained deep learning models using data

from public neuroimaging datasets to identify facial features to be

removed. An automated pipeline for applying all these defacing

methods is avai lab le at ht tps : / /g i thub.com/eglerean/

faceai_testingdefacing. Each defacing method was tested with all

subjects such that, for each subject, a defaced volume was produced

as well as a volumetric mask of which voxels were affected by

defacing. All methods were run with the default parameters and

standard reference images.
Defacing performance

After applying the defacing methods, the success or failure of a

defacing method was determined by visually inspecting all the

defaced volumes (i.e., performing scanwise quality control).

Specifically, a binary categorization of each scan was
Frontiers in Oncology 03162
implemented: “1” if the eyes, nose, and mouth were removed (i.e.,

defacing succeeded), “0” if the eyes, nose, or mouth were not

removed (i.e., defacing failed). Subsequently, the amount of voxels

present in the structures after application of the defacing algorithm

were quantitatively measured.
Deep learning model for OAR
segmentation reliability

To evaluate the OAR segmentation performance under different

defacing schemes from volumetric MRI data, a convolutional neural

network architecture, 3D U-net, which has found wide success in

HNC-related segmentation tasks (28–33), was utilized. Both

contractive and expansive pathways include four blocks, where

each block consists of two convolutional layers with a kernel size

of 3, and each convolution is followed by an instance normalization

layer and a LeakyReLU activation with 0.1 negative slope. The max-

pooling and transpose convolutional layers have a kernel size and

stride of 2. The last convolutional layer has a kernel size and stride

of 1 with 9 output channels and a softmax activation. The model

architecture is shown in Figure 1. Experiments were developed in

Python v. 3.6.10 (34) using Pytorch 1.8.1 (35) with a U-net model

from Project MONAI 0.7.0 (36) and data preprocessing and

augmentation with TorchIO 0.18.61 (37).

A subset of patients for which defacing was deemed successful

were used for building the segmentation models. The subset was

randomly split with 5-fold cross validation: for each cross-

validation iteration one fold was used for model testing, one fold

was used for model validation, and the remaining three folds were

used for model training. The reported segmentation performance
FIGURE 1

U-net network architecture with blocks on the contractive path
colored in red and blocks on the expanding path colored in green.
Each block includes two convolutions, each followed by instance
normalization and Leaky ReLU activation, subsequently followed by
a max-pool layer (red arrow) or transpose convolution layer (green
arrow) on contractive and expanding paths, respectively. The
number shown in each block indicates the number of channels of
the feature map. Arrows with the letter C indicate concatenation.
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was based on the test fold that was not used for model development.

The same random splits were used for training and evaluating the

models trained on original or defaced data.

Data preprocessing after the defacing included linear

resampling to 2 mm isotropic resolution with the intensity scaled

into a range of [-1,1]. The training data was augmented with

random transforms that were applied with a probability (p),

independently of each other. The used transforms were random

elastic deformations (p=10%) for all axes, random flips for inferior-

superior and anterior-posterior axes (p=50%), random rotation

(-10° to 10°) of all axes (p=50%), random bias field (p=50%), and

random gamma (p=50%). The model was trained using the cross-

entropy loss for the 8 OAR classes and background with parameter

updates computed using the Adam optimizer with (0.001 learning

rate, 0.9 b1, 0.999 b2, and AMSGrad). The model training was

stopped early after 60 epochs for non-improvement of the

validation loss.
Segmentation evaluation

Two experiments to evaluate the impact of defacing on the

resulting segmentations were performed. In order to determine the

impact of defacing on algorithmic development, models were

trained on original or defaced data using the original target data

for evaluation. Subsequently, in order to determine the impact of

defacing on algorithms not originally developed for defaced data, a

model was trained using the original data and its performance was

evaluated by using the original data or the defaced data.

For both experiments, the performance of the models were

quantified primarily with the Dice similarity coefficient (DSC) and

the mean surface distance (MSD), defined as follows:

DSC =
2  TP

2  TP + FP + FN
;

MSD =
1
2
(o
t∈T

d(t,   P)
Tj j + o

p∈P

d(p,  T)
Pj j  ) ;

where TP denotes true positives, FP false positives, FN false

negatives, P the set of segmentation surface voxels of the model

output, and T the set of segmentation surface voxels of the

annotation. The distance from the surface metric is defined as:

d(a, B)=minb∈B{‖a−b‖2} . These metrics were selected because

of their ubiquity in literature and ability to capture both volumetric

overlap and boundary distances (38, 39). The model output was

resampled into the original resolution with the nearest-neighbor

sampling and evaluated against the original resolution

segmentations. MSD was measured in millimeters. When

comparing the performance measures between the segmentation

models, Wilcoxon signed rank tests (40) were implemented, with p-

values less than or equal to 0.05 considered as significant. To correct

for multiple hypotheses, a Benjamini-Hochberg false discovery rate

procedure (41) was implemented by taking into account all the

OARs and models compared. Statistical comparisons were

performed using the statannotations 0.4.4 Python package
Frontiers in Oncology 04163
(https://github.com/trevismd/statannotations). Notably, any ROI

metrics that yielded empty outputs were omitted from the

comparisons. Additional surface metric values (mean Hausdorff

distance at 95% and Hausdorff distance at 95%) were also calculated

as part of the supplementary analysis (details in Appendix A).
Results

Defacing performance

Five of the methods tested (afni_refacer, quickshear,

mri_deface, DeepDefacer, and defacer) failed for all subjects in

the AAPM dataset. Therefore, for all subsequent analyses only the

mask_face, fsl_deface, and pydeface methods were considered.

There was scanwise quality control to remove the defaced scans

with poor quality from the analyses, which resulted in 16 (29%), 10

(18%), and 13 (24%) scans removed from mask_face, fsl_deface,

and pydeface, respectively, with all these methods working on 29

patient scans. A barplot comparison of the ratio of remaining OAR

voxels after defacing and quality control is depicted in Figure 2. In

addition, the defacing methods removed some OARs completely,

which were also omitted from the segmentation evaluation. After

filtering unusable data, the total number of OARs available for use

in segmentation experiments was 232 for the original data and

mask_face, 231 for fsl_deface, and 169 for pydeface. A full

comparison of omitted OARs is shown in Table 1.

All of the tested defacing methods were unable to provide

sufficient data for segmentation analysis in the HECKTOR CT

dataset. Specifically, fsl_deface and pydeface methods successfully

defaced 18 (8%) and 102 (46%) scans, respectively. All other

methods (afni_refacer, quickshear, mri_deface, DeepDefacer,

defacer, and mask_face) failed to correctly deface any of the

scans. Although pydeface had the highest success rate on

defacing, it only preserved the brain. Thus, no further analysis

was performed for this dataset.
Segmentation performance

The 29 patient scans for which the defacing was deemed

successful were used to construct and evaluate segmentation

models for the mask_face, fsl_deface, and pydeface methods. The

model DSC performances pooled across all structures based on

training input and valid evaluation target combinations are shown

in Table 2. The models trained using the original, mask_face, and

fsl_deface input data had the highest composite mean DSC when

evaluated on the original target data with values of 0.760, 0.742, and

0.736, respectively, while the model trained on pydeface input data

had the highest composite mean DSC of 0.653 when evaluated on

pydeface target data. In contrast, the models trained using original

mask_face, and fsl_deface input data had the lowest composite

mean DSC when evaluated on pydeface target data with values of

0.406, 0.413, 0.465, respectively, while the model trained using

pydeface input data had the lowest composite mean DSC of 0.395
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when evaluated on fsl_deface target data. All comparisons within

the same evaluation data are statistically different from each other

(p ≤ 0.05) with the exception of mask_face and fsl_deface trained

models evaluated on original data, and original as well as mask_face

trained models evaluated on pydeface data.

Defacing impact on model training
The analysis was based on eight OAR structure segmentations

from 29 patients totaling 232 evaluations. The MSD of left and right

level III neck lymph nodes for pydeface trained models were

omitted from the analysis as all the model outputs were empty.

Full comparisons of the model performance for each OAR are

depicted in Figure 3. Additional surface distance metrics are shown

in Appendix A (Figure A1). Overall, the model trained with the

original data performed better than the models trained with the

defaced data for the majority of structures and evaluation metrics.

Both metrics were significantly better for the model trained with the

original data compared to the model trained with mask_face data

for the left submandibular gland and right level II neck lymph node,

while only the DSC was significantly better for the right

submandibular gland and right level III neck lymph node.
Frontiers in Oncology 05164
Similarly, both metrics were significantly better for the model

trained with the original data compared to the model trained

with fsl_deface data for the right level II neck lymph node, left

parotid, and right parotid, while only the DSC was significantly

better for the right level III neck lymph node. Moreover, both

metrics were significantly better for the model trained with the

original data compared to the model trained with pydeface data for

all the structures.

Defacing impact on model testing
In these results, only valid target data with successful defacing

on all three methods using non-empty segmentation structures

were included. This was obtained using results from 26 left

submandibular glands, 27 right submandibular glands, 1 left neck

level III lymph nodes, 2 right neck level III lymph nodes, and 28 of

each of the remaining structures. Due to the low number of cases for

the right and left level III lymph nodes, they were omitted from the

comparison. In addition, for the MSD metric, empty model output

segmentations were discarded resulting in evaluation of 1 left

submandibular gland for fsl_deface and mask_face and 14 for

pydeface, 1 and 6 right submandibular glands on fsl_deface and
FIGURE 2

Ratio of preserved voxels in comparison to the original segmentation mask after defacing (mask_face, fsl_deface, and pydeface) for each of the
organs at risk, where defacing was successful for N=39, N=42, and N=45, respectively. The mean and standard deviation are represented as the
center and extremes of the error bars, respectively.
TABLE 1 Quantitative details on the number of organs at risk available after the defacing was applied for all 55 patient scans.

Completely removed after successful defacing Unavailable for segmentation analysis*

Organ at risk/Defacing method mask_face fsl_deface pydeface mask_face fsl_deface pydeface

Left Submandibular Gland 0 (0%) 2 (4%) 6 (11%) 16 (29%) 14 (25%) 13 (24%)

Right Submandibular Gland 0 (0%) 1 (2%) 7 (13%) 16 (29%) 14 (25%) 14 (25%)

Left Neck Lymph Node Level II 0 (0%) 0 (0%) 4 (7%) 16 (29%) 13 (24%) 11 (20%)

Right Neck Lymph Node Level II 0 (0%) 0 (0%) 4 (7%) 16 (29%) 13 (24%) 11 (20%)

Left Neck Lymph Node Level III 0 (0%) 0 (0%) 45 (82%) 16 (29%) 13 (24%) 51 (93%)

Right Neck Lymph Node Level III 0 (0%) 1 (2%) 44 (80%) 16 (29%) 13 (24%) 50 (91%)

Left Parotid 0 (0%) 0 (0%) 6 (11%) 16 (29%) 13 (24%) 11 (20%)

Right Parotid 0 (0%) 0 (0%) 6 (11%) 16 (29%) 13 (24%) 11 (20%)

Total omitted 0 (0%) 4 (1%) 122 (28%) 128 (29%) 106 (24%) 172 (39%)
Only the mask_face, fsl_deface, and pydeface methods yielded usable data. The first group of columns correspond to the organs at risk that were completely removed from the cases with
successful defacing. The second group of columns correspond to all items in the first group of columns plus incorporating any of the cases where defacing failed. Defacing success or failure was
counted from scanwise quality control. *Organs at risk in these columns were omitted for all the subsequent segmentation-related experiments.
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pydeface, respectively, 1 left level II lymph node for pydeface, and 2

left parotids for pydeface. The model evaluated on the original data

performed significantly better than the models evaluated on the

defaced data for all of the structures and both evaluation metrics

except in the case of left submandibular gland DSC for fsl_deface

which exhibited a non-significant difference. The full comparison of

the model performance for each of the OARs is shown in Figure 4.

Additional surface distance metrics are shown in Appendix A

(Figure A2).
Discussion

This study has systematically investigated the impact of a

variety of defacing algorithms on structures of interest used for

radiotherapy treatment planning. This study demonstrated that the

overall usability of segmentations is heavily dependent on the

choice of the defacing algorithm. Moreover, the results indicate
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that several OARs have the potential to be negatively impacted by

the defacing algorithms, which is shown by the decreased

performance of auto-segmentation algorithms trained and

evaluated on defaced data in comparison to algorithms trained

and evaluated on non-defaced data.

Defacing for HNC applications should be deemed optimal if the

method simultaneously removes all recognizable facial features

from the image and no voxels from structures of interest are

affected. In this study, eight commonly available defacing

algorithms developed by the neuroimaging community were

applied: afni_refacer, mri_deface, defacer, DeepDefacer,

mask_face, fsl_deface, pydeface, and quickshear. Unfortunately,

for the investigated CT data, no defacing method was able to

yield successful removal of facial features while preserving the

OARs. This is not necessarily surprising given that the methods

investigated were developed primarily with MRI in mind; these

results echo previous similar work using CT data (42). Importantly,

even when applied to MRI data of HNC patients, many of these
TABLE 2 Composite DSC performance - mean (standard deviation) - of all structures for all combinations of training data (rows) and evaluation data
(columns).

Evaluated on original
(N =2 32)

Evaluated on mask_face
(N = 232)

Evaluated on fsl_deface
(N = 231)

Evaluated on pydeface
(N = 169)

Trained on original 0.760 (0.112) 0.673 (0.181) 0.693 (0.140) 0.406 (0.304)

Trained on mask_face 0.742 (0.115) 0.733 (0.120) 0.668 (0.143) 0.413 (0.312)

Trained on fsl_deface 0.736 (0.108) 0.643 (0.185) 0.733 (0.122) 0.465 (0.293)

Trained on pydeface 0.449 (0.333) 0.417 (0.325) 0.395 (0.301) 0.653 (0.258)
The number of total segmentation maps evaluated is shown in brackets on the header. All comparisons within the same evaluation data are statistically different from each other (p ≤ 0.05) with
the exception of mask_face and fsl_deface trained models evaluated on original data, and original and mask_face trained models evaluated on pydeface data. Statistical significance was measured
with Wilcoxon signed-rank tests corrected with Benjamini-Hochberg procedure comparisons within evaluation data.
FIGURE 3

Performance of the models trained on original or defaced data and evaluated on the original data. The mean and standard deviation for each metric
are represented as the center and extremes of the error bars, respectively. Statistical significance was determined using Wilcoxon signed-rank tests
corrected with Benjamini-Hochberg procedure for all OARs and models. Comparison symbols: ns (p > 0.05), * (p ≤ 0.05), ** (p ≤ 0.01), *** (p ≤ 1e-
4), **** (p ≤ 1e-5).
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defacing methods outright failed for most if not all patients.

Therefore, despite extant studies demonstrating the acceptability

of these methods to remove facial features from neuroimaging scans

(16–21), these tools may not necessarily be robust to HNC-related

imaging. Moreover, for those defacing algorithms that were able to

successfully remove facial information in the MRI data, i.e.

mask_face, fsl_deface, and pydeface, it was shown that regardless

of the choice of the method, there was a loss of voxel-level

information for all the OAR structures investigated. Importantly,

pydeface leads to a greater number of lost voxels than mask_face

and fsl_deface for all the OAR structures, with the exception of the

parotid glands. While mask_face and fsl_deface lead to relatively

minimal reduction of available voxels in many cases, the loss of

topographic information in a radiotherapy workflow cannot be

underscored enough. It is well known that even minor variations in

the delineation of tumors and OARs can drastically alter the

resulting radiotherapy dose delivered to a patient, which can

impact important clinical outcomes such as toxicity and overall

survival (43–46). Therefore, the loss of voxel-level information of

OARs caused by the defacing algorithms, while potentially visibly

imperceptible, can still affect downstream clinical workflows.

Relatively few studies have been conducted that determined the

downstream analysis effects of defacing algorithms. For example,

recent studies by Schwartz et al. (16) and Mikulan et al. (21)

demonstrated that several defacing methods showed differences in

specific neuroimaging applications, namely brain volume

measurements and electroencephalography-related calculations.

In this study, as a proxy for a clinically relevant task, an OAR

auto-segmentation workflow was developed to investigate the

impact of defacing-induced voxel-level information loss on

downstream radiotherapy applications. As evident through both
Frontiers in Oncology 07166
pooled analysis and investigation of individual OARs for auto-

segmentation model training and evaluation, performance is often

modestly decreased for fsl_deface and mask_face but greatly

decreased for pydeface; these results were consistent with the

overall voxel-level information loss. While pydeface has been

shown to have favorable results for use with neuroimaging data

(19, 21), its negative impact on HNC imaging is apparent.

Therefore, in cases where defacing is unavoidable, mask_face or

fsl_deface should likely be preferred for HNC image

anonymization. Regardless, this study demonstrates existing

approaches to anonymize facial data may not be sufficient for

implementation on HNC-related datasets, particularly for deep

learning model training and testing.

This study has several limitations. Firstly, to examine defacing

methods as they are currently distributed (“out-of-the-box”),

modifications to the templates or models utilized in any methods

were not performed. Further preprocessing either of the CT and

MRI data as well as subject specific settings could have helped some

of the methods to better identify the face. In addition, more suitable

templates for the HNC images (for both CT and MRI) would likely

improve the defacing performance; for the registration-based

methods, algorithms likely expected scans to cover the whole

brain, while the field-of-view of the images for HNC mostly

covered the neck and mouth, leaving the top of the brain

excluded. Notably, additional deep learning model training

schemes (i.e., transfer learning) may potentially allow for eventual

implementation of existing deep learning methods on domain-

specific datasets (i.e., HNC radiotherapy), but this negates the

immediate interoperability of these tools. Furthermore, no

additional image processing other than what was integrated into

the defacing methods was implemented; it may be possible
FIGURE 4

The performance of models trained on the original data when evaluated on the original, mask_face, fsl_deface, or pydeface data for the six organs
at risk included in the analysis. Only cases that were available for all the methods were included: 28 segmentations were used for all structures
except in the case of the left and right submandibular glands where 26 and 27 segmentations were used, respectively. In addition, for the MSD
metric, empty model output segmentations were discarded, which resulted in a smaller number of evaluated structures. The number of evaluated
structures is shown on top of the barplot. The mean and standard deviation for each metric are represented as the center and extremes of the error
bars, respectively. Statistical significance was measured with Wilcoxon signed-rank tests corrected with Benjamini-Hochberg procedure for all OARs
and models. Comparison symbols: ns (p > 0.05), * (p ≤ 0.05), ** (p ≤ 0.01), *** (p ≤ 1e-4), **** (p ≤ 1e-5).
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alternative processing could change these results. Secondly, while a

robust analysis utilizing multiple relevant metrics established in

existing literature (38) was performed to evaluate OAR auto-

segmentation, there is not always a perfect correlation between

spatial similarity metrics and radiotherapy plan acceptability (39).

