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Understanding the link between individual behaviour and population organization and func-
tioning has long been central to ecology and evolutionary biology. Behaviour is a response to 
intrinsic and extrinsic factors including individual state, ecological factors or social interactions. 
Within a group, each individual can be seen as part of a network of social interactions varying 
in strength, type and dynamic. The structure of this network can deeply impact the ecology and 
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evolution of individuals, populations and species. Within a group social interactions can take 
many forms and may significantly affect an individual’s fitness. These interactions may result 
in complex systems at the group-level, such as in the case of collective decisions (to migrate, to 
build nest or to forage). Among them, social transmission of information has been studied mostly 
in vertebrates: fish, birds and mammals including humans. In insects, social learning has been 
unambiguously demonstrated in social Hymenoptera but this probably reflects limited research 
effort and recent evidence show that even non-eusocial insects such as Drosophila, cockroaches 
and crickets can copy the behaviour of others. Compared to individual learning, which requires 
a trial and error period every generation, social learning can potentially result in the stable 
transmission of behaviours across generations, leading to cultural traditions in some species. 
The study of the processes which may facilitate or prevent this transmission and the analyses of 
the relationship between social network structure and efficiency of social transmission became 
these recent years an emerging and promising field of research. 

The goal of this research topic is to present the genetic and socio-environmental factors affecting 
social interaction and information or pathogen transmission with the integration of experi-
mental approaches, social network analyses and modelling. Importantly, we aim to understand 
whether a relationship between social network structures and dynamics can reflect the efficiency 
of social transmission, i.e. can we use social network analysis to predict the social transmission 
of information or of pathogen, collective decision-making and ultimately the evolutionary tra-
jectory of a group?

Citation: Sueur, C., Mery, F., eds. (2017). Social Interaction in Animals: Linking Experimental 
Approach and Social Network Analysis. Lausanne: Frontiers Media. doi: 10.3389/978-2-88945-122-7

http://journal.frontiersin.org/researchtopic/3974/social-interaction-in-animals-linking-experimental-approach-and-social-network-analysis
http://journal.frontiersin.org/journal/psychology


4 March 2017 | Social Interaction in AnimalsFrontiers in Psychology

Table of Contents

05 Editorial: Social Interaction in Animals: Linking Experimental Approach and 
Social Network Analysis
Cédric Sueur and Frédéric Mery

08 Intergroup Variation of Social Relationships in Wild Vervet Monkeys: A Dynamic 
Network Approach
Christèle Borgeaud, Sebastian Sosa, Redouan Bshary, Cédric Sueur  
and Erica van de Waal

18 The Influence of Gender, Age, Matriline and Hierarchical Rank on Individual 
Social Position, Role and Interactional Patterns in Macaca sylvanus at ‘La Forêt 
des Singes’: A Multilevel Social Network Approach
Sebastian Sosa

30 Relations between Spatial Distribution, Social Affiliations and Dominance 
Hierarchy in a Semi-Free Mandrill Population
Alexandre Naud, Eloise Chailleux, Yan Kestens, Céline Bret, Dominic Desjardins, 
Odile Petit, Barthélémy Ngoubangoye and Cédric Sueur

41 Social Information Transmission in Animals: Lessons from Studies of Diffusion
Julie Duboscq, Valéria Romano, Andrew MacIntosh and Cédric Sueur

56 A New Semi-automated Method for Assessing Avian Acoustic Networks 
Reveals that Juvenile and Adult Zebra Finches Have Separate Calling Networks
Marie S. A. Fernandez, Hedi A. Soula, Mylene M. Mariette and Clémentine Vignal

74 Understanding Dynamics of Information Transmission in Drosophila 
melanogaster Using a Statistical Modeling Framework for Longitudinal 
Network Data (the RSiena Package)
Cristian Pasquaretta, Elizabeth Klenschi, Jérôme Pansanel, Marine Battesti,  
Frederic Mery and Cédric Sueur

85 Bayesian Model Selection with Network Based Diffusion Analysis
Andrew Whalen and William J. E. Hoppitt

95 Social Network Analysis and Nutritional Behavior: An Integrated Modeling 
Approach
Alistair M. Senior, Mathieu Lihoreau, Camille Buhl, David Raubenheimer  
and Stephen J. Simpson

105 Connections Matter: Social Networks and Lifespan Health in Primate 
Translational Models
Brenda McCowan, Brianne Beisner, Eliza Bliss-Moreau, Jessica Vandeleest, Jian Jin, 
Darcy Hannibal and Fushing Hsieh

116 Layered Social Network Analysis Reveals Complex Relationships in 
Kindergarteners
Mireille Golemiec, Jonathan Schneider, W. Thomas Boyce, Nicole R. Bush,  
Nancy Adler and Joel D. Levine

http://journal.frontiersin.org/researchtopic/3974/social-interaction-in-animals-linking-experimental-approach-and-social-network-analysis
http://journal.frontiersin.org/journal/psychology


EDITORIAL
published: 19 January 2017

doi: 10.3389/fpsyg.2017.00035

Frontiers in Psychology | www.frontiersin.org January 2017 | Volume 8 | Article 35 |

Edited by:

Jeffrey R. Stevens,

University of Nebraska–Lincoln, USA

Reviewed by:

Daizaburo Shizuka,

University of Nebraska–Lincoln, USA

*Correspondence:

Cédric Sueur

cedric.sueur@iphc.cnrs.fr

Specialty section:

This article was submitted to

Comparative Psychology,

a section of the journal

Frontiers in Psychology

Received: 13 December 2016

Accepted: 06 January 2017

Published: 19 January 2017

Citation:

Sueur C and Mery F (2017) Editorial:

Social Interaction in Animals: Linking

Experimental Approach and Social

Network Analysis.

Front. Psychol. 8:35.

doi: 10.3389/fpsyg.2017.00035

Editorial: Social Interaction in
Animals: Linking Experimental
Approach and Social Network
Analysis

Cédric Sueur 1* and Frédéric Mery 2

1Centre National de la Recherche Scientifique (CNRS), Institut Pluridisciplinaire Hubert Curien UMR 7178, Université de

Strasbourg, Strasbourg, France, 2 Evolution, Génomes, Comportement and Ecologie, Centre National de la Recherche

Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Université Paris-Sud, Université Paris-Saclay,

Gif-sur-Yvette, France

Keywords: fitness, information, social transmission, health, disease, social structure, RSiena

Editorial on the Research Topic

Social Interaction in Animals: Linking Experimental Approach and Social Network Analysis

Understanding the link between individual behavior and population organization and functioning
has long been central to ecology and evolutionary biology (Krause et al., 2009; Sueur et al., 2011;
Kurvers et al., 2014). Behavior is a response to intrinsic and extrinsic factors including individual
state, ecological factors, or social interactions. Within a group, each individual can be seen as part
of a network of social interactions varying in strength, type, and dynamic. The structure of this
network can deeply impact the ecology and evolution of individuals, populations, and species.

Three studies in this present issue tried to understand how group members are socially
structured in non-human primates. Borgeaud et al. used a stochastic actor-oriented model (RSiena
Package, Snijders, 2001) to test the dynamics of relationships of three groups of wild vervet
monkeys. They found that triadic closure was significant in all three groups while degree popularity
was significant in only two groups. Moreover, the dynamics of relationships according to the
attributes of sex, matriline, and age differed significantly among groups.

In another way, Sosa showed that in Barbary macaques, females are more central, more active,
and have a denser ego network in the social network than males; thus, they contribute in a
greater way to the cohesive structure of the network. High-ranking individuals are likely to
receive fewer agonistic behaviors than low-ranking individuals, and high-ranking females receive
more allogrooming. Revealing the positions, the roles, and the interactional behavioral patterns
of individuals can help understand the mechanisms that shape the overall structure of a social
network.

Naud et al. studied another species of primates, the Mandrills. The objective of their study
was to investigate how the group spatial distribution of a semi-free ranging colony of Mandrills
in a food competition context relates to its social organization. Their results showed that high-
ranking individuals were more observed in proximity of the feeding zone but that affiliative
relationships were also associated with individual spatial distributions and explain more the
individual distribution than dominance hierarchy.

These studies showed that within a group social interactions can take many forms and may
significantly affect an individual’s fitness (Silk et al., 2003; Formica et al., 2012; Kurvers et al., 2014).
These interactions may result in complex systems at the group-level, such as in the case of collective
decisions (Sueur et al., 2012). Among them, social transmission of information has been studied
mostly in vertebrates (Whiten and van Schaik, 2007). Duboscq et al. reviewed the context and
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the methodology of experiments testing social transmission of
information. However, they also discussed the reasons why social
transmission sometimes does not occur despite being expected to
and spanned a full range of mechanisms and processes including
the constraints imposed by the social networks in which animals
are embedded.

In a study on zebra finches, Fernandez et al. designed amethod
analyzing group vocal network semi-automatically. They wanted
to test the hypothesis that the social structure of the group
influences the parameters of the group vocal network. Using
Markov analysis and cross-correlation analyses, they showed
that juveniles as well as adults were more likely to respond to
individuals of their own age-class.

In insects, social learning has been unambiguously
demonstrated in social Hymenoptera but this probably reflects
limited research effort and recent evidence show that even non-
eusocial insects such as Drosophila, cockroaches, and crickets
can copy the behavior of others (Battesti et al., 2012, 2015;
Waters and Fewell, 2012). In this way, Pasquaretta et al. also used
the RSiena package to analyze the dynamic of the interaction
network of the fruit fly Drosophila melanogaster during social
learning experiments. This work showed the importance of new
methodologies in social network analyses to better understand
causes and effects of animal social networks properties. The study
of the processes which may facilitate or prevent this transmission
and the analyses of the relationship between social network
structure and efficiency of social transmission became in recent
years an emerging and promising field of research (Sueur, 2011;
Pasquaretta et al., 2014).

For instance, a number of recent studies have used Network
Based Diffusion Analysis (NBDA) to detect the role of social
transmission in the spread of a novel behavior through a
population (Franz and Nunn, 2009; Hoppitt et al., 2010). Whalen
and Hoppitt presented in this special issue a unified framework
for performing NBDA in a Bayesian setting, and demonstrated
how the Watanabe Akaike Information Criteria (WAIC) can be
used for model selection. They performed a large scale simulation
study and found that NBDA using WAIC could recover the
correct model of social transmission under a wide range of cases,
including under the presence of random effects, individual level
variables, and alternative models of social transmission.

On another topic, Senior et al. worked on an integrated
model approach between social network analysis and nutritional

behavior. Animals have evolved complex foraging strategies
to obtain a nutritionally balanced diet and associated fitness
benefits. This nutritional behavior can also influence animal
social interactions and affect group structures. Senior et al.
demonstrated how social network analyses can be integrated
into such a nutritional modeling framework. They illustrated
their approach by examining the case of nutritionally mediated
dominance hierarchies and demonstrated how metrics from
social network analyses can be used to predict the fitness of agents
in these simulations.

Health is a component of fitness also very well studied in
Animal Behavioral Sciences (Abbot et al., 2011; MacIntosh et al.,
2011; Rico-Uribe et al., 2016). In their study, McCowan et al.
argued that nonhuman primate social systems are sufficiently

complex to serve as model systems to study links between
social life and health as we might observe in Humans. The
influence of social contexts influencing health and fitness
in non-human primates might help us to improve human
health.

Finally, Golemiec et al. used a layer motif approach
to understand social networks of kindergarten children and
concluded that this method can be applicable on a more general
scale to any group of individuals where interactions and identities
can be readily observed and scored.

Using different animal species, including humans, this special
issue investigated and showed how the structure of a group affects
social interaction, information transfer, and collective decisions;
but also how individuals treat different sources of information
according to their sociality and the latest methodologies used to
understand these processes.
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Social network analysis is a powerful tool that enables us to describe and quantify

relationships between individuals. So far most of the studies rely on the analyses of

various network snapshots, but do not capture changes over time. Here we use a

stochastic actor-oriented model (SAOM) to test both the structure and the dynamics of

relationships of three groups of wild vervet monkeys. We found that triadic closure (i.e.,

the friend of a friend is a friend) was significant in all three groups while degree popularity

(i.e., the willingness to associate with individuals with high degree of connections) was

significant in only two groups (AK, BD). The structure and dynamics of relationships

according to the attributes of sex, matrilineand age differed significantly among groups.

With respect to the structure, when analyzing the likelihood of bonds according to

the different attributes, we found that individuals associate themselves preferably to

individuals of the same sex only in two groups (AK, NH), while significant results for

attachment to individuals of the same matriline were found also in two groups (BD, NH).

With respect to the dynamics, i.e., how quickly relationships are modified, we found

in two groups (AK, BD) that females’ relationships were more prone to variation than

males.’ In the BD group, relationships within high-ranking matrilines were less stable than

low-ranking ones while in the NH group, juveniles’ relationships were also less stable

than adults’ ones. The intergroup variation indicates that establishing species-specific

or even population specific characteristics of social networks for later between-species

comparisons will be challenging. Although, such variation could also indicate some

methodological issue, we are quite confident that data was collected similarly within the

different groups. Our study therefore provides a potential new method to quantify social

complexity according to natural demographic variation.

Keywords: social network, dynamics of relationships, RSiena, group composition variation, vervet monkeys

8

http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://dx.doi.org/10.3389/fpsyg.2016.00915
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2016.00915&domain=pdf&date_stamp=2016-06-21
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:christele.borgeaud@unine.ch
http://dx.doi.org/10.3389/fpsyg.2016.00915
http://journal.frontiersin.org/article/10.3389/fpsyg.2016.00915/abstract
http://loop.frontiersin.org/people/258688/overview
http://loop.frontiersin.org/people/289043/overview
http://loop.frontiersin.org/people/203907/overview
http://loop.frontiersin.org/people/217593/overview
http://loop.frontiersin.org/people/347969/overview


Borgeaud et al. Network Dynamics in Vervet Monkeys

INTRODUCTION

Social network analysis is a method that is used to describe and
quantify relationship patterns within a group. Such metrics can
be applied at an individual, group or species level. During the last
decade, social network analysis has become increasingly popular,
especially in primatology (Silk et al., 2003, 2010; Flack et al.,
2006; Sueur and Petit, 2008; Henzi et al., 2009). However, most
previous studies considered a network to be a static structure
that does not vary over time. The few studies that integrated
temporal variation focused on dyadic relationships or at the
group level and compared networks at different periods (Silk
et al., 2006a; Henzi et al., 2009). Such a dynamic approach is
necessary if we aim at quantifying network instability and hence
the need of an individual to monitor and update its knowledge
about its own and also third party relationships. One study tested
the influence of natural “knock-outs” within the group (Barrett
et al., 2012) and measured their effects in term of entropy (i.e.,
uncertainty reduction). Another one used 20 years of data on
a clan of spotted hyenas to understand the effect of rainfall
and abundance of prey on the network structure (Ilany et al.,
2015). In a parallel publication (Borgeaud et al., in preparation)
on wild vervet monkeys, we also made a first step forward
toward the analysis of a network dynamics by considering
the influence of demographic variation (i.e., the number of
individuals entering and leaving the group) on the individual
centrality and on the dyadic relationship stability. Results
suggested that, despite some intergroup variation, demographic
variation of females, and juveniles have a stronger influence
than males on both centrality and the relationship stability.
This seems logical knowing that, in vervet monkeys, females
remain generally in their natal group for their entire life and
form strong and long-lasting bonds with their kin, while males
migrate throughout their lives (Cheney and Seyfarth, 1990).
However, despite the development of new analytical methods,
studies that took into consideration changes over time within
a network remain scarce (see Pinter-Wollman et al., 2013 for a
review).

Explaining cooperative behaviors that benefit the recipient
at some cost to the donor (i.e., helping based on investments)
has been a great challenge. Both the kin selection (Hamilton,
1964) and the reciprocity (Trivers, 1971) concepts provided an
evolutionary explanation to helping, respectively within related
and unrelated individuals. Social network analyses have been
proposed as a powerful tool to describe how individuals influence
each other within a network and how these relationships evolve
over time. Ultimately understanding the dynamics of these
relationships could help explain how cooperation evolves. For
example, triadic closure (i.e., the hypothesis that an individual is
more likely to create bonds with the friends of its friends) may
facilitate the formation of cohesive sub-/groups and consequently
cooperation within a social group (Granovetter, 1973; Lusseau
et al., 2006; Easley and Kleinberg, 2010). The process that
describes how individuals associate preferably to individuals with
high centrality is called degree popularity (Barabási and Albert,
1999) and some studies found that high-ranking individuals are
usually more central within a grooming and proximity network

(see Schino, 2001 for a meta-analysis; Kanngiesser et al., 2011;
Sueur et al., 2011a; Borgeaud et al., in preparation). This supports
Seyfarth’s theory (1977), which suggests that grooming could
be exchanged against coalitionary support and that individuals
should compete to associate with high-ranking individuals as
they provided better support during conflicts or as tolerance in
the vicinity of food resources increase with grooming exchanged.
In this way, individuals attracted to central individuals might
have a better fitness than other less strategic individuals. Another
interesting measurement is the assortativity of relationships
based on individual traits which is called homophily (see
McPherson et al., 2001 for a review). Examples include space use
in sea lions (Wolf et al., 2007), sex and age-related relationships
in dolphins (Lusseau and Newman, 2004), and personality in
sticklebacks (Pike et al., 2008). Homophily might also increase
an individual’s fitness. For example, playing behavior between
juveniles decreases the risk of injuries (Shimada and Sueur,
2014) and personality or sex segregation increases food research
efficiency (Ruckstuhl and Kokko, 2002; Dyer et al., 2009).
In primates, some studies report that, except for kin who
usually forms the strongest bonds (Chapais, 2001; Silk et al.,
2006a,b, 2010, 2012), unrelated individuals of similar rank or
age also form long-lasting relationships (Silk et al., 2006a, 2010,
2012). Such bondedness could be explained through familiarity
and eventually paternal kinship (Seyfarth and Cheney, 2012)
but also personality (Massen and Koski, 2014). It has been
reported that the quality of such bonds have an influence
of an individual’s fitness such as its longevity and offspring
survival (Silk et al., 2003, 2009, 2010) resulting in the selection
of such social strategies but a lot of studies analyzed such
relationships as being part of a static network. Hence it would
be important to apply a more dynamic approach to the analyses
of relationships quality which evolve naturally over time (Ilany
et al., 2015).

One method that has been developed is the Siena model
(for Simulation Investigation for Empirical Network Analysis,
Snijders, 2001; Blonder et al., 2012; Pinter-Wollman et al., 2013;
Ilany et al., 2015; Pasquaretta et al., 2016), available in the
R package RSiena. This stochastic actor-based model aims to
give a realistic representation of the dependence between the
formation and also termination of different network ties. It
therefore allowed us to examine how network processes and
covariates influence the probability of individuals changing their
network ties according to their attributes over time (Burk et al.,
2007; Snijders et al., 2010). By applying these analyses on three
wild groups of vervet monkeys over a period of 2 years, we
aimed at describing the dynamics of their social network (in
terms of grooming and proximities relationships) according to
the natural demographic variation. Vervet monkeys represent
an ideal model as, in addition to natural disappearance, every
year a new generation of infants gets integrated. Native sub-
adult males leave the group once they have reached sexual
maturity and adult males migrate throughout their whole life
joining and leaving multiple groups (Cheney and Seyfarth,
1990).

RSiena is a powerful program allowing us to answer many
questions about the mutually dependent dynamics of networks
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and attributes (behavior, individual characteristics, etc.) of the
individual actors in the network. The RSiena approach allows
testing of a great variety of potentially interesting network
characteristics such as triadic closure, homophily, and rate effect,
which analyses the relationships’ stability according to various
individual attributes. This approach allowed us to assess how
the relationships’ quality (i.e., based on grooming and proximity
data) evolves in function of the natural demographic variations.
First, we tested the effect of triadic closure (Figure 1A) and
degree popularity as well as the temporal persistence of these
effects. As vervet monkeys are a highly social species that shows
some level of cooperation (Cheney and Seyfarth, 1990; Borgeaud
and Bshary, 2015), we expected triadic closure to be present in
all three groups. Specifically, the triadic closure effect will assess
whether new incoming individuals developing relationships with
specific individuals will also develop relationships with their
“friends.” Triadic closure is a good model to understand how
networks will evolve over time. While simple graph theory
tends to analyze networks at one point in time, applying the
triadic closure principle can predict the development of ties
within a network and shows the progression of connectivity
(Easley and Kleinberg, 2010). We also tested the effect of
degree popularity (Figure 1B): as high-ranking individuals offer
better support in case of conflict (Cheney and Seyfarth, 1990)
and could also confer some protection when spending time
in their proximity (Watts, 2002; Cheney and Seyfarth, 2007)
they should be preferred targets for bonding attempts and
hence should receive disproportionate amounts of grooming.
Therefore, new incomers would challenge existing links between
group members and in this case it might result in detectable
variation of central/high ranking individuals’ position within
the network (Cheney and Seyfarth, 1990; Borgeaud et al.,
in preparation). We also tested homophilic bonds (Figure 1C)
to know if individuals preferably associate with individuals of
similar attributes such as sex, matriline, hierarchy, and age.
As females are the philopatric sex and normally remain in
their natal group throughout their lives (Cheney and Seyfarth,
1990), we expected them to form stronger bonds with other
females rather than with males. As juveniles from the same
generation spend at least 4 years within the same group before
a potential migration (i.e., for the males) and as adult females
have spent many years within the same group (Cheney and
Seyfarth, 1990), we expected individuals from similar age to form
stronger bonds (Silk et al., 2010). We also expected individuals
of similar rank in the hierarchy to form stronger bonds than

individuals of distant rank as usually neighboring ranks are
more closely related (Cheney and Seyfarth, 1990). Furthermore,
as hypothesized by Seyfarth (1977), if high-ranking females
are indeed preferred grooming partners, competition may limit
the access to high-ranking partners only to neighboring rank
individuals (Silk et al., 2006a,b). Finally, we examined how
the different group members’ relationships according to the
same individual attributes are prone to variation over time.
As indicated by Silk et al. (2010), adult female baboons form
strong and stable bonds with their kin and with females of
similar age. We therefore expected the same for female vervet
monkeys while males’ relationships should be more prone to
variation.

METHODS

Study Groups
The study was conducted from January 2012 until December
2013 at the Inkawu Vervet Project, Mawana game reserve
(S 28◦ 00.327; E 031◦ 12.348), Kwazulu Natal, South Africa.
Subjects were three habituated groups of wild vervet monkeys.
All individuals were recognized individually through facial
and body features. Observers were all requested to pass an
identification test and data were collected only if the identity
of the individual was certain. We considered females as adults
as soon as they had their first infant and males as adults
once they migrated from their natal group. Individuals were
considered as juveniles (including sub-adults, i.e., generally 3
years old females before they give birth and males before they
emigrate) from the age of 1 until adulthood and as infants up
to 1 year old. All three groups had been regularly followed
since 2010, allowing us to have a good estimation of their
age, although for the analyses we considered only two age
categories: adult or juvenile while infants were excluded. The
size of the Ankhase (AK) group excluding infants varied from
26 to 33 individuals (including from 4 to 7 adult males, 6 to 8
adult females, and 12 to 19 juveniles), Baie Dankie (BD) group
varied from 36 to 48 individuals (4 to 5 adult males, 11 to
14 adult females, and 19 to 33 juveniles), and the Noha (NH)
group varied from 25 to 41 individuals (2 to 7 adult males, 11
to 12 adult females, and 11 to 25 juveniles) (see Table 1 for
group composition). Hierarchy was assessed by the creation of
matrices based on dyadic aggressive interactions (i.e., winner-
loser) occurring either in a natural context or around various
food experiments. Rank relationships were assessed through the

FIGURE 1 | Representations of (A) Triadic closure: If A and B are connected, the probability of B and C being connected is increased; (B) Degree

popularity: A being more connected has a higher degree popularity than B, C, and D; (C) Homophily: A, B, C, and D are more connected to each other

as they have similar attribute characteristics such as hierarchy for example than they are connected to E, F, and G who themselves have similar

attribute characteristics.
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TABLE 1 | Group composition.

Group

AK BD NH

Adult males 4–7 4–5 2–7

Adult females 6–8 11–14 11–12

Juveniles and subadults 12–19 19–33 11–25

Total 26–33 36–48 25–41

“de Vries” (1998) methodology. The “I&SI” method of de Vries
(1998), in which parts of the hierarchy that are unresolved by
the “I” method (Slater, 1961, which minimizes the number of
inconsistencies) are decided by minimizing the sum of the rank
differences between individuals whose ranks are inconsistent,
gave us a list of individuals from the most to the less dominant
one. The female hierarchy remained stable during the study
period, while the male one was highly variable across 3 months
periods.

Data Collection
Grooming, 1 and 5m proximity data were collected through
the method of scan sampling (Altmann, 1974) during two full
days per week per group. Every 30min and during a window
of 10min, observers walked within the group to collect the
behavior of a maximum number of individuals (except infants).
For each scanned individual the identity of all the individuals
present within 1 and 5m of it was also recorded. As data
were collected by multiple observers, an inter-observer reliability
test was performed for each observer and for each category of
data to reduce any bias. The threshold of reliability was set to
a minimum of 80%. In total we analyzed 3 months periods
over 2 years which equals a total of 8 different periods. In
the AK group we collected 31,661 scans, in BD 28,548 and
in NH 28,448. Data were collected on handheld computers
(Palm Zire 22 or TX, PDA 32 and Pocket pc HP Travel
Companion iPAQ rx5935) equipped with the Pendragon 5.1
software.

SIENA Model and Statistical Analyses
SIENA Model (Simulation Investigation for Empirical Network
Analysis; Snijders et al., 2010) is a log-linear dynamic model
based on Markov processes that allows longitudinal network
analysis. It uses an iterative stochastic simulation algorithm
in three phases (calculating, updating, and re-calculating) as a
Diffusion model updating statistical values after each iteration,
making it a powerful method to find significant effects (effects
that are greater than expected based on random models) and
decreasing probabilities to find false positives (an effect that does
really not exist) or false negatives (absence of effect that should be
present).

Concerning actors, the model is based on the purposive
action. Actors are considered as aware of the state of the
network as a whole. They make choices and they can opt for
creating, maintaining, or deleting an association in order to
optimize their position within the group. These choices are

done independently but can be constrained by endogen effects
(i.e., relational structuring processes that depend on relational
choices made by all the actors but independent from individual
characteristics), hexogen effects (i.e., individual attributes such as
sex or age), and some random effects.

As for the network, SIENA proposes a statistical model for
longitudinal data analysis that requires at least two observations
of the state of a network at two consecutive moments. The
model supposes that some observations are missing between
the two moments and that changes occur on a linear time
basis through small steps between the two states observed.
Thus, the model is based on Markov chains with linear time in
which the future state of the network is linked to the previous
state.

Siena only runs on binary matrices (existence or absence of
links). In order to turn our valued matrices into binary matrices
we used the protocol established by Fedurek et al. (2013) to
create a mutual preferred social patterns index based on multiple
social indices (i.e., grooming and proximity). The first step
of this protocol consists of establishing a threshold for each
one of the eight matrices for the three behaviors (grooming,
1 and 5m proximity). The threshold is based on one-third
standard deviation larger than the average for each behavioral
matrix. The second and final step consists in considering the
dyads as mutual preferred social partners if they were mutual
associates for at least two of the three different behavioral
matrices at a given time point (Fedurek et al., 2013; Levé
et al., 2016). We repeated this protocol for each of the three
groups.

The dependent variable here is the change in network relations
with an analysis of factors influencing network changes over
time. This network modeling aims to explain the network
from the links and the actors it is composed of and also
to explain the emergence, the pattern, and the evolution of
relations within the network. To determine whether effects
are significant or not, RSiena applies a stochastic simulation
algorithm. The procedure consists of simulating many networks
to observe if the value of the effects in these simulated networks
is different or not from the observed network. Simulation allows
us to obtain two parameters, the estimate and the standard
error. To obtain the significance of the effect we performed
a Wald-type test (based on the parameter estimate and the
covariance matrix). Under the null hypothesis that parameter
is zero with approximately a standard normal distribution.
See Ripley et al. (2011) for more information about this
procedure.

The network evaluation function (analysis of the probability
of changes in the links according to some patterns called factors
in RSiena) for an actor I is defined by:

f neti (x) =

∑

k

βnet
k snetik (x) (1)

Where βnet
k

are the parameters and snet
ik

are the effects chosen by
the user (in this research the “TransTrip,” “ InPop,” and “SimX”
effects are described above respectively in Equations (2–4).
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The analytical protocol consisted in adding the effects one by
one, and testing the significance of the effect after each addition.
The effect was retained when significant, otherwise it was simply
removed from the model.

The first effect tested in the model was one potential
structural effects: the “TransTrip,” which give information about
phenomenon of triadic closure process (TC):

• TransTrip (i.e., TC) effect analyses individuals’ transitivity
(i.e.,). It is calculated by the number of transitive triplets
among relations of i (i is linked to j and h, and these are linked
to each other). It describes the ≪ friends of my friends are
my friends ≫ phenomenon. The TransTrip effect formula is
as follows:

snetik (x) =
∑

j,h

xijxihxjh (2)

For this effect the contribution of the relation i → j is
proportional to the total number of transitive triplets formed,
which can be (i→ j→ h; i→ h) or (i→ h→ j; i→ j).

The second effect tested in the model was another potential
structural effects: “InPop,” which give information about growth-
preferential association (PA).

• The inPop (i.e., PA) effect analyses individuals’ ≪ popularity
≫ [i.e., defined by summing relations received by actors j
(degree) whom i is linked to]. In our case as the networks are
undirected we can consider this effect as degree popularity.
It is calculated by the sum of in-degrees of the individual
whom i is linked to. Popularity effect discloses individuals’
preference to be linked to popular actors (i.e., individuals with
highest degrees receive more incoming links). The inPop effect
formula is as follows:

snetik (x) =
∑

i

xij
∑

h

xhj (3)

Then we investigated the influence of covariate factors one by
one by analyzing the “SimX” effects according to sex, matriline
hierarchical rank and age, which give information about the
tendency of individuals to create relations with individuals with
similar attributes. This effect can be seen as an analysis of
homophily or heterophily processes. Calculation details of this
effect are described above and further information can be found
in SIENA manual (Ripley et al., 2011).

• The covariate-related similarity (SimX) effect is the sum of
centered similarity scores simv

ij between i and the other actors

j to whom he is tied according to the covariate v. The SimX
effect formula is as follows:

snetik (x) =
∑

j

xij(sim
v
ij − ŝim

v
) (4)

Where ŝim
v
is the mean of all similarity scores.

For each one of this “SimX” effects we added at the same time
the “Covariate-ego× alter” effect in order to control unequal ties
between groups. The “Covariate-ego × alter” effect is simply the

product of I’s covariate and sum of his alters. To consider the
effect as significant, both “SimX” and “Covariate-ego × alter”
effects have to be significant.

Finally, we investigated the rate function effect according
to sex, matriline, hierarchy and age one by one. The network
rate function analyses how fast interactions change according to
individual attributes (e.g., females have higher rate changes than
males) for an actor i. This function is restricted to positive values
as product of exponential elements. It can be defined by:

λneti (ρ, α, x,m) = λneti1 λneti2 λneti3 , for x = x(t), tm ≤ t

< tm+1 (5)

With λneti1 = ρnet
m representing the dependence of the period,

λneti2 = exp(
∑

h αhvhi) representing the effect of actor covariates
(vhi as the factor and αh as the dependence of the degree)
and λneti3 = exp(αh + xi) representing the contribution
of the degree (actor’s personal network). Where ρ is the basic
rate parameter, α is the dependence of the degree, m is the
period (number of observation minus one), and t is the time
point.

Models that included all the effects did not provide
accurate goodness of fit analyses. For each group, we therefore
realized a global model built up step by step by adding
and testing the significance of one effect at a time. Once
we obtained the final model for each group, we ran a
goodness-of-fit test to assess if our model was significantly
different from the observational data. We run a one-tailed
Monte Carlo Mahalanobis distance test. After controlling for
unequal ties between groups, such methodology led to the
disappearance of the “hierarchy” attribute effect within the
whole model and the “age” effect when testing the presence
of homophilic bonds (Table 2). We therefore present only
significant results below but discuss the absence of these
effects within our global model further below. Goodness of
fit plots for the degree distribution, the geodesic distribution
and the triad census for each group are also presented in the
Supplementary Figure 1.

RESULTS

First of all, the goodness of fit analyses indicated that our
model selection was reasonably accurate for all three groups, AK
(MHD = 156.51; P = 0.054), BD (MHD = 126.65; P = 0.425),
and NH (MHD= 77.17; P = 0.434).

When analyzing the structure of the network, all three groups
showed a significant effect of triadic closure (AK: χ

2
= 7.794;

DF = 1; p = 0.029; BD: χ
2
= 21.573; DF = 1; P < 0.001;

NH: χ
2
= 53.561; DF = 1; P < 0.001, Table 2), while there

was a significant effect of degree popularity in only two groups
(AK: χ2

= 3.918; DF = 1; P = 0.048; BD: χ2
= 4.228; DF = 1;

P = 0.039; Table 2).
With respect to the structure, when analyzing the likelihood of

homophilic bonds according to the different attributes, we could
not find any general pattern across all three groups. Only the AK
(χ2

= 8.615; DF = 1; P = 0.003) and the NH (χ2
= 21.719;

DF = 1; P < 0.001) group members showed a significant

Frontiers in Psychology | www.frontiersin.org June 2016 | Volume 7 | Article 915 | 12

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Borgeaud et al. Network Dynamics in Vervet Monkeys

T
A
B
L
E
2
|
S
to
c
h
a
s
ti
c
a
c
to
r-
o
ri
e
n
te
d
m
o
d
e
l,
re
s
u
lt
s
s
u
m
m
a
ry
.

A
K

B
D

N
H

E
s
ti
m
a
te

S
td

e
rr
o
r

t
ra
ti
o

X
2

D
F

P
-v
a
lu
e

E
s
ti
m
a
te

S
td

e
rr
o
r

t
ra
ti
o

X
2

D
F

P
-v
a
lu
e

E
s
ti
m
a
te

S
td

e
rr
o
r

t
ra
ti
o

X
2

D
F

P
v
a
lu
e

Tr
a
n
si
tiv
e
tr
ip
le
ts

0
.0
8

0
.0
4

0
.1
1

4
.7
9
4

1
0
.0
2
9

0
.2
4

0
.0
5

0
.0
8

2
1
.5
7
3

1
<
0
.0
0
1

0
.2
7

0
.0
4

−
0
.0
2

5
3
.5
6
1

1
<
0
.0
0
1

D
e
g
re
e
p
o
p
u
la
rit
y

−
1
.0
2

0
.1
8

0
.1
2

3
.9
1
8

1
0
.0
4
8

0
.0
6

0
.0
3

0
.0
9

4
.2
2
8

1
0
.0
3
9

0
.1
3
1

1
0
.7
1
8

S
a
m
e
se
x

−
0
.5

0
.1
7

0
.1

8
.6
1
5

1
0
.0
0
3

0
.0
0
3

1
0
.9
8
6

-1
.8
4

0
.4

-0
.0
1

2
1
.7
1
9

1
<
0
.0
0
1

E
g
o
se
x
e
ffe

c
t

1
.0
6

0
.2
8

0
.0
1

1
4
.5
1
4

1
<
0
.0
0
1

0
.0
0
2

1
0
.9
6
3

3
.8
3

0
.7
6

0
.0
3

2
5
.4
5
2

1
<
0
.0
0
1

S
a
m
e
m
a
tr
ili
n
e

2
8
.6
0
8

1
<
0
.0
0
1

0
.8
3

0
.1
3

0
.0
1

4
1
.8
3
3

1
<
0
.0
0
1

0
.9
8

0
.1
2

0
.0
3

7
1
.4
6
3

1
<
0
.0
0
1

E
g
o
m
a
tr
ili
n
e
e
ffe

c
t

1
.2
3
5

1
0
.2
6
6

0
.0
1

<
0
.0
0
1

0
.0
5

7
.0
4
5

1
0
.0
0
8

0
.0
2

0
.0
1

<
−
0
.0
0
1

8
.3
0
9

1
0
.0
0
4

S
a
m
e
h
ie
ra
rc
h
y

2
.7
1
5

1
0
.0
9
9

5
.4
8
6

1
0
.0
1
9

1
9
.8
6
6

1
<
0
.0
0
1

E
g
o
h
ie
ra
rc
h
y
e
ffe

c
t

0
.1
5
6

1
0
.6
9
2

0
.0
1
7

1
0
.8
9
8

0
.4
2
3

1
0
.5
1
5

S
a
m
e
a
g
e

0
.0
2
9

1
0
.8
6
4

0
.3
2
2

1
0
.5
7

4
.5
3
1

1
0
.0
3
3

E
g
o
a
g
e
e
ffe

c
t

0
.0
0
3

1
0
.9
5
7

0
.2
0
6

1
0
.6
5

1
.7
6
2

1
0
.1
8
4

R
a
te

e
ffe

c
t
o
n
se
x
o
n
ra
te

0
.6
6

0
.2
2

−
0
.1
4

9
.0
4
8

1
0
.0
0
3

0
.9
8

0
.2
3

0
.0
3

1
7
.8
8
9

1
<
0
.0
0
1

0
.4
0
6

1
0
.5
2
4

R
a
te

e
ffe

c
t
o
n
m
a
tr
ili
n
e
o
n
ra
te

2
.7
7
4

1
0
.0
9
6

-0
.1

0
.0
3

0
.0
8

1
2
.2
7
6

1
<
0
.0
0
1

1
.1
4
7

1
0
.2
8
4

R
a
te

e
ffe

c
t
o
n
h
ie
ra
rc
h
y
o
n
ra
te

0
.7
1
6

1
0
.3
9
7

0
.5
3

1
0
.4
6
6

0
.7
4
1

1
0
.3
8
9

R
a
te

e
ffe

c
t
o
n
a
g
e
o
n
ra
te

1
.2
3
6

1
0
.2
6
6

1
.0
0
1

1
0
.3
1
7

0
.6
4

0
.1
9

0
.0
3

1
1
.3
3
4

1
<
0
.0
0
1

S
ig
n
ifi
c
a
n
t
e
ff
e
c
ts
a
re
re
p
re
s
e
n
te
d
in
b
o
ld
a
n
d
th
e
e
s
ti
m
a
te
,
th
e
s
ta
n
d
a
rd

e
rr
o
r
a
n
d
th
e
t
ra
ti
o
a
re
a
ls
o
g
iv
e
n
fo
r
th
e
s
e
e
ff
e
c
ts
.

F
o
r
th
e
h
o
m
o
p
h
ily
,
th
e
e
ff
e
c
t
is
c
o
n
s
id
e
re
d
a
s
s
ig
n
ifi
c
a
n
t
o
n
ly
if
b
o
th
m
a
in
(i.
e
.,
s
e
x,
m
a
tr
ili
n
e
,
h
ie
ra
rc
h
y,
a
n
d
a
g
e
)
a
n
d
th
e
e
g
o
e
ff
e
c
ts
a
re
s
ig
n
ifi
c
a
n
t.

preference of association to individuals of the same sex while
preference of association with the same matriline was present
only in the BD (χ2

= 41.833; DF = 1; P < 0.001) and NH
(χ2

= 71.463; DF= 1; P < 0.001; Table 2) groups.
Finally, when looking at the network dynamics with

relationships variation over time, results indicated a strong
intergroup variation. In the AK groups, we found that females
experience a greater and quicker relationships’ variation than
males do (χ2

= 9.048; DF = 1; P = 0.003) while
for the BD group there was a significant effect of sex
and matriline, suggesting that males’ relationships are more
prone to variation than females’ (χ2

= 17.889; DF = 1;
P < 0.001) and that high-ranking matrilines also experience
a greater variation in their relationships stability (χ2

=

12.276; DF = 1; P < 0.001). Only in the NH group,
we found that juveniles’ relationships were more prone to
variation than adults’ (χ2

= 11.334; DF = 1; P < 0.001;
Table 2).

DISCUSSION

In this study we tried to understand the dynamics of a social
network through detailed analysis of the creation and destruction
of relationships over time according to the following individual
attributes: sex, matriline, hierarchy, and age. Main results
indicate that individuals associate themselves with friends of their
friends but many differences exist between the three groups.
To our knowledge, this is the first study that uses a SAOM
to analyze such dynamics on multiple and non-experimental
groups. Indeed, another study (Ilany et al., 2015) already used
such a model, but focused on only one group of hyenas and
the effects of ecological variables. RSiena package was also used
to understand social information transmission in experimental
groups of drosophila (Pasquaretta et al., 2016). Our results show
the importance of observing multiple groups when we want to
assess the effect of different social variables on the temporal
evolution of a network structure.

The analyses on triadic closure (which represents the
likelihood of two individuals to be associated if they have a
mutual third party associate) indicated that such effect was
present in all three groups. According to some hypotheses, triadic
closure might facilitate the evolution of cooperation (Banks and
Carley, 1996; Davidsen et al., 2002; Righi and Takacs, 2014).
For example, someone might be more likely to become friends
with and potentially help a friend of a friend. This suggests
that vervet monkeys’ social system met the conditions for the
emergence of triadic closure (Lusseau et al., 2006). In animals,
only one study focused on how the triadic associations influence
a social network structure (Ilany et al., 2013). However, what
remains unknown with such theory is if triadic closure is the
evolutionary consequence or the prerequisite of cooperation.
More studies are needed to understand whether triadic closure
is a by-product of social network or relatedness or is a
social strategy leading to better cooperation between multiple
partners. The degree popularity results, which represent the
preferred association to highly central individuals, indicate
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that individuals try to bond with individuals that are central
within a network, but this effect was found only in two
groups. This pattern results in more centralized networks having
great impact on information and disease transmission and
several researches are done to understand whether and how
natural selection might impact these social network properties
(Pasquaretta et al., 2014; Duboscq et al., 2016; Romano et al.,
2016). As multiple previous studies found a positive correlation
between rank and/or matriline and centrality (Schino, 2001;
Kanngiesser et al., 2011; Sueur et al., 2011a; Borgeaud et al.,
in preparation), our results partially support the generality of
Seyfarth’s model (1977). This model also suggests that grooming
can be exchanged against tolerance among food resources or
coalitionary support, which seems to exist in vervet monkeys
(Borgeaud and Bshary, 2015). Central individuals are either
high-ranking individuals, either close relatives or experienced
individuals (Sueur et al., 2011b). In this way we can easily
understand how preferred association to central individuals
might be selected as a social strategy increasing fitness but
still, we can observe that this effect is dependent on group
composition. However, it should be noted that some studies fail
to provide evidence for degree popularity, including in vervet
monkeys (Henzi et al., 2013), as we do for one of the study
groups.

We also tested if individuals associated preferably with
individuals of similar attributes. After controlling for the
differences in sex ratio (Female ratio: AK: 44; BD: 56; NH:
50%), our results surprisingly indicate that females form stronger
bonds between themselves rather than with males only in the
AK and NH groups. These results confirm that individuals
of the philopatric sex, which normally remain in their natal
group throughout their lives form strong and long-lasting bonds
with each other (Cheney and Seyfarth, 1990; Silk et al., 2010).
However, it remains challenging to explain the absence of
significant results in the BD group. One explanation could rely
on the presence of multiple adult males who, in contrary to
the other groups were already present within the group at the
beginning of the project in 2010 and remained within the group
for a large part of the study. In this situation and at least on
the time period of our study, females might have developed
strong and long lasting relationships with these males. Similarly,
our results suggest that members from the same matriline form
stronger bonds than members of different matrilines, but only in
the BD and NH groups. The positive results fit predictions by kin
selection (Hamilton, 1964), while it remains unclear why such an
effect should be absent in the AK group. In contrary to these two
groups, the AK group is generally more tolerant and females of
distant ranks regularly groom each other (Borgeaud and Bshary,
2015), which could reflect the results of this study. Tolerance
between non kin was shown to be an advantage to decrease
risk injuries, energy costs to maintain social relationships, or
increase food research efficiency (Sueur et al., 2011a,b; Fushing
et al., 2013; Pasquaretta et al., 2014). Preliminary results on
genetics indicate that the average relatedness from the AK group
members is 0.25 while both BD and NH are related at the
level of 0.15 (Schnider et al., unpublished data). These results
support previous results indicating that kin form stronger bonds

than non kin individuals (Silk et al., 2010). We did not find
any effect of hierarchy on bonds’ strength. This suggests that
individuals of close ranks either do not have stronger bonds
than individuals of distant ranks or they have stronger bonds
but this effect is undone by the more important effects of
sex and matriline. As our analyses include both males and
females, another explanation could be that high-ranking males
may bond as much with high-ranking than with low-ranking
females, canceling a potential rank effect. Finally, our lack of
results about association between individuals of similar age is
rather surprising as this difference cannot really be explained
by a difference in age ratio (Adult age ratio: AK: 43; BD: 31;
NH: 42%). Previous studies suggested the importance of bonds
with individuals of similar age. For example juveniles’ play-
fights allow the development of the social techniques necessary
to acquire a central position in a society (Shimada and Sueur,
2014). On the other hand it might simply reflect that, despite
the age difference, bonds between a mother and her offspring
are the strongest of all associations, which has also been found
in baboons (Silk et al., 2010). Another explanation could rely on
the fact that our juvenile age category included 1–4 years olds and
it is likely that they form stronger bonds within rather than across
generations.

