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Editorial on the Research Topic

Beneficial effects of functional ingredients in feed on immunity
improvement and growth promotion of aquaculture animals
Aquaculture now supplies an increasing proportion of food fish, 49% (1.226 billion

tons) of the total in 2020, and is the fastest growing food sector with production as the per

capita food fish supply has reached 20.2 kilograms (FAO, 2022). With capture fisheries

declining in worldwide and the expansion of the farming industry, fish meal, the critical

protein sources in feed, is obviously inadequate to support the requirement, and use levels

will still have to be declined. The application of plant protein sources and non-protein

energy sources are increasingly widespread. Consequently, the poor feed palatability,

decreased food intake, reduced health and growth performance of farmed animal

induced by receiving low-fishmeal diets have recently gained increasing attention

(Lazzarotto et al., 2018; Niu et al., 2019; Wattanakul et al., 2019). On the other hand,

Due to the rapid expansion of farming scale, the increased rearing densities and

deteriorated aquatic environment leads to an outbreak in disease frequency (Li et al.,

2020; Jahangiri et al., 2022). Given the use of antibiotics is being restricted, it is particularly

important to develop safe and effective ingredients to improve both the growth and health

of aquaculture animals.

Here, we inspire a Research Topic including 10 papers on dietary ingredients

influencing the growth performance, meat quality, ovarian development, intestinal

histology, antioxidant activity and immunity of economic aquatic animals, aiming to

highlight the strategies and fundamental mechanisms for promoting the sustainable

development of aquaculture based on both the experiments and theory.

To alleviate growth reduction and enteritis caused by low fish meal diets, Yao et al.

evaluate the different inclusion level of Schizochytrium limacinum in diets, and

demonstrated that 0.6% S. Limacinum supplementation can improve the growth

performance, promote hepatopancreas lipid metabolism, reduce apoptosis, promote
frontiersin.org015

https://www.frontiersin.org/articles/10.3389/fmars.2023.1229367/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1229367/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1229367/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1229367/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1229367/full
https://www.frontiersin.org/research-topics/40087
https://www.frontiersin.org/research-topics/40087
https://doi.org/10.3389/fmars.2022.1090235
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2023.1229367&domain=pdf&date_stamp=2023-06-22
mailto:shaojianchun16@mails.ucas.ac.cn
https://doi.org/10.3389/fmars.2023.1229367
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2023.1229367
https://www.frontiersin.org/journals/marine-science


Wang and Shao 10.3389/fmars.2023.1229367
autophagy and improve intestinal health of Litopenaeus vannamei

fed low fish meal diets. The study of Yue et al. revealed that

limonene, allicin and betaine supplementation in low fish meal

diets had a time effect on the growth performance, and could

improve antioxidant capacity, meat quality and intestinal health of

largemouth bass (Micropterus salmoides). Meanwhile, Ke et al.

reported that that dietary sodium butyrate intervention could

enhance growth and feed utilization of orange-spotted grouper

(Epinephelus coioides) with high soybean meal-induced enteritis

by promoting intestinal digestive enzyme activities, reducing

mucosa permeability, maintaining the integrity of intestinal

morphology and attenuating the intestinal inflammatory response.

Plant-based additives have been attracting growing attention in the

last two decades. Studies in M. salmoides demonstrated that mulberry

leaf extract could improve antioxidant capacity, immune function, and

glycolipid metabolism, thereby alleviating the negative effects of a high-

starch diet (Tingsen et al.). An addition of 2% fermented tea residue

can also improve the growth and the liver antioxidant capacity, and

enhance the resistance to Aeromonas hydrophila in largemouth bass

(Jiang et al.). Moreover, Chien et al. reported that the appropriate level

(250-500 ppm) of dietary grape extract could improve the growth

performance and antioxidant activity of L. vannamei.

Other additives were also involved in this Research Topic. An

increase of growth performance and antioxidant status were observed

in juvenile yellow catfish (Pelteobagrus fulvidraco) fed diets supplied

with pyrroloquinoline quinone (Shi et al.). Additionally, SKL17-2

peptide, a 17-amino acids (aa) short peptide synthesized based on

interferon-g related protein in large yellow croaker (Larimichthys

crocea), could destroy Pseudomonas plecoglossicida and was

considered to be a potential feed additive used for prevention and

treatment of visceral white nodules disease (Lin et al.).

Beside feed supplements, several ingredients were also

investigated in this Research Topic. The effects of cholesterol on

ovarian development of Eriocheir sinensis were well studied by Guo

et al., in which 0.4% of dietary cholesterol can promote ovarian

maturation via improving the estradiol level of the organism.
Frontiers in Marine Science 026
Moreover, the impact of the dietary inclusion of cellulose with

different viscosities on the growth, nutrient digestibility, serum

biochemical indices, and the hepatic and gut morphology of

largemouth bass indicated that viscosity is the main anti-

nutritional effect of dietary carboxymethyl cellulose and soluble

non-starch polysaccharides (Liu et al.).

The Research Topic summarized some of the latest advancement

on the recent development and achievement in revealing growth and

immune regulation of functional dietary ingredients on aquaculture

animals. We are appreciated to all authors for their innovative works

and all reviewers for their helpful comments. We sincerely thank the

Editorial Team of Frontiers in Marine Science for their hard work to

get the publication of Research Topic.
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The study aimed to evaluate the effects of fermented tea residue (FT) on growth

performance, intestinal morphology, liver antioxidant capacity and Aeromonas

hydrophila infection in juvenile Largemouth bass. A total of 240 fish were

randomly distributed in 12 tanks with 20 fish per tank (4 treatments with 3

replications) and fed with diets FT at the rate of 0 (control), 2, 4 and 6%. The

weight gain rate (WGR), specific growth rate (SGR) and intestinal villi height (VH)

of juvenile largemouth bass were significantly higher than those of the control

group after feeding FT (P< 0.05); meanwhile, the liver superoxide dismutase

(SOD), glutathione peroxidase (GSH-PX) and catalase (CAT) activities of juvenile

largemouth bass were significantly higher and the malondialdehyde (MDA)

levels were significantly lower than those of the control group after feeding FT

(P< 0.05). Mortality occurred in all groups of largemouth bass after the injection

of A.hydrophila, but feeding FT reduced the cumulative mortality compared

with the control group (P< 0.05). In juvenile largemouth bass infected with

A.hydrophila, the relative mRNA expression of the intestinal anti-inflammatory

factors IL-10 and TGF-a was significantly higher and that of the pro-

inflammatory factors IL-1, IL-15, IL-8, and TNF-a was significantly lower (P<

0.05). In summary, it can be seen that a 2% FT addition can improve the liver

antioxidant capacity of juvenile largemouth bass, enhance the resistance to

A.hydrophila and increase the growth of largemouth bass.
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1 Introduction

Largemouth bass (Micropterus salmoides) is a carnivorous

warm-water fish from California, U.S.A. It has become one of

the main species of freshwater aquaculture in China because of

its strong adaptability, fast growth rate and tender flesh

(Bureau 2021). In 2020, the farmed production reached

619,519 tons, an increase of 29.66% compared with 2019;

(Bureau, 2021). However, under intensive farming, disease

outbreaks are more frequent in largemouth bass, which are

mainly caused by parasites, bacteria and fungi, The producers

need to use a lot of antibiotics and disinfectants to treat these

diseases, which leads to economic losses (ValladãO et al.,

2015). However, the misuse of antibiotics or chemicals can

cause many negative effects on the environment, animals and

humans (Cabello, 2010; Rico and Brink, 2014). Therefore, the

use of antibiotics is slowly being restricted. It has become a

trend in the global aquaculture industry to use positive

immune stimulants to enhance the innate immune

mechanism of fish to increase their disease resistance (Fuchs

et al., 2015; ValladãO et al., 2015).

Studies have shown that preventive treatments promote

innate immune responses in fish and reduce disease outbreaks

in aquaculture (Ma et al., 2020; Tadese et al., 2020). The use of

micro-ecological preparations, such as fermented feed, and

plant-based additives can better enhance the immunity of

aquaculture animals (Burr et al., 2010; Newaj‐Fyzul and

Austin, 2015; Dawood et al., 2018; Niu et al., 2020). The

addition of Aqualase® (a yeast-based commercial probiotic

composed of Saccharomyces cerevisiae and Saccharomyces

ellipsoidal) in the feed can moderate the intestinal microbiota

of rainbow trout and improve immunity and growth (Adel et al.,

2017). The inclusion of 2.5 - 2.61*107 CFU/kg of two probiotics

(Lactococcus lactis and weissella confuse) in the diet can improve

the growth performance of fingerling great sturgeon, improve

the immune index, and increase the height of intestinal villi

(Yeganeh Rastekenari et al., 2021). The fermented dragon fruit

in the diet improves the growth performance and feed utilization

of Platax pinnatus and increases antioxidant enzyme activity to

some extent (Chu et al., 2021). Feeding fermented feed by

Bacillus subtilis to Penaeus monodon is shown to improve the

growth performance, feed digestibility, survival rate and

immunity of spot prawns (De et al., 2018).

After soaking goldfish infected with A. hydrophila for a

certain period of days with 1% compound herbal water, the

damaged primary gill flaps, liver, heart and muscle tissue

structure of goldfish are restored (Ramasamy et al., 2010).

Immunostimulant (mixture of Chinese herbs and Bacillus),

could significantly upregulate the expression of NADPH

oxidase genes and antioxidant genes in tilapia spleen

neutrophils, thus improving the immunity of tilapia (Abarike

et al., 2019).
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Tea residue is a by-product of tea refining, which is rich in

tea polyphenols, theanine and other active ingredients, with

natural antioxidants, immune promotion and other functions

(Rietveld and Wiseman, 2003; Hamer, 2007). There are more

types of fermented feed, but the result of synergistic fermentation

of bacteria and enzymes is better than the result of bacteria and

enzymes alone (Xie et al., 2015). Because the combination of

bacteria and enzymes can make the degradation of

macromolecules more complete, the fermentation efficiency is

higher (Sun et al., 2021). The addition of green tea powder to the

diet could increase the serum TP content and SOD activity of

rainbow trout, upregulate the mRNA expression levels of anti-

inflammatory factors and downregulate the mRNA expression

levels of pro-inflammatory factors in the spleen and kidney

(Nootash et al., 2013). Green tea could improve the growth

performance and feed utilization of Paralichthys olivaceus, and

effectively reduce serum glutathione transaminase (GPT) and

low-density lipoprotein (LDL) in fish (Cho et al., 2007). And it

improves the growth performance and health of Nile Tilapia

against infection by A.hydrophila (Abdel et al., 2010). Tea and

fermented feed have positive effects on growth performance,

immune system, pathogen protection and immunity in different

fish species. The application of fermented tea residue on

largemouth bass is limited. In this experiment, we investigated

the effects of FT with different addition ratios on the growth

performance, intestinal tissue structure, antioxidant capacity

and infection of A.hydrophila of largemouth bass.
2 Materials and methods

2.1 Ethical statement

This study was conducted in strict accordance with the

Experimental Animal Management Regulations of Southwest

University of Science and Technology. All of the procedures

were performed following the Declaration of Helsinki and

relevant policies in China.
2.2 Experimental diets and design

Four test diets were prepared. Basal diets and rations with

2%, 4% and 6% fermented tea residue (FT) were added to the

basal diet. The composition of the base diet is shown in Table 1,

and the nutritional composition of the diets is shown in Table 2.

After the base diet was prepared, we added different proportions

of FT to the base diet and then mixed and kneaded them into

soft pellets (1.2-mm diameter) for feeding. FT is made by

crushing tea residue and adding 4% corn flour, 0.8% glucose,

35% water, 0.1% probiotics and enzyme preparations to ferment

thoroughly at 36°C for 3 days. FT is the tea residue produced
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after Fuxuan 9 processing, from Sichuan, China. Probiotics and

enzyme preparations were purchased from a biological

company; the product label number is Q/12JX 4450-2019. The

fermentation bacteria include Lactobacillus Plantarum ≥ 1.0×109

CFU/g, Bacillus subtilis ≥ 1.5×109 CFU/g, Saccharomyces

cerevisiae ≥ 1.0×109 CFU/g; the enzyme preparation contains

cellulase ≥ 1000 U/g, xylanase ≥ 500 U/g, b-glucanase ≥ 3000 U/

g, b-mannanase ≥ 50 U/g.
2.3 Experimental fish and breeding
management

Healthy juvenile largemouth bass (average weight of about 5 g)

were obtained fromMeishan City, Sichuan Province, China. Upon

arrival, all fish were tamed in a test environment for one week. In

the formal trial, after all fish were starved for 24 hours, 240

largemouth bass were randomly divided into 4 treatments

(groups T0 - T3). T0 was the control group receiving the basal

diet, and T1-T3 were fed with FT added to the basal diet at 2%, 4%

and 6%, respectively. Each treatment was stocked with three

replicates stocked with 60 fish (20 fish/tank) in the tank (1m *

50cm * 1m). During the experiment, fish were hand-fed with

experimental diets twice a day at a rate of 3% of body weight (8:30

am and 4:30 pm). We changed 1/5 - 3/5 of the water every 2 - 3

days and used the pump to remove the bottom feces. The water

temperature was natural and the dissolved oxygen content was

greater than or equal to 6.0 mg/L, pH 7.0 ± 0.2, ammonia nitrogen

≤ 0.02 mg/L. The rearing experiment lasted for 56 days.
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2.4 A.hydrophila challenge test

At the end of the feeding trial, 30 fish of each group (10 fish/

tank) were selected to be injected with A.hydrophila for

infection, and previously we derived from pre-experiment that

the LC50 of A.hydrophila on juvenile largemouth bass was

1.65×106 CFU/ml at an injection dose of 0.2 ml/tail. The trial

fish were anesthetized with an appropriate amount of 50 ppm

MS-222 for 3-5 min, and then 0.2 ml of A.hydrophila liquid with

a concentration of 1.65×106 CFU/ml was slowly injected from

the abdominal cavity using a 1 ml injector, and the breeding

environment was kept unchanged.
2.5 Sample collection

For statistical analysis of growth performance, we fasted for

24 h at the end of the breeding test. We weighed the total weight

of each test tank and counted the number of surviving fish for

statistical analysis. Nine fish were randomly selected from each

replicate, anesthetized with 100 ppm MS-222, and their body

weight and length were measured. Subsequently, the midgut of

three fish was randomly selected from each group of nine fish

and fixed with 4% paraformaldehyde for intestinal histological

observation. Take the remaining fish viscera to measure the body

index. collected livers and intestines were snap frozen in liquid

nitrogen (-196°C) and then transferred to -80°C refrigerator for

storage. On the third day after the A.hydrophila infection

treatment, all fish were fasted for 24 h, anesthetized with 100

ppm MS-222, and the whole intestines were taken into sterile

tubes, snap-frozen in liquid nitrogen (-196°C), and then

transferred to -80°C refrigerator storage for intestinal

inflammatory factor expression assay. Growth indicators and

cumulative mortality were calculated as follows:

WGR  weight gain rate,   %ð Þ  = 100� Wt −W0ð Þ=W0

SR  survival rate,   %ð Þ  = 100� (Nt=N0)

SGR specific growth rate,   % =dð Þ  = 100� (lnWt − lnW0)=t

HSI  Hepatosomatic index,   %ð Þ  =  100 �Wh=W
TABLE 1 Composition and nutrient levels of the basal diet (air-dry
basis).

Items Content(%)

Ingredients

fish meal 44

chicken powder 10

cassava starch 8

flour 11

gluten 2

soybean meal 12

soybean oil 6

squid ointment 4

Ca(H2PO4)2 1.5

premix 1.5

Total 100
1) Premix (per kilogram of premix): VA 8000000 IU, VD 2000000 IU, VE 5000 UI, VK
1000 mg, VB1 1500 mg, VB2 1500 mg, VB6 800 mg, VB12 20 mg, nicotinamide 400 mg,
calcium pantothenate 25 mg, folic acid 25 mg, biotin 8 mg, inositol 100 mg; MnSO4·H2O
50 mg, KI 100 mg, CoCl2 (1%) 100 mg, CuSO4 ·5H2O 20 mg, FeSO4 ·H2O 260 mg,
ZnSO4·H2O 150 mg, Na2 SeO3 (1%) 50 mg.
TABLE 2 Nutrient composition of the basal and experimental diets.

Groups EE CP Ash Moisture

T0 8.8 49.7 15.71 11.1

T1 8.6 48.2 15.8 39.1

T2 8.6 47.5 15.7 37.1

T3 8.5 48.5 15.7 37.5
fro
1) Nutrient levels were measured in values.
ntiersin.org

https://doi.org/10.3389/fmars.2022.999947
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Jiang et al. 10.3389/fmars.2022.999947
CF  Condition factor g=cm3� �
  = W=L3

Cumulative mortality rate  %ð Þ  = Nd=Nað Þ � 100

Where Nt and No represent the total number of fish samples

at the beginning and end of the experiment, respectively;Wt and

W0 are the initial and final weight data at the beginning and end

of the experiment (g); W is the body weight per fish, Wh is the

liver weight of per fish. t represents the number of experimental

days (day); L is the length of the fish (cm). Nd is the cumulative

number of fish dead; Na is the initial number of fish after

injection of A.hydrophila.
2.6 Sample measurement

2.6.1 Histomorphology of the intestine
The midgut of juvenile largemouth bass was rinsed with

saline and fixed with 4% paraformaldehyde. After processing,

sections (5 mm) were sectioned using a paraffin slicer, followed

by hematoxylin-eosin (HE) staining and image acquisition by

light microscopy, with the observed sections first observed under

low magnification and the appropriate areas selected for image

acquisition under high magnification. The data for villi height,

width, and thickness of the muscular layer were measured by

Image-Pro Plus software.
2.6.2 Analysis of antioxidant enzyme activities
and immune enzyme activities in liver

The liver tissues stored at -80 °C were thawed on ice, and the

tissues were homogenized with saline 1:9 according to the kit

instructions, centrifuged at 4 °C and 2,500 r/min for 10 min, and

then the supernatant was taken as the tissue homogenate. Total
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protein (TP), superoxide dismutase (SOD), total antioxidant

capacity(T-AOC), glutathione peroxidase (GSH-Px),

malondialdehyde (MDA) and catalase (CAT) were measured

in the liver using a spectrophotometer or enzyme marker

according to the steps of the kit (Nanjing Jiancheng Institute

of Biological Engineering) instructions.

2.6.3 Measurement of intestinal inflammatory
factor expression after A.hydrophila infection

Intestinal tissues stored at -80°C were placed in RNAase-free

centrifuge tubes and ground using a microtissue homogenizer.

Total RNA was extracted from the intestinal tissues by the Trizol

method (TaKaRa, Japan). The concentration of RNA was

measured using a micro ultraviolet spectrophotometer. The

first-strand cDNA was synthesized using the kit (product

number RR047A, TaKaRa) according to the instructions.

Protocol for reverse transcription: 37°C for 15 minutes; 85°C

for 5 seconds. The primers were used to refer to the study of Xv

(Xv et al., 2021). Table 3 shows the PCR primers used in this

study for the coding sequences of IL-1b, IL-8, IL-10, IL-15, TNF-
a and TGF-b genes in the largemouth bass genome. And b-actin
was used as an internal reference gene, the specific primers for b-
actin and target genes were synthesized by Tsingke

Biotechnology Co., Ltd. Quantitative real-time PCR (qPCR)

was performed using NovoStart SYBR qPCR SuperMix Plus

(Novoprotein) on Bio-Rad CFX96 (Bio-Rad) in a total volume

of 20mL.
2.7 Calculations and statistical methods

All data are expressed as mean± SD. Significance levels were

determined by one-way analysis of variance (ANOVA) with
TABLE 3 Primer sequences for real-time PCR.

Genes Primers Sequence 5′−3′ TM (°C) Accession number

IL−8 F CGTTGAACAGACTGGGAGAGATG 64.9 RNA-seq by (Xv et al., 2021)

R AGTGGGATGGCTTCATTATCTTGT

IL−10 F CGGCACAGAAATCCCAGAGC 62.1 RNA-seq by (Xv et al., 2021)

R CAGCAGGCTCACAAAATAAACATCT

IL−15 F GTATGCTGCTTCTGTGCCTGG 62 RNA-seq by (Xv et al., 2021)

R AGCGTCAGATTTCTCAATGGTGT

IL−1b F CGTGACTGACAGCAAAAAGAGG 59.4 RNA-seq by (Xv et al., 2021)

R GATGCCCAGAGCCACAGTTC

TGF-b F GCTCAAAGAGAGCGAGGATG 59 RNA-seq by (Xv et al., 2021)

R TCCTCTACCATTCGCAATCC

TNF-a F CTTCGTCTACAGCCAGGCATCG 63 RNA-seq by (Xv et al., 2021)

R TTTGGCACACCGACCTCACC

b-actin F AAAGGGAAATCGTGCGTGAC 60 RNA-seq by (Xv et al., 2021)

R AAGGAAGGCTGGAAGAGGG
IL-1b, interleukin-1b; IL-8, interleukin-8; IL-10, interleukin-10; IL-15, interleukin-15; TNF-a, tumor necrosis factor-a; TGF-b1, transforming growth factor-b.
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IBM SPSS Statistics 23. Multiple comparisons were performed

using the Tukey multiple range test. The statistical significance

level was set at p<0.05. Graphs were drawn using GraphPad

Prism6 (GraphPad Software, Inc., USA).
3 Results

3.1 Growth performance and
morphometric parameters

As the growth performance and morphological indices are

shown in Table 4, FT can significantly improve the weight gain

rate and specific growth rate of juvenile largemouth bass

compared with T0 (P< 0.05). Compared with T3, T1 and T2

also significantly increased the weight gain and specific growth

rate of juvenile largemouth bass (P< 0.05). The condition factor

of T1 was significantly higher than the rest of the other groups,

and FT could significantly reduce the HSI index of juvenile

largemouth bass (P< 0.05). However, there was no significant

difference in the mortality rate among all groups (P > 0.05).
3.2 Cumulative mortality of juvenile
largemouth bass after injection of
A.hydrophila

In this trial, largemouth bass were infected with A.hydrophila

and mortality was counted for 3 consecutive days, as shown in

Figure 1. After the injection of A.hydrophila, all groups showed

mortality on the first day, but the cumulative mortality rate of the

control group was higher than that of the other groups (P< 0.05),

and the cumulative mortality rate rapidly increased with time. The

cumulative mortality rate for T0 was 43.33%, while T1 was 23.33%,

T2 was 20.00%, and T3 was 26.67%, respectively.
3.3 Morphological observation of the
intestinal tract of juvenile
largemouth bass

The tissue structure of the midgut of juvenile largemouth

bass is shown in Figure 2, and the characteristics of the midgut

villi are shown in Table 5. The intestinal villi of juvenile
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largemouth bass in the control group were shorter and

sparser, with fewer villi and goblet cells (P< 0.05). The height

of intestinal villi was significantly higher in the test group than in

the control group (P< 0.05).
3.4 Largemouth bass liver
antioxidant index

The antioxidant indices in the livers of juvenile largemouth

bass are shown in Table 6. Compared with the control group, the

activities of SOD, GSH-PX, CAT and the level of T-AOC in the

livers showed a significant increase as well as a significant

decrease in MDA content in juvenile largemouth bass after 8

weeks of FT feeding (P< 0.05).
3.5 Expression of intestinal inflammatory
factors in juvenile largemouth bass after
A.hydrophila infection

Infection with A.hydrophila caused an inflammatory

response in the intestine characterized by increased expression

of pro-inflammatory factors and decreased expression of anti-

inflammatory factors. In this experiment, we measured the

expression of intestinal inflammatory factors in largemouth

bass after infected by A.hydrophila. And the results are shown

in Figure 3. In juvenile largemouth bass fed FT for 8 weeks, the

relative mRNA expressions of intestinal pro-inflammatory

factors IL-1b, IL-15, IL-8 and TNF-a decreased significantly,

while the relative mRNA expressions of anti-inflammatory

factors IL-10 and TGF-b increased significantly (P< 0.05). The

relative mRNA expression of anti-inflammatory factors IL-10

and TGF-b1 was significantly higher in T2 compared with those

of T1 and T3. In contrast, the relative mRNA expression of pro-

inflammatory factors IL-1b and IL-15 was significantly lower in

T2 compared with T1 and T3 (P<0.05).
4 Discussion
Tea residue is rich in tea polyphenols, theanine, tea saponin

and other active substances, which can improve the production
TABLE 4 Growth performance and morphological indicators.

Items T0 T1 T2 T3

WGR 137.73 ± 11.16C 219.27 ± 7.77A 204.83 ± 18.71A 175.93 ± 2.84B

SGR 1.53 ± 0.06C 2.07 ± 0.06A 2.00 ± 0.10A 1.80 ± 0.00B

SR 98.33 ± 2.89 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

CF 1.73 ± 0.21B 2.03 ± 0.06A 1.70 ± 0.10B 1.80 ± 0.00B

HSI 3.23 ± 0.50A 2.00 ± 0.2B 1.97 ± 0.45B 2.20 ± 0.0.36B
f

Different letters indicate significant differences (P< 0.05); Values are presented as mean ± SD (n = 3); WGR, weight gain rate; SR, survival rate; SGR, specific growth rate; HSI, Hepatosomatic
index; CF, Condition factor.
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FIGURE 2

Effect of different scales of FT on the morphology of the mid-gut of the juvenile largemouth bass (X100, H&E staining, scale bar = 100(mm). Villi
height (VH), villi width (VW), muscular layer thickness (MT), and the blue arrows indicated are goblet cells.
FIGURE 1

Cumulative mortality of juvenile largemouth bass after injected with A.hydrophila.
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performance of livestock and meat quality (Hamer, 2007). It has

been shown that the addition of appropriate amounts of tea to

diets can improve the activity of digestive enzymes, reduce anti-

nutritional factors, and improve the use of nutrients, thus

promoting the growth of fish (Zhang et al., 2015; Zheng et al.,

2017). Similar to this study, plant extracts such as Common Sage

(Salvia officinalis), Coneflower (Echinacea angustifolia),

Cornelian cherry (Cornus mas L.), Rose hip and Safflower can

stimulate the innate immune response and feed intake, thus

improving fish growth performance (Dadras et al., 2016; Dadras

et al., 2019; Ahmadifar et al., 2022). Fermented feeds can reduce

the anti-nutritional factors in feeds and increase the digestion

and absorption capacity of feeds, thus promoting the growth of

the organism (Ilha et al., 2017; Wang et al., 2017). The addition

of fermented tea residue to the diet can improve the fattening

performance and digestive performance of fattening pigs (Ding

et al., 2020). In this study, FT was able to improve the weight

gain rate and specific growth rate of juvenile largemouth bass,

but the weight gain rate and specific growth rate were lower than

the actual production values, which was probably because the

experiment was conducted during the seasonal change in

autumn and winter, the temperature may have affected the

growth performance of largemouth bass.

The intestine is an important site for digestion and

absorption of nutrients as well as protection against pathogens

in fish. Intestinal histological assessment is an effective method

to assess the effect of dietary components on the intestinal health

of fish (Chauhan and Singh, 2018; Ding et al., 2020). Some

studies found that tea polyphenols and fermented feed could

increase the height of intestinal villi and thickness of the muscle

layer in fish, and improve the intestinal histology of fish
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(Mamauag et al, 2019; Ma et al., 2021; Zhuo et al., 2021). It

was found that the height and width of intestinal villi of juvenile

largemouth bass were higher than those of the control group

after feeding FT, which indicated that the integrity and stability

of the intestinal tract were enhanced, thus strengthening the

digestion and absorption of nutrients by juvenile largemouth

bass and promoting their growth, this might be one of the

reasons for their better growth performance compared to the

control group.

Oxidative stress is a state in which there is an imbalance

between oxidation and antioxidant action in the body, a negative

effect produced by free radicals in the body, which predisposes

the body to age and disease (Bai et al., 2017). The most common

enzymatic antioxidants present in animals are CAT, SOD and

GSH-Px, which mainly serve to scavenge peroxides in the body

to protect it from damage caused by oxidative stress (Yuan et al.,

2019; Chen et al., 2020). The antioxidant enzyme activity in

animals determines the antioxidant capacity of their bodies,

which can be used to assess the health of fish (Tovar-Ramı́ rez
et al., 2010). The level of T-AOC is one of the indicators of

antioxidant capacity in animals, which is an important indicator

of the antioxidant capacity of fish directly (Cui et al., 2014; Yu

et al, 2021). This study found that FT could enhance the activity

of SOD, GSH-Px and CAT as well as the level of T-AOC in the

liver of juvenile largemouth bass, which indicated that FT could

enhance the antioxidant capacity of juvenile largemouth bass

and slow down the oxidative damage to the organism. MDA is a

peroxidation metabolite generated by lipids in the body under

the influence of free radicals. The level of MDA content can

directly reflect the damage to the body by free radicals, and

higher levels of MDA reflect higher peroxidation reactions in the
TABLE 5 Characteristics of midgut villi of largemouth bass.

Items VH/mm VW/mm MT/mm

T0 582.47 ± 30.15C 216.14 ± 14.10A 74.59 ± 3.85

T1 793.92 ± 24.30A 199.57 ± 11.64B 71.72 ± 4.05

T2 725.50 ± 23.74B 216.16 ± 15.11A 76.37 ± 3.95

T3 720.64 ± 56.81B 181.69 ± 14.05C 73.75 ± 4.56
fro
Different letters indicate significant differences (P< 0.05); Values are presented as mean ± SD (n = 5); VH, Villi height; VW, villi width; MT, muscular layer thickness.
TABLE 6 Analysis of antioxidant enzyme activities and immune enzyme activities in liver.

Items T0 T1 T2 T3

TP (mgprot/mL) 3.09 ± 0.19 3.55 ± 0.17 3.53 ± 0.22 3.50 ± 0.33

SOD (U/mgprot) 115.22 ± 1.79C 176.41 ± 4.35A 152.72 ± 9.70B 148.64 ± 3.63B

GSH-PX (U/mgprot) 18.04 ± 1.18D 51.96 ± 2.01A 40.68 ± 2.67C 46.76 ± 0.86B

T-AOC (U/mgprot) 2.64 ± 0.30C 5.65 ± 0.35A 3.58 ± 0.26B 3.57 ± 0.39B

MDA (nmol/mgprot) 5.65 ± 0.31A 4.07 ± 0.01B 3.55 ± 0.12C 3.57 ± 0.14C

CAT (U/mgprot) 144.51 ± 3.30C 229.84 ± 7.10B 241.40 ± 14.16B 273.59 ± 9.61A
Different letters indicate significant differences (P< 0.05); Values are presented as mean ± SD (n =5); TP, total protein; SOD, superoxide dismutase; CAT, catalase; MDA, malondialdehyde;
T-AOC, total antioxidant capacity; GSH-PX, glutathione peroxidase.
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body (Janero, 1990; Yu et al., 2019). In this study, we found that

feeding FT could reduce the liver MDA content of juvenile

largemouth bass. The results were generally consistent with

other studies that dietary medical plants or fermented tea

residue could enhance the activity of SOD, GSH-Px and CAT

as well as the level of T-AOC and reduce the content of MDA in

rainbow trout (Ghafarifarsani et al., 2022), Holstein heifers
Frontiers in Marine Science 08
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(Xie et al., 2020), common carp (Ahmadifar et al., 2022),

Siberian sturgeon (Hasanpour et al., 2019), Tilapia (Qian et al.,

2021), Sea bream (Pérez-Jimé nez et al., 2012) and juvenile

Wuchang bream (Guo et al., 2020).

Bacterial infection is often used as a final indicator of fish

health status after nutrient analysis (Wang et al., 2015; Li et al.,

2020). Bacterial enteritis is the most common intestinal disease
FIGURE 3

Effect of feeding FT on the expression of inflammatory factors in the intestine of largemouth bass after infection with A.hydrophila. Different
letters indicate significant differences (P < 0.05); Values are presented as mean ± SD (n =5). IL-1b: interleukin-1b; IL-8: interleukin-8; IL-10:
interleukin-10; IL-15: interleukin-15; TNF-a: tumor necrosis factor-a; TG F-b1: transforming growth factor-b.
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of freshwater fish. Among many pathogenic bacteria,

A.hydrophila is usually considered one of the main pathogens

causing intestinal inflammation in fish (Cascón et al., 2000;

Macpherson et al., 2012). In our study, the test fish fed FT

showed a higher survival rate after infected with A.hydrophila,

which may be due to the probiotic bacteria used in tea residue

with fermentation to promote the immune response of

largemouth bass. This is in agreement with previous studies

that found green tea or probiotics can enhance the resistance of

Nile tilapia (Abdel et al., 2010; Cavalcante et al., 2020), Cyprinus

carpio (Chandravanshi et al., 2020), Lates calcarifer (Lin et al.,

2017) and Labeo rohita (Rai et al., 2015) to A.hydrophila. It

showed that feeding FT improved the survival of juvenile

largemouth bass and protected the intestine from damage

by A.hydrophila.

Intestinal immune regulatory molecules (cytokines)

expression is positively correlated with the immune status of

fish (Gil, 2002; Reda et al., 2018). Inflammation occurs as an

important component of the innate immune responses.

Therefore, inflammatory cytokines are often used as

biomarkers of immune regulation (Safari et al., 2016). Fish

cytokines can be classified into anti-inflammatory factors

(such as IL-10 and TGF-b1) and pro-inflammatory factors

(such as TNF-a, IL-1b, IL-15 and IL-8), which have important

functions in the immune response. Enterocolitis decreases the

expression of anti-inflammatory factors and increases the

expression of pro-inflammatory factors, so they can indicate

inflammatory damage at the molecular level (Song et al., 2014;

Fcab et al., 2019). Dietary medical plants and probiotics can

regulate fish intestinal innate immunity by promoting anti-

inflammatory factors and reducing the expression of pro-

inflammatory factors, thus strengthening the resistance of fish

to disease-causing agents and thus slowing down inflammation

(Panigrahi et al., 2007; Nootash et al., 2013; Feng et al., 2019;

Vazirzadeh et al., 2019; Ahmadifar et al., 2022). In this study, it

was found that feeding FT can reduce the mRNA relative

expression levels of pro-inflammatory factors IL-1b, IL-15,
TNF-a and IL-8, and increase the mRNA relative expression

levels of anti-inflammatory factors IL-10 and TGF-b1 in juvenile

largemouth bass. Therefore, the appropriate amount of FT can

regulate the inflammatory state in the intestine of juvenile

Largemouth bass after infection with A.hydrophila, thereby

reducing the intestinal damage caused by A.hydrophila.
5 Conclusion

In this research, we found that the addition of a certain

amount of FT could improve the growth performance and

antioxidant capacity of juvenile largemouth bass, improve

intestinal health, and increase resistance to A.hydrophila. A

comprehensive analysis of this experiment showed that 2% FT

addition was more effective.
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Effects of dietary
pyrroloquinoline quinone on
growth performance, serum
biochemical parameters,
antioxidant status, and growth-
related genes expressions in
juvenile yellow catfish,
Pelteobagrus fulvidraco

Qingchao Shi1, Zhengyong Wen1, Jun Wang1, Peng Hu1,
Yuanchao Zou1, Shuqi Wang2 and Chuanjie Qin1*

1Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches
of the Yangtze River, Neijiang Normal University, Neijiang, China, 2Guangdong Provincial Key
Laboratory of Marine Biology, Shantou University, Shantou, China
This study aimed to evaluate the impacts of dietary pyrroloquinoline quinone

(PQQ) supplement on growth performance, serum biochemical parameters,

antioxidant status, and growth-related genes expressions in juvenile yellow

catfish, Pelteobagrus fulvidraco. Triplicate groups of fish (n = 40) with an

average weight of 5 g were fed with five gradient levels PQQ-incorporated

diets (0 (basal), 1.5 mg/kg; 3.0 mg/kg; 4.5 mg/kg, 6.0 mg/kg) for 56 days. Our

findings revealed that fish fed with the diets containing PQQ at the level of 3.0-

6.0 mg/kg showed significantly higher final body weight, weight gain rate, and

specific growth rate than those of that in the control group (P < 0.05). The

activities of protease were observed significantly increased in fish fed with diets

containing 4.5 mg/kg and 6 mg/kg PQQ (P < 0.05). Meanwhile, fish in 4.5 mg/

kg PQQ group showed significantly lower levels of serum total cholesterol,

triglycerides, and low-density lipoprotein cholesterol, and significantly higher

level of the high-density lipoprotein cholesterol (P < 0.05). The antioxidant-

related parameters of superoxide dismutase and total antioxidant capacity

were markedly elevated (P < 0.05), while malondialdehyde content was

significantly reduced in 3.0-6.0 mg/kg PQQ group (P < 0.05). Meanwhile, the

mRNA expression levels of growth-related genes (growth hormone, insulin-

like growth factor 1, and insulin-like growth factor 2) were dramatically up-

regulated in the liver of fish fed with the diets containing 3-6 mg/kg PQQ in

comparison with the control group (P < 0.05). In conclusion, dietary PQQ could

improve the growth performance, serum biochemical parameters, antioxidant

status, and growth-related genes expressions in juvenile yellow catfish, and the
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optimal dietary PQQ level was evaluated to be 4.92 mg/kg of dry diet for

juvenile yellow catfish.
KEYWORDS

pyrroloquinoline quinone, growth, antioxidant status, gene expression,
Pelteobagrus fulvidraco
Introduction

Yellow catfish, Pelteobagrus fulvidraco is an important

aquaculture species in China and its production has greatly

improved over the past 10 years due to its suitability for

aquaculture, marketability, good taste, and high nutritional

value (Shi et al., 2021). Unsurprisingly, this kind of fish has

been largely cultured to meet the increasing market demands. As

a result, lots of outbreaks of infectious diseases that caused by

microorganisms (such as viruses, bacteria fungi, or parasites) are

commonly seen and which usually leads to large economic losses

(Zhang et al., 2014; Jiang et al., 2018). Antibiotics have been

commonly used as a traditional strategy to control the outbreak

of various infectious disease (Ramesh and Souissi, 2018).

However, the over and continuous application of antibiotics

may cause the emergence of antimicrobial resistance,

environmental hazards, and food safety problems (Hollis and

Ahmed, 2014). Meanwhile, the interest in the safety and quality

of aquatic products of customers is obviously increasing with the

growing problems of contaminants, antibiotics, and carcinogens

in aquatic industry (Rama and Manjabhat, 2014). Therefore,

antibiotics have been banned or restricted for utilization in

aquaculture and which has encouraged researchers to develop

alternative strategies. Thus far, many research teams in this field

have devoted themselves to evaluating the positive effects of eco-

friendly bio-active components as functional feed supplements

on the growth, feed utilization, and enzymatic profiles in

different fish including yellow catfish (Gabriel et al., 2017;

Safari et al., 2020; Park et al., 2021; Fu et al., 2022).

Pyrroloquinoline quinone (PQQ), a water-soluble thermo-

stable triglyceride-quinone (Zhang et al., 2006), is initially

identified in methylotrophic bacteria and characterized as a

redox cofactor of bacterial dehydrogenases, such as alcohol

and glucose dehydrogenases (Killgore et al., 1989). PQQ is an

essential nutrient for animals, and intake of PQQ-deficient diet

usually leads to multifarious illnesses (Akagawa et al., 2016).

PQQ has caused considerable attention, as it is exactly important

for mammalian growth, development, reproduction, and

immune function (Steinberg et al., 2003; Ikemoto et al., 2017).

PQQ is also an effective antioxidant that can protect

mitochondria from oxidative stress-induced lipid peroxidation,

protein carbonyl formation, and mitochondrial respiratory
02
19
chain inactivation (Hwang and Willoughby, 2018). On a molar

basis, PQQ exhibited 15-fold effects than ascorbic acid in

reducing chemiluminescence from xanthine-xanthine oxidase

reaction and 7-fold effects than alpha-tocopherol in preventing

lipid peroxidation in rat brain preparations (Hamagishi et al.,

1990). In addition, PQQ inhibits the apoptosis of

cardiomyocytes under conditions of oxygen/glucose

deprivation (Xu et al., 2014). Because of its versatile functions,

PQQ-containing products have been certified by authorities in

Canada as a Natural Health Product (Health Canada, 2012) and

have also been authorized as a new type of food for use in food

supplement by the European Commission in 2018. Until now,

no published studies concerning the physiological responses to

PQQ-supplemented diets has been reported in yellow catfish.

Meanwhile, it is also unclear whether PQQ can be used as a

supplement in aquaculture. According to studies in broilers

(Samuel et al., 2015; Liu et al., 2020; Zheng et al., 2020) and

pigs (Zhang et al., 2019; Yin et al., 2019), we hypothesized that

PQQ may benefit aquaculture by affecting growth, plasma

parameters, and antioxidant status of fish. To verify this

hypothesis, the present study evaluate the effects of PQQ

supplementary diets on the growth performance, serum

biochemical parameters, antioxidant status, and growth-related

gene expression such as growth hormone (GH), insulin-like

growth factor 1 (IGF-1), and insulin-like growth factor 2 (IGF-

2) in juvenile yellow catfish.
Materials and methods

Experimental diets and feeding trials

PQQ (purity, ≥98 mg/kg; Shanxi Boke Biological

Technology Co., Ltd., Xian, China) was diluted with wheat

flour to a concentration of 1 g/kg mixture before being mixed

into the diet. Five experiment diets containing 0 (control), 1.5,

3.0, 4.5, and 6 mg per kg of PQQ in this experiment were

produced at Neijiang Normal University, Neijiang, China, as

described by Shi et al. (2021). The amount of cellulose was

reduced in compensation. The dried experimental diets were

stored at −20 °C for further use. The composition of the

experimental diets was shown in Table 1.
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The current study was performed in polyvinyl chloride round

aquarium (Diameter × High: 100 × 120 cm) located at Neijiang

Normal University (Sichuan, China). Fish provided by a private

fishery farm (Meishan, China) were transported to the rearing

facilities with air pumps, acclimated for two weeks and fed with the

basal diet during this period. After two weeks of acclimatization to

aquarium conditions, a total of 600 fish (average body weight of 5 g)

were randomly divided into five treatment groups with three

replicates (40 fish per replicate). During the feeding period, fish

were fed with the designed diet twice daily (7:30 and 18:30) for 56

days. Daily feeding rates were 4-6% of the total body weight for each

aquarium. The detailed food intake was recorded. Uneaten pellets

were collected at 30min after feeding, gathered, dried, and weighted

in turn, and the data were used to calculate the actual food intake.

This trial was carried out under natural photoperiod. About 25-30%

of the water in the aquarium was replaced per day and the water

temperature, dissolved oxygen, and pH were maintained at 25.0 ±

2.5°C, 7.3 ± 0.2 mg/L, and 7.6 ± 0.2, respectively. Furthermore, the

level of ammonia was kept below 0.3 mg/L.
Samples collection

At the end of the feeding trial, fish were fasted for 24 h,

weighed and counted to calculate their growth performance.

Blood samples (9 fish per replicate) were drawn from the caudal

vein, separated by centrifugation after clotting (10 min at 4000

rpm). The supernatant was stored at −80°C for plasma
Frontiers in Marine Science 03
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biochemical and antioxidant enzyme activity analysis. After

that, the liver and intestine (6 fish per replicate) were removed

immediately using sterile forceps, frozen rapidly by dipping in

liquid nitrogen, and then stored at −80 °C until for analysis.
Digestive enzyme activity

The intestine samples were removed onto the ice,

homogenized in a 1:9 (m/v) ratio of physiological saline

solution, and then centrifuged with 3000 rpm at 4 °C for

10 min. After that, the supernatant comprising enzymes was

stored at −80 °C until further utilization. The amylase and lipase

activities were determined in triplicate using commercial assay

kits supplied by Nanjing Jiancheng Bioengineering Institute

(Nanjing, China). The protease activity of each sample were

analyzed in triplicate was detected using Folin method with

reference to the professional standards of People’ s Republic of

China to determine protease activity SB/T 10317-1999 (SB/T

10317-1999, (1999)). The total amount of protein in the intestine

was determined by using the Bradford method (Bradford, 1976).

All enzyme activities were measured as the change in absorbance

using a Microplate Reader (UV-2802S; Unico, Shanghai, China).
Serum biochemical parameters

The serum biochemical parameters, including alanine

aminotransferase (ALT), aspartate aminotransferase (AST),
TABLE 1 Diet formulation and proximate analysis.

Ingredients (g kg-1) Control 1.5 mg/kg PQQ 3.0 mg/kg PQQ 4.5 mg/kg PQQ 6.0 mg/kg PQQ

Fish meal 280 280 280 280 280

Soybean meal 230 230 230 230 230

Wheat flour 310 310 310 310 310

Soybean oil 25 25 25 25 25

Chicken meal 80 80 80 80 80

Lecithin 20 20 20 20 20

Mineral premix1 10 10 10 10 10

Vitamin premix2 10 10 10 10 10

Choline chloride 5 5 5 5 5

CaH2PO4 10 10 10 10 10

Cellulose 20 18.5 17 15.5 14

PQQ premix3 0 1.5 3.0 4.5 6.0

Proximate compositions (% dry weight)

Crude protein 43.36 43.25 43.30 43.38 43.27

Crude lipid 8.67 8.61 8.58 8.64 8.65

Moisture 5.73 5.72 5.69 5.76 5.74

Crude ash 9.35 9.38 9.33 9.32 9.36
1Mineral premix (mg/kg per premix): Mg 26 g; Fe 8 g; Mn 2 g; I 500 mg; Cu 1 g; Zn 5 g; Se 35 mg; Co 100 mg.
2Vitamin premix (mg/kg per premix): VA 200000 IU; Vitamin D3 150000 IU; Vitamin C 11000 mg; VE 4500 mg; Vitamin K3 480 mg; Vitamin B1 500 mg; Vitamin B2 750 mg; Vitamin B6
650 mg; Vitamin B12 2 mg; Inositol 3000 mg; Nicotinamide 3200 mg; D-calcium pantothenate 1500 mg; Folic acid 130 mg; D-biotin 15 mg.
3PQQ was diluted with corn starch to a concentration of 1.0 g/kg mixture.
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total cholesterol (TC), triglyceride (TG), high-density

lipoprotein cholesterol (HDL-C), low-density lipoprotein

cholesterol (LDL-C), and blood urea nitrogen (BUN) were

measured with commercial kits producted by Nanjing

Jiancheng Bioengineering Institute (Nanjing, China) according

to the manufacturer’s instructions.
Antioxidant parameters

The antioxidant parameters including superoxide

dismutase (SOD), catalase (CAT), total antioxidant

capacity (T-AOC), glutathione peroxidase (GPX), and

malondialdehyde (MDA) were all determined using kits

from the same manufacturer as described by an our previous

study (Shi et al., 2019).
RNA isolation and gene expression

The RNA isolation and detection process were performed

according to the method described by Shi et al. (2019). In brief,

the total RNA was extracted from liver sample (approximately

for 50 mg) using 1 mL Trizol reagent (Invitrogen, USA)

according to the manufacturer’s instructions. Thereafter,

RNA quality and purity were verified by agarose gel (1 mg/

kg) electrophoresis and UV-spectroscopic analysis. A fixed

concentration of RNA (2 mg) was used for cDNA synthesis

using Prime Script II 1st Strand cDNA Synthesis Kit (Tiangen,

Beijing, China) based on the manufacturer’s protocol. For

qRT-PCR, specific primers for GH, IGF-1, and IGF-2 genes

were designed with online Primer 5 software (PREMIER

Biosoft International, San Francisco, CA, USA), based on an

our transcriptome data of yellow catfish (Table 2). The SYBR

Green qPCR Master Mix Kit (Glpbio, USA) was used for qRT-

PCR analysis on a Bio-Rad CFX Connect System (Bio-Rad,

Hercules, CA, USA). The qRT-PCR program was designed as

follows: 95°C for 5 min, followed by 95°C for 15 s, annealing at

specific temperatures (Table 1) for each gene for 30 s, a total of

40 cycles, and 72°C for 30 s. The reaction volume was 20 mL.
Each transcript was analyzed in triplicate (3 fish for each

replicate). The 2−DDCT method was used to calculate the

relative gene expression levels of selected genes.
Frontiers in Marine Science 04
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Statistical analysis

The weight gain rate (WGR), the specific growth rate (SGR),

the feed conversion ratio (FCR), the survival rate (SR),

hepatosomatic index (HSI), and condition factor (CF) were

calculated as follows according to the report by Park et al. (2021):

WGR  =  ð final body weight  –  initial body weightÞ = 
initial body weight �  100

SGR  =  ½100 
�   Ln  final body weightð Þ  –  Ln  initial body weightð Þð � =

 time interval  daysð Þ

FCR  =  feed consumed  g,  dry weightð Þ = weight gain 
g ,  wet weightð Þ

SR  =   initial fish individuals  – dead fish individualsð Þ = 
initial fish individuals 

� 100

HSI  =  100 �  liver weight  gð Þ = whole body weight  gð Þ ;

CF  =  100 �  bodyweight  gð Þ =  body length,  cmð Þ3

All data were presented as the mean ± standard error,

analyzed by one-way analysis of variance (ANOVA) followed

by Duncan’s multiple range tests using SPSS 22.0 software (IBM

Corp., Armonk, NY, USA). Data in different groups was

considered to be significant if P < 0.05.
Results

Growth performance

The effect of PQQ-supplemented diets on growth parameters of

juvenile yellow catfish is displayed in Table 3. Compared with the

control group, dietary PQQ supplementation at 3-6 mg/kg

significantly increased the growth parameters such as FBW, WGR,

and SGR of the juvenile yellow catfish (P < 0.05), and the maximum
TABLE 2 The oligonucleotide sequences of primers for quantitative real-time PCR analysis in this study.

