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A rapid warning method for
wildfire occurrences along the
transmission corridor driven by
power system monitoring data

Xiangxi Duan1,2,3, Qi Huang1,3*, Zhe Chen1,3, Jian Li1,3 and
Xibi Ren1,3

1University of Electronic Science and Technology of China, Chengdu, China, 2State Grid Sichuan
Electric Power Research Institute, Chengdu, China, 3Power system wide area measurement and
control of the Key Laboratory of Sichuan Province, Chengdu, China

This paper focuses on the problems of frequent wildfire occurrences along the

transmission corridor and the lack of accurate and timely monitoring means for

early warnings. Furthermore, this paper evaluates the rapid warning method for

wildfire occurrences along the transmission corridor driven by power system

monitoring data. First, we established the relationship between the historical

data of wildfires along the transmission corridor and the operating state

information of a power grid based on the Apriori association rule algorithm;

the characteristic signals of the transmission line when wildfires occur were

mined. Second, based on the characteristics of the time distribution of wildfire

occurrences along the transmission corridor, a nonlinear regression model was

created to further improve the prediction accuracy. Finally, by combining the

characteristic signals and time distribution characteristics, we developed an

early warning method. This method not only addresses the challenges faced by

meteorological satellite remote sensors caused by the weather, the long transit

time interval, and the high cost of adding sensors, but it also realizes the remote

and rapid early warning of wildfires along the transmission corridor. Finally, a

case study of practical data of a certain area in southwest China is used to verify

the proposedmethod. The results show the high accuracy and timeliness of the

proposed method.

KEYWORDS

wildfire occurrence along transmission corridor, nonlinear regression model, apriori
association rule algorithm, monitor data, weather satellite

1 Introduction

Most renewable energy sources are concentrated in areas far from load centers and

transported over long distances by transmission lines. These renewable energy transmission

corridors are prone to wildfires. The safe and stable operation of those transmission lines is

related to power grid security and people’s livelihoods. However, as those transmission lines

often cross vegetation-rich areas, the transmission corridor is prone to outbreaks of wildfires

due to the combined effects of human activities and meteorological factors, which in turn
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threaten the safety of the power grid in the area and affect the

normal power supply (Lu et al., 2017; Liu et al., 2018). Under

wildfire conditions, the breakdown voltage of the transmission line

will be significantly reduced. This dielectric strength reduction of the

transmission line gap is the result of the combined action of the

flame temperature, electrons and ions, and solid particles (Wu et al.,

2011; Antonov, 2021). When the transmission line is grounded,

short-circuited, or disconnected, it may also induce wildfires. For

example, the direct cause of the March.30 forest fire in Liangshan,

Sichuan Province in China is that wires reserved for connecting

wires on both sides of the tower overlapped with the hoop of the

pole cross-arm support frame under the action of the specific wind

direction. This resulted in a permanent grounding discharge fault,

causing the aluminummetal of the wire body tomelt. The insulating

material caught fire and burned, resulting in a significant loss of life

and property (Accident investigation team, 2021). In another

example, the wildfires in California were mainly caused by the

failure of the power transmission equipment (Muhs et al., 2020).

The traditional transmission line wildfire warning mainly relies

on manual inspections, which require considerable manpower and

material resources. Currently, the research on early warnings for

transmission line wildfires mainly focuses on the installation of

smoke and fire detection devices at fixed locations, the installation of

video surveillance devices for transmission lines, meteorological

radar monitoring, and meteorological satellite remote sensing

image recognition. Based on polar-orbiting satellite and

geostationary satellite images, researchers (Liang et al., 2020)

improved the threshold conditions, and adaptive dynamic

threshold conditions were used for fire spot identification. In one

study (Liu et al., 2020), the authors proposed a transmission line

wildfire fault detection method based on millimeter-wave radar

technology that combined infrared multi-spectral technology with

millimeter-wave radar technology. In another study (Dian et al.,

2019), a cellular automata model based on the principle of disaster

geography was used to predict the spatiotemporal process of

wildfires, and the proposed line interruption model was used to

illustrate the mechanism of wildfire damage to transmission lines. A

spatiotemporal context algorithm based on Himawari-8

geostationary satellite data was proposed in the literature (Chen

et al., 2019). Other researchers (Muhs et al., 2021) proposed a

probabilistic statistics-based hot spot identification algorithm for

transmission lines. The automatic identification algorithm of

wildfires in transmission lines was studied based on the weather

radar echo database and the network monitoring of a new

generation weather radar (Shu et al., 2020). Melnikov et al.

(Melnikov et al., 2008) used S-band dual-polarization radar to

analyze the radar polarization parameter characteristics of a

forest fire echo in Oklahoma, United States. In another work

(Beltramone et al., 2017), researchers used three risk factors of

transmission line historical faults, real-time monitoring data, and

meteorological forecast information, to develop an early warning

evaluation model for transmission line fire prevention based

on AHP.

Meteorological satellite remote sensing is the most widely

used wildfire monitoring technology, which has the advantages of

a wide monitoring range, short monitoring period, and high

spatial resolution. However, there are disadvantages, such as a

long time interval for satellite transit, blind spots in the scanning

coverage, and easy interference in image recognition. Fires

cannot be usually found at first, especially in the case of

wildfires caused by transmission line faults. Installation of

smoke and fire detection devices at fixed locations is costly,

FIGURE 1
Mechanism of generating alarm signals.
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andmaintenance costs are considerable. The use of weather radar

to detect wildfires is still in its infancy, and it is susceptible to

clutter interference, such as that from factories and wind power.

Currently, the power grid has a relatively complete information

monitoring system, and it is possible to carry out fire warning

and analysis based on the information of the power grid

monitoring system. In this paper, we propose a rapid early

warning method for wildfires along the transmission corridors

based on power grid monitoring information. Then the

mechanism’s relationship between wildfires along the

transmission corridors and warning signals is investigated.

The characteristic signals were mined using the Apriori

association rule algorithm based on historical event records

and related alarm signals of wildfires along the transmission

corridor. Early warnings based on characteristic signals are

susceptible to interference from similar warning signals caused

by other power grid equipment failures. To further improve early

warning accuracy, this paper analyzes the time distribution of

regional wildfires along the transmission corridor. A nonlinear

regression model of time distribution was established, and the

optimization of the probability early warning value was carried

out. Finally, by combining the characteristic signals and time

distribution nonlinear regression model, the early warning

method based on the characteristic signals and time

distribution nonlinear regression model was created, and the

remote and rapid early warning of wildfires along the

transmission corridor was realized. This work eliminate the

interference of meteorological conditions on meteorological

satellite remote sensing without additional installment of

sensors. It greatly contributes to manpower and financial

reduction. Meanwhile the safe and stable delivery of large-

scale renewable energy power is guaranteed.

In the first section of this paper, the mechanism’s relationship

between the transmission corridor fire and alarm signal is studied,

and the Apriori association rule algorithm is introduced. In the

second section, the nonlinear regression model of the time

distribution of the wildfire along the transmission corridor is

introduced to solve the problem of easy interference and low

accuracy of the warnings based on the characteristic signals alone.

In the third section, the probability warning value optimization of

the time distribution nonlinear regression model is introduced.

The early warning method based on the characteristic signal of

wildfires and the time distribution nonlinear regression model is

formed, and the remote and rapid early warning of wildfire is

realized. In the fourth section, the feasibility of the method is

verified by numerical examples. Based on the calculations for

Example 1, and using the Liangshan forest fire (30 March) as an

example, the high accuracy and timeliness are demonstrated by

comparing the satellite image recognitionmethodwith themethod

described in this paper without considering the temporal

distribution characteristics of mountain fires. In the fifth

section, we discuss our conclusions, summarize the advantages

of our method compared with the existing methods, and suggest

the applications of the method.

2 Mining characteristic signals of
wildfires along the transmission
corridor based on the apriori
association rule algorithm

2.1 Signal generation mechanism analysis

2.1.1 Power grid failure caused by wildfires
A wildfire is a kind of multiphase weak plasma containing

solid and liquid particles with different particle sizes at high

temperatures. When a wildfire spreads to the vicinity of the

transmission line, the insulation strength of the transmission line

FIGURE 2
The transmission lines were broken by a lightning strike. FIGURE 3

Substandard tying process.
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decreases, and it is easy to cause the trip of the line due to the

phase-to-phase fault and ground fault. The reasons for the

decline of transmission line insulation strength caused by

wildfire are as follows: 1) The high temperature of the flame

reduces the air density, which leads to the decrease of the

insulation level; 2) the electric field near the transmission line

is distorted by the charge in the flame; and 3) particle contact

leads to a discharge (Wu et al., 2011). Figure 1 shows the signal

generation mechanism of a transmission line failure caused by a

wildfire using the transmission lines of various voltage levels in

southwest China as an example.

Most transmission lines of 35 kV and below are non-effective

grounded systems. When a single-phase grounding fault occurs,

the transmission lines will not trip directly and can still run for

approximately 2 h. If a grounding fault occurs on transmission

lines of 35 kV and below, alarms related to grounding will be

triggered. When the ground fault and phase-to-phase fault occur

on transmission lines of 110 kV and above, the relay protection

machine action will be triggered and a trip will be caused.

2.1.2 Wildfires caused by transmission line faults
In the actual operation of transmission lines, faults such as

grounding, short circuits, and transmission line disconnections

may occur due to aging, substandard processes, wind action,

lightning strikes, and other factors. As shown in Figures 2, 3, the

transmission lines were broken by a lightning strike, and the

installation process was not up to standard: these occurrences

may both cause a wildfire.

When a wildfire is caused by a transmission line fault, the

triggering mechanism of the alarm signals occurs as shown in

Figure 4.

As shown in Figure 4, when the above factors cause a ground

fault of the transmission line, the relevant alarm signals will be

triggered. Similar to the alarm signals of a power grid failure caused

by wildfire, alarms related to grounding and relay protection will be

triggered. These alarm signals are sent to the power grid dispatch

center or centralized control station through the remote devices in

the substation. Therefore, it is possible to use the alarm signal of the

control center for the rapid warning for wildfires.

2.2 Characteristic signal mining

The analysis of the signal triggering mechanism and the

characteristics of the power grid equipment in southwest China

revealed the related alarms that may be triggered. These are listed

in Table 1. To further mine the data for the characteristic signals

of wildfires in the transmission corridor during the actual

operation of the power grid, it is necessary to match the

recorded data of wildfires in the transmission corridor with

the substation or power plant on both sides of the line, and

associate the alarm data from 5 h before the start of wildfire to the

end of wildfire in the transmission corridor.

FIGURE 4
Mechanism of generating alarm signals.

TABLE 1 Related alarm signals.

No. Alarm signal

1 Grounding alarm

2 The circuit breaker switch is misaligned

3 Protection trigger of relay protection device

4 Out-of-limit voltage

5 Action of harmonic elimination device

6 Action of traveling wave distance measurement

7 Alarm of excessive zero sequence current
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The Apriori association rule algorithm is used to mine

characteristic signals of transmission lines with different

voltage levels, and the characteristic signals are mined from a

large number of historical alarm data related to wildfire

occurrence along the transmission line. The Apriori

association rule algorithm is an iterative method of the layer-

by-layer search. Its core idea is to generate candidate items and

their support through connection and then generate frequent

itemsets through pruning. The algorithm flow is shown in

Figure 5.

The Apriori association rule algorithm is used to mine

characteristic signals of transmission lines with different

voltage levels. This is mined from a large number of historical

alarm data related to wildfire occurrence along the transmission

corridor. The Apriori association rule algorithm is a layer-by-

layer iterative search method that generates candidate items and

their support by concatenation and then generates frequent

itemsets by pruning (Tian et al., 2020).

The alarm signal is expressed as follows:

Zi(1≤ i≤ 7, i ∈ N) (1)

where i is the serial number of a characteristic signal.

Support = P(Z1 Z2) is the probability of event Z1 and event

Z2 happening at the same time.

Confidence = P(Z2|Z1) � P(Z1 Z2)/P(Z1) is the probability
of event Z2 occurring based on event Z1.

Itemset k: If an event contains k elements, the event is called

itemset k.

FIGURE 5
The computational process of the Apriori association rule
algorithm.

FIGURE 6
The calculation process of the order determination of fitting
curve function.
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Frequent itemset k: The event met the minimum support

threshold.

Strong association rules: The k-dimensional data itemset is a

necessary condition for a frequent itemset, which is the set of all

its k − 1 dimensional subitems, and is also a frequent itemset.

These are rules that meet both minimum support thresholds and

minimum confidence thresholds.

The computational process of the Apriori association rule

algorithm is shown in Figure 5.

As shown in Figure 5, the one-dimensional itemset is scanned,

and the one-dimensional frequent itemset is generated if the

minimum support is satisfied. The one-dimensional itemset

that satisfies the minimum support continues the minimum

support calculation for the two-dimensional itemset until the k

itemsets do not satisfy the minimum support. In the frequent

itemset k − 1, the itemsets that do not meet the minimum support

have been eliminated. If the remaining itemset meets the

minimum confidence requirement through the confidence

calculation, then the strong association rule in the itemset is

obtained, and the itemset that meets the strong association rule

is the characteristic signal.

3 Time distribution of regional
wildfires along the transmission
corridor

The analysis of the signal generation mechanism of a

transmission corridor wildfire in the previous section indicated

that the characteristic signal can realize the remote and rapid early

warning of a transmission corridor wildfire. However because the

grid equipment operation fault or abnormality will also trigger a

similar signal, relying only on the characteristic signal will trigger

the early warning frequently and the accuracy of early warning is

low. However, due to seasonal climate changes, vegetation

changes, human activities, and other factors, the transmission

corridor wildfires have the characteristics of time distribution

and an auxiliary feature signal for judgment, which can

improve the accuracy of the early warning.

A nonlinear regression model was established by polynomial

(Lamich et al., 2017). The frequency of wildfires distribution in

each month is expressed as follows:

Xmi(1≤ i≤ 12, i ∈ N), (2)

where i indicates a month in a year.

The monthly probability distribution of wildfires in this

region is as follows:

Pmi � Xmi

∑12
i�1Xmi

. (3)

Similarly, i indicates an hour in a day, and the hourly

probability distribution of wildfires in this region is

Phi � Xhi

∑24
i�1Xhi

. (4)

Equations 3, 4 were used to calculate the probability

distribution, and then curve fitting was carried out to establish

a nonlinear regression model, which was represented by polyfit

(x,y,n). x represents the number of months or hours, y represents

the probability value of the corresponding months or hours, and

n represents the order of the fitting curve function. Since the

occurrence probability of a wildfire near the transmission line is a

low-probability event, to ensure that the accuracy of the model

reaches 0.001, the order of fitting curve function is first

determined by the successive increment method. The monthly

distribution of wildfires in the transmission corridors can serve as

an example; the calculation process of order determination is

shown in Figure 6.

The expression of polyfit (x,y,n) for the fitting curve function

is as follows:

f(x, y, n) � polyfit(x, y, n) (5)

Initially, the order n of polyfit (x,y,n) is 1, Length (y) is the

length of counting months, which is 12. J is the cyclic value of

calculating the length, and j = 1 at the beginning.

The square of the difference between the probability fitting

value and the historical probability value is (y(j) -y (j)) 2̂. When

FIGURE 7
Optimization process of probability warning value.
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all the calculated results are less than the precision threshold, the

order n that satisfies the precision of the fitting curve is output.

Combined with the calculation process, the calculation is

cyclic from the time when the order n is 1, and finally the order n

when the required precision is obtained.

Similarly, we take the monthly probability distribution of

wildfires along the transmission corridor as an example; after

determining the order n that meets the accuracy requirement, the

sample point is (xmi, ymi), mi � 1, 2, 3,/, 12, so the probability

fitting value is ŷmi � anxn
mi + an−1xn−1

mi +/ + a0. The loss

function L is as follows:

L � ∑
12

i�1
(Ymi − ŷmi)2 � ∑

12

i�1
(Ymi − anx

n
mi − an−1xn−1

mi −/ − a0)2

(6)
Tominimize the loss function L, the partial derivative of each

coefficient of the loss function is taken so that the value of the

partial derivative is 0, which can be calculated using Eq. 7:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zL

zan
� 0

zL

zan−1
� 0

..

.

zL

za0
� 0

(7)

By solving these equations, we obtain the regression

coefficient that minimizes the loss function L, that is, the

regression coefficient of the fitting curve function polyfit

(x,y,n), and finally have the nonlinear regression model with

the required accuracy.

4 An early warning method based on
the characteristic signal and time
distribution nonlinear regression
model

Here, we elucidate the early warning method by combining

the characteristic signals mined based on the Apriori association

rule algorithm and the established nonlinear regression model of

the time distribution of wildfires in the transmission corridor in

the previous section.

4.1 Optimization of probability warning
value

The probability warning value of the nonlinear regression

model is set as PAlarm. When the probability of the nonlinear

regression model reaches the warning value, the warning about

the time distribution is output. To optimize the probability early

warning value, the increasing substitution method is used to

optimize the early warning value. The final accuracy rate is set as

the target value, and the purpose of optimization is to maximize

it, as defined in the following formula:

PTarget � (min(number of warnings)∣∣∣∣max(The number of

correct warnings)). (8)

To ensure that no correct early warning is missed, the target

value is the probability of the minimum number of early warning

corresponding to the maximum number of correct early warning.

The calculation process is shown in Figure 7, where 1 hour is

taken as a step.

As shown in Figure 7, the probability warning value of each time

point of the year P is calculated in hourly steps, and then the warning

value PAlarm is set. The occurrence of wildfires in transmission

corridors is a small probability event. To ensure the accuracy of

the model reaches 0.001, it is calculated in steps of 0.0001,

incrementing from 0 to 1, and finally making PTarget reach the

maximum, i.e., the output of the corresponding optimalwarning value.

4.2 The early warning process

The probability of the early warning process of wildfire along

transmission corridor based on the characteristic signals and

FIGURE 8
Warning model based on the characteristic signal and time
distribution nonlinear regression.
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time distribution nonlinear regression model is shown in

Figure 8.

Figure 8 and Eq. 9 show that, among the characteristic signals

of transmission lines with different voltage levels, the output

Boolean quantity is 1 when the characteristic signals are detected.

Otherwise, the output Boolean quantity is 0:

Ti → bool: 1
Ti → bool: 0

(9)

As shown in Eq. 10, the warning value of the nonlinear

regression of the time distribution is set as PAlarm. When the

warning value is reached, the Boolean value of the output

warning value is 1; otherwise, the Boolean value of the output

is 0:

P≥ PAlarm → bool: 1
P< PAlarm → bool: 0

(10)

When both the characteristic signal and the nonlinear

regression warning of the time distribution meet the

conditions, the warning will be output to realize the

estimation of the wildfire occurrences along the power grid

driven by the power system monitoring data.

5 Experimental verification

5.1 Examples of typical areas

5.1.1 Characteristic signal mining
We take the states with the most serious wildfire hazards in

southwest China as an example: 277 wildfire incidents occurred

in 2020, including 57 directly affecting the power grid. The

records of the wildfire incidents along the transmission

corridor are shown in Table 2.

The events include the fire start time, fire end time, and the

name of the transmission line. The start time is the time when the

fire is discovered and reported, and the end time is the time when

the fire is confirmed to be over.

There were 31 events involving transmission lines of 110 kV

and above. The recorded data of the wildfires in the transmission

corridor with the substation or power plant on both sides of the

line are matched, and the alarm data from 5 h before the

transmission corridor fire starts to the end of the fire are

associated to form a dataset. Based on the alarm signals in

Table 1 and the process in Figure 5, the dataset was scanned

to obtain the support of each candidate, and the minimum

support threshold was set to 0.1. By comparing the candidate

support count with the minimum support, Z4 and Z7 do not

satisfy the condition of one-dimensional frequent set. {Z2, Z5}
and {Z3, Z5} do not satisfy the two-dimensional frequent itemset.

All items do not satisfy the three-dimensional frequent itemset.

Therefore, the maximum frequent itemset is two dimensions.

Then the confidence of each two-dimensional frequent itemset is

calculated, and the calculation results are shown in Table 3.

Similarly, there are 26 events in 35 kV and below lines, and

the dataset is scanned to obtain the support of each candidate

item. Since the data are relatively dense, the minimum support

threshold is set to 0.9. Compared to the candidate support count

with the minimum support, Z2, Z3, Z5, Z6, and Z7 do not meet

the one-dimensional frequent set. {Z1, Z2}, {Z1, Z5}, and {Z1, Z7}
do not meet the two-dimensional frequent itemset. All are not

satisfied with the three-dimensional frequent itemset. The

maximum frequent itemset is two-dimensional. Then the

confidence of each two-dimensional frequent itemset is

calculated. The calculation results are shown in Table 4.

Using the calculation results for 35 kV and below lines, the

grounding alarm signal Z1 and voltage overrun signal Z4 were

selected as the characteristic signals.

5.1.2 Nonlinear regression model
The distribution probability of the hours and months was

obtained through the processing of the historical record data, as

shown in Tables 5, 6.

Using the calculation process of fitting the order of the curve

function in Figure 6, the order is determined as 5 by substituting

the data in Tables 5, 6, that is, n = 5.

Using the monthly distribution probability of wildfires in

Table 5, the nonlinear regression model of the monthly

distribution was established, as shown in Eq. 11:

f(xm, ym, 5) � polyfit(xm, ym, 5)
� a5x

5
m + a4x

4
m + a3x

3
m + a2x

2
m + a1xm + a0 (11)

By solving Eqs 6, 7, the regression coefficient of the nonlinear

regression model of the monthly distribution was obtained, as

shown in Eq. 12:

TABLE 2 Manual record of wildfires.

No. Transmission line name Start time End time Affects
the power grid

1 220 kV Xilin February 3 15:10 February 3 22:20 Yes

2 35 KV Lula January 8 14:52 January 9 07:04 Yes

3 10 KV Kaiyuan February 8 15:40 February 9 08:00 Yes
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a5 � 0.0016
a4 � −0.0728
a3 � 1.2164
a2 � −8.8449
a1 � 22.8692
a0 � 4.4424

(12)

Using the hourly distribution probability of line mountain

fire in Table 6, the nonlinear regression model of the hourly

distribution was established, as shown in Eq. 13:

f(xh, yh, 5) � polyfit(xh, yh, 5)
� a5x

5
h + a4x

4
h + a3x

3
h + a2x

2
h + a1xh + a0 (13)

By solving Eqs 6, 7, the regression coefficient of the nonlinear

regression model with the hourly distribution was obtained, as

shown in Eq. 14:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a5 � 0.0001
a4 � −0.0070
a3 � 0.1376
a2 � −1.0139
a1 � 2.7384
a0 � −1.5313

(14)

Finally, the nonlinear regression model of time distribution is

shown in Eq. 15:

P � polyfit(xm, ym, 5)•polyfit(xh, yh, 5) (15)

The time probability of wildfires along the transmission

corridor of this region was obtained by inputting the monthly

hours of the whole year into the nonlinear regression model of

time distribution with an hour as the step, as shown in Figure 9.

It can be seen from the figure that the time distribution

probability of wildfires in this area is very obvious, and it is

impossible for wildfires to occur during certain times. In

February at 16:00, the time probability of wildfires is the

highest (0.025). From the 12-month distribution of the whole

year, the frequency of wildfires is lower in the summer and

autumn and higher in the winter and spring. During the Chinese

New Year and Tomb-Sweeping Day, it reaches the peak

(February). In the months with a high frequency of line

wildfires, the probability of wildfires in 24 h presents a normal

distribution.

5.1.3 Optimization of the probability warning
value

After the time probability of wildfires is obtained, the

probability warning value PAlarm of the time distribution is

optimized. Multiple mountain fires occurring at the same

hour are assumed as one time for calculation, so that the

probability warning value PTarget can be reached. The

calculation results are shown in Figure 10.

As it can be seen in Figure 10 and according to the definition

of Eq. 8, through the optimization of probability early warning

value PAlarm, PTarget � 0.005. At this time, the number of correct

early warnings is 57, the total number of early warnings is 61, and

the probability of an accurate early warning is 93%. When the

probability warning value continues to increase, the probability

of an accurate warning can be further improved, but the number

of correct warnings is sacrificed.

TABLE 3 Transaction dataset of 110 kV and above transmission lines.

Signal P(Zi) Rule P(Zi Zj) P(Zi|Zj)

Z1 54% Z1 → Z2 14% 26%

Z2 46% Z2 → Z1 14% 31%

Z3 46% Z3 → Z1 14% 31%

Z4 3% Z1 → Z3 14% 26%

Z5 28% Z2 → Z3 100% 100%

Z6 0% Z3 → Z2 100% 100%

Z7 3% Z5 → Z1 14% 50%

Z1 → Z5 14% 26%

TABLE 4 Transaction dataset of 35 kV and below transmission lines.

Signal P(Zi) Rule P(Zi Zj) P(Zi|Zj)

Z1 100% Z1 → Z4 96% 96%

Z2 88% Z4 → Z1 96% 100%

Z3 88%

Z4 96%

Z5 77%

Z6 0%

Z7 85%

TABLE 5 Monthly distribution probability of wildfires.

Month 1 2 3 4 5 6

Pmi 0.21 0.18 0.27 0.13 0.10 0.023

Month 7 8 9 10 11 12

Pmi 0.002 0.014 0.009 0.008 0.02 0.047

TABLE 6 Hourly distribution probability of wildfires.

Hour 1 2 3 4 5 6

Phi 0.006 0.008 0.002 0.002 0 0.003

Hour 7 8 9 10 11 12

Phi 0.008 0.017 0.014 0.045 0.055 0.048

Hour 13 14 15 16 17 18

Phi 0.067 0.12 0.11 0.10 0.13 0.08

Hour 19 20 21 22 23 24

Phi 0.06 0.04 0.05 0.02 0.008 0.003
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5.1.4 Warnings of wildfires along transmission
corridors

The monitoring and alert information of the power grid in

January 2021 was extracted from the database of the main power

grid regulation and control station of the city and state and

calculated by substituting the alert process in Figure 8. In

January 2021, there were three transmission corridor wildfire

events affecting the grid operation in the region. To verify the

accuracy of the time distribution regression model for the

transmission corridor fires, the monitoring and warning

information of the power grid was also substituted into the

characteristic signal model without considering the time

distribution regression warning. The prediction results using

satellite image recognition technology for the same period were

collected and compared to obtain the results shown in Figure 11.

Figure 11 shows that for the example of the transmission

corridor wildfires affecting the power grid that occurred in the

region in January 2021, the early warning model based on the

FIGURE 9
Time probability of wildfires.

FIGURE 10
Optimization results of probability warning values.
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characteristic signal and time distribution regression warned three

times, while the satellite image recognition only warned correctly

two times. There is a significant difference in the accuracy of these

methods. With the proposed model, it warns 13 times with an

accuracy of 23%. For the characteristic signal model without

considering the time distribution regression warning, it warned

183 times with an accuracy rate of only 1.6% due to the numerous

disturbing signals in the actual operation of the power grid. The

satellite image recognition warned 134 times with an accuracy rate

of 1.5%. Further analysis of the warning time is shown in Table 7.

FIGURE 11
Comparison of prediction results.

TABLE 7 Warning times.

No Model based on
characteristic signal and
time distribution regression

Satellite image recognition Manual recording

1 January 3 15:05 January 3 15:25 January 3 15:05

2 January 7 13:40 January 7 13:50 January 7 13:57

3 January 3 13:15 None January 3 13:30

TABLE 8 Records of wildfires affecting power grid in Liangshan district in March 2020.

No Voltage level (kV) Start time End time Impact and measures

1 220 March 30 17:12 March 30 21:09 Relay protection starts trip

2 10 March 30 17:00 March 30 17:41 Ground fault and no trip

TABLE 9 Warning times.

No. Voltage Level (kV) Warning condition Early warning model
in this paper

Lead time

1 220 The characteristic signal is triggered, and the time probability reaches the warning value March 30 17:12 0 min

2 10 The characteristic signal is triggered, and the time probability reaches the warning value March 30 15:33 87 min
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The data in Table 7 indicate the satellite image identification

technique is limited by the long transit time interval, the

existence of blind areas in the scanning coverage, and the

influence of weather. Two warning times are later than the

method described in this paper. Because of the monitoring

background alarm information update time of 1 minute, the

early warning model based on the feature signal and time

distribution regression was 12 and 15 min earlier than the

manually determined start time in events 2 and 3, respectively.

5.2 Examples of “30 March” forest fire in
liangshan, sichuan province

For the “30 March” forest fire in Liangshan, Sichuan in 2020,

the fire was caused by a transmission line fault. Since the

Liangshan region is adjacent to the above modeled area and

has similar geographical and climatic conditions, the above

model was used to extract the monitoring alarm information

from the monitoring background for the Liangshan region in

March 2020. In March 2020, there were two incidents of wildfires

affecting the power grid in the Liangshan region, as shown in

Table 8, among which the “3–30” forest fire is incident 2.

Our calculations show that the number of early warnings was

11, the correct number was two times, and the accuracy was 18%.

The early warning results were analyzed (in March 2020, wildfire

warnings based on satellite image recognition technology were

not issued in this province), as shown in Table 9.

Table 9 indicates that the warning time of the proposed

method is synchronized with the start time of the manual

recording for 220 kV lines. For the “30 March” forest fire

incident, since a single-phase ground fault does not directly

trigger a trip in the transmission lines of 35 kV or below, the

method in this paper has more obvious warning timeliness and

can warn of a wildfire 87 min in advance.

6 Conclusion

This paper puts forward a rapid warning method for

wildfires based on state grid monitoring information. First,

the characteristic signals of wildfires were determined based

on the mechanism analysis of the power grid alarm signals of a

transmission line wildfire. To improve the warning accuracy,

the time distribution characteristics of wildfires were

analyzed, and the nonlinear regression model of the time

distribution was established. We combined them to develop

an early warning method based on the

characteristic signals and the time distribution nonlinear

regression model.

The effectiveness of the method was verified through typical

regional arithmetic examples. Compared with the method based on

satellite image recognition technology, the method can overcome

the disadvantages of a long transit time interval, areas without

adequate scanning coverage, weather, and other types of

interference. The accuracy rate reaches 23%, which is much

higher than that of satellite image recognition, and can provide

earlier warnings compared with the start time of manual recordings.

The advantage is obvious for the wildfires caused by transmission

line faults. For the example case of the “30 March” wildfire in

Liangshan, the method could have provided a warning 87 min

earlier, further proving its effectiveness and rapidity, especially for

low-voltage lines.

The method proposed in this paper does not require

additional sensors and can avoid the interference of

satellite image identification due to meteorological

conditions. By combining with existing monitoring

methods, such as satellite image identification technology

and sensor detection, it can provide a complementary

advantage for wildfire warning systems. Thus, it can be

used as a powerful supplement to the existing wildfire

prevention and control measures to guarantee the security,

stability, and economic operation of large power grids.

Furthermore, this can be effective in protecting people’s

lives and property from devastating wildfires.
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As the lifeline of energy supply for various offshore projects, accurately

evaluating and predicting the operation status of submarine cables are the

foundation for the reliable operation of energy systems. Based on fully mining

the dynamic and static characteristics of submarine cable operation and

maintenance data, this paper proposes a submarine cable operation status

prediction method based on a convolutional neural network—bidirectional

gated recurrent unit (CNN-BiGRU) integrating attention mechanism. Firstly,

the evaluation index system of the submarine cable operation status is

established by considering three key influencing factors including online

monitoring, routine inspection, and static test. Then, the operation condition

evaluation model for submarine cable is constructed based on the cooperative

game theory and the multi-level variable weight evaluation. Finally, the CNN-

BiGRU combined neural network model integrating the attention mechanism is

established, and the historical operation data and condition quantification

results (health value) are used as input characteristic parameters to predict

the evolution trend of the operation status of the submarine cable. The case

study shows that the proposed method can effectively predict the operation

status of submarine cables, and the root mean square error of the prediction is

as low as 1.36%, which demonstrates the superior performance compared with

the back propagation (BP) neural network, CNN, long short-term memory

(LSTM), CNN-LSTM, and other algorithms.

KEYWORDS

submarine cable, condition prediction, convolution neural network, bidirectional gate
recurrent unit, attention mechanism, condition evaluation

1 Introduction

In order to achieve carbon neutrality and solve the global energy crisis, the utilization

of marine resources is in a stage of rapid increase, which has driven the rapid development

of various offshore wind farms, offshore oil and gas platforms, and other marine projects.

Submarine cables are not only the main artery between offshore wind farms and onshore
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power systems but also the lifeline of power and communication

between offshore platforms and production systems, as well as

the strategic foundation for building new offshore power systems

based on distributed renewable energy (Bastien et al., 2018; Liu

X.et al., 2019; Purvins et al., 2018). Until 2021, there are more

than 450 submarine cables in use around the world, with a total

length of over 1.2 km × 106 km (Xie et al., 2022). The reliable

operation of submarine cables is essential for the normal

operation of offshore projects. Due to the particularity of the

environment where the submarine cable is located, it is

inconvenient to carry out a routine manual inspection or

UAV inspection. In recent years, thanks to the rapid

development and application of optical fiber sensing

technology, the relevant operating parameters of the

submarine cable can be obtained in real-time (Fang et al.,

2020; Antonio et al., 2021; Miguel et al., 2021; Cao et al.,

2022), such as temperature, disturbance, strain, and other

information of the submarine cable. These monitoring data

can be used for operating condition evaluation and condition

prediction (Lv et al., 2014; Xu et al., 2019), so as to understand the

health status of the submarine cable, and the preventive

maintenance can be carried out in a targeted manner, thereby

improving the operation reliability of the offshore integrated

energy system.

Condition monitoring and evaluation play an indispensable

role in the electrical equipment area, many scholars have carried

out related research on this issue. In terms of submarine cables,

Wei et al. (2015) proposed an online monitoring method for

500 kV submarine oil-filled cable sheath insulation, and Liu Z.

et al. (2019) established an evaluation model for the deterioration

state of submarine cables considering factors such as

morphology, chemical structure, mechanical properties,

thermal properties, and dielectric properties, and the

transformation of the sheath insulation current leakage ratio

and the grounding loop circulating current inductance were used

as the basis for sheath insulation judgment, and insulation

condition of the submarine cable jacket was monitored by

Zhou et al. (2018) and Nie et al. (2020). According to the

requirements of field survey and data management in

submarine cable inspection by remote-operated vehicle (Lei,

2021), analyzed the characteristics of submarine cable tracker

and underwater video inspection data, designed reasonable

system architecture, implemented real-time monitoring and

data management of submarine cable inspection based on

underwater navigation and positioning. Chen et al. (2021)

proposed enhanced coherent optical time-domain

reflectometry (E-COTDR) for monitoring submarine cable

loss and vibration. Chen et al. (2020) established a

temperature monitoring system based on Brillouin Optical

Time Domain Analysis (BOTDA) technology, and the

accuracy of the submarine cable temperature monitoring

system based on optical fiber technology was verified.

Jianfeng, (2019) proposed a submarine cable fault data

monitoring method based on big data fusion and feature

extraction. However, few studies have focused on the

comprehensive evaluation and prediction of the submarine

cable operating condition, which is essential for preventive

maintenance.

With the rapid development of artificial intelligence, various

intelligent algorithm models have been wildly used in various

fields, such as load prediction and condition prediction. Pu et al.

(2020) and Liu et al. (2019a) expounded on the application and

development of big data in electrical equipment condition

monitoring and analyzed the existing deficiencies and

prospects. Xu and Jiang, (2022) developed a power load

prediction method based on BiGRU-Attention-SENet, which

combines the characteristics of different neural networks to

improve accuracy. Tang and Yuan, (2022), Dai et al. (2018),

and Song et al. (2018) used neural networkmodels, such as CNN-

BiGRU and LSTM, to predict the remaining useful life of lithium

batteries and the condition of transformers. However, due to the

special application scenarios and equipment properties of

submarine cables, there are few studies dedicated to the

evaluation and prediction of their operating condition.

Therefore, a submarine cable operation condition evaluation

and prediction method based on CNN-BiGRU integrating

attention mechanism is proposed in this paper. Firstly, a

submarine cable status evaluation index system is established

based on relative industry standards. Secondly, based on the

cooperative game theory and the idea of multi-level variable

weight, the comprehensive evaluation model of health status for

submarine cables is developed. Thirdly, a submarine cable

operation status prediction method based on CNN-BiGRU

integrating attention mechanism is proposed, and the

historical operation data and condition evaluation results are

used as input characteristic parameters to predict the operation

condition of submarine cables. Finally, the validity and feasibility

of the proposed methodology are demonstrated through a

submarine cable in Bohai, China. The contributions of this

paper are as follows:

(1) Based on the industry guidelines and comprehensively

considering the structural characteristics, operation

history, maintenance and fault data of submarine cables,

and the online monitoring data, a submarine cable status

evaluation index system is established, which can accurately

and comprehensively evaluate the operation condition of

submarine cables.

(2) A multi-level variable weight submarine cable condition

evaluation method is developed based on cooperative

game theory, which can effectively change the evaluation

weight adaptively according to different operating periods of

the submarine cable, in order to obtain an appropriate

comprehensive submarine cable operating condition.

(3) A CNN-BiGRU model integrating attention mechanism is

proposed to predict the condition of submarine cables. CNN
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is used to exploit the relationship between the various feature

parameters, while BiGRU is used to capture long-term

decencies from time series data. The attention mechanism

is introduced to give different weights to the implied

conditions of BiGRU through the mapping weighting and

learning parameter matrix, so as to strengthen the influence

of important information and further improve the

forecasting efficiency.

(4) To verify the effectiveness of the proposed model, it is

compared with different models, such as BP, LSTM, GRU,

CNN-LSTM, and CNN-BiGRU. The maximum percentage

of prediction error σE-max, the root mean square error RMSE,

and the mean absolute percentage error MAPE of different

models are calculated to evaluate the performance. The

results demonstrate that the forecasting accuracy of the

proposed model is greatly improved.

The remainder of this paper is organized as follows: The

operation condition evaluation model of submarine cable is

described in Section 2, and Section 3 presents the CNN-BiGRU

prediction method integrating the attention mechanism for

submarine cable operation condition. Case studies are conducted

and analyzed in Section 4. Finally, conclusion are drawn in Section 5.

2 Submarine cable operation
condition evaluation model based on
cooperative game theory and multi-
level variable weight

2.1 Evaluation index system of submarine
cable operation condition

Considering that many indicators can reflect the operating

status of submarine cables, on the basis of fully considering the

structural characteristics, operation history, maintenance, and

fault data of submarine cables, combined with the “Operation

Regulations for Submarine Power Cables (DL/T1278-2013)”

issued by the National Energy Administration of China, this

paper constructs an evaluation index system of submarine cable

operation condition covering three aspects: online monitoring,

routine inspection and static test, which integrates 21 important

indicators for the submarine cable components, as shown in

Figure 1.

2.2 Determination method of index layer
weight based on cooperative game theory

2.2.1 Subjective weight based on improved
analytical hierarchy process

AHP is the most commonly used weight determination

method in the condition assessment research field. It has high

practicability and simplicity, and its essence is to obtain its

importance scale C (C = 1, 2, , 9) for subsequent calculation.

Cause the value of C is relatively fixed, the result will deviate from

the ideal expected value during the weight calculation. Besides,

due to the ambiguity caused by scattered comparison, a

consistency check is required (Cui et al., 2021; Ge et al.,

2022). Therefore, an improved AHP method is proposed, and

the process is as follows:

(1) Determine the importance of indicators.

In this paper, the score is used to replace the 1–9 scale

method used by traditional AHP. First, the industry standards are

comprehensively considered to obtain the importance score S of

each indicator, and then the corresponding judgment matrix is

obtained by comparing the importance scores of each indicator.

The contrasted factor values are more accurate, and due to the

certainty of the importance score, the proposed method does not

need to be checked for consistency.

(2) Construct the judgment matrix.

Based on the importance value of each index obtained, a

judgment matrix C1 is constructed by quantifying the

comparison factor cij (i, j = 1, 2,...,n):

C1 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 c12 c13 / c1n
c21 1 c23 / c2n
c31 c32 1 / c3n
..
. ..

. ..
.

1 ..
.

cn1 cn2 cn3 / 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1)

The mathematical expression of cij is:

cij � Si/Sj (2)

where cij is the value of the i-th row and j-column of the

constructed matrix, and Si is the importance score of the i-th

index.

(3) Determine the subjective weights.

The row means of the constructed judgment matrix after

column normalization is the weight w, and its mathematical

expression is:

cpij � cij/∑
n

X�1
cix (3)

wj subjective �
∑n
X�1

cpXj

n
(4)

where cij* is the value after column normalization of the data in

the i-th column and the j-th row, wj_subjective is the subjective

weight of the j-th index.
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2.2.2 Objective weight based on entropy weight
method

Entropy is a measure for judging the degree of disorder of

the system. The entropy weight measures the dispersion

degree of each grass-roots index through the entropy value

and then judges the degree of influence (weight) of the index

on the comprehensive result (Zhu et al., 2020). The basic

process is as follows: For the selected n indicators and m

groups of evaluation data, the evaluation data is normalized

to construct an evaluation matrix C2 (m × n):

C2 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x12 x13 / x1n

x21 1 x23 / x2n

x31 x32 1 / x3n

..

. ..
. ..

.
1 ..

.

xm1 xm2 xm3 / 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)

FIGURE 1
Evaluation index system of submarine cable operation condition.
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where xij is the i-th group of data of the j-th index.

The data of C2 is normalized by the range transformation

method (that is, the worst value of each attribute after processing

is 0, and the optimal value is 1) to calculate the data index ratio zij,

and its mathematical expression is:

Xp � X −Xmin

X max −Xmin
(6)

Xp � Xmax −X

Xmax −Xmin
(7)

zij �
Xp

ij

∑n
i�1
Xp

ij

(i � 1, 2, ..., n; j � 1, 2, ..., m.) (8)

where (7) and (8) are the range transformation formulas of

benefits data and cost data, respectively. X*, Xmax, and Xmin are

the value after range processing, the maximum value of the

column, and theminimum value of the column, respectively. zij is

the data index ratio of the j-th item evaluation index (when zij is

0, take lnzij = 0).

According to the normalized data, the information entropy ej
of each index is obtained, and the entropy weight w of each

evaluation index is finally calculated. Its mathematical

expression is:

ej � − 1
ln n

∑
n

i�1
(zij ln zij) (9)

wj objective � 1 − ej

∑m
j�1
(1 − ej)

(10)

where wj_objective is the objective weight of the j-th index.

2.2.3 Determination of the weight of the
indicator layer based on the cooperative game
theory

The basic idea of the cooperative game theory is to combine

several different types of weight methods and use the cooperative

game idea as a whole to determine the combined weight, so as to

ensure the rationality and accuracy of the weight determination

(Li et al., 2021). Denote the weight bymethod i (i = 1, 2,..., n) asW

(i), and the final combined weight W. The specific steps are as

follows:

(1) Consistency correlation coefficient calculation.

Denote W(m_i) as the combined weight obtained by m-1

methods other than the i-th method, and the mathematical

expression of the consistency correlation coefficient L (i) is:

L(i) �
∑
j�1

n

[Wj(i) −W(i)][Wj(m i) −W(m i)]

{∑
j�1

n [Wj(i) −W(i)]2}
1/2

{∑
j�1

n [Wj(m i) −W(m i)]2}
1/2

(11)

Where n is the number of evaluation indicators, and “—” means

the average of the values.

(2) Calculate the combined weight W’(i).

W′ � ∑
m

i�1
W(i)L(i) (12)

(3) The combined weight is obtained recursively, that is, the

number of weights is reduced by 1 after each calculation of

the formula until the number of weights is 2.

(4) When the number of weights is 2, the mathematical

expression of W’(i) is:

W′ � W(1) +W(2)
2

(13)

2.3 Project layer dynamic self-adaptive
weight determination method

Regarding the weight coefficient of the project layer of the

evaluation system is relatively fixed, due to the difficulty of

inspection and testing for the submarine cable. A dynamic

adaptive mechanism is used to determine the weight of the

project layer: 1) when the submarine cable is in the inspection

and static test stage, weights of monitoring, inspection indicators,

and static tests are determined based on the guidelines and

improved AHP. 2) when the inspection indicators and static

tests are in a stable period, the weights of the indicators of each

project layer are dynamically updated based on the expert

evaluation results, so as to more accurately grasp the real-time

operation status of submarine cables. Taking a certain period of

submarine cable as an example, experts fully consider the historical

condition and determine the importance score k (k = 0, 1, . . ., 5) of

each project layer according to factors such as the operating period

of the submarine cable, and accumulate the importance score of

the project layer. The mathematical expression of value Ki is as

follows:

Ki � ∑
n

j�1
Kij (14)

Where Ki is the sum of the expert scores at the i-th project

level, and n is the number of experts participating in the

scoring as shown in Table 1.