Finally, when testing how quickly relationships are modified
according to the individual attributes, we found no patterns
that were consistent among our three groups. In both AK
and BD groups, females’ relationships are more prone to
variation than the males’ and in BD the relationships of
individuals belonging to high-ranking matrilines were also
less stable. This supports the Seyfarth’s model (1977) which
implies a potential instability of higher ranking individuals’
relationships due to social competition. The BD group was the
only one where the high-ranking matrilines had a significant
influence on how quickly relationships were modified. Similarly,
previous studies found differences between populations in
their relationships management (Silk et al., 1999; Henzi et al.,
2013). Finally, in the NH group, our results suggest that
adults’ relationships are more stable than those of juveniles.
These results support previous studies in baboons (Silk et al.,
2006a,b, 2010, 2012), which indicate stable relationships within
adult females. Female juveniles in vervet monkeys form
strong and rather stable relationships with adult females while
male juveniles’ relationships are more prone to variation
(Fairbanks, 2002; juvenile vervet monkeys). However, the
fact that such results are significant only in one group is
rather puzzling but could be due to group differences in
relationships management and group composition (Cronin et al.,
2014a,b).

We based our evaluation of effect size entirely on the
distinction “significant effect” vs. “non-significant effect” and the
size of the estimate. In the future, it would be interesting to
test multiple groups simultaneously following the “multilevel”
SAOM method that has been recently developed (Snijders
et al., 2013). To our knowledge this is the first time that a
study focuses on the social network dynamics of three different
groups of monkeys. Interestingly, our results indicate substantial
intergroup variation. This variation might be due to (1) real
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intergroup difference, (2) problem in methodology, (3) non
powerful statistical analyses. However, we made considerable
efforts to apply the same scoring methods on the three groups.
Despite this effort, various p-values were either non-significant
or so very small (<0.001) and seems to indicate that groups
differed indeed with respect to various variables. However, we
currently cannot test how much intergroup variation could
be due to differences in genetic relatedness. On the other
hand, a purely ecological explanation seems unlikely as all
three groups live in overlapping home ranges. In part, the
differences could also be due to different individual strategies
and/or personalities, which could have various impacts on
the network variation depending of their position within this
network (Cronin et al., 2014a,b). Such a cause of variation
would indeed be interesting. In any case, our results suggest
that studies on multiple groups are necessary to build up any
hypothesis concerning network features and dynamics within a
species.

Most primates live in closely related and bonded social
groups in which individuals have to deal with many social
challenges and opportunities (Humphrey, 1976; Harcourt, 1988).
Famously, Humphrey (1976) proposed that large brains evolved
in primates primarily to cope with the social environment as
it is less predictable than the physical environment. This idea
has been developed further in the Machiavellian intelligence and
social brain hypotheses (Byrne and Whiten, 1988; Dunbar, 1992;
Whiten and Byrne, 1997). Therefore, the complexity of a species’
social networkmay be a good indicator for the cognitive demands
that individuals face and be reflected in the complexity of the
species’ brain. To be able to test this hypothesis, we first need to
establishmethods on how tomeasure different aspects of network
complexity (Lehmann and Dunbar, 2009). The methods we
used rely on quantifying the dynamics of relationships patterns
according to individual attributes while considering changes in
group composition. These analyses could be applied to a variety

of species. Ultimately such measures should allow a comparison

between species to assess how network dynamics is correlated
with brain complexity. In this context, the observed variation
among group network structures may turn out to be an indicator
of great social flexibility that demands a social brain.
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A society is a complex system composed of individuals that can be characterized by
their own attributes that influence their behaviors. In this study, a specific analytical
protocol based on social network analysis was adopted to investigate the influence of
four attributes (gender, age, matriline, and hierarchical rank) on affiliative (allogrooming)
and agonistic networks in a non-human primate species, Macaca sylvanus, at the
park La Forêt des Singes in France. The results show significant differences with
respect to the position (i.e., centric, peripheral) and role (i.e., implication in the network
cohesiveness) of an individual within a social network and hence interactional patterns.
Females are more central, more active, and have a denser ego network in the affiliative
social network tan males; thus, they contribute in a greater way to the cohesive structure
of the network. High-ranking individuals are likely to receive fewer agonistic behaviors
than low-ranking individuals, and high-ranking females receive more allogrooming. I also
observe homophily for affiliative interactions regarding all attributes and homophily for
agonistic interactions regarding gender and age. Revealing the positions, the roles, and
the interactional behavioral patterns of individuals can help understand the mechanisms
that shape the overall structure of a social network.

Keywords: social network analysis, multilevel analysis, non-human primate, allogrooming, antagonism, individual
attributes, homophily

INTRODUCTION

Animal societies are complex systems in which individuals have non-random and complex
interactions, and are likely to develop behavioral strategies (Dunbar, 1989). This leads to the
formation of a multilayered and multi-behavioral structure. However, questions persist about the
fundamental evolutionary process by which a society emerges, stabilizes, and adapts.

Previous studies of animal species, including human and non-human primates, have
investigated the behavioral differences and interactions among individuals according to attributes
such as gender (Fedigan, 1982), age (Wey and Blumstein, 2010), body size (Archie et al., 2006),
social status (Bergman and Moore, 2003), reproductive state (Cavigelli and Pereira, 2000), and
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kinship (Widdig et al., 2001). This study focuses on four
specific attributes: gender, age, matriline (matrilineal kinship),
and hierarchical rank.

Differences in gender lead to contrasting reproductive
(Fragaszy and Mitchell, 1974; Fedigan and Baxter, 1984; Pereira,
1988; Cords, 2002) and behavioral strategies (Fedigan, 1982), and
in particular, the expression of aggressiveness and allogrooming.

Age, or more precisely, ontogenesis (i.e., the development of
an organism), influences the evolution and development of social
relations and species-specific behaviors that are largely affected
by interactional experiences with congeners (Harlow and Suomi,
1974; Hinde, 1974; Wilson, 1980; Shimada and Sueur, 2014).
For example, hierarchical rank acquisition appears to be closely
related to age (Borries et al., 1991) and the early experiences
of juveniles (Mitchell et al., 1967; Olds et al., 1997). However,
this influence differs according to species and gender (Sosa,
2015). Additionally, older individuals and females in particular
are more likely to experience social exclusion (i.e., decrease in
social interactions) (Hauser and Tyrrell, 1984).

One major kinship phenomenon among the animal kingdom
is the matrilineal rank inheritance (MRI) (Kawamura, 1958)
observed in macaques. It consists of the transmission of
hierarchical rank from mother to daughter; the latter acquires the
hierarchical rank directly below that of her mother. In addition,
as according to the youngest ascendancy rule, young females
outrank their older sisters (Thierry et al., 2004). The MRI process
is made possible by nepotism, in that related females support each
other during conflicts against non-kin females and help juvenile
females outrank their older sisters (Cheney, 1977; Datta, 1983;
Chapais and Gauthier, 1993). Furthermore, an adult female can
outrank her mother when she is old and subsequently lacks kin
support and has limited physical ability (Chapais and Berman,
2004). See Chapais and Berman (2004) and Hepper (2005) for an
overview.

Social network analysis (SNA) is one approach used to analyze
systems (Sueur et al., 2011) as complex as animal societies.
SNA was first applied in psychological studies and, for a few
decades, in animal social research (see Prell, 2011 and Brent et al.,
2011 for an overview of SNA epistemology). However, certain
methodological precautions must be taken when using any of
the various analytical techniques based on SNA (Wasserman
and Faust, 1994; Krause et al., 2009; Brent et al., 2011). In this
study, I describe an analytical protocol based on SNA tools that
compensates for the intrinsic limitations of animal behavioral
data (i.e., dependency of data) and allows the analysis of weighted
networks (network with weighted links).

Several studies have used SNA tools to examine the position
and role of group members in non-human primates and
other animal species. Lusseau and Newman (2004) revealed
that central individuals are key players in maintaining social
cohesion and have greater knowledge of their environment. In
some non-human primate societies, central individuals are high-
ranking animals (Kanngiesser et al., 2011). Using an interspecific
comparative approach, several studies have analyzed network
metric variations and succeeded in linking them to variability
in social structure and dominance style (Sade, 1972; Voelkl and
Noe, 2008; Sueur et al., 2011). Previous studies have also found

that individuals from the philopatric gender are more central
within a network (Smuts, 1985; Matsuda et al., 2012). In this way,
central individuals play an important role in group cohesion and
their position depends on several individual characteristics. Thus,
identifying these central individuals according to their attributes
could allow us to better understand how a social structure is
shaped.

SNA research also addresses the principles of homophily and
heterophily that refer to preferential interactions between similar
(homophily) or dissimilar (heterophily) individuals (Lazarsfeld
and Merton, 1954). These phenomena have been observed in
many animal species: cetaceans (Lusseau and Newman, 2004),
fishes (Croft et al., 2005), marmots (Wey and Blumstein, 2010),
and human (McPherson et al., 2001) and non-human primates
(Silk, 2001; Cords, 2002; Carter et al., 2015). However, animal
research has generally disclosed the existence of homophily for
one behavior as related to a single attribute. In this study, I
examine the existence and level of homophily as related to a
variety of behaviors and attributes. Moreover, revealing such a
phenomenon may help us understand how individuals build their
networks depending on the attributes of other individuals.

Macaca (Macaca sp.) societies are characterized by their
common social organization, but they are also known for
their different social styles. Extensive research has shown that
dominance hierarchies vary greatly in the macaque genus (i.e.,
dominance styles) (De Waal and Luttrell, 1989; Thierry et al.,
2000; Sueur et al., 2011). Furthermore, the hierarchical structure
of females in the Macaca taxon is a well-studied phenomenon
that appears to be entirely dependent on the MRI (Thierry
et al., 2000). In contrast, each Macaca species has stable multi-
male, multi-female, and multi-generational social groups in
which females are philopatric and males migrate. These common
characteristics allow the elucidation of the influence of individual
attributes on the interactions between individuals and represents
an excellent biological model for this study.

In this study, I use SNA tools to determine individual positions
and interactional patterns according to four specific attributes
(age, gender, matriline, and hierarchical rank) in affiliative and
agonistic networks in M. sylvanus. Based on previous studies,
several assumptions can be made in response to the following
questions:

(1) Who are the most central individuals? As in many
cercopithecines, M. sylvanus females are the philopatric
gender, which should increase their ability to form denser,
stronger, and more perennial networks than males (Smuts,
1985). Thus, they can be expected to be the most active
and central individuals in the affiliative network. Exploring
such functions could reveal the significance of their role in
facilitating group cohesion. Males are generally the more
aggressive individuals (Gray, 1971), and therefore should be
particularly active and central in the agonistic network.

(2) How age and gender influence the positions and roles of
individuals? According to our extensive knowledge of the
MRI process, we can expect to observe age-related behavioral
variations in females that are highly correlated with their
reproductive status (Borries et al., 1991; Chapais, 2004)
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and matriline. The social activity of young females would
therefore be more intense (affiliatively and agonistically),
with a decrease in activity during their latter ontogenesis,
which in some cases may lead to social exclusion at an
advanced age. In males, a minimum hierarchical level for
older individuals may exist that enables them to maintain
a certain ranking (Sosa, 2015). Such kinetics among males
reduces their chances of experiencing social exclusion and
thus they may face only a minor decrease in social activity,
position, and role.

(3) Do common interactional patterns exist among individuals
according to their attributes? One sociological model
predicts attractiveness to high-ranking females (Seyfarth,
1977). However, this model appears subject to variability. It
is mainly observed in despotic societies, and attractiveness
to low-ranking individuals has been reported in other
species (Schino, 2001; Sueur and Petit, 2008). According
to these findings, Seyfarth’s model should not apply to
M. sylvanus. I also expect to observe homophily related
patterns such as allogrooming that target same-gender and
same-age individuals and kin (Hirsch et al., 2012). As for
agonistic behaviors, it is difficult to form any hypothesis, but
heterophily can be suspected.

Responding to these questions allows to reveal how individual
attributes and social structure (gender philopatry) produce
behavioral divergences that lead to different positions and roles
within the group (question 1), how these deviations evolve with
the ontogenesis of an individual (question 2), and by which
mechanisms individuals interact among themselves (question 3).
This multilevel approach allows for a better understanding of how
these different levels shape the overall structure of the society in
M. sylvanus.

MATERIALS AND METHODS

Study Site and Subjects
The current study was conducted over a period of 4 months
(July to October 2011) in the park La Forêt des singes, in
Rocamadour, France. The 141 M. sylvanus individuals in the
park are divided into three groups and live in semi-free ranging
conditions (Sugiyama, 2015) in a 20 hectare forest. They are
fed in foraging areas twice per day and have water ad libitum.
For more details on the management of the park, refer to de
Turckheim and Merz (1984). The demographic data (gender, age,
and matriline) were provided by the scientific director of the park,
Ms. Ellen Merz. The study focused on one of the three groups.
Four newborns were excluded from the observations (three males
and one female), so that the number of individuals observed was
N = 52. The group had a balanced gender ratio of 25 females
and 27 males, with an age range between 1 and 25 years old. The
individuals were previously identified during 1 month through
their tattoos. The observations were conducted with the approval
of the park management, an agreement that was subject to the
specific condition that I would not directly contact nor handle
individuals. As I performed simple observations without any type

of intervention, I did not require authorization from the French
National Advisory Ethics Committee.

Behavioral Observations
Observations were conducted by repeated focal samplings
of 30 min per individual. Each individual was observed
approximately 30 times (15 ± 2 h), for 786 observation hours
of 52 individuals. Focal sampling time was determined after
2 months of pre-observation. To trade with bias of observation
in time of day and feeding time, individuals were observed
randomly from 8 am to 5 pm over the 4 months. During the
observations, I registered allogrooming and agonistic behaviors
(threatening face or growl, charge, avoidance, attack, chase,
and aggressive slap, grab, or bite). A complete description of
the ethogram of M. sylvanus can be found in Hesler and
Fischer (2007). An iPad 1 tablet (Inc, 1976) computer and
the WhatISee2.0 application (Inc, 2009) were used to register
the individuals involved, and the direction, frequency, and
duration of the behaviors. Directed and weighted agonistic and
allogrooming matrices were built using the obtained behavioral
frequencies (Figure 1). The overall observation yields a total of
5867 agonistic interactions and 1281 grooming interactions. The
agonistic matrices allow us to calculate the hierarchical rank of
each individual using David’s Score (David, 1987) with R 3.0.1
(Ihaka and Gentleman, 1996) package steepness (de Vries et al.,
2006).

Social Network Analyses
Building Matriline Categories
Kinship bonds among individuals were determined using two
methods. First, data were provided by the park officials who,
along with scientists, have been monitoring the population
in the park. Second, matrilines were determined through
genetic analyses of mitochondrial DNA using eight microsatellite
markers. The collection and analysis of DNA samples were
performed by the park authorities. The poor quality of DNA
samples made some DNA results uncertain. For this reason,
matriline groups were built only with individuals whose
relatedness was confirmed based on direct observations and
genetic analyses. To conserve only close kinship relationships,
only the individuals with the same mother were considered
related for each mitochondrial haplotype (Figure 2). Thus,
individuals whose matrilines were uncertain did not belong
to any matriline group (eight males and one female). In
addition, matriline results must be carefully considered, as not
all individuals were taken into account owing to a lack of
information on their kinship bonds.

Data Consideration before Analysis
Collecting data from all members of the same social group led
us to the construction of two social networks (agonistic and
affiliative) through the existence of multiple interactions. The
intrinsic nature of the collected data (interactions between same-
group individuals) underlies the non-independence of the data
required by inferential statistical techniques (Wasserman and
Faust, 1994; Krause et al., 2009; Brent et al., 2011). Several
possibilities exist to deal with this fact. Link filtering is commonly
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FIGURE 1 | Social networks: (A) agonistic network, (B) allogrooming
network. Yifan Hu layout. Gradient color of vertices (from yellow to red)
represents individuals’ age (from youngest to oldest). Shape of vertices
represents individuals’ gender (females: triangles; males: circles). Size of
vertices represents individuals’ degree. Size of edges represents the strength
of interactions and the color is in accordance with the age of the individual
that gives the behavior.

used in animal SNA to delete interactions that can be attributed
to random or “chance” events (Croft et al., 2008). However, at
present, this filtering process has not been submitted to any
formal methodology and has two major limitations: (1) the non-
consideration of weak ties (Granovetter, 1973) and thus the
loss of important information (Croft et al., 2011); and (2) the
sensitivity to data errors such as misidentification.

The approach adopted in this study is based on permutation
tests and may help standardize the analysis of animal behavioral
data obtained using SNA. In this study, I assumed an approach

that allows analysis without the need to filter the links. To this
end, the weight of the links must be taken into consideration,
which can be done by using weighted social network metrics
(Opsahl, 2009; Brent et al., 2011). Frequency-based data are
less prone to sampling biases, yet by themselves, they do not
solve the issue of data dependency. Therefore, I used weighted
network metrics with Null Hypothesis Significant Tests (NHST)
involving a permutation-based approach (Manly, 2006). This
method generates a set of random values based on the real data set
and creates the null hypothesis that the real structural measure X
is not different from the random one. This hypothesis is accepted
or rejected by comparing the observed value X to the random
one. If the observed value is greater than the random one from
95%, then the null hypothesis is rejected. The use of permutation
tests in the study of animal societies is discussed in details by
Whitehead (2008) and Croft et al. (2011).

The following analyses were performed on both weighted
allogrooming and agonistic matrices with 10000 permutations.

Network Metrics
For each individual, I calculated the following weighted network
metrics: indegree, outdegree, degree, eigenvector centrality, and
clustering coefficient with Ucinet 6.375 (Borgatti et al., 2002).
Briefly, the degree corresponds to the total number of individuals
that directly interact with one given individual (Freeman, 1979).
The weighted version takes into account the weight of the
links. I also differentiated between indegree (incoming ties) and
outdegree (outgoing ties). This metric is historically the first and
conceptually the simplest centrality network metric, and in this
case, can also be considered as the activity, or “involvement,”
of an individual. The eigenvector centrality index is the sum
of the connections to neighbors weighted by their degree.
This index provides a metric that determines the individual
centrality relative to the rest of the network and the “influence”
of an individual on the network (i.e., connection to high-
degree nodes) and thus, on the social structure. Additionally, it
would appear to be a more pertinent centrality metric for non-
human primate groups (Kasper and Voelkl, 2009). The weighted
clustering coefficient gives weight to the neighborhood densities
proportionate to their size and indicates the contribution of
each individual in the connectivity and thus, in the cohesion
of the network structure (Watts, 2003; Hanneman and Riddle,
2005). For an overview of the weighted network metrics and
calculations, see: Wasserman and Faust (1994), Croft et al. (2008)
and Whitehead (2008).

Statistical Analyses
Individual Level
For the first analysis, I aimed to study gender, matriline,
hierarchical rank, and age-related changes in each network
metric. To this end, I used general linear mixed models (GLMM)
in which weighted degrees, indegrees, outdegrees, eigenvectors,
and clustering coefficients are the dependent variables in separate
models. Exact ages, genders, hierarchical ranks, and matrilines
are the independent variables.

To offset the non-independence of these data, I realized
GLMM with permutation. The consequent biological null
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FIGURE 2 | Matrilines. This scheme represents individuals which were kept for kinship analysis. Gray cells are dead individuals. Numbers represent the different
matrilines. Each subline represents an offspring of the corresponding mother.

hypothesis was that any individual could have any network
metric value. Opting for this method has several advantages.
First, it takes into account the non-independency of the data;
second, it is a better option than multiple t-tests and ANOVA

(which both need discrete variables and would increase the
number of tests) with permutation or simple correlations; and
finally, it facilitates the analysis of the interactions between
factors.
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Initially, I created two types of models: those with no
interactions with the dependent variables and those with gender
interacting with other individual attributes to examine whether
age, matriline, and hierarchical rank dissimilarly influence
individuals according to their gender. Only factors estimated
higher than 0.009 were considered significant. This threshold
is arbitrary and aims to consider only significant effects with
sufficient weight. These analyses were performed using SPSS
17 (SPSS, 2008) GLM Procedure with Bootstrap option of
p-value= 0.05.

Group Level
The aim of the second analysis was to examine homophily and
heterophily, for which I used NHST (Stephens et al., 2007) with
permutation.

The principle of homophily, or the preferential interactions
between same-attribute individuals, consequently determines
whether the links within a same-attribute group have greater
frequencies than the links between groups. Thus, to study
homophily between genders, I used a simple t-test with
permutation for comparing the mean of the links between and
within the groups depending on gender.

To study homophily according to age (a continuous attribute),
I used the Moran statistic which indexes the differences
between the score of an actor and the mean, and then
weights the cross products (Moran, 1950). Permutations are
used to create a sampling distribution in which scores on
the attribute are randomly assigned to actors. As for any
permutation test, the real structural measure (the Moran statistic
in this case) is compared to the random one (Hanneman
and Riddle, 2005). The Moran “I” statistic of autocorrelation
ranges from −1.0 (perfect negative correlation) through 0
(no correlation) to +1.0 (perfect positive correlation). These
analyses were performed using Ucinet 6.375 (Borgatti et al.,
2002).

RESULTS

Individual Level
In the agonistic social network, results show that the higher
the matriline, the more central (eigenvector: 0.015, p < 0.05)
and active (degree: 17.866, p < 0.05) its members, and
the more they receive agonistic behaviors (indegree: 9.857,
p < 0.05) and contribute to network cohesion (clustering
coefficient: 0.077, p < 0.01). The results also reveal that
the higher the hierarchical rank of an individual, the more
it gives agonistic behaviors (outdegree: 6.075, p < 0.05),
but the less it receives them (indegree: −14.698, p < 0.01).
Finally, we observe that with age, individuals are less
active (degree: −12.529, p < 0.01), give less (outdegree:
−3.568, p < 0.05) and receive fewer (indegree: −8.961,
p < 0.01) agonistic behaviors. These results are synthetized in
Table 1.

The results of the agonistic social network model for gender
interactions with other individual attributes are as follows
(synthetized in Table 2, Figure 3, Appendix 2 and 3):

TABLE 1 | General linear mixed models (GLMM) for agonistic network
metrics.

GLM with Bootstrap for estimates of fixed effects on agonistic network

Network metrics Factor Estimate Standard
error

p

Eigenvector Intercept 0.277 0.065 0.000

Gender −0.015 0.026 0.560

Age −0.008 0.001 0.000

Matriline 0.015 0.005 0.013

Hierarchy −0.006 0.002 0.035

Clustering coefficient Intercept 1.767 0.464 0.001

Gender 0.181 0.183 0.330

Age −0.037 0.009 0.001

Matriline 0.077 0.022 0.001

Hierarchy 0.021 0.014 0.142

Degree Intercept 501.027 126.637 0.001

Gender −10.413 47.543 0.826

Age −12.529 2.219 0.000

Matriline 17.866 7.515 0.049

Hierarchy −8.624 4.056 0.052

Outdegree Intercept −52.915 76.476 0.492

Gender 13.104 31.082 0.674

Age −3.568 1.411 0.022

Matriline 8.010 4.463 0.103

Hierarchy 6.075 2.547 0.040

Indegree Intercept 553.942 68.172 0.000

Gender −23.517 27.990 0.415

Age −8.961 1.529 0.000

Matriline 9.857 4.129 0.039

Hierarchy −14.698 2.052 0.000

In bold, singnificant attributes.

– The eigenvector model shows that for females, the higher the
matriline, the more central the individual (0.023, p < 0.01).
Furthermore, the centrality of females also decreases with
their individual hierarchical rank (−0.010, p < 0.01).

– The degree model shows that degree significantly decreases
with age for females (−12.269, p < 0.01), but not for
males. Individual degree increases with matriline (30.332,
p < 0.01) and decreases with hierarchical rank for females
only (−14.824, p < 0.05).

– The outdegree model shows that outdegree significantly
decreases with age (−3.474, p < 0.05) for females only.
Individual outdegree increases with hierarchical rank for
females (7.989, p < 0.05).

– The indegree model shows that indegree significantly
decreases with age for females (−8.795, p < 0.01). Individual
indegree increases with matriline (23.783, p < 0.05) for
females. However, indegree decreases with hierarchical rank
for both males and females (males: −18.430, p < 0.01;
females:−22.813, p < 0.01).

– The clustering coefficient model shows that clustering
coefficient significantly decreases with age (−0.038, p < 0.01)
and increases with matriline (0.106, p < 0.01) for females
only.
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TABLE 2 | General linear mixed models for agonistic network metrics for
interactions between gender and other individual attributes.

GLM with Bootstrap for estimates of fixed effects on agonistic network

Network
metrics

Factor Estimate Standard
error

p

Eigenvector Intercept 0.281 0.044 0.000

Males∗Age −0.009 0.040 0.555

Females∗Age −0.008 0.001 0.000

Males∗Matriline 0.010 0.012 0.305

Females∗Matriline 0.023 0.005 0.000

Males∗Hierarchy −0.005 0.011 0.393

Females∗Hierarchy −0.010 0.003 0.004

Clustering
coefficient

Intercept 2.300 0.273 0.000
Males∗Age 0.036 0.162 0.706

Females∗Age −0.038 0.010 0.001

Males∗Matriline 0.059 0.043 0.111

Females∗Matriline 0.106 0.038 0.007

Males∗Hierarchy −0.008 0.045 0.792

Females∗Hierarchy 0.005 0.022 0.814

Degree Intercept 529.526 85.390 0.000

Males∗Age −12.999 42.661 0.512

Females∗Age −12.269 2.154 0.001

Males∗Matriline 9.245 17.587 0.527

Females∗Matriline 30.332 8.212 0.003

Males∗Hierarchy −8.301 13.377 0.349

Females∗Hierarchy −14.824 5.719 0.014

Outdegree Intercept −56.542 52.424 0.242

Males∗Age −15.798 23.689 0.222

Females∗Age −3.474 1.375 0.031

Males∗Matriline 5.964 10.263 0.468

Females∗Matriline 6.549 5.537 0.201

Males∗Hierarchy 10.129 7.676 0.087

Females∗Hierarchy 7.989 3.708 0.047

Indegree Intercept 586.068 48.560 0.000

Males∗Age 2.799 23.371 0.786

Females∗Age −8.795 1.359 0.000

Males∗Matriline 3.281 9.362 0.666

Females∗Matriline 23.783 4.906 0.000

Males∗Hierarchy −18.430 7.197 0.009

Females∗Hierarchy −22.813 3.248 0.000

In bold, significant attributes.

The allogrooming social network is primarily influenced by
gender and age, with matriline having no significant effect. We
also observe that the higher the hierarchical rank, the more an
individual receives allogrooming (indegree: 1.366, p < 0.05).
Furthermore, with age, individuals are less central (eigenvector:
−0.014, p < 0.01), less active (degree: −5.625, p < 0.01),
and give (outdegree: −3.082, p < 0.01) and receive (indegree:
−2.064, p < 0.01) less allogrooming. Interestingly, whereas no
significant difference was observed between males and females
in the agonistic network, in the allogrooming network, females
are more central (eigenvector: 0.231, p < 0.01) and more active
(degree: 71.708, p < 0.01) than males. Allogrooming behaviors
are mostly given (outdegree: 32.018, p < 0.01) and received by

females (indegree: 39.691, p < 0.01). These results are synthetized
in Table 3.

The results of the allogrooming social network model for
gender interactions with other individual attributes are as follows
(synthetized in Table 4, Appendix 4 and 5):

– The eigenvector model shows that eigenvector significantly
decreases with age for females (−0.014, p < 0.01), but not for
males.

– The degree model shows that degree significantly decreases
with age for females (−5.836, p < 0.01).

– The outdegree model shows that outdegree significantly
decreases with age for females (−3.724, p < 0.01).

– The indegree model shows that for females, indegree
significantly decreases with age (−2.112, p < 0.01) and
increases with hierarchical rank (2.719, p < 0.05).

– The clustering coefficient model shows non-significant
results with any individual attribute.

Group Level
With respect to agonistic behaviors, we obtain homophily for
gender (difference in means: −1.651, p < 0.05) and for age
(I = 0.273, p < 0.05). Testing genders separately, we obtain
homophily by age for females (I = 0.336, p < 0.05) and for males
(I = 0.211, p < 0.05). The results for matriline and individual
hierarchical rank were non-significant.

For allogrooming, homophily is observable for gender
(difference in means: −1.942, p < 0.05) and for age (I = 0.318,
p < 0.05). Testing genders separately to analyze if there are
homophilic differences between genders according to age, we
obtain homophily by age for females (I = 0.565, p < 0.05),
but we do not obtain significant results for males according
to age (I = 0.100, p = 0.106). Homophily is also observed by
matriline (I = 0.321, p < 0.05) Testing genders separately, we

FIGURE 3 | 3D histogram of indegree variation according to age and
matriline in the agonistic network.

Frontiers in Psychology | www.frontiersin.org April 2016 | Volume 7 | Article 529 | 24

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-07-00529 April 15, 2016 Time: 13:20 # 8

Sosa Multilevel Network Analysis in Primates

TABLE 3 | General linear mixed models for allogrooming network metrics.

GLM with Bootstrap for estimates of fixed effects on allogrooming network

Network
metrics

Factor Estimate Standard
error

p

Eigenvector Intercept −0.230 0.085 0.015

Gender 0.231 0.045 0.001

Age −0.014 0.003 0.002

Matriline 0.003 0.004 0.404

Hierarchy 0.004 0.003 0.122

Clustering Intercept −0.007 0.607 0.990

Gender 0.681 0.321 0.056

Age −0.035 0.032 0.362

Matriline 0.061 0.045 0.206

Hierarchy −0.009 0.027 0.734

Degree Intercept −12.075 26.373 0.638

Gender 71.708 14.753 0.001

Age −5.625 0.947 0.000

Matriline 1.210 1.675 0.457

Hierarchy 0.393 0.840 0.624

Outdegree Intercept 37.450 12.688 0.007

Gender 32.018 7.777 0.004

Age −3.560 0.475 0.000

Matriline 0.524 0.907 0.545

Hierarchy −0.973 0.425 0.027

Indegree Intercept −49.525 18.027 0.011

Gender 39.691 8.388 0.001

Age −2.064 0.518 0.002

Matriline 0.686 0.931 0.437

Hierarchy 1.366 0.522 0.012

In bold, significant attributes.

observe significant homophily by matriline for females (0.458,
p < 0.01), but not for males. Finally, we also observe homophily
by hierarchical rank (I = 0.228, p < 0.05), yet testing genders
separately, we do not observe significant results in either gender.

DISCUSSION

In this study, I established an analytical protocol that balances
the inter-dependency of the data without filtering the links
and that considers the weight of the links, and I analyzed the
effects of several factors (gender, age, matriline, and hierarchical
rank) at different levels of social organization in a non-human
primate species, M. sylvanus. These findings reveal to what
extent SNA facilitates the investigation of various aspects of
animal societies by studying: (1) the position and influence
of individuals according to their attributes; (2) the attribute-
related network; and (3) the interactional dynamics reflected by
homophily. In this way, I demonstrated that the sociogenesis
process (rank acquisition) is intimately linked to ontogenesis (i.e.,
it is age-related), and differs between genders. Hence, individuals
with common attributes have similar positions and roles in the
group. I also stressed the existence of homophily in several
behaviors, reflecting common individual behavioral patterns,

TABLE 4 | General linear mixed models for allogrooming network metrics
for interactions between gender and other individual attributes.

GLM with Bootstrap for estimates of fixed effects on allogrooming network

Network
metrics

Factor Estimate Standard
error

p

Eigenvector Intercept 0.215 0.095 0.036

Males∗Age 0.017 0.018 0.148

Females∗Age −0.014 0.004 0.005

Males∗Matriline −0.002 0.007 0.722

Females∗Matriline 0.005 0.012 0.669

Males∗Hierarchy −0.011 0.007 0.074

Females∗Hierarchy 0.004 0.007 0.620

Clustering
coefficient

Intercept 2.055 0.632 0.019
Males∗Age 0.152 0.129 0.114

Females∗Age −0.024 0.029 0.500

Males∗Matriline −0.031 0.050 0.454

Females∗Matriline 0.230 0.118 0.119

Males∗Hierarchy −0.087 0.050 0.079

Females∗Hierarchy −0.103 0.066 0.187

Degree Intercept 108.684 24.574 0.001

Males∗Age 2.393 6.459 0.612

Females∗Age −5.836 1.010 0.001

Males∗Matriline 1.526 2.400 0.495

Females∗Matriline −2.140 3.934 0.583

Males∗Hierarchy −3.576 2.393 0.073

Females∗Hierarchy 2.626 2.048 0.210

Outdegree Intercept 95.139 11.878 0.000

Males∗Age 2.467 3.206 0.272

Females∗Age −3.724 0.514 0.000

Males∗Matriline 1.099 1.360 0.382

Females∗Matriline −1.061 2.134 0.607

Males∗Hierarchy −3.593 1.247 0.002

Females∗Hierarchy −0.093 1.040 0.927

Indegree Intercept 13.546 16.413 0.378

Males∗Age −0.075 3.757 0.978

Females∗Age −2.112 0.579 0.003

Males∗Matriline 0.427 1.203 0.678

Females∗Matriline −1.080 2.201 0.608

Males∗Hierarchy 0.018 1.350 0.989

Females∗Hierarchy 2.719 1.236 0.034

In bold, significant attributes.

including: (1) the acquisition of status within an age-related
category, leading to intra-generational conflicts; (2) high-ranking
individuals preferably groom similar-rank and opposite-gender
individuals to secure better protection and support; and (3) the
existence of homophily in grooming behaviors by gender, age,
hierarchical rank, and matriline. The results suggest six main
findings.

First, we observe that variations in individual attributes have a
greater impact on the position, role, and interactional patterns of
females than on males. In most cases, these dissimilarities result
from the social structure of females in M. sylvanus that is based
on philopatry and MRI. Additionally, we observe significant
disparities in activity and centrality between males and females.
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Females are more central and active (for both received and given
behaviors) in the allogrooming network. More specifically, they
give and receive more allogrooming, mainly with individuals
who have similar characteristics, namely females according to
homophily results. These findings are in line with the literature
that stresses that the philopatric gender plays a key role in
affiliative behaviors (Aureli and de Waal, 2000; Silk, 2001). From
a biological perspective, the philopatric gender has more time
to develop a denser, stronger, and perennial network than the
non-philopatric gender. In addition, female matriline homophily
results emphasize the relevance of kinship bonds among females
in affiliative behaviors. Individuals with high centrality and
activity thus preferentially contribute to the establishment of
the global network structure (Lusseau and Newman, 2004; Sosa,
2014) and cohesion of the group. In M. sylvanus, these key
individuals are unquestionably the females.

Second, we observe that for female M. sylvanus, network
metrics decrease with age in the agonistic and allogrooming
networks. In the agonistic network, older females are less
active (degree, indegree, and outdegree) and less involved in
the cohesion of the network (clustering coefficient). In the
allogrooming network, older females are less active (degree,
indegree, and outdegree) and less central (eigenvector). During
the early years, high centrality and activity for allogrooming
behaviors is likely related to a long period of mother–infant
and kin-related preferential interactions (which is supported
by the results of matriline homophily for allogrooming
behaviors) that generates kin recognition and later, kin-
biased affiliative interactions (Pereira and Fairbanks, 1993).
Furthermore, juveniles learn how to interact by relating to
their close relatives. The observed decrease of allogrooming
centrality and activity with age is likely related to the progressive
stabilization of the affiliative networks of females. In addition,
the decline with progressing age in the agonistic network (as
related to activity and the role in the cohesion of the network)
is probably a result of the stabilization of the hierarchical
ranks of females when sexual maturity is attained (Chapais,
2004). These results show that the sociogenesis process, or rank
acquisition, is intimately linked to ontogenesis (i.e., it is age-
related), with the latter being closely related to the reproductive
status of females (menarche and postmenopause) (Borries et al.,
1991). This ontogenetic process can be characterized into three
stages. The first occurs before sexual maturity, when the female
has numerous social interactions in order to establish her
position within the group. Second, once the female is mature,
she has fewer social interactions, which indicates a period of
stabilization of her position. The final stage corresponds to the
postmenopausal period, which can lead to even fewer social
interactions resulting from exclusion (Borries et al., 1991; Sosa,
2015). Unlike females, males are not subject to the phenomenon
of declining social interactions, as none of their network metrics
significantly decreases with age.

Third, the frequency of given agonistic behaviors increases
with the hierarchical rank of a female. More specifically,
the higher her hierarchical position, the greater number of
submissive individuals with whom to ensure her rank a female
has (Tokuda and Jensen, 1969) and the more she intervenes in

conflicts to provide support (De Waal and Roosmalen, 1979;
Seyfarth and Cheney, 1984; De Waal, 1997). This does not appear
to be a response to received agonistic behaviors as the indegree
would also increase, which is not the case. Instead, the agonistic
indegree, together with the eigenvector, decreases with the
hierarchical rank of a female. This decline in agonistic indegree
is also observed in males, stressing that high-ranking individuals,
regardless of gender, receive fewer agonistic behaviors than low-
ranking ones. This reveals the benefits of dominant positions,
with the reduction of associated risks (Gartlan, 1968; Bernstein,
1976; Chapais, 1991). Additionally, a significant relationship
between the frequency of received allogrooming behaviors and
hierarchical rank is observed in females. The absence of such
phenomenon among males can be attributed to the fact that
attractiveness to high-ranking individuals in allogrooming for
males seems species-specific (Watts, 2000). Nonetheless, this
phenomenon is observed among females according to GLMM
results, which is in accordance with the theory advanced by
Seyfarth (1977) in which dominant females should be preferred
allogrooming partners as they can provide better protection
(Watts, 2000; Cheney and Seyfarth, 2008) and support (Cheney
and Seyfarth, 1990).

The fourth finding is that, similar to the hierarchy results,
females within the same matriline have similar centralities
and activities, and the higher the matriline, the more central
and active the female is in the agonistic network. This trend
can be attributed to the fact that in the genus Macaca, the
hierarchical ranks of females are intimately linked to their
matrilines. Furthermore, a closer examination of the previously
discussed high agonistic activity of immature females shows that
the indegree is more intense for high-born ones (Figure 3).
Before sexual maturity, females must settle their dominance
relations with lower matriline-ranking females through agonistic
interactions (Chapais (2004). Thus, in their early years, females
compete to establish their hierarchical rank on multiple fronts:
(1) within their own matriline (as supported by the MRI
phenomenon); (2) within their age category (in accordance with
age homophily results for agonistic behaviors); and (3) toward
older lower-ranking females.

Fifth point is that homophily results for the agonistic
network show that agonistic interactions are mainly directed
within the same age and gender. These findings, combined
with GLMM results, yield interesting biological interpretations.
Higher activity and connections in the agonistic ego network
among young individuals (GLMM results) can be interpreted as a
phenomenon of hierarchical rank acquisition. Homophily results
highlight that this rank acquisition occurs mainly between same-
age and same-gender individuals (Chapais, 1988; Holekamp
and Smale, 1991), stressing the existence of a particular
phenomenon that we could call the intra-generational conflict.
Furthermore, the fact that affiliative behaviors are also primarily
directed toward same-age individuals (age homophily results for
allogrooming behaviors) underlines the trend of individuals to
build their affiliative network within their age category.

Sixth, we observe homophily in allogrooming behaviors
according to hierarchical rank, but only when both genders are
taken into account. In other words, opposite-gender individuals
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with similar hierarchical ranks have preferential affiliative
interactions. Allogrooming behaviors facilitate the creation of
affiliative bonds and potential support in future conflicts (De
Waal and Roosmalen, 1979; Seyfarth and Cheney, 1984; De
Waal, 1997). Subsequently, this behavioral pattern can explain
the decrease of agonistic behaviors received by high-ranking
individuals (observed in GLMM results) owing to the high-
ranking support of a third party.

Homophily has previously been reported in many species
(McPherson et al., 2001; Lusseau and Newman, 2004; Massen and
Koski, 2013). Extensive research on human homophily stressed
that it is a major mechanism in stranger cooperation (Haun and
Over, 2015), social learning (Buttelmann et al., 2013), and cultural
and norms transmission (Chudek and Henrich, 2011). Recent
studies argue that homophilic preferences may explain the gap
between animals and humans regarding these abilities (Haun and
Over, 2015). Revealing homophily in several behaviors and as
it is influenced by different attributes highlights the importance
of these mechanisms in a non-human primate species. However,
many methods exist to evaluate the presence or absence of
homophily (E-I index, ERGM, assortativity, Moran I statistic),
each one of them with inherent pros and cons that would need
to be evaluated before determining which of these approaches is
more relevant for studying animal societies.

This analytical protocol can be used to study other animal
societies and might enable interspecific comparisons. I believe
that the important findings of this study might help understand
the global patterning of a non-human primate society, and likely
other animal societies, from an evolutionary perspective.
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Although there exist advantages to group-living in comparison to a solitary lifestyle, costs

and gains of group-living may be unequally distributed among groupmembers. Predation

risk, vigilance levels and food intake may be unevenly distributed across group spatial

geometry and certain within-group spatial positions may be more or less advantageous

depending on the spatial distribution of these factors. In species characterized with

dominance hierarchy, high-ranking individuals are commonly observed in advantageous

spatial position. However, in complex social systems, individuals can develop affiliative

relationships that may balance the effect of dominance relationships in individual’s spatial

distribution. The objective of the present study is to investigate how the group spatial

distribution of a semi-free ranging colony of Mandrills relates to its social organization.

Using spatial observations in an area surrounding the feeding zone, we tested the three

following hypothesis: (1) does dominance hierarchy explain being observed in proximity

or far from a food patch? (2) Do affiliative associations also explain being observed

in proximity or far from a food patch? (3) Do the differences in rank in the group

hierarchy explain being co-observed in proximity of a food patch? Our results showed

that high-ranking individuals were more observed in proximity of the feeding zone while

low-ranking individuals were more observed at the boundaries of the observation area.

Furthermore, we observed that affiliative relationships were also associatedwith individual

spatial distributions and explain more of the total variance of the spatial distribution in

comparison with dominance hierarchy. Finally, we found that individuals observed at

a same moment in proximity of the feeding zone were more likely to be distant in the

hierarchy while controlling for maternal kinship, age and sex similarity. This study brings

some elements about how affiliative networks and dominance hierarchy are related to

spatial positions in primates.
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30

http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://dx.doi.org/10.3389/fpsyg.2016.00612
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2016.00612&domain=pdf&date_stamp=2016-05-03
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:cedric.sueur@iphc.cnrs.fr
http://dx.doi.org/10.3389/fpsyg.2016.00612
http://journal.frontiersin.org/article/10.3389/fpsyg.2016.00612/abstract
http://loop.frontiersin.org/people/243775/overview
http://loop.frontiersin.org/people/320732/overview
http://loop.frontiersin.org/people/314463/overview
http://loop.frontiersin.org/people/213085/overview
http://loop.frontiersin.org/people/217593/overview


Naud et al. Spatial and Social Organization of Mandrills

INTRODUCTION

Group living is a common social pattern among primates
(Alexander, 1974; Wrangham, 1987). Although there exist
advantages of group-living in comparison to a solitary lifestyle
(Krause and Ruxton, 2002), a growing body of evidence indicates
that costs and benefits of group living may be unequally
distributed and spatially determined (Viscido and Wethey, 2002;
Quinn andCresswell, 2006; Hirsch, 2007; Tkaczynski et al., 2014).
Research suggests that predation risk, vigilance levels, and food
intake may depend on an individual’s position within a group
spatial geometry. This implies that certain within-group spatial
positions may be more or less advantageous than others (Janson,
1990; Krause, 1994; Motro et al., 1996; Hall and Fedigan, 1997;
Hirsch, 2007) and that individuals may compete for certain
spatial positions (Motro et al., 1996) or adopt particular spatial
behaviors (De Vos and O’Riain, 2010) in order to maximize their
fitness. Furthermore, in species characterized by a dominance
hierarchy, high-ranking individuals are commonly observed in
more advantageous spatial positions (i.e., a position that reduces
costs andmaximize the gains of group-living; van Noordwijk and
van Schaik, 1987; Janson, 1990; Hall and Fedigan, 1997; Murray
et al., 2007).

(Hamilton, 1971) selfish herd theory suggests that individuals
mainly located at the edge of a group should experience higher
risk of predation in comparison to their central counterparts.
This “marginal effect” is well-supported by empirical evidence on
different taxa, which demonstrates that predation risk (Krause,
1994; Stankowich, 2003) and vigilance levels (Petit and Bildstein,
1987; Janson, 1990; Burger et al., 2000) tend to be higher among
peripheral individuals. Even when predators have relatively equal
access to all group members—i.e., when predators move into a 3
dimensional space while prey move in a 2 dimensional space—
they are more likely to attack peripheral animals (Romey et al.,
2008). This means that in order to reduce one’s risk of predation,
individuals will compete for a central group position (Couzin and
Krause, 2003) resulting in group aggregation (Hamilton, 1971).
In addition, studies on inter-individual spacing have shown that
groups tend to become more tightly spaced after an encounter
with a predator (van Schaik and Mitrasetia, 1990; De Vos and
O’Riain, 2010) or in high predation risk areas (Quinn and
Cresswell, 2006; Kelley et al., 2011).