Gene Forward primer (5′-3′) Reverse primer (5′-3′)

IGF-1 5′-GTACGAGAGCAACGGCACACAG-3′ 5′-GGCTTGAGTTCTTCTGATGGACCTC-3′

IGF-2 5′-GATATGAGCAGTGGCAACGGATAGC-3′ 5′-TTTGAACTTTCTGGAGCGGAGGATG-3′

b-actin 5′-GATTCGCTGGAGATGATGCT-3′ 5′-CGTGCTCAATGGGGTACTTC-3′

GH 5′-GCGAGTTTGCTCTTTAGT-3′ 5′-CGATGGAGTCCGAGTTG-3′
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values of these parameters were appeared at 4.5mg/kg group. On the

contrary, FCR was decreased significantly with the administration of

3-6 mg/kg PQQ to the diet and the minimum value was observed in

the 4.5 mg/kg group (P < 0.05). No significant change was detected

in SR, HSI, and CF in all groups (P > 0.05). The relationship between

FBW and dietary PQQ levels for yellow catfish juveniles can be well

expressed by the following secondary curve equation: y = − 0.30286

x2 + 2.98381 x + 27.01114 (R2 = 0.83237) (Figure 1).
Digestive enzyme activity

As shown in Table 4. Dietary PQQ supplementation had no

significant effect on the amylase and lipase activities in the intestine
Frontiers in Marine Science 05
22
of yellow catfish (P > 0.05). However, significantly higher protease

activities were observed in fish fed with 4.5 mg/kg and 6mg/kg PQQ

groups compared with those of that in the control group (P < 0.05).
Serum biochemical parameters

Table 5 presents the effect of dietary PQQ supplementation

on serum biochemical parameters in juvenile yellow catfish. The

activity of AST in the 3 mg/kg PQQ group and the level of LDL-

C in the 4.5 mg/kg PQQ group were all significantly lower than

those of that in the control group (P < 0.05). Except for 6 mg/kg

group, HDL-C level was significantly higher than the control

group (P < 0.05), and the highest value was recorded in the 3 mg/
FIGURE 1

The relationship between the final body weight (FBW) of juvenile yellow catfish and different levels of PQQ supplemented diet after feeding for
8 weeks.
TABLE 3 Effects of PQQ on growth performance of yellow catfish.

Groups1 Control 1.5 mg/kg 3.0 mg/kg 4.5 mg/kg 6.0 mg/kg

FBW (g) 27.52 ± 6.20a 30.17 ± 5.59ab 32.09 ± 4.36b 36.47 ± 3.64c 33.12 ± 2.07bc

WGR (%) 452.31 ± 29.56a 521.66 ± 34.68b 553.62 ± 38.97b 625.84 ± 21.76c 578.56 ± 25.42bc

SGR (% day-1) 3.03 ± 0.27a 3.19 ± 0.14ab 3.32 ± 0.36b 3.57 ± 0.09c 3.38 ± 0.18bc

FCR (%) 1.31 ± 0.03c 1.22 ± 0.06bc 1.16 ± 0.11b 0.96 ± 0.12a 1.07 ± 0.14ab

SR (%) 96.67± 0.03 95.83± 0.05 98.33 ± 0.01 95.00 ± 0.03 96.67 ± 0.03

HSI (%) 1.43 ± 0.03 1.46 ± 0.07 1.44 ± 0.04 1.42 ± 0.02 1.50 ± 0.06

CF (g/cm-3) 1.89 ± 0.16 1.90 ± 0.20 1.86 ± 0.23 1.87 ± 0.09 1.92 ± 0.17
1Data are presented as the mean ± SD (n = 3 replicates).
Data in the same row with different superscripts show significant differences (P < 0.05).
FBW, final body weight, WGR, weight gain rate, SGR, specific growth rate, FCR, feed conversion rate, SR, survival rate, HSI, hepatosomatic index; CF, condition factor.
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kg PQQ group. Besides, the levels of TG and TC in the 4.5 mg/kg

PQQ and 6 mg/kg PQQ groups were significantly lower in

comparison with the control group (P < 0.05). However, dietary

PQQ supplementation did not cause significant changes in the

serum ALT and BUN contents (P > 0.05).
Serum antioxidant status

As displayed in Table 6, the activities of SOD in the serum

significantly increased in fish fed with PQQ diets than that of those

in the control group (P < 0.05), of which in 1.5 mg/kg PQQ group

was highest among various groups (P < 0.05). The levels of T-AOC

in fish fed with PQQ diets (except 1.5 mg/kg) were significantly

increased (P < 0.05), but no significant difference was observed

among the various PQQ diets (P > 0.05). Unlike SOD and T-AOC,

remarkable decrease of MDA contents was found in yellow catfish

fed with 3 mg/kg, 4.5 mg/kg, and 6 mg/kg of PQQ compared to the

fish from the control group. However, no significant difference was

observed regarding the serum GPX and CAT activities in the PQQ

supplementation groups and the control group (P > 0.05).
Gene expression

Relative gene expression levels of growth-related genes GH,

IGF-1, and IGF-2 were shown in Figure 2. The mRNA
Frontiers in Marine Science 06
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expression levels of GH in the liver of fish fed with higher

concentration of PQQ in diets (4.5 mg/kg and 6 mg/kg) were

significantly increased than that of those fed with the lower

concentration (1.5 mg/kg and 3 mg/kg) and control diet (P <

0.05). Except for 1.5 mg/kg group, relative mRNA levels of live

IGF-1 in various PQQ groups were significantly higher than that

of those in the control group (P < 0.05). Dietary PQQ

supplementation significantly increased the mRNA expressions

of the IGF-2 in the liver of yellow catfish (P < 0.05), especially in

the 4.5 mg/kg PQQ group, with representing 12.06-fold higher

in comparison with the control group.
Discussion

In the present study, dietary with PQQ (3-6 mg/kg)

supplementation resulted in significantly higher FBW, WGR,

and SGR, as well as significantly lower FCR. Thus, dietary SHE

was advantageous for the growth of yellow catfish. Similarly,

growth was enhanced by adding PQQ to the basal diet in mice

(Steinberg et al., 2003). Meanwhile, PQQ was a feed additive that

can effectively promote the utilization of nutrients and stimulate

the development of breast muscle in broiler chicks (Samuel et al.,

2015; Liu et al., 2020), and improved the growth of weaned pigs,

feed efficiency, and reduces the incidence of diarrhea in weaned

pigs (Yin et al., 2019). The promotion of growth by dietary PQQ

might be attributed to the modulation of mitochondrial function
TABLE 5 Effects of PQQ on serum biochemical parameters of yellow catfish.

Groups1 Control 1.5 mg/kg 3.0 mg/kg 4.5 mg/kg 6.0 mg/kg

AST (U L-1) 52.13 ± 3.84b 48.28 ± 6.09ab 35.37 ± 2.82a 41.16 ± 3.81ab 38.20 ± 5.69ab

ALT (U L-1) 13.43 ± 2.56 14.22 ± 1.91 14.62 ± 2.24 15.11 ± 1.40 15.34 ± 2.64

TC (mmol L-1) 5.56 ± 0.53b 4.98 ± 0.75ab 4.84 ± 0.42ab 4.26 ± 0.37a 3.99 ± 0.21a

TG (mmol L-1) 2.87 ± 0.01c 2.48 ± 0.23bc 2.18 ± 0.17b 1.74 ± 0.23a 2.21 ± 0.13b

HDL-C 0.39 ± 0.04a 0.86 ± 0.07bc 1.19 ± 0.18c 0.94 ± 0.08bc 0.70 ± 0.05ab

LDL-C 2.38 ± 0.25b 1.78 ± 0.19ab 1.76 ± 0.18ab 1.27 ± 0.21a 1.81 ± 0.15ab

BUN 6.44 ± 0.32 6.60 ± 0.19 6.34 ± 0.15 6.58 ± 0.34 6.33 ± 0.20
fr
1Data are presented as the mean ± SD (n = 3 replicates).
Data in the same row with different superscripts show significant difference (P < 0.05).
AST, aspartate aminotransferase, ALT, alanine aminotransferase, TC, total cholesterol, TG, triglyceride, HDL-C, high density lipoprotein cholesterol, LDL-C, low density lipoprotein
cholesterol, BUN, blood urea nitrogen.
TABLE 4 Effects of PQQ on digestive enzyme activity in the intestine of yellow catfish.

Groups1 Control 1.5 mg/kg 3.0 mg/kg 4.5 mg/kg 6.0 mg/kg

Protease
(U mg-1 prot) 88.35 ± 11.24a 92.07 ± 15.36a 90.18 ± 10.67a 109.54 ± 16.73b 113.89 ± 13.55b

Lipase
(U mg-1 prot) 127.58 ± 12.94 130.35 ± 10.50 138.72 ± 21.65 129.38 ± 17.74 136.35 ± 15.27

Amylase
(U mg-1 prot) 99.32 ± 13.17 96.84 ± 15.26 98.54 ± 10.17 97.04 ± 12.38 101.35 ± 14.20
1Data are presented as the mean ± SD (n = 3 replicates).
Data in the same row with different superscripts show significant difference (P < 0.05).
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(Bauerly et al., 2006). PQQ was found to stimulate mitochondrial

biogenesis through promoting the phosphorylation of cAMP

response element-binding protein and increasing the expression

of peroxisome proliferator-activated receptor-gamma coactivator-

1 alpha (PGC-1a) (Chowanadisai et al., 2010). PQQ could also

improve intestinal health to promote the growth of yellow catfish.

Yin et al. (2019) revealed that PQQ can enhance intestinal

morphology, promote intestinal barrier integrity, and improve

the antioxidant status of the intestine.Wang et al. (2020) indicated

that PQQ can alter the composition or metabolism of intestine

microbiota, especially to increase the abundance of Firmicutes and

decrease the levels of Actinobacillus and Escherichia, resulting in a

more balanced bacterial structure. Moreover, the promotion of

growth by PQQ supplementation could be also due to the increase

of digestive enzyme activity. The digestive enzymes, such as

protease, lipase, and amylase, etc., play a major role in food

digestion and assimilation (Duan et al., 2017). An increase in the
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production of these enzymes is usually associated with an

improvement in overall body metabolism (Midhun et al., 2019).

In the present study, fish fed with 4.5 mg/kg and 6 mg/kg PQQ

increased significantly the activities of protease. This observation

indicated that PQQ in the diet might benefit for protein digestion

and absorption in yellow catfish intestine, and thus improve

growth performance in yellow catfish. The potential mechanism

is that PQQ may have synergistic action along the intestinal tract

and promote the development of intestinal tissue (Zheng et al.,

2020), modulate intestinal microbial status (Wang et al., 2020),

and ultimately stimulate enzyme expression.

Blood analysis plays a key role in the nutrition and

physiology of fish, which can indirectly reflect the health status

of fish (Hossain et al., 2016). AST and ALT are two of the most

important aminotransferases in fish and are usually considered

sensitive tools for indications of liver tissue damage. The decline

of serum enzymes mentioned above in response to the
FIGURE 2

Effects of PQQ on the gene expression of growth-related genes GH, IGF-1, and IGF-2 in the liver of yellow catfish. Bars with different letters in
the same gene indicate significant difference between the corresponding treatment (P < 0.05) (n = 3).
TABLE 6 Effects of PQQ on antioxidant capacity in the serum of yellow catfish.

Groups1 Control 1.5 mg/kg 3.0 mg/kg 4.5 mg/kg 6.0 mg/kg

T-AOC (U mg-1 prot) 6.56 ± 0.56a 7.75 ± 1.04a 11.58 ± 1.74b 11.22 ± 0.95b 10.67 ± 0.92b

SOD (U mg-1 prot) 1.82 ± 0.08a 3.60 ± 0.28c 2.38 ± 0.05b 2.46 ± 0.34b 2.72 ± 0.13b

CAT (U mg-1 prot) 43.90 ± 4.43 42.98 ± 3.71 41.85 ± 5.90 40.36 ± 3.10 42.72 ± 4.26

GPX (U mg-1 prot) 315.80 ± 24.07 300.67 ± 16.79 324.41 ± 19.63 304.87 ± 28.29 307.19 ± 22.09

MDA (nmol mg-1 prot) 10.91 ± 1.23b 11.52 ± 1.41b 8.45 ± 1.02a 7.44 ± 0.75a 6.94 ± 0.86a
f

1Data are presented as the mean ± SD (n = 3 replicates).
Data in the same row with different superscripts show significant difference (P < 0.05).
AOC, total antioxidant capacity, SOD, superoxide dismutase, GPX, glutathione peroxidase, CAT, catalase, MDA, malondialdehyde.
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nutritional agent is usually thought to improve liver function

(Wang et al., 2016). In this study, the AST decreased significantly

in fish fed with 3 mg/kg PQQ, suggesting that PQQ had a

beneficial effect on liver health. Consistently, a previous study

reported that PQQ showed a better hepatoprotective effect

against oxidative stress by reducing the elevated AST activity

in the serum caused by oxidized sunflower oil (Zhao et al., 2014).

Serum TG and TC, are two important indicators of lipid levels in

fish, which reflect the metabolism, and increase energy storage of

lipids in fish, and high contents of TG and TC in the serum are

believed to be involved in cardiovascular diseases (Castro et al.,

2015). The present study revealed that PQQ could reduce the

levels of serum TC and TG, suggesting that PQQ possessed a

hypolipidemic effect in yellow catfish. Similar to our results,

Zhao et al. (2014) demonstrated that PQQ can significantly

inhibit the elevation of triglyceride and total cholesterol in the

liver of laying hens induced by high-energy and low-protein

diets. One possible mechanism that might explain these

observations could be due to PQQ can protect the integrity of

mitochondria in hepatocytes, promote b-oxidation of fatty acids,

regulate the level of lipid metabolism in the body, increase the

uptake and reduce the accumulation of TG in the liver tissues,

and thus decrease serum and/or liver cholesterol levels

(Chowanadisai et al., 2010; Bauerly et al., 2011). However, the

exact mechanisms are still needed to be further investigated. Our

results also revealed that PQQ significantly reduced serum LDL-

C and increased serum HDL-C levels in yellow catfish. Similarly,

Zhang et al. (2015) showed that PQQ can significantly increase

HDL-C levels in the serum of broilers after 21 days of feeding.

The decline of LDL-C is especially linked with HDL-C. Several

researchers have reported that HDL plays antioxidant roles due

to its antioxidant proteins and enzymes (Mackness and

Mackness, 2012; Soran et al., 2015; Islam et al., 2018).

Apolipoprotein-AI, the major structural protein of HDL, is

considered the main antioxidant factor in HDL, and which is

capable of removing LDL lipid hydroperoxides (Islam et al.,

2018). The increased concentration of serum HDL in our study

was accompanied by decreased levels of LDL and MDA.

The anti-oxidative enzymes CAT, SOD, and GPX are

essential for the protection of important organelles and

macromolecules in cells from oxidation-related damage by

scavenging or neutralizing the pro-oxidants produced by

normal animal metabolism (Rashidian et al., 2021). T-AOC

directly reflected the antioxidant capacity of fish, which

prevents reactive oxygen species’ negative effects (Tan et al.,

2017). MDA, an end-product of lipid peroxidation, indirectly

reflected the extent of lipid peroxidation in tissue cells from free

radicals attack (Cai et al., 2016). Usually, higher levels of SOD,

CAT, and GPX activities revealed an increased antioxidant

defense in fish. In this study, although PQQ supplementation

had no impact on CAT and GPX activity, the activity of SOD

and level of T-AOC in the serum were significantly increased by

3-6 mg/kg PQQ supplementation, while the MDA levels were
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markedly decreased. These data revealed that PQQmay improve

antioxidant capacity and reduce lipid oxidation damage in

yellow catfish. Similar results were also observed in the

previous studies in laying hens (Wang et al., 2016), weaned

pigs (Ming et al., 2021), and broilers (Samuel et al., 2015). PQQ

was reported to be a potent non-enzymatic antioxidant, and its

reduced form (pyrroloquinoline quinol, PQQH2) can directly

eliminate reactive oxygen species (superoxide anion, hydrogen

peroxide, and lipid radicals), with PQQH2 having a scavenging

capacity 7.4 times higher than that of vitamin C, which is the

most active water-soluble antioxidant (Ouchi et al., 2009). On

the other hand, PQQ seems to enhance the antioxidant defense

system by inducing antioxidant enzymes (Misra et al., 2004),

consistent with our previous finding. A recent study had shown

that PQQ could increase antioxidant enzyme activity by

stimulating the PGC-1a and Nrf2-ARE signaling pathways of

the peroxisome proliferator-activated receptor (Chowanadisai

et al., 2010).

It is well known that the GH/IGF axis plays an important

role in the regulation of fish growth (Picha et al., 2008). GH can

bind to the growth hormone receptor (GHR) in targeted

tissues, then promote IGFs production and release in the

liver and in most peripheral tissues, which mediates many of

the growth-promoting effects of GH (Tan et al., 2017). There

are two principle IGFs referred to as IGF-1 and IGF-2

(Gabillard et al., 2006). In particular, IGF-1 promotes growth

in large part depending on nutrient availability (Fox et al.,

2010). IGF-2 is indicated to show a high structural homology

with IGF-1 and extensively expressed in juvenile and adult fish

(Terova et al., 2007). IGFs stimulate strongly growth, inducing

an anabolic effect on protein and carbohydrate metabolism

(Perez-Sanchez and Le Bail, 1999; Amin et al., 2019). Previous

studies had showed that the increase in the number of mRNA

copies of GH and IGFs expression levels likely reflects the

improved growth performance of teleosts under the same

nutrition conditions (Picha et al., 2008; Asaduzzaman et al.,

2017; El-Kassas et al., 2020). In the current study, fish fed with

4.5 mg/kg and 6 mg/kg PQQ increased significantly the

expressions of GH, IGF-1, and IGF-2 in the liver of yellow

catfish. This was in accordance with the result obtained in

growth performance. We infer that PQQ could stimulate the

growth of yellow catfish via its action on the GH/IGF axis.

Currently, studies on the effects of dietary PQQ supplemented

on the GH/IGF axis in fish are rarely reported. Hence, future

studies are needed to better understand the underlying

mechanisms of PQQ affecting GH/IGF axis. Moreover, the

expressions of IGF-1 and IGF-2 in the liver were in parallel with

that of GH in this study. This finding suggest that GH may

directly promote the mitosis and differentiation of cells to

indirectly trigger the production and release of IGF

(Delgadin et al., 2015).

In conclusion, our study revealed that dietary PQQ

supplementation had beneficial effects on growth performance,
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serum biochemical parameters, and antioxidant status of

juvenile yellow catfish, and the optimum supplemental level of

PQQ is 4.92 mg/kg.
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Dietary sodium butyrate
administration alleviates high
soybean meal-induced growth
retardation and enteritis of
orange-spotted groupers
(Epinephelus coioides)

Liner Ke, Yingmei Qin, Tao Song, Kun Wang and Jidan Ye*

Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei
University, Xiamen, China
An 8-week feeding trial was conducted to investigate whether dietary sodium

butyrate (SB) administration alleviates growth reduction and enteritis of

orange-spotted grouper (Epinephelus coioides) caused by high soybean

meal (SBM) feeding. The control diet (FM diet) was formulated to contain

48% protein and 11% fat. Soybean meal was used to replace 60% FM protein in

FM diet to prepare a high SBM diet (HSBM diet). Sodium butyrate (SB) at 0.1%,

0.2%, and 0.3% were added to HSBM diets to prepare three diets. Triplicate

groups of 30 groupers (initial weight: 33.0 ± 0.3 g) were fed one of the diets

twice daily, to apparent satiety. HSBM diets had lowered growth rate and feed

efficiency vs FM diets (P <0.05). Growth rate and feed efficiency were improved

by dietary SB administration and were in a dose-dependent manner (P <0.05). A

similar pattern to the growth rate was observed for plasma LDL-C and gut

digestive activity of lipase, trypsin, and protease, but the opposite trend was

observed for intestinal contents of D-lactic acid and endotoxin, in response to

dietary SB inclusion levels (P >0.05). The muscular thickness in the middle and

distal intestines in SB-treated diets were higher than that in HSBM diets

(P <0.05). The mRNA levels of intestinal pro-inflammatory cytokines IL-8, IL-

1b, IL-12 and TNF-a had a decreasing trend, and the mRNA level of intestinal

anti-inflammatory cytokine TGF-b1 had the opposite trend, with increasing SB

inclusion levels (P < 0.05). The above results indicate that dietary SB

intervention could enhance growth and feed utilization of groupers with

SBM-induced enteritis by promoting intestinal digestive enzyme activities,

reducing mucosa permeability, maintaining the integrity of intestinal

morphology and attenuating the intestinal inflammatory response.

KEYWORDS

sodium butyrate, growth performance, intestinal injury, Epinephelus coioides,
inflammatory response
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Introduction

Farmed marine fish generally require a high-quality protein

feed, and fish meal (FM) is the major protein source that can

fully meet the demand for the high-quality protein due to its

high protein level, balanced amino acids profile, and less anti-

nutritional factors in comparison with terrestrial animal and

plant proteins (Zhao et al., 2021a; Mahamud et al., 2022). This

determines the importance of FM as a protein source in marine

aquaculture. However, over the past few decades, there has been

a huge contrast between the rapid expansion of global

aquaculture and the declining production of marine fishery

catches (FAO, 2020). This causes a great deficit between FM

supply and demand, making it a general consensus in the

industry to find alternative protein sources of FM (Hardy,

2010). Soybean meal (SBM) is widely regarded as the most

potential plant protein source to replace FM in marine fish feeds

due to its relatively balanced amino acids profile, stable supply

and low price. However, the majority of fish, especially

carnivorous fish, show an obvious intolerance to SBM when

given a diet containing a high percentage of SBM (Baeverfjord

and Krogdahl, 1996; Zhu et al., 2021). Some anti-nutritional

factors in SBM are the direct factors inducing enteritis, the so-

called SBM induced enteritis (SBMIE) (Carmona, 2008), which

leads to poor growth and other side effects, such as damage to the

intestinal mucosal barrier, disturbance of the intestinal flora, an

increased presence of inflammatory cells (Gatlin et al., 2007;

Booman et al., 2018; Wang et al., 2020; Zhang et al., 2022).

Therefore, how to prevent and control the widespread SBMIE is

the key to maintaining normal daily fish culture and reducing

disease risk. One of the effective ways to mitigate fish intestinal

damage and enteritis caused by SBM-based feeds is the dietary

use of functional feed additives through the nutrition regulation

strategy (Peng et al., 2013; Ferrara et al., 2015; Rimoldi et al.,

2016; Zhao et al., 2019).

Butyric acid is a metabolite of intestinal bacterium

Clostridium butyricum, and as an important energy substance,

provides energy for intestinal epithelial cell metabolism

(Topping and Clifton, 2001; Hamer et al., 2007; Robles et al.,

2013), promotes cellular function, and maintains intestinal

health (Biagi et al., 2007). Butyric acid is a volatile fatty acid,

and its stable form is sodium butyrate (SB). In animal feeding

practice, SB, as a substitute for butyric acid, is often used as a

functional additive in livestock and poultry feeds as well as

aquafeeds (Bedford and Gong, 2018; Lin et al., 2020). The

positive effects of dietary SB supplementation on growth

performance have been achieved in fish such as turbot

(Scophthalmus maximus L.) (Liu et al., 2019; Yu et al., 2021),

yellow drum (Nibea albiflora) (Wu et al., 2020) and Pengze

crucian carp (Carassius auratus Pengze) (Fang et al., 2021). The

above study results showed that SB supplementation in high-

SBM diets could alleviate SBMIE of fish by promoting digestion
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and absorption capacity and maintaining the integrity of

intestinal morphology and structure, as well as intestinal

microbial homeostasis (Liu et al., 2019). In addition, dietary

SB was found to exert a regulatory role in the expression of

related genes, such as intestinal inflammatory factor genes and

growth-related factor genes (Wu et al., 2020; Abdel-Tawwab

et al., 2021; Yu et al., 2021).

Grouper is a carnivorous marine fish that has been widely

cultivated in Southeast Asia and China due to its fast growth and

high quality of fish flesh (Dennis et al., 2020; Qin et al., 2022).

The aquaculture output of grouper in China reached 192,045

tons in 2020 (China Fishery Statistics Yearbook, 2021). Great

progress regarding its nutrition and feed research and

development has been achieved (Ko et al., 2020; Bai et al.,

2021; Kuo et al., 2021; Yang et al., 2021). However, there is

still a lack of nutritional regulation research on the prevention of

SBMIE in fish species. Our latest study also showed that a high

SBM diet caused inflammatory reactions and reduced the

growth performance of orange-spotted grouper (Epinephelus

coioides) (Wang et al., 2017a; Zhao et al., 2021b). So far, the

intervention effect of dietary SB on grouper SBMIE has not been

reported yet. Therefore, the present study aimed to investigate

the effects of SB supplementation (0.1%, 0.2%, and 0.3%) in high

SBM diets on the growth performance, plasma components, and

intestinal health of orange-spotted grouper. This study provided

the basis for the prevention and control of SBMIE in the

fish species.
Materials and methods

Experimental diets and rearing
management

The ingredients and proximate composition of experimental

diets are presented in Table 1. A basal diet (FM diet) was

formulated to contain 48% crude protein and 11% crude lipid

using fish meal (FM), gelatin and casein as the main protein

sources and soybean and fish oil, and soy lecithin as the lipid

sources. Soybean meal (SBM) was used to replace 60% FM

protein in the FM diets to prepare a high SBM diet (HSBM diet).

Sodium butyrate (SB) were added to the HSBM diet at 0.1%,

0.2%, and 0.3% to prepare three experimental diets (SB0.1 diet,

SB0.2 diet, SB0.3 diet, respectively). Coarse dry feed ingredients

were ground from a hammer mill (GH-20B, Jiangyin Kejia

Machinery Manufacturing Co., Ltd., Jiangyin, Jiangsu, China),

sieved through a 60-mesh sieve, then weighed and homogenized.

Liquid ingredients (fish and soybean oil, soy lecithin and

freshwater) were then incorporated into the dry feed

ingredients and a mash was prepared. The dough was

extruded into strands and made into 2.5 mm and 4 mm

pellets through dies using the cold press extrusion method
frontiersin.org
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(CD4XITS, South China University of Technology, Guangzhou,

Guangdong, China). The pellets were dried in a ventilated oven

at 55°C for 24 h until the moisture was reduced to 10%, and then

placed at room temperature for 24 h, before being sealed in

plastic bags and stored at -20°C.

The juvenile groupers obtained from a commercial fish farm

were transported to Dabeinong experimental station

(Zhangzhou City, Fujian Province, China). Fish were stocked

in a concrete pond and fed a commercial feed for 3-week

acclimatization. At the beginning of the experiment, the fish

(initial mean weight of 33.0 ± 0.3 g) were allocated to five groups

each with triplicate tanks (500 L/tank), at a stocking density of

30 fish/tank in a water temperature-controlled recirculating

culture system. Fish were fed one of the experimental diets

twice daily (8:00, 17:00) to apparent satiety each meal under a

natural photoperiod across a feeding period of 56-day. Excess

feed was collected by siphoning 30 min after each meal, then

dried at 65°C, and weighed to calculate feed intake (FI). Because

daily sewage discharge will cause water loss in the aquaculture
Frontiers in Marine Science 03
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system, fresh seawater was refilled until the original water level

of tanks was reached. During the feeding period, water

temperature was kept at 28.5°C, the dissolved oxygen level was

> 5.7 to 8.0 mg/L, and the ammonia nitrogen content was < 0.22

mg/L.
Sample collection

At the end of the growth trial, fish in each tank were caught

and anesthetized with a dose of 100 mg/L solutions of MS-222

(tricaine methane sulphonate, Sigma-Aldrich Shanghai Trading

Co., Ltd, Shanghai, China). Fish weight and number were then

recorded for each tank to measure weight gain (WG), feed

efficiency (FE), specific growth rate (SGR), and survival. Three

fish from each tank were randomly sampled and pooled in

plastic bags, and stored at -20°C for whole-body proximate

composition determination. Nine fish per tank (27 fish each

group) were weighed individually after an aesthesia with MS-222
TABLE 1 Formulations and nutrient level on experimental diets of grouper (on an as-fed basis, %).

Ingredients Diets1

FM HSBM SB0.1 SB0.2 SB0.3

Fish meal 52 22 22 22 22

Casein 11.98 11.27 11.27 11.27 11.27

Gelatin 3 2.82 2.82 2.82 2.82

Soybean meal – 47 47 47 47

Soybean oil 3.5 3.5 3.5 3.5 3.5

Fish oil 0.82 3.52 3.52 3.52 3.52

Soybean lecithin 2 2 2 2 2

Sodium butyrate – – 0.1 0.2 0.3

Corn starch 17.72 3.26 3.16 3.06 2.96

Sodium alginate 1 1 1 1 1

Ca(H2PO4)2 1.5 1.5 1.5 1.5 1.5

Choline chloride 0.4 0.4 0.4 0.4 0.4

Vitamin C 0.03 0.03 0.03 0.03 0.03

Vitamin mix 0.4 0.4 0.4 0.4 0.4

Mineral mix 0.5 0.5 0.5 0.5 0.5

Taurine 0.5 0.8 0.8 0.8 0.8

Microcrystalline cellulose 4.65 – – – –

Total 100 100 100 100 100

Nutrient level (analyzed values)

Dry matter (%) 95.06 95.78 95.11 95.19 95.57

Crude protein (%) 49.85 50.34 49.00 50.48 50.25

Crude lipid (%) 11.56 11.42 11.63 11.37 11.60

Energy MJ/kg 18.7 18.7 18.6 18.6 18.6
frontie
1FM, fish meal; HSBM, 60% FM protein replacement with SBM in FM diets without SB addition; SB0.1, SB0.2 and SB0.3 were added with 0.1%, 0.2%, and 0.3% SB in HSBM diets,
respectively.
Fish meal (crude protein 70.34%, crude lipid 9.06%) and soybean (crude protein 46.60%, crude lipid 0.72%), and other feed ingredients except sodium butyrate and premix were provided by
Jiakang Feed Co., Ltd., Xiamen, China.
Sodium butyrate (99% purity) was provided by Xinao Biotechnology Co., Ltd., China.
Vitamin and Mineral premix were obtained from Guangzhou Feixite Aquatic Technology Co., Ltd.
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(100 mg/L) to calculate the hepatosomatic index (HSI) and

condition factor (CF). Blood was drawn from the caudal vein,

using a 1-mL heparinized syringe, and centrifuged at 1027 × g, 4°

C, 10 min. Plasma was then collected, pooled by tank and stored

in 1.5-mL Eppendorf tubes at -80°C for the subsequent

biochemical analysis. The intestine of nine fish per tank were

aseptically removed and pooled into one tube by tank, stored at

-80°C for the analysis of biochemical components, microbiota

analysis, and gene expression.
Proximate composition analysis

Prior to component analysis, whole-fish samples were

prepared according to the method described by Ye et al. (Ye

et al., 2011). The proximate composition of diet and whole-body

fish samples were determined according to standard methods

(AOAC, 1995). Dry matter was determined by drying the

samples in an oven at 105°C to a constant weight. Crude

protein was determined by the Kjeldahl method (N × 6.25)

using Kjeltec TM 8400 Auto Sample Systems (Foss Teacher AB).

The crude lipid content was determined by the Soxtec extraction

method by using Soxtec Avanti 2050 (Foss Teacher AB). Ash

was measured in the residues of samples burned in a muffle

furnace at 550°C for 6 h.
Plasma component determination

The plasma contents of triglycerides (TG), total cholesterol

(TC), high-density lipoprotein cholesterol (HDL-C), and low-

density lipoprotein cholesterol (LDL-C) were determined using

respective kits (Nanjing Jiancheng Bioengineering Institute,

Nanjing, China).
Gut digestive enzyme activity and
mucosal function analysis

The intestinal activity for lipase and amylase was assayed

us ing commerc ia l a s say k i t s (Nan j ing J i ancheng

Bioengineering Institute, Nanjing, Jiangsu, China) according

to the protocols of the manufacturer. The activities of intestinal

protease and trypsin were determined according to the

method described by Hu et al. (2014). The contents of

diamine oxidase (DAO), D-lactic acid (D-Lac), Endotoxin

(ET) and Endothelin-1 (ET-1) in the intestine were

determined us ing ELISA ki t s (Nanj ing J iancheng

Bioengineering Institute, Nanjing, Jiangsu, China) according

to the manufacturer’s instructions.
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Intestinal histological observation

To perform histological analysis, one fish was caught from

each tank and dissected to obtain the whole gut, then divided

into proximal, middle, and distal intestines (i. e. PI, MI, and DI,

respectively), according to the method (Anguiano et al., 2013).

All the segments were washed with normal saline, fixed in

Bouin’s solution for 24 h, rinsed with 70% (v/v) ethanol

solution, and finally immersed in 70% (v/v) ethanol until

histological processing was performed (Niu et al., 2021). The

fixed gut segments were embedded in paraffin and 5-µm sections

were cut by using a rotary microtome (KD-2258S, China). The

serial histological sections were then mounted on glass slides,

and stained with hematoxylin and eosin for morphometric

analysis. Pictures were examined under a light microscope

(Leica DM5500B, Germany), and digital images were taken

and processed with a digital camera (Leica DFC450) equipped

with the image program LAS AF (Version 4.3.0 Leica). Five

slides were prepared for each gut segment sample and 30

measurements were made to determine the number of

mucosal folds, muscle layer thickness, and length of the

complete mucosal fold.
Intestinal microbiota analysis

Total DNA of the distal intestine (DI) of the fish was extracted

using a DNA extraction kit (Omega Bio-teK, Norcross, GA, USA)

according to the manufacturer’s instructions. The integrity and

quality, purity and quantity of DNA samples were assessed by

electrophoresis on a 1% (w/v) agarose gel and spectrophotometer

method (NanoDrop 2000, Wilmington, DE, U.S. 260nm/280nm

optical density ratio), respectively. The V3-V4 region of the 16S

rDNA gene of DI bacteria was amplified by polymerase chain

reaction (PCR) using the forward primer 338F (5 ’-

ACTCCTACGGGAGGCAGCAG-3’) and the reverse primer

806R (5’-GGACTACNNGGGTATCTAAT-3’). The PCR

reaction system included pre-denaturation at 95°C for 5 min;

denaturation at 95°C for 45 s, annealing at 55°C for 50 s, and

extension at 72°C for 45 s, 32 cycles; extension at 72°C for 10 min.

Subsequently, high-throughput sequencing was performed using

Illumina Miseq PE300 at Beijing Allwegene Technology Co., Ltd

(Beijing, China). The sequencing data of all samples were

deposited into Sequence Read Archive (SRA) (Accession

number: PRJNA875282). A library of small fragments was

constructed using a paired-end for sequencing, and the data was

passed through QIIME (v1.8.0) for removal of low-quality

sequences and chimeras. Based on 97% sequence similarity,

similar sequences were assigned to the same operational

taxonomic units (OTU). Species classification information
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corresponding to each OTU was obtained by comparing with the

sliva database, and alpha diversity analysis (Shannon, Ace, and

Chao1) was performed using Mothur software (version 1.31.2).

Based on the weighted unifrac distance, the pheatmap of the R

(v3.1.1) software package was used for clustering analysis. After

the UniFrac algorithm, the information on system evolution was

used to compare the difference in species communities among

samples and beta diversity analysis was performed.
RNA extraction and gene expression
analysis

The total RNA was extracted from the intestinal samples

using TRIzol® reagent (Takara Co., Ltd, Japan) according to the

manufacturer’s instructions. Isolated RNA was quantified using

the NanoDrop ND-2000 Spectrophotometer, and its integrity

was confirmed by agarose gel electrophoresis. The cDNA was

generated from 1 mg DNase-treated RNA and synthesized by a

PrimeScript™ RT Reagent Kit with gDNA Eraser (Perfect Real

Time) (Takara Co., Ltd, Japan). Real-time PCR was employed to

determine mRNA levels based on the TB Green™ Premix Ex

Taq™ II (Tli RNaseH Plus) (Takara Co., Ltd, Japan) using a

QuantStudio™ Real-Time PCR System (ABI) quantitative

thermal cycler. The fluorescent quantitative PCR solution

consisted of 10 mL TB Green Premix Ex Taq™ II (Tli RNaseH

Plus) (2×), 0.8 mL PCR forward primer (10 mM), 0.8 mL PCR

reverse primer (10 mM), 2.0 mL RT reaction (cDNA solution),

and 6 mL dH2O. The thermal program included 30 s at 95°C, 40

cycles at 95°C for 5 s, and 60°C for 30 s. The sequences of

primers are shown in Table 2. All amplicons were initially

separated by agarose gel electrophoresis to ensure that they

were of the correct size. b-actin served as the internal reference

gene to normalize cDNA loading. The gene expression levels of

the target genes were analyzed by the 2-DDCt method (Schmittgen

and Livak, 2008) after verifying that the primers were amplified

with an efficiency of approximately 100% (Hanaki et al., 2014),

and the data for all treatment groups were compared with the

data for the control group.
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Statistical analysis

All data were presented as mean and standard error of the

mean (SEM). The data were analyzed using a one-way analysis of

variance (ANOVA) to test for differences between treatments

and then the Student-Neuman-Keuls multiple comparison test

was performed after confirming the normality and homogeneity

of variance using the Kolmogorov-Smirnov test and Levene’s

test in SPSS Statistics 25.0 (SPSS, Michigan Avenue, Chicago, IL,

USA). The data expressed as percentages or ratios were subjected

to data conversion prior to statistical analysis. P-values <.05 was

deemed as significant difference.
Results

Growth performance and proximate
composition

The results of growth performance and proximate

composition of groupers are presented in Table 3. The fish fed

HSBM diet had significantly lower WG and SGR compared with

those fed FM diet (P < 0.05). The WG and SGR in fish fed diets

SB0.1-SB0.3 were higher than that in fish fed diet HSBM, and

reached the level of diet FM (P > 0.05). TheWG and FE were in a

dose-dependent manner with the dietary SB inclusion levels

(Figure 1). The maximum values for WG and FE were observed

for diet SB0.2 and diet SB0.3 respectively. The FE, HSI, CF and

whole-body proximate composition were not affected by dietary

treatments (P > 0.05).
Plasma components

As shown in Table 4, plasma LDL-C concentration in HSBM

group was significantly lower (P < 0.05). However, plasma LDL-

C concentration in dietary SB-treated groups was not different

from those of SB0.1 group and SB0.2 groups (P > 0.05), and

lower than that in SB0.3 group (P < 0.05). The plasma HDL-C,
TABLE 2 Primer sequences for real-time PCR assay.

Genes Forward (5’-3’) Reverse (5’-3’) Efficiency (%) Accession number

IL-8 AAGTTTGCCTTGACCCCGAA TGAAGCAGATCTCTCCCGGT 94 FJ913064.1

IL-1b GCAACTCCACCGACTGATGA ACCAGGCTGTTATTGACCCG 116 EF582837.1

IL-10 GTCCACCAGCATGACTCCTC AGGGAAACCCTCCACGAATC 99 KJ741852.1

TGF-b1 GCTTACGTGGGTGCAAACAG ACCATCTCTAGGTCCAGCGT 102 GQ503351.1

IL-12 CCAGATTGCACAGCTCAGGA CCGGACACAGATGGCCTTAG 115 KC662465.1

TNF-a GGATCTGGCGCTACTCAGAC CGCCCAGATAAATGGCGTTG 91 FJ009049.1

b-actin TGCTGTCCCTGTATGCCTCT CCTTGATGTCACGCACGAT 104 AY510710.2
IL, interleukin; TGF, transforming growth factor; TNF, tumor necrosis factor.
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TC and TG concentrations were not affected by dietary

treatments (P>0.05).
Gut digestive enzymes activity

There was a general reduction in lipase, trypsin, and protease

activity for HSBM diet vs for FM diet (Table 5). A general

enhancement in lipase, trypsin, and protease activity by dietary

SB addition, and showed positive quadratic (P < 0.05) responses
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to increasing dietary SB inclusion levels, and the maximum value

both were observed for diet SB0.1 (Figure 2). Dietary treatment

did not affect intestinal amylase activity (P >0.05).
Intestinal permeability

As shown in Table 6, intestinal D-Lac and ET concentrations

were higher in HSBM group than that in FM group (P < 0.05).

However, dietary SB addition lowered intestinal DAO activity,
FIGURE 1

The relationship between weight gain (WG) or feed efficiency (FE) of groupers and sodium butyrate (SB) inclusion levels in HSBM diets in a 56-d
feeding period. Data are presented as the means of per dietary treatment (n = 3 tanks). HSBM, 60% FM protein replacement with soybean meal
(SBM) in FM diet and without sodium butyrate (SB) addition; SB0.1, SB0.2 and SB0.3, 0.1%, 0.2%, and 0.3% SB were added in HSBM diets,respectively.
TABLE 3 Effects of sodium butyrate (SB) addition in high soybean meal (SBM) diets on growth performance and proximate composition of
groupers in a 56-d feeding period.

Item Diets1

FM HSBM SB0.1 SB0.2 SB0.3

Growth performance

IBW2 (g/fish) 33.82 ± 0.10 33.76 ± 0.06 33.80 ± 0.07 33.78 ± 0.06 33.83 ± 0.02

FBW2 (g/fish) 113.24 ± 0.66b 95.47 ± 2.59a 101.32 ± 4.45ab 115.43 ± 7.32b 111.83 ± 1.22b

WG2 (%) 234.81 ± 2.53ab 182.81 ± 7.24a 199.83 ± 13.74ab 241.80 ± 22.18b 230.53 ± 3.72ab

SGR2 (%/d) 2.16 ± 0.01b 1.86 ± 0.04a 1.96 ± 0.09ab 2.18 ± 0.11b 2.14 ± 0.02b

FE2 0.93 ± 0.02 0.72 ± 0.03 0.89 ± 0.01 1.01 ± 0.10 1.03 ± 0.03

HSI3 (%) 1.31 ± 0.09 1.24 ± 0.04 1.22 ± 0.03 1.15 ± 0.05 1.11 ± 0.01

CF3 3.16 ± 0.08 3.05 ± 0.11 3.17 ± 0.04 3.19 ± 0.04 3.08 ± 0.08

Whole-body composition (%)

Moisture2 67.05 ± 0.21 67.27 ± 0.22 67.67 ± 0.33 67.54 ± 0.36 67.13 ± 0.17

Crude protein2 18.01 ± 0.49 17.95 ± 0.27 17.34 ± 0.33 18.92 ± 1.26 18.53 ± 0.26

Crude lipid2 8.25 ± 0.17 7.90 ± 0.29 8.04 ± 0.16 8.19 ± 0.26 8.10 ± 0.23

Ash2 5.00 ± 0.15 4.96 ± 0.07 4.82 ± 0.08 4.75 ± 0.01 5.05 ± 0.06
1FM, fish meal; HSBM, 60% FM protein replacement by SBM in FM diets without SB addition; SB0.1, SB0.2 and SB0.3, 0.1%, 0.2%, and 0.3% SB were added in the HSBM diets, respectively.
2Data are presented as the means of per dietary treatment (n = 3 tanks).3 Data are presented as the means of per dietary treatment (n = 27 fish). Values in the same row with different
superscripts indicate significant differences (P < 0.05), while that with the same letter or no letter superscripts indicate no significant difference (P > 0.05).
WG (weight gain, %) = 100×(FBW - IBW)/IBW; SGR (specific growth rate, %/d) = 100×(ln FBW - ln IBW)/d; FE (feed efficiency) = (FBW - IBW)/FI; HSI (hepatosomatic index, %) =
100×(liver weight (g)/body weight (g)); CF (condition factor) = 100×body weight (g)/(body length (cm))3. IBW, initial body weight (g); FBW, final body weight (g); FI, feed intake (g).
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D-Lac and ET concentrations, and intestinal D-Lac

concentration showed a declining trend with dietary SB

inclusion levels. Furthermore, intestinal D-Lac and ET

concentrations were reduced to the level of FM group (P

>0.05). The intestinal ET-1 content was not affected by dietary

treatments (P >0.05).
Intestinal morphology

As shown in Figure 3, the sizes of intestinal lumen and MFN

were ordered as PI >MI >DI. The thickness of lamina propria

and submucosa of MI in the HSBM group was increased

compared to others. There was a reduction in the number of

goblet cells with lymphocyte infiltration of DI for HSBM diet vs

for FM diet, but an increase with increasing SB inclusion levels.

Table 7 shows the results of intestinal morphometrical

parameters (MFH, mucosal fold height; MT, muscular

thickness; MFN, mucosal fold number) in three intestinal

segments (PI, MI, and DI) of groupers. There was a significant

reduction (P < 0.05) in MT of MI and DI in fish fed the HSBM

diet compared with those fed with FM diet. The MT of MI was

increased with increasing SB inclusion levels in HSBM diets, the

maximum value was observed for SB0.3 diet (P < 0.05), and MT

value for SB0.2 diet returned to that of FM diet (P > 0.05). The

MT of DI was also promoted by dietary SB inclusion levels, but
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the values in SB diets were lower than that in the FM diet (P <

0.05). The MFH of PI, MI, and DI, the MT of PI, as well as MFN

of PI, MI, and DI remained unaffected across dietary treatments

(P > 0.05).
Intestinal microbial abundance

The species abundance and diversity of DI samples are

shown in Table 8. Although OTU and Ace showed a declining

trend and Simpson and Shannon showed an upward trend with

increasing dietary SB levels, the species abundance and diversity

remained unaffected across dietary treatments (P > 0.05). At the

phylum level, the average bacteria in the DI flora map of grouper

were dominated by Firmicutes (relative abundance of 43.13%),

Bacteroidetes (26.82%) and Proteobacteria (22.53%).

Spirochaetae (1.53%) and Fusobacteria (1.08%) were

subdominants (Figure 4A). However, these phyla bacterial

abundance among all groups did not show significant

differences (Figure 4B, P > 0.05). At the genus level, the

bacteria in the DI flora map of grouper mainly included

Photobacterium (FM: 18.9%; HSBM: 11.25%; SB0.1: 5.43%;

SB0.2: 25.47%; SB0.3: 0.42%), Selenomonas_1 (FM: 13.70%;

HSBM: 13.04%; SB0.1: 11.76%; SB0.2: 7.90%; SB0.3: 12.64%),

Prevotella_1 (FM: 8.34%; HSBM: 7.88%; SB0.1: 7.61%; SB0.2:

6.08%; SB0.3: 9.16%), Rikenellaceae_RC9_gut_group (FM:
TABLE 5 Effects of sodium butyrate (SB) addition in high soybean meal (SBM) diets on activities of gut digestive enzymes of groupers in a 56-d
feed period.

Parameters Diets1

FM HSBM SB0.1 SB0.2 SB0.3

Lipase (U/mg prot) 0.80 ± 0.02a 0.74 ± 0.06ab 0.88 ± 0.01b 0.77 ± 0.65ab 0.73 ± 0.03ab

Amylase (U/mg prot) 0.76 ± 0.06 0.73 ± 0.11 0.88 ± 0.06 0.91 ± 0.10 0.85 ± 0.09

Trypsin (U/g prot) 256.07 ± 17.23b 175.55 ± 17.55a 288.35 ± 10.66b 282.25 ± 21.29b 265.65 ± 5.36b

Protease (U/mg prot) 20.54 ± 0.87b 15.91 ± 2.04a 24.03 ± 1.40b 22.25 ± 1.75b 22.15 ± 0.79b
1 FM, fish meal; HSBM, 60% FM protein replacement with SBM in FM diets without SB addition; SB0.1, SB0.2 and SB0.3, 0.1%, 0.2%, and 0.3% SB were added in the HSBM diets,
respectively. Data are presented as the means of per dietary treatment (n = 3 tanks). Values in the same row with different superscripts indicate significant differences (P < 0.05), while that
with the same letter or no letter superscripts indicate no significant difference (P > 0.05).
TABLE 4 Effect of sodium butyrate (SB) addition in high soybean meal (SBM) diets on plasma components of groupers in a 56-d feed period.