According to scoring results of the experts, the latest

weight of each project layer is calculated by using the AHP

method. The construction matrix and its results are shown in

Table 2. The mathematical expression of the calculation

process is as follows:

Spij � Sij/∑
n

X�1
Six (15)
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wj project �
∑n
X�1

Spij

n
(16)

where Sijp is the value after column normalization of the data in

the i-th column and the j-th row, and wj_project is the row mean

(weight).

2.3 Comprehensive condition evaluation
of submarine cable

The mathematical expression of the final health value M of

the submarine cable is as follows:

M � mKT (17)

where KT is the life coefficient, m is the sum of the evaluation

index of the submarine cable.

The mathematical expressions of KT and m are:

KT � 100 − λ × 0.5
100

(18)

m � ∑
n

i�1
miwi (19)

where n is the number of index layers, λ is operation years, wi is

the weight coefficient of each project layer, mi is the evaluation

value, and the mathematical expression is:

mi � ∑
ni

j�1
wijgijKij (20)

where wij is the grass-roots index weight, Kij is the family defect

coefficient, it equals 0.95 if there is a family defect, and 1 if there is

no family defect. gij is the evaluation value of a single indicator

and its mathematical expression is:

gij � 100 × (1 −
∣∣∣∣∣∣∣∣1 −

ywr − ynow

ywr − yst

∣∣∣∣∣∣∣∣) (21)

Where ywr, ynow, and yst are the warning value, monitoring value,

and standard value of the indicator, respectively.

The obtained comprehensive health assessment value M of

the submarine cable is used as the predicted output label to

calibrate the operation condition of the submarine cable. The

numerical segmentation of M is as follows:

Assessment status �
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

normal (M≥ 90)
notic (90>M≥ 75)
abnormal (75>M≥ 60)
serious (M< 60)

(22)

3 Convolutional neural network-
Bidirectional gated recurrent unit
prediction model integrating
attention mechanism

3.1 Principle of deep learning

3.1.1 Convolutional neural network
The advantage of CNN is to mine the potential associations and

local features of the data to improve the efficiency and accuracy of

the model with higher fault tolerance. The core of its structure is the

convolution layer, which obtains potential features through the

convolution operation between the convolution kernel and the

input data. The mathematical expression is:

xji � f(xj−1pwji + bji) (23)

where xji is the i-th feature of the output of the j-th layer, xj-1 is

the output of the j-1th layer, wji is the weight matrix of the i-th

convolution kernel of the j-th layer, bji is the bias term, and p is

the convolution operator.

The relu activation function is used for all of the models in

this paper, and its mathematical expression is:

f(z) � { 0 (z< 0)
z (z≥ 0) (24)

The structure diagram of CNN is shown in Figure 2 (Li et al.,

2013).

3.1.2 Bidirectional gated recurrent unit
LSTM neural network is the most commonly used network

model for processing sequence data. It can achieve long-term

memory through a unique gating unit, and then effectively solve

the gradient problem existing in traditional recurrent neural

networks. Compared with LSTM, GRU has a simpler

structure, fewer parameters, higher computation efficiency,

TABLE 2 AHP calculation of project layer weight.

S1 S2 S3 Weight (wj)

S1 1 18/11 18/11 0.45

S2 11/18 1 1 0.275

S3 11/18 1 1 0.275

TABLE 1 Expert scoring table of project-level importance at a certain
time.

Expert A B C D K

Index

Online monitoring 4 4 5 5 18

Routine inspection 2 2 3 4 11

Static test 2 2 3 4 11
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and better generalization. It filters and transmits useful

information through the update gate and reset gate in the

unique neuron state for subsequent data processing, discards

low-value information, and outputs the hidden state at each

moment, so as to achieve the key information extraction and

solve the gradient discrete problem. BiGRU network makes the

data flow in two directions based on GRU, realizing deeper

feature mining and more efficient use of data, and the

mathematical expression of the GRU gating unit is as follows

(Li et al., 2022; Yang et al., 2022):

zt � σ(W(z)xt + U(z)ht−1) (25)
rt � σ(W(r)xt + U(r)ht−1) (26)

ht2 � tanh(Wxt + U(rtpht−1)) (27)
ht1 � (1 − zt)pht−1 + ztpht2 (28)

where zt and rt represent the update gate and reset gate; σ is the

Sigmoid function; tanh is the hyperbolic tangent function; W(z),

W(r), U(z), U(r), U, W are the matrix of training parameters, p

represents the product of the matrix, and ht2 is the summary of the

input xt and the output result of the previously hidden layer ht-1.

The BiGRU structure is shown in Figure 3 (Zhang et al., 2022).

3.1.3 Attention mechanism
The essence of AM is to give higher weights to key features and

reduce the weights of other parts accordingly, so as to extract key

information from the feature data (Niu et al., 2022; Deng et al., 2021).

In this paper, the features extracted from theCNN-BiGRU combined

neural network model are fused with the attention mechanism: the

CNN is used to extract the static features of the data, denoted as C,

and the BiGRU is used to extract the time-series features of the data,

denoted as G, and the formula of its fusion is (30). The correlation

between the data feature and the i-th historical feature Fi is measured

by the dot product operation, and then the attention value A is

obtained. As shown in Eq. 31, the weighted sum of the historical

features is calculated according to the attention value, namely the

final data feature FA (Lin et al., 2022). Through the fusion of feature

extraction and attention mechanism performed by the CNN-BiGRU

FIGURE 2
Structure diagram of CNN.

FIGURE 3
The structure of the BiGRU network.
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combined neural network, the model can fully extract the static and

time-series features of historical data, and dynamically adjust them

according to the importance of different features, so as to obtain

better results.

F � tanh(GWaC
T + ba) (29)

A � exp(F)
∑n
i�1

exp(Fi)
(30)

FA � ∑
n

i�1
AFi (31)

where ba is the bias term obtained by training, F is the fused data

feature, FA is the final data feature, Wa is an adaptive weight

matrix obtained by training the attention mechanism.

3.2 Prediction model

Compared with the traditional neural network, CNN can

efficiently and accurately extract the inherent features of the data

set, but it cannot effectively use the time-series features existing

in the data. Although a single BiGRU neural network can

effectively extract and utilize the temporal features in the

dataset, it is relatively inefficient for the use of correlation

features in the data. When using a single CNN and BiGRU

neural network to process long-term sequences or face multi-

dimensional input data, problems such as insufficient data

feature mining and loss of sequence or associated features will

occur. Therefore, this paper complements the advantages of these

methods, and a CNN-BiGRU combined neural network

integrating the attention mechanism is proposed to improve

the prediction performance.

The framework of the proposed model for the condition

prediction of the submarine cable is shown in Figure 4. First, the

historical operation data of the submarine cable and the

comprehensive health value quantification are processed

through the submarine cable operation condition evaluation

model. Then, the historical operation data and condition

quantification results are imported into the proposed

combined neural network model to realize the operation

condition prediction of the submarine cable.

FIGURE 4
Prediction model of submarine cable operation condition considering condition evaluation.

TABLE 3 Experimental results of model network layer optimization.

BiGRU network layers σE-max (%) MAPE (%) RMSE (%)

1 3.81 1.63 1.47

2 3.35 1.25 1.36

3 3.92 1.55 1.40

4 7.61 4.23 3.44

Frontiers in Energy Research frontiersin.org08

Yang et al. 10.3389/fenrg.2022.1023822

24

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1023822


3.3 Prediction process

3.3.1 Data processing
Take each index value of the submarine cable operation

status evaluation index system established in this paper as

the original import data, and time step is half a day (Hd). In

order to solve the problem of large error caused by abnormal

data in the data set, the mean square method is adopted to

process the data set, and its mathematical expression is as

follows:

FIGURE 5
Sliding window data reading mode.

FIGURE 6
Structure diagram of HYJQF41-F 35 KV submarine cable.
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

δ2 � ∑
N

i�1
(xi − μ)2/(N − 1)

μ � ∑
N

i�1
xi/N

；i � 1, 2, ..., N (32)

where N is the numbers of data of this type, and xi is the value of

the i-th evaluation. If |xi - u|>3δ, it is judged that xi is an

abnormal point, and the point is eliminated.

In order to solve the negative impact caused by the different

dimensions and the large differences of the input data, before the

model training, the maximum and minimum values of various

data in the data set are used as the benchmark to normalize the

data set. The formula is:

Dn � D −DMIN

DMAX −DMIN
(33)

where Dn is the data obtained after normalization, D is the data

before processing, DMIN and DMAX are the minimum and

maximum values of this type of data, respectively.

3.3.2 Predictive evaluation indicators
In order to evaluate the prediction accuracy of the proposed

method, the maximum percentage of prediction error σE-max, the

root mean square error RMSE, and the mean absolute percentage

error MAPE were selected. The mathematical expression is as

follows (Liu et al., 2019b):

σE−max � max(
∣∣∣∣∣yi − ypi

∣∣∣∣∣
yi

) × 100% (34)

RMSE �

�����������
∑N
i�1
(yi − ypi)2

N

√√
× 100% (35)

MAPE � ∑
N

i�1
(
∣∣∣∣∣∣∣∣
ypi − yi

yi

∣∣∣∣∣∣∣∣ ×
100%
N

) (36)

where yi is the actual value of the i-th sample point; ypi is the

predicted value of the i-th sample point; N is the number of

sample points.

It is worth noting that in order to ensure the scientificity and

unity of the model training and prediction process, the RMSE and

MAPE of the prediction results are the average values obtained by

the models.

3.3.3 Model training
In this paper, the control variable method is used to

optimize the structure of the proposed model. Regarding the

importance of the number of BiGRU network layers, the

prediction performance is tested by continuously increasing

the number of BiGRU layers. The basic parameters of the CNN

module and attention module remain unchanged, and the effect

of the BiGRU layer on the prediction results is tested.

Experiments show that when the number of BiGRU layers is

2, all of the evaluation indexes reach the optimal values, and

then the error rate begins to rise, indicating that the model is

over-learning. The results are shown in Table 3.

The number of convolution kernels of the CNN neural

network is set as 10, the size of the convolution kernel is set

as 2, and the step size is set as 1, the same convolution is selected

for the convolution method, and valid maximum pooling is

performed after continuous convolution. The BiGRU neural

network adopts a sliding-window data reading mode, as

shown in Figure 5, the time step is set to 10, and the batch

size is set to 30 (Su et al., 2021; Jinah et al., 2022). The Adam

algorithm is used to iteratively update the weights so that the

weights and deviations of each neuron are continuously updated

through the momentum and adaptive learning rate, so as to

optimize the output value of the loss function. To deal with the

possible overfitting problem, the Dropout method is used during

the training. In the process of randomly discarding the network

nodes from the network according to a certain probability, the

attention mechanism is integrated into the training of CNN and

BiGRU to improve the accuracy of the model. The mathematical

expression of the loss function is:

Floss � 1
n
∑
n

t�1
(λact(t) − λpred(t))2 (37)

TABLE 4 Online monitoring index and evaluation results.

Evaluation index Standard value Warning value Monitor value Single item
score

Weighted score

S11 23.00 35.00 23.57 95.26 19.05

S12 0.00 150.00 11.84 92.11 3.74

S13 2.00 1.60 2.00 100.00 23.26

S14 0.00 40,000.00 3,398.00 91.50 13.83

S15 138.00 150.00 137.00 91.67 14.94

S16 35,000.00 37,000.00 34,844.00 92.20 9.17

S17 0.00 1.00 0.00 100.00 11.32

Health value —— —— —— —— 95.31

Evaluation status —— —— —— —— Normal
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where Floss, λact(t), λpred(t), and n are the loss function of the

model, the actual and predicted health values at time t, and the

number of training samples, respectively.

4 Simulation verification

4.1 Data selection

In order to verify the feasibility and accuracy of the proposed

method in this paper, the HYJQF41-F 35 KV three-core

submarine cable of an offshore oil and gas platform in the

Bohai Sea is taken as the research object. Its structure is

shown in Figure 6. From 2021 to 2022, a total of 510 groups

of monitoring and routine inspection data in 255 days are used.

The training set is divided according to 88%, and the rest of the

data is used as a test set, and the predicted results are compared

with actual values.

4.2 Comprehensive condition evaluation
and analysis

Taking a certain set of data selected in this paper as an

example, the single-item evaluation index data of online

monitoring is shown in the Table 4. Substitute the standard

value, attention value, and monitoring value of each index into

Eq. 21 to obtain the single-item evaluation score, and then

substitute it into Eq. 20 to obtain a single weighted score, and

the cumulative health value of the online monitoring module is

95.31, and its operating condition is normal, which is consistent

with the actual situation on site, as shown in Table 4.

4.3 Condition prediction and analysis

4.3.1 Prediction results
The selected data set is evaluated and quantified by the

evaluation model of the submarine cable operation condition

proposed in this paper, and then the input feature set is formed

and imported into the constructed CNN-BiGRU-AM prediction

model. The prediction results are shown in Figure 7. As can be

seen from Figure 7, the overall health status value of submarine

cables fluctuated between 80 and 90 during this period. Due to

the influence of various factors, it fluctuates within a certain

range, but it is generally stable and shows a certain downward

trend, which is in line with the actual condition of the submarine

cable. Besides, the three evaluation indicators: the maximum

percentage of prediction error σE-max, the root mean square error

RMSE, and the average percentage error MAPE are 3.35%, 1.36%,

and 1.25%, respectively, which illustrates its prediction accuracy,

and can provide effective support for the operation decision of

submarine cables.

4.3.2 Comparative analysis
In order to verify the effectiveness and superiority of the

proposed model in this paper, the same data set is input into

CNN, LSTM, CNN-LSTM, and other neural network models.

The training time required for a single round and single step of

each model are recorded, and the results are shown in Table 5. It

is noted that the right column of the table indicates that the

model incorporates an attention mechanism.

From Table 5, it can be seen that the time spent by each

neural network model is prolonged after combining with each

other or integrating an attentionmechanism. Among them, CNN

has the fastest training rate, LSTM has the longest time due to its

cumbersome gate structure, and the BiGRU network has certain

advantages in terms of speed.

In order to verify the validity of the prediction model proposed

above, the maximum percentage of prediction error σE-max, the root

mean square error RMSE, and the mean absolute percentage error

MAPE are calculated respectively. The comparison results of various

indicators are shown in Table 6 and Figures 8, 9.

According to the comparison information of different

models in Table 6, compared with other similar neural

network models, CNN-BiGRU-AM has the best prediction

accuracy in each evaluation index, and further combined with

the box plot shown in Figure 9, we can see that the average error

and discrete error of the model are obviously dominant. From the

perspective of whether the neural network model is combined or

not, compared with the single neural network model, the

maximum error percentage σE-max, the average absolute

percentage MAPE and the root mean square error RMSE of the

combined neural network model are improved, and the

comparison results are shown in Figure 10.

The attention mechanism is an important module of the

proposed model optimization and feature fusion. From the

FIGURE 7
Prediction results.
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TABLE 5 Comparison of running speed of each model.

Prediction model Time required for training (single round/single step)

Without AM With AM

BP -/4 ms —

CNN 13 ms/1 ms 15 ms/2 ms

LSTM 41 ms/4 ms 42 ms/5 ms

GUR 39 ms/3 ms 40 ms/4 ms

CNN-LSTM 43 ms/5 ms 44 ms/5 ms

CNN-BiGRU 40 ms/4 ms 42 ms/5 ms

TABLE 6 Comparison of prediction results of various models.

Prediction model σE-max MAPE RMSE

Without AM
(%)

With AM Without AM
(%)

With AM Without AM
(%)

With AM

BP 13.75 — 9.61 — 9.19 —

CNN 5.20 4.13% 2.39 1.37% 2.43 1.43%

LSTM 6.95 4.51% 2.32 1.52% 2.44 1.62%

GRU 5.86 3.95% 2.10 1.41% 2.14 1.46%

CNN-LSTM 5.31 3.55% 1.99 1.30% 2.08 1.38%

CNN-BiGRU 4.89 3.35% 1.79 1.25% 1.60 1.36%

FIGURE 8
Comparison of various models.
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perspective of whether the model integrates the attention

mechanism or not, the maximum percentage of prediction

errors σE-max, the mean percentage error MAPE and root mean

square error RMSE increased by 1.54%, 0.3%, and 0.26%,

respectively. Compared with other similar neural network

models, each evaluation index has been improved by up to

9.03%, 7.72%, and 6.81%, reaching 3.35%, 1.25%, and 1.36%,

respectively. The performance of each models with and without

attention mechanism are shown in Figures 11, 12.

It can be seen from Figure 11 that the predicted value of the

BP neural network is significantly lower than the actual value, but

it has a certain trend consistency, which shows that its processing

capability for long-sequence multi-feature samples (such as

submarine cable operation data) is relatively general. CNN

prediction results have a good fluctuation fit, but due to low

numerical value, the accuracy is not ideal, which may be caused

by the insufficient extraction of sample time series features.

LSTM network has better learning efficiency for time series

data, although the maximum error value is relatively high. But

due to the lack of correlation features, there is room for further

optimization. CNN-LSTM is better than the above models in

terms of overall fitting, and remains relatively stable when the

fluctuation is small. The fluctuations and trends of the CNN-

BiGRU network are similar to the CNN-LSTM network, both

FIGURE 9
MAPE and RMSE of different models with and without attention mechanism.
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FIGURE 10
Effect comparison of important single and combined models.

FIGURE 11
Comparison of prediction results of different models without
attention of different models without attention.

FIGURE 12
Comparison of prediction results of different models without
attention of different models with attention.
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greater advantages and higher accuracy, but the former

dominates in training efficiency (Table 5). From Figure 12,

it can be found that after adding the attention mechanism, the

curve fit of each neural network prediction model has been

improved to varying degrees, which shows the effectiveness of

the attention mechanism in neural network time series

prediction. According to whether the unified network adds

attention mechanism as a variable, the comparison effect is

shown in Figure 13.

To sum up, the numerical example verifies the superiority

of the model described in this paper, and the evaluation

indexes (i.e. maximum error, root mean square error, and

average percentage error) are better than other methods, and

it can accurately predict the operation condition of

submarine cables.

5 Conclusion

Aiming at the shortcomings of the existing research in the

field of submarine cable operation condition evaluation and

prediction, a submarine cable operation status evaluation

index system is established in this paper, which includes

online monitoring, routine inspection and static test. To

obtain more scientific evaluation results, based on the

improved AHP and cooperative game theory, a submarine

FIGURE 13
The effect of attention mechanism.
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cable operation condition evaluation model is constructed, and

numerical quantification is carried out in combination with the

guidelines and engineering practice. Besides, the CNN-BiGRU-

AM combined neural network model is established by

synthesizing the advantages of correlation feature extraction of

CNN, the time-series feature extraction of BiGRU and the feature

fusion advantages of the attention mechanism. By comparing

with other neural network models, the better prediction accuracy

verifies the advantages of the proposed model in processing long-

sequence, multi-characteristic submarine cable operation data

samples.
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The integrated energy system (IES) is recognized as a promising energy

utilization approach enabled to both improve the energy efficiency and

reduce pollutant emissions. Although the economic-environmental dispatch

(EED) problem of the IES has been widely studied, the fact that the IES is

operated under off-design conditions, having a significant influence on the

efficiency of energy devices, is neglected usually, resulting in the scheduled

operations, for the IES could not be accurate enough in many actual situations.

This study investigates the EED problem of the IES under off-design conditions.

Technically, by integrating an efficiency correction process into the traditional

energy hub (EH) model, a dynamic energy hub (DEH) model is first formulated

for adapting itself to variable energy conversion efficiencies. Then, a deep

neural network (DNN)-based efficiency correction method is proposed to

predict and correct the time-varying efficiency of energy devices based on

three main off-design conditions including the load rate, air temperature, and

pressure. A multi-objective EED model is finally formulated for the IES, with the

framework of the DEH model, aiming at establishing a trade-off between

operational cost and emitted pollutants. Case studies show that the

proposed approach helps in enhancing the accuracy of IES dispatch while

having a good performance in both the operational cost and pollutant emission

reduction.

KEYWORDS

integrated energy system (IES), energy hub (EH), off-design conditions, economic-
environmental dispatch (EED), multi-objective optimization, deep neural
network (DNN)

1 Introduction

With the increasing problem of environmental pollution and energy scarcity, both

energy transformation and upgrading have received extensive attention worldwide (Jin

et al., 2021). As one of the important energy utilization ways, the integrated energy system

(IES) has been regarded as the development direction of the future energy field, which

promotes the synergy and complementarity among multi-energy carriers (e.g., electricity,

OPEN ACCESS

EDITED BY

Youbo Liu,
Sichuan University, China

REVIEWED BY

Yuehui Ji,
Tianjin University of Technology, China
Ke Peng,
Shandong University of Technology,
China
Shenxi Zhang,
Shanghai Jiao Tong University, China

*CORRESPONDENCE

Youjun Deng,
deng_youjun@hotmail.com

SPECIALTY SECTION

This article was submitted to Smart
Grids,
a section of the journal
Frontiers in Energy Research

RECEIVED 16 August 2022
ACCEPTED 02 September 2022
PUBLISHED 30 September 2022

CITATION

Xu Y, Deng Y, Guo X, Wang J and
Zhang J (2022), Economic-
environmental dispatch for the
integrated energy system considering
off-design conditions.
Front. Energy Res. 10:1020607.
doi: 10.3389/fenrg.2022.1020607

COPYRIGHT

© 2022 Xu, Deng, Guo, Wang and
Zhang. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Energy Research frontiersin.org01

TYPE Original Research
PUBLISHED 30 September 2022
DOI 10.3389/fenrg.2022.1020607

34

https://www.frontiersin.org/articles/10.3389/fenrg.2022.1020607/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.1020607/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.1020607/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.1020607/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2022.1020607&domain=pdf&date_stamp=2022-09-30
mailto:deng_youjun@hotmail.com
https://doi.org/10.3389/fenrg.2022.1020607
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2022.1020607


gas, and heating) (Lin et al., 2021), having the advantages of

enhancing the energy efficiency and reducing dependence on the

fossil fuels. Based on this, aiming to promote effective

coordination among multi-energy carriers, the optimal

dispatch of the IES has become a prevalent research hotspot

in academia and industries (Martínez Ceseña and Mancarella,

2019).

The optimal dispatch for the multi-energy systems has been

studied extensively, and some representative works have also

been reported. Bartnik et al. (2022) investigated the economic

performances of the combined heating and power (CHP)

systems, and an economic-effective dispatch model was

developed. A dispatch model was proposed for the IES to

reduce energy cost (Yu et al., 2019). On the other hand, the

environmental consideration is another important concern of the

multi-energy system dispatch. To this, the economic-

environmental dispatch (EED) problem of the multi-energy

systems has been introduced and is usually formulated as a

multi-objective optimization problem to pursue a trade-off

between the economic and environmental benefits. For

instance, an EED model was proposed by Dougier et al.

(2021), Sarfi and Livani (2018), and Nandimandalam et al.

(2022) for microgrids including certain energy conversion and

storage units, aiming to minimize the operational cost and

pollutant emissions. Guo et al. (2022) studied the optimal

economic operation problem for the IES, and the

environmental consideration was modeled into a constraint.

Msigwa et al. (2022) provided an EED framework that

functioned as accommodating to the high penetration access

of wind power. A multi-objective optimization model was

developed by Xu et al. (2018), aiming to obtain the minimum

fossil fuels and pollutant emissions of the IES, considering

stochastic wind and solar power. Although the EED problem

for multi-energy systems has been studied extensively in the

aforementioned works, they all ignore the impact of the off-

design conditions on the efficiency of energy devices and assume

the latter is constant. In fact, the off-design conditions, such as

the load rate (Zong et al., 2022), air temperature (Akpan and Fuls,

2019), and pressure (Gong et al., 2021), have a significant impact

on the device efficiency and make it variable. As a result, the

scheduled operations based on this constant device efficiency are

essentially deviated from the true ones, and therefore, the

operational results could also be inaccurate (Mu et al., 2022).

In the literature, several methods have been reported to deal

with the impact of variable off-design characteristics on the

efficiency of energy devices. In general, the existing methods

can be classified into the following two streams: 1) the

mathematical model-based method and 2) the data-driven-

based method. In the first stream, the polynomial fitting

method was used by Zheng et al. (2018) to model the energy

device efficiency. However, the presented model was a nonlinear

programming problem, which was easy to fall into the

suboptimal or even infeasible solution. To address this issue,

the nonlinear formulation of the device efficiency was piecewise

linearized via approximate treatment (Almassalkhi and Towle,

2016). The piecewise linear (PWL) approach was also employed

to modify the efficiency of energy devices, and a mixed-integer

linear programming model was formulated by Huang et al.

(2020). However, following Shao et al. (2020), the

mathematical model-based methods are hard in terms of

ensuring the accuracy of the calculated solutions and the

computational efficiency. To this end, in the second stream,

the data-driven-based method is studied further. In particular,

the machine learning (ML) method is one of the most widely

used methods. Based on the collected historical off-design

conditions’ data, many representative ML approaches can be

used to predict the variable device efficiencies, such as

polynomial regression (Li and Yao, 2021), support vector

machines (Liu et al., 2020), and deep neural network (DNN)

(Ghimire et al., 2019). The DNN has remarkable performance in

both the computational accuracy and speed for nonlinear

parameter forecast and has been applied in many machines’

intelligence fields, such as image recognition (Chen S. et al.,

2022), parameter forecast (Browell and Fasiolo, 2021), and

system control (Li et al., 2021).

Based on the aforementioned discussion, this article focuses

on the optimal dispatch of the IES and is intended to study the

EED problem for the IES, considering the off-design conditions.

Compared to the existing works (Sarfi and Livani, 2018; Xu et al.,

2018; Yu et al., 2019; Dougier et al., 2021; Bartnik et al., 2022; Guo

et al., 2022; Msigwa et al., 2022; Nandimandalam et al., 2022), the

main novelty of this study is to take into account the impact of

the off-design conditions on the energy device efficiency. The

primary contribution of this article is to formulate an energy hub

model, which enabled to operate with the time-varying energy

device efficiency, named as the dynamic energy hub (DEH)

model. The key idea of such a formulation is to incorporate

an efficiency correction process into the traditional energy hub

(EH) model. The second contribution of this article is to propose

a DNN-based efficiency correction method, in which three main

off-design conditions (i.e., load rate, air temperature, and

pressure) are considered and taken as the input set of the

designed DNN well, and the corrected energy device efficiency

is the output. Moreover, to validate the benefits of considering

the off-design conditions on the IES’s dispatch, a multi-objective

EED model with multi-scale operation considerations including

operational economic and environmental impacts is developed

for the IES under the framework of the DEH model.

The rest of this article is structured as follows. The overview

of EED for the IES considering off-design conditions is described

in Section 2. The DEH model is established in Section 3, and the

DNN-based device efficiency correction method is developed in
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Section 4. In Section 5, the multi-objective EED model is

introduced. Case studies are applied to verify the proposed

method in Section 6, and the conclusion is drawn in Section 7.

2 Overview of EED for the IES
considering off-design conditions

Figure 1 illustrates a typical structure of an IES. Various

energy devices (e.g., gas boiler (GB), CHP, and battery (BAT))

link the electricity system, gas system, and heating system

together in the IES (Jin et al., 2016). Among them, the

electrical loads are supplied by the electricity system, CHP,

and BAT, and the CHP and GB supply the thermal loads. For

the dispatch application, an IES is usually modeled into an

energy hub framework based on the physical link topology of

the IES.

The ideas of the proposed EED for the IES considering the

off-design conditions are depicted in Figure 2. Taking into

account the impact of off-design conditions on the efficiency

of energy devices, the traditional EH model is remodeled as

a DEH model that can operate with the time-varying device

efficiency by integrating with an efficiency correction

process. In the daily operation of the IES, the energy

device efficiency is predicted and corrected in the

efficiency correction process, based on the proposed

DNN-based efficiency correction method, which is a

data-driven method and will be introduced in detail in

Section 3. Afterward, a multi-objective EED model is

developed based on the obtained DEH model and is

solved to realize a trade-off among multi-scale

operational considerations over a finite operation

horizon, that is, the operational cost and environmental

impact reflected by the emitted pollutants.

3 Modeling of the dynamic
energy hub

Based on this typical IES structure shown in Figure 1, the

diagram of the traditional EH model can be presented in

Figure 3A. With the consideration of variable off-design

conditions, the energy device efficiency varies under their

operation conditions, such as the load rate and other

environmental-related factors (e.g., air temperature and

pressure); thus, it is necessary to reformulate the traditional

EH model to adapt it to the time-varying energy device

efficiency. For this purpose, we plan to incorporate an

FIGURE 1
Typical structure of the IES.
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efficiency correction process into the traditional EH model, as

shown in Figure 3B, to develop the DEH model. With the added

efficiency correction sector, the energy device efficiency can be

adjusted with the variation of the off-design conditions. In this

article, the efficiency correction process is functioned by the

proposed DNN-based efficiency correction method.

FIGURE 2
Framework of the proposed method.

FIGURE 3
Typical topology model: (A) traditional EH model and (B) DEH model with the correction of the energy device efficiency.

Frontiers in Energy Research frontiersin.org04

Xu et al. 10.3389/fenrg.2022.1020607

37

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1020607


The EHmodel is a linear multiple-input and multiple-output

unit, where various energy sources are generated, converted,

stored, and consumed, strengthening the integration of

multiple energy carriers. The mathematical formulation for

the traditional EH model, for a typical structure, as shown in

Figure 3A, is presented in model (1).

[ Le,t

Lh,t
] � [ 1

0
]tηCHP

]tηCHP,h + (1 − ]t)ηGB ][
Pe,t

Pg,t
] + [ ηC ηD

0 0
][We,t

0
].
(1)

In model (1), Pe,t and Pg,t denote the input electricity and gas

powers, respectively, and Le,t and Lh,t represent the electrical and

thermal loads, respectively. ηCHP, ηCHP,h, and ηGB are the

electrical efficiency of CHP, thermal efficiency of CHP, and

the efficiency of GB, respectively. The dispatch factor is

represented by vt∈[0,1], which defines the proportion of gas

input to CHP and GB. PBAT,t is the charging/discharging power

of BAT at time t.

As the IES is always operated under the off-design

conditions, the device efficiency in the EH model is not

constant but time-varying, which renders the EH model a

multivariable nonlinear system (Chen M. et al., 2022). To

address this challenge, the DEH model is modeled in this

article, as shown in Figure 3B; the efficiency correction

process is embedded in the EH model. ηCHP,t, ηCHP,h,t, and

ηGB,t are the electrical efficiency of CHP, thermal efficiency of

CHP, and the efficiency of GB at time t, respectively. The

coupling matrix of the DEH model is expressed as follows:

[ Le,t

Lh,t
] � [ 1

0
]tηCHP,t

]tηCHP,h,t + (1 − ]t)ηGB,t ][
Pe,t

Pg,t
] + [ ηC ηD

0 0
][We,t

0
].
(2)

The efficiency correction process with execution on the

basis of unit time interval dynamically calculates and corrects

the energy device efficiency in the EH model based on three

time-varying off-designs, including the actual load rate, air

temperature, and pressure. Therefore, the formulated DEH

model is capable of accurately simulating the operational

environment of the IES under the variable off-design

conditions.

4 DNN-based device efficiency
correction

The off-design conditions have a significant impact on the

efficiency of energy devices. Considering three main off-design

conditions, namely, the load rate, air temperature, and pressure,

the efficiency of energy devices can be modeled as a function of

the aforementioned three elements as follows:

ηi,t � f(Ni,t, Ti,t, Fi,t), (3)

where ηi,t denotes the efficiency of the energy device i at time t.

Ni,t denotes the load rate of the energy device i at time t. Ti,t and

Fi,t denote the air temperature and pressure at time t, respectively.

Due to the strong nonlinearity relationship between the

energy device efficiency and the off-design conditions (Mu

et al., 2022), the mathematical model-based method is difficult

to achieve accurate predictions and is prone to overfitting and

dimensionality curse. In this section, the DNNmethod (Ghimire

et al., 2019) is employed to forecast the efficiency of energy

devices.

A DNN framework is designed first in this article, which is

a fully connected neural network with five layers, as presented

in Figure 4. The designed DNN framework exhibits the best

trade-off between the prediction speed and accuracy when it

contains three hidden layers with six, five, and three neurons.

The considered three off-design conditions are set as the

input data set, and the device efficiency is the forecasted

output. More specifically, the DNN model is formulated as

follows:

xi,t � [Ni,t, Ti,t, Fi,t], (4)
hl � g(Wlhl−1 + bl−1),∀l � 1, ..., 4, (5)

yi,t � ηi,t, (6)

where hl is the output vector of the l-th layer. g( ) is the

activation function. Wl and bl-1 denote the connection weight

matrixes. Model (4) represents the input sequence of the

DNN. Model (5) describes the mathematical principles of

forward propagation. Model (6) represents the output

sequence of the DNN.

As shown in Figure 4, each layer is interconnected through

weights (Wl) and biases (bl). The activation function further

introduces nonlinearity into the hidden layers. The sigmoid

FIGURE 4
DNN model for device efficiency forecast.
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function is selected as the activation function, given in Eq. 7,

which can alleviate the gradient disappearance and improve the

convergence rate (Ravnik and Hriberšek, 2019).

sigmoid(x) � 1
1 + e−x

. (7)

After constructing the DNN model, the loss function is

designed to guide the training. The mean square error

between the obtained efficiency of energy devices and the

actual value is defined as the loss function hloss:

hloss � 1
2
∑(ŷi,t − yi,t)2. (8)

The training process is performed by tuning the parameters

of the DNNmodel to minimize the loss of the given training data,

as given in model (9). Moreover, we apply the

Levenberg–Marquardt algorithm (Long et al., 2020) to solve

the problem in model (9), which is effective for the large-scale

data set and makes the probability of falling into a local

minimum much reduced.

min
Wl,bl

1
4
∑
4

l�1
floss,l, (9)

where floss,k is the loss of the lth layer in the training.

Moreover, the efficiency of energy storage devices primarily

varies with long-term seasonal factors, and the effects on daily

time-scale dispatch are ignorable (Mu et al., 2022). Thus, the

variable off-design characteristics of energy storage devices are

not taken into account in this article.

5 Multi-objective EED model

In this article, the IES is operated with multi-scale

operational considerations, that is, the operational economic

and environmental impact, under the off-design conditions. A

multi-objective EED model is developed in this section for the

IES, with two mutually exclusive objectives, that is, 1) to

minimize the IES’s operational costs over a finite dispatching

horizon and 2) to minimize the pollutant emissions. The

decision-making variables in the proposed multi-objective

EED model include purchasing electricity Pe,t, purchasing

gas power Pg,t, output power Pi,t of the energy conversion

device i, BAT charging power PC,t, and BAT discharging

power PD,t.

5.1 Objective functions

5.1.1 Objective 1: Minimizing the operational
cost

The first objective is referred to the operational economic

consideration and is formulated to minimize the operational cost

(fope) composed of the electricity purchase cost (Ce) and gas

purchase cost (Cg) as follows:

fope � Ce + Cg, (10)

Ce � ∑
T

t

ce,tPe,tΔt, (11)

Cg � ∑
T

t

cgPg,tΔt, (12)

where T and Δt are the total dispatching period and unit

dispatching period, respectively. ce,t and cg denote the unit

prices of purchasing electricity and gas, respectively.

5.1.2 Objective 2: Minimizing the emitted
pollutants

The second objective, that is, the environmental

consideration, is to reduce the overall pollutant emissions

(femi) caused by electricity usage (Ee) and gas usage (Eg) and

is expressed as follows:

femi � Ee + Eg, (13)

Ee � ∑
T

t

∑
NPG

pg�1
χe, pgPe, tΔt, (14)

Eg � ∑
T

t

χgPg,tΔt, (15)

where NPG represents the types of pollutant emissions from

electricity usage, including CO2, CO, SO2, and NOx. χe,pg
represents the emission factor of the pg-type pollutant. χg
denotes the emission factor of gas usage. Only CO2 is taken

into consideration in the pollutant emissions from gas usage due

to the clean nature of gas (Lin et al., 2018).

5.2 Constraints

The proposed multi-objective EED model for the IES is

subjected to the following constraints:

5.2.1 Energy balance constraint
The DEH model describes the coupling relationship

between input and output power and adjusts the

efficiency of energy devices dynamically by the DNN-

based efficiency correction method. The energy balance

constraint defined in the DEH model should be satisfied,

as formulated in Eqs 2, 3.

5.2.2 Energy conversion devices’ constraints
The energy conversion devices in this article include CHP

and GB, and constraints are shown as follows.

Pi,t � ηi,tPin,i,t, (16)
0≤Pi,t ≤Pi,cap, (17)
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where Pin,i,t represents the input power of the energy conversion

device i at time t.Pi,cap is the capacity of the energy conversion device i.

5.2.3 Energy storage devices’ constraints

WBAT,t+1 � WBAT,t(1 − σ) + (PC,tηC − PD,t/ηD)Δt, (18)
0≤WBAT,t ≤WBAT,cap, (19)
0≤PC,t ≤PC,max, (20)
0≤PD,t ≤PD,max, (21)
Wstart � Wend, (22)

where WBAT,t and WBAT,t+1 indicate the energy stored in BAT

before and after charging and discharging, respectively. ηC and

ηD are the charging and discharging efficiencies of BAT. σ and

WBAT,cap are the self-discharge rate and capacity of BAT,

respectively. PC,max and PD,max are the maximum charging

and discharging power, respectively. Wstart and Wend are the

initial and final energy stored in BAT during 1 day (24 h),

respectively.

5.2.4 Tie-line power constraint
The purchasing electrical power should not exceed the

maximum tie-line power Pgrid,cap:∣∣∣∣Pe,t

∣∣∣∣≤Pgrid,cap. (23)

The non-dominated sorting genetical algorithm (NSGA-II)

(Deb et al., 2002) is utilized in the MATLAB platform to solve

the formulated multi-objective EED model in Section 5. The

NSGA-II has strong performance in finding the Pareto frontier

well of a multi-objective optimization problem and is one of the

most recognized multi-objective evolutionary algorithms. With

the obtained non-dominated solutions, the fuzzy decision-

making criteria (Sakawa and Yano, 1985), with simplicity

and capability in accounting for IES operators’ preferences,

are then employed to select and output the optimal compromise

solution.

6 Case studies

6.1 System setup

The typical IES presented in Figure 1 is considered as an

example. The electrical and thermal loads, air temperature, and

pressure curves in a typical summer day are depicted in Figures 5,

6. The unit prices of purchasing electricity and gas are shown in

Table 1. The emission factors of CO2, CO, SO2, and NOx from

electricity usage, the emission factors of CO2 from gas usage, and

the maximum tie-line power are shown in Table 2 (Lin et al.,

2018). The technical parameters of devices are presented in

Table 3 (Mu et al., 2022).

6.2 Simulation results and discussion

We set two benchmarks to comparatively validate the

advantages of the proposed EED method as follows:

Case I. The EED method based on the constant efficiency EH model.

Case 2. The EED method based on the DEH model. In addition, different

numbers of training iterations (IT) of DNNs are considered, and accordingly,

multiple sub-cases are set. When IT is quite large enough (e.g., 500), the loss

function values are approximately zero and DNNs converge completely, as

shown in Figure 7. At this point, the dispatch results are considered accurate

enough to serve as a reference for comparison with other cases.

The optimal compromise results in two cases are presented in

Table 4. In case I, the operational cost is 7592.65$ and pollutant

emissions are 12.632 t. The relative error reaches 3.726%. This

demonstrates that the constant efficiency EH model cannot

accurately simulate the off-design operating IES, resulting in a low

precision of the dispatch scheme. In case II (IT = 200–500), the relative

errors are significantly reduced, which indicates that the accuracy of

the model is greatly improved. In addition, the relative errors in case II

(IT= 200–500) are reduced as IT increases due to the increasing forecast

precision of DNNs, as presented in Figure 7. Although the operating cost

FIGURE 5
Electrical and thermal loads.

FIGURE 6
Air temperature and pressure.
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and pollutant emissions in case II (IT = 500) are 293.84$ and 0.854 t,

respectively, which are higher than those in case I, the dispatch scheme in

case II (IT = 500) enjoys the highest precision and is most consistent under

the actual off-design operating conditions of the IES.

The dispatch results of electrical power in case I and case II (IT =

500) are shown in Figure 8, which have great differences.

In case I, since devices are assumed to operate at the rated

efficiency, CHP is more economical and is employed as the primary

power supply. Electricity is purchased from the grid to satisfy the

remainder of electrical loads. BAT is charged during the peak

electricity prices and discharged during the low electricity prices.

In case II (IT = 500), electrical loads are mostly met by the grid.

When the electricity prices are low (e.g., 0–6 h and 23 h), it is more

economical to supply electrical loads from the grid. CHP supplies only

at the peak electricity prices (10 h and 19–20 h). The charging and

discharging states of BAT are mainly affected by electricity prices,

which is similar to the state in case I.

The dispatch results of thermal power in case I and case II (IT = 500)

are quite different, as shown in Figure 9.

In case I, although CHP operates at low load levels, it remains as the

main heating device, and the variable off-design characteristics are

ignored. GB supplies energy only during peak thermal loads to make up

for the unmet thermal loads by CHP.

In case II (IT = 500), the thermal loads aremainly supplied by GB. To

ensure the efficient operation of devices, GB operates alone when

thermal loads are below the GB capacity, while most thermal loads

are supplied by CHP when the thermal loads exceed the GB capacity

(e.g., 4 h, 12 h, and 19–20 h). Moreover, thermal and electrical loads are

simultaneously supplied by CHP during the peak electricity prices (10 h)

to improve the operating economy of the IES.

By comparing the two cases, the conclusions can be drawn that the

traditional constant efficiency EHmodel is difficult to accurately model

the IES under off-design conditions, making the dispatch results

unreasonable. The impact of the off-design conditions on the energy

device’s efficiency is supposed to be taken into consideration in the

pursuit of the precise performance of the EED model.

7 Conclusion and future work

This article has proposed a multi-objective EED method for

the IES, considering the off-design conditions. Technically, the

TABLE 1 Unit prices of purchasing electricity and gas.

Types of energy Time Price ($/kWh)

Electricity 0:00–6:00 and 22:00–24:00 0.059

6:00–9:00; 10:00–18:00; and 20:00–22:00 0.101

9:00–10:00 and 18:00–20:00 0.142

Gas 0:00–24:00 0.065

TABLE 2 Emission factors.

Types of emission Factor (t/MWh)

χe,CO2 0.8647

χe,CO 0.008

χe,SO2 0.039

χe,NOx 0.0309

χg 0.1940

TABLE 3 Rated parameters of devices.

Types of device Parameter Value

CHP Rated capacity 1,600 kW

Rated electrical efficiency 0.34

Rated thermal efficiency 0.51

GB Rated capacity 2050 kW

Rated efficiency 0.94

BAT Rated capacity 200 kWh

Maximum charging/discharging power 60 kW

Rated charging/discharging efficiency 0.9

Self-discharge rate 0.0001

FIGURE 7
Loss vs. iterations.
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traditional EH model is remodeled into the DEH model enabled

to operate with the time-varying energy device efficiency, by

integrating with an efficiency correction process. Here, this

efficiency correction is functioned by the proposed DNN-

based efficiency correction strategy, which is a data-driven

approach and has good performance in terms of nonlinear

data processing. A multi-objective EED model of the IES is

proposed to evaluate the benefits of considering the off-design

conditions on the IES dispatch. Case studies are conducted, and

several key observations are obtained from the numerical

simulation: 1) the load rate of devices exerts a significant

impact on the device efficiency, while the device efficiency in

turn affects its load rate; 2) compared to the traditional EHmodel,

the proposed DEH model is more reasonable and appropriate for

following the actual operational environment of the IES; thus,

more accurate operation schedules can be obtained; and 3) the

TABLE 4 Operational cost and pollutant emissions.

Case Operational cost ($) Pollutant emission (t) Relative error

Case I 7592.65 12.632 3.7259%

Case II (IT = 200) 7825.49 13.448 0.7735%

Case II (IT = 300) 7867.36 13.473 0.0243%

Case II (IT = 400) 7879.85 13.481 0.0084%

Case II (IT = 500) 7886.49 13.486 -

FIGURE 8
Dispatch results of electrical power: (A) case I and (B) case II (IT = 500).

FIGURE 9
Dispatch results of thermal power: (A) case I and (B) case II (IT = 500).
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proposed IES multi-objective EED scheme based on the DEH

model can balance the IES’s multi-scale operational considerations

well after taking into account the off-design conditions.

Currently, the authors are studying the real-time operation of

the IES with the consideration of the off-design conditions, in

which a rolling horizon strategy is utilized for coping with the

realization of variable off-design conditions.
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Amarket decision-making model
for load aggregators with flexible
load
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State Grid Sichuan Economic Research Institute, Chengdu, China

The fast development of renewable energy has resulted in great challenges to

the power system, which urgently needs more flexible resources to maintain a

system supply/demand balance. This paper established a multi-stage electricity

market framework in the presence of a load aggregator (LA) including a day-

ahead energy/reserve market and a real-time balanced market. To actively

participate in the day-ahead energy market and reserve market, a load profile

perception model for LA is proposed to evaluate in detail the response

performance of consumers. Meanwhile, a market-bidding model of LA and a

market-clearing model of the system operator for the day-ahead market are

also established. To actively join the real-time balancemarket, amarket-bidding

model of LA for the real-time balance market based on surplus flexible

resources is established. The system operator further clears the real-time

balance market and dispatches the collected flexible resources according to

the system supply-demand state. A modified IEEE 30 bus system is tested and

shows that the proposed market framework can effectively promote

consumers to respond to system regulation requirements and lowers the

system supply-demand imbalance risk.