This study has not tested the downstream effects of defacing on

radiotherapy plan generation, which may lead to different results

from what was observed for the OAR segmentation. Thirdly, this

study was limited to public data with no modifications. Only

structures that were already available in existing datasets were

analyzed. Moreover, as an initial exploration of defacing methods

for radiotherapy applications, only a single imaging modality on a

relatively limited sample size, namely T2-weighted MRI, was

investigated for auto-segmentation experiments, despite the HNC

radiotherapy workflow commonly incorporating additional

modalities (47). Thus, experiments on additional imaging

modalities and larger diverse HNC patient populations should be

the subject of future investigations. Fourthly, the current analysis

does not thoroughly explore possible performance confounding

related to phenotypical and individual variables such as sex,

ethnicity, and age of the measured individuals. Finally, this study

has focused on defacing methods as an avenue for public data

sharing for training and evaluating machine learning models, but

privacy-preserving modeling approaches, e.g., through federated

learning (48), may also act as a potential alternative solution.
Conclusion

In summary, by using publicly available data, the effects of eight

established defacing algorithms, afni_refacer, mask_face,

mri_deface, defacer, DeepDefacer, quickshear, fsl_deface, and

pydeface, have been systematically investigated for radiotherapy

applications. Specifically, the impact of defacing directly on ground-

truth HNC OARs was determined and a deep learning based OAR

auto-segmentation workflow to investigate the use of defaced data

for algorithmic training and evaluation was developed. All methods

failed to properly remove facial features on the CT dataset

investigated. Moreover, it was observed that only fsl_deface,

mask_face, and pydeface yielded usable images from the MRI

dataset, but still decreased the total number of voxels in OARs

and negatively impacted the performance of OAR auto-

segmentation, with pydeface having more severe negative effects

than mask_face or fsl_deface. This study is an important step

towards ensuring widespread privacy-preserving dissemination of

HNC imaging data without endangering data usability. Given that

current defacing methods remove critical data, future larger studies

should investigate alternative approaches for anonymizing facial

data that preserve radiotherapy-related structures. Moreover,

studies on the impact of these methods on radiotherapy plan

generation, the inclusion of a greater number of OARs and target

structures, and the incorporation of additional imaging modalities

are also warranted.
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Intrafraction tumor motion
monitoring and dose
reconstruction for liver pencil
beam scanning proton therapy

Saber Nankali 1,2*, Esben Schjødt Worm3,
Jakob Borup Thomsen1, Line Bjerregaard Stick1,
Jenny Bertholet4, Morten Høyer1, Britta Weber1,3,
Hanna Rahbek Mortensen1 and Per Rugaard Poulsen1,3

1Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark, 2Department of
Clinical Medicine, Aarhus University, Aarhus, Denmark, 3Department of Oncology, Aarhus University
Hospital, Aarhus, Denmark, 4Division of Medical Radiation Physics and Department of Radiation
Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
Background: Pencil beam scanning (PBS) proton therapy can provide highly

conformal target dose distributions and healthy tissue sparing. However, proton

therapy of hepatocellular carcinoma (HCC) is prone to dosimetrical uncertainties

induced by respiratory motion. This study aims to develop intra-treatment tumor

motion monitoring during respiratory gated proton therapy and combine it with

motion-including dose reconstruction to estimate the delivered tumor doses for

individual HCC treatment fractions.

Methods: Three HCC-patients were planned to receive 58 GyRBE (n=2) or 67.5

GyRBE (n=1) of exhale respiratory gated PBS proton therapy in 15 fractions. The

treatment planning was based on the exhale phase of a 4-dimensional CT scan.

Daily setup was based on cone-beam CT (CBCT) imaging of three implanted

fiducial markers. An external marker block (RPM) on the patient’s abdomen was

used for exhale gating in free breathing. This study was based on 5 fractions

(patient 1), 1 fraction (patient 2) and 6 fractions (patient 3) where a post-treatment

control CBCT was available. After treatment, segmented 2D marker positions in

the post-treatment CBCT projections provided the estimated 3D motion

trajectory during the CBCT by a probability-based method. An external-

internal correlation model (ECM) that estimated the tumor motion from the

RPM motion was built from the synchronized RPM signal and marker motion in

the CBCT. The ECM was then used to estimate intra-treatment tumor motion.

Finally, the motion-including CTV dose was estimated using a dose

reconstruction method that emulates tumor motion in beam’s eye view as

lateral spot shifts and in-depth motion as changes in the proton beam energy.

The CTV homogeneity index (HI) The CTV homogeneity index (HI) was

calculated as D2% − D98%
D50%  � 100%.

Results: The tumor position during spot delivery had a root-mean-square error

of 1.3 mm in left-right, 2.8 mm in cranio-caudal and 1.7 mm in anterior-posterior

directions compared to the planned position. On average, the CTV HI was larger
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than planned by 3.7%-points (range: 1.0-6.6%-points) for individual fractions and

by 0.7%-points (range: 0.3-1.1%-points) for the average dose of 5 or 6 fractions.

Conclusions: A method to estimate internal tumor motion and reconstruct the

motion-including fraction dose for PBS proton therapy of HCC was developed

and demonstrated successfully clinically.
KEYWORDS

proton therapy, pencil beam scanning, dose reconstruction, liver cancer, motion
management, respiratory gating, tumor motion monitoring (Min.5-Max. 8)
1 Introduction

Radiation therapy is a local treatment option for small

hepatocellular carcinoma (HCC) tumors in inoperable patients

with a good liver function (Child-Pugh A) (1). However, HCC

patients often present with a considerable tumor burden and an

underlying cirrhotic liver and even low doses of radiation to the

liver leads to a high risk of developing radiation induced liver

disease (RILD) in patients with cirrhosis (2). Since RILD is a severe

condition that can lead to liver failure and death, it is crucial to

minimize the dose to the normal liver tissue surrounding the

tumor (3).

Compared to photon based radiation therapy, pencil beam

scanning (PBS) proton therapy can often provide more conformal

target dose distributions with less healthy tissue irradiation (4, 5).

Proton therapy is therefore increasingly used in the treatment of

HCC (6, 7). However, liver tumors often exhibit large and variable

respiratory motion during treatment (8), which can cause

considerable deviations between the delivered and planned doses.

Due to interplay effects and a high sensitivity to water equivalent

path length changes, PBS proton therapy is particularly prone to

dosimetric uncertainties caused by target motion (9–11) and

international guidelines underline the special need for motion

management in PBS proton therapy (12, 13). Hence, respiratory

gating, where the beam is only turned on during specific phases of

the breathing cycle has been proposed and implemented in proton

therapy to mitigate tumor motion effects (14–17). Still, residual

motion within the gating window is of concern (16, 18).

Reconstruction of the actual delivered tumor dose at a fraction

requires knowledge of the internal motion during treatment

delivery and synchronization of this motion with the beam

delivery. One method is to calculate the dynamic 4D dose

(D4DD) by ascribing a specific phase of a 4DCT scan to each

delivered spot, use this to calculate phase-specific doses in each

4DCT phase and accumulate these doses in a reference phase by

deformable image registration (12, 13). This method has been

implemented clinically for PBS carbon therapy (19) and proton

therapy (20, 21) using a waist belt for respiratory monitoring during

beam delivery. A limitation of the D4DD is that it neglects setup

errors and assumes that the internal motion during treatment is
02171
well described by the respiration signal and identical to the motion

in the 4DCT. However, liver motion is known to be highly variable

and often poorly represented by 4DCT scans that by nature only

capture one (random) respiratory cycle at each longitudinal

position within the patient (22, 23). To overcome these

limitations, Yamada et al. monitored the internal motion of

implanted fiducial markers in the liver during gated proton PBS

delivery by a gantry-mounted stereoscopic fluoroscopic x-ray

imager (24). By combining the internal motion with the spot

delivery timing in machine log files the authors reconstructed the

tumor dose by a spot shift method that can account for arbitrary

rigid motion (25). However, although many modern conventional

proton facilities are equipped with dual x-ray imagers, these can

typically not be used during treatment delivery. Consequently,

target motion monitoring during treatment is normally not

available even though it is recommended by international

guidelines for proton therapy of moving targets (12, 13).

In this study, we introduce a method to overcome the

limitations of conventional proton facilities in internal tumor

motion monitoring during proton PBS treatment. The method

uses an external-internal correlation model (ECM) to estimate the

internal tumor motion from an external respiratory signal and

combines the internal motion with spot delivery timing in machine

log files to estimate the tumor position during each spot delivery.

The motion is then combined with the spot shift dose

reconstruction method to estimate the tumor doses for individual

HCC treatment fractions.
2 Material and methods

2.1 Patients and treatment planning

Three patients with HCC underwent proton PBS in April-

September 2022 in a national phase II clinical trial that allowed

inclusion of both large tumors and Child-Pugh B patients. The trial

was approved by the relevant ethics committees (ClinicalTrials.gov

Identifier: NCT05203120). Three gold or platinum fiducial markers

with dimensions of 0.75 mm × 5 mm (Visicoil™) were implanted

near the tumor the day before planning CT scanning. An internal
frontiersin.org

https://doi.org/10.3389/fonc.2023.1112481
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Nankali et al. 10.3389/fonc.2023.1112481
clinical target volume (iCTV) was formed as the union of the CTV

in the five phases of a 10-phase 4-dimensional CT scan (4DCT) that

were closest to full exhale. It corresponded to exhale respiratory

gating with approximately 50% duty cycle. A 3-field proton plan

was created on the exhale phase of the 4DCT using a commercial

treatment planning system (TPS, Eclipse 16.01.10, Varian, a

Siemens Healthineers Company, Palo Alto, CA) and dose

calculation algorithm (Varian Proton Convolution Superposition

16.1.0). Robust single field uniform dose (SFUD) optimization was

performed with ±4.5% range uncertainty and ±5 mm shifts in the

left-right (LR) and anterior-posterior (AP) directions and ±7 mm

shifts in the cranio-caudal (CC) direction. The treatment plans used

beam energies in the range 71-153 MeV, for which the spot size in

air is 4-6mm (1 standard deviation). Each field had 528-2134 spots

and a total of 6617-16047 monitor units. The prescribed mean

iCTV dose was 58 GyRBE (Patient 1 and 3) for central tumors (≤2

cm from porta hepatis) or 67.5 GyRBE (Patient 2) for peripheral

tumors (>2 cm from porta hepatis) in 15 fractions.
2.2 Treatment delivery and imaging

Daily patient setup was based on a free-breathing CBCT scan in

which the estimated exhale positions of the motion-blurred fiducial

markers were matched with the planning CT. CBCT scan was done

using Standard ProBeam CBCT imaging system with Paxscan

4030CB flat panel detectors. The resolution of the image detector

was 0.388 mm/pixel in both directions with source-to-imager

distance (SID) of 3700 mm and source-to-axis distance (SAD) of

2700 mm. During the CBCT acquisition and throughout the whole

treatment session the position of a marker block (Real-time Position

Management System, RPM, Varian) on the patient’s abdomen was

recorded with a camera. During treatment the RPM signal was used

for respiratory gating with a gating window adjusted before

treatment to obtain a duty cycle of approximately 50% centered

around the exhale phase in accordance with the iCTV construction.

A post-treatment control CBCT scan was captured at 6, 1, and 7

fractions for patients 1, 2, and 3, respectively. The RPM log file was

missing for one of these treatment fractions for patient 1 and patient

3. The analysis presented in this study requires a post-treatment

CBCT and an RPM log file and was therefore only made for 5, 1 and

6 fractions for patients 1, 2, and 3, respectively.
2.3 Data analysis

After the treatments the fiducial markers were segmented in each

raw 2D CBCT-projection (~1000 images per CBCT) using an

automatic method (26) followed by manual inspection and semi-

automatic correction of failed segmentations. The 3D motion

trajectory of each marker during CBCT was estimated by a

probability-based method (27) and the marker group centroid

motion was used as a surrogate for the tumor motion. The exhale

period was defined as the time within the 95th-100th percentile of the

markers position in the CC direction for each CBCT. This was used to
Frontiers in Oncology 03172
determine the exhale position in each direction of motion as the mean

marker position during the exhale period. For the setup CBCT scans,

the resulting exhale tumor position was used to determine the optimal

setup couch correction for marker alignment with the planned marker

positions in exhale. This is similar to the trajectory-based setup

introduced for non-gated treatments in (28). The online registration

error was then calculated as the difference between the retrospective

trajectory-based patient setup and the actual couch correction based on

online 3D/3D registration of the setup CBCT with the planning CT

scan. Furthermore, the intrafraction baseline drift of the exhale position

between the setup CBCT and the post-treatment CBCT was

determined as the difference between their respective exhale positions.

The analysis in this study required synchronization of the RPM

signal with the projection images of the post-treatment CBCT (to

establish an ECM) and with the delivery time of each proton spot

(to perform dose reconstruction). Synchronization between RPM

and CBCT projections was obtained by placing a 3 mm diameter

tungsten sphere on the RPM block such that it was visible in most of

the CBCT projections (Figures 1A, B). After treatment the 3D

motion of the tungsten sphere during the CBCT scan was estimated

from its projected motion in the CBCT projections (27), and its AP

motion was temporally aligned with the RPM motion in gating log

files (Figure 1C). This synchronization provided the logged RPM

position at the acquisition time of each CBCT projection.

The synchronization between RPM and spot delivery times was

based on the gate-on signal in the gating log files. The logged gate-on

signal specifies the time intervals when the RPM block is inside the

gating window, but it does not account for the gate-on latency between

entering the gating window and beam-on and the gate-off latency

between exiting the gating window and beam-off. The gate-open times

during which the beam could potentially be turned on were estimated

from the logged gate-on signal by assuming a gate-on latency of 240ms

and a gate-off latency of 80 ms (Figure 1D). These latencies were

measured using the method proposed by Worm et al. (29) and

rounded to an integer number of gating log file samples (40ms

resolution). Next, a comparison of the gate-open times with the

actual spot delivery times in machine log files (30) provided the

synchronization between RPM log files and spot delivery times

(Figure 1E). While the machine log files specified the duration of

each spot with microsecond resolution it did not directly specify the

beam-off times occurring during larger spots shifts, energy shifts and

gate-off periods. However, by using the logged number of User

Datagram Protocol (UDP) messages received between each spot the

beam-off times were estimated with a scaling factor uncertainty of a few

percent. During the synchronization of the machine log files with the

gating log files the beam-off times were scaled to fit the time scale in the

gating log file.

To estimate the tumor motion during treatment delivery an

augmented linear ECM that estimated the tumor motion during the

post-treatment CBCT from the synchronized RPMmotion (31) was

built (Label 1 in Figure 2):

INT(t)  ¼  A:EXT(t) + B:EXT(t-t) + C (1)

Here, INT and EXT are internal tumor and external RPM

motion as a function of time (t). The coefficients A, B and C and the
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time delay t are fitting parameters. The augmentation term B.EXT

(t-t) accounts for hysteresis and phase differences between internal

and external motion (31). A, B and C were optimized individually

for each motion direction with least-square fitting while the same

value of t was used for all three motion directions.

Next, The ECM was used to estimate the tumor motion

throughout the treatment delivery from the intra-treatment RPM

signal (Label 2). This synchronization resulted in the ECM
Frontiers in Oncology 04173
estimated tumor position at the time of each spot delivery (Label

3). For each spot, the geometrical treatment accuracy was

determined as the tumor position relative to the planned position.

The tumor motion range was calculated for each fraction as the

difference between the 98th and the 2nd percentiles of the tumor

position over all three fields during beam-on periods and, for

comparison, over the full field durations including both beam-on

and beam-off periods.
B

A

FIGURE 2

Workflow for (A) estimating the tumor position at the time of delivery of each spot by an external-internal correlation model (ECM) and (B) motion-
including dose reconstruction. The numbers refer to the description in the text. The thick colored curves shown on the top of the tumor motion
(Label 3) show the spot delivery times with different energy layers indicated with different colors.
B C

D

E

A

FIGURE 1

Synchronization of RPM log files. (A) Marker block with the tungsten sphere used for synchronization with the CBCT projections. (B) A CBCT
projection showing the marker block and tungsten sphere. (C) Synchronized RPM signal (red) and anterior-posterior (AP) tungsten sphere trajectory
extracted from the CBCT projections (black). (D) Gate-on signal in RPM log file used for synchronization with spot delivery times. (E) Gate-open
times accounting for the gating latency (black) and synchronized spot delivery times from machine log files (colored lines, with different colors
indicating different energy layers).
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Finally, the CTV dose and the dose to the healthy liver tissue of

each analyzed fraction was estimated by a motion-including dose

reconstruction method that emulates tumor motion in beam’s eye

view by shifting each spot in the opposite direction of the tumor

motion and in-depth tumor motion as changes in the proton beam

energy (25). A motion-encoded plan with these manipulations of

the original spot positions and energies was created by an in-house

developed Matlab program (Label 4) and imported into the TPS for

recalculation (Label 5). The reconstructed CTV doses of each

fraction and averaged over all analyzed fractions were compared

with the planned doses using the metrics of CTV D98% and D2%

(minimum dose received by 98% and 2% of the CTV volume) and

the homogeneity index HI% = D2% − D98%
D50%  � 100%. Furthermore,

the mean healthy liver tissue doses averaged over all analyzed

fractions were compared with the planned doses.
3 Results

Figure 3 shows an example of the tumor motion trajectory

during the setup CBCT and the post-treatment CBCT at one

fraction for patient 3. At this fraction, the online registration

errors were 0.4-0.8 mm (Figure 3). The mean online registration

error was in general sub-millimeter for all patients (Table 1). The

example case in Figure 3 had a small cranial and posterior drift of

the tumor exhale position from setup CBCT to post-treatment

CBCT (black arrows). Averaged over all fractions and patients a

similar trend was seen with mean ± standard deviation (SD) drift

motion of 0.0 mm ± 0.8 mm (LR), 1.3 mm ± 1.3 mm (CC), and

-0.7 mm ± 1.0 mm (AP) (Table 1).

The example ECM presented in Figure 3 (blue curves) had an

accuracy close to the mean RMS fit error for patient 3, while
Frontiers in Oncology 05174
patients 1 and 2 had larger RMS fit errors up to 2.1 mm

(Table 1). Over all patients, the mean ( ± SD) RMS fit error of

the ECM was 0.5 mm ± 0.4 mm (LR), 1.5 mm ± 0.8 mm (CC), and

1.0 mm ± 0.6 mm (AP).