Food gain has also been found to be related to spatial
position (Hirsch, 2007). When food is dispersed, spread, and
thus not monopolized (scramble competition), foraging gains
may increase for peripheral group members as spacing between
them reduces feeding competition (Morrell and Romey, 2008).
Conversely, when food patches are limited and defendable
(i.e., contest competition; van Schaik and van Noordwijk,
1988), individuals may aggressively compete over food (Grant
et al., 2002) resulting in a spatial distribution where high-
ranking individuals are in the center, occupying food patches,
while low-ranking individuals are distributed in peripheral
positions (Hirsch, 2007). This spatial distribution, characterized
by dominant and tolerated individuals in central positions
having high food intake, is observed in different primate species
(Robinson, 1981; Janson, 1990; Barton, 1993; Motro et al.,

1996). When we consider group mobility, the most advantageous
position in species following a producer-scrounger model (i.e.,
individuals found their own food—produce—or join the food
discoveries of others—scrounger–) should be in the center-front
during group foraging (Hirsch, 2007) which has been observed
in white-faced capuchins (Cebus capucinus; Robinson, 1981; Hall
and Fedigan, 1997).

Dominance hierarchy may not be the only social variable
that explains within group spatial distributions among
primate species that live in relatively stable groups (i.e.,
where relationships persist over months or even years). In
complex social systems (Whitehead, 2008), individuals might
develop affiliative relationships that shape social organization
(Pasquaretta et al., 2014). These affiliations may therefore
balance the effect of dominance relationships in individual’s
spatial distribution. Indeed, subordinate individuals tend to
groom high ranked individuals (Schino, 2001; Nakamichi and
Shizawa, 2003; Silk et al., 2003) presumably to develop alliances
and tolerance in order to increase access to resources and to
get potential allies in agonistic interaction (Seyfarth, 1977). This
might change the ranks of these subordinate individuals or
give them access to an advantageous spatial position without
changing ranks. Additionally, Robinson (1981) has shown that
an individual’s spatial location is best predicted when affiliative
relationships are considered during agonistic interactions.
These strategies and social preferences make the emergent
group social network more complex. At a population level,
association preferences between multiple individuals may
divide the community into subgroups where individuals in a
subgroup interact more among themselves than with the rest of
the community (Krause et al., 2007; Sueur et al., 2011a). Such
community divisions, or clusterisations, potentially resulting in
fission-fusion dynamics (Sueur et al., 2011c), have been observed
in different primate species (Mandrills, Mandrillus sphinx: (Bret
et al., 2013); Rhesus macaques, Macaca mulatta and Japanese
macaques, Macaca fuscata: (Sueur et al., 2011d); Howling
Monkeys, Alouatta palliata: (Bezanson et al., 2008); Human,
Homo sapiens: Newman, 2004) and other non-primate social
species (Bottlenose dolphin,Delphinidea Tursiops: (Lusseau et al.,
2006); Columbian ground squirrel, Spermophilus columbianus:
Manno, 2008). Clusterisations may play a role in competition
for a certain spatial location—low-ranking individuals in a
subgroup with high-ranking individuals may access food patches
more easily—or may help to decrease food competition by
spreading individuals across different resources (Sueur et al.,
2011b).

The present study investigates how the group spatial
distribution of a semi-free ranging colony of Mandrills (M.
sphinx) relates to its social organization. Mandrills are highly
social primates found in large groups (i.e., hordes) comprised
of several hundred individuals in a natural context (Rogers
et al., 1996; Abernethy et al., 2002). Social organization
of the Mandrill in a natural context is poorly understood
(Setchell and Wickings, 2005). Abernethy et al. (2002) has
described Mandrill groups as stable and possessing a social
organization consisting of adult females and their dependent
offspring. Less than 2% of the group is constituted of adult
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males, while other adults and sub-adult males are present
only during the mating season. Only the alpha male is 100%
permanently associated with the social group (Setchell and
Dixson, 2001). Previous studies of a semi-free-ranging colony
showed that male Mandrills exhibit a strong linear dominance
hierarchy and that affiliative behavior is extremely rare among
males (Setchell and Wickings, 2005; Setchell et al., 2006). On
the other side, females seem to be organized in matrilines
(Setchell, 1999) and kin related females fraternize together
more than unrelated females (Bret et al., 2013). A more
recent study using social network analyses has shown that
semi-free mandrills are organized in subgroups of preferential
relationships, which are not related to kinship, age, or dominance
rank of group members (Bret et al., 2013). The absence
of a correlation between kinship and subgroup organization
in this study may be explained by group composition (i.e.,
some females were the only representatives of their matriline).
However, it may suggest that affiliative relationships also
shape the social organization of Mandrill living in semi-free
conditions.

In our study, we aim to examine, in a semi-free mandrill
population, how individual’s spatial position during food
competition is explained by group social organization. Previous
studies have shown that dominance relationshipsmay explain the
spatial distribution of individuals according to food distribution
pattern, with dominant individuals monopolizing resources.
Our objective is to evaluate whether affiliative relationships
also explain individual spatial distribution in this situation.
Our research questions are: (1) does dominance hierarchy
explain observed proximity or distance from a food patch? (2)
Do affiliative associations also explain observed proximity or
distance from a food patch? (3) Do rank differences in the
group hierarchy explain being co-observed in proximity of a food
patch?

Our expected findings are that high-ranking individuals
will be observed in proximity of the food patch more often,
while low-ranking individuals will remain distant from the
food patch. We also expect that belonging to certain subgroups
of affiliative relationships will also explain spatial observations
within different distances of the food patch, while controlling
for dominance ranking. This would suggest that affiliative
relationships are another aspect of social organization that may
explain access to advantageous spatial positions. Finally, we
have two opposite hypotheses for our third research question.
Individuals of similar rank in the hierarchy may form stronger
bonds than individuals of distant rank, as usually individuals of
neighboring ranks are more closely related (Cheney and Seyfarth,
1990) and aremore tolerant of each other. In this case, individuals
of a similar rank should be co-observed more often in close
proximity of the food patch. In contrast, previous studies found
that proximity (or distance) within the dominance hierarchy does
not explain affiliation in semi-free Mandrills (Bret et al., 2013)
and they seem to be characterized by a more relaxed dominance
hierarchy in comparison to other primate populations (Bout and
Thierry, 2005). Therefore, it is possible that distant individuals
within the hierarchy may tolerate each other in proximity of the
feeding area.

METHODS

Ethical Statement
Our methodological approach solely involved observations.
Animals were not handled, and no invasive experiments
were carried out on the mandrills. Animals were already
accustomed to human presence in their enclosure. Our protocol
followed the ethical guidelines of the CNRS (Centre National
de Recherche Scientifique) and the recommendations of the
Gabonese government. This study was conducted with the
approval of the International Medical Research Center (CIRMF)
scientific committee in Gabon via a research agreement
(nu045/2011/CNRS). All occurrences of injuries or illness in the
observed animals were reported to veterinary staff at the CIRMF
primatological center.

Study Group and Environment
The study was comprised of 39 mandrills from a group of 75
individuals born in captivity and living in a large, naturally
rainforested enclosure (6.5 ha), at the CIRMF in Franceville,
Gabon. Mandrills were free to forage in the enclosure and
were supplemented by a provision of homemade soya-cake
and local seasonal fruits twice a day. Water was available ad
libitum. Juveniles (<5 years old) were excluded from the study
population because they spent all their time with their mothers
and because of the instability of their relationships with other
group members (Sueur et al., 2011d). Remaining individuals
were aged between 5 and 26 years (mean = 10.42; SD =

4.09) and comprised of 18 females and 21 males. Dates of
birth and matrilineage were recorded for all individuals. Kinship
was computed from matrilineage by recording motherhood. All
subjects were identified using morphological differences and/or
ear tags.

Spatial Observations and Data Recording
Data was collected from April to June 2012. One of the
researchers (E.C.) observed the group 6 h per day (09:00–12:00
and 15:00–18:00) from a tower located behind the feeding zone.
Observations were recorded in front of the feeding zone in a
30× 30 m area covered with grass and small trees allowing good
visibility (see Figure 1). At the beginning of each observation
period (i.e., a.m. and p.m.), a food supplement was placed in a

FIGURE 1 | Photograph of the observation area from the tower where

observations were realized. Credit Chailleux E.
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FIGURE 2 | Schema used to record individuals’ spatial position. The scale of this schema is 1 m2. Circles, ellipses, and polygons represent trees and bushes

where the mandrill could get covered. The line on the upper side represents the beginning of the forest area. The feeding zone is contained to X = 12–15 and Y = 0–4

and the door is represented by the polygon in X = 5–6 and Y = 3–4. The two circular buffers are characterized by the 10m (blue) and the 20m (red) areas used to

calculate frequencies of observation.

closed section, visible but not accessible to the mandrills during
the whole observation period. At the end of each observation
period (i.e., after 12:00 and 18:00), the door giving access to
the food supplement was opened. This situation resulted in an
artificial food patch, an advantageous spatial position for which
the Mandrills could compete for. We used instantaneous scan
sampling (Altmann, 1974) with a 15min sampling frequency
(total of 26 scans per day) to record individual spatial positions
within the observation area. Individuals observed during a scan
were positioned on a map representing the 30 × 30 m area
in front of the feeding zone door using 1m spaced vertical
and horizontal grid lines (Figure 2). A total of 631 scans were
completed, representing 157.75 h of observations. All individuals
were not observed at each scan (mean frequency of scans= 145.2;
SD= 73.35).

When calculating the mean number of observed individuals
by observation period (e.g., 9:00, 9:15), we noticed that
more individuals were observed during the afternoon (i.e.,
15:00–18:00) compared to the morning (i.e., 09:00–12:00;
see Figure 3). In practice, the food was not always made
available by the CIRMF at 12:00 but systematically at 18:00.
Therefore, mandrills had possibly learned this pattern and food
competition was probably more important during the afternoon.
Consequently, we used only observations from the afternoon
period to calculate spatial positions of individuals within

different distances of the feeding zone (see Section Hierarchal
Dominance).

Spatial Distribution
First, we calculate the Euclidian distance (Legendre and
Legendre, 2012) between the center of the feeding zone door
and the Cartesian coordinates of all observations (Figure 2). We
used the door as the centroid of the food patch because this
location was the most coveted since it is the only access to the
feeding zone. Then, the frequency of observations within 10m
and over 20m distances of the food patch were computed from
the Euclidian distances. We did not use observations between
10 and 20m because we wanted to contrast spatial observations
in proximity and distant from the feeding zone door. We
used a 10m scale in order to get sufficient observations for
statistical analysis. For observations within 10m of the feeding
door, we calculated the relative frequencies to adjust for the
number of scans during which individuals were observed. For
observations over 20m of the feeding door, individuals that
were out of sight (i.e., in the forest area) were included in the
measure. Two variables were created: (1) the relative frequency
of observation within 10m of the feeding door (F10M) and (2)
the frequency of observations over 20m of the feeding door
(F20M).
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FIGURE 3 | Histogram of the average number of individuals observed

during each period. 12:00 is considered in the morning period (am) in this

figure. The bar plot was realized with the ggplot2 package (Wickham, 2009).

Hierarchal Dominance
Agonistic interactions were recorded ad libitum during both
observation periods (i.e., a.m. and p.m.). According to previous
studies (Setchell, 1999), a list of 13 behaviors was chosen and
described in a catalog. Actor, receivers, behavior, date, and time
were recorded for each aggressive event. When interactions
included a series of behaviors, only the last behavior (causing
the submission of the other mandrill) was recorded. Also, only
unidirectional aggression with a clear issue was used to calculate
the hierarchy. Since dominance hierarchy is only based on dyadic
interactions, interactions between more than two individuals
were discarded. Linearity of the hierarchy was measured with de
Vries’ h’ index (de Vries, 1995). Individual dominance indices
were calculated with de Vries’ modification of David’s score
(MDS) (David, 1987; de Vries et al., 2006). These measures were
calculated with SOCPROG 2.4 (Whitehead, 2009).

Affiliative Relationships and
Co-Occurrence within 5m of the Feeding
Zone
To measure the social network of affiliative relationship (i.e.,
affiliative network), we used spatial proximity (i.e., association
measures) between individuals as a proxy of social preferences
in our group (Whitehead, 2008). Two individuals (i.e., a dyad)
were considered to be in association when they were seen
within a distance of 1m from each other during a scan. We
assumed that a distance close to the average body length of adult
mandrills represented a situation where touch interactions (e.g.,
grooming) may take place. The average body length of adult
mandrills is 80 cm for males and 60 cm for females (Wickings

and Dixson, 1992). We were, however, limited to 1m because
it was the smallest distance measured from the previous spatial
observations (the data were already collected when the analyses
were planned). For each pair of individuals, we calculated a half-
weight association index (HWI) with the number of associations.
Since we did not observe the whole group at each scan, all
individuals were not observed at the same total frequency.
HWI allow to control for the non-observation of all group
members at each scan (Whitehead, 2008). Then, we tested
if individuals associated in a non-random way by permuting
associations within each scan (H0 = no preferred or avoided
relationship for any dyad; Whitehead et al., 2005). We used the
coefficient of variation of association indices as the test statistic
for significance level. To measure if our population could be
usefully divided into subgroups, we used the modularity test of
Newman (Newman, 2004, 2006) which measures the difference
between the proportion of the total associations in the subgroups
and the summed associations of the whole group. Eigenvalues
were used to determine the level of certainty through which
individuals were assigned to subgroups. These three measures
were computed with SOCPROG 2.6 (Whitehead, 2009).

Finally, we created a second association matrix where every
individual observed within 5m of the feeding zone door in a same
scan were considered associated (i.e., co-occurrence network).
We used HWI to control for non-observation of group members.
We used a smaller radius than for spatial proximity to the
feeding zone door (5m instead of 10 m) because we assumed that
competition would be stronger in a limited space and therefore
co-occurrence would indicate tolerance among individuals.

Statistical Analyses
To evaluate homoscedasticity assumptions, we used Spread-
Location plots of standardized residuals against fitted values,
Bartlett test, and the Breusch-Pagan test (Greene, 2003;
Scherrer, 2007). We used square root transformations on the
relative frequency within 10m (SRF10M) in order to obtain
homoscedasticity and reduce the skewness of the distribution.
We had two missing values for the variable age. We replaced
those values by the means of their respective age group (e.g.,
sub adults’ mean ages = 6.8). We had one missing data
for MDS and removed the individual from further analysis.
All significance levels were obtained through permutations
because our observations did not represent a sample from
a larger statistical population with a known distribution and
permutations allow parametric statistical methods to be used
when distributional assumptions are not satisfied (Legendre and
Legendre, 2012). We used 10,000 permutations in each analysis.

First, we aimed to test how hierarchy is structured by age and
sex by testing bivariate relationships between hierarchy, sex, and
age. Relationship between dominance rank (MDS) and sex was
tested using a student test (one-tailed). Relationships between
dominance rank and age were tested on the full sample and
stratified by sex using Pearson correlation tests (one-tailed). We
used one-tailed tests because our hypothesis was that males were
more dominant than females and there is a positive correlation
between age and dominance ranking. Second, we tested the
relationship between the explanatory variables (1) age, (2) sex, (3)
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dominance rank, and (4)matrilineage (i.e., kinship) and affiliative
associations. Age, dominance rank, and sex variables were first
transformed into three distance matrices. Distances for age and
dominance ranking were calculated with Euclidian distance and
sex was calculated with a binary coefficient (same sex = 1;
different sex = 0). We then used a multiple regression quadratic
assignment procedure (MRQAP) test (Whitehead, 2008) with the
“double-semi-partialing” technique of Dekker et al. (2007). This
analysis aimed to better understand how social relationships are
distributed according to animal characteristics.

To test our first research question—does dominance hierarchy
explain observed proximity or distance from a food patch?—
we used Pearson correlations (one-tailed) between dominance
rank and frequency of observations within distances of the
feeding door (SRF10M and F20M). To test our second research
question—do affiliative associations also explain observed
proximity or distance from a food patch?—we used partial
regression to test the relationships between SRF10M or F20M
as outcomes, and dominance rank and subgroups (found with
modularity method as described above) as explanatory variables.
Finally, to test our third hypothesis—do rank differences in the
group hierarchy explain being co-observed in proximity of a food
patch?—we tested the correlation between the co-occurrence
network and the dominance distance matrix while controlling for
kinship, age, and sex with the MRQAP test using the “double-
semi-partialing” technique. Correlation were run between the
co-occurrence network and the affiliative network (recalculated
without observation within 5m of the feeding zone) with a
Mantel test to see if the co-occurrence within 5m of the feeding
door was related to the observed associations in the whole area.

All statistics were performed in R 3.1.2. (CRAN, 2014)
and SOCPROG 2.6. (Whitehead, 2009). We used Bartlett-test
(stats library) and ncvTest (car package) functions for Bartlett
and Breusch-Pagan tests, corPerm3 and t.perm (available from
Pierre Legendre website) functions for bivariate relationships,
mantel.test (ape package) function for mantel test, varpart and
rda (vegan package) functions for partial regressions (Paradis
et al., 2004; Fox and Weisberg, 2010; Legendre, 2015; Oksanen
et al., 2016). MRQAP tests were performed in SOCPROG 2.6.

RESULTS

Dominance Hierarchy
Linearity of the dominance hierarchy was significant
[p(perm) < 0.0001] but not perfectly consistent [De Vries
h’ = 0.253]. Dominance index (MDS) was correlated to sex
[p(perm) = 0.02053] where males had greater dominance
indices in comparison to females. The correlation between
dominance index and age was not significant for the whole group
[r = 0.24924; p(perm) = 0.07069] but significant when stratified
by sex. Stratified linear correlation showed that this relationship
is stronger for males [r = 0.88461; p(perm) < 0.00001] than for
females [r = 0.41382; p(perm)= 0.03548; Figure 4].

Affiliative Relationships
The estimated affiliative associations (Figure 5) were found
to be non-random [p(perm) < 0.001]. Affiliative associations

FIGURE 4 | Linear regression between dominance rank (MDS) and age

(years) in semi-free ranging group of mandrills (Mandrillus sphynx)

stratified by sex. The line represents the curve estimated by the linear model

and the gray shape represents the standard error. The scatter plot was

realized with the ggplot2 package (Wickham, 2009).

were not correlated with age differences [partial r = 0.0525;
p(perm) = 0.1119] or with MDS differences [partial r = 0.0359;
p(perm) = 0.1919], but were correlated with sex [partial r =

0.0858; p(perm) = 0.0099] and matrilineage [partial r = 0.3081;
p(perm) < 0.0001] where individuals of the same sex and kin
associate more often. Newman modularity tests gave us eight
subgroups composed of 3–9 individuals. Modularity for this
test was 0.590, and a modularity score > 0.3 indicates a useful
subdivision of the group (Whitehead, 2008; Sueur et al., 2011b).

Spatial Positions According to Dominance
Hierarchy and Affiliative Network (H1 and
H2)
Proximity to the feeding zone was correlated with dominance
hierarchy: SRF10M was positively correlated with MDS [one-
tailed Pearson correlation; r = 0.36385; p(perm) = 0.01190] and
F20M was negatively correlated with MDS [one-tailed Pearson
correlation; r = −0.45755; p(perm)= 0.00155].

In the multivariate linear model with SRF10M as an outcome
(Table 1), the fraction of variance explained by MDS [semipartial
r2 = 0.089658; p(perm) = 0.015] and subgroups [semipartial r2

= 0.450367 p(perm)= 0.002] are both significant [adjusted R2 =
0.48853; p(perm)= 0.002]. In the multivariate linear model with
F20M as an outcome, the fraction of variance explained by MDS
[semipartial r2 = 0.15267; p(perm) = 0.003] and the fraction
of variance explained by subgroups [semiparial r2 = 0.28086;
p(perm) = 0.005] are both significant [adjusted R2 = 0.37510;
p(perm) = 0.001; Table 1]. These results indicate that both MDS
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FIGURE 5 | One meter proximity network of a semi-free ranging group of mandrills (Mandrillus sphynx). This network was generated from the matrix of

associations. Node size represents variation in hierarchical dominance rank (MDS). Node color shades characterize subgroup membership and edge thickness

represents the strength of the connection between two nodes; the thicker the edge, the stronger the association. Individuals are positioned in 2D according to their

social relationships using the Force Atlas 2 spatialization option in Gephi 0.9 (Bastian et al., 2009).

TABLE 1 | Partial regressions between each spatial observation variables

(SRF10M, F20M) as outcomes and dominance hierarchy (MDS) and

subgroups as explanatory variables.

Df Semipartial r2 Adjusted R2 p(perm)

SRF10M

MDS 1 0.089658 0.015

Subgroups 6 0.450367 0.002

MDS + Subgroup 7 0.48853 0.002

F20M

MDS 1 0.15267 0.003

Subgroups 6 0.28086 0.005

MDS + Subgroup 7 0.3751 0.001

and subgroups predict being observed in SR10M and F20Mwhen
controlling for the other predictor, but that subgroups explain
more of the total variance in both cases.

Co-Occurrence Network and Dominance
Hierarchy (H3)
The co-occurrence network (individuals co-observed within 5m
of the feeding zone) was correlated to a second affiliative network
calculated without associations within 5m of the feeding zone
[Mantel test; r = 0.2169; p(perm) < 0.0001]. When using
binary descriptors (1 = affiliation; 0 = no affiliation), 76% of
the affiliative associations found within 5m of the feeding zone
were observed in the rest of the area (i.e., second affiliative
network). We found a positive correlation between the co-
occurrence network and the dominance distance matrix [partial

r = 0.2046; p(perm) = 0.0007] while controlling for kinship
[partial r = 0.0751; p(perm) = 0.0449], age distance [partial r
= −0.0061, p(perm) = 0.4489], and sex similarity [partial r =

0.0928; p(perm) = 0.0117], which indicates that individuals that
are co-observed more often around the feeding zone door have
greater differences in their respective dominance status while
controlling for the other descriptors.

DISCUSSION

In this study, we aimed to understand how the spatial position
of individuals in a feeding context was influenced by social
organization.

We first found that dominance hierarchy was correlated with
sex, where males were more dominant than females within the
group. We also found linear correlations between dominance
and age within male and female individuals. These results are
coherent with previous studies on the same study population
and from a captive population (Holt, 1980; Setchell et al., 2006).
Studies on mandrills remain rare and these results are important
to understand the social organization of this species. The
distribution of relationships within our affiliative network was
correlated with sex and kinship but not to age and dominance.
In comparison with a previous study on a different Mandrill
group living in the same semi-free context (CIRMF colonies),
the correlations with age and dominance were found to be
consistent, while correlations with sex and kinship were found
to be inconsistent (Bret et al., 2013). A possible explanation
for this difference comes from the composition of our study
population. Few females were related in the previous study,
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whereas more females were from the same matriline in our study
population. Our ability to compare this population to other semi-
free populations is limited, since most of our knowledge on
Mandrill behavior comes from the CIRMF colonies.

High-ranking individuals were more often observed in
proximity of the feeding-zone area, while low-ranking
individuals were more observed at the boundaries of the
observation area. In our case, the food patch was limited in
space and was only available for a fixed time. This encourages
contest competition resulting in a spatial distribution where
high-ranking individuals control the food patch and low-ranking
individuals are in peripheral positions. This behavior has been
observed in different primate species (Long-Tailed Macaques,
Macaca fascicularis: van Schaik and van Noordwijk, 1988; Wild
chimpanzees, Pan troglodytes: Murray et al., 2007; White-faced
capuchins, Cebus capuccinus: Hall and Fedigan, 1997; Brown
capuchin Cebus apella: Janson, 1990) and other taxa (Convict
cichlids, Archocentrus nigrofasciatum: Grant et al., 2002).
Furthermore, frequencies of the presence of observations, either
in proximity or far from the feeding zone, were also explained
by the affiliative network. Division of the affiliative network into
subgroups of preferential associations explained ∼45 and 28%
of the total variation of observations within 10m (SRF10M)
and over 20m (F20M) of the feeding zone, respectively. In
comparison, dominance explained ∼9 and 15% of the total
variation of SRF10M and F20M, respectively [these percentages
are the rounded semipartial r2 calculated in Section Spatial
Positions According to Dominance Hierarchy and Affiliative
Network (H1 and H2)]. These results do not only indicate
that affiliative relationships are associated with individual
spatial distributions, but that the subgroup associations explain
more of the total variance in both cases. Therefore, spatial
distribution in a feeding context seems to be more strongly
associated with the affiliation than dominance hierarchy within
the social organization. In this way, affiliative relationships may
allow individuals to be tolerated by high-ranking individuals
at the feeding zone and the resulting affiliative advantage for
low-ranking individuals may explain the observed competition
to groom dominant individuals (Sade, 1972; Chapais et al., 1995;
Schino, 2001).

The analysis of the co-occurrence network showed that
individuals observed within 5m of the feeding zone at the same
moment were more likely to be distant within the hierarchy,
while controlling for maternal kinship, age differences, and
sex similarity. Furthermore, the co-occurrence network was
correlated with the affiliative network, which indicates that
associations in the feeding zone area were consistent with
associations observed in the whole area. A possible explanation
for these results is that low-ranking individuals use their
preferential associations with high-ranking non-kin individuals
in order to gain access to the feeding-zone area. This would be
consistent with results from another study on the wedge-capped
capuchin monkeys (Cebus nigrivittatus), which found that food
patches were controlled by the most dominant individuals, their
siblings, and tolerated individuals (Robinson, 1981).

Dominance may be an important factor for accessing food
when one is at the top of the hierarchy, but for mid and lower

ranked individuals, affiliation through alliances with high-ranked
individuals seems to be a more effective way of reaching food
than relying strictly on one’s own dominance status. A possible
explanation for these results is the existence of a biological
market between associated individuals of different dominance
ranking (Barrett et al., 1999). Among wild tufted capuchin
monkeys (Cebus abella) and wild Japanesemacaques (M. fuscata),
during feeding, high-ranking individuals are more likely to
tolerate low-ranking individuals that groom them the most,
after controlling for kinship (Ventura et al., 2006; Tiddi et al.,
2011). Moreover, high-ranking individuals tend to be groomed
more than their low-ranking counterparts, a phenomenon that
is observed in adult females of different primate species (Schino,
2001). However, other studies on C. abella and M. fuscata found
no correlation between dominance distances and grooming
behaviors (Nakamichi and Shizawa, 2003; Schino et al., 2009).
Tolerance is a currency that primates may exchange against
affiliative behaviors (Janson, 1985), and therefore, low-ranking
individuals may tend to groom high-ranking individuals so as
to improve their fitness by gaining access to resources that
are monopolizable (Fruteau et al., 2009). Furthermore, market
exchange between allogrooming and agonistic support has also
been observed among different primate species (Schino, 2007).

This study fulfilled its objective of better understanding the
spatial position of mandrill group members under a feeding
context but met some limitations. Whilst the study of captive
populations might allow us to gain a better understanding of
the social factors affecting behavior, our first limitation was
that the phenomenon observed in a semi-free context may
not be representative of the natural context of behavior. An
example of this situation is found in the group clusterization:
subgroup number three that consisted of five low-ranking adult
males with five of the seven lowest positions in the male
hierarchical ranking. These individuals would probably have
left the population in a natural context since only dominant
individuals remain in the population outside the mating season
(Abernethy et al., 2002). In this semi-free context, they associated
themselves with other mandrills and remained in the periphery
of the group, mimicking males’ migration observed in the wild
(Abernethy et al., 2002). A second limitation was that we had
no information on associations and tolerance when the feeding
zone door was open. Thus, it is possible that high-ranking
individuals became intolerant with low-ranking individuals when
food was accessible. Another way of measuring food accessibility
would have been by co-feeding in the feeding zone. Thirdly, we
had no measures of grooming interactions and therefore, the
association network may not be fully representative of the real
occurrences of affiliative interactions. However, body contact and
close proximity networks were correlated in the study of another
group in the CIRMF, validating the use of close proximity (within
1m) as a relevant variable to represent social relationships (Bret,
personal comm.). Fourthly, the spatial distribution (Section
Spatial Distribution) and social association (Section Affiliative
Relationships and Co-Occurrence within 5m of the Feeding
Zone) measures were both derived from the same dataset (i.e.,
Cartesian coordinates within the 30 × 30 m area; Section Spatial
Observations and Data Recording). This could have created
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dependence between our variables and thus may influence
our results. For observations within 10m of the food patch,
Cartesian coordinates of dyadic associations during the afternoon
period and within 10m of the food patch were comprised
in both measures (SF20M and affiliative relationship). These
dyadic associations represented 12.7% of all observed dyadic
associations. We performed sensitivity analysis with subgroups
of preferential associations (Section Affiliative Relationships and
Co-Occurrence within 5m of the Feeding Zone) recalculated
without these dyadic associations and found that relationships
between spatial distribution, dominance index and subgroups
[Section Spatial Positions According to Dominance Hierarchy
and Affiliative Network (H1 and H2)] were consistent with our
previous findings. We also found our results to be consistent with
those of a sensitivity analysis performed with the observations
that were over 20m away from the food patch. Finally, even if
we restricted our spatial distribution measures to the afternoon
period, it is impossible to know whether mandrills maintained
interest in an inaccessible food source for 3 h. Thus, not all these
measures of spatial distribution may have been taken in a feeding
competition context.

This study gives us a better understanding of how affiliative
networks and dominance hierarchy are related to the spatial
positions of primates. These results were obtained by combining
social network analysis with spatial analysis. A next step would be
to better understand the temporal dimension of this process. This

would result in determining how aspects of social organization
co-influence animal behavior and explain within group spatial
distribution.
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The capacity to use information provided by others to guide behavior is a widespread
phenomenon in animal societies. A standard paradigm to test if and/or how animals
use and transfer social information is through social diffusion experiments, by which
researchers observe how information spreads within a group, sometimes by seeding
new behavior in the population. In this article, we review the context, methodology
and products of such social diffusion experiments. Our major focus is the transmission
of information from an individual (or group thereof) to another, and the factors that
can enhance or, more interestingly, inhibit it. We therefore also discuss reasons why
social transmission sometimes does not occur despite being expected to. We span
a full range of mechanisms and processes, from the nature of social information itself
and the cognitive abilities of various species, to the idea of social competency and
the constraints imposed by the social networks in which animals are embedded. We
ultimately aim at a broad reflection on practical and theoretical issues arising when
studying how social information spreads within animal groups.

Keywords: information, sociality, experimental design, social cognition, social network, social competency

INTRODUCTION TO SOCIAL DIFFUSION THEORY AND
EXPERIMENTS

Many organisms, from plants to social animals, have the capacity to use information provided by
others to guide their own behavior or decision (Morand-Ferron et al., 2010). Such information,
the behavior of others or its product, constitutes social information. It can be advertently (a signal)
or inadvertently (a cue) produced and may complement personal information acquired through
trial and error and direct interactions with the environment (Bonnie and Earley, 2007). The use
of social information is thought to allow individuals to adapt to their environment faster and/or
better than through collecting personal information alone. Use of social information thus provides
tremendous evolutionary advantages and is known to occur in many contexts, e.g., regarding food
location, availability and palatability, predator threats, and finding and choosing mates (Danchin
et al., 2004; Laland, 2004; Dall et al., 2005; Kendal et al., 2005; Bonnie and Earley, 2007; Taborsky
and Oliveira, 2012). Even when the information or behavior appears non-adaptive, such as many
of the behavioral traditions observed in non-human primates [e.g., hand-clasp grooming (McGrew
and Tutin, 1978) or stone-handling (Leca et al., 2012)], such traditions may still be adaptive
by preserving group cohesion or reinforcing group membership/identity through conformity for
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example. In any case, the transmission of such traditions can
be under the same social influences as that concerning more
obviously adaptive social information. In this review, our main
focus is on the transmission pathways of information between
one individual (or group thereof) and another, regardless of its
ultimate function/adaptive value. However, it must be kept in
mind that low adaptive value may in itself partly explain a lack
of diffusion of a given behavior, tradition or piece of information,
and conversely that high adaptive value may facilitate and even
enhance the diffusion process.

Within animal societies, an individual’s ability to use social
information and the properties governing its diffusion among
group members or conspecifics have been studied under diverse
frameworks, from evolutionary psychology (culture, social
learning, and communication) and behavioral ecology (public
information, eavesdropping) to neuroethology and economics
of decision-making (information processing, social influences;
Danchin et al., 2004; Dall et al., 2005; Kendal et al., 2005; Bonnie
and Earley, 2007; Taborsky and Oliveira, 2012). The common
threads binding all of these studies are twofold: (1) the source
of information is the behavior of others and (2) the outcome of
interest is the change in behavior associated with the acquisition
and use of social information (Bonnie and Earley, 2007). Social
information is thus a type of biological information, i.e., a
property of some source that elicits a change in the state of the
receiver in a (usually) functional manner. Differences between
fields rest in the information content (who, what, and how) and
packaging (signal vs. cue), as well as in the payoffs of using
social information (Bonnie and Earley, 2007). For example, an
animal’s choice of a feeding site can be influenced by whether
or not conspecifics are already feeding there (social influence or
social learning), by the conspecifics’ feeding behaviors that may
be indicative of resource quality (public information), by how
many other animals one can outcompete around the resource
(eavesdropping), or by all of the above.

The acquisition and use of social information seems
to be inherently adaptive, although some theoretical and
empirical examples show that it could also be neutral (e.g.,
symbolic/arbitrary) and sometimes maladaptive (Rogers, 1988;
Giraldeau et al., 2002). A maladaptive decision might also be
defined as an inevitable by-products of an adaptive strategy
that has evolved under strong selective pressures (Rieucau and
Giraldeau, 2011; Pelé and Sueur, 2013). This probably relates to
the existence of a trade-off between acquiring costly but accurate
information through personal experience and using cheap but
potentially less reliable information from others (Barnard and
Sibly, 1981; Giraldeau et al., 2002; Laland, 2004; Kendal et al.,
2005). Animals must thus adjust the weight they give to both
sources of information depending on circumstance. Individuals
may rely on social information when personal information is
difficult to acquire or unreliable, and when they are uncertain
about how to behave. They may instead rely on personally
acquired information when the available social information
conflicts with it or is incomplete, and/or when individuals are
confident in the quality of their own information (Giraldeau
et al., 2002; Laland, 2004; Kendal et al., 2005; Rieucau and
Giraldeau, 2011). Most likely, decisions involve taking into

account a combination of social and personal information and
the diffusion of information is thus a function of the cost-
benefit ratio of the different strategies available (Rieucau and
Giraldeau, 2011). Yellow-bellied marmot (Marmota flaviventris)
alarm calls, which are given to signal the presence of a predator,
provide an opportunity to exemplify this because the caller’s
reliability in signaling danger is directly linked to the amount
of time others allocate to personally assessing the threat: when
the caller is judged unreliable, other marmots spend more time
being vigilant (i.e., gathering personal information) before acting
(or not) upon the threat (Blumstein et al., 2004). In species
establishing recurrent and/or enduring social relationships
between group members, reliability of social information also
concerns these social relationships. For example, a middle-
ranked female rhesus macaque (Macaca mulatta) will be more
assertive toward an unfamiliar individual if she has seen a
familiar subordinate individual defeating it in some competitive
interaction (reliable social information), in contrast to conditions
in which the interaction involved a familiar dominant or
an unfamiliar individual (unreliable social information; cue
reliability approach, Dewar, 2003).

Ways of testing functional and mechanistic hypotheses about
social information and its use include: observing animals
throughout their ontogeny, observing different populations of the
same species with different behavioral traditions, or carrying out
so-called social diffusion experiments in the lab or in the field.
Social diffusion experiments investigate the transmission of social
information from one individual (or group) to the next, seeding
experimentally controlled innovations in behavior into groups of
naïve individuals and tracking and documenting the spread (or
otherwise) of the innovation (Whiten and Mesoudi, 2008; Whiten
et al., 2016). A traditional experimental paradigm is to have two
groups of subjects, an experimental group with a knowledgeable,
proficient model that others can observe performing an action,
and a control group without such an opportunity to observe.
Alternatively, one of several new behaviors is seeded in one
or few so-called informed individuals in a group of naïve
individuals in order to artificially create behavioral variation
amongst groups or populations. The aim is then to track the
progressive acquisition of the new behavior in terms of pathways
(from whom to whom the behavior is transmitted), speed,
accuracy, and characteristics of individuals involved as compared
to controls or variants (Whiten and Mesoudi, 2008; Whiten et al.,
2016).

In this article, we first review such social diffusion studies and
their goals, methods and outputs. We take a broad perspective
on such studies, whether observational or experimental, with
paired individuals or open groups, in a social learning or public
information framework, but try to focus on salient research fitting
our aims. We make no attempt to discuss what does or what does
not constitute social learning (for comprehensive discussions
of this see Galef and Laland, 2005; Hoppitt and Laland, 2008,
2013; Leadbeater, 2015, amongst others), nor to distinguish the
mechanisms by which this particular use of social information
occurs (see Laland, 2004; Hoppitt and Laland, 2013, amongst
others), nor to debate whether the use of social information is
adaptive (see Rogers, 1988; Giraldeau et al., 2002; Kendal et al.,
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2005, amongst others). Hereafter, we instead focus exclusively
on the possible pathways for information transmission within
groups or aggregations of individuals, and the factors that
may enhance or, more interestingly for us, inhibit information
transmission. We pay special attention to studies in which the
goals and outputs did not necessarily coincide because these
studies tell us as much as do studies presenting “positive” results
about how animals use, or do not use, social information. In
the second part of this article, we return to essential concepts
and expand our review on the nature of social information
itself, the putative cognitive abilities of various species, the idea
of social competency, and the influence of social networks on
the use of social information in animal societies (Table 1). To
paraphrase Bonnie and Earley (2007), our intention here is not
to revolutionize the field, but rather to continue stimulating
discussions about the abilities of animals to extract, use, and
produce information from the social environment, and their
influence on information diffusion.

SOCIAL DIFFUSION EXPERIMENTS:
GOALS, METHODS, AND OUTPUTS

One of the earliest known accounts of social transmission
of behavior is milk bottle opening among tits (Parus major,
Periparus ater, and Cyanistes caeruleus) in England, where birds
learned to pierce the lid of milk bottles left on doorsteps to
drink the cream within (Fisher and Hinde, 1949; Aplin et al.,
2013). Although this innovative behavior started in several
places independently, once present in a population it would
spread extensively, suggesting the influence of social processes
(Fisher and Hinde, 1949; Lefebvre, 1995; Aplin et al., 2013).
Another known example of social transmission among animals
comes from Japanese macaques (Macaca fuscata) washing sweet
potatoes in water, a behavior that spread gradually through
the group (Kawai, 1965). In the years following the start of
this seminal study, several other newly acquired behaviors
(e.g., begging, stone-handling) emerged and spread through
different groups of macaques in different regions of Japan
following rules of acquisition dependent mainly on age, sex,
and kinship (Kawai, 1965; Huffman et al., 2008). Since then,
almost all published experimental or natural studies of social
information transmission show that given the possibility to
observe knowledgeable individuals performing a task, the
majority of naïve, non-knowledgeable individuals subsequently
use the same technique to accomplish the same task (Morand-
Ferron et al., 2010). The non-random process of task acquisition
is generally demonstrated if it occurs either above chance or
above the proportion of naïve individuals performing the same
task in a control group without knowledgeable demonstrators
or in a group seeded with a different technique (Whiten and
Mesoudi, 2008; Whiten et al., 2016). These results seem to be
taxon-independent and pertain to insects, birds and mammals,
demonstrating the overwhelming generality of social information
use by animals (Laland, 2004; Chittka and Leadbeater, 2005;
Galef and Laland, 2005; Whiten and Mesoudi, 2008; Rieucau
and Giraldeau, 2011; Whiten et al., 2016). We can nevertheless

distinguish these studies into three, non-exclusive categories:
(1) those relating to the presence/absence of diffusion of the
behavior; (2) those regarding individual characteristics and
their influence on transmission; and (3) those interested in
the pathways and characteristics of diffusion (e.g., persistence
of transmission). Complementary to the ideas presented here,
Whiten and Mesoudi (2008) and then Whiten et al. (2016) also
provide extensive and updated reviews of diffusion studies in
animals and humans.

Presence/Absence of Diffusion
A first step in studies of social diffusion is to show that
information is actually transferred amongst animals in some
way. The literature is vast and spans contexts such as foraging,
breeding, anti-predation strategies, and social interactions.
Examples range from bumblebees (Bombus impatiens) choosing
the same-colored flowers as those chosen by conspecifics
they previously observed (e.g., Leadbeater and Chittka, 2005;
Worden and Papaj, 2005), to client fish (Scolopsis bilineatus)
spending more time near cooperative cleaner fish (Labroides
dimidiatus) than cleaner fish of unknown cooperative level
after observing other clients’ interactions with these cleaner
fish (e.g., Bshary and Grutter, 2006), to flycatchers (Ficedula
albicollis) using others’ breeding outcomes (offspring quantity
and/or quality) to select a breeding habitat (e.g., Doligez et al.,
2002).

The interest here lies in where transmission apparently did not
occur, because looking at how, why, and in what context animals
do not use social information is just as telling as when they do.
For instance, wild keas (Nestor notabilis), a mountain parrot,
failed to solve a foraging task despite having the opportunity to
observe proficient individuals solving the same task and to engage
with the experimental setup immediately thereafter (Gajdon
et al., 2004). When the experiment was repeated with captive
keas, a majority of the birds solved the task after observing a
proficient model (Huber et al., 2001; Gajdon et al., 2004). This
indicates that the absence of social information transmission was
independent of the task’s level of difficulty. It could be that wild
keas have the capacity to learn socially but some constraints
prevent them to express it – maybe a question of opportunity or
utility. This is similar to what is found in spotted hyenas (Crocuta
crocuta), a social carnivore, where individuals in captivity seem
more proficient at solving foraging tasks than those in the wild.
This difference was attributed to personality rather than more
trivial factors such as time-energy threshold, inasmuch as captive
hyenas are more exploratory and less neophobic than their
wild counterparts (Benson-Amram et al., 2013). In contrast, a
novel foraging behavior (piercing a lid to access food) spread
more quickly amongst groups of free ranging urban pigeons
(Columba livia) than amongst captive groups. This was explained
by the fact that urban pigeon groups are open to migrants which
could enhance the degree of innovation and diffusion (Lefebvre,
1986).

Looking in more details at the hyena example, whether
in captivity or in the wild, individuals presented with a box
containing meat were more likely to approach and manipulate
the box when they had seen others do it but were not more
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TABLE 1 | Summary of points examined in this review.

Transmission
process

Known influential
factors

Directions for further
studies

Initiation – Producer characteristics (sex, age, dominance rank, and personality,
motivation),

– Environment (complexity, stability),
– Type of innovation

– Competing solutions to the same problem
– Suboptimal demonstrator characteristics
– Seeding of information to individuals with different

characteristics simultaneously

Pathway – Producer/receiver characteristics
– Producer/receiver relationships (kinship, dominance difference,

“friendship”)
– Cognitive abilities (sensory output and processing)
– Social network (openness, connectedness, tolerance)
– Adaptive value
– Information characteristics

As above, and:
– Several information of varied types (e.g., social/asocial),

qualities, relevance, or congruence presented at the same
time

– Social structure disturbance/manipulation (e.g., alone/in a
social setting)

– Same type of experiments to many different species/groups
(including interspecies)

– Different task complexity/difficulty concurrently

Establishment/
termination

– Cost/benefit ratio,
– Conservatism level
– Social network structure

– Comparison between initial transmission and long-term
transmission patterns

Additional aspects:
– Technological equipment to track non-invasively: individuals’ movements (GPS, accelerometer), physical states (heart rate monitor, blood

glucose or glucocorticoid level monitor, infrared imaging), social proximities [radio-frequency identification (RFID) tags]
– Test apparatus version 2.0 with touch screens or panels, automated feeders, eye-trackers, face recognition
– Long-term population studies
– Heritability/evolution/environmental changes studies
– Taking inspiration in other diffusion domains such as epidemiology, informatics, or social media
– Building a database of protocols, pre-print, and published studies

likely to succeed in opening it (Benson-Amram et al., 2014).
In this case, social information is used indirectly to enhance
extraction of personal information but not directly to solve
an environmental problem. This could be explained by the
simplicity of the task (solvable by trial and error), or the
characteristics of the demonstrator (not relevant or reliable). It
could also be that social constraints, such as a rather competitive
environment, affects the cost/benefit ratio of social information
vs. personal information: hyenas are very good at solving goal-
oriented cooperative tasks (Drea and Carter, 2009), which may
be necessary to hunt large prey, but when they already have
access to food, they may instead pay more attention to avoiding
aggression than to new ways of obtaining the food per se. A lack
of diffusion and establishment of a behavioral pattern can also
occur when two alternatives are equally profitable. In meerkats
(Suricata suricatta), individuals were at first more likely to feed
on the same feeder as a demonstrator, but the more they explored
the experimental apparatus, the more they realized they could
easily get food at two “locations,” making it less likely they
would continue to use the demonstrator’s feeder more frequently
(Thornton and Malapert, 2009). In this example, although there
was social transmission from one demonstrator to one observer,
there was no establishment of behavioral tradition such that the
behavior spread within the whole group according to individual’s
assortativity.