KEYWORDS

demand Response, load aggregator, market strategy, electricity market, flexible load

Introduction

To build a low-carbon energy system, renewable energy units, such as wind turbines

(WT) and photovoltaics (PV), have quickly developed. It is expected that the total

installed capacity of PV and WT in China will reach more than 1.2 billion kW by 2030

(Yang et al., 2018). As the proportion of renewable energy in the power system exceeds a

certain threshold, the system operation mode will go through great change. Additionally,

the issue of insufficient flexible resources will become a key bottleneck for the future

development of renewable energy.

Current flexible resources provided by traditional thermal units are far from enough

to support the regulation demand of the power system. To protect system reliability and

safety, a good solution is to encourage consumers to change their load patterns in response

to system operation requests (Youbo et al., 2019). Demand response (DR) includes types

of programs, which focus on modifying the load profiles of consumers to maintain system
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generation and a consumption balance (Liang et al., 2021). One

way is to fully exploit DR resources of the demand side, whose

controllable devices can be directly dispatched by the system

operator and can be a complementary solution to maintain a

system supply-demand balance. Another way is to modify the

electricity market framework. Reasonable market competition

and incentive mechanisms can help coordinate distributed

flexible resources on the demand side so that consumers

together with the power system are able to all benefit from

adjusting their power patterns.

The information and control technology (ICT) of the smart

grid provides a foundation to support the integration of flexible

demand resources. However, due to the stochastic response

behaviors of distributed consumers, the system operator can

hardly control large-scale distributed consumers (Du et al.,

2021). At this stage, the interaction framework for the system

operator and small consumers has not been fully formed.

Regarding load scheduling and aggregation as a critical issue,

middleman, such as the load aggregator (LA), retailers, and

virtual power plants (VPP), can provide good way for small-

scale consumers to participate in the electricity market (Youbo

et al., 2018). Also, the liberalization of electricity markets helps

incentive consumers to join the dispatching schedule of system

operators. In terms of the market-bidding strategy,

Vivekananthan et al. (2014) constructed a robust optimization

strategy for LA to participate in bidding in the energy market

based on controllable load resources. Bruninx et al. (2020)

established multi-LA market-bidding and a scheduling model

for frequency control service. Hu et al. (2017) proposed the

regulation framework to LA to schedule the thermal (Fang et al.,

2016) load such as air conditioning and water heaters. Li et al.

(2018) provided a way for VPP to participate in the energy

market and ancillary market by dispatching electric vehicles (EV)

andWT. Pandžić et al. (2013) and Chen et al. (2018) established a

VPP optimal bidding model that considers the uncertainties of

multi-market prices including the long-term and day-ahead

market. In terms of the load control method, Shao et al.

(2013) found that retailers can determine the real-time

electricity prices of customers to manage their demand

portfolios. Liang et al. (2018) proposed a robust optimization

algorithm for LA to find the optimal real-time electricity prices

offered to consumers considering the uncertainties of market

prices. Baharlouei et al. (2013) and the California Independent

System Operator (2016) studied the integration of incentive DR

programs for LA considering power flow constraints. Hu et al.

(2017) and Sumaiti et al. (2020) provided a game theory-based

structure for retailers and consumers to decide on incentive

prices. Despite these studies in the field of DR, several

research gaps still need to be filled. First, bidding strategies

and load control methods of a middleman are highly

dependent on the accurate evaluation and integration of

response capacity of distributed consumers. Most studies

ignore the process of perceiving the real-time response

capacity of consumers. Second, in the studies mentioned, the

middleman focuses on engaging in a single market. This is an

urgent issue to reasonably arrange consumers’ schedules and

efficiently participate in a multi-stage market to meet the profit

demands of LA and consumers.

With this in mind, this paper proposes a multi-stage

electricity market framework for a real-time balanced market,

day-ahead energy and a reserve market. By constructing a load

state perception model, the real-time flexible resources of

consumers can be perceived. In the day-ahead energy and

reserve market, a bidding model for LA based on the

consumers’ flexible resources is proposed. The system

operator is in charge of market clearing according to the

bidding strategy of market players, and thus, the dispatching

scheme of day-ahead units can be decided. In the real-time

balancing market, day-ahead clearing results are considered.

All LAs bid in the real-time balancing market based on the

surplus of flexible resources of their signed consumers. Then,

system operators clear real-time balancing resources and

dispatch the spare flexible resources according to the actual

system balance demand. A modified IEEE 30 bus system was

tested to verify the proposed framework. The results show that

the proposed model can stimulate consumers to effectively

respond to system regulation demand to promote the

consumption of renewable energy.

Market framework

Referring to the market framework of the Nordic electricity

market, the market setting of this paper can be described as

follows:

1) Market framework and market participants: The multi-stage

market here includes the day-ahead energy market, day-

ahead ancillary market and real-time balance market. The

market operation framework is shown in Figure 1. Market

participants include load aggregators, thermal units and the

system operator. LA and thermal units take part in a

centralized bidding transaction. The system operator clears

the market and conducts a day-ahead schedule of units after

the bidding of market participants.

2) Bidding in day-ahead energy and the day-ahead reserve

market: LA will bid in the day-ahead energy market

(24 points a day) and day-ahead reserve market (including

upper and lower reserve capacity) based on predicted load

profiles of signed consumers. These two markets shall be

independently organized and jointly settled according to the

uniform market-clearing price.

3) Bidding in the real-time balance market: Generally, not many

balancing service varieties exist in Northern Europe, and part

of balance regulation resources can be obtained through the

real-time balancing market. The real-time balancing market
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will be carried out 1 h in advance. Market participants will bid

to provide the up or down-regulation service in the real-time

balancing market based on day-ahead market-clearing

results. Bidding information includes aspects such as a

market participation period, up-regulation capacity, and

down-regulation capacity.

4) Market settling method: We adopt the market structure

“main energy market + ancillary market + balanced

market” multi-stage market operation process and different

service varieties settle separately.

5) Load regulation and deviation assessment: LA optimizes the

load profiles of signed distributed consumers according to

multi-stage market-clearing results to avoid a market

deviation check.

LA bid strategy

Load profiles perception model

1) Optimal control strategy for LA to regulate signed consumers

Before bidding in the markets, LAs need to accurately evaluate

the load profiles and flexible resources of signed consumers whose

controllable devices include washingmachines or EVs. By regulating

the controllable devices of its signed consumers, LA aims to

minimize the total energy cost of consumers as long as the

aggregation resources can satisfy LA’s regulation demand. For

scenario ω ∈ {1,/,Ω} time t ∈ {1,/, T}, the objective of LA

n ∈ N can be described as follows:

min
ui,h,t,ω

∑
T

t

λSn,t,w⎛⎝PD
n,h,t,ω +∑

I

i

Pn,i,h,wun,i,h,t,ω
⎞⎠∀t,ω, n (1)

∑
T

t�1
un,i,h,t,ω ≥ tRn,i,h,ω ∀i, h, t,ω, n (2)

∑
T

t�1

∣∣∣∣un,i,h,t,ω − un,i,h,t−1,ω
∣∣∣∣ − 1 � Ki ∀i, h, t,ω, n (3)

un,i,h,t,ω ≤ tpn,i,h,t,ω∀i, h, t,ω, n (4)

tpn,i,h,t,ω � { 1, t ∈ [tsn,i,h,ω, ten,i,h,ω]
0, else

∀i, h, t,ω, n (5)

where N,H, and I is the set of LAs, signed consumers, and

controllable devices. Pn,i,j,h,w is the original load of the

controllable device i ∈ I of the signed consumer

h ∈ {1,/, H} of LAn. PD
n,h,t,ω is the fixed load of the signed

consumer h ∈ {1,/, H} of LAn. j ∈ J is the energy

consumption duration of the device and λSn,t,w is the offered

retail price of LAn. un,i,h,t,ω is the 0–1 variable, which denotes the

dispatch schedule for the device i ∈ I. un,i,h,t,ω � 1 means the

device i ∈ I is in a working state. tRn,i,h,ω is the minimum power

usage duration.Ki refers to the total time of starts and stops that

can be controlled during the scheduling period. tsn,i,h,ω, t
e
n,i,h,ω is

the earliest and latest device usage time specified by consumer h

for device I, respectively. tn,i,h,t,ω* � 1 means that the controllable

device can participate in regulation during the energy

consumption period specified by the consumer h. Constraint

2 ensures that the basic needs of each consumer for washing

machines or EV charging can still be satisfied within the specific

period; Constraint 3 ensures that the start and stop times of the

device are in the restricted range. Constraints 4, 5 ensure that

the LA’s schedule plan satisfies the consumers’ basic demands.

2) The initial load profile prediction of LA signed consumers

The initial load profiles of LA signed consumers will be

evaluated and predicted, which can be expressed as follows:

FIGURE 1
The trading framework of muti-stage markets.
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PF
n,t,ω � ∑

H

h

⎛⎝PD
n,h,t,ω +∑

I

i

Pn,i,h,wu
R
n,i,h,t,ω

⎞⎠∀t,ω, n (6)

uR
n,i,h,t,ω � { 1, t � tRn,i,h,ω

0, else
∀i, h, t,ω, n (7)

where uRn,i,h,t,ω is the 0–1 variable. uRn,i,h,t,ω � 1 represents the

initial state for device i at time plot t in an open state. tRn,i,h,ω
is the initial open time for device i.

3) Flexible DR resource evaluation

In the typical scenario ω, assuming the response ratio of signed

consumers of LAn isdn,w. Thus, the number of responsive consumers is

dn,wH and the number of unresponsive consumers is dn,w(1 −H).
Thus, the aggregation load of LAn can be expressed as:

PT
n,t,ω � PNN

n,t,ω + PFN
n,t,ω

� ∑
h∈HN

n,w

⎛⎝PD
n,h,t,ω +∑

I

i

Pn,i,h,wun,i,h,t,ω
⎞⎠ + ∑

h∈HC
n,w

⎛⎝PD
n,h,t,ω +∑

I

i

Pn,i,h,wu
R
n,i,h,t,ω

⎞⎠ ∀t,ω, n

(8)

where PT
n,t,ω is the total load of signed consumers of LAn.HN

n,w is the

unresponsive consumers set of signed consumers. PNN
n,t,ω is the

unresponsive load of signed consumers. HC
n,w is the responsive

consumers set of signed consumers. PFN
n,t,ω is the responsive load

of signed consumers.

Bidding model of LA in the day-ahead
energy market and reserve market

After evaluating the load profiles of signed consumers, LAn

aggregate the load resources of signed consumers to join the day-

ahead energy market, the day-head reserve market and the real-

time balance market to gain profits. The bidding strategy of LAn

in the day-ahead market can be expressed as follows:

max
Pbid
n,t,c ,r

up
n,t,w,r

down
n,t,w

∑
Ω

ω�1
πω∑

T

t

(λSn,t,wPT
n,t,ω − λAn,t,wP

bid
n,t,w + λLACn,t,w(rupn,t,w + rdownn,t,w )

− λPn,t,w(PIm+
n,t,w + PIm−

n,t,w))
(9)

PIm
n,t,w � PT

n,t,ω − Pbid
n,t,w ∀t,ω, n (10)

PIm
n,t,w � PIm+

n,t,w − PIm−
n,t,w ∀t,ω, n (11)

0≤ rupn,t,w ≤ rup,max
n,t,w ∀t,ω, n (12)

0≤ rdownn,t,w ≤ rdown,max
n,t,w ∀t,ω, n (13)

PNN
n,t,ω + ∑

h∈HC
n,w

PD
n,h,t,ω ≤P

bid
n,t,w + rupn,t,w ≤PT

n,t,ω ∀t,ω, n (14)

0≤PNN
n,t,ω + ∑

h∈HC
n,w

PD
n,h,t,ω ≤Pbid

n,t,w − rdownn,t,w ∀t,ω, n (15)

where πω is the probability of scenario ω. λ
A
n,t,w, λ

LAC
n,t,w, λ

P
n,t,w are the

predicted prices of the day-ahead energy market, the day-ahead

reserve market, and the real-time unbalance penalty.

PT
n,t,ω, P

bid
n,t,w, P

Im
n,t,w are the day-ahead forecast load demand, LA

bid quantity in the day-ahead energy market, and LA bid

quantity in the real-time balance market. rupn,t,w, r
down
n,t,w are the

up and down reserve capacity that LA bid in the reserve market.

rup,max
n,t,w , rdown,max

n,t,w is the maximum up and down reserve capacity.

PIm+
n,t,w, P

Im−
n,t,w > 0; negative PIm

n,t,w indicates that LA buys too much

power in the day-ahead energy market, and abundant power can

be used to bid in the real-time balance market for down-

regulation. Positive PIm
n,t,w indicates LAn needs to bid for up-

regulation in the real-time balance market. λPn,t,w(PIm+
n,t,w + PIm−

n,t,w)
is a penalty coefficient to ensure that the bidding quantity of LAn

in the day-ahead market can meet the majority of its load

demand. Constraints 14 and 15 ensure that LA bidding

quantity can satisfy the base load demand and LA bidding

quantity is within the controllable range.

The bidding curve of LA in the day-ahead energy market and

reserve market can be expressed as a piecewise decreasing

function CLA
n,t,w(Pbid

n,t,w) related to the demand interval and the

energy price as shown below:

CLA
n,t,w(Pbid

t,w) � Pbid
n,t,c+1 + (Pbid

n,t,c − Pbid
n,t,c+1) λ

bid
n,t,c+1 − λAn,t,w
λbidn,t,c+1 − λbidn,t,c

∀t,ω, n

(16)
where the bidding curve includes the C segment

(Pbid
n,t,1, λ

bid
n,t,1), (Pbid

n,t,2, λ
bid
n,t,2),/, (Pbid

n,t,C, λ
bid
n,t,C). We have

λbidn,t,1 ≤ λbidn,t,2 ≤/≤ λbidn,t,C, Pbid
n,t,1 ≥Pbid

n,t,2 ≥/≥Pbid
n,t,C. For scenario

ω, the final market clear price λAn,t,w will be settled between

(λbidn,t,c, λbidn,t,c+1) and shown in Figure 2.

After evaluating the load profile of the signed consumers,

LAn aggregates the load resources of signed consumers to join

the day-ahead energy market, the day-head reserve market and

the real-time balance market to gain profits. The bidding strategy

of LAn in the day-ahead market can be expressed as follows:

After the day-head energy market and reserve market are

cleared, LA can participate in the real-time balance market to

FIGURE 2
The bidding curve of the load aggregator for the day-ahead
energy market. The bidding model of LA in the real-time balance
market.
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provide an up or down power regulation service based on its

abundant flexible resources of signed consumers. LA’s objective

function can be expressed as follows:

max
PIm+
t,w ,PIm−

t,w
PT
n,t,ω ,un,i,h,t,ω

∑
Ω

ω�1
πω∑

T

t

(λSn,t,w(PIm+
n,t,w − PIm−

n,t,w) + λBt,w(PIm+
n,t,w + PIm−

n,t,w)

− λdivn,t,w

∣∣∣∣Pdiv
n,t,w

∣∣∣∣)
(17)

Pdiv
n,t,w � Pbidp

n,t,w + PIm+
n,t,w − PIm−

n,t,w + rup
p

n,t,w − rdown
p

n,t,w − PT
n,t,ω ∀t,ω, n

(18)
PIm+
n,t,w ≤max{(PT

n,t,ω − Pbidp

n,t,w − rup
p

n,t,w), 0}∀t,ω, n (19)
PIm−
n,t,w ≤max{(Pbid*

n,t,w − rdown*n,t,w − PNN
n,t,ω − ∑

h∈HC
n,w

PD
n,h,t,ω), 0}∀t,ω, n

(20)
where λdivn,t,w is the penalty price for energy deviation of LAn.

Pbid*
n,t,w is the energy obtained by bidding in the day-ahead

energy market. λBt,w is the up/down-regulation price in the

real-time balance market. Constraints 19, 20 ensure that

the up/down-regulation power is within the controllable

range.

Electricity market model

Day-ahead energy market and reserve
market model

After each market participant completes the bidding in the

day-ahead market, the system operator will jointly clear the day-

ahead energy market and the day-ahead reserve market, which

aims at minimizing the system operation cost (including the total

cost of generation and the cost of the system ancillary service).

Thus, the day-ahead scheduling plan for thermal units can be

obtained as follows:

min
PG
g,t,w,r

up
g,t,w,r

down
g,t,w ,

Pbid
n,t,w,r

up
n,t,w,r

down
n,t,w

∑
Ω

ω�1
πω∑

T

t

⎛⎝∑
G

g�1
⎛⎝CGS

g,t,w(PG
g,t,w)

+λGCg,t,w(rupg,t,w + rdowng,t,w )
⎞⎠

−∑
N

n�1
⎛⎝CLA

n,t,w(Pbid
n,t,w)

−λLACn,t,w(rupn,t,w + rdownn,t,w )
⎞⎠⎞⎠∀t,ω (21)

where we have G thermal units to join the day-ahead market.

Like the LA bidding curve CLA
n,t,w(Pbid

n,t,w), the bidding curve of

thermal units CGS
g,t,w(PG

g,t,w) is a multi-segment linear

increasing function related to the bidding price and

output. PG
g,t,w is a bidding quantity of thermal unit gin the

day-ahead energy market and the bidding up/down reserve

capacity in day-ahead reserve market. rupg,t,w, r
down
g,t,wλ

GC
g,t,w is the

bidding reserve price. The optimization model (Eq. 21) will

subject to the following constraints.

1) System balance constraint:

PG
b,t,w + Pre

b,t,w − ∑
l|b∈o(l)

fl,t,w+ ∑
l|b∈r(l)

fl,t,w � Pbid
b,t,w + PD0

b,t,w ∀t,ω, b

(22)
where PD0

t,w is the load demand of none-market consumers,

i.e., unsigned consumers by LA. Pbid
b,t,w is the day-ahead

bidding quantity of LA at bus b. PG
b,t,w is the day-ahead

bidding quantity of thermal units at bus b. Pre
b,t,w is the

predicted renewable energy output. fl,t,w is the power flow of

the transmission line l ∈ L. b ∈ o(l) is the line set where bus b is
used to send power. b ∈ r(l) is the line set where bus b is used to

receive power.

2) Thermal unit constraint:

Gg
min + rdowng,t,w ≤PG

g,t,w ≤Gg
max − rupg,t,w ∀t,ω, g (23)

0≤ rupg,t,w ≤RRU
g,w ∀t,ω, g (24)

0≤ rdowng,t,w ≤RRD
g,w ∀t,ω, g (25)

where Gg
max, Gg

min is the maximum/minimum output of

thermal unit g. RRU
g,w, R

RD
g,w is the maximum/minimum reserve

capacity of thermal unit g.

3) Reserve capacity constraint:

∑
g∈G

rupg,t,w + ∑
n∈N

rdownn,t,w ≥ϕG ∑
b∈B

Pre
b,t,w + ϕD ∑

b∈B

PD0
b,t,w ∀t,ω, b (26)

∑
g∈G

rdowng,t,w + ∑
n∈N

rupn,t,w ≥ϕG ∑
b∈B

Pre
b,t,w + ϕD ∑

b∈B

PD0
b,t,w ∀t,ω, b (27)

where Constraints 26, 27 ensure that the system up/down reserve

capacity can satisfy the basic reserve demand. ϕG, ϕD denote the

reserve ratio of renewable energy and load, respectively.

4) System operation constraint:

The system operation constraints include the voltage

constraint (29) and line capacity constraint (30) as follows:

fl,t,w � Bl(θo(l),t,w − θr(l),t,w)∀t,ω, l (28)
θ min ≤ θb,t,w ≤ θ max ∀t,ω, l (29)
Fl

max ≤fl,t,w ≤Fl
max ∀t,ω, l (30)

where Fl
max is the maximum capacity of line l. θj,t,b is the bus

voltage. θ min, θ max is the minimum/maximum bus voltage.

Real-time balance market model

In the real-time balance market and to eliminate the net

deviation caused by renewable energy, the system operator

dispatches the up/down flexible resources provided by the
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day-ahead reserve market and real-time balance market. Thus,

the real-time balance market can be modeled as follows:

min
r
up,rt
g,t,w ,r

down,rt
g,t,w ,r

up,rt
n,t,w

rdown,rtn,t,w ,dloadt,w ,dret,w

PIm+
n,t,w,P

Im−
n,t,w

∑
Ω

ω�1
πω

⎛⎝∑
G

g�1
⎛⎝ λGCg,t,w(rup,rtg,t,w + rdown,rtg,t,w )

+δt,w(dload
t,w + dre

t,w)
⎞⎠

+∑
N

n�1
⎛⎝ λLACn,t,w(rup,rtn,t,w + rdown,rtn,t,w )

+λBt,w(PIm+ ,rt
n,t,w + PIm− ,rt

n,t,w )⎞⎠⎞⎠∀t,ω (31)

∑G

g�1r
down,rt
g,t,w +∑N

n�1r
up,rt
n,t,w +∑N

n�1P
Im+
n,t,w + dre

t,w � LDe+
t,w ∀t,ω (32)

∑G

g�1r
up,rt
g,t,w +∑N

n�1r
down,rt
n,t,w +∑N

n�1P
Im−
n,t,w + dload

t,w � LDe−
t,w ∀t,ω (33)

0≤ r
up, rt
g, t, w

≤ r
up
g, t, w

, 0≤ r
up, rt
n, t, w

≤ r up
n, t, w

∀t,ω, g (34)

0≤ rdown,rtg,t,w ≤ rdowng,t,w , 0≤ rdown,rtn,t,w ≤ rdownn,t,w ∀t,ω, n (35)

0≤P Im−, rt
n, t, w

≤P
Im−

n, t, w
, 0≤P

Im+, rt
n, t, w

≤P
Im+

n, t, w
∀t,ω, n (36)

where LDe+
t,w , LDe−

t,w is the net load deviation. LDe+
t,w indicates that the

renewable energy output is more than the prediction output, so it

is necessary to dispatch up-regulation power, down reserve

capacity provided by thermal units, up reserve capacity

provided by LAs, and renewable energy curtailment to

maintain the system balance. LDe−
t,w indicates that the renewable

energy output is less than the prediction output, so it is necessary

to dispatch the down-regulation power, up reserve capacity

provided by the thermal units, and down reserve capacity

provided by LAs and load curtailment. dloadt,w is the system load

curtailment. dret,w is the system renewable energy curtailment.

rup,rtg,t,w ,r
down,rt
g,t,w ,rup,rtn,t,w , rdown,rtn,t,w is the up/down reserve capacity

provided by thermal unit g and LAn. PIm+ ,rt
n,t,w , PIm− ,rt

n,t,w is the up/

down-regulation power dispatched by the system operator. δt,w is

the price to curtail renewable energy and load. Constraints 34–36

guarantee that the flexible resources provided by each market

participant are within the market-clearing range.

The bidding process of LAs and the clearing process of the

system operator in the multi-stage market is shown in Figure 3.

Case study

Basic data

A modified IEEE 30 bus system is used to verify the

proposed framework as shown in Figure 4. We have three

LAs = {LA1, LA2, LA3} in charge of load at the corresponding

bus, where each LA will aggregate 1,000 consumers with flexible

resources. The system has 3 thermal units G = {G1, G2, G3} and

3 renewable energy generators, i.e., WT. Renewable energy

generators are not considered participators in the market.

The detailed parameters of LAs, thermal units and WT are

shown in Table A1, Table A2 and Table A3 in the Appendix.

Suppose that the real-time balance market will be open 1 h in

advance, then the predicted load profile of day-ahead data and

the predicted electricity prices of day-ahead and real-time data

are shown in Figure 5. Other price parameters are shown in

Table 1. In this paper, we assume that the reserve rates for

renewable energy and the load are ϕG � 0.02 and ϕD � 0.01.

Considering the scenario below:

Scenario one: the real-time renewable energy generation is

much more than the day-ahead prediction as shown in

Figure 6A. Scenario two: the real-time load is much more

than the day-ahead prediction as shown in Figure 6B.

FIGURE 3
The flowchart for market-bidding and clearing.

Frontiers in Energy Research frontiersin.org06

Wang et al. 10.3389/fenrg.2022.1030076

50

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1030076


Market-bidding results

1) Day-ahead market-clearing result

The bidding results of LAs and thermal units in the day-

ahead energy market and reserve market are shown in Figure 7.

In the day-ahead energy market and due to the differential

bidding strategies, LAs and thermal units have different

bidding quantity.

In the day-ahead reserve market, peak load and peak

electricity prices usually appear during the afternoon and

night, and thus, consumers are more inclined to take part in

the DR program. LA can aggregate a more price-sensitive load to

join the reserve market as shown in Figure 7B.

2) Real-time balance market-clearing result

Once the day-ahead dispatching schedule for thermal units is

decided, more flexible regulation resources may be required from

the real-time market to balance the system supply-demand status

under certain extreme scenarios.

The system has a different regulation demand under

different scenarios. For example, under scenario one where

the real-time renewable energy output is much more than the

day-ahead predicted output, to consume more renewable

energy, the system operator needs to dispatch the up-

regulation resources of LA from the real-time balance

market and day-ahead reserve market, and the down-

regulation resource of thermal units from day-ahead

reserve market is dispatched. Thus, all LAs only win up-

regulation resources from the real-time balance market

without winning down-regulation resources as shown in

Figure 8A.

Moreover, under scenario two where real-time load is

much more than the day-ahead predicted load, to provide

more power, the system operator needs to dispatch the down-

regulation resources of LA from the real-time balance market

and day-ahead reserve market, and to up-regulation resource

of thermal units from day-ahead reserve market are

dispatched. Thus, all LAs only win down-regulation

resources from the real-time balance market

without winning up-regulation resources as shown in

Figure 9B.

Market participants’ revenue

The benefits and costs of three LAs and their signed

consumers are shown in Table 2. According to Table 2, the

economic benefits of each LA with their signed consumers have

been greatly improved after participating in the market. Under

scenario one, the benefits of LAs have increased by 3.0%, 6.5%

and 11.9% and the costs of signed consumers of each LA are

reduced by 10.6%, 2.6% and 4.7%. Under scenario two, the

benefits of LAs have increased by 16.5%, 13.4% and 25.1%

and the costs of signed consumers of each LA are reduced by

12.7%, 4.5% and 7.6%.

FIGURE 5
Day-ahead prediction for the net load and electricity price.

TABLE 1 Parameter setting of prices.

Parameters λPn,t,w λdivn,t,w δt,w λSn,t,w

Price ($/MWh) 100 300 500 1.5λAn,t,w

FIGURE 4
The modified IEEE 30 bus system.
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FIGURE 6
Transaction process of the slot-ahead ancillary market for peak-regulation. (A) Renewable energy and (B) load.

FIGURE 7
The market-clearing results for the day-ahead energy market. (A) Energy market and (B) reserve market.

FIGURE 8
The regulation status for balance and reserve resources under scenario one. (A) Real-time balance market (up-regulation) and (B) reserve
market (up-regulation).
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The system operation result is shown in Table 3. The

operation of the real-time balance market can effectively

aggregate surplus flexible resources of LAs to participate in

market regulation, which is helpful in reducing renewable/

load curtailment and system operating cost. Under scenario

one, the power curtailment of renewable energy is reduced by

15.3% and the system operating cost is reduced by 6.2% with

the operation of real-time balance market. Under scenario

FIGURE 9
The regulation status for balance and reserve resources under scenario two. (A) Real-time balance market (down-regulation) and (B) reserve
market (down-regulation).

TABLE 2 Revenue of market participants.

Scenario Market participants The revenue without
joining the market
($)

The revenue from
joining the day-ahead
market ($)

The revenue from
joining the day-ahead
and real-time market
($)

Scenario one LA1 15,675.9 15,457.9 16,147.3

LA2 17,774.3 17,988.6 18,934.2

LA3 11,568.4 12,152.3 12,948.6

Signed consumers of LA1 −47028.3 −47341.8 −42054.7

Signed consumers of LA2 −53321.1 −53008.8 −51915.34

Signed consumers of LA3 −34703.1 −35492.9 −33080.5

Scenario two LA1 15,675.9 15,457.9 18,261.5

LA2 17,774.3 17,988.6 20,162.3

LA3 11,568.4 12,152.3 14,476.3

Signed consumers of LA1 −47028.3 −47341.8 −41034.6

Signed consumers of LA2 −53321.1 −53008.8 −50914.7

Signed consumers of LA3 −34703.1 −35492.9 −32070.8

TABLE 3 System operation results.

Scenario Renewable energy/load curtailment (MWh) System operation fee ($)

Without the real-time
balance market

With the real-time
balance market

Without the real-time
balance market

With the real-time
balance market

Scenario one 153.58 130.01 169,117.5 158,620.9

Scenario two 528.27 470.40 414,955.9 335,060.2

Frontiers in Energy Research frontiersin.org09

Wang et al. 10.3389/fenrg.2022.1030076

53

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1030076


two, the load curtailment is reduced by 11.0% and the system

operating cost is reduced by 19.3% with the operation of the

real-time balance market.

According to Tables 2 and 3, the proposed multi-stage

market framework can provide a win-win market platform

for LAs, consumers and the system operator, which helps to

guarantee the economic benefits of each market participant

and reduces the operating cost of the system.

LA dispatch results

Under scenario two, the device dispatch scheme of typical

signed consumers of each LA is shown in Figure 10. Figure 7

shows that the winning bid of LAs in the day-ahead reserve

market is up-regulation capacity without down-regulation

capacity. As shown in Figure 9, the winning bid of LAs in the

real-time balance market is the down-regulation capacity, who

will reduce their power usage in the afternoon and night. Each LA

will dispatch the controllable devices of their signed consumers in

response to system regulation demand. Type one of controllable

device is the washing machine and type two is the EV. All

controllable devices are forbidden from being used during the

peak load period and are to be used during other periods as

shown in Figure 10.

Conclusion

This paper establishes a multi-stage electricity market-

bidding and clearing framework including the day-ahead

energy market, the day-ahead reserve market and the real-

time balance market. A modified IEEE 30 bus system is

utilized to verify the effectiveness of the proposed market

framework, and the simulation results show that a win-win

market trading platform for LAs, consumers and the system

operator is proposed, which can effectively coordinate the

interests of multiple market participants.

1) A load profile perception model for LA is established to

achieve accurate load prediction and optimal device

control. Moreover, the bidding strategies for LAs are

also proposed to assist LA to participate efficiently in

markets.

2) By establishing a real-time balance market, LAs can

effectively aggregate flexible resources based on

signed consumers, and encourage signed consumers

to adjust load profiles of controllable devices to

respond to system regulation demand. As system

renewable energy is abundant, consumers can provide

FIGURE 10
The control scheme for end-users’ devices. (A) Typical signed consumers of LA1, (B) typical signed consumers of LA2, and (C) typical signed
consumers of LA3.
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more up-regulation capacity to consume renewable

energy, whereas when the system is short of power,

consumers can provide more down-regulation

capacity to maintain the system supply-demand

balance.
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Appendix

TABLE A1 Parameter settings of load aggregators.

Market participants LA1 LA2 LA3

dn,w 30% 40% 25%

λbidn,t,c [30, 50, 70, 90] [25, 50, 75, 100] [35, 50, 65, 80]

Bus 7 12 24

TABLE A2 Parameter settings of thermal units.

Market participants G1 G2 G3

Pmax 120 120 75

Bus 1 2 22

TABLE A3 Parameter settings of wind turbine.

Market participants WT1 WT2 WT3

Pmax (MW) 120 80 80

Bus 10 15 28
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Optimal allocation of phase
shifting transformer with
uncertain wind power based on
dynamic programming

Kang Fu1, Zhaobin Du1,2*, Feng Li3, Zuohong Li3 and
Chengjun Xia1,2

1South China University of Technology, Guangzhou, China, 2Guangdong Provincial Key Laboratory of
Intelligent Operation and Control for New Energy Power System, Guangzhou, China, 3The Grid
Planning and Research Center of Guangdong Power Grid Corporation, Guangzhou, China

Phase Shifting Transformer (PST) can help improve the power flow distribution

of the transmission section, which can increase thewind power consumption of

the grid. In order to adapt the PST allocation to the grid evolution, this paper

presents a dynamic programming method to allocate PST in each planning

stage of the grid optimally. The optimal allocation model of PST under a single

grid seeks to maximize the wind power consumption and the Total Transfer

Capacity (TTC) between areas. A calculationmethod for TTC of grids containing

PST and wind power is proposed. The Non-Dominated Sorting Genetic

Algorithm II (NSGA2) is used to solve the Pareto sets under each planning

stage of the grid. Then, the optimal planning path of PST is derived based on

dynamic programming. The superiority of the proposed method is

demonstrated by comparing the IEEE-118 system results of dynamic and

static programming.

KEYWORDS

phase shifting transformer, dynamic programming, optimal allocation, wind power
uncertainty, non-dominated sorting genetic algorithm II

1 Introduction

The application of new energy sources in the grid has been rapidly developed, with the

continuous process of energy transition of the grid. In 2021, over 134 GW of renewable

power capacity was added in China, making up 76.1% of the newly installed power

generation capacity (NEA, 2022). The annual growth rate of installed wind power

generation is over 25%, and wind power has become the most rapidly developing

renewable energy. However, the construction cycles of the grid and wind farms are

not in sync while the amount of wind power grid-connected is increasing rapidly,

resulting in the limitations on wind power delivery capacity in areas where wind

power is concentrated (Zhang et al., 2020).

The traditional solutions of grid strengthening have problems such as high investment

costs, low utilization, and increased environmental pressure. Installing Flexible AC

Transmission System (FACTS) devices is another solution (IEA, 2017). FACTS
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devices can improve the wind power delivery capacity by re-

dispatching the power flow distribution of the transmission

section. It plays a good transition role during the planning

cycle of the grid. The primary FACTS devices used currently

are (Ghahremani et al., 2013): Static Var Compensator (SVC),

static synchronous compensator, Thyristor Controlled Series

Compensator (TCSC), PST, and Unified Power Flow

Controller (UPFC). Among them, PST and UPFC have a

more significant impact on wind power integration (Zhang

et al., 2018). Still, the installation and operation costs of PST

are much lower than those of UPFC, giving a substantial

economic advantage (Brilinskii et al., 2020). Installing PST in

the grid can effectively improve the power flow distribution of the

transmission section, thus improving the transmission capacity

and wind power consumption of the grid.

Currently, many studies have proposed optimization models

for the allocation of PST. The models can be divided into two

categories according to their optimization objectives. The first

category mainly focuses on optimizing traditional power system

indicators such as active power loss, power flow balance, grid

transmission capacity, and voltage profile (Preedavichit et al.,

1998). In (Verboomen et al., 2008), the phase shifter distribution

factor based on the DC load flow has been derived, and a method

is proposed to calculate the TTC for grids containing PST. In

(Sebaa et al., 2014), a multi-objective optimization model is

constructed to solve the optimal allocations of PST and SVC,

considering active power loss, power flow balance, and voltage

stability as optimization indicators (Gerbex et al., 2001). gives the

installation numbers of TCSC, Thyristor-Controlled Phase

Shifting Transformer (TCPST), Thyristor-Controlled Voltage

Regulator (TCVR), and SVC. The optimization objective is to

maximize the network transmission power, and the optimal

allocations of each device are found by a genetic algorithm. In

(Kazemi and Sharifi., 2006), the optimal location of PST is found

with congestion management in normal and emergency

conditions, resulting in reduced production cost and increased

load capacity of the power market. In (Wu et al., 2008), a group

search optimizer with multiple producers is presented to

optimize the positions of TCSC, TCPST, and TCVR, and their

control parameters to minimize the active power loss and

improve the voltage profile. In (Lima et al., 2003), an optimal

model for allocating TCPST is presented. It uses mixed integer

linear programming to maximize the system load capacity.

However, the results of the DC optimal power flow model are

subject to errors. The second category mainly focuses on the

optimization of wind power consumption. In (Miranda and

Alves., 2014; Zhang et al., 2021), the optimal location of PST

is found to maximize wind power consumption, but the

investment cost of PST is not considered, and the number of

PST is limited to one (Zhang et al., 2017). proposes a bilevel

optimization model to solve the optimal locations of PST in the

transmission network. The upper level problem seeks to

minimize the investment costs on series FACTS, the cost of

wind power curtailment, and possible load shedding. The lower

level problems capture the market clearing under different

operating scenarios. In (Zhang et al., 2018), a bilevel

optimization model for the optimal locations of TCSC and

PST in the transmission network is proposed, and the

uncertainty of wind power is considered. The proposed

optimal models for allocations of PST and other FACTS

devices only consider the case of a single grid throughout the

existing studies. These studies can only compose the planning

path of PST by solving for the optimal allocation scheme of each

stage, which may not be the optimal path if multi-stage grid

planning is considered. This paper proposes a dynamic planning

method to find the optimal allocation path of PST to solve this

problem, considering the grid evolution and wind power

uncertainty.

In terms of PST single-stage allocation, the existing

optimization models (the second category of optimization

models mentioned above) only consider wind power

consumption and investment cost of PST without considering

the traditional optimization indicators of the power system. This

paper finds that installing PST in the grid can increase the TTC of

the grid while increasing the wind power consumption. However,

wind power’s uncertainty will greatly affect TTC’s calculation

(Wang et al., 2021), so the traditional TTC calculation method

(Verboomen et al., 2008) is no longer applicable. This paper

proposes a method to calculate the TTC of grids with PST and

wind power. Therefore, a multi-objective optimization model is

proposed to find the Pareto sets of PST allocation schemes under

a single grid, considering wind power consumption, investment

and operation costs of PST, and TTC as optimization indicators.

In solving the optimal allocation model of PST, existing

methods are mainly divided into two categories. The first

category uses mixed integer programming to solve the DC

optimal power flow model (Lima et al., 2003; Zhang et al.,

2018). The time required for this solution is short, but a

secondary verification is necessary because of the errors. The

second category uses intelligent algorithms to solve the optimal

model [GA (Gerbex et al., 2001), PSO (Zhang et al., 2021), etc.],

which yields more accurate results but takes more time. Since

solving the PST optimal allocation model PST does not require

high computational speed, NSGA2 is applied in this paper to

ensure the accuracy of the results.

To sum up, this paper proposes a dynamic programming

method to find the optimal path planning of PST, considering

the grid evolution. First, we build a single-stage multi-

objective optimization model, with wind power

consumption, investment and operation costs of PST, and

TTC as optimization indicators. Second, NSGA2 is used to

find the Pareto sets of each grid planning stage. Then a

Technique for Order Preference by Similarity to an Ideal

Solution (TOPSIS) is used to calculate the adaptation

values for each allocation scheme in the Pareto sets.

Finally, the optimal allocation path of PST is obtained

Frontiers in Energy Research frontiersin.org02

Fu et al. 10.3389/fenrg.2022.1003315

58

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1003315


based on the dynamic programming model. The main

contributions of this paper are as follows:

1) A dynamic programming method is proposed to solve the

optimal allocation path of PST in multi-stage grid planning,

considering wind power uncertainty.

2) A method for calculating the TTC of grids containing PST

and wind power is proposed. TTC is considered as an

optimization indicator for the PST single-stage allocation

model.

The rest of this paper is organized as follows. Section 2 shows

the main framework of the proposed method. Section 3

introduces the basic principle and steady-state model of PST.

Section 4 presents the PST single-stage allocation model. The

solution based on NSGA2 is demonstrated in Section 5. Section 6

describes the dynamic programming model of PST. Section 7

verifies the effectiveness of the proposed method by comparing

the IEEE 118-bus system results of dynamic and static

programming. Finally, the main findings of this study are

summarized with some prospects for future studies in the

conclusion section.

2 Main framework of the proposed
method

The proposed method is developed on the main framework

of dynamic programming, and the main idea is to allocate PST

dynamically in the multi-stage planning of the grid. The method

has two main steps, and the framework of the proposed method

is given in Figure 1.

First, the PST single-stage planning models are built for each

planning stage of the grid. We consider TTC, wind power

consumption, and PST costs as the optimization objectives to

find the PST allocation schemes of each planning stage. TOPSIS

is used to evaluate each allocation scheme by calculating its

evaluation values.

Second, the dynamic programming model is constructed and

solved for the optimal planning path of the PST. The dynamic

planning model is built by considering each planning stage of the

grid as a stage, the PST allocation scheme of each stage as a state,

and the scheme’s evaluation value as the state’s adaptation value.

The target is to maximize the sum of the adaptation values of the

states in the strategy. Then the dynamic programming model is

solved to obtain the optimal multi-stage decision, and the

optimal PST planning path is obtained.

3 Basic principle and steady-state
model of PST

PST changes the power flow by injecting a voltage vector into

the line, resulting in the variation of the phase and voltage

amplitude at both ends of the line (Ding et al., 2017).

FIGURE 1
The framework of the PST allocation method.

FIGURE 2
The equivalent circuit of the branch with PST.
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Figure 2 depicts the equivalent circuit of the branch with PST

(Yeo et al., 2019), and the resistances of the line and PST are

ignored here. In Figure 2, XL represents the equivalent reactance

of the line, Xeq represents the equivalent reactance of the PST, α is

the phase-shift angle, and Ui, θi, Uj, and θj represent the voltage

amplitude and the phase of nodes i and j, respectively. Pij is the

active power of line i-j.

Pij � UiUj

XL
sin(θi − θj), (1)

Pij � UiUj

XL + Xeq
sin(θi + α − θj), (2)

Eqs 1, 2 represent the active power of the line before and after

the installation of the PST, respectively. It can be seen that the

phase angle difference has changed after the PST installation, and

the active power of the line has been regulated.

4 Multi-objective optimal model of
power systems with PST

4.1 Objective functions

The large-scale grid-connected wind power will increase the

power flow of transmission lines, resulting in problems such as

transmission line overloading and inter-regional transmission

capacity limitations. The main focus of this study is to improve

the wind power consumption while considering the investment

cost of PST, and the TTC between grid areas is also one of the

concerns.

4.1.1 Wind power consumption
The first objective function (Eq. 3) seeks to maximize the

wind power consumption.

max f 1 �
∑Sn

k�1ckWk

∑Sn
k�1ckWkmax

, (3)

where ck is the probability of scenario k. Wk and Wkmax are the

wind power consumption and total wind power output under

scenario k, respectively. Sn is the number of scenarios.

4.1.2 Total transfer capacity
The second objective function (Eq. 4) is to maximize the TTC

between grid areas.

max f 2 � TTC. (4)

We use the scenario method and linear programming to

solve the TTC between the source and receiving areas. The steps

are as follows:

Step 1. Use K-means clustering to reduce the number of

scenarios to Sn, i = 1.

Step 2. Select a typical condition of the grid and the wind power

output of scenario i is substituted into the typical condition of the grid

as the base grid. The AC power flow of the base grid is calculated.

Whether the wind power in the source area can be fully consumed, if

so, then go to Step3; if not, then TTC is calculated as the power flow

of the transmission section between the source and the receiver area.

Step 3. Calculate the sensitivity factor for line l (sl) when the

power output of all generators in the source area vary except for

the balancer’s.

sl � dPl

dΔE, (5)

where ΔE denotes the variation of the power output of all

generators in the source area except the balancer.

Step 4. The expression of the active power of line l is obtained

based on the sensitivity factor of PST to line l.

Pl � Pl0 +∑
Np

j�1
αjξ

j
l, (6)

where ξjl denotes the sensitivity factor of the PST j to the active

power of line l (Li et al., 2022a). Pl0 is the original active power of

line l in the base grid. Np is the number of PSTs installed. αj is the

phase-shift angle of PST j.

Step 5. The final active power expression for line l is obtained

from Eqs 5, 6.

Pl � Pl0 + sl · ΔE +∑
Np

j�1
αjξ

j
l . (7)

Step 6. A linear programming model is built to maximize the

TTC, with the phase shift angle and ΔE as the decision variables.

maxTTCi � ∑
i∈Ωt

Pi, (8)

s.t.{−Plmax ≤Pl ≤Plmax,
α min ≤ α≤ α max ,

(9)

where Ωt denotes the regional interlink lines set, and Plmax is the

maximum permissible powers limit of line l.

Step 7. Solve the linear programming model to get the value of

the phase shift angle and ΔE. Then consider these values as the

initial point of the Repeated Power Flow method (RPF) and

obtain the value of TTC, i = i+1.

Step 8. If i = Sn, go to Step 9; If i < Sn, back to Step 2.