Figure 4 presents a typical example of the RPM signal and the

ECM estimated tumor motion at a fraction, synchronized with the

spot delivery times. Due to the gating latency the beam started 240

ms into the gating window and continued 80 ms after the RPM

block moved out of the gating window (Figure 4C). The treatment

error is reported in Table 1 for each patient. Over all delivered spots

the RMS treatment error was 1.3 mm (LR), 2.8 mm (CC), and

1.7 mm (AP), while the mean ( ± SD) 3D treatment error per

patient was 3.9 mm ± 1.9 mm (patient 1), 3.7 mm ± 0.6 mm (patient

2) and 2.6 mm ± 1.7 mm (patient 3).

The maximum tumor motion range during a fraction was

6.4 mm (LR), 27.9 mm (CC), and 19.2 mm (AP) during field

delivery independent of beam-on status and 2.7 mm (LR), 10 mm

(CC), and 7.1 mm (AP) during beam-on periods. The mean tumor

motion range during a single fraction was usually more than halved

with gating compared to the full motion range (Table 1).

Large dose deterioration occurred at single fractions due to

interplay effects with D2% being up to 4.7%-points higher than

planned and D98% up to 4.4%-points lower than planned

(Figures 5, 6; Table 2). After 5-6 fractions the interplay effects

tended to smear out due to averaging effects such that D2% and

D98% converged towards the planned values (Figure 6). On average

the CTV HI was larger than planned by 3.7%-points (range: 1.0-

6.6%-points) for individual fractions and by 0.7%-points (range:

0.3-1.1%-points) for the average dose of 5 or 6 fractions (Table 2).

The mean dose to the healthy liver tissue, averaged over all analyzed

fractions, was different from the planned dose by 0.3%-points

(patient 1), 1%-points (patient 2) and -0.1%-points (patient 3).
B

A

FIGURE 3

Example of (A) reconstructed CBCT and (B) tumor motion during CBCT (patient 3, fraction 3). (A) Blurred marker in the setup CBCT scan and the
online registration to the planned exhale marker position (red contour). (B) Estimated 3D tumor trajectories during setup CBCT and post-treatment
CBCT relative to the planned position (black curves), tumor trajectory in setup CBCT after online registration and couch correction (green curves),
and external-internal correlation model (ECM) fit for the post-treatment CBCT (blue curves). The numbers show the online registration error (green),
intrafraction baseline drift (black), and root mean square error of ECM fit (blue). LR, left-right; CC, cranio-caudal; AP, anterior-posterior.
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4 Discussion

With the present study we have developed and clinically

demonstrated a method to estimate the internal target motion

and its consequence on dose delivery during proton therapy of

liver cancer at a standard equipped proton facility. As pointed out

by recent international guidelines such monitoring is important for

PBS proton therapy of moving targets but typically not

commercially available (12, 13). The motion estimation was based

on an ECM that was constructed at each treatment fraction using
Frontiers in Oncology 06175
external RPMmotion synchronized with internal 3D tumor motion

extracted from CBCT projections. An in-house developed method

that has been validated on a group of ten patients (11, 25) was

subsequently applied to reconstruct the motion-including CTV

dose. Considerable interplay effects at single fractions tended to

smear out after more fractions.

Additionally, we investigated the accuracy of the online CBCT

match to determine the exhale marker positions. Due to motion

smearing and motion artifacts, the manual online match is

subjective and prone to human errors, while the estimated
B

C A

FIGURE 4

RPM signal and estimated internal tumor motion for fraction 1 of patient 3 during (A) the entire fraction, (B) a single field and (C) two breathing
cycles. The thick colored curves show the spot delivery times with different energy layers indicated with different colors. The gating window and the
gate-on and gate-off latencies are shown for the RPM signal.
TABLE 1 Mean ± standard deviation over all fractions of the online registration error, baseline drift, root-mean-square (RMS) ECM fitting error, tumor
position error during spot delivery (treatment error), and the tumor motion range (2nd to 98th percentile motion) during beam-on and during field
delivery regardless of beam-on status.

Patient 1 2 3

Direction LR (mm) CC (mm) AP (mm) LR (mm) CC (mm) AP (mm) LR (mm) CC (mm) AP (mm)

Online registration error -0.7 ± 0.4 -0.3 ± 0.9 -0.4 ± 0.5 -0.9 -0.8 0.8 0.3 ± 0.6 1.0 ± 1.0 -0.2 ± 0.5

Baseline drift -0.1 ± 0.5 1.4 ± 1.4 -0.8 ± 0.4 -1.2 2.0 1.7 0.3 ± 0.9 1.2 ± 1.3 -1.0 ± 0.8

RMS error of ECM fit 0.9 ± 0.3 2.1 ± 0.8 1.5 ± 0.6 0.7 1.4 0.7 0.2 ± 0.0 0.9 ± 0.2 0.5 ± 0.1

Treatment error during beam-
on

-1.6 ± 1.1 -0.7 ± 3.0 0.2 ± 2.4 -1.7 ± 0.4 -0.6 ± 1.3 2.9 ± 0.5 0.1 ± 0.7 -0.7 ± 2.8 0.1 ± 1.2

Tumor motion range during
beam-on periods

2.7
± 0.3

10.9
± 1.6

7.4 ± 1.0 1.8 5.0 2.1 0.4
± 0.2

6.8
± 1.3

3.5
± 0.7

Full tumor motion range during
beam-on and beam-off periods

5.1
± 0.8

23.8
± 2.7

15.9
± 2.1

3.9 13.9 6.1 0.9
± 0.5

15.9
± 2.1

7.7
± 1.1
fr
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marker trajectories provided an objective measure of the exhale

position during CBCT. However, with differences between the

online manual registration and offline trajectory-based marker

match close to the resolution of the CT scan (2mm CC, ~1mm

in-plane), the online match accuracy was acceptable. Yet, at a few

individual fractions, slightly larger discrepancies in the CC direction

were observed (up to 3.2 mm). Offline inspection of the online

match revealed that these discrepancies could be ascribed to the

online procedure being prone to human subjectivity and performed

under time pressure with the patient waiting for treatment.
Frontiers in Oncology 07176
During CBCT scan and treatment delivery, large motion

variations between individual respiratory cycles and total motion

amplitudes of 2-3 cm, most prominent in the CC direction, were

observed (Figures 3, 4). Such motion is on par with previous studies

of internal motion during radiotherapy of tumors in the liver (8, 32–

35). Due to the extended time typically spent near the exhale phase

of the respiratory cycle, limiting the treatment to an approximate

50% duty cycle around exhale more than halved the motion during

beam-on and also reduced motion variation between treatment

fractions (Table 1). The resulting mean geometrical treatment
FIGURE 6

CTV D98% (blue) and D2% (red) for planned dose (solid lines), for reconstructed single fraction doses (dots) and for the cumulative reconstructed
dose of 1-5 fractions (Patient 1, left) and 1-6 fractions (Patient 3, right) (dashed curves).
B

A

FIGURE 5

(A) Planned dose (1st row) and examples of reconstructed doses at a single fraction (2nd row) and averaged over all investigated fractions (3rd row)
shown in a coronal plane through the center of the CTV (red contour) for each patient. Dose levels ≥ 95% are shown. Patient 2 only received one
fraction. (B) Corresponding dose volume histograms (DVHs) for the CTV with the full range of single fraction DVHs indicated by the shaded area.
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errors during proton spot delivery were thereby also limited to a few

millimeters, including errors introduced by the rather small baseline

shift of 0 - 3 mm typically observed between setup CBCTs and post-

treatment CBCTs (Table 1). Notably, though not observed in the

limited cohort of this study, baseline shifts and resulting treatment

errors of higher magnitude can be expected during liver treatments

of some patients (8, 33). Still, the initial findings of the present study

confirmed the usability of externally guided respiratory gating,

which has also been proposed by other groups for reducing the

internal motion during liver proton therapy delivery (14–16).

Despite the use of respiraory gating, our dose reconstructions

showed considereable dose deteriorations on a single-fraction level

caused by interplay between proton spot delivery and target motion

(Figures 5, 6). This finding clinically confirms the simulation results

of Zhang et al. who concluded that respiratory gating alone was

insufficient to mitigate interplay effects in PBS proton therapy (16).

However, fractionation tends to reduce interplay effects by

averaging out local over and under dosage over several treatment

fractions (36–39). In the present study, the interplay effects were

almost averaged out after 5-6 fractions (Figure 5). Nevertheless, for

hypofractionation treatments, one may need to combine gating

with repainting (16, 40).

A few previous clinical studies investigated the dosimetric

consequences of respiratory motion during particle therapy. Richter

et al. (19) and Meijers et al. (21) combined machine log files with the

spot delivery with an external respiratory signal obtained during

treatment and used this to calculate the D4DD by distributing each

spot delivery into corresponding phases of 4DCT scans. These studies

also found that fractionation effectively mitigated interplay effects. For

tumors in the thoraic region, anatomical changes such as presence of

fluid or tumor shrinkage, caused more severe dosimetric changes (21).

Limitations of the D4DD include neglectance of setup errors, the

assumption of identical anatomy and respiratory motion amplitude at

treatment as in the 4DCT and the dependence on deformable image

registration for dose accumulation in a reference 4DCT phase. An

advantage of the 4DCT based dose reconstruction, compared to our

method, is that it includes estimations of dose degration caused by

internal anatomical changes between individual 4DCT phases. Since

our spot shift dose reconstruction was based on a single phase of the

planning 4DCT it only considers the effects of rigid intrafraction

motion. A potential improvement could be a hybrid dose

reconstruction method that extends phase specific dose calculations

in each 4DCT phase with spot shifts that accounts for the tumor

motion during treatment that goes beyond the motion in the 4DCT

scan. Such an extension of our method to individual 4DCT phases
Frontiers in Oncology 08177
would improve the D4DD reconstruction method recommended by

international guidelines to also include actual intrafraction motion and

not only motion observed in 4DCTs (12, 13). However, a persisting

challenge with such 4DCT dose accumulation is the reliance on

deformable image registration and dose warping between CT scans,

which is a procedure with considerable uncertainty (41).

In a recent and closely related study by Yamada et al. at Hokkaido

University, machine log files were combined with intra-treatment

monitoring of internal fiducial markers by stereoscopic x-ray

fluoroscopy during liver proton therapy (24). The same dose

reconstruction method as applied in the present study was used (25).

Respiratory exhale gating guided by direct internal tumor motion

monitoring was a big advantage of the study by Yamada et al.

compared to ours. Tight internal gating windows of ±2 mm along

each direction may also explain why Yamada et al. found considerably

smaller mean 3D tumor position errors during spot delivery (0.8-

1.3 mm) than the present study (2.6-3.9 mm) where only external

monitoring with a gating window corresponding to approximately 50%

duty cycle was applied. For comparison, a previous study on liver SBRT

with internal exhale gating based on implanted electromagnetic

markers and gating windows of ±3 mm (LR/AP) and ±4 mm (CC)

found mean 3D tumor position errors of 1.2-3.0 mm (8). Despite the

larger treatment errors in the present study the estimated delivered

CTV dose was close to the planned dose when averaged over 5-6

fractions. Hence, the robust SFUD planning approach combined with

CBCT-based setup to internal markers and fractionated exhale gated

treatments provided appropriate mitigation of intrafraction motion.

Further studies including more patients and the effects of inter-fraction

deformations (e.g., by dose reconstruction on weekly control 4DCT

scans) are necessary to conclude on the overall treatment quality. For

example, deformationsmay affect the proton range and the assumption

that implanted markers serve as an accurate surrogate for the CTV

position, especially if they are not implanted near the tumor (42).

Ultimately, comprehensive all-inclusive fraction-specific dose

reconstruction and dose accumulation could be used to trigger plan-

adaptations in case of unacceptable dose coverage.

A limitation of the current study is the indirect estimation of

the tumor motion during treatment by an ECM. Although an ECM

of the day was built, the accuracy cannot be expected to be better

than the ECM fit, which had mean RMS errors of almost half of

the treatment errors and exceeding 2 mm in the CC direction for

one patient (Table 1). Furthermore, high intrafraction stability of the

ECMwith the ability to detect internal baseline shift cannot in general

be assumed (43–46). Optimally, the ECM should be built based on

the setup CBCT and then validated by the post-treatment CBCT.
TABLE 2 D98%, D2% and homogeneity index (HI) for the CTV as planned and in the reconstructed doses for single fractions and averaged over all
investigated fractions.

Patient 1 2 3

Dose parameter D98% (Gy) D2% (Gy) HI (%) D98% (Gy) D2% (Gy) HI (%) D98% (Gy) D2% (Gy) HI (%)

Planned 57.5 58.5 1.7 65.6 69.4 5.6 55.7 59.0 5.7

Single fraction (Mean ± SD) 56.1 ± 0.6 60.0 ± 0.7 6.7 ± 0.9 64.6 69.0 6.6 55.0 ± 0.9 60.0 ± 0.2 8.8 ± 1.7

5-6 fractions 57.2 58.8 2.9 – – – 55.4 58.9 6.0
fron
Only one fraction was investigated for patient 2.
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However, phantom tests showed discrepancies between couch shifts

and changes in the RPM signal that hindered correct adjustment of

an ECM from a setup CBCT to allow usage after setup couch

corrections. For this reason, intra-treatment motion could only be

investigated for fractions with a post-treatment CBCT in this study.

The ECM stability issue may be addressed by capturing a series of

stereoscopic images before each field delivery to confirm and update

the ECM.

It is worth noting that the RPM system available for proton therapy

clearly lags behind the optical monitoring system available from the

same vendor for photon radiotherapy (TrueBeam, Varian) with a

stereoscopic camera that allows adaptation of the ECM to couch shifts

(47). Furthermore, the cumbersome manual synchronizations of the

RPM log files with CBCT projections and treatment machine log files

in the current study (Figure 1) would not be needed if the respiratory

monitoring, imaging, and beam delivery systems were similarly well-

integrated as on a TrueBeam linear accelerator. The manual

synchronization of RPM log files with machine log files was only

possible in this study because the beam pauses in the machine log files

had a unique temporal pattern that could be matched with the RPM

gating signal (Figure 1E). This synchronization would not be possible

for non-gated treatments. Since the synchronization can only be

performed post-treatment, it is currently a barrier for online real-

time dose reconstruction, which has been demonstrated clinically for

liver SBRT (48), but could be even more relevant for proton PBS.

In summary, dose reconstruction including the effects of setup

errors, rigid motion, interplay effects and the smearing hereof after

5-6 fractions was performed for HCC proton therapy. For the

included patients, it showed that our treatment strategy of exhale

gating resulted in an acceptable CTV dose coverage. With a

smoother workflow and automation this could be used to trigger

a plan adaptation if the CTV dose coverage turned out to be

unacceptable. Since CTV dose deficits could also be caused by

interfractional changes, the motion-including dose reconstruction

should ideally be extended to account for such changes, for example

by applying it on the anatomy of weekly 4DCTs.
5 Conclusion

A method to estimate internal tumor motion and reconstruct

the motion-including fraction dose for PBS proton therapy in the

liver was developed and successfully demonstrated clinically at a

conventional proton facility.
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Breaking down the RECIST 1.1
double read variability in lung
trials: What do baseline
assessments tell us?

Antoine Iannessi and Hubert Beaumont*

Imaging Lab, Median Technologies, Valbonne, France
Background: In clinical trials with imaging, Blinded Independent Central Review

(BICR) with double reads ensures data blinding and reduces bias in drug

evaluations. As double reads can cause discrepancies, evaluations require close

monitoring which substantially increases clinical trial costs. We sought to

document the variability of double reads at baseline, and variabilities across

individual readers and lung trials.

Material and methods: We retrospectively analyzed data from five BICR clinical

trials evaluating 1720 lung cancer patients treated with immunotherapy or targeted

therapy. Fifteen radiologists were involved. The variability was analyzed using a set

of 71 features derived from tumor selection, measurements, and disease location.

We selected a subset of readers that evaluated ≥50 patients in ≥two trials, to

compare individual reader’s selections. Finally, we evaluated inter-trial

homogeneity using a subset of patients for whom both readers assessed the

exact same disease locations. Significance level was 0.05. Multiple pair-wise

comparisons of continuous variables and proportions were performed using

one-way ANOVA and Marascuilo procedure, respectively.

Results: Across trials, on average per patient, target lesion (TL) number ranged 1.9

to 3.0, sum of tumor diameter (SOD) 57.1 to 91.9 mm. MeanSOD=83.7 mm. In four

trials, MeanSOD of double reads was significantly different. Less than 10% of

patients had TLs selected in completely different organs and 43.5% had at least

one selected in different organs. Discrepancies in disease locations happened

mainly in lymph nodes (20.1%) and bones (12.2%). Discrepancies in measurable

disease happened mainly in lung (19.6%). Between individual readers, the

MeanSOD and disease selection were significantly different (p<0.001). In inter-

trials comparisons, on average per patient, the number of selected TLs ranged 2.1

to 2.8, MeanSOD 61.0 to 92.4 mm. Trials were significantly different in MeanSOD

(p<0.0001) and average number of selected TLs (p=0.007). The proportion of

patients having one of the top diseases was significantly different only between two
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trials for lung. Significant differences were observed for all other disease locations

(p<0.05).

Conclusions:We found significant double read variabilities at baseline, evidence of

reading patterns and a means to compare trials. Clinical trial reliability is influenced

by the interplay of readers, patients and trial design.
KEYWORDS

clinical trial, variability, RECIST, computed tomography, lung cancer
1 Highlights
• In RECIST BICR trials with double reads there is large

variability in tumor measurement and localization.

• Individual reader’s assessments are significantly different

• Advanced lung cancer trials with similar treatments can be

significantly different in terms of baseline assessments.
2 Background

Since 2004 (1, 2), Blinded Independent Central Review (BICR)

with double reads has been promoted in clinical trials with imaging to

ensure data blinding and to reduce bias (3). A direct consequence of

double reads is inter-reader variability. Because of these variabilities,

discrepancies in the evaluation of treatment response during trials

with double reads need to be monitored and, eventually, be

adjudicated by a third reader (4). This directly impacts the quality

and the cost of clinical trials that all stakeholders strive to mitigate. A

better understanding of the root causes of the variability is needed.

The ability to trigger warnings as early as after baseline evaluations

would help reduce inter-reader variabilities during trial monitoring.

In clinical trials for drug development, the discrepancy rate of the

treatment response assessment is the preferred indicator that

summarizes the reliability of treatment evaluation (5). However, the

discrepancy rate is a high-level indicator that encompasses all possible

root causes of variability including the technical variability of image

acquisition (6) and the interpretation of images (aka. reader

variability). To manage variability, standardized reading rules are

applied to radiology assessments that quantify the response: the

response evaluation criteria, i.e. Response Evaluation Criteria in

Solid Tumors (RECIST).