In other cases, the task presented seems too difficult, not
appropriate or not ecologically relevant for the tested animals.
For instance, laboratory-reared rhesus monkeys learned to
fear snakes from watching videos of wild-reared conspecifics’
reactions to snakes, but never learned to fear a flower on the

same basis (Cook and Mineka, 1989). In a two-step foraging
task, vervet monkeys (Cercocebus aethiops) had to remove a
rope blocking a door before opening that door to retrieve food.
Although the trained model was ultimately successful at the task,
other individuals failed to master it although they were exposed to
a successful model, suggesting that the link between one gesture
and the next in a several-steps task was not evident (van de
Waal and Bshary, 2011). Another example of a behavior, this
time naturally occurring, that failed to spread is dental flossing
in Japanese macaques (Leca et al., 2010). In their study, the
authors reported several factors likely to constrain the diffusion of
innovation such as belonging to a small grooming cluster relative
to group size or having few close kin in the group, and the form,
function and context of the behavior. The most interesting point
that the authors made here is that the low adaptive value of dental
flossing, a “comfort” innovation with such a “narrow window of
applicability,” may also account for its lack of diffusion (Leca et al.,
2010).

Influence of Individual Characteristics on
Diffusion
Because social groups are often mixed groups of individuals of
different sexes, ages, and/or personalities, individuals’ interest
in, and experience and knowledge of, their environments vary.
Thus, some individuals are potentially more likely to discover
resources in the environment, to start innovating, or to correctly
assess dangers than others, creating a differentiation in the
availability and reliability of the social information produced
within a group/aggregation of animals. On the other hand, some
individuals are also more likely to learn from their conspecifics
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because they are more social (in general terms), i.e., they are more
often in proximity to others, they pay more attention to others, or
they are more often engaged in social activities.

For instance, only 54% of naïve blue tits exposed to a proficient
demonstrator solved a new foraging task (Aplin et al., 2013).
Investigation of the variables that could explain this percentage
showed that young females and subordinate males with higher
innovative problem-solving capabilities were more likely to
solve the task than others, whereas the characteristics of the
demonstrator had no influence on the performance of naïve
birds, i.e., there was no preferential attention to certain models
(Aplin et al., 2013). On the other hand, studies on vervet monkeys
demonstrated that social transmission is often influenced by kin
relationships, i.e., vertical, from mother to offspring (van de Waal
et al., 2014). When transmission is horizontal, from peer to peer,
or oblique, from adults other than parents, vervet monkeys are
more likely to copy the new foraging technique of an adult female
compared to an adult/subadult male (van de Waal et al., 2010).
Adult females of this species are philopatric and live their entire
lives in the group in which they were born. This potentially makes
them more reputable concerning food acquisition and processing
because they have more experience and are the more familiar
individuals in the group. They could also occupy more central
positions in the social network of the group and may be more
tolerant of individuals in proximity, all of which could potentially
enhance social information transmission.

Similarly, it has been experimentally shown that, visually,
monkeys do attend more to higher-ranking individuals than
to lower-ranking individuals (e.g., McNelis and Boatright-
Horowitz, 1998; Deaner et al., 2005), and to strong affiliates
compared to average affiliates (Bonnie and de Waal, 2006;
Micheletta et al., 2012). This pattern is interpreted as being more
salient in terms of acquiring social information. As another case
in point, the oldest living female in a group of African elephants
(Loxodonta africana), the matriarch, often leads the group from
one place to another and initiates group defense behavior (for
example when encountering signs of unfamiliar individuals or of
predators), potentially because she has enhanced local knowledge
of the environment and group members defer the decision of
travel/action to this informed individual (McComb et al., 2001,
2011; Mutinda et al., 2011). However, the best innovators, i.e.,
individuals more likely to start using a novel behavior, are not
necessarily the best models for information transmission. For
example, although male canaries (Serinus canaria) were better
at solving a foraging task and thus could have been selected
as demonstrators, their aggressive tendencies toward others
prevented them from being good models (Cadieu et al., 2010).
In this case, females constituted the best demonstrators because
they tolerated individuals around them, so social transmission of
an innovation mainly rested on females.

Diffusion Pathways
When social information is transmitted, determining the
pathways taken by this information within a group of individuals
as well as how fast and far it travels can give insights into the
mechanisms of social information use. Indeed, animals living in
groups or aggregations do not interact or associate randomly with

one another, but have preferred associates or affiliates which are
reflected in the heterogeneous structure of the social network of
the group/aggregation. As such, the flow of social information
is not random between individuals, but is in accordance with
the structure of the social network of the population (Krause
and Ruxton, 2002; Krause et al., 2007; Croft et al., 2008). Social
transmission of information can thus fail not only because of
some characteristics of demonstrators and/or naïve individuals,
but also because the link between knowledgeable and naïve
individuals may be suboptimal, e.g., the pair is not often together,
not strongly affiliated or even avoids association, whatever
the underlying causes. “Where” [i.e., with which individual(s)]
to seed the social information diffusion within a network of
individuals is thus as crucial as how connected the individuals
are.

In brown capuchins (now Sapajus apella) for example,
transmission during diffusion chain experiments was controlled
in that pairs of demonstrators-observers were chosen amongst
affiliates and the demonstrator was the higher-ranking of the
two, which may have facilitated transmission (Dindo et al.,
2008). In contrast, in a group of squirrel monkeys (Saimiri
sciureus), where the chosen demonstrator of a new foraging
technique was the alpha male, the open diffusion experiment
demonstrated that more central individuals in the social network
(those well connected and integrated in the group) were more
successful at mastering the technique and quicker at using it
than less central individuals (Claidière et al., 2013). Central
individuals indeed may have more opportunity to observe the
demonstrator and/or to manipulate the apparatus, especially if
the demonstrator is itself central, which would enhance the
use of social information. In a more natural setting, Brown
(1986) showed that cliff swallows (Hirundo pyrrhonota) that were
unsuccessful at bringing food back to the nest for nestlings were
more likely to follow a successful individual on their next foraging
trip than were successful foragers. Unsuccessful foragers were
also more likely to follow their nest neighbors on subsequent
trips, especially those within 1 to 5 nests away than further away
in the colony. As there was intra-individual variation in foraging
success, any bird could be a successful or unsuccessful forager and
thus a follower or a leader to a foraging patch. This led Brown to
coin the swallow colonies as “information centers” and is one of
the earliest examples of diffusion analysis in a foraging context,
albeit in a crude way (Brown, 1986).

A major step forward in the study of social diffusion is
the development of network-based diffusion analysis (NBDA).
NBDA is a tool now commonly used to demonstrate that
the expression of a behavior by an individual is the result of
it being associated with animals that themselves express this
behavior with an increased probability compared to a model
not including social effects (Franz and Nunn, 2009; Hoppitt
et al., 2010). The model specifically illustrates directed social
learning, in which information is transmitted at different rates
depending on association patterns between individuals (Coussi-
Korbel and Fragaszy, 1995). Such social effects explain variance
in lobtail feeding in whales (Allen et al., 2013) or food patch
discovery in tits (Aplin et al., 2012). The latter study not only
demonstrated that tits use social information to locate new
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food patches but also that the discovery success was linked
to individual centrality in the flock association network: more
central individuals were more likely to locate and use novel
foraging patches than those with limited social connections.
By looking at an animal or human group as a network of
connected individuals, social network analysis has facilitated
great progress in diffusion studies, and as a result, in the
understanding of animal and human culture. Because culture
is fundamentally based on the exchange of social information,
social structure and culture are indeed linked (Cantor and
Whitehead, 2013). In this perspective, diffusion studies, whether
experimental or observational, coupled with social-network-
based analysis brought substantial advances to our understanding
of how animals use social information.

FURTHER PERSPECTIVES ON SOCIAL
DIFFUSION STUDIES

Questions regarding the acquisition and use of social information
are typically concerned with when to copy (e.g., when resources
are easy or difficult to exploit/find, or when the environment
is stable or unstable), who to copy (e.g., successful or reputable
or familiar or genetically related individuals), what is copied
(i.e., what kind of information is remembered and transmitted)
and how individuals copy (i.e., the mechanisms or supports
by which the information is reproduced; Laland, 2004; Bonnie
and Earley, 2007; Whiten and Mesoudi, 2008; Whiten et al.,
2016). The literature covering each of these aspects is vast and
continues to expand almost exponentially (Galef, 2012; Whiten
et al., 2016). The challenge that remains even today is to
examine those questions in more integrative ways and to find the
right experimental, empirical, and statistical paradigm to do so
(Whiten et al., 2016).

Important aspects of diffusion that we feel deserve more
attention include social information characteristics, what makes
an animal a producer and/or a user of information, the cognitive
capacities involved in acquiring, processing, and using social
information, and finally the social competency of animals.
We also think that future work could pay more attention to
quantifying the rate at which information spreads, how far
this information can spread in a network, and the factors that
influence the flow of information. This means that an additional
focus to factors favoring social transmission could be on those
explaining an absence thereof. We now turn to these topics in
a humble attempt to participate in advancing the field of social
information use in animal societies.

Social Information Characteristics
The characteristics of social cues, i.e., information that
is inadvertently produced through interaction with the
environment, can greatly influence their transmission inasmuch
as acquiring and using social information is directly related to
the cost of acquiring and using asocial or personal information
(Boyd and Richerson, 1988). These characteristics can be
experimentally modified to assess which are important to the
animals. For example, is the number of conspecifics performing

a task sufficient, or are subtler cues necessary to decide to
use social information? For instance, experiments of social
transmission in fruit flies (Drosophila megalonaster) showed
that within an aggregation, the number of informed individuals
needed to be about twice the number of uninformed individuals
in order to observe transmission of information from informed
to uninformed individuals (Battesti et al., 2015). Experiments
with fish and birds demonstrate that individuals without a priori
information on environmental resources are more likely to
follow a large group of conspecifics to a food location compared
to a small group. But as soon as individuals can observe others
actually feeding, they would rather follow few individuals feeding
than many individuals not feeding (Kendal, 2004; Coolen
et al., 2005; Rieucau and Giraldeau, 2011). This suggests that
observing a direct link between a task and a reward is more
salient than just observing a task. Similarly, individuals with a
priori personal (or asocial) information are less influenced by
their companions’ behavior than those without. In an experiment
with nutmeg mannikins (Lonchura punctulata), individuals
without prior personal information consistently chose the feeder
associated with previously acquired social information regardless
of whether it was the mere numbers of companions present
or the numbers of companions feeding. Individuals with prior
personal information, however, did stick to their initial choice
and switch feeders only if they observed companions actually
feeding (Rieucau and Giraldeau, 2009). More subtly, homing
pigeons were shown to adjust their flight routes, to which they
generally show high fidelity, depending on those followed by
conspecifics (Biro et al., 2006). When the pre-established routes
of two pigeons did not differ greatly, a pair would converge on an
average path, supporting the “many-wrong” hypothesis arising
from a compromise between personal and social information.
However, as soon as the routes diverged beyond a distance
threshold, one individual became the leader, usually the pigeon
most faithful to its own pre-established route, supporting the
leadership hypothesis in which the most insistent, “confident,”
or less flexible individual imposes a social choice on the group.
In other cases, both pigeons defaulted to their established routes
and thus no use of social information was observed, again usually
when the routes diverged beyond a distance threshold (Biro et al.,
2006; Freeman et al., 2011).

Another characteristic of information that is likely to influence
its transmission is complexity or difficulty. A one-step task may
thus be acquired and spread faster between individuals than a task
requiring four steps to be completed. For example, callitrichid
monkeys used social information to solve a challenging foraging
task involving pulling a door toward oneself and retrieving
food inside a box, whereas they solved an easier foraging task
involving pushing a door and reaching inside to retrieve food
without using social information (Kendal et al., 2009). Similarly,
vervet monkeys easily solved a simple foraging task such as
pushing/pulling a door (van de Waal et al., 2013), but failed to
solve a two-action foraging task, even when being provided with
social information (van de Waal and Bshary, 2011). Information
complexity or stability can also emerge from the environment.
For example, the structure of the environment (open vs.
closed, arboreal vs. terrestrial) can influence how communication
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signals can be perceived (Maciej et al., 2011). Starlings (Sturnus
vulgaris) in an unpredictable environment are better at foraging
when in the presence of an informative demonstrator (who
consistently indicated the same food location) than in the
presence of an uninformative demonstrator, whereas individuals
in a predictable environment performed equally well with or
without an informative demonstrator (Rafacz and Templeton,
2003). The extent to which the complexity or stability of the
environment affects the transmission speed, accuracy, and reach
of social information is still not very clear, however. Ecological
and social environments may very well interact to affect
social information transmission inasmuch as an individual’s
perception and action are tightly linked to both (e.g., Barrett,
2011).

Some types of information are also more salient or relevant
than others, which will influence their social transmission. For
example, humans recall and repeat social information such
as gossip involving third-parties with greater accuracy and
in greater quantity than non-social information such as the
geographical description of a city (e.g., Bartlett, 1932; Mesoudi
et al., 2006). In animals, several studies hint that individuals
would probably also pay more attention to information
relating to social events as opposed to non-social events.
For example, fish choose to take a long circuitous route
with their mates rather than a shorter more direct route
alone to access food. This preference persists over several
generations even when founder demonstrators have disappeared
from the population (Laland and Williams, 1998). Similarly,
in a two-choice test paradigm where male rhesus macaques
had to choose between receiving a fruit juice reward or
receiving a fruit juice reward and seeing an image of a
conspecific, they not only chose the latter option but sacrificed
a bit of the amount of juice they could have received to
do so (Deaner et al., 2005). This choice demonstrated that
monkeys were ready to sacrifice a food reward to gather social
information.

Another characteristic we briefly mentioned before concerns
the adaptive value of a given piece of social information. If social
information that is obviously adaptive, e.g., use of a tool to
extract food among primates and corvids, versus that which is
not-so-obviously adaptive, e.g., stone-handling among Japanese
macaques, were to be seeded in the same group or aggregation,
would the spread, speed and reach of diffusion of the former
be more important than the latter? The relevance of the former
compared to the latter would intuitively lead us to predict a
positive relationship between adaptive value and these diffusion
properties. However, if these not-so-obviously adaptive socially
transmitted behaviors play a role in increasing group cohesion
through conformity for example, the answer may not be so
straightforward.

So, in general, although animals can display great interest in
an experimental apparatus or a given situation, perform a task
or a behavior to perfection, and readily observe and copy others,
we still know too little about the nature of social information
and its influence on transmission dynamics to predict when
these behavioral aspects will coincide and result in diffusion. Is
it about quality, quantity, complexity, congruence, relevance, or a

mixture of all of these traits? Determining this requires long and
patient trial-and-error tests, massive undertakings of experiments
encompassing varied conditions, contexts, and characteristics,
mathematical models and efforts in complex systems science
and, importantly, although the information can sometimes be
extracted from the study itself, a systematic report or test of the
kind of information that is tested/used. Experiments combining
tests of asocial and social information simultaneously are also
important in determining characteristics of diffusion as it is likely
that animals use a combination of both at every instant (Rieucau
and Giraldeau, 2011).

Animals as Information Processors and
Users
Each step of the transmission process requires individuals to
“innovate” on a personal level, that is, they are not necessarily
the first to express the behavior but this is the first time that
they themselves express it. In this sense, understanding limits
to innovation helps understanding constrains on social diffusion
(Brosnan and Hopper, 2014). One of these limits is within the
animals themselves, related either to individual characteristics –
explored in this section – or to cognitive abilities – explored in
the next section (for limits concerning the social environment,
see “The social competency of animals or the social network
effect”).

Characteristics of the information producers, such as relative
status, age, or sex, cannot only influence the performance
of an individual in its environment but can also condition
another animal’s decision to observe such producers and
to use the information gathered. Similarly, characteristics of
the information receiver determine its processing and use
of information and, as such, the speed, accuracy and extent
of information transmission. Individual constraints on social
diffusion (here, of innovations) stem from the propensity of
individuals to be conservative, that is, individuals tend to persist
with existing behaviors, or the existing uses of behaviors, rather
than explore novel options (Brosnan and Hopper, 2014). As a case
in point, bolder and less neophobic individuals are more likely
to produce information and to innovate than shy and neophobic
individuals because they tend to take more risks and explore their
environments more (Wilson, 1998). Lower-ranking chimpanzees
tend to be more innovative, probably because they are more
constrained in their access to food and have to find an alternative
solution more often than higher-ranking individuals (Reader and
Laland, 2001). In great tits, variation in spontaneous problem-
solving performance was unrelated to individual state (e.g.,
body condition) and not even associated with behavioral traits
(e.g., neophobia), but most likely reflected inherent individual
differences in the propensity to forage innovatively (Cole et al.,
2011). In starlings, less neophobic and higher-ranking individuals
were more likely to approach the experimental novel foraging
tasks. Group mates of these first “contactors” approached the
experimental apparatus more quickly as well if they themselves
had a propensity to feed in a novel environment (Boogert et al.,
2008).

Nevertheless, although some studies have determined which
individuals tend to learn or innovate faster or better (see
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references in previous paragraph), we are still at risk of making
a lot of assumptions about who those individuals might be
instead of testing who they actually are. When studying animals
living in group, especially in natural conditions, researchers
are indeed often constrained in the choice of knowledgeable
demonstrator(s) vs. naïve observer(s), because high-ranking
individuals monopolize the resources for example, or because
bolder individuals are more explorative. It is also very difficult
to disentangle which individual characteristics can have the most
influence, as high-ranking individuals for instance can also be
bolder than low-ranking individuals. Studies conducted with wild
animals must keep these sociodemographic constraints in mind
when being discussed or reported. Finding ecological validity
in diffusion studies is a much needed challenge (Whiten et al.,
2016).

Overall, what makes a producer and/or a user of information
varies greatly according to ecological, social, and individual
circumstances. What we need to be more aware of is that
not all individuals will produce or use social information,
in relative and absolute terms. Optimizing our knowledge
and understanding of the speed, accuracy, and spread of
social information transmission requires that the profiles of
producers and users be more systematically reported. We
also need studies that can select producers and users with
suboptimal characteristics, for example a high-ranking individual
with a lower-than-expected network centrality compared to a
low-ranking individual with a higher-than-expected network
centrality, or a lower-ranking individual with a higher-than-
expected boldness profile compared to a high-ranking individual
with a lower-than-expected boldness profile. For instance, in
several groups of vervet monkeys tested in an experimentally
induced coordination problem, dominant individuals naïve to a
foraging task learnt to wait outside of an imaginary forbidden
circle that the proficient but low-ranking individual approached
and solved the task and allowed food access to the whole group
(Fruteau et al., 2013). What is also needed is the assessment of
the effects of individual characteristics on diffusion in naturally
or spontaneously occurring innovations, observed from their
birth to their establishment or disappearance, in a population
where individuals are identifiable and their characteristics a priori
known [e.g., dental flossing (Leca et al., 2010) and louse egg-
removal techniques (Tanaka, 1998) in Japanese macaques, lobtail
feeding in humpback whales (Weinrich et al., 1992; Allen et al.,
2013), or moss-sponging in chimpanzees (Hobaiter et al., 2014)].

Cognitive Abilities
The social brain hypothesis states that increasing social
complexity drives the evolution of large brains with more
cognitive capacities, in the sense of information-processing,
because of the challenges of managing complex social
relationships (Whiten and Byrne, 1997; Dunbar, 1998; Pérez-
Barbería et al., 2007). However, the use of social information is
so widespread in the animal kingdom that one could contend
that information-processing capabilities do not relate only to
brain size (Barton, 2006; Morand-Ferron et al., 2010; Lihoreau
et al., 2012). The fact that invertebrates such as wasps and
bees are capable of memory and learning demonstrates how

complex cognitive processes are possible even with a limited
number of neurons (Lihoreau et al., 2012; Avarguès-Weber
and Giurfa, 2013; Grüter and Leadbeater, 2014). Paper wasps
(Polistes fuscatus) can recognize individuals and remember the
identity of social partners, even after a succession of interactions
with other individuals (Sheehan and Tibbetts, 2008). Honey
bees (Apis mellifera) are well known for their symbolic “dance
language,” which they use to build consensus about relocating
to a new home: the swarm integrates the different information
given by different explorative scouts through their dancing
and make a decision about a single location (Seeley, 2010).
In the field of social learning, it has been argued that social
learning does not depend on “advanced” cognitive adaptations,
and that social and asocial learning alike depend on the same
mechanisms (Heyes, 2012). This hypothesis is supported by
the facts that social and asocial learning abilities covary across
and within species (Bouchard et al., 2007; Reader et al., 2011),
that social learning occurs also in solitary animals (Fiorito and
Scotto, 1992; Wilkinson et al., 2010), and that social learning
has the same key features in diverse species, including humans
(Heyes, 1994, 2012). Heyes (1994, 2012) therefore argues
that social and asocial learning depend on a common set of
associative learning mechanisms and that social learning merely
reflects the case in which the information is provided through
a social channel (Heyes, 2012). This illustrates how the use of
social information may in fact require relatively simple and
computationally inexpensive forms of cognition (Lihoreau et al.,
2012).

However, the use of social information also involves
perceptual, attentional, and motivational processes specific to
information coming from other individuals (Heyes, 2012).
Acquiring and using social information requires animals to
link other individuals’ actions to environmental and/or social
reactions or patterns. Feedback from the social domain also
requires that individuals integrate and process stimuli not
only related to the external (e.g., sex, size) but also to the
internal (e.g., “emotional”) states of other interacting agents,
to the current social context, and to what this information
means to the individual at that moment in time in order
to respond with the appropriate behavior (Trimmer et al.,
2008; Clutton-Brock, 2009; Taborsky and Oliveira, 2012).
Throughout the evolutionary history of social species, these
social-specific processes may have been selected for and may
have further coevolved with the complexity of social life
(Heyes, 2012; Leadbeater, 2015). For instance, Pinyon jays
(Gymnorhinus cyanocephalus), a social corvid species, perform
a social learning task better than an asocial learning task
whereas Clark’s nutcrackers (Nucifraga columbiana), a less
social corvid, perform equally well in both tasks (Templeton
et al., 1999). Based on these differences, social learning
capabilities were interpreted as being adaptations to social
life (Templeton et al., 1999; Heyes, 2012). This is essentially
one of the tenants of the cultural intelligence hypothesis
(Whiten and van Schaik, 2007; van Schaik and Burkart, 2011),
which examines links between asocial and social learning
and the development and maintenance of learned skills
both horizontally and longitudinally in an effort to better
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understand the emergence and maintenance of cultures and
traditions.

From a neuroethological perspective, some parts of the
brain are specifically dedicated to social stimuli, such as face
recognition and processing, social approval (i.e., individuals
tend to conform to social norms to “fit in”), selective social
attention (e.g., individuals pay more attention to higher-ranking
individuals), or recognizing and responding to socio-emotional
signals such as fear and anger (Brothers, 1999; Insel and
Fernald, 2004; Phelps and LeDoux, 2005; Barton, 2006; Adolphs,
2008; Rilling and Sanfey, 2011). Mirror neurons are specifically
activated both when one performs an action such as reaching
for food and when one observes someone else performing that
same action (Gallese, 2007; Caggiano et al., 2009). In the broadest
sense, emotions are “an evaluative response of the organism
involving physiological arousal and expressive behavior,” and
“interfacing between sensory inputs and motor outputs in a way
that allows flexibility in the response (to a stimulus)” (Aureli and
Schino, 2004 for one definition amongst many). They function
as adaptive responses to environmental demands, preparing
individuals to cope with challenges (Aureli and Whiten, 2003;
Aureli and Schino, 2004; Phelps and LeDoux, 2005; Naqvi et al.,
2006; van den Bos et al., 2013). As shown in many (natural or
induced) experiments of brain lesions/malfunctions in humans
and animals (e.g., in the case of autism or brain damage due to an
accident), individuals that are physiologically or neurologically
stressed or impaired have difficulties making decisions in the
social domain and may thus be poor users of social information,
which would ultimately constrain social information diffusion
without giving any indication about their cognitive abilities. For
example, individuals with a damaged ventromedial prefrontal
cortex have normal intellect and problem-solving abilities under
test conditions in the lab, but make unfortunate decisions in real-
life situations and do not learn from their mistakes. This is due to
the fact that they have a generally “flat affect” and are thus unable
to use emotions to aid in decision-making (Damasio, 1994; Naqvi
et al., 2006).

From these perspectives, focusing social cognition research
on sensory information, computational challenges, and neural
networks, i.e., brain functioning, would be a rewarding way
of looking at animal cognitive abilities in the social domain
(Chittka and Niven, 2009; Barrett, 2011; Lihoreau et al.,
2012). Designing experiments and observations where animals’
motivational, emotional and perceptual capabilities concerning
their social worlds are accounted for could give important
insights into how social information is transferred within a
group.

The Social Competency of Animals or
the Social Network Effect
Ingenious mathematical models and experimental designs show
that efficient transfer of information and decision-making can
occur within animal groups in the absence of individual
recognition, advanced cognitive abilities or complex mechanisms
of transfer, and that individuals can respond spontaneously to
others that possess information. All that is needed is variation in

information holding among members of a population and simple
mechanisms of coordination (e.g., Couzin et al., 2005).

However, these kinds of simple decision rules are more
likely to be present in societies where individuals do not
form differentiated relationships with each other. When group
members have the opportunities to recognize each other and
memorize past interactions that influence future ones, they do
form differentiated relationships that can condition and influence
their decision-making processes (Sueur, 2011; Lee and Harris,
2013; Pasquaretta et al., 2014). The heterogeneous distribution
of social connections within a group also creates heterogeneous
opportunities to observe and learn from certain individuals (as
in directed social learning, Coussi-Korbel and Fragaszy, 1995).
As such, the structure of the social network of a group can
have important consequences for the social transmission of
information (Coussi-Korbel and Fragaszy, 1995; Croft et al.,
2008; Aplin et al., 2013; Cantor and Whitehead, 2013). For
example, observer deer mice (Peromyscus maniculatus) have
stronger reactions of preparatory analgesia and self-burying in
reaction to biting flies when the observer is genetically related
to or is more familiar with the demonstrator, although the
demonstrator’s behavior does not vary with social conditions
(Kavaliers et al., 2005). High-ranking rhesus macaques solve
a color-discrimination problem equally well when in a whole
group or only amongst high-ranking individuals, whereas low-
ranking individuals perform better when with other low-ranking
individuals only than when with the whole group (Drea and
Wallen, 1999). In a cooperation task, spotted hyenas adjust
their behavior to the skills and capabilities of their partners
(for example, when an adult is paired with a youngster) and
their level of cooperation is modulated by the composition of
their social group inasmuch as an individual’s performance is
better predicted by the presence of high-ranking individuals –
which can be quite aggressive – than by the subject’s prior
experience in the task to solve (Drea and Carter, 2009). An entire
field of research in animal communication is dedicated to these
moderating effects of social context, so-called “audience effects,”
i.e., individuals adjust their decisions or behaviors depending on
who is with or around them (Zuberbühler, 2008). Conformity,
i.e., doing what the majority does, is a very influential mechanism
by which culture emerges, evolves and persists (Laland, 2004;
Morgan and Laland, 2012). Reaching a consensus decision, on
where to go for example, is also a well-studied example of social
modulation of behavior (Conradt and Roper, 2009).

Social network analysis (SNA) has proven a useful and
powerful tool in understanding social influences on the patterns
of acquisition and use of social information (Croft et al., 2008;
Voelkl and Noë, 2010; Kurvers et al., 2014; Brent, 2015).
A simulation study based on a substantial dataset of primate
interaction matrices tested the hypothesis that the social structure
of a group has a strong influence on patterns of social learning
(Coussi-Korbel and Fragaszy, 1995) by comparing information
flow within networks in empirical (structured) social groups and
theoretical well-mixed groups in terms of propagation speed,
path length of transmission and resilience against information
loss (Voelkl and Noë, 2010). This study showed that information
spreads faster in well-mixed groups compared to structured
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groups. In structured social networks, information also spreads
faster when the frequency of interactions was either disregarded
(unweighted or topological networks) or distributed randomly
amongst interacting individuals. Similarly, the number of
transmission events (path length) from an innovator individual
to a target individual was greater in structured groups compared
to well-mixed groups and was related to reduced connectivity
and variation in interaction frequencies. Furthermore, variance
in average path length was related to variation in group size,
the larger the group the longer the path length, but also to
community modularity, a measure that quantifies the structuring
of a group into subgroups (Voelkl and Noë, 2010). Actually,
there is more and more evidence that the structure of a social
group, rather than its absolute size, influences network flow (e.g.,
pathogens or diseases: Griffin and Nunn, 2012; Nunn et al., 2015;
emotions, tastes, or health outcomes: Fowler and Christakis,
2008; Bakshy et al., 2012; Christakis and Fowler, 2014). At a
more global level, this is illustrated by the differences found in
cooperative performance, enhanced in socially tolerant bonobos
compared to more aggressive chimpanzees (Hare et al., 2007), or
in socially tolerant Tonkean macaques compared to non-tolerant
rhesus macaques (Petit et al., 1992). Those differences have been
attributed to the fact that social networks of tolerant species are
more diverse and open because individuals tolerate each other’s
proximity better and this potentially offers a greater opportunity
for information diffusion.

In humans, mathematical modeling has shown that social
influences can lead to disproportionate diffusion of a trend or
a fashion, an effect called the majority illusion (Lerman et al.,
2015). In a network setting, behaviors can be contagious and
spread to an entire population from a small subset of initial
individuals. The speed and spread of this contagion has been
shown to be heavily dependent on the network structure: a
trend or a disease is transmitted faster if the initial adopters
are very well connected and/or belong to very well connected
clusters, e.g., superspreaders (Fujie and Odagaki, 2007; Garcia-
Herranz et al., 2014). Because individuals take their social cues
from their local neighbors, the characteristics and positions in
the network of these initial adopters can greatly influence the
contagion of a behavior, making it appear far more common
locally than it is globally (Christakis and Fowler, 2014; Garcia-
Herranz et al., 2014; Lerman et al., 2015). This has been
termed the majority illusion and stems from the friendship
paradox in which one’s friends appear to have more friends
than one has (it also concerns tweets and academic citations
for instance). The mathematical model developed by Lerman
et al. (2015) quantifies the strength of this phenomenon and
shows that it is stronger in networks with active high-degree
nodes (active knowledgeable individuals) and heterogeneous
degree distribution (because active knowledgeable individuals
are more attractive and others in the population, non-active
non-knowledgeable, pay more attention to them). Similarly, in
health programs dedicated to educate people about hygiene and
safer practices, targeting friends of individuals – themselves
chosen randomly – in the population can have greater effects
on the spread of behavioral changes than targeting individuals
with the most social ties (Kim et al., 2015). This effect is

attributed to the specific structuring of human social networks,
which show subgroups of interconnected individuals each with
their own locally influential nodes (Newman and Park, 2003;
Fowler and Christakis, 2008; Kim et al., 2015). It also suggests
that the assumption of greater centrality linked to greater
influence on social processes is not always straightforward as
this relationship can be mediated by sub-structuring, individual
role or position, and synergies between indirect and direct
connections. In fruit flies, social network structure [for example,
homogeneous (individuals behave similarly) vs. heterogeneous]
also affects information use, specifically in oviposition site choice:
uninformed flies would either follow or avoid choices of informed
flies depending on the amount of variance in individual network
centrality among informed group mates, the greater the variance
the more uninformed individuals avoided the same site as
informed individuals (Pasquaretta et al., 2016). Social network
modeling can thus improve the underpinning social variance and
the understanding of why some behaviors spread – or on the
contrary do not spread.

A factor that is often overlooked is that, although social life is
extremely beneficial, it can also be stressful because individuals
not only have to satisfy their own needs but also must do so
while coordinating with the needs of others (Krause and Ruxton,
2002). Whether test subjects are in their social group settings
or tested singly can have tremendous effects on their stress
level and cause concomitant effects on decision-making in the
laboratory or under natural conditions (van den Bos et al., 2013).
As such, on the one hand experimental studies done in isolation
of the social context may have little predictive value in terms
of social information use in general, although they allow for
the dissection of mechanisms and functions quite difficult to
achieve in natural settings. On the other hand, the social group
context can be very inhibiting for some individuals and thus
can impede social information diffusion, such as potential or
actual conflicts with conspecifics, or the fact that performing a
task in front of conspecifics can be overwhelming (van den Bos
et al., 2013). Stress affects memory and learning (Schwabe et al.,
2012) and biases decisions (Aureli and Schino, 2004; Naqvi et al.,
2006; Starcke and Brand, 2012). For example, individual ravens
(Corvus corax) approach a novel object faster but spend less time
interacting with it when alone than when in pairs or groups,
seemingly trading off vigilance against innovation depending
on risk and opportunity assessment (Stöwe et al., 2006). Brown
rats (Rattus norvegicus) experiencing stress significantly and
progressively lose the ability to adjust their responses toward a
larger reward when transitioning from equal to unequal reward
quantities (Graham et al., 2009). The effect of stressors on
decision-making may not be of great consequence in animal
social diffusion studies apart from failed experiments, but in
humans, having to make a decision under high stress is linked to
variation and volatility which likely reflects uncontrollability and
unpredictability and can lead people or groups to make irrational
choices (Starcke and Brand, 2012).

A final aspect of the influence of sociality on social information
use is the social competence of animals. Social competence refers
to the ability of individuals to regulate the expression of their
social behavior in order to optimize their social relationships
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(Taborsky and Oliveira, 2012; Bshary and Oliveira, 2015). For
instance, it allows individuals to avoid engaging in overly costly
fights (“winner-loser” effect; Hsu et al., 2006; Taborsky and
Oliveira, 2012) and to increase or decrease their degree of
aggressiveness according to the familiarity of their opponents
(familiar = “dear enemy” effect, stranger = “nasty neighbor”
effect; Temeles, 1994; Taborsky and Oliveira, 2012). Social
competence can also explain why individuals tend to cooperate
more readily with social partners if they themselves have received
help from others previously (“generalized reciprocity”; Pfeiffer
et al., 2005; Taborsky and Oliveira, 2012). Although established
from an evolutionary ecology point of view, with reference
to phenotypic behavioral flexibility and plasticity, the vantage
point of social competence provides an overview of the general
ability and performance of individuals in a social environment
(Taborsky and Oliveira, 2012). Recently, the social competence
perspective has been paired with a game theoretic approach
in animal cooperation with exactly this goal in mind. This
more integrative framework also highlights the importance of
studying the behavior and underlying decision rules/strategies
of individuals across different social contexts, in the same way
that behavioral syndromes encompass links and feedbacks of
individual reaction norms across a variety of contexts (Bshary and
Oliveira, 2015). Social diffusion studies would benefit enormously
from taking such an integrative approach and accounting
simultaneously for variation in the individual, social, and physical
worlds.

SMART ANIMALS

Animals produce and receive, acquire and use social
information from different individuals in different contexts
and circumstances. The circumstances under which an animal
uses social information rather than selects an option based on
its own environmental sampling or the different rules animals
adopt when making such decisions have been investigated in
great details. Social diffusion experiments of all kinds are great
tools to investigate the social insights of animals. Nevertheless,
many important questions remain: how do animals distinguish
informed and uninformed individuals? How do they judge the
quality of a piece of information? What if several individuals
are deemed knowledgeable but the information they provide
conflict? What if the context in which social information is
produced changes its value compared to another context? What
if certain pieces of information are easier/less risky to get, but
are also less accurate? To what extent the spread, reach and
speed of transmission of a social information are affected by
these parameters? Answering these questions, from our point
of view, will require a more integrative approach, marrying
different fields to reflect more realistically the probable holistic
understanding animals have of their environments (Laland,
2004; Taborsky and Oliveira, 2012; Bshary and Oliveira, 2015).

On a practical side, with the accumulation of studies of
diffusion, building a database of successful and failed experiments
could better inform the scientific community. This could
take the form of depositing protocols into an open-access

database, such as the Dryad Digital Repository1, with the
advantage of having corresponding digital object identifiers
(doi), or creating a dedicated website on which to aggregate
studies, pre-prints, and protocols in the same fashion as
the Global Mammal Parasite Database2, with the advantage
that it is searchable and collaborative. With the technology
available today providing small cost-effective electronic devices
[touch-screens, eye-trackers, automated feeders, accelerometers,
radio-frequency identification (RFID) technology, GPS, etc.],
broad-scale experiments and modeling could be possible as is
now done regularly in cognitive science (Fagot and Bonté, 2010),
ecology and social network studies (Rutz et al., 2012; Krause et al.,
2013; Farine and Whitehead, 2015). One could setup providing
automated food boxes with automatic food delivery devices and
remote-controlled openings triggered by the approach of an
animal equipped with RFID tags. Providing dozens of such boxes
in a group setting would allow varying the quality, quantity,
and reliability of the information available to group members
both as producers and receivers. Tracking natural demographic
changes or experimentally inducing changes by removing/adding
individuals or manipulating the quality of a social bond could also
give insights into the causes and consequences of social network
structure on social information transmission.

This kind of diffusion experiments, with broad yet
individualized parameters, could help tackle integrated questions
related to variation and complexity of the environment,
be it social or ecological. As has already been proposed
for studies in cognitive science (see e.g., Barrett, 2011 and
Wilson and Golonka, 2013 for an overview), social diffusion
studies would also benefit from being more “embodied,” i.e.,
investigating social information use within individual, social
and environmental contexts. Furthermore, studies on social
information transmission could get inspiration from other
domains such as epidemiology, informatics security, or social
media, especially in humans, where studies also account for and
integrate social network processes in empirical and mathematical
studies, thereby providing tremendously important insights into
biological and social processes. Finally, most of the experimental
examples are situated in foraging, mating and anti-predator
contexts, but far less has been done in social contexts such as
aggression or affiliation. We know that animals are socially
aware in the sense that they recognize their group mates or
conspecifics, that they can keep track of their relationships
and that they can use social concepts such as dominance and
triadic relations (Whiten and Byrne, 1997; Dunbar, 1998; Emery,
2004; Holekamp et al., 2007; Silk, 2007). We have evidence
that animals can recognize facial expression in conspecifics
(Micheletta et al., 2015), that emotional arousal can spread
through a group (collective arousal or emotion contagion, e.g.,
De Marco et al., 2011) and that animals can also judge and use
the social reputation of others in their decisions (Alexander,
1987; Bshary and Bronstein, 2010). How animals make use of
these kinds of social information to guide their decisions in
their social relationships is an open field of investigation where

1http://datadryad.org/pages/organization
2http://gmpd.nunn-lab.org/
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social diffusion experiments can find their place. Better or further
accounting for characteristics of information, of individuals, of
cognitive and social competences is essential in making progress
in the social information field and in the understanding of how
animals make use – or not - of social information.
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Social networks are often inferred from spatial associations, but other parameters like

acoustic communication are likely to play a central role in within group interactions.

However, it is currently difficult to determine which individual initiates vocalizations, or

who responds to whom. To this aim, we designed a method that allows analyzing

group vocal network while controlling for spatial networks, by positioning each group

member in equidistant individual cages and analyzing continuous vocal interactions

semi-automatically. We applied this method to two types of zebra finch groups,

composed of either two adult females and two juveniles, or four young adults (juveniles

from the first groups). Young often co-occur in the same social group as adults but are

likely to have a different social role, which may be reflected in their vocal interactions.

Therefore, we tested the hypothesis that the social structure of the group influences

the parameters of the group vocal network. We found that groups including juveniles

presented periods with higher level of activity than groups composed of young adults.

Using two types of analyses (Markov analysis and cross-correlation), we showed that

juveniles as well as adults were more likely to respond to individuals of their own age-

class (i.e. to call one after another, in terms of turn-taking, and within a short time-

window, in terms of time delay). When juveniles turned into adulthood, they showed

adult characteristics of vocal patterns. Together our results suggest that vocal behavior

changes during ontogeny, and individuals are more strongly connected with individuals

of the same age-class within acoustic networks.

Keywords: development, ontogeny, songbird, acoustic communication, vocal interactions, turn-taking,

conversation rules

INTRODUCTION

Social interactions with adults during ontogeny are likely to shape the social developmental
trajectories of juvenile individuals. Indeed, some behaviors like courtship, mate choice preferences
or foraging skills are partly shaped by social conditions during ontogeny (Freeberg, 1996; Farine
et al., 2015) or at adulthood (Freeberg, 2000; Verzijden et al., 2012; Westerman et al., 2012). It has
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been shown that complex social environments, providing more
opportunities for learning, allow individuals to improve their
courtship performance or mate choice (during ontogeny, Miller
et al., 2008; at adulthood, Oh and Badyaev, 2010; Jordan
and Brooks, 2012). For example in brown-headed cowbirds
(Molothrus ater), young males housed with adult females
improvise more song elements than males housed with juvenile
females (Miller et al., 2008). Adult females seem to be more
selective in their interactions with males than juvenile females,
and this study suggests the role of social interactions with adults
in young male vocal development (Miller et al., 2008).

Social interactions between peers also take place during
ontogeny and may shape the social behavior at adulthood (Bertin
et al., 2007; Mariette et al., 2013). For example in zebra finches,
the presence of male siblings interferes with the learning of
the father’s song (Tchernichovski and Nottebohm, 1998). The
presence of a female sibling seems to have a positive effect
(Adret, 2004). Moreover, it has also been shown that a horizontal
transmission of the father’s song can occur between two young
zebra finch males (Derégnaucourt and Gahr, 2013).

Therefore, studying how juveniles fit into social networks may
be central to our understanding of individual developmental
trajectories.

Most of the time, social interactions and networks are
inferred from proximal measures such as spatial co-occurence
or close-contact interaction (Aplin et al., 2013; Farine, 2015;
Strandburg-Peshkin et al., 2015). However, it is likely that in
groups where members are in close proximity, not all members
interact equally with each other, making the social network
analysis ineffective in that case. Moreover, in many species,
acoustic communication is likely to play a central role in social
interactions. However, since acoustic signals can be directed
both to individuals at short or long distances, spatial proximity
may not necessarily correlate with vocal interactions. Therefore,
directly characterizing networks of acoustic communication may
be extremely useful for understanding social interactions.

Vocal communication has long been studied in the context
of pairwise exchange between one sender and one receiver,
but communication networks have progressively received more
attention (McGregor, 2005). For example, audience effects are
defined as the influence of the presence of other conspecifics
on a sender’s vocal behavior (Evans and Marler, 1994; Vignal
et al., 2004). Eavesdropping is defined as extracting information
from signaling interactions while not being the main recipient
and seems to occur in many species (McGregor and Dabelsteen,
1996). In birds for example, “eavesdroppers” can respond to
vocal exchanges even if they were not part of it initially (Mennill
et al., 2002). Multiple individuals may also be involved on both
sides of the communication process, such as when a group acts
collectively as senders, directing acoustic signals to a group of
receivers (Harrington and Mech, 1979; Farabaugh, 1982; Mitani,
1984; McComb et al., 1994).

Vocal communication often relies on temporal and structural
regularities in the emission of vocalizations, such as turn-taking
(Takahashi et al., 2013; Henry et al., 2015). For example, in
humans, turn-taking allows interlocutors to enhance mutual
attention and responsiveness (France et al., 2001). Some studies

showed that the ability to respect conversation rules, in particular
turn-taking may be acquired during development (Hauser, 1992;
Miura, 1993; Black and Logan, 1995; Lemasson et al., 2010, 2011;
Chow et al., 2015; Takahashi et al., 2016).

The zebra finch (Taeniopygia guttata) is a perfectly suited
model for studying social interactions during ontogeny using an
acoustic communication network. The zebra finch is a socially
monogamous and highly social passerine native to the semi-
arid zone of Australia, that forages and moves in groups (Zann,
1996). After nutritional independence, juveniles mostly associate
with individuals of the same age, with whom some may form
affiliative bonds (Zann, 1996). Social experience with peers has
developmental consequences, as it affects mating success at
adulthood (Mariette et al., 2013). Zebra finches rely heavily on
acoustic communication for social interaction (Vignal et al., 2004;
Elie et al., 2010; Boucaud et al., 2015; Gill et al., 2015) and start
to do so early in life. Indeed, nestlings beg for food and the
structure of these begging calls is plastic in response to social
interactions with parents (Villain et al., 2015). After fledging,
juveniles discriminate the calls of their parents (Jacot et al., 2010;
Mulard et al., 2010) and their nest-mates (Ligout et al., 2015)
from the calls of other individuals. Young males learn their song
by imitation of an adult tutor (Slater et al., 1988). When adult,
both males and females utter a repertoire of single-syllable calls
while only males sing very stereotyped songs of several syllables
(Zann, 1996). Among the calls categories, distance calls are the
loudest calls, and convey information on both the sex and the
identity of the bird (Vignal et al., 2004, 2008; Forstmeier et al.,
2009; Vignal and Mathevon, 2011; Elie and Theunissen, 2016).

The main objective of the present study was to describe zebra
finch vocal interactions within an “acoustic network” during
ontogeny by comparing the dynamics of vocal interactions of (1)
individuals when they were juveniles among adults and (2) the
same individuals once they become young adults.

To this aim, we designed a set-up that allows recording of
vocal interactions but controls the spatial network. Birds were in
individual cages so that they were not able to physically interact
and inter-individual distances were fixed. We developed an in-
house software that automatically detects vocalizations from
hours of passive recording, tags individuals’ vocalizations as well
as automatically removes non-vocalizations (wings or cage noise)
using classification. The resulting vocal signal was analyzed using
metrics of vocal activity (number of vocalizations, vocalization
rate), vocal timing (cross-correlation), and vocal sequence or
turn-taking (Markov analysis).