Step 9. Calculate the expected value with Eq. 10 considering the

probability of scenarios, and the obtained expectation value is

recorded as the ETTC.
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ETTC � ∑Sn

i�1TTCi · ci. (10)

The RPF in Step7 is based on the conventional AC power

flow, and its basic idea is as follows. From a specific base

state, the output of the generation area is gradually increased

while the load of the receiving area is increased

correspondingly. The AC power flow in the power

increasing process is repeatedly calculated. A series of

power flow solution points are obtained, and various

constraints are checked on these solution points until the

maximum adjustment of the generator that fulfils all

constraints is found. At this point, the active power of the

transmission section between the transmitting and receiving

areas is considered as the TTC.

4.1.3 Investment and operation costs of PST
The third objective function (Eq. 11) means to minimize the

investment and operation costs of PST (Ippolito and Siano.,

2004).

min f 3 � ∑Np

i�1CPi + β · Ti · CPi, (11)
CPi � γ · SPi, (12)

where CPi is the investment cost of the PST i. β denotes the

annual operating cost factor. Ti is the usage time of the PST i. γ is

the cost factor of PST. SPi is the capacity of the PST i.

It is worth noting that the decision variables selected in the

optimal model are the location of the PST, the number of PSTs,

the phase shift angles, and the wind power output.

4.2 Power system constraints

4.2.1 Equation constraints
The active and reactive power constraint equations are as

follows:

PGi − PLi − Ui∑
nb

j�1
Uj(Gij cos θij + Bij sin θij) � 0 (13)

QGi − QLi − Ui∑
nb

j�1
Uj(Gij sin θij − Bij cos θij) � 0 (14)

where PGi andQGi are the active and reactive power output of the

i-bus generator, respectively. PLi and QLi are the load active and

reactive power of the bus i. nb is the number of lines connected to

node i. Gij and Bij are the conductance and the susceptance of the

line i-j, respectively.

4.2.2 Inequality constraints
Inequality constraints for the active and reactive power

outputs of generators, voltage amplitudes of buses, and active

power of branches are as follow:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Uimin ≤Ui ≤Uimax ,
PGimin ≤PGi ≤PGimax,
QGimin ≤QGi ≤QGimax,
−Pijmax ≤Pij ≤Pijmax,

(15)

where Uimax and Uimin are the maximum and minimum voltage

of node i, respectively. PGimax and PGimin are the maximum and

minimum active power output of generator i, respectively.QGimax

and QGimin are the maximum and minimum reactive power

output limits of generator i, respectively. Pijmax is the maximum

permissible powers limit of line i-j.

Since this paper focuses on the PST allocation in multi-stage

grid planning, the time scale between the stages is in years, so the

model of the generator is moderately simplified. It is assumed

that the responsiveness of conventional power sources is strong

enough to consume wind power. So some temporal constraints

are not considered, such as ramping constraints of generators.

4.3 Constraints of decision variables

It is known that the PST is mainly used to regulate the power

flow of the transmission section where PST is installed

(Hadzimuratovic and Fickert., 2018). We have imposed some

limits on the range of locations and the number of PSTs to avoid

solving unreasonable PST allocation schemes, which are shown

as follows.

1) The locations of PST are limited to the transmission sections,

which contain the wind power transmission lines.

2) Themaximum number of PSTs installed on a line is 1, and the

maximum number of PSTs installed in a transmission

section is 2.

4.3.1 Locations of PST

lp ∈ D. (16)

lp is the line with PST installed. D is the set of transmission

sections that deliver wind power.

4.3.2 Shift-phase angle

α min ≤ α≤ α max . (17)

αmax and αmin are the maximum and minimum phase angles

of PST, respectively.

4.3.3 Number of PSTs
Installing PST in the transmission section can improve

transmission capacity by lessening the power flow of heavily

loaded lines. Since the number of heavy load lines on a specific

transmission section is limited, the transmission capacity
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enhancement will naturally decrease as more PSTs are installed

(numerical simulations are performed in Section 7.5 to verify this

view).

The number of lines in the transmission section is limited in

the real grid. Considering the economics of PST investing, this

study limits the PSTs number of the transmission section to less

than 2.

Ni ≤ 2. (18)

Ni is the PSTs number of the transmission section-i.

4.3.4 Wind power output

0≤Pwi ≤Pwimax . (19)

Pwi and Pwimax are the actual and maximum output of wind

power at node i, respectively.

5 Solution approach

The NSGA2 algorithm is used to solve the Pareto sets of

the PST optimal allocation model. The phase shift angle and

wind power output in the initial population are randomly

generated, which may result in unsolvability or

unreasonable power flow results [power flow reverse (Li

et al., 2022)]. The following improvements are added to

NSGA2 to solve this problem, and the flow chart of

NSGA2 is shown in Figure 3.

1) An additional judgment is added to eliminate the

unreasonable allocation schemes.

2) According to the power flow regulation characteristics of PST,

the unreasonable range of phase shift angle is eliminated to

accelerate the iteration speed of NSGA2

{ 0< αi ≤ α max . . . i ∈ Ωp,
α min ≤ αi < 0 . . . i ∈ Ωq.

(20)

In Eq. 20, Ωp denotes the set of lines with the lowest load

factor of each wind power transmission section, so set α > 0

(Over-regulation, increasing the active power of the line).

Ωq denotes the set of lines with the highest load factor of

each wind power transmission section, so set α < 0

(Hysteresis-regulation, reducing the active power of the

line).

After obtaining the Pareto set by NSGA2, the scores of

allocation schemes in the Pareto set are found by the TOPSIS

method considering the weight coefficients.

FIGURE 3
The flow chart of the multi-objective optimization model solving.
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6 PST allocation based on dynamic
programming

A dynamic programming model of PST is proposed to find

the optimal planning path for PST. It ensures that the allocation

of PST can be better adapted to the grid evolution. Figure 4 gives

the PST dynamic programming model, and the details are as

follows.

Stage: Define a stage as the transformation between two

adjacent planning stages of the grid, and the number of

planning stages is n.

State: Define states as the PST allocation schemes of each

planning stage of the grid. In Figure 4, Yi-j indicates the jth

PST allocation scheme under the ith planning stage of

the grid.

Decision: The decisions represent the transition choices of

PST allocation schemes between two adjacent planning stages

of the grid, which are described in Figure 4 as connections

between neighboring states. In addition, the set of lines with

PST installed in the allocation scheme after the decision must

include that of the allocation scheme before the decision

(without considering the case of decommissioning or

replacement of PST). In Figure 4, Ji is the number of

decisions for stage i.

Strategy: Define each complete planning path through all

planning stages as a strategy, represented in Figure 4 as a

complete concatenation from Y0 to Yn.

Target: The target is to select the optimal planning path with the

maximum sum of adaptation values. In Figure 4, Si-p-q is the

adaptation value of decision Y(i-1)-p-Yi-q at the current stage i,

obtained by the TOPSIS. The specific calculation is as follows.

Step 1: Define all decisions in the current stage as evaluation

objects and take the three objective functions in Section

4.1 as evaluation criteria.

min f 3 � ∑
Np

i�1
(CP2 − CP1) + β ·m · CP2. (21)

Equation Eq. 21 shows the improved expression of the

cost objective function, where m is the time of a stage. CP1

and CP2 denote the PST investment cost of the PST

allocation scheme before and after the decision,

respectively.

Step 2: Use the TOPSIS to obtain the unnormalized scores of all

decisions in the current stage.

Step 3: Scores of all decisions at the current stage are

processed as in Equation Eq. 22, ensuring that the

decision scores of each stage are in the same order of

magnitude.

Si−j � hi · Ji · Sj
∑Ji

n�1Sn
, (22)

FIGURE 4
PST dynamic programming model.

FIGURE 5
Flowchart of the PST dynamic programming method.
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h1 > h2 > h3/> hn, (23)

where Si is the unnormalized score of decision i. Si-j is the

normalized score of decision j in stage i. hi is the weighting

factor of stage i in all stages, reflecting the importance of

each grid planning stage. Since the PST plays a transitional

role in the grid planning process, the demand for PST

becomes smaller as the grid evolves. So we set

continuous decreasing weighting factors for successive

planning stages, as shown in Equation Eq. 23. The

weighting factors values of grids are derived from

experience in this study.

In conclusion, the flowchart of the proposed PST dynamic

programming method is shown in Figure 5. The steps are as

follows.

Step 1: Build a multi-stage planning model of the grid.

Step 2:Build the optimal allocation model of PST for each

planning stage (Section 4).

Step 3: Use NSGA2 to solve the optimal allocation model based

on the interaction between PSD-BPA (a simulation

software that is used to calculate the power flow in

this paper) and a calculation procedure in MATLAB

(Tao et al., 2013). The scores of the allocation schemes

are obtained by the TOPSIS method considering the

weight coefficients (Section 5).

Step 4: Each planning stage’s allocation schemes are considered

states in the dynamic programming model. Each

allocation scheme’s score is recorded as the adaptation

value of each state in the PST dynamic programming

model. The optimal planning path of PST is obtained by

the dynamic programming algorithm (Section 6).

7 Case study

7.1 Case parameters and wind scenarios

The proposed dynamic programming model and solution

approach are tested on the IEEE 118-bus system. The system data

is derived from the IEEE standard system. The thermal limits for

the transmission lines refer to the values in (Blumsack., 2006).

Three wind farms with a maximum capacity of 1600 MW each

are assumed to be located at bus 5, 26, and 91 (Ziaee and

Choobineh., 2017). The phase shift angle range is set to be

(−50°, 50°). The usage time of PST is set to be 15 years (the

time of a complete planning path in this study). The cost factor of

PST is selected to be 10$/kVA, and the annual operating cost

factor is chosen to be 5%.

We built a multi-stage planning grid model in this case.

Three planning stages are considered base on the IEEE 118-bus

system, and the cycle between two adjacent stages is 5 years. The

specific grid models of each stage are as follows.

The first planning stage: Based on the IEEE 118-bus system,

the wind farm with the maximum capacity of 1600 MW is

located in bus 5, and the load has increased by 20%, h1 = 1.

The second planning stage: Based on the grid of the first

planning stage, the wind farm with the maximum capacity of

1600 MW is located in bus 26, and the load has increased by 10%,

h2 = 0.9.

The third planning stage: Based on the grid of the second

planning stage, the wind farm with the maximum capacity of

1600 MW is located in bus 91. The load in area C (Zhang and

FIGURE 6
Distribution chart of SSE and Sn.

TABLE 1 Wind scenarios.

# Wind intensities/p.u Probabilities

1 0.78 0.1426

2 0.06 0.2570

3 0.61 0.1657

4 0.42 0.1826

5 0.22 0.2521
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Grijalva., 2013) has increased by 10%, and a new transmission

line has been added between bus 91 and bus 92, with line

parameters consistent with the original lines of bus 91 and

bus 92, h3 = 0.8.

To obtain the wind scenarios, the wind power intensities of

each 5 minutes in 7 years provided by DR POWER (National

Energy Renewable Laboratory, 2019) are used to represent the

wind generation profile. We then use the K-means method

(Baringo and Conejo., 2013) to conduct the scenario

reduction, where the optimal number of clusters is

obtained by the Elbow Method (Bandara et al., 2019). The

SSE distribution plots for different Sn values are shown in

Figure 6.

The optimal number of clusters was found to be 5, based on

the results in Figure 6 and the Elbow Method. The probabilities

and wind intensities for the final five scenarios are provided in

Table 1.

7.2 Optimal planning path of PST

In terms of NSGA2 parameters, the initial population is set to

be 300, the number of iterations is set to 200, the crossover rate is

set to be 0.9, and the variation rate is set to be 0.1. The normalized

weight of three evaluation criteria are set to be 0.6, 0.2, and 0.2,

respectively.

The Pareto sets of PST allocation for three planning stages

are derived from the optimization calculation in Section 5 (the

results are shown in Supplementary Tables S1–S3 in the

Supplementary Material).

The proposed PST dynamic programming method is a

multi-stage decision-making problem, and the connection

between each stage is considered. The existing PST

allocation methods are mainly used for single-stage

optimization. When they are used to solve multi-stage

problems, the optimal PST allocation scheme of each stage

needs to be found separately and combined into a planning path

by order. We define this method as static programming and the

result as the static planning path.

Table 2 provides the planning results based on the static

planning and the dynamic planning for Road1 (the static

planning path) and Road2 (the dynamic planning path),

respectively. Columns 2–4 indicate the wind power

consumption of each wind farm. The fifth column shows the

locations of the PST. The sixth column represents the investment

cost of PST. The seventh column denotes the TTC between areas

A and B (Zhang and Grijalva., 2013). The last column gives the

wind power consumption rate of all wind farms. Doublelines 89-

92 (1) and 89-92 (2) denote the lines with smaller and larger

impedances between bus 89 and bus 92, respectively. Figure 7

shows the wind power curtailment rate for the three wind farms

in each scenario.

As observed in Table 2 and Figure 7, the consumption rate of

wind power under Road1 and Road2 has been significantly

improved, and the TTC has also been improved. The wind

power consumption rate and TTC of each planning stage in

Road2 are higher than those in Road1. However, the costs of the

three planning stages are higher in Road2, resulting in a better

allocation scheme in Road1 than in Road2 when the grid of each

planning stage is considered separately.

7.3 Comparison of dynamic programming
and static programming

In this section, two comparison cases are proposed to verify

the effectiveness of the dynamic programming method

proposed in this paper. Both cases compare the results of

multi-stage allocation of PST based on static and dynamic

programming.

TABLE 2 IEEE 118-bus system results for different planning paths of PST.

Planning
stage

Planning
path

Wind power
consumption (%)

PST locations Investment
cost
on PST
(M $)

ETTC
(MW)

Wind power
consumption of
all wind
farms (%)Bus 5 Bus 26 Bus 91

1st Without PST 55.84 — — — — 235.5 55.84

Road1 72.34 — — 8-30 2.2 333.5 72.34

Road2 89.84 — — 8-30, 30-38, 5-3 8.8 535.5 89.84

2nd Without PST 61.36 70.71 — — — 225.1 66.46

Road1 72.02 98.35 — 8-30, 30-38 4.4 460.6 85.19

Road2 85.84 99.51 — 8-30, 30-38, 5-3 8.8 586.8 92.67

3rd Without PST 61.36 70.71 75.80 — — 225.1 69.29

Road1 72.02 98.35 78.68 8-30, 30-38, 89-92 (2) 6.6 460.6 83.01

Road2 85.84 99.51 78.68 8-30, 30-38, 5-3, 89-
92 (2)

11 586.8 88.01
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7.3.1 Comparison case 1
The first comparison case uses the single-stage allocation

model in Section 4, and the results are presented in Table 3. It

compares the IEEE 118-bus system results of Road1 and Road2.

The second column indicates the wind power consumption rate

for 15 years, namely the time of a complete path in dynamic

programming. The third column gives the annual average TTC

value. The fourth column shows the total costs of PST in 15 years.

The last column represents the sum of adaptation values.

As observed in Table 3, the improvement of wind power

consumption under Road2 is 11.94% higher than that under

Road1. The increase in TTC of Road2 is 47.36% higher than that

of Road1. The sum of adaptation values under Road2 is higher

than that under Road1, although the total costs under Road2 are

higher than that under Road1, which means that the planning

path obtained from the dynamic programming scheme is better

than that of the static programming.

7.3.2 Comparison case 2
To further demonstrate the superiority of the proposed

dynamic approach, the single-stage optimization model in

Section 4 is replaced with the single-stage PST allocation

model in (Zhang et al., 2018) while the dynamic

programming framework remains unchanged in this case.

Then the results of the dynamic and static programming are

compared. The optimal allocation model in (Zhang et al., 2018)

converts wind curtailment into the corresponding cost by using

the cost coefficient of wind curtailment. The multi-objective

optimization is converted to a single-objective optimization by

considering the sum of the annual wind curtailment cost and the

annualized investment cost in PST as the total optimization

objective. Therefore, compared to the case1 in Section 7.3.1, there

is no need to evaluate the allocation schemes of each stage, and

the total costs of the planning path can be obtained by directly

summing the costs of all stages according to their weights. Using

this result to compare the effects of various planning paths is

more intuitive.

The results of the second case are shown in Table 4. The

objective value in Table 4 represents the annualized investment

cost in PST plus the annual wind curtailment cost. In Table 4,

Road3 represents the static planning path obtained based on the

static programming method, and Road4 represents the dynamic

planning path obtained based on the proposed dynamic

programming method.

As observed in Table 4, the wind power consumption rate

is higher under Road4 than Road3. The objective value of

Road4 is $8.141M, which is lower than the objective value of

Road3 at $9.139M, which means the planning path under the

dynamic programming is better since the sum of the costs for

annualized investment in PST and annual wind curtailment

lower. So the proposed dynamic planning method is still better

after replacing the optimization model in a single stage,

indicating the universality of the proposed dynamic

planning method.

FIGURE 7
Wind power spillage for each scenario (A) Bus 5 (B) Bus 26 (C)
Bus 91.

TABLE 3 IEEE 118-bus system results of Road1 and Road2.

Planning path of PST Wind power consumption
of 15 years (%)

Annual average of TTC
(MW)

Costs of PST
in 15 years (M
$)

Sum of adaptation values

Without PST 66.25 247.7 — —

Road1 81.96 418.2 9.9 3.19

Road2 89.87 535.5 18.15 3.38
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7.4 Comparison of installing PST and
transmission network expansion

To better verify the effectiveness of installing PST, we compare

the results of installing PSTwith those of installing new transmission

lines. Grids of three planning stages in Section 7.2 are used to find

the respective effects of adding PST and new transmission lines on

wind power consumption. The details of each case are as follows.

The base case: No PST or new transmission lines are installed

in the grids. The case of installing PST: The PST allocation

schemes of each planning stage refer to the results of Road1 in

Table 2.

The case of transmission network expansion: New

transmission lines are added to the heavy load lines of the

wind power transmission section, which is line 8-30 in the

first planning stage, lines 8-30, 30-38 in the second planning

stage and lines 8-30, 30-38, 91-92 in the third planning stage. The

new transmission line parameters are consistent with the original

line parameters for simplicity.

It is worth mentioning that the number of PSTs added and

new transmission lines in each planning year are equal.

Table 5 presents the results of the three cases. Columns

2–4 indicate the wind power consumption of each planning

stage. The fifth column gives the total wind power

consumption in three planning stages. The wind power

consumption with the installation of PST is lower in the

first planning stage compared to the transmission network

expansion, but higher in the second and third planning

stages. In terms of total wind power consumption rate,

the effect of installing PST is also slightly better than

adding new lines. In addition, transmission grid

expansion usually requires higher investment costs, longer

construction time and more stringent environmental

approvals than installing PST in the real grid.

In conclusion, when the wind power transmission section of

the grid has overload problems and the section has exploitable

transmission potential, installing PST is a better transition option

during the long construction cycle of the grid.

7.5 Validation of the limitations on the
number of PST

In order to verify the point in Section 4.3.3, the 118-bus

system in Section 7.1 is used for simulation. The wind farm with

the maximum capacity of 1600 MW is located in bus 5. The wind

power transmission section consists of lines 5-3, 5-4, 5-11, 5-6,

and 8-30, where line 8-30 is the heaviest loaded line of the

transmission section.

Table 6 shows the results for various numbers of PSTs. It can

be seen that the bigger the number of PSTs, the higher the wind

power consumption and the larger the TTC of the transmission

section. However, the increment of the wind power consumption

and the TTC is not proportional to the number of PSTs. In

conclusion, excessive PSTs could inevitably lose the whole

economic efficiency.

TABLE 4 IEEE 118-bus system results of Road3 and Road4.

Planning path of PST Wind power consumption
of 15 years (%)

Costs of PST
in 15 years (M
$)

Objective
value (M $)

Without PST 66.25 — —

Road3 89.6 22.0 9.139

Road4 93.1 32.6 8.141

TABLE 5 IEEE 118-bus system results of installing PST and transmission network expansion.

Wind power consumption of planning stage (%) Wind power consumption
in total (%)

1 2 3

Base case 55.84 66.46 69.29 66.11

Adding new lines 78.81 79.06 82.62 80.80

Installing PST 72.34 85.19 83.01 81.96
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7.6 Computational issues

All the simulations are conducted on a test computer with an

Intel(R) Xeon(R) W-2255 CPU @ 3.70 GHz and 128.00 GB

of RAM.

To demonstrate the computation accuracy of the proposed

method for solving TTC in Section 4.1.2, we selected a typical

scenario to compare the computational results in three

computational models.

Model 1.Use the sensitivity method in 3.1.2 without considering

the correction by RPF.

Model 2. Use the result of the model1 as the initial point for

RPF, and a subsequent correction is applied;

Model 3. Use RPF to calculate TTC directly.

We consider the results obtained by RPF (model3) as the

standard value and calculate the error of the results in

model1 and model2. As observed in Table 7, the error of the

results obtained by the sensitivity method is 1.28% and reduces to

0.03% after the correction by RPF.

In terms of computational speed, the computation time of the

sensitivity method is extremely short. The calculation time of

RPF is very long for two main reasons. First, not only the

generator output but also the phase shift angle need to be

adjusted, so the computation work became greater compared

to the conventional RPF. Second, small adjustment steps for each

generator and phase shift angle have been set to get accurate

results. The proposed method (model2) obtained more accurate

results after the correction by RPF, and the computation time was

greatly reduced compared to model3. Since the initial point

obtained based on the sensitivity method is closer to the final

point.

8 Conclusion

This paper presents a dynamic programming method for

optimal PST allocation, considering the evolution and wind

power uncertainty of the grid. The proposed approach seeks

to identify the optimal planning path of PST in multi-stage grid

planning. To demonstrate the effectiveness of the proposed

method, we compare the results under dynamic and static

programming. The method is also applied to the model of a

published manuscript, and the results prove the superiority of the

proposed method. In addition, we present a calculation method

for TTC of grids containing PST and wind power, for TTC is used

as one of the optimization objectives.

The current research is aimed to optimize the planning path

of PST by considering the evolution of the grid. However, the

addition of other FACTS devices is not considered. Therefore, the

main topics in future works are how the PST cooperates with

other FATCS devices and the dynamic programming of multi-

type FACTS.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material, further

inquiries can be directed to the corresponding author.

TABLE 6 IEEE 118-bus system results for various numbers of PSTs.

Number of PSTs PST locations Wind power consumption/%
(increase rate)

TTC/MW (increase rate)

None — 39.63 (/) 907.6 (/)

1 8-30 50.84 (28.28%) 1,047.7 (15.44%)

2 8-30, 5-3 56.44 (42.42%) 1,117.6 (23.14%)

3 8-30, 5-3, 4-11 58.45 (47.47%) 1,142.6 (25.89%)

TABLE 7 Computational comparison for different computational models.

TTC (MW) Computational error (%) Computation time (s)

Model1 342.43 1.28 0.042

Model2 338.0 0.03 77.976

Model3 338.1 — 3833.218
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Low-Carbon and economic
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The operation flexibility of the power system suffers great challenges due to the

vigorously developing of renewable energy resources under the promotion of

the carbon neutralization goal. To this end, this paper proposes an economical

and flexible energy scheduling method for power system integrated with

multiple generation resources while considering the operation of low-

carbon. Specifically, flexibility evaluation indexes are constructed to describe

the characteristics of the flexible generation units. Then they are connected

with the flexibility of the power system in an economic and low-carbon flexible

energy schedulingmodel. To coordinate the operation economy, flexibility, and

carbon emission reduction, the model incorporates demand response,

operational characteristics, and flexibility requirements. Further, the model is

fully validated through the simulation on the modified IEEE 30-bus system.

Results demonstrate that: the proposed method can reduce the system’s

carbon emission and total operating costs and promote photovoltaic

consumption.

KEYWORDS

carbon emission, economic flexible energy scheduling, multiple generation resources,
demand response, photovoltaic consumption

1 Introduction

In response to the carbon emission reduction goal proposed worldwide, the hydro-

thermal-solar-gas multi-source system (HTSGS) has been significantly promoted for its

advantage of renewable energy substitution and high electricity density (Buhan et al.,

2020; Zhang et al., 2022). However, the operational flexibility of HTSGS is limited and

challenged due to the randomness and intermittency of renewable energy (Du et al., 2019;

Li et al., 2022). To handle this issue, it is significant to enhance the flexibility of HTSGS

while guaranteeing its low-carbon and economic operation under the penetration of

renewable energy.

The flexibility of the power system is supposed to be greatly enhanced to cope with the

strong randomness and volatility of renewable energy resources. However, there are
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presently no unified flexibility definitions. To this end, several

opinions on flexibility have been put forward. Heggarty et al.

(Heggarty et al., 2020) defined flexibility as the power system’s

ability to cope with variability and uncertainty. Yamujala et al.

(Heggarty et al., 2021) proposed that flexibility is the energy,

power, and ramp capability of a system to modify generation and

demand in response to load variations at minimum cost.

Emmanuel et al. (Emmanuel et al., 2020) defined flexibility as

the ability of the power system to respond adequately to dynamic

grid conditions at various timescales while operating at minimal

cost within institutional frameworks and market designs. Ma

et al. (Ma et al., 2013) described flexibility as the ability of a power

system to cope with variability and uncertainty in both

generation and demand. However, the aforementioned

flexibility definitions were not combined with the operating

characteristics of the generation units with fast response

capability, i.e., the operation flexibility cannot be fully mobilized.

As the necessary description of power system flexibility,

corresponding indexes are essential to guide the inflexibility-

oriented operation. Until now, some efforts on flexibility indexes

have been carried out. In (Lu et al., 2018), loss of flexibility

probability, loss of flexibility duration, loss of flexibility

expectation, and flexibility demand shortage were used to

describe flexibility with renewable power curtailment.

Flexibility with high penetration of renewables was

characterized by four indexes: ramping limit, power capacity,

energy capacity, and response time in (Mohandes et al., 2019). In

(Brahma and Senroy, 2020), the flexibility index focusing on

small-signal stability was developed. Nevertheless, this work

suffers great limitations in the case where a large variety of

renewable energy occurs in the power system, due to the failure of

the linearization model. In low-carbon power systems, an index

based on operating range and ramping was utilized to quantify

operational flexibility (Yamujala et al., 2021). Considering the

transmission capacity and energy conversion constraints, the

flexibility margin index was proposed to evaluate the flexibility

from the aspect of the acceptable wind power fluctuations range

(Zhao et al., 2021). According to the different research objects

concerned by scholars, the indexes designed to evaluate power

system flexibility are also various. However, most of these

flexibility indexes are restrictive and only applicable to a

specific scenario; they fail to describe the fast-ramping

capacity, such as that of cascade hydropower unit (CHU) and

gas unit (GU) integrated into HTSGS, nor cover its flexibility

adjustment advantage via the multi-source complementation.

Multiple operation scheduling strategies have been

developed to improve the power system flexibility according

to the guidance of specific flexibility indexes. Specifically, in

photovoltaic (PV) embedded microgrid, Zhao and Xu (Zhao

and Xu, 2017) proposed a two-stage ramp-limited optimal

scheduling strategy considering flexibility check. Next,

Considering large-scale wind power integration, Li et al. (Li

et al., 2018) proposed a big-M method-based co-optimized

scheduling model including the flexible capacity of automatic

generation control units. However, the flexible capacity is only

provided by conventional thermal power unit (TPU), which is

not environmentally friendly nowadays. Shi et al. (Shi et al., 2021)

formulated the real-time economic scheduling problem as a

multi-stage robust program to leverage flexible resources in a

broader timescale. Wang et al. (Wang et al., 2021) presented a

model that considers three states of flexible resource-pumped

storage hydro in look-ahead scheduling. The framework

proposed in (Fan et al., 2022) used robust optimization to

measure the system flexibility and considered the interaction

between economic scheduling and automatic generation control.

Despite the progress of the above works, most of them focus on

the scheduling at the generation side to boost the system

flexibility, while ignoring the fact that the source-load

interaction can performs better in the flexibility enhancement.

Additionally, these works above did not involve the initially vital

objectives, i.e., carbon emission reduction, and operation

economy, which may make them not feasible in actual

application.

As mentioned above, carbon emission reduction is another

important objective in the power system scheduling besides

flexibility since the system also undertakes important

responsibility in the decarbonization trend to cope with global

warming. For the sake of this, some works have been carried out

in the low-carbon scheduling of power system. To be more

specific, a scheduling strategy based on carbon capture and

fuel cost was proposed, and the modeling and analysis of a

carbon capture technology was discussed to reduce carbon

emission and generation cost (Reddy et al., 2017). Moreover,

the economic-emission scheduling of combined renewable and

coal power plants equipped with carbon capture systems was

addressed (Akbari-Dibavar et al., 2021). In (Ma et al., 2015), they

found out that DR could help to accommodate renewable energy,

and economic and low-carbon day-ahead scheduling was

addressed. A low-carbon optimal scheduling model with

demand response carbon intensity control was also proposed

in (Wang et al., 2022), which effectively reduced carbon emission.

However, these scheduling strategies above simply aimed to gain

more economic benefit and reduce carbon emission, where the

flexibility is not considered. Note that carbon reduction and

flexibility can interact through the resource allocation integrated

into power system. To deal with this, more efforts should be put

into practice.

Given the limitation, this paper focuses on the flexibility of

HTSGS and carbon emission reduction, where the coordination

of DR and the operating characteristics of the generation units

are fully developed. The main contributions of this paper can be

summarized as follows:

1) A low-carbon and economic flexibility scheduling strategy for

HTSGS is proposed while considering the system flexibility

cost, carbon emission cost, and operational cost. The
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scheduling strategy can improve the adaptability of HTSGS in

the low-carbon environment and satisfy the flexibility

challenge brought by renewable energy.

2) This paper particularly constructs flexibility indexes for the

HTSGS at the system level, including upward insufficient

ramping resource probability (UIRRP), downward

insufficient ramping resource probability (DIRRP), upward

sufficient ramping resource expectation (USRRE), and

downward sufficient ramping resource expectation

(DSRRE). Besides, these flexibility indexes are also

combined with the operating characteristics of generation

units (i.e, the upward and downward flexibility supply of

CHU and GU). This kind of integrated flexibility manner

enables to provide an accurate operation direction for HTSGS

and fully incentives the internal flexible resources.

3) To reveal the impact on system flexibility and economy,

multiple comparison cases, including the power supply

composition and carbon prices, are simulated, which can

provide data support for the actual operation of HTSGS.

The remainder of this paper is organized as follows. Section 2

introduces the flexible resource evaluation index of HTSGS.

Section 3 proposes a multi-objective optimal scheduling

strategy considering the power system with HTSGS. Section 4

studies the model and method proposed in this paper through

multiple scenarios, then compares and analyzes the scheduling

results under diverse system flexibility costs, carbon transaction

cost, DR, and carbon emission price. The impact of different

power source structures in HTSGS on system flexibility is also

discussed. Section 5 concludes the paper.

2 Modeling for power system with
HTSGS

A variety of controllable power generation units are

integrated into the HTSGS. The overall system flexibility can

be improved through reasonable resource allocation, which is a

necessary way to achieve a low-carbon power system. The

HTSGS is mainly composed of CHU, PV, TPU, and GU. The

system structure is shown in Figure 1.

As shown in Figure 1, the CHUs consist of multiple cascade

hydropower stations, which are connected to the power grid

through transformers together with TPU and GU; In the PV

power station, the PV array is connected to the power grid

through the DC/AC inverter; The power generation control

system collects and analyzes source data in real-time, and

regulates the multiple sources. The power generation control

system makes sure HTSGS can provide sufficient power side

flexibility resources.

2.1 Model of flexible resources

2.1.1 Flexibility model of CHU
Compared with conventional TPU, CHU has the advantages

of wide-range regulation and low cost. CHU is a good flexible

resource. The maximum upward flexibility supply FSRup

CHU(σ,t) and downward flexibility supply FSRdown CHU(σ,t)

are provided by CHU as follows:

FSRup
CHU(σ, t) � min(RUσ, PCHU

max(t) − PCHU(t)) (1)
FSRdown

CHU(σ, t) � min(RUσ, PCHU(t) − PCHU
min (t)) (2)

where σ is the time scale unit; RU and RD are the maximum and

the minimum upward climbing rate of CHU; Pmax CHU and

Pmin CHU are the maximum and minimum output of CHU at

time t; PCHU(t) is the actual output of CHU at time t.

2.1.2 Flexibility model of GU
The GU has the advantages of high-power generation

efficiency and low pollution generation rate when operating

under a high load rate. GU can also be used as a flexible

resource to adjust the system operation performance.

The flexibility that GU can provide is defined as the

maximum upward flexibility supply FSRup GU (σ,t) and

downward supply FSRdown GU (σ,t):

FSRup
GU(σ, t) � min(RUgσ, PGU

max(t) − PGU(t)) (3)
FSRdown

GU (σ, t) � min(RDgσ, PGU(t) − PGU
min(t)) (4)

where σ is the time scale unit; RUg and RDg are the maximum and

the minimum upward climbing rate of GU; Pmax GU and Pmin

GU are the maximum and minimum output of GU at time t;

PGU(t) is the actual output of GU at time t.

FIGURE 1
HTSGS structure diagram.
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2.2 Model of flexible indexes

As shown in Figure 2, the green interval is the system

reserve capacity range, the red curve is the system load curve,

and the gray triangle with arrows represents the flexible

scheduling output of the power system with HTSGS

integration. Based on this, situation one shows that its

gray triangle representing the system’s flexibility resources

can only meet the lower limit of the system reserve

capacity but cannot meet the upper limit, which means

that the system is unable to balance the upward

fluctuating load and the system has insufficient upward

flexibility resources. Similarly, Situation two represents

insufficient resources for the downward flexibility of

the system. Situation three indicates that the system

has sufficient upward and downward flexibility resources

to balance the upward or downward fluctuation load.

In this paper, the corresponding index model is

developed to analyze the upward and downward flexibility

resources.

2.2.1 Upward insufficient ramping resource
probability

Upward insufficient ramping resource probability (UIRRP)

ηUIRRP(t) is the probability that the flexibility provided by CHU

and GU cannot meet the upward flexibility resource demand at

time twhen the power system with HTSGS integration operating,

as shown in Eq. 5.

⎧⎨
⎩

ηUIRRP(t) � PrFSRup(t) − ((PNL(t + 1) − (PNL(t))< 0}
FSRup(t) � FSRup

CHU(t) + FSRup
PSU(t) (5)

where FSRup(t) is the sum of the maximum upward flexibility

supply provided by the system; PNL(t) is the net-load of the

system.

2.2.2 Downward insufficient ramping resource
probability

Downward insufficient ramping resource probability

(DIRRP) ηDIRRP(t) is the probability that the flexibility

provided by CHU and GU cannot meet the downward

flexibility resource demand at time t when the power system

with HTSGS integration operating, as shown in Eq. 6.

⎧⎨
⎩

ηDIRRP(t) � Pr{FSRdown(t) − ((PNL(t) − (PNL(t + 1 ))< 0}
FSRdown(t) � FSRdown

CHU(t) + FSRdown
PSU (t) (6)

where FSRdown(t) is the sum of the maximum downward

flexibility supply provided by the system.

2.2.3 Upward sufficient ramping resource
expectation

Upward sufficient ramping resource expectation (USRRE)

EUSRRE(t) is the expectation of the excess FSRMup(t) that the

upward flexibility resources provided by the HTSGS exceed the

upward flexibility resources required by the system at time t

during the power system operation, as shown in Eq. 7.

⎧⎪⎨
⎪⎩

EUSRRE(t) � FSRMup(t) · Pr {FSRup(t)
−(PNL(t + 1) − PNL(t))> 0}

FSRMup(t) � FSRup(t) − (PNL(t + 1) − PNL(t))
(7)

2.2.4 Downward sufficient ramping resource
expectation

Downward sufficient ramping resource expectation (DSRRE)

EDSRRE(t) is the expectation of the excess FSRMdown(t) that the

downward flexibility resources provided by the HTSGS exceed

the downward flexibility resources required by the system at time

t during the power system operation, as shown in Eq. 8.

⎧⎪⎨
⎪⎩

EDSRRE(t) � FSRMdown(t) · Pr {FSRdown(t)
−(PNL(t) − PNL(t − 1))> 0}

FSRMdown(t) � FSRdown(t) − (PNL(t) − PNL(t + 1))
(8)

2.3 Modeling of DR

DR means that users can change their electricity

consumption behavior through the change in electricity price,

which can improve the power system operational flexibility.

The elasticity coefficient of demand price indicates the

relationship between the electricity load change and the

electricity price change. The elasticity coefficient can be

calculated as follows:

μnm � ΔLn/λLLn0

ΔQm/Qm0
{ unm ≤ 0, n � m
unm > 0, n ≠ m

(9)

where ΔLn0 and ΔQm are the electric load change and electricity

price after DR; Ln0 and Qm are load and electricity price before

DR; λL is the adjustable load proportion in the electric load.

FIGURE 2
Schematic diagram of HTSGS flexibility evaluation.
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The change of electric load after DR within t periods can be

expressed as:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΔL1

L1

ΔL2

L2

..

.

ΔLt

Lt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� μ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΔQ1

Q1

ΔQ2

Q2

..

.

ΔQt

Qt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

μ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ11 μ12 / μ1t
μ21 μ22 / μ2t
..
. ..

. ..
. ..

.

μt1 μt2 / μtt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (11)

where μ is the price elasticity coefficient matrix of DR.

The DR model based on electricity price and load is

established as follows:

Ln � Ln0
⎛⎝∑

t

m�1
μ
ΔQm

Qm0
+ μ

ΔQn

Qn0
+ 1⎞⎠ (12)

where Ln is the electric load after DR.

3 Economic scheduling model of
power system with HTSGS

The objective function of the traditional economic

scheduling model is to minimize the system operation

cost. On this basis, this paper comprehensively considers

the carbon emission reduction and the system flexibility

guarantee and introduces the carbon emission cost and

the risk cost of insufficient flexibility. A system economic

scheduling model is built, and the multi-dimensional

optimal coordinated scheduling of overall system

operation economy, flexibility, and carbon emission

reduction is realized.

3.1 System operation cost

The annual system operation cost consists of TPU operation

cost CTPU, CHU operation cost CCHU and GU operation cost

CGU, as shown in Eq. 13.

Cr � CTPU + CCHU + CGU (13)

The TPU operation cost includes the startup cost and

unit cost of power generation, as shown in Eq. 14; CHU

operation cost includes startup cost, shutdown cost, and

flexibility cost, as shown in Eq. 15; GU operation cost

includes the startup cost, shutdown cost, and gas cost, as

shown in Eq. 16.

CTPU � ∑
T

t�1
∑
θTPU

x�1
[csux SUx(t) + (ax + bxPx(t) + cxPx(t)2)] (14)

CCHU � ∑
T

t�1
∑
θCHU

y�1
[csuy SUy(t) + csdy SDy(t) + copy Py(t)] (15)

CGU � ∑
T

t�1
∑
θGU

z�1
[[ csuz SUz(t) + csdz SDz(t)+

(azPz(t)2 + bzPz(t) + cz) ]] (16)

Where T is the total number of scheduling periods; θTPU,

θCHU and θGU are the set of TPU, CHU, GU; csu x is the startup

cost of the xth TPU; ax, bx and cx are the power generation cost

coefficients of TPU; SUx(t) is the 0–1 state variable to indicate xth

TPU startup. When it is 0, the xth TPU is not started, and when it

is 1, the TPU x is in the startup state; Px(t) is the generating power

of the TPU x at time t; csu y and csd yare the startup cost and

shutdown cost of the yth CHU; SUy(t) and SDy(t) are 0–1 state

variables for the startup and shutdown of the yth CHU; Py(t) is

the generating power of the yth CHU at time t; and cop y is the

power generation cost coefficient of the yth CHU; csu z, csd z are

the startup and shutdown costs of the zth GU; Pz(t) is the

generating power of the zth GU at time t; az, bz and cz are the

operating consumption coefficients of zth GU.

3.2 Carbon emission cost

The system purchases carbon emission rights in the carbon

trading market according to carbon emission quotas and actual

carbon emissions. The carbon emission quota allocation based

on power generation is adopted in this paper. The carbon

emission quota allocated to the system is approximately

proportional to the total power generation of the system. The

system carbon emission quota is as follows:

ED � ∑
T

t�1
γPa(t) (17)

where ED is the allocated carbon emission quota; γ is the carbon

emission quota coefficient; Pa(t) is the total power generation of

all generator units at time t.

In this paper, the carbon emissions of TPU and GU are

considered. The actual carbon emission is as follows:

EC � ∑
T

t�1
∑
θTU

n�1
ηTUn Pn(t) +∑

T

t�1
∑
θGU

m�1
ηGUm Pm(t) (18)

where EC is the actual carbon emission of TPU and GU; Pn(t) and

Pm(t) are the output power of the nth TPU and the mth GU at

time t; ηTU n and ηGU m are the carbon emission coefficients of

the nth TPU and the mth GU, respectively.

The carbon emission cost of this paper adopts the divided-

interval ladder carbon trading model. The higher the carbon

emission, the higher the carbon trading price required, as shown

in Eq. 19.
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Cco �

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σ(EC − ED)
EC <ED

σ(1 + μ)(EC − ED)
ED ≤ED <ED + ω
σ(1 + μ)ω + σ(1 + ξμ)(EC − ED)
ED + ω≤EC

(19)

where σ Is the unit price of carbon trading; μ and ξ are the growth

coefficients of carbon trading price, where ξ ≥ 2; ω is the

corresponding carbon emission range.

3.3 System flexibility cost

The risk cost of insufficient flexibility includes the risk cost

caused by insufficient upward flexibility and the risk cost caused

by insufficient downward flexibility. It is determined by the

multiplication of the upward and downward flexibility supply

and demand difference and the risk cost coefficient of the

corresponding lack of flexibility.

The upward flexibility resources shortage FSRSup(t) is the

difference between the upward flexibility demand and the actual

upward flexibility supply capacity at time t.

FSRSup(t) � (PNL(t + 1) − PNL(t)) − FSRup(t) (20)

Similarly, the downward flexibility resources shortage

FSRSdown(t) is the difference between the downward flexibility

demand and the actual downward flexibility supply capacity at

time t.

FSRSdown(t) � (PNL(t) − PNL(t + 1)) − FSRdown(t) (21)

Thus, the risk cost of insufficient flexibility CFSRS is:

CFSRS � ∑
t∈T

(λupFSRSup(t) + λdownFSRS
down(t)) (22)

where λup, λdown are the risk cost coefficients that lack upward

and downward flexibility.

3.4 Objective function

The minimum total cost Ca is taken as the objective function,

and is composed of system operation cost Cr, carbon emission cost

CCO and risk cost of insufficient flexibility CFSRS, as shown in Eq. 23.

minCa � Cr + Cco + CFSRS (23)

3.5 Constraint conditions

3.5.1 Power flow constraint
The sum of the output of CHU, GU, and PV at any time

during the whole scheduling period in the HTSGS should balance

the system load. For any node b, the flexibility requirements for

PV and load are as follows:

∑
x∈b

Px(t)+∑
y∈b

Py(t)+∑
z∈b

Pz(t)

+∑
l∈Lb

Pl(t) + ∑
m∈b

PUL
s,m(t)≥ ∑

n∈b

PLL
d,n(t)

(24)

∑
x∈b

Px(t)+∑
y∈b

Py(t)+∑
z∈b

Pz(t)

+∑
l∈Lb

Pl(t) + ∑
m∈b

PLL
s,m(t)≤ ∑

n∈b

PUL
d,n(t)

(25)

where Py(t) is the power generated by the CHU y at time t; Pz(t) is

the power generated by the GU z at time t; l, Lb are the

transmission line and the transmission line set of the

corresponding node b; PUL s,m(t) and PLL s,m(t) are the

upper and lower limits of the generated power of the PV m;

PUL d,n(t) and PLL d,n(t) are the upper and lower limits of the

load n.

Calculations and constraints for the DC power flow of the

transmission line are as follows:

Pl(t) � (θb(t) − θb′(t))
Xl

(26)
Pl,min ≤Pl(t)≤Pl,max (27)

where Pl(t) is the value of the transmission line power flow; Pl,max

and Pl,min are the maximum and minimum power flow of the

transmission line; Xl is the reactance of the transmission line l; θb
is the phase angle of node b.

3.5.2 Operation constraints of TPU
The output constraint of TPU is as follows:

Px,min ≤Px(t)≤Px,max (28)

where Px,min and Px,max are the minimum and maximum output

of the TPU x.

Ramping rate constraint of TPU is as follows:

−RUxΔt≤Px(t) − Px(t − 1)≤RDxΔt (29)

where RUx and RDx are the upper and lower limits of the ramping

rate of TPU x.

3.5.3 Operation constraints of CHU
The operation constraints of CHU include the upper and

lower limits of storage capacity, power generation flow and

discharge flow, water balance constraints, upper and lower

output limits, and ramping constraints.