Parameters Diets1

FM HSBM SB0.1 SB0.2 SB0.3

HDL-C (mmol/L) 1.06 ± 0.05 1.00 ± 0.03 0.98 ± 0.11 0.85 ± 0.11 1.05 ± 0.07

LDL-C (mmol/L) 0.28 ± 0.01c 0.19 ± 0.01b 0.18 ± 0.01ab 0.18 ± 0.02ab 0.14 ± 0.01a

TC (mmol/L) 3.77 ± 0.21 3.49 ± 0.23 3.38 ± 0.35 3.20 ± 0.29 2.76 ± 0.14

TG (mmol/L) 1.61 ± 0.17 1.36 ± 0.08 1.40 ± 0.08 1.43 ± 0.18 1.43 ± 0.12
fro
1FM, fish meal; HSBM, 60% FM protein replacement with SBM in FM diets without SB addition; SB0.1, SB0.2 and SB0.3, 0.1%, 0.2%, and 0.3% SB were added in the HSBM diets,
respectively. Data are presented as the means of per dietary treatment (n = 3 tanks). Values in the same row with different superscripts indicate significant differences (P < 0.05), while that
with the same letter or no letter superscripts indicate no significant difference (P > 0.05). HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TG,
triglyceride; TC, total cholesterol.
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3.24%; HSBM: 3.81%; SB0.1: 4.88%; SB0.2: 5.75%; SB0.3: 6.37%)

and Curvibacter (FM: 2.97%; HSBM: 2.81%; SB0.1: 2.76%; SB0.2:

1.50%; SB0.3: 2.08%) (Figure 5A) and marked difference in the

abundance of these genus bacteria between groups was not

observed (Figure 5B, P > 0.05). There was no variation in the

relative abundance of Anaerovibrio among dietary treatments

except for the SB0.3 diet, whose value was significantly higher

than in FM and SB0.2 diets (P < 0.05). The relative abundance of

Vibrio in SB diets was generally lower (P > 0.05) than that in

HSBM diet and was similar to that of FM diet.
Expression of intestinal inflammatory
factor genes

The relative mRNA levels of intestinal inflammatory factor

genes are presented in Figure 6. HSBM group had higher mRNA

levels for IL-8, IL-1b, IL-12 and TNF-a genes vs FM group (P <

0.05), but the opposite was true for IL-10 gene. The mRNA level

of TGF-b1 for HSBM diet was not different from that for FM diet

(P > 0.05). The mRNA levels of IL-8, IL-1b, IL-12 and TNF-a
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showed a decreasing trend with increasing SB inclusion levels in

HSBM diets, and the values of these parameters reduced to the

similar level of FM diet, or even lower (P > 0.05). The mRNA

level of TGF-b1 in SB0.3 group was the highest among dietary

treatments and higher than any other group (P < 0.05). The

mRNA level of IL-10 was not affected by dietary treatments

(P > 0.05).
Discussion

Growth performance and proximate
composition

Results of the present study showed that in HSBM diet

decreased significantly WG and SGR vs FM diet, which was

observed in previous studies on FM replacement with high SBM

(Wang et al., 2017b; Zhu et al., 2021; Zhang et al., 2022). The

growth-limiting effect is attributed to the presence of

antinutritional factors (ANFs), poor palatability, and lack of

some nutrients (Gatlin et al., 2007), of which the most typical
FIGURE 2

The relationship between intestinal activities of trypsin or protease of groupers and sodium butyrate (SB) inclusion levels in HSBM diets in a 56-d
feeding period. Data are presented as the means of per dietary treatment. (n = 3 tanks). HSBM, 60% FM protein replacement with soybean meal
(SBM) in FM diet and without SB addition; SB0.1, SB0.2 and SB0.3, 0.1%, 0.2%, and 0.3% SB were added in HSBM diets, respectively.
TABLE 6 Effects of sodium butyrate (SB) addition in high soybean meal (SBM) diets on intestinal permeability of groupers in a 56-d feeding period.

Parameters Diets1

FM HSBM SB0.1 SB0.2 SB0.3

DAO (U/L) 19.75 ± 1.39 20.59 ± 1.05 15.27 ± 1.72 16.24 ± 2.10 15.18 ± 1.89

D-Lac (nmol/mL) 2.03 ± 0.20a 4.05 ± 0.23b 2.25 ± 0.15a 2.03 ± 0.12a 1.90 ± 0.04a

ET-1 (ng/L) 1.91 ± 0.07 2.12 ± 0.09 2.24 ± 0.17 1.93 ± 0.12 1.90 ± 0.12

ET (EU/L) 1.51 ± 0.03a 1.70 ± 0.10b 1.46 ± 0.01a 1.38 ± 0.03a 1.46 ± 0.02a
f

1FM, fish meal; HSBM, 60% FM protein replacement with SBM in FM diets without SB addition; SB0.1, SB0.2 and SB0.3, 0.1%, 0.2%, and 0.3% SB were added in the HSBM diets,
respectively. Data are presented as the means of per dietary treatment (n = 3 tanks). Values in the same row with different superscripts indicate significant differences (P < 0.05), while that
with the same letter or no letter superscripts indicate no significant difference (P > 0.05). DAO, Diamine oxidase; D-lac, D-lactic acid; ET, Endotoxin; ET-1, Endothelin-1.
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FIGURE 3

Intestinal histological examinations of sodium butyrate (SB) addition in high soybean meal (SBM) diets on the proximal intestine (PI), mid
intestine (MI), and distal intestine (DI) in groupers in a 56-d feeding period (magnification 200 X, scale bar = 100 mm). FM, fish meal; HSBM, 60%
FM protein replacement with SBM in FM diets without SB addition; SB0.1, SB0.2 and SB0.3, 0.1%, 0.2%, and 0.3% SB were added in the HSBM
diets, respectively. MFH, mucosal fold height; MT, muscular thickness; a, goblet cell; b, lamina propria; c, submucosa.
TABLE 7 Effects of sodium butyrate (SB) addition in high soybean meal (SBM) diets on the intestinal morphology of groupers in a 56-d feeding period.

Parameters Diets1

FM HSBM SB0.1 SB0.2 SB0.3

PI MFH (mm) 577.30 ± 87.68 489.10 ± 54.31 559.30 ± 35.39 495.92 ± 50.19 572.25 ± 40.22

MT (mm) 63.24 ± 6.74 64.56 ± 8.11 56.70 ± 8.72 65.78 ± 10.6 78.59 ± 3.02

MFN (unit) 42.50 ± 4.25 45.83 ± 3.09 40.67 ± 2.20 45.67 ± 4.15 54.33 ± 3.94

MI MFH (mm) 465.12 ± 50.20 356.66 ± 9.37 403.74 ± 26.77 425.36 ± 36.05 516.26 ± 81.26

MT (mm) 53.53 ± 2.44ab 44.96 ± 4.06a 55.06 ± 1.54ab 57.65 ± 5.30ab 72.29 ± 9.48b

MFN (unit) 34.33 ± 2.20 31.67 ± 1.01 33.00 ± 3.62 41.50 ± 1.04 42.50 ± 5.41

DI MFH (mm) 417.87 ± 63.72 337.13 ± 44.48 373.43 ± 25.76 361.66 ± 49.92 458.86 ± 91.13

MT (mm) 87.58 ± 7.61c 51.53 ± 1.48a 69.02 ± 5.05ab 63.72 ± 7.81ab 68.32 ± 9.18ab

MFN (unit) 32.00 ± 5.20 37.00 ± 4.00 35.83 ± 0.17 34.67 ± 0.88 39.67 ± 6.69
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1FM, fish meal; HSBM, 60% FM protein replacement with SBM in FM diets without SB addition; SB0.1, SB0.2 and SB0.3, 0.1%, 0.2%, and 0.3% SB were added in the HSBM diets,
respectively. Data are presented as the means of per dietary treatment (n = 3 tanks). Values in the same row with different superscripts indicate significant differences (P < 0.05), while that
with the same letter or no letter superscripts indicate no significant difference (P > 0.05). PI, proximal intestine; MI, middle intestine; DI, distal intestine; MFH, mucosal fold height; MT,
muscular thickness; MFN, mucosal fold number.
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FIGURE 4

Relative abundance of the dominant bacterial phylum in different samples in the distal intestine of E. coioides (A) Intestine microbial
composition at phylum level, (B) Differential analysis at phylum level. Bars bearing the different letters indicate significant differences (P < 0.05),
while that with the same letters indicate no significant difference (P > 0.05). Data are presented as means ± SEM (n = 3 tanks). Statistical analysis
was performed by one-way ANOVA, followed by S-N-K test. FM, fish meal; HSBM, 60% FM protein replacement with SBM in FM diets without
SB addition; SB0.1, SB0.2 and SB0.3, 0.1%, 0.2%, and 0.3% SB were added in the HSBM diets, respectively. MRA, mean relative abundance.
TABLE 8 Richness and diversity index of bacterial community for different samples in distal intestine of groupers.

Parameters Diets1

FM HSBM SB0.1 SB0.2 SB0.3

OTU 343.27 ± 38.99 415.33 ± 8.19 423.33 ± 12.14 409.33 ± 9.94 384.63 ± 13.89

Ace 578.20 ± 66.61 719.44 ± 31.36 701.05 ± 57.57 693.61 ± 9.90 619.92 ± 1.56

Chao1 533.97 ± 56.09 619.46 ± 5.32 671.71 ± 2.65 632.32 ± 21.86 631.90 ± 45.21

Simpson 0.93 ± 0.02 0.65 ± 0.22 0.91 ± 0.06 0.96 ± 0.01 0.98 ± 0.00

Shannon 5.31 ± 0.29 3.68 ± 1.44 5.54 ± 0.57 5.85 ± 0.15 6.12 ± 0.04
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1FM, fish meal; HSBM, 60% FM protein replacement with SBM in FM diets without SB addition; SB0.1, SB0.2 and SB0.3, 0.1%, 0.2%, and 0.3% SB were added in the HSBM diets,
respectively. Data are presented as the means of per dietary treatment (n = 3 tanks). OTU, operational taxonomic units; Ace, abundance-based coverage estimator.
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side effect is considered as SBMIE (Sahlmann et al., 2013). The

SB supplementation in HSBM diets significantly promoted

growth performance in a dose-dependent manner and had

results comparable to the FM diet in this study. Our current

study supported what has been reported in sea bream (Robles

et al., 2013), and common carp (Liu et al., 2014a), turbot (Liu

et al., 2019), yellow drum (Wu et al., 2020), and Nile tilapia

(Abdel-Tawwab et al., 2021).

The whole-body composition was not affected by dietary

treatments in this study. This finding was supported by the

results observed in similar experiments on grass carp (Liu et al.,

2017), black seabream (Ullah et al., 2020), and yellow drum (Wu

et al., 2020). In contrast, several studies reported an inconsistent

result that dietary supplementation of SB significantly promoted

whole-body crude protein contents of Nile tilapia (Ahmed and

Sadek, 2015) and European seabass (Abdel-Mohsen et al., 2018),
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as a result of the promotion of proliferation and differentiation

of intestinal epithelial cells (Canani et al., 2012) and upregulated

expression of the intestinal small peptide transporter PepT1 (Liu

et al., 2014b) in the case of dietary SB administration.
Plasma components

Plasma biochemical indicators reflect the metabolic function

and nutritional status of fish (Ren et al., 2021). Plasma HDL-C

and LDL-C are a family of lipoproteins involved in cholesterol

transport. HDL-C is mainly responsible for TG clearance and

TC removal from peripheral tissues, while LDL-C transports

cholesterol from the liver to peripheral tissues (Eisenberg, 1984;

Jiang et al., 2015). In the current study, except for LDL-C,

plasma HDL-C, TC and TG contents were not affected by
A

B

FIGURE 5

Relative abundance of the dominant bacterial genus in different samples in distal intestine of E. coioides. (A) Intestine microbial composition at
genus level, (B) Differential analysis at genus level. Bars bearing the different letters indicate significant differences (P < 0.05), while that with the
same letters indicate no significant difference (P > 0.05). Data are presented as the means of per dietary treatment (n = 3 tanks). FM, fish meal;
HSBM, 60% FM protein replacement with SBM in FM diets without SB addition; SB0.1, SB0.2 and SB0.3, 0.1%, 0.2%, and 0.3% SB were added in
the HSBM diets, respectively.
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dietary treatments. The decreased plasma LDL-C content caused

by dietary high SBM was also observed in previous studies on

FM replacement with SBM in groupers (Ye et al., 2019; Zhao

et al., 2021b). As observed in our current study, high SBM diets

could decrease plasma TC, TG, LDL-C, and/or HDL-C contents

in several previous studies with other fishes (Yamamoto et al.,

2010; Dossou et al., 2018; Rahimnejad et al., 2021). However, the

values of the index were not improved after dietary SB

administration in HSBM diets in this study. Therefore, it

seems that groupers were still in a certain degree of

malnutrition caused by HSBM diets, though growth

improvement by the dietary intervention of SB.
Gut digestive enzymes activity

The activity of digestive enzymes is directly associated with

the digestion of nutrients (Jesus et al., 2019). In this study, the

high SBM diet resulted in reduced trypsin and protease activities

vs FM diet, which was consistent with other studies with other
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fishes such as hybrid tilapia (Lin and Luo, 2011), Japanese

seabass (Zhang et al., 2018), Totoaba macdonaldi (Fuentes-

Quesada et al., 2018). The reduction of intestinal trypsin and

the protease activities were attributed to the presence of trypsin

inhibitors or other ANFs in SBM, resulting in poor growth and

feed utilization in fish (Dias et al., 2005; Santigosa et al., 2008;

Lin and Luo, 2011; Yaghoubi et al., 2016). After dietary SB

intervention, the intestinal activities of trypsin and protease were

enhanced in comparison with HSBM group and showed an

increasing trend with increasing dietary SB inclusion levels. As

evidenced by previous studies of SB intervention on poor growth

caused by high SBM feeding, on account of the ability of SB to

activate digestive enzyme activity (Tian et al., 2017; Fang et al.,

2021; Xie et al., 2021).
Intestinal mucosal barrier

The intestine is not only the site of nutrient digestion and

absorption, but also provides an important barrier against
FIGURE 6

Effects of sodium butyrate (SB) addition in high soybean meal (SBM) diets on mRNA levels of intestinal inflammatory factor genes of groupers in
a 56-d feeding period. Bars bearing the different letters indicate significant differences (P < 0.05), while that with the same letters indicate no
significant difference (P > 0.05). Data are presented as means ± SEM (n = 3 tanks). Statistical analysis was performed by one-way ANOVA,
followed by S-N-K test. FM, fish meal; HSBM, 60% FM protein replacement with SBM in FM diets without SB addition; SB0.1, SB0.2 and SB0.3,
0.1%, 0.2%, and 0.3% SB were added in the HSBM diets, respectively. IL-8, interleukin-8; IL-1b, interleukin-1b; TNF-a, tumor necrosis factor-
alpha; IL-12, interleukin-12; TGF-b1, transforming growth factor-beta 1; IL-10, interleukin-10.
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exogenous pathogens (Tang et al., 2022). Butyric acid is

generally considered as an important substance for the energy

supply and proliferation of intestinal epithelial cells (Biagi et al.,

2007). Many studies showed that the increased intestinal DAO

activity, D-Lac and ET concentrations reflect impaired mucosal

permeability, indicating the intestinal mucosal capillary

endothelial damage and intestinal flora disorder (Fukudome

et al., 2014; Long et al., 2022). Feeding high-SBM diets

resulted in increased intestinal D-Lac and ET concentrations

vs feeding low-SBM diets or FM diets without SBM (Zhang et al.,

2018; Rahimnejad et al., 2021) and in our current study. In the

present study, we observed reduced intestinal DAO activity, D-

Lac and ET concentrations in fish administrated with dietary SB

vs those of fish fed HSBM diets, and reduced to the level of FM

diets. Similar results were observed in broilers (Zou et al., 2019)

and weaning piglets (Lin et al., 2020) with dietary SB

administration. This indicated that dietary SB administration

could reduce the intestinal mucosal permeability of farmed

animals including fish.

The intestinal histomorphology also acts as a physical barrier

to intestinal mucosa (Escaffre et al., 2007). It is clear that the

typical signs of SBMIE can cause thickening of the lamina

propria and submucosa, and disappearance of supranuclear

vacuoles in the enterocytes of DI, accompanied by an

infiltration of inflammatory cells (Baeverfjord and Krogdahl,

1996; Urán et al., 2009). Consistent with the previously reported

results, we observed a reduction in the number of goblet cells

with lymphocyte infiltration, and an increase in the thickness of

lamina propria and submucosa caused by high SBM in this

study. Higher intestinal MT means a larger surface area for

absorbing nutrients (Caspary, 1992). The intestinal MT of fish

fed high-SBM diets was lower than that of fish fed FM diets in

this study and previous studies with Japanese seabass (Zhang

et al., 2018), hybrid grouper (Zhou et al., 2020), and spotted

seabass (Rahimnejad et al., 2021). After dietary SB intervention,

the intestinal MT was increased with increasing SB inclusion

levels, which supported the similar results on European Seabass

(Abdel-Mohsen et al., 2018), yellow drum (Wu et al., 2020), and

yellow catfish (Zhao et al., 2021a). The number of goblet cells of

DI was increased with increasing SB inclusion levels in this

study, facilitating the expulsion of pathogens and maintaining

the integrity of mucus protective layers (Kim and Ho, 2010). As

a result, the intervention effect of dietary SB administration on

the SBMIE of groupers can a l so be achieved by

improving histomorphology.
Intestinal microbiota

Dysbacteriosis of the intestinal flora increases the

susceptibility to intestinal pathogens, and in severe cases, it

will further develop into intestinal infection and reduce

immune function (Fu et al., 2021; Vargas-Albores et al., 2021).
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In the current study, no alterations in intestinal microbial

abundance and diversity were observed at both phylum and

genus levels among dietary treatments. Previous research reveals

that Proteobacteria, Firmicutes, and Bacteroidetes are the

dominant phyla of intestine of marine carnivorous fish

(Nayak, 2010; Wang et al., 2018), which was consistent with

our current results. The change of intestinal bacterial abundance

of fish fed high-SBM diets vs FM diets conflicted with what has

been reported in phyla and genus abundance of turbot (Li et al.,

2020), and in genus abundance of large yellow croaker (Wang

et al., 2019) when fed a fermented SBM diet. This inconsistency

may be that the latter used fermented SBM instead of SBM as an

alternative protein source for FM. Although the changes in

phylum and genus intestinal bacterial abundance in fish fed

the diets administrated with SB were consistent with a study with

common carp (Liu et al., 2014a), our results still deviated from

many other experimental results on gilthead sea bream (Piazzon

et al., 2017) and turbot (Liu et al., 2019), and in genus abundance

changes of young grass carp (Tian et al., 2017) and European

seabass (Abdel-Mohsen et al., 2018). The inconsistency

regarding the effect of dietary SB on the intestinal flora of fish

may be due to complex rearing environmental factors such as

fish species, growth stage, and feed composition. Further study is

required in this regard.
Expression of intestinal inflammatory
factor genes

The presence of an inflammatory response is a complex

pathophysiological process, which is mediated by the activation of

a variety of cytokines and complement factors secreted by

macrophages and leukocytes (Ruhee et al., 2019). Previous studies

showed that the SBMIE mediated the expression of up-regulated

pro-inflammatory cytokine genes (IL-8, IL-1b, TNF-a and IL-12)

and the expression of down-regulated anti-inflammatory factor

genes (TGF-b1 and IL-10) in fish (Urán et al., 2008; Wang and

Secombes, 2013). Similarly, we observed an up-regulation

expression of intestinal IL-8, IL-1b, TNF-a and IL-12 and the

down-regulation of intestinal IL-10 in SBM-fed fish, which was in

accordance with previous observations (Wang et al., 2017a; Li et al.,

2020; Zhao et al., 2021b). Intestinal TGF-b1 is involved in the

inactivation of the NF-kB signaling pathway, playing a role in the

regulation of the inflammatory response and controlling the

expression of genes encoding pro-inflammatory cytokines (Inan

et al., 2000; Pedersen et al., 2022). Butyrate and SB are shown to

function as an energy source for intestinal epithelial cells to exhibit

anti-inflammatory as well as immune modulatory effects on

mammals (Nancey et al., 2002; Weber and Kerr, 2006; Meijer

et al., 2010; Ali et al., 2022). In this study, the SB intervention

achieved a reduction in the expression of intestinal IL-8, IL-1b, TNF-
a and IL-12 and an increase in the expression of intestinal TGF-b1.
This finding indicates dietary SB intervention could attenuate
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SBMIE of fish by promoting the production of anti-inflammatory

factors and preventing the production of pro-inflammatory factors

(Tian et al., 2017; Liu et al., 2019; Yu et al., 2021).
Conclusions

The present study shows that supplementation of SB in high-

SBM diets not only improves growth and feed utilization, but

also reduces the permeability of intestinal mucosal cells and

attenuates the intestinal inflammatory response in juvenile

orange-spotted groupers. The optimal inclusion level was 0.2%

SB in a high-SBM diet according to the regression analysis of

percent weight gain against dietary SB inclusion levels. This is

the first report on the intervention effect of dietary SB on

grouper enteritis induced by high-SBM diet feeding. Our

current study will provide a basis for dietary SB use as a

functional feed additive to alleviate SBMIE of fish.
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Urán, P. A., Gonçalves, A. A., Taverne-Thiele, J. J., Schrama, J. W., Verreth, J. A.
J., and Rombout, J. H. W. M. (2008). Soybean meal induces intestinal inflammation
in common carp (Cyprinus carpio l.). Fish Shellfish. Immunol. 25, 751–760.
doi: 10.1016/j.fsi.2008.02.013

Urán, P. A., Schrama, J. W., Rombout, J. H. W. M., Taverne-Thiele, J. J., Obach,
A., Koppe, W., et al. (2009). Time-related changes of the intestinal morphology of
Atlantic salmon, Salmo salar l., at two different soybean meal inclusion levels. J.
Fish Dis. 32, 733–744. doi: 10.1111/j.1365-2761.2009.01049.x
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Effects of three feed attractants
on the growth performance and
meat quality of the largemouth
bass (Micropterus salmoides)

Yuhua Yue1, Mingshi Chen1, Xiaoxue Bao1, Yingying Yu1*,
Wei Shi2, Suksan Kumkhong3, Yuhong Liu1, Ying Yang1

and Hui Yu1*

1Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of
Life Science and Engineering, Foshan University, Foshan, China, 2Laboratory of Tropical Marine Bio-
resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences,
Guangzhou, China, 3Department of Animal science, Faculty of Science and Technology, Muban
Chombueng Rajabhat University, Ratchaburi, Thailand
The trial was conducted to investigate the effects of limonene, allicin and

betaine supplementation in low fish meal (FM) diet on growth performance,

antioxidant capacity, meat quality and intestinal health in largemouth bass (M.

salmoides). The biting-balls test and feeding trial were successively conducted.

For the one, the results of the biting-ball test showed that with the increase of

the concentration of the three attractants, the attracting effect firstly increased,

then decreased, and the effect reached maximum at 0.2% concentration. (P <

0.05). Further, a 9-week feeding trial was conducted using five diets, including

a basal diet with 30% and 40% fish meal without attractant, 30% fish meal

supplemented with 0.2% limonene, 0.2% allicin or 0.2% betaine (the diets were

named FM30, FM40, FM30 + L, FM30 + A, FM30 + B, respectively). The results

demonstrated that adding limonene, allicin and betaine at concentration of

0.2% to the low fish meal feed could improve final body weight, weight gain

rate, and specific growth rate of M. salmoides but only in 4 weeks (P > 0.05).

Besides, dietary supplementation with attractants could significantly reduce the

content of MDA in serum and liver, and increase the activity of GSH in liver (P <

0.05). Compared with FM30 group, the supplementation with limonene, allicin

or betaine diet had higher pH, redness (a*), yellowness (b*) (P > 0.05), and lower

refrigeration loss, cooking loss values (P < 0.05). Furthermore, supplementation

with attractants groups had higher values for villus height, lamina propria, crypt

depth, submucous layer, and serous layer (P < 0.05). Taken together, these

results indicated that limonene, allicin and betaine had a time effect on the

growth performance, and could improve antioxidant capacity, meat quality and

intestinal health of M. salmoide.

KEYWORDS

feed attractants, largemouth bass, meat quality, physiological biochemistry,
intestinal health
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Introduction

Fish meal is the preferred protein source for manufacturing

aquafeed due to its nutritional contents, such as protein, fatty acids,

and amino acid profile, as well as its excellent digestibility and

palatability (Niu et al., 2020). However, resource depletion and

rising prices seriously limited the use offish meal in aquaculture (Li

X. et al., 2021). Earlier, a number of studies conducted on various

fish species demonstrated that low-fishmeal (LFM) diets can lead

to poor feed palatability, decrease food intake and reduce the

growth performance. For instance, olive flounder (Paralichthys

olivaceus) (Niu et al., 2019), rainbow trout (Oncorhynchus mykiss)

(Lazzarotto et al., 2018), Nile Tilapia (Oreochromis niloticus)

(Wattanakul et al., 2019), Japanese seabass (Lateolabrax

japonicu) (Rahimnejad et al., 2019). While, the attractants such

as L-amino acids, taurine, betaine, glycine, fish meal, earthworms,

Chinese herbs, and herbal extracts (Lunger et al., 2007; Shamushaki

et al., 2007; Pu et al., 2017; Rufchaei et al., 2019; Xu et al., 2020)

supplementation in LFM diets were considered as one of the most

effective and reliable ways to improve the feed palatability

(Hirt-Chabbert et al., 2012; Dar et al., 2019). But, it was also

found that such odorants supplementation in fish feeds could affect

the foraging behaviors of some species (Schmachtenberg, 2015).

Therefore, the formulation of fish feeds using plants with distinct

smells merits investigation to discover beneficial effects on feeding

attractant activity.

Limonene is an aromatic compound in essential oils,

commonly used food additive obtained from oranges,

grapefruits, and lemons (Cicero et al., 2015; Giarratana et al.,

2016; Ravichandran et al., 2018). It has been reported that

limonene has with a variety of beneficial impact including

growth improvement (Kesbiç et al., 2019), nutrient absorption

(Aanyu et al., 2018), antioxidant enzymatic activity (Djenane,

2015), and can also improve the specific immunity (de Souza

et al., 2019; Han et al., 2019). Similarly, allicin is an important

biologically active sulfur containing organic compound extracted

from the bulbs of garlic (Huang et al., 2020). Currently, various

studies have shown that allicin could improve the growth

performance (Lee et al., 2014; Ajiboye et al., 2016), reduce

oxidative stress (Abdel-Daim et al., 2015), strengthen immunity

(Hamed et al., 2021) as well as improve meat quality (Kaswinarni,

2015) of fish. And it has been found that allicin could promote the

daily feed intake of many fish such as Litopenaeus vannamei

(Samadi et al., 2016), common carp (Cyprinus carpio L)

(Mohammad, 2020), Nile Tilapia (Oreochromis niloticus) (Soltan

and Amal Elfeky, 2016), benni fish (Mesopotamichthys sharpeyi)

(Milad Maniat et al., 2014) and African catfish (Clarias gariepinus)

(Gabriel et al., 2019). In addition, diet replenished with allicin

improved the survival and growth of large yellow croaker

(Larimichthys crocea) larvae probably by promoting the

intestinal development, alleviating inflammation and enhancing

appetite (Huang et al., 2020). Betaine, a stable and non-toxic
Frontiers in Marine Science 02
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natural substance, is mainly extracted from the processing of

sugar beet (Zhao et al., 2018) and was observed to improve

growth performance, health status, feed digestibility, as well as

flesh quality and the immune status of fish (Hirt-Chabbert et al.,

2012; Pinedo-Gil et al., 2017; Ismail et al., 2020; Sun et al., 2020). It

has been proven that betaine could act as a feed attractant and

appetizer through stimulating the olfactory bulb, leading to

increase the feed intake, which minimize the feed wastage and

water pollution (Danaceau and Lucero, 2000).

In China, largemouth bass (Micropterus salmoides) typically

a freshwater carnivore fish traditionally been cultured due to

high commercial values and over the past decade its production

has expanded over 600,000 tons because of its suitability for

aquaculture, marketability, and high nutritional value (China

Fishery Statistics Yearbook 2020). So far, there are no

comprehensive studies have been reported though using

betaine, limonene and allicin as a natural attractant in

largemouth bass fed low fishmeal diets. Thus, the current

study aimed to evaluate the effects of three herbal extracts on

feed intake, growth performance, antioxidant capability, meat

quality and intestinal health for largemouth bass supplemented

low fishmeal diets.
Materials and methods

The biting-balls test

A biting-ball test device was prepared as reported previously

and the schematics was shown in Figure 1 (Yu et al., 2021). A

total of 150 fishes were placed into 3 tanks evenly [(150 × 150 ×

60 cm) (height × width × length)], supplied with dechlorinated

water. The water depth was maintained at 40 cm during the

experiment and the experiment was carried out twice a day at

8:30 and 17:00 for three days. Five different concentrations

(0.0%, 0.1%, 0.2%, 0.6% and 1.0%) solution of limonene,

allicin and betaine were prepared and stored at 4°C, then

injected into a cotton ball and wrapped with gauze,

respectively. The biting-ball was fixed with iron wire and

submerged 5 cm under the water’s surface to allow the fish to

touch or bite it. In addition, a 10 cm diameter circle was drawn at

the tank’s bottom as an effective region based on the center of the

biting ball. The mobile phone recorded the number of bites of

each bait ball and entries into the effective region within 10

minutes in order to determine the proper concentration of

limonene, allicin, and betaine.
Experimental design and diet preparation

Five experimental diets were formulated and the

formulation, and proximate composition of the experimental
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diets are presented in Table 1. The basal diet was prepared with

fish meal, soybean meal and peanut meal as the main protein

source, and fish oil, and wheat flour as the main lipid and

carbohydrate source respectively. According to the results in the

biting-balls test, we selected the same concentration (0.2%) of

allicin, betaine, limonene for further experiments. All the five

test diets were designed as follows: (1) the normal fishmeal group

(FM 40); (2) the low fishmeal group (FM 30); (3) the low

fishmeal diet supplemented with 0.2% limonene (FM30 + L);

(4) the low fishmeal supplemented with 0.2% allicin (FM30 + A);

(5) the low fish meal supplemented with 0.2% betaine (FM30 +

B) as presented Table 1. Crystalline amino acids (lysine,

methionine) also were added to the diet to balance the dietary

amino acid requirements in low fish meal diets. All dry

ingredients were mixed thoroughly, and then oil and water

were added. The mixture was extruded as an expanded

particle diet (diameter of 1.5 mm) using a DS32-II type two-

screw extruder (Guangzhou Vilavi Mechanical Equipment Co.,

Ltd.) after water addition, then air-dried and stored at -20°C

until use.
Feeding trial and experimental conditions

M. salmoides were obtained from Guangdong Ho’s Aquatic

Products Co., Ltd. (Guangdong, China) and cultured in

recirculating water system in Foshan University. Throughout the

experiment, water temperature, pH, NH4+, nitrite, nitrate and

dissolved O2 in water were maintained at 24-30°C, 6.5-7.5, < 1

mg/L, < 1 mg/L, < 20 ppm, and > 6 mg/L, respectively. After

acclimation for 2 weeks, a total of 600 fish with similar body weight

(mean initial weight 6.26 ± 0.01 g) were randomly assigned into 20

tanks. Each group contained four replicate tanks (30 fish/tank). All
Frontiers in Marine Science 03
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groups were fed two times per day at 8:30 and 17:00. The weight of

the fish in each tank was recorded at fourth and sixth week.
Sample collection

After fasting for 24 h, fishes were anaesthetized with buffered

MS-222, and the fishes in each tank were weighed to evaluate the

growth performance parameters. Three whole fishes from each

tank were sampled and stored at -20°C for subsequent proximate

composition analysis. Blood was collected from the caudal vein

of eleven fishes of each tank and blood samples were centrifuged

(3000 r/min, 15 min) at 4°C, and the supernatant (serum) was

stored at -80°C for further analysis. The livers and intestines of

five fish per tank were collected and used for histopathological

and enzyme activity analyses. Similarly, the dorsal muscles of six

fish/tank were collected for flesh quality parameters analysis.
Enzyme assays

The collected livers were centrifuged for 10 min (2000 r/min,

4°C) before collecting the supernatant and then kept at -80°C.

The supernatant of livers and serum were used to determine the

superoxide dismutase (SOD) (determined by AST-1 method),

malondialdehyde (MDA) (determined by thiobarbituric acid

(TBA) test method), catalase (CAT) (determined by

ammonium molybdenum acid method), glutathione (GSH)

(determined by microplate method) and total protein (TP)

(determined by coomassie blue staining) using the kits

purchased from Nanjing Jiancheng Bioengineering Institute,

China. All the analyses were performed according to the

instructions of the manufacturer.
FIGURE 1

Schematic diagram of biting-balls test device.
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Muscle quality measurement

The muscle quality related parameters including the pH,

lightness (L*), redness (a*), yellowness (b*) and water holding

capacity (included thawing loss, refrigeration loss, centrifugal

loss, cooking loss, drop loss and pressure loss) of dorsal muscle

were measured as earlier been reported by Caimi et al. (Caimi

et al., 2021). The L*, a* and b* of muscle were analyses using

colorimeter (SCQ-1A Tenovo International Co., Limited) while,

muscle pH was measured with a direct pH meter (accurate to

0.01, pH star, Mets, Germany).
Intestinal morphology analysis

The whole intestines were fixed in 4% paraformaldehyde,

dehydrated in a graded alcohol series, cleared in xylol, embedded

in paraffin, sectioned at 5 mm thickness, and hematoxylin and

eosin (H&E) staining were performed. Lastly, the stained

sections were observed under the microscope camera NLCD

500 (Nanjing China). Image J software (W. Rasband, NIH, USA)

was used to measure the villi height (VH), villi width (VW),
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muscle thickness (ML), lamina propria (LP), crypt depth (CD),

submucous layer (SML) and serous layer (SL).
Calculation and statistical method

Growth performance of M. salmoides was calculated

as follows:
Final body weight (FBW) = the weight of fish in the tank/

the number of fish in the tank;

Weight gain rate (WGR, %) = 100 × (final body weight-

initial body weight)/initial body weight;

Daily feed intake (DFI, g/fish) = (amount of feed consumed

by all fish in a tank/(days of the experiment × (IBW

+FBW)/2) ×100%);

Specific growth rate (SGR, %/d) = 100 × (Ln final body

weight-Ln initial body weight)/days of the experiment;

Feed conversion ratio (FCR) = feed intake/body weight

gain;

Survival rate (SR, %) = 100 × (final number of fish)/(initial

number of fish);
TABLE 1 Composition and nutrient levels of experimental diets for M. salmoides (dry-weight basis).

Ingredients (%) FM30 FM40 FM30 + L FM30 + A FM30 + B

Fish meal 30 40 30 30 30

Soybean meal 22 22 22 22 22

Peanut meal 21 10 21 21 21

Wheat flour 8.6 11 8.4 8.4 8.4

Vital wheat gluten 6 6 6 6 6

Beer yeast 3 3 3 3 3

Soybean lecithin 1 1 1 1 1

Fish oil 3 3 3 3 3

Choline chloride 0.5 0.5 0.5 0.5 0.5

Calcium dihydrogen phosphate 1.5 1.5 1.5 1.5 1.5

Compound premixa 3 3 3 3 3

Crystalline lysine 0.29 0 0.29 0.29 0.29

Crystalline methionine 0.11 0 0.11 0.11 0.11

Limoneneb 0 0 0.2 0 0

Allicinc 0 0 0 0.2 0

Betained 0 0 0 0 0.2

Totel 100 100 100 100 100

Proximate composition

Crude protein 44.73 47.88 46.08 45.92 46.54

Crude lipid 13.93 14.02 14.16 13.96 14.39

Crude ash 11.65 12.52 11.72 11.82 11.98
fro
aCompound premix: (kg-1 of diet): vitamin A, 250,000 IU; riboflavin, 750 mg; pyridoxine HCL, 400 mg; cyanocobalamin, 1 mg; thiamin, 250 mg; menadione, 250 mg; folic acid,125 mg;
biotin, 10 mg;a-tocopherol, 2.5 g; myo-inositol, 8000 mg; calcium pantothenate,1250 mg; nicotinic acid, 2000 mg; choline chloride, 8000 mg; vitamin D3,45,000 IU; vitamin C, 7000 mg;
ZnSO4·7H2O, 0.04 g; CaCO3, 37.9 g; KCl, 5.3 g; KI, 0.04 g; NaCl, 2.6 g; CuSO4·5H2O, 0.02 g; CoSO4·7H2O, 0.02 g; FeSO4·7H2O, 0.9 g; MnSO4·H2O, 0.03 g; MgSO4·7H2O, 3.5 g; Ca(HPO4)

2·2H2O, 9.8 g.
bPurchased from Xi’an Victory Biochemical Technology Co., Ltd (Victorybio).
cdPurchased from Shanghai Aladdin Biochemical Technology Co., Ltd.
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Fron
Condition factor (CF, g/cm3) = 100 × body wet weight (g)/

body length (cm)3;

Hepatosomatic index (HSI, %) = 100 × (liver weight/whole

body weight);

Viscerosomatic index (VSI, %) = 100 × (viscera weight/

whole body weight);

Intestinal index (ISI, %) = 100 × (intestine weight/whole

body weight);

Intestinal length index (ILI, %) = 100 × (intestine length/

body length).
All the data were statistically analyzed by using SPSS 26.0

(SPSS Inc., Michigan Avenue, Chicago, IL, USA). One-way

ANOVA followed by Duncan’s multiple range tests was used

and all the results were presented as means ± S.E.M (standard

error of the mean). Whereas, the values of P ≤ 0.05 were

considered as level of significance.
Results

The biting-balls test

It has been observed that at 8:00, only the effect of 0.2%

allicin and betaine as food attractants was significantly higher

than that of the 0.0% group (P < 0.05). While at 17:00, all the

three food attractants (limonene, allicin, and betaine) with 0.2%

concentration have a substantially higher effect than that of the

0.0% group (P < 0.05). Furthermore, limonene, allicin, and

betaine as a food attractant with different concentrations 0.0%,

0.1%, 0.2%, 0.6%, and 1.0% are given in Table 2.
Growth performance

Similarly, the growth performance, feed utilization and

biometric indices were also evaluated and are presented in

Table 3. At 4th week the group fed with FM40 diet presented

significantly higher FBW,WGR, and SGR than the group fed with
tiers in Marine Science 05
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FM30 diet (P < 0.05), meanwhile, no difference was observed for

FBW, WGR, or SGR among all the attractant groups (P > 0.05).

Although, both the FM30 and FM40 groups at 6th week exhibited

an insignificant (P > 0.05) differences for DFI and FCR whereas, at

6th week the DFI in FM30 + A group was significantly higher than

that of the FM30 group (P < 0.05). Additionally, no significant

difference was observed for FBW, WGR, and SGR among the

experimental groups (P > 0.05) at 9th week.

Furthermore, the CF, ISI and ILI was not changed among the

experimental groups after 9 weeks (P > 0.05). Besides, the FM30 +

L diet group had significantly higher levels of HSI than the FM30

diet group (P < 0.05) after 9 weeks, but there was no significant

difference in HSI between the FM40 and the supplementation

with limonene, allicin or betaine groups (P > 0.05).
Whole-body and muscle
chemical composition

All the dietary treatments had an insignificant (P > 0.05)

effect on the contents of the crude protein, crude lipid, and

moisture levels of the whole body and muscle mass. However,

the contents of the crude ash in FM30, FM30 + L, FM30 + A and

FM30 + B groups were lower than that in FM40 group to varying

degrees, and the FM30 + B group was significantly lower than

that in FM40 group. The results of the whole body and muscle

composition analysis are depicted in Tables 4, 5.
Liver antioxidant capability

A significantly higher contents of the MDA were detected in

FM30 diet group (P < 0.05) as compared to the FM30 + L and

FM30 + B groups, while no change inMDA contents were observed

between the FM40 group and the supplementation with limonene,

allicin or betaine groups (P > 0.05) as shown in Figure 2A. Similarly,

the GSH contents in FM30 + A and FM30 + B diet groups were

significantly higher than that of the FM30 diet group (P < 0.05), but

insignificant difference was perceived between the FM40 group and
TABLE 2 The effects of different concentrations of limonene, allicin and betaine on attracting of M. salmoides at 8:00 and 17:00.

Items 0 0.1% 0.2% 0.6% 1%

8:00

Limonene 17.67 ± 1.58 19.44 ± 0.62 24.22 ± 3.12 21.67 ± 6.77 14.67 ± 4.51

Allicin 11.22 ± 2.31ab 19.44 ± 2.78bc 23.56 ± 4.33c 6.00 ± 3.18a 9.78 ± 3.36ab

Betaine 12.33 ± 1.33a 20.44 ± 1.25b 25.67 ± 2.07b 14.00 ± 2.80a 8.89 ± 1.11a

17:00

Limonene 14.56 ± 0.78a 19.00 ± 2.71ab 25.22 ± 1.50b 22.00 ± 2.34b 14.67 ± 2.85a

Allicin 10.89 ± 4.05a 20.33 ± 0.33ab 27.78 ± 2.31b 11.00 ± 5.50a 10.78 ± 5.31a

Betaine 16.78 ± 2.35a 27.22 ± 2.74ab 34.78 ± 1.83b 26.78 ± 4.44ab 21.11 ± 4.29a
fro
Values marked with different letters are significantly different (P < 0.05) between treatments.
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the supplementation with limonene, allicin or betaine group (P >

0.05) (Figure 2B). In addition, among all the groups (P > 0.05) the

activity of SOD was not differ (Figure 2C). Moreover, the CAT

activity of the FM30 + L, FM30 + A and the FM30 + B group were

significantly lower than that of the FM30 and the FM40 groups (P >

0.05) as presented in Figure 2D.
Serum antioxidant capacity

The contents of MDA in FM30 + A group was significantly

lower than that of the FM30 group (P < 0.05), while was not

differ between the FM40 group and supplementation with

limonene, allicin or betaine group (P > 0.05) (Figure 3A).
Frontiers in Marine Science 06
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Similarly, the GSH contents in FM30 + A and FM30 + B

groups were markedly lower than the FM40 group (P < 0.05)

(Figure 3B). Moreover, the FM30 + A group had lower SOD

activity compared to other groups (P < 0.05) (Figure 3C),

however, no difference has been observed for CAT activity

among all the groups (P > 0.05) (Figure 3D).
Meat quality

As shown in Table 6, the pH, L*, thawing loss, centrifugal

loss, drop loss and pressure loss were not differ among all the

experimental groups (P > 0.05), while, the a* and b* of FM40

group was significantly higher than that of the FM30 group (P <
TABLE 4 Effects of limonene, allicin and betaine on whole-body composition (dry-weight basis) of M. salmoides for 9 weeks.

Items FM30 FM40 FM30 + L FM30 + A FM30 + B

Crude protein (%) 59.52 ± 0.42 62.81 ± 1.46 62.23 ± 1.76 60.93 ± 0.71 61.20 ± 0.19

Crude lipid (%) 23.18 ± 0.37 22.82 ± 0.29 23.87 ± 0.33 23.49 ± 0.33 23.47 ± 0.47

Crude ash (%) 13.52 ± 0.19b 13.42 ± 0.10ab 13.29 ± 0.13ab 13.24 ± 0.09ab 13.00 ± 0.19a

Moisture (%) 2.70 ± 0.08 2.28 ± 0.10 2.54 ± 0.14 2.58 ± 0.14 2.45 ± 0.11
fr
Values marked with different letters are significantly different (P < 0.05) between treatments.
TABLE 3 Effects of limonene, allicin and betaine on growth performance of M. salmoides for 4, 6 and 9 weeks.

Items FM30 FM40 FM30 + L FM30 + A FM30 + B

4 weeks

IBW (g) 6.26 ± 0.00 6.25 ± 0.00 6.25 ± 0.01 6.26 ± 0.01 6.26 ± 0.01

FBW (g) 18.99 ± 0.51a 22.58 ± 0.70 b 20.94 ± 0.20ab 19.89 ± 0.54a 20.96 ± 1.14ab

WGR (%) 203.41 ± 8.20a 261.02 ± 11.09b 234.81 ± 3.15ab 217.98 ± 9.15a 230.34 ± 6.65ab

SGR (%/d) 3.96 ± 0.09a 4.55 ± 0.11b 4.31 ± 0.04ab 4.12 ± 0.10ab 4.25 ± 0.24ab

DFI (%/d) 3.62 ± 0.17ab 3.38 ± 0.05ab 3.60 ± 0.08ab 3.76 ± 0.02b 3.49 ± 0.04ab

FCR 1.01 ± 0.06b 0.84 ± 0.02a 0.93 ± 0.01ab 1.01 ± 0.03b 0.91 ± 0.03ab

6 weeks

FBW (g) 29.28 ± 0.54 32.19 ± 0.40 30.23 ± 0.26 29.40 ± 1.14 30.41 ± 1.14

WGR (%) 367.92 ± 8.62 414.74 ± 3.51 383.36 ± 4.14 370.14 ± 18.50 385.72 ± 17.88

SGR (%/d) 3.67 ± 0.04 3.90 ± 0.02 3.75 ± 0.02 3.68 ± 0.09 3.76 ± 0.09

DFI (%/d) 2.79 ± 0.03ab 2.74 ± 0.06a 2.92 ± 0.06bc 2.96 ± 0.06c 2.78 ± 0.05ab

FCR 0.91 ± 0.01ab 0.85 ± 0.01a 0.93 ± 0.02b 0.95 ± 0.03b 0.88 ± 0.02ab

9 weeks

FBW (g) 48.05 ± 1.53 49.05 ± 0.59 47.92 ± 1.87 46.78 ± 0.62 48.85 ± 1.24

WGR (%) 667.90 ± 24.42 684.23 ± 8.87 666.38 ± 30.73 648.14 ± 10.3 680.29 ± 19.49

SGR (%/d) 3.23 ± 0.05 3.27 ± 0.02 3.23 ± 0.06 3.19 ± 0.02 3.26 ± 0.04

DFI (%/d) 2.30 ± 0.03ab 2.22 ± 0.01a 2.34 ± 0.05ab 2.41 ± 0.05b 2.27 ± 0.03a

FCR 0.91 ± 0.01ab 0.86 ± 0.01a 0.91 ± 0.03ab 0.94 ± 0.02b 0.88 ± 0.01ab

SR (%) 99.17 ± 0.83 100.00 ± 0.00 100.00 ± 0.00 98.33 ± 0.96 98.33 ± 0.96

CF (g/cm3) 1.25 ± 0.03 1.29 ± 0.03 1.29 ± 0.02 1.28 ± 0.02 1.28 ± 0.02

HSI (%) 2.58 ± 0.19a 3.14 ± 0.15b 3.22 ± 0.17b 2.85 ± 0.12ab 2.86 ± 0.16ab

VSI (%) 7.51 ± 0.18abc 7.73 ± 0.21bc 7.90 ± 0.21c 7.3 ± 0.14ab 7.16 ± 0.14a

ISI (%) 0.79 ± 0.03 0.71 ± 0.02 0.73 ± 0.05 0.71 ± 0.03 0.78 ± 0.02
Values marked with different letters are significantly different (P < 0.05) between treatments.
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0.05), but no difference was there between the FM40 group and

the supplementation with limonene, allicin or betaine groups (P

> 0.05). The refrigeration loss of the FM30 + A and FM30 + B

diets were significantly lower than that of the FM30 and FM40

groups (P < 0.05). The cooking loss of the FM30 + L group was

also lower than that of the FM30 group (P < 0.05).
Intestinal morphology

The intestinal morphology showed that the villi of FM30

group were injured and broken, and the thickness of the small
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intestinal wall was heterogeneous as depicted in Figure 4A. The

FM30 + B group had significantly higher number of villi

compared with the FM40 group (P < 0.05) (Figure 4B;

Table 7) But the width and muscular layer of fishes’villus were

not differ in all groups (P > 0.05). The lamina propria of FM30 +

A and FM30 + B groups were significantly higher compared to

the FM30 group (P < 0.05) (Table 7). Meanwhile, FM40, FM30 +

L, FM30 + A and FM30 +B groups had significantly deeper crypt

depth compared with FM30 group (P < 0.05) (Figures 4C–E).

The submucous layer value of FM30 + L and FM30 + A group

were significantly higher than FM30 group (P < 0.05). while, the

serous layer of FM30 + L group was significantly thicker than
TABLE 5 Effects of limonene, allicin and betaine on muscle composition (dry-weight basis) of M. salmoides for 9 weeks.

Items FM30 FM40 FM30 + L FM30 + A FM30 + B

Crude protein (%) 89.54 ± 0.11 89.54 ± 0.20 90.37 ± 0.51 90.39 ± 0.32 90.43 ± 0.48

Crude lipid (%) 11.57 ± 0.48 11.46 ± 0.55 10.80 ± 0.33 10.72 ± 0.72 11.01 ± 0.24

Crude ash (%) 5.88 ± 0.25 6.08 ± 0.10 5.87 ± 0.05 6.05 ± 0.06 6.00 ± 0.11

Moisture (%) 2.18 ± 0.21 1.97 ± 0.11 2.05 ± 0.04 2.03 ± 0.12 1.94 ± 0.20
fro
Values marked with different letters are significantly different (P < 0.05) between treatment.
A B

DC

FIGURE 2

Effects of limonene, allicin and betaine on liver antioxidant capability of M. salmoides for 9 weeks. (A) Malondialdehyde (MDA); (B) glutathione
(GSH); (C) superoxide dismutase (SOD); (D) catalase (CAT). Values (mean ± standard error of the mean, SEM) in bars that have the same letter
are not significantly different (P > 0.05) between treatments.
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FM30, FM40 and FM30 + B groups (P < 0.05). The villus height,

villus width, muscular layer, lamina propria, crypt depth, and

submucous layer values of fishes was not varied in limonene-,

allicin- or betaine-supplementation groups (P > 0.05).
Discussion

In aquaculture, the commercial bait is composed of food-

based basic materials and attractants, among which the

attractants play a decisive role in the entire bait due to their

characteristic flavour (Yu et al., 2021). Simultaneously, fish

predominantly rely on their olfaction for a variety of

fundamental behaviors such as foraging (Volz et al., 2020),

and food attractants that could stimulate the olfactory

receptors (Wang et al., 2021). Limonene is a translucent liquid

with pleasant lemon-like odor (Ibáñez et al., 2020), allicin is the

compound responsible for garlic’s pungent odor (Borlinghaus

et al., 2014), and betaine is a flavor enhancer used to reduce

bitterness and imparting optimal sweetness and umami to food

(Tu et al., 2020). Based on these theories, we designed this biting-

balls test, it showed that these three compounds limonene, allicin

and betaine do have positive impact on food consumption. And
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it is consistent with the results of our biting-balls test, indicating

that limonene, allicin and betaine could stimulate the smell or

taste receptors ofM. salmoides and had a strong attraction effect

(Reyes-Camacho et al., 2021). In addition, the attraction effects

of different food attractants varied, which could be attributed to

differences in the number of olfactory receptor genes responsible

for detecting different odor molecules (Liu et al., 2021), resulting

in different sensations or recognition capacities of olfactory and

taste receptors to attractants inM. salmoides. In this study, when

the concentrations of limonene, allicin and betaine were higher

than 0.2%, the attraction effects on M. salmoides was gradually

weakened, even lower than that of the control group. It might be

because high concentrations of limonene, allicin and betaine

were beyond the tolerance range of M. salmoides.