MATERIALS AND METHODS

Subjects and Housing Conditions
Fifty-six juveniles (28 males and 28 females) aged from 36 to
84 days (mean ± sd: 50.2 ± 10.6, N = 56 birds), as well as
eight adult females were recorded in the first phase. In the
second phase, we recorded the juveniles from phase 1 when
they were young adults (48 young adults, including 23 females
and 25 males aged from 158 to 230 days). Both phases took
place from May 2011 to February 2012. All birds came from our
breeding colony (ENES laboratory, University of Saint-Etienne).
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The juveniles were born in a large indoor aviary (6.5 × 5.5 ×

3.5 m; temperature: 20–30◦C, daylight: 07:30–20:30) where 28
adult domestic zebra finch pairs were allowed to breed freely and
produced 45 broods in total (fromApril to August 2011). Genetic
parents of the broods were not known (because of potential
extra-pair copulation and egg dumping), but social parents were
known because all juveniles were identified with an individually
numbered band before fledging from the nest. After reaching
nutritional independence (30–35 days), juveniles were caught
in the aviary and transferred to individual cages (40 × 40 ×

25) equipped with perches. The eight adult females were also
housed in individual cages. In the first phase, adult females were
familiar with each other and not with the juveniles, and juveniles
were familiar with each other and not with the adult females
(juveniles could come from the same nest or not). In the second
phase, familiar and unfamiliar young adults (i.e., hold in the
same or different rooms between the first and second phases)
were present in each group. All birds were kept under the same
environmental conditions: temperature between 24 and 26◦C,
daylight: 07:30–20:30, water, seeds and cuttlefish bones ad libitum
and supplemented with salad once a week.

Protocol
Recordings took place in a sound-attenuating chamber (2.22m
height× 1.76m width× 2.28m length, Silence Box model B, Tip
TopWood, France) fitting four cages (40× 40× 25 cm) with one
microphone per cage (Figure 1). Cages were separated by 1 m.
Microphones (Sennheiser MD42) were connected to a recorder
(zoom R16) and suspended from the ceiling 20 cm above the top
of the cage. A group of four birds was recorded on two morning
sessions, separated by 1 day. On the day between the two sessions,
we moved the cages to a second sound-attenuating chamber
mimicking the recording chamber. On days of recordings, we
moved cages to the recording chamber 15 min before starting
the recording. All groups were placed in a sound-attenuating
chamber the day before each day of recording so that they could
habituate to new surroundings. This protocol allowed studying
two groups of four birds in parallel. Each time we moved the
cages into a room, we randomly changed the relative positions
of the cages so as to control for the potential effect of neighbors’
identity and position in the chamber. On each recording day, we
recorded vocal exchanges during 3 h starting at 10:30 ± 01:24
(mean± sd, N = 77, recording start time was random according
to groups and conditions).

Groups’ Composition
We recorded birds during two phases. During the first phase, we
recorded groups of four birds made with two adult females and
two juveniles of either sex (Figure 1A). During the second phase
we recorded groups of four young adults (2 females and 2 males),
using the juvenile birds from the first stage (Figure 1B). The time
between the two recording phases was on average 148 ± 28 days
(mean± sd, N = 36) for a given bird.

Vocalization Extractions
Vocalizations from 250 h of recording were automatically
extracted using in-house software. These programs were written

in python (http://www.python.org) by authors H.A.S. and
M.S.A.F using open-source libraries. This software accuracy was
validated and used in previous studies (Elie et al., 2011; Perez
et al., 2015). Vocalization detection was a pipeline of three stages.

The first process was a simple threshold-based sound
detection based on a high-pass filtered energy envelope (1024
samples FFT; 441 Hz sampling; cut-off frequency: 500 Hz).
During the second stage, each sound whose peak was extracted
was reconstructed by exploring the two sides of the sound and
keeping area with energy higher than 10% of the peak. Thus,
each event was either lengthened or shortened to obtain the
same amplitude range during the event. This allowed a good
estimate of the vocalization duration. The third stage simply
merged overlapping waveform segments. Together, the three
stages produced start, end, and duration values for each sound
event detected in the recording.

Two additional stages enabled to assign each vocalization
to its emitter and also remove cage or wing noises. The
first additional stage attributed each vocalization to a bird
by removing double vocalization, i.e., vocalization emitted by
one bird and recorded by its microphone but also recorded
by the microphones of all other birds of the group by using
energy and delay differences. This allowed us to precisely
determine who vocalized at any moment, even in the case
of two birds producing two overlapping vocalizations. The
second stage removed cage or wings noises using a machine
learning process. We trained a supervised classifier using a
data set composed of 4500 random extracted sounds from all
of our data. Each sound was classified by one expert (MSAF)
as “vocalization” or “non-vocalization.” The classification was
performed on the spectrogram of the sounds reduced to 50
ms. The idea is to reduce the quantity of information in term
of time and frequency, and sample this information in such
a way that we will get the same amount of information for
each vocalization (short or long). The spectrogram matrix was
first reduced to the frequencies of interest—between 500 Hz
and 6 kHz. Then two cases appear: if the vocalization duration
is longer than 50 ms, we extract 50 ms in the center of the
spectrogram, and if the vocalization duration is lower than
50 ms, we keep all the spectrogram and we center it in a
50 ms spectrogram padding the remaining with zeros. The
resulting matrix is seen as a vector which contains the flattened
spectrogram.

We trained a Random Forest classifier (Breiman, 2001) with
1500 sounds. This classifier had an overall rate of error below 10%
of the remaining 3000 sounds.

This procedure allowed us to extract two types of calls from
the zebra finch repertoire: tet calls i.e., soft and short harmonic
stacks with almost no frequency modulation (Zann, 1975, 1996;
Elie and Theunissen, 2016), and distance calls i.e., complex sound
consisting of a harmonic series modulated in frequency as well as
amplitude (Zann, 1996; Elie and Theunissen, 2016). Males can
also perform songs, which are stereotyped series of syllables in a
short period of time.

Finally, because we were primarily interested in the temporal
dynamic of the exchange, we did not distinguish between
different types of vocalizations in the following analyses.
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FIGURE 1 | Schematic of the recording room. Groups of 4 birds were used, with one bird per cage in each corner of the recording room and one microphone on

top of each cage. Two types of groups were tested: (A) groups composed of two juveniles and two adult females (Phase 1), and (B) groups of four young adults

(already tested as juveniles in the first type of group) (Phase 2). The recording duration as well as the average time between the two phases for a given bird is indicated

(mean ± sd, N = 36).

Data Analysis
We separated the analysis in three parts described below: vocal
activity, as well as cross-correlations and Markov analyses used
to build acoustic networks.

Vocal Activity
We computed two types of vocal activity metrics. The first type
described the group general vocal activity. First we measured the
overall vocalization rate, i.e. the total number of vocalizations
produced by all individuals in the group divided by the duration
of the recording. Then, we measured some characteristics of the
vocal bursts. In order to find vocal bursts in a recording, we
computed the mean vocalization rate over the whole day, and we
extracted the bursts as periods in which the vocalization rate was
10% higher than the mean vocalization rate (with a time step of
1 min with an overlap of 30 s). We then measured the number
of bursts, the average vocalization rate in bursts, the burst mean
duration, the total duration of bursts in a recording, the inter-
burst interval, and the latency to burst (i.e., the time between the
recording’ start and the beginning of the first burst).

Secondly, we measured the number of vocalizations per
individual. We did not need to normalize this number of
vocalizations by the recording duration because all recordings
lasted the same time (3 h).

Cross-Correlation
We first characterized the groups’ acoustic networks, based on
the temporal proximity of vocal activity (functionally equivalent
to spatial proximity in co-occurrence networks). In the network,
each node is a bird, and the (undirected) edge between two
nodes is weighted by the temporal synchrony between the two
corresponding birds.

We assessed the vocal temporal synchrony between two birds
by computing the cross-correlation using 500 ms time bins. To

do that we split the time into 500 ms bins, and each bird signal
was one if the bird vocalized within this period, and zero if it
did not vocalize.We computed the cross-correlation (cc) between
two birds signals with the following formula:

cc = mean[(Sbird1(t) − mean(Sbird1)) ∗ (Sbird2(t)

−mean(Sbird2))]/(std((Sbird1)) ∗ std(Sbird2))

Where Sbird1 and Sbird2 are the vocal signals of the two birds as
a function of t (time).

The cross-correlation is computed with normalization, i.e.,
by centering and scaling by the standard deviation (zscoring) of
both vocal signals. The result is therefore independent of the total
number of vocalizations.

If the cross-correlation shows high positive values, it means
that both birds vocalize and remain silent together more often. If
the cross-correlation is negative, it means that whenever one bird
is vocalizing or silent the other is more often silent or vocalizing
respectively.

For each day of recording we computed cross-correlations for
all possible dyads of birds.

Markov Analysis
We then studied the groups’ acoustic networks by analyzing the
turn-taking.

To establish turn-taking, we only considered the order in
which vocalizations were emitted, without consideration of the
time between these vocalizations. For that we used Markov
chains.

Vocal sequences (taken over the 3 h of recording) were
simply transformed into a sequence of caller’s identity numbers
(e.g. 1,123,113,134). Modeling this as a “four states” process
(corresponding to four birds), this vocal sequence can be viewed
as a stochastic process that “jumps” from state to state (from one
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bird to one other). In the Markov hypothesis the caller’s identity
depends only on the previous caller according to a transition
probability (for example the probability of having bird 1 after
bird 2). More precisely, a Markov matrix of size 4 × 4 depicts
the probability of jumping from one identity to the other: in this
matrix, an entry at line i and column j is the probability when
the caller is i that the next caller will be j. By construction, this
matrix reproduces both the average number of vocalizations for
each individual and the first order transition.

We compared the maximum transition probabilities between
dyads of birds (e.g., between bird i and bird j, the max transition
probability is max(proba(i,j); proba(j,i)), with proba(i,j) the
probability for j to vocalize just after i). As for the previous
analysis, in the network each node is a bird, and the (undirected)
edge between two nodes is weighted by the maximum transition
probability between the two corresponding birds.

Stastistics
All statistical tests were performed using R software (R Core
Team, 2014). Linear mixed models were built with the lmer
function (lme4 R package), and generalized mixed models were
built with the glmer function (lme4 R package) (Bates et al.,
2014). Models outputs from “Anova” (car library) (Fox and
Weisberg, 2011) and “summary” functions are presented.

Model Validation
Before being interpreted each model was checked, paying
particular attention to its residuals. For generalized linear
models with a Poisson family, overdispersion was tested with
the “overdisp.glmer” function of the “RVAideMemoire” package
(Hervé, 2014), and if themodel presented overdispersion we used
a negative binomial family. The model validity was also checked
with the plotresid function from the “RVAideMemoire” package
before interpreting the model results.

Model Selection
We chose to build biologically relevant models and we kept the
full model as recommended by Forstmeier and Schielzeth (2011).

Model Estimates and Confidence Intervals
When possible we added information about the quantification
of the biological effect given by the models. Confidence intervals
were computed with the “confint.merMod” function of the lme4
package. We used the “profile” method for the linear mixed
models and the “Wald”method for the negative binomial models.

Model Random Factors
We only kept random factors that had a non-null variance in the
model. If we were interested in the significance of the random
factors included in the model, we used the following method.
We first looked at the values of their residuals in the model
summary (“summary” function in lme4 package). We then built
two different models: one model including the random factor,
and one model without the random factor. We compared these
models using the “Anova” function, and if these models were not
significantly different we assumed that the random factor effect
was not significant. All random factors with non-null variance
were kept in the models even if they had no significant effect.

Vocal Activity

Group general vocal activity
First, for the group general vocal activity we built a Principal
Component Analysis (PCA) over six parameters: the number of
bursts, the average vocalization rate in bursts, the burst mean
duration, the total duration of bursts, the inter-burst interval,
and the latency to burst. We found two axes with eigenvalue
above 1 that explained 88.5% of the data variability. The first axis
describes the general pattern of how bursts were distributed in
time (61.7%), and the second axis the density of vocalizations
during the recording both within burst and overall (26.8%)
(Figure 2).

We built one linear mixed model per PCA axis (PCi) with the
following structure:

PCi∼GroupType+(1|GroupID)+(1|Day)+(1|StartTime),
GroupType having two levels: 2Juv2Ad and 4YAd. The random
factors were the group identity (GroupID), the day of recording
(Day), and the hour of the recording start (StartTime).

The group type 4YAd had always the same sex ratio (2 females
and 2 males). As a second step we restricted the analysis to the
first group type 2Juv2Ad alone to study the potential influence of
group sex ratio [possible sex ratio for juveniles: 2 males (2M), 2
females (2F) or 1 male and 1 female (1F1M)].

PCi∼SexRatio+ (1|GroupID)+ (1|Day)+ (1|StartTime)

Number of vocalizations per individual
We built the following generalized mixed linear model (negative
binomial family):

NVoc∼GroupType ∗ Sex + (1|GroupID/BirdID) + (1|Day)

+ (1|SexRatio) + (1|StartTime)

The response variable was the number of vocalizations. The
factor Sex had two levels, M or F. We used a negative binomial
model because the model using a Poisson distribution presented
overdispersion. The model indicated an interaction between
GroupType and Sex at the significance threshold so we studied
it using the lsmeans R function.

We built a second model to study the influence of being a
juvenile or an adult for GroupType= 2Juv2Ad.

NVoc∼JuvAd ∗ SexRatio + (1|GroupID/BirdID)

+ (1|Day) + (1|StartTime)

The factor JuvAd had two levels: Juv or Ad.
For groups including juveniles, as several factors were linked,

we had to build additional models to deal with confounding
effects. We built a model using juvenile data only to test the
influence of the sex on the number of vocalizations. As the factor
SexRatio was strongly linked to the factor Sex we did not include
it in this model:

NVocJuveniles∼Sex + (1|GroupID/BirdID) + (1|Day)

+ (1|StartTime)
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FIGURE 2 | General vocal activity between group types. (A) Boxplot of the PC2 values in each group type, from the PCA including six parameters describing the

bursts of vocal activity. Linear mixed effect models were built. Detailed sample sizes and model results are given in Table 1. Boxes are median, first and third quartiles

(Q1 and Q3 respectively). The upper whisker is located at the *smaller* of the maximum × value and Q3 + 1.5 Inter Quartile Range (IQR), whereas the lower whisker is

located at the *larger* of the smallest × value and Q1 − 1.5 IQR. Individual points more extreme in value than Q3 + 1.5 IQR are plotted separately at the high end,

and those below Q1 − 1.5 IQR are plotted separately on the low end. (B) Variable loadings of the PCA including six parameters on bursts. The first two axes (with

eigen-value above 1) explained 88.5% of the data variability. *p < 0.05.

We then built a model using the females’ data only to test the
difference between adult and juvenile females (as the males were
juveniles only).

NVocFemales∼JuvAd + (1|Group/BirdID) + (1|Day)

+ (1|StartTime)

Cross Correlation
First we built a model in order to compare the cross-correlation
between group types (2Juv2Ad and 4YAd):

cc∼GroupType∗Sex1Sex2 + Dist + Dist : GroupType

+Dist : Sex1Sex2 + (1|GroupID) + (1|Day) + (1|Bird1ID)

+(1|Bird2ID) + (1|StartTime)

The distance between two birds could be 1 or 2 (1: birds were
on the same edge of the square, 2: birds were placed on the
diagonal). The factor Sex1Sex2 had three levels: FF, MM, or FM
and represented the sexes of both birds from which we computed
the cross-correlation.

As the interaction between the group type and the sex was
significant we first separated the dataset by group type and
analyzed them separately:

GroupType = 4YAd:

cc∼Sex1Sex2 ∗ Dist + (1|GroupID)

+ (1|Day) + (1|Bird1ID) + (1|Bird2ID)+ (1|StartTime)

GroupType=2Juv2Ad:
the factor Sex1Sex2 was strongly linked to the factors JuvAd
(three levels: JuvJuv, AdAd, JuvAd) which indicated if the
dyads of birds comprised only juveniles, only adults or one
juvenile and one adult and SexRatio (as the SexRatio could
differ between groups), therefore we first built the following
model including factors SexRatio and JuvAd: cc∼JuvAd+Dist+
SexRatio+ JuvAd:Dist+ JuvAd:SexRatio +(1|GroupID)+(1|
Day)+(1|Bird1ID)+(1|Bird2ID)+(1|StartTime)

We then separated the dataset by sexes to assess the difference
between the cross-correlations of two juveniles and two young
adults. As we had only one data point per bird in this case, the
only remaining random factor is Day. For each value of Sex1Sex2
(MM, MF, FF) we built the following model:

cc ∼ GroupType + (1|Day) + (1|StartTime)

Markov Analysis
We first built a model to compare the maximum transition
probabilities between group types (2Juv2Ad and 4YAd):

MaxProba ∼ GroupType ∗ Sex1Sex2 + Dist

+ Dist : GroupType + Dist : Sex1Sex2

+ (1|GroupID)+ (1|Day) + (1|Bird1ID)

+ (1|Bird2ID) + (1|StartTime)

As the interaction between GroupType and Sex1Sex2 was
significant we analyzed the group types separately, as we did for
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TABLE 1 | Impact of group type and sex ratio on general vocal activity.

PC2∼GroupType+(1|GroupID)+(1|Day)

Nobs = 70, N2Juv2Ad = 52, N4YAd = 18

Random Effects

Groups name Variance Std. Dev.

GroupID (intercept) 0.1074 0.3277

Day (intercept) 2.347e-16 1.532e-08

Residual 1.429 1.196

Fixed Effects

Estimate Std. Error df t-value p-value

(Intercept) −0.1823 0.1757 34.9 −1.037 0.3066

GroupType-4YAd 0.7394 0.3545 41.35 2.086 0.0432

PC2∼SexRatio+(1|StartTime)

Nobs = 52, N2F2M = 15, N3F1M = 23, N4F0M = 14

Random Effects

Groups name Variance Std. Dev.

StartTime(intercept) 0.119 0.245

Residual 1.478 1.216

Fixed Effects

Estimate Std. Error df t-value p-value

(Intercept) −0.5437 0.3859 6.010 −1.409 0.208

SexRatio-3F1M 0.3923 0.4067 47.93 2.086 0.340

SexRatio-4F0M 0.7170 0.4634 48.99 1.547 0.128

Model statistical results are shown. Linear mixed effect models (“lmer” function from “lme4” R package) were built. Number of observations in the dataset for each fixed effect is given.

We present the results from the R “summary” function.

the cross-correlation.

Juveniles only : MaxProba ∼ Sex1Sex2 ∗ Dist + (1|GroupID)

+ (1|Day) + (1|Bird1ID)

+ (1|Bird2ID) + (1|StartTime)

RESULTS

Vocal Activity
Group General Vocal Activity
We found an effect of the group type on the second composite
score of the PCA, which mainly depicted the vocalization rate in
bursts and the total length of bursts. Groups including juveniles
and adults presented lower scores in PC2 than groups including
only young adults, which means that vocalization rate in bursts
and total duration of bursting was higher in the former than
in the latter (Figure 2, Table 1). We found no effect of the
group type or sex ratio on the first composite score of the PCA
(number of bursts, inter-burst interval, mean length of bursts)
(Table 1).

Number of Vocalizations per Individual
We found differences between group types depending on the
sex (Figure 3). The juvenile males emitted more vocalizations
than all other birds (adults, young adults, and juvenile females).
Adults emitted less vocalizations than juveniles. This difference
was more pronounced for juvenile males than juvenile females
(Figure 3, Table 2). Vocalization rate in juveniles was 1.34 times
[1.03;1.71] higher than in adults (numbers in brackets are 95%
confidence interval of the effect estimated by the model). Among
juveniles, the vocalization rate was 1.39 times [1.18;1.63] higher
in males than in females. Male songs may increase the number of
vocalizations. To account for the song occurrence, we counted
the total number of detected song syllables (from all males)
over 10 min (randomly chosen from 1 day) for each group (i.e.,
we counted songs over 3.5 h of recording in total), which we
compared to the total number of detected vocalizations of these
males. For juveniles we found that song syllables represented only
2.3 ± 7% of the total detected vocalizations in males. Individual
changes in vocalization rate along ontogeny are shown in
Supplementary Figure 1 (females) and Supplementary Figure 2

(males).
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FIGURE 3 | Number of vocalizations per individual. Boxplot of individual

vocalization rates in the different group types. Number of vocalizations per

individual for each sex is detailed, as well as the age category (Juveniles,

Young Adults, Adults). Generalized linear mixed effect models with negative

binomial family were built. Detailed sample sizes and model results are given in

Table 2. Boxes are median, first and third quartiles (Q1 and Q3 respectively).

The upper whisker is located at the *smaller* of the maximum × value and Q3

+ 1.5 Inter Quartile Range (IQR), whereas the lower whisker is located at the

*larger* of the smallest × value and Q1 − 1.5 IQR. Individual points more

extreme in value than Q3 + 1.5 IQR are plotted separately at the high end, and

those below Q1 − 1.5 IQR are plotted separately on the low end. ***p <

0.001, **p < 0.1, p < 0.1.

Cross Correlation
Young adult groups presented significantly higher cross-
correlation values than groups of juveniles and adults. We
found that cross-correlation values (i.e., temporal synchrony of
vocalizations) between one juvenile and one adult (Juv-Ad) were
lower than those between two adults (Ad-Ad). Cross-correlation
values between two juveniles (Juv-Juv) were intermediate
(Figure 4A, Table 3). Supplementary Figure 3 illustrates these
results with four examples of groups with juveniles.

We also found sex differences between groups: synchrony
between 1 male and 1 female increased from juveniles to young
adults, whereas it remained the same between 2 males or 2
females (Figure 4B, Table 3). Specifically, female-male dyads
increased their cross-correlation value from 0.09 [0.07;0.12]
(juveniles) to 0.13 [0.10;0.16] (young adults). There was no cross-
correlation difference between the sexes within groups including
juveniles and adults. Also, there was no difference in cross-
correlation between the 2 days of recording.

Markov Analysis
The maximum transition probabilities (i.e., turn-taking) did not
differ between group types (Figure 5A, Table 4).

The maximum transition probabilities were higher between
two juveniles than between other dyads (AdAd, two adults or
JuvAd, one adult and one juvenile). Thus, juveniles were more
likely to vocalize after another juvenile’s vocalization in the turn-
taking sequence. The average of maximum transition probability
was the same between two adults or two young adults (Figure 5B,
Table 4). Also, there was no difference in transition probabilities
between the 2 days of recording.

DISCUSSION

Using our in-house software we were able to automatically detect
vocalizations from hours of passive recordings in groups of four
zebra finches. This allowed us to assess information about the
acoustic network of groups composed of adults and juveniles
compared to groups of only young adults. We found that groups
including juveniles presented periods with higher level of activity
than groups composed of young adults only and within their
groups, juveniles vocalized more than adults. Furthermore, we
saw that two adults were more likely to vocalize together within
a short time window (cross-correlation) than one adult and
one juvenile, and that juveniles were more likely to vocalize
after one another in turn-taking sequences (Markov analysis).
Finally, when juveniles turned into adulthood, they showed adult
characteristics of vocal patterns (number of vocalizations, cross-
correlation, turn-taking).

Groups including juveniles had a higher vocalization rate
during bursts, and these bursts lasted longer. At the individual
level, juveniles had a higher vocalization rate than adults or
young adults. First, juveniles could be more active in general
in their behavior than adults. Indeed, in several species the
locomotor activity is higher in young individuals than in older
individuals (Van Waas and Soffié, 1996; Ingram, 2000). By
vocalizing more, juveniles get opportunities to vocally interact
in a greater diversity of contexts, which may be important to
develop their social skills. In cowbirds, it has been shown that a
complex social environment (in which birds changed regularly
of social groups) can lead to a greater social competence and
also a higher mating success (White et al., 2010). Vocalizing
more might also allow juveniles to practice conversation rules,
and more precisely to learn to respect turn-taking rules. Indeed,
some studies show that the ability to respect turns may be
acquired during development (Hauser, 1992; Miura, 1993; Black
and Logan, 1995; Lemasson et al., 2010, 2011; Chow et al., 2015;
Takahashi et al., 2016).

Juvenile males’ vocalization rate was higher than juvenile
females’ vocalization rate. Two potential interpretations need to
be addressed here. First, this result could be due to our method,
which is not able to discriminate between calls and songs’
syllables. However, as indicated in the results, we concluded that
the contribution of songs represented an average of 2.3% of all
male vocalizations. This could not account for the difference
between juvenile males and females’ number of vocalizations,
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TABLE 2 | Impact of group composition on the number of vocalizations per individual.

NVoc∼GroupType*Sex+(1|GroupID/BirdID)+(1|Day) +(1|SexRatio)

Nobs = 319, N2Juv2Ad = 227, N4YAd = 92, Nmale = 103, Nfemale = 216

Random Effects

Groups name Variance Std. Dev.

GroupID/BirdID (intercept) 8.823e-15 9.393e-08

GroupID (intercept) 1.200e-02 1.095e-01

Day (intercept) 5.046e-04 2.246e-02

SexRatio (intercept) 3.110e-14 1.764e-07

Residual 7.534e-01 8.680e-01

Fixed Effects

Estimate Std. Error t-value p-value

(Intercept) 8.569 0.0504 169.9 <0.0001

GroupType-4YAd −0.1549 0.0997 −1.55 0.1202

Sex-M 0.3012 0.0819 3.68 0.0002

GroupType-4YAd: Sex-M −0.1441 0.1376 −1.05 0.2946

Pairwise Comparisons (Tukey Adjustment)

Contrast Estimate SE df z-ratio p-value

F2Juv2Ad-M2Juv2Ad −0.3230 0.0818 NA −3.944 0.0005

F2Juv2Ad-F4YAd 0.0844 0.0973 NA 0.8671 0.8219

F2Juv2Ad-M4YAd −0.0471 0.0936 NA −0.5039 0.9582

M2Juv2Ad-F4YAd 0.4074 0.1143 NA 3.561 0.0021

M2Juv2Ad-M4YAd 0.2758 0.1112 NA 2.480 0.063

F4YAd-M4YAd −0.1316 0.1193 NA −1.102 0.688

NVoc∼JuvAd * SexRatio + (1| GroupID/BirdID) +(1|Day)+(1|StartTime)

Nobs = 227, NAd = 116, NJuv = 111, N2F2M = 64, N3F1M = 92, N4F0M = 56

Random Effects

Groups name Variance Std. Dev.

GroupID/BirdID (intercept) 2.567e-14 1.602e-07

GroupID (intercept) 2.159e-09 4.647e-05

Day (intercept) 7.536e-19 8.681e-10

StartTime (intercept) 2.186e-14 1.478e-07

Residual 6.524e-01 8.077e-01

Fixed Effects

Estimate Std. Error t-value p-value

(Intercept) 8.6395 0.0964 89.62 <0.0001

JuvAd-Juv 0.3087 0.1363 2.26 0.0236

SexRatio-3F1M −0.1258 0.1239 −1.02 0.3100

SexRatio-4F0M −0.1997 0.1387 −1.44 0.1501

JuvAd-Juv: SexRatio-3F1M −0.0332 0.1752 −0.19 0.8496

JuvAd-Juv: SexRatio-4F0M −0.2060 0.1962 −1.05 0.2938

(Continued)
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TABLE 2 | Continued

NVocJuveniles∼Sex +(1|GroupID/BirdID)

Nmale = 55, Nfemale = 56

Random Effects

Groups name Variance Std. Dev.

GroupID/BirdID (intercept) 0.0 0.0

GroupID (intercept) 0.0113 0.1067

Residual 0.7419 0.8614

Fixed Effects

Estimate Std. Error t-value p-value

(Intercept) 8.65277 0.06956 125.39 <0.0001

Sex-M 0.21906 0.09865 2.22 0.0264

NVocFemales∼JuvAd +(1|GroupID)

NAd = 116, NJuv = 56

Random Effects

Groups name Variance Std. Dev.

GroupID (intercept) 0.0029 0.0542

Residual 0.6510 0.8068

Fixed Effects

Estimate Std. Error t-value p-value

(Intercept) 8.4999 0.05545 153.3 <0.0001

JuvAd-Juv 0.1452 0.0931 1.56 0.119

Model statistical results are shown. Generalized linear mixed effect models with negative binomial family (“lmer” function from “lme4” R package) were built. Number of observations in

the dataset for each fixed effect is given. We present the results from the R “summary” function.

because males gave 24.8% more vocalizations than females.
Second, the two adults with the juveniles were always two adult
females. Juvenile males may vocalize more than juvenile females
in the presence of adult females (and not adult males). A previous
study analyzed the response of zebra finch juveniles (aged of 56.5
± 2.4 days) to the playback of calls of familiar adult females
(Mulard et al., 2010). However, the authors found no difference
between the sexes in their response to adult female calls (number
of calls and latency of response). Still, the vocal response to a
playback and to real vocal interactions is probably different. Also,
contrary to this previous study, our adult females were unfamiliar
to the juveniles, and this could explain the differences between
our results. It thus remains to be tested whether the difference of
vocal activity between juvenile males and females in our results is
triggered by the sex and/or the familiarity of the adults interacting
with the juveniles.

Cross-correlation is a measure of vocal synchrony between
individuals. A high cross-correlation between two individuals
(two nodes in the acoustic network) means that these individuals
usually vocalize together (or remain silent together) within
500 ms. Akin to spatial connectedness, we considered that
birds that vocalize regularly together are connected. In our
results, the cross-correlation was lower between one juvenile

and one adult than between two juveniles, which was itself
lower than between two adults. In our setup, all adults were
females (no adult male), so interactions between juvenile males
and adults could not be vocal imitation for song learning (like
with a male song tutor) but could be social reinforcement of
song production by adult females. However, more generally,
interactions between juveniles (females or males) and adults
could be social reinforcement of vocalization use. In our results,
interactions between juveniles and adults showed less synchrony
than vocal interactions between juveniles, so the latter probably
function as stronger reinforcements of vocalization use. In our
study adult females were familiar with each other and not with
the juveniles, and juveniles were familiar with each other and
not with the adult females. These differences in familiarity may
therefore have contributed to the lower cross-correlation between
adult females and juveniles, as individuals may respond more to
familiar individuals. However, cross-correlation and maximum
transition values were similar between young adults in the second
phase and adult females in the first phase, even though not all
young adults were familiar with each other. Furthermore, we did
not observe an increase in average cross-correlation or maximum
transition values between the first and second recording days per
phase, although all four birds were presumably becoming more
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TABLE 3 | Impact of group composition on the vocal cross-correlation.

CrossCorr∼GroupType*Sex1Sex2+Dist+Dist:GroupType+Dist:Sex1Sex2+(1|GroupID)+(1|Bird1ID)+(1|Bird2ID)+(1|Day)+(1|StartTime)

Nobs = 486, N2Juv2Ad = 348, N4YAd = 138, NFF = 205, NMF = 223, NMM = 43, NDist1 = 405, NDist2 = 81

Random Effects

Groups name Variance Std. Dev.

GroupID (intercept) 1.084e-03 0.0329

Bird1ID (intercept) 2.285e-04 0.0151

Bird2ID (intercept) 1.695e-04 0.0130

Day (intercept) 2.507e-05 0.0050

StartTime (intercept) 8.521e-05 0.0092

Residual 2.378e-03 0.0487

Fixed Effects

Estimate Std. Error df t-value p-value

(Intercept) 0.0906 0.0107 12.9 8.440 <0.0001

GroupType-4YAd 0.0570 0.0180 93 3.156 0.0021

Sex-MF −0.0152 0.0079 300.9 −1.902 0.0581

Sex-MM 0.0067 0.0177 282.6 0.382 0.7024

Dist-2 0.0252 0.0099 375.2 2.530 0.0118

GroupType-4YAd: Sex-MF −0.0052 0.0148 417.8 −0.354 0.7233

GroupType-4YAd: Sex-MM −0.0701 0.0228 394.6 −3.072 0.0022

GroupType-4YAd: Dist-2 −0.0260 0.0168 386.1 −1.549 0.1222

Sex-MF: Dist-2 0.0221 0.0159 388 1.391 0.1650

Sex-MM: Dist-2 0.0316 0.0271 363.9 1.164 0.2453

CrossCorr4YAd∼Sex1Sex2*Dist+(1|GroupID)+(1|Bird1ID)+(1|Bird2ID) +(1|Day)

Nobs = 138, NFF = 21, NMF = 90, NMM = 27, NDist1 = 115, NDist2 = 23

Random Effects

Groups name Variance Std. Dev.

GroupID (intercept) 0.0032 0.0572

Bird1ID (intercept) 0.0006 0.0258

Bird2ID (intercept) 0.0004 0.0208

Day (intercept) 0.0005 0.0240

StartTime (intercept) 0.0007 0.0267

Residual 0.0017 0.0416

Fixed Effects

Estimate Std. Error df t-value p-value

(Intercept) 0.1422 0.0330 4.03 4.304 0.0124

Sex-MF −0.0204 0.0124 103.83 −1.649 0.1021

Sex-MM −0.0639 0.0177 60.19 −3.601 0.0006

Dist-2 0.0589 0.0425 29.4 1.384 0.1767

Sex-MF: Dist-2 −0.0422 0.0450 34.51 −0.937 0.3553

Pairwise Comparisons (Tukey Adjustment)

Contrast Estimate SE z-value p-value

Sex-MF-Sex-FF = = 0 −0.0204 0.0124 −1.649 0.2117

Sex-MM-Sex-FF = = 0 −0.0639 0.0177 −3.601 <0.0001

Sex-MM-Sex-MF = = 0 −0.0434 0.0122 −3.560 0.0011

(Continued)
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TABLE 3 | Continued

CrossCorr2Juv2Ad∼JuvAd+Dist+SexRatio+JuvAd:Dist+JuvAd:SexRatio+(1|GroupID)+ (1|Bird1ID)+(1|Bird2ID)+(1|StartTime)

Nobs = 348, NAdAd = 58, NJuvAd = 232, NJuvJuv = 58, NDist1 = 290, NDist2 = 58, N2F2M = 96, N3F1M = 138, N4F0M = 84

Random Effects

Groups name Variance Std. Dev.

GroupID (intercept) 6.924e-04 0.0263

Bird1ID (intercept) 8.076e-05 0.0089

Bird2ID (intercept) 1.685e-04 0.0129

StartTime (intercept) 8.826e-05 0.0093

Residual 2.304e-03 0.0480

Fixed Effects

Estimate Std. Error df t-value p-value

(Intercept) 1.193e-01 1.814e-02 52.77 6.577 <0.0001

JuvAd-JuvAd −3.949e-02 1.507e-02 271.2 −2.620 0.0092

JuvAd-JuvJuv −1.844e-02 2.004e-02 150.8 −0.920 0.3590

Dist-2 8.799e-03 2.123e-02 270.8 0.414 0.6788

SexRatio-3F1M 2.976e-02 2.035e-02 98.93 1.463 0.1467

SexRatio-4F0M −2.933e-03 2.312e-02 91.45 −0.127 0.8993

JuvAd-JuvAd: Dist-2 3.538e-02 2.348e-02 273.4 1.507 0.1330

JuvAd-JuvJuv: Dist-2 3.147e-02 2.762e-02 278.4 1.139 0.2555

JuvAd-JuvAd: SexRatio-3F1M −2.190e-02 1.844e-02 260.1 −1.188 0.2360

JuvAd-JuvJuv: SexRatio-3F1M −4.473e-02 2.375e-02 247.4 −1.883 0.0608

JuvAd-JuvAd: SexRatio-4F0M 4.872e-04 2.052e-02 257.9 0.024 0.9810

JuvAd-JuvJuv: SexRatio-4F0M −1.620e-02 2.651e-02 259.0 −0.611 0.5417

Pairwise Comparisons (Tukey Adjustment)

Contrast Estimate SE z-value p-value

JuvAd-AdAd = = 0 −0.0394 0.0150 −2.620 0.0229

JuvJuv-AdAd = = 0 −0.0184 0.0200 −0.920 0.6197

JuvJuv-JuvAd = = 0 0.0210 0.0152 1.385 0.3405

CrossCorrMM∼GroupType+(1|Day)

Nobs = 48, N2Juv2Ad = 16, N4YAd = 27

Random Effects

Groups name Variance Std. Dev.

Day (intercept) 0.00 0.00

Residual 0.0022 0.0470

Fixed Effects

Estimate Std. Error df t-value p-value

(Intercept) 0.1009 0.0117 37 8.58 <0.0001

GroupType-4YAd −0.0148 0.0153 37 −0.967 0.34

Fixed Effects

Estimate Std. Error df t-value p-value

(Intercept) 0.0939 0.0130 95 7.196 <0.0001

GroupType-4YAd 0.0409 0.0149 95 2.740 0.0073

(Continued)
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TABLE 3 | Continued

CrossCorrFF∼GroupType+(1|Day)

Nobs = 40, N2Juv2Ad = 14, N4YAd = 21

Random Effects

Groups name Variance Std. Dev.

Day (intercept) 0.00 0.00

Residual 0.0073 0.0856

Fixed Effects

Estimate Std. Error df t-value p-value

(Intercept) 0.0917 0.0229 29 4.005 3.95e-04

GroupType-4YAd 0.0586 0.0309 29 1.895 0.0680

Model statistical results are shown. Linear mixed effect models (“lmer” function from “lme4” R package) were built. Number of observations in the dataset for each fixed effect is given.

We present the results from the R “summary” function.

FIGURE 4 | Vocal cross-correlation between two birds. Boxplot of cross-correlation values at dt = 500 ms, between two birds (A) of different age categories

(Juv-Juv, Juv-Ad, Ad-Ad, YAd-Yad), (B) of different sex (MM, MF, FF), within a given age category (Juv or YAd). Linear mixed effect models were built. Detailed sample

sizes and model results are given in Table 3. Different letters indicate significant differences. Boxes are median, first and third quartiles (Q1 and Q3 respectively). The

upper whisker is located at the *smaller* of the maximum × value and Q3 + 1.5 Inter Quartile Range (IQR), whereas the lower whisker is located at the *larger* of the

smallest × value and Q1 − 1.5 IQR. Individual points more extreme in value than Q3 + 1.5 IQR are plotted separately at the high end, and those below Q1 − 1.5 IQR

are plotted separately on the low end. ***p < 0.001, **p < 0.1, *p < 0.05, p < 0.1.

familiar with each other as they remain together in the same
room. Overall, familiarity is therefore unlikely to fully explain our
results.

Instead, our results suggest that (1) individuals interact
preferentially within their age group (because the cross-
correlation between one adult and one juvenile had the lowest
value), and that (2) adults are more precise and regular
in their vocalization timing (because they had the highest
cross-correlation value). Adults may be less likely to interact

with a juvenile when juveniles are less reliable in the timing
or information content of their vocalizations or when the
information juveniles provide is irrelevant for adults. For
example, in juvenile Richardson’s ground squirrels (Spermophilus
richardsonii), if an individual frequently calls when no predators
are nearby, its calls do not reliably predict the presence of a
predator and the calls of this individual are ignored by others.
Young individuals may call in response to more stimuli, many
of which are not threatening to adults (Cheney and Seyfarth,
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FIGURE 5 | Mean vocal transition probabilities between two birds.

Boxplot of mean transition probabilities between two birds (A) in the different

group types, (B) from different age categories (Juv-Juv, Juv-Ad, Ad-Ad,

YAd-Yad). Linear mixed effect models were built. Detailed sample sizes and

model results are given in Table 4. Boxes are median, first and third quartiles

(Q1 and Q3 respectively). The upper whisker is located at the *smaller* of the

maximum × value and Q3 + 1.5 Inter Quartile Range (IQR), whereas the lower

whisker is located at the *larger* of the smallest × value and Q1 − 1.5 IQR.

Individual points more extreme in value than Q3 + 1.5 IQR are plotted

separately at the high end, and those below Q1 − 1.5 IQR are plotted

separately on the low end. *p < 0.05.

1990; Hanson and Cross, 1997), and it might be advantageous
for adults to ignore the calls from the juveniles. In a learning
context, Chimpanzees (Pan troglodytes), are highly specific in
their selection of conspecifics as models for observation: in
response to a novel item, they watch and learn from the nut-
cracking activity of individuals in the same age group or older,
but not younger than themselves (Biro et al., 2003).

Our analysis of turn-taking involving Markov chains showed
that the probability of having a juvenile vocalization following
a juvenile vocalization was higher than any other possibility.
Contrary to the cross-correlation, turn-taking does not take
into account the delay between vocalizations. Therefore, a
high Markov probability between juveniles means that juveniles
vocalized preferentially after a juvenile vocalization (without
having an adult’s vocalization between them), but the delay can
be of any value (so potentially above the 500 ms threshold
used in the cross-correlation analysis). The respect of turn-
taking requires attention and control and may be less easy to
achieve for juveniles. Hauser (1992) showed that juvenile Vervets
monkeys (Chlorocebus pygerythrus) overlap other individuals’
calls more often than adults. This study estimated that 1/38
calls were interrupted when the exchange was between adults
compared to 6/20 when the interacting individuals were
young. This observation suggests that the ability to respect
turns may be acquired during development. In Campbell’s
monkeys (Cercopithecus campbelli), the young are 12 times more
likely than adults to interrupt turn-taking by vocalizing twice
successively. Besides, only adult Campbell’s monkeys displayed

different levels of interest when hearing playbacks of vocal
exchanges respecting or not the turn-taking rule (Lemasson
et al., 2011). In nightingales (Luscinia megarhynchos), it has
been suggested that overlapping (and therefore breaking the
turn-taking rule) may be perceived as a directed aggressive
signal (Naguib and Kipper, 2005). In this species, alternation
in exchanges suggests that turn-taking rules allow turns to be
taken between two or more interlocutors, and overlapping elicits
“irritation” or a rupture of the exchange.

The cross-correlation between 1 male and 1 female increased
from juveniles to young adults, whereas it remained the same
between 2 males or 2 females. The young adults had reached the
sexual maturity (between 2 and 3 months in zebra finches). In
the wild, zebra finch juveniles are fully independent at 35 days
and may start forming pairs at 3 months old (Zann, 1996). The
tendency to interact with individuals from the opposite sex may
increase after sexual maturity. In wild Chacma Baboons (Papio
Cynocephalus Ursinus), females’ reproductive state affects males’
tendency to call to them (Palombit et al., 1999). Males grunted
more often when approaching estrus females and lactating
females, and rarely when approaching pregnant females. In
addition, affinitive interactions between 1 male and 1 female
occurred significantly more often whenmales grunted than when
they silently approached females.

In this study we decided to keep all vocalizations types
together, because we had too many factors interacting to be able
to analyze rules of vocalization type use with a sufficient sample
size. Besides, among all vocalizations types that zebra finches
can produce, in the conditions of our experiment (cages at short
distances) only three of them were produced: tets, distance calls,
and songs. However, it would be interesting to study the vocal
dynamics by separating the different vocalization types, because
the dynamic of vocal exchange could change according to call
type, as suggested by Gill et al. (2015).

Also, preventing physical contact and free movement of the
birds is a limitation. However, our approach has the advantage
to control the position of the birds. In a recent study, devices
mounted on the birds were used to assign vocalizations in freely
moving individuals (Gill et al., 2015) but it did not give the spatial
position of each bird. New technologies are needed to be able to
control for these different aspects at the same time.

Taken together, our results suggest that juveniles and adults
have a separate vocal network (i.e., same age class individuals
form distinct connected components within the network),
and juveniles integrate the properties of the adult vocal
network during ontogeny. Our findings highlight the benefits
of considering acoustic networks, beside spatial associations, to
infer social interactions within groups.
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TABLE 4 | Impact of group composition on the dyads average mean transition probabilities.

MaxProba∼GroupType * Sex1Sex2+Dist+ Dist:GroupType+ Dist:Sex1Sex2+ (1|GroupID)+ (1|Bird1ID)+ (1|Bird2ID)+ (1|Day)

Nobs = 457, N2Juv2Ad = 344, N4YAd = 134, NFF = 197, NMF = 206, NMM = 39, NDist1 = 380, NDist2 = 77

Random Effects

Groups name Variance Std. Dev.

GroupID (intercept) 0.0112 0.1059

Bird1ID (intercept) 0.0093 0.0968

Bird2ID (intercept) 6.197e-04 0.0248

Day (intercept) 1.068e-04 0.0103

Residual 0.0129 0.1139

Fixed Effects

Estimate Std. Error df t-value p-value

(Intercept) −0.8655 0.0324 53.4 −26.693 <0.0001

GroupType-4YAd 0.0453 0.0443 190.3 1.024 0.3073

Sex-MF 0.0471 0.0357 62.7 1.317 0.1925

Sex-MM 0.1208 0.0595 144 2.029 0.0443

Dist-2 0.0079 0.0234 294.1 0.338 0.7357

GroupType-4YAd: Sex-MF −0.0690 0.0482 355.6 −1.433 0.1528

GroupType-4YAd: Sex-MM −0.2073 0.0669 418.2 −3.095 0.0021

Sex-MF: Dist-2 0.0122 0.0380 294.1 0.323 0.7467

Sex-MM: Dist-2 −0.0398 0.0668 286.8 −0.597 0.551

GroupType-4YAd: Dist-2 −0.0222 0.0431 279 −0.516 0.6064

MaxProba4YAd∼ Sex1Sex2*Dist+ (1|GroupID)+ (1|Bird1ID)+ (1|Bird2ID)+ (1|Day)

Nobs = 114, NFF = 17, NMF = 74, NMM = 23, NDist1:95, NDist2 = 19

Random Effects

Groups name Variance Std. Dev.