The upper and lower limits of storage capacity, power

generation flow and discharge flow of CHU y are as follows:

Vy,min ≤Vy(t)≤Vy,max (30)
Fdc
y,min ≤F

dc
y (t)≤Fdc

y,max (31)
Fout
y,min ≤Fout

y (t)≤Fout
y,max (32)
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Fout
y (t) � Ffw

y (t) + Fdc
y (t) (33)

where Vy(t), Vy,min and Vy,max are the real-time, minimum and

maximum storage capacity of the CHU y at time t; Fdc y(t), Fdc y,

min and Fdc y, max are the real-time, minimum and maximum

power generation flow of the CHU y at time t; Ffw y(t) and Fout

y(t) are the waste and discharge water flow at time t; Fout y, min

and Fout y, max are the minimum and maximum discharge

water flow.

The water balance constraints of CHU are the change balance

of the storage capacity of a single CHU over a certain time period

and the change balance of the storage capacity of multiple CHUs

in a certain space, as shown in Eq. 34 and Eq. 35.

Vy(t + 1) � Vy(t) + ΔτΔs(Fin
y (t) − Fdc

y (t) − Ffw
y (t)) (34)

Fin
y (t) � Fn

y(t) + ∑
ur∈ΩURCHU

(Fdc
ur(t) + Ffw

ur (t)) (35)

where Fin y(t) is the water inflow of the CHU y at time t, Δs is the
number of seconds per hour; Fn y(t) is the natural flow of the

CHU y at time t; ur and ΩURCHU are the number and number set

of upstream CHUs.

The output of CHU shall be between the upper and lower

limits of its output:

Py,min ≤Py(t)≤Py,max (36)

where Py,min and Py,max are the minimum and maximum output

of CHU y.

The output of CHU is determined by the storage capacity and

power generation flow:

Py(t) � a1,y(Vy(t))2 + a2,y(Fdc
y (t))2

+a3,yVy(t)Fdc
y (t) + a4,yVy(t)

+a5,yFdc
y (t) + a6,y

(37)

where a1,y, a2,y, a3,y, a4,y, a5,y, a6,y are the calculation coefficients

of CHU output.

The difference between CHU output at time t and t+1 shall

not exceed the maximum ramping output:

⎧⎨
⎩

Py(t + 1) − Py(t)≤ (1 − SUy(t))RUy

Py(t) − Py(t + 1)≤ (1 − SDy(t))RDy

(38)

where RUy and RDy are the maximum upward ramping output

and maximum downward climbing output.

3.5.4 Operation constraints of GU
Operation constraints of GU include startup and shutdown

constraints, output constraints, gas control constraints, and

ramping rate constraints.

The increased times of GU startup and shutdown will

shorten the GU’s service life and increase the startup and

shutdown cost, so the upper limit of startup and shutdown

times is taken as the operation constraint of GU.

∑
T

t�1
[SUz(t) · SDz(t − 1)]≤Nz (39)

where Nz is the upper limit of the startup times of the GU z.

The output constraint of GU is as follows:

Pz,min ≤Pz(t)≤Pz,max (40)

where Pz,min and Pz,max are the minimum and maximum output

of the GU z.

In reality, the natural gas supply is still insufficient, so the

daily power generation of GU is set as a constraint in scheduling

as follows:

∑
T

t�1
Pz(t)Δt � Ez (41)

where Ez is the daily power generation of GU z.

Ramping rate constraint of TPU is as follows:

−RUzΔt≤Pz(t) − Pz(t − 1)≤RDzΔt (42)

where RUz and RDz are the upper and lower limits of the ramping

rate of GU z.

3.5.5 Constraints of PV
The amount of radiation is the critical factor to determine the

PV output power. The prediction error of radiation ΔR can be

expressed as a normally distributed random variable with a mean

of 0 and a standard deviation of σR. If the predicted value of

radiation is RP, the probability density function of the actual

radiation R = RP+ΔR is:

fR(R) � 1���
2π

√
σR

e−(R−RP)2/2σR2 (43)

where the variance of the prediction error of the radiation is set to

m% of the predicted value RP.

The PV output power and radiation meet the relationships as

follows:

PPV � λPVRSPV (44)

where λPV is the conversion efficiency of PV power generation;

SPV is the total area of the PV array.

The PV output shall not exceed its upper limit.

0<PPV ≤PPV,max (45)
where PPV,max is the maximum PV output.

3.5.6 Operation constraints of DR
Users participating in DR determine their own power load

use according to the electricity price information. The total load

used in the whole scheduling period remains unchanged and only

changes in the power consumption time, that is, the change in the

total load is 0, as shown in Eq. 46.
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∑
T

t�1
ΔLm � 0 (46)

After DR, the power consumption cost of users shall not

exceed the power consumption cost before DR, as shown in

Eq. 47.

∑
T

t�1
QnLm ≤∑

T

t�1
Qn0Lm0 (47)

where Qn0 and Qn are the electricity price before and after DR.

3.5.7 Operational flexibility constraints
The upward and downward flexibility supply required by the

power system with HTSGS integration is provided by the TPU,

CHU, and GU, as shown in Eq. 48.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

FSRup(t) � ∑
x∈θTPU

FSRup
x (t) + ∑

y∈θCHU

FSRup
y

+ ∑
z∈θGU

FSRup
z (t)

FSRdown(t) � ∑
x∈θTH

FSRdown
x (t) + ∑

y∈θCHU

FSRdown
y

+ ∑
z∈θGU

FSRdown
z (t)

(48)

The flexibility supply provided by the TPU x at time t is

constrained by the ramping rate and the upper and lower limits

of output, as shown in Eq. 49.

{FSRup
x (t)≤min(RUx, Px,max − Px(t))

FSRdown
x (t)≤min(RDx, Px(t) − Px,min) (49)

The flexibility supply provided by the CHU y at time t is also

constrained by the ramping rate and the upper and lower limits

of output, as shown in Eq. 50.

⎧⎨
⎩

FSRup
y (t)≤min(RUy, Py,max − Py(t))

FSRdown
y (t)≤min(RDy, Py(t) − Py,min) (50)

The flexibility supply provided by the GU z at time t is also

constrained by the ramping rate and the upper and lower limits

of output, as shown in Eq. 51.

{FSRup
z (t)≤min(RUz, Pz,max − Pz(t))

FSRdown
z (t)≤min(RDz, Pz(t) − Pz,min) (51)

4 Case studies

4.1 Parameters setting

The proposed model comprehensively considers the optimal

utility of system flexibility index, carbon trading, and DR to the

power system with HTSGS integration. The dispatcher can adjust

the source and load on both sides according to the day-ahead

load forecast results to minimize the total operation cost of the

system. Then, a modified IEEE 30-bus system is used for case

studies. The system includes 1 PV, 2 TPUs, 1 GU, and 3 CHUs.

The location and technical parameters of each generator unit are

shown in Table 1 and Figure 3. Themodel in this paper is a mixed

integer linear programming model, which is globally optimized

by calling the Yalmip/Gurobi commercial solver on Windows

7 computer (3.2 Ghz, 8GB, 4-core) under the MATLAB

2016 platform. The solution time is 24.73s, meeting the

scheduling time requirement.

To illustrate the advantages of the model proposed in this

paper, four comparison scenarios are set as follows:

Scenario 1: system flexibility cost, carbon trading cost, and

DR are considered at the same time;

Scenario 2: only the system carbon trading cost and DR are

considered;

Scenario 3: only the system flexibility cost and carbon trading

cost are considered;

Scenario 4: only the system flexibility cost and DR are

considered.

4.2 Simulation results analysis

4.2.1 Comparison results based on flexibility
indicators

This section will compare the scheduling results considering

the system flexibility cost with those not considering the

flexibility cost. The scheduling output sequence results are

shown in Figures 4,5. It can be seen that in the scheduling

scenario, without considering the flexibility cost, TPUs and

CHUs mainly supply power. After considering the system

flexibility, the GU keeps shut down at the time when the PV

dominates the power supply at the source side, i.e., 3:00 pm-5:

00 p.m. In contrast, the GU starts up at the time when the PV

output is small, which significantly reduces the TPU output level.

The power supply pressure of the CHUs is also alleviated. The

above process considering flexibility cost reflects the flexible

supply of the source side. In addition, the system’s PV

abandonment rate is also reduced. This is because scenario

one considers the flexibility limit of the system itself. By

introducing the risk cost of insufficient flexibility into the

objective function, the balance between the optimal economic

cost and the reduction of the clean energy abandonment is

achieved better.

Scenario one is further refined to obtain the calculation

results of the system flexibility index at all times over a day,

as shown in Figures 6,7. Figure 6 corresponds to two upward

flexibility indexes of UIRRP and USRRE; Figure 7 corresponds to

the two downward flexibility indexes of DIRRP and DSRRE. It

can be seen from Figures 6,7 that when it is between 2:00 p.m. and

6:00 p.m., the probability of insufficient system flexibility is 0.

This is because the PV output is large during this period. The

system can improve flexibility by switching the PV power station,
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and the sufficient system flexibility expectation is large. The

maximum value of the USRRE index appears at 3:00 p.m.,

which is 15.73 MW, and the maximum value of the DSRRE

index appears at 5:00 p.m., which is 9.02 MW. In contrast to the

sufficient flexibility expectation index, the maximum values of

insufficient flexibility probability and insufficient flexibility

expectation appear at night, and the maximum values of

UIRRP and UIRRE appear at 2:00 a.m., which are 8.48% and

19.20 MW, respectively; The maximum values of DIRRP and

DIRRE indexes also appeared at 2:00 a.m., which are 5.51% and

5.23 MW, respectively. It can be seen that the system may still

have insufficient flexibility at night. This provides data support

for the system to plan further, invest and build high-quality

flexible resources, and avoid PV abandonment caused by the

imbalance between supply and demand of flexibility.

4.2.2 Comparison results of DR
The settings of scenario three and scenario one are mainly

used to analyze the impact of DR implementation on system

scheduling results. The scheduling output sequence results of

scenario one have been given in the previous section. Here, the

total load trend of the system with and without DR and the

scheduling output sequence results of the units without DR are

given, as shown in Figures 8, 9.

It can be seen that the overall trend of system scheduling

output time sequence before and after DR implementation

are similar, but there is a significant difference in output

level. Specifically, since the cost of PV output is 0, the users

participating in DR are stimulated to power consumption at

14:00–18:00, that is, the time when the PV output is large to

reduce the system operation cost. The rest of the time, the

power consumption of the system decreases, resulting in a

decrease in TPU generation with the lowest output priority.

However, due to system constraints, the total daily load

remains unchanged. In general, the abandoned PV power

is reduced after DR, which further verifies the technical

advantages of DR implementation in promoting PV

consumption.

TABLE 1 Operating parameters of each unit.

Operating parameters T1 T2 C1 C2 C3 G1

Unit capacity (MW) 150 60 50 150 250 40

Startup cost (¥) 1800 2000 140 160 200 230

Shutdown cost (¥) 330 310 140 160 200 120

Upward flexibility supply cost (¥/MW) 160 160 120 120 120 100

Downward flexibility supply cost (¥/MW) 130 130 100 100 100 70

Maximum ramping rate (MW/min) 0.25 0.12 0.41 1.24 2.05 1.73

FIGURE 3
The location of each generator unit and maximum output of PV. (A) The modified IEEE 30-bus system. (B) Maximum output of PV.
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4.2.3 Comparison results of carbon trading cost
The inclusion of carbon trading costs will lead to changes in

the output of TPUs in the system, which will have a chain effect

on the scheduling output of other units. Therefore, this paper sets

scenarios one and four to make a comparative analysis on

whether carbon trading cost is included. The scheduling

output sequence results of scenario 4, which is not

considering the carbon trading cost, are shown in Figure 10.

It can be observed that the time series curve trend of system

scheduling output is the same as that of scenario one considering

carbon trading cost, but the TPU output level in scenario 4 has

increased by about 50%. In addition, the output level of TPU in

the early stage is relatively high, basically maintained at about

150 MW. When PV output is large, the abandoned PV power

increases slightly due to an insufficient downward flexible supply

of TPU itself.

4.2.4 Economic and technical comparison of all
scenarios

Table 2 illustrates the results of operation cost and

abandoned PV power under different scenarios. Taking

scenario 1 as a comparison benchmark, it can be seen that

scenario two is not guided by the flexibility target, so its

flexibility cost is significantly increased. Meanwhile, as its

output is mainly generated by CHUs and TPUs, the power

generation cost and carbon emission cost are also increased.

Similarly, DR is not implemented in scenario 3, and the power

generation cost rises by 12.8%, which fully reflects the economic

deployment effectiveness deficiency in load following source side

output. In scenario 4, because the carbon emission cost limit is

ignored, the carbon emission cost increases by 31.37%,

corresponding to the increase in the TPU output level. At the

same time, the power generation cost in this scenario four also

increases. Among the four scenarios, the total amount of

abandoned PV power in scenario one is the lowest, which

fully verifies the promotion effect on PV consumption of the

scheduling model proposed in this paper.

4.2.5 Flexibility analysis under different power
supply structures

To reveal the impact of different power constructures on

system flexibility, the following four power constructive scenarios

are set in this section:

Scenario 5: the system includes CHUs and GU;

FIGURE 4
HTSGS scheduling results in Scenario 1.

FIGURE 5
HTSGS scheduling results of in Scenario 2.

FIGURE 6
The USRRE&UIRRP results of HTSGS in Scenario 1.

Frontiers in Energy Research frontiersin.org10

Zhang et al. 10.3389/fenrg.2022.1088096

80

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1088096


Scenario 6: the system only includes CHUs, and other

parameter settings are consistent;

Scenario 7: the system only includes GU, and the capacity of

the original TPUs increases proportionally;

Scenario 8: the system does not include CHU and GU, and

the capacity of the original TPUs increases proportionally.

The flexibility indexes of the system under different scenarios

are shown in Table 3.

It can be seen from Table 3 that the flexibility index UIRRP

and DIRRP in scenario five is the smallest, which indicates

that the power system under the HTSGS integration has the

smallest probability of insufficient flexibility. In addition,

the USRRE and DSRRE of scenario five reach 1.13 MW and

1.33MW, which indicates that the expectation of sufficient

flexibility is high in scenario 5. Compared with scenario 5,

the probabilities of insufficient flexibility are both increased

in scenario six and scenario 7. The probability of insufficient

flexibility in scenario eight reaches the maximum, where the

UIRRP and DIRRP increase by 23.01% and 19.93%

compared with scenario 5. In addition, the flexibility

FIGURE 7
The DSRRE&DIRRP results of HTSGS in Scenario 1.

FIGURE 8
The total load comparison before and after DR.

FIGURE 9
HTSGS Scheduling results in Scenario 3.

FIGURE 10
HTSGS Scheduling results in Scenario 4.
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index USRRE and DSRRE are significantly reduced. This

shows that when the HTSGS integration is not considered,

the probability of insufficient power system flexibility is

high, with 26.76% and 22.39% of probability of upward

and downward insufficient flexibility. This is because

the original TPUs of the system have the poor flexible

regulation ability, and the flexible resource allocation of

scenario eight is insufficient. From the above analysis, it

can be seen that the HTSGS integration plays a positive

role in improving the power system flexibility, which

can effectively reduce the low flexibility probability

and improve the sufficient flexibility probability of the

system.

4.2.6 System economy analysis under different
carbon trading prices

The carbon trading price will affect the system carbon

cost, thus affecting the system scheduling results. This paper

explores the operation cost and PV consumption rate under

different carbon trading prices, and the results are shown in

Figure 11.

It can be seen that with the rise of carbon trading price,

the PV consumption rate gradually rises, and the carbon

emission continues to decline. However, the system’s

carbon emission cost and total cost show an increasing

trend. Among them, the carbon emission and PV

consumption rate change obviously when the carbon

emission price is among 10 and 30¥ and increases slowly

after 30¥. At this time, the continued rise of carbon trading

prices will bring little economic benefits to the system. In

addition, due to the lower limit of TPU output, the PV

consumption cannot be increased all the time, so the PV

consumption trend slows down. In general, although the

moderate increase in carbon emission price leads to an

increase in system operation cost, the PV consumption

rate and carbon emissions performances have been

significantly improved, meeting the overall strategic

requirements of energy conservation and emission

reduction in the power industry.

TABLE 2 The system costs and abandoned PV power among different scenarios.

Generation Cost/106 ¥ Flexibility Cost/106 ¥ Carbon emission Cost/106 ¥ Total Cost/106 ¥ Abandoned PV
Power/MW

Scenario 1 90.86 13.87 8.24 112.97 412.99

Scenario 2 95.27 35.46 8.95 139.68 516.93

Scenario 3 102.49 11.34 10.28 124.11 681.72

Scenario 4 97.86 12.95 11.39 122.2 433.96

TABLE 3 The system flexibility results under different power source constructures.

Scenario 5 Scenario 6 Scenario 7 Scenario 8

UIRRP 3.75% 8.69% 9.37% 26.76%

DIRRP 2.46% 7.51% 8.60% 22.39%

USRRE/MW 1.13 0.84 0.76 0.20

DSRRE/MW 1.33 0.50 0.45 0.14

FIGURE 11
The economic and technical sensitivities at different carbon
prices.
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5 Conclusion

In this paper, multi-dimensional economic scheduling is

carried out for the power system with HTSGS integration

considering its flexibility, carbon emission reduction, and DR.

Firstly, the system flexibility resource is modeled, and the

flexibility index is proposed. Then, considering the power flow

constraints, source side operation constraints, system flexibility

constraints, and DR constraints, a low-carbon flexible economic

scheduling model of the system is constructed. The model

minimizes the total cost of system operation, carbon

emissions, and flexibility.

The case studies results show that the introduction of

flexibility cost and carbon trading cost is beneficial to the

system to adjust the scheduling strategy and reduce the PV

power abandonment; DR can improve the source load

timing balance and promote PV consumption. In general,

the comprehensive consideration of system flexibility cost,

carbon trading cost, and DR can effectively reduce system

cost, improve system flexibility, and reduce carbon

emission.

The internal multiple sources of HTSGS can complement

each other and promote PV consumption. In addition, the

sufficient flexibility of the system has been significantly

improved after the HTSGS integration.

The system’s carbon emissions will significantly decrease

with the increase of the carbon trading price within a certain

limit, and the PV consumption rate and the carbon emission

price show the same trend.

In future work, we can study the effect of various

renewable energy power generation scenarios,

i.e., different weather conditions, on the proposed

scheduling model. Besides, establishing a robust economic

optimization scheduling model by fully considering the

relationship between the robustness and economic

constraints of the proposed scheduling strategy is worth

studying. (Bouffard and Ortega-Vazquez, 2011), (Lannoye

et al., 2012)., (Menemenlis et al., 2011).
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Electrical load forecasting plays a vital role in the operation of power system. In

this paper, a novel adaptive short-term load forecasting method for the

aggregated load is built. The proposed method consists of two stages: load

forecast model preparation stage and adaptive load forecast model selection

stage. In the first stage, based on historical load data of all consumers, the typical

monthly load patterns are firstly identified in an optimal fashion with the aid of

the cosine similarity. Then, for each identified monthly load pattern, a stacking

ensemble learning method is proposed to train the load forecasting model. In

the second stage, according to the similarity between individual load data of the

latest month and the identified monthly load pattern, all the consumers are

firstly classified into different groups where each group corresponds to a

particular load pattern. Then, for each group, the corresponding trained load

forecasting model is employed for short-term load forecast and the final

forecast of the aggregated load is calculated as a simple aggregation of the

produced load forecast for each group of consumers. Case studies conducted

on open dataset show that, compared with the single forecasting model, the

proposed adaptive load forecasting method can effectively improve the load

forecasting accuracy.

KEYWORDS

adaptive load forecasting, aggregated load, pattern matching, cosine similarity,
stacking ensemble learning

1 Introduction

Load forecasting is an important part of the smart grid, which plays an important role

in the security, stability and economic dispatch of the power system (Diamantoulakis

et al., 2015). Rapid progress in the consumer-side advanced measurement system brings

about a large amount of consumer-side power consumption data which has opened the

possibility of designing various load forecasting methods (Stephen et al., 2017; Chaouch,

2014). The key challenge becomes how to effectively process these data and improve the

consumer-side load prediction accuracy.

As mentioned above, load forecasting has always been a research hotspot due to its

vital role in the operation of power systems. Many experts and scholars have done in-
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depth research on it, and proposed many models and algorithms.

As the typical time-series forecasting algorithms, auto regression

(Mbamalu and El-Hawary, 1993) and auto regression moving

average (Huang and Shih, 2003) have been proposed for load

forecast. Although these methods require a small amount of data

for calculation and also have a fast computation speed, they are

often criticized for their limited success in handling complex

non-linear relationship and relatively poor learning ability.

Moreover, they have high requirements for data stability

which however is not the intrinsic nature of load in

distribution networks.

To overcome above mentioned issues, machine learning

techniques have been proposed for load forecasting, such as

artificial neural network (ANN) (Hippert et al., 2001; Quan et al.,

2014), support vector regression (SVR) (Tan et al., 2020a),

Classification And Regression Tree (CART) (Zhong and Tam,

2015), Random Forest (RF) (Xuan et al., 2021), extreme gradient

boosting (XGBoost) (Yao et al., 2022), and so on. These

algorithms have been successfully applied to tackle non-linear

feature fitting in load forecasting. For example, in (Guan et al.,

2013), separate neural networks (NN s) are applied to wavelet

decomposed filtered load data. In (Haque, 2019), a SVR based

model is presented to determine the impact of HVAC set point

adjustments on building-level electrical load. In (Liao, 2019), a

XGBoost based model is designed to analyze the common laws of

meteorological and daily types on the load. Besides the machine

FIGURE 1
The full flowchart of the proposed method. (A) Load forecast model preparation. (B) Adaptive load forecast model selection.
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learning methods, deep learning is also used extensively for load

forecasting due to its powerful learning ability. For example,

Recurrent Neural Network (RNN) (Zhang et al., 2020) is the

commonly used deep learning model for time series forecasting.

In (Shi et al., 2018), a RNN based model is designed to forecast

the household load forecasting, whose performance is obviously

better than time-series analysis and machine learning

approaches. Long Short-term Memory network (LSTM) (Tan

et al., 2020b) and Gated Recurrent Unit network (GRU) (Sajjad

et al., 2020) are two of variants of RNN, and can achieve better

performance than RNN. In (Kumar et al., 2018), LSTM-RNN

and GRU-RNN based model is applied to spark clusters, which

brings better performance than RNN. In Kong et al. (2017)

proved that LSTM based model is suitable, and claimed that the

model can be further improved if more energy sequences are

obtained. Although machine learning and deep learning

approaches can process massive amounts of data and obtain

better prediction results than traditional methods, they need to

consume more memory and time. In addition, parameter

adjustment is also one of the difficulties of machine learning

and deep learning approaches.

Although the above-mentioned forecasting models have

achieved great accuracy in load forecasting, there is still one

critical challenge in the real-world load forecasting, i.e., the

forecasting accuracy of a certain forecasting model cannot be

guaranteed in all possible load patterns. This is because that the

generalization ability of a certain forecasting model is usually limited

so that they cannot adapt to all various load patterns with different

fluctuation characteristics. Compared with the aggregated load in

transmission networks, the loads in distribution networks usually

have severer fluctuations and uncertainties due to its much smaller

size andmore random factors such as weather, holiday, working days

shifting or some social activities (Fallah et al., 2018). Thus, it is

unexpected that in the distribution network a single forecasting

model can provide an accurate non-linear function that maps the

input vector to the future value of the load. In view of this, a

forecasting method of pattern adaptive matching is proposed in

this paper. In the proposed method, different load patterns are firstly

obtained by optimal clustering of massive consumer historical loads,

which can well characterize the fluctuation characteristics of various

loads. Then, for each load pattern, a load forecasting model based on

stacking ensemble learning is built, which can establish amulti-model

fusion load forecasting model to improve the performance of load

forecasting. Next, according to the fluctuation characteristics of the

latest consumer load, all the consumers are classified into different

groups, where each group corresponds to a particular identified load

pattern. Finally, forecast the load of each group separately and sum

the forecasts of different groups to obtain the aggregated load

forecast. The result based on open dataset demonstrates that

compared with the overall forecast by a single method, in the

proposed method, the impact of load fluctuations on the forecast

accuracy is reduced, and the forecast accuracy increased by 0.94%.

The key contributions of this paper can be briefly

summarized as follows:

1) A novel two-stage short-term load forecasting method for the

aggregated load is proposed, where the adaptive pattern

matching technique is designed to improve the adaptive

capability of the proposed forecasting method.

2) Forecasting models based on stacking ensemble learning are

built, where the advantages of integrated heterogeneous

models are fully utilized.

3) We validate our proposed method with a public dataset and

compare its performance with several single load forecasting

methods, where its superior performance is demonstrated for

the proposed method.

The remainder of this letter is organized as follows: Section 2

focuses on the implementation of the forecasting model. Section

3 conducts case studies and makes comparisons to verify the

effectiveness of our proposed method. Finally, Section 4 draws

conclusion and gives an outlook on future work.

2 Proposed methodology

The construction of the adaptive forecasting method with

pattern matching proposed in this paper is shown in Figure 1.

The overall forecasting process of the proposed method

can be divided into two stages: load forecast model

preparation stage and adaptive load forecast model

selection stage. The construction is shown in Figure 1. In

the load forecast model preparation stage, load patterns are

optimally obtained from historical load data. And for each

load pattern, stacking ensemble learning based forecasting

models is well prepared. In this stage, we first utilize the cosine

FIGURE 2
Ensemble learning method based on Stacking.
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similarity to measure the morphological distance between

consumers’ historical load data, then the load patterns are

clustered by using the k-means algorithm. The optimal

number of clusters is determined by cluster index. Finally,

the Stacking based load forecasting model is built for each load

pattern. The stacking based model has two levels. In the first

level, the load pattern data are used to train the Back

Propagation Neural Network (BPNN) (Park et al., 1991),

SVR, CART and XGBoost based models. Then, in the

second level, the liner regression (LR) model is employed

to determine the weights and fuses the multiple level-one

models. While in the adaptive load forecast model selection

stage, different groups of consumers are constructed based on

their load patterns and forecasting is conducted on the

grouped load individually. In this stage, according to the

similarity between the latest consumer load data and the

load pattern, all consumer load data are firstly classified

into the previously identified load pattern. Afterwards, the

corresponding forecasting model of each load pattern is

employed for prediction. Finally, sum the predictions of

different groups to obtain the final prediction.

2.1 Load forecast model preparation stage

It is clear that load consumption differs in both magnitude

and time of use, and is dependent on lifestyle, weather, and many

other relevant factors. In order to classify dissimilar loads into

different clusters, this paper uses cosine similarity to measure the

difference in consumer load curve shape, and uses k-means

algorithm for clustering. Let xi=(xi1, xi2, . . ., xin),xj=(xj1, xj2,

. . ., xjn) be two load curves, and the similarity between them

is defined as:

S xi, xj( ) � 1 −
∑n
q�1

xiq × xjq( )
�������
∑n
q�1

xiq( )2
√

×

�������
∑n
q�1

xjq( )2
√ (1)

It can be concluded from Eq. 1 that the more similar the two

curves are in shape, the lower the cosine similarity is. When the

two curves are completely identical in shape, the cosine

similarity is 0.

Next, we construct a clustering indicator for K-means

clustering method. As a classic clustering algorithm, K-means

algorithm is widely used in power load clustering analysis. But

the number of clusters directly affects the clustering effect. In

order to determine the optimal number of clusters, we adopt the

graph-based clustering effect evaluation method to establish the

clustering evaluation index.

V K( ) � ∑
K

c�1
∑
nK

i�1
S xi, vc( ) (2)

where K is the number of clusters, vc denotes the cluster center of

each cluster; nK represents the number of samples contained in

the current K-th cluster. V represents the sum of distances from

various samples to their corresponding cluster centers. V

decreases with the increase of the number of clusters. When

the decreasing trend of V value tends to be gentle, the

corresponding cluster number is the best cluster number.

By applying the above clustering method, we can optimally

obtain the load pattern from the historical load data. Then, for each

load pattern, a load forecasting model is to be trained. In order to

combine the advantages of several heterogeneous models, a stacking

based ensemble learning method is proposed to train the load

forecasting model. Ensemble learning is a method that combines

the prediction results of multiple models to obtain better and more

robust prediction than any one model. Ensemble learning based on

stacking is an integration technology that combines many different

models to form a new model with two-level structure. Figure 2

illustrates its basic structure.

In the first level, multiple different types of base learners are

trained to predict the data set. In order to prevent the occurrence

of overfitting, the training data is learned in the base learner by

means of k-fold cross-validation, and the training results of the

base learner are used as the input of the meta learner for training.

After the training, the final prediction result can be obtained by

taking the test set as input.

In this paper, we select BPNN, SVR, CART, and XGBoost as

the base learners. BPNN has self-learning, self-organization, self-

adaptive, and strong non-linear function approximation ability,

and has strong fault tolerance. The BPNN algorithm is mainly

composed of two parts: one is the forward propagation of the

signal; the other is the back-propagation of the error between the

output value and the real value, and constantly corrects the

parameters of each neuron. SVR is an important application

branch of support vector machine (SVM) (Zhang et al., 2011). It

maps the input vector to the high-dimensional feature space

through non-linear mapping and obtains a regression hyperplane

through calculation, so that the sum of distances from all sample

points in the set to the hyperplane is minimum. The CART

algorithm recursively performs binary segmentation on each

feature, The segmentation method adopts the Gini index

estimation function based on the minimum distance, and

divides the current sample set into two sub-sample sets so

that each non-leaf node generated has two branches. XGBoost

is an engineering implementation of gradient boosting decision

tree (GBDT) algorithm (Liu et al., 2018). Its basic idea is that

multiple weak regression trees are linearly combined into strong

regression trees. Its model is defined as:

F x( ) � ∑
M

m�1
fm x( ) (3)

where F(x) is the final output value and fm(x) is the output value

of the m-th weak regression tree.
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In the second level, linear regression is chosen as the meta

learner. That is, the predictions obtained by the base learners are

optimally weighted by the least squares algorithm to obtain the

final prediction. The model is defined as:

P � w0 + w1y1 + w2y2 + . . . + wnyn (4)

where w represents the weight coefficient, y is the prediction of

the base learners, P is the final prediction.

In the process of model training, the prediction P̂ of the

sample is known, and the weighting coefficient W can be

obtained by the following formula.

W � YTY( )−1YTP̂ (5)
where Y = [1, y1, y2, . . ., yn], W = [w0, w1, w2, . . ., wn]

T, 1 is the

column vector whose elements are all 1.

2.2 Adaptive load forecast model selection
stage

When performing load forecasting in real time, the

consumer’s electricity load should be firstly matched with the

load pattern that has been divided according to the

morphological similarity between the consumers’ latest

electricity consumption data and the identified load pattern.

Then the consumer’s power loads are predicted by the

prediction model corresponding to the same load pattern.

Figure 3 shows the diagram of pattern matching

approach. In this approach, we set a month as 28 days (the

same as below). When forecasting the load on the day q + 1

(q = 0, 1, ..., 27) of a month, the selected data includes the

data1 of the first q days of this month and the load data2 for

the (28-q) days of the previous month. In order to make the

selected data time consistent with the monthly load pattern,

move data1 to data2 and splice it into a consumer’s completed

monthly load data3 from the beginning of the month to the

end of the month. Calculate the cosine similarity between

each consumer data3 and each monthly load pattern, and

classify each consumer into the most similar monthly load

pattern with its lowest value. Thus, all the consumers are

divided into different groups. Each group is forecasted

separately by the corresponding forecasting model. Then,

these predictions are summed to form the aggregated load

prediction.

3 Case study

In order to assess the performance of our model, we chose the

grid-side power consumption data of 300 households in Australia

for analysis (https://www.ausgrid.com.au/Industry/Innovation-

and-research/Data-to-share/Solar-home-electricity-data). The

data length is from 1 July 2010, to 30 June 2011. The time

resolution is 30 min.

To evaluate the overall forecasting accuracy of the proposed

model, two commonly used evaluation metrics are adopted in

this work. They are Mean Absolute Percentage Error (MAPE)

and Root Mean Square Error (RMSE), whose expressions are

given as

MAPE � ∑
N

i�1

ei − oi
ei

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ×

100
N

(6)

FIGURE 3
Pattern matching diagram.

FIGURE 4
Clustering index.
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RMSE �

������������
1
N

∑
N

i�1
ei − oi( )2

√√
(7)

where e is the actual value, o is the predicted value, and N is the

predicted number.

3.1 Identification of load patterns

Firstly, select the data of 300 households in the first

10 months from 1 July 2010, to formulate a total of

3,000 monthly load data samples. The time resolution is

30 min. We increase the number of clusters to obtain the

change graph of clustering index, as shown in Figure 4, using

the K-means algorithm based on cosine similarity. When the

K value is between 9 and 12, the downward trend of the

evaluation index V tends to slow down. Select Kb = 9 as the

best cluster number. Then the K-means clustering is carried

out again to obtain nine kinds of monthly load patterns, as

shown in Figure 5.

Let the load at the predicted time t Pt be the output, and select

historical load, working day, weekend, and time of day as feature

inputs, the input feature are:

x � Pt−h, Pt−h−1, Pt−h−2, Pt−h+1, Pt−h+2,Pt−2h, Pt−2h−1, Pt−2h+1,{
Pt−3h, Pt−7h, weekday, hour} (8)

where the first seven elements are historical load data, h is the

time of the day when the load data is collected, weekday and hour

respectively represent the week and hour. 1,344 samples can be

FIGURE 5
Monthly load pattern.

TABLE 2 Load forecasting results of different methods.

Method MAPE (%) RMSE

Pattern matching 4.04 5.23

BPNN 6.88 8.19

SVR 4.98 6.10

CART 6.10 8.18

XGBoost 5.25 5.90

TABLE 1 Pattern matching results on November 7.

Pattern Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 Pattern 6 Pattern 7 Pattern 8 Pattern
9

Numbers of consumer 10 28 27 83 6 74 2 64 6

Matching index 0.036 0.018 0.016 0.009 0.078 0.006 0.123 0.018 0.139
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constructed in each month’s load pattern, 70% of the samples are

randomly selected as training samples, and the remaining

samples are used as validation samples. The best super

parameters of each base learner are obtained by the grid

search method.

3.2 Pattern matching and load forecasting

Select the first 7 days of November for load forecasting.

Pattern matching is required for each day from the first day

to the seventh day of November. Table 1 give the pattern

matching results of the first day of November. The matching

index in the table refers to the cosine similarity between the data

obtained by summing the data of consumers that match the same

load pattern with the corresponding monthly load pattern It can

be seen from the table that the fewer consumers the model

matches, the higher the matching index, that is, the lower the

similarity between the consumer load data and the monthly load

pattern, which will make the prediction effect worse to a certain

extent, but the number of consumers is small, the impact on the

overall load prediction is small.

After the pattern matching, all consumers are assigned to

different groups, each of which corresponds to a previous load

pattern. Forecast the load separately for each group, and sum the

predictions from all the groups to get the load forecasting results

for the first 7 days of November, as shown in Figure 6 and

Table 2. In order to verify the effectiveness of the method

proposed in this letter, the overall prediction by the single

method of BPNN, SVR, CART, and XGBoost is introduced.

Comparing the above results, it is found that, compared with

other methods using a single model, the adaptive pattern

matching prediction method proposed in this letter can

achieve the best prediction effect and can improve the

prediction accuracy by at least about 0.94%.

4 Conclusion and future works

In this paper, we have proposed an adaptive forecasting

method for the aggregated load with pattern matching. The

main advantage is that it can select the proper load pattern

corresponding to the load in time according to the change of load

fluctuation, and construct the best prediction model for

prediction. Compared with a single load forecasting model,

the forecasting accuracy of the proposed model is greatly

improved. We will extend the method from deterministic

forecasting to probabilistic forecasting. The application of our

proposed method to wind or solar forecasting will also be

investigated.
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Optimization of photovoltaic
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Solar energy is one of the main renewable energy sources and has rapidly

developed inmany countries. However, the photovoltaic (PV) output power will

be different under various meteorological and geographical conditions.

Therefore, this paper presents an optimization method for the deployment

of PV panels in a centralized PV power plant consideringmultiple factors. Firstly,

the whole planning area is divided into a certain amount of sub-areas according

to a given area, and fuzzy C-means algorithm is used for terrain clustering

according to the geographical characteristics of the sub-areas. Secondly, the

correlation analysis between each meteorological factor and PV output power

is carried out separately to select the main factors affecting PV output power,

and then the expected annual PV output power under the joint action of several

mainmeteorological factors in each terrain is calculated by dual-stage attention

mechanism based long short-termmemory algorithm. Finally, according to the

expected annual PV output of each terrain, considering the constraints

including cost, area and so on, the deployment optimization of PV panels is

obtained to maximize the annual PV output of the whole PV power plant and

minimize the construction cost. The results of case studies show that the

proposedmethods effectively improve the expected PV output power of the PV

power plant and reduce the construction cost.

KEYWORDS

centralized PV power plant, DA-LSTM, PV output power, PV panel deployment, solar
energy, terrain clustering

1 Introduction

Rapid development of renewable energy technologies such as solar is required due to

climate change mitigation strategies worldwide (Dong et al., 2021). Moreover, the

development of photovoltaic (PV) power technologies plays an important role in

achieving the goals of emission peak and carbon neutrality (Zhang et al., 2021), and

poverty alleviation (Zhang et al., 2020). However, the performance of PV systems is

generally affected by the meteorological conditions (Hachicha et al., 2019; Li et al., 2021),
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and geographical location (Al-Rousan et al., 2018; Cotfas and

Cotfas, 2019). Furthermore, the centralized PV power plant

covers a large area, and its continuous expansion also causes

the problem of insufficient land. Therefore, it is necessary to

make full use of the meteorological and geographical conditions

in different regions to develop PV.

Different meteorological factors effect on PV output power to

different extent. Therefore, the first step of centralized PV plant

planning is to start with the effect caused by meteorological

factors. Mekhilef et al. (2012) studied the effect of dust

deposition, wind speed and relative humidity on the efficiency

of solar cells. Li et al. (2020) analyzed the impacts of wind speed,

wind direction, ambient temperature and solar radiation on PV

considering dynamic line parameters. The main factors in the PV

power calculation are the solar insolation. Ambient temperature

and wind speed have transitive relation with PV power through

irradiance, and the humidity and the atmospheric pressure have a

negative correlation with PV output (Ziane et al., 2021). Dust is a

cause of PV output power reduction, and models of dust

deposition on PV modules using local meteorological events

were developed in (Sengupta et al., 2021). Gowid and Massoud

(2020) developed a PV maximum power point identification tool

considering temperature and solar insolation. Mayer (2021)

revealed the effects of the meteorological data resolution on

the of simulation and optimization reliability of PV power

plants. Those studies points out what and how meteorological

factors affect PV output power, but most of them did not

consider enough kinds of meteorological factors.

After confirming what and how meteorological factors affect

the PV output power, PV output power calculation or prediction

based on multiple meteorological factors has become a hot topic

in recent years. Correlation analysis and regression analysis are

basic methods to calculate PV power. A model of PV output

power was obtained through regression analysis by selecting

main factors that affect PV power in (Kim et al., 2019).

Agoua et al. (2018) proposed a statistical spatio-temporal

model based on correlation analysis to improve short-term

forecasting of PV production. However, the methods

mentioned above have relatively low efficiency and accuracy.

To overcome this problem, a widely-used kind of method for PV

calculation or prediction is deep learning. Considering solar

radiation, sunlight, wind speed, temperature, cloud cover, and

humidity, a modified long short-termmemory (LSTM) is used to

predict PV power in medium and long term (Son and Jung,

2020). There are also many other deep learning based methods

such as methods based on convolutional neural network (Yan

et al., 2021), spatiotemporal feedforward neural network

(Rodríguez et al., 2022) and so on. Besides, graph modeling

method is a novel method for PV power prediction. The graph

modeling method is used to describe the relationship between

various meteorological factors and PV power and predict the PV

power, but the graph modeling method is more complex (Cheng

et al., 2021). There are already various practical PV calculation

methods taking meteorological factors into account, but there are

few studies considering geographical conditions which also affect

PV output power. To sum up, the method for PV output power

calculation still needs to develop.

As mentioned above, the performance of PV is also

affected by geographical conditions. For example, according

to a study in a water pumping system with PV installation in

Brazil, when the ratio between flow and radiation was taken

into account, the monocrystalline PV system was more

efficient (Nogueira et al., 2015). Polycrystalline solar

module showed a better performance in semi-arid Region

(Ettah et al., 2021). Ingenhoven et al. (2019) analyzed the

performance loss rate of six different PV module types in five

locations in Italy. Huld (2017) promoted a set of tool and data

named PVMAPS, which could calculate PV performance in

any region covered by the data. Due to the relationship

between geographical conditions and PV performance, site

selection became an important factor of PV power plant

execution. To find the best location, many researches

presented methods based on geographical information

system (Hashemizadeh et al., 2019; Mensour et al., 2019).

Although some literature dealt with the site selection of PV

power plant, there were not many literature focus on the

deployment of PV panels in centralized PV power plant.

In summary, the existing works lack an optimization method

for the deployment of PV panels in a centralized PV power plant

considering not only the geographical difference but the

meteorological difference. To solve the above problems, this

paper proposes an optimization method for the deployment of

PV panels in a centralized PV power plant considering multiple

factors. By optimizing the deployment position and quantity of

PV panels, the method aims at higher PV output power and

lower cost under certain capacity and approximate planning area

FIGURE 1
Three steps of the method for deployment of PV panels.
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for a centralized PV power plant. It also provides possibility for

more efficient application of PV.

The remainder of the paper is organized as follows. Section 2

introduces terrain clustering, quantification of the relationship

between meteorological factors and PV output, and optimization

model. Section 3 shows the result of case studies. Section 4 makes

a conclusion for this paper.

2 Methodologies

As shown in Figure 1, the method for optimizing the

deployment of PV panels in a centralized PV power plant

under multiple factors is divided into three steps: dividing

different terrains in the PV power plant according to

geographical characteristics, modeling and quantifying the

relationship between meteorological factors and PV output

power in each terrain (including single meteorological factor

and multiple meteorological factor analysis), optimizing the

deployment of PV panels in the centralized PV power plant.

2.1 Terrain clustering

Before studying meteorological factors, we should first

explore the influence of geographical factors. This is because

the meteorological conditions in different locations are obviously

different. Thus, to carefully study the relationship among PV

output power, meteorological factors and geographical factors, it

is necessary to combine the sub-areas with similar geographical

locations to a terrain first. Moreover, the installation of PV panels

is also affected by geographical factors. For example, according to

the different slope direction and gradient, the installation area of

unit PV panels varies, and the unit installation area will affect the

subsequent optimal deployment of PV panels. Therefore, based

on the above considerations, this section first divides the

surrounding area of a planned centralized PV power station

into several terrains according to the geographical characteristics.

Noted that the PV panels in a centralized PV power plant are

often orderly concentrated in a certain area, the distance and

direction between the terrain center and the gathering station

(GS) are included in the geographical characteristics, so as to

make each sub-area within the divided terrain roughly similar in

location and more accord with the actual situation of the

centralized PV power plant construction. Firstly, PV power

plant are divided into several sub-areas from west to east and

from north to south according to a rectangular area with the

same area of AN (determined according to the actual cases). Then

the annual sunshine durations, average altitude, slope direction,

slope, distance between the terrain center and the GS, the

direction of the terrain center relative to the GS are used as

the geographical features for dividing different terrains. Define

the geographical feature of the ith sub-area as Xterrain
i and

establish the dataset Xterrain
i � xterraini1 , xterrain

i2 ,/, xterrain
i6{ }.

Subscripts i1 to i6 represent the annual sunshine durations,

average altitude, slope direction, slope, distance between the

terrain center and the GS, the direction of the terrain center

relative to the GS in the ith sub-area, respectively.

As one of the main unsupervised machine learning

technologies, fuzzy clustering analysis is a method of

analyzing and modeling important data using fuzzy theory,

which establishes the uncertainty description of sample

categories. The vector of fuzzy clustering algorithm can belong

to multiple clusters at the same time, which can objectively reflect

the real world. It has been effectively applied in many fields such

as large-scale data analysis, data mining, vector quantization and

so on, which is proved to have important theoretical and practical

application value. With the further development of application,

the research of fuzzy clustering algorithm is constantly enriched.

In this section, we have chosen fuzzy c-means (FCM) algorithms

due to its good performance (Benmouiza et al., 2016), and the

FCM algorithm introduced by Dunn and improved by Bezdek

(Nayak et al., 2015).

Using the FCM algorithm, a total of K sub-areas in the whole

planning area of the PV power plant are classified intoN terrains.

The idea of FCM algorithm is to calculate the membership matrix

U � [uij]N×K and the cluster centersV � v1, v2,/, vN{ } from the

terrain geographic feature dataset Xterrain �
Xterrain

1 , Xterrain
2 ,/, Xterrain

K{ } through continuous iteration, and

to minimize the function value in Eq. 1.