Interestingly, a gradual decrease in specific growth rate and

daily feed intake was observed from 4th to 9th weeks, and the

variations in growth performance progressively became

inconspicuous among all the experimental groups. We

speculate that M. salmoides might adapt to the taste and

texture of the different diets with the extension of the feeding

time, similar phenomenon was also reflected in previous

researches (Tian et al., 2016; Lazado et al., 2019; Le et al.,

2020; Martchenko et al., 2021). In this study, the crude
A B

DC

FIGURE 3

Effects of limonene, allicin and betaine on serum antioxidant capability of M. salmoides for 9 weeks. (A) Malondialdehyde (MDA); (B) glutathione
(GSH); (C) superoxide dismutase (SOD); (D) catalase (CAT). Values (mean ± standard error of the mean, SEM) in bars that have the same letter
are not significantly different (P > 0.05) between treatments.
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protein, crude lipid and moisture of whole body and muscle did

not differ among all the dietary treatments. The content of crude

protein and moisture in whole fish and muscle of M. salmoides

in the FM30 + L, FM30 + A and FM30 + B groups were closer to

those of the FM40 group. Various factors have contributed to the

nutritional composition of fish, such as genetic factors (Cai et al.,

2021), water environment (Mohanty et al., 2019; Byrd et al.,

2020), and season (Duarte et al., 2022), while the most important

factor is the feed nutrition (Khalili Tilami and Sampels, 2017). At

present, there have been many studies shown that

supplementation of attractants, such as betaine (Yeşilayer and
Kaymak, 2020), squid hydrolysate and squid meal (Novriadi
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et al., 2017), red seaweed eucheuma denticulatum (Eucheuma

denticulatum) (Ragaza et al., 2015), taurine (Nguyen et al., 2020)

to a low-fishmeal diet had no significant effect on fish chemical

composition. However, the contents of the crude ash in FM30,

FM30 + L, FM30 + A and FM30 + B groups were lower than that

in FM40 group to varying degrees, and the FM30 + B group was

significantly lower than that in FM40 group. Similar results were

also shown in the study of Nile tilapia (Oreochromis niloticus)

(Ahmad and Abdel-Tawwab, 2011) and juvenile tinfoil barb

(Barbonymus schwanenfeldii, Bleeker 1853) (Nafees et al., 2022).

In addition, previous study have shown that the crude ash

content of fish decreases with the prolongation of starvation
A B

D EC

FIGURE 4

Effects of limonene, allicin and betaine on intestinal morphology of M. salmoides for 9 weeks. CD, crypt depth; LP, lamina propria; ML, muscular
layer; SL, serous layer; SML, submucous layer; VH, villus height; VW, villus width. Scale bars = 50 mm. (A) FM30; (B) FM40; (C) FM30 + L; (D)
FM30 + A; (E) FM30 + B.
TABLE 6 Effects of limonene, allicin and betaine on meat quality of M. salmoides for 9 weeks.

Items FM30 FM40 FM30 + L FM30 + A FM30 + B

H 6.16 ± 0.27 6.40 ± 0.03 6.42 ± 0.04 6.38 ± 0.02 6.33 ± 0.06

L* 52.76 ± 2.07 55.37 ± 0.89 54.06 ± 1.75 52.08 ± 1.87 55.22 ± 1.34

a* 1.98 ± 0.32a 3.30 ± 0.49b 2.25 ± 0.24ab 3.15 ± 0.43ab 2.40 ± 0.31ab

b* 4.64 ± 0.56a 6.88 ± 0.61b 5.33 ± 0.66ab 5.97 ± 0.53ab 6.36 ± 0.47ab

Thawing loss (%) 2.01 ± 0.28 2.54 ± 0.37 2.17 ± 0.17 1.80 ± 0.16 2.10 ± 0.18

Refrigeration loss (%) 1.64 ± 0.13b 1.75 ± 0.17b 1.49 ± 0.13ab 1.17 ± 0.15a 1.16 ± 0.09a

Centrifugal loss (%) 9.93 ± 0.80 8.83 ± 0.59 9.23 ± 0.71 9.43 ± 0.49 9.27 ± 0.69

Cooking loss (%) 22.04 ± 1.37b 20.64 ± 0.36ab 18.90 ± 0.5a 20.19 ± 0.69ab 21.00 ± 0.79ab

Drop loss (%) 3.69 ± 0.33 3.01 ± 0.24 3.58 ± 0.29 3.04 ± 0.18 3.13 ± 0.21

Pressure loss (%) 5.26 ± 0.39 5.00 ± 0.26 4.61 ± 0.21 4.61 ± 0.15 5.07 ± 0.52
fr
Values marked with different letters are significantly different (P < 0.05) between treatment.
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time, (Abdel-Tawwab et al., 2006), thus, we speculate that

largemouth bass fed a low fish meal diet were starved more

quickly and fasted for longer, resulting in differences in the crude

ash content of the whole fish. Thus, it has been perceived that

growth performance, whole-body and muscle chemical

composition as well as health parameters were not negatively

affected by limonene, allicin, and betaine, even almost similar to

FM40 group.

The SOD and CAT are typical antioxidant enzymes found in

fish serum or liver that can prevent organisms from being

harmed by reactive oxygen species (ROS), which can cause a

variety of disorders by attacking macromolecules (Balaban et al.,

2005). GSH is the most prominent non-enzymatic antioxidant in

fish, as well as a free radical scavenger and detoxifier (Chen et al.,

2015). MDA, a byproduct of lipid peroxidation that can interact

with the free amino groups in protein causing cell damage (Xiao

et al., 2022), and the contents of MDA in the fish liver can reflect

the severity of the free radical attack on the liver or body cells

(Całyniuk et al., 2016). Previous studies have demonstrated that

limonene, allicin and betaine could improve the antioxidant

capacity of fish (Abdel-Tawwab et al., 2021; Dong et al., 2021;

Hamed et al., 2021; Ajiboye et al., 2016; Lopes et al., 2019; Lopes

et al., 2020; Mohseni et al., 2021). In this study, the GSH and

MDA contents variations in the liver as well as the MDA

contents in the serum demonstrated the antioxidant effect of

the aforesaid three attractants. On the contrary, the CAT activity

in the liver and the GSH content as well as the SOD activity in

the serum decreased in different group. This was because

limonene, allicin and betaine could significantly reduce the

oxidative stress damage, resulting in low concentration of

catalytic substrates-free radicals, and SOD being unable to

perform disproportionation reaction, whereas the CAT activity

dropped as SOD activity declined. Furthermore, there were no

significant differences between SOD in the liver and CAT in the

serum, which might be because various antioxidant enzymes

compete to respond with different degrees of antioxidative stress

(Wang et al., 2019). Thus, it has been demonstrated that

limonene, allicin, and betaine in a low fish meal diet may

considerably minimize the degree of oxidative damage to body

cells and our results are in line with the previous studies
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conducted on fruit fly (Drosophila melanogaster) (Nagpal and

Abraham, 2017), Nile tilapia (Oreochromis niloticus) (Hamed

et al., 2021), male rats (Rattus norvegicus) (Li et al., 2021b),

broilers (Chen et al., 2021) and rats (Shan et al., 2021). These

results indicated that limonene, allicin, and betaine might

enhance M. salmoides’ antioxidant capability by enhancing

antioxidant enzymes and decreasing MDA levels.

Meat quality is an important feature for producers and

consumers. In addition to sensory attributes (color, juiciness,

and flavor) (Oliveira et al., 2017), the meat quality is reflected in

its physicochemical parameters, such as WHC, pH, and nutrient

composition (Maltin et al., 2007). The pH is one of the most

important factors affecting many meat quality attributes, such as

meat color, tenderness, the WHC and other characteristics of

muscle (Cao et al., 2012). The fish meat tenderness decreased as

the pH decline. Furthermore, fish color is one of the major

criteria for determining freshness, with a significant influence on

customer purchasing decisions (Truong et al., 2014). In this

study, the pH of supplementation groups was all higher than that

of the FM30 group, indicating that limonene, allicin and betaine

could effectively maintain the relatively high pH in a short time,

and improved the tenderness. Moreover, the a* and b* offish fed

the FM40 diet were significantly higher than that of fish fed the

FM30 diet, whereas the a* and b* did not differ between the

FM40 group and the supplementation groups, indicating that

the low fish meal diet could affect the body color. However,

limonene, allicin and betaine supplementation in low fish meal

diet could restore a* and b* indices to the level of the normal fish

meal diet, which were consistent with the earlier studies

conducted on pigs (Lan et al., 2017) and chicks (Attia et al.,

2009). Thus, we speculated that these are because of the

antioxidant and antibacterial activity of the limonene and

allicin (Bacanli et al., 2015; Costa et al., 2019; Dwivedi et al.,

2019; Li D. et al., 2021). Limonene and allicin reduced the

oxidation, degeneration and acidification rate of muscle, while

increasing the pH. Betaine might improve the muscle pH by

altering the anaerobic glycolysis and antioxidant capacity of

muscle (Chen et al., 2020).

Water-holding capacity (WHC) is of great significance to the

physical form, flavor and color of muscle, which can be
TABLE 7 Histomorphometry of the intestine of M. salmoides fed different experimental diets.

Items FM30 FM40 FM30 + L FM30 + A FM30 + B

VH (mm) 38.21 ± 3.01ab 34.76 ± 2.88a 43.09 ± 3.53ab 38.17 ± 2.95ab 44.64 ± 2.91b

VW (mm) 9.15 ± 0.85 9.44 ± 1.03 12.43 ± 1.85 11.21 ± 1.24 12.59 ± 1.10

ML (mm) 14.70 ± 1.81 16.53 ± 3.10 18.26 ± 2.50 20.62 ± 1.64 20.09 ± 0.94

LP (mm) 2.99 ± 0.10a 3.19 ± 0.19ab 3.61 ± 0.26abc 4.15 ± 0.47bc 4.41 ± 0.40c

CD (mm) 2.09 ± 0.24a 3.43 ± 0.42b 3.74 ± 0.44b 3.85 ± 0.42b 3.97 ± 0.58b

SML (mm) 2.10 ± 0.18a 2.66 ± 0.20ab 3.21 ± 0.15b 2.94 ± 0.24b 2.61 ± 0.16ab

SL (mm) 2.24 ± 0.23a 2.43 ± 0.33a 3.94 ± 0.47b 3.16 ± 0.20ab 2.86 ± 0.31a
fr
Values marked with different letters are significantly different (P < 0.05) between treatments.
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evaluated by thawing, refrigeration, centrifugal, cooking, drop

and pressure loss. Our results showed that the refrigeration loss

of fish fed FM30 + A and FM30 + B diets were significantly lower

than that of fish fed FM30 and FM40 diets, and the cooking loss

of fish fed FM30 + L diet was lower than that of fish fed FM30

diet, indicating that limonene, allicin and betaine could improve

the flesh WHC. Earlier it has been illustrated that muscle WHC

was positively correlated with the MDA content (Datta et al.,

2015). Furthermore, studies have also been documented that the

WHC of muscle is closely related to pH and decline in pH

decreases results in lower electrostatic strength of muscle

protein, which dipping the interaction between charges and

the gap between myoprotein fiber and actin fiber. Water

permeates from myofibrils to sarcoplasma and further into the

extracellular space of muscle, resulting in increased water loss

and lower WHC (Huff-Lonergan and Lonergan, 2005). In the

study, the MDA content in the liver or serum in the

supplementation groups were significantly lower than that of

the FM30 group, and the pH was higher, indicating that

limonene, allicin and betaine might improve the WHC by

reducing the oxidative damage and increasing pH.

Furthermore, the WHC had the highest cooking loss due to

denaturation of muscle protein causing myofibril contraction,

exposing more hydrophobic groups, and increasing water

fluidity and eventually the water loss (Wang K. et al., 2020).

Intestinal health and integrity are directly connected to the

precise fish physiological processes since it is a vital organ for

nutrition absorption and utilization (Wang J. et al., 2020). In

fish, intestinal villi are an important site for the secretion of

digestive enzymes and nutrient absorption, therefore, the villus

with regular shape and complete structure are the basic

conditions to ensure fish intestinal health (Torrecillas et al.,

2019; Yuan et al., 2019; Li W. et al., 2021). Crypt depth influence

the process of migration, development and differentiation of tiny

intestinal cells, hence influencing the process of digestion and

absorption. Besides, the force of intestinal peristalsis generated

from the contraction of smooth muscle, as the thickness of

muscular layer increases, more will be the intestinal peristalsis

which could improve the digestibility and absorption of the

intestine. Previous studies have reported that allicin can improve

digestion (Yan and Kim, 2013), intestinal microbiota and

increase the beneficial microbiota of animals (Zhang et al.,

2020; Guillamon et al., 2021). Furthermore, studies have also

shown that betaine could improve intestinal barrier function

(Shakeri et al., 2019) (Alhotan et al., 2021). In this study,

compared with the FM30 group, lamina propria, muscular

layer, serous layer, submucous layer, villus height, villus width

and crypt depth of the supplementation groups were

significantly higher, indicating that limonene, allicin and

betaine could promote the development of intestinal villi and

improve the structure of M. salmoides digestive tract by

increasing the villi height, villi width, crypt depth and muscle
Frontiers in Marine Science 11
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thickness. However, further research is needed on whether

limonene, allicin, and betaine improve intestinal structure by

altering the intestinal microbiota of M. salmoides.
Conclusion

In conclusion, the results showed that the optimum

attractant concentration of limonene, allicin and betaine was

0.2%. Adding limonene, allicin and betaine at concentration of

0.2% to the low fish meal feed could improve growth

performance (increased final body weight, weight gain rate,

and specific growth rate) of M. salmoides but only in 4 weeks.

In addition, in 9th week, supplementation of limonene, allicin

and betaine with concentration of 0.2% in low fishmeal feed

improved antioxidant capacity in liver and serum (reduced the

MDA contents.), meat quality (increased pH, a*, and b* values

and decreased refrigeration loss, cooking loss values in the

muscle) and intestinal morphology (increased villus height,

lamina propria, crypt depth, submucous layer, and serous

layer) of M. salmoides. Therefore, limonene, allicin and betaine

may be recommended as promising attractants in the compound

feed of M. salmoides and can alleviate the current shortage of

fishmeal to a certain degree.
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Feeding juvenile largemouth
bass (Micropterus salmoides)
with carboxymethyl cellulose
with different viscous: Impacts
on nutrient digestibility,
growth, and hepatic and
gut morphology

Yu Liu1,2,3, Jiongting Fan1,2,3, Hang Zhou1,2,3, Yumeng Zhang1,2,3,
Huajing Huang1,2,3, Yixiong Cao1,2,3, Wei Zhang1,2,3,
Junming Deng1,2,3* and Beiping Tan1,2,3*

1College of Fisheries, Guangdong Ocean University, Zhanjiang, China, 2Aquatic Animals Precision
Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province,
Zhanjiang, China, 3Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology
in South China, Ministry of Agriculture, Zhanjiang, China
A 56-day trial investigated the impact of the dietary inclusion of cellulose with

different viscosities on the growth, nutrient digestibility, serum biochemical

indices, and the hepatic and gutmorphology of largemouth bass juveniles. Four

practical diets (42.50% protein and 13.70% lipid) were designed containing 8%

microcrystalline cellulose (MC) and carboxymethyl cellulose (CMC) of 2,500,

5,000, and 6,500mPa s dynamic viscosity [namedMC, low-viscosity CMC (Lvs-

CMC), medium-viscosity CMC (Mvs-CMC), and high-viscosity CMC (Hvs-CMC)

groups, respectively]. Fish of a uniform size (6.0 g) were randomly assigned into

16 cages, with 40 fish per cage. The results showed that the protein and lipid

deposition rates, specific growth rate, protein efficiency ratio, and the weight

gain rate decreased significantly in the CMC groups compared to the MC

group, whereas the feed intake and feed coefficient rate exhibited the opposite

trend. Moreover, the intestinal Na+/K+-ATPase, alkaline phosphatase, and

lipase activities significantly decreased in the Mvs-CMC and Hvs-CMC groups

compared to the MC group, as well as the serum triglyceride, total cholesterol,

and high-/low-density lipoprotein contents. The nutrient apparent digestibility

significantly decreased in the CMC groups compared to the MC group. The

viscerosomatic and intestinal length indices in the CMC groups and the villus

height in the Hvs-CMC group were significantly lower than those in the MC

group, whereas the number of gut goblet cells and muscular thickness in the

Mvs-CMC and Hvs-CMC groups exhibited opposing results. The results also

showed that dietary CMC damaged the hepatic and gut morphology and

decreased the digestive enzyme activity, nutrient apparent digestibility, and
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growth of largemouth bass. In summary, viscosity is the main anti-nutritional

effect of dietary CMC and soluble non-starch polysaccharides.
KEYWORDS

carboxymethyl cellulose, viscous, growth performance, gut morphology,
largemouth bass
Introduction

Non-starch polysaccharides (NSPs) mainly consist of

hemicellulose, pectin, and cellulose, which compose the plant

cell wall (Ma et al., 2017). Hence, plant feed ingredients usually

contain high concentrations of NSPs (Choct, 2015; Cai et al.,

2019). Recently, the increasing price of fishmeal has forced the

addition of more plant-based feed ingredients in aquafeed to

reduce production costs (Steinberg, 2022). In addition, some

binders and fillers have also been used in feed formulations to

improve the physical quality of the feed, such as wheat bran and

rice bran. These strategies ultimately increased the contents of

NSPs in the aquafeed (Deng et al., 2021). However, dietary NSPs

cannot be directly digested by fish. They are trapped in the

intestine, they inhibit nutrient digestion and absorption, and

they reduce fish growth (Cai et al., 2019; Ren et al., 2020; Deng

et al., 2021; Liu et al., 2022a; Liu et al., 2022b).

The physiological influences of dietary NSPs on aquatic

animals have recently gained increasing attention. Commonly

thought to be a class of anti-nutritional factors, these

biomolecules have been shown to interfere with the

absorption process, reduce the nutrient apparent digestibility,

and induce metabolic disorders and metabolic organ damage in

fish (Glencross et al., 2012; Gao et al., 2018; Cai et al., 2019;

Deng et al., 2021). Based on the solubility of NSPs in natural

buffers, they can be classified into insoluble and soluble types

(INSP and SNSP, respectively), and differences in solubility

lead to the varied viscosities of these two NSP types (Sinha

et al., 2011). To date, many studies have found that dietary

INSPs and SNSPs exhibit inconsistent physiological influence

on aquatic animals, with dietary SNSPs typically exhibiting

stronger anti-nutritional effects than dietary INSPs (Glencross

et al., 2012; Deng et al., 2021; Jiang et al., 2022; Liu et al.,

2022a). Recent studies have shown that the inclusion of 16.8%

SNSPs extremely impaired gut health in rainbow trout

(Oncorhynchus mykiss) compared to supplementation with

24.8% NSPs (Deng et al., 2021); moreover, supplementation

with 30% SNSP (pectin) extremely decreased nutrient

digestibility and induced intestine and liver impairments in

yellow catfish (Pelteobagrus fulvidraco) compared to

supplementation with 30% INSP (cellulose) (Cai et al., 2019).
02
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Thus, it can be speculated that the inconsistent physiological

effects of dietary INSPs and SNSPs on fish may be associated

with the differences in their physicochemical properties,

including solubility and viscosity. However, there is limited

information related to this issue in fish.

It is worth noting that dietary INSPs and SNSPs exert

different effects on the physicochemical properties of the

digesta. For example, dietary INSPs swelled with water have

been shown to increase chyme volume, while dietary SNSPs tend

to increase chyme viscosity (Sinha et al., 2011). The intestine is

the main digestive organ for fish; therefore, dietary INSPs and

SNSPs will inevitably affect the morphology and the

development of the intestine. Although scholars have

confirmed that dietary NSPs affect the intestinal development

and morphology in fish (Leigh et al., 2018; Cai et al., 2019; Lin

et al., 2020), the relationship between the viscosity of dietary

NSPs and the digestive organ’s morphology remains unclear.

Carnivorous fish have high dietary protein requirements,

and fishmeal is usually added to their commercial feeds

at more than 30% (Ma et al. , 2020). For instance,

the commercial feed of largemouth bass (Micropterus

salmoides) contains 35%–50% fishmeal (Yang et al., 2022),

while that of hybrid grouper (Epinephelus fuscoguttatus♀ × E.

lanceolatus♂) is supplemented with 50% fishmeal, indicating

that the commercial feed of carnivorous fish has broad

potential for fishmeal substitution. Carnivorous fish are not

equipped with the digestive physiology to cope with NSPs

because their natural diet does not contain NSPs. Hence,

dietary NSPs may have extreme impacts on carnivorous fish.

However, there is limited knowledge on the physiological

influences of dietary NSPs on carnivorous fish, and the

correlation between the viscosity of dietary NSPs and their

physiological effects is poorly understood. Therefore, it is

necessary to investigate the correlation between the viscosity

of dietary NSPs and their anti-nutritional effects in order to

design feasible strategies for carnivorous fish to cope with the

challenges of dietary NSPs. Toward this goal, the present trial

investigated the influences of the physicochemical properties

of dietary NSPs on the digestive enzyme activity, nutrient

apparent digestibility, hepatic and gut morphology, and the

growth of largemouth bass.
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Materials and methods

Feed preparation

Four practical diets containing 8% microcrystalline cellulose

(MC) and carboxymethyl cellulose (CMC) of 2,500, 5,000, and

6,500 mPa s [hereinafter MC, low-viscosity CMC (Lvs-CMC),

medium-viscosity CMC (Mvs-CMC), and high-viscosity CMC

(Hvs-CMC) groups, respectively] were designed (values in

millipascal second denote the dynamic viscosity, which

represents the internal friction force generated by the

interaction of fluids between two 1-m2
flat plates with a

distance of 1 m when they move relative to each other at

a speed of 1 m/s). The control group data have been published

in a previous study (Liu et al., 2022b). All materials were first

finely milled into powder, mixed thoroughly after being screened

using a 0.30-mm diameter mesh, and then accurately weighed.

Subsequently, the mixture was combined with the oil source

following diet formulation (Table 1) and then 30% of pure water
Frontiers in Marine Science 03
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added to make a dough. Finally, using a double screw extruder

(F-75; South China University of Technology, China), the dough

was extruded into a moist feed (2.0 mm) and then stored at

−20°C after air drying.
Fish and farming

The juvenile largemouth bass used in this trial were supplied

by the Freshwater Aquaculture Base of Guangdong Ocean

University. A total of 640 fish of similar size (6.00 ± 0.01 g)

were randomly assigned to 16 net cages after being fasted for

24 h. The cages with dimensions of 1.2 m × 0.8 m × 1.0 m were

set in a pool. For farmed water quality: temperature, average of

29.31°C; pH, average 7.02; ammonia nitrogen, <0.02 mg/L;

nitrite, <0.05 mg/L; and dissolved oxygen, >6.00 mg/L. Fish

were fed to satiation twice a day (0700 and 1700 hours), and fish

mortality and feeding amount were accurately recorded during

the feeding trial (56 days).
TABLE 1 Formulation and composition of the test diets.

Item Group

MC Lvs-CMC Mvs-CMC Hvs-CMC

Ingredients (%)

Fish meala 45.00 45.00 45.00 45.00

Corn gluten meal 10.00 10.00 10.00 10.00

Soy protein isolate 15.00 15.00 15.00 15.00

Fish oil 4.50 4.50 4.50 4.50

Soy oil 3.40 3.40 3.40 3.40

Soy lecithin 1.00 1.00 1.00 1.00

Starch 10.00 10.00 10.00 10.00

MCb 8.00 – – –

Lvs-CMCb – 8.00 – –

Mvs-CMCb – – 8.00 –

Hvs-CMCb – – – 8.00

Ca(H2PO4)2 1.00 1.00 1.00 1.00

NaCl 0.20 0.20 0.20 0.20

Choline chloride 0.30 0.30 0.30 0.30

Vitamin C 0.03 0.03 0.03 0.03

Vitamin and mineral premixc 1.50 1.50 1.50 1.50

Ethoxyquin 0.02 0.02 0.02 0.02

Yttrium(III) oxide 0.05 0.05 0.05 0.05

Proximate composition, dry matter (%)

Crude protein 42.59 42.48 42.43 42.38

Crude lipid 13.75 13.81 13.70 13.72

Ash 9.70 9.66 9.73 9.70

Viscosity (mPa s) 5.14 182.15 320.48 440.65
fro
MC, microcrystalline cellulose; Lvs-CMC, low-viscosity carboxymethyl cellulose; Mvs-CMC, medium-viscosity CMC; Hvs-CMC, high-viscosity CMC.
aSupplied by Zhanjiang Haibao Feed Co., Ltd. (Zhanjiang, China): fish meal, 65.81% crude protein and 7.69% crude lipid.
bSupplied by Shanghai Yuanye Bio-Technology Co., Ltd. (Shanghai, China).
cSupplied by Qingdao Master Biotech (Qingdao, China).
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Digestibility test

The digestibility test was carried out in the feeding period

using yttrium trioxide (Y2O3, 99.9% purity) as the indicator.

Fecal collection was initiated 2 weeks after the fish had adapted

to the diet. Feces at the bottom of the cages were collected daily

using a 200-mesh brail net, with intact feces selected for

subsequent analysis.
Sampling strategy

The fish were counted and weighed accurately after a 24-h

fast after the fish had eaten their last meal, and then they were

anesthetized using 100 mg/L of an MS-222 solution. From each

cage, four fish were randomly chosen for the measurement of

body length and weight, and then the fish were dissected on an

ice plate. The visceral mass, gut, and liver were weighed

accurately and the intestinal length measured. Another group

of fish (n = 4 from each cage) was randomly selected for the

collection of blood samples according to the method described

by Liu et al. (2022b). The proximal and distal intestines of two

fish from each cage were collected into separate Eppendorf (EP)

tubes and stored at −80°C for subsequent analysis. Thereafter,

another batch of fish (n = 3 from each cage) was randomly

collected and stored at −20°C for whole-body chemical

composition analysis.
Gut and hepatic morphological
observation

One hindgut (1 cm) and liver sample per cage was collected

into separate EP tubes and then fixed using 4% formaldehyde

solution to prepare hematoxylin–eosin (HE) staining sections

according to the method described by Liu et al. (2022b). HE-

stained sections were observed using a Nikon Ni-U microscope

imaging system (Nikon Ni-U, Tokyo, Japan) following the

method described by Huang et al. (2022).

Furthermore, another hindgut tissue was collected per cage

in the MC, Lvs-CMC, and Hvs-CMC groups and then fixed with

2.5% glutaraldehyde to prepare ultrathin sections according to

the method described by Liu et al. (2022b). Finally, the ultrathin

sections were examined using a transmission electron

microscope (HT7600; Hitachi, Tokyo, Japan) according to the

method of Huang et al. (2022).
Chemical analysis

Feces, whole-body, and the diet’s approximate composition

were measured using a laboratory method (AOAC, 2005), as

follows: moisture, drying samples at 105°C until obtaining a
Frontiers in Marine Science 04
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constant weight; crude protein, using the Kjeldahl method; crude

lipid, using the Soxhlet extraction method; and crude ash,

burning the samples in a muffle furnace. Dietary viscosity was

detected using a viscometer (LV-SSR type) with reference to the

methods described in Liu et al. (2022b). The content of yttrium

in the feed and fecal samples was measured using inductively

coupled plasma mass spectrometry. Firstly, 100–200 mg sample

was digested with a digestion solution (1 ml hydrogen peroxide

and 6 ml nitric acid) in a microwave digestion apparatus

(Multiwave PRO 41HVT56; Anton Paar, Graz, Austria).

Thereafter, the digested solution of each sample was used to

determine the yttrium content using mass spectrometry (7500cx;

Agilent, Santa Clara, CA, USA).
Intestinal digestive enzyme activity
analysis

Moist intestinal samples were first precisely weighed and

then homogenized (IKA Works Asia, Bhd., Rawang, Malaysia)

by adding 9x phosphate buffer (ice-cold, v/w) to obtain the

supernatant for the analysis of enzyme activity. The activities of

intestinal creatine kinase (CK), lipase, Na+/K+-ATPase, protease,

alkaline phosphatase (AKP), and amylase and the concentration

of protein were determined using commercial kits following the

instructions of the manufacturer (ELISA; Shanghai Enzyme Link

Biotechnology Co., Ltd., Shanghai, China).
Serum biochemical index analysis

The contents of serum low-/high-density lipoprotein cholesterol

(LDL-C/HDL-C, respectively),malondialdehyde (MDA),bloodurea

nitrogen (BUN), triglyceride (TG), total amino acid (TAA), and total

cholesterol (T-CHO) and the activities of serum superoxide

dismutase (SOD), peroxidase (POD), catalase (CAT), and alanine

and aspartate aminotransferase (ALT and AST, respectively) were

examined using commercial kits according to the manufacturer’s

instructions (Nanjing Jiancheng Bioengineering Institute,

Nanjing, China).
Calculation and statistical analysis

The formulas used in the present study were as follows:

Survival rate (SR,   % ) = 100� Final fish number
Initial fish number

� �

Weight gain rate (WGR,   % )

=
100� Final body weight − Initial body weightð Þ

Initial body weight
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Specific growth rate (SGR,   % =day) =

100� Ln Final body weightð Þ − Ln Initial body weightð Þ½ �
Days

Feed intake (FI,   % body
weight
day

)

= 100� 2� Feed consumption � Days
Final body weight + Initial weightð Þ

Feed conversion ratio (FCR)

=
Feed intake

Final body weight − Initial weight

Protein efficiency ratio (PER)

=
Final body weight − Initial body weightð Þ

Protein intake

Protein deposition rate (PDR,% )

= 100� Protein retention
Protein intake

Lipid deposition rate (LDR,% ) = 100� Lipid retention
Lipid intake

Condition factor (CF,  g=cm3) =
Body weight
Body length∧3

Organ index (OI,   % ) = 100� Organ weight
Body weight

Hepatosomatic index (HSI,   % ) = 100� Liver weight
Body weight

Viscerosomatic index (VSI,   % ) = 100� Intestinal weight
Body weight

Intestinal length index (ILI,   % )

= 100� Intestinal length
Body weight

Apparent digestibility of dry matter ( % )

= 100� 1 −
Dietary Y content
Fecal Y content

� �

Apparent digestibility of dry nutrient ( % ) =

100� 1 −
Dietary Y content
Fecal Y content

� �
� Dietary Y content

Fecal Y content

� �� �
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Experimental data were presented as the mean ± standard

error of the mean (SEM). The percentage data were arcsine-

transformed before analysis, and all data were subjected to one-

way analysis of variance with SPSS software (version 22.0;

Chicago, IL, USA). Tukey’s multiple range test was performed

when there was a significant difference between data (p < 0.05).

Results

Growth indices

The survival rate (SR) of largemouth bass was not

significantly affected by the experimental diets (p > 0.05;

Table 2). The protein efficiency ratio (PER), protein deposition

rate (PDR), specific growth rate (SGR), and the weight gain rate

(WGR) in the CMC groups were significantly lower than those

in the MC group, whereas the feed intake (FI) and feed

conversion ratio (FCR) in the CMC groups exhibited the

opposite results (p < 0.05). Moreover, the lipid deposition rate

(LDR) decreased significantly in the CMC groups compared to

that in the MC group, and this parameter also decreased

significantly with increasing CMC viscosity (p < 0.05).
Chemical composition and
morphological parameters

The organ index (OI) and the whole-body crude protein and

moisture contents were not significantly affected by the

experimental diets (p > 0.05; Table 3). The condition factor

(CF) in the Hvs-CMC group was significantly lower than that in

the other groups. The hepatosomatic index (HSI) in the CMC

groups was significantly lower than that in the MC group;

moreover, this parameter significantly decreased with

increased CMC viscosity (p < 0.05). The viscerosomatic index

(VSI) and intestinal length index (ILI) in the CMC groups were

significantly higher than those in the MC group, with the VSI

showing an increasing trend with increased CMC viscosity

(p < 0.05). Moreover, the whole-body crude lipid content

decreased significantly in the CMC groups compared to that

in the MC group, and this parameter decreased significantly in

the Hvs-CMC group compared to the Lvs-CMC and Mvs-CMC

groups (p < 0.05).
Dietary nutrient digestibility

Dietary crude lipid, crude protein, and the dry matter

apparent digestibility coefficient in the CMC groups were

significantly lower than those in the MC group (p < 0.05;

Table 4). Additionally, the dietary dry matter apparent
frontiersin.org

https://doi.org/10.3389/fmars.2022.1023872
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Liu et al. 10.3389/fmars.2022.1023872
digestibility in the Lvs-CMC group was significantly higher than

that in the Hvs-CMC group (p < 0.05).
Digestive and absorption enzyme activity

The activities of intestinal amylase and CK were not

significantly affected by the experimental diets (p > 0.05;

Table 5). The activities of intestinal AKP and lipase in the

CMC groups were significantly lower than those in the MC

group (p < 0.05). Additionally, the activities of intestinal Na+/

K+-ATPase and protease in the Mvs-CMC and Hvs-CMC

groups were significantly lower than those in the Lvs-CMC

group (p < 0.05).
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Serum biochemical indices

The concentrations of TAAandMDAand the activities of POD,

SOD, and CAT in the serum were not significantly affected by the

experimental diets (p > 0.05; Table 6). The concentrations of serum

TG, HDL-C, LDL-C, and T-CHO in the CMC groups were

significantly lower than those in the MC group (p < 0.05).

Moreover, the serum HDL-C concentration in the Mvs-CMC and

Hvs-CMC groups was significantly lower than that in the Lvs-CMC

group (p < 0.05). Conversely, the activities of serumALT andAST in

the CMC groups were significantly higher than those in the MC

group; the serumALTactivity increased significantlywith increasing

CMC viscosity (p < 0.05). The serumBUN content in theHvs-CMC

groupwas significantlyhigher than that in theothergroups (p<0.05).
TABLE 3 Effects of increasing dietary viscosity on the morphological parameters and body composition of juvenile largemouth bass.

Item Group

MC Lvs-CMC Mvs-CMC Hvs-CMC

Morphological parameters

Condition factor (g/cm3) 2.20 ± 0.04b 2.17 ± 0.04b 2.13 ± 0.10b 2.09 ± 0.03a

Organ index (%) 8.04 ± 0.13 8.32 ± 0.16 8.15 ± 0.16 7.97 ± 0.18

Hepasomatic index (%) 1.86 ± 0.06d 1.39 ± 0.05c 1.05 ± 0.05b 0.87 ± 0.04a

Viserosomatic index (%) 0.69 ± 0.02a 1.04 ± 0.03b 1.16 ± 0.03c 1.24 ± 0.02d

Intestinal length index (%) 0.86 ± 0.01a 0.94 ± 0.01b 0.96 ± 0.02b 0.95 ± 0.01b

Body composition (%)

Moisture 72.01 ± 1.06 72.59 ± 0.92 72.70 ± 1.12 73.73 ± 1.27

Crude protein 15.66 ± 0.20 15.29 ± 0.18 15.73 ± 0.17 15.79 ± 0.04

Crude lipid 8.53 ± 0.09c 7.39 ± 0.08b 7.33 ± 0.20b 6.68 ± 0.03a

Ash 4.06 ± 0.20 3.97 ± 0.12 4.10 ± 0.15 4.10 ± 0.12
fro
Values shown are the mean ± SEM (n = 4). Different superscript letters in the same row indicate significant difference between data (p < 0.05).
MC, microcrystalline cellulose; Lvs-CMC, low-viscosity carboxymethyl cellulose; Mvs-CMC, medium-viscosity CMC; Hvs-CMC, high-viscosity CMC.
TABLE 2 Effects of increasing dietary viscosity on the growth and feed utilization of juvenile largemouth bass.

Item Group

MC Lvs-CMC Mvs-CMC Hvs-CMC

Final body weight (g) 67.23 ± 1.26b 60.87 ± 0.61a 58.01 ± 0.94a 57.79 ± 1.53a

Survival rate (%) 98.75 ± 1.25 100.00 ± 0.00 98.75 ± 0.72 96.88 ± 1.88

Weight gain rate (%) 1,118.50 ± 20.53b 1,012.28 ± 10.36a 966.23 ± 16.00a 962.55 ± 24.33a

Specific growth rate (%/day) 4.31 ± 0.03b 4.13 ± 0.02a 4.05 ± 0.03a 4.04 ± 0.04a

Feed intake (% BW/day) 2.85 ± 0.05a 3.11 ± 0.03b 3.25 ± 0.05b 3.26 ± 0.08b

Feed coefficient rate 0.95 ± 0.02a 1.06 ± 0.01b 1.12 ± 0.02b 1.13 ± 0.03b

Protein efficiency ratio 2.46 ± 0.05b 2.22 ± 0.03a 2.11 ± 0.04a 2.10 ± 0.06a

Protein deposition rate (%) 38.57 ± 0.77b 33.82 ± 0.40a 33.11 ± 0.61a 33.22 ± 0.96a

Lipid deposition rate (%) 67.91 ± 1.29c 52.40 ± 0.59b 49.69 ± 0.88a 41.60 ± 1.98a
Values shown are the mean ± SEM (n = 4). Different superscript letters in the same row indicate significant difference between data (p < 0.05).
MC, microcrystalline cellulose; Lvs-CMC, low-viscosity carboxymethyl cellulose; Mvs-CMC, medium-viscosity CMC; Hvs-CMC, high-viscosity CMC; BW, body weight.
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Hindgut and liver morphology
observation

Morphological observations of the gut and liver are

presented in Figures 1–3. The measurement strategy is also

indicated in the figures. The gut crypt depth and villus width

were not significantly affected by the experimental diets

(p > 0.05; Table 7). The gut microvillus height in the CMC

groups was significantly lower than that in the MC group, and

this parameter decreased significantly with increasing CMC

viscosity (p < 0.05). Moreover, the gut villus height in the Hvs-

CMC group was significantly lower than that in the other groups

(p < 0.05). The gut muscular thickness and goblet cell number in

the Mvs-CMC and Hvs-CMC groups were significantly lower

than those in the MC and Lvs-CMC groups (p < 0.05).
Discussion

An increasing amount of reports confirmed that the

physiological impacts of dietary NSPs on aquatic animals are

associated with the type of dietary NSPs (either insoluble or

soluble) (Sinha et al., 2011; Ren et al., 2020; Deng et al., 2021;

Jiang et al., 2022). Several studies have shown that the anti-

nutritional impacts of dietary NSPs are mainly caused by the
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SNSP component (Cai et al., 2019; Ren et al., 2020; Deng et al.,

2021; Liu et al., 2022b). However, there is limited information on

the correlation between the physicochemical characteristics of

NSPs and their anti-nutritional effects. Our data demonstrated

that dietary CMC exerts a greater anti-nutritional influence

compared to dietary MC, suggesting that solubility and

viscosity are the major anti-nutritional features of dietary

NSPs. Similarly, dietary SNSPs negatively affected the growth

of yellow catfish and rainbow trout compared to dietary INSPs

(Cai et al., 2019; Deng et al., 2021), and dietary supplementation

exceeding SNSP (guar gum) negatively affected the growth

performance of mullet (Mugil liza) and striped catfish

(Pangasianodon hypophthalmus) (Ramos et al., 2015; Tran-Tu

et al., 2018).

Dietary SNSPs increase the viscosity of the digesta and slow down

the passage of gastrointestinal emptying (Tran-Tu et al., 2019), which

may, in turn, reduce the intake of fish feed. Additionally, dietary

SNSPs can induce the production of glucagon-like peptides and

peptide YY through bacterial fermentation, thereby enhancing satiety

in fish (Lattimer and Haub, 2010). Therefore, the increase of dietary

SNSP levels is usually accompanied by a decrease in the FI of fish

(Sinha et al., 2011). In previous studies, an increase in dietary viscosity

has been shown to decrease the FI ofM. liza (Ramos et al., 2015), but

increased the FI of rainbow trout (Deng et al., 2021). In this study,

dietary CMC supplementation significantly increased the FI of
TABLE 5 Effects of increasing dietary viscosity on the intestinal digestive and absorptive enzyme activities of juvenile largemouth bass.

Item Group

MC Lvs-CMC Mvs-CMC Hvs-CMC

Proximal intestine

Protease (U/g protein) 4.55 ± 0.14b 4.29 ± 0.23b 3.60 ± 0.23a 3.51 ± 0.09a

Lipase (U/g protein) 0.85 ± 0.04b 0.68 ± 0.02a 0.71 ± 0.03a 0.69 ± 0.02a

Amylase (U/g protein) 0.33 ± 0.04 0.40 ± 0.03 0.29 ± 0.05 0.26 ± 0.04

Distal intestine

Creatine kinase (U/mg protein) 0.16 ± 0.02 0.12 ± 0.03 0.13 ± 0.03 0.16 ± 0.02

Na+/K+-ATPase (U/mg protein) 24.37 ± 1.44b 23.28 ± 0.83b 19.59 ± 0.54a 18.55 ± 0.44a

Alkaline phosphatase (U/g protein) 145.63 ± 5.69b 124.82 ± 5.53a 126.67 ± 4.74a 125.08 ± 2.40a
Values shown are the mean ± SEM (n = 4). Different superscript letters in the same row indicate significant difference between data (p < 0.05).
MC, microcrystalline cellulose; Lvs-CMC, low-viscosity carboxymethyl cellulose; Mvs-CMC, medium-viscosity CMC; Hvs-CMC, high-viscosity CMC.
TABLE 4 Effects of increasing dietary viscosity on the dietary apparent digestibility of juvenile largemouth bass.

Item Group

MC Lvs-CMC Mvs-CMC Hvs-CMC

Dry matter (%) 85.52 ± 0.32c 82.64 ± 0.26b 80.24 ± 0.14a 80.56 ± 0.41a

Crude protein (%) 91.32 ± 0.36b 86.75 ± 1.12a 86.32 ± 0.30a 85.91 ± 0.42a

Crude lipid (%) 90.88 ± 0.24b 80.25 ± 0.17a 80.39 ± 0.56a 80.01 ± 0.60a
fro
Values shown are the mean ± SEM (n = 4). Different superscript letters in the same row indicate significant difference between data (p < 0.05).
MC, microcrystalline cellulose; Lvs-CMC, low-viscosity carboxymethyl cellulose; Mvs-CMC, medium-viscosity CMC; Hvs-CMC, high-viscosity CMC.
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TABLE 6 Effects of increasing dietary viscosity on the serum biochemical indices of juvenile largemouth bass.

Item Group

MC Lvs-CMC Mvs-CMC Hvs-CMC

HDL-C (mmol/L) 5.11 ± 0.63c 4.17 ± 0.13b 3.00 ± 0.33a 3.01 ± 0.12a

LDL-C (mmol/L) 3.53 ± 0.22b 2.29 ± 0.10a 2.20 ± 0.13a 2.41 ± 0.07a

T-CHO (mmol/L) 10.75 ± 0.60b 6.56 ± 0.38a 6.20 ± 0.26a 5.75 ± 0.25a

TG (mmol/L) 10.17 ± 0.75b 7.25 ± 0.20a 7.74 ± 0.38a 7.45 ± 0.35a

TAA (mmol/L) 0.31 ± 0.03 0.31 ± 0.01 0.31 ± 0.01 0.31 ± 0.02

BUN (mmol/L) 2.05 ± 0.24a 2.08 ± 0.04a 2.34 ± 0.30ab 2.80 ± 0.14b

ALT (U/L) 3.84 ± 0.15a 4.32 ± 0.42a 6.12 ± 0.32b 5.87 ± 0.37b

AST (U/L) 15.75 ± 0.40a 18.03 ± 1.63ab 20.45 ± 1.33b 19.89 ± 0.94b

SOD (U/ml) 217.72 ± 10.52 208.04 ± 8.27 213.66 ± 6.73 209.64 ± 8.14

MDA (nmol/ml) 19.23 ± 1.20 18.92 ± 1.56 19.82 ± 1.80 18.02 ± 1.80

CAT (U/ml) 6.23 ± 0.26 6.20 ± 0.39 6.27 ± 0.11 6.67 ± 0.39

POD (U/ml) 1.31 ± 0.04 1.39 ± 0.05 1.26 ± 0.02 1.38 ± 0.09
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Values shown are the means ± SEM (n = 4). Different superscript letters in the same row indicate significant difference between data (p < 0.05).
MC, microcrystalline cellulose; Lvs-CMC, low-viscosity carboxymethyl cellulose; Mvs-CMC, medium-viscosity CMC; Hvs-CMC, high-viscosity CMC; HDL-C, high-density lipoprotein
cholesterol; LDL-C, low-density lipoprotein cholesterol; T-CHO, total cholesterol; TG, triglyceride; TAA, total amino acid; BUN, blood urea nitrogen; ALT, alanine aminotransferase; AST,
aspartate aminotransferase; SOD, superoxide dismutase; MDA, malondialdehyde; CAT, catalase; POD, peroxidase.
FIGURE 1

Hindgut hematoxylin–eosin (HE) staining of largemouth bass fed with the test diets (magnification, ×200). Yellow double-sided arrow, villus
width; black arrow, crypt cell proliferation; red double-sided arrow, villus height; green double-sided arrow, muscular thickness; green arrow,
goblet cell; blue double-sided arrow, crypt depth.
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largemouth bass. The differences in these results suggest that the effect

of dietary viscosity on the feeding rate of fish may be related to

fish species.

Intestinal digestive enzymes play a crucial role in the

absorption process of feed nutrients in fish, and their activity

determines the nutrient absorption efficiency and growth rate of

fish (Willora et al., 2022). On the other hand, digestive enzyme

activity is inevitably influenced by the quantities and

characteristics of feed ingredients (Zhang et al., 2021). Our

data showed that dietary CMC extremely reduced the activities

of the intestinal digestive enzymes compared to dietary MC,

suggesting that soluble SNSPs are detrimental to dietary nutrient

uptake. Moreover, the activities of intestinal protease and Na+/

K+-ATPase exhibited a decreasing trend with increasing CMC

viscosity, indicating that high-viscosity diets are more

detrimental to nutrient digestion and absorption. A previous

study indicated that dietary SNSPs bind to the enzymes in the

gut, decrease the intestinal enzyme activities (Sinha et al., 2011),

and may form some sticky granules that adhere to the intestinal

villus, thereby interfering with the digestion and absorption

processes (Nie et al., 2007). This evidence suggests that CMC

diets may reduce the digestive enzyme activity through adhesion.

Furthermore, AKP is also considered to be an important

immune enzyme in fish, and a decrease in its activity
Frontiers in Marine Science 09
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represents a decreased immune status in fish (Yin et al., 2018;

Yu et al., 2021). Combined with the poor gut morphology

(epithelial cell death and increased cell intervals) (Figure 2)

observed in the CMC groups, our results suggest that high

dietary viscosity disrupts gut health.

Dietary NSPs have a large number of carboxyl and hydroxyl

units that can interact with mineral elements (Ma et al., 2017),

thereby accelerating the efflux of mineral components and

reducing their absorption efficiency, especially for Na and K

(Leenhouwers et al., 2006; Kraugerud et al., 2007; Leenhouwers

et al., 2007). It is worth noting that the activity of Na+/K+-

ATPase is affected by osmotic pressure (He et al., 2021) and is

closely associated with the concentration of substrate ion (Gal-

Garber et al., 2003). This evidence possibly explains the dramatic

decrease in intestinal Na+/K+-ATPase activity in this study since

a high-viscosity diet accelerates the excretion of Na, K, and

other minerals.

Dietary proteins and lipids need to be broken down by

protease and lipase before they can be absorbed and utilized by

fish. Therefore, it can be hypothesized that the reduced apparent

protein and lipid digestibility in the CMC groups is closely

associated with the decreased activities of protease and lipase. In

addition, endogenous nitrogen loss may also contribute to the

decrease in apparent protein digestibility (Rgensen et al., 2003).
FIGURE 2

Hindgut transmission electron microscopy observation of juvenile largemouth bass fed with the test diets (magnification, ×7,000). Black arrow,
epithelial cell death; red arrow, epithelial cell space; yellow double-sided arrow, microvillus height.
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Furthermore, the poor apparent lipid digestibility ultimately

reduced the serum TG concentration and whole-body crude

protein content in the CMC groups. Similarly, increasing dietary

viscosity significantly decreased the dietary dry matter and crude

protein digestibility in catfish (Clarias gariepinus) and striped
Frontiers in Marine Science 10
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catfish (Leenhouwers et al., 2006; Tran-Tu et al., 2018; Tran-Tu

et al., 2019).

ALT and AST are amino acid metabolizing enzymes that are

mainly located in hepatocytes and enter the blood when liver

damage occurs (Chaklader et al., 2021). Hence, the activities of
FIGURE 3

Hepatic hematoxylin–eosin (HE) staining of largemouth bass fed with the test diets (magnification, ×200). Black arrow, fibrosis of liver cells.
TABLE 7 Effects of increasing dietary viscosity on the hindgut morphology of juvenile largemouth bass.

Item Group

MC Lvs-CMC Mvs-CMC Hvs-CMC

Villus height (mm) 518.35 ± 24.40b 549.44 ± 18.33b 526.37 ± 12.25b 457.92 ± 10.31a

Villus width (mm) 103.45 ± 13.28 107.71 ± 8.84 107.71 ± 8.84 104.86 ± 9.49

Crypt depth (mm) 25.59 ± 3.14 24.18 ± 2.48 23.77 ± 2.28 24.89 ± 2.01

Muscular thickness (mm) 110.06 ± 6.48a 102.48 ± 7.64a 130.50 ± 5.57b 131.80 ± 6.83b

Goblet cell relative number (per 100 mm) 17.00 ± 0.50a 14.00 ± 1.84a 25.20 ± 3.07b 24.83 ± 3.19b

Microvillus height (mm) 1.31 ± 0.03c 1.02 ± 0.04b – 0.82 ± 0.06a
Values shown are the mean ± SEM (n = 4). Different superscript letters in the same row indicate significant difference between data (p < 0.05).
MC, microcrystalline cellulose; Lvs-CMC, low-viscosity carboxymethyl cellulose; Mvs-CMC, medium-viscosity CMC; Hvs-CMC, high-viscosity CMC.
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serum ALT and AST can reveal the hepatic function status

(Hanim et al., 2015). In this study, dietary CMC increased the

activities of serum ALT and AST, with both ALT and AST

activities in the Hvs-CMC group being significantly lower than

those in the MC group; in contrast, a worse hepatic morphology

was observed in the CMC groups (Figure 3). Our results suggest

that dietary CMC disrupts hepatic health, with a highly viscous

CMC exhibiting a stronger destructive impact than the low-

viscosity CMC. Similarly, dietary SNSPs lead to hepatic damage

in yellow catfish (Cai et al., 2019).