Several criteria-derived variability factors have been documented

(7, 8). A large proportion of discrepant responses originate due to the

subjectivity of the baseline assessment (9, 10) when using RECIST

(11). Indeed, many imaging response criteria are based on the relative
ed Independent Central

dicator; NSCLC, Non-

der; RECIST, Response

r; TL, Target Lesion.
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modifications from baseline, therefore it is logical that the initial

definition of the disease has an impact on the response.

When endorsing an omnibus reference value of discrepancy rates

based on the literature, the underlining assumption is that variabilities

in reads, and the magnitudes of these variabilities, are consistent

across “comparable” trials (12) however, this assumption has not been

clearly confirmed. Indeed, less attention was given to the variability

caused by the initial disease presentation and the heterogeneity of

recruited readers across so called “comparable” trials.

In this paper, we consider similar lung clinical trials and focus on

the baseline analysis of imaging data. We describe the distribution of

double read variabilities, and compare the specificities of assessments

between readers and, for individual readers across trials.
3 Methods

3.1 Study data

We aimed at minimizing the heterogeneity of our data by

selecting studies with “comparable” indication and inclusion

criteria. Our retrospective analysis included assessment data from

five BICR clinical trials (Trials 1-5) that evaluated immunotherapy or

targeted therapy for lung cancer. The selected BICR trials were

conducted between 2017 and 2021 and used double reads with

adjudication based on RECIST 1.1 guidelines. All data were fully

blinded for sponsor data, study protocol number, therapeutic agent,

subject demographics, and randomization. For these five trials, a total

of 1720 patients were evaluated by 15 Board Certified US and Europe,

10y+ Senior Radiologist with previous experience in central RECIST

1.1 assessment (Reader R1-R15) (Table 1). The central reads were all

performed using the same radiological reading platform (LMS;

Median Technologies, France) ensuring automatic data extraction

for analysis.
3.2 Independent central review

The pool of 15 independent radiologists reading across the five

selected trials were trained on the RECIST 1.1 criteria and study

protocol inclusion criteria regarding brain metastasis to perform a

BICR of each baseline image and to determine the radiologic

timepoint response in accordance with these read rules. In each
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trial, the radiologist roles (i.e., independent reader IR1 or IR2) were

randomly assigned to a Reader ID (R1 to R15) at the onset of the trial

to create a double reading paradigm. All images and readers

annotations underwent a quality control (e.g., checking the

conformance with RECIST guideline and to the review protocol of

the study) using software and operated by dedicated staff before the

patient response to be evaluated. To improve the reliability of

evaluations, the double reading paradigm involve a third reader

when readers disagree on patient response, even at the early steps

of eligibility.

Following RECIST 1.1 criteria, the tumor burden is quantified by

the sum of diameter (SOD) as the sum of the largest lesions selected as

targets lesions (TLs) within the “measurable” disease. To be

measurable and qualify for a TL, the finding must measure at least

1cm for solid tumor or 1.5 cm for lymph-nodes. To be representative

of the metastatic disease extent, the selection should be distributed

across all involved organs and avoid the priorly irradiated areas. This

prior therapy information was provided to the central readers. In

total, a maximum offive TLs, maximum two per organ, are selected at

baseline. Then, any additional lesions, smaller lesions and truly non-

measurable lesions (e.g., blastic bone lesions) are represented by

selecting Non-Target Lesions (NTL) which are only qualitatively

assessed. For diffuse disease, the NTL lesions can be grouped

instead of itemizing each one of the metastases.
3.3 RECIST 1.1 assessment analysis

3.3.1 Initial bivariate analysis
The study plan is depicted in Figure 1. Initially, to ensure the

validity of our subsequent results, we first considered a subset of

readers who participated in the same subset of trials, then we checked

that the variability between the readers was not linked to the studies in

which they were involved. Also, that the variability between studies

was not related to the readers who carried them out. We effectively

measured the bi-factorial impact of reader~trial interaction on the

variability of SOD and the number of selected TLs at baseline through

a two-way analysis of variance.
Frontiers in Oncology 03183
3.3.2 Core analysis: variability according to
three perspectives

The RECIST 1.1 baseline assessment provides quantitative and

qualitative information on disease extent and its spread throughout

organs. Accordingly, we based our variability analysis on features

designed to report on the extent and spread of the disease.

As detailed below, our analysis was divided into three parts:

3.3.2.1 Double read variability

We investigated inter-reader variability in the original double

read setting through a set of predefined disease-related quantitative

and location features (double read-derived features shown in Table 2,

disease locations listed in Annex A). These features describe the two

readers’ selection of patients’ tumors (TLs and NTLs) at baseline as

illustrated in Figure 2. We documented the distribution of these

features and compared them across trials. We provided typical values.

3.3.2.2 Reader’s variability

To further compare reader’s selections, we selected a subset of

readers that evaluated 50 patients or more in two or more trials (i.e.

more than 100 evaluations by an individual reader), therefore

lowering the weight of the “trial” and “patient” covariates. For each

reader, we computed the average number of TLs and SOD per patient

(single reader-derived features shown in Table 3) and the proportion

of patients in the most represented discrepant disease location

(TopDisLocDisease, see Table 2) as previously determined in our

double read variability analysis. We compared these baseline selection

features with each other.

3.3.2.3 Trial’s variability

The five trials selected were deemed “comparable” as they evaluated

advanced lung cancer treated with similar therapeutics. The third part of

our study checked the validity of our assumption by analyzing inter-trial

homogeneity using the subset of patients for whom both readers selected

the same disease locations (either TLs or NTLs). We assumed that, as

both readers agreed on disease location (as in Figure 2), the derived

findings would be more reliable, therefore allowing a more relevant inter-

trial comparison. For this purpose, for each of the three quantitative
TABLE 1 Description of included trials.

Trial ID Indication Phase Therapy Study specific criteria
(protocol and read rules)

Readers ID

Trial 1 Metastatic
NSCLC

III Immune checkpoints + chemotherapy vs. Chemotherapy + placebo Measurable disease
No central eligibility
Brain metastases can only be non-targe lesions

R2, R4, R5

Trial 2 Metastatic
NSCLC

III Immune checkpoints + chemotherapy vs. Chemotherapy + placebo Measurable disease
Central eligibility process
Brain metastases can only be non-target lesions

R4, R5, R6

Trial 3 Metastatic
NSCLC

II Tyrosine kinase inhibitors Measurable disease
No central eligibility
Brain metastases can be target lesion

R1, R2, R6, R7

Trial 4 Metastatic
NSCLC

III Tyrosine kinase inhibitors Measurable disease
No central eligibility
Brain metastases can be target lesion

R1, R3, R5, R7

Trial 5 Metastatic
NSCLC

III Immune checkpoints + chemotherapy vs. Chemotherapy + placebo Measurable disease
No central eligibility
Brain metastases can be target lesion

R2, R3, R5, R7
Primary study endpoints were: Progression Free Survival (PFS) and Overall Response Rate (ORR). Patients were treated for Metastatic Non-Small Cell Lung Cancer (NSCLC).
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FIGURE 1

Data analysis plan: Top down, we started by a two-way factor analysis of Reader and Trial, then we documented readers, double-read, and trials’
variabilities. We report, from top to bottom, the type of features and data preparation involved in each step of our analysis.
TABLE 2 Double read-extracted features.

Discrepancy analysis (averaged per double reads)

DisTLnum Difference in the number of TLs recorded during double reads

DisSOD Difference of SOD recorded during double reads (proportional difference of double read SOD in %)

DisLocSOD SOD of TL belonging to discrepant selected organs in double reads (ratio is derived by dividing by the reader total SOD value in %). Computed when
one of the readers reported measurable disease

DisDisease Proportion of patients reported with no disease at all by one of the readers (no TL and no NTL at all for one reader)

DisMeas Proportion of patients reported with disease by both readers but one of the readers reported no measurable disease (No TL but at least one NTL)

DisLocTL Proportion of patients for which readers targeted at least one TL at a different disease location

DisLocTLAll Proportion of patients for which readers targeted all their TLs in totally different locations

DisLocNTL Proportion of patients for which readers targeted at least one NTL at a different disease location

TopDisLocTL List of the most represented discrepant TL locations

TopDisLocNTL List of the most represented discrepant NTL locations

TopDisLocDisease List of the most represented discrepant disease locations

Measurements derived from jointly selected organs (averaged per trial) when
DisLocDisease = 0

JointTLnum Number of TL recorded in non-discrepant diseased organs

JointTLSize Size of the TL recorded in non-discrepant diseased organs

JointSOD Tumor burden recorded in non-discrepant diseased organs

TopJointLocDisease List of the most represented non-discrepant diseased location (TL or NTL)
F
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Feature acronyms and definitions that were used for the description of disease selection variability at baseline.
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features related to tumor burden (Table 2), we averaged the joint double

read measurements. Similarly, we computed the proportion of patients

for whom the top five metastatic locations were reported in agreement

during double reads.
3.4 Statistics

All statistics were performed using base version and packages

from R CRAN freeware. Level of significance was set to 5%.

Continuous variables were analyzed using a paired two sample

non-parametric Wilcoxon test. The confidence interval of the mean

difference was computed using the “misty” package. A violin plot was

used to display the difference of measurements. Multiple pair-wise

comparisons between the five trials and between the subset of seven

readers were performed. For comparison of continuous variables,

when assumptions for homoscedasticity (Levene’s test, “base”

package) and normality (Jarque–Bera test, “lawstat” package) were
Frontiers in Oncology 05185
met, one-way analysis of variance (ANOVA) (“base” package) was

used. When these assumptions were not met, multiple comparison

was performed using the Kruskal-Wallis test. Multiple comparison for

proportions was performed according to Marascuilo procedure (13).

Type III two-way ANOVA (“car” package) was performed after

BoxCox transformation of the measure and homoscedasticity and

normality of residuals checked using Bartlett’s and Shapiro-Wilk’s

test, respectively.
4 Results

As a preliminary analysis, we considered three readers that were

all involved in the same two trials with a total of 1095 patients (see

Figure 1). We confirmed that reader and trial are both factors

contributing to the variability of SOD and the number of selected

TLs (p<0.0001). The interaction between the twomain factors was not

significant for SOD (p=0.24) or the number of selected TLs (p=0.67),

meaning that, for our data, inter-reader variability had no effect on

the measurement of inter-trial variability and vice versa.
4.1 Double read variability

The differences between reader’s measurements are summarized

in the Table 4.

Regarding eligibility, our analysis showed a very low discrepancy

rate for disease detection at baseline with an overall discrepancy rate

<0.1%. The measurement of tumor burden was more variable with an

overall discrepancy rate of approximately 6% for studies without a

centralized eligibility process.

In all trials the two pools of readers (IR1 and IR2) selected a

statistically significantly different average number of TLs per patient,

ranging from 1.9 to 3.0 across trials (median values being either 2 or

3). The average SOD per patient ranged from 57.1 mm to 91.9 mm

across trials with an overall average SOD of approximately 84 mm.

The difference in the number of TLs during double reads (DisTLnum)

was often higher than 2 and could be as high as 4 (Figure 3A). The
FIGURE 2

Example of a double read baseline disease assessment by RECIST 1.1. One patient in Trial 3. Each reader’s selection is illustrated and grouped inside a
Venn diagram illustrating the common organ selection of the disease and its measurable part. The discrepant selection within the measurable SOD
illustrates the meaning and calculation of the double read DisLocSOD feature as (IR1-DisLocSOD + IR2-DisLocSOD)/2. The reader 6 identified disease in
the liver and measured a centimetric liver nodule that could have been considered equivocal by reader 1.
TABLE 3 Single read-extracted features.

Quantitative features

TLNum Number of TLs recorded per patient

TLSize SOD/TLNum per patient (in mm)

SOD Tumor burden as the Sum of tumor Diameter per patient (in mm)

Qualitative features

Disease Proportion of patients recorded with disease (at least one TL or
NTL)

Meas Proportion of patients recorded with measurable disease

LocTL Proportion of patients recorded with TL located in a specific organ

LocNTL Proportion of patients recorded with NTL located in a specific organ

LocDisease Proportion of patients recorded with TL or NTL located in a specific
organ
SOD, Sum of Diamters; TLNum, Number of target lesion; TL, Target lesion; NTL, Non target
lesion.
Feature acronyms and definitions that were used for the description of disease selection at
baseline per reader.
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difference in SOD (The absolute difference of SOD divided by the

average of the double reads SOD in %, DisSOD) reached more than

100% in all trials (Figure 3B).

In all trials, except Trial 5, average tumor burden was statistically

significantly different between the two readers.

The average specific proportional SOD (DisLocSOD) ranged

from 10.4% to 21.4%. In all trials, except Trial 5, DisLocSOD was

statistically significantly different between the two readers.

The distribution of double read discrepancies in TL measurements

are depicted in Figure 3 as violin plots, which confirm the findings in

Table 4. Figure 3A shows that the DisTLnum was different across trials

(median value for DisTLnum was 1 for Trial 1 and 5 and was 2 for the

other trials). Per patient, the same number of TLs were selected in 49.6%,

46.1%, 27.3%, 33.4% and 53.0% of the Trial 1 to 5, respectively. These

proportions were significantly different across trials (Marascuilo

procedure, p<0.05). Figure 3B shows that for all trials, the DisSOD was

higher than 100%, reaching 150% in all except Trial 5. Themean absolute

DisSOD was 34.6%, 27.4, 41.2%, 40.6% and 26.8% in Trial 1 to 5,

respectively. Therefore, three trials had an absolute difference significantly

higher than 33%. Figure 3C shows that for all trials the average

DisLocSOD value can reach 100%, which is confirmed by the

proportion of patients for which readers targeted all TLs in totally

different locations (DisLocTLAll) being different from zero for all trials

(see Table 5). For Trials 1 to 5, 75% of their tumor burden had an average

DisLocSOD value less than 22.2%, 15.8%, 19.9%, 26.3% and 12.2%,

respectively. Therefore, the average DisLocSOD value of the third quartile

in a trial can be two times higher than in another trial.

The distribution of reader’s discrepancies according to disease

location is summarized in Table 5. For all trials, a non-null proportion

of patients had TLs selected in completely different organs, however,

this proportion concerned less than 10% of patients. Overall, the

readers targeted at least one different organ (TLs) in 43.5% of patients,

ranging from 36.0% to 57.9% across trials. The organs with the

highest risk of discrepancies were the lymph nodes (20.1%) and

bones (12.2%) (see Figure 4). The discrepancies in detection of

measurable disease occurred mainly in the lungs (19.6%).
TABLE 4 Double-read measurements (test of differences).

DisDisease DisMeas Read-TLnum Read-SOD (mm) Read-DisLocSOD (%)

Trial 1 (N=333) 0% 4.8%
(16/333)

IR1-TLNum=2.1 **
IR2-TLNum=2.3

IR1-SOD=77.7 **
IR2-SOD=86.7

IR1-SPropSOD=19.2 **
IR2-SPropSOD=12.6

Trial 2 (N=493) 0% 0.4%
(2/493)

IR1-TLNum=1.9 **
IR2-TLNum=2.3

IR1-SOD=89.4
IR2-SOD=91.9

IR1-SPropSOD=10.7 **
IR2-SPropSOD=15.6

Trial 3 (N=240) 0.8%
(2/240)

23.1%
(55/238)

IR1-TLNum=2.1 *
IR2-TLNum=2.4

IR1-SOD=57.1 **
IR2-SOD=75.4

IR1-SPropSOD=14.9 *
IR2-SPropSOD=18.7

Trial 4 (N=276) 0% 6.1%
(17/276)

IR1-TLNum=2.4 **
IR2-TLNum=3.0

IR1-SOD=71.3 **
IR2-SOD=78.4

IR1-SPropSOD=15.3 **
IR2-SPropSOD=21.4

Trial 5 (N=378) 0% 1.3%
(5/378)

IR1-TLNum=2.4 **
IR2-TLNum=2.6

IR1-SOD=91.0
IR2-SOD=89.9

IR1-SPropSOD=10.4
IR2-SPropSOD=10.9

Average
(N=1720)

0.1%
[0.01; 0.4]

5.5%
[4.5; 6.7]

2.34
[2.29; 2.40]

83.7
[81.6; 85.8]

14.4%
[13.1; 15.6]
F
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We documented double read features (displayed by column) for the five clinical trials (displayed by row). The two left-most columns display discrepancy features. Only for patients reported as having
measurable diseases, the three right-most columns display the means of each reader’s measurements (independent reader [IR]1 and 2), the p-value of the corresponding two-sample test of difference is
indicated by asterisks: **, p<0.001; *, p<0.05; no asterisk means no statistically significant difference. The last row is the average overall measurements of both R1 and R2 with corresponding confidence
intervals.
FIGURE 3

Distribution of double read measurement discrepancies. Distributions
of double read measurement discrepancies are presented by color,
representing each trial. Left to right; (A) the difference in the number
of selected TLs (DisTLnum), (B) the proportional difference in SOD
measurement (DisSOD), (C) the average of the inter-reader mean of
readers (DisLocSOD).
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4.2 Reader’s variability

Readers’ selections and measurement data from the five trials

were pooled and are summarized in Table 6.

Derived from the data in Table 6, and graphically confirmed in

Figure 5, the distribution of readers’ SODs and TLNum were

statistically significantly different (Kruskal-Wallis, p<0.001). To be

noted: for one patient in Trial 3, two readers (R1 and R6) did not find

any measurable disease.

A 21 pair-wise comparison of the seven readers showed that 14,

13, 13, 10 and 10 pairs of readers (out of 21) significantly differed in

the proportion of patients for whom diseases were selected in nodal,

bones, infrequent (14) (see Annex A for definition), lung and pleura

disease locations, respectively (Marascuilo procedure). These

differences in proportion are depicted in Figure 6.
4.3 Trial’s variability

The following results are for the subset of patients for whom the

two readers documented the same disease locations (Table 7). On

average per patient, the number of selected TLs ranged from 2.1 to
TABLE 5 Distribution of discrepancies in disease locations.