J U,V( ) � ∑K

i�1∑
N

j�1u
m
ijd

2
ij (1)

dij � Xterrain
i − vj

���� ���� (2)

In Eq. 1, uij is the membership degree of the ith sub-area

belonging to the jth terrain;m is the membership factor; dij is the

Euclidean distance from the ith sub-area to the jth cluster center,

which is calculated by Eq. 2.

The calculation steps of the FCM algorithm are as follows:

Step 1. N cluster centers are randomly selected and the initial

membership matrix U(0) is calculated. Let l = 1 and start the first

iteration.

Step 2. Calculate the cluster center V(l) and membership matrix

U(l) of the lth iteration, and calculate the function value of J(l), as

shown in follows.

v l( )
j � ∑K

i�1 u l−1( )
ij( )mXterrain

i

∑K
i�1 u l−1( )

ij( )m , j � 1, 2,/, N (3)

u l( )
ij � 1

∑K
i�1

d l( )
ij

d l( )
ik

( )
2

m−1
, i � 1, 2,/K; j � 1, 2,/, N (4)

J l( ) U l( ), V l( )( ) � ∑K

i�1∑
N

j�1 u( ) l( )
ij( )m d( ) l( )

ij( )2 (5)
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d l( )
ij � Xterrain

i − v l( )
j

���� ���� (6)

Step 3. Set the termination value. Membership termination

value εu > 0 or function termination value εJ > 0 can be used.

If max |u(l)ij − u(l−1)ij |{ }< εu or |J(l) − J(l−1)|< εJ, the iteration

stops, otherwise, increase l and go to step 2.

When uij � max1≤ j≤N uij{ }, the ith sub-area belongs to the

jth terrain and can be expressed as follows:

Xterrain
i ∈ Dj (7)

2.2 Single meteorological factor analysis

Quantification the relationships between meteorological

factors and PV output power in each terrain includes single

meteorological factor and multiple meteorological factor

analysis. There are many kinds of meteorological factors, and

the impact of various meteorological factors on PV output power

may be significantly different. Therefore, in order to accurately

measure the relationship between meteorological factors and PV

output power, and simplify the calculation complexity and time

of subsequent multiple meteorological factors analysis without

losing accuracy, a single meteorological factor analysis of PV

output power is conducted first. The single meteorological factor

analysis is to select the daily output data of an existing PV power

plant near the planning area and various meteorological data

collected by the corresponding meteorological station as

historical data, preliminarily analyze the relationships between

PV output power and various meteorological factors through

Pearson correlation coefficient, and select several major

meteorological factors that have a great impact on the PV output.

r � ∑n
i�1 xi − �x( ) yi − �y( )�����������������������

∑n
i�1 xi − �x( )2 · ∑n

i�1 yi − �y( )2
√ (8)

�x � 1
n
∑
n

i�1
xi (9)

�y � 1
n
∑
n

i�1
yi (10)

Where xi is the ith time component of the meteorological factor

x, yi is the ith time component of PV output y, r is the correlation

coefficient, r∈[−1,1], and the closer the absolute value is to 1, the

stronger the correlation between the meteorological factor x and

PV output.

According to the value of correlation coefficient, k

meteorological factors with the strongest correlation with PV

output are selected for further mining the relationship between

meteorological factors and PV output. Considering that the

dimensions of various meteorological factors and PV output

are not uniform, the MinMaxScaler method is used to normalize

the data to improve the convergence speed of the subsequent

deep learning model and reduce the error. MinMaxScaler

method is shown in Eq. 11:

x′ � x − x min

x max − x min
(11)

where, x′ is the normalized data, x is the original data, xmin and

xmax are the minimum and maximum of the original data.

After normalizing the k main meteorological factors and PV

output data, sequential feature

Xme � (xme
1 , xme

2 ,/, xme
T ) � (xme1, xme2,/, xmek)T, containing

k main meteorological factors, is constructed. It can be

expressed by the following matrix:

Xme �
xme1
1 xme2

1

xme1
2 xme2

2

..

. ..
.

xme1
T xme2

T

/ xmek
1

/ xmek
2

1 ..
.

/ xmek
T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (12)

where, xme
t � (xme1

t , xme2
t ,/, xmek

t ) is expressed as the above k

meteorological feature sets at time t, and xmep �
(xmep

1 , xmep
2 ,/, xmep

T ) is expressed as the each value of the pth

relevant meteorological variable for the whole period T.

2.3 Multiple meteorological factor analysis

The multiple meteorological factor analysis uses the dual-

stage attention mechanism based LSTM (DA-LSTM). LSTM is

an improved recurrent neural network. Each hidden layer is no

longer a single neural network, but consists of four

interconnected neural networks (forget gate, input gate,

update gate and output gate). It compares the memory

information with the current information and learns through

self-evaluation and selectively forgetting mechanism, which can

alleviate the problem of gradient vanishing and exploding in

general recurrent neural network (Greff et al., 2017; Shewalkar,

2019).

2.3.1 Overview of long short-term memory
In the general LSTM networks, the long-term memory

information at time t is defined as the cell state Ct. The LSTM

cell receives the meteorological feature set xme
t at time t and the

short-term memory information ht-1 of cells at the previous time,

and inputs the cell state Ct-1 at the previous time into each gate as

internal information. Through the forget gate ft, the input gate it
and the output gate ot, the cell information is read and modified

as follows:

ft � σ Wf · ht−1, xme
t[ ] + bf( ) (13)

it � σ Wi · ht−1, xme
t[ ] + bi( ) (14)

C′
t � tanh WC · ht−1, xme

t[ ] + bC( ) (15)
ot � σ Wo · ht−1, xme

t[ ] + bo( ) (16)
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where, Wf, Wi and Wo are the weight matrices of forget gate,

input gate and output gate respectively, and bf, bi and bo are the

corresponding biases. WC is the input cell state weight matrix,

and bC is the bias of the input cell state. σ is the sigmoid activation

function, which transforms the output into [0,1] interval, tanh is

a hyperbolic tangent activation function, which transforms the

output into the [−1,1] interval. Eq. 13 represents a forget gate for

judging whether the previous information is retained. Eq. 14

represents an input gate that determines whether the current

information is written to the cell state at time t; Eq. 15 creates a

new vector containing all possible values through the tanh

activation function and adds it to the cell state; Eq. 16

represents an output gate that determines the information to

be included in the output content. Input the hidden layer output

ht to obtain the PV output yt, and the calculation is as shown in

Eqs. 17–19.

Ct � ft *Ct−1 + it *C
′
t (17)

ht � ot * tanh Ct( ) (18)
yt � Wdht + bd (19)

where, * denotes the multiplication of matrix elements. Wd and

Bd are the adjustable weight matrix and the bias of the output

layer, respectively.

2.3.2 Dual-stage attention
The performance of only using ordinary LSTM under sudden

weather and extreme weather conditions is often poor, so the

attention mechanism is introduced. The attention mechanism

imitates how the human brain processes information, which

improves the performance of the neural network (Qu et al.,

2021). In this paper, the feature attention mechanism is

introduced at the encoder side, and the time attention

mechanism is introduced at the decoder side to build a dual-

stage attention mechanism, so as to obtain a more accurate

relationship between PV output power and meteorological

factors and historical information. The dual-stage attention

structure can be shown in Figure 2.

Feature attention models the importance of each feature and

assigns different attention to each dimension of the input (Zeng

et al., 2022). In order to obtain the contribution rate of each

meteorological feature to the PV output at the current time, the

relevant meteorological features at time t are input into the

feature attention mechanism to obtain the attention weight

vector et:

et � VT
e tanh We ht−1, Ct−1[ ] + Uex

mep + be( ) (20)

where, et � (e1t , e2t ,/, ekt ) is the combination of attention weight

coefficients corresponding to each meteorological feature at time

t; Ve, We and Ue are the weight matrix of attention mechanism,

and be is the bias. Normalization is performed according to Eq.

21, using the Softmax function so that the sum of the feature

attention weights is 1. The normalized feature attention weight is

expressed as αt � (α1t , α2t ,/, αpt ,/, αkt ), where αpt is the feature

attention weight value of the pth relevant meteorological feature

at time t.

αp
t � exp ept( )

∑k
i�1exp eit( ) (21)

Multiplying the feature attention weight value αpt with the

corresponding meteorological feature value xmep
t to obtain the

correlation feature ~xmep
t considering the contribution rate of

different meteorological features:

~xt � α1
t x

me1
t , α2t x

me2
t ,/, αk

t x
mek
t( ) (22)

By introducing the feature attention mechanism, the input to

the LSTM network is no longer the original meteorological

feature value, but the correlation feature weighted by the

contribution rate. It adaptively strengthens the key factors

affecting the PV output, weakens the less relevant

meteorological factors, and improves the modeling accuracy.

Temporal attention mechanism is introduced for finding the

characters of trend and cycle and determining the key node for

the current PV output power adaptively (Zhu et al., 2022). In

order to obtain the contribution rate of the sequential state in a

period of time on the PV output at the current time, obtain the

weight of the hidden state of the corresponding time sequence,

and extract the historical key node, introduce the temporal

attention mechanism at the decoding output side. The

temporal attention weightof the hidden layer state at the

current time depends on the hidden layer state ht �
(h1t , h2t ,/, hTt ) of the selected historical time sequence of

LSTM, T is the time length of the input sequence. Taking it

as an input, the temporal attention weight coefficient lt �
(l1t , l2t ,/, lτt ,/, lTt ) at the current time t is obtained, as shown

in the Eq. 23:

FIGURE 2
The structure of DA-LSTM.

Frontiers in Energy Research frontiersin.org05

Fan et al. 10.3389/fenrg.2022.1087487

97

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1087487


lτt � VT
dtanh Wd[ht−1′ , Ct−1′ ] + Udh

τ
t( ) (23)

where, Vd andWd are the corresponding weights of the temporal

attention, and Ud is the bias. The temporal attention weight is

also obtained by normalizing with the Softmax function, and the

comprehensive information st, related to the sequential state

characteristics, at time t is obtained by considering the

contribution rate of the information at each time in the input

sequence.

βτt �
exp lτt( )

∑T
j�1exp ljt( ) (24)

st � ∑
T

τ�1
βτt h

τ
t (25)

Combine comprehensive information st with original

output yt:

y′
t � ~W yt, st[ ] + ~b (26)

where, ~W and ~b are the weights and bias input by the front-end

fusion of the LSTM network. Considering the contribution rate

of historical information, the hidden layer state at time t is

obtained:

h′t � f1(ht−1′ , yt−1′ ) (27)

where, f1 is the LSTM network. The PV output at time T+1 can be

expressed as:

ŷT+1 � VT
y Wy h′T, sT[ ] + bw( ) + by (28)

where,Wy and bw are the weights and bias of the LSTM network.

Vy and by are the weights and bias of the whole network before

dimensional transformation.

2.4 Optimization of photovoltaic panel
deployment in the power plant

2.4.1 Objective function
The optimization of PV panel deployment in the power plant

takes the actual output power of the whole PV power plant and

the lowest cost of PV panel deployment as the optimization

objective, takes the whole year as the time scale, and makes full

use of the meteorological advantages of each terrain to improve

the efficiency and economy of the whole power plant.

F1 � max∑
N

j�1
njyj,year (29)

yj,year � ∑
365

d

yj,d (30)

Eq. 29 is the objective function that maximizes total of the

annual PV output power in each terrain, that is, the annual

expected output of the whole planning PV power plant, where nj
represents the number of PV panels installed in the jth terrain. yj,

year is the annual expected output power of a single PV panel in

the jth terrain. The LSTM model is trained using historical data,

and then the annual expected output of the unit PV panel in each

terrain is calculated separately based on the actual meteorological

conditions of each terrain and on the time scale of day. The

annual output in the jth terrain can be expressed by Eq. 30, where

yj, d represents the expected output of a single PV panel in the jth

terrain on day d.

F2 � min∑
N

j�1
Cj (31)

Cj � njCsj + Clj (32)

Eq. 31 is the objective function to minimize the deployment

cost of all PV panels in the whole PV power plant, where Cj

represents the total cost of installing PV panels in the jth terrain.

Eq. 32 represents the installation cost of a single PV panel.

Because the purchase cost of each PV panel is the same, the

purchase cost can be ignored. Csj represents the cost of occupying

land for the installation of a single PV panel in the jth terrain, and

Clj represents the cost required for the line routing between the

PV field in the jth terrain and the GS.

2.4.2 Constraint conditions
Since the total amount of PV panels is unchanged, only the

cost required for the line routing from each terrain to the GS is

considered when calculating the total line routing cost. It is

assumed that the jth terrain contains J sub-areas, that is,

Dj � Xterrain
1 , Xterrain

2 ,/, Xterrain
J{ }.The line routing cost can

be calculated as follows:

Clj � Cline,jDj5 (33)

Cline,j � ∑
L

u�1
zuCline,j,u (34)

∑
L

u�2
nu−1,limitzu ≤ nj ≤∑

L

u�1
nu,limitzu (35)

∑
L

u�1
zu ≤ 1 (36)

Dj5 � 1
J
∑
J

i�1
xterrain
i5 (37)

Csj � Cspace,jAj (38)

Eq. 33 shows that the line routing cost Clj is related to the

distance from each terrain to the GS and the unit cost of the line,

and Cline, j is the unit cost of line routing per kilometer of the jth

terrain. Eq. 34 is the calculation method of line routing cost per

kilometer for the jth terrain. When the number of PV panels

installed in a terrain exceeds a certain limit, the voltage level of

the line needs to be increased to meet its maximum transmission

power, and then the unit cost of the line will increase accordingly.
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After the preliminary evaluation, it is assumed that there may be

L voltage levels in the whole planning area. nu,limit represents the

maximum number of PV panels that can be accessed with the uth

voltage level. By introducing a set of 0–1 variables zu, the range to

which nj belongs can be defined, as shown in Eqs. 35, 36.Dj5 is the

distance from the jth terrain to the GS, which is the average of the

distance from the J sub-areas included in the jth terrain to the GS,

as shown in Eq. 37. Eq. 38 calculates the cost of land

consumption, where Aj is the actual area occupied by a unit

of PV panel installed in the jth terrain.

The deployment of PV panels is also constrained by certain

geographical conditions as follows:

njAj ≤Aj, sum (39)
Aj � APVAslope (40)
Aj, sum � JAN (41)
Dj4 ≤Dj4,limit (42)

Eq. 39 is the area constraint. The actual area of PV panel

installation is related to the gradient and slope direction of the

installation site, as shown in Eq. 40, where APV is the area of a PV

panel itself, and Aslope is the area coefficient affected by the

gradient and slope direction. Aj,sum is the total area of the jth

terrain, which is calculated by Eq. 41, and is the sum of the total J

sub-areas included in the jth terrain. Also, when the gradient of a

terrain is too steep, it is not proper to install a PV panel there, as

shown in Eq. 42.

According to the planned capacity of PV power plant, the

number of PV panels installed in the power plant can be obtained

as follows:

nsum � ∑
N

j�1
nj (43)

3 Case studies

3.1 Parameter setting and dataset
description

The case studied in this paper is the planning area of a large-

scale centralized PV power plant in Southwest China, and the

estimated installed capacity of the whole PV power plant is

210MW. Obtain the PV output power data of an existing PV

power plant near the planning area in 2021 and the meteorological

data during the same period and at the same place. The temporal

resolution of the data is 1 day. The meteorological data of each

terrain in the planning area are obtained through interpolation due

to the lack of actual weather station. The geographical data are

obtained through SRTM data released by NASA (Jarvis et al., 2008).

The parameters of the selected PV panel are: the power is 600Wand

the size is 2172 mm × 1303 mm.

3.2 Terrain division

The terrain in the planning area is divided by FCM

algorithm. The annual sunshine durations, average altitude,

slope direction, slope, the distance between the terrain center

and the GS, and the direction of the terrain center relative to the

GS in each sub-area are used to complete the terrain clustering.

The result is shown in Figure 3.

After the terrain division, the geographic conditions of each

terrain are collected and counted in Table 1. From the Table 1, it

can be seen that there are great differences in geographical

conditions among the terrains in the planning area. After the

terrain is divided, the relationship betweenmeteorological factors

and PV output power can be analyzed more accurately, and then

more accurate PV expected annual output power can be

obtained.

3.3 Main meteorological factors selection

The first step of meteorological analysis is single factor

analysis which is aimed to select main meteorological factors.

Table 2 presents the results of single meteorological factor

analyzed by Pearson correlation. As mentioned in Section 2.2,

the Pearson correlation coefficient is a value between −1 and 1.

The closer the absolute value of Pearson correlation coefficient is

to 1, the stronger the correlation between this meteorological

factor and PV output power is. If the value is positive, the

meteorological factor is positively related to the PV output

power, otherwise, it is negatively related.

FIGURE 3
The results of terrain division.
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Five main meteorological factors are selected depending on

the Pearson correlation coefficient. In this case, the total radiation

intensity, average temperature, relative humidity, wind speed and

total cloud cover are selected as the main meteorological factors.

Among them, the total sunshine intensity, average temperature

and wind speed are positively correlated with PV output power,

and the relative humidity and total cloud cover are negatively

correlated with PV output power. Moreover, the total sunshine

intensity is the most important factors.

3.4 Photovoltaic output power calculation

The PV output power and five main meteorological factors

data are analyzed by using the DA-LSTM model, and then

compared with the ordinary LSTM model. The accuracy of

the model is verified by using the root mean square error

(RMSE) eRMSE and the mean absolute error (MAE) eMAE. In

order to analyze the performance of the DA-LSTM model, this

paper firstly calculates the output power of the existing PV power

plant. This paper compares the calculation results of the DA-

LSTM model for PV output power 1 day in advance with the

calculation results of the LSTM model without attention

mechanism, as shown in Figure 4. It is obvious from Figure 4

that the calculation results of the DA-LSTM model are closer to

the real value. Table 3 presents the RMSE and the MAE eMAE of

two different models. The RMSE and MAE produced by DA-

LSTM model is smaller than ordinary LSTM, which means the

DA-LSTM model performs better in PV output power

calculation considering multiple meteorological factors.

After verifying the accuracy of the DA-LSTM model, the

annual expected output power of a single PV panel in each

TABLE 1 The geographic conditions of each terrain.

Terrain N/° E/° Total Area/km2 Distance to GS/km Gradient/° Slope direction Average altitude/m

1 28.851 99.394 4.66 2.487 10.3 North 4565

2 28.851 99.417 5.00 2.493 22.6 South 4349

3 28.834 99.394 1.06 2.071 35.1 North 4401

4 28.830 99.399 4.34 0.875 6.9 North 4584

5 28.835 99.417 4.50 1.320 7.4 North 4321

6 28.817 99.394 4.95 1.810 32.4 South 4213

7 28.817 99.417 4.04 1.391 7.8 South 4477

8 28.817 99.434 1.75 2.578 37.8 South 4248

TABLE 2 The Pearson correlation coefficient of each meteorological
factor.

Meteorological factors Pearson
correlation coefficient

Total radiation intensity 0.821

Average temperature 0.311

Relative humidity −0.691

Wind speed 0.410

Total cloud cover −0.526

Sea level pressure −0.108

Precipitation −0.165

Snowfall −0.215

Surface pressure −0.087

FIGURE 4
The actual value and the results of different models.

TABLE 3 The performances of different models.

Model eRMSE eMAE

DA-LSTM 0.896 0.697

LSTM 1.316 1.025
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terrain in the planning area is calculated, as shown in Figure 5.

It can be seen that there is a certain difference in the output

power of PV panels in different terrain. Considering the

annual total sunshine intensity and annual sunshine

durations of each terrain, it can be found that places with

good solar resources are not necessarily the regions with the

largest PV output power. That is because other meteorological

factors do have a visible impact on PV output. In addition,

terrain 7 has the highest PV output power. Moreover, since

there are a large number of PV panels in a PV power plant, the

priority of the installation site has a great impact on the output

power of the final PV power plant.

3.5 Results of photovoltaic panel
deployment

The deployment method proposed in this paper also

considers conventional capacity constraints, area

constraints and so on. However, its characteristic is that its

objective function considers the maximum actual PV output

power. To analyze the benefits of the method proposed in this

paper, scheme B and C are set as comparison, and the

proposed method is scheme A. The difference between the

comparison methods is mainly in the objective function,

which considers the maximum total sunshine intensity and

the maximum total sunshine durations respectively. The PV

resource parameters required by the three different methods

are shown in Table 4. The parameters required by the two

methods for comparison are easy to obtain.

Figure 6 shows the deployment results of three different

methods. Obviously, the installation location and

quantity of PV panels are different under three methods.

Also, it is not difficult to understand that, considering the

minimum cost, all deployment method will prefer to select

the terrain nearest to the collection station. Terrain 4, 5,

7 are the nearest, therefore, these terrains are given

high priority to install PV panels. But the actual

deployment of each terrain depends on constraints and

different objective functions. It is worth noting that all

three methods choose to install a certain number of PV

panels on terrain 4, which also proves that terrain four is the

best comprehensively.

Figure 7 shows the deployment performance of three

different methods. Obviously, the installation location and

quantity results of three different methods are different.

When the estimated PV installed capacity is given, it can

be seen that the PV expected output of the purposed method

is higher than that of the methods for comparison. The

proposed method increases the expected output power by

0.71% and 1.71% compared with scheme B and scheme C

respectively. Scheme A also lower the cost, which reduces the

cost by 0.89% and 2.32% compared with scheme B and

scheme C, respectively. Comparing the effects of the three

deployment schemes, we can see that the method proposed in

this paper improves the annual PV output power and reduces

the total construction cost. In other words, the proposed

method effectively improves the efficiency of solar energy

FIGURE 5
The annual expected output power of a single PV panel in
each terrain.

TABLE 4 The PV resource parameters of each terrain.

Terrain Annual output/kW·h Annual
solar irradiation/MJ·m−2

Annual sunshine duration/h

1 1659.67 6594 2655

2 1673.71 6586 2646

3 1639.78 6632 2622

4 1691.86 6635 2642

5 1679.02 6635 2672

6 1687.65 6628 2635

7 1708.06 6622 2605

8 1673.07 6632 2600
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utilization and creates higher economic and environmental

value.

4 Conclusion

An optimization method for the deployment of PV

panels in a centralized PV power plant under multiple

meteorological and geographical factors is proposed.

When deploying PV panels, the geographical and

meteorological condition differences in various terrains of

the planning area are fully considered, so as to obtain the

maximum PV output power. Taking a planning area and an

nearby existing PV power plant as examples, the data of

interest are collected for case studies and the results of case

studies are analyzed.

Considering that the PV panels in the centralized PV

power plant are densely arranged during installation, the

connectivity between the sub-areas is taken into

account when dividing the different terrain in the PV

power plant, so that the sub-areas in each terrain are not

only similar in geographical characteristics, but also

adjacent in geographical locations. The proposed terrain

division method meets the needs of the PV power plant

planning.

Then, Pearson correlation analysis succeeds in main

meteorological selection. Moreover, DA-LSTM model has

shown acceptable results in PV output power calculation, and

successfully calculates the annual PV output power of various

terrains in the planning area.

Finally, the advantages of the optimization method

based on terrain division and PV output power calculated

by DA-LSTM are proved. Compared with the

comparison method, the proposed method has higher

output power and less construction cost. The

application of this method can improve the efficiency of

PV resources utilization and create economic and

environmental benefits, which promotes the use of PV

technology.

FIGURE 6
The deployment results of three different methods.

FIGURE 7
The deployment performance of three different methods.
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Deep learning-aided joint
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The rapid growth of distributed generation (DG) and load has highlighted the

necessity of optimizing their ways of integration, as their siting and sizing

significantly impact distribution networks. However, little attention has been

paid to the siting and sizing of new substations which are to be installed. This

paper proposes deep learning-aided joint DG-substation siting and sizing in

distribution network stochastic expansion planning. First, as themodel depends

on an accurate forecast, Long Short-TermMemory (LSTM) deep neural network

is used to forecast DG output and load, where electricity growth rate, bidding

capacity of the electric expansion, and industrial difference are all considered.

Then, a two-stage stochastic mixed integer bilinear programming model was

established for joint DG-substation siting and sizing under uncertainties, where

multiple objective functions are comprehensively addressed. By using the

Fortuny-Amat McCarl Linearization, the resultant bilinear model is

equivalently transformed into a mixed integer linear program, which can be

efficiently solved. Finally, stochastic power flow calculation in the IEEE 69-node

system is conducted to analyze the influence of electric expansion and DG

integration on the node voltage and power flow distribution of the power

system. The effectiveness of the proposed method is also verified by simulation

tests.

KEYWORDS

LSTM network, load forecasting, business and industrial expansion, renewable energy
integration, two-stage stochastic programming, distribution network planning

1 Introduction

With the forthcoming shortage of fossil fuels, the accommodation of renewable

energy is a critical topic in power systems. Although large-scale integration of DGs is

favorable to promoting the development of the economy, environment, and society (Singh

and Sharma, 2017), curtailment of renewable energy is still significant and remains a

critical issue to date (Zheng et al., 2021; Zheng et al., 2022). On the other hand, the

expansion capacity of different industries will also impact the demand side of the system.
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It is left open how to reasonably plan the location and capacity of

the renewables and the expanded industrial load to be integrated

into the system, as the planning scheme has a huge impact on the

operation of the power system.

Load forecasting and DG forecasting are important basis for

power system decision-making and planning. In terms of load

forecasting, due to the volatility of DG and load, how to

accurately forecast the load in the presence of electric

expansion is the focus of this research. The existing load

forecasting research is mainly divided into statistics-based and

learning-based methods, and the latter is the current mainstream

method. Statistical methods mainly include multiple linear

regression, autoregression, autoregressive moving average, and

so on (Kim et al., 2018; Ahmad and Chen, 2019), but they can

hardly deal with load data with random and dynamic

development. (Yang et al., 2019). establishes a hybrid power

load forecasting model by combining the autocorrelation

function and least squares support vector machine in short-

term power load forecasting. Compared with the benchmark

model, experimental results show that this method can

significantly improve forecasting accuracy. (Gul et al., 2021).

adopts CNN-Bi-LSTM to process time series data sets for

medium-term electricity prediction. However, the industrial

difference in electricity consumption needs to be studied,

while the quantitative relationship between industrial

expansion capacity and the growth of load needs to be

revealed. In this paper, the influence of industrial expansion

will be considered in load forecasting, while the influence of

direct irradiance and diffuse irradiance will be considered in DG

sizing forecasting.

Although pioneering studies have investigated the siting

and sizing of DG in the distribution network, little attention

has been paid to installing new substations for industrial

expansion. (Ho et al., 2016). proposes an optimal energy

storage scheduling of DG distributed power generation

system, which was formulated as a mixed integer linear

program (MILP). (Vale et al., 2010). adopts the artificial

neural network method to carry out distributed energy

scheduling in isolated grids, and the construction of virtual

power participants (VPP) can aggregate large-scale

integration of DG and other distributed energy resources.

(Daud et al., 2016). studies how to deploy the optimal location

capacity of distributed photovoltaics. This paper considers

multiple objectives such as power loss, voltage deviation,

average voltage total harmonic distortion, and system

average voltage decline to construct a multi-objective

optimization problem, and the multi-objective optimization

problem is converted into a single-objective optimization

problem in a weighted way. In the research on industrial

expansion, (Chen and Hsu, 1989). establishes an expert

system for load allocation in the industrial expansion

planning of the distribution network. The artificial

language PROLOG is used to integrate the heuristic rules

followed by the load allocation planner into the knowledge

base, generating several appropriate load distribution

schemes. (Aghaei et al., 2014). proposes a multi-stage

distribution network expansion planning algorithm based

on improved particle swarm optimization to ensure energy

reliability and security, and realize the integration of

distributed generation units into the distribution network.

(Fan et al., 2020). considers the uncertainties of DG and

electric vehicles and develops a comprehensive extended

programming framework based on multi-objective mixed

integer non-linear programming, where the Chebyshev

decomposition is employed to solve the problem. However,

heuristic algorithms can barely consider the uncertainty of

DG and load, and their computational efficiency is generally

low, which cannot satisfy the need for real-time dispatch.

Compared with the existing research on the siting and sizing

of DGs, this paper tackles the scenario with industrial expansion

by using the research framework in Figure 1. Utility companies

process customers’ applications for new substation installation

and additional electricity capacity, referred to as industrial

expansion and installation. Meanwhile, the main ways to

achieve capacity growth include the installation of DG and

substation. Therefore, this paper further explores the problem

of joint DG-substation siting and sizing. The contributions are

three-fold:

1) Industrial expansion data are fully employed in the LSTM

network to forecast the increment load brought by the

expansion.

FIGURE 1
The research framework of this paper.
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2) A two-stage stochastic optimization model for joint DG-

substation siting and sizing is established, which is

reformulated into a mixed-integer linear program for an

efficient solution.

3) Simulation tests are conducted on an IEEE system to prove

the effectiveness of the research. Stochastic power flow is

carried out to evaluate the impact of DG/substation

integration on the system states, highlighting the merits of

joint DG-substation siting and sizing.

Deep learning-based load forecasting
and DG capacity forecasting

Load forecasting considering industrial
expansion

As the industrial load is affected by industrial expansion

and seasonal fluctuations, this paper improves the traditional

LSTM load forecasting network, and applies the data of

industrial expansion and electricity growth of different

industries to the neural network, to more accurately forecast

the load level under the influence of industrial expansion

(Zheng et al., 2020).

In this section, the monthly load data of the pharmaceutical

manufacturing industry, rubber and plastic products industry,

and transportation, electrical and electronic equipment

manufacturing industry in a province under the influence of

industrial expansion are used to build an LSTM network,

providing a basis for the load growth generated by industry

expansion business.

The constructed model consists of the following steps:

1) Data selection

A large number of industrial expansion data are screened to

eliminate the data caused by fault maintenance and line change

and to ensure that the analyzed industrial expansion capacity

generates actual load.

2) Data pre-processing

Assuming that the current time period is t, we select the

industry monthly load data, annual load growth rate, and

industrial expansion capacity of the past d time period for

normalization and use them as the input of LSTM.

3) LSTM network structure

As shown in Figure 2, the network consists of an input layer,

H sequence blocks, and an output layer. Firstly, the input layer is

used to preprocess the load data, then the sequence blocks

constructed by H custom LSTMs are used to extract the

features of the input sequence, and finally, the output layer

generates the load forecast for the industry.

Each sequence block has the same structure, including an

LSTM layer, a fully connected layer, and a dropout layer. LSTM

network is a recurrent neural network that can establish the

temporal correlation between previous information and the

current environment, so LSTM is used as a basic component

of sequence blocks. Each LSTM layer L1 has multiple units, each

of which has a memory unit sτ ∈ RL1 and an input node gτ ∈ RL1 ,

an input gate iτ ∈ RL1 , a forgetting gate f τ ∈ RL1 , and an output

gate oτ ∈ RL1 , where L1 is a hyperparameter, and the output of

each unit + is in a hidden state. Taking the input sequence χt �
xt−d+1, ..., xt{ } as an example, the structure of LSTM is

represented by (1)-(6) (Hochreiter and Schmidhuber, 1997),

for the time period τ � t − Δ + 1, t − Δ + 2, ..., t:

gτ � tanh Wgyxτ +Wghhτ−1 + bg( ) (1)
iτ � σ Wiyxτ +Wihhτ−1 + bi( ) (2)
f τ � σ Wfyxτ +Wfhhτ−1 + bf( ) (3)
oτ � σ Woyxτ +Wohhτ−1 + bo( ) (4)

sτ � gτ+iτ + sτ−1+f τ (5)
hτ � tanh sτ( )+oτ (6)

Where hτ−1 ∈ RL1 is the LSTM layer output of the historical time

period τ − 1, matrix Wgy ∈ RL1×n, Wgh ∈ RL1×n, Wiy ∈ RL1×n,

FIGURE 2
LSTM network structure diagram.
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Wih ∈ RL1×n, Wfy ∈ RL1×n, Wfh ∈ RL1×n, Woy ∈ RL1×n and

Woh ∈ RL1×n is the weight of the network activation function

input, bg ∈ RL1 , bi ∈ RL1 , bf ∈ RL1 and bo ∈ RL1 is the bias vector,

σ is the sigmoid activation function, and + represents Hadamard

product. In deep learning, the sigmoid function is often used as

the activation function of neural networks due to its

monotonically increasing nature and the monotonically

increasing inverse function, which maps variables between

[0,1] and normalizes the output of each neuron. Since the

probabilities range from 0 to 1, the sigmoid function is a

good fit for models that take predicted probabilities as output.

Hadamard product is a kind of matrix operation. IfA � (aij) and
B � (bij) are twomatrices of the same order, and if cij � aij × bij,

then the matrix C � (cij) is the Hadamard product of A and B,

i.e. C � A+B.

The input node, input gate, forgetting gate, and output gate

are shown in Eq. 1–4. Different activation functions are used to

calculate the activation of the weighted sum of input xτ and

LSTM hidden output hτ−1. These three doors regulate the flow of

information to and from the storage unit sτ . As shown in Eq. 5,

the storage unit sτ is the Hadamard product of gτ and iτ plus the
Hadamard product of sτ−1 and f τ . It remembers values in any

time period, which are controlled by input nodes gτ , input gates
sτ , and forget gates f τ , to determine which elements in the LSTM

cell should be updated, maintained, or deleted. The hidden LSTM

output hτ is shown in Eq. 6, which is obtained by the memory

unit sτ and the output gate oτ . Finally, in order to improve the

generalization ability of LSTM, the fully connected layer and

dropout layer are added after the LSTM layer. The main purpose

of the dropout layer is to prevent the overfitting of the neural

network. In the forward propagation process of training, the

neural network is sampled and the activation value of neurons is

randomly set to 0, while the dropout layer is not used in the test

process.

4) The setting of training parameters

In the above network structure, each Bernoulli random

variable has probability ρ � 1. The fully connected layer in Eq.

6 is used to capture useful features in the target domain (Zhang

et al., 2018). Meanwhile, in order to prevent overfitting, the

output of the fully connected layer is randomly set to zero in the

dropout layer with probability ρ.

Finally, in the training of the network, the time algorithm is

used for back-propagation (Gers et al., 1999) to minimize the loss

between the predicted output of the neural network ~yτ and the

corresponding output label yτ . During network initialization, set
s0 � 0 and h0 � 0 (Shi et al., 2015), the weight matrix is initialized

by Glorot initializer (Glorot and Bengio, 2010), the deviation of

the forgetting gate is initialized to 1, and other deviations are

initialized to 0.

The historical data of training is input into the above

network, and the predicted load value of the current time

period t is obtained through forward propagation. Then the

loss of the predicted load and the true value of the label is

backpropagated through the network, and then the Adam

optimizer is used to update the weight and deviation of the

network. The detailed training process can be found in (Gers

et al., 1999).

DG capacity forecasting

Given that the output of DG is affected by some

factors, such as environment, time, and so on, this

section similarly uses the LSTM network to learn the

historical data output by DG to predict the output capacity

of DG more accurately. Therefore, as shown in Figure 2, the

DG capacity data, direct irradiance, and diffuse irradiance of

the same period in the province are selected for

normalization and used as the input of LSTM. The network

structure and training process are the same as in the previous

section, and finally, the DG output data at this moment is

obtained.

A multi-objective two-stage
stochastic optimization model for
joint DG-substation siting and sizing

The previous section forecasts the load yielded by industrial

expansion and DG output, which provides the data basis for the

modeling in this section. This section will use multi-objective

two-stage stochastic programming to deal with the uncertainties

of DGs and loads, which will be reformulated into anMILP for an

efficient solution.

Objective function

A multi-objective two-stage stochastic optimization model

is established. The system voltage stability and generator cost

are considered in the objective function. The location and

capacity of new DGs and substations are formulated as the

first-stage variables, and the other variables are the second-

stage variables:

minf1 � ∑
Ns

s�1
ϖs∑

Nbus

i�1
Ui,s − 1
∣∣∣∣ ∣∣∣∣ (7)

min f2 � ∑
Ns

s�1
ϖs∑

Ng

i�1
CGiPGi,s (8)

min f3 � ∑
Nbus

i�1
∑
Next

k�1
∑
Ns

s�1
Cext

ki αkiPextk,s

+ ∑
Nbus

i�1
∑
NDG

k�1
∑
Ns

s�1
CDG

ki βki PDGk,s + QDGk,s( ) (9)
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min f4 � − ∑
Ns

s�1
∑
Next

k�1
αkiPextk,s +∑

Ns

s�1
∑
NDG

k�1
βki PDGk,s + QDGk,s( )⎛⎝ ⎞⎠

(10)
where s is the number of scenarios, ωs is the probability of

scenario s, and Nbus is the number of nodes in the system, Ns is

the number of scenarios. Ui,s is the square of the voltage

amplitude of node i in scenario s. Ng is the number of

generators in the system, PGi,s is the output of the ith

generator in scenario s, CGi is the cost coefficient of the ith

generator. Next is the number of substation installation, Cext
ki is

the cost of the kth substation installation task at node i, αki is a

binary variable, αki is 1 if the kth substation installation task is

installed at node i, otherwise, αki is 0. NDG is the number of DGs

to be integrated,CDG
ki is the cost of the kth DG siting task at node

i, βki is a binary variable, if the kth DG siting task is at node i, βki
is 1, otherwise it is 0. Pextk,s is the expected load supplied by the

kth new substation under scenario s, and PDGk,s, QDGk,s is the

active/reactive power flowing from kth DG in node i to other

adjacent nodes under scenario s. In the above objective

function, f1 reflects the voltage stability level of the system, f2
is the generator cost, f3 is the joint DG-substation siting and

sizing cost, and f4 is the DG-substation capacity.

The original problem can be transformed into a single-

objective optimization problem by weighting the multi-

objective, which can be directly solved by the mainstream

solver. Therefore, this paper converts the above multi-

objective optimization problem into the following single-

objective optimization problem:

min F � ∑
4

i�1
γifi (11)

In Eq. 11, γi is the corresponding weight of the ith objective

function, ∑4
i�1γi � 1 and the weight coefficient of each objective

function can be set according to the actual demand of the project.

Network constraint

Since the joint DG-substation siting and sizing are usually in

the distribution network, considering the distribution network is

a radial network, LinDistFlow model is used to describe the

power flow (Šulc et al., 2014):

Pji,s + PDG,i,s − Pdi − Pext
di,s + PGi,s −∑

w

Piw,s � 0 (12)

Qji,s + QDG,i,s − Qdi + QGi,s −∑
w

Qiw,s � 0 (13)

Ui,s � Uj,s − 2RijPji,s − 2XijQji,s (14)
Pji ≤Pji,s ≤ �Pji (15)
Qji ≤Qji,s ≤ �Qji (16)
Ui ≤Ui,s ≤ �Ui (17)

0≤PDG,i,s ≤ �PDG,i (18)
0≤QDG,i,s ≤ �QDG,i (19)
0≤Pext

di,s ≤ �P
ext
di (20)

Among them, Equations 12, 13 are the active and reactive power

balance constraints of node i, Pji,s/Qji,s is the active and reactive power

flowbetween nodes j and i in scenario s,PDG,i,s/QDG,i,s is the active and

reactive power capacity of DG integration at node i in scenario s. Pdi/

Qdi is the active/reactive power load of node i, Pext
di,s is the expected

load supplied by the new substation at node i, and Piw,s/Qiw,s is the

active/reactive power flowing from node i to other adjacent nodes

under scenario s, wherew is the set of downstreamnodeswith respect

to node i. Equation 14 is the voltage relationship between nodes j and

i. Equations 15, 16 line power flow upper and lower bound

constraints, �Pji/Pji is the upper/lower bound of active power

between nodes j and i, and �Qji/Qji is the upper/lower bound of

reactive power between nodes j and i. Eq. 17 is the voltage constraint

of node, and �Ui/Ui is the upper/lower bound of the square voltage

amplitude of node i. Equations 18, 19 are the constraints on the active

and reactive power capacity of the DG of node i integrated in the

system, and �PDG,i/ �QDG,i are the upper bound of the capacity of DG at

node i. Eq. 20 is the constraint on the capacity of the substation at

node i, and �Pext
di is the corresponding upper bound.

In scenario s, the additional load at node i is shown in Eqs

21, 22.

Pext
di,s � ∑

Next

k�1
αkiPextk,s

αki � 0, substation installation task k is not at node i
1, substation installation task k is not at node i

{
(21)

∑
Nbus

i�1
αki � 1 (22)

In scenario s, the capacity of DG integrated at node i is shown

in Eqs 23, 24.

SDG,i,s � ∑
NDG

k�1
βki PDGk,s + QDGk,s( )

βki � 0, DG integration task k is not at node i
1, DG integration task k is at node i

{
(23)

∑
Nbus

i�1
βki � 1 (24)

Among all variables, αki, βki are the first-stage variables, Ui,s,

PGi,s, Pji,s/Qji,s, Pdi/Qdi, PDG,i,s/QDG,i,s, Pextk,s are the second-stage

variables. Since αki/βki are binary variables, while

Pextk,s, PDGk,s, QDGk,s are continuous variables, and the

multiplication of the two is non-linear, this paper introduces

auxiliary variables Wext
ks ,W

DG
ks and uses Fortuny-Amat McCarl

Linearization (Fortuny-Amat and McCarl, 1981) to deal with the

problem. Wext
ks � αkiPext

dl.s is an auxiliary variable, which

represents the substation capacity of scenario s integrating the

system, and WDG
ks � βki(PDG,i,s + QDGi,s) is an auxiliary variable,
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which represents the active and reactive power capacity of DG

integrating the system at scenario s.

0≤Wext
ks ≤M (25)

0≤WDG
ks ≤M (26)

Wext
ks ≤Mαki (27)

WDG
ks ≤Mβki (28)

Wext
ks ≤Pextk,s (29)

WDG
ks ≤ SDG,i,s (30)

Wext
ks ≥Pextk,s −M 1 − αki( ) (31)

WDG
ks ≥ SDG,i,s −M 1 − βki( ) (32)

Among them, constraints (25), (27), (29) and (31) are to deal

with the non-linearity arising from the multiplication of binary

variables and continuous variables in Eq. 21, and constraints

(26), (28), (30) and (32) are to deal with the non-linear problem

in Eq. 23, and the parameter M is set to a large number.

Finally, our final model using Fortuny-Amat McCarl

Linearization is as follows:

min F � ∑
4

i�1
γifi (33)

f1 � ∑
Ns

s�1
ϖs∑

Nbus

i�1
Ui,s − 1
∣∣∣∣ ∣∣∣∣

f2 � ∑
Ns

s�1
ϖs∑

Ng

i�1
CGiPGi,s

f3 � ∑
Nbus

i�1
∑
Next

k�1
∑
Ns

s�1
Cext

ki W
ext
ks + ∑
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(34)

Constraints include Eqs. 12-32. The reformulated problem is

an MILP.

Case study

Case studies are conducted on the IEEE 69-node system. The

deep learning part is implemented by using tensorflow 1.14.0.

The MILP model is established by Yalmip, and solved by the

commercial solver Gurobi. In this section, firstly, stochastic

power flow is used to measure the impact of DG-substation

siting and sizing on the distribution network, highlighting the

merits of this research. Then, the accuracy of the load forecast

under industrial expansion is tested. Finally, based on two-stage

stochastic programming, the optimization results of joint DG-

substation siting and sizing are analyzed.

FIGURE 3
Voltage probability distribution of four typical nodes: (A) the
DG is connected to node 3, (B) the DG is connected to node 25, (C)
the DG is connected to node 52, (D) the DG is connected to
node 67.
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FIGURE 4
The input of LSTM: (A) monthly load curves for three industries, (B) Annual load growth curves for three industries.

FIGURE 5
The result of pharmaceutical manufacturing industry load forecasting: (A) loss function curve, (B) comparison curve between the predicted
value and the label value.
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Impact of DG-substation siting on the
distribution network under uncertainties

In this paper, the Monte Carlo method is used to measure the

impact of DG integration on the distribution system. Firstly, it

generated several groups of data through the probability

distribution of DG integration to reflect the uncertainty of

DG, then used these data to carry out Monte Carlo stochastic

power flow simulation respectively. Finally, it statistically

analyzed the voltage probability distribution of four typical

nodes, node 2, node 26, node 53, and node 68, and analyzed

the results. The sample size of the Monte Carlo simulation is set

FIGURE 6
Monthly DG capacity data curve.

FIGURE 7
The result of DG capacity data forecasting: (A) loss function curve, (B) comparison curve between the predicted value and the label value.

TABLE 1 Multi-objective optimization of joint DG-substation siting and sizing.

Integration point Hosting capacity (p.u.) Maximum capacity (p.u.)

Substation 1 Node 30 1.6478 3.0000

Substation 2 Node 32 3.0000 3.0000

Substation 3 Node 36 0.0500 0.0500

DG1 Node 47 0.3000 0.3000

DG2 Node 56 0.2000 0.2000
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to 1000, the fluctuation of DG integration is set to the Gaussian

distribution of mathematical expectation is μ � 0, and the

standard deviation is σ � 0.3. Figures 3A–D respectively set

the DG integration locations at node 3, node 25, node 52, and

node 67, and the branch impedance of node 67 is significantly

smaller than that of other branches.