Fish gut morphology is inevitably affected by dietary

components; hence, gut morphology is a widely used measure

to evaluate the potential physiological impacts of dietary

components on fish (Hartviksen et al., 2014; Huang et al.,

2022). Furthermore, gut morphology is closely associated with

its physiological functions (e.g., digestion and absorption) (Fang

et al., 2019). For example, variations in the height of the

intestinal villus and the number of folds and goblet cells may

affect intestinal digestion and absorption (Sang and Fotedar,

2010). Generally, factors that can increase the digestive area

promote intestinal digestion and absorption function. In this

study, fish fed with Hvs-CMC diets had the shortest intestinal

villus height, suggesting that a high-viscosity diet is unfavorable

for gut digestive function. Muscular thickness can efficiently

reveal the intestinal peristaltic capacity since it is closely related

to intestinal motility (Huang et al., 2022). As aforementioned,

dietary SNSPs increased the digesta viscosity and prolonged the

digesta transit time in the intestine (Sinha et al., 2011).

Therefore, it can be hypothesized that the increase in muscular

thickness was intended to enhance intestinal motility, as an

adaptive change to highly viscous diets. The mucin secreted by

goblet cells is a crucial part of the intestinal mucosal immune

barrier, which participates in maintaining the intestinal health of

fish (Zheng et al., 2015; Martıń et al., 2019; Tan and Sun, 2020).

Thus, an increase in the number of goblet cells is beneficial for

promoting intestinal health. Moreover, Sinha et al. (2011)

suggested that increasing the digesta viscosity decreased

intestinal oxygen tension, thereby promoting the proliferation

of anaerobic microbiota. Moreover, anaerobic microbiota is

generally detrimental to host health and even induces

infections by producing toxic metabolites such as endotoxins,

histamine, and trimethylamine N-oxide (Santos et al., 2014;

Subramaniam and Fletcher, 2018; Cobo, 2021). This evidence

suggests that the increased number of intestinal goblet cells in

largemouth bass may be a response to the adverse effects of the

high-viscosity diet, thereby maintaining intestinal health.

Overall, combined with the decrease in digestive enzyme

activity, feed utilization, and growth, as well as the unfavorable

dietary nutrient digestibility and worse intestinal morphology

aforementioned, our results demonstrated that the anti-

nutritional effect of dietary SNSPs is mainly associated with

their viscosity.
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Conclusion

In conclusion, dietary CMC increases the dietary viscosity,

decreases the digestive enzyme activities, and disrupts the intestinal

morphology, thereby inhibiting dietary nutrient digestibility and

reducing the growth of largemouth bass juveniles. Moreover, our

data showed that solubility and viscosity are the dominant anti-

nutritional features of NSPs and that the anti-nutritional effect of

dietary SNSPs comes mainly from their viscosity.
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Mulberry leaf extract improves
non-specific immunity and
antioxidant capacity of
largemouth bass (Micropterus
salmoides) fed a high-starch diet

Jing Tingsen1†, Luo Hui1,2†, Huang Junwa3†, Li Zhe1, Li Yu1,
Jin Honghao1, Zou Xinxi1, Ke Zhenlin1, Sun Wenbo1,
Hou Mengdan1, Yang Huijun3* and Ye Hua1,2*

1Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, College
of Fisheries, Southwest University, Chongqing, China, 2Chongqing Aquatic Science and Technology
Innovation Alliance, Chongqing, China, 3Guangzhou A Share Aquatic Science and Technology Co.,
Ltd, Guangzhou, China
A 70-day experiment was conducted to investigate the effects of mulberry leaf

extract (MLE) on growth, proximate compositions, antioxidant and plasma

biochemical parameters, and indices of non-specific immunity of largemouth

bass (Micropterus salmoides) fed a high-starch diet. Two hundred eighty

largemouth bass (initial body weight, 68.00 ± 0.19 g) were randomly fed

seven diets: basal-starch diet (BSD; 8.88% starch), high-starch diet (HSD;

11.42% starch), and HSD diets supplemented with 0.05%, 0.10%, 0.20%,

0.50%, and 1.00% MLE (MLE1, MLE2, MLE3, MLE4, and MLE5, respectively).

The results indicated that HSD and MLE did not significantly affect the growth

performance of largemouth bass during the experimental period compared

with that of the BSD, but the supplementation with more than 0.20% (MLE3,

MLE4, and MLE5) MLE significantly decreased the hepatosomatic index (HSI)

values, and 1.00% (MLE5) MLE significantly decreased the viscerosomatic index

(VSI) values. The whole-body moisture of fish fed an HSD decreased

significantly, while the whole-body lipid content increased significantly in the

HSD group compared with the BSD group. Compared with HSD, MLE

supplementation significantly decreased the moisture and lipid contents in

the whole body. Supplementation withmore than 0.20%MLE (MLE3, MLE4, and

MLE5) significantly decreased the moisture content in the muscle.

Supplementation with 1.00% MLE significantly decreased the content of

hepatic and muscle glycogen. The malondialdehyde (MDA) content of the

HSD group was significantly increased compared to that of the BSD group,

whereas more than 0.10% (MLE2, MLE3, MLE4, and MLE5) MLE significantly

decreased the MDA content. Additionally, the total antioxidant capacity (T-

AOC), catalase (CAT), and glutathione peroxidase (GSH-Px) activities of MLE5

were significantly higher than those of the HSD group. The complement-3 (C3)

content and globulin (GLB) in the plasma of the HSD group were significantly

lower than those of the BSD group. Plasma C3 levels in the MLE3, MLE4, and
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MLE5 groups were significantly higher than those in the HSD group. In addition,

glucose (GLU) levels in the MLE3, MLE4, and MLE5 groups were significantly

lower than those in the HSD group. Supplementation with 0.50% (MLE4) MLE

significantly increased the lysozyme (LYZ) content and decreased the activities

of alanine transaminase (ALT) and aspartate transaminase (AST).

Supplementation with 1.00% MLE significantly increased complement-4 (C4)

and GLB contents and alkaline phosphatase (ALP) activity. Overall, these

findings suggest that MLE could improve antioxidant capacity, immune

function, and glycolipid metabolism, thereby alleviating the negative effects

of a high-starch diet in M. salmoides.
KEYWORDS

mulberry leaf extract, growth performance, antioxidant, nonspecific immune indices,
Micropterus salmoides
Introduction

Dietary starch is the cheapest and major source of energy in

aquafeed, and it improves the efficiency of dietary protein and

lipid utilization (Enes et al., 2009; Cui et al., 2010). Dietary starch

is beneficial for the physical quality of feed (Sørensen et al.,

2010). However, the application of starch is limited to most

aquatic species, particularly carnivorous fishes (Taj et al., 2020).

The largemouth bass (Micropterus salmoides) is a typical

carnivorous fish and a major aquaculture freshwater species in

China. The annual production of M. salmoides was estimated to

have reached 619,000 tons in 2020. Numerous studies have

evaluated the M. salmoides intake of dietary starch that exceeds

10%, which significantly impairs the antioxidant capacity and

reduces the non-specific immunity, thus resulting in poor fish

health and lower growth performance (Zhou et al., 2014; Ma

et al., 2019; Li S et al., 2020). Long-term intake of a high-starch

diet (HSD) can lead to disorders in glucolipid metabolism, non-

specific immunity, and antioxidant capacity, which in turn

compromises growth (Lee, 2002; Li et al., 2012). The addition

of some functional additives to aquafeeds is an effective

approach to prevent the detrimental effects of an HSD in fish.

For example, berberine supplementation in an HSD can reduce

hepatic lipid accumulation in black sea bream and improve liver

health (Wang et al., 2020). Nicotinamide benefits the glucose

and lipid metabolism of blunt snout bream (Megalobrama

amblycephala) fed a high-carbohydrate diet (Shi et al., 2020).

Bile acids supplementation can significantly improve growth

performance and enhance liver function and immunity in M.

salmoides fed a high-starch diet (Guo et al., 2020).

Mulberry leaves have been used in Chinese medicine for

liver improvement as well as antihyperlipidemic and

antihyperglycemic effects (El-Beshbishy et al., 2006; Kimura
02
74
et al., 2007). Some studies have shown that mulberry contains

abundant alkaloids, flavonoids, polysaccharides, phenols, and

other active substances (Wang et al., 2010; Ou-yang et al., 2013;

Gryn Rynko et al., 2016) such as 1-deoxynojirimycin, which is an

alkaloid that can suppress the postprandial increases in plasma

glucose (Wang et al., 2018) and reduce the a-glucosidase activity
in humans (Kimura, 2011). Bioactive substances in mulberries

have been shown to modulate glucose metabolism by correcting

hyperglycemia, improving antioxidant status, and increasing

insulin secretion in rats (Jeszka Skowron et al., 2014). To date,

only a few studies on mulberry leaf extract (MLE) in aquaculture

have been reported. Dietary MLE can improve the growth

performance, feed utilization, digestive capacity, and hepatic

antioxidant status of the Chinese giant salamander (Li Z et al.,

2020). Mulberry leaf extract can also alleviate Aeromonas

hydrophila infection of African catfish (Clarias gariepinus)

(Sheikhlar et al., 2014; Sheikhlar et al., 2017). However, MLE

supplementation has not been reported for M. salmoides. Thus,

the aim of this study was to determine the effects of MLE

supplementation in a high-starch diet on growth performance,

antioxidant capacity, and immune parameters in M. salmoides.
Materials and methods

Preparation of mulberry leaf extract

First, the mulberry leaves were crushed, ground, and

sieved through a 50-mm mesh. Then, mulberry leaf powder

was placed in a 70% ethanol solution (v/v) on an ultrasonic

frequency table at 100 kHz for 20 min at room temperature

(ultrasound-assisted extraction). After the ultrasonic

extraction, filtration was performed using a Boucher
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funnel. The extracted liquid was freeze-dried to obtain the

MLE that was used for diet preparation.
Experimental diets and experimental
procedure

Mulberry leaf extract was supplemented to formulate seven

experimental diets, including a control diet (BSD; 8.88% starch),

HSD (11.42% starch), and HSD diets supplemented with 0.05%,

0.10%, 0.20%, 0.50%, and 1.00% MLE (MLE1, MLE2, MLE3,

MLE4, and MLE5, respectively) (Table 1). All ingredients were

ground and sieved through a 60-mmmesh before final mixing using

a commercial food mixer and then mixed with oils. Then, 20%

water was added to the mixture. The mixture was then pelleted

(without injected steam) using a pellet machine (Valva-60;

Guangzhou Weilawei Machinery Co., Ltd., Guangzhou, China),

and the pellets were dried in a ventilated oven at 85°C for 30 min.
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After drying, diets were stored in sealed plastic bags at −20°C

until use.

One thousand M. salmoides specimens were purchased from a

commercial fish hatchery in Guangzhou, Guangdong Province,

China. After acclimatization with commercial feed (Guangdong

Junyou Feed Co., Ltd., Guangdong, China) for 14 days, the

specimens were fasted for 24 h, then a total of 280 healthy M.

salmoides (68.00 ± 0.19 g) were randomly distributed to 28 round

plastic drums (237 L, 10 fish per drum) connected to a recirculating

aquaculture system. Fish in each tank were randomly assigned to

one of the seven experimental diets. Each diet was tested in four

tanks. All fish were fed a certain proportion of their respective fish

weights twice daily at 08:00 and 16:00, and feed consumption was

recorded daily. The proportion of feeding was adjusted according to

feeding conditions. During the 10-week feeding trial, the water

temperature was kept at 24°C–28°C, dissolved oxygen was >6.8 mg/

L, ammonia-nitrogen was<0.45 mg/L, and pH was between 7.5 and

8.0. The photoperiod was maintained at 12 h:12 h (light:dark).
TABLE 1 Formulation and chemical composition of experimental diets (g/kg, dry matter).

Ingredients (g/kg) BSD HSD MLE1 MLE2 MLE3 MLE4 MLE5

Fish meal 440 440 440 440 440 440 440

Chicken meal 150 150 150 150 150 150 150

Blood meal 50 50 50 50 50 50 50

Soy protein concentrate 44 44 44 44 44 44 44

Cottonseed protein 40 40 40 40 40 40 40

Cassava starch 40 40 40 40 40 40 40

Flour 80 120 120 120 120 120 120

Fish oil 13 13 13 13 13 13 13

Soybean oil 12 12 12 12 12 12 12

Phosphatide oil 20 20 20 20 20 20 20

Ca(H2PO4)2 22 22 22 22 22 22 22

Salt 2 2 2 2 2 2 2

Degelatinized bone dust 50.3 10.3 9.8 9.3 8.3 5.3 0.3

Mold inhibitor 1 1 1 1 1 1 1

Mulberry leaf extracta 0 0 0.5 1 2 5 10

Vitamin premixb 10 10 10 10 10 10 10

Mineral premixc 10 10 10 10 10 10 10

L-Lysine hydrochloride 4.4 4.4 4.4 4.4 4.4 4.4 4.4

DL-Met 2.7 2.7 2.7 2.7 2.7 2.7 2.7

L-Threonine 1.5 1.5 1.5 1.5 1.5 1.5 1.5

Tau 1.6 1.6 1.6 1.6 1.6 1.6 1.6

Choline chloride 5.5 5.5 5.5 5.5 5.5 5.5 5.5

Proximate composition (g/kg)

Protein 499.91 504.91 504.85 504.80 504.70 504.38 503.85

Lipid 108.19 107.71 107.68 107.66 107.60 107.44 107.17

Starch 88.82 114.22 114.22 114.21 114.21 114.20 114.19
frontie
a Mulberry leaf extract, obtained from Geneham Pharmaceutical Co., Ltd (Hunan, China). Actual mulberry leaf extract including 1.00% DNJ, 45.59% phenols, 1.80% flavonoids, and 5.7%
polysaccharides.
b Vitamin premix (IU or mg/kg of diet): VA, 220,000 IU; VD3, 75,000 IU; VB1, 600; VB6, 1,000; VB12, 0.8; riboflavin, 420; inositol, 4,000; niacinamide, 2,300; folic acid, 75; biotin, 2; DL-a-
tocopherol acetate, 4,800; menadione nicotinamide bisulfite, 180; l-ascorbic acid-2-phosphate, 8,500; calcium d-pantothenate, 850.
c Mineral premix (mg/kg of diet): Mg, 2,800; Cu, 350; Fe, 3,000; Zn, 8,500; Mn, 800; I, 250; Se, 15; Co, 60.
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Sample collection

At the end of the feeding trial, all fish were fasted for

approximately 24 h and then anesthetized with MS-222 (50 mg/

L water), counted, and weighed. One fish per drum was randomly

sampled and stored at −20°C for the body proximate analysis. Five

fish per drum were used for the collection of blood samples using

heparinized syringes after measuring the body weight and length.

The fish were then dissected to obtain the viscera, liver, intestinal

fat, and dorsal muscles. The viscera, liver, and intestinal fat

weights of the five fish were measured to calculate the

viscerosomatic (VSI), hepatosomatic (HSI), and intestinal fat

(IFI) index values, respectively. In addition, the apparent

condition of the liver was recorded and classified as normal or

abnormal. The blood samples were centrifuged at 3,000 × g for

10 min (4°C) to obtain the plasma samples and stored at −80°C

until used. Liver and dorsal muscles were immediately frozen in

liquid nitrogen and stored at −80°C until analysis.
Chemical analysis

The proximate composition of feed ingredients, whole fish,

and muscle was analyzed using the standard methods reported

by the Association of Official Analytical Chemists (AOAC)

(AOAC, 1995). Moisture was evaluated by oven drying at 105°

C to a constant weight. Crude protein (N × 6.25) was determined

according to the Kjeldahl method using the Kjeltec system

(Kjeltec 8400, FOSS, Denmark). Crude lipid was quantified via

ether extraction using a Soxhlet apparatus. Ash was detected

using a muffle furnace at 550°C for 12 h. Glycogen in the liver

and muscle samples was determined using a commercial kit

(Nanjing Jiancheng Bioengineering Institute, Nanjing, China)

following the manufacturer’s protocol.
Activity quantification of
antioxidant enzymes

Liver catalase (CAT), malondialdehyde (MDA), total

antioxidant capacity (T-AOC), and glutathione peroxidase

(GSH-Px) levels were measured using a commercial kit

(Nanjing Jiancheng Bioengineering Institute, Nanjing, China)

following the manufacturer’s protocol.
Non-specific immune indices and plasma
biochemical parameters

Plasma glucose (GLU), globulin (GLB), total triglyceride

(TG), total cholesterol (TC), alanine transaminase (ALT),

aspartate transaminase (AST), and alkaline phosphatase (ALP)

levels were determined using an automatic biochemical analyzer
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(DT480, Dotopmed, Beijing, China). Plasma complement-3 (C3)

and complement-4 (C4) levels were measured using commercially

customized ELISA kits for fish according to the manufacturer’s

protocols (Shanghai Enzyme-linked Biotechnology Co., Ltd.,

Shanghai, China). Lysozyme (LYZ) activity was measured using

a commercial kit (Shanghai Enzyme-linked Biotechnology

Co., Ltd.).
Calculations and statistical analysis

Survival rate (SR,   % ) = 100� Nt

N0

Weight gain (WG,   % ) = 100� Wt −W0

W0

Specific growth rate (SGR,   % ) = (Ln Wt – Ln W0)100=days

Feed intake (FI, g 100g−1BW day−1)

= Df � 100= (Wt –W0)=2� tð Þ

Protein efficiency ratio (PER) =
Wt −W0

protein   intake

Hepatosomatic index (HSI, % ) =
WL

Wt
� 100;

Viscerosomatic index (VSI, % ) =
WV

Wt
� 100;

Intestinal fat index (IFI, % ) =
WIF

Wt
� 100;

whereN0 is the mean of the initial number offish in each drum,

and Nt is the mean final number of fish in each drum; Wt and W0

represent the final and initial body weights (g), respectively; t is the

experimental duration in days; Df is the dry diet intake of each

drum, WL is the liver weight of the fish, Wv is the viscerosomatic

weight of the fish, and WIF is the mean intestinal fat content.

All data are presented as the mean ± standard error and were

statistically analyzed using SPSS (version 26.0) after Tukey’s test.

All data were subjected to a one-way ANOVA. The level of

significance was set at p< 0.05.
Results

Feed utilization and fish growth

The feed utilization and growth rate of the fish fed various

diets supplemented with MLE are summarized in Table 2. No

significant differences in WG, SGR, FI, or IFI were observed
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among any of the experimental treatments (p > 0.05). However,

weight gain was lower (7.12%) in the HSD group compared to

the BSD group. For HSD, the MLE1, MLE2, and MLE5 groups

showed an improved weight gain of 6.67%, 4.00%, and 7.59%,

respectively. The MLE2–MLE5 groups showed significantly

lower HSI values than HSD (p< 0.05), but no significant

differences were observed between the BSD and HSD (p >

0.05). The HSI values of the MLE3, MLE4, and MLE5 groups

were significantly lower than those of the BSD group (p< 0.05).

The VSI values of the HSD group showed no significant

differences compared to those of the BSD group (p > 0.05).

The VSI value of the MLE5 group was significantly lower than

that of the BSD group (p< 0.05). The percentage of the normal

liver in HSD is the lowest (34.38%). The percentage of the

normal liver in BSD is only 53.13%. In addition, the percentage

of normal lives in MLE2, MLE3, MLE4, and MLE5 is higher than

in BSD.
Proximate compositions

The proximate compositions of the fish fed various diets

supplemented with MLE are summarized in Table 3. In this

study, no significant differences were found in the body protein

and ash among the dietary treatments (p > 0.05). However, the

whole-body moisture of the HSD group was significantly lower

than that of the BSD group (p< 0.05). Body moisture decreased

significantly as the MLE levels increased (p< 0.05), and the body

moisture content of the MLE5 group was significantly lower

than that of the BSD group (p< 0.05). Body lipid levels were

significantly higher in the HSD group than that in other groups

(p< 0.05). The protein, lipid, and ash contents in the muscle did

not show any statistical differences among dietary treatments

(p > 0.05). The muscle moisture of the BSD and HSD groups was

significantly higher than that of the MLE3, MLE4, and MLE5

groups (p< 0.05). There were no significant differences in hepatic
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and muscle glycogen contents between the HSD and BSD groups

(p > 0.05). However, MLE decreased the content of hepatic and

muscle glycogen, and a significant decrease was observed in the

MLE5 group (p< 0.05).
Liver antioxidant indices

The activity quantification of antioxidant enzymes in the fish

fed various diets supplemented with MLE is summarized in

Figure 1. The hepatic MDA content in M. salmoides in the HSD

group was significantly higher than that in the BSD group (p<

0.05), and the hepatic MDA content in M. salmoides in the

MLE2, MLE3, MLE4, and MLE5 groups was significantly lower

than that in the HSD group (p< 0.05); however, no significant

difference was found in the MDA content among the MLE2,

MLE3, MLE4, MLE5, and BSD groups (p > 0.05). The T-AOC,

CAT, and GSH-PX of the HSD group showed no significant

differences compared to those of the BSD group (p > 0.05). MLE

improved the activities of T-AOC, CAT, and GSH-PX. In

addition, fish from the MLE5 group had significantly higher

T-AOC, CAT, and GSH-PX activities than those in the HSD

group (p< 0.05).
Non-specific immune indices and plasma
biochemical parameters

The non-specific immune indices and plasma biochemical

parameters of the fish fed various diets supplemented with MLE

are summarized in Figure 2. The lowest plasma LYZ, C3, C4, and

GLB contents and the highest plasma ALT, AST, GLU, TG, and

TC contents were observed in the HSD group, and C3 and GLB

were significantly different from those of the BSD group (p<

0.05). Compared with the HSD group, adding 0.10%–1.0%

(MLE2, MLE3, MLE4, and MLE5) MLE significantly decreased
TABLE 2 Effects of mulberry leaf extract on growth performance and feed utilization of Micropterus salmoides fed high-starch diet diets.

Items BSD HSD MLE1 MLE2 MLE3 MLE4 MLE5

IBW (g) 68.02 ± 0.12 67.82 ± 0.06 68.02 ± 0.08 68.05 ± 0.06 68.05 ± 0.13 67.85 ± 0.08 67.92 ± 0.20

FBW (g) 200.21 ± 2.70 190.91 ± 8.04 199.7 ± 3.48 196.5 ± 6.73 189.5 ± 7.27 189.29 ± 5.36 200.58 ± 3.04

SR (%) 100 100 100 100 100 100 100

WG (%) 194.35 ± 3.92 181.44 ± 11.75 193.55 ± 4.76 188.71 ± 9.72 178.4 ± 10.42 178.92 ± 7.70 195.22 ± 4.74

SGR (%/day) 0.67 ± 0.00 0.64 ± 0.03 0.68 ± 0.10 0.66 ± 0.22 0.63 ± 0.24 0.64 ± 0.17 0.67 ± 0.10

FI (g 100 g−1 BW day−1) 0.76 ± 0.01 0.79 ± 0.03 0.75 ± 0.02 0.78 ± 0.03 0.81 ± 0.03 0.82 ± 0.03 0.77 ± 0.02

IFI (%) 1.38 ± 0.06 1.31 ± 0.08 1.52 ± 0.07 1.53 ± 0.08 1.36 ± 0.07 1.60 ± 0.10 1.30 ± 0.09

HSI (%) 1.90 ± 0.10ab 2.12 ± 0.21a 1.95 ± 0.16ab 1.73 ± 0.07bc 1.52 ± 0.08cd 1.55 ± 0.08cd 1.26 ± 0.10d

VSI (%) 5.60 ± 0.11a 5.65 ± 0.27a 5.70 ± 0.21a 5.57 ± 0.15ab 5.20 ± 0.13ab 5.59 ± 0.16a 4.97 ± 0.15b

The percentage of normal liver (%) 53.13% 34.38% 50.00% 68.75% 73.33% 78.13% 96.88%
f

Values (means ± SEM, n = 4) within a row with different letters are significantly different from the other dietary groups (p< 0.05).
IBW, initial body weight; FBW, final body weight; SR, survival rate; WG, weight gain; SGR, specific growth rate; FI, feed intake; IFI, intestinal fat index; HSI, hepatosomatic index; VSI,
viscerosomatic index.
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the activity of ALT (p< 0.05). Adding more than 0.20% (MLE3,

MLE4, and MLE5) MLE significantly decreased the GLU content

and increased the C3 content (p< 0.05). Adding more than

0.50% (MLE4 and MLE5) MLE significantly decreased AST

activity and TC content and significantly increased LYZ

content (p< 0.05). The addition of 1.00% (MLE5) MLE

significantly increased the C4 and GLB contents and ALP

activity (p< 0.05).
Discussion

Carbohydrates are an important energy source for

vertebrates, and starch is one of the most common

carbohydrate sources in fish feed. Scientific evidence has

recently indicated that the source and level of starch play a

decisive role in fish growth (Xia et al., 2018; Li et al., 2019; Zhao

et al., 2020). M. salmoides is a carnivorous fish, and the level of

starch in its feed requires serious consideration. Recent studies

have shown that the growth performance of M. salmoides is

impaired when its dietary starch content is >10% (Lin et al.,

2018; Ma et al., 2019; Zhang et al., 2020a; b). This study showed

thatM. salmoides fed with 8.88% and 11.42% dietary starch had no

significant influence, indicating that this range of starch (8.88%–

11.42%) content can be tolerated byM. salmoides in the short-term

without a visible reduction in production performance.

The viscera are crucial for fish metabolism. The VSI and HIS

values of the HSD group showed no significant differences

compared with those of the BSD group after the 70-day feeding
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trial, which was similar to a previous report (Zhang et al., 2020b).

Zhao et al. (2020) demonstrated that VSI values are not significantly

affected by feeding juvenile golden pompano (Trachinotus ovatus)

different levels of corn starch, and HSI values were significantly

higher when the corn starch level was >20%. Zhou et al. (2015) also

reported that the HSI values of fish fed a 22.4% carbohydrate diet

were significantly higher than those of fish fed a 0%–11.2%

carbohydrate diet. Modern pharmacology shows that MLE

contains polysaccharides, flavonoids, alkaloids, and other active

ingredients (Sánchez-Salcedo et al., 2015; Yuan et al., 2015), and

previous studies have shown that MLE protects the liver by

regulating glucose and lipid metabolism (Chang et al., 2013; Ou

et al., 2013; Sheikhlar et al., 2017). This study showed that M.

salmoides fed a high-starch diet supplemented with > 0.1% MLE

had lower HSI values than fish fed a high-starch diet alone, which

indicates that MLE may be conducive to liver health. Therefore,

MLE could repair and improve liver function in fish fed a high-

starch diet.

Excessive dietary starch levels can lead to excessive glycogen

and lipid deposition (Lin et al., 2018; Ma et al., 2019; Zhang et al.,

2020b). After the 70-day feeding trial, whole-body lipid levels

were significantly higher in the HSD group than in the BSD

group. This is in agreement with previous studies on the golden

pompano (Zhou et al., 2015), blunt snout bream (Xia et al.,

2018), and grass carp (Ctenopharyngodon idella) (Tian et al.,

2011). However, hepatic and muscle glycogen contents in this

study were not correlated with dietary starch content. It has been

reported that hepatic and muscle glycogen contents were

significantly affected when dietary starch content was >15% in
TABLE 3 Effects of mulberry leaf extract on experimental diets and proximate compositions of Micropterus salmoides fed high-starch diet diets.

Items BSD HSD MLE1 MLE2 MLE3 MLE4 MLE5

Feed (g/100 g)

Moisture 14.18 15.22 14.17 14.51 15.82 14.38 14.62

Protein 47.67 46.88 47.65 47.78 47.42 47.99 47.91

Lipid 10.32 10.15 10.27 10.23 10.06 10.22 10.17

Starch 8.47 10.89 11.01 10.95 11.05 11.15 10.98

Whole body (g/100 g)

Moisture 74.3 ± 0.28a 73.51 ± 0.45bc 74.50 ± 0.19a 74.26 ± 0.13ab 73.72 ± 0.18abc 73.70 ± 0.44abc 73.13 ± 0.27c

Protein 16.19 ± 0.14 16.36 ± 0.32 16.55 ± 0.16 16.32 ± 0.17 16.55 ± 0.18 16.23 ± 0.45 16.57 ± 0.25

Lipid 4.77 ± 0.24b 6.94 ± 0.74a 5.03 ± 0.15b 5.46 ± 0.32b 5.83 ± 0.32b 5.08 ± 0.27b 4.93 ± 0.22b

Ash 4.19 ± 0.07 4.35 ± 0.07 4.23 ± 0.08 4.27 ± 0.07 4.14 ± 0.21 4.16 ± 0.08 4.44 ± 0.08

Muscle (g/100 g)

Moisture 77.55 ± 0.20a 77.49 ± 0.20a 77.15 ± 0.21abd 77.20 ± 0.17ac 76.66 ± 0.17bd 76.48 ± 0.11e 76.60 ± 0.25d

Protein 20.50 ± 0.32 20.34 ± 0.24 20.52 ± 0.29 20.51 ± 0.27 20.75 ± 0.17 21.23 ± 0.20 21.17 ± 0.13

Lipid 1.07 ± 0.17 1.21 ± 0.17 1.17 ± 0.07 1.08 ± 0.12 1.43 ± 0.15 1.37 ± 0.16 1.34 ± 0.14

Ash 1.31 ± 0.02 1.30 ± 0.01 1.35 ± 0.03 1.35 ± 0.02 1.29 ± 0.01 1.34 ± 0.03 1.30 ± 0.02

Glycogen content (mg/g)

Hepatic glycogen 131.2 ± 8.96a 130.90 ± 6.96a 123.01 ± 10.48ab 117.93 ± 7.19ab 112.17 ± 6.77ab 129.82 ± 5.41a 104.8 ± 7.85b

Muscle glycogen 0.99 ± 0.14ab 1.15 ± 0.11a 0.99 ± 0.18ab 0.92 ± 0.33ab 0.77 ± 0.08ab 0.87 ± 0.19ab 0.67 ± 0.15b
fro
Values (means ± SEM, n = 4) within a row with different letters are significantly different from the other dietary groups (p< 0.05).
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M. salmoides (Ma et al., 2019). The possible reason may relate to

the starch levels in the diet. The results showed thatM. salmoides

in the MLE5 group had significant decreases in hepatic and

muscle glycogen contents. Dietary MLE significantly decreased

the whole-body lipid content. Jeszka Skowron et al. (2014) found

that bioactive substances in mulberry leaves regulate glucose

metabolism by correcting hyperglycemia and increasing insulin

secretion in the streptozotocin-induced non-obese diabetic rat

model. Dietary MLE has also been reported to inhibit lipid

accumulation by reducing lipogenesis and promoting hepatic

lipid clearance (Chang et al., 2013). Moreover, Hou et al. (2019)

found that mulberry leaf meal reduced liver lipid content by

suppressing the isolation and proliferation of adipocytes. In this

experiment, dietary MLE lowered the contents of GLU, TG, and

TC ofM. salmoides fed a high-starch diet. Therefore, high starch

diet supplemented with MLE decreased lipid and glycogen

deposition by enhancing glucose and lipid metabolism. In

addition, the whole-body moisture and muscle were

significantly decreased in the MLE groups, which was

consistent with results previously obtained in the Chinese

giant salamander (Andrias davidianus) (Li Z et al., 2020).

Antioxidant enzyme systems are an important defense

mechanism of organisms, which can reduce peroxide in the

body into less harmful substances (Bogdan et al., 2000). A

previous study indicated that hyperglycemia after consuming a

high-starch diet is associated with oxidative stress (Rains and

Jain, 2011). MDA is the final product of lipid peroxidation and

reflects the degree of lipid peroxidation (Koruk et al., 2004).
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SOD, GSH-Px, and CAT are three important members of the

antioxidant system that work against the formation of reactive

oxygen species (ROS), protect cell membranes and intracellular

nucleic acids, and reflect the growth and development of the

organism, changes in the metabolic state in vivo, and

environmental stress (Zimmermann et al., 1973; Holmblad

and Söderhäll, 1999). Additionally, T-AOC is the main index

used to determine the total antioxidant level of an organism,

which reflects a compensatory mechanism of the organism

under the stimulation of oxidative stress (Decker et al., 2000).

This study suggests that significantly higher MDA levels might

be induced in M. salmoides fed a high-starch diet but with no

significant effect on the activities of SOD, GSH-Px, CAT, and T-

AOC. Some recent studies have indicated that oxidative stress is

not directly related to dietary starch (Wang et al., 2014) and that

appropriate starch levels can improve antioxidant capacity (Wu

et al., 2015). However, excess starch can induce strong oxidative

stress in fish (Zhou et al., 2013; Zhao et al., 2020). A previous

study indicated that 5% and 10% starch diets had no negative

effects on M. salmoides (Lin et al., 2018). Zhang et al., (2020a)

also found that suitable dietary starch levels (0–100 g/kg) had no

negative effect on antioxidant capacity. In this study, the higher

MDA content in the HSD group may indicate fatty liver injury.

Mulberry leaf extract contains enriched polyphenolics, flavone,

and 1-deoxynojirimycin, which has been shown to scavenge free

radicals (Radojković et al., 2012) and enhance antioxidant

enzyme activities in mammals (Bae et al., 2013; Lee et al.,

2016). In addition, the antioxidative effects of MLE have been
FIGURE 1

Effects of mulberry leaf extract on antioxidant enzymes of Micropterus salmoides fed high-starch diet diets. Values in each column with different
superscripts have significant differences (p< 0.05).
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FIGURE 2

Effects of mulberry leaf extract on non-specific immune indices and plasma biochemical parameters of Micropterus salmoides fed high-starch
diet diets. Values in each column with different superscripts have significant differences (p< 0.05).
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demonstrated in African catfishes (Sheikhlar et al., 2017). In this

study, significantly higher antioxidant capacities ofM. salmoides

were observed after 1.0%MLE was added to the high-starch diet.

Thus, MLE improved liver function by suppressing

oxidative stress.

Hematological parameters are vital physiological indicators

that reflect the metabolic and physiological states of the body;

therefore, they are beneficial for disease diagnosis (Ahmdifar

et al., 2011). Lysozyme activity is an important immune

parameter that protects against microorganisms (Jiang et al.,

2009). Complement is also an important component of non-

specific immunity, which mediates inflammatory and immune

responses (Han and Ulevitch, 2005; Boshra et al., 2006). The

inhibition of lysozyme and complement activity has been

confirmed in some fish fed a high-starch diet (Wu et al., 2015;

Xia et al., 2018; Li S et al., 2020). In this study, the lysozyme and

C3 content in the HSD group were lower than those in the BSD

group, and C4 was significantly lower. These results suggested

that starch levels could impact the immune system. Several

studies have suggested that MLE has anti-bacterial and anti-

inflammatory effects (Wang et al., 2009; Forato Anhê et al.,

2014). In addition, MLE can improve hepatic injury and

inflammation induced by a high-sugar and high-fat diet

through various pathways (Ou et al., 2013; Park et al., 2013).

In the experiment, MLE supplementation in a high-starch diet

enhanced the non-specific immunity of M. salmoides. AST and

ALT are two crucial aminotransferases that mainly exist in cells

and are rarely present in the plasma. The activities of AST and

ALT were higher in cardiomyocytes and hepatocytes than those

in other organs. Therefore, the activities of AST and ALT in

plasma can reflect the health status of the liver and heart (Cho

et al., 1994; Liu et al., 2010). ALP is a hallmark enzyme of

lysosomal integrity, is involved in the transfer and metabolism of

phosphoric groups in organisms, and plays a crucial role in

immunity and growth (Oner et al., 2008; Yan et al., 2014). In this

study, no differences were observed in plasma levels of ALT,

AST, and ALP between the HSD and BSD groups. However,

there was approximately 46.87% observable liver damage in the

BSD group during sample collection. Thus, M. salmoides could

not adapt to an 8.88% starch-formulated diet. Alternatively,

formulated diets of M. salmoides must be optimized (Huang

et al., 2017; Ma et al., 2019; Ma et al., 2020). In this study, the

plasma ALT and AST activities in the MLE5 group were

significantly lower than those in the HSD group, indicating

that 1.0% MLE can alleviate liver damage of M. salmoides fed a

high-starch diet. GLB is an important part of non-specific

immunity. The plasma GLB level in the MLE5 group was

significantly higher than that in the HSD group. This result

indicated that mulberry leaf extract improved the non-specific

immunity of M. salmoides fed a high-starch diet. The dietary

starch level markedly affects the metabolism of carbohydrates

and lipids. In this experiment, increased levels of GLU, TG, and
Frontiers in Marine Science 09
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TC were observed in the HSD group compared to the BSD

group. Similar results have been observed in the blunt snout

bream, golden pompano, and M. salmoides (Xia et al., 2018;

Zhang et al., 2020a; Zhao et al., 2020). Mulberry leaf extract

contains DNJ as a competitive inhibitor, which improves control

and decreases plasma glucose content in mammals (Shang et al.,

2012; Wang et al., 2018). In addition, mulberry leaf extract

inhibits lipid accumulation by reducing lipogenesis and

promoting hepatic lipid clearance (Chang et al., 2013). In this

experiment, dietary MLE lowered the contents of GLU, TG, and

TC in this study. These results suggest that MLE can improve the

transport of glucose and lipids in the liver of M. salmoides fed a

high-starch diet.
Conclusion

In conclusion, no significant difference in growth in the

8.88% starch level was observed, whereas it significantly affected

proximate compositions, liver antioxidant activity, and non-

specific immunity in M. salmoides. Dietary supplementation

with 1.0% MLE and 11.42% starch decreased the moisture,

lipids, and glycogen content in the body. Moreover, MLE

improved immune and liver function. This study shows that

MLE has positive effects on the health of M. salmoides when

combined with an 11.42% starch diet. Mulberry leaf extract may

also play a protective role by regulating glycolipid metabolism.

The underlying mechanisms of MLE on glycolipid metabolism

in M. salmoides warrant further exploration.
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Effect of dietary cholesterol on
ovarian development of Chinese
mitten crabs (Eriocheir sinensis)

Huixing Guo, Mangmang Wang, Xi Wang, Kang Xiao,
Yangyang Huang, Haokun Hua, Wei Xiong, Wenbin Liu,
Kenneth Prudence Abasubong, Wei Qiang,
Cheng Chi and Guangzhen Jiang*

Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal
Science and Technology, Nanjing Agricultural University, Nanjing, China
This study was conducted to evaluate the effect of cholesterol (CHO) on

ovarian development of Eriocheir sinensis through a feeding trial. Crabs

(average weight 43.35 ± 0.05 g) were randomly fed with one of three diets:

0% CHO, 0.4% CHO and 1.6% CHO for 16 weeks. Results indicated that the

hepatosomatic index (HSI) and gonad index (GSI) of crabs fed with 0.4% CHO

diet were significantly higher than those in the control group. (P < 0.05).

Meanwhile, 0.4% CHO can significantly increase the gene expression of vtg

and vgr in ovary (P < 0.05), thus promoting the accumulation of Vtg. The protein

expression of MEK1/2, ERK, p-ERK1/2, Cyclin B and CDC2 were significantly

increased in the 0.4% CHO group, therefore dietary CHO might promote

oocyte maturation by activating MAPK signal pathway and cooperating with

maturation promoting factor (MPF). Further exploration results showed that

0.4% CHO was able to significantly up-regulate the protein expression of STAR

and SR-B1 to promote the transport of CHO to ovary, thereby providing

sufficient substrates for estradiol (E2) synthesis. In addition, the results in vivo

and in vitro shown that CHO could regulate the activities of enzymes such as

CYP11A1 and CYP19A1 through the cAMP-PKA-CREB/SF-1 signal pathway and

then affects the level of E2 in the organism. In summary, supplementing the

appropriate amount of CHO in the diet can improve the E2 level of the

organism, thus increasing the accumulation of nutrients in the ovary,

promoting the completion of meiosis, and finally achieving the purpose of

promoting ovarian maturation.
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Introduction
As one of the most important economic crustaceans, the

Chinese mitten crab (Eriocheir sinensis) has a vast consumer

market in China, and its output and economic benefits have been

increasing continuously in the past few years (Wang et al., 2016;

Chinese Fishery Statistical Yearbook, 2021). As the most popular

edible part, the maturing status of ovary directly affects the

economic value of Eriocheir sinensis (Long et al., 2020). In

China, the most popular time for Eriocheir sinensis

consumption is mainly around the Mid-Autumn Festival. But,

during this period, compared with crabs fed with formula feed,

the crabs fed with trash fish have higher gonad maturity, which

significantly affected farmers’ income and thus hindered the

promotion of formula feed (Djunaidah et al., 2003; Zheng et al.,

2020; Fang et al., 2021). However, feeding trash fish for a long

time will lead to environmental pollution and ecological damage

(Wu et al., 1994). Therefore, looking for a nutrient that can

promote the ovarian development, and then preparing a more

comprehensive formula feed is of great significance to the

sustainable development of the crab industry.

In fact, the ovarian maturation of Eriocheir sinensis is

actually a process of nutrient accumulation, of which the most

important substance is yolk protein (Wu et al., 2007). Therefore,

the accumulation of yolk protein directly affects the maturity and

economic value of Eriocheir sinensis (Wouters et al., 2001). The

main component of yolk protein is vitellin (Vn), which can be

processed by vitellogenin (Vtg), lipids and proteins (Okuno

et al., 2002; Wu et al., 2017). Presently, there is still some

controversy about the sites of Vtg synthesis in crustaceans, but

for most shrimp and crabs, hepatopancreas and ovary are still

the main sites of Vtg synthesis (Subramoniam, 2011). According

to the different sites of Vtg synthesis, vitellogenesis can be

divided into two stages: endogenous vitellogenesis and

exogenous vitellogenesis (Wu et al., 2017). In the endogenous

vitellogenesis stage, Vtg is mainly synthesized in the ovary, and

in the exogenous vitellogenesis stage, the hepatopancreas is the

main site of Vtg synthesis (Rani and Subramoniam, 1997; Lu

et al., 2018). The Vtg synthesized in the hepatopancreas will be

transported to the ovary through hemolymph after combining

with steroid hormones, vitamins and lipids, and binds to

vitellogenin receptor (VgR) on the surface of oocytes, then

stored in oocytes through endocytosis (Soroka et al., 2000).

Besides the accumulation of nutrients, meiosis is also a

critical event in the process of ovarian maturation (Song et al.,

2014). However, during gametogenesis, immature oocytes will

be blocked in the germinal vesicle (GV) stage, and the recovery

of meiosis is a process of cell cycle transition induced by complex

signal pathways (Cau et al., 1988; Lanot and Cledon, 1989). As

the main promoter of cell cycle transformation, maturation

promoting factor (MPF) is a heterodimeric protein kinase

composed of the regulatory subunit Cyclin B and the catalytic
Frontiers in Marine Science 02
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subunit CDC2, which can catalyze the phosphorylation of

various proteins, and then promote the transformation of

oocytes from G2 phase to M phase (Wang et al., 2013; Song

et al., 2014). Mitogen-activated protein kinase (MAPK) signaling

pathway is a highly conservative signal transduction pathway,

which widely exists in all kinds of eukaryotic cells. Many studies

have shown that MAPK cascade signaling pathway through

synergy with MPF and activate each other by positive feedback

mechanism to jointly regulate meiotic cell cycle transition

(Bodart et al., 2002; Ohashi et al., 2003).

The ovarian development of Eriocheir sinensis is regulated by

many factors, among which hormone regulation plays a vital role

(Malati et al., 2013). Estradiol (E2), as one of the most active

reproductive hormones, has been identified in many decapod

crustaceans, and the promoting effect on the ovarian maturation

of crustaceans has also been reported (Martins et al., 2007; Huang

et al., 2009). Previously, there was some controversy about whether

crustaceans have the ability to synthesize E2. However, with the

discovery of related enzymes in the process of E2 synthesis in

crustaceans such as Macrobrachium rosenbergii, Procambarus

clarkii and Eriocheir sinensis, it is widely believed that

crustaceans can synthesize E2 with CHO as raw material under

the action of a series of enzymes. (Teshima and Kanazawa, 1971;

Warrier et al., 2001; Summavielle et al., 2003). Therefore, it may be

an excellent method to solve the problem of delayed ovarian

maturation of Eriocheir sinensis by supplementing exogenous

nutrients to regulate the secretion of endogenous hormones.

CHO, as a necessary nutrient for aquatic animals, and the

effects of growth performance has been widely studied

(Suprayudi et al., 2012; Tian et al., 2020; Guo et al., 2022; Su

et al., 2022). Meanwhile, as a substrate for the synthesis of E2,

CHO could be of great significance for ovarian development

(Teshima et al., 1983; Kumar et al., 2018). However, there are

few reports about the effect of CHO on the ovarian development

of Eriocheir sinensis yet. The synthesis of E2 occurs in the

mitochondrial intima of the ovary (Jefcoate et al., 1992). In

crustaceans, high-density lipoprotein (HDL) and scavenger

receptor class B type 1 (SR-B1) are responsible for the

transport of CHO into oocytes, and CHO in oocytes needs to

be further transported into the inner mitochondrial membrane

under the action of steroidogenic acute regulatory protein

(STAR). (Becker et al., 1993; Miller, 2007). Subsequently, CHO

produces pregnenolone under the action of CHO side-chain

cleavage enzyme (CYP11A), which goes through a series of

reactions to testosterone, and then to E2 under the further action

of aromatase (CYP19A1). Therefore, STAR, CYP11A1 and

CYP19A1 are three key substances catalyzed E2 synthesis

(Miller, 2007; Zheng et al., 2020). cAMP/PKA is an important

signal pathway for regulating E2 synthesis in the organism, SF-1

and CREB are the response factors of the cAMP/PKA signal

pathway, which is responsible for regulating the activity of

various enzymes in the process of E2 synthesis (Carlone and

Richards, 1997; Stocco, 2001; Qu et al., 2008). In some aquatic
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animals, it has been reported that by controlling the substrate to

regulate secretion of estrogen to influence the ovarian

development, but this has been not reported in crustaceans

(Jefcoate et al., 1992). Therefore, this experiment aims to

evaluate whether the exogenous CHO can regulate the

secretion of E2 through the cAMP-PKA-CREB/SF-1 signal

pathway and then affect the ovarian maturation. Thereby

solving the problems of delayed ovarian maturation of

Eriocheir sinensis.
Materials and methods

The experimental design and all experimental operations of

this study was approved by the Animal Care and Use Committee

of Nanjing Agricultural University (Nanjing, China) (permit

number: SYXK (Su) 2011–0036).
Experimental diets

Our previous study results showed that the CHO deposition

in the hepatopancreas of Eriocheir sinensis was about 0.4%, so we

designed a group with 0.4% CHO (Guo et al., 2022). In addition,

in order to explore whether excessive CHO will affect ovarian

development, a 1.6% CHO supplement group was set up.

Therefore, three isonitrogenous and isolipid diets were

formulated to contain CHO 0%, 0.4% and 1.6% (actually

0.06%, 0.44%, 1.64%) at the cost of soybean oil. The

preparation method of experimental diets according to the

previous study of our laboratory (Guo et al., 2022). Firstly, all

raw materials were smashed and passed through a 60-mesh

percolator, then mixed step by step. Put the weighed CHO and

oil of each group into a beaker and mix them thoroughly with a

glass rod. Subsequently, about 30% deionized water was added to

the mixture to make a dough. At last, the feed pellets (2.5-mm

diameter) were squeezed out through a single-screw meat

grinder extruder. After being air-dried (27°C) for 24 hours,

four diets were packed in vacuum plastic bags and stored at

-20°C. The ingredient formulation and proximate composition

of the diet was shown in Table 1.
Experimental crabs and feed trial

The experimental crabs were obtained from a local farm in

Pukou, Nanjing, China. This experiment was implemented in

the Aquatic Teaching Base of Nanjing Agricultural University

(Nanjing, Jiangsu, China). A total of 160 healthy female crabs

(average weight, 43.35 ± 0.05 g) were randomly assigned to 16

cement pools (10 crabs in each cement pool, each treatment
Frontiers in Marine Science 03
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contains four cement pools). 12 pipes (20 cm long and 10 cm

diameter) were put into each cement pool as shelters for crabs to

hide. Prior to the 16-week breeding experiment, the crabs were

fed in the cement pool (1.0×1.0×0.8m, L:W:H) for a week to

adapt to the new environment. After a week of acclimation, crabs

of each treatment were fed with their respective diets once daily

(18:00) with 3%-5% of total body weight till obvious satiation.