GroupID (intercept) 6.032e-17 7.767e-09

Bird1ID (intercept) 9.097e-03 9.538e-02

Bird2ID (intercept) 1.371e-02 1.171e-01

Day (intercept) 2.129e-04 1.459e-02

StartTime (intercept) 4.058e-05 6.370e-03

Residual 1.528e-02 1.236e-01

Fixed Effects

Estimate Std. Error df t-value p-value

(Intercept) −0.8186 0.0537 29.28 −15.221 <0.0001

Sex-MF −0.0447 0.0567 40.71 −0.789 0.4349

Sex-MM −0.1229 0.0703 50.05 −1.749 0.0864

Dist-2 −0.0040 0.1522 66.17 −0.027 0.9788

Sex-MF: Dist-2 −0.0117 0.1581 65.38 −0.074 0.9410

Pairwise Comparisons (Tukey Adjustment)

Contrast Estimate SE z-value p-value

Sex-MF-Sex-FF = = 0 −0.0447 0.0567 −0.789 0.703

Sex-MM-Sex-FF = = 0 −0.1229 0.0703 −1.749 0.181

Sex-MM-Sex-MF = = 0 −0.0781 0.0488 −1.601 0.238

(Continued)
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TABLE 4 | Continued

MaxProba2Juv2Ad∼JuvAd+ Dist+ SexRatio+JuvAd:Dist+ JuvAd:SexRatio+ (1|GroupID)+ (1|Bird1ID)+(1|Bird2ID)

Nobs = 344, NAdAd = 57, NJuvAd = 229, NJuvJuv = 58, NDist1:286, NDist2 = 58, N2F2M = 96, N3F1M = 138, N4F0M = 80

Random Effects

Groups name Variance Std. Dev.

GroupID (intercept) 0.0023 0.0489

Bird1ID (intercept) 0.0068 0.0829

Bird2ID (intercept) 0.0102 0.1012

Residual 0.0085 0.0924

Fixed Effects

Estimate Std. Error df t-value p-value

(Intercept) −0.8494 0.0575 47.29 −14.754 <0.0001

JuvAd-JuvAd 0.0065 0.0462 131.61 0.141 0.8881

JuvAd-JuvJuv 0.1351 0.0711 57.81 1.900 0.0625

Dist-2 0.0075 0.0424 233.88 0.178 0.8589

SexRatio-3F1M 0.0569 0.0402 55.95 1.414 0.1628

SexRatio-4F0M 0.0963 0.0456 52.21 2.112 0.0395

JuvAd-JuvAd: Dist-2 0.0229 0.0476 234.04 0.481 0.6311

JuvAd-JuvJuv: Dist-2 −0.0215 0.0551 216.05 −0.392 0.6957

JuvAd-JuvAd: SexRatio-3F1M −0.0282 0.0452 237.88 −0.624 0.5335

JuvAd-JuvJuv: SexRatio-3F1M −0.1225 0.0671 122.41 −1.825 0.0704

JuvAd-JuvAd: SexRatio-4F0M −0.0707 0.0512 259.63 −1.381 0.1683

JuvAd-JuvJuv: SexRatio-4F0M −0.1498 0.0761 143.71 −1.969 0.0509

Pairwise Comparisons (Tukey Adjustment)

Contrast Estimate SE z-value p-value

JuvAd-AdAd = = 0 0.0065 0.0462 0.141 0.9879

JuvJuv-AdAd = = 0 0.1351 0.0711 1.900 0.1243

JuvJuv-JuvAd = = 0 0.1286 0.0460 2.792 0.0129

MaxProbaJuvJuv∼Sex1Sex2*Dist+(1|Bird1ID)+(1|Day)

Nobs = 58, NFF = 14, NMF = 23, NMM = 16, NDist1 = 47, NDist2 = 11

Random Effects

Groups name Variance Std. Dev.

Bird1ID (intercept) 0.0053 0.0733

Day (intercept) 0.0023 0.0480

Residual 0.0133 0.1155

Fixed Effects

Estimate Std. Error df t-value p-value

(Intercept) −0.8258 0.0559 3.42 −14.754 0.0003

Sex-MF 0.0398 0.0568 25.26 0.701 0.4894

Sex-MM 0.1006 0.0618 28.05 1.628 0.1147

Dist-2 −0.0442 0.0825 33.85 −0.536 0.5955

Sex-MF: Dist-2 0.0349 0.1070 32.44 0.326 0.7461

Sex-MM: Dist-2 0.0091 0.1100 33.95 0.083 0.9341

Model statistical results are shown. Linear mixed effect models (“lmer” function from “lme4” R package) were built. Number of observations in the dataset for each fixed effect is given.

We present the results from the R “summary” function.
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Supplementary Figure 1 | Females’ number of vocalizations from juvenile

to young adult. Red points with red bars are mean ± SE values on all female

individuals (N = 33). Black points with black bars are mean ± SE values on each

female for all recordings, when the number of vocalizations decreased from

juvenile to young adult. Gray points with gray bars are mean ± SE values on each

female for all recordings, when the number of vocalizations increased. Lines

connect paired values from same individuals.

Supplementary Figure 2 | Males’ number of vocalizations from juvenile to

young adult. Red points with red bars are mean ± SE values on all male

individuals (N = 33). Black points with black bars are mean ± SE values on each

male for all recordings, when the number of vocalizations decreased from juvenile

to young adult. Gray points with gray bars are mean ± SE values on each male for

all recordings, when the number of vocalizations increased. Lines connect paired

values from same individuals.

Supplementary Figure 3 | Acoustic networks of four groups with juveniles.

Nodes are individuals (Ji states for juvenile i and Adi states for adult i). Edges

thickness is an affine function of the average vocal cross-correlation on all

recording days for each dyad.
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Social learning – the transmission of behaviors through observation or interaction with
conspecifics – can be viewed as a decision-making process driven by interactions
among individuals. Animal group structures change over time and interactions among
individuals occur in particular orders that may be repeated following specific patterns,
change in their nature, or disappear completely. Here we used a stochastic actor-
oriented model built using the RSiena package in R to estimate individual behaviors
and their changes through time, by analyzing the dynamic of the interaction network of
the fruit fly Drosophila melanogaster during social learning experiments. In particular,
we re-analyzed an experimental dataset where uninformed flies, left free to interact
with informed ones, acquired and later used information about oviposition site choice
obtained by social interactions. We estimated the degree to which the uninformed
flies had successfully acquired the information carried by informed individuals using
the proportion of eggs laid by uninformed flies on the medium their conspecifics
had been trained to favor. Regardless of the degree of information acquisition
measured in uninformed individuals, they always received and started interactions more
frequently than informed ones did. However, information was efficiently transmitted (i.e.,
uninformed flies predominantly laid eggs on the same medium informed ones had learn
to prefer) only when the difference in contacts sent between the two fly types was small.
Interestingly, we found that the degree of reciprocation, the tendency of individuals to
form mutual connections between each other, strongly affected oviposition site choice
in uninformed flies. This work highlights the great potential of RSiena and its utility in the
studies of interaction networks among non-human animals.

Keywords: social network analysis, social learning, information transmission, actor-oriented model, social
interactions
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INTRODUCTION

Social learning, defined as the transmission of behaviors through
observation or interaction with conspecifics (Heyes, 1994), has
been extensively studied in many different taxa (e.g., bumblebees,
Leadbeater and Chittka, 2005; rodents, Galef and Clark, 1971;
sperm whales, Weilgart and Whitehead, 1997; primates Whiten,
2000; van de Waal et al., 2013). Because of the advantages and
drawbacks traditionally associated with social learning, it was
first described as a fitted adaptation in environments where it is
significantly less costly than individual, trial-and-error learning
(Boyd and Richerson, 1988).

Individuals should not look for information indiscriminately
within their group, as some individuals may hold a piece of
information that is irrelevant, outdated, or misleading to the
receiver (Kendal et al., 2005; Enquist et al., 2007; Rieucau
and Giraldeau, 2011). Social learning strategies thus rely on
the identification of the most successful individuals as best
potential sources of information inside the group, taking into
account the associated risk of inaccuracy (Kendal et al., 2005).
In other words, some individuals may contact, or be contacted
by, more members of the group or more often. In this regard, the
social structure that emerges from inter-individual interactions is
crucial in understanding how information is transmitted and if
this transmission is efficient (Pasquaretta et al., 2014).

A social structure can be represented as a network where
individuals are nodes connected by edges representing one or
several types of interactions or relationships occurring among
them (Wasserman and Faust, 1994). As summarized by Newman
(2003), social network analysis can be used to draw and visualize
networks, run statistical analysis of network properties, model
networks, and predict the behavior of individuals or patterns in
the networks. Connections among individuals (e.g., interactions)
are channels for the transmission of information from one
individual to another, and they are continually rearranged over
time (Blonder et al., 2012). Each individual behaves differently
during such a process, transmitting or receiving information
from different conspecifics at different times.

Recently temporal dynamic approaches have been developed
to study the structural changes occurring in a network along
discrete and/or continuous time scales. Such methods are
well suited to study social processes in animals such as
communication, disease transmission, social learning, and many
others (Pinter-Wollman et al., 2014). In particular, a temporal
network approach may help to clarify how the dynamics of
animal interactions modify network topology and relates to
information flow (Charbonneau et al., 2013) and learning
(Skyrms, 2009). Some of these methods come from human
social science and have principally been developed to predict
behaviors based on social structure (Steglich et al., 2006; Mercken
et al., 2010; Snijders et al., 2010b; Schaefer et al., 2011). In this
context, the use of the dynamic actor-oriented model developed
in the R package RSiena (Ripley et al., 2013a) provides powerful
estimations of individual behaviors and their changes through
time. These methods, developed in the RSiena package (Ripley
et al., 2013a), allow users to perform a wide range of data analysis
on the same platform used for dynamic modeling operations.

Despite having been developed for human social sciences, such
techniques can prove very useful in studying the dynamics of
interactions in animal societies as they integrate temporal analysis
into an actor-oriented modeling approach (described in Snijders
et al., 2010b). These methods assume that the dynamics of
network structure are the product of a multitude of small changes
happening continuously, of which the results are observed over
a discrete time line. Moreover, the evaluation of the dynamic
processes occurring inside a social structure is strongly dependent
on the timescale used. Blonder and Dornhaus (2011) recently
underlined the importance of using an appropriate timescale to
observe information flow, and a study on the ant Temnothorax
rugatulus had also shown a discrepancy in the results obtained
depending on the time-scale used (Charbonneau et al., 2013).
Indeed at large timescales, it was observed that information flow
within the colony was slower than expected, whereas at smaller
timescales it was faster, suggesting that the network facilitated
local rather than global information transmission.

In this work, we performed a social network analysis using
the RSiena package to evaluate the dynamic of social interactions
during social learning experiments, using the gregarious species
Drosophila melanogaster, which has already been demonstrated
to rely on social learning regarding oviposition site preferences
(Sarin and Dukas, 2009; Battesti et al., 2012). Schneider
et al. (2012) have demonstrated the existence of non-random
interaction networks in wild-type individuals in this species, and
more recently, experiments performed by Battesti et al. (2012)
provided evidence for social learning through the observation
of oviposition site preference. In their protocol, they used
uninformed flies that were left free to interact with individuals
that had been trained to favor one of two oviposition media. Their
results showed that, after that interaction phase, uninformed flies
significantly favored the oviposition site the other individuals had
been trained to prefer. In another recently published work we
have also showed that uninformed flies, in addition to favoring
the oviposition site the other individuals had been trained to,
can also clearly avoid the information received by laying their
eggs on the opposite site informed flies were trained to choose
(Pasquaretta et al., 2016). The “avoid” or “follow” decision
appeared to be driven by the homogeneity of contact behaviors
among informed flies; that homogeneity was a condition sine qua
non for the information to be successfully followed.

The current study aims at evaluating individual behaviors
that could explain the varying outcome of social transmission
by studying the dynamics of interactions among flies. RSiena
was used to highlight the impact of social network dynamics
on the diffusion of information. While fruit flies use olfactory
and gustatory sensory organs to identify the sex of encountered
individuals (Fernández and Kravitz, 2013), they seem to strongly
rely on direct mechanosensory interactions as well in order
to elicit responses from flies (Ramdya et al., 2015). Since the
success of social transmission strongly relies on interactions
between informed and uninformed flies (Battesti et al., 2012)
and is affected by direct contacts among individuals (Battesti
et al., 2015; Pasquaretta et al., 2016), we expect to find a
discrepancy in the way these two fly types (i.e., informed and
uninformed) interacted in accordance with the transmission
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TABLE 1 | Sum of interactions experienced by 12 female flies (eight
informed and four uninformed) during 48 video recorded transmission
phases.

Video ID Total interaction Total binarized interaction

Follow

1 Video 7 6897 2478

2 Video 9 3434 1629

3 Video 10 3952 1703

4 Video 11 3524 1485

5 Video 13 2931 1368

6 Video 14 3564 1626

7 Video 23 3877 1622

8 Video 24 3609 1559

9 Video 28 4036 1767

10 Video 30 4287 1803

11 Video 31 5130 2017

12 Video 59 4255 1744

13 Video 65 6098 2207

14 Video 66 6411 2307

15 Video 67 5329 1862

16 Video 68 4314 1897

17 Video 69 3512 1573

18 Video 71 2721 1332

19 Video 73 4689 1813

20 Video 76 4393 1715

21 Video 77 5655 2215

22 Video 78 5468 2151

23 Video 79 6592 2371

24 Video 84 6753 2284

25 Video 89 4600 1903

26 Video 90 6626 2345

27 Video 92 2636 1260

28 Video 97 2072 1121

29 Video 103 5018 1885

Avoid

1 Video 6 5109 1912

2 Video 15 3492 1604

3 Video 21 3345 1545

4 Video 22 4480 1695

5 Video 25 4079 1593

6 Video 26 3952 1749

7 Video 64 6049 2255

8 Video 70 3267 1497

9 Video 72 3041 1463

10 Video 74 4126 1620

11 Video 80 4171 1726

12 Video 83 6146 2252

13 Video 87 4899 1971

14 Video 91 1757 976

15 Video 95 3042 1432

16 Video 96 4107 1694

17 Video 99 5222 1991

18 Video 100 4264 1774

19 Video 103 6026 2114

Both weighted and binarized matrices for follow (n = 29) and avoid (n = 19)
conditions are presented here. Video ID column, indicating the time order at which
experiment were run, is also presented.

outcome. Uninformed flies show an increase in their activity level
when facing informed individuals in the arena (Battesti et al.,
2015), which may directly affect the rate of contacts experienced.
Here, we focus on the analysis of the numbers of contacts sent
and received (also known as outdegree and indegree in social
network analysis) by both informed and uninformed flies, and
we expect to find higher outdegree and indegree measures in
uninformed flies compared to informed ones. We evaluated the
presence of homophily – the tendency of individuals to associate
with similar conspecifics – in the networks to assess the presence
of a possible bias in interaction exchanges within classes. Indeed,
significantly high levels of homophily for both classes suggest
the existence of closed subgroups where information may get
fixed (in the case of homophily in informed flies) or never
transmitted (in the case of homophily in uninformed flies).
Finally, in order to evaluate the impact of both individual and
neighboring degrees on the probability of receiving and starting
future interactions, we estimated the effect of being linked to
individuals that have received many contacts and the effect of
being linked to individuals that have sent many contacts in the
transmission arena.

MATERIALS AND METHODS

Behavioral Experiments
Using already published data on information transmission in
flies (Battesti et al., 2015), we processed recordings of the social
transmission phases of the experiments to identify interactions
between individuals and analyze the resulting social networks.
In those experiments eight female drosophilae were conditioned
by introducing them into a 120 mm × 50 mm × 90 mm
plastic cage and leaving them for 8 h with the choice between
two oviposition media (3 ml contained in 30 mm diameter
Petri dishes with 20 g/l of sucrose, 10 g/l of agar and 6 ml/l
of artificial banana or strawberry flavors, la Gazignaire SA).
Females were trained to prefer one oviposition site over the
other with the help of quinine, an alkaloid known to induce
gustatory repulsion in fruit flies (Quinn et al., 1974); 50% of the
replicates had quinine in the banana-flavored medium and 50%
had quinine in the strawberry-flavored medium. Following this
conditioning phase, the eight informed females were introduced
together with four uninformed individuals in a semi-opaque
white polyoxymethylene (Delrin) arena (diameter 100 mm;
height 3 mm) covered with transparent Plexiglas (design based
on previous work by Simon and Dickinson, 2010). After a
social transmission phase lasting 4 h, flies were gently removed
from the arena and immediately introduced into a plastic cage
containing two oviposition sites again, this time using quinine-
free banana- and strawberry-flavored media. We subsequently
calculated the proportion of eggs laid by uninformed individuals
on each medium at the end of each experiment. Two conditions
were then defined: (1) “Followed” (flies followed the information
gathered by informed individuals) when uninformed flies mostly
laid their eggs on the medium informed flies had learn to prefer in
the conditioning phase (proportion of eggs laid on the informed
medium by uninformed flies greater than 0.8, N = 29, of which
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16 on strawberry-flavored medium), and (2) “Avoided” (flies
avoided the information gathered by informed individuals) when
they laid their eggs in majority on the other medium (proportion
on informed medium lower than 0.2, N = 19, of which 8 on
strawberry-flavored medium).

Video Analysis
The social transmission phases were recorded using a camera
placed vertically above the arena. Using the Ctrax software
(Branson et al., 2009), the movements of each individual were
automatically followed and its coordinates in the arena recorded
for each frame of the video, at a rate of 10 frames per
second. Using these coordinates as our raw data, we constructed
interaction matrices for each experiment using an automated
code we specifically developed in R (code available under
request). To this end, we defined an interaction between two
individuals based on spatial and temporal constraints: proximity
between two flies had to (1) be smaller than 1.1 average body
lengths and (2) last for more than five frames of the video (i.e.,
0.5 s). These thresholds were derived from several preliminary
assumptions and observations. We calculated the average body
length of the individuals for each video based on the body
length measured by Ctrax for each individual in each frame.
Flies can interact using different angles of approach, but the
largest distance between two flies would only occur in the case
of an approach from the front or rear (for a better graphical
explanation of the interaction see Figure 2 in Pasquaretta et al.,
2016). In these types of interactions, the distance between the
centers of the two individuals will thus be equal to one body
length in the case of direct head-to-head contact. We added
a 10 percent margin to account for possible contacts between
antennae or front legs (structures which are too small for Ctrax
to be detected) even when bodies were not in direct contact.
Secondly, our temporal criteria to define interactions were based
on our observations that proximity lasting under 0.5 s usually
corresponded to individuals crossing paths without stopping to
interact. Moreover, to discriminate between the initiator and the
receiver, we estimated the mean speed of the individuals during
an interval lasting four time-frames and preceding each contact
by calculating their traveled distance during this interval; the
initiator was defined as the fastest individual between the two
involved in the contact. Each transmission phase was divided into
intervals of 5, 10, and 15 min and each set of intervals was tested.

Dynamic Analysis
A stochastic agent-based model was run using R (version 3.1.3)
(R Core Team, 2015) and the RSiena package (version 1.1-232)
(Ripley et al., 2013a) after testing for the different time-scales we
had previously defined (i.e., 5, 10, and 15 min). Indeed, changes
between two consecutive networks can be too small to rise above
the significance threshold, or too large for the model to consider
the networks as consecutive stages of the same process. In our
case, this lead to an impossibility for the models to converge on
our data based on the 5 (few individuals are connected in the
matrix) and 15-min (all individuals are connected) intervals. All
modeling was thus performed on the 10-min intervals, for which
convergence was always successful and satisfying; all t-statistics

for convergence were inferior to 0.1, suggesting a satisfying
estimation of the model (Ripley et al., 2013b).

We checked for the amount of changes between consecutive
networks using the Jaccard index, which expresses the similarity
between two sets of matrices ranging from 0 (completely
different) to 1 (exactly the same). A Jaccard index higher than
0.2 indicates that consecutive networks are similar enough to be
considered as successive states of the same network, thus allowing
for an RSiena modeling approach (Ripley et al., 2013b). Before
running the analysis, we also removed the first time interval from
the data; live observations of the flies after they were introduced
into the arena showed enhanced activity in all individuals during
the first interval of the transmission phase.

The dynamic analysis for weighted networks is not yet
implemented in RSiena; we thus performed all the following
analysis using binary matrices (Ripley et al., 2013b). The network
measures discussed in this study are thus referring to unweighted
degrees. We consider these measures just as relevant as their
weighted equivalents in our case (see Table 1). Indeed, a binary
matrix based on degree instead of strength, actually informs on
the total number of different individuals that contacted or have
been contacted by each focal fly.

Actor-Oriented Model
The actor-oriented dimension of the model allows us to
test hypotheses regarding how individuals affect the network
structure by changing their outgoing ties, i.e., who they interact
with. However, our study focuses more specifically on two
classes of individuals, informed and uninformed flies, and how
these classes interact by comparing behaviors at the class level.
Moreover, one of the assumptions of the model is that network
ties can be regarded as states, rather than events. Conceptually,
it is more intuitive to consider a network of flies interacting as a
succession of events, one event being described as one interaction
between two flies. Another major assumption of RSiena is that
the network’s probabilities of change follow a Markov process,
i.e., that the current state of a network is the only probabilistic
determinant of its dynamic. However, this does not necessarily
imply that past states are irrelevant; they can intervene through
the influence they have on the current state itself. In our case,
this will be reflected by the fact that past interactions will affect
an individual’s current behavior, as it is likely to have changed its
state along the way (i.e., acquired information) or have a different
knowledge of its social environment as it contacts other informed
and uninformed flies.

Several methods of estimation have been implemented into
Siena since its development: the Method of Moments (Snijders,
2001), the Maximum Likelihood method (Snijders et al., 2010a)
and the Bayesian method (Koskinen and Snijders, 2007). While
the two latter sets of methods usually yield smaller standard
errors for estimates, their use is strongly encouraged in situations
with small network datasets and/or very complex models.
Considering the size of our data as well as the relative simplicity
of our models, the Method of Moments was deemed sufficient
and allowed for faster computing calculations (Ripley et al.,
2013b). The principle of this procedure is to condition on the
first observation; the first observed network (i.e., the network
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built from observations in the first time interval) is used as
the starting point of the simulation, rather than estimated, and
thus used to estimate changes between the first interval and
successive ones. At each time step, the same procedure is applied
until the final interval is reached. We applied the evaluation
function to determine the probability of change for actors in the
network based on the state of the network and on actor behavioral
covariates. This function is described as the primary determinant
of the probabilities of change of a network, and it can be expressed
using the wide range of covariate effects defined in RSiena (Ripley
et al., 2013b).

RSiena allows for the combined analysis of several inde-
pendent networks and estimation based on repeated measures.
Networks are considered independent when they are composed
of different sets of actors and when it can be considered that
these networks do not influence each other. Such was the
case in our study, where new individuals were used for each
experiment. Several methods are proposed to achieve this type
of analysis. We selected the multi-group analysis for its fast
computing time and its estimation of rate parameters for each
independent network, as opposed to other methods which yield
a single rate parameter for all networks for each interval (Ripley
et al., 2013b). These rate parameters express the rate of change
between two successive networks, i.e., – the speed at which
new interactions between individuals who were not previously
interacting occur and existing interactions disappear. In such an
actor-based model, several effects can be analyzed: (1) structural
effects, describing the variation of the whole structure of the
network over time and only depending on the network itself, (2)
monadic covariate effects, which use individual characteristics as
statuses of individuals in the network, and (3) dyadic covariate
effects, typically used to analyzed the effect of more than one
actor on the individual network measures (see Ripley et al.,
2013b for a detailed description of all the available effects in
RSiena). However, because the model implemented by RSiena
was constructed with studies of human networks in mind,
not all effects are relevant for our purpose. We consequently
identified and tested the effects most relevant to our question
(Figure 1). Each effect was tested using a Wald t-test. We
followed a two-step procedure; we first tested some pertinent
effects in a preliminary global model including both structural
(i.e., density, reciprocity, square of contacts sent, and sum of
contacts received by neighbors) and monadic (actors hereafter
called ego, receivers hereafter called alter, and homophily) effects
(Figure 1 provides a detailed description of the tested effects).
Secondly, in order to better characterize the impact of individual
status on information transmission processes, we implemented
monadic effects alone (i.e., ego, alter, and homophily) on time-
based subsets of our data. Density cannot really be interpreted by
itself, as all other statistics are correlated with it; it is included
to control for the density of the network, as advised by the
RSiena developers (Ripley et al., 2013b). We modeled subsets of
increasing size, starting with the first two interaction matrices
(i.e., the second and the third time intervals from our original
data). Following subsets were generated by incrementing their
length by 10 min, or one time interval, each time. Thus, the
dynamics of the t-statistics for the ego and alter effects were

estimated using two linear models, with time intervals and
experimental condition as predictors in each model. We also
tested for the presence of a quadratic relationship of the ego
and alter effects with time, comparing linear and quadratic
regressions using the F-test. A quadratic relationship can suggest
the existence of a possible plateau in the relationship between
time and the number of contacts sent or received, above
which the transmission process stabilizes. We applied a forward
stepwise procedure to select our models. To implement the
selection we first created a model for each effect previously
described and we then aggregated the estimates and we excluded
all the non-significant effects. All the models were tested for
their goodness of fit to ensure their likelihood in explaining
original data by using the “sienaGOF” function from the RSiena
package1.

RESULTS

Jaccard indexes were superior to 0.2 in 675 out of 696 and 437 out
of 456 10-min matrices used from our “Followed” and “Avoided”
conditions respectively, ensuring a sufficient change among
consecutive networks to apply our subsequent RSiena analysis.
Indeed, mean rate parameters evolve over time as a sinusoidal
distribution for both the “Followed” and “Avoided” conditions,
meaning that the dynamics of the networks reveal similar,
comparable patterns between conditions (Figure 2). Applications
of the multi-group stochastic estimation procedure performed
by RSiena on our experimental data (conditions “Followed”
and “Avoided”) yielded models illustrating the dynamics of
network measures and the influence of oviposition experience
on behavior and network structure. The stepwise model selection
procedure yielded a parsimonious model defined by the density,
reciprocity, alter, and ego effects. For the “Followed” condition
model, the square of the number of contacts sent was also
retained. Whether information was followed or not, uninformed
individuals received interactions from the opposite fly type
(alter effect) more frequently than informed ones (Followed:
t = −3.973, P < 0.001; Avoided: t = −4.103, P < 0.001)
and they initiated interactions toward the opposite fly type (ego
effect) significantly more than informed individuals (Followed:
t =−10.036, P < 0.001; Avoided: t =−13.449, P < 0.001).

Reciprocity, the tendency of individuals to form mutual
connections between each other, was always significant both in
the “Followed” and “Avoided” conditions, but showed opposite
trends: uninformed flies followed the information carried by
informed individuals when reciprocity was significantly lower
than random (t = −12.166, P < 0.001), while they avoided
it when it was higher (t = 10.396, P < 0.001). The number
of contacts received by neighbors did not influence the
transmission process, neither in the “Followed” nor in the
“Avoided” conditions (Followed: t=−0.493, P= 0.622; Avoided:
t =−0.551, P = 0.582).

The more the square of the number of contacts sent (outdegree
activity) increased, the less likely information was to be followed

1http://www.inside-r.org/packages/cran/RSiena/docs/plot.sienaGOF
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FIGURE 1 | Interpretation of the RSiena structural effects tested on the “Followed” and “Avoided” data. Each graph delimited within a single dashed gray
box represents an observation of a directed network during a given time interval (denoted by tn). Successive states of the network and the dynamics of each effect
through time are shown by successive dashed gray boxes (denoted by tn+1 and tn+2). (1) Structural effects are effects related to network measures only, while
monadic covariate effects are related to individual characteristics defined by a binary covariate (here, informed vs. uninformed). Color keys are the same over all
figures, with blue elements describing cases where the effect in question has positive and significant dynamics, and orange elements where these are negative and
significant. Pink nodes represent uninformed flies (covariate = 0), and green nodes informed ones (covariate = 1). Structural effects are only related to the network:

(Continued)
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FIGURE 1 | Continued

(A) The density effect (density), defined by the outdegree of the actors. When significant, it expresses whether density in the network is increasing or decreasing over
time, i.e., whether relations are more often created or dissolved. A positive significant statistic (blue) indicates that density overall increases, and a negative significant
statistic (orange) that density overall decreases. (B) The reciprocity effect (recip), defined by the number of reciprocated interactions, i.e., the number of instances in
which the actor of interest also received an interaction from the actor it contacted. When positive (blue), it expresses that an actor is more likely to send an interaction
to actors that have previously sent it one and when negative (orange) it represents avoidance. Non-significant values for this effect represent cases in which the
reciprocal behavior is random. (C) The indegree related popularity effect (inPop) reflects the tendency of the neighbors of each actor to receive interactions by others
in the network. When significant it underlines the role of neighbors as bridges of information. (D) The outdegree related activity effect (outAct) reflects the probability
of the actor to be contacted by neighbors with a large number of contacts sent. Significant statistics for this measure mean that an individual is largely contacted by
highly active individuals. (2) Monadic covariate effects are related to an individual covariate, in our case the class of the actor of interest (informed or uninformed):
(E) The covariate-alter or covariate related popularity (altX ), defined by the sum of the covariates over all actors with whom the actor of interest has an interaction.
When significant, it expresses which class of actors receives interactions from others more rapidly. For a significant statistic, the interpretation will be that informed
flies are contacted by others more rapidly than uninformed flies if it is positive (blue), and vice versa if the statistic is negative (orange). (F) The covariate-ego or
covariate related activity (egoX ), defined by the actor’s outdegree weighted by its covariate value. When significant, it expresses which class of actors starts
interactions more rapidly. For a significant statistic, the interpretation will be that informed flies contact others more rapidly than uninformed ones if it is positive (blue),
and vice versa if the statistic is negative (orange). (G) The same covariate or covariate related identity (sameX ), defined by the number of interactions of the actor of
interest to all other actors who have exactly the same value of covariate (i.e., informed-informed or uninformed-uninformed). When significant, it expresses how likely
the actor of interest is to interact with others who share the same covariate value. A positive statistic (blue) will thus express homophily (i.e., actors interact more
often with others who have the same covariate value) and a negative one (orange) heterophily (i.e., actors interact more often with others who have a covariate value
different from their own).

FIGURE 2 | Rate parameters of the networks estimated from the
multi-group analysis in RSiena for each of our two experimental
conditions (“Followed” and “Avoided”). Rate parameters express the
number of opportunities for change between successive networks for one
given actor. A change is understood as the creation or the deletion of relations
among actors during two successive networks. The number of observed
changes is, however, always lower than what rate parameters imply; an
opportunity for change can be resolved by a ‘no change’ decision, and
successive changes can cancel each other out (e.g., create then dissolve a
given relation during the same interval). They do not differ between conditions;
in both cases actors always have opportunities for change from one network
to the next, and although the number of opportunities varies over time, it
evolves similarly whether information was followed or not. The success of
information transmission is thus not primarily dependent on the opportunities
actors get to change their connections to other actors. Best fitted lines for a
non-linear model are represented for “Followed” (black) and “Avoided” (grey)
conditions. Shaded areas represent the standard errors of the models.

(t = −2.185, P = 0.029), meaning that an elevated mobility of
flies inside the arena was somehow impeding the acceptance of
the information by uninformed individuals. Finally, homophily
within classes of flies had no effect on the transmission process,
neither in the “Followed” nor in the “Avoided” conditions
(Followed: t = −0.313, P = 0.751; Avoided: t = −0.413,
P = 0.682).

To better evaluate the influence of the ego and alter effects
over time we repeated the RSiena procedure over intervals of
increasing lengths, starting from the first 10-min interval and
adding successive intervals one by one. An analysis of variance
showed that both ego and alter t-statistics were better explained
as a quadratic function of time (egoquadratic_linear: F = 63.732,
P < 0.001; alterquadratic_linear: F = 17.016, P < 0.001), meaning
that informed and uninformed flies first increase their differences
in terms of numbers of contacts started and received, then reduce
these behavioral differences over time (Figure 3). The difference
in the number of contacts received by informed and uninformed
flies was larger when information was followed than when it was
not (ConditionFollowed_Avoided: t= 3.084, P < 0.001). There is also
a large discrepancy in the magnitude of the t-statistics associated
with the ego effect: the difference in the number of individuals
contacted by informed and uninformed flies is constantly
smaller in the “Followed” condition (ConditionFollowed_Avoided:
t = −19.231, P < 0.001). These results suggest that a large
heterogeneity in the number of contacts sent and received by
both fly types drove uninformed flies to choose the opposite
oviposition site informed flies were previously trained to choose.

DISCUSSION

Using data collected on fruit flies in the context of social
learning, we have investigated how the behaviors of informed
and uninformed individuals could explain the varying success of
information transmission, as reflected in the different strategies
adopted by uninformed flies after they had interacted with
informed individuals.

The RSiena multi-group analysis shows that uninformed flies
always contacted and were contacted by more individuals than
informed ones. This result is in accordance with a previous work
we have done on the same set of flies where we showed an
increase in the mean activity level for uninformed flies during
transmission phase, probably due to an increased interest in
interacting brought upon by flies bringing some novel odors
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FIGURE 3 | Wald t-test values for the alter and ego effects obtained by
the RSiena model estimation. The alter effect represents which class of
actors increases its indegree more rapidly, while the ego effect expresses
which class increases its outdegree more rapidly. These t-statistics were
estimated over time intervals of increasing length for the two transmission
conditions. Results show that uninformed individuals display both a higher
outdegree and indegree than informed individuals (negative t-statistics) and
that the difference in outdegree between the two classes is more important
than in indegree. Best fitted lines for the quadratic models are represented for
“Followed” (black) and “Avoided” (grey) conditions. Shaded areas represent
the standard errors of the models.

into the uninformed flies’ environment (Battesti et al., 2015).
Indeed, uninformed flies were always more active both as
sender and receiver. Interestingly, uninformed flies tended to
follow the information provided by informed ones when the
difference in contacts sent between the two fly types was
moderate. This phenomenon occurs either because uninformed
flies have contacted fewer individuals, or because informed
flies have contacted more. This result suggests that information
transmission may occur following an active rather than a
passive process, which can be explained both by a search of
the information performed by uninformed individuals and/or
by an active exchange performed by informed individuals. The
active participation of informed flies is not obviously expected
following Battesti et al.’s (2015) results. In Battesti et al. (2015),
we have shown that the performance of informed flies after the
transmission phase was negatively affected by the rate of previous
interactions with uninformed individuals, revealing a possible
associated cost to information transfer for informed flies. In that
study we suggested that the observed transmission process from
informed to uninformed flies, and the resulting change in the
behavior of informed flies, could be adaptive as the survival rate
of larvae might depend on a balance between optimal resource
exploitation rate and larval competition. Indeed, an increased
number of larvae will exploit the resource more efficiently
than a small aggregate, and will be more likely to prevent
the development of bacterial and fungal competitors (Rohlfs

and Hoffmeister, 2003; Rohlfs, 2005). However, an extremely
large number of larvae foraging on the same medium will also
impact the per-capita resources available for individual use, thus
increasing competition among individuals (Pulliam and Caraco,
1984).

Interesting results were found in relation to the reciprocal
behavior of flies: uninformed flies tended to avoid the
information brought by informed ones when a large number
of reciprocated interactions occur. For information to be
transmitted, non-reciprocal contacts are crucial. Network
reciprocity has been suggested to negatively affect the formation
of smoothed boundaries in clustered population. In particular,
in a recent prisoner’s dilemma game developed to study the
impact of network reciprocity and individual conformism on
cooperation, Szolnoki and Perc (2015) have demonstrated that,
starting from a clustered population made of two type of
individuals (cooperators and defectors) experiencing a relatively
high value of network reciprocity, an increase in the fraction
of conformist individuals in the population led to an increase
in cooperative behaviors among individuals by smoothing the
interaction boundaries among clusters. In accordance to this
theoretical work our results suggest that network reciprocity
may direct uninformed flies toward an “anti-conformist” site
choice underlining the regulatory role, especially as social
obstacle, played by high level of reciprocal interactions. It is
interesting to note that in a previous work describing the
genetic determinants of social structure in different Drosophila
strains, Schneider et al. (2012) found that olfactory mutant
flies (individuals with a severe loss of smell) showed a higher
percentage of reciprocated interactions and a disrupted social
interaction network compared to wild-type flies. These results
may bring additional improvements to the understanding of both
the ultimate and proximate factors influencing the efficiency of
information transmission processes in this species.

The dynamic network analysis performed over intervals of
increasing lengths shows that differences in the estimation
of the number of contacts sent and received by informed
and uninformed flies best fit a quadratic distribution, with
a positive concave curve (Figure 3). This suggests that the
interaction network stabilized with time through a reduction
of the differences between the behaviors of informed and
uninformed flies. A large variability in the number of contacts
can be caused by the abnormal activity of a few individuals in
a network (also known as the friendship paradox; Feld, 1991)
which may experience higher rate of interactions in their social
milieu. This time-leveling phenomenon is in accordance with the
synchronization of activities in fruit flies which has been shown
to be affected by social interaction between individuals (Lone and
Sharma, 2011).

To the best of our knowledge, this is the first time that an actor-
oriented model approach was used to evaluate the correlation
between network dynamics and information transmission in
animals, suggesting that RSiena might provide useful analytical
tools to answer other ecological and evolutionary questions.
RSiena allowed us to analyze the dynamics of interaction
networks during social transmission experiments and to identify
the flies’ involvement in the process of information transfer.
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The implementation of additional effects taking into account
social processes observable in more complex animal societies
would make this tool even more useful to biologists studying
other species by allowing them to construct complex models
to explain the dynamics of their observed interaction networks.
For instance, RSiena’s actor-oriented models might be used
to estimate the dynamic formation of triadic subgroups (i.e.,
transTrip effect in the RSiena manual) in species experiencing
triadic coalitions among group members (e.g., primates Kappeler,
2012; Corvus corax Loretto et al., 2012). Moreover, estimation
in RSiena is based on the analysis of unweighted networks,
meaning that the data used as input for this program reflects
the interactions between individuals in the group, but not
their frequency. Being able to work directly on weighted
networks would allow for the integration of the number of
interactions occurring between a given pair of individuals.
Because biological processes involving information transmission
are likely to rely heavily on repeated interactions between
animals (Wei et al., 2015), this improvement would certainly
provide even more insight into the mechanisms regulating such
processes.

Results obtained in this work show a strong effect of network
properties on the future oviposition site choice of uninformed
flies. In this context, our results may grant more interest as
well because they were obtained from an oversimplification of
the repeated interactions occurring between flies in the arena.
However, it is possible that in our experiments, uninformed flies
may have switched from an uninformed state to an informed
state before the transmission was over. Flies may need to pass a
threshold of a minimum number of interactions before they can
make this switch. Understanding the timing of this switch, and
its integration with social interactions, is critical for information
transmission studies where a threshold process may occur (Watts,
2002).

The information transmission process is likely to be
affected by the proportion of informed and uninformed
flies interacting. Previously unpublished experiments run
by Mery’ lab (personal communication) have revealed that
twice as many informed as uninformed individuals are
needed in the arena for the information to be transmitted.
It would be interesting in the future to analyze variable
proportions of informed and uninformed flies to better
evaluate the existence of such a threshold mechanism,
which has already been well described theoretically in social
learning literature (i.e., see social learning benefit when
copying is rare: Boyd and Richerson, 1985; Giraldeau et al.,
2002).

Finally, a well-determined subset of videos (i.e., 77% of
the total videos run) was used to understand the dynamic
effect of network measures on oviposition site choice in this
work (i.e., where the proportions of eggs laid by uninformed
flies was outside of the [0.2; 0.8] interval). RSiena’s multi-
group analysis allows for a parallel comparison of multiple
binary networks that can be merged based on clear definitions
(follow and avoid information in our case). More studies

are needed to understand which network properties affect
the remaining random choice we obtained in 23% of the
data. In particular, the random outcome obtained in such
videos might be caused by different spreading dynamics that
could have been actually produced by repeated interactions
among individuals. In this context, Relational Event Models
(REMs: Tranmer et al., 2015) might be an interesting tool to
estimate the impact of multiple repeated interactions on the
transmission process. REMs indeed evaluate the sequence of
events occurring in each network, allowing also for weighted
network analysis and thus possibly explaining the effect of
multiple interactions among individuals on future oviposition
site choice.

Using Drosophila as a model allowed us to make use of
the powerful multi-group analysis developed in RSiena while
using a substantial data set, obtained from independent repeated
experiments. Likewise, studies using different experimental
conditions, different mutant strains, or groups with different
ecological or physiological characteristics could benefit from a
similar approach. However, many studies of animal networks
focus on species and social processes for which fewer
observations are available, meaning that a multilevel network
analysis (such as the multi-group analysis we used here)
may not always be possible. However, past uses of RSiena
have yielded interesting and valid results, even when repeated
experiment cannot be performed (Ullrich et al., 2010; van
Zalk et al., 2011). It thus seems that this tool could be
used to study a wide range of animal species, varying in
group size, social complexity, and access by observers, as
recently shown in Ilany et al. (2015). We confirm here that a
network dynamic approach is a strong tool for understanding
information transmission in a mixed group of flies. This
transmission process notably involves specific social behaviors
from both informed and uninformed individuals, such as
reciprocity between individuals and number of contacts sent
or received upon which the success of information diffusion is
conditioned.
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A number of recent studies have used Network Based Diffusion Analysis (NBDA) to detect

the role of social transmission in the spread of a novel behavior through a population. In

this paper we present a unified framework for performing NBDA in a Bayesian setting,

and demonstrate how the Watanabe Akaike Information Criteria (WAIC) can be used

for model selection. We present a specific example of applying this method to Time to

Acquisition Diffusion Analysis (TADA). To examine the robustness of this technique, we

performed a large scale simulation study and found that NBDA usingWAIC could recover

the correct model of social transmission under a wide range of cases, including under

the presence of random effects, individual level variables, and alternative models of social

transmission. This work suggests that NBDA is an effective and widely applicable tool for

uncovering whether social transmission underpins the spread of a novel behavior, and

may still provide accurate results even when key model assumptions are relaxed.

Keywords: Network BasedDiffusion Analysis, Bayesianmodel selection,WAIC, social learning, statisticalmethods

1. INTRODUCTION

There has been a substantial interest in better understanding how and why animals use social
information (Heyes, 1994; Laland, 2004; Galef and Laland, 2005), and particularly understanding
if certain behaviors diffuse through populations as a result of social transmission (learning from
others) (Reader, 2004). A capacity for social transmission has been demonstrated in many species
using a traditional demonstrator-observer paradigm (Hoppitt and Laland, 2013). In contrast, recent
studies have focused on studying the diffusion of behavior in freely interacting groups of animals in
the field (e.g., Allen et al., 2013; Hobaiter et al., 2014) or in the laboratory (e.g., Boogert et al., 2008;
Atton et al., 2012), aiming to asses the importance of social transmission in the spread of behavior,
and elucidate typical pathways of transmission. However, in many cases it can be challenging
to determine whether the spread of behaviors is facilitated by social transmission, or purely the
product of independent asocial learning. This challenge increases the difficulty in inferring the
presence of, and understanding the mechanisms that underlie social learning in animals.

An early approach in detecting social transmission and asocial learning was to analyze the shape
of the “diffusion curve,” the number of animals in the population who had performed the novel
behavior over time (Lefebvre, 2000). The theory was that if the diffusion followed an accelerating
pattern, or an “s-shaped curve,” this was likely a product of social transmission (Reader, 2004).
However “s-shaped curves” can also be produced by other mechanisms, like individual differences
in the rates of learning, which has lead to the technique to be considered unreliable (Reader, 2004;
Franz and Nunn, 2009; Hoppitt et al., 2010).

More recent research has responded to concerns over the validity of diffusion curve analysis to
develop novel statistical tools to analyze the rates of diffusion of novel behaviors. Network Based
Diffusion Analysis (NBDA), is one such approach that infers social transmission if the spread of the
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novel behavior follows a social network (Franz and Nunn, 2009;
Hoppitt et al., 2010). In most cases the social network is a
pre-established association network (e.g., Aplin et al., 2012;
Allen et al., 2013) that is assumed to reflect opportunities for
learning between each pair of individuals (Hoppitt et al., 2010).
However, the networks used can instead directly reflect the
pattern of recorded (probable) observations among individuals if
such information is available (Hobaiter et al., 2014), or different
networks can be used to represent different hypotheses about the
pathways of transmission (e.g., Farine et al., 2015). In addition
to analyzing the diffusion of behavior in natural populations,
NBDA has also been used in laboratory studies (e.g., Atton et al.,
2012). Here, fewer individuals are used, but with the advantage
that replicate groups can be easily created, and researchers can
track the diffusion of multiple behavioral traits through the same
groups (e.g., Boogert et al., 2008). NBDA then potentially allows
researchers to make inferences about individual differences in
innovation and social learning ability. As such NBDA has
potential to provide a unifying analytical framework for studying
social transmission in the laboratory and the field.