FIGURE 8
Optimal sites of DG and substation based on multiple objective optimization.

FIGURE 9
Squared node voltage in scenario one based on multiple objective optimization.
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The simulation results are shown in Figures 3A–D, whose

scenarios are explained as follows. Figure 3A: When DG is

connected to node 3, there is no voltage fluctuation

everywhere. Figure 3B: When DG is connected to node 25,

the voltage fluctuation of node 26 is relatively obvious, the

voltage of node 53 fluctuates slightly, and the voltage of the

other two places has no fluctuation. Figure 3C: When DG is

connected to node 52, the voltage fluctuation of node 53 is

relatively significant, the voltage of node 26 fluctuates slightly,

and the voltage of the other two places has no fluctuation.

Figure 3D: When DG is connected to node 67, the voltage at

node 68 fluctuates slightly, while the voltage at other places does

not fluctuate.

The sensitivity of each node to DG integration is different.

Because the location of node 2 is very close to the root node, the

voltage of node 2 is almost not affected by the location of DG. The

locations of nodes 26, 53, and 68 are all at the end of their

branches, and their voltages are greatly affected by the location

of DG.

Different locations of DG integration have different effects

on the voltage of each node in the system. It can be seen from

Figures 3B–D that when the DG integration causes the

voltage fluctuation of a node, the voltage of the node closer

to the node will be more affected by it. Therefore, the DG is

connected to a location far away from the important load,

which can reduce the adverse impact on the voltage of the

important load.

The amplitude of node voltage fluctuation is significantly

affected by the branch impedance sum of the branch where the

node is located. Due to the small sum of branch impedances of

node 68, the voltage in Figures 3A–C is not affected by the

integration to DG basically, and it is also less affected by the

integration to DG in Figure 3D. The voltage of node 26 and node

53 have obvious fluctuations when the DG is connected to node

25 (Figure 3B) and node 52 (Figure 3C), respectively. Therefore,

TABLE 2 Comparison of objective function values between the
proposed joint DG-substation optimization and other methods.

Obj Joint DG-substation Method 1 Method 2

f1 0.1190 0.1099 0.2417

f2 0.1452 0.1292 0.1022

f3 2.2020 2.3584 15.4204

f4 −5.8166 −3.9607 −3.3087

F −3.3503 −1.3632 12.3372

TABLE 3 Correlation analysis of the objective function in
weight γ � (0.25,0.25,0.4,0.1).

f1 f2 f3 f4

f1 Pearson Correlation 1 0.883 −0.876 0.904

Sig. (2-tailed) — 0.000 0.000 0.000

N 300 300 300 300

f2 Pearson Correlation 0.883 1 −0.973 0.979

Sig. (2-tailed) 0.000 — 0.000 0.000

N 300 300 300 300

f3 Pearson Correlation −0.876 −0.973 1 −0.991

Sig. (2-tailed) 0.000 0.000 — 0.000

N 300 300 300 300

f4 Pearson Correlation 0.904 0.979 −0.991 1

Sig. (2-tailed) 0.000 0.000 0.000 —

N 300 300 300 300

TABLE 4 Correlation analysis of the objective function in
weight γ � (0.3,0.3,0.3,0.1).

f1 f2 f3 f4

f1 Pearson Correlation 1 0.855 −0.861 0.871

Sig. (2-tailed) — 0.000 0.000 0.000

N 300 300 300 300

f2 Pearson Correlation 0.855 1 −0.980 0.986

Sig. (2-tailed) 0.000 — 0.000 0.000

N 300 300 300 300

f3 Pearson Correlation −0.861 −0.980 1 −0.988

Sig. (2-tailed) 0.000 0.000 — 0.000

N 300 300 300 300

f4 Pearson Correlation 0.871 0.986 −0.988 1

Sig. (2-tailed) 0.000 0.000 0.000 —

N 300 300 300 300

TABLE 5 Correlation analysis of the objective function in
weight γ � (0.2,0.2,0.3,0.3).

f1 f2 f3 f4

f1 Pearson Correlation 1 0.872 −0.852 0.895

Sig. (2-tailed) — 0.000 0.000 0.000

N 300 300 300 300

f2 Pearson Correlation 0.872 1 −0.952 0.955

Sig. (2-tailed) 0.000 — 0.000 0.000

N 300 300 300 300

f3 Pearson Correlation −0.852 −0.952 1 −0.972

Sig. (2-tailed) 0.000 0.000 — 0.000

N 300 300 300 300

f4 Pearson Correlation 0.895 0.955 −0.972 1

Sig. (2-tailed) 0.000 0.000 0.000 —

N 300 300 300 300
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DG is connected to the branch impedance and the small branch,

which can maximize the absorption of DG.

Load forecasting and DG capacity forecasting
results

In load forecasting, this paper chooses a province

pharmaceutical manufacturing industry, rubber and plastic

products industry, and transportation, electrical and

electronic equipment manufacturing industry for 3 months

in load data, load growth, industry reporting for expanding

capacity, and load time series as input of LSTM, as shown in

Figure 4. The detailed data are available in (Han et al., 2022).

Taking the pharmaceutical manufacturing industry as an

example, the training loss function curve is shown in Figure 5A. It

can be seen that the loss value of the training set is reduced from

0.20 to 0.00045, the loss value of the validation set is reduced

from 0.175 to 0.00032, and the iteration can converge.

Further, the model is used to generate the predicted value of

the test set and compare it with the actual label value, as shown in

Figure 5B. The average absolute error of the statistical data is

782.2870.

Finally, the average relative percentage error of the predicted

value of the three industry loads is no more than 2.9820%, and

the error value is no more than 10%, which means the accuracy

meets the system’s requirements.

In the prediction of DG capacity, the historical DG capacity

data, direct irradiance, and diffuse irradiance of the same

period are selected for normalization and used as the input

of LSTM as shown in Figure 6. Since the historical data of the

DG capacity, direct irradiance and diffuse irradiance in the

IEEE 69-node system are not available, we use the real data

from the platform Open Power System Data (Open Power

System). The data in France in a period of 96 months from Jan.

2007 to Dec. 2014 are used, for their data integrity is relatively

better. The loss function curve of DG capacity data forecasting

is shown in Figure 7A, while the comparison curve between the

predicted value and the label value is shown in Figure 7B. Their

average relative error does not exceed 0.5451%, which is

acceptable.

Analysis of joint DG-substation siting and sizing
The load forecasting and DG capacity forecasting results

obtained in the previous section under different scenarios are

normalized. In order to consider the error of the forecasting

results, Gaussian distribution error is added to the forecasting

results, and k-means algorithm is used to generate the load

and DG capacity of three groups of typical scenarios and the

probability of the scenario. The load and DG capacity of the

three sets of scenarios are taken as the input of the substation

and DG integration model and are denoted as the maximum

value of the system. It can be known that there are three joint

DG-substation siting and sizing tasks, and at the same time,

two DG integration tasks are set with the same probability to

optimize the joint DG-substation siting and sizing.

In order to test the effect of comprehensive consideration of

the multi-objective of the proposed method, γ1 ~ γ4 in the

objective functions are set to 0.25, 0.25, 0.4, and 0.1,

respectively. Table 1 shows the integration points of

substation and DG obtained by solving (33). The

corresponding objective function values f1, f2, f3 and f4 are

0.1190, 0.1452, 2.2020 and −5.8166, respectively. Due to the

comprehensive consideration of various factors, its joint DG-

substation siting and sizing, DG integration locations are shown

in Table 1 and Figure 8, and the solution time is 0.4533 s. It can be

seen that the running time of this method is short, which can

meet the real-time application in engineering.

Figure 9 shows the influence of whether the objective

function f1 is considered on the voltage of each node in the

system in scenario 1. It can be seen that when f1 is not considered,

many nodes deviate from the rated voltage significantly.

However, after considering the objective function f1, the node

voltage level of the system is significantly improved.

To verify the effectiveness of joint DG-substation siting and

sizing, we set the control group which only considers DG siting

and sizing, a total of three groups are compared, and the obtained

optimization results are shown in Table 2.

1) Joint DG-substation: joint DG-substation siting and sizing are

optimized.

2) Method 1: The location of the substation is fixed and the

capacity is optimized, and DG siting and sizing are optimized.

3) Method 2: The location of the substation is fixed and the

capacity is fixed, and DG siting and sizing are optimized.

It can be found that the voltage stability level of the system f1
and the generator cost f2 are not far apart in method 1 and joint

DG-substation, but in method 2, the voltage stability level of the

TABLE 6 Correlation analysis of the objective function in
weight γ � (0.25,0.25,0.25,0.25).

f1 f2 f3 f4

f1 Pearson Correlation 1 0.843 −0.855 0.861

Sig. (2-tailed) — 0.000 0.000 0.000

N 300 300 300 300

f2 Pearson Correlation 0.843 1 −0.960 0.970

Sig. (2-tailed) 0.000 — 0.000 0.000

N 300 300 300 300

f3 Pearson Correlation −0.855 −0.960 1 −0.974

Sig. (2-tailed) 0.000 0.000 — 0.000

N 300 300 300 300

f4 Pearson Correlation 0.861 0.970 −0.974 1

Sig. (2-tailed) 0.000 0.000 0.000 —

N 300 300 300 300
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system f1 is relatively worse. However, the integration cost f3 is

less in the case of joint DG-substation, and the expansion

capacity f4 is larger, so the total objective function value is

smaller in the end.

Further, 300 scenarios under four different weights

γ � (0.25, 0.25, 0.4, 0.1), γ � (0.3, 0.3, 0.3, 0.1), γ � (0.2, 0.2,
0.3, 0.3), and γ � (0.25, 0.25, 0.25, 0.25) are selected; that is,

the load fluctuated randomly at 90%–110%, and the objective

function value is obtained. The correlation of each objective

function value f1 − f4 under four different weights is shown in

Tables 3–6. It can be found from the table that f1, f2 and f4 are

significantly positively correlated with each other, while f3 is

significantly negatively correlated with f1, f2 and f4.

Therefore, the scheme of joint DG-substation siting and

sizing determined by this method can make the power flow

distribution of the distribution network reasonable and the

voltage level close to the rated voltage by optimizing the

integration location, and also reduce the system operation

cost and the joint DG-substation siting and sizing cost to

some extent.

Conclusion

To answer the call of industrial expansion, this paper

proposes deep learning-aided joint DG-substation siting and

sizing in distribution network stochastic expansion planning.

Industrial expansion data are fully employed in the LSTM

network to forecast the increment load brought by the

expansion. A two-stage stochastic optimization model for

joint DG-substation siting and sizing is established, which is

reformulated into a mixed-integer linear program for an

efficient solution. Simulation tests are conducted on an

IEEE system to prove the effectiveness of the research.

Stochastic power flow is carried out to evaluate the impact

of DG/substation integration on the system states,

highlighting the merits of joint DG-substation siting and

sizing. Case studies show that the forecasting results meet the

accuracy requirements, and the proposed siting and sizing

method is computationally efficient. It can reduce the total

cost of system operation as well as alleviate the system

voltage fluctuation. In future work, we will investigate an

objective manner to determine the weights for multiple

objective functions.

Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found in the article/supplementary material.

Author contributions

ZH: Conceptualization, Methodology, Resources,

Writing–Original Draft; JL: Conceptualization, Methodology,

Writing–Review and Editing; QW: Methodology, Data

Curation, Writing–Review and Editing; HL: Software,

Writing–Original Draft; SX: Validation, Writing–Original

Draft; WZ: Funding acquisition, Project administration,

Writing–Review and Editing; ZZ: Writing–Review and Editing.

Funding

This work is supported by the Management Scientific and

Technological Project of State Grid Liaoning Electric Power

Supply Co. LTD. under Grant No. 2022YF-57.

Conflict of interest

Author JL was employed by the company State Grid Liaoning

Electric Power Supply Co., LTD.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.

The authors declare that this study received funding from

State Grid Liaoning Electric Power Supply Co. LTD. The funder

had the following involvement in the study: study design.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may bemade by its

manufacturer, is not guaranteed or endorsed by the publisher.

References

Aghaei, J., Muttaqi, K. M., Azizivahed, A., and Gitizadeh, M. (2014). Distribution
expansion planning considering reliability and security of energy using modified
PSO (Particle Swarm Optimization) algorithm. Energy 65, 398–411. doi:10.1016/j.
energy.2013.10.082

Ahmad, T., and Chen, H. (2019). Nonlinear autoregressive and random forest
approaches to forecasting electricity load for utility energy management systems.
Sustain. Cities Soc. 45, 460–473. doi:10.1016/j.scs.2018.12.013

Chen, J. L., and Hsu, Y. Y. (1989). An expert system for load allocation in
distribution expansion planning. IEEE Power Eng. Rev. 9 (7), 77–78. doi:10.1109/
mper.1989.4310835

Daud, S. b., Kadir, A. F. A., Gan, C. K., Mohamed, A., and Khatib, T. J. (2016). A
comparison of heuristic optimization techniques for optimal placement and sizing
of photovoltaic based distributed generation in a distribution system. Sol. Energy
140, 219–226. doi:10.1016/j.solener.2016.11.013

Frontiers in Energy Research frontiersin.org12

Han et al. 10.3389/fenrg.2022.1089921

116

https://doi.org/10.1016/j.energy.2013.10.082
https://doi.org/10.1016/j.energy.2013.10.082
https://doi.org/10.1016/j.scs.2018.12.013
https://doi.org/10.1109/mper.1989.4310835
https://doi.org/10.1109/mper.1989.4310835
https://doi.org/10.1016/j.solener.2016.11.013
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1089921


Fan, V. H., Dong, Z., and Meng, K. (2020). Integrated distribution expansion
planning considering stochastic renewable energy resources and electric vehicles.
Appl. Energy 278, 115720. doi:10.1016/j.apenergy.2020.115720

Fortuny-Amat, J., and McCarl, B. (1981). A representation and economic
interpretation of a two-level programming problem. J. Operational Res. Soc. 32
(9), 783–792. doi:10.2307/2581394

Gers, F. A., Schmidhuber, J., and Cummins, F. (1999). “Learning to forget:
Continual prediction with LSTM,” in 1999 Ninth International Conference on
Artificial Neural Networks ICANN 99, Edinburgh, UK, 07-10 September 1999,
850–855. (Conf. Publ. No. 470). doi:10.1049/cp:19991218

Glorot, X., and Bengio, Y. (2010). “Understanding the difficulty of training deep
feedforward neural networks,” in Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, PMLR, Sardinia, Italy, May
13–May 15, 2010, 249–256.

Gul, M. J. J., Urfa, G. M., Paul, A., Moon, J., Rho, S., and Hwang, E. (2021). Mid-
term electricity load prediction using CNN and Bi-LSTM. J. Supercomput. 77,
10942–10958. doi:10.1007/s11227-021-03686-8

Han, Z., Li, J., Wang, Q., Lu, H., Xu, S., Zheng, W., et al. (2022). Detailed data of
t h e t e s t s y s t e m . A v a i l a b l e a t : h t t p s : / / p a n . b a i d u . c o m / s /
1174VbXVrqHA0ICoj5EnwOQ?pwd=uo3b.

Ho, W. S., Macchietto, S., Lim, J. S., Hashim, H., Muis, Z. A., and Liu, W. H. (2016).
Optimal scheduling of energy storage for renewable energy distributed energy generation
system. Renew. Sustain. Energy Rev. 58, 1100–1107. doi:10.1016/j.rser.2015.12.097

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural
Comput. 9 (8), 1735–1780. doi:10.1162/neco.1997.9.8.1735

Kim, J., Cho, S., Ko, K., and Rao, R. R. (2018). “Short-term electric load prediction
using multiple linear regression method,” in 2018 IEEE International Conference on
Communications, Control, and Computing Technologies for Smart Grids
(SmartGridComm), Aalborg, Denmark, 9-31 October 2018, 1–6. doi:10.1109/
SmartGridComm.2018.8587489

Open Power System (n.d.). Open power system data. Available at: https://open-
power-system-data.org (Accessed October 6, 2022).

Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K., and Woo, W.-c. (2015).
Convolutional LSTM network: A machine learning approach for precipitation
nowcasting. NIPS. Available at: https://arxiv.org/abs/1506.04214.

Singh, B., and Sharma, J. (2017). A review on distributed generation planning.
Renew. Sustain. Energy Rev. 76, 529–544. doi:10.1016/j.rser.2017.03.034

Šulc, P., Backhaus, S., and Chertkov, M. (2014). Optimal distributed
control of reactive power via the alternating direction method of
multipliers. IEEE Trans. Energy Convers. 29 (4), 968–977. doi:10.1109/tec.
2014.2363196

Vale, Z. A., Faria, P., Morais, H., Khodr, H. M., Silva, M., and Kadar, P. (2010).
“Scheduling distributed energy resources in an isolated grid — an artificial neural
network approach,” in IEEE PES General Meeting, Minneapolis, MN, USA, 25-
29 July 2010, 1–7. doi:10.1109/PES.2010.5589701

Yang, A., Li, W., and Yang, X. (2019). Short-term electricity load
forecasting based on feature selection and Least Squares Support Vector
Machines. Knowledge-Based Syst. 163, 159–173. doi:10.1016/j.knosys.2018.
08.027

Zhang, C.-L., Luo, J.-H., Wei, X.-S., and Wu, J. (2018). “Defense of fully
connected layers in visual representation transfer,” in Advances in multimedia
information processing – pcm 2017 (Cham: Springer International Publishing),
807–817.

Zheng, W., Hou, Y., and Li, Z. (2021). A dynamic equivalent model for district
heating networks: Formulation, existence and application in distributed electricity-
heat operation. IEEE Trans. Smart Grid 12 (3), 2685–2695. doi:10.1109/tsg.2020.
3048957

Zheng, W., Huang, W., and Hill, D. J. (2020). A deep learning-based general
robust method for network reconfiguration in three-phase unbalanced active
distribution networks. Int. J. Electr. Power & Energy Syst. 120, 105982. doi:10.
1016/j.ijepes.2020.105982

Zheng, W., Zhu, J., and Luo, Q. (2022). Distributed dispatch of integrated
electricity-heat systems with variable mass flow. IEEE Trans. Smart Grid, in
press. doi:10.1109/tsg.2022.3210014

Frontiers in Energy Research frontiersin.org13

Han et al. 10.3389/fenrg.2022.1089921

117

https://doi.org/10.1016/j.apenergy.2020.115720
https://doi.org/10.2307/2581394
https://doi.org/10.1049/cp:19991218
https://doi.org/10.1007/s11227-021-03686-8
https://pan.baidu.com/s/1174VbXVrqHA0ICoj5EnwOQ?pwd=uo3b
https://pan.baidu.com/s/1174VbXVrqHA0ICoj5EnwOQ?pwd=uo3b
https://doi.org/10.1016/j.rser.2015.12.097
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/SmartGridComm.2018.8587489
https://doi.org/10.1109/SmartGridComm.2018.8587489
https://open-power-system-data.org
https://open-power-system-data.org
https://arxiv.org/abs/1506.04214
https://doi.org/10.1016/j.rser.2017.03.034
https://doi.org/10.1109/tec.2014.2363196
https://doi.org/10.1109/tec.2014.2363196
https://doi.org/10.1109/PES.2010.5589701
https://doi.org/10.1016/j.knosys.2018.08.027
https://doi.org/10.1016/j.knosys.2018.08.027
https://doi.org/10.1109/tsg.2020.3048957
https://doi.org/10.1109/tsg.2020.3048957
https://doi.org/10.1016/j.ijepes.2020.105982
https://doi.org/10.1016/j.ijepes.2020.105982
https://doi.org/10.1109/tsg.2022.3210014
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1089921


Modeling and stability analysis of
interaction between converters
in AC-DC distribution systems
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With the development and promotion of AC-DC distribution systems, the

stability of multi-terminal systems has drawn much interest. This paper

analyzes the instability phenomena in AC-DC distribution systems by

considering the interactions between converters. The typical structure and

control strategy of double-terminal AC-DC distribution systems under master-

slave control is introduced. Then an AC-DC distribution system model is

developed taking into account the interaction of the converter control

system. The resonant spikes generated by the interaction between the

converters are used as the reference object of the interaction to analyze the

influence of the converter control parameters and the system electrical

parameters on the system stability and interaction. Finally, a double-terminal

AC/DC distribution systemmodel is built using PLECS and RTBOX for simulation

and semi-physical experimental verification.

KEYWORDS

DC power distribution system, interaction, system stability, hardware-in-the-loop
experiment, master-slave control

1 Introduction

With the large-scale integration of photovoltaic, electric vehicles, LED lighting and

other DC equipment, the traditional AC distribution system is facing a series of complex

problems, such as diversification of power supply types and load demands, multi-level

transformation links, etc. The power supply quality, reliability and efficiency are

increasingly affected. The AC/DC hybrid distribution systems based on flexible DC

technology can more flexibly integrate distributed generations and DC loads, reduce

power conversion links and improve power supply efficiency (Li et al., 2019). In

particular, the flexible DC technology can realize independent decoupling control of

active and reactive power, which can effectively improve power supply quality and ensure

power supply reliability. It is more suitable for the development of modern distribution

systems (Zhang et al.,2017).

The flexible DC distribution system realizes interconnection with AC system and

integration of distributed generations and loads mainly by power electronic devices. The

AC-DC distribution systems may have impedance mismatch between different converter

port impedances (Huang et al., 2020), between converter port impedances and line

impedances (Tao et al., 2017; Wu et al., 2017), and between converter port impedances
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and grid impedances (Nian et al., 2020), i.e., The AC-DC

distribution systems has stability problems on both DC sides

and AC sides. Many analytical methods have been proposed to

study the stability of grid-connected systems with multiple VSCs,

including small signal analysis based on state space, frequency

domain analysis based on impedance model and single-input-

single-output (SISO) transfer function-based analysis.

The small signal analysis method based on state space can

obtain the main variables affecting the stability of grid-connected

systems by calculating the characteristic roots and participation

factors of the state space. But with the increase of VSC, the system

order increases, resulting in the difficulty of modeling. The

literature (Qiu et al., 2022) used eigenvalue analysis to derive

the quantitative evaluation index of the participation factor, and

analyzed the relationship between oscillation modes and state

variables in the wind farm with a MMC-HVDC transmission

system. The correlation between each oscillation mode, wind

farm, and participation factor of the MMC system are studied,

which laid the foundation for the development of broadband

oscillation suppression strategy. In (Wu et al., 2018), a current in-

loop transfer function considering the effects of grid impedance

and PLL was developed, and the destabilization mechanism of

the system when the PLL and current in-loop bandwidths were

close to each other under a weak grid was analyzed. The literature

(Yuan et al., 2016) analyzed the effect of control parameters as

well as main circuit parameters on stability based on state space

eigenvalues. The literature (Deng and Fang, 2022) derived a

detailed state space model of GFMCs and performed a sensitivity

analysis to reveal the instability mechanism, by proposing a

dominant compensator to improve the system inertia and

frequency regulation. In the literature (Zhao et al., 2022), an

active voltage regulation control strategy was proposed for large-

scale renewable energy grid-connected power systems using a

small-signal model, and sag control characteristics were

proposed to improve the system’s ability to consume

distributed generations. The literature (Xie et al., 2022)

proposed a unified modeling scheme (UMS) for MMC

systems in a synchronous rotation (dq) reference frame,

which used a small-signal modeling approach and could

obtain a nonlinear state-space model of the overall MMC

system by configuring and connecting the inputs and outputs

of the state-space models of each subsystem. It could avoid the

direct derivation of the matrix elements of the whole system.

The impedance analysis method can be considered as a

frequency domain small signal analysis method, and the

system is equated to a positive and negative sequence

impedance or dq domain impedance-based model through the

port input and output information of the VSC grid-connected

system, and the Nyquist criterion is used to determine the system

stability. However, for multi-VSC systems, multiple input and

multiple output Nyquist criterion is required to analyze the

system stability, which loses the advantage of analyzing

stability based on single input and single output Nyquist

criterion (Yin et al., 2021). In the literature (Feng et al., 2022),

a full-order small-signal impedance model of the CTPS-based

DAB converter is derived, and the influence of DAB converter

circuit parameters on system stability is fully revealed by Bode

plots and Nyquist plots, and then an optimization criterion for

DAB circuit parameters is proposed. The literature (Liu et al.,

2020) analyzed the DC oscillation problem of a double-terminal

flexible system using the impedance method. The literature (Xue

et al., 2020) analyzed the degree of influence of each parameter on

the DC port impedance under different control modes. The

literature (Li et al., 2022) used small signal analysis and

impedance method to analyze the influence of PLL and

voltage loop controller on the stability of the system in grid-

connected inverter, and proposed a voltage feedforward PLL

interference compensation method and an adaptive bandwidth

frequency low-pass filter (LPF) to improve the system stability.

In addition, literature (Wu et al., 2019) proposed the

stability analysis method of grid-connected VSC based on

SISO open-loop transfer function, both of which embed the

q-axis dynamics into the d-axis dynamics. Due to the large

number of variables in the VSC system, the SISO models

obtained by such methods are more complicated and not

suitable for stability mechanism analysis. In the literature

(Zhang et al.,2018; Zhang et al., 2019; Wang et al., 2020), a

SISO model was established by decoupling the d-axis control

and q-axis control into a unit negative feedback model

containing the same control structure, which can

intuitively explain the mechanism of the influence of each

control link of the VSC on stability while simplifying the

stability modeling and analysis process.

In general, the current research has studied the stability of

AC-DC microgrids and low-voltage AC-DC systems from

several aspects, mainly focusing on sag control and AC-side

stability, using analysis methods based on small-signal analysis

and impedance model of frequency domain analysis. However,

for AC-DC distribution systems under master-slave control, the

interaction dynamics, key parameters, destabilization

mechanisms and effects on DC voltage stability between

converters and DC systems still lack clear explanations. In

this paper, through an in-depth analysis of the influence of

each control parameter and electrical parameter on the

interaction and stability in AC-DC distribution systems under

master-slave control, the main contributions are summarized as

follows.

(1)A model considering the interaction between converter

control systems is developed by decomposing the control

block diagram of the main converter under master-slave

control into a DC voltage control part and a DC feedback

part. On the premise of ensuring the applicability of the

Nyqusit criterion of single input and single output system,

the impedance analysis method is used for the DC side

analysis, which reduces the difficulty of system modeling
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and facilitates the extension of the analysis of system stability

under different conditions.

(2) The stability assessment is performed by the established

system transfer function, and the differences between the

original model transfer function and the interaction model

transfer function are compared. The resonant spikes

generated by the interaction between converters are used

as reference objects to analyze the interactions existing in

the AC-DC distribution system. And the effects of each

control parameter and electrical parameter on the spike

amplitude, resonant frequency and system stability are

obtained.

(3) A simulation model of a double-terminal AC-DC

distribution system under master-slave control is

established in PLECS, and hardware-in-the-loop

experiments are conducted by RT Box, which proves the

validity of theoretical analysis and simplified analysis. It

also has important reference significance for engineering

practice.

The structure of the paper is as follows: Section 2 presents the

typical structure, control strategy and overall transfer function of

the AC-DC distribution system. The system model for counting

and inter-converter interactions is developed in Section 3.

Section 4 analyzes the effects of different system parameters

and electrical parameters on the interaction and system stability

based on the proposed interaction model. The corresponding

experimental validation is given in Section 5. Conclusions are

drawn in the last section.

2 AC-DC distribution system model

2.1 Topology of AC-DC power distribution
system

In an AC-DC distribution network, different areas of the AC

system can be interconnected by a DC network. This structure can

realize the multi-terminal interconnection of AC feeders from

different substations, and can be further extended to systems of

higher voltage levels. In terms of network topology, the current AC-

DC distribution system ismainly powered by double-terminal power

supply and multi-terminal power supply. In this paper, a two-

terminal power supply system (Jiang et al., 2021) is used as the

object of analysis. Figure 1A gives a two-terminal topology of an AC-

DC distribution system, in which twoAC systems are interconnected

throughVSC1 andVSC2, and eachAC system is set as an ideal three-

relative symmetric system.

The operation control mode of the AC-DC distribution system

can be divided into peer-to-peer control and master-slave control,

and the master-slave control mode is adopted in this paper. VSC1 is

selected as the master station and adopts the constant DC voltage

FIGURE 1
Flexible DC power distribution system structure. (A) Flexible DC power distribution system structure. (B) Simplified model of flexible DC
distribution system.
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control strategy to ensure the DC grid voltage stability. The slave

station VSC2 adopts the constant active power control strategy. The

load side uses the converter to realize the bidirectional flow of energy

and voltage transformation. The power loss of each power electronic

converter is neglected, and the equivalent circuit structure of the

double-terminal AC-DC distribution system is shown in Figure 1B.

2.2 Control mode of AC-DC distribution
system

The control block diagrams of VSC1 constant DC voltage

control and VSC2 constant power control are shown in Figures 2,

3, respectively, and their control strategies can be seen as

consisting of two parts: internal control system and DC

feedback. Under normal circumstances, the load of AC-DC

distribution system has constant power characteristics unlike

the commonly used AC constant impedance load. For VSC2,

which uses constant active power control from the converter

station, it also has constant power load characteristics and is

generally regarded as a constant power load. Therefore, the rest of

FIGURE 2
Block diagramof VSC1 control strategy. (A) Block diagram of double-closed control for constant DC voltage. (B) q-axis control block diagram of
current loop.

FIGURE 3
Block diagram of VSC2 control strategy. (A) Block diagram of
double-closed control for constant active power. (B) q-axis
control block diagram of current loop.

FIGURE 4
Simplified model of AC-DC distribution system.

FIGURE 5
DC equivalent section. (A) Original model. (B) Interactive
model.
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the constant power control ports except the master station are

generally equated as constant power loads, which are considered

as series-parallel combinations of multiple components, as

shown in the simplified three-phase equivalent model in

Figure 4 (Peng et al., 2021).

In this paper, the main converter station control system is

used as the framework to establish the SISO transfer function

model of a double-terminal AC-DC distribution system, and

only a single input and single output Nyqusit criterion is

required to analyze the stability of the grid-connected system.

In order to simplify the calculation and facilitate the

extension, the impedance analysis method is used for the

DC side, which effectively reduces the difficulty of system

modeling. Based on the proposed SISO model, the effects of

parameter changes on system interactions are analyzed by

transfer function Bode plots, zero-pole distributions and

Nyqusit curve variations.

2.3 Transfer function of AC-DC
distribution system

For the model in Figure 4, the dynamic characteristics of the

AC side voltage and current of the converter can be obtained

according to KVL as shown in Eq. 1.

⎡⎢⎢⎢⎢⎢⎣
usa1

usb1

usc1

⎤⎥⎥⎥⎥⎥⎦ � Lc1
d

dt
⎡⎢⎢⎢⎢⎢⎣
ica1
icb1
icc1

⎤⎥⎥⎥⎥⎥⎦ + Rc1
⎡⎢⎢⎢⎢⎢⎣
ica1
icb1
icc1

⎤⎥⎥⎥⎥⎥⎦ + ⎡⎢⎢⎢⎢⎢⎣
uca1

ucb1

ucc1

⎤⎥⎥⎥⎥⎥⎦ (1)

Where: us1 is VSC1 equivalent three-phase supply voltage; Rc1 is

VSC1 AC side equivalent resistance; Lc1 is VSC1 AC side

equivalent inductance; uc1 is VSC1 AC side voltage.

Since all three phases are time-varying AC quantities in the

stationary coordinate system, which are difficult to control, the

Park transform of Eq. 1 is used to obtain the dynamic

characteristics of the voltage and current on the AC side of

FIGURE 6
Comparison of original model and interactive model. (A) bode plot. (B) pole-zero distribution. (C) Nyquist curve.
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FIGURE 7
Effect of reference power variation of VSCon system stability. (A) bode plot, (B) pole-zero distribution, (C)Nyquist curve , (D) bode plot, (E) pole-
zero distribution and (F) Nyquist curve.
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FIGURE 8
Effect of the control parameters of VSC1 on system stability. (A) bode plot, (B) pole-zero distribution, (C) Nyquist curve, (D) bode plot, (E) pole-
zero distribution and (F) Nyquist curve.
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the converter in the dq coordinate system, as shown in Eq. 2 and

Eq. 3.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

usd1 − ucd1 � Lc1
dicd1
dt

+ Rc1icd1 − ωLc1icq1

usq1 − ucq1 � Lc1
dicq1
dt

+ Rc1icq1 + ωLc1icd1

(2)

The form of Eq. 2 and Eq. 3 in the s-domain is:

{ usd1 − ucd1 � icd1(Rc1 + sLc1) − ωLc1icq1
usq1 − ucq1 � icq1(Rc1 + sLc1) + ωLc1icd1

(3)

Where usd1 and usq1 are the dq-axis components of the VSC1 AC

supply; uc1d and uc1q are the dq-axis components of the AC-side

voltage of VSC1; icd1 and icq1 are the dq-axis components of the

VSC1 AC-side current; ω is the AC supply fundamental angular

frequency; and s is the Laplace operator.

In order to eliminate the coupling between variables, a

feedforward decoupling control strategy is used for the

current inner loop (Wu et al., 2020), which yields the voltage

outer loop control equation:

icd1,ref � (Kup1 + Kui1

s
)(Udc,ref − Udc) (4)

Current inner-loop control equation:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

usd1 � (Kip1 + Kii1

s
)(icd1,ref − icd1) − ωLc1icq1 + ucd1

usq1 � (Kip1 + Kii1

s
)(icq1,ref − icq1) + ωLc1icd1 + ucq1

(5)

Where: icd1, ref and icq1, ref are the dq-axis reference currents on the

AC side; Udc and Udc, ref are the actual DC voltage and DC voltage

reference values, respectively; Kvp1 and Kvi1 are the proportional

and integral coefficients of the DC voltage outer-loop PI regulator,

respectively; Kip1 and Kii1 are the proportional and integral

coefficients of the AC current inner-loop PI regulator, respectively.

FIGURE 9
(Continued).
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FIGURE 9
(Continued). Effect of the control parameters of VSC2 on system stability. (A) bode plot, (B) pole-zero distribution, (C) pole-zero distribution
(local amplification), (D) Nyquist curve, (E) bode plot, (F) pole-zero distribution, (G) pole-zero distribution (local amplification), (H) Nyquist curve, (I)
Nyquist curve (local amplification).
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The fully decoupled inner-loop control equations are

obtained by combining Eqs 2–5.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(Kip1 + Kii1

s
)(icd1,ref − icd1) � icd1(Rc1 + sLc1)

(Kip1 + Kii1

s
)(icq1,ref − icq1) � icq1(Rc1 + sLc1)

(6)

Combining Eqs. 6, 9 and 10 and according to the circuit structure

of Figure 1B, the dual-loop control block diagram can be obtained as

shown in Figure 2, where: Rload is equivalent DC load; Il1 is

VSC1 equivalent DC load current; Cdc1 is VSC1 DC side filter

capacitor; Idc1 is VSC1 output DC current; Kceg1 is the equivalent

gain of the converter;K1 is the proportionality factor (Yao et al., 2020).

Themain station control block diagram can be seen as composed

of two parts, which are the VSC1 control strategy part and the DC

system feedback part, so the joint Eqs 3–6, then the d-axis open-loop

transfer function of VSC1 can be obtained as:

GVSC1 �
K1Kceg(Kip + Kii

s )(Kup1 + Kui1
s )Gdc

(Rc1 + sRc1) + K1Kceg(Kip1 + Kii1
s )

(7)

Where Gdc is the equivalent transfer function for the DC system.

When the slave converter station with constant power control is

considered as a constant power load, Gdc can be expressed by Eq. 8.

Gdc � sC1 − Pdc

u2
dc(0)

(8)

3 System model considering
interaction

The above modeling approach treats the slave converter

station with constant power control as a constant power load

and brings it into the system equation as part of the DC load,

FIGURE 10
Effect of AC side inductance of VSC1 on system stability. (A) bode plot (B) pole-zero distribution, (C) Nyquist curve, (D) Nyquist curve (local
amplification).
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without considering the effect of the slave control system

on the control margin and system stability of the master

station. This can lead to power oscillations between the

master and slave stations in some specific cases, which in

turn can lead to DC bus voltage oscillations and system

instability.

Therefore, in order to consider the influence of the slave

control system on the master control capability and system

FIGURE 11
Effect of AC side inductance of VSC2 on system stability. (A) bode plot, (B) bode plot (local amplification), (C) pole-zero distribution, (D) pole-
zero distribution (local amplification), (E) Nyquist curve.
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stability, this paper improves on the original model, models

the DC system more finely, introduces the slave control

system into the master transfer function, establishes the

AC-DC distribution system model (hereinafter referred to

as the interaction model) that counts and converters

control system interaction, and further analyzes the

influence of the slave control system and line parameters

on the stability margin and system stability of the master

control system.

3.1 Topology of AC-DC power distribution
system

On the basis of the original DC voltage double closed-loop

control block diagram of the main converter station, the

FIGURE 12
Effect of DC-side capacitance on system stability., (A) bode plot, (B) pole-zero distribution, (C) Nyquist curve (D) Nyquist curve(local
amplification).

TABLE 1 Basic parameters of AC/DC power distribution system.

Symbols Description Values

Us Reference AC Voltage 380 V

Udc Reference DC voltage 800 V

Lc1 VSC1 AC side inductance 2 mH

Lc2 VSC2 AC side inductance 2 mH

C1 DC side capacitance 4 uF

f Switch Frequency 10 kHz

Kip1/Kii1 VSC1 inner-loop proportional/integral coefficient 3/15

Kup1/Kui1 VSC1 outer-loop proportional/integral coefficient 2/10

Kip2/Kii2 VSC2 inner-loop proportional/integral coefficient 3/15

Kup2/Kui2 VSC2 outer-loop proportional/integral coefficient 1/5

K1 Converters scale factor 0.775

Kceg1 Converters Equivalent Gain 0.8
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influence of the slave control system on the master control

system is considered in re-establishing the equivalent transfer

function of the DC system, as shown in Figure 5.

For the slave station with constant power control, the

same has.

⎡⎢⎢⎢⎢⎢⎣
usa2

usb2

usc2

⎤⎥⎥⎥⎥⎥⎦ � Lc2
d

dt
⎡⎢⎢⎢⎢⎢⎣
ica2
icb2
icc2

⎤⎥⎥⎥⎥⎥⎦ + Rc2
⎡⎢⎢⎢⎢⎢⎣
ica2
icb2
icc2

⎤⎥⎥⎥⎥⎥⎦ + ⎡⎢⎢⎢⎢⎢⎣
uca2

ucb2

ucc2

⎤⎥⎥⎥⎥⎥⎦ (9)

Where: us2 is the equivalent three-phase supply voltage on the

AC side of VSC2; Rc2 is the equivalent resistance on the AC side

of VSC2; LC2 is the equivalent inductance on the AC side of

VSC2; uc2 is the inlet voltage on the AC side of VSC2.

A Park transformation of Eq. 9 has.

{ usd2 − ucd2 � icd2(Rc2 + sLc2) − ωLc2icq2
ugq2 − usq2 � icd2(Rg2 + sLg2) + ωLcgicd2

(10)

According to the control block diagram of the slave converter

station with constant power control shown in Figure 4, it is

obtained that:

FIGURE 13
Hardware-in-the-loop experiment platform.

FIGURE 14
Single-terminal model simulation and HIL experimental waveforms. (A) DC voltage waveform in simulation (B) Power waveform in simulation,
(C) DC voltage waveform in HIL experiment (D) Power waveform in HIL experiment.
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FIGURE 15
Interactive model simulation and HIL experimental waveforms. (A) DC voltage waveform in simulation, (B) Power waveform in
simulation, (C) DC voltage waveform in HIL experiment, (D) P1 waveform in HIL experiment, (E) P2 in HIL experiment, (F) Load power
waveform in HIL experiment
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icd2,ref � (Kup2 + Kui1

s
)(P2,ref − P2) (11)

usd2 � (Kip2 + Kii2

s
)(icd2,ref − icd2) − ωLc2icq2 + ucd2 (12)

(Kip2 + Kii2

s
)(icd2,ref − icd2) � icd2(Rc2 + sLc2) (13)

Where: icd2, ref and icq2, ref are the dq-axis reference currents on the

AC side; P2 and P2, ref are the actual active power and active power

reference values, respectively; Kvp2 and Kvi2 are the proportional and

integral coefficients of the active power outer-loop PI regulator,

respectively; Kip2 and Kii2 are the proportional and integral

coefficients of the AC current inner-loop PI regulator, respectively.

Coupling Eqs. 10–13, the d-axis transfer function of

VSC2 can be obtained as

GVSC2 �

3[usd2 − udcidc(Kup2 + Kui1

s
)(Kip2 + Kii2

s
)][usd2 + icd2(Rc2 + sLc2)

Rg2 + sLg2
+ icd2]

−2udcidc[usd2 + icd2(Rc2 + sLc2)
Rg2 + sLg2

+ 1]

u2
dc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
2
(Rc2 + sLc2) + (Kip2 + Kii2

s
)

Rg2 + sLg2
+ 3

usd2 + icd2(Rc2 + sLc2)
Rg2 + sLg2

(Kup2 + Kui1

s
)(Kip2 + Kii2

s
)

+3 icd2
Rg2 + sLg2

(Kup2 + Kui1

s
)(Kip2 + Kii2

s
) + 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)

Therefore, when the system interaction is considered, the DC

feedback part of the transfer function changes from Figures 6A,B, i.e.,

the transfer function of the DC system is changed from the original

two parts of DC capacitance and equivalent load to three parts

consisting of DC capacitance, equivalent load and VSC2 equivalent

transfer function. Therefore, the DC system transfer function of the

control system from the station is considered as

FIGURE 16
DC voltage variation at different P1. (A) P1=0.4 MW, (B) P1=0.5 MW, (C) P1=0.4 MW in HIL experiment, (D) P1=0.5 MW in HIL experiment.
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Gdc
′ � sC1 − Pdc

′

u2
dc(0)

+ GVSC2 (15)

The overall transfer function of VSC1 considering system

interactions is

GVSC1
′ � K1Kceg1(Kip1 + Kii1

s )(Kup1 + Kui1
s )Gdc

′

(Rc1 + sRc1) +K1Kceg1(Kip1 + Kii1
s )

(16)

Comparing Eqs. 7, 16, the main difference is the change in

the equivalent transfer function of the DC part. Due to the

introduction of the VSC2 control part, the order of the system

increases and the complexity is higher. Subsequently, the

influence of the interaction on the system is analyzed by

comparing the impedance characteristics of Eqs. 7, 16, and

the influence of each control and electrical parameter on the

interaction and system stability based on Eq. 16.

3.2 Analysis of interaction

The classical control theory is used for stability analysis on Eqs.

7, 16. By comparing the impedance characteristics in Figure 6A,

there is a resonant spike in the VSC DC port impedance in the

middle frequency band range when the influence of the slave control

system is considered. The amplitude of the VSCDC port impedance

increases in the resonant band, and the phase at the resonance point

has a 180° jump, and when the phase angle difference >180°, the
system will not satisfy the impedance ratio stability criterion and

become unstable. And the same is reflected in Figure 6B and

Figure 6C, where the zero pole distribution and Nyquist curve of

the system change considerably under the influence of the

interaction, and the interaction model has a right half-plane pole

whose Nyquist curve encloses the (-1,0) point, whichmeans that the

system is in an unstable state.

FIGURE 17
DC voltage variation at different P2. (E) P2=0.3 MW, (F) P2=0.5 MW, (G) P2=0.3 MW in HIL experiment, (H) P2=0.5 MW in HIL experiment
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This is caused by the interaction between the impedance

characteristics of VSC2 and the DC network, and between the

master converter stations, after it is connected to the DC

network. Even when the DC bus voltage is constant, this

interaction behavior still weakens the DC network damping

and the increase of the transmitted power from the slave

station may result in a phase margin of 0° or less than 0°.

That is, the resonant peaks of the VSC DC port impedance in

the mid-frequency range and the negative damping

characteristics of the CPL wide band are the main reasons for

the reduced stability of the DC side of the AC-DC distribution

system. Therefore, the influence law of control parameters and

system parameters on the VSC DC port impedance

characteristics needs to be studied to lay the foundation for

the subsequent stability analysis of the AC-DC distribution

system.

Combining Eq. 15 and Eq. 16, it can be seen that the

VSC1 dc impedance depends on three parts: the dc bus

capacitance Cdc, the VSC1 output conduction and the

VSC2 output conduction. According to the analysis of the

RLC equivalent circuit principle, the resonant peak in the

VSC1 dc port impedance is generated by the impedance

interaction between Cdc and the converter output

conductance (VSC1, VSC2) in the corresponding frequency

band. Therefore, the resonant frequency corresponding to this

resonant peak will be affected by the change of the dc-side

FIGURE 18
DC voltage variation at different Kip1. (A) Kip1=2, (B) Kip1=0.5, (C) Kip1=0.5 in HIL experiment
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capacitor Cdc and the slave VSC2 parameters, in addition to

the control parameters of VSC1 itself.