During the experiment period, the residual feed of the previous

day was removed with a dirt absorber, and 1/3 volume of water

should be changed in cement pool. The water quality was

detected daily and maintain the water temperature at 24-28°C,

dissolved oxygen at 5.0-7.0 mg/L, pH at 7.3-8.4, and ammonia

nitrogen under 0.05 mg/L.
Sample collection

At the end of 16-week feeding trial, all crabs were starved

for 24 hours. Subsequently, four individuals were randomly

selected from each cement pool to collect hemolymph with a

1mL syringe according to the method in our laboratory

(Cheng et al., 2020). Thereafter, the crabs were anesthetized

on ice, then the ovaries and hepatopancreas were quickly

collected and weighed to calculate hepatosomatic index

(HSI) and gonad index (GSI). After weighing, part of the

ovaries was fixed with 4% paraformaldehyde solution for

histological analysis. The remaining samples were quickly

frozen with liquid nitrogen and stored at -80°C for

determining biochemical indicators and enzymes activities

and protein expression. The calculation formulas of related

parameters were as follows:

HSI, % =
hepatopancreas weight  gð Þ

final body weight  gð Þ � 100

GSI, % =
gonad weight  gð Þ

final body weight  gð Þ � 100
Proximate composition analysis

The content of crude protein, ash and moisture in the diet

were determined according to the standard method (AOAC,

1995). The details detection of crude protein, ash and

moisture were the same as Guo et al. (2022). The content of

CHO in the feed was detected through the high-performance

liquid chromatography (HPLC) method (Agilent ZORBAX

Eclipse Plus, column C18 5 mm 4:6 × 150 mm). 100%

methanol was used as a mobile phase pumped with a flow

rate at 1 mL/min. The specific measurement method refers to

Guo et al. (2022).
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Gene expression analysis

The total RNA of the ovary and hepatopancreas were

extracted using RNAiso Plus (TakaRa, Dalian, China), and

treated with gDNA wiper Mix and HisScript III Qrt SuperMix

(Cat. No. R323–01, Vazyme Biotech Co, China) to eliminate

genomic DNA. Then, the purity of total RNA was estimated by

spectrophotometry on the basis of OD 260/280 using a Nano

Drop 2000 spectrophotometer (NanoDrop Technologies,
Frontiers in Marine Science 04
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Wilmington, DE). Subsequently, 1 μg RNA was reverse

transcribed into first-standard cDNA immediately using

HisScript III Qrt SuperMix (Vazyme Biotech Co, China)

according to Wang et al. (2020). After reverse transcription,

the target cDNA was amplified by the ChamQ Universal SYBR

qPCR Master Mix Kit (Vazyme Biotech Co, China). The specific

sequences of primers are given in Table 2. The reaction and

protocol were set according to Guo et al. (2022). b-actin was the

reference to do relative quantification of the target gene
TABLE 2 Nucleotide sequences of the primers for real-time quantitative PCR.

Gene Position Primer sequence (5′-3′) Length Product size (bp) Reference

vtg Forward AAGGTCCGCAGCAAGCAGAT 20 181 Lin et al., 2020

Reverse GGCGAGGCACGAGGTAGAAT 20

vgr Forward GCAACGCCTTCCTTCTGGTA 20 193 Lin et al., 2020

Reverse GGCACGGTGTTCGCTATCAT 20

b-actin Forward TCGTGCGAGACATCAAGGAAA 21 178 KM244725.1

Reverse AGGAAGGAAGGCTGGAAGAGTG 22
f

vtg, vitellogenin; vgr, vitellogenin receptor.
TABLE 1 Ingredient formulation and proximate composition (% dry matter) of the diet in this feeding trial.

Cholesterol supplementation (%)

0 0.4 1.6

Ingredients (%)

defatted fish meal a 18.50 18.50 18.50

Soybean meal 15.00 15.00 15.00

Rapeseed meal 2.50 2.50 2.50

Cottonseed meal 3.00 3.00 3.00

Peanut meal 28.50 28.50 28.50

a-Starch 19.00 19.00 19.00

EPA oil: DHA oil (1:1) b 1.20 1.20 1.20

Soybean oil 5.20 4.80 3.60

Carboxymethyl cellulose 1.00 1.00 1.00

Ca(H2PO4)2·H2O 2.20 2.20 2.20

Cholesterol (purity 99%) c 0.00 0.40 1.60

Lecithin 0.20 0.20 0.20

Zeolite 0.40 0.40 0.40

Premix d 1.00 1.00 1.00

Mixture e 2.30 2.30 2.30

Total 100.00 100.00 100.00

Proximate composition (%)

Crude protein 36.21 36.31 36.24

Crude lipid 7.95 7.98 7.96

Crude ash 7.15 7.07 7.16
ro
aFishmeal had been skimmed from 0.38% to 0.11%. cholesterol.
bDHA oil and EPA oil (DHA content, 70% of oil; EPA content, 70% of oil) was purchased from Shanxi Pioneer Biotech Co., Ltd., Xian, Shanxi, China.
cCholesterol (purity 99%) was purchased from Shanxi Pioneer Biotech Co., Ltd., Xian, Shanxi, China.
dP Premix supplied the following minerals (g/kg) and vitamins (IU or mg/kg): CuSO4·5H2O, 2 g; FeSO4·7H2O, 25 g; ZnSO4·7H2O, 22 g; MnSO4·4H2O, 7 g; Na2SeO3, 0.04 g; KI, 0.026 g;
CoCl2·6H2O, 0.1 g; Vitamin A, 900,000 IU; Vitamin D, 200,000 IU; Vitamin E, 4500 mg; Vitamin K3, 220 mg; Vitamin B1, 320 mg; Vitamin B2, 1090 mg; Vitamin B5, 2000 mg; Vitamin B6,
500 mg; Vitamin B12, 1.6 mg; Vitamin C, 10,000 mg; Pantothenate, 1000 mg; Folic acid, 165 mg; Choline, 60,000 mg; Biotin, 100 mg; Myoinositol 15,000 mg.
eMixture includes the following ingredients (%): choline chloride 4.75%; antioxidants 1.72%; mildew-proof agent 2.35%; salt 22.06%; Lvkangyuan 59.30% and biostimep 9.51%.
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transcripts and the target gene expression of crabs in the group

with 0% CHO as the correct factor. The transcript levels of target

genes were analyzed by the 2−DDCT method (Livak and

Schmittgen, 2001).
Ovarian histology analysis

The ovaries were fixed in 4% paraformaldehyde for 24 hours,

then placed in 70%, 75%, 80%, 90%, 95% and absolute ethanol

for gradient dehydration. After that, transparently treated with

xylene and embedded in paraffin. The embedded ovarian tissue

was sliced with a microtome (LeicaRM2016, Berlin, Germany)

according to the thickness of 6 mm. Then the slices were

routinely dewaxed and rehydrated in absolute ethanol, 95%

ethanol and 80% ethanol. After rehydration, soak in ultrapure

water for 5 minutes and then hematoxylin-eosin (H&E) staining

was performed according to Zheng et al. (2020). Finally, the film

was sealed with neutral gum, and four individuals were observed

under the optical microscope (Nikon Eclipse 80i, Tokyo, Japan),

captured by a digital camera (Nikon DS-U2, Tokyo, Japan). Only

oocytes with obvious nuclei were measured by Image-Pro Plus

6.0 (media cybernetics, USA). The parameters include the short

diameter of an oocyte (SO), the long diameter of an oocyte (LO),

the short diameter of nuclei (SN), the long diameter of nuclei

(LN). The volume of an oocyte (VO), the volume of a nuclei

(VN), and the nucleo-cytoplasmic ratio (NCR) were calculated

according to the formula as follows (Wu et al., 2017; Zheng et al.,

2020):

VO = 0:523�Wo
2 � Lo

VN = 0:523�Wn
2 � Ln

NCR = VN=VO

Where Wo is the maximum width of oocyte, Lo is the

maximum length of oocyte, Wn is the maximum width of

nuclei, Ln is the maximum length of nuclei.
Fluorescence assay of cholesterol

The ovarian was embedded in the optimal cutting temperature

compound (OCT, Bioss, C2076), and then fixed on the sample

holder. After the temperature of the microtome stabilized at -20°C,

the tissue was cut into 6 mm thin slices, dipped in the slices with

glass slides, and then washed away the excess OCT with PBS. The

FILIPIN dye was dropped on the slices and incubated at room

temperature for 30 minutes. In the end, washing away the excess

staining solution with PBS, the slides were sealed and observed
Frontiers in Marine Science 05
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under confocal laser scanning microscope (ZEISSLMS900,

Berlin, Germany).
Biochemical analysis of ovary

The ovarian samples were made into homogenate,

centrifuged at 4°C and 6000 rpm for 5 minutes, and the

supernatant was taken to detect the following indexes: total

CHO (TC) (TC, Kit, NO. ml094937), estradiol (E2) (mouse E2
ELISA Kit, NO. ml001962), vitellogenin (Vtg) (crab Vtg ELISA

Kit, NO. ml003467), Cytochrome P450 Family 11 Subfamily A

Member 1 (CYP11A1) (insect CYP11A1 ELISA Kit,

NO.ml122176), Cytochrome P450 Family 19 Subfamily A

Member 1 (CYP19A1) (insect CYP19A1 ELISA Kit, NO.

ml036941). The commercial kits (Shanghai Enzyme

Bioengineering Co., Shanghai, China) were used to detect the

above indicators, specific operation steps are strictly

implemented in accordance with the instructions.
Western blot analysis

The process of western blot refers to Cao et al. (2019). Total

protein of ovary was extract with a glass tissue grinder (Kimble

Chase) on ice and lysed with RIPA lysis buffer (#ab156034, Abcam,

United Kingdom). The protein concentration was detected by BCA

protein assay kit (Beyotime Biotechnology, China). Heat denatured

protein lysate (2 μg/μL) of 10 μL was loaded into each well,

separated on 4-20% gradient SDS-PAGE electrophoresis gels for

30-35 minutes at 150 V using a Mini-Protean System (Bio-Rad,

United States). The protein was transferred to PVDFmembrane by

electrophoresis at 105 V for 65 minutes. Each PVDF was blocked

with 5% BSA in TBST (0.1% Tween 20, 500 mM NaCl, 20 mM

pH=7.4 Tris-HCl) at room temperature for 2 hours, then

incubated overnight at 4°C, with primary antibodies against

STAR (#AC026, ABclonal), SR-B1 (#DF6479, Affinity), cAMP

(#ab76238, Abcam), PKA (#ab75991, Abcam), SF-1 (#AF7895,

Affinity), p-CREB (#AF3189, Affinity), CYP19A1 (#AF5229,

Affinity), CYP11A1 (#DF4697, Affinity), MEK1/2 (#AF6385,

Affinity), ERK1/2 (#AF0155 Affinity), p-ERK1/2 (#AF1015,

Affinity), Cyclin B (#DF6786, Affinity), CDC2 (#DF6024,

Affinity), VTG (#abs119855, Absin), a-Tubulin (#AF7010,

Affinity). The next day, PVDF membranes were incubated with

secondary antibodies (Goat Anti-Mouse IgG H&L: #ab6728,

Abcam; Goat Anti-Rabbit IgG H&L: #ab6721, Abcam) for 2

hours at room temperature. The bands of the protein were

detected by a ECL reagent (Beyotime Biotechnology, China), and

captured with a luminescent image analyzer (Fujifilm LAS-3000,

Japan). The intensity of target bands was analyzed by image J

software (U.S. National Institutes of Health, Bethesda, MD, USA).
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Immunofluorescence

Refer to the above steps of making paraffin sections, and treat

the ovaries to the step of dewaxing and rehydrating. Then the

slices were immersed in 0.01M citrate solution and heated at 95°C

for 5 minutes for antigen repair. After cooling to room

temperature, rinse with PBS three times for 5 minutes each

time. Then 5% goat serum was dripped and sealed at room

temperature for 2 hours, and the excess sealing solution was

removed. The first antibody was dripped and incubated in a wet

box at 4°C for 12 hours. After returning to room temperature,

rinsed with PBS three times for 5 minutes each time. Drop the

fluorescent secondary antibody to cover the sample completely,

incubate at 37°C for 1 h. Subsequently, DAPI was added and dye

for 10 minutes at room temperature in the dark, then wash the

excess dye off with PBS, seal the film and observed under confocal

laser scanning microscope (ZEISSLMS900, Berlin, Germany).
In vitro tissue culture

The crabs were obtained from the Aquaculture Base of

Nanjing Agriculture University. Before dissection, the female

crabs were anesthetized on ice and disinfected with 75% ethanol.

Ovaries were quickly taken out in a sterile environment and

rinsed 8 times with PBS solution containing penicillin (100 IU/

mL) and streptomycin (100 ug/mL), meanwhile, hemolymph

and connective tissue were removed. Cut the ovaries into small

pieces of ~1 mm3 and place into a 24-well cell culture plate with

0.5 mL L-15 medium. After 30 minutes of tissue attachment, the

previous culture medium was sucked off, and 400 μL of L-15

medium containing double antibody was added again. The
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ovarian tissue was cultured in a constant temperature

incubator at 26°C. The CHO was resuspended in ethanol

absolute (EA) and mixed thoroughly with L-15 medium.

Based on the pre-experiment, the final concentrations of CHO

were set to 0 mg/L, 50 mg/L and 200 mg/L, the media and the EA

were control group. Each treatment contains four replicates,

after culturing at 26°C for 24 hours, removing the culture

medium, then rinse the ovaries with PBS for three times, and

quickly extract the total protein for western blot analysis.
Statistical analysis

The statistical analysis of the data in this study were analyzed

using SPSS 23.0 (Chicago, IL USA). All date were presented as

mean ± S.E.M. (standard error of the mean). Before analysis, the

normality and homogeneity of data were evaluated by

Kolmogorov-Smirnov test and Levene’s tests. Subsequently, a

one-way analysis of variance was performed, and then, Duncan’s

multiple comparison test to estimate the significant differences

(P < 0.05).
Results

Growth performance

The parameters of growth performance were shown in

Figure 1. Compared to the control group, crabs fed the diet

with 0.4% CHO resulted in a significantly higher HSI and GSI,

while no significant difference was observed in 1.6% CHO

treatment group (P < 0.05).
A B

FIGURE 1

Effects of dietary CHO on (A) hepatopancreas index (HSI); (B) gonad index (GSI). The values are the Means ± SEM (n = 4). Different letters
indicate significant differences (P < 0.05).
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Histological analysis

The effect of dietary CHO on the ovarian histology of

crabs was shown in Figure 2. Compared with the group

without CHO, the volume of oocytes in the group

supplemented with CHO was larger, and the oocytes were

filled with yolk granules. Further observation showed that

when the dietary CHO was 0.4%, the oocytes were squeezed

and deformed, and the volume of oocytes and yolk granules

was obviously larger.

The related parameters of oocytes were shown in Table 3.

Compared with the control group, the LO, SO and VO in CHO

treatment group were significantly increased (P < 0.05), and the

maximum value appeared in the group with 0.4% CHO. For the

nucleus, adding CHO has no effect on LN, but when the

amount of CHO is 0.4%, SN and VN are significantly higher

than the control group (P < 0.05). In contrast, after adding

CHO, NCR was significantly lower than that of the control

group (P < 0.05).
Frontiers in Marine Science 07
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The expression and transport of VTG in
the hepatopancreas and ovary

Dietary CHO had no significant effect on the content of

VTG in the hepatopancreas (Figure 3B). While for the ovary,

when the amount of CHO is 0.4%, the content of VTG was

significantly increased (P < 0.05), and when crabs were fed the

diet with 1.6% CHO, the content of VTG was significantly

lower than the control group (P < 0.05) (Figure 3A).

Compared with the control group, 0.4% CHO could

significantly increase the mRNA expression level of vtg in

ovary, but had no significant effect on the expression of vtg in

hepatopancreas (P < 0.05) (Figures 3C, D). Furthermore, in

0.4% CHO group, the gene expression of vgr significantly

increased in the ovary. In comparison, the expression of vgr

shows a downward trend when the content of CHO reached

1.6% (P < 0.05) (Figure 3E). The results of protein expression

showed that the protein expression level of VTG was

significantly increased by adding CHO, and the protein
FIGURE 2

H&E staining of ovarian tissue from E. sinensis subjected to different levels of dietary CHO (means ± SEM, n = 4). Photomicrographs (10×) and
scale bar (100 mm). (A): crabs fed with 0% CHO diets; (B): crabs fed with 0.4% CHO diets; (C) crabs fed with 1.6% CHO diets. N: nucleus; YG:
yolk granule; FC: follicle cell.
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expression level of VTG was the highest in the group with

0.4% CHO (Figures 3F, G).
The expression of oocyte division-related
proteins

As shown in Figure 4, with the increase of dietary CHO level,

the expression levels of MEK1/2, ERK1/2, p-ERK1/2, Cyclin B

and CDC2 showed a tendency to increase first and then

decrease. And when crabs were fed the diet with 0.4% CHO,

the expression of the above proteins in the ovary was

significantly higher than that in the control group (P < 0.05).
The analysis of cholesterol transport

The results of western blot and immune fluorescence showed

that CHO can significantly affect the protein expression of SR-B1

and STAR (P < 0.05) (Figures 5A–D). Compared with the

control group, 0.4% CHO can significantly promote the

protein expression of SR-B1 and STAR (P < 0.05), while 1.6%

CHO will significantly suppress the expression of SR-B1 (P <

0.05). Through the staining and detection of CHO in the ovaries,

it was found that after feeding a diet with 0.4% CHO, the amount

of CHO deposition in the ovaries was significantly higher than

that of other groups (P < 0.05).However, when the diet

containing 1.6% CHO was fed to crabs, the content of CHO in

the ovaries was significantly lower than that in the control group

(P < 0.05) (Figures 5E, F).
The analysis of estradiol synthesis

The detection of E2 synthesis-related proteins found that with

the increase of CHO content from 0% to 1.6% in the diet, the

expression levels of cAMP, PKA, p-CREB, SF-1, CYP11A1 and

CYP19A1 showed a tendency to increase first and then decrease (P

< 0.05) (Figures 6A–F). In addition, 0.4% CHO can significantly
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increase the activity of enzymes CYP11A1 and CYP19A1 in the

ovary compared to the control group (P < 0.05) (Figures 6G, H).

The detection of E2 in the ovary showed that the content of E2 in

CHO treated groups was significantly higher than that in the

control group (P < 0.05), and the maximum value appeared in

the group with 0.4% CHO (Figure 6I).
Protein expression in vitro

The proteins expression of cAMP, PKA, p-CREB, SF-1,

CYP11A1 and CYP19A1 in the ovary exposed to 0, 50 and

200 mg/L CHO were shown in Figure 7. Compared with the

control group, the expression levels of cAMP and PKA in the

CHO treated groups were significantly increased (Figures 7A, B)

(P < 0.05). Moreover, 50 mg/L CHO could significantly up-

regulate the expression levels of p-CREB, SF-1, CYP11A1 and

CYP19A1 (P < 0.05), while when the concentration of CHO

reached 200 mg/L, the expression of p-CREB, SF-1, CYP11A1

and CYP19A1 decreased significantly (P < 0.05) (Figures 7C–F).
Discussion

CHO, as an essential nutrient for aquatic animals, widely

exists in various animal tissues. Especially for crustaceans, which

have limited ability to synthesize CHO on their own and can

only obtain it from food to meet their own needs (Kumar et al.,

2018). Therefore, most previous studies on CHO in crustaceans

have focused on survival, growth, and lipid metabolism (Sheen

et al., 1994; Teshima et al., 1997; Niu et al., 2012; Tian et al.,

2020). Our previous study showed that 0.27% CHO could

significantly improve the weight gain and survival ratio of

Eriocheir sinensis. However, 0.27% CHO may be able to meet

the growth requirement of Eriocheir sinensis, but may be

insufficient for the demand of ovarian development (Tao et al.,

2014; Guo et al., 2022). For Eriocheir sinensis, the HSI increases

gradually before the gonad enters the rapid development stage.

However, when the gonad enters the rapid development period,
TABLE 3 Sizes of oocytes and nuclei in Eriocheir sinensis subjected to different levels of dietary CHO.

Parameters 0% 0.4% 1.6%

LO (mm) 123.94 ± 4.68a 190.34 ± 4.92b 183.42 ± 5.41b

SO (mm) 94.81 ± 3.98a 156.90 ± 3.32b 155.36 ± 4.39b

VO (105 mm3) 5.89 ± 0.61a 24.65 ± 1.66b 23.37 ± 1.96b

LN (mm) 30.22 ± 1.05a 31.04 ± 0.62a 29.12 ± 0.48a

SN (mm) 24.41 ± 1.10a 28.01 ± 0.59b 25.43 ± 0.51a

VN (105 mm3) 0.094 ± 0.010a 0.128 ± 0.007b 0.099 ± 0.005a

NCR 0.016 ± 0.002a 0.005 ± 0.001b 0.004 ± 0.001b
f

LO means long diameter of an oocyte; SO means short diameter of an oocyte; VO means volume of an oocyte; LN means long diameter of a nucleu; SN means short diameter of a nucleu;
VN means volume of a nucleu; NCR means nucleus-cytoplasmic ratio.
Values (Mean ± S.E.M. of 20 replications) in the same column with different superscripts are significantly different at P < 0.05.
rontiersin.org

https://doi.org/10.3389/fmars.2022.1070829
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Guo et al. 10.3389/fmars.2022.1070829
A B

D

E F

G

C

FIGURE 3

Effects of dietary CHO on (A) the content of Vtg in ovary; (B) the content of Vtg in hepatopancreas; (C) the mRNA expression of vtg in ovary;
(D) the mRNA expression of vtg in hepatopancreas; (E) the mRNA expression of vgr in ovary; (F) the protein expression of VTG in ovary. (G) the
immunofluorescence of VTG in ovarian tissue of E.sinensis after fed with diets supplemented different CHO levels (blue: nucleus; red: VTG).
The values are the Means ± SEM (n = 4). Different letters indicate significant differences (P < 0.05).
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FIGURE 4

Western blot analysis of (A) the protein expression of MEK1/2 in ovary; (B) the protein expression of ERK1/2 in ovary; (C) the protein expression
of p-ERK1/2 in ovary; (D) the protein expression of Cyclin B in ovary; (E) the protein expression of CDC2 in ovary. The values are the Means ±
SEM (n = 4). Different letters indicate significant differences (P < 0.05).
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the GSI will gradually increase, while the HSI will decrease

accordingly. Therefore, it is generally believed that the nutrients

in hepatopancreas are the energy pool to support the gonad

development of crab (Wu et al., 2017; Jiang et al., 2022). In this
Frontiers in Marine Science 11
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study, the GSI and HSI in the group that fed diet containing 0.4%

CHO were significantly higher than those in the control group,

while this difference was no longer significantly at high doses of

CHO. This result may be because dietary CHO affects the E2
A

B

D

E

F

C

FIGURE 5

Effects of dietary CHO on (A) the protein expression of SR-B1 in ovary; (B) the immunofluorescence of SR-B1 in ovary (blue: nucleus; red: SR-
B1); (C) the protein expression of STAR in ovary; (D) the immunofluorescence of STAR in ovary (blue: nucleus; red: STAR). The content of ovary
CHO after crabs was fed diets with different CHO levels. (E) Representative confocal microscopic image of ovarian CHO stained by FILIPIN
(blue), photomicrographs (200×) and scale bar (100 mm); (F) The content of TC in ovary. The values are the Means ± SEM (n = 4). Different
letters indicate significant differences (P < 0.05).
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synthesis, leading to the difference in ovarian development (Fairs

et al., 1990; Janer and Porte, 2007; Pan et al., 2018).

The ovarian maturation of Eriocheir sinensis is often

accompanied by increased oocyte volume (Chen et al., 2004;

Zheng et al., 2021). In this study, under the same magnification

of light microscope, the number of oocytes observed in 0.4%

CHO group was much less than that in the other two groups,

and the yolk granules were fuller. Further measurement results

also showed that the LO, SO and VO of oocytes in 0.4% CHO
Frontiers in Marine Science 12
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group were significantly higher than those in the other two

groups. This further proves that an appropriate amount of CHO

plays an important role in promoting ovarian maturation. In

crustaceans, it has been reported that the increase of oocyte size

is closely related to vitellogenesis (Wu et al., 2017). For example,

substantial quantities of vitellin accumulates in the oocyte

resulted in the active growth of oocytes in Macrobrachium

rosenbergii (Du et al., 1995; Lee and Chang, 1997). In this

experiment, 0.4% CHO significantly increased the content
A B

D

E F

G H

I

C

FIGURE 6

The protein expression of (A) cAMP; (B) PKA, (C) p-CREB, (D) SF-1, (E) CYP11A1 and (F) CYP19A1 in the ovary of Eriocheir sinensis fed with the
experimental diets. (G) The activity of CYP11A1 in the ovary; (H) the activity of CYP19A1 in ovary; (I) the content of E2 in ovary. The values are the
Means ± SEM (n = 4). Different letters indicate significant differences (P < 0.05).
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VTG in the ovary. According to this, this study speculated that

the reason why adding an appropriate amount of CHO makes

oocytes grow actively by promoting the deposition of VTG in

ovaries (Xue et al., 1987; Zheng et al., 2020).

In terms of nutrition, the development of ovary in

crustaceans is actually a process of nutrient accumulation, of

which the main nutrient is Vtg (Yano and Hoshino, 2006;

Matozzo et al., 2008). In the process of vitellogenesis, Vtg can
Frontiers in Marine Science 13
96
provide nutrients such as lipids, protein, vitamins and mineral

salts for oocytes to meet the needs for ovarian development.

Therefore, the content of Vtg is usually considered as an

important indicator for judging the ovarian development of

crustacean (Meusy, 1980; Subramoniam, 2011). The results of

the present study showed that the addition of 0.4% CHO could

significantly promote the transcription level of vtg and vgr and

thus increase the content of Vtg in the ovary, while when the
A B

D

E F

C

FIGURE 7

The protein expression of (A) cAMP; (B) PKA, (C) p-CREB, (D) SF-1, (E) CYP11A1 and (F) CYP19A1 in the ovary exposed to 0, 50 and 200 mg/L
CHO. The values are the Means ± SEM (n = 4). Different letters indicate significant differences (P < 0.05).
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amount of CHO reached 1.6%, it no longer had promoting effect,

which was consistent with the results of protein expression, and

further confirmed that the appropriate amount of CHO could

promote the ovarian development of Eriocheir sinensis by

promoting the accumulation of VTG. We speculated that there

might be two reasons for this result. On the one hand, CHO, as

an important component of Vtg, is crucial to the formation of

VTG (Okuno et al., 2002). Previous studies have reported that

CHO in hemolymph decreases rapidly during vitellogenesis in

female ghost crab and Litopenaeus Vannamei, at the same time

the content of CHO in the ovary increases significantly, which

may be due to the organism transporting CHO to the ovaries to

compensate for CHO depletion (Teshima et al., 1986; Vinagre

et al., 2007). On the other hand, as a substrate for synthetic E2,

CHO may promote Vtg synthesis and transport by affecting the

synthesis of endogenous hormones (Kumar et al., 2018).

Although there is no report on CHO promoting ovarian

development of Eriocheir sinensis at present, the promoting

effect of estrogen on vitellogenesis of crustaceans has been

demonstrated. Warrier et al. (2001) found a positive

correlation between the level of E2 in hemolymph of

crustacean and the stage of vitellogenesis. Yano and Hoshino

(2006) reported that exogenous E2 could promote ovarian

development in Litopenaeus vannamei and Portunus

trituberculatus by in vivo injection. Therefore, we believe that

the appropriate amount of CHO can promote the synthesis of

VTG, then promote the transport of various nutrients to the

ovary , and final ly achieve the goal of promot ing

ovarian maturation.

The development and maturity of oocytes require the

coordinated regulation of various signal pathways in the cells,

in which the activation of MPF is the central link to initiate

oocyte maturation (Gavet and Pines, 2010). As a key substance

to promote oocyte maturation, MPF mainly exists in mitotic

cells and is highly conservative among different species. The

dephosphorylation of CDC2 and the recruitment of Cyclin B are

two important factors to maintain the activity of MPF (Bodart

et al., 2002). CDC2 contains three phosphorylation sites: Thr-14,

Tyr-15 and Thr-161. The dephosphorylation of Thr-14 and Thr-

15 is the prerequisite for activating MPF. In the cell cycle, CDC2

through phosphorylation and dephosphorylation, combined

with Cyclin B to regulate the activity of MPF (Pirino et al.,

2009; Feng et al., 2020). In this study, 0.4% CHO treatment

group has the highest ovarian maturity,and the protein

expression levels of Cyclin B and CDC2 are significantly

higher than those in the control group. Previous study on

Penaeus monodon has found that estrogen can increase the

expression of Cyclin B, promote the dephosphorylation of

Thr-14 and Thr-15, and then induce the combination of cyclin

B and dephosphorylated CDC2 to transform oocytes from G2

phase to M phase (Loukaci et al., 2001; Pirino et al., 2009). In this

experiment, after 0.4% CHO treatment, the level of E2 in the

organism was significantly increased. Therefore, we speculate
Frontiers in Marine Science 14
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that CHO may promote ovarian maturity by promoting E2
synthesis. Besides MPF, MAPK also plays an irreplaceable role

in the regulation of oocyte cycle. MAPK belongs to serine/

threonine protein kinase family, ERK1/2 is one of the

subtribes that is mainly responsible for the recovery of meiosis

(Fan et al., 2009). Previous studies have pointed out that the

maturation promoting effect of MAPK is to enhance the activity

of MPF and then promote the germinal vesicle breakdown

(GVBD), because the activation of MAPK is highly consistent

with the synthesis of Cyclin B in time (Frank-Vaillant et al.,

2001; Dupré et al., 2011). After MAPK is activated, the

translation of Cyclin B increases immediately, MAPK can

positively regulate the translation and synthesis of Cyclin B,

and stabilize the activity of MPF by inhibiting the degradation of

Cyclin B (Frank-Vaillant et al., 2001; Maller et al., 2001). The

results of this study show that compared with the other two

groups, 0.4% CHO can significantly increase the protein

expression of MEK1/2. which is a specific protein kinase.

MEK1/2 is a specific protein kinase, which uses MAPK as the

only substrate and catalyzes the phosphorylation of threonine

and tyrosine, thus ensuring the activation of MAPK. Activated

MAPK can enter the nucleus and regulate the expression of cell

cycle-related proteins such as Cyclin B and CDC2 (Gotoh and

Nishida, 1995; Kishimoto, 2018). Zheng et al. (2020) reported

that estrogen could promote the activation of MAPK signal

pathway in the ovary of Eriocheir sinensis. Therefore, an

appropriate amount of CHO may promote E2 synthesis, then

induce the activation of the MAPK signal pathway, and

cooperate with MPF to start ovarian maturation (Ohashi et al.,

2003; Nagahama and Yamashita, 2008).

As a substrate for the synthesis of E2, CHO must be

transported from the storage site to the ovary through

hemolymph circulation in the organism (Rodenburg and Van

der Horst, 2005). In crustaceans, lipid transport through the

hemolymph is accomplished by HDL (Komatsu and Ando,

1998). HDL combines with CHO in peripheral tissues to form

high-density lipoprotein CHO (HDL-C), which is transported to

the ovary through hemolymph. Previous studies have reported

that exogenous chemicals can reduce the content of HDL in

hemolymph, then affect the content of CHO transported to the

ovary, thus interfere with the synthesis of E2 (Sharpe et al., 2007;

Reading et al., 2014). SR-B1 is the first HDL receptor to be

identified, and it is an important substance to maintain the

homeostasis of CHO metabolism in the organism. When SR-B1

gene is knocked out in mouse, it will lead to the disorder of CHO

metabolism, and the female will be infertile (Kolmakova et al.,

2010). In this experiment, 0.4% CHO can significantly increase

the content of total CHO in the ovary, and when the amount of

CHO reached 1.6%, the content of CHO in the ovary shows a

downward trend, which may be due to the inhibition of SR-B1

expression by high doses CHO, thereby reducing the endocytosis

of CHO (Ji et al., 1997). Due to the synthesis of E2 on the inner

mitochondrial membrane, CHO in oocytes needs to be
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transported to the inner mitochondrial membrane by STAR to

start the E2 synthesis pathway, this process which is a speed limit

step for E2 synthesis (Jefcoate et al., 1992). STAR is a transporter

of CHO, which is mainly involved in the absorption and

metabolism of CHO. The damage of STAR will lead to E2
synthesis paths being blocked, thus the level of E2 in the

organism will drop sharply (Stocco, 2000). In addition, the

expression level of STAR is easily affected, for example,

exposing goldfish to 200 μg/g b-sitosterol will significantly

reduce the transcription level of STAR, thus reducing the

content of CHO in the mitochondrial inner membrane

(Sharpe et al., 2007). The results of this experiment also found

that an appropriate amount of CHO could promote the

transcription of STAR, while high doses of CHO would block

the transcription of STAR. In short, an appropriate amount of

CHO can promote the expression of proteins such as SR-B1 and

STAR to provide sufficient raw materials for the synthesis of E2.

The conversion of CHO to E2 requires the catalysis of a

series of enzymes, among which CYP11A1 and CYP19A1, two

members of CYP450 family, are key enzymes (Ankley et al.,

2012). CYP11A1 through cleaving the side chain of CHO,

catalytic generated a precursor of steroid hormones. CYP19A1

is another rate-limiting enzyme in E2 synthesis, which is

responsible for the conversion of testosterone to E2 (Hu et al.,

2010). Ankley et al. (2012) found that the addition of

non-specific inhibitors of CYP450 can significantly reduce the

activity of different CYPs in the E2 synthesis pathway, of which

CYP11A1 and CYP19A1 are the primary targets. In this

experiment, 0.4% CHO can significantly increase the activity

of CYP11A1 and CYP19A1, thus increasing the level of estradiol

in the organism. The activity regulation of CYP11A1 and

CYP19A1 depends on cAMP/PKA signal transduction

pathway. When the cAMP/PKA signal pathway is activated, it
98
can regulate the expression of steroidogenic enzymes related to

transcription factors such as SF-1 and CREB (Lapointe and

Boerboom, 2011; Manna and Stocco, 2011). It has been

confirmed that CREB can regulate the activity of CYP19A1

through phosphorylation and dephosphorylation of serine at

position 133. SF-1 can activate the expression of all CYPs

involved in steroid hormone production, and SF-1 is also

involved in regulating CHO transport in steroid-producing

cells. Therefore, SF-1 is the key regulatory factor of CYP11A1,

CYP19A1, STAR and other substances (Huang et al., 2022).

Zheng et al. (2020) reported that the addition of icariin can

regulate the expression level of p-CREB and SF-1, thereby

affecting estradiol synthesis in Eriocheir sinensis. In this study,

the results of in vivo and in vitro experiments showed that after

appropriate CHO treatment, the cAMP/PKA signaling pathway

was activated, and the protein expression levels of p-CREB and

SF-1 were significantly increased. Therefore, we speculate that

appropriate CHO can regulate the activity of key enzymes in the

process of steroid hormone production through cAMP-PKA-

CREB/SF-1 signaling pathway, and then affect the secretion of E2
in the organism.
Conclusion

In conclusion, the results of this study show that 0.4% CHO

in the diet can promote the gene and protein expression of VTG

in the ovary and hepatopancreas, thus promoting the

accumulation of nutrients. On the other hand, an appropriate

amount of CHO can induce the activation of the MAPK signal

pathway, improve the activity of MPF, promote the completion

of meiosis of oocytes, and then promote the ovarian maturation

of Eriocheir sinensis. Further studies have found that an
FIGURE 8

Graphical summary of CHO promotes ovarian maturation in Eriocheir sinensis. “+” symbol: expression was up-regulated by CHO.
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appropriate amount of CHO can increase the activity of E2
synthesis-related enzymes such as CYP11A1 and CYP19A1 in

vivo and in vitro by increasing the expression of cAMP/PKA

pathway related-proteins to increase the level of E2 in the

organism, which may be the main reason for the improvement

of ovarian maturity of Eriocheir sinensis (Figure 8).
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Effect of Schizochytrium
limacinum supplementation to a
low fish-meal diet on growth
performance, lipid metabolism,
apoptosis, autophagy and
intestinal histology of
Litopenaeus vannamei

Xinzhou Yao1,2,3†, Yingying Lin1,2,3†, Menglin Shi1,2,3,
Liutong Chen1,2,3, Kangyuan Qu1,2,3, Yucheng Liu1,2,3,
Beiping Tan1,2,3 and Shiwei Xie1,2,3*

1Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University,
Zhanjiang, China, 2Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering
Research Centre of Guangdong Province, Zhanjiang, China, 3Key Laboratory of Aquatic, Livestock
and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
In this experiment, we aimed to evaluate the relationship between the addition

of Schizochytrium limacinum to low fish meal diets on growth performance,

apoptosis, autophagy, lipid metabolism, and intestinal health of Lipenaeus

vanamei. The diet containing 25% fish meal was used as a positive control

(FM) and the other three diets contained 15% fish meal and were supplemented

with 0, 0.3, and 0.6% S. Limacinum (LF, LFLD, LFHD). The shrimp (0.22 ± 0.00 g)

were divided into four replicates of 40 shrimp per tank and fed four times daily

to apparent satiation for 8 weeks. Results showed that the final weight (FBW)

and weight gain rate (WGR) of shrimp fed FM and LFHD diets were significantly

increased compared to those fed the LFLD diet (P<0.05), and there was no

significant difference in survival rate (SR) and feed conversion rate (FCR) among

the groups (P>0.05). Supplementation of S. Limacinum in low fish meal diets

had no effects on shrimp body composition (P<0.05). There were significant

differences (P<0.05) in low-density lipoprotein (LDL-C) glucose (GLU),

triglycerides (TG), and total cholesterol (TC) in the hemolymph of shrimp fed

the LF diet compared to those fed the LFLD and LFHD diets. HE staining and

transmission electron microscopy (TEM) results showed that the microvilli

height, mucosal folds height, mucosal folds width and muscle layer thickness

in the intestine of shrimp fed the LF diet were significantly reduced compared

to those fed the other three diets (P<0.05). Swelling of the endoplasmic

reticulum and irregular mitochondria in the gut of shrimp fed the LF diet was

also observed by TEM, and the endoplasmic reticulum and mitochondria of

shrimp fed the LFHD diet returned to a healthy state. Hepatopancreas genes

expression results were showed that the gene expression of 5′ -AMP-activated
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protein kinase (ampk), stearoyl-CoA desaturase (scd1), acetyl-CoA carboxylase

1 (acc1), and malonyl-CoA decarboxylase (mcd) of shrimp fed the LF diet was

significantly increased compared to those fed the FM diet (P<0.05). The gene

expression of sterol regulatory element-binding protein (srbep) and carnitine

palmitoyl transferase 1 (cpt-1) of shrimp fed the LFLD diet was significantly

increased compared to those fed the LF diet (P<0.05). The gene expression of

acc1, mcd and scd1 of shrimp fed the LFHD diet was significantly reduced

compared to those fed the LF diet (P<0.05). Results of genes expression

associated with apoptosis in the hepatopancreas showed that the gene

expression of B lymphocytoma-2 (bcl-2), BCL2 associated X apoptosis

regulator (bax) and cysteinyl aspartate specific proteinase 8 (caspase 8) of

shrimp fed the LF diet was significantly reduced compared to those fed the FM

diet (P<0.05). The gene expression of bcl-2 of shrimp fed the LFHD diet was

significantly reduced compared to those fed the LF diet (P<0.05). Genes related

to autophagy in the hepatopancreas showed that the expression of autophagy-

related protein 12 (atg 12), autophagy-related protein 13 (atg 13) and beclin1 of

shrimp fed LF the diet was significantly reduced compared to those fed the FM

diet (P<0.05). The gene expression of atg 12 and atg 13 of shrimp fed the LFHD

diet was significantly increased compared to those fed the LF diet (P<0.05). In

summary, reducing fish meal is detrimental to the growth performance and

intestinal health of shrimp, and 0.6% S. Limacinum supplementation can

improve the growth performance, promotes hepatopancreas lipid

metabolism, reduces apoptosis, promotes autophagy and improve intestinal

health of Litopenaeus vannamei.
KEYWORDS

Litopenaeus vannamei, soy protein concentrate, Schizochytrium limacinum, lipid
metabolism, apoptosis, autophagy, intestinal health
Introduction

Litopenaeus vannamei has the characteristics of fast growth,

strong disease resistance, and delicious taste, which has

important economic value, and the annual production has up

to 5.8 million tons in 2020 (FAO, 2022; Xu et al., 2022a). Fish

meal is rich in amino acids, vitamins, and minerals which are

necessary for the growth of fish, shrimp, and crab, and has a

special flavor that makes it good palatability (An et al., 2018).

Nonetheless, the high cost of fish meal has increased the cost of

feed Previous studies found that fish meal in aquatic animal feed

can be substituted by different protein sources, such as soy

protein peptide (Lin et al., 2022), soy protein concentrate (Zhu

et al., 2020), fermented soy pulp (Kari et al., 2022), hydrolyzed

fish protein powder (Hlordzi et al., 2022), bacterial protein meal

(Chen et al., 2021b), concentrated dephenolization cottonseed

protein (Zhao et al., 2021), blood meal (Kirimi et al., 2016), black

soldier fly (Huang et al., 2022), meat and bone meal (Ai et al.,

2006), and hydrolyzed feather meal (Campos et al., 2017). Plant

proteins are widely available and inexpensive, which were

favored by researchers for partial replacement of fish meal in

aquatic animal feed (Liao et al., 2022). However, plant protein
02
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generally has the disadvantages of amino acid imbalance and

high content of anti-nutritional factors (Jannathulla et al., 2019),

and adding excessive plant protein can also affect the growth

performance, intestinal microecology, and nutrition metabolism

of aquatic animals (Ray et al., 2020). In our previous study, we

found that the essential nutrient balance in low fish meal diets

improved growth properties and intestinal fitness of shrimp (Xie

et al., 2016; Xie et al., 2020c).

Fish meal contains high levels of fish oil, which is rich in n-3

long-chain polyunsaturated fatty acids, especially for

docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA)

(Cho and Kim, 2011). Consequently, the content of high-

unsaturated fatty acids decreases accordingly in the low fish

meal diets. Polyunsaturated fatty acids are essential fatty acids

for fish and crustaceans, which cannot be synthesized in vivo and

must be obtained from food (Dyall et al., 2022). DHA is a

polyunsaturated fatty acid, which has various functional roles in

regulating the physiological health of the body and has

important regulatory influences on growth, inflammatory

response, development, immune regulation, and antioxidation

in aquatic animals (Ruyter et al., 2022). DHA is an essential fatty

acid for many fish, shrimp, and shellfish larvae, previous study
frontiersin.org
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proved that dietary supplementation of DHA in the low fish

meal diet could improve the immune system response and

intestinal fitness of Penaeus monodon (Xie et al., 2020b).

Schizochytrium Limacinum (S. Limacinum), a type of marine

algae, is rich in the highly unsaturated fatty acid DHA (Li et al.,

2018). In contrast to other algae, S. Limacinum is produced by

employing heterotrophic propagation and was regarded as

microalgae with the potential to produce DHA in an industrial

chain (Sarker et al., 2016; Osmond et al., 2021). Numerous

studies have been conducted to demonstrate the improvement of

the growth performance of aquatic animals by feeding diets

containing S. Limacinum, such as Litopenaeus vannamei (Wang

et al., 2017), Salmo Salar (Sprague et al., 2015), Ictalurus

punctatus (Li et al., 2009), Danio rerio (Byreddy et al., 2019),

Trachinotus Ovatus (Xie et al., 2019), Epinephelus Lanceolatus

(Garcıá-Ortega et al., 2016). In addition, there have been several

studies showing that dietary supplementation of S. Limacinum

be significantly enhanced the non-specific immunity of

Trachinotus Ovatus (Xie et al., 2019) and improve the

intestinal health of Oreochromis niloticus (Souza et al., 2020)

and Oncorhynchus mykiss (Lyons et al., 2016). The results of

another study suggest that S. Limacinum can be a promising

low-level substitute for fish meals, which could improve the fillet

texture of largemouth bass (Liao et al., 2022).

Few studies have been reported on the effect of S. Limacinum

addition in the low fish meal diet of Litopenaeus vannamei.

Thus, the intention of this experiment was to assess the effects of

low fish meal diet supplementation with S. Limacinum on

growth performance, hemolymph biochemistry, intestinal

health, lipid metabolism, apoptosis, and autophagy of

Litopenaeus vannamei.
Materials and methods

Diet preparation

Two diets with different levels of the fish meal were

formulated as the positive control (FM) and negative control

(LF), and two levels of S. Limacinum were added to the LF,

which were labeled as LFLD and LFHD. The nutritional

composition of the four diets was shown in Table 1.

Ingredients were crushed and passed through an 60 mesh

sieve, weighed accurately, and blended well (M-256, South

China University of Technology, Guangzhou), next were

stirred well with pre-weighed distilled water, fish oil, soybean

oil, soy lecithin, and pre-configured coated crystal amino acids as

described by Xie et al. (Xie et al., 2020c). The 1.0 mm and

1.5 mm feeds were extruded by a twin-screw extruder (F-26,

South China University of Technology, Guangzhou), followed

by being heated in an oven at 90°C for 60 min and air-drying at
Frontiers in Marine Science 03
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room temperature, the diets were storage at -20°C until use (Li

W. et al., 2022).
Experimental shrimp and management
conditions

Juvenile Litopenaeus Vannamei were purchased from

Zhanjiang Yuehai Seed Co. The shrimp was transferred to a

pre-disinfected specimen pond for one month and acclimatized

for one week to the experimental conditions before the start of

the experiment. Then 640 healthy shrimp with similar body sizes

(0.22 ± 0.00g) were randomly assigned to 16 fiberglass tanks

(500 L) with 40 shrimp per tank. The shrimp were periodically

fed four times a day (7:00, 11:00, 16:00, 21:00) for 8 weeks.

During the time of trial, water temperature and salinity were to

be measured daily, with the water temperature at 28.0-30.0°C,

salinity at 26-30‰, pH at 7.6-8.1, and ammonia nitrogen level

below 0.05 mg/L (He et al., 2017). In addition, each tank was

aerated to ensure enough oxygen, and the water was changed by

approximately 60% at 2h after the first feeding every day.
Sample collection and analysis

Growth indexes
At the end of 8 weeks of feeding, shrimp were starved and

treated for 24 h before being anesthetized using MS-222 (Zhou

et al., 2019; Xu et al., 2021). Samples were then collected, and

shrimp in each tank was counted and weighed to determine the

initial weight (IBW), final weight (FBW), survival rate (SR), feed

conversion rate (FCR), and weight gain rate (WGR).

Immediately after weighing, 10 shrimp were randomly selected

from each tank, and blood was taken using a 1 mL sterile syringe,

and placed in a 1.5 mL sterile centrifuge tube. The hemolymph

was gathered by centrifugation at 1500 x g for 10 min at 4°C

through a benchtop high-speed frozen centrifuge (JIDI-20R,

Guangzhou JIDI Instruments Ltd. formula). Six shrimps were

randomly detected from each tank, which were stored at -20°C

for the shrimp body composition analysis using standard

methods (Feldsine et al., 2002). Moisture was determined in a

constant-weight oven at 105°C. The content of crude protein

and Crude lipid were determined using the Kjeldahl method

(Kjeltec™8400, Sweden) and the Soxhlet extraction method

(extractant petroleum ether), respectively, according to the

description of (Zhang et al., 2018; Liu et al., 2021).

Hemolymph biochemical indexes and enzyme
activity analysis

Hemolymph biochemical indicators were measured using

kits developed by Nanjing Jiancheng Institute of Biology

(China), the content of high-density lipoprotein (HDL-C),
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low-density lipoprotein (LDL-C), glucose (GLU), triglyceride

(TG), total protein (TP), and total cholesterol (TC), and the

activities of aspartate aminotransferase (AST), alanine

aminotransferase (ALT) were measured using a full-

wavelength enzyme marker (Thermo, Multiskan GO 1510).

The commercial kit IDs were as follows: A112-1-1, A113-1-1,

A154-1-1, A110-1-1, A045-2, A111-1, C009-2-1, and C009-2-1,

respectively. The methods of the kit were tested strictly

according to the description of (Gui et al., 2019; Wu et al., 2021).

Quantitative real time PCR analysis
Total RNA was obtained from the hepatopancreas and

intestine of Litopenaeus vannamei using the TransZol Up Plus

RNA kit (Transgen, China), and the extracted RNA was assayed

by NanoDrop2000 (Thermo USA), and the massification of

RNA was determined by the A260/280 ratio (Zhu et al., 2021;
Frontiers in Marine Science 04
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Zhang et al., 2022a). Reverse transcription was performed using

the PrimeScriptTM RT kit (Takara, Japan) according to the

manufacturer’s instructions. Oligo dt (18T) primer random 6

mers, PrimeScriptTM RT enzyme mixture I, 5× PrimeScriptTM

buffer, and RNase-free water were used to reverse transcribe

1000 ng of RNA at 37°C for 15 min, followed by inactivation at

85°C for 5 s (Li Y. et al., 2022; Xu et al., 2022c).

The polymerase chain reaction was performed using SYBR®

Green Premix Pro Taq HS qPCR Kit II (Accurate Biotechnology

(Hunan) Co., Ltd.) and the system was quantified fluorescently

on a LightCycler 480 (Roche Applied Science) according to the

set procedure for 10 The fluorescence quantification of the

samples was performed on a LightCycler 480 (Roche Applied

Science) according to a set procedure. The 10 ml system

consisted of 0.5 mM of forward and reverse specific primers, 5

ml of 2× SYBR® Green Pro Taq HS Premix II, 10 ng of cDNA
TABLE 1 Formulation and proximate composition of experimental diets (% dry matter).