Although initially a frequentist method, NBDA has been
recast into a Bayesian framework to allow better specification
of different models of social learning, and the inclusion of
random effects allowing for correlations in learning rate within
individuals when they are subjected to multiple diffusions (e.g.,
Boogert et al., 2014; Nightingale et al., 2014). Although the
move to a Bayesian model of NBDA has advantages, one of the
disadvantages has been the ability for researchers unfamiliar with
the method to use it, a problem exacerbated by the existence of a
number of alternatives for model selection, several of which have
been used in the context of NBDA.

In this paper, we address these issues by presenting and
evaluating a framework for performing NBDA where model
selection is done using the Watanabe Akaike Information
Criteria (WAIC; Watanabe, 2013). Use of WAIC has
the advantage that it is computationally relatively more
straightforward to implement than alternatives like reversible
jump Markov chain Monte Carlo (RJMCMC). One of the
goals of this paper is to evaluate the performance of WAIC in
performing model selection in the context of NBDA, and use a
large simulation study to examine how the performance changes
if key model assumptions are not met.

2. NETWORK BASED DIFFUSION
ANALYSIS

NBDA is a general framework for evaluating different hypotheses
for the spread of a novel behavior. At its core, NBDA relies on
a two-step process to evaluate, and select a most likely model
that describes observed data. First, we construct a likelihood
function to represent the likelihood that each model generated
the observed data. Many of these likelihood functions require
the values for large number of parameters to be estimated. To
estimate these parameters, Bayes’ rule is used to fit the parameters
to the data. The resulting model and parameters are then assessed
using WAIC, which evaluates the predictive fit of each model.

In the simplest case the model with the best (lowest) WAIC is
chosen as our model.

NBDA falls under a wide class of hierarchical Bayesian models
(Gelman et al., 2014), and many of the steps below are applicable
to a broad range of settings. NBDA is distinguished from other
hierarchical models by explicitly modeling social influences on
learning. There are two variants of NBDA. Time of Acquisition
Diffusion Analysis (TADA) analyzes the time at which an
animal first performs a novel behavior, and can be analyzed in
continuous (Hoppitt et al., 2010) or discrete (Franz and Nunn,
2009) time. In contrast, Order of Acquisition Diffusion Analysis
(OADA) analyzes only the order in which animals first perform
the behavior. Here we focus on continuous TADA and evaluate
the effectiveness of NBDA with WAIC in this context, although
the same approach is applicable to other variants of NBDA like
OADA.

3. TIME OF ACQUISITION DIFFUSION
ANALYSIS

Time of Acquisition Diffusion Analysis is a modeling technique
which evaluates whether the rate at which an individual first
perform a novel behavior is dependent on the behaviors of
other individuals in that population. Because the method focuses
primarily on acquisition of a novel behavior, it typically only
analyzes the initial performance of the behavior and ignores
subsequent performance.

As an example, imagine a population of birds learning to flip
open the lid of container to receive a food reward. When the task
is initially presented, none of the birds are able to solve it. Over a
long period of time, all or most of the birds are eventually able to
solve the task and receive the food reward. The question we wish
to ask is, was the spread of the novel behavior (flipping the lid)
acquired through asocial learning alone, or asocial learning aided
by social transmission. If learning was done through pure asocial
learning (including the effects of individual-level covariates),
then the rate at which each bird solves the task should be constant
(though this assumption can be relaxed Hoppitt et al., 2010),
and independent of other birds having solved the task. If the
learning was aided by social transmission, that rate of solving
should increase as more other birds solve the task.

We can formalize this logic using an instantaneous ratemodel.
This model assumes that at each instant, a given bird has some
chance of learning the novel behavior. In the case of asocial
learning, this rate does not depend on the number of other
birds that had previously solved the task. In the case of social
transmission, this rate will be sensitive to other birds solving the
task.

To generate a likelihood function, we assume that at each
instant the rate that bird i, solves the task (i.e., acquires the novel
behavior) is λi(t), where

λi(t) = ai(t)+ si(t), (1)

the sum of an asocial learning rate a and social learning rate s.
These rates are allowed to change over time, allowing the model
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to capture changes in the birds’ environment, and the birds’ social
environment.

There may be individual-level differences in the rate at which
the birds learn novel behaviors, to capture these differences we
parameterize asocial learning as

ai(t) = exp(λ0 + Ai + φi), (2)

where λ0 stands for a base rate of learning, modified by some
set of individual-level covariates, Ai and individual-level random
effects φi.

To incorporate social information wemust provide a model of
how an individual’s learning rate is influenced by other animal’s
actions. In TADA we assume that animals are only influenced by
the number of other individuals who have solved the task. We
assume that the social learning rate is

si(t) = σiSi(t), (3)

where σi is an individual-level rate which determines the
influence of social information and Si captures how much social
information is in the environment. Like asocial learning, we allow
for individual-level differences in social learning ability,

σi(t) = exp(s0 + Bi + ψi), (4)

where s0 is a base rate of social learning, Bi the influence
of individual-level covariates on social learning, and ψi the
influence of individual-level random effects on social learning. Si
is given by

Si(t) =
∑

aijIi(t), (5)

where aij(t) is the influence individual i has on individual j, and
Ij(t) is an indicator variable that is 1 if animal j has solved the
task prior to time t, and 0 otherwise. The amount of influence
each individual exerts on each other can be captured by a social
network which can be empirically estimated (Boogert et al.,
2008). If there are no network differences, then Si(t) =

∑
Ij(t) or

the number of animals who have solved the task at each point in
time. This model assumes that the rate of learning due to social
transmission depends linearly on the number of other animals
who have solved the task. In reality, other learning rules are
possible, and we discuss some of these below.

In TADA, the rates of solving are estimates from the observed
data using a hazard model, where if an individual has not solved
the task at time t0 then the likelihood that they solve the task at
t1 is,

p(si = t) = λi(t1)

∫ t1

t0

exp(λi(t))dt, (6)

and the likelihood that they fail to solve the task by time t1 is

p(si > t1) =

∫ t1

t0

exp(λi(t))dt. (7)

Note that the parametrization of the model presented here differs
from the original presentation of the continuous TADA (Hoppitt

et al., 2010), although it follows that used for previous versions
of Bayesian NBDA (Nightingale et al., 2014). In the original
formulation, a parameter λ0 = exp(λ0) gives the baseline rate
of asocial learning, and a parameter s = exp(so)/exp(λ0) gives
the rate of social transmission per unit connection, relative to the
baseline rate of asocial learning. The parametrization presented is
better suited for Monte Carlo sampling (Nightingale et al., 2014)
but estimates for the parameter for the original specification can
still be obtained from the posterior distribution.

Using the hazard model and our parametrization of the
learning rate, we can estimate the rates of different model
parameters based on a given data set by using Bayes’ rule.
Bayesian inference can be accomplished by a multi-functional
statistical software packages like JAGS or Stan. In this study, we
use a hand-coded Monte Carlo sampler implemented in R (R
Core Team, 2013). Once posterior distributions are obtained, we
can then use a model selection technique to compare between
different models of learning. We outline one model selection
approach below.

4. MODEL SELECTION USING WAIC

The goal of model selection is to compare multiple competing
models, given a data set, and determine a single, or set of
likely candidate model(s) that are thought to be “best.” In the
context of NBDA, a primary goal of the model selection is
often to tell if a social model describes the data better than a
purely asocial model. Although there are many ways of defining
a best model, in this context, we evaluate models based on
their predictive validity. Other approaches are discussed in the
discussion.

Predictive validity is an assessment of the ability of eachmodel
to predict the results of future experiments, or unanalyzed tasks.
However, true measures of predictive validity can be hard to
obtain since it is often not feasible, or expensive to collect further
data. A traditional alternative is to examine the performance of
the model on predicting already obtained data. In the best case,
“leave one out” cross validation trains the model on all but one
piece of data, and then examines how well the model predicts the
left out piece of data. This process is repeated for every data point.
This technique is computationally expensive with a large number
of data points, and may be inappropriate with few data points,
since leaving a single data point out may be a large fraction of the
total data.

There exists alternatives to leave one out cross validation like
information criteria, a set of techniques (including WAIC) for
balancing goodness of fit to collected data, against the number
of parameters in the model. In some cases these techniques are
asymptotically equivalent to leave one out cross validation as
the number of data points grows large, while being much more
computationally tractable to compute.

In our case, we use the WAIC to score each model.
WAIC is a new alternative to older information criteria like
Akaike’s Information Criterion (AIC; Akaike, 1973) or Deviance
Information Criterion (DIC; Spiegelhalter et al., 2002). It has
a number of advantages over AIC and DIC. Unlike AIC or
DIC, which assess a model’s fit based on a single point estimate,
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WAIC uses the entire Bayesian posterior distribution, making it
more accurate when the posterior distribution is not normally
distributed. The results of WAIC also asymptotically approach
Bayesian cross validation in the large sample limit (Watanabe,
2013).

WAIC assesses model fit by computing the ability of each
model to predict the entire data set that it is fit on, penalizing
models that have an un-even fit across individual pieces of data.
WAIC can be calculated by Gelman et al. (2014):

WAIC = −2(lppd − pWAIC), (8)

where lppd is the logpoint-wise predictive density, and pWAIC is
a term that penalizes models with large numbers of parameters.
The factor of −2 brings WAIC to be on the same scale as other
information criteria. lppd is approximated using the posterior
output of an MCMC chain by:

lppd =

∑
log(Epostp(yi|θ)), (9)

where the outer sum is over individual data points, and the inner
term is the expectation of the likelihood over the entire posterior
sample. This value is then corrected for the estimated number of
parameters of the model by

pWAIC =

∑
varpost log(p(yi|θ)), (10)

where the inner term is the variance of the likelihood over the
entire posterior sample for each data point. This remaining term
penalizes models that have uneven (i.e., high variance) fit across
different data points, which may be an indication of over fitting.

To perform model selection, we can fit multiple potential
models to the data and use WAIC to evaluate their predictive
value, selecting the model with the smallest WAIC value as our
chosen model.

For example, if the question of interest is whether or not
animals use social transmission to acquire behaviors, we could
fit two models, one where animals are assumed to use social
information, and a second where they are assumed to only use
asocial information. After fitting both models and calculating
the WAIC for them we can assess which model has a better
fit, and whether the animals are more likely to have used social
information, or to have relied only on asocial learning.

One open question is how big does the WAIC difference
between models need to be, in order to be considered indicative
of a true preference for one model. There is no hard and fast
rule, although the difference should be greater than the variation
due to Monte-Carlo sampling often greater than 1, or in the case
study presented below, greater than 5.

5. SIMULATED PERFORMANCE OF NBDA

To evaluate the expected reliability of NBDA, we performed
a large-scale simulation study to understand under what
conditions NBDA will accurately determine whether social or
asocial information was being used to solve the task. In this study,
we used a single model to generate the results of 1000 diffusion

experiments, and used NBDA to infer the model used to generate
each simulation. The accuracy of NBDA is then the likelihood
that the model inferred by NBDA was the model used to generate
the data.

Unless otherwise noted, each simulation followed the same
design. We considered a population of ten animals who were
given a novel foraging task (similar to Boogert et al., 2008, 2014).
In the task each animal was required to learn how to get a piece of
food out of a container (e.g., by removing a lid). As each animal
solved the task (got the food out of the container) the container
was replenished giving the other animals a chance to solve the
task. Each experiment was run until each animal in the group had
“solved” the novel task at least once. This process was repeated
ten times with new foraging tasks with the same group of animals.
Although we consider primarily novel foraging behaviors here,
the framework presented above, and the results presented below,
likely will also hold for animals learning a range of new behaviors.

The data for each experiment was generated by turning
the hazard model above, into a generative model. For each
simulations a model of learning was chosen (e.g., asocial learning
without random effects, social learning with random effects),
and parameter values for the model were drawn from our prior
distribution (see Table 2). The models, including parameters and
the distributions for each parameter are given in Tables 1, 2.
The distributions given in Table 2 were also used as the prior
distribution for performing Bayesian inference (see below).
Individual-level effects were treated as a product of an underlying
measurable property, η, and a rate term a or b. We assumed that
η was normally distributed with mean 0.

We allowed individuals to use the social information provided
on either a homogeneous network, or on a lesioned network.
As in Equation (5), we defined a social network to be an
association matrix A, whose elements aij represent the amount of
influence (between 0 and 1) that individual i has over individual
j. In the homogeneous network, all individuals had the same

TABLE 1 | Model parameters and the rate equation for each model used in

the simulation study.

Model name Parameters Rate equation

Asocial λ0 λ = exp(λ0 )

Social λ0, s0 λ = exp(λ0 )+ exp(s0 )S

Asocial with random effects λ0, φ λ = exp(λ0 + φi )+ exp(s0 )S

Social with random effects λ0, s0, ψ λ = exp(λ0 )+ exp(s0 + ψi )S

Asocial with individual-level

effects

λ,A λ = exp(λ0 + Ai )

Social with individual-level

effects

λ0, s0,B λ = exp(λ0 )+ exp(s0 + Bi )S

Linear social model λ0, s0, φ, ψ λ = exp(λ0 + φi )+ exp(s0 + ψi )S

Diminishing returns social

model

λ0, s0, φ, ψ λ = exp(λ0 + φi )+ exp(s0 + ψi )
√
S

Threshold social model λ0, s0, φ, ψ λ = exp(λ0 + φi )+ exp(s0 + ψi )sign(S)

The parameters refer to the inclusion of the terms in the model described in Equations

(1)–(5). λ0 and s0 are the baseline asocial and social learning rates, A and B represent

inclusion of a individual level effect on asocial or social learning, and φ and ψ are random

effects for asocial and social learning.
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TABLE 2 | Distribution of model parameters for the simulation study.

Parameter Distribution

λ0 Uniform(−7, −5)

s0 Uniform(−7, −5)

φi Normal(0, 1)

ψi Normal(0, 1)

a Uniform(−1, 1)

b Uniform(−1, 1)

These parameter distributions were also used as prior distributions for performing

inference on each simulation.

influence over each other; aij = 1 for all i and j. In the
lesioned network, the network was initialized the same way as the
homogeneous network and then half of the network connections
were removed, (aij = 0. Because there may be cases where
researchers are not able to measure the network accurately, we
examined three alternative, inaccurate social networks, which
incorrectly assessed the value of 25, 50, or 75% of the network
connections—setting a connection to 1 if it was 0, or to 0 if it was
previously 1.

We considered three models of social learning. In all cases,
we assumed that the social information was transmitted on a
homogeneous network. In the Linear model, social information
term was set to s = ck, where k is the number of animals who
have already solved the task (c is a constant). In the Diminishing

Returns model, social information was set to s = c
√
k, to

model the fact that subsequent solvers may have a diminishing
influence. The choice of the square-root function to model
this process was arbitrary; preliminary simulations suggest that
similarly shaped functions produce analogous results. In the
Threshold model, social information was set to s = cI where I
is 1 if at least one other individual has solved the task, and 0
otherwise.

After each simulated experiment, NBDAwas performed using
TADA, with the assumption that there was no social network
between individuals. We used WAIC to evaluate a number of
alternative models and select the best model. Unless otherwise
stated, we ran 1000 simulated experiments for each set of models,
with different parameter values for each experiment.

In the first set of simulations we look at recovering the correct
underlying model and parameter values for when learners use
only asocial learning (with random effects), or asocial learning
and social transmission (with random effects). In the next set
of simulations we examined whether we could correctly infer
the influence of individual-level variables on learning. In the
last set of simulations, we also examined whether we could
correctly infer the underlying model of social learning for each
experiment.

5.1. Model and Parameter Recovery
To estimate our ability to recover the correct underlying model
used to generate the data set, we simulated diffusion based on
four models: the asocial, social, asocial with random effects,
and social with random effects models. The performance of
model recovery is given in Figure 1. Overall the statistical

technique was able to determine whether or not a model uses
asocial information or social information, but there was a high
false positive rate for detecting the presence of random effects,
shown by the large number of asocial models without random
effects being inferred to be asocial models with random effects
(Figure 1A), with the same holding true for social models
(Figure 1B). However, even though this method occasionally
infers the presence of random effects it is still able to distinguish
between social and asocial models, e.g., data generated from a
social model may be inferred to have been generated from a social
model with random effects, but is unlikely to be inferred to have
been generated from either an asocial model, or an asocial model
with random effects. This suggests that it may appear that there is
underlying variation in social and asocial learning ability, where
no such variation exists.

We are also interested in whether or not we can correctly infer
the underlying learning rates. We assess this question by looking
at the social learning model without random effects. The inferred
(median) asocial learning and social transmission rates compared
to the true rates are given in Figure 2.

The performance of inferring the correct value of the random
effects was substantially lower, although in most cases this
method correctly inferred the relative ordering of the random
effect values (i.e., which bird learned faster) butmis-estimated the
absolute value of the random effect values. The technique’s ability
to recover the ordering (expressed by the within-experiment
correlation between the inferred values and the true values) is
fairly good, with over 85% of the time the Spearman correlation
coefficient was higher than 0.9.

These findings suggest that researchers are safe in using
NBDA to infer population average rates of asocial learning,
and social transmission, and thus draw conclusions about the
overall importance of each (the primary goal of NBDA), if the
model is correctly specified (see below). However, we suggest that
researchers should not take estimates of individual variability in
asocial learning and social transmission too seriously, but are safe
to use the technique to obtain rankings of individual abilities in
these domains.

5.2. Individual-Level Effects
There has been recent interest in understanding which other
traits that an individual possesses might correlate with asocial
or social learning abilities (e.g., Boogert et al., 2006, 2008).
Individual-level effects allow us to include the influence of
these covariates in our model. We found that NBDA could
correctly interpret the presence of correlates for social, or asocial
information some of the time. We also found that the technique
could reliably estimate the true value of the covariate; and find
that for the individual-level asocial effects 94.7% of the time the
true value is within our 95% likely interval, and for the social
effects 95.3% of the time the true value is within our 95% likely
interval. We do find a high false negative rate in inferring the
presence of a covariate (see Figure 3; although this technique was
able to distinguish between models that included social learning
and those that did not).

These results may in part be due to the presence of covariates
that have only a weak impact on learning. In the simulations the
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FIGURE 1 | The number of simulations each model was inferred to have been the source of the given data out of 1000 total simulations. The data was

either generated from an (A) asocial model, (B) social model, (C) asocial model with random effects (RE), or (D) a social model with individual random effects (RE).

FIGURE 2 | Inferred model parameters compared to the true values of those parameters for the (A) asocial (λ) and (B) social (S) models. Perfect

parameter recovery would be indicated by a straight line.

FIGURE 3 | The number of simulations each model was inferred to have been the source of the given data out of 1000 total simulations. The data was

either generated from an (A) asocial model, (B) social model, (C) asocial model with individual level effects (IL), or (D) a social model with individual level effects (IL).

influence of the covariates varied between −1 and 1, meaning
that some of the time, they could have a very small influence
on social learning ability i.e., the parameter can be close to 0.
We explored how the impact size of the covariate determined
the likelihood of determining the correct model. We found
that if the parameter had a large impact, most of the time the

technique could recover its presence. However, if the parameter
had a small impact, the technique had a high false negative
rate.

Therefore, we advise that instead of just attempting to infer
whether an individual-level effect is present or absent, researchers
use the posterior distribution for a parameter to give credible
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intervals for how big or small the effect might be. Where these
intervals are sufficiently small, conclusions can be drawn about
the importance or lack of importance of that effect (Nakagawa
and Cuthill, 2007).

5.3. Inaccurate Social Networks
We examined how NBDA would perform when diffusions
followed a social network, and when researchers had incorrect
knowledge of the social network. In these simulations,
individuals had a baseline asocial and social learning rates,
and their learning followed a lesioned social network.

We found that even when social learning followed an
association network, the technique was able to determine the
influence of social learning (Figures 4B,C) and of asocial learning
(Figure 4A). The ability to distinguish between social and asocial
learning was not substantially reduced when no knowledge of
the network was known and it was assumed that transmission
followed a homogeneous network.

To examine how performance may change as a function
of network inaccuracy, we considered three alternative social
networks, which had inaccurate values for either 25, 50,
or 75% of the network connections. In all of these cases,
even though the actual social network was not known, the
technique was overwhelmingly able to interpret correctly that
social transmission was at work (see Figure 5). When the
network was accurate (25% inaccurate), the technique generally
inferred that the social transmission followed the measured
network. However, when the network was inaccurate (50 or
75% inaccurate), the technique inferred that social transmission
followed a homogeneous network.

These results suggest that in many cases, analysis of a
homogeneous network is warranted, but that if a homogeneous
network is preferred over a non-homogeneous network it
does not imply that social transmission was equal, but
may simply imply that the measured non-homogeneous
network was substantially different from the true network of
associations.

5.4. Distinguishing Alternative Models of
Social Learning
The last thing we tested was whether or not we could
distinguish between alternative models of social learning. In
these simulations, individuals had both individual and social-
level random effects and social information was transmitted
across a homogeneous network. We found that in general the
technique could correctly recover the true underlying model
at above-chance levels (except in the case of the Diminishing
Returns model, Figure 6C), and had very good performance
in determining whether or not a model was asocial, or social
(Figure 6).

The above findings make it clear that when the true social
transmission model is included in model selection, NBDA is
successful in ruling out a model of purely asocial learning.
However, it is more realistic that the model of social transmission
will be mis-specified in some way, i.e., at best our model with be
a good approximation of the social transmission process. In most
cases the linear model is assumed.

These results show that even if the underlying model was
not linear, the technique could still detect the influence of social
information, at least some of the time. The success rate was much

FIGURE 5 | The number of simulations either an asocial, social, or a

social model with a non-trivial social network, was inferred to have

been the source of the given data out of 1000 total simulations, varying

the percent of inaccurate network connections.

FIGURE 4 | The number of simulations each model was inferred to have been the source of the given data out of 1000 total simulations. The data was

either generated from different models of diffusion across a social network, either through an (A) asocial model, (B) social model (i.e., homogeneous network), (C)

social model with a non-trivial social network. Details of the social network structure can be found in Section 5.
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higher when the true model was closer to linear, than when it was
not. Furthermore, in such cases, the estimated learning parameter
was generally lower than the true value of the parameter. These
results suggest that if we suspect a linear model to be a poor
approximation, then we should still trust the inference that social
transmission is occurring. However, we should take estimates
of the strength of social transmission to be conservative and
understand that a negative result for social transmission may
indicate that our social transmissionmodel does not approximate
the underlying process very well.

To estimate whether considering a linear model alone
is sufficient for inferring the presence or absence of social
information, we re-analyzed these simulations considering only
the Asocial and Linear social learning models. Even if the
underlying model was not linear, the technique could still
detect the influence of social information, however the social
learning parameter was generally lower than the true value of
the parameter. Figure 6 gives the results when all four models

are considered. In contrast, Figure 7 gives the results when our
choice of models were restricted to an asocial and a linear social
model.

Performance was worse when the influence of social
information was smallest; particularly in the case of the threshold
model, which will be behaviorally similar to the asocial learning
model. In contrast, performance was best in the linear social
learning model, where the vast majority of the time, we was able
to correctly infer the correct underlying model.

6. GENERAL DISCUSSION

In this paper we have built on a growing literature using NBDA
to infer under what conditions social information underlies the
spread of novel behaviors. We present a unified framework
for NBDA in the context of Time to Acquisition Diffusion
Analysis (TADA). We analyzed the performance of NBDA in

FIGURE 6 | The number of simulations each model was inferred to have been the source of the given data out of 1000 total simulations. The data was

either generated from different models of social learning, either through an (A) asocial model, (B) linear social learning model, (C) diminishing returns social learning

model, or (D) a threshold social learning model. Details of each model are provided in Table 1.

FIGURE 7 | The number of simulations each model was inferred to have been the source of the given data out of 1000 total simulations. Only the asocial

model or the linear social learning model were considered. The data was either generated from either an (A) asocial model, (B) linear social learning model, (C)

diminishing returns social learning model, or (D) a threshold social learning model.
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this context on a series of simulated experiments and found
that NBDA was robust to inferring the presence of social
information in most contexts, could infer the influence of
random effects, and in at least some cases, can distinguish
between different patterns of social learning. We also find that
NBDA is robust to errors in measuring the social network
behaviors diffuse across, although in some cases if a network is
poorly estimated the technique will infer that behaviors diffused
across a homogeneous network. In this paper we solely analyzed
simulated data, for a case study for applying this methodology to
experimental data see Whalen et al., (under review), or Whalen
(2016).

These findings offer new insights into our ability to infer when
social transmission, as opposed to asocial learning, can account
for the spread of a novel behavior. However, these findings are
not without their own caveats. As part of our simulation study,
we found that although we could recover the correct parameter
values for population-wide effects, we often underestimated the
influence of random effects. Our performance in determining
the presence of external correlates for learning was better, but
only when the influence of these correlates was strong. We
also found that we had a high error rate in determining which
model of social learning was used to generate the data. Our
overall accuracy of determining if social learning was used was
high, but our accuracy in estimating how it was used was much
lower.

These findings lead us to suggest three new recommendations
for the use of NBDA. (1) When fitting models to data where
multiple diffusions are run on the same individuals, researchers
should fit models with random effects to account for repeated
observations on individuals, but expect the estimatedmagnitudes
of the random effects to differ from the true underlying values.
(2) Individual-level effects on learning are able to be inferred,
but researchers should rely on credible intervals as providing
the plausible magnitude of the effect, rather than using model
selection to infer its presence/absence. (3) Researchers should
focus on a single, likely model of social learning to detect the
presence of social information. Our results suggest the standard
NBDA model used thus far is robust to fairly major departures
from the assumptions of linearity, so we suggest this is used
in the absence of any reason to prefer a different model. If the
use of social information is well established for the task, more
detailed models of learning can be used, although a large amount

of data may be required to determine the underlying shape of the
model.

Unlike early versions of NBDA (Franz and Nunn, 2009;
Hoppitt et al., 2010), in this paper we present NBDA in the
context of a Bayesian methodology, which allows us easily to
include the influence of random effects. However, while most
previous studies using Bayesian NBDA have used Reversible
Jump Markov Chain Monte Carlo methods to perform model
selection (Boogert et al., 2014; Nightingale et al., 2014), we
suggest using an information criteria approach.While RJMCMC,
and other methods of approximating a posterior over models
are an alternative way of performing model selection, these
methods are computationally difficult to perform especially
when models have a large number of parameters, as occurs

when including individual-level random effects. The influence
of random effects is a driving factor for the development and
use of a Bayesian version of NBDA, since including random
effects allows us to model cases where the same individuals
take part in multiple diffusion, and reduces the impact of
random effects (particularly in asocial learning) as a confound
in inferring the presence of social information. Consequently,
we believe that using a WAIC-based approach provides an ideal
tradeoff between tractability in performing the analysis, and
the advantages conferred by inclusion of random effects. We
recommend using BayesianNBDAwithWAIC use for examining
future diffusion experiments, and believe it can give us insights
into how other animals learn, and how that might influence the
development of animal and human culture.
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Animals have evolved complex foraging strategies to obtain a nutritionally balanced

diet and associated fitness benefits. Recent research combining state-space models

of nutritional geometry with agent-based models (ABMs), show how nutrient targeted

foraging behavior can also influence animal social interactions, ultimately affecting

collective dynamics and group structures. Here we demonstrate how social network

analyses can be integrated into such a modeling framework and provide a practical

analytical tool to compare experimental results with theory. We illustrate our approach

by examining the case of nutritionally mediated dominance hierarchies. First we show

how nutritionally explicit ABMs that simulate the emergence of dominance hierarchies

can be used to generate social networks. Importantly the structural properties of our

simulated networks bear similarities to dominance networks of real animals (where

conflicts are not always directly related to nutrition). Finally, we demonstrate how metrics

from social network analyses can be used to predict the fitness of agents in these

simulated competitive environments. Our results highlight the potential importance of

nutritional mechanisms in shaping dominance interactions in a wide range of social and

ecological contexts. Nutrition likely influences social interactions in many species, and

yet a theoretical framework for exploring these effects is currently lacking. Combining

social network analyses with computational models from nutritional ecology may bridge

this divide, representing a pragmatic approach for generating theoretical predictions for

nutritional experiments.

Keywords: animal behavior, dominance hierarchy, geometric framework, nutrition, nutritional geometry, social

networks

INTRODUCTION

Animals, from insects to human, have evolved sophisticated foraging strategies, which allow them
to acquire nutrients in amounts and balances that maximize fitness (Simpson and Raubenheimer,
2012; Senior et al., 2015b). Over recent years, research in nutritional ecology has begun to
reveal how these individual strategies can influence the ways animals interact within groups
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and populations, with far reaching consequences for collective
dynamics and social structures (Simpson et al., 2006; Eggert et al.,
2008; Salomon et al., 2008; Dussutour and Simpson, 2009; Bazazi
et al., 2011; Lihoreau et al., 2015; Machovsky-Capuska et al.,
2015). A striking example is the mass migrations of swarming
crickets and locusts, where food depletion increases cannibalistic
interactions and triggers the onset of the coordinated migration
of tens of thousands of insects marching together in search of
protein and mineral salts (Simpson et al., 2006; Bazazi et al.,
2011).

Nutrient regulation strategies and their social consequences
can be studied within a single modeling framework, which
integrates state-space models used in nutritional geometry
studies and agent-based models (ABMs) used in collective
animal behavior studies (Lihoreau et al., 2014, 2015). In
nutritional geometry, individuals, foods and their interactions
are represented in a single nutritional space delimited by two
or more nutrients (see examples in Figures 1A,B; Simpson
and Raubenheimer, 1993, 2012; Simpson et al., 2015). The
challenge for an individual is to eat the available foods
so as to regulate its acquisition of nutrients and reach
a nutritional state (NS) that maximizes fitness, known as
the intake target (see examples in Figures 1A,B). Within a
group or a population, these individual decisions may be
complicated by social and competitive interactions, potentially
creating conflicts over nutrient acquisition among the different
foragers. Implementations of such nutritional geometry focused
ABMs, in which multiple individuals simultaneously attempt
to regulate their nutrient balance, illustrate how these simple
nutritional behaviors can critically affect a range of social
interactions and social structures across group types, species and
ecological contexts (Lihoreau et al., 2014, 2015; Senior et al.,
2015a).

Perhaps one of the best-documented examples of nutritionally
mediated social structures are dominance hierarchies, where
experimental studies point toward a direct role of diet in
determining individual dominance and subordinate statuses
(Baker et al., 1981; Whitten, 1983; McCarthy et al., 1992; Eggert
et al., 2008; Salomon et al., 2008; Stears et al., 2014; Wright
and Robbins, 2014). In social spiders (Stegodyphus sp.), for
instance, the largest females of the colony tend to monopolize
prey high in lipids through contest competition and thus become
breeders, whereas smaller individuals that are deprived of lipids
act as helpers (Rypstra, 1993; Whitehouse and Lubin, 1999;
Salomon et al., 2008). In these cooperatively breeding groups,
differential nutrition triggers significant skews in body size, with
reproduction limited to just one or two larger females (Rypstra,
1993; Ulbrich and Henschel, 1999;Whitehouse and Lubin, 2005).
Nutritional geometry focused ABMs, such as those outlined
above, succinctly capture how contest competition over limited
nutrients can lead to clear and stable dominance hierarchies
where fitness is highly skewed toward a few individuals (Lihoreau
et al., 2014; Senior et al., 2015a). In these models, access to
foods is limited and individuals must engage in contests to gain
a meal. The group is initially homogeneous, and early contests
for access to foods have stochastic outcomes. However, after a
few “contested meals,” small differences in the NS of individuals

can emerge purely by chance (Senior et al., 2015a). Given
the assumption that better nourished individuals outperform
more poorly nourished competitors in future contests, positive
feedback amplifies initial small differences in NS into a hierarchy
where a few individuals monopolize nutrients, thereby gaining
considerable fitness benefits. Similar mechanisms have been
observed in animal dominance hierarchies arising from various
types of non-nutritionally related conflicts, and are called
“winner effects” (Dugatkin, 1997; Franz et al., 2015; Kura et al.,
2015).

So far these models have explored the effects of the nutritional
environment on individual fitness (as measured by their NS)
and its variance within groups or populations. Less studied
however, but of fundamental importance, is the behavior of
individuals, the dynamics of their interactions and the associated
consequences for social structures. Social network analyses,
which are increasingly used in behavioral studies to characterize
pairwise interactions between all members of a group or
population (Krause et al., 2007; Croft et al., 2008; Sih et al.,
2009; Sueur et al., 2011; Pinter-Wollman et al., 2013), constitute
a well-developed analytical framework with which to explore
the role of nutrition in mediating social interactions and their
evolution. This approach is particularly powerful when it comes
to characterizing complex dominance relationships in animal
groups (e.g., identifying dominant individuals and how they
interact with other group members based on traits such as
kinship, age, sex or previous experience), and understanding the
processes that underlie the network structures and dynamics
(Croft et al., 2008; Shizuka and McDonald, 2012; Nandi et al.,
2014).

Here we argue that social network analyses can bring
fundamental new insights into research on nutritional behavior,
and the consequences of these behaviors for group dynamics.
We demonstrate this concept using the well-known example of
nutritionally mediated dominance hierarchies.We first show that
the networks generated by simple nutritional models simulating
the emergence of dominance bear striking structural similarities
to those networks of dominance hierarchies observed in animal
groups across contexts (i.e., conflicts not necessarily related to
food access). We then go on to show that metrics from social
network analyses predict the future fitness of agents in these
simulated competitive environments. Our analyses demonstrate
how network analysis of data from these nutritional models
can be used to form new empirically testable predictions for
studies on social groups, bridging the gap between theoretical and
experimental data.

METHODS

Agent Based Model
An overview of our ABM’s process is given in Figure 1C. The
basal model has been previously defined in Lihoreau et al.
(2014) and a detailed description (as recommended for ABMs;
Grimm et al., 2006, 2010) is available in Senior et al. (2015a).
The complete code, written in NetLogo version 5.1.0 (Wilensky,
1999), is available in the Supplementary File S2.
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FIGURE 1 | (A) Nutritional geometry used to model the nutrient space available for two nutrients; e.g., the macronutrients protein and carbohydrate may be

represented on the x- and y- axis respectively. Foods are represented by food rails, which project through the nutrient space with a slope denoting the nutrient content

for the two foods modeled. In this example the environment contains three foods. Food A is high in nutrient X relative to nutrient Y (ratio = 16:1), food B is balanced for

the two nutrients and food C is low in nutrient X relative to Y (ratio = 1:16). The optimal nutritional state for an individual is represented by the Intake Target (IT), which

is shown as a red crosshair. (B) An individual’s position in the nutrient space is its (x, y) coordinate, which moves as the individual eats. Here we show how two

different individuals move as they eat two meals. Individual 1 (black) first eats food C then food A. With respect to the IT, these two foods are nutritionally

complementary and as such the individual can get close to the IT. In contrast, individual 2 (red) has first eaten food A, then food B. These two foods are not

complementary, and as such the individual cannot reach the IT. Given that the IT is the optimal nutritional state, individual 2 would have a lower fitness that individual 1.

(C) An overview of the sequence of events in the agent-based model. Individuals are processed in a random sequence. Complete code is available in Supplementary

File S2. A full model description is given by Senior et al. (2015a).

The ABM incorporates principles of nutritional geometry
as described in Figures 1A,B. For simplicity we consider an
environment containing just two nutrients (nutrients X and Y)
in a Cartesian (x, y) coordinate system termed the “nutrient
space.” Foods are represented as radials at angles determined by
the balance of the nutrients they contain. An individual’s (x, y)
position in the nutrient space is their NS, which moves as they
eat the foods that are available. At any one time only a single
food can be eaten, thus individuals move their NS in parallel to
the food rail that constitutes the food consumed. A single (x, y)
coordinate, the IT, represents the point in the nutrient space that
is an individual’s optimal state. As such, when an individual’s NS
reaches the IT, fitness is maximized. Here we assume that fitness
declines as the Euclidean distance between the NS and the IT
increases (see Equation 6 in Senior et al., 2015a).

All individuals are initiated with the same NS (0, 0), and
are given a fixed number of iterations, or “meals,” to reach the
IT. Each food has a different nutritional composition, and these
foodsmay be eaten in a number of combinations in order to reach
the IT (Figures 1A,B). On each iteration, individuals attempt to
eat one of the foods in the environment. However, each food
has an upper limit and can thus only support a limited number
of foragers. If individuals select a food that is already at this
limit, they must first displace a randomly selected competitor
via a dominance interaction. We began by exploring scenarios
where the capacity of foods to support individuals, and thus
the intensity of contest competition, was varied (manipulated
via the “competition intensity” parameter c). Although we later

focus solely on analyses of networks generated in scenarios
where competition is intense (discussed further below). All data
presented in themain text come from an environment containing
three different foods (equivalent to that in Figure 1A). In a
previous analysis of this model such a three-food environment,
composed of one balanced food (i.e., individuals can reach
their IT by eating only this food) and two imbalanced but
complementary foods (i.e., individuals can reach their IT by
mixing their intake of the two foods), produced results indicative
of a wide range of environments (i.e., containing combinations of
foods with different levels of nutritional complementarity; Senior
et al., 2015a). Additional explorations of the model with only two
imbalanced foods (equivalent to that in Figure 1A but without
food B) yielded qualitatively identical results. These analyses are
presented in the Supplementary Materials (Figures S1–S3).

In the model, the probability of an individual defeating
another in a contest is a function of the NS of the two, as given by
Equation (1):

Qij =
1

1+ e−η(Fi−Fj)
= 1− Qji, (1)

where Qij is the probability of the ith individual defeating the
jth, e is the natural exponent, Fi and Fj is the fitness of the two
individuals, and η is a constant that scales how the difference in
fitness between the two individuals governs the outcome of the
contest (here fixed at 25; see Senior et al., 2015a). Accordingly,
an individual with a NS closer to the IT is more likely to defeat a
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competitor with a NS further away. Contests between individuals
with NSs close to one another have highly stochastic outcomes
(this model of contest competition is based on that published by
Bonabeau et al., 1996).

In previous studies involving nutritional geometry focused
ABMs, the outcomes of individual interactions, have been largely
overlooked. Rather, the analyses focused on the fitness and NSs
of individuals after thousands of interactions, and in turn the
effects that these interactions have on the evolution of nutritional
strategies (e.g., Senior et al., 2015a). We here modified the model
to record the outcomes of each specific individual contest at a
number of different time steps with the aim of characterizing the
dynamics of network growth and structure.

Network Analyses
For each simulation of the model, we constructed a time series of
(after 1, 3, 5, 7, 10, 15, and 20 meals) “contest matrices.” In these
matrices each row and column represents an individual, and the
cells in a specific row give the total number of contests that a
specific individual (given by that row) won against each other
group member (in each column). Contest matrices were used to
build a time series of weighted and directional networks (one for
each time point), where each node represents an individual and
edges represent contests between two individuals. The size of the
node represents the current fitness of the individual relative to
the rest of the group. The directionality of the edge denotes the
outcome of the contest (arrow points toward the loser), and the
weight gives the total count of contests between those individuals
at that time point (i.e., previous contests are not “forgotten”). We
began by using simple network visualization techniques for small,
easily visualizable, social groups of seven individuals. Network
graphs were implemented with the “plot.igraph” function in the
igraph package (Csardi and Nepusz, 2006) for R version 3.2.1
(R Development Core Team, 2015), to demonstrate how the
network and individual fitness (a function of NS), co-vary over
time in different nutritional environments.

In studies of animal dominance, deconstructive approaches
where networks are separated into their constitutive triads,
or “motifs,” are increasingly popular tools for understanding
social network structure (Shizuka and McDonald, 2012; Pinter-
Wollman et al., 2013). We used this approach to compare
the structures of dominance networks generated via nutritional
mechanisms in our model with the typical structure of published
animal dominance networks (based on the comparative results
of McDonald and Shizuka, 2013). We ran replicates of the model
assuming an environment where foods had a very low capacity
to support individuals (i.e., where competition was intense and
contests over foods frequent), and also using largermore complex
social groups of 20 individuals (a group size more comparable
to that of most published animal networks; McDonald and
Shizuka, 2013). In these later analyses we focus solely on a food-
limited environment, where competition intensity is high (c =

0.8). We restrict our analyses to these environments because,
where foods are more abundant and competition intensity is
weaker, between-agent variance in fitness is low, and strong
dominance hierarchies/meaningful social structures do not arise
(see Lihoreau et al., 2014).

The “contest matrices” produced by these models were
converted to binary “outcome matrices,” where for any given pair
of individuals the dominant is that which won the majority of
contests. We also allowed for draws, or “mutual” relationships
(i.e., instances where individuals won equal number of contests
against one another, which were also coded as 1). Triads can
take one of 16 different configurations, ranging from null triads
(no interactions) to completely reciprocal relations between all
three nodes, and we refer to these triads according to the Mutual
Asymmetric Null (MAN) system (Holland and Leinhardt, 1970,
1976). We used the “triad.census” function in the R package
statnet (Handcock et al., 2008, 2015) to get counts of each type
of triad in each network. We also simulated 1000 equivalent
random matrices (using the “rguman” function in statnet), to
estimate the difference in occurrence of each triad type between
our ABM-derived networks and random networks with the same
number of nodes, edges and null dyads (similar to the method
of McDonald and Shizuka, 2013, although they did not include
draws). Whilst it is clear that differences between our networks
and random networks are to be expected (e.g., we know that
nutritionally derived networks are based on winner effects),
we were primarily interested to see whether our simulated
networks differ from random expectations in similar ways to
published animal dominance networks. We also calculated the
triangle transitivity (ttri) of networks, a statistic that denotes the
“orderliness” of the group where 0 indicates a completely non-
linear group (equivalent to a random network) and 1 a perfectly
ordered linear hierarchy (McDonald and Shizuka, 2013). We
calculated ttri following the method described in Appendix 2 of
Shizuka and McDonald (2012).

Finally, we assessed whether individual network statistics
applied to dominance networks can be used to predict the
final fitness of individuals in a social group (again using 20
individuals). To do this, we generated a weighted directional
network at a number of time points as above (based on
contest matrices and again where competition was intense). We
calculated the (normalized) closeness of each individual (node)
within the network at a given time with the “closeness_w”
function in the R package tnet (Opsahl, 2009). In weighted
directed networks such as which we generated, the closeness of
a node is a function of: (1) the direction between two nodes
(implying that the shortest path between nodes i and j is not
necessarily equal to the shortest path between nodes j and i), (2)
the number of edges a node has, and (3) the weight of those edges
(Opsahl et al., 2010). The tradeoff between the influence that
these last two characteristics have on closeness is governed by the
tuning parameter α (Opsahl et al., 2010). Where α is zero, only
the number of edges influence node closeness; where α is between
0 and 1 both the weight and the number of edges positively
influence closeness; where α = 1 closeness depends solely on
the sum of the weight of edge weights; and where α > 1 higher
weights positively influence closeness and increasing numbers
of edges reduce closeness (Opsahl et al., 2010). We explored
closeness calculated via a number of different α-values (0, 0.5, 1,
1.5, and 2) and their biological interpretation is discussed further
in the results. We then compared individual closeness to other
predictors of final fitness, using linear regression implemented
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with the “lm” function in the base package in R. In these models
the response was the fitness of the individual after 20 meals logit
transformed for model fitting (fitness is bound at 0 and 1 in
our models; Warton and Hui, 2010), and back-transformed for
plotting.

RESULTS

Figure 2 shows examples of the development of three dominance
networks over time in different three-food environments (i.e.,
identical to Figure 1A) where foods are either abundant,
moderately available or scarce. The same analyses for two-
food environments (i.e., foods A and C in Figure 1A) yielded
qualitatively similar results (Figures S1–S3).

Where foods are more abundant, there are relatively few
contests to gain access to foods. As a consequence the network
is poorly connected even after 20 meals (Figure 2A). However, as
food availability decreases, individuals must engage in contests
to gain food access and networks become more connected
(Figures 2B,C). A direct consequence of this is the increase of
variance in the relative fitness of individuals within the group
(variance in the size of the nodes in the network; Figures 2B,C).
In the three environments all group members initially have
the same fitness, but where food is less available variance
in fitness gradually emerges and increases as contests and

meals accumulate. For instance, in the low food environment,
individual 4 has already lost multiple contests after only 10 meals
(Figure 2C). After 20 simulated meals, this individual has lost
a large number of contests, has the lowest fitness and a clear
fitness skew has emerged. In this environment, individual 6 is
the fittest, and the difference between individuals 4 and 6 is large
(individual 4 is only 26.67% as fit as individual 6; Figure 2C). In
contrast, where foods are relatively abundant, and networks are
less connected (i.e., fewer contests), the difference between the
fittest and least fit individuals in the group is less pronounced (the
least fit individual is only 50.77% as fit as the fittest; Figure 2A).