4 Stability analysis

Based on the above AC-DC distribution system interaction

model, the effects of parameters such as rated power, control

parameters, AC-side line impedance and DC capacitance of each

converter station on system interaction strength and system

stability are analyzed in detail below.

In order to avoid the influence of improperly selected

control parameters on the system stability analysis, the control

parameters of each converter station are first designed

according to the control bandwidth and stability margin.

Typically, the bandwidth of the current inner loop is 1/

10 to 1/5 of the switching frequency, and the bandwidth of

the voltage outer loop is 1/10 to 1/5 of the current inner loop

bandwidth. Specific control parameter design values are

shown in Table 1. The effect of a single parameter change

on the system interaction strength and system stability is

discussed during the subsequent stability analysis, and the

FIGURE 19
DC voltage variation at different Kup1. (A) Kup1=3. (B) Kup1=30

FIGURE 20
DC voltage variation at different Kip2. (A) Kip2=4. (B) Kip2=7
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rest of the parameters are the same as those in the table, so

they are not repeated.

4.1 Influence of the rated power of the
system

4.1.1 Reference power P1 of converter VSC1
It can be seen from Figures 7A–C, as the reference power P1

of VSC1 gradually increases, the spike amplitude gradually

increases, the system pole gradually shifts to the right, and the

intersection point of Nyquist curve and negative real axis

gradually moves away from the imaginary axis. When P1 ≥
0.5, the Nyquist curve contains the point (-1, 0), the system

pole enters the right half-plane, and the system is

destabilized.

4.1.2 Reference power P2 of converter VSC2
It can be seen from Figures 7D–F, as the reference power P2

of VSC2 gradually increases, the spike amplitude gradually

increases, the system pole gradually shifts to the right, and

the intersection of the Nyquist curve and the negative real

axis gradually moves away from the imaginary axis. When

P2 ≥ 0.4, the Nyquist curve contains the (-1, 0) point, the

system pole enters the right half-plane, and the system is

destabilized.

4.2 Influence of VSC1 control parameters

4.2.1 The outer loop control parameters of VSC1
It can be seen from Figures 8A–C, as the outer loop control

parameter Kup1 of VSC1 gradually increases, the spike amplitude

FIGURE 21
DC voltage variation at different Kup2. (A) Kup2=3. (B) Kup2=5. (C) Kup2=5 in HIL experiment.
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gradually increases, the spike frequency keeps increasing, the

system pole slowly shifts to the right, and the Nyquist curve does

not change much. When Kup1 was varied within the appropriate

parameter interval, the system did not appear to be unstable.

4.2.2 The internal loop control parameters of
VSC1

It can be seen from Figures 8D–F, as the inner loop control

parameter Kip1 of VSC1 gradually increases, the spike amplitude

gradually decreases, the spike frequency keeps increasing, the system

pole gradually shifts to the right, the intersection point of Nyquist

curve and negative real axis gradually approaches the imaginary axis,

and the system stability improves. When Kip1≤1, the Nyquist curve
contains (-1, 0) points and the system is destabilized.

4.3 Influence of VSC2 control parameter

4.3.1 The outer loop control parameters of VSC2
It can be seen from Figures 9A–D, as the outer loop control

parameter Kup2 of VSC2 gradually increases, the spike amplitude

gradually increases, the spike frequency remains basically

unchanged, the system pole gradually shifts to the right, and

the intersection of the Nyquist curve and the negative real axis

gradually moves away from the imaginary axis. When Kup2≥3,
the Nyquist curve contains the (-1, 0) point, the system pole

enters the right half-plane, and the system is destabilized.

4.3.2 Internal loop control parameters of VSC2
It can be seen from Figures 9E–I, as the inner loop control

parameter Kip2 of VSC2 gradually increases, the spike amplitude

gradually increases, the spike frequency basically remains the same,

the systempole gradually shifts to the right, and the intersection point

of Nyquist curve and negative real axis gradually moves away from

the imaginary axis. When Kip2≥5, the Nyquist curve contains the (-1,
0) point, the system pole enters the right half-plane, and the system is

destabilized.

4.4 Influence of line parameters

4.4.1 AC side inductance of VSC1
It can be seen from Figures 10A–D, as the AC side line

inductance Lc1 of VSC1 gradually increases, the spike amplitude

and spike frequency gradually decrease, the system pole gradually

shifts to the right, and the intersection of the Nyquist curve and

the negative real axis gradually moves away from the imaginary

axis. When Lc1≥9 mH, the Nyquist curve contains the (-1, 0)

point, the system pole enters the right half-plane, and the system

is destabilized.

4.4.2 AC side inductance of VSC2
It can be seen from Figures 11A–E, as the AC side line

inductance Lc2 of VSC2 gradually increases, the spike amplitude

gradually decreases, the spike frequency does not change

significantly, the system pole gradually shifts to the right, and

the intersection of the Nyquist curve and the negative real axis

gradually moves away from the imaginary axis. When Lc2≥9 mH,

the Nyquist curve contains (-1, 0) points, the system pole enters

the right half-plane, and the system is destabilized.

4.4.3 Effect of DC-side capacitance
It can be seen from Figures 12A–D, as the dc capacitance

Cdc gradually increases, the spike amplitude and spike

FIGURE 22
DC voltage variation at different Lc1. (A) Lc1=2 mH. (B) Lc1=10 mH.
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frequency gradually decrease, the system pole gradually shifts

to the left, and the intersection of the Nyquist curve and the

negative real axis gradually approaches the imaginary axis.

When Cdc≤2 mF, the Nyquist curve contains the (-1, 0) point,

the system pole enters the right half-plane, and the system is

destabilized.

5 Simulation verification and
hardware-in-the-loop experiment

Since the DC voltage is one of the important indicators to

measure the power balance and stability of the DC distribution

system, the DC side bus voltage is selected as the observed quantity

in the subsequent simulation to determine the system stability. 100%

increase of DC load at 15s and end of simulation at 30s.

In order to verify the correctness and effectiveness of the

proposed control strategy, a controller-level hardware-in-the-loop

test platform is built as shown in Figure 13. The platform consists

of an RT-LAB real-time simulation experiment bench, a DSP control

board, a host computer and an oscilloscope. The controller adopts

TI’s TM320F28069 main control chip, and the RTBOX has

16 analog input and output ports and 32 digital input and

output ports, which fully meet the requirements of this

experiment. The output voltage and frequency waveforms

are output through the analog output channels of the

RTBOX and displayed on the oscilloscope.

First, the original single -terminal model and the

interactive model will be compared. The system power of

the simulated model is 0.2 for the single -terminal model,

0.5 for the interactive model, and 0.3 for the reference power

of VSC2. The load increases by 0.5 at 15 s. The DC voltage

FIGURE 23
DC voltage variation at different Lc2. (A) Lc2=2.5 mH, (B) Lc2=10 mH, (C) Lc2=10 mH in HIL experiment.
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variation and the output power of each converter for the

single -terminal model and the interactive model are given in

Figures 14, 15, respectively, and are tested in hardware-in-

the-loop experiments. From the figures, it can be obtained

that the interactive model experienced power oscillations in

VSC1 during power recovery when the output power of

VSC1 increased by the same value, which further led to

load power and VSC2 output power oscillations and

system collapse. This result verifies the previous

theoretical analysis that for the same control parameters

and circuit parameters, the system will be in an unstable

state after some specific perturbation when considering the

influence of the control system from the converter on the

system, which is not captured by the original single -terminal

equivalent model.

5.1 Reference power of converter station

5.1.1 Changing the reference power P1 of VSC1
The DC bus voltage waveforms for VSC1 reference power of

0.4 MW and 0.5 MW, respectively, are shown in Figure 16. It can be

seen that when P1 is 0.4, the DC bus voltage returns to the stable

state smoothly; while when P1 is 0.5, the DC bus voltage oscillates

and diverges under the same disturbance, and the system is unstable.

5.1.2 Changing the reference power P2 of VSC2
The DC bus voltage waveforms for VSC1 reference power of

0.3 MW and 0.5 MW, respectively, are shown in Figure 17. It can be

seen that when P2 is 0.3, the DC bus voltage returns to the stable

state smoothly; while when P2 is 0.5, the DC bus voltage oscillates

and diverges under the same disturbance, and the system is unstable.

FIGURE 24
DC voltage variation at different C1. (A) C1=4 mF, (B) C1=1 mF, (C) C1=4 mF in HIL experiment, (D) C1=1 mF in HIL experiment
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5.2 Reference power of converter station

5.2.1 Changing the inner loop parameters of
VSC1

The DC bus voltage waveforms for VSC1 the inner

loop parameters of 2 and 0.5, respectively, are shown in

Figure 18. It can be seen that when Kip1 is 2, the DC

bus voltage returns to the stable state smoothly; while

when Kip1 is 0.5, the DC bus voltage oscillates and

diverges under the same disturbance, and the system is

unstable.

5.2.2 Changing the outer loop parameters of
VSC1

The DC bus voltage waveforms for VSC1 the inner loop

parameters of 3 and 30, respectively, are shown in Figure 19. It

can be seen that when Kup1 is 3, the DC bus voltage returns to the

stable state smoothly; while when Kup1 is 30, the selection of Kup1 is

out of the normal range at this time, the DC bus voltage oscillates

and diverges under the same disturbance, and the system is unstable.

5.3 VSC2 control parameters

5.3.1 Changing the inner loop parameters of
VSC2

The DC bus voltage waveforms for VSC1 the inner loop

parameters of 4 and 7, respectively, are shown in Figure 20. It can

be seen that when Kip2 is 4, the DC bus voltage returns to the

stable state smoothly; while when Kip2 is 7, the DC bus voltage

oscillates and diverges under the same disturbance, and the

system is unstable.

5.3.2 Changing the outer loop parameters of
VSC2

The DC bus voltage waveforms for VSC1 the inner loop

parameters of 3 and 5, respectively, are shown in Figure 21. It can

be seen that when Kup2 is 3, the DC bus voltage returns to the

stable state smoothly; while when Kup2 is 5, the DC bus voltage

oscillates and diverges under the same disturbance, and the

system is unstable.

5.4 Line parameters

5.4.1 Changing AC side inductance of VSC1
The DC bus voltage waveforms for VSC1 AC side inductance

of 2 mH and 10 mH, respectively, are shown in Figure 22. It can

be seen that when Lc1 is 2 mH, the DC bus voltage returns to the

stable state smoothly; while when Lc1 is 10 mH, the DC bus

voltage oscillates and diverges under the same disturbance, and

the system is unstable.

5.4.2 Changing AC side inductance of VSC2
The DC bus voltage waveforms for VSC2 the AC side

inductance of 2.5 mH and 10 mH, respectively, are shown in

Figure 23. It can be seen that when Lc2 is 2.5 mH, the DC bus

voltage returns to the stable state smoothly; while when Lc2 is

10 mH, the DC bus voltage oscillates and diverges under the

same disturbance, and the system is unstable.

5.4.3 Changing DC-side capacitance
The DC bus voltage waveforms for DC-side capacitance of

4 mF and 1mF, respectively, are shown in Figure 24. It can be

seen that when Cdc is 4mF, the DC bus voltage returns to the

stable state smoothly; while when Cdc is 1mF, the DC bus voltage

oscillates and diverges under the same disturbance, and the

system is unstable.

6 Conclusion

This paper establishes an AC-DC distribution system

model that takes into account the interaction of each

converter control system, compares the system frequency

response curves of the interaction model and the original

model, takes the resonance spikes generated by the

interaction between converters as the reference object, and

further analyzes the influence of converter control

parameters and system electrical parameters on system

stability and interaction. The main conclusions are as follows.

(1) The interaction between each converter and the CPL

characteristics make the system impedance characteristics

have a resonance spike, the amplitude of VSC DC port

impedance increases in the resonance frequency band,

and the phase at the resonance point has a 180° jump,

which reduces the system damping and stability and

easily induces system instability.

(2) The resonant spike amplitude generated by the system

interaction and CPL characteristics is positively correlated

with the rated power of each converter station, the outer loop

control parameters of each converter station, the inner loop

control of the main converter station, and negatively

correlated with the inner loop control parameters of the

slave converter station, the AC side inductance and DC side

capacitance of each converter station.

(3) The resonant spike frequency generated by system

interaction and CPL characteristics is positively correlated

with the control parameters of the main converter station,

negatively correlated with the AC-side inductance and DC-

side capacitance of the main converter station, and has little

relationship with the rated power of the converter station,

the control parameters of the slave converter station and the

AC-side inductance of the slave converter station.
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In this paper, a transfer function model of a double-ended

AC-DC distribution system is developed to analyze the effects of

parameter changes on system interactions, using the main

converter station control system as a reference. Since the

impedance modeling approach is adopted for the DC side, the

DC side is equated to a feedback link in the control block diagram

of the main converter station, which greatly simplifies the

calculation process while ensuring that the input single-output

Nyqusit criterion is still applicable and avoiding the problems of

increasing system complexity with the introduction of converter

stations, distributed generation and loads. In the future, the

model will be optimized to analyze the impact of different

distributed generation, different types of loads, and different

DC-side topologies on the system stability.

The above analysis only qualitatively analyzes the parameters

and draws relevant conclusions, but fails to quantitatively analyze

the parameters; the model used in this paper does not consider

the influence of the DC line on the system stability; it fails to

optimize the control for the interaction of the system, which

needs to be further explored in the subsequent work.
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Large-scale integration of electric vehicles (EVs) into the city system for charging
will affect the operation of both traffic and distribution networks. An electric
vehicle navigation and cluster dispatch model is proposed for improving the
overall charging efficiency of EVs on the transportation network and increasing the
voltage level of the distribution network. First, a simplified model of vehicles and
traffic road network is established, and a cell transmission model (CTM) is used to
simulate the real traffic network. The traffic system takes into account charging
EVs, discharging EVs, and other vehicles, and traffic congestion is considered.
Then, a coupledmodel of the traffic–power system is built for the orderly charging
of electric vehicles upon arrival at a charging station. The model considers the
coupling of the two systems on a time scale, and the charging/discharging power
at each charging station node is controlled. The validity of themodel is verified in a
coupled system of 357 cell traffic network and modified IEEE33 nodes. The results
show that the proposed model can ensure good guarantee of the distribution
network voltage reliability and reveal the scheduling process of the traffic network.
The proposed model also provides a reference for planning of charging stations in
the distribution network.

KEYWORDS

electric vehicle, navigation, cluster dispatch, traffic–power system, cell transmission
model

1 Introduction

In recent years, air pollution, global warming, and other environmental issues have
become prominent and urgently need to be addressed. By implementing low-carbon policies,
electric vehicles (EVs) are widely used in transportation. Different from traditional fuel cars,
electric vehicles have a large difference with them in terms of range capacity. At the same
time, the high current involved in the charging process of electric vehicles has a significant
impact on the reliability of the distribution network. Therefore, scholars have conducted a
series of studies on the problem of electric vehicles (Xiang et al., 2021) (Li et al., 2020).

Large-scale access of electric vehicles to the network will have a greater impact on the way
the distribution network operates. The online evolution mechanism of the EV–grid system
was proposed in Dong et al. (2021) for penetration of intermittent renewable energy and the
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time variance problem of the systemmodel. Li et al. (2023) proposed
a two-stage EV management scheme to promote sustainable
transportation. In the first stage, a toll scheduling model based
on fuzzy multi-criteria decision-making was proposed, and in the
second stage, a non-cooperative game model that incentivizes
electric vehicles to participate in supplementary frequency
regulation was proposed. Another two-stage scheme was
proposed in Yan et al. (2023) to solve the problem of privacy of
individual electric owners, the interest competition of different
charging stations, and the restriction of coupled distribution
networks. In the first stage, the total electric vehicle power
flexibility region was derived by solving the optimization
problem. In the second stage, a distributed coordination
mechanism with a clear physical interpretation was established
considering the network constraints based on AC power flow. To
simulate a real customer EV distribution scenario, Shi et al. (2022)
established a dynamic EV dispatching model considering the multi-
source data association of customers, vehicles, charging stations, and
service stations. Tao et al. (2022) proposed an improved generative
adversarial network (GAN)-based coordinated scheduling strategy
for electric vehicles with thermostatically controlled loads (TCLs).
Machine learning was integrated into a two-layer optimization
problem to determine the steady-state power dispatch and energy
storage control of the energy storage systems. Feizi et al. (2022)
presented a framework for determining feasible dispatch limits for
solar photovoltaic (PV) generation in an unbalanced distribution
network considering EV interconnection and associated
uncertainties. To ensure frequency stability while reducing load
shedding, an optimization strategy based on a two-layer confidence
interval for EV participation in ultra-high-speed transmission
systems was proposed in Liu et al. (2022a). Due to problems
such as computational complexity, these studies focused on
electric vehicles as grid participants but ignored the
characteristics of transportation participants.

On the other hand, with the development of electric vehicles in
power electronics and mechanics, related technologies such as
vehicle-to-grid (V2G) (Yue et al., 2023) (Shang et al., 2022),
vehicle-to-building (V2B) (Liu et al., 2022b), and battery
swapping (Wu, 2022) (Jia et al., 2022) are also applied in
network dispatching. Aiming at the randomness of current EV
users’ participation in V2G, an EV cluster evaluation index
model was established in Yue et al. (2023) by analyzing the
impact of various pieces of information declared by EV users on
the scheduling plan of aggregators and using the declared scheduling
power, user credit, battery loss, and user participation as evaluation
indexes. Due to the high computational complexity of large-scale
EVs and impracticality of future power data collection, Shang et al.
(2022) proposed a distributed edge computing framework to ensure
the efficiency of scheduling and flexible availability of raw data sets.
To minimize cost and maximize satisfaction, Liu et al. (2022b)
combined the building energy demand and the safety/willingness of
EVs to find and dispatch the optimal vehicle for auxiliary or support
actions. Wu (2022) reviewed the state-of-the-art literature and
business models for battery swapping stations (BSSs), which
provide rechargeable batteries for upcoming electric vehicles in
low-battery states. Yang et al. (2019) proposed a shared battery
station (SBS) model, which is a multifunctional facility with
charging, discharging, dormancy, and switching functions.

Argiolas et al. (2022) evaluated the potential business case for
battery storage systems for PV-assisted electric vehicle fast
charging stations with integrated market applications and
services. In Jia et al. (2022), a hybrid model of continuous time-
domain battery exchange charging and logistics scheduling was
proposed to optimize the joint operation of battery charging and
exchange systems. In general, leveraging these new technologies can
help solve the charging problem for EVs.

On the other hand, EVs, as transportation participants, are also
subject to the rules of the transportation network. Diaz-Cachinero
et al. (2020) proposed an enhanced operational planning model for
EV routing and charging that considers technical and economic
realistic constraints such as battery degradation, speed-dependent
power consumption, and penalties for non-performance. Liu et al.
(2019) formulated a traffic network charging navigation considering
stochasticity based on dynamic programming. A simplified charging
control algorithm was proposed to address the computational
complexity of the navigation system. To investigate the
vehicle–vehicle interaction of multiple vehicles in path planning
and charging, an EV charging path optimization method based on
an event-driven pricing strategy was proposed in Xiang et al. (2022).
To address the charging time-consuming energy efficiency problem
and the negative energy cost of regenerative braking in the road
network, Wang et al. (2013) proposed an energy-driven and
environment-aware EV route planning framework. A charging
facility planning model coupled with the transportation and
distribution system that considers traffic congestion was
proposed in Zhang et al. (2019). Morlock et al. (2020) proposed
a strategy for computing time-optimal routes for EVs. A simplified
road network was first obtained from a leading routing service.
Then, a detailed fuel consumption model was applied to solve the
multi-objective shortest path problem using the improved
Moore–Bellman–Ford algorithm. Zhang et al. (2020) used a two-
loop structure to find the route that leads to the lowest energy
consumption. In the outer loop, the path with the lowest energy
consumption was obtained by minimizing the difference between
the value function of the current round and the optimal values of the
previous rounds. In the inner loop, the energy consumption metric
of the plug-in hybrid vehicle power management under each feasible
path was trained using reinforcement learning (RL). Most of the
studies on EV distribution and path planning problems have focused
on refined modeling in the direction of energy consumption and
charging costs. However, path planning for large-scale vehicles is
lacking due to the computational complexity requirements.

In summary, existing studies focus on scheduling or navigation
unilaterally. Based on the computational complexity, traditional
methods are not convenient for carrying out path planning for
collaborative navigation of large-scale vehicles. A few studies have
dealt with the coupling of transportation–energy systems, but they
are also limited by the aforementioned scale problems and lack a
realistic portrayal of the two networks.

This paper studies the navigation and dispatching problems for
cluster EVs in order to create a highly reliable low-carbon
traffic–power system. The main contributions of this paper are as
follows:

• A charging and discharging co-navigation model is proposed.
There are charging and discharging vehicles and other vehicles
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in the traffic network. A cell transmission model (CTM) is
used to simulate the real road network. The navigation
contains the path planning for charging vehicles and
discharging vehicles. The charging vehicles reflect the
power demand, and the discharging vehicles support the
operation of the distribution network through V2G.

• A clustered electric vehicle dispatching model is proposed for
a reliable low-carbon coupled traffic–power system. A cluster
EV dispatching model is proposed for improving the overall
charging efficiency of EVs on the transportation network and
increasing the voltage level of the distribution network. After
the electric vehicles arrive at the charging station, the
distribution network acts as the control body for orderly
charging of the EVs. The charging/discharging power is
controlled by an optimization model.

The rest of the paper is organized as follows. The charging and
discharging co-navigation model for improving the overall charging
efficiency of EVs on the transportation network and increasing the
voltage level of the distribution network is presented in Section 2.
Section 3 presents the EV cluster dispatching model. The case study
is demonstrated in Section 4. Finally, conclusions are drawn in
Section 5.

2 Charging and discharging co-
navigation models

2.1 Establishment of the traffic system

A low-carbon traffic system refers to the low energy
consumption and low emission transportation mode with the
goal of reducing greenhouse gas emissions from transportation
behavior and is a way to realize low-carbon economy in the

transportation field. Among them, the popularity of electric
vehicles is the most crucial part.

In this section, there are three participating subjects in the
transportation network: electric vehicles with charging demand,
electric vehicles that can participate in V2G discharge, and other
vehicles. To simplify the vehicle models of different types, we have

Λs � ps, es, c s( ){ } (1)
Γ � Λ1,Λ2, . . .Λs, . . .Λn{ } (2)

where Λs denotes the properties of vehicles of type s, ps denotes the
maximum charge/discharge power of vehicle type s, es denotes the
energy margin of vehicle type s, c(s) is the set of terminal cells that
EVs of type s finally reach, and Γ is the set of all vehicle types.

It is worth noting that Λs represents only one property of the
vehicle type s. As shown in Figure 1, if the vehicles have the same
power demand value and driving endpoint decision, they are
considered to belong to the same type. The existence of multiple
vehicles of the same type in the traffic network is considered,
implying all these vehicles satisfy the same constraints. Assuming
that the power loss during the navigation process is ignored, the
energy margin of charging vehicles is less than 0 and finally should
arrive at the charging station. The discharged vehicle is used to
support the operation of the distribution network through V2G, so
its value is positive and eventually arrives at the charging station as
well. Other vehicles are not part of the dispatching object of this
study, so there is no charging demand. To simplify the modeling, it is
considered that the vehicles are eventually allowed to reach any
node. Then, three vehicle subjects satisfy the following relations:

ps > 0, es < 0, c s( ) ⊆ ψCS, ∀s ∈ Vchar (3)
ps > 0, es > 0, c s( ) ⊆ ψCS, ∀s ∈ Vdis (4)
ps � 0, es � 0, ∀c s( ), ∀s ∈ Velse (5)

where ψCS is the set of all cells of charging stations. Vchar is the set of
all charging vehicles.Vdis is the set of all discharging vehicles. Velse is
the set of all other vehicles. Figure 2 illustrates how the traffic
network can be converted into a cell structure.

Figure 2A shows the model transforming a section of a one-way
road into cells. Assuming that the road section has a travel time of t
without considering traffic congestion, it can be divided into
multiple cell strings with each travel period τ, satisfying the sum
of travel times equaling t.

Figure 2B shows the transformation of a simple road network
structure into a cell model. In this case, there are crossed cells that
accept path inputs from multiple cells, or outputs that point to
multiple cells, which are called parent cells and child cells, respectively.

2.2 Navigation operating strategy

Based on the establishment of the traffic network, the navigation
of the charging and discharging vehicles satisfies the CTM
constraints described in Wang et al. (2020). We have

xcell
a,t,s � xcell

a,t−1,s + ∑
c∈α a( )

ycell
ca,t−1,s − ∑

b∈β a( )
ycell
ab,t−1,s,∀a, ∀t, ∀s (6)

∑
b∈β a( )

ycell
ab,t,s ≤ xcell

a,t,s, ∀a, ∀t,∀s (7)

FIGURE 1
Classification of vehicles.
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∑
∀s

∑
b∈β a( )

ycell
ab,t,s ≤Qa

max, ∀a,∀t (8)

∑
∀s

∑
c∈α a( )

ycell
ca,t,s ≤Qa

max, ∀a,∀t (9)

∑
∀s

∑
c∈α a( )

ycell
ca,t,s ≤ ka(Na

max −∑
s

xcell
a,t,s), ∀a,∀t (10)

ycell
ab,t,s ≥ 0,∀a, ∀b ∈ β a( ), ∀t, ∀s (11)

where xcell
a,t,s denotes the number of type s vehicles in cell a at time t.

ycell
ab,t,s denotes the number of type s vehicles moving from cell a to

child cell b at time t. α(a) is the set of all parent cells of cell a. β(a) is
the set of all child cells of cell a. Qa

max is the maximum traffic flow of
cell a.Na

max is the maximum traffic amount that cell a can store. ka is
the congestion factor. Constraint (6) represents the traffic flow
balance. Constraints (7)–(11) represent the traffic capacity limit.

On the other hand, it is also necessary to consider the changes in
the energy of the transportation network. We have

ecella,t,s �ecella,t−1,s + es ∑
c∈α a( )

ycell
ca,t,s − es ∑

b∈β a( )
ycell
ab,t,s + Pcs

a,t,

∀a,∀t, ∀s ∈ Vchar

(12)

ecella,t,s ≤ ε,∀a, ∀t, ∀s ∈ Vchar (13)
ecella,end,s ≥ 0, ∀a, ∀s ∈ Vchar (14)

where ecella,t,s denotes the energy of type s vehicles that cell a could
supply at time t. es denotes the energy supply of each type s vehicle.
Pcs
a,t denotes the inject active power of cell a at time t. ε is an error

factor. Constraint (12) represents the energy flow balance.
Constraint (13) avoids the overcharging of vehicles. Constraint
(14) ensures that at the end of the entire time scale, all charging
actions must be completed. Moreover, for the initial moment, all
conditions should be given. We have

xcell
a,1,s � Xa,s, ∀a,∀s (15)

ecelli,1,s � esXa,s, ∀a,∀s (16)
where Xa,s denotes the number of type s vehicles in cell a at the
initial moment.

Finally, charging and discharging vehicles need to satisfy the
following path planning constraints:

∑
a∈c s( )

xcell
a,end,s � NV

s , ∀s ∈ VcharorVdis (17)

whereNV
s denotes the number of type s vehicles in the traffic system.

3 EV cluster dispatching model

3.1 Coupling for the traffic–grid system

When the electric vehicle arrives at the charging station node,
the distribution network acts as the control master and unifies the
charging power control. Figure 3 illustrates the coupling of the
navigation process and the dispatching process on the time scale.

Sequential charging satisfies the following constraints:

− ∑
m∈Vdis

pmx
cell
a,t,m ≤Pcs

a,t ≤ ∑
n∈Vchar

pnx
cell
a,t,n, ∀a,∀t (18)

− ∑
m∈Vdis

qmx
cell
a,t,m ≤Qcs

a,t ≤ ∑
n∈Vchar

qnx
cell
a,t,n, ∀a,∀t (19)

whereQcs
a,t denotes the inject reactive power of cell a at time t. qs denotes

the maximum reactive power for each type s vehicle. Constraints (18)
and (19) ensure that the lower limit of the node injection power is the
sum of the maximum power of the V2G and the upper limit is the sum
of the maximum charging power of all charging vehicles.

In addition, the distribution network model constraints should
be satisfied:

∑
j∈ƛ i( )

Pij,t − ∑
k∈π i( )

Pki,t � Pin
i,t − Pload

i , ∀i, ∀t (20)

∑
j∈ƛ i( )

Qij,t − ∑
k∈π i( )

Qki,t � Qin
i,t − Qload

i , ∀i, ∀t (21)

Pin
i,t � Pgen

i,t − Pcs
a,t, ∀ i, a( ) ∈ C, ∀t (22)

Qin
i,t � Qgen

i,t − Qcs
a,t, ∀ i, a( ) ∈ C, ∀t (23)

FIGURE 2
Conversion to cell structure.

FIGURE 3
Coupling of navigation and dispatching on the time scale.
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Ui,t − Uj,t � Pij,tRij + Qij,tXij, ∀ i, j( ) ∈ ΩL (24)����������
Pij,t

2 + Qij,t
2

√
≤ Sij

max, ∀ i, j( ) ∈ ΩL (25)
Ui

min ≤Ui,t ≤Ui
max (26)

where Pij,t and Qij,t denote the active/reactive power flowing
from node i to node j at time t. Pin

i,t and Qin
i,t denote the injected

power of node i at time t. Pload
i,t and Qload

i,t denote the active/reactive
load power at node i at time t. Pgen

i,t and Qgen
i,t denote the active/

reactive power from the generator of node i at time t. C is the set
of all the coupling pairs of all nodes and cells, where (i, a) ∈ C

indicates that there is a coupling between node i and cell a. Ui,t

denotes the amplitude voltage of node i at time t. Rij and Xij

denote the resistance/reactance of branch (i, j). Sij max denotes
the maximum capacity of branch (i, j). Ui

max and Ui
min denote

the upper and lower limits of voltage at node i. ƛ(i) is the set of all
the children nodes of node i. π(i) is the set of all parent nodes of
node i. ΩL denotes the set of all branches. Constraints (20)–(23)
indicate the power balance of the distribution network, where the
injected power of the cell corresponds to the outflow power of the
distribution network node. Constraint (24) indicates the voltage
drop balance. Constraint (25) indicates the line capacity limit.
Constraint (26) indicates the voltage amplitude limit.

3.2 Optimization models

For the traffic system, the shortest navigation time of total
charging EVs is guaranteed to reduce the impact of charging
vehicles on the road conditions of the traffic network. That is, all
charging electric vehicles are present at the charging station for
the longest time in the whole time scale of dispatch. Thus, we
have

maxF1 � ∑
s∈Vchar

∑
i∈ψCS

∑
∀t
xcell
i,t,s (27)

For the power system, the guaranteed voltage level is more likely
to be close to the rated value, which is used to measure the reliability
of the power system. Thus, we have

minF2 � ∑
∀t

∑
i∈ΩN

1 − Ui,t

∣∣∣∣ ∣∣∣∣ (28)

where ΩN is the set of all nodes in the distribution network. Since
constraint (28) is a non-linear equation containing an absolute value
function, a linearization transformation is applied. Let auxiliary
variables zi,t replace |1 − Ui,t|. We have

minF2 � ∑
∀t

∑
i∈ΩN

zi,t (29)

zi,t ≥ 1 − Ui,t (30)
zi,t ≥Ui,t − 1 (31)

In summary, the optimization model is established as follows:

obj � ω1 ∑
∀t

∑
i∈ΩN

zi,t − ω2 ∑
s∈Vchar

∑
i∈ψCS

∑
∀t
xcell
i,t,s (32)

The constraints include

6( ) − 26( ), 30( ) − 31( ) (33)

Constraint (25) is a second-order cone-convex function, and all
the remaining constraints are linear. Therefore, the optimization
model can be solved by directly calling the common solvers.

4 Case study

4.1 Case description

The simulation is set up with a modified road network structure
with 357 cells, coupledwithmodified IEEE33 nodes. The three charging
stations in the traffic network are located in cells corresponding to
nodes 7, 22, and 24 of the IEEE33 node power network. In this case,
70 EVs with charging demand and 10 discharged EVs with V2G
willingness are set up in the traffic network. A certain number of
other vehicles are generated by a randommodel in each cell. Set the time
scale of the whole scheduling process to 40. Each time scale corresponds
to a 3-min time interval. The maximum traffic flow Qmax

i is set at a
uniform rate of 3. The congestion factor ka is 1. The maximum number
of vehicles per cellNmax

i is set to 10. In particular, for the traffic network
end cells or charging station cells, let Nmax

i = 30. Generators of the
distribution network are set at nodes 1 and 15. Assuming that all
charging vehicles or discharging vehicles have the same charging
demand and charging station arrival end condition, three types of
vehicles were established. The maximum power of charging/
discharging is set to 40 kW, and the charging demand is 10 kWh.
The dispatch interval for each time scale is 3 min, for a total of 40 time
scales. The discharging vehicle can provide a maximum power of
10 kWh. Let ω1 � 1,ω2 � 10. A schematic diagram of the coupling
is shown in Figure 4. The road conditions and topology of the traffic
network are shown in Figure 5. The simulation platform is MATLAB
2019b and Gurobi 9.5.2.

4.2 Navigation simulation results

Figure 6 shows the partial time-scale results for the charging co-
navigation of 70 EVs. The red nodes represent electric vehicles, and
the blue nodes represent charging stations. There is only one type of
charging vehicle in this example, and it is stipulated that all charging
vehicles can eventually reach any charging station node. For visual
differentiation, the random generation method of vehicles specifies
that each vehicle is at a different cell location. Moment 0 shows the
locations of all vehicles with charging demand at the initial moment.
As collaborative navigation proceeds, the number of vehicles
traveling in the topology keeps decreasing. When 105 min is
reached, all vehicles in this round arrive at the charging station.
It can be seen that vehicles generally tend to lead to the charging
station with the shortest single time. This is the result given by the
objective function based on the shortest dispatch time at the traffic
level.

Figure 7 shows the navigation results for all V2G vehicles. It can
clearly be seen that nine EVs lead to charging Station 2, while only
one vehicle leads to charging Station 1, and no vehicle leads to
charging Station 3. In contrast to the path planning of charging EVs,
there is no clear tendency for V2G vehicles to travel on the shortest
path. Further analysis shows that it is the reliability of the
distribution network that acts on the traffic dispatch and has an
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impact on path planning. Figure 8 shows the variation in the number
of vehicles at the charging station nodes. It is worth noting that since
the arithmetic example is a one-way topological road network
structure, the number of vehicles at the charging station nodes
can reflect the variation of the congestion level of the whole road
where they are located. As the navigation process proceeds, it can be
seen that the charging station nodes gradually become congested.
Therefore, cluster scheduling will increase the traffic burden around
the charging stations.

In fact, by observing the distribution of vehicles at all time scales,
all charging vehicles almost always pass at the optimal time, and at
the intuitively optimal distance. Congestion hardly affects vehicle
path planning, but can exacerbate traffic network congestion.

4.3 Cluster dispatching results

Figure 9 illustrates the power variation curve of charging
stations. The maximum actual power of charging Station 1

reaches 1120 kW and that of charging Station 2 reaches 680 kW,
while the maximum actual charging power of charging Station 3 is
only 257 kW. Since this scheduling process incorporates an objective
function indicating voltage reliability, it is obvious that the charging
power of charging Station 3 is very flat. In contrast, charging Station
1 and Station 2 tend to proceed at maximum power for fast charging.
Further analysis shows that the staggered charging moments of
charging Station 1 and Station 2 with maximum power are carried
out. Therefore, it can be concluded that the distribution network can
accommodate more capacity at charging Station 1 and Station 2
nodes than at Station 3 nodes, when the main factor affecting the
voltage level of the distribution network is the topology of the
distribution network’s own power distribution rather than the
charging power distribution, provided there is a capacity margin.
Excessive power will aggravate the line voltage drop at charging
Station 3, which is more likely to cause a lower voltage reliability
level. As observed in Figures 9A, B, the reason for such a sharp
increase in charging power is that the node power has not yet
reached the maximum capacity of the distribution network. The

FIGURE 4
Coupling of the traffic–power system.

FIGURE 5
Specific parameters of the traffic network.
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theory of convex optimization suggests that if there is an optimal
solution to a mathematical plan, it must be on the boundary
conditions of the feasible domain.

Comparative experiments were carried out with or without
considering voltage levels. The control experiments remove the
objective function term characterizing the voltage level in Eq. 28.
Figure 10 shows the comparison of the dispatch with/without
considering voltage reliability. The voltage levels of all nodes are
selected at 3 min, 57 min, and 114 min for the entire 2-h scheduling

process. It is clear that in the case of scheduling without considering
voltage reliability, the voltage easily reaches the upper bound of
1.1 and the lower bound of 0.9, while the latter voltage level is closer
to the nominal value and never reaches the upper or lower bound.
The highest voltage is only around 1.05, while only node 16 reaches a
minimum voltage of 0.9. On the other hand, without considering
voltage reliability, the voltage level varies significantly throughout
the dispatch process, and we consider this to be a less reliable low-
carbon traffic–power system. As shown in Figure 10A, the voltage
level is relatively normal in the early stage at 3 min and 57 min, but
deteriorates in the later stage, which is because the EVs are still in the

FIGURE 6
Co-navigation process for 70 charging electric vehicles.

FIGURE 7
Co-navigation process for 10 discharging EVs.

FIGURE 8
Changes in the number of vehicles at the nodes of charging
stations.
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navigation stage in the early stage and the charging station node load
level is low. Also, when they arrive at the charging station, they are
charged in a disorderly manner, which significantly increases the
random load of the charging station.

Comparative experiments were carried out with and without
V2G vehicles. The control experiment removes the dispatch of

10 V2G vehicles from the traffic network. Figure 11 shows the
changes in power demand at the three charging station nodes
throughout the dispatch process. The charging Station 2 node is
generally a regular process where the power demand increases first
and then decreases, which is because the charging demand increases
as the EVs keep reaching this node; while on the other hand, the

FIGURE 9
Charging power variation of charging stations.

FIGURE 10
Comparison of voltage reliability.

FIGURE 11
Changes in power demand during dispatching.
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charging demand decreases at this point because of the unified
charging and discharging scheduling management after reaching
this node. It is worth noting that charging demand does not
absolutely increase first and then decrease, which is because
navigation and scheduling is a coupled process that takes place
simultaneously. The power demand variation curve of charging
Station 1 and Station 3 is more irregular, which is due to the addition
of V2G vehicles, which also relieves the pressure of power demand.

Comparing Figure 11A with Figure 11B, it is found that the
most significant change without the addition of V2G vehicles is a
significant increase in the load accommodated at charging
Station 1, with the maximum demand increasing from
200 kWh to nearly 250 kWh. There is little change at charging
Station 3 and a significant decrease in the charging load at
charging Station 2, with the maximum demand decreasing
from 150 kWh to nearly 60 kWh. Therefore, it can be
concluded that charging Station 1 is more reliable than
charging Station 2 at the power system level. Analyzing
scheduling together with navigation, it can be found that V2G
vehicles almost always flock to charging Station 3, and the
charging power is flat at charging Station 3. Therefore, it can
be considered that this is the vulnerability of the distribution
network. In the subsequent distribution network planning, a new
distributed power supply or increased line capacity near the
charging station at this location can be considered to ensure
the reliability of the large-scale access of EVs. Ultimately, a rough
conclusion can be drawn that the reliability of charging Station 1
is greater than that of charging Station 2, and the reliability of
charging Station 2 is greater than that of charging Station 3.

These analyses also provide a reference for charging station
planning. The traffic system data can be obtained by extracting
real-time traffic flow data and building a cell network. The
charging stations at different locations are further simulated to
get the optimized ordered charging and discharging power. Based
on the reliability of the traffic network as part of the objective
function, the ordered charging curve of the charging stations is
obtained, and further analysis of the power demand and charging
power can find a balance point of power and traffic, ensuring the
charging power and charging navigation of the synergy are
reasonable.

4.4 Computational time analysis

Furthermore, we choose four different cases under this model to
analyze the computational complexity. Case A is the optimization
model proposed in Section 3.2. Case B is the modifiedmodel without
considering grid reliability in Eq. 28. Case C is the modified model
without considering traffic efficiency in Eq. 27. Case D is the time
required to find the first feasible solution for the optimization model

as given in Section 3.2. The program is set up on a personal
computer with a four-core i5-8265 CPU and an 8G RAM to
further study the computational performance of the proposed
model. The optimal gap is set as 0.01%.

Table 1 shows that not considering grid reliability speeds up the
runtime, where most of the runtime is used to find the first feasible
solution. This is due to the fact that the model is a macroscopic scale
and the CTM is essentially concerned with whether and how many
cars each cell has, while path planning is achieved through traffic
flow only. Therefore, the search for the feasible domain of
preliminary convex optimization is time-consuming. In contrast,
when a feasible solution is found, collaborative path planning for
large-scale vehicles is much faster according to the boundary
conditions. Table 1 shows computational time analysis by
different cases. It is worth noting that the operation time of Case
C is longer than that of Case A, which is the result of the divergence
of the boundary conditions due to the change of the objective
function, which increases the difficulty of the boundary
convergence.

5 Conclusion

This paper presents an electric vehicle navigation and cluster
dispatch model proposed for a reliable traffic–power system. A
simplified model of the vehicle and traffic road network is
established, and a cell transmission model (CTM) is used to
simulate the real traffic network. A coupled model of the
traffic–power system is built for the orderly charging of electric
vehicles upon arrival at a charging station. The model considers the
coupling of the two systems on the time scale, and the charging and
discharging power at each charging station node is controlled. The
validity of the model is verified in a coupled system of 357 cell traffic
system and IEEE33 power system. The results show that it can
ensure a good guarantee of distribution network voltage reliability
and reveal the scheduling process of the traffic network. The model
also provides a reference for the planning of charging stations in the
distribution network. Through case study verification, the main
conclusions are summarized as follows:

• Different from traditional path planning, path navigation
based on the cell transmission model could plan a large
number of traffic subjects simultaneously, and at the same
time, the model can realistically simulate the traffic network
and imitate traffic congestion, which has high applicability and
practicality.

• The model performs unified charging scheduling for electric
vehicles, while considering the scheduling of V2G. Through
time-scale coupling, the transportation system is well-coupled
with the electric power system, solving the problem that the
existing research cannot take into account both systems at the
same time.

• The model can also reveal the weaknesses of the distribution
network. The comparison of the dispatch endpoints and
charging and discharging power of V2G vehicles can reveal
the vulnerable nodes corresponding to charging stations in the
system. This provides a reference for the subsequent
distribution network expansion planning including charging

TABLE 1 Computational time analysis by different cases.

Case A Case B Case C Case D

Optimization time
(seconds)

106.977669 62.152826 113.649501 47.258919
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station planning, line capacity increase, and line new
construction.

At the same time, there are shortcomings in this study.
Considering the computational complexity, this study does not
consider the fuel consumption of the traffic on the way, which
cannot be ignored in a large-scale traffic network. The model does
not consider the path planning constraints of other vehicles, which
can have an impact on the congestion level of the traffic network.
Further research will be conducted later to address these issues.

In the future, as electric vehicle penetration rate increases year-by-
year, the integration of traffic–power networks will gradually deepen.
Joint planning of the traffic–power system needs to be urgently carried
out, which can also combine distributed data, such as distributed
photovoltaics, to realize the integration of new energy and electrified
transportation. It is also necessary to carry out joint planning to combine
distributed generator data to realize integrated planning of new energy
and electrified transportation to help realize the dual carbon strategy.
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Nomenclature

Index and sets

ψCS Set of all cells of charging stations.

Vchar Set of all charging vehicles.

Vdis Set of all discharging vehicles.

Velse Set of all other vehicles.

ΩL Set of all branches.

β(a)/α(a) Set of all children/parent cells of cell a.
C Set of all the coupling pair of nodes and cells.

ƛ(i)/π(i) Set of all the children/parent nodes of node i.

ΩN Set of all nodes in the distribution network.

Constants

Qa
max Maximum traffic flow of cell a.

Na
max Maximum traffic amount that cell a can store.

ka Congestion factor.

es Energy margin of vehicle type s.

ε Error factor.

Xa,s Number of type s vehicles at cell a at the initial moment.

NV
s Number of type s vehicles in the traffic system.

ps/qs Maximum active/reactive power for each type s vehicle
charging/discharging.

Variables

xcell
a,t,s Number of type s vehicles in cell a at time t.

ycell
ab,t,s Number of type s vehicles moving from cell a to child cell b at

time t.

ecella,t,s Energy of all type s vehicles in cell a that could supply at time t.

Pcs
a,t/Q

cs
a,t Inject active/reactive power of cell a at time t.

Pin
i,t/Q

in
i,t Inject power of node i at time t.

Pgen
i,t /Q

gen
i,t Active/reactive power from the generator of node i at

time t.

Pij,t/Qij,t Active/reactive power flowing from node i to node j at
time t

Ui,t Amplitude voltage of node i at time t.
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