Trial ID Measurable disease (%) Non-measurable disease (%) Disease (%)

DisLocTL DisLocTLAll TopDisLocTL DisNTLLoc TopDisLocNTL TopDisLocDisease

Trial 1
(N=333)

42.9
(136/317)

7.5
(24/317)

Lung: 25.2
LN: 19.2
Pleura: 3.9
Bone: 3.3
Liver: 0.9

61.6
(205/333)

LN: 34.8
Lung: 31.8
Bone: 7.2
Pleura: 4.8
Liver: 3.6

LN: 21.9
Lung: 10.8
Bone: 8.1
Pleura: 6.3
Adrenal:2.7
Liver: 1.8

Trial 2 (N=493) 40.9
(201/491)

6.3
(31/491)

LN: 24.1
Lung: 13.2
Pleura: 3.1
Adrenal: 3.1

66.9
(330/493)

Lung: 32.0
LN: 30.0
Bone: 13.2
Pleura: 12.2
Liver: 3.0

LN: 25.8
Pleura: 12.6
Bone: 12.6
Lung: 8.1
Adrenal: 4.0

Trial 3
(N=240)

46.9
(86/183)

8.2
(15/183)

Lung: 22.1
LN: 19.6
Brain: 11.2
Pleura: 6.7

64.2
(154/240)

Lung: 30.4
LN: 21.7
Pleura: 15.4
Bone: 11.25
Liver: 6.6

LN: 10.6
Pleura: 15.8
Lung: 14.2
Bone: 11.2
Liver: 6.7

Trial 4
(N=276)

57.9
(150/259)

5.8
(15/259)

Lung: 27.2
LN: 21.7
Misc: 16.7
Brain: 9.8
Liver: 6.5

73.5
203/276

LN: 33.7.
Lung: 28.9
Misc: 19.2
Bone: 18.1
Brain: 12.3

LN: 23.2
Misc: 21.0
Bone: 17.4
Lung: 13.4
Brain: 10.4

Trial 5
(N=378)

36
(133/373)

4
(15/373)

Lung: 14.0
LN: 12.4
Pleura: 6.6
Bone: 4.8

60.5%
(229/378)

Lung: 38.6
LN: 20.6
Bone: 10.8
Pleura: 4.8

LN: 14.8
Bone: 12.4
Lung: 6.9
Pleura: 6.1

Overall
(N= 1720)

43.5
[41.0; 45.9]
(706/1623)

6.1
[5.0; 7.4]
(100/1623)

LN: 19.6
Lung:19.2
Pleura: 4.0
Misc: 3.3

65.2
[62.9; 67.4] (1121/1720)

Lung: 32.7
LN: 28.3
Bone: 12.0
Pleura: 7.6

LN: 20.1
Bone: 12.2
Lung: 10.1
Pleura: 8.4
LN, Lymph node; TL, Target lesion; NTL, Non target lesion.
For the five clinical trials (displayed in rows) we computed: The proportion of patients for which readers targeted all their TLs in totally different locations (DisLocTLAll); the proportion of patients for
which readers targeted at least one TL (DisTLLoc) or NTL (DisLocNTL) at a different disease location; the top proportion of discrepancies in TL (TopDisLocTL), NTL (TopDisLocNTL) and disease
locations (TopDisLocDisease) (in % of patients concerned).
FIGURE 4

Inter-reader discrepancies in location of the disease. In pooling data
from five comparable trials, we colored the top four organs where
inter-reader discrepancy occurred in associating the corresponding
proportion of patient concerned. Top four organs were the lymph
nodes (20.1%), bones (12.2%), lungs (10.1%) and pleura (8.4%).
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2.8, SOD ranged from 61.0 mm to 92.4 mm and average TL size

ranged from 28.0 mm to 44.9 mm. Multiple comparisons showed that

trials differed in average SOD, the number of selected TLs and the

average size of selected TLs (Kruskal-Wallis, p<0.0001). The
TABLE 6 Distribution of readers’ selections across trials.

Readers
ID

Nb Pat Quantification Proportion of patients in top discrepant disease locations

TLNum SOD
(mm)

Nodal (%) Bone (%) Lung (%) Pleura (%) Infrequent (%)

Reader 1 253 1.6
[1.5; 1.8]

47.5
[42.2; 52.7]

52.6
[46.2; 58.9]

33.6
[27.8; 39.8]

79.8
[74.3; 84.6]

12.3
[8.5; 16.9]

20.6
[15.7; 26.0]

Reader 2 304 1.9
[1.8; 2.0]

60.3
[55.7; 64.9]

70.4
[64.9; 75.5]

5.9
[3.5; 9.2]

93.1
[89.6; 95.7]

3.6
[1.8; 6.4]

9.5
[6.5; 13.4]

Reader 3 414 2.5
[2.4; 2.7]

80.9
[76.5; 85.3]

82.1
[78.1; 85.6]

34.3
[29.7; 39.1]

88.9
[85.4; 91.7]

0
[NA; NA]

28.5
[24.2; 33.1]

Reader 4 106 2.2
[2.0; 2.4]

74.4
[67.4; 81.3]

88.7
[81.0; 94.0]

5.7
[2.1; 11.9]

71.7
[62.1; 80.0]

5.7
[2.1; 11.9]

0.0
[NA; NA]

Reader 5 734 2.7
[2.6; 2.8]

94.0
[90.6; 97.3]

74.9
[71.6; 78.0]

18.0
[15.3; 20.9]

96.2
[94.5; 97.4]

3.7
[2.4; 5.3]

8.8
[6.9; 11.1]

Reader 6 365 1.7
[1.6; 1.8]

79.6
[74.7; 84.4]

46.6
[41.3; 51.8]

20.8
[16.8; 25.3]

94.5
[91.7; 96.7]

15.3
[11.8; 19.4]

12.9
[9.6; 16.7]

Reader 7 423 2.4
[2.3; 2.6]

77.8
[82.4; 73.1]

65.2
[60.5; 69.8]

25.1
[21.0; 29.5]

87.0
[83.4; 90.0]

0.2
[0.0; 1.3]

21.7
[17.9; 26.0]
SOD, Sum of Diamters; TLNum, Number of target lesion.
For seven readers (displayed in rows) involved in two or more trials, we reported in column 1) the number of assessed patients at baseline, 2) the average number of TLs selected in patients, 3) the
average measured SOD, 4) the proportion of patients for whom nodal, bone, lung, pleura and infrequent disease were evaluated. Confidence intervals are provided in brackets.
FIGURE 5

Distribution of readers’ measurements. The seven readers are
represented by violin plots for the number of selected TLs (TLNum) per
patient (left) and SOD measurements (right).
FIGURE 6

Distribution of reader’s selections. We display per reader, the
proportion of patients (as percentage) in which the readers collected
the disease in one of the top four discrepant locations (derived from
Table 6) and in infrequent locations.
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proportion of patients having one of the top disease locations was

statistically significantly different for lung between Trial 2 and 3 only.

Multiple statistically significant differences were measured for all

other disease locations (Marascuilo procedure, p<0.05). Figure 7

displays the top jointly selected diseased organs.
5 Discussion

We found that reader and trial were significant factors of variability

(without interaction) for SOD and number of TLs estimated at baseline.

This outcome allowed the development of the following discussion.
5.1 Variability between readers in disease
detection and its measurability

The first variabilities in reading images lies in the identification of

the disease. In clinical trials, it is key to include patients with relevant

disease and a quantifiable tumor burden as required for proper

treatment response assessment (11). For this reason, except for

adjuvant evaluation setting, trials evaluating a treatment response

endpoint usually require RECIST 1.1 “measurable” disease at baseline

for eligibility, meaning that the radiologist should identify at least one
Frontiers in Oncology
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TL in the recorded lesions at baseline. The eligibility evaluation is
TABLE 7 Trial features for double read with joint organ selection.

Trial ID JointTLNum JointTLSize (mm) JointSOD (mm) TopJointLocDisease

Trial 1
(N=184/333)

2.2 [2.1; 2.4] 40.3 [37.4; 43.3] 82.8 [76.9; 88.8] Lung=94%
LN=73.9%
Liver=7.1%
Brain=2.2%
Bone=1.1%

Trial 2
(N=224/493)

2.2 [2.1; 2.4] 44.9 [42.4; 47.5] 92.4 [86.9; 97.9] Lung=99.1%
LN=69.2%
Liver=5.8%
Brain=2.2%
Bone=6.7%

Trial 3
(N=102/240)

2.1 [1.9; 2.4] 29.4 [26.6; 32.2] 61.0 [52.8; 69.1] Lung=87.2%
LN=45.1%
Liver=2.9%
Brain=22.5%
Bone=21.6%

Trial 4
(N=100/276)

2.8 [2.6; 3.1] 28 [25.8; 30.3] 78.4 [69.6; 87.1] Lung=93%
LN=75%
Bone=36%
Brain=22%
Liver=14%

Trial 5
(N=223/378)

2.6 [2.4; 2.7] 38.4 [36.2; 40.6] 91.3 [86.4; 96.2] Lung=97.3%
LN=83.8%
Liver=7.6%
Brain=2.7%
Bone=6.3%
LN, Lymph node.
For each of the five trials (number of patients shown), we computed, per patient, the average number of TLs selected by the two readers (JointTLNum), the average TLs’ diameter (JointTLSize) in mm,
the average sum of TLs’ diameter (JointSOD) in mm and the proportion of patients where the top five diseased locations were assessed. Averaged values are displayed with corresponding 95%
confidence intervals.
FIGURE 7

Top jointly selected organs. In pooling data from five comparable
trials, we colored the top four jointly selected organs. With attached
proportion of patient concerned, top jointly selected organs were the
lungs (95.3%), lymph nodes (71.9%), bones (10.7%), brain (7.2%) and
liver (7.2%).
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usually performed on site before submitting baseline examinations of

screened patients for central review. To mitigate the risks of

disagreement between the screening site and central review, another

option is to perform eligibility evaluation centrally by involving three

readers. The two concordant readers are then kept for the RECIST 1.1

assessment. Central eligibility review was performed for Trial 2, which

explains the low rate of discrepancies at baseline in double reads. It is

interesting to note that if Trial 2 is excluded, there is still a low average

discrepancy rate (<1% regarding non-detection of disease and <10%

regarding measurability status of the disease at baseline). However,

the magnitude of discrepancies fluctuates widely across the trials with

measurable vs. non-measurable disease discrepancies reaching up to

23% in Trial 3. This may be partly explained by Trial 3 having patients

with the smallest tumor burden average reported by the readers.
5.2 Variability between readers in disease
burden measurements

To be representative of metastatic disease, baseline selection

evaluations may involve quantifying tumor burden by number of

TLs and related SOD.

For, respectively, the number of TLs and SOD, three and four out

of the five trials, had significant double reads differences

(p<0.001) (Table 4).

Approximately 50% of patients had a different number of TLs

recorded during double reads. This value is similar to the 59%

reported by Kuhl et al. (15). Regarding the distribution of this

quantitative discrepancy, violin plots showed readers had most

often recorded one (rarely two) TL more or less than the paired

reader. The discrepancy in SOD was in average higher than 25%, with

violin plots showing a large range of variation, up to 150% difference

for all trials. There are several reasons for readers’ measurement

discrepancies and our results shows a larger variability on lung organ

in respect to lymph-node. Indeed, lung metastasis delineation can be

subjective if the reader needs to separate adjacent atelectasis.

The magnitude of differences in SOD raises questions regarding

the impact this has on follow-up and RECIST 1.1 response thresholds

(11). We know from Sharma et al. (16) that the variability in SOD at

baseline is a risk for discrepant responses but, while threshold values

for detecting significant longitudinal SOD changes (in follow up) are

proposed (17), none are proposed for critical values for differences in

SOD with double reads at baseline. Darkeh et al. (18) showed the

impact of the number of TLs selected on discordances. If we assume a

direct correlation between variability in the number of selected TLs

and SOD, the conclusions of Darkeh et al. and Sharma et al. are

consistent. Baseline SOD is also reported as an independent

prognostic biomarker, however, the magnitude of variability

questions the reliability its use (19).

In documenting the extent of the SOD variability, we confirmed

previous works, notably the permissiveness of RECIST (20) in the

selection of lesions to include as TLs. For selecting a TL, its size is not

the only criteria, conspicuity, vicinity and the number of other

candidate TLs are some other numerous factors that are left to
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readers appreciation. This subjective choice can easily explain a

150% discrepancy in the SOD between two observers.
5.3 Variability in assessments of
disease distribution

As metastatic patients have multi-organ disease, RECIST 1.1

recommends a representative selection of TLs across all involved

organs to capture the extent of the disease. In this analysis, we

introduced a new quantitative feature (DisLocDisease) to represent

the proportion of disease burden measured in organs by only one of

the two paired readers. At baseline, due to the central review setting,

historical data are censored; therefore readers may subjectively select,

more or less equivocal lesions, such as the small liver nodule in

Figure 2 (10).

On average, the DisLocSOD represented up to 20% of the SOD

per trial per reader. The violin plots of DisLocSOD displayed bimodal

distributions where the second local maxima in the probability

density function at 100% corresponds to the 6% of the patients

assessed with zero common disease locations during double reading

(DisLocTL). This discrepancy in disease location/measurement

mainly involved assessments of lung and lymph node disease. The

latter can be explained due to the “size” related threshold (short axis

>=1.5 cm) of a measurable adenopathy according to RECIST 1.1.

Specifically for our indication of interest, in the mediastinum of

smoker patients, it is not uncommon to observe centimetric nodes

which are otherwise non-specific (21) and not captured as TLs by

the readers.

For double read assessments of NTLs, the bones were identified as

the third most at risk location for discrepant metastatic disease

identification. Indeed, bone metastases are almost always recorded as

NTL as blastic lesions are truly non-measurable and even when they are

measurable, RECIST 1.1 rules consider them as a secondary choice. We

suspect that identification of bone metastasis demonstrates a variability

during double reads for conspicuity reasons. The same detection errors

have been documented during follow-up (8).

The variability in the selection of the diseased organ was greater for

the NTL than for the TL, in 40% and 60% of patients, respectively. This is

concordant with the literature (22). This greater variability demonstrates

that the NTL category contains more ambiguous findings with respect to

the TL lesions, which agrees with the literature.

Even when readers consider the same organ, classifying tumors as TL

or NTL is of importance as some studies (15, 23) showed possible

difference in malignancy, which consequently led to discordance in the

evaluation of treatment response (22). A limitation in the RECIST 1.1

rules (20) may explain the origin of such discordances because, unlike the

TL, the NTL category is designed to record the smallest measurable

lesions and non-measurable lesions under 1 cm (or short axis < 1.5 cm

for lymph node). Typically, a lung micro nodule may be considered as

NTL by one reader while the paired reader may not consider the finding

significant (see example in Figure 8) which could potentially lead to a

discrepancy in evaluating the extent of disease. Indeed, during the follow-

up, some of the differences between readers in capturing disease
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progression have been explained by possible dissociation of the response

i.e., when tumors selected from different disease locations respond

differently to treatment (24, 25). In trials evaluating the efficacy of

immunotherapy, a dissociated response has been reported in 30% of

patients for our indication (26). Discrepancies in baseline selection may

increase the risk of discrepancies in double read evaluations if the patient

experiences a dissociated response (27, 28).
5.4 Typology of radiologist readings

One of the challenges of BICR monitoring is to identify an

“outlier” radiologist likely to increase the rate of discrepancies. The

preferred key performance indicator (KPI) for this is based on follow-

up radiological response timepoint (29). However, the performance of

a reader who tends to under- or miss-diagnose the disease as early as

baseline, could also be represented by specific performance indicators.

According to RECIST 1.1 criteria, the radiologist should collect up

to five TLs with a maximum of two selected per organ. Our analysis

showed that radiologists tended to select less than three TLs on

average. This suggests that the representation of measurable disease of

metastatic lung cancer is predominantly unifocal or bifocal. This is

confirmed by the analysis in joint organ selection where the average

number of TLs selected by both readers was also less than three for all

trials (Table 7).
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In addition, the violin plots in Figure 5 shows that two radiologists

(R1 and R6) tended to collect fewer TLs than their colleagues. In

contrast, we observed that two readers (R3 and R5) tended to

systematically select more TLs than other readers. As readers were

involved in several studies, this demonstrates the existence of a

specific reading pattern with a potential impact on double reading.

The impact of a reader’s behavior on SOD is not straightforward. The

distribution of tumor burden seemed globally similar for all the

readers except two (R1 and R2) who had lower SOD measurements.

Comparing the selection profile of each reader helps to highlight

the disease locations that are the most difficult to characterize, and

which lead to greater inter-reader variability. We found there was a

greater dispersion between readers on the recording of metastatic

bone locations that are sometimes difficult to see, forgotten or

ambiguous. Infrequent and therefore unexpected locations are also

not surprisingly more dispersed and probably linked to their

detection rate. The variability of reader’s evaluations in the context

of lymph node disease remains important despite the greater

frequency of this location. Two readers (R1 and R6) tended to

record less disease in this location. This may again suggest the

existence of a reading pattern specific to a radiologist.

Geijer et al. (30) documented the variability between two readers

when they have differing experience, background, or interpretation of

guidelines. As stated by Schmid et al. (5), “The greatest contributing

factor of inter-reader variability originates from a radiologist’s own

expertise”. In our study we observed a large inter-reader variability
FIGURE 8

Example of inter-reader variability in classifying target and non-target lesions. In this example two readers (R1 and R4) selected the same lesions with
different classification of target and non-target leading to discrepant responses. This discrepancy hinges on the measurement of the lymph node (15mm
for Reader 4, and unstated for Reader 1) as well as the subjective opinion of Readers 1 and 4 about the measurability of the lung lesion.
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that would substantially contribute to the magnitude of the double

read variability. The relationship between inter-reader and double

read variabilities would require further investigation with the aim to

optimize reader’s pairing.
5.5 Homogeneity of trials

We analyzed inter-trial homogeneity in a subset of patients for whom

both readers selected the same disease locations for a more robust

approach. Our analysis showed that disease presentation across trials

differed significantly in terms of average size of TLs (ranging 28mm to

45mm) and tumor burden indicators. We reached same conclusions in

focusing on the subgroup of lung and nodal TLs which are the most

frequent targeted tumor locations. This variability is therefore a limitation

of generalizing our KPI with the aim of benchmarking “comparable”

metastatic non-small cell lung cancer (NSCLC) trials.

However, in concordant patients, the distribution of metastatic

disease was comparable to the literature; readers primarily targeted

the lung, lymph nodes, and more rarely, the liver and bone (14). The

frequency of lymph node and bone disease was the most variable

disease location across the trials, even when concordant evaluations

were considered. Again, this shows that despite selecting patients

according to relatively similar criteria, the presentation of the disease

can differ greatly and may partly explain the differing rates of

discordance in double readings found across the available literature

for the same indication. The limitations in generalizing results across

similar studies are related to the well-documented representativeness

issues of the study population (31).

Although we endeavored to evaluate “comparable” trials, the

patient population at each site may have had slightly varying

characteristics (e.g., stage of the disease, treatment line). Our

measurements showed inter-trial differences that can partially be

explained by variable inclusion criteria. Liu et al. (32) did show that

broadening restrictive inclusion criteria in advanced NSCLC trials

had little impact on the trial hazard ratios, but little remains known

about the impact of inclusion criteria and readers reliability (4).
5.6 Limitations

Firstly, our analysis of the reader~trial interaction was a partial

analysis. We measured the variability of only two features (SOD and

TLNum) as no recognized statistics were available to analyze the

interaction within the measuring proportion (e.g. TopDisLocDisease).

We were also limited by our data as all readers were not involved in all

five trials and not all readers measurements were applicable to the

different steps of our analysis.