Ingredient Treatments

FM LF LFLD LFHD

Fish meal 25 15 15 15

Soybean meal 25 25 25 25

Peanut meal 12 12 12 12

Soy protein concentrate 0 10 10 10

Flour 20 20 20 20

Brewer’s yeast 2 2 2 2

Shrimp shell powder 2 2 2 2

Chicken Powder 3 3 3 3

Fish Oil 1.5 2.3 2.3 2.3

Soybean Oil 2 1.9 1.9 1.9

Choline 0.2 0.25 0.25 0.25

Soy lecithin 1 1 1 1

Vitamin and mineral premixes a 1 1 1 1

Calcium dihydrogen phosphate 1 2 2 2

Vitamin C 0.1 0.1 0.1 0.1

Micro Nutrients Mix 0 0.05665 0.05665 0.05665

Microcrystalline cellulose c 3.2 0.65 0.35 0.05

L selenomethionine type II b 0 0.007 0.007 0.007

Sodium carboxymethyl cellulose 1 1 1 1

Docosahexaenoic acid 0 0 0.3 0.6

Proximate composition

Dry matter

Crude protein 40.02 40.57 40.84 40.62

Crude lipid 7.61 7.55 7.41 7.53
frontie
aVitamin and Mineral Premix ((kg) 1 of diet): thiamine, 5 mg; riboflavin, 10 mg; vitamin A,5000 IU; vitamin E, 40 mg; vitamin D3, 1000 IU; menadione, 10 mg; pyridoxine, 10 mg; biotin,
0.1 mg; cyanocobalamin, 0.02 mg; calcium pantothenate, 20 mg; folic acid, 1 mg; niacin, 40 mg; vitamin C, 150 mg; iron, 100 mg; iodine, 0.8 mg; cupper, 3 mg; zinc, 50 mg; manganese, 12
mg; selenium, 0.3 mg; cobalt, 0.2 mg.
bL selenomethionine type II Sichuan New Yimei Biotechnology Co., Ltd, Selenium Power II (L-selenomethionine ≥ 0.5%, selenium ≥ 0.2%)
cMicro Nutrients Mix (kg-1 of wet weight diet): threonine, 0.5g; glycine, 1g; alanine, 1.5g; methionine, 1.5g; lysine, 2g; g-aminobutyric acid, 0.2g; taurine, 0.6g; ornithine, 0.12g; phytase, 0.4g;
vitamin B2, 1mg; vitamin B12, 10mg; niacin, 10mg; ferrous Glycinate, 60mg; zinc amino acid complexes, 30mg; purchased from Shanghai Aladdin Biochemical Technology Co. and
Guangzhou Chengyi Aquaculture Co.
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template and RNase-free water (Chi et al., 2017). The

denaturation step lasted for the 30s at 95°C, followed by 40

amplification cycles, denaturation at 95°C for 5s, and annealing

at 60°C for 30s before analysis of the solubility curves. The

relative gene expression was calculated by the 2-DDCt method

using ef-1a as the internal reference gene (Chen et al., 2021a;

Wang et al., 2022). (The information of the primers used in this

study was shown in Table 2).

Intestinal tissue analysis
Intestine of four shrimpwas randomly selected from each tank

for hematoxylin-eosin (H&E) stain and transmission electron

microscopy (TEM) analysis. The intestine was stored in Bouin’s

solution for 24 h and then dehydrated in 75% ethanol. Then the

tissue was dehydrated and washed with xylene, The samples were

cleaned in toluene followed by embedding in paraffin tomake solid
Frontiers in Marine Science 05
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waxblocks.A rotarymicrotomewasused tocut the solidwaxblocks

into transverse section blocks into 5 mm sections followed by

mounting on the slide and staining with hematoxylin-eosin

(H&E). The slides were observed under a microscope (Olympus,

BX51, Tokyo, Japan) and the built-in software was used tomeasure

the thickness of themuscle layer, the height of themucosal fold, and

the width of the mucosal fold. TEM was performed as the method

described before (Xie et al., 2018): intestines were fixed with 2.5%

glutaraldehyde for 2h, washed and fixed with osmium acid for 3h,

dehydrated and embedded with resin, and ultrathin sections were

made of resin blocks, followed by staining with saturated uranyl

acetic acid solution for 30min and distilledwater washing followed

by lead citrate for 30min.Finally, the cytoarchitecturewasobserved

byTEM (HitachiHT7700TEM, Japan) and the length ofmicrovilli

was measured with Image-Pro Plus 6.3 software (Media

Cybernetics, Inc., Rockville, USA).
TABLE 2 Primers used for quantitative real-time PCR.

Gene name Sequence of primer (5′ -3′) sources

caspase3 F ACATTTCTGGGCGGAACACC AGL61582.1

caspase3 R GTGACACCCGTGCTTGTACA

caspase8 F CACGGAAGCTCTCCCTACAG (Yin et al., 2021)

caspase8 R GAAGACCTTGGGTTTCCCCC

bcl-2 F CCTTGCTTGACACAGTCGGA (Yin et al., 2021)

bcl-2 R CAGACAAGGTCGTGAGGTGG

bax F GGTGGAATCACAAGAGAGCGA (Yin et al., 2021)

bax R TGTTCTCCACGGTGTCTCAC

atg13 F GAGACTTTTTACCGCTTCGC XM_027375959.1

atg13 R ATCCTGCTGGACCTCTATGG

atg12 F GAGAAGGAGAAAACTGCGAC XM_0273638831

atg12 R CTACCCAACCTACTGGCTTC

beclin1 F CTGTCTGAGGTGGAGGCTGA MH797016.1

beclin1 R ATGTGGAAGGTGGTGTTGAA

ampk F TCAGAGGAGGAGCAGGAAC KP272117.1

ampk R CCCGAGGTCTAATAGGCAC

srbep F ACTGAGCTCAACACCTTCCG MG770374·1

srbep R TGCTGGTGAAGAGCTGTCTG

acc1 F TGCATAGAAACGGCATTGCG XM_027360190·1

acc1 R TTTGACACCTGAGCCAGACC

mcd F AAGACCACAGGAAGGGACCA XM_027376735·1

mcd R GACACTTGAGATGCCACCCA

fas F CAGGTGGAGATGCTCCTCGTGTT HM595630.1

fas R GGTGACTAGCTCGGCTACATGGTT

cpt-1 F CAACTTCTACGGCACTGAT XM_027361886.1

cpt-1 R GTCGGTCCACCAATCTTC

scd1 F TGTCTTACACCTTATCAATGGC XM_027374708·1

scd1 R CGTTCGTATGTTCCTCTTCGTC

ef-1a F GTATTGGAACAGTGCCCGTG JF288785.1

ef-1a R ACCAGGGACAGCCTCAGTAAG
caspase 3, cysteinyl aspartate specific proteinase 3; caspase 8, cysteinyl aspartate specific proteinase 3; bcl-2, B lymphocytoma-2; bax, BCL2 associated X apoptosis regulator; Atg13,
autophagy-related protein 13; atg12, autophagy related protein 12; ampk, 5′ -AMP-activated protein kinase; srebp, sterol regulatory element-binding protein; acc1, acetyl-CoA carboxylase
1; mcd, malonyl-CoA decarboxylase; fas, fatty acid synthase; cpt-1, carnitine palmitoyl transferase 1; scd1, stearoyl-CoA desaturase; ef-1a, elongation factor 1a.
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Calculations and statistical analysis
These statistics are obtained as follows:

Survival rate  SR,  %ð Þ = final number of shrimp
initial number of shrimp

� 100

Weight gain rate  WGR,  %ð Þ

=
final body weight − initial body weight

initial body weight
� 100

Feed conversion rate  FCRð Þ

=
feed consumed  gð Þ

final body weight − initial body weight

The results are expressed as mean ± SEM. There was a one-way

ANOVA for all data and a Duncan’s multiple tests was performed

using SPSS 21.0 to identify significant between treatment differences.

The probability value of P<0.05 is statistically significant and

indicates a significant difference in the results.
Result

Growth performance

The results in Table 3 show that the FBW andWGR of shrimp

fed the LFLDdiet were significantly lower than those fed the FMdiet

(P < 0.05), dietary supplementation of 0.6% S. Limacinum

significantly increased the growth of shrimp (P<0.05). The SR and

FCR of shrimp were similar among the four groups.
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Analysis of whole shrimp
body composition

The results in Table 4 show the whole shrimp body composition.
Hemolymph biochemical indexes

As shown in Table 5, the HDL-C content of shrimp fed the LF

diet was significantly increased compared to those fed the FM and

LFHDdiets (P < 0.05). The LDL-C content of shrimp fed the LF and

FM diets were significantly increased compared to those fed the

LFLDandLFHDdiets (P<0.05). TheGLUcontent of shrimp fed the

LFLDandLFHDdietswere significantly lower than those fed theFM

andLFdiets (P<0.05). TheTGcontent in thehemolymphof shrimp

fed theLFdietwas significantly lower than those fed theLFDHdiet (P

< 0.05), and the TG content of shrimp fed the LFLD diet was

significantly lower than those fed the other diets (P < 0.05). AST and

ALT activity in the hemolymph of shrimp fed the LF diet were

significantly increased compared to those fed the other diets (P <

0.05). TC levels in the hemolymph of shrimp fed the FM diet were

significantly increased compared to those fed the other diets

(P < 0.05).
The expression levels of the lipid
metabolism, apoptosis, and autophagy-
related genes

Lipid metabolism-related gene expression levels were shown

in Figure 1. The gene expression of ampk of shrimp fed the LFLD
TABLE 3 Effect of low fish meal diet supplemented with Schizochytrium limacinum on the growth performance of Litopenaeus vannamei.

Index FM LF LFLD LFHD

IBW 0.22 ± 0.00 0.22 ± 0.00 0.22 ± 0.00 0.22 ± 0.00

FBW 4.67 ± 0.23b 4.55 ± 0.04ab 4.30 ± 0.21a 4.59 ± 0.10b

SR 79.38 ± 3.75 76.88 ± 5.15 83.13 ± 5.15 77.50 ± 6.77

WGR 2104.77 ± 9.71c 1986.33 ± 4.74ab 1930.01 ± 29.19a 2014.02 ± 21.33b

FCR 1.94 ± 0.06 1.96 ± 0.05 2.06 ± 0.01 2.03 ± 0.02
Values in the table are the mean of four replicates of treatment and are expressed as mean ± SEM (n=4). Values in the same row with different superscript letters are significantly different
(P<0.05).
Where: FM, high fish meal diet; LF, low fishmeal diet; LFLD, LF supplemented with 0.3% S. Limacinum; LFHD, LF supplemented with 0.6% S. Limacinum; IBW, initial body weight (g);
FBW, final body weight (g); SR, survival rate (%); WGR, weight gain rate (%); FCR, Feed conversion rate.
TABLE 4 Effect of low fish meal diet supplemented with Schizochytrium limacinum on the body composition of Litopenaeus vannamei.

Index FM LF LFLD LFHD

Moisture (%) 75.28 ± 0.36 74.90 ± 0.86 76.63 ± 2.11 76.27 ± 0.49

Crude lipid (%) 3.81 ± 1.39 3.74 ± 1.13 3.32 ± 1.66 3.48 ± 1.45

Crude protein (%) 17.66 ± 3.07 17.31 ± 1.45 16.51 ± 1.67 16.49 ± 0.90
fro
Values in the table are the mean of four replicates of treatment and are expressed as mean ± SEM (n=4). Values in the same row with different superscript letters are significantly different
(P<0.05).
Where: FM, high fish meal diet; LF, low fishmeal diet; LFLD, LF supplemented with 0.3% S. Limacinum; LFHD, LF supplemented with 0.6% S. Limacinum.
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diet was significantly increased compared to those fed the FM

and LFHD diets (P<0.05). The gene expression of srbep was

significantly higher in shrimp fed the LFLD and LFHD diets

than those fed the FM and LF diets, which is decreased with the

dietary S. Limacinum supplementation (P<0.05). The gene

expression of acc1 and scd1 of shrimp fed the LFLD and

LFHD diets were significantly increased compared to those fed

the FM diet, which is decreased with the dietary S. Limacinum

supplementation (P<0.05). The gene expression ofmcd and cpt-1

of shrimp fed the LFLD diet was significantly increased

compared to those fed the FM and LFHD diets (P<0.05). the

gene expression of fas of shrimp fed the LFLD and LFHD diets

were significantly reduced compared to those fed the FM and LF

diets (P<0.05).

Apoptosis and autophagy-related gene expression levels

were shown in Figure 2. The gene expression of bax and

caspase 8 of shrimp fed the other three diets were

significantly reduced compared to those fed the FM diet

(P<0.05). The gene expression of caspase 3 of shrimp fed the

LF diet was significantly reduced compared to those fed the

other three diets (P<0.05). The gene expression of bcl-2 of

shrimp fed the LF and LFHD diets were significantly reduced

compared to those fed the FM diet (P<0.05). The gene

expression of beclin1 of shrimp fed the other three diets were

significantly reduced compared to those fed the FM diet

(P<0.05). The gene expression of atg 12 of shrimp fed the

LFLD and LFHD diets were significantly reduced compared to

those fed the FM diet, which is decreased with the dietary S.

Limacinum supplementation (P<0.05). The gene expression of

atg 13 of shrimp fed the LF and LFLD diets was significantly

reduced compared to those fed the FM and LFHD

diets (P<0.05).
Intestinal histology

The statistical results of the intestinal histology are shown in

Table 6. The microvilli height, mucosal fold height, mucosal fold
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width, and muscle layer thickness of shrimp fed the LF diet were

significantly reduced compared to those fed the other diets

(P<0.05). The mucosal fold height, mucosal fold width, and

muscle layer thickness of shrimp fed the LFLD diet were higher

than those fed the other diets. As shown in Figure 3, TEM results

showed that with the decrease in dietary fish meal levels, the

endoplasmic reticulum and mitochondria of shrimp fed the LF

diet were found to be swollen, in which the mitochondrial matrix

became irregularly arranged and tended to dissolve. After the

supplementation of 0.3% S. Limacinum in the low fish meal diet,

the endoplasmic reticulum recovered to its original state, but the

mitochondria were irregular and the mitochondrial matrix was

marginalized. After supplementation with 0.6% S. Limacinum,

the mitochondria recovered to the level of fish meal.
Discussion

SPC has been proven as a high-quality protein source to replace

fish meal protein in the feed of a wide range of aquatic animal

species (Paripatananont et al., 2001; Chen et al., 2019; Zhang et al.,

2022b). Several researches have pointed out that satisfactory growth

and feed utilization were obtained in juvenile cobia (El-Saidy and

Gaber, 2003) and juvenile starry flounder (Li et al., 2015) when

dietary SPC inclusion was below 60%, and even further increased

SPC content in the diet can cause lower dietary efficiency and higher

death rates in fish. However, Zhao et al. showed that the SR and

SGR of Nile tilapia were not affected even if the fish meal was totally

replaced with SPC (Salze et al., 2010; Zhao et al., 2010). Earlier

studies reported that it was possible to reduce the dietary fish meal

content from 20% to 5% with SPC without negatively affecting the

growth of Litopenaeus vannamei (Ray et al., 2020). The results of

Paripatananont et al. showed that 50% substitution offishmeal with

SPC in the diet of Penaeus monodon could support the normal

growth of shrimp (Paripatananont et al., 2001), which was similar to

the results of the current research. Results of this trial showed that

the FBW of Litopenaeus vannamei was not influenced when the

dietary fish meal content was reduced from 25% to 15%, after
TABLE 5 Effect of low fish meal diet supplemented with Schizochytrium limacinum on hemolymph biochemical parameters of Litopenaeus
vannamei.

Index FM LF LFLD LFHD

HDL-C (mmol L-1) 0.40 ± 0.01bc 0.32 ± 0.01a 0.36 ± 0.02ab 0.45 ± 0.01c

LDL-C (mmol L-1) 1.72 ± 0.24c 0.95 ± 0.05b 0.45 ± 0.03a 0.67 ± 0.10a

GLU (mmol L-1) 1.60 ± 0.07b 1.53 ± 0.03b 1.24 ± 0.09a 1.35 ± 0.06a

TG (mmol L-1) 2.00 ± 0.22bc 1.73 ± 0.11b 1.23 ± 0.12a 2.29 ± 0.24c

AST (U L-1) 33.23 ± 1.25c 36.96 ± 0.37d 29.65 ± 0.12b 26.92 ± 0.72a

ALT (U L-1) 36.11 ± 0.11a 44.18 ± 0.55c 39.52 ± 0.41b 35.17 ± 0.55a

TC (mmol L-1) 1.84 ± 0.06d 1.39 ± 0.13c 0.66 ± 0.05a 0.86 ± 0.14b
fro
Values in the table are the mean of four replicates of treatment and are expressed as mean ± SEM (n=4). Values in the same row with different superscript letters are significantly different
(P<0.05).
Where: FM, high fish meal diet; LF, low fishmeal diet; LFLD, LF supplemented with 0.3% S. Limacinum; LFHD, LF supplemented with 0.6% S. Limacinum.
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amino acids, micronutrients, and fish oil was supplemented in the

low fish meal diet to balance the nutritional profile. Several similar

studies have also been done on Epinephelus lanceolatus, Salmon,

and Seriola rivoliana (Ai et al., 2006; Perez-Velazquez et al., 2018;

Katerina et al., 2020). Some studies reported that dietary
Frontiers in Marine Science 08
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supplementation with 4% S. Limacinum improved the growth

performance of Litopenaeus vannamei (Wang et al., 2016), 3% S.

Limacinum improved the growth performance of Trachinotus

ovatus (Xie et al., 2019). Interestingly, (Xie et al., 2020b) found

that 0.75% S. Limacinum supplementation in a low fish meal diet
FIGURE 1

Effect of low fish meal diet supplemented with Schizochytrium Limacinum on the expression levels of hepatopancreas lipid metabolism-related
genes in Litopenaeus vannamei. Vertical bars represent the mean ± SEM (n = 5). Data marked with letters differ significantly (P < 0.05) among
groups. Where: FM, high fish meal diet; LF, low fishmeal diet; LFLD, LF supplemented with 0.3% S. Limacinum; LFHD, LF supplemented with
0.6% S. Limacinum.
FIGURE 2

Effect of low fish meal diet supplemented with Schizochytrium Limacinum on the expression levels of hepatopancreas apoptosis and
autophagy-related genes in Litopenaeus vannamei. Vertical bars represent the mean ± SEM (n = 5). Data marked with letters differ significantly
(P < 0.05) among groups. Where: FM, high fish meal diet; LF, low fishmeal diet; LFLD, LF supplemented with 0.3% S. Limacinum; LFHD, LF
supplemented with 0.6% S. Limacinum.
TABLE 6 Effect of low fish meal diet supplemented with Schizochytrium limacinum on the intestinal tissues of Litopenaeus vannamei.

Parameters Diets

FM LF LFLD LFHD

Microvilli height (μm) 2.54 ± 0.01d 1.46 ± 0.01a 1.67 ± 0.04b 2.26 ± 0.08c

Mucosal folds height (μm) 57.45 ± 3.68b 41.60 ± 2.73a 89.91 ± 4.35c 76.01 ± 6.42c

Mucosal folds width (μm) 49.88 ± 3.20bc 36.18 ± 1.92a 53.18 ± 1.06c 45.76 ± 1.45b

Muscle layer thickness (μm) 56.21 ± 3.21b 36.80 ± 2.09a 83.47 ± 2.86c 78.71 ± 9.51c
fro
Values in the table are the mean of six replicates of treatment and are expressed as mean ± SEM (n=6). Values in the same row with different superscript letters are significantly
different (P<0.05).
Where: FM, high fish meal diet; LF, low fishmeal diet; LFLD, LF supplemented with 0.3% S. Limacinum; LFHD, LF supplemented with 0.6% S. Limacinum.
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improved the growth performance of Penaeus monodon. High

levels of nutrients in S. Limacinum such as DHA,

docosapentaenoic acid (EPA), and carotenoids may contribute to

the growth of animals (Xie et al., 2019). However, some studies have

also found that supplementation with high levels of S. Limacinum is

detrimental to the growth performance of Litopenaeus vannamei

and blunt snout bream (Wang et al., 2016; Wang C. et al., 2020).

Our results showed that the supplementation of 0.6% S. Limacinum

had a positive effect on the FBW and WGR of shrimp.

Hemolymph is important for fat absorption and transport, and

TG is transported as an energy substance between adipose tissue

and the liver via hemolymph (Gyan et al., 2021). The fitness of

aquatic animals which can be assessed using blood parameters
Frontiers in Marine Science 09
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(Lemaire et al., 1991). Several studies have shown that SPC

substitution for fish meal affects blood indicators (Zhang et al.,

2019; Wang J. et al., 2020; Zhang Q. et al., 2021). TG and TC are

important indexes of lipid sedimentation in animals. LDL-C is

responsible for transporting liver cholesterol to tissue cells

throughout the body, and HDL-C is responsible for transporting

excess cholesterol from blood or tissues to the liver pancreas (Yepiz-

Plascencia et al., 2000; Hamilton-Reeves et al., 2007). In the present

trial, the levels of TC and TG in the hemolymph of Litopenaeus

vannamei fed the LFLD diet were significantly reduced, and when

the addition level of S. Limacinum increased to 0.6%, the levels of

TC and TG increased significantly. Studies have shown that

unsaturated fatty acids are effective in lowering hemolymph
FIGURE 3

Effect of low fish meal diet supplemented with Schizochytrium limacinum on the histology of the midgut of Litopenaeus vannamei. Where: FM,
high fish meal diet; LF, low fishmeal diet; LFLD, LF supplemented with 0.3% S. Limacinum; LFHD, LF supplemented with 0.6% S. Limacinum. MF,
mucosal folds; a, width of mucosal folds; b, height of mucosal folds; c, thickness of the annular sarcolemma; MV, microvilli; ER, endoplasmic
reticulum; N, nucleus; NM, nuclear membrane; M, mitochondria.
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cholesterol levels (Pentieva et al., 2003) and high levels of dietary

unsaturated fatty acids prevent triglycerides from penetrating the

lipoprotein particles of the liver, resulting in lower levels of TG

secreted by hepatocytes into the hemolymph (Yu et al., 2012).

According to (Zhang X. et al., 2021), diets supplemented with 0.5%-

2.0% S. Limacinum significantly increased the hemolymph TG

content of Litopenaeus vannamei and had no significant effect on

the TC content, which was similar to the present study

supplemented with 0.6% S. Limacinum but the TC content first

decreased significantly and then increased. Hemolymph GLU is the

most important energy substance in the hemolymph and is the

direct source of energy required for all types of activities in aquatic

animals (Boonanuntanasarn et al., 2016). Supplementation of S.

Limacinum under the present experimental conditions decreased

the hemolymphGLU content of shrimp, a result that is inconsistent

with the results of studies on Pelodiscus sinensis (Zhang X. et al.,

2021), possibly because of the species and possibly because of the

enhanced energy consumption of the substance metabolism. HDL-

C and LDL-C are able to be transported in shrimp for lipids (Yepiz-

Plascencia et al., 2000). Whereas HDL-C removes TC from the

blood and sedimentation in the liver, which is then excreted from

the animal, LDL-C plays an important part in the immune system

of shrimp (Yue et al., 2012; Chen et al., 2018). The current research

showed a decrease in HDL-C and LDL-C levels and a significant

decrease in HDL-C in the hemolymph of Litopenaeeus vannamei

fed the LF diet, which is different from the results hemolymph in

Micropterus salmoides fed low-level fish meal diet supplemented

with 4% S. Limacinum (Liao et al., 2022). Reasons for this may be

the differences in diet composition, species, and amount of S.

Limacinum supplementation. AST and ALT activity are

important health parameters of liver function in invertebrates

(Song et al., 2018). AST and ALT are the two most important

transaminases in the body and are generally present in the liver

(Zhou et al., 2013; Liu et al., 2019). When the liver is damaged, the

AST and ALT stored in the liver will be transferred to the blood

(Barcellos et al., 2004). In the current research, the AST and ALT

activities in the hemolymph of Litopenaeus vannamei fed the LFLD

and LFHD diets were significantly reduced, a result consistent with

the fact that dietary supplementation with 0.8%-1.2% S. Limacinum

reduced the blood AST/ALT ratio of Cyprinus carpio var. Jian (Liu

et al., 2016) and dietary supplementation with 1% S. Limacinum

reduced the AST and ALT activities in the blood of Labidochromis

caeruleus (Cui et al., 2018). These results indicated that the

supplementation of S. Limacinum in the diet can decrease liver

injury in aquatic animals.

Due to the altered hemolymph biochemical parameters in

shrimp, we further investigated the effect of low fish meal diet

supplementation with S. Limacinum on the expression of genes

related to apoptosis, lipid metabolism, and autophagy in

Litopenaeus vannamei. Lipid metabolism refers to the process

of fat synthesis and catabolism, the digestion of fat, which is

subject to the action of a variety of enzymes and bile (Serrano

et al., 2021; Su et al., 2022). Lipid metabolism is mainly in the
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liver, and research has found that DHA can regulate the

molecular mechanism of lipid metabolism and promote

hepatocytes to stimulate the synthesis of lipoprotein lipase to

further promote lipid metabolism (Morabito et al., 2019;

Deragon et al., 2021). Ampk is a modulator of energy

metabolism in cells. Under low energy regulation, ampk

inhibits TG synthesis and activates the b-oxidation process of

fatty acids to produce more ATP (Gaidhu et al., 2010; Wang

et al., 2018; Xu et al., 2022b). The findings of this research

revealed that the gene expression of ampk and cpt-1 in shrimp

fed the LF diet showed an increasing trend compared to those

fed the FM diet but the gene expression of ampk and cpt-1

increased and then decreased after supplementation with S.

Limacinum, which indicated an increase in energy production

from lipolysis. The gene expression of fas in shrimp fed the LFLD

and LFHD diets was significantly lower than those fed the FM

diet, and the gene expression of acc1 and cpt-1 in shrimp fed the

LFLD and LFHD diets was significantly higher and then

significantly lower than those fed the FM diet, suggesting a

decrease in lipid synthesis after supplementation with S.

Limacinum. The combined effect of lipid synthesis genes and

lipolysis genes resulted in reduced lipid deposition. Srebp is a

major regulator of cholesterol and fatty acids and a critical gene

in lipid synthesis. (Eberle et al., 2004; Kamisuki et al., 2009).

From the experimental results, shrimp fed the high SPC

increased the expression of genes related to lipid synthesis,

probably due to the ability of soy protein amphiphilic globulin

to adsorb lipids (Lusas and Riaz, 1995). It may also be due to

DHA’s inherent property of lowering lipids (Horrocks and Yeo,

1999). Studies in human cardiovascular disease have found that

DHA reduces total blood cholesterol and triglyceride levels

(Mozaffarian and Wu, 2011), and in mice, DHA has been

found to reduce the size of fat cells and lower body fat levels

(Lu et al., 2015). Dietary supplementation with S. Limacinum

decreased the expression of genes related to lipid synthesis,

suggesting that S. Limacinum can reduce lipid synthesis. This

is similar to the results of Zhu et al. (Zhu et al., 2013) which

indicated that supplementation of S. Limacinum in the diet

promoted lipid metabolism and inhibited fat deposition.

Apoptosis is divided into the endogenous mitochondrial

pathway, the endoplasmic reticulum stress pathway, and the

exogenous receptor apoptosis pathway (Sitarek et al., 2022). In

the endogenous mitochondrial pathway, bcl-2 family proteins

(anti-apoptotic protein bcl-2 and pro-apoptotic protein bax)

control outer mitochondrial membrane permeability by

regulating mitochondrial membrane potential (Green, 2022).

Bax is normally found in the cytoplasm and when it receives an

endogenous apoptotic signal, it relocates to the surface of

mitochondria and constitutes a trans-mitochondrial

membrane pore, which releases apoptotic factors. It has been

suggested that the opening of the membrane pore causes a

decrease in membrane potential and also leads to

mitochondrial swelling and deformation (Chipuk et al., 2012).
frontiersin.org

https://doi.org/10.3389/fmars.2022.1090235
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Yao et al. 10.3389/fmars.2022.1090235
Caspase 3 is also one of the downstream effectors of the

endogenous pathway (Samali et al., 1999). It has been shown

that a decrease in mitochondrial membrane potential leads to an

upregulation of the bax/bcl-2 ratio and promotes caspase 3

activation (Zorova et al., 2018). In addition, caspase 8 also

activates caspase 3 directly or indirectly in exogenous signal-

regulated pathways (Bridgham et al., 2003). The results of the

current research showed that supplementation with 0.6% S.

Limacinum appeared to reduce the expression of caspase 3 and

thus inhibit the apoptosis in the hepatopancreas of shrimp; the

expression of caspase 8 was also significantly reduced and thus

inhibit apoptosis. Dietary supplementation with 0.6% S.

Limacinum activated the expression of bcl-2 in the

hepatopancreas of shrimp to further inhibit apoptosis. It has

been suggested that autophagy eliminates damaged proteins and

damaged organelles from the body (Tesseraud et al., 2021).

Cellular autophagy is a highly conserved metabolic process

that degrades its components through lysosomes to maintain

cellular homeostasis and plays an important role in degrading

damaged organelles, resisting pathogenic infections, and

regulating inflammatory responses (Deretic, 2021). The

process of cellular autophagy includes the formation of

segmented membranes, the formation of autophagosomes,

membrane fusion of autophagosomes with lysosomes, and the

digestion of inclusions by autophagosomes (Cao et al., 2021). Atg

13 and beclin1 are participating in the startup of autophagic

bubbles (Kabeya et al., 2005; Hosokawa et al., 2009), and atg 12 is

responsible for the formation of autophagosomes (Radoshevich

et al., 2010). In this experiment, dietary supplementation of 0.6%

S. Limacinum significantly increased hepatopancreas atg 12 and

atg 13 gene expression in shrimp, and it is hypothesized that S.

Limacinum has an effect of promoting autophagy. Researches

have shown that hepatic autophagy promotes glycolipid

metabolism and protein turnover (Song et al., 2010). Several

studies have shown that autophagy is involved in intracellular

nonspecific immune responses, that an appropriate numbers of

autophagy is a self-protective function driving cell survival (Shi

and Kehrl, 2008), and S. Limacinum could activate autophagy-

related gene expression to improve the immune response

in shrimp.

Intestinal morphology and structure are important for

nutritional intake and sustain normal intestinal function (Gao

et al., 2013; Vizcaıńo et al., 2014), and intestinal morphology is

associated with shrimp health (Tang et al., 2009). The height of the

mucosal fold and the width of the mucosal folds can be used as a

measure of the functional characteristics of the intestinal walls.

(Emami et al., 2012). Muscle layer thickness also plays an essential

role in the metabolic digestion and absorptivity of the intestine, and

increasing the thickness of the muscles can increase the absorptivity

and metabolic digestion of nutrients in the intestine (Chen et al.,

2021b). The results of this research showed that S. Limacinum

supplementation in low fish meal diets improved the intestinal

morphology and structure of Litopenaeus vannamei, with an
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increase in mucosal folds length, mucosal folds width, and muscle

layer thickness. Meanwhile, the TEM results showed that the

intestinal microvilli height of shrimp fed the LFLD and LFHD

diets were significantly increased compared to those fed the LF

diet, indicating that dietary supplementation of S. Limacinum

improved the intestinal microvilli structures. However, this result is

contrary to previous studies, which showed that dietary

supplementation with 1.2% S. Limacinum did not affect intestinal

microvilli structure in Nile tilapia, possibly due to the different

amounts of S. Limacinum supplementation and interspecific

differences (Souza et al., 2020). The TEM results also showed that

shrimp fed a LF diet showed endoplasmic reticulum stress, irregular

mitochondrial ridges, and significant swelling in the intestine, which

was improved when the diet was supplemented with S. Limacinum,

and the intestinal mitochondria and endoplasmic reticulum

recovered well when supplemented with 0.6% S. Limacinum.

Earlier researches have demonstrated that reducing fish meal levels

can damage the intestinal epithelial structures (Xie et al., 2018) and

upregulate the gene expression associated with endoplasmic

reticulum stress, which leads to the severity of endoplasmic

reticulum stress in the intestine (Xie et al., 2020a). Some studies

have reported that dietary supplementationwith 3%and6%defatted

S. Limacinum can increase intestinal villi height, but excessive levels

can impede nutrient absorption (Xiao et al., 2021). Supplementation

with 0.75% S. Limacinumwas found to improve intestinal health and

enhance immunity in Penaeus monodon (Xie et al., 2020b). The low

fishmealdiet supplementedwith0.6%S.Limacinum in this studynot

only promoted the early development of the intestinal tract of

Litopenaeus vannamei but also improved the digestive capacity of

the intestine, improved the endoplasmic reticulum and

mitochondrial structure, further improving the intestinal health

and contributing to the healthy growth of shrimp.
Conclusion

The present study revealed that supplementation with 0.6%

S. Limacinum in the low fish meal diet levels improved the

growth performance, reduced hepatopancreatic cell apoptosis,

promoted autophagy, and improved intestinal health in shrimp.
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The overuse of antibiotics leads to the emergence of bacterial resistance,

which poses a serious threat to aquaculture. Antimicrobial peptides (AMPs)

display excellent antimicrobial activity and are thought to be the most feasible

replacements for antibiotics. The usage of AMPs as feed additives has great

application prospects in aquaculture. In this study, large yellow croaker

interferon-g related gene (IFNG1R) was cloned, and a 17-amino acids (aa)

short peptide named SKL17-2 was synthesized based on its protein

sequence. The synthesized SKL17-2 peptide possessed a strong antimicrobial

activity against Pseudomonas plecoglossicida, which could cause visceral

white nodules disease (VWND) in cultured marine fish, with a minimum

inhibitory concentration (MIC) of 2 mM. SKL17-2 peptide also showed weak

antimicrobial activities against other tested bacteria, indicating its narrow-

spectrum antimicrobial activity. This suggested that SKL17-2 peptide may not

kill probiotics in intestinal flora when used as the feed additive. Furthermore,

SKL17-2 had broad temperature and pH stability, low cytotoxicity, and

negligible hemolysis, indicating its good biosafety and stabil ity.

Mechanistically, the synthesized SKL17-2 peptide can form a-helical
structure in a membrane environment and destroy P. plecoglossicida

through membrane disruption. Thus, our data showed that SKL17-2 peptide

may represent a potential feed additive used for prevention and treatment

of VWND.
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Introduction
Aquaculture has made an important contribution to food

security, but bacterial infections pose a serious threat to

aquaculture, as they may result in high mortality and reduced

productivity (Katzenback, 2015). Antibiotics can be used to

prevent bacterial diseases. However, the overuse of antibiotics

has hastened the evolution of multi-drug resistant bacteria

(Roope et al., 2019). New antimicrobial drugs are urgently

needed due to the high cost of conventional antibiotics used in

aquaculture and the rise of drug-resistant bacteria.

Antimicrobial peptides (AMPs), also known as host defense

peptides (HDPs) (Shafee et al., 2017), have the ability to kill

tumor cells, parasites, viruses, fungi, bacteria, and other

microorganisms (Zhong et al., 2017). Additionally, AMPs can

mediate cell chemotaxis and apoptosis as well as increase cell

immunity and promote wound repair (Zhong et al., 2017).

AMPs are peptides that are amphiphilic (with more than 40%

hydrophobic amino acids), mostly cationic (often between +2

and +10) even though some AMPs in fish shown to be anionic

(Lai et al., 2002; Valero et al., 2020), and short (approximately 10

to 60 amino acids) (Rahman et al., 2018; Chaturvedi et al., 2020).

Based on their structural characteristics, AMPs can be

categorized into four groups, the a-helical, b-sheet, loop, and
extended peptides. It is worth noting that most AMPs belong to

a-helical and b-sheet peptides (Chaturvedi et al., 2020). The

total net positive charge and hydrophobicity of AMPs are critical

for their ability to kill bacteria. Although the compositions of

gram-negative and gram-positive bacterial membranes differ,

lipopolysaccharide (LPS) on the outer membrane of gram-

negative bacteria and teichoic acid on the cell wall surface of

gram-positive bacteria are anionic, and thus can interact with the

net positive charge of AMPs (Strömstedt et al., 2009). It has been

demonstrated that raising the overall net positive charge of

AMPs improves their binding ability to the surface of bacterial

membranes, hence boosting antimicrobial activity (Zhu et al.,

2014). The hydrophobicity of AMPs can also alter their

antimicrobial action. When AMPs attach to the surface of

bacteria, the hydrophobic amino acids interact with the

phospholipids in the bacterial cell membrane, thus damaging

the cell membrane integrity (Schmidtchen et al., 2014). In

general, high hydrophobicity will improve the antimicrobial

ability of AMPs, but excessive hydrophobicity may damage the

host cell membranes (Wood et al., 2014). AMPs can also kill

bacteria via non-membrane targeting mechanisms, such as the

suppression of nucleic acid and protein production and the

reduction of enzymatic activity in bacteria (Brogden et al., 2005).

Based on the membrane and non-membrane targeting

mechanisms, AMPs display broad-spectrum antimicrobial

activity and low selection of resistance, and are considered as

the most feasible replacements for antibiotics (Yasir et al., 2018;

Mwangi et al., 2019). Nonetheless, endogenous AMPs have
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several drawbacks, such as high host toxicity and poor

resistance to temperature, pH, and protease (Kim et al., 2014;

Anunthawan et al., 2015). Furthermore, the expense of

producing large amounts of amino acid residues restricts the

therapeutic application of AMPs (Kim et al., 2014; Anunthawan

et al., 2015; Huan et al., 2020). In order to overcome these

drawbacks, researchers have recently concentrated on

developing artificial AMPs with strong antimicrobial activity,

low toxicity to host cells, high temperature and pH stability, and

low production costs (Huan et al., 2020; Tan et al., 2021). The

methods of AMP design include template-based design, site-

directed mutation, de novo created peptides, computer design,

and rational design (Huan et al., 2020). The template-based

design technique uses natural protein sequence templates as a

starting point, and then prefers and modifies peptide sequence

according to the residue types, such as residue charge, polarity or

hydrophobicity (Zelezetsky and Tossi, 2006; Pizzo et al., 2018;

Yang et al., 2019). After alteration, peptide characteristics

including cationicity, amphiphilicity, and hydrophobicity can

be systematically adjusted to produce optimal AMPs (Huan

et al., 2020). This method can lower the cost of design and

synthesis while preserving natural peptide sequence

information. For species whose genomes have been sequenced,

for instance, the large yellow croaker (Larimichthys crocea) (Ao

et al., 2015; Mu et al., 2018), novel AMPs may be generated based

on the genomic sequences using the template-based

design technique.

Pseudomonas plecoglossicida is a gram-negative bacterium

that can cause visceral white nodules disease (VWND) in the

large yellow croaker (L. crocea), orange-spotted grouper

(Epinephelus coioides), and rainbow trout (Oncorhynchus

mykiss) (Zhang et al., 2018). This illness, characterized by

white nodules in the kidney, liver, and spleen of an infected

fish, has resulted in massive economic losses in the cage-cultured

large yellow croaker (Zhang et al., 2014). It has been

demonstrated that an AMP named b-defensin has bactericidal

effects against P. plecoglossicida (Li et al., 2021), suggesting that

AMP could be used to prevent and cure VWND in fish. It is

worth noting that most AMPs can indiscriminately kill

pathogenic bacteria and probiotics, thereby disrupting gut

flora and destroying the balance between healthy microbiota

and the immune system (Eckert et al., 2012; Tan et al., 2021). As

a result, AMPs with a narrow-spectrum antimicrobial activity

against P. plecoglossicida would be ideal antimicrobial drugs

against VWND.

In this study, large yellow croaker IFNG1R was cloned, and

SKL17-2, a rationally designed peptide using the template-based

design technique, was synthesized based on SKL17, a 17-aa

peptide with total net positive charge and hydrophobicity

existing in IFNG1R protein sequence. The synthesized SKL17-

2 peptide possessed a strong antimicrobial activity against P.

plecoglossicida with a MIC of 2 mM, but weak antimicrobial

activity against other tested bacteria, indicating its narrow-
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spectrum antimicrobial activity. SKL17-2 was found to have

broad temperature and pH stability, low cytotoxicity, and

negligible hemolysis. Further researches showed that the a-
helical structure of SKL17-2 was crucial for cell membrane

disruption and antimicrobial activity against P. plecoglossicida.
Materials and methods

Complete cDNA cloning of large yellow
croaker IFNG1R

RNA isolation and cDNA synthesis were performed as

previously described (Zhang et al., 2022). Based on the gene

sequence of IFNG1R identified in the large yellow croaker

genomic s equenc e (GenBank acc e s s i on number :

NC_040020.1), primers (F: CGTTTGTATCGAAGCGGTCC

ATT, R: TGATTCATGATTTCTGTTTTTATTCG) were

designed. And Eastep Super Total RNA Extraction Kit

(Promega) was used to extrat total RNA, first-strand cDNA

was synthesized by using Eastep RT Master Mix (Promega), and

PCR was then performed to amplify the open reading frame

(ORF) of large yellow croaker IFNG1R. PCR products were

sequenced at Sangon Biotech Co., Ltd. (Shanghai, China).

Subsequently, ClustalW software (Version 1.83) was used to

perform the multiple sequence alignments. Protein identification

was conducted using the Expert Protein Analysis System (http://

www.expasy.org/tools/), and the signal peptide was predicted

using the SignalP program (http://www.cbs.dtu.dk/services/

SignalP/). Neighbor-joining (NJ) method of the MEGA

program (version 11.0.11) was used to construct phylogenetic

tree with 1000 bootstrap replicates.
Peptide synthesis

Peptides were synthesized by Sangon Biotech Co., Ltd.

(Shanghai, China). Crude peptide was purified by reverse

phase-high performance liquid chromatography (RP-HPLC) to

a final purity greater than 95%. The synthetic peptide was stored

at −80°C in the form of dry lyophilized powder and resuspended

in phosphate buffer saline (PBS) when used.
Bacterial strains

Escherichia coli (ATCC 25922), Pseudomonas aeruginosa

(ATCC 9027), Salmonella typhimurium (ATCC 14028), Vibrio

parahaemolyticus (ATCC 17802), Staphylococcus aureus (ATCC

25923), and Streptococcus agalactiae (ATCC 13813) were

obtained from American Type Culture Collection (ATCC). P.

plecoglossicida was isolated from diseased large yellow croaker

and preserved in our laboratory (Li et al., 2020), and this strain
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was found to infect a variety of fish species, such as large yellow

croaker, orange-spotted grouper, rainbow trout, ayu

(Plecoglossus altivelis), pejerrey (Odontesthes bonariensis),

spotted seabass (Lateolabrax maculatus), mandarinfish

(Siniperca chuatsi), barramundi (Lates calcarifer), and

zebrafish (Danio rerio) (Zhang et al., 2018; Sun et al., 2020).

Bacteria were cultivated in tryptic soy broth (TSB), and the

nutritional medium for V. paraheamolyticus was supplemented

with 3% NaCl.
Antimicrobial activity assays

The antimicrobial activity of the peptide was determined

using the microdilution method. Bacterial cells were grown to

the mid-logarithmic phase before being diluted in TSB to a final

concentration of 1×105 CFU/mL. Subsequently, 10 mL of

synthetic peptide was combined with 90 mL of bacterial

solution in a 96-well plate. After incubation for 18 h at 37°C

(28°C for P. plecoglossicida), the minimum inhibitory

concentrations (MICs) were determined at 600 nm using an

Infinite M Nano spectrophotometer (Tecan, Switzerland). MICs

were defined as the lowest peptide concentration that inhibited

more than 95% of bacterial growth. Thereafter, 50 mL of each

incubation mixture was transferred to tryptic soy agar (TSA)

plates for overnight incubation to confirm the minimum

bactericidal concentrations (MBCs). MBCs were defined as the

lowest peptide concentration that killed more than 99.9% of the

bacterial cells. Antimicrobial activity of SKL17-2 was also

measured by a bacterial growth inhibition zone assay. In this

assay, 60 mL of peptide with the concentration of 32 mM was

spotted onto an TSA plate containing P. plecoglossicida (about

105 CFU/mL in TSA), and same volume of 10 mM PBS was set

as a control. The plate was stored at 28°C for 16 h to observe the

inhibition zone.
Kinetics of the peptide’s
bactericidal activity

P. plecoglossicida was exposed to the peptide at a

concentration of 1×MBC, and the cell mixture was collected at

various time points, serially diluted, and transferred to TSA

plates to determine the survival rate. The PBS-treated P.

plecoglossicida served as a control. The survival rate of bacteria

(% survival) was calculated by dividing the number of peptide-

treated cells by the number of PBS-treated cells.
Cytotoxicity and hemolysis of peptide

A CCK-8 assay was conducted to investigate the effect of the

peptide on the viability of large yellow croaker macrophages. In
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brief, 100 mL of LYC-FM cells (about 2×104 cells) were added to

96-well plates and cultivated at 28°C. Twelve hours later, the

culture medium was replaced with 100 mL of fresh medium

supplemented with a range of concentrations of the peptide.

Cells were cultured for 48 h before adding CCK-8 solution

(Biosharp, China) to the plates. After approximately 4 h of

incubation, the absorbance was measured at 450 nm with the

Infinite M Nano spectrophotometer (Tecan, Switzerland). Cells

treated with 2% Triton X-100 served as the positive control

(A100), whereas untreated cells served as the negative control

(A0). The cell viability rate was calculated using the following

formula: Cell viability rate (%) = (Apeptide−A100)/(A0−A100)

×100. The LYC-FM cells were cultured in the same manner as

previously described (Zhang et al., 2022).

To assess peptide hemolysis, the quantity of hemoglobin in

large yellow croaker red blood cells (RBCs) following peptide

treatment was evaluated. In brief, fresh blood cells from large

yellow croaker were centrifuged at 500 × g for 10 minutes at 4°C,

washed three times with PBS, and resuspended in PBS to a final

concentration of 1.5×108 cells/mL. Then, 120 mL of RBCs were

mixed with 80 mL of a series of peptide solutions and incubated

for 1 h at 28°C. After centrifuging the cell mixtures at 500 × g for

10 minutes, the absorbance of the supernatants was measured at

405 nm with the Infinite M Nano spectrophotometer (Tecan,

Switzerland). RBCs treated with 2% Triton X-100 served as the

positive control (A100), whereas untreated cells served as the

negative control (A0). The peptide hemolysis percentage was

calculated using the following formula: Hemolysis (%) =

(Apeptide−A0)/(A100−A0) ×100.
Temperature and pH stability of
the peptide

To determine the thermal stability, the peptide was incubated

for 30 minutes at 20, 40, 60, 80, or 100°C. To evaluate the pH

stability, the peptide was incubated for 4 h in 50 mM glycine-HCl

buffer (pH 2.0), 50 mM sodium acetate buffer (pH 4.0), 50 mM 2-

(N-morpholino) ethanesulfonic acid-NaOH buffer (pH 6.0), 50

mMTris-HCl (pH 8.0), or 50mM glycine-NaOH (pH 10.0). After

treatment, 10 mL of the peptide solution was added to 90 mL of P.

plecoglossicida solution in a 96-well plate, with a final

concentration of peptide at 1×MBC. After 18 h of incubation at

28°C, bacterial cells were serially diluted and transferred to TSA

plates to measure the survival rate. Bacterial cells treated with PBS

served as a control. Bactericidal activity was calculated as 100%

survival rate minus the survival rate of each treatment.
Structure measurement

A MOS-500 spectral polarizer (Bio-Logic, Grenoble, France)

was used to measure the peptide’s circular dichroism (CD) spectra
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between 190 and 250 nm. The spectra of samples containing 0.2

mg/mL peptide in PBS or membrane environments were

examined, with the membrane environment including 60 mM

SDS micelles and 100% 2,2,2-trifluoroethanol (TFE). Three

independent spectra were scanned, and an average was

calculated to obtain three technical replicates. The scanned

spectra were then transformed to mean molar ellipticity using

the formula: qM=mdeg·M/(l·c·n), where qM is the molar ellipticity

(deg·cm2·dmol−1); mdeg is the measured ellipticity corrected for

the buffer at a given wavelength; M is the molar mass of the

peptide; l is the path length (mm); c is the peptide concentration

(mg/mL); and n is the number of amino acids. The HeliQuest

analysis website (https://heliquest.ipmc.cnrs.fr/cgi-bin/

ComputParams.py) was used to display the helical wheel

projection of SKL17-2.
Membrane integrity testing

To determine bacterial membrane integrity following

peptide treatment, 180 mL of P. plecoglossicida cells (1×105

CFU/mL) of mid-logarithmic phase was combined with 20 mL
of peptide at the final concentrations of 4, 8,16, or 32 mM and

incubated for 2 h at 28°C. After incubation, a final concentration

of 6 mg/mL propidium iodide (PI, Sigma-Aldrich) was added.

The influx of PI into bacterial cells was investigated using an

Accuri C6 Plus flow cytometer (BD Biosciences) with 10,000

events. The cell-penetrating efficiency was analyzed using the

FlowJo software package (Tree Star).
Scanning electron microscopy imaging

The bacterial morphological alterations following peptide

treatment were observed using a scanning electron microscopy.