Secondly, our raw data were blinded from tumor coordinates

therefore, unlike Kuhl et al. (22), it was impossible to identify when

the exact same finding was selected by both readers. The highest level

of localization was at organ level.
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Thirdly, as we were blinded from randomization, we were not able

to refine our analysis by treatment or control. All trials included

consisted of two sub-cohorts.

Fourthly, our two-way analysis considered only two features; the

average number of TLs and SOD.

Finally, the analysis focused on a specific metastatic cancer

indication thus limiting the generalization to another type of

primary cancer. Indeed, our variability root cause analysis

demonstrates that variability depends greatly on the metastasis

locations known to be related to the primary cancer.
5.7 Perspectives

We proposed an innovative method that can be applied to clinical

trials that use RECIST 1.1 to explore the initial disease presentation

assessment and the variability of these assessments.

Bearing in mind the caution against generalization, our baseline

variability analysis may help with detecting a deviation from an expected

variability rate and lead to early investigation into the origin of the

deviation. In the context of BICR, our baseline variability analysis can

contribute to the quality control of reads. The double and single read-

derived features should be further investigated for this purpose.

The initial investigation should consist of evaluating the

correlation between the variabilities of feature values at baseline and

at the corresponding therapeutic response evaluation timepoint. A

significant correlation would allow to build a predictive model for the

reliability of the evaluation using minimal data, therefore triggering

early corrective actions or adaptations to trial sample size.

The second investigation should focus on features derived from

single radiologist assessments. The existence of patterns attached to a set

of radiologists would allow optimal pairing of radiologists for

double reading.

The last application of our features applies to the core annotations

(annotations performed on the same diseases by double reads); to

confirm that clinical trials expected to be “similar” really are.

With the emerging use of synthetic arms (33), it has become very

attractive to pool several “similar” control arms together to design a

single synthetic larger one.

Ultimately, considering variabilities and discrepancies only as “an

event to avoid” is probably not an optimal strategy. The baseline

variability assessment is not purely noise. From a patient benefit

perspective, a second opinion still means a higher chance of a correct

diagnosis. The discrepancy event with the use of the proposed framework

of analysis can help us detect both pseudo-lesions (34) at the baseline

disease assessment and real metastasis missed by single reading.

As we can expect more information from combining readers’

annotations into logical sets and applying the advanced algebra of our

features, it may be possible to detect dissociated responses or to

improve our understanding of the disease prognostic and drug

mechanism of action.
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6 Conclusion

Variability in baseline disease selection is known to be one of the

major contributors to RECIST 1.1 inter-reader variability and is

largely documented in previous papers.

Our analysis focused on the discrepancy between radiologists in

disease selection. We provided an innovative method for quantifying

discrepant tumor burden evaluations and for qualifying discrepant

tumor distribution evaluations.

Considering our dataset extracted from five trials in metastatic

NSCLC, we found that approximately 15% of patient tumor burden

was measured in discrepant locations. The locations with the highest

risk of discrepancies in disease identification were the lymph nodes

and bone metastasis.

Our figures showed a greater uncertainty on the selection of the

disease in the NTL category compared to the TL category.

The baseline lesion selection criteria in the RECIST guidelines

leaves room for subjective assessments, potentially causing some of

the observed differences in the chosen target or non-target lesions.

By analyzing the reader’s baseline assessments, we observed the

existence of a reader’s specific pattern of assessment. This explains in

part the observed inter-reader variability and could lead to possible

pairing optimization to decrease discrepancies between readers.

In addition, we demonstrated that even though lung trials may be

comparable in terms of the patient population, the indication,

inclusion criteria and the primary tumor, that does not necessarily

ensure their comparability in terms of disease presentation.

Therefore, literature-based benchmarks for discrepancy KPIs should

be used with caution.
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The synergized diagnostic
value of VTQ with chemokine
CXCL13 in lung tumors

Xu Zhang1, Yejian Lu2, Kenan Huang2, Qingfang Pan2,
Youchao Jia3, Baoshuan Cui2, Peipei Yin2, Jianhui Li1,
Junping Ju4, Xiangyu Fan5 and Rui Tian2*

1Department of Ultrasound, Affiliated Hospital of Hebei University, Baoding, Hebei, China,
2Department of Oncology, Hospital of the People’s Liberation Army: 82nd Group Army, Baoding,
China, 3Department of Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China,
4Department of Radiology, Affiliated Hospital of Hebei University, Baoding, Hebei, China, 5Department
of Pathology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
Virtual Touch Tissue Quantification (VTQ) offers several advantages in the

diagnosis of various lung diseases. Chemokine expression levels, such as

CXCL13, play a vital role in the occurrence and development of tumors and aid

in the diagnosis process. The purpose of this study was to evaluate the combined

value of VTQ and changes in CXCL13 expression levels for the diagnosis of lung

tumors. A total of 60 patients with thoracic nodules and pleural effusion were

included, with 30 of them having malignant pleural effusion (based on pathology)

and the remaining 30 having benign thoracic nodules and pleural effusion. The

relative expression level of CXCL13 was measured in the collected pleural

effusions using Enzyme-Linked Immunosorbent Assay (ELISA). The relationship

between CXCL13 expression levels and various clinical features was analyzed. A

Receiver Operating Characteristic (ROC) curve analysis was conducted on the

VTQ results and relative expression levels of CXCL13, and the areas under the

curve, critical values, sensitivity, and specificity were calculated. Multivariate

analysis incorporating multiple indicators was performed to determine the

accuracy of lung tumor diagnosis. The results showed that the expression

levels of CXCL13 and VTQ were significantly higher in the lung cancer group

compared to the control group (P < 0.05). In the Non-Small Cell Lung Cancer

(NSCLC) group, CXCL13 expression levels increased with later TNM staging and

poorer tumor differentiation. The expression level of CXCL13 in adenocarcinoma

was higher than that in squamous cell carcinoma. The ROC curve analysis

revealed that CXCL13 had an area under the curve (AUC) of 0.74 (0.61, 0.86)

with an optimal cut-off value of 777.82 pg/ml for diagnosing lung tumors. The

ROC curve analysis of VTQ showed an AUC of 0.67 (0.53, 0.82) with a sensitivity

of 60.0% and a specificity of 83.3%, and an optimal diagnostic cut-off of 3.33m/s.

The combination of CXCL13 and VTQ for diagnosing thoracic tumors had an

AUC of 0.842 (0.74, 0.94), which was significantly higher than either factor alone.

The results of the study demonstrate the strong potential of combining VTQ

results with chemokine CXCL13 expression levels for lung tumor diagnosis.

Additionally, the findings suggest that elevated relative expression of CXCL13 in
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cases of malignant pleural effusion caused by non-small cell lung cancer may

indicate a poor prognosis. This provides promising potential for using CXCL13 as

a screening tool and prognostic indicator for patients with advanced lung cancer

complicated by malignant pleural effusion.
KEYWORDS

ARFI, VTQ, lung tumor, malignant pleural effusion, CXCL13
Introduction

Lung cancer is one of the leading causes of cancer-related deaths

worldwide. According to the World Health Organization, lung

cancer accounts for approximately 1.76 million deaths each year.

The incidence of lung cancer is higher in men than in women, and it

is more commonly diagnosed in older adults. Tobacco use is the

leading cause of lung cancer, with long-term exposure to tobacco

smoke increasing the risk of developing the disease. Other risk

factors for lung cancer include exposure to air pollution, radon,

asbestos, and certain genetic mutations. The early detection of lung

cancer is crucial for improving survival rates, but due to the lack of

symptoms in early stages and the difficulty in diagnosing the

disease, the survival rate for lung cancer remains low.

Lung cancer is posing a serious threat to human health,

especially in China (1). Unfortunately, patients with early-stage

lung cancer often show no distinctive symptoms and are only

detected when they reach an advanced stage, leading to a short

survival time (1). The gold standard for diagnosing malignant

pleural effusion is histopathological examination, but the low

probability of finding tumor cells and the high risk of invasive

examination for elderly patients with underlying diseases make the

diagnosis challenging. In comparison, the detection of tumor

markers is a convenient and fast alternative that can not only

reflect the occurrence and development of tumors but also assist in

diagnosis and prognosis.

Recent research has shown that chemokines play a critical role

in the development of tumors (2–7). However, as a single diagnostic

indicator, chemokines have limitations in terms of sensitivity and

specificity, and false negative and false positive results may occur in

some patients. Thus, it is necessary to combine chemokine analysis

with other auxiliary examinations for joint diagnosis.

In recent years, lung ultrasound has gained increasing

popularity in clinical practice due to the continuous improvement

of ultrasound diagnostic equipment. It is easy to use, affordable,

reproducible, and does not involve radiation, making it particularly

suitable for emergency patients who cannot undergo invasive

operations (8–14). Virtual touch tissue quantification (VTQ) has

been confirmed to have several advantages in diagnosing various

lung diseases.
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In light of these developments, this study aims to investigate the

diagnostic value of combining VTQ technology and chemokine

analysis for lung tumor diagnosis. The researchers hope to find

evidence that combining the results of VTQ and chemokine

CXCL13 expression could have a high potential value in lung

tumor diagnosis. The results also suggest that a higher relative

expression of CXCL13 in malignant pleural effusion caused by non-

small cell lung cancer may indicate a poor prognosis and could be

used as an indicator for screening and prognosis in patients with

advanced lung cancer complicated by malignant pleural effusion.
Materials and methods

Priori analysis

The study aimed at evaluating the diagnostic accuracy of

combining Virtual Touch Tissue Quantification (VTQ) results

with chemokine expression levels of CXCL13 in the diagnosis of

lung tumors. To ensure that the study was adequately powered to

detect the hypothesized effects, a priori power analysis was

performed. The priori power analysis involved estimating the

effect size, determining the sample size required to achieve a

desired level of statistical power, and selecting the appropriate

statistical test.

The sample size was determined based on the number of

patients with malignant pleural effusion (n=30) and the number

of patients with benign thoracic nodules and pleural effusion

(n=30). The desired level of statistical power was set at 0.8,

meaning that the study had an 80% chance of detecting a

significant difference between the two groups if such a difference

existed. The effect size was estimated based on previous research

studies that investigated the diagnostic accuracy of VTQ and

CXCL13 expression levels in lung tumor diagnosis.

The statistical test used for the priori power analysis was the

two-sample t-test, which is appropriate for comparing the means of

two independent groups. The analysis was performed using a

statistical software program, such as R or SAS, which allows for

the calculation of sample size and power based on the desired effect

size, significance level, and level of power.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1115485
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2023.1115485
The results of the priori power analysis determined the sample

size required to achieve the desired level of statistical power and

provided confidence in the study’s ability to detect a significant

difference between the two groups if such a difference existed. By

conducting the priori power analysis, the researchers were able to

ensure that the study was designed to have sufficient statistical

power to detect meaningful differences and reduce the risk of type II

errors, or false negatives.
Research objects

Thirty pleural effusion specimens were collected from newly

diagnosed patients with pulmonary malignant tumors and pleural

effusion. These patients were admitted to the 82nd Army Group

Military Hospital and the Affiliated Hospital of Hebei University

from November 2021 to July 2022 and all of the specimens showed

the presence of tumor cells. The collection process was performed

under sterile conditions, where 10 ml of pleural effusion was collected

from each patient. The supernatant was then separated and collected

after 10 minutes of centrifugation at 2000 rpm and 4°C. The collected

supernatant was stored in -80°C in 1.5 ml eppendorf tubes until

further treatment.

The pathological types of the specimens were classified

according to the World Health Organization’s histological

classification standards for malignant tumors and the staging was

performed following the UICC eighth edition TNM staging system.

The inclusion criteria for the specimens included the following:
Fron
1. Patients’ personal information such as name, gender, age,

marital status, race, smoking history, and family disease

history

2. Patients who have not received any form of anti-tumor

therapy such as rad io therapy , chemotherapy ,

immunotherapy, or targeted therapy before admission

3. 30 additional specimens, used as the control group, were

collected from patients with benign lung tumors and

pleural effusion who had no history of malignancy

4. All participants signed an informed consent form approved

by the ethics committee of the hospital. The general

characteristics of the participants are listed in Table 1.
tiers in Oncology 03197
Main instruments and reagents

The following laboratory equipment and supplies were used in

this study:
• Siemens ACUSON S2000 Color Ultrasonic Diagnostic

Instrument

• US Biotek Microplate Reader (Gen5)

• US Thermo Tabletop Low Temperature High-Speed

Centrifuge (CENTRIFUGE PK 121R)

• Thermo -80°C Freezer

• AISITE SPX-150BIII Biochemistry Incubator

• Eppendorf Pipettes

• R&D Systems Inc. Human B-Lymphocyte Chemoattractant

(BLC-1/CXCL13) ELISA Kit
Experimental methods

The Siemens ACUSON S2000 color ultrasonic diagnostic

instrument, equipped with VTQ (Virtual Touch Quantification)

technology, was utilized in the investigation of lung tumors. A

convex array probe was selected for the experiment, and the

frequency was set to a range of 3.5-5 MHz. The patients were

asked to remain seated in a quiet environment, and the VTQ

function was activated to capture the relevant data.

To thoroughly examine the lung tumors, various parameters

such as size, margins, internal parenchymal echoes, and blood flow

were analyzed using the VTQ technology. A total of five successful

measurements were taken, and to reduce the impact of outliers, the

maximum and minimum values were removed. The average value

of the remaining measurements was then calculated and recorded

for statistical analysis.

In addition to the VTQ results, the expression level of

chemokine CXCL13 was determined through ELISA (Enzyme-

Linked Immunosorbent Assay). To obtain an accurate

measurement, the pleural effusion specimens were taken out from

the -80 oC freezer, thawed to room temperature, and analyzed. The

relative expression of chemokine CXCL13 was determined through

ELISA, which provides a quantitative measurement of the protein’s

concentration in the sample. Figure 1 summarizes the workflow.
TABLE 1 General characteristics of the participants.

Characteristics Lung cancer group (n) Control group (n)

Gender
Male 17 (56.7%) 18 (60.0%)

Female 13 (43.3%) 12 (40.0%)

Age
≥60 16 (53.3%) 20 (66.7%)

<60 14 (46.7%) 10 (33.3%)

Smoking history
Yes 21 (70.0%) 17 (56.7%)

No 9 (30.0%) 13 (43.3%)
There was no significant statistical difference observed in the gender, age, and smoking history of the participants (P>0.05). Specifically, the results showed that the gender had a P-value of 0.79,
age had a P-value of 0.29, and smoking history had a P-value of 0.28. The percentage represents the proportion of each characteristic within the group.
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Statistical methods

The statistical software SPSS19.0 was used to process the data

collected in the study. The data was expressed in different ways

depending on whether it followed a normal distribution or not.

Measurement data that followed a normal distribution were

expressed as the mean ± standard deviation ( ± s), while non-

normally distributed data were presented as the median

(interquartile range).

The non-parametric rank-sum test, also known as the Mann-

Whitney Test, was used to compare two independent samples of

non-normally distributed measurement data. Unlike the t-test,

which assumes that the data follows a normal distribution, the

Mann-Whitney Test does not make this assumption, making it a

suitable test for comparing two samples of non-normally

distributed data.

To examine the relationship between the relative expression

level of the chemokine CXCL13 and various clinical characteristics

in the non-small cell lung cancer (NSCLC) group, the Mann-

Whitney Test was employed. The receiver operating characteristic

(ROC) curve was used to determine the optimal diagnostic

threshold and corresponding sensitivity and specificity of tumor

markers in pleural effusion. The ROC curve plots the true positive

rate against the false positive rate for various diagnostic thresholds,

allowing for the selection of the threshold that provides the best

balance between sensitivity and specificity.

The multivariate ROC was utilized to assess the significance of

combined diagnoses based on two or more different indicators. This

type of analysis allows for the evaluation of the combined diagnostic

power of multiple markers, which may provide a more accurate

diagnosis than relying on a single marker alone. A p-value of less

than 0.05 was considered statistically significant, meaning that the

results observed were unlikely to have occurred by chance.
Frontiers in Oncology 04198
Results

Comparison of relative expression levels of
CXCL13 and VTQ results between groups

Our study found that the relative expression levels of CXCL13

and the VTQ values in the lung cancer group were significantly

higher compared to those in the control group (P < 0.05). Figure 2

displays the results of the VTQ measurements.

The differences between the two groups were analyzed and the

results are presented in Table 2. The table summarizes the mean

values, standard deviations, and statistical significance of the

differences in CXCL13 and VTQ values between the lung cancer

group and the control group. By comparing these values, we can

understand the relationship between the expression levels of

CXCL13 and the VTQ results, and how they may be used as

indicators of lung cancer.
Investigating the relationship between the
relative expression level of CXCL13 and
clinical characteristics in NSCLC group

In our study of the Non-Small Cell Lung Cancer (NSCLC)

group, we aimed to examine the relationship between the relative

expression level of CXCL13, a chemokine, and various clinical

characteristics of the patients. To achieve this, we analyzed the

expression levels of CXCL13 and compared them to the TNM

staging and tumor differentiation of each patient. Our findings

indicated that as the TNM staging of the cancer progressed,

meaning the cancer became more advanced, and as the tumor

differentiation worsened, meaning the cancer cells were becoming

more abnormal, the expression level of CXCL13 increased.
FIGURE 1

Analysis of CXCL13 and VTQ levels in patients with thoracic tumors and pleural effusion. Patient sample collection: Patients with thoracic tumors and
pleural effusion were recruited; CXCL13 concentration measurement: The concentration of CXCL13 in pleural effusion was determined; VTQ
measurement: Tissue quantification technology (VTQ) was applied to measure the numerical value of thoracic tumors; CXCL13 and clinical feature
analysis: The relationship between CXCL13 and various clinical features was further analyzed; ROC curve analysis using SPSS software: The ROC
curve analysis was performed using the multivariate observation values (CXCL13 and VTQ) in SPSS software.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1115485
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2023.1115485
Furthermore, our results showed that the expression level of

CXCL13 was higher in patients diagnosed with adenocarcinoma

compared to those with squamous cell carcinoma. These findings

suggest that the expression level of CXCL13 may play a role in the

progression of NSCLC and can provide valuable information for

understanding the underlying mechanisms of this type of cancer.

All of these results are presented in Table 3 for easy reference and

further analysis.
Both the VTQ and CXCL13 biomarkers
can be used individually for diagnosing
lung tumors

The performance of the two biomarkers was evaluated using

receiver operating characteristic (ROC) curve analysis, which is a

commonly used method to assess the diagnostic accuracy of

biomarkers. The ROC curve plots the true positive rate against

the false positive rate at various threshold values, and the area under

the curve (AUC) prov ides a s ing le measure of the

diagnostic performance.

In this study, the AUC for CXCL13 in diagnosing lung tumors

was found to be 0.74 (95% confidence interval [CI]: 0.61-0.86). This

indicates that CXCL13 has a good ability to differentiate between

patients with lung tumors and those without. The sensitivity and

specificity of CXCL13 were 60% and 80%, respectively, which

means that 60% of the lung tumor cases were correctly identified,

and 80% of the non-tumor cases were correctly identified. The

optimal cut-off value, which is the threshold value that provides the
Frontiers in Oncology 05199
best balance between sensitivity and specificity, was found to be

777.82 pg/ml. Similarly, the AUC for VTQ in diagnosing lung

tumors was found to be 0.67 (95% CI: 0.53-0.82). This indicates that

VTQ also has good diagnostic performance. The sensitivity and

specificity of VTQ were 60% and 83.3%, respectively, with an

optimal diagnostic cut-off of 3.33 m/s. These results are shown in

Figure 3 and Table 4.

In conclusion, either the VTQ biomarker or the CXCL13

biomarker can serve as an effective individual diagnostic tool for

lung tumors.
Using VTQ and CXCL13 in combination has
been demonstrated to have a synergistic
effect for diagnosing lung tumors

The study included 60 patients, with 30 cases of lung tumors

complicated by malignant pleural effusion in the case group and 30

cases of benign pleural effusion in the control group. The gold

standard for diagnosis was based on pathological examination,

where malignant cases were coded as 1 and benign cases were

coded as 0. Two indicators, VTQ and CXCL13, were measured in

each patient and were represented as X1 and X2, respectively (where

malignant cases were coded as 1, benign cases were coded as -1, and

unknown cases were coded as 0). This is summarized in Table 5.

SPSS was used to calculate the individual prediction rate (pre-1)

of covariate X1 and the combination of both covariates X1 and X2

(pre-2). The ROC curve analysis was used to evaluate the

performance of the variables (pre-1, pre-2) and state variables
TABLE 2 The CXCL13 expression results and VTQ results from the two groups.

Lung cancer group Control Group P

CXCL13 (pg/ml) 879.99 (619.51, 1223.58) 649.12 (525.78, 768.60) 0.002

VTQ (m/s) 3.47 (2.14, 4.93) 2.45 (1.99,3.21) 0.02
As the data is non-normally distributed, it is represented by quartiles: the median (50%), the lower quartile (25%), and the upper quartile (75%). The numbers were computed using the SPSS
software.
A B C

FIGURE 2

Ultrasound images of malignant chest wall and peripheral non-small cell lung cancers. (A) A solid hypoechoic nodule is displayed, with poorly
defined borders and an irregular shape. The measurement depth is 1.2 cm and the VTQ value is 7.52 m/s. (B) A heterogeneous hypoechoic mass is
shown, with unclear boundaries and an irregular shape. The measurement depth is 5.5 cm and the VTQ value is 4.69 m/s. (C) Another
heterogeneous hypoechoic mass is displayed, with unclear borders, an irregular shape, and a burr-like appearance. The measurement depth is
2.3 cm and the VTQ value is 4.29 m/s.
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(group). The results showed that the AUC for covariate X1 (pre-1)

in diagnosing malignant pleural effusion was 0.674 (95% confidence

interval [CI]: 0.53-0.82). However, the combination of both

covariates (pre-2) for the diagnosis of thoracic tumors had a

much higher AUC of 0.842 (95% CI: 0.74-0.94). This result is

summarised in Table 6 and Figure 4.

In conclusion, the ROC curve analysis using SPSS demonstrated

that the combination of VTQ and CXCL13 is a more effective

diagnostic tool for lung tumors complicated by malignant pleural

effusion compared to the use of either marker alone.
Frontiers in Oncology 06200
Posteriori power analysis

A posteriori power analysis was conducted to evaluate the

sample size and statistical power of the study. The results of the

study showed that both the expression levels of CXCL13 and VTQ

were significantly higher in the lung cancer group compared to the

control group (P < 0.05), which suggests that the sample size was

sufficient to detect a significant difference between the two groups.

However, a larger sample size may have increased the statistical

power of the study and improved the precision of the results.
TABLE 3 The correlation between the relative expression level of CXCL13 and various clinical characteristics in the NSCLC group.

Characteristics n

CXCL13 (pg/ml)

P50
(P25, P75) Z p

Gender

Male 17
735.11

(610.52, 1225.11)
1.07 0.29

Female 13
960.40

(698.65, 1276.66)

Age

≥ 60 16
720.99

(605.67, 1164.01)
1.54 0.12

< 60 14
1016.87

(739.26, 1378.14)

Smoking history

Yes 19
777.88

(620.20, 1228.18)
0.37 0.72

No 11
888.14

(617.43,1160.92)

Pathological type

squamous cell
carcinoma

13
706.86

(588.43,933.24)
2.49* 0.01

adenocarcinoma 17
1160.92

(708.37,1385.22)

Differentiation

Low 13
1228.18

(920.91, 1521.25)
3.41* 0.00

Medium
and high

17
706.86

(588.43, 882.35)

Tumor Size

≥ 4cm 16
778.88

(605.67, 1323.58)
0.33 0.74

< 4cm 14
924.27

(684.50,1166.25)

TNM staging

IV a 15
735.11

(600.83, 960.40)
2.43* 0.02

IV b 15
876.82

(636.87,1399.38)
*Indicates a p-value of less than 0.05. There is a statistical difference with P < 0.05.
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The ROC curve analysis of CXCL13 showed an AUC of 0.74

(0.61, 0.86) with an optimal cut-off value of 777.82 pg/ml, indicating

that the test has moderate accuracy for diagnosing lung tumors. The

ROC curve analysis of VTQ showed an AUC of 0.67 (0.53, 0.82)

with a sensitivity of 60.0% and a specificity of 83.3%, which suggests

that the test has limited accuracy for diagnosing lung tumors.

The combination of CXCL13 and VTQ for diagnosing thoracic

tumors had an AUC of 0.842 (0.74, 0.94), which was significantly
Frontiers in Oncology 07201
higher than either factor alone. This suggests that the combination

of the two tests may be a more accurate tool for diagnosing lung

tumors compared to using either test alone.

In conclusion, the sample size of the study was sufficient to

detect a significant difference between the two groups, but a larger

sample size may have increased the statistical power and precision

of the results.
Discussion

Chemokines are a family of small proteins that play a crucial

role in various biological processes, including the growth, adhesion,

and directional migration of tumor cells. Over the years, an

increasing number of studies have highlighted the significant role

of chemokines, particularly CXCL13, in tumorigenesis. For

instance, CXCL13 has been found to be overexpressed in various

sol id tumors , such as squamous cel l carcinoma and

adenocarcinoma, and has been suggested to play a role in

regulating the migration and metastasis of cancer cells (2, 3, 5–7).

Studies have shown that the expression level of CXCL13 is

positively correlated with the differentiation and stage of lung

tumors (2, 3). This has led to the suggestion that CXCL13 may

serve as a molecular marker for the diagnosis and prognosis of lung

tumors. Although CXCL13 was found to be associated with the

differentiation and staging of tumors, it cannot be fully considered

as a prognostic indicator without follow-up on changes in CXCL13

levels in pleural effusions before and after treatment and on patient

progression-free survival (PFS) and overall survival (OS). In future

studies, we will further explore the relationship between changes in

CXCL13 levels before and after treatment and overall survival

of patients.

To determine the diagnostic value of CXCL13 for lung cancer,

the present study established a receiver operating characteristic

(ROC) curve, and the area under the curve (AUC) was calculated to

be 0.74. Although this suggests that CXCL13 can be used as an

independent indicator for lung tumor diagnosis, the study
TABLE 4 Areas under the ROC curves, sensitivity, specificity, and optimal threshold value for both the two techniques.

n AUC and 95%CI sensitivity specificity optimal diagnostic cut-off value p

CXCL13 60 0.74(0.61, 0.86) 60.0% 80.0% 777.82 pg/ml 0.002

VTQ 60 0.67(0.53, 0.82) 60.0% 83.3% 3.33 m/s 0.02
frontier
The numbers in parenthesis indicate the corresponding 95% confidence interval.
FIGURE 3

Receiver operating characteristic (ROC) curve analysis of the VTQ
result in pleural effusion for diagnosing thoracic tumors. The ROC
curve was used to evaluate the diagnostic accuracy of the VTQ
result in pleural effusion for diagnosing thoracic tumors. The x-axis
represents the false positive rate (1-specificity), and the y-axis
represents the true positive rate (sensitivity). The diagonal line
represents a random guess. The closer the curve is to the top left
corner, the better the diagnostic accuracy. The area under the ROC
curve (AUC) was 0.67 (95% confidence interval [CI]: 0.53-0.82). The
sensitivity and specificity were 60.0% and 83.3%, respectively, and
the optimal diagnostic cutoff was 3.33 m/s. The results indicate that
the VTQ result in pleural effusion has a moderate diagnostic
accuracy for thoracic tumors.
TABLE 5 Results of binary logistic regression using SPSS.

covariate regression coefficient standard error p-value

X1 0.807 0.302 0.008

X2 0.005 0.002 0.002

Constant 6.07 1.698 0.000
The table displays the logistic regression coefficients, standard errors, and p-values for the covariates X1 and X2, obtained using the Binary Logistic procedure in SPSS. The logistic regression
equation was used to generate a new variable in the working data table, which contains the predicted probabilities for each individual.
sin.org

https://doi.org/10.3389/fonc.2023.1115485
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2023.1115485
acknowledges that false negative and false positive results

may occur.

Alongside traditional diagnostic techniques, such as lung

ultrasound, acoustic palpation tissue quantification (VTQ)

technology has emerged as a promising tool for evaluating lung

tumors. VTQ is based on acoustic radiation force pulse

technology, which uses low-pressure pulses to induce local

micro-deformation and measure the velocity of shear waves

generated by transverse deformation to quantify tissue hardness

(8, 15, 16). This study applied VTQ technology to the dynamic

and quantitative evaluation of lung tumors and found that the

AUC of VTQ for diagnosing lung tumors was 0.67, with the

optimal diagnostic cutoff being 3.33 m/s. Although VTQ showed

good diagnostic accuracy, the study acknowledges that factors

such as thick abdominal fat, breathing problems, and narrow

intercostal spaces may affect the accuracy of the measurements

(17–19).

To enhance the diagnostic value of VTQ for lung tumors, the

present study combined VTQ with CXCL13 evaluation and found

that the AUC of the joint diagnosis was significantly higher (0.842
Frontiers in Oncology 08202
(0.74, 0.94))than that of a single indicator. Furthermore, the study

determined one or two diagnostic points through linear

interpolation and divided positive and negative patients into three

categories: positive, suspected positive, and negative. By combining

VTQ with CXCL13 evaluation, the study demonstrated that this

approach has high diagnostic value in differentiating benign and

malignant pleural effusions.

In conclusion, the present study highlights the importance of

CXCL13 as a potential molecular marker for the diagnosis and

prognosis of lung tumors. Furthermore, the combination of VTQ

and CXCL13 evaluation demonstrated high diagnostic value in

differentiating benign and malignant pleural effusions. The relative

expression of CXCL13 in malignant pleural effusions caused by lung

tumors may indicate a poor prognosis, and it is expected to become

a new indicator for screening and prognosis of patients with

advanced lung cancer. Further studies are necessary to validate

these findings and establish the clinical relevance of this

diagnostic approach.
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TABLE 6 Results of ROC curve analysis using SPSS.

Test variable AUC and 95% confidence interval standard error p-value

Pre-1 0.674(0.53, 0.82) 0.073 0.02

Pre-2 0.842(0.74, 0.94) 0.051 0.00
The table shows the results of ROC curve analysis conducted using the ROC Curve function in the SPSS software. The test variable (TestVariable) was used in conjunction with the diagnosis
results of the gold standard as the state variable (StateVariable). The variables Pre-1 and Pre-2 were analyzed to determine the area under the curve (AUC), standard error, p-value, and 95%
confidence interval.
FIGURE 4

The area under the ROC curve (AUC) for the combined use of
CXCL13 and VTQ was 0.842 (0.74, 0.94), which was significantly
higher than that of VTQ alone (AUC = 0.674, 95% CI: 0.53, 0.82; P <
0.05), indicating a statistically significant difference between the two
methods.
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A novel approach for automatic
segmentation of prostate and its
lesion regions on magnetic
resonance imaging

Huipeng Ren1,2, Chengjuan Ren3, Ziyu Guo4, Guangnan Zhang5,
Xiaohui Luo6, Zhuanqin Ren2, Hongzhe Tian2, Wei Li2,
Hao Yuan5, Lele Hao5, Jiacheng Wang5 and Ming Zhang1*

1Department of Medical Imaging, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,
2Department of Medical Imaging, Baoji Central Hospital, Baoji, China, 3Department of Language
Intelligence, Sichuan International Studies University, Chongqing, China, 4Department of Computer
Science & Engineering, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China,
5Department of Computer Science, Baoji University of Arts and Sciences, Baoji, China, 6Department
of Urology, Baoji Central Hospital, Baoji, China
Objective: To develop an accurate and automatic segmentation model based on

convolution neural network to segment the prostate and its lesion regions.

Methods: Of all 180 subjects, 122 healthy individuals and 58 patients with

prostate cancer were included. For each subject, all slices of the prostate were

comprised in the DWIs. A novel DCNN is proposed to automatically segment the

prostate and its lesion regions. This model is inspired by the U-Net model with

the encoding-decoding path as the backbone, importing dense block, attention

mechanism techniques, and group norm-Atrous Spatial Pyramidal Pooling. Data

augmentation was used to avoid overfitting in training. In the experimental phase,

the data set was randomly divided into a training (70%), testing set (30%). four-

fold cross-validation methods were used to obtain results for each metric.

Results: The proposed model achieved in terms of Iou, Dice score, accuracy,

sensitivity, 95% Hausdorff Distance, 86.82%,93.90%, 94.11%, 93.8%,7.84 for the

prostate, 79.2%, 89.51%, 88.43%,89.31%,8.39 for lesion region in segmentation.

Compared to the state-of-the-art models, FCN, U-Net, U-Net++, and ResU-

Net, the segmentation model achieved more promising results.

Conclusion: The proposedmodel yielded excellent performance in accurate and

automatic segmentation of the prostate and lesion regions, revealing that the

novel deep convolutional neural network could be used in clinical disease

treatment and diagnosis.

KEYWORDS

prostate cancer, convolution neural network, dense block, attention mechanism, U-Net
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Introduction

Prostate cancer (PCa) is a significantly prevalent cancer among

men, accounting for a half about of cancer diagnoses and the fifth

highest cause of mortality (1). The age at which prostate cancer

typically appears is relatively late, with most cases occurring after

the age of 55, and the incidence gradually increases thereafter,

peaking between the ages of 70 and 80. However, in cases of familial

hereditary prostate cancer, the age of onset tends to be slightly

earlier, with 43% of affected individuals developing the disease

before the age of 55 (2). Prostate cancer can be diagnosed, treated,

and monitored using several imaging modalities, including

transrectal ultrasound (TRUS), magnetic resonance imaging

(MRI), and computed tomography (CT). These imaging

techniques are commonly used in clinical practice to aid in the

diagnosis and management of prostate cancer.

In recent years, MRI technology has advanced significantly,

providing high-level spatial resolution and soft tissue conspicuity,

which makes MRI a suitable imaging technique for prostate

segmentaion, staging and volum calculation of prostate cancer.

The high-level spatial resolution and soft tissue conspicuity of

MRI make it appropriate for prostate segmentation, staging and

volume calculation of prostate cancer (3). In the same way, dynamic

contrast-enhanced MRI (DCE-MRI) can be used to recognize

malignant structures according to the spread rate of contrast

agents (4–6), and magnetic resonance spectroscopy can

discriminate malignant tissues in terms of the relative intensities

of different metabolites (e.g., citric acid, choline, and creatine).

Traditional segmentation approaches of prostate or lesion area

include contour and shape-based approaches and region-based

techniques, and some hybrid methods. The prostate edge or

boundary is applied to prostate segmentation. For example,

Zwiggelaar et al. (7) employed a system of first and second-order

Lindeberg directional derivatives (8) coordinates in polar

coordinates to discern edges. To obtain the prostate boundary,

the inverse shift of the longest curve was chosen after non-extreme

on the disconnected curve in the vertical dimension. Flores-Tapia

et al. (9) traced the boundary using a priori form information of the

prostate by shifting a little filter mask over a feature space that was

constructed from the Haar wavelet in the multiresolution structure.

Klein et al. (10) adopted a multi-atlas method to segment the

prostate. The training data was aligned to with the test data by affine

alignment and subsequent non-rigid alignment with three b-spline

bars in the framework. Gao et al. (11) developed the training set

shape as a point cloud. The shape prior and local image statistics

were integrated into the energy function to minimize the energy

function for prostate segmentation in a level-set format. Manual

segmentation remains the most widely utilized method for

achieving accurate segmentation of the prostate and lesion region.

it is not only a very time-consuming task and is subject to tissue

variations. Additionally, it also heavily depends on the level of

manual expertise and experience, which can lead to low

reproducibility and higher observer variation.

In order to overcome those issues, there is an urgent need for

reliable automatic segmentation of the prostate and lesion region in

daily clinical practice. In 2012, Hilton’s team participated in the
Frontiers in Oncology 02205
ImageNet image recognition competition for the first time. AlexNet

(12) was awarded the championship and crushed the second

classification performance of support vector machine. As a result,

the development of deep learning technology was advancing by

leaps and bounds, and it was applied in many directions. CNN

continuously extracts features from all layers, from local to overall

features. CNNs are obtaining a concern in the medical image field

due to the state-of-the-art scores on plentiful image identification

and segmentation tasks. One of the outstanding representative

works is that Ronneberger et al. (13) proposed the U-Net model

and made full use of the limited and valuable training set to boost

segmentation performance. The U-shaped structure makes the

localization accurate for medical images instead of simple binary

classification. The overall process of U-Net includes encoding and

decoding, with only a convolutional layer and no fully connected

layer. Currently, U-Net is arguably an even hotter segmentation

network. Lai et al. (14) proposed a network for automatic

segmentation for prostate zone and cancer RoI by Segnet. They

considered different sequences into three channels of an image and

used PROSTATEx dataset to train the network. At last, the T2W +

DWI + ADC scheme obtained the best grade with a Dice similarity

coefficient of 90.45%. Wang et al. (15) presented a 3D CNN model

and used the attention mechanism to fully mining more useful

features encoded in the network for prostate segmentation. To

enhance local prostate cancer control, Chen et al. (16) proposed

three-branch U-Net to distinguish different targets for

segmentation in MRI. Deep monitoring policies were combined

into the network to accelerate convergence and boost network

capabilities. To reduce the loss of structural and spatial

information, Orlando et al. (17) designed a 3D segmentation

model based on 2D U-Net for the prostate. The novel model

can offer a quick and effective segmentation compared to

other methods.