Ten microliters of peptide was added to 90 mL of P.

plecoglossicida cells (1×108 CFU/mL in TSB) to a final peptide

concentration of 4 mM. After incubation for 2 h at 28°C, the

bacteria were fixed, dehydrated, vacuum dried, sputter coated

with gold, and observed with a Sigma 300 field emission

scanning electron microscopy (ZEISS) at an accelerating

voltage of 5 kV. Bacteria treated with the same volume of PBS

served as a control.
Statistical analysis

All experiments were carried out on three independent

occasions unless otherwise stated. Data are presented as the

mean ± standard error of mean (SEM). Statistical comparisons

were carried out using one-way ANOVA or t-tests with SPSS

software (version 19, IBM). Differences with a value of P < 0.05

were considered statistically significant.
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Results

Complete cDNA sequence analysis of
large yellow croaker IFNG1R

The complete cDNA sequence of large yellow croaker

IFNG1R was cloned (GenBank accession number: ON997294)

by PCR based on its genomic sequence (GenBank accession
Frontiers in Marine Science 05
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number: NC_040020.1). The ORF of IFNG1R consisted of 552

base pairs (bp), which encodes a protein of 183 amino acids (aa)

(Figure 1A). According to the multiple sequence alignment

results, the large yellow croaker IFNG1R shared the highest

identity (about 54.2%) with mandarin fish IFNG1R and the

lowest identity (about 5.4%) with common carp IFNG1R

(Figure 1B). A phylogenetic tree was constructed to further

confirm the identification of the large yellow croaker IFNG1R.
A C

B

FIGURE 1

Sequence analysis of large yellow croaker IFNG1R molecule. (A) ORF and the deduced amino acid sequence of IFNG1R. The predicted signal
peptides are in boldface and underlined. (B) Multiple sequence alignments of large yellow croaker IFNG1R with selected vertebrate IFNG1R.
(C) An unrooted phylogenetic tree of vertebrate IFNG1R. Percentage values shown for each node represent 1000 bootstrap replications. In the
multiple alignment and tree construction, GenBank accession numbers are as follows: human (Homo sapiens) IFNG, NP_000610.2; mouse (Mus
musculus) IFNG, NP_032363.1; rat (Rattus norvegicus) IFNG, NP_620235.1; chicken (Gallus gallus) IFNG, NP_990480.1; African clawed frog
(Xenopus laevis) IFNG, XP_018110090.1; tropical clawed frog (Xenopus tropicalis) IFNG, XP_002938555.1; zebrafish (Danio rerio) IFNG1,
NP_998029.1; IFNG1R, BAD72865.1; common carp (Cyprinus carpio) IFNG1a, CAJ51088.1; IFNG1b, CAJ51089.1; IFNG1R, CAJ98867.1; orange-
spotted grouper (Epinephelus coioides) IFNG1, AFM31242.1; IFNG1R, QEA72089.1; channel catfish (Ictalurus punctatus) IFNG1a, AAZ40505.1;
IFNG1b, AAZ40506.1; IFNG1R, AAZ40504.1; spotted green pufferfish (Tetraodon nigroviridis) IFNG1, AHZ62714.1; IFNG1R, AHZ62713.1; mandarin
fish (Siniperca chuatsi) IFNG1, QDO15115.1; IFNG1R, QDO15116.1; rainbow trout (Oncorhynchus mykiss) IFNG1, CAE82300.1; large yellow
croaker (Larimichthys crocea) IFNG1, XP_010749999.2; IFNG1R, ON997294.
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Large yellow croaker IFNG1R was grouped together with other

fish IFNG1R sequence (Figure 1C), indicating that the gene

cloned here was large yellow croaker IFNG1R.
SKL17-2 possesses a strong antimicrobial
activity against P. plecoglossicida

Using large yellow croaker IFNG1R protein sequence as a

template, a 17-aa peptide SKL17 was synthesized. Unfortunately,

the SKL17 peptide showed no antimicrobial activity against P.

plecoglossicida (data not shown). Thereafter, a novel peptide

known as SKL17-2 was rationally developed by replacing the

seventh and twelfth glutamic acids in the SKL17 peptide with

arginine (Figure 2A). Interestingly, the resultant SKL17-2 peptide

possessed antimicrobial activity against P. plecoglossicida, with

MIC and MBC values of 2 and 4 mM, respectively (Figure 2B). To

more intuitively demonstrate the antimicrobial activity of SKL17-

2, the inhibition zonemethod was utilized. As shown in Figure 2C,

a distinct inhibition zone appeared around SKL17-2 compared

with the control in the TSA plate. Subsequently, the kinetics of

bactericidal activity of SKL17-2 against P. plecoglossicida were

examined. The results showed that SKL17-2 could kill 90% of P.

plecoglossicida within 8 h, and all bacteria were eradicated by

SKL17-2 after 14 h (Figure 2D).
Frontiers in Marine Science 06
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SKL17-2 possesses weak antimicrobial
activity against other tested bacteria

The above results demonstrated that SKL17-2 had a strong

antimicrobial activity against P. plecoglossicida, and then its

activity against other bacteria was further investigated. When

the peptide concentration was within 32 mM, SKL17-2 showed

negligible antimicrobial activities against E. coli, P. aeruginosa,

V. parahaemolyticus, and S. agalactiae, and weak antimicrobial

activities against S. typhimurium and S. aureus (Figure 3).
Low cytotoxicity and negligible
hemolysis of SKL17-2

The CCK-8 assays revealed that the cell survival rate was

greater than 70% following peptide administration, indicating

that SKL17-2 was only weakly cytotoxic to LYC-FM cells

(Figure 4A). The hemolysis of SKL17-2 towards large yellow

croaker RBCs was less than 0.5% at the tested dose, indicating

that SKL17-2 had negligible hemolytic activity (Figure 4B).

Thus, SKL17-2 exhibited good biosafety, further assuring the

security of its clinical application.
A C

DB

FIGURE 2

Antimicrobial activity of SKL17-2 against P. plecoglossicida. (A) Peptide sequence of SKL17-2. (B) Antimicrobial activity of SKL17-2 against
P. plecoglossicida. The red dotted line represents the absorbance values of the medium. (C) SKL17-2 inhibition zone against P. plecoglossicida.
(D) Time-kill kinetic curves of the SKL17-2 against P. plecoglossicida at 1×MBC. The kinetic graphs were the mean values of three
independent experiments.
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High stability of SKL17-2 to temperature
and pH

SKL17-2 displayed strong antimicrobial activity against P.

plecoglossicida, a clinical pathogen that seriously affects fish

aquaculture, thus suggesting its application potential in the

treatment of VWND in fish. In practical applications, the

stability of SKL17-2 in various conditions of temperature and

pH must be considered. The antimicrobial activity of SKL17-2

was unaltered when exposed to 20, 40, 60, 80, or 100°C

(Figure 5A). SKL17-2 exhibited robust antimicrobial activity at

pH levels ranging from 2 to 10 (Figure 5B). These results
Frontiers in Marine Science 07
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indicated that SKL17-2 was well tolerant to different

temperature and pH, even extreme conditions of temperature

or pH.
Structure analysis of SKL17-2

The secondary structure in the membrane environment is

essential for peptide antimicrobial activity, and the structure of

SKL17-2 in different solutions was determined using CD

spectroscopy. As shown in Figure 6A, the secondary structure

of SKL17-2 in PBS was characterized by a coil, with a negative
A B

FIGURE 4

Cytotoxicity and hemolytic activity of SKL17-2. (A) Cytotoxicity of SKL17-2 against LYC-FM cells. (B) Hemolytic activity of SKL17-2 against large
yellow croaker RBCs. The data are shown as the mean ± SEM of three independent experiments performed in triplicate.
FIGURE 3

Antimicrobial activity of SKL17-2 against E. coli, P. aeruginosa, S. typhimurium, V. parahemolyticus, S. aureus, and S. agalactiae. The red dotted
line represents the absorbance values of the medium.
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minimum at 200 nm. Interestingly, the CD spectrum of SKL17-2

in SDS and TFE, which mimicked the bacterial cell membrane

environment, showed two negative minima at 208 and 222 nm,

implying that a-helix was the primary structure of SKL17-2.

Moreover, the wheel diagram (Figure 6B) revealed that SKL17-2

exhibited a hydrophobic face and a cationic face.
Bacterial membrane permeability
of SKL17-2

PI staining of nucleic acid in cells can reflect a damaged cell

membrane structure (Yang et al., 2019). This is a comprehensive

method for determining the integrity of the cell membrane.

According to the relative fluorescence intensity, the penetration

efficiency of SKL17-2 to bacteria is shown in Figure 7. The results

indicated that the control (no peptide) resulted in only 0.3% PI-

positive cells, while SKL17-2 treatment resulted in positive

nucleic acid staining of 14.1% (4 mM), 15.8% (8 mM), 41.1%

(16 mM), and 50.9% (32 mM), suggesting that SKL17-2 damaged

the bacterial membrane in a dose-dependent manner. These

results revealed that SKL17-2 killed bacteria through membrane-

permeabilizing action.
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Observation of the bacteria morphology
treated with SKL17-2

Scanning electron microscopy was used to observe the

morphological changes in bacteria following treatment with

SKL17-2. The membrane integrity of P. plecoglossicida was

severely impaired by SKL17-2 treatment (Figure 8). The

control bacterial cells exhibited smooth surface and normal

morphologies, but P. plecoglossicida treated with SKL17-2

displayed clear morphological changes. The membrane

surfaces of peptide-treated cells were extensively disrupted,

becoming noticeably roughened and damaged.
Discussion

P. plecoglossicida is a lethal pathogen that can cause VWND

and consequent high mortality in fish (Zhang et al., 2018; Li

et al., 2020). In China, fluoroquinolone antibiotics are frequently

used in the treatment of fish diseases (He et al., 2012). However,

the rise of drug-resistant bacteria as a result of antibiotic overuse

poses a substantial threat to aquaculture and has created
A B

FIGURE 5

The effects of temperature (A) and pH (B) on the antimicrobial activity of SKL17-2. The final concentration of SKL17-2 was 4 mM (1×MBC). The
data are presented as the mean ± SEM of three independent experiments performed in triplicate.
A B

FIGURE 6

Structure analysis of SKL17-2. (A) Circular dichroism spectra of SKL17-2. The data from the three scans were averaged per sample, and the peptide
concentration was set at 0.2 mg/mL. (B) Helical wheel projection of SKL17-2. The output of the helical wheel projection shows charged residues as
blue, hydrophobicity residues as yellow, uncharged residues as light pink, alanine and glycine as gray, and serine as gray purple by default.
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intractable clinical treatment bottlenecks (Katzenback, 2015). At

present, developing novel antimicrobial agents is critical to

combat antibiotic resistance in aquaculture. AMPs, which have

unique antimicrobial activity that disrupts bacterial membranes,

show the potential to replace traditional antibiotics as a novel

alternative (Wang et al., 2018). However, the downsides of

naturally occurring AMPs include weak efficacy, hemolytic or
Frontiers in Marine Science 09
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cytotoxic effects on host cells, and high synthetic cost. By

comparison, de novo synthesized peptides may have the

drawbacks of decreased bacteriostatic effectiveness and

possible drug resistance (Campoccia et al., 2010). To

circumvent the aforementioned drawbacks, short peptides

generated artificially from natural peptide templates are

thought to be an effective strategy (Luo et al., 2017).
FIGURE 7

Flow cytometric analysis of P. plecoglossicida treated with SKL17-2 at different doses. P. plecoglossicida were incubated with SKL17-2 for 2 h at
28°C. The influx of PI into bacterial cells was then examined using flow cytometry. The cell-penetrating efficiency was shown as percentage.
Data are representative of three independent experiments.
FIGURE 8

Scanning electron microscopy images of P. plecoglossicida treated for 2 h at 28°C with 4 mM SKL17-2 or 10 mM PBS (control). Following that,
the bacteria were fixed and collected on polycarbonate filters. After dehydration and vacuum drying, filters with bacteria were placed onto
aluminum stubs, coated with gold, and examined under scanning electron microscope. Scale bars, 300 nm.
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Based on large yellow croaker IFNG1R protein sequence, a

17-aa short peptide named SKL17-2 that showed a strong

antimicrobial activity was synthesized. Positive charges and

overall net charges of AMPs have been shown to be crucial for

electrostatic adsorption between peptides and anionic molecules

on the bacterial membrane surface (Chou et al., 2016). It is worth

noting that suitable positive charge of an AMP boosts its

antimicrobial activity, whereas excessive positive charge may

decrease its antimicrobial activity (Chou et al., 2016). Generally,

a positive charge ranging from +4 to +6 is optimal for peptide’s

antimicrobial activity, and positive charges comprise

contributions from positively charged residues such as lysine

(K), arginine (R), and histidine (H) (Yang et al., 2019). Through

the amine groups on its side chain, lysine can interact with the

negatively charged phosphatidylglycerol, lipopolysaccharides,

and lipoteichoic acid of bacterial membranes, and the lengthy

aliphatic side chain helps to localize the peptide in the lipid

bilayer of the bacterial plasma membrane (Bhat et al., 2022).

With its side chain guanidinium groups, arginine can form

strong bidentate hydrogen bonds with the phosphor-rich

membrane surface of bacteria, promoting deeper membrane

insertion and making AMPs more capable of membrane

disruption (Yang et al., 2019). SKL17-2 contains eight positive

charges, including five lysine and three arginine residues,

compared to four positive charges in SKL17, and displays

strong antimicrobial activity against P. plecoglossicida, while

SKL17 has no antimicrobial activity (data not shown). This

may be because SKL17 lacks sufficient positive charge to adsorb

to bacterial membranes. Surprisingly, SKL17-2 showed strong

antimicrobial activity against P. Plecoglossicida, while exhibiting

weak or negligible antimicrobial activity against other bacteria.

The possible reason is that the structure of LPS varies among

different gram-negative bacteria and cell walls composition in

gram-positive bacteria is different (Li et al., 2018). These results

indicated that total net positive charge affected AMPs’

antimicrobial activity.

Whether they are antibiotics or AMPs, ideal antimicrobial

agents should target specific pathogens. If the antimicrobial

agents have broad-spectrum antimicrobial activity, they may

kill probiotics, causing intestinal flora diseases and disrupting

the balance between healthy microbiota and the immune system

(Tan et al., 2021). Interestingly, SKL17-2 peptide designed here

could kill P. plecoglossicida but had a weak or negligible

antimicrobial activity against other bacteria, indicating its

narrow-spectrum antimicrobial activity. In contrast, b-
defensin , a natural AMP, showed broad-spectrum

antimicrobial activities against P. plecoglossicida as well as

other bacteria (Li et al., 2021). The narrow-spectrum

antimicrobial activity of SKL17-2 makes it an ideal therapeutic

agent for combating P. plecoglossicida infection in aquaculture.

Many investigations have demonstrated that the formation

of a stable spatial secondary structure is a significant element in
Frontiers in Marine Science 10
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AMP antimicrobial activity at the molecular level (Yang et al.,

2019). In SDS and TFE solutions, our CD findings indicated that

SKL17-2 had a distinct and stable a-helical secondary structure.
Furthermore, SKL17-2 had an amphipathic a-helical structure
with hydrophobic residues on one side and cationic residues on

the other side. It has been demonstrated that the amphipathic

character of AMPs is critical for their interaction with bacterial

cell membranes and for their antimicrobial activity (Zelezetsky

and Tossi, 2006). This effect was consistent with the membrane

permeabilization and scanning electron microscopy data

obtained here. P. plecoglossicida treated with SKL17-2

displayed positive nucleic acid staining, and the proportion of

positive staining increased with peptide concentration,

suggesting the membrane permeabilization of P. plecoglossicida

following SKL17-2 treatment. Furthermore, the scanning

electron microscopy data explicitly indicated that SKL17-2

caused morphological alterations of bacterial membranes such

as roughening and corruption, suggesting that SKL17-2 may

exert its strong antimicrobial effect primarily by destroying

bacterial membrane structure.

Before clinical application, the toxicity of AMPs to

eukaryotic cells should be evaluated. In our study, SKL17-2

had a low cytotoxicity to LYC-FM cells as well as a poor

hemolytic reaction with red blood cells with a hemolytic rate

less than 0.5%, suggesting that SKL17-2 may maintain a cell

selectivity against P. plecoglossicida and would be safe for

application in large yellow croaker. These findings further

support the potential of SKL17-2 administration in the

treatment of VWND. Our long-term goal is to use SKL17-2

as a feed additive in aquaculture, and thus antimicrobial

activity variation in different temperature and pH should be

evaluated due to high temperatures and complicated

condi t ion changes dur ing feed proces ing . In our

investigation, SKL17-2 demonstrated good temperature and

pH stability, hinting that it has an excellent therapeutic

potential in clinical applications.

In summary, a peptide targeting P. plecoglossicida was

developed and produced based on a large yellow croaker

IFNG1R protein sequence. The peptide has low cytotoxicity

and negligible hemolytic activity as well as high temperature and

pH stability, indicating promising therapeutic potential in the

treatment of VWND caused by P. plecoglossicida. As SKL17-2

demonstrated strong antimicrobial activity against P.

plecoglossicida in vitro, the therapeutic potential of SKL17-2 as

a feed additive will require further investigations in the future.
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Dietary grape extract can, at an
appropriate level, improve the
growth performance and
antioxidant activity of the white
shrimp Litopenaeus vannamei

Angela Chien1*, Ya Chi Cheng1, Shyn Shin Sheen1

and Ralph Kirby2

1Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan, 2Department of Life
Sciences, Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
This study evaluated the growth performance and in vivo antioxidant capacity of

the white shrimp, Litopenaeus vannamei, fed diets containing the grape extract

Nor-grape 80. A control diet containing 1000 ppm vitamin E without added

grape extract and four other diets containing 250, 500, 750 and 1000 ppm grape

extract were formulated. Shrimp, twenty 0.02 g of individuals in each aquarium,

were randomly assigned to one of the above five treatment diets in triplicate and

fed three times daily to satiation for six weeks. The final weight, weight gain

percentage and specific growth rate of the shrimp larvae fed diets containing 250

and 500 ppm Nor-grape 80 were significantly higher than those fed the other

treatment diets. The levels of superoxide dismutase activity of the shrimp fed

diets containing 250 and 500 ppm Nor-grape 80 were significantly higher than

those of shrimp fed the control diet. On the other hand, the thiobarbituric acid-

reactive substance levels of the shrimp fed diets containing 250 and 500 ppm of

Nor-grape 80 were significantly lower than those fed the other diets.

Furthermore, the highest levels of dietary Nor-grape 80, namely 750 and 1000

ppm, gave rise to reduced growth performance, as well as lower levels of in vivo

antioxidant activity. Therefore, for the best growth performance and highest level

of in vivo antioxidant activity, it is suggested that the optimal level of Nor-grape

80 as part of a white shrimp diet falls between 250 and 500 ppm.

KEYWORDS

SOD, TBARS, weight gain percentage, white shrimp, grape extract
Introduction

The Pacific white shrimp Litopenaeus vannamei, a native species that is distributed

along the East Pacific coasts of Mexico, Central America and Peru, has now become the

most popular farmed penaeid shrimp species throughout the world (Dugassa and Gaetan,

2018; Lucas et al., 2019). In 2020, the global aquaculture production of white shrimp was
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more than 5,400,000 tonnes and this represents approximately 80%

of the total aquaculture production of crustaceans (FAO, 2022).

This shrimp shows rapid growth, good survival under high density

culture, and a high tolerance to a broad range of salinities and

temperatures, and therefore it is highly suitable for intensive culture

systems. The shrimp has widely been employed commercially in

Southeast Asia, including in India, Thailand, Vietnam, the People’s

Republic of China and Taiwan (Briggs et al., 2004). Generally, the

white shrimp require five to seven months of cultivation to reach a

marketable size of 15 to 30 grams (Tacon et al., 2013). As part of

feeding management practices, shrimp aquafeed includes costly fish

meal that provides an excellent protein source within the formula;

therefore, the cost of feeding these shrimp can reach as much as 40%

to 60% of the total production costs when under semi-intensive and

intensive systems (Hardy and Tacon, 2002).

In order to reduce dietary costs, several plant and animal

protein sources have been successfully used as fish meal

alternatives without compromising shrimp production (Davis and

Arnold, 2000; Cummins et al., 2017). For white shrimp, it is known

that the optimal dietary protein content ranges from 32% to 36%

across the various growth stages (Lee and Lee, 2018). However, the

effect of shrimp diets supplemented with phytochemicals, which are

the bioactive components derived from plants and plant-based

beverages, such as fruit, vegetables, grains, nuts, seeds, tea and

wine (Chakraborty et al., 2013; Encarnação, 2016), has not yet been

totally explored. Many of these phytogenics, which are classified as

alkaloids, flavonoids, terpenoids, polyphenols, essential oils and

pigments, have been exploited as feed additives in order to improve

the growth performance of fish (Chakraborty et al., 2013;

Encarnação, 2016; Artés-Hernández et al., 2021).

Grapes, rich in polyphenols, are characterized as having

antioxidant, antimicrobial, anti-inflammatory and anti-

carcinogenic properties (Shi et al., 2003; Xia et al., 2010; Doshi

et al., 2013). The most abundant phenolic components of grapes are

present in their seeds, which contain 74% to 78% proanthocyanidin

oligomers and 6% free flavanols (Shi et al., 2003; Burdock, 2005),

followed by grape skins and grape pulp (Shi et al., 2003). It is worth

noting that grape polyphenols have been recognized as being able to

improve nutrient absorption and biological growth of terrestrial

animals (Viveros et al., 2011; Aditya et al., 2018). Broiler chickens

fed diets supplemented with grape seeds, grape pomace and pomace

extract containing polyphenols have been shown to have enhanced

growth performance. These findings have been attributed to

improved gut morphology and a better intestinal microbiota

(Viveros et al., 2011; Abu Hafsa and Ibrahim, 2018; Aditya et al.,

2018). Grape seed proanthocyanidin extract has also been reported

to elevate intestinal release of both glucagon-like peptide-1 and

peptide YY, two hormones that regulate appetite and glucose

homeostasis (Casanova-Marti et al., 2020). With aquatic animals,

grape seeds and pomace extracts have served as dietary additives to

improve the growth of tilapia (Oreochromis niloticus) and of Pacific

white shrimp (Zhai et al., 2014; Niyamosatha et al., 2015).

Grape seeds and pomace would seem to act as powerful

antioxidants that scavenge the free radicals causing oxidative

stress in cells, both in vitro and in vivo (Bagchi et al., 1998;

Bouhamidi et al., 1998; Bagchi et al., 2000; Jayaprakasha et al.,
Frontiers in Marine Science 02130
2003; Shi et al., 2003). The antioxidant potential of grape-seed

procyanidins, in particular, is twenty fold more than that of vitamin

E (Uchida, 1980; Shi et al., 2003). In several terrestrial animals, diets

including either grape seeds or grape pomace extract have been

found to result in improved antioxidant capacity, namely an

increase in superoxide dismutase (SOD) activity and a decrease in

the level of thiobarbituric acid-reactive substances (TBARS) or

malodialdehyde (MDA) (Garcia et al., 2002; Park et al., 2014;

Guerra-Rivas et al., 2016; Zhao et al., 2017; Aditya et al., 2018).

In addition to enhanced SOD activity, reduced levels of TBARS or

MDA, reactive compounds, which are the result of lipid

peroxidation of polyunsaturated fatty acids, has been observed in

broilers fed diets containing increasing amounts of grape seeds and

grape pomace (Abu Hafsa and Ibrahim, 2018; Aditya et al., 2018).

Surprisingly, penned rams fed diets containing wine grape extract

have even shown significantly higher levels of SOD activity, as well

as a lower level of MDA, in their testes when compared to those fed

diets without wine grape extract (Zhao et al., 2017).

For most animals, although dietary grape extract has been

known to improve their growth performance and in vivo

antioxidant capacity (Viveros et al., 2011; Chamorro et al., 2013;

Park et al., 2014; Zhai et al., 2014; Niyamosatha et al., 2015; Zhao

et al., 2017; Abu Hafsa and Ibrahim, 2018; Aditya et al., 2018), these

also seems to be adverse effects on the growth performance, related

to protein and amino acid digestibility, if the dietary grape products

are provided at a level higher than their optimal requirements

(Chamorro et al., 2013; Zhai et al., 2014; Abu Hafsa and Ibrahim,

2018). Broilers fed the highest dietary levels of grape seeds or seed

extracts (Chamorro et al., 2013; Abu Hafsa and Ibrahim, 2018), as

well as tilapia (O. niloticus) fed a diet containing the highest level of

grape extract (Zhai et al., 2014), showed reduced growth

performance. Previously, white shrimp fed diets containing 150

and 200 ppm Nor-grape 80, a commercial grape extract that

consists of 80% polyphenols, were found to have a significantly

higher weight gain percentage than those fed diets containing less

than 150 ppm of Nor-grape 80 (Cheng et al., 2017). As the amount

of Nor-grape 80 in the shrimp diet was increased to the highest level

of 200 ppm, an increase in SOD and a decrease in TBARS levels

were correspondingly detected (Cheng et al., 2017). However, the

optimal dietary concentration of Nor-grape 80 for white shrimp, in

terms of the growth performance and antioxidant capacity, has not

yet been determined. The aim of the present study was to examine a

suitable level of this grape extract that will give the best growth

performance for white shrimp. In vivo antioxidant activity,

specifically SOD activity and TBARS levels, of the white shrimp

were also evaluated when the shrimp were fed diets supplemented

with Nor-grape 80 at a level greater than 200 ppm.
Materials and methods

Five isonitrogenous (35% crude protein), isolipidic (9% crude

lipid) and isoenergetic (300 Kcal/100 g) diets were formulated

(Table 1). The control diet contained 1000 ppm vitamin E, while

the four other diets contained 250 (N250), 500 (N500), 750 (N750)

and 1000 ppm (N1000) of Nor-grape 80, an extract of whole Vitis
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vinefera grapes that was provided by Kaye Bio-tech Co., Taiwan.

Nor-grape 80 has been shown to comprise 80% polyphenols of

which 60% are proanthocyanidins and 0.75% are anthocyanins.

Fish meal was used as the protein source. A mixture of 2:1 fish oil

and corn oil (w/w) was used as the source of lipid. Wheat flour and

corn starch were used as sources of carbohydrate and also acted as

binders. Cellulose was also included to balance out the composition

of the diet. On preparing the experimental diets, all dietary

ingredients were first ground into small particles using a hammer

mill and then passed through a 250 mm mesh sieve. The dry

ingredients were then thoroughly mechanically mixed to insure

homogeneity before the addition of the oil. The mixture, after an

addition of distilled water, was blended until a consistent dough was

formed. Each of the diets was extruded through a chopper (3.0 mm

die diameter) to produce pellets. The pellets were then ground into

small particles (<500 mm) and dried in an air oven at 60 0C for 12

hours and finally the five experimental diets were stored separately

at 4 0C in a refrigerator until use.

The post larvae shrimp of 20 days after hatch were obtained

from a local aquafarm (Pintung, Taiwan), where the water

temperature and salinity ranged from 28°C to 30°C and 30‰ to

33‰, respectively, and then acclimatized in a 2000 L fiberglass tank

at National Taiwan Ocean University for one week. During the

acclimatization phase, the shrimp were cultured under 26-28 °C and

fed the control diet. At the beginning of the feeding trial, the

shrimp, which had initial weights of 0.02 g, were starved for 24 h

before they were randomly distributed into the 15 glass aquaria (57

x 35 x 30 cm), each of which finally contained twenty shrimp. Three

replicate groups of shrimp were fed one of the five treatment diets

three times a day. They were fed 30% of their body weight daily until

satiation for six weeks. The experiment aquaria were closed systems

with continuous aeration. Half of the water in each tank was

renewed daily to maintain water quality. The water temperature,

salinity, dissolved oxygen and pH ranged between 25 and 28°C,

31‰ and 33‰, 5.6 mg/L and 7.0 mg/L and 8.1 and 8.5, respectively.

The concentration of total ammonia-nitrogen was maintained at

less than 0.05 ppm during the entire feeding trial period. Uneaten

feed and feces were siphoned off from each tank every day. At the

end of the feeding trial, feeding was stopped for 24 h prior to

weighing. Each shrimp was individually weighed, sacrificed by

placing it in ice water and then carefully dissected. The muscle

tissue of individual shrimp that had been cultivated in the same

aquarium was pooled, dried and homogenized (n=3) in order to

carry out the proximate analysis twice. In parallel, the

hepatopancreas of the shrimp from each aquarium was isolated

and pooled to measure SOD activity and the level of TBARS (n=3).

The growth parameters of the shrimp were calculated according

to the following equations:

Weight gain ( % )  =  100%  x (Wt –  W0)=W0, a n d

specific growth rate (SGR) (% day-1)  ¼  100% x ½(ln Wt– ln W0)=t�
, where W0 is the initial mean body weight (g), Wt is the final mean

body weight (g).

The compositions of the experimental diets and the shrimp

muscle samples were analyzed according to the method of AOAC

(1984). Crude protein was determined using the Kjeldahl system
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(Kjeldahl system 1002, Tecator, Sweden) after acid digestion. Crude

lipid was measured by the chloroform and methanol (2:1, v/v)

extraction method (Folch et al., 1957). Crude fiber was determined

by acid and alkaline digestion using the Fibertec M 1020 system

(Foss Tecator, Sweden). Moisture and ash were determined by

conventional methods using an oven at 105 0C and a muffle furnace

at 540 0C, respectively. Nitrogen-free extract (NFE) was calculated

as follows: NFE= [100 – (crude protein + crude lipid + crude fiber +

ash)] %. A proximate analysis of the experimental diets is presented

in Table 2. The crude protein, crude lipid, ash, crude fiber and NFE

of the treatment diets ranged from 37.85% to 38.03%, 8.86% to

9.03%, 14.11% to 14.23%, 11.90% to 12.29% and 26.59% to

27.77%, respectively.

The SOD activity of each pooled hepatopancreas sample was

measured using SOD assay kits (19160 SOD determination kit,

Sigma, USA). In brief, a total of 0.5 g of hepatopancreas tissue was

homogenized in 0.1 M phosphate buffer using a T25 homogenizer

(IKA, Germany). The homogenate was then centrifuged at 3000

rpm for 10 min and the supernatant was collected. From this point

onwards, the procedure described in the instruction manual of the

SOD assay kit was followed. The working solution in the kit,

namely, WST-1 (2- (4-iodopheny) - 3- (4-nitophenyl) -5- (2, 4-

disulfophenyl) -2 H tetrazolium), reacts with the superoxide

radicals generated in the presence of oxygen and the enzyme,

xanthine oxidase. The superoxide radicals would be reduced and

this results in the formation of a yellowish water-soluble formazan

dye. However, the superoxide anions are also reduced by SOD and

such reaction will decrease the amount of formazan formed. Thus,

after the optical density has been measured at 450 nm using a

spectrophotometer (Synergy HT, Biotek, USA), the SOD activity is

able to be expressed as a percentage inhibition rate.

TBARS was measured using the method of Kornbrust and

Mavis (1980). A total of 1 g hepatopancreas tissue was

homogenized in a buffer solution (0.15M KCL and 5 mM Tris-

maleate, pH 7.4) using a T25 homogenizer (IKA, Germany). Next,

1 ml of ascorbic acid (2 mM) was added and the mixture was

incubated at 37 0C for 30 min. After the addition of 5 ml HCL

(0.7 M) and 5 ml thiobarbituric acid (0.05 M), the samples were

boiled for 25 min and then placed on ice. Next, 5 ml of

trichloroacetic acid (200 g/L) was added and then the samples

were centrifuged at 495 g for 5 min. The supernatant was collected

to measure the amount of TBARS present using a U-1800

spectrophotometer (Hitachi, Japan) at 530 nm. The concentration

of TBARS was expressed as micrograms of malondialdehyde

equivalent per milligram of tissues of the hepatopancreas.

Standard MDA solutions (Sigma T-1642) were used to create a

calibration curve in order to measure the concentration of MDA in

each pooled shrimp hepatopancreas sample.

Significant differences among treatments were analyzed by

analysis of variance (ANOVA) after confirming the homogeneity

of variance using the Levene’s test (Snedecor and Cochran, 1980). A

one-way analysis of variance was performed to examine differences

in weight gain percentage, SGR, and survival in the five treatments.

When a significant difference was observed, Tukey’s range test was

used to compare differences among treatments. Weight gain
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percentage data were log-transformed while others were arcsine-

transformed before statistical analysis. Polynomial contrast

procedures were applied to detect linear and quadratic trends

between the growth parameters of the shrimp and the dietary

levels of Nor-grape 80. The significant level was set at p< 0.05

and all statistical analyses were conducted using a SAS software

program for Windows (V.9.3., SAS Institute, Cary, NC, U.S.A.).
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Results

The growth performance and survival of the white shrimp fed the

experimental diets for six weeks are shown in Table 3. The survival of

white shrimp fed the treatment diets was in all cases more than 90%.

The shrimp fed diets containing different levels of Nor-grape 80

showed better growth performance than those fed the control diet
TABLE 2 Proximate composition of diets for white shrimp.

Composition (%)
Diets Statistical test

Control N250 N500 N750 N1000

Moisturea 4.85 ± 0.02 4.81 ± 0.05 4.90 ± 0.12 4.84 ± 0.19 4.90 ± 0.34 NS

Crude proteina 37.97 ± 0.05 38.03 ± 0.12 38.00 ± 0.42 37.85 ± 0.32 37.97 ± 0.23 NS

Crude lipida 9.03 ± 0.15 8.88 ± 0.07 8.88 ± 0.08 8.86 ± 1.08 8.89 ± 0.05 NS

Asha 14.12 ± 0.08 14.23 ± 0.09 14.13 ± 0.05 14.23 ± 0.04 14.11 ± 0.02 NS

Crude fibera 12.29 ± 0.09 11.90 ± 0.14 12.14 ± 0.29 12.19 ± 1.02 12.06 ± 0.76 NS

NFEb 26.59 ± 0.14 27.77 ± 0.10 26.85 ± 0.08 26.87 ± 0.11 26.97 ± 0.52 NS

Calculated energy (kcal/100g)c 339.51 343.12 339.32 338.62 339.77 –
aExpressed as percent of dry weights.
Values are presented as mean ± SD (n=3).
bNitrogen-free extract (NFE): [100 - (crude protein + crude lipid + crude fiber + ash)] %.
cCalculated digestible energy (kcal/g) was calculated based on protein 4 kcal/g, lipid 9 kcal/g and carbohydrate 4 kcal/g.
NS in statistical test means not significant at p<0.05.
TABLE 1 Ingredient composition of dietary treatments for white shrimp.

Ingredients
Diets

Control N250 N500 N750 N1000

Fish meal1 50 50 50 50 50

Shrimp meal2 6 6 6 6 6

Oil3 1.5 1.5 1.5 1.5 1.5

a-starch 15 15 15 15 15

Choline chloride 0.5 0.5 0.5 0.5 0.5

Cholesterol 0.5 0.5 0.5 0.5 0.5

Mineral mix4 4 4 4 4 4

Vitamin mix5 4 4 4 4 4

Vitamin A 0.1 0.1 0.1 0.1 0.1

Vitamin D3 0.1 0.1 0.1 0.1 0.1

Vitamin E 0.1 0 0 0 0

Cellulose 12.700 12.775 12.750 12.725 12.700

Yeast 5 5 5 5 5

Lecithin 0.5 0.5 0.5 0.5 0.5

Nor-grape 80 0 0.025 0.050 0.075 0.100
1Fish meal: CP 67.42%, CL 12.53%.
2Shrimp meal: CP 49.60%, CL 6.29%.
3Fish oil: Corn oil = 2: 1.
4Calcium carbonate 2.1%, Calcium phosphate dibasic 73.5%, Citric acid 0.227%, Cupric acid 0.046%, Ferric acid (16-17% Fe) 0.558%, Magnesium oxide 2.5%, Magnesium citrate 0.835, Potassium
sulfate 6.8%, Sodium chloride 3.06%, Sodium phosphate 2.14%, Zinc citrate 0.133%, Potassium iodine 0.001%, Potassium phosphate dibasic 8.1% (Bernhart and Tomarelli, 1966)
5Thiamin HCl 0.5%, Riboflavin 0.8%, Niacinamide 2.6%, D-biotin 0.1%, Ca-pantothenate 1.5%, Pyridoxine HCl 0.3%, Folic acid 0.5%, Inositol 18.1%, Ascorbic acid 12.1%, Para-aminobenzoic
acid 3%, Cyanocobalamin 0.1%, BHT 0.1%, alpha-cellulose 60.3%.
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that contained 1000 ppm vitamin E without Nor-grape 80. The final

weight, weight gain percentage and SGR of the white shrimp fed diets

containing 250 and 500 ppm Nor-grape 80 were significantly higher

than those of shrimp fed the other diets. However, no significant

differences were found in the final weight, weight gain percentage and

SGR of white shrimp fed diets containing 250 and 500 ppm Nor-

grape 80. Only the quadratic trends analyzed using polynomial

contrast procedures between the growth parameters and Nor-grape

80 levels showed a significant difference.

The proximate analysis of the muscle of white shrimp fed the

treatment diets for six weeks is shown in Table 4. The crude protein

content of the muscle tissue from shrimp fed with the treatment diets

was all above 80%. The crude lipid of muscle from shrimp fed the

treatment diets ranged from 6.81 to 7.38%, The ash of the muscle

tissue from shrimp fed the treatment diets ranged from 6.61 to 6.91%.

The levels of SOD activity and the amounts of TBARSs present

in the hepatopancreas samples from white shrimp fed the

experimental diets for six weeks are shown in Table 5. The

highest SOD activity and the lowest TBARS level were found in

the hepatopancreas of shrimp fed the diet containing 250 ppm of

Nor-grape 80. Both the SOD value and the TBARS level in the

hepatopancreas of shrimp fed the diet containing 250 ppm Nor-

grape 80 are significantly different from those of shrimp fed the
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control diet containing 1000 ppm vitamin E. However, the

hepatopancreatic SOD values of shrimp fed the diets containing

250 and 500 ppm of Nor-grape 80 were not significantly different.

By way of contrast, the hepatopancreatic TBARS level of shrimp fed

the diet containing 250 ppm of Nor-grape 80 was significantly lower

than that of shrimp fed the other diets. A decrease in SOD activity

and an increase in TBARS level in the hepatopancreas of shrimp fed

the treatment diets, without the control diet being compared, was

found to be proportional to the increase in the amount of Nor-grape

80 in the shrimp diets.
Discussion

Positive and negative effects of grape extract were observed in

relation to the growth performance of the white shrimp. In this

study, white shrimp fed the diets supplemented with 250 and 500

ppm Nor-grape 80 showed an equivalent best growth performance,

and a decrease in growth performance was observed among the

white shrimp fed diets containing 750 and 1000 ppm Nor-grape 80.

Both tilapia and shrimp fed diets supplemented with grape by-

products, depending on the dosage used, showed either an

improved or a reduced growth performance (Zhai et al., 2014;
TABLE 3 Initial weight, final weight, weight gain percentage, SGR and survival of white shrimp fed dietary treatments for 6 weeks.

Diets Initial weight (g) Final weight (g) Weight gain (%) SGR (% day-1) Survival (%)

Control 0.019 ± 0.000 0.406 ± 0.031c 1985.81 ± 160.32c 7.23 ± 0.21c 92.78 ± 2.55

N250 0.020 ± 0.000 0.968 ± 0.227a 4863.47 ± 1154.99a 9.25 ± 0.53a 97.78 ± 1.92

N500 0.020 ± 0.000 0.968 ± 0.107a 4856.86 ± 504.29a 9.29 ± 0.25a 92.22 ± 0.96

N750 0.020 ± 0.000 0.681 ± 0.093b 3394.93 ± 484.14b 8.45 ± 0.32b 97.78 ± 0.96

N1000 0.019 ± 0.000 0.642 ± 0.021b 3200.73 ± 144.43b 8.32 ± 0.10b 95.00 ± 3.33

ANOVA

Pr > F – 0.0009 <0.0001 <0.0001 0.3336

Linear Trend

Pr > F – 0.6926 0.4096 0.0530 –

Quadratic Trend

Pr > F – 0.0052 0.0002 <0.0001 –
Values are presented as mean ± SD (n=3). Different superscript letters in the same column denote difference between diets (p<0.05).
TABLE 4 Proximate analysis of muscle samples from white shrimp fed dietary treatments for 6 weeks.

Composition (%)
Diets Statistical test

Control N250 N500 N750 N1000

Moisture 76.49 ± 0.04 76.22 ± 0.05 76.66 ± 0.15 76.89 ± 0.12 76.69 ± 0.03 NS

Crude proteina 80.18 ± 0.63 80.06 ± 0.35 80.10 ± 0.03 80.05 ± 0.91 80.13 ± 0.02 NS

Crude lipida 6.81 ± 0.08 7.05 ± 0.13 7.09 ± 0.05 7.25 ± 0.03 7.38 ± 0.06 NS

Asha 6.91 ± 0.01 6.78 ± 0.03 6.62 ± 0.08 6.68 ± 0.01 6.61 ± 0.04 NS
aExpressed as percent of dry weights.
Values are presented as mean ± SD (n=3).
NS in statistical test means not significant at p<0.05.
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Rosas et al., 2022). In tilapia, O. niloticus, the weight gain increased

as the diets contained increasing amounts (0, 200 and 400 ppm) of

grape seed proanthocyanidins and this was followed by a decrease

as the dietary grape seed proanthocyanidins were increased to 600

and 800 ppm (Zhai et al., 2014). Similarly, white shrimp fed a diet

containing 2.5 x 104 ppm grape bagasse had the highest growth

parameters, while shrimp fed a diet containing the highest 1.5 x 105

ppm grape bagasse showed the lowest growth performance (Rosas

et al., 2022). Although grape polyphenols, when included in diets at

a lower dose, have previously been described as benefiting the

growth performance of a wide range of animals (Dolara et al., 2005;

Rhodes et al., 2006; Kao et al., 2010; Tucsek et al., 2011; Viveros

et al., 2011; Fiesel et al., 2014; Zhai et al., 2014; Shimizu, 2017; Abu

Hafsa and Ibrahim, 2018; Ao and Kim, 2020), it is also obvious that

there are detrimental effects on the growth performance of animals

fed diets containing high levels of grape by-products. This could be

due to an increase in the antinutritional factors present in grapes,

such as alkaloids, saponins and tannins (Shi et al., 2003; Iriti and

Faoro, 2006), as well as intensified grape polyphenol-protein

interactions that are likely to reduce the nutritional value of the

protein present in food matrix (Shi et al., 2003). As a result, we

suggested that the dietary level of Nor-grape 80 fed to 0.02 g white

shrimp should not be greater than 500 ppm in order to prevent the

above adverse effects on the shrimp growth performance.

In this study, it is hypothesized that dietary grape extract enhances

the growth performance of animals and that this might be due to the

phenolic components present in the supplement, which appear to

promote intestinal health. Several phenolic components in grape

extract are known to possess antibacterial activity that can alter the

intestinal microbiota (Dolara et al., 2005; Rhodes et al., 2006; Kao

et al., 2010; Viveros et al., 2011; Zhai et al., 2014; Abu Hafsa and

Ibrahim, 2018; Ao and Kim, 2020), as well as being able to attenuate

intestinal inflammation (Kao et al., 2010; Tucsek et al., 2011; Fiesel
Frontiers in Marine Science 06134
et al., 2014; Shimizu, 2017). Anthocyanins and their metabolites when

interacting with the microbiota have been reported to enhance the

growth of Bifidobacteria spp. and Lactobacillus-Enterococcus spp.

(Hidalgo et al., 2012). In rats, broilers and Pekin ducks, ingestion of

red wine polyphenols and grape seeds has been shown, not only to

increase the ileal and colonic numbers of probiotic bacteria such as

Lactobacilli and Bifidobacteria spp., but also to inhibit the intestinal

growth of detrimental bacteria such as Escherichia coli, Clostridia and

Streptococcus (Dolara et al., 2005; Abu Hafsa and Ibrahim, 2018; Ao

and Kim, 2020). Additionally, grape phenolic compounds have been

found to be capable of modulating the intestinal morphology in

poultry (Viveros et al., 2011; Ao and Kim, 2020). In post larvae

stage of the freshwater prawn,Macrobrachium rosenbergii, the activity

of digestive enzymes has been observed to increase whengrape waste is

included in the diets (Bhavan et al., 2013). The dominant intestinal

microbiota of white shrimp fed diets containing tannins, which are

part of the polyphenols present in grapes, have recently been

characterized and found to include Proteobacteria and Bacteroidota

(Bolıv́ar-Ramıŕez et al., 2022); these are groups of bacteria that are

normally present in the intestinal tracts of heathy shrimps (Xiong

et al., 2017; Ayiku et al., 2020; Schleder et al., 2020). Taking these

findings together, we suggest that grape polyphenols improve nutrient

absorption by directly affecting the digestive tracts of animals and thus

enhance the growth performance of these animals, including the white

shrimp in our case.

Previously, white shrimp fed the diets containing 50 to 200 ppm

of Nor-grape 80 have been shown to exhibit an increase in SOD

activity and a decrease in TBARS levels (Cheng et al., 2017). In the

present study, the in vivo antioxidant capacity of the hepatopancreas

of white shrimp fed diets containing 250 to 1000 ppm of Nor-grape

80 also showed trends involving a decrease in SOD activity and an

increase in TBARS levels as the level of Nor-grape 80 increased. To

date, the adverse effects of dietary grape by-products on in vivo

antioxidant activity have not been investigated in terrestrial animals

(Abu Hafsa and Ibrahim, 2018; Aditya et al., 2018; Ao and Kim,

2020). Pekin ducks fed diets containing 0, 0.01 and 0.02% grape seed

extract showed an increase in growth parameters and serum SOD

levels, and a decrease in serum TBARS values (Ao and Kim, 2020).

Similar increases in SOD activity and the reduction in TBARS levels

were also found in the serum and the meat of the broilers fed diets

supplemented with increasing amounts of grape pomace and grape

seeds (Abu Hafsa and Ibrahim, 2018; Aditya et al., 2018). On the

other hand, Rosas et al. (2022) have shown a decrease in the

hepatopancreatic TBARS level of white shrimp fed the diets

containing 0, 2.5 and 5% grape bagasse; this was accompanied by a

slight increase in the hepatopancreatic TBARS level of the white

shrimp, as the dietary grape bagasse was increased from 5% to 15%.

Therefore, it is possible that animals fed diets containing grape extract

have an optimal level of such supplementation and going above this

optimal level will result in both a reduced growth performance and a

detrimental effect on in vivo antioxidant capacity.

Feed manufacturers have used vitamin E as an antioxidant in

aquafeeds for many decades. In terms of highest weight gain, optimal

SOD activity and lowest TBARS levels, the findings of the present

study indicated that 250 ppm of Nor-grape 80 is more suitable than

1000 ppm of vitamin E when producing an aquafeed for white
TABLE 5 SOD activity and TBARS levels in the hepatopancreas of white
shrimp fed dietary treatments for 6 weeks.

Treatments SOD (U/ml) TBARS (µg MDA mg-1

hepatopancreas)

Control 34.394.99c 0.210.01b

N250 73.372.14a 0.110.01d

N500 65.169.46ab 0.160.01c

N750 46.6313.41bc 0.240.01a

N1000 47.090.69bc 0.230.01a

ANOVA

Pr>F 0.020 0.0001

Linear Trend

Pr>F 0.973 0.202

Quadratic Trend

Pr>F 0.101 0.079
Values are presented as mean ± SD (n=3). Different superscript letters in the same column
denote difference between diets (p<0.05).
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shrimp. In the present study, the weight gain of the shrimp fed a diet

supplemented with 250 ppm Nor-grape 80 was almost 2.5 times

higher than that of shrimp fed a diet containing 1000 ppm vitamin E.

As a powerful antioxidant, the grape extract Nor-grape 80, at an

optimal level, is not only able to promote the growth performance

and in vivo antioxidant capacity of white shrimp, but using Nor-

grape 80 will also lower the dietary cost of feeding white shrimp in an

aquaculture system. In 2022, the prices for Nor-grape 80 and vitamin

E in the Taiwan market were US $ 10/kg and US $ 30/kg,

respectively. If 1000 ppm of vitamin E is completely replaced with

a minimum of 250 ppm of Nor-grape 80, one that allows the white

shrimp to reach their highest yield, the dietary cost of the aquafeed

would be reduced by US $ 27.5 per tonne. Notwithstanding the

above, the optimal dietary level of Nor-grape 80 for white shrimp

that will give the maximum growth performance appears to be in the

range between 250 and 500 ppm. This is a wide range and further

large feeding trials of the white shrimp are needed to pinpoint

exactly the optimal dietary level of Nor-grape 80 that gives the best

weight gain. This would need to include a cost-benefit analysis and

the optimal diet might change depending on the market price of

Nor-grape 80, the total feed needed to reach a marketable size for

white shrimp and the price that can be obtained for such white

shrimp in the market place.
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Hernández, G. B. (2021). Phytochemical fortification in fruit and vegetable beverages
with green technologies. Foods 10, 2534. doi: 10.3390/foods10112534

Ayiku, S., Shen, J. F., Tan, B. P., Dong, X. H., and Liu, H. Y. (2020). Effects of dietary
yeast culture on shrimp growth, immune response, intestinal health and disease
resistance against Vibrio harveyi. Fish Shellfish Immunol. 102, 286–295. doi: 10.1016/
j.fsi.2020.04.036
Bagchi, D., Bagchi, M., Stohs, S. J., Das, D. K., Ray, D., Kuszynski, C. A., et al. (2000).
Free radicals and grape seed proanthocyanidin extract: importance in human health
and disease prevention. Toxicology 148, 187–197. doi: 10.1016/S0300-483X(00)00210-9

Bagchi, D., Garg, A., Krohn, R. L., Bagchi, M., Bachi, D. J., Balmoori, J., et al. (1998).
Protective effects of grape seed proanthocyanidins and selected antioxidants against
TPA-induced hepatic and brain lipid peroxidation and DNA fragmentation, and
peritoneal macrophage activation in mice. Gen. Pharmacol-Vasc. S. 30, 771–776. doi:
10.1016/S0306-3623(97)00332-7

Bernhart, F. W., and Tomarelli, R. M. (1966). A salt mixture supplying the national
research council estimates of mineral requirements of the rat. J. Nutr. 89, 495–500. doi:
10.1093/jn/89.4.495

Bhavan, P. S., Devim, N. N., Muralisankar, T., Manickam, N., Radhakrishnan, S., and
Srinivasan, V. (2013). Effects of Myristica fragrans, glycyrrhiza glabra and Quercus
infectoria on growth promotion in the prawnMacrobrachium rosenbergii. Int. J. Life Sc.
Bt. Pharm. Res. 2, 169–182.
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