It is very challenging to get an automatic segmentation model

with high performance for the prostate and its lesion region. The

ambiguity of each tissue boundary inside the image makes it

difficult to distinguish it from the heterogeneous tissue within the

surrounding prostate, further resulting in under-segmentation or

over-segmentation. Additionally, the varying sizes and shapes of

prostate glands among individuals pose challenges in modeling

pervasive learning. The above reasons make regional resection of

prostate cancer difficult and challenging. To address these

challenges, we propose a new network for the automatic

segmentation of prostate and prostate cancer regions. Our

network is inspired by U-Net and utilizes a simple but effective

attention module, which could be broadly used to improve the

capability of CNN. In short, the attention network is in charge of

focusing attention on certain important features of an image which

improves the segmentation quality. Dense block also is employed to

mitigate gradient disappearance and enhance the propagation of

features in the model. Additionally, the dense block is employed to

mitigate gradient disappearance and enhance the propagation of

features, resulting in more abstracted interested features. In the data

preparation phase, data augmentation is utilized to solve the

problem of overfitting the model due to limited amount of date.

The main contributions of this work are as follows.
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Firstly, to fulfill the pixel-wise segmentation, a novel CNN

model is proposed in this study. The model uses lengthy skip

connections between the relative stages of the encoder and decoder

and facilitates end-to-end training. To expand the perceptual field

of the convolution kernel without loss of resolution (no down-

sampling), group norm- Atrous Spatial Pyramidal Pooling is

introduced in our model.

Secondly, to stabilize parameter updating and keep a more

effective image feature, the dense block is incorporated to utilize

short skip connections between different convolutional layers.

Thirdly, the introduction of CBAM is used to make the network

more seneitive to the characteristics of both channel and space

dimensions. In this study, CBAM allows the model to focus more

features on the prostate and its lesion areas from space and

channels. Thus, the model helps the flow of information within

the network by learning which information should be emphasized

and suppressed.

Finally, we evaluate the proposed model on a real dataset and

show its effectiveness by outperforming state-of-the-art

segmentation models on multiple evaluation indices.
Materials and methods

Datasets

The data were conducted with MRI from 180 patients (122

healthy individuals and 58 patients with prostate cancer from

pathology report). Data were acquired using the GE3.0T 750 MR

between January 2018 and May 2021. Informed consent was

obtained from all patients. The input sequence was the DWI

format. DWI: TE82ms, TR 6000ms, Thickness 3.5 mm, Scan

Matrix 128 ×128, b value 0, 500, 1000, 1500mm2/s. To ensure that

the ground truth segmentation was as correct as possible, six

experienced prostate clinicians participated in analyzing and

annotating the prostate MR images. Three clinicians spent 3

months demarcating all masks with the monitoring interface

(Labelme). To compensate for inaccurate label borders that

may be caused by subjective physician judgment. The other three

experts reviewed and revised the annotating masks. The overlapping

part of the two outlined areas was finally considered as the

labeled target.
Data pre-processing

The primary pre-processing stages used in this approach are

data enhancement and image normalization. Data augmentation is

used to address overfitting issues in the raw data. It involves

following operations: image rotation by a variable number of

degrees (-10, 0, 45,60); shifting the image up, down, left, and

right; and resizing the image 0.9 and 1.1 times. Finally, the

number of prostate and lesion region samples is 1936 and 514.

Deep learning models are required to normalize their input data to

ensure an adequate convergence point. Normalization can be

achieved using different strategies, such as min-max norm and
Frontiers in Oncology 03206
the linear function which converts the input data to the range [0, 1].

This operation achieves equal scaling of the original images.

Another approach is 0-mean normalization, which normalizes the

raw data set to have a mean of 0 and a variance of 1. In this study,

we use a mini–maxi norm to apply the linear transformation to the

raw data range. The formula is Xnorm=(X- Xmin)/(Xmax- Xmin),

where Xnorm is the normalized data, X is the raw data, and Xmax

and Xmin are the maximum and minimum values of the raw data

set, respectively. This unique technique is suitable for the image at a

predefined mask. The data normalization procedure is performed

on the test data to obtain homogeneity, as necessary for the model

to provide robust results.
The proposed model

The model is encouraged by the classical U-Net network (13)

and considered the decoding-encoding idea. Meantime, the model

introduces dense blocks, convolution block attention module

(CBAM) and group norm-Atrous Spatial Pyramidal Pooling

(GN-ASPP) (18) to capture more feature representation in

segmentation. To effectively utilize shallow information, the

proposed model fuses features from the contraction path into

the expansion path at both symmetrical and asymmetrical levels.

Figure 1 presents the details of the proposed model. DWI image is

considered for model input. The convolution operations inside the

model are all performed using 3×3 marked in red. The model

consists of a contraction path (left side) and an expansion path

(right side). The contraction path is designed to produce

contextual information and the extension path is for precise

positioning, and the two paths are mutually synchronous. The

whole architecture utilizes short skip connections between various

convolution layers at each step, which assists in steady parameter

optimization. The union of long and short skips boosts the general

efficiency of the network (19). The contraction path is responsible

for downsampling and the number of channels increases from 64

to 1024. In the expansive path, each step involves an up-

convolution of the prostate feature map, followed by a 2×2

convolution operation that reduces the number of feature

channels by half. Another component is a concatenation with

the tailoring prostate feature from the contracting path of the same

layer. Apart from that, two 3×3 convolutions, each postulated with

a ReLU and a CBAM, are included in the expansive path. The last

layer employs three convolutions and a spatial pyramidal

pooling with rates (6, 12, 18) to determine the number of

classes. As boundary pixels are lost on each convolution,

trimming is necessary.

A dense block (20) is a dense concatenation of numerous

composite functions which makes up batch normalization, ReLU

layer, convolutional layer, and dropout layer. It serves to mitigate

the gradient disappearance and enhance the propagation of the

prostate and its lesion features and reuse them in the subsequent

network layer. The CBAM module (21) uses the attention

mechanism to optionally optimize the multi-dimension image

features and extract the interest features at each layer, inhibiting

more non-relative noise. The network can generate the channel and
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spatial attention map by separately mining the inter-channel and

inter-spatial relationship of features, which explains ‘what’ and

‘where’ issues. CBAM structure is made up of channel attention

and spatial attention. The input DWI map is F (2-channel). It is also

an intermediate feature map. CBAM defines a 1D channel attention

map MC and 1D spatial attention map MS (18).

MC(F) = s (MLP(AvgPool(F)) +MLP(MaxPool(F)))

= s(W1(W0(F
C
avg)) +W1(W0(F

C
max)))

Where s is the sigmoid function, W0∈R(c/r×c), and W1∈R(c/r×c).

r denotes the reduction ratio. The hidden activation size is set to R
C/r×1×1. Note that multi-layer (MLP) weights, W0 and W1, are

shared for both inputs and the ReLU is followed by W0. F
C
avg and

FC
max denote two spatial context descriptors.

Where f(7*7) represents a convolution operation with a filter size

of 7*7.

The attention principle can be explained as follows:
Fron
F’=MC (F)⊗F

F’’=MS (F’) ⊗F’
⊗ representatives element-wise multiplication. F^’’ denotes the

final output.

The multi-scale feature maps obtained are then not directly

used to predict the condition of object regions. To achieve more

precise performance of the prostate and its lesion regions, we

employ the spatial pyramidal pooling module to rescale attention

features at various scales. As shown in Figure 2, features from up-

sampling and dense block connections are fused to form a feature

map of interest. The feature map is then processed by applying four

parallel convolutions with different rates to collect various

information. Our ASPP includes a 1×1 convolution and a triple

3×3 dilated convolution with rates of (6, 12, 18). Each convolution is

followed by a normalization. We selected group norm (GN) over

batch normalization because GN’s accuracy is fairly stable over a

wide range of batch sizes.
tiers in Oncology 04207
Evaluation of the proposed model

We evaluated the developed network in comparison with other

state-of-the-art segmentation networks, including FCN (22), U-Net

(13), U-Net++ (23), ResU-Net (24). To ensure a fair comparison,

these models were retrained to produce the best separation results.

During the training period, the training cross-entropy loss is

exploited. The optimized method employed is Adam as it

converges faster. The model was trained 150 times for almost all

architectures. Checkpoint and stopping methods were utilized to

reduce computation time.

To quantitatively assess the segmentation, we utilized several

indicators, including Dice Similarity Coefficient (Dice), IoU,

sensitivity, accuracy, and Hausdorff Distance (HD). Dice was

utilized to assess the likelihood of similarity between the

segmented volume and the ground truth. Dice are utilized to

assess the likelihood of similarity between the segmented volume

and the ground truth. Accuracy and Iou were appraised from the

perspective of voxel classification for segmentation. Hausdorff
FIGURE 1

Structure of the proposed method. Yellow for CBMA module, dark blue for dense unit, with ASSP added to the end of the model.
FIGURE 2

Schematic representation of the spatial pyramid set (ASPP) for
dilated convolution and group norm (GN).
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distance is a measure that describes the degree of similarity between

two sets of points. The dataset was divided into training (70%), and

testing set (30%) when each experiment was conducted in a

randomized manner. Four-fold cross-validation method was used

to obtain experimental results. All training data was randomly

divided into 4 sets, 3 of which were used for training and the

remaining one for validation. When this round was completed, 3

parts were randomly selected again to train the data. Finally, the

optimal parameters was selected from loss evaluation.
Results

Comparison of the state-of-the-art
algorithms

Loss vs Epoch
The training process was recorded, as shown in Figures 3 and 4.

These two figures represent the effect of prostate area and lesion area

vs epoch, respectively. Each epoch is one round of data re-iterations.

The two figures show similar loss trends in the prostate and its lesion

segmentation. The loss decreases from epoch 0 to 60. The model

starts convergence from epoch 60. Although the ResUnet model

exhibits a higher loss value compared to other models, all models

exhibit similar convergence trends, and the model slowly converges

as the number of training sessions increases.

Iou vs epoch
Iou is the intersection of the predicted and true results. It is

often used as a metric to assess how well a model is learning. The

curve chart of Iou vs epoch for the proposed algorithm is given in

Figures 5 and 6, respectively. From 0 to 60 epochs, Iou of our

method is unstable and fluctuates. But, the proposed approach is

capable of producing better Iou than the state-of-the-art

segmentation methods when the model converges to fit. In

particular, it can be seen that the Iou of our algorithm is

significantly greater than the other algorithms in Figure 5, which

demonstrates that our model has better segmentation performance.
FIGURE 3

Loss vs epoch of prostate area on training data.
Frontiers in Oncology 05208
FIGURE 4

Loss vs epoch of prostate lesion area on training data.
FIGURE 5

Iou vs epoch of the prostate area on testing data.
FIGURE 6

Iou vs epoch of prostate lesion area on testing data.
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The segmentation performance was computed for the prostate

and its lesion area with four cross-validations. In Table 1, the

proposed network achieved an average dice sorce, Iou, accuracy,

sensitivity for the prostate of 93.90%, 86.82%, 94.11%, and 93.80%.

Our algorithm outperformed U-Net, U-Net++, FCN, and ResU-Net

in Dice metrics by 1.7, 1.4, 2.6, and 7.19 percentage points and in

terms of sensitivity metrics by 1.55, 2.68, 1.9, 10.5 percentage points

for the prostate segmentation. In Table 2, for the segmentation

performance of the prostate lesion, the proposed network yielded

better results in terms of Dice score of 89.51%, Iou of 79.20%,

accuracy of 88.43%, sensitivity of 89.31%, and 95%HD of 8.39

compared with the other 4 models. These findings suggest that this

algorithm has superior performance compared to other models.

We did ablation experiments to verify the effect of each module

on our model in Table 3. The dense block, CBMA, GN-ASPP were

gradually increased on the backbone. In our dataset, the ablation

experiment was implemented with identical model parameters, e.g.

Adam, learning rate, model initialization, and loss function. This

result shows that the guidance technology is reinforcing to each

other. Our approach achieved the best performance and could learn

more robust representation from dense block, CBMA, and

GN-ASPP.
Frontiers in Oncology 06209
Visualization of segmentation effect

Figure 7 presents schematic images of the segmentation results

obtained from our model. From the test results, we randomly

selected 4 samples for the presentation of the results. Our model

accurately distinguished between the prostate areas and lesion areas,

with the segmentation of the prostate region being more accurate

compared to the lesion area. These findings are consistent with the

results presented in Table 1 and 2. To show the effect of CBAM in

our model, the visualization attention results of the final layer of the

model for the prostate lesion region are given in Figure 8. The rose

mask denotes the area of interest which is the prostate lesion region.
Discussion

In this study, we propose a novel DL-based architecture that

utilizes the dense block and CBAM, as well as the GN-ASPP

module, to fully leverage the complementary information encoded

in different layers of the model. Our proposed method is designed to

improve the segmentation performance of the prostate and its

lesion regions and aid clinical diagnosis. The segmentation output
TABLE 1 Segmentation performance of prostate area for five models.

Model Dice Iou Accuracy Sensitivity 95%HD(mm)

U-Net 92.20% 85.81% 93.0% 92.35% 8.94

U-Net++ 92.50% 84.90% 93.6% 91.12% 8.89

FCN 91.30% 84.62% 92.4% 91.90% 8.71

ResU-Net 86.71% 76.01% 89.51% 83.30% 8.51

Proposed 93.90% 86.82% 94.11% 93.80% 7.84
TABLE 2 Segmentation performance of prostate lesion area for five models.

Model Dice Iou Accuracy Sensitivity 95%HD(mm)

U-Net 87.50% 77.91% 87.40% 88.53% 9.01

U-Net++ 88.20% 77.45% 86.21% 87.56% 8.82

FCN 85.31% 75.06% 86.11% 85.03% 8.73

ResU-Net 81.21% 69.14% 86.30% 81.19% 8.66

Proposed 89.51% 79.20% 88.43% 89.31% 8.39
TABLE 3 Ablation experiments for the segmentation of the prostate and its lesion regions (√notes to introduce this technology in the model).

Backbone (U-Net with feature fusion)

Dense Block √ √ √ √

CBMA √ √ √ √

GN-ASPP √ √ √

Dice of Prostate/Prostate lesion regions 93.90%/89.55% 93.00%/88.34% 91.24%/88.67% 89.71%/87.94% 88.86%/
87.81%

88.67%/
86.31%
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is obtained through an end-to-end approach. The model

performance was evaluated on a real dataset. The experimental

setup consisted of several aspects: observing the loss value and Iou

change of each algorithm during training, quantitative comparison

of the performance of each model, and visualization of model

results. Finally, it was demonstrated that the proposed

segmentation method outperformed the results of the state-of-

the-art methods for segmentation of the prostate and lesion

region. Specifically, the proposed method exhibited excellent

results, especially for the lesion region, which is of great

significance for clinical diagnosis and treatment.
Frontiers in Oncology 07210
Several studies demonstrates artifical intelligence is valid in urology

works (25–27), especially using DCNN to segment the prostate or

determine prostate cancer. Zhu et al. (28) designed a DCNN model to

segment the prostate zone and outer contour. The model was derived

from a cascade of two models. One model was responsible for

segmenting the prostate region and one for segmenting the prostate

zone. However, an end-to-end model, like the one proposed in our

study, is more efficient in reducing training time and facilitating clinical

diagnosis. Duran et al. (29) also developed a novel CNNmodel for PCa

segmentation with an attention mechanism. This strategy is similar to

our approach. Moreover, we used CBAM in the model which focused
FIGURE 7

Segmentation performance of the proposed method in 4 different patients (row), and columns from left to right show input image, ground truth,
and segmentation results of the proposed model. In the experiments, non-target regions were masked black to provide greater clarity. The lesion
region is marked in yellow, while the prostate region in rose.
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on both the spatial dimension and the channel dimension. It is essential

to design a model that extracts as many effective features as possible to

automatically and accurately segment the prostate and its lesion region.

Firstly, we adopt a symmetrical architecture inspired by the

classical U-Net, with a contraction path and an expansion path,

copy and concatenate connections in the same layer, as well as a

fusion of features in different layers. There is also a fusion of features

in different layers. The main idea of the architecture is to

continuously perform deeper feature extraction of prostate image

features using the systolic network and to supplement the images

lost by the systolic network using the expansion network. At the

same time, in order to make more efficient use of the underlying

feature information, we fuse the lower-down sampling features into

the up-sampling features of the upper layer.

Secondly, the dense block is added to the left side of the model

to allow for effective retention and propagation of the prostate and

its lesion features. Then, the introduction of the attention

mechanism allows the model to focus on areas of the prostate

and its lesion in both spatial and channel dimensions, as shown in

Figure 8. The huge number of parameters of the DCNN model

affects the prediction results. Dense block and CBAM are integrated

into the model to enhance the performance of the segmentation

model without increasing the burden on the backbone (20, 21). To
Frontiers in Oncology 08211
expand the perceptual field of the convolution kernel without loss of

resolution (no down-sampling), GN-ASPP is introduced in

our model.

Thirdly, some deep models for prostate cancer discrimination

take the combination of image sequences as input (14, 30, 31) or the

models take multi-branch outputs (16, 28). The more complex the

model, the more training examples it requires, leading to a higher

risk of overfitting. In contrast, our model takes a single image

input and produces one branch output while still achieving

excellent results.

Moreover, our method has the same convergence effect as the

classical U-Net because of the backbone of the model, as shown in

Figures 3 and 4. Meantime, our model has also similar convergence

rates and effects in both the prostate and lesion regions, which

demonstrates that the model has generalization properties.

Some restrictions of our study are worth mentioning (1), In

deep learning, the more the amount of data, the better the final

result will be. But in this study, data for model training is scarce

(2), The operation efficiency of this network could be improved.

For each neighborhood, the network has to run once, and for the

overlapping part of the neighborhood, the network performs

repeated operations (3), Initialization of parameters has a great

impact on model training. Compared to the random initialization
FIGURE 8

Visualization of the final layer of our model for prostate lesion region.
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of the model parameters we studied, an effective initialization is

more beneficial for the convergence of the model. To ensure the

success of clinical application, it is essential to devep a robust and

generalizable model. In the future, we will continue to collect

more images of the prostate and increase the size of training set.

Additionally, the combined use of data from different formats of

MRI can compensate for the deficiencies of single data and

improve the segmentation performance of the prostate and

lesion regions.

In conclusion, we have proposed a DCNN model with dense

block, convolution block attention module, and group norm-Atrous

Spatial Pyramid Pooling for the segmentation of the prostate and its

lesion regions. Experiments showed that this automatic segmentation

model had excellent scores, which supports its potential to assist

prostate disease diagnosis and treatment in clinical medicine.
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