There are 16 possible configurations of triads in networks
that are both directional and contain mutual ties (Figure 3).
In our simulated dominance networks in competition-intense
environments (c = 0.8), the most frequent types of triads were
012, 030T, 021U, 021D, and 021C (Table 1, see also Figure 3

for visualizations of these triad types). However, these results
are most informative when compared to “null expectations”
derived from random networks. Figure 3 displays the difference
between the triad census (% of each type of triad) of ABM
derived networks and random networks. There were on average
4.52 more 021U (i.e., the difference in the % of 021U triads
in ABM networks and random networks was 4.52), 3.34 more
021D, and 3.01 more 030T triads than would be expected
purely by chance. In addition, there were on average 7.47 less

FIGURE 2 | Examples of the development of three different dominance networks in three different nutritional environments containing three foods

(identical to Figure 1A) at (A) high, (B) moderate, and (C) low food availability after 1, 3, 5, 10, 15, and 20 meals, in groups of 7 individuals. Each network

is directional and weighted. Each node represents 1 of 7 individuals, and the plotted position of each individual remains constant across meals in each environment

(individual identities are given for meal 1). Edges represent contests, with the direction of the edge denoting the victor of the contest and the loser (recipient). Edges

are weighted by the number of contests. The size of each node represents individual fitness relative to the rest of the group (larger nodes denote fitter individuals, that

have nutritional state closer to the IT). The degree of food availability equates to a “competition intensity” (c) of 0.4, 0.6, and 0.8, as described in Senior et al. (2015a).

The script is available in Supplementary File S2.
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FIGURE 3 | Differences in the representation (%) of triad types between networks generated from the agent-based model and random networks with

similar properties (same number of nodes, edges and null dyads) in a three-food environment (identical to Figure 1A). We created 10 different networks

for groups of 20 individuals using our model, with a high level of “competition intensity” (c = 0.8) and after 20 meals. For each network we calculated the difference

between itself and 1000 randomly generated networks, and took the mean of these 1000 differences. These results give the mean of the 10 sets of mean differences

(black dots) and the 0.025–0.975 quantiles of these 10 (black bars). Triads are labeled according to the MAN labeling system (Holland and Leinhardt, 1970, 1976).

021C (even though among the most common type of triads
in our simulated networks; Table 1) and 3.20 less 030C triads
in the simulated dominance networks than would be expected
in a random network (Figure 3; note that 0.95 quantiles for
these differences exclude 0). The mean ttri of these networks
was 0.77.

To assess whether network metrics could be used to estimate
an individual’s performance and hierarchical rank, we examined
howwell closeness centrality after 5, 7, 10, and 15meals predicted
future fitness after 20 meals in environments where competition
was intense, and between-individual variance in fitness high. We
first explored how the tuning parameter α influenced the power
of closeness to predict future fitness. At most time points (meals),
linear models fitting closeness with α > 0 had higher R2 than
those with α = 0 (Table 2). In addition, at early time points α-
values of 0.5, 1, and 1.5 tended to have better fit than α = 2.
These findings indicate that both the number of conspecifics an
individual has defeated in contests (i.e., number of edges), and
the number of times it does so (i.e., weight of edges) influence
future fitness (as opposed to only one of these factors being
of relevance). For instance a strategy whereby an individual
dominates one or two conspecifics a large number of times (large
α) early on in the simulation, may not be better than dominating
all other conspecifics in a similar number of contests (α ∼ 1).

Within our ABM, mechanisms of winner effects based on
current NS (fitness) operate. Thus, in theory the best predictor
of final position in the dominance hierarchy at any given
time point should be current fitness. Accordingly, closeness
(calculated with any α-value) did not appear to be as good
a predictor of future fitness as current fitness (i.e., R2 for
models fitting closeness were consistently lower than those fitting
current fitness; Table 2). However, closeness values did correlate
strongly with future fitness (Table 2 and Figure 4). Importantly,
at earlier time points, between-individual variance in closeness
was much greater than between-individual variance in current
fitness (Figures 4A–C). Thus, closeness is a valuable predictor of

future fitness in experimental studies on nutritionally mediated
dominance hierarchies, as it is easy to quantify from behavioral
data and less sensitive to measurement inaccuracies that NS.

DISCUSSION

We combined social network analyses with ABMs of nutritional
geometry to generate new insights into the role that nutrition
can play in the formation of dominance hierarchies in animal
groups. We found that network graphs based on contest matrices
constitute succinct tools for characterizing the emergence of
dominance hierarchies and for comparing those hierarchies
across simulated nutritional environments and through time. As
a well-established and widely implemented analytic framework
(Krause et al., 2007; Croft et al., 2008; Sih et al., 2009; Sueur et al.,
2011; Pinter-Wollman et al., 2013), social network analysis thus
represents a promising tool for investigating the role of nutrition
in mediating social interactions in animal groups.

One of the main advantages of nutritional geometry focused
ABMs is that their predictions can also be tested using established
experimental protocols from the same framework (Simpson
and Raubenheimer, 1993, 2012; Simpson et al., 2015). For
instance, our models predict a relationship between current
and future NS of individual animals, and consequently their
future position in a dominance hierarchy as well as their fitness
relative to the rest of group (Lihoreau et al., 2014). A specific
difficulty of evaluating such predictions is the logistical problem
of quantifying NS/fitness in social groups that are relatively
“young” (recently formed groups where few social interactions
have occurred). Specifically, between-individual variance in
fitness will likely be low at early stages (Figures 2, 4), making
accurate quantifications of the relative state of individuals
difficult. In addition, without manipulative or lethal approaches,
quantifying between-individual differences in NS is hard. Here,
we have shown that simple measures of network centrality,
such as closeness, can be used as good predictors of future
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TABLE 1 | Mean (and standard deviation, SD) counts of each type of triad based on the triad censuses of 10 networks generated by our agent-based

model with a high level of “competition intensity” (c = 0.8) and after 20 meals.

Triad Type

003 012 102 021D 021U 021C 111D 111U 030T 030C 201 120D 120U 120C 210 300

Mean 78.70 331.4 22.90 145.6 159.0 129.8 29.50 22.40 176.5 10.80 1.800 12.40 8.900 8.800 1.400 0.100

SD 15.35 14.93 11.05 18.87 23.39 17.13 10.05 6.950 27.18 5.490 1.320 6.700 5.320 4.370 1.430 0.320

The 16 possible triad types are labeled according to the MAN system (Holland and Leinhardt, 1970, 1976), and visualizations of each type are given in Figure 3.

TABLE 2 | R2 from linear models estimating fitness after 20 meals (logit

transformed) as a function of closeness and fitness at 5, 7, 10, and 15

meals when there is a high level of “competition intensity” (c = 0.8).

Meals Closeness Current fitness

α = 0 α = 0.5 α = 1 α = 1.5 α = 2

5 0.281 0.297 0.311 0.319 0.314 0.631

7 0.421 0.433 0.437 0.429 0.404 0.837

10 0.528 0.537 0.536 0.516 0.473 0.884

15 0.590 0.629 0.666 0.693 0.710 0.971

Closeness was calculated using α of 0, 0.5, 1, 1.5, and 2 (see main text), and we see how

these values affect the power of closeness to predict final fitness. Higher R2 is indicative

of better model fit.

fitness. These global network metrics, among others, are easier
to experimentally quantify than NS or fitness, and can be
calculated based on behavioral data gleaned from simple group
observations. A side note is that integrating weights in to
analyses of the dominance networks that we generate here is
of some importance, having consequences for the biological
interpretation of the formation of a dominance hierarchy.
However, accurately assessing the importance to ascribe to
weights in calculations of closeness (i.e., which α-values is most
appropriate) requires a detailed and systematic examination of
the parameter space.

Local metrics are also very informative. Motif analyses
revealed significant excesses of certain triads within the
dominance networks generated by our model relative to random
networks. Specifically, we found that triads with transitive
properties (i.e., that indicate orderliness, or a linear hierarchy)
were over-represented in our model. In contrast cyclical triads
(A dominates B, who dominates C, who dominates A), which
indicate the lack of a clear hierarchy were under-represented.
Comparative analyses, which collate data from many different
forms of social conflict (i.e., the proximate cause of conflicts
was variable) and across taxa, have revealed similar excesses
and deficits of these same transitive triads in real world animal
dominance networks (McDonald and Shizuka, 2013; Shizuka and
McDonald, 2015). In addition, previous analyses of dominance
networks in animals have shown an excess of “double dominant”
(021D) and a lack of “pass along” (021C) triads to be common
in the early stages of hierarchy formation (Chase and Rohwer,
1987; Shizuka and McDonald, 2015). We repeated our analyses
after only seven (out of a possible 20) simulated meals and found
similar properties among these early networks (Figure S4).

The estimated transitivity of networks generated by our model
was high (ttri = 0.77), although lower than previous comparative
studies of empirically determined animal hierarchies (0.88;
McDonald and Shizuka, 2013). One possible explanation is the
frequency of mutual ties in our networks (i.e., A and B dominate
each other an equal number of times), which are known to be
rare in animal networks, and have been excluded in calculations
of transitivity in previous analyses (McDonald and Shizuka,
2013; Shizuka and McDonald, 2015). We can identify two non-
mutually exclusive explanations for the abundance of mutual
ties in our networks. Firstly, if previously published studies are
based on hierarchies that were well established at the time of
observation, they may overlook very early interactions between
individuals, which can have stochastic outcomes as the hierarchy
has a poor linear formation. Secondly, in our model individuals
pick competitors at random, and individuals do not identify
another’s state, or their contest history with other conspecifics
(i.e., bystander effects; Dugatkin, 2001). Future inclusions of
mechanisms of social recognition in our models, such as
status or individual recognition (Barnard and Burk, 1979), may
lead to fewer mutual ties and an increased overall triangle
transitivity.

Because our approach is grounded into nutritional ecology,
it is perhaps one of a handful of methods with which it
is possible to generate theoretical networks based on an
explicit biological mechanism (i.e., interactions governed by NS).
Previously, random networks with desired structural properties
have been generated using tools based on graph theory, where
the underlying algorithm for generating the network is entirely
dependent on the final desired properties thereof. Perhaps the
most popular mechanism of non-random network generation in
biology remains the preferential attachments model, where nodes
are more likely to generate edges with “more popular” nodes (i.e.,
those with themost edges; Barabási and Albert, 1999; Akbaş et al.,
2015; Carletti et al., 2015; Zuev et al., 2015). Whilst preferential
attachment models seem realistic for interactions involving
communication and/or cooperative behavior, they seem less
applicable to animal interactions related to nutrition (e.g.,
predation, food webs, or contests over food access). In contrast
to the standing paradigm, using our models it is possible to
generate networks from the bottom up, starting with an explicit
(and fully testable) nutritional mechanism, which then gives
rise to individual interactions and subsequent emergent network
structures (apparently similar to those properties observed in
animal groups). To our knowledge, this is the first time such an
approach has been documented.
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FIGURE 4 | Fitness of individuals within a simulation after 20 meals, as a function of current fitness (black) and network closeness (red), after (A) 5

meals, (B) 7 meals, (C) 10 meals, and (D) 15 meals for groups of 20 individuals in a three-food environment (identical to Figure 1A). The networks are

based on an environment with a high level of “competition intensity” (c = 0.8). Curves are linear model estimates of fitness after 20 meals, as predicted by current

closeness or fitness. Note that fitness after 20 meals was logit transformed for model fitting as fitness is bound at 0 and 1, before being back-transformed for plotting.

Closeness values presented were calculated using α = 1 (see Opsahl et al., 2010).

Social network approaches have become increasingly popular
in behavioral and ecological research, enabling extensive analyses
of simultaneous interactions among multiple individuals and
across long periods of time (Krause et al., 2007; Croft et al.,
2008; Sih et al., 2009; Sueur et al., 2011; Pinter-Wollman et al.,
2013). Our study now illustrates how this approach can benefit
research on nutritional behavior, ultimately helping to elucidate
complex interactions between the environment, the nutritional
strategies of individual animals and the consequences thereof
for social interactions and collective phenomena. Beyond the
example of nutritionally mediated dominance hierarchies, the
broader integration of social network analyses into nutrition
research has potential for investigating the nutritional ecology
of species exhibiting a great diversity of social forms, from
temporary aggregations of feeding animals to permanent and
fully eusocial colonies of cooperatively foraging nestmates
(Krause and Ruxton, 2002). These interactions may include
several types of nutrient driven social networks, including social
and competitive interactions among foragers (as in this study),
transfer of social information about food resources, and exchange
of foods (or specific nutrients) or microorganisms (symbionts
or pathogens) between individuals. Predominantly, behavioral
research utilizing network analyses has focused on descriptive
approaches that identify the structure of animal interactions.

However, recent developments show that network approaches
can be exploited to study the temporal dynamics and the function
of interaction patterns (Pinter-Wollman et al., 2013). Thus,
network approaches may be used to study both the causes of
complex nutritional strategies (i.e., modeling social interactions
that influence the nutritional behavior of individuals; e.g., Senior
et al., 2015a) and their associated consequences (as in this study).
Here, we have dealt with networks and social structures that
arise from entirely homogenous groups, but this need not be
the case and the ABM may be initialized with a heterogeneous
group. For example, each individual may express one of several
different nutritional strategies (e.g., young and adults, males and
females, producers and scroungers, healthy or diseased animals,
or individuals with differing gut microbiota; Flint et al., 2015),
allowing one to explore the role that such traits play in governing
the emergence of complex social structures. Importantly, our
geometric approach identifies explicit nutritional mechanisms,
raising the possibility of generating system-specific, empirically
testable, predictions about network formation in different
nutritional environments and animal groups. Ultimately, a
more detailed assessment of the nutritional basis of social
behavior, as afforded by social network analyses, will inform
our understanding of how nutrition can drive the diversity of
social forms observed in nature, a major challenge for future
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research in nutritional and behavioral ecology (Lihoreau et al.,
2015).
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Humans live in societies full of rich and complex relationships that influence health. The

ability to improve human health requires a detailed understanding of the complex interplay

of biological systems that contribute to disease processes, including the mechanisms

underlying the influence of social contexts on these biological systems. A longitudinal

computational systems science approach provides methods uniquely suited to elucidate

the mechanisms by which social systems influence health and well-being by investigating

how they modulate the interplay among biological systems across the lifespan. In

the present report, we argue that nonhuman primate social systems are sufficiently

complex to serve as model systems allowing for the development and refinement of both

analytical and theoretical frameworks linking social life to health. Ultimately, developing

systems science frameworks in nonhuman primate models will speed discovery of the

mechanisms that subserve the relationship between social life and human health.

Keywords: translational, nonhuman primates, health status, well-being, social network analysis

INTRODUCTION

No human exists in a social vacuum-rather, we live in societies full of rich, complex relationships
that influence both our physical and mental health. The ability to treat and prevent illness and
improve human health requires not only a detailed understanding of the complex interplay
of biological systems contributing to disease processes but also how social contexts influence
such biological systems. Approaches that empirically recognize the inherent complexity of the
effects of social life on health are critical and must be applied across the lifespan. Health
is an emergent phenomena which arises from the interplay between complex systems that
are themselves influenced by a myriad of factors. These factors are specific to the individual
(e.g., personality or temperament, genetic predispositions, ancestry) and/or specific to the
environment (e.g., different types of environmental variables; social stressors). A longitudinal
systems science approach provides methods uniquely suited to elucidate the mechanisms by
which social systems influence health by investigating the effect of social systems on the
interplay between biological systems (e.g., immune system, neuroendocrine system) across
the life span. Here, we describe one possible systems science approach as applied to rhesus
macaques (Macaca mulatta), a nonhuman primate species sharing close evolutionary history
and behavioral biology with humans. We argue that despite the promise of new systems science
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approaches, many of those approaches have been developed
without social and biological data in mind, necessitating
their refinement in the context of complex biological and
social systems—rather than, for example, a complex physical
system or simulated system on which many new approaches
are developed. Nonhuman primate model systems, such as
those of rhesus macaques, are sufficiently complex to allow
modeling of both biological and social systems while being
tractable enough to collect nuanced and detailed data that
is ultimately required for the refinement of systems science
approaches.

THE RELATIONSHIP BETWEEN SOCIAL
ENVIRONMENT AND HEALTH

Social life and its interaction with factors related to the individual
influence physical and mental well-being in both humans and
nonhuman primates (Walker et al., 1999; Vandeleest et al.,
2013). However, the multi-scale dynamic nature of the effect
of social relationships on health remains poorly understood.
One reason for this is that extant studies have computational
obstacles that limit study designs to either specific individual
attributes (e.g., gender, age) or specific physiological system
dynamics [e.g., hypothalamic-pituitary-adrenal (HPA) axis or
immune system] in isolation. That is, simply because of
limitations in experimental design and data analysis, we have
yet to be able to effectively model the extraordinarily complex
dynamic nature of the social environment in concert with
a full picture of what it means for an individual to “be
healthy.”

Decades of research have documented the effect of social
context on physical andmental health in humans and nonhuman
primates. In humans, characteristics of the social environment
such as socioeconomic status influence diverse health outcomes
ranging from cardiovascular disease (e.g., Winkleby et al., 1992)
to mood disorders such as depression (e.g., Gilman et al.,
2002) to mortality (e.g., Blaxter, 1987). For example, long-
term studies of British civil service workers have provided
decades of data demonstrating that social status has an
important impact on a wide variety of outcomes such as
cardiac (e.g., angina, ischaemia) and respiratory (e.g., bronchitis)
health (Marmot et al., 1991; Singh-Manoux et al., 2003)—
the lower a person’s status the greater prevalence of disease.
Low social status is associated with unpredictability of income,
housing, healthcare access, as well as low control over working
conditions, all features that contribute to chronic stress and
illness (Weissman et al., 1991; Väänänen et al., 2008; Kim et al.,
2012). Similarly, as discussed below, research from our group
(and others) demonstrates that nonhuman primate’s absolute
social rank (akin to human class) and the certainty of that social
rank (akin to predictably/unpredictably) are both key factors
influencing individual-level health outcomes (Vandeleest et al.,
in revision).

The number and quality of specific social relationships are an
additional aspect of social life which influence health has and
these have been investigated both in humans and nonhuman

primates. In humans, deleterious social relationships, such as
those that occur in the context of abuse, have similar negative
outcomes on physical health and mental health (for a review
see: Springer et al., 2003)—the experience of abuse greatly
increases the prevalence and progression of disease. The quality
of social relationships also plays a role in shaping health
outcomes across the lifespan. Patterns of these effects have
largely been elucidated in nonhuman animals. At one extreme,
nonhuman primates raised in social isolation develop behavioral
pathologies characterized by an inability to regulate emotion-
related behavior and experience (e.g., Harlow et al., 1965;Mitchell
et al., 1966). The pathology resulting from limited social contact
is so extreme that one interpretation is that it induces clinical
depression (Harlow and Suomi, 1974). In addition, natural or
experimentally induced variation in the quality of maternal
care impacts neuroendocrine, immune, and neurotransmitter
system activity, and these differences are detected into adulthood
(Coplan et al., 1996; Levine and Mody, 2003; Vandeleest et al.,
2013). Similarly, social stress as related to dominance rank
in nonhuman primates is related to a variety of physiological
outcomes including reduced synaptic plasticity and dendritic
atrophy, immunosuppression, reduced gonadal hormones, and
pathogenic cholesterol profiles and hypertension (for a review
see: Sapolsky, 2005). Finally, social instability (i.e., new social
group formation or frequently rotating small group membership
alters neuroendocrine function and sympathetic innervation of
lymphoid tissue, and reduces survival after infection with a HIV-
like virus; Mendoza et al., 2001; Sloan et al., 2007; Cole et al.,
2009). In contrast to these negative effects is the growing evidence
that both humans and nonhuman primates that have many
social connections are buffered against stressful experiences
(Berkman, 1984), experience less loneliness (Cacioppo et al.,
2002), recover more fully from acute episodes of depression
(George et al., 1989; Corrigan and Phelan, 2004), experience
less disease (Seeman, 1996) and live longer (Steptoe et al.,
2013).

Studies of nonhuman primates demonstrate that individual-
level factors (e.g., personality, genetic predispositions) moderate
the effects of social factors on health. For example, although
social instability has been associated with negative health
outcomes, the magnitude of impact depends on the personality
of the individual. Under experimentally-induced social instability
(rotating membership of small groups), rhesus macaques
rated to be less “sociable” in adjective-based personality
assessments had elevated plasma cortisol concentrations and
poorer immune responses to an HIV-like virus when compared
to animals that were more sociable (Capitanio et al., 1999,
2008). Similarly, a polymorphism in serotonin transporter gene
promoter region (5-HTTLPR) has been shown to moderate
the effects of impactful momentary social experiences. Peer-
reared infant rhesus macaques with a short allele of 5-
HTTLPR showed higher adrenocorticotropic hormone level in
response to separation compared to those who were mother-
reared or those with long alleles of 5-HTTLPR (Barr et al.,
2004). Individuals carrying the short alleles of 5-HTTLPR had
greater depressive symptoms when experienced greater early
or recent adversities, but fewer depressive symptoms when
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adversities were absent or experienced supportive environments
(Taylor et al., 2006). Together these examples highlight the
need for complex dynamic modeling techniques that allow
for the simultaneous modeling of complex social systems and
their interaction with individual characteristics (e.g., personality
or genotype) to fully understand their impact on health
outcomes.

The mechanisms by which the effects of social life manifest
as predictors of individual health outcomes is not clear and
have been, to date, largely speculative (House et al., 1988;
Adler et al., 1994). One reason for this speculation, rather than
the specification of causal models, is that both human and
nonhuman primate research to-date has been largely limited
to small assortments of specific features of social processes
(e.g., number of social connections, the general social class
to which an individual belongs, the ordinal or cardinal rank
of the individual in the group, or the impact of specific
social relationships; Christakis and Fowler, 2007; Fowler and
Christakis, 2008; Lewis et al., 2012). Such approaches ignore
the multiscale and temporally dynamic structure of social life—
that is that individual relationships differ in number, quality and
type that are embedded within multiple broader social contexts
of family, social class, and community. Further, individuals
can belong to multiple groups that differentially overlap and
which may exert differential influence on the individual at
different times or in different contexts. Factors like these shape
an individual’s “social role” and are known to relate to both
physical and mental health (Phillips, 1981; Murrell et al., 1992;
Brissette et al., 2002; Litwin and Shiovitz-Exra, 2010) and yet are
incredibly challenging to model in humans. A solution to these
issues is to use a nonhuman primate model of human social-
life and health in concert with sophisticated novel statistical
approaches.

We believe that the solution to modeling the complexity
of social life as it impacts health is to adopt a quantitative
method that use a multi-scale, dynamic approach. Multi-scale
refers to integration of information about the individual, his or
her primary social relationships, larger social group, and society
in concert with the individual’s biological systems (which are also
multi-scale). Dynamic refers to the ability to quantify both slow
and rapid frequency changes in the variables of interest. Such an
approach to human health might seem only plausible through
the study of humans. However, a large and growing body of
evidence from nonhuman primates, and specifically the genus
Macaca, suggests that our primate cousins exhibit sufficient
complexity and variability in social dynamics and similar links
between social dynamics and health to be good models for
humans (Flack et al., 2005; Flack and de Waal, 2007; McCowan
et al., 2008, 2011; Kutsukake, 2009; Lehmann and Ross, 2011;
Beisner et al., 2011a,b, 2012; Daniels et al., 2012; Dobson, 2012;
Micheletta et al., 2013; Evers et al., 2014). Modeling the effects
of the social environment using a systems science approach on
a nonhuman primate model is not only increasingly feasible
but may be superior to less controlled human studies, with the
potential to uncover significant biomedical breakthroughs that
standard non-computational approaches lack in both scope and
depth.

NONHUMAN PRIMATES AS AN IDEAL
MODEL SYSTEM

New computational techniques (described below) represent
incredibly powerful tools that can be used to understand
the relationships between social and biological systems. These
tools require appropriate and robust network data and health
data from large samples. While human research provides one
potential avenue for such research, nonhuman primate research
provides a unique opportunity to obtain intensive social network
and health data across time. Complex study designs involving
multiple scales and dynamic relationships over the lifespan are
difficult to conduct on human populations for multiple reasons.
First, it is nearly impossible to collect multi-generational data
over the time course of a single study. Monkeys, however, have
substantially shorter lifespans and faster life histories—macaques
reach sexual maturity at∼4 years of age. Second, true population
modeling of social network dynamics in humans is difficult
because it is nearly impossible to define all participant nodes
in the network. For every person in the network, there are
thousands of others they do not know who may be able to
influence their behavior or health via indirect connections. In
contrast, every individual in the network is known and can be
observed in groups of captive nonhuman primates. Further, the
data used to generate networks are collected by direct observation
rather than self-report, which is subject to recall bias and error.

In addition to being able to face the challenges posed
by human research head on, nonhuman primate research
offers some additional benefits. These benefits are particularly
true of studies conducted with nonhuman primates living in
large outdoor social groups. The genetic, biobehavioral, and
social history of each macaque and social group can be fully
characterized. Communities are sufficiently large (yet readily
observable) to generate social heterogeneity at individual, family,
and community levels. Nonhuman primate communities can
be systematically perturbed (within ethical bounds) to elucidate
causal links between social relationships and health. Finally,
macaque communities are housed in controlled but complex
environments but vary with respect to individual attributes and
family and community structure across social groups.

Considering the environmental and social complexity is
critical when selecting a model system and organism for
human health. Most biomedical studies with nonhuman
primates involve either indoor singly or pair-housed subjects
or indoor/outdoor small-group housed subjects (Baker, 2007).
Yet, research into the importance of the social environment on
health requires greater environmental and social heterogeneity
that mirrors human experience. Studies of nonhuman primates
in large social groups offer just that possibility.

DEFINING THE NEW APPROACH AND ITS
VALUE

Recent computational and statistical developments allow for
the development of new tools to evaluate the multi-scale and
dynamic aspects of social life. Contemporary network science
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is one field that has expanded its toolkit dramatically in the
wake of these recent developments. Although network science is
most commonly understood in the context of social networks,
social network analysis is one component of a much broader
set of network science approaches that are all designed to reveal
emergent structure in any type of system. Network science
therefore has significant potential to provide an important set
of tools that allow us to move beyond simple associations
toward more predictive and causal models. The power of these
predictive models can then be harnessed to develop specific, even
“individualized,” interventions to promote human health, such
as those sought after in the current goal to achieve “precision
medicine.”

Developing predictive, causal models requires basic
information about how the spatial and mathematical relations
of networks relate to the content and quality of relationships
at the individual, family, and community levels. Further, it is
critical to understand how variation in these relationships at
different levels influences health and health-related outcomes
both in the short- and long-term. Network structure must also
be linked to the fundamental characteristics of the individuals
in the network and to the environmental and social contexts
in which individuals interact, and this is in both the past and
present. Utilizing such an approach will provide greater insight

into how and why basic behavioral and social processes influence
specific health outcomes as well as overall health and well-being
(see Figure 1).

INNOVATION IN METHODOLOGY:
COMPUTATIONAL NETWORK ANALYSIS

Over the past few years our group and other research groups
studying social networks have made significant strides toward
developing innovative techniques for analyzing complex network
structures that exhibit multiple spatial scales (e.g., individual,
family, community levels), multidimensional topology (e.g.,
complexly correlated networks of different types of behaviors
or relationships—such as friendship, Facebook and book club
networks), and longitudinal temporal dynamics (e.g., changes
to friendship networks over time; Berkman, 1984; George
et al., 1989; Seeman, 1996; Cacioppo et al., 2002; Corrigan
and Phelan, 2004; Capitanio et al., 2008; Steptoe et al., 2013).
These are bottom-up (data-driven)model-generating approaches
have been developed with biological and social data in mind
and have been tested on these types of data. Importantly,
these new techniques have few underlying assumptions and
seek to understand the underlying mechanisms producing

FIGURE 1 | Unifying conceptual framework for effects of individual characteristics and environmental/social stressors on network structure and

dynamics leading to positive or negative health outcomes at each life stage and across the lifespan. Arrows indicate possible direction(s) of effects

including reciprocal relationships.
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patterns in relationships. They are designed to examine the
hierarchical and dynamic architecture of networks, such as
connectivity and community structure, information flow through
networks, and joint relationships between networks. Two key
aspects of network structure need to be modeled to address
complexity in network structures: (1)multi-scale spatial structure
(e.g., differences in network structure at different scales) and
(2) multi-scale temporal dynamics (e.g., changes in network
structure across time). Additionally, networks differ in the
major characteristics and geometry that define them. Data
represented by a single (one-mode) network (e.g., friendship
network) and data represented by two or more networks
(two-mode or bipartite networks) juxtaposed to one another
(e.g., Facebook network and book club membership network
considered together) have different geometric structures. In each
geometric structure, networks can differ in the characteristics
that define them. Networks can be comprised of either presence
or absence of the relationship (e.g., Susan and Peter are
Sam’s Facebook friends, which is binary, or unweighted) or
weighted by the number of interactions (e.g., Sally texts Sam
five times per day). Each type of network also can consist of
either undirected links or ties (Sally and Sam are friends on
Facebook but no information is known about who “friended”
whom or who initiates communication with whom) or directed
links or ties (Sally walks toward Sam often but Sam walks
away when she nears). As such, the appropriate techniques
for modeling a binary, undirected network are very different
from those necessary for a weighted, directed network. As an
example of this growing area of computational development,
below we describe some of our new models that address
the analysis of these different network types as well their
further development below. These methods work on social
network data where individuals (nodes) are connected via
behaviors that are either directed (i.e., each edge is drawn
from a source individual to the receiving individual) or
undirected (i.e., edges are shared without direction) and either
weighted (i.e., edges are defined by the rate or frequency

of interactions) or unweighted (i.e., edges are defined by
presence or absence of an interaction). See Table 1 for a

summary.

Percolation and Conductance
Percolation and Conductance utilizes the information about both
direct and indirect relationship pathways to characterize how
information flows through directed networks (Fushing et al.,
2011; Fujii et al., 2013; Table 1; Figure 2). This method uses
a percolation algorithm to gather information from multi-step
pathways network, which allows tracking and computation of
the flow of information through indirect social interactions (e.g.,
Sally interacts with Sam who earlier interacted with John; Fujii
et al., 2013). A conductance algorithm is applied to ensure that
all potential flow pathways are explored. The contribution of each
path to the imputed matrix is weighted by its likelihood of being
successfully traversed during the random walk.

Joint Modeling
In a complex system, different social and biological networks
rarely operate in isolation. Rather, dynamic relationships between
different social behaviors often covary in highly complex,
synergistic or even emergent ways. We would also argue that
many negative and positive health outcomes likely have similar
complexity in their etiology. Instead of analyzing these networks
individually, we have developed methodology for analyzing
networks at the same time (hence, “joint modeling”) which
produces metrics that characterize the multi-system dynamics as
a whole.

Joint modeling uses a bottom-up iterative modeling approach
(Chan et al., 2013) that begins withmultiple component networks
of the system (generated from empirical data) and links the
networks via common nodes in each network (Table 1; Figure 3).
The raw data are used to calculate expected probabilities of jointly
observing a link in each network for every pair of individuals.
For example, consider the e-mail and phone calling networks
of a community of friends—joint network modeling begins
by calculating what proportion of pairwise relationships are
characterized by each possible combination of connections in the
two networks, such as unidirectional e-mailing with bidirectional
phone calling (e.g., Hank e-mails and calls Jane, but Jane only
calls Hank and never e-mails him), or the absence of both e-
mailing and calling interactions (e.g., John and Sally have never
communicated with each other over e-mail or phone). In the

FIGURE 2 | Percolation and Conductance uses indirect pathways to determine consistency in a network. (A) Behavioral network illustrating direct (blue)

and indirect pathways (yellow, red). (B) Low consistency from A to D represented by green and red arrow indicates an ambiguous dominance relationship. The high

consistency from F to G represented by green arrows indicates high certainty that F outranks G.
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TABLE 1 | Summary of computational network approaches.

New computation method Purpose Directed edges Weighted edges Description of output

Percolation and conductance Method for quantifying how information

flows through directed networks via direct

and indirect pathways

Yes Yes Identifies all direct and indirect pathways in a

network. Summarizes the overall

consistency in the direction of these

pathways for every pair of nodes (e.g.,

100% of 1-step paths and 90% of 2-step

paths flow from A to B), yielding a measure

of the probability that any path flows from A

to B vs. B to A.

Joint modeling Method for modeling the inter-dependent

relationship across multiple networks

Yes No Categorizes each pair of nodes according to

their joint-network relationship (using a

vector). Identifies a model whose predictors

describe what drives the observed

frequencies of each type of pair, such as

abundance of pairs with opposite direction

phone calling and e-mailing.

Data cloud geometry Clustering methodology that identifies a

community structure via a data-driven

random walk

No Yes Identifies block structure in a matrix by

clustering together nodes that are most

similar. Creates a hierarchical tree that

describes the multi-scale structure of the

network.

Data mechanics Method that allows the discovery of

clusters of nodes from one network that

are grouped based upon similarity across

a series of metrics

Both directed

and undirected

Both weighted

and unweighted

Identifies block structure in a bipartite matrix

by shuffling the ordering of rows and

columns, yielding two hierarchical trees (one

for rows, one for columns) that describe the

inter-dependent relationship between them.

FIGURE 3 | Conceptual framework behind joint modeling of networks.

Using this new technique, multiple networks can be evaluated for how they

correspond to one another and how that correspondence changes over time,

across development, during the aging process, or over the lifespan.

null model, the relationships across interactions are assumed
to be independent, e.g., knowing that John never calls Sally
is independent of whether Sally and John e-mail each other.
Constraint functions are then iteratively applied to tune these
probabilities to match the observed directed network data.

Once appropriate constraint functions (based upon existing
theory or data) are applied to match the observed data, the
relationships between these networks then can be assessed over
time. This interactive process allows one to examine howmultiple
networks correspond to one another at a given point in time or
how the relationship of these networks changes longitudinally
(Chan et al., 2013). Monitoring the complex dynamics of a
system provides a valuable way of quantitatively characterizing
the potential impact of an individual’s social environment.

Data Cloud Geometry
All social systems have inherent multi-scale structure (e.g.,
individual, family, community). This multi-scale geometry must
be quantitatively defined and preserved during the modeling
process in order to model how individuals relate to each other
and to health outcomes. Data cloud geometry (DCG) is a new
method that identifies community structure at multiple scales
by performing a random walk through an empirical network. A
random walk creates a path by moving through the data step by
step. The direction of each step is determined randomly and the
probability of each step is guided by the data. Cumulatively, these
randomwalks produce a similarity matrix describing how similar
two nodes (e.g., individuals) are in their social connections. This
similarity matrix captures the geometric structure of the network
by deriving a hierarchy of clustering. Individuals with greater
similarity in social connections are considered to be “closer,” and
thus cluster together at a lower level of the hierarchical tree than
individuals with few similarities in their connections (Table 1;
Figure 4).

A key advantage of using DCG over other clustering
algorithms is that DCG generates more accurate cluster
membership than previous approaches because outliers do not,
by default, cluster with each other (i.e., a cluster of outliers)
simply because they significantly differ from other clusters
(but may not be similar to one another). Instead outlier
individuals must be similar to each other to be in the same
cluster. Second, this approach has a built-in mechanism for self-
correcting clustering membership across different levels, which is
important for inferences of cluster membership across different
levels of analysis (e.g., clusters individuals at family level in
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FIGURE 4 | Illustrative DCG-tree based on fMRI data (Fushing et al.,

2013). Tree on left panel also corresponds to pattern on top panel. Note that

different levels of the tree (known as “temperature”) yield different blocking

patterns corresponding to communities. At the highest temperature indicated

in dark red, a single community is observed; at the lowest temperature, 19

communities are observed. DCG finds the best clustering solutions at multiple

levels in the tree.

comparison to clusters of families at community level). These
two features allow robust classification of data into groups and
thus identify community structure at multiple levels of analysis
(e.g., how individuals group within families, and families into
communities).

Data Mechanics
Data Mechanics begins with a bipartite matrix in which the rows
represent a set of individuals from a network or system and the
columns represent various metrics for which each individual has
been assessed (Table 1; Figure 5). The rows and columns are then
shuffled iteratively to reveal blocks of similar subjects. Shuffling
occurs using principles from thermodynamics to assign “energy”
to the organization of the networkmatrix. Networkmatrices with
the lowest energy state are selected as the “best fit” for these
blocks of subjects. Notably, this method generates a hierarchical
tree of profiles that allows for the identification of higher order
behavioral and social profiles that relate to negative (or positive)
health outcomes in predictive or causal ways. Data mechanics
(Fushing and Chen, 2014) can be used to identify clusters of
individuals that share similar health profiles and social profiles
as well as determine their inter-relationships over time. This new
technique will allow us to quantify the collective influence of one’s
social environment on aspects of individuals’ health status.

AN EXAMPLE: COMPUTATIONAL
NETWORK APPLIED TO A NONHUMAN
PRIMATE MODEL AS TRANSLATION FOR
HUMANS

Below we discuss our group’s work to provide brief, preliminary
examples of the application of our computational network
approach to a nonhuman primate social system as a translational
model for enhancing human health. We focus on two examples.
In the first example, we illustrate the effects of social network
structure on individual health at a single time scale. In the
second example, we illustrate the effects of social network on
group health at multiple time scales (which in turn can positively

FIGURE 5 | Data Mechanics tree and heat map representing bipartite

network analysis of clusters of individuals (macaques) set on the

Y-axis with clusters of personality type on the X-axis. Note the blocks of

individuals sharing personality profiles on the Y-axis as well as the blocks of

personality traits on the X- axis. For illustration for the level in the tree where

the red line is located, we can block personality according to individuals and

individuals according to personality (highlighted yellow, blue, and green boxes).

Note how individuals who are similar in personality profiles group together and

personality traits corresponding to personality types group together.

or negatively influence individual health across these temporal
scales) to illustrate the multi-scale (e.g., individual, group),
multidimensional (e.g., joint modeling) and longitudinal aspects
(before and after perturbation) of our holistic systems approach.

Example #1: Predictability of Status as
Predictors of Individual Heath
Indicators of social rank in humans, such as socioeconomic
status, are thought to be a source of stress. Yet studies on
the presence and direction of this relationship between rank
and stress in animal societies have been quite equivocal in
terms of whether it impacts health. Preliminary results from our
research group using computational network models, as outlined
above, suggest that certainty or ambiguity of one’s dominance
relationships may have a greater impact on health than actual
rank itself. Certain dominance relationships are those in which
it is very clear who is dominant and who is submissive. In
contrast, ambiguous dominance relationships are those in which
the identity of the dominant and submissive individual is not
clear. We can quantify the number of these relationships per
individual into a metric that reflects an individual’s general
propensity to have dominance interactions that go with the global
network “flow” of dominance (i.e., pathways in the network
generally flow from dominance to subordinate individuals) or
interactions that run counter to the global flow of dominance
(what we term “dominance certainty”).
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We used “Percolation and Conductance” (Fushing et al.,
2011; Fujii et al., 2013; see Section Innovation in Methodology:
Computational Network Analysis above), to quantify dominance
certainty. The dominance relationship of each dyad in the
group is quantified using both direct and indirect agonistic
interactions, which yields a holistic quantitative measure of the
degree of certainty vs. ambiguity of dyadic relationships in the
network.

Dominance certainty relates to health outcomes in situations
where dominance rank does not. First, preliminary analyses of
both physiological parameters as well as physical manifestations
of stress (e.g., blood cytokine levels estimating inflammatory
responses, frequency of diarrhea bouts, frequency of trauma,
and severity of trauma) demonstrate that having ambiguous
dominance relationships exhibits a dose dependent relationship
with greater incidence of diarrhea and trauma, and higher
cytokine levels (Vandeleest et al., 2014a,b; Beisner et al.,
2015). Individuals with lower dominance certainty have
higher incidences of poor health. Additionally, for the pro-
inflammatory cytokines, dominance certainty modified the
effect of dominance rank such that individuals with lower
dominance certainty only experienced poorer health if they
were also high-ranking. In other words, having ambiguous
dominance relationships only negatively impacted cytokine
levels for individuals that stood to lose their high status position
(i.e., low-ranking individuals with ambiguous relationships
stand to gain status). This suggests that uncertainty in
relationships, such as dominance, may be more important
for health outcomes than actual dominance status. Second,
cohesion or interconnectedness in affiliative relationships,
such as grooming, also may have an effect on health both
directly and indirectly through dominance certainty. An
analysis of community membership in a grooming network,
using “Data Cloud Geometry” (Fushing and McAssey, 2010;
Chen and Fushing, 2012; Chan et al., 2013; see Section
Innovation in Methodology: Computational Network Analysis
above), demonstrated that subjects who shared a grooming
cluster with more family members evidenced less variance in
their dominance certainty when compared to subjects who
shared a grooming cluster with few family members. Thus,
cohesion in affiliative relationships may influence certainty in
relationships outside the affiliation context. Finally, personality
is also associated with dominance certainty. Rhesus monkeys
who score high in the trait “confidence” and who are also
lower-ranking, have more ambiguous dominance relationships
than lower-ranking individuals who are less “confident.” It is
possible, even probable, that confident individuals may challenge
dominance relationships more frequently than animals who are
not confident.

Taken together, these results demonstrate that family or
community cohesion and certainty in relationships interact
with properties of the individual, such as personality, to
have a significant impact on aspects of health. Notably,
these preliminary analyses indicate that certainty about one’s
position in social relationships may be more important
than absolute rank in predicting health outcomes. We
can determine thresholds for how much uncertainty or

how many uncertain relationships, and with whom, are
sufficient to impact health. However, distinguishing between
actual class and predictability in relationships are likely
confounded in many human societies. Therefore, these
results from a nonhuman primate model can inform how
measurement of actual direct and indirect social relationships,
rather than simple socioeconomic class designations, can
impact human health through a number of biological
systems.

Indeed, the evidence from this work clearly indicates that
knowledge beyond direct relationships, that is how individuals fit
within the global social structure (i.e., fit with the global flow of
dominance; fit with family-related clustering structure), is critical
to understanding health. No longer is it enough to measure
what an individual’s direct social interactions are (e.g., number of
friends, etc.); rather we need to know more precisely how those
interactions are embedded within the structure/geometry of their
social community.

Example #2: Stability of the Social
Environment and Group Health
The stability of human and nonhuman social groups impacts
health (e.g., German and Latkin, 2012). Animal societies are
complex behavioral systems in which the dynamics of the system
as a whole represent the synergistic interaction among multiple
behavioral networks. Stability is an emergent property of the
interactions between networks (e.g., Barrett et al., 2002). Ideally,
then, the information from these separate behavioral networks
should be combined in order to achieve a comprehensive
understanding of a given system’s stability (Barrett et al.,
2012; Hsieh et al., 2014). This can now be accomplished
with “Joint Modeling” (see Section Innovation in Methodology:
Computational Network Analysis above).

Assessing the joint relationship between two behavior
networks, such as aggression and status signaling in rhesus
macaques, across multiple time points can reveal whether (a) the
two networks interact in a predictable manner and (b) whether
the pattern of interdependence between the two networks
changes over time, particularly in response to perturbations to
the system. In a recent study, we constructed two unweighted
networks (aggression and status) for seven large outdoor captive
groups of rhesus macaques. The groups varied in their stability—
four groups were stable, three groups had to be disbanded
completely after our data collection ended as the result of severe
and widespread trauma. Macaque society is organized primarily
by dominance relationships (e.g., Sade, 1967, 1969). In a society
with a clear dominance hierarchy, most pairs of individuals are
expected to have clearly communicated dominance relationships.
We expected that the joint relationship between aggressive
interactions (e.g., threatening, biting) and status interactions
(e.g., facial expression to signal formal acceptance of subordinate
status—the silent bared teeth display) should, in general, agree
with the known pattern of dominance. Aggression and status
are directed networks in which one monkey in a given dyad
(the initiator) either aggresses or signals to the second monkey
in a given dyad (the recipient; Chan et al., 2013; see Section
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Innovation in Methodology: Computational Network Analysis
above).

Joint Modeling revealed that stable groups all showed
the same pattern of interdependence between aggression and
status networks—in all groups, far more pairs than expected
had relationships involving unidirectional aggression (from
dominant to subordinate) along with unidirectional status
signaling (from subordinate to dominant), yet other potentially
problematic types of relationships (e.g., bidirectional aggression
with no status signaling) occurred as frequently as expected
by chance (Beisner et al., 2015). In stable groups, a highly
complex dependent relationship between the aggression network
and status network is present across time. That is there was
a strong association between aggression is one direction and
status signaling in the opposite direction. In contrast, the three
unstable study groups exhibited a change in their pattern of
network interdependence (Beisner et al., 2014) prior to the onset
of extreme aggression. Two of the three unstable groups showed
a dramatic reduction in the extent of interdependence between
aggression and status networks. In other words, knowing that
monkey A threatens monkey B does not necessarily mean that
monkey B will signal its subordinance to A, as in stable groups.
Thus, loss of interdependence between two behavioral networks
is one feature of social instability. Network data can therefore
be used to predict whether a group is at risk of social collapse
(Hsieh et al., 2014). Critically, this same pattern of effects was
observed in the banking industry prior to the 2008 financial
crash—suggesting that patterns of change in joint models are
translationally relevant.

All social systems are composed of multiple interconnected
networks, but until now, it has been impossible to evaluate
them simultaneously. Joint Modeling may be of greatest
utility in quantifying the impact of environmental, ecological,
or social changes over time on the underlying structure
of a social group and their consequent health outcomes.
Further analyses are underway to assess these effects on
such health outcomes across the lifespan at the group,
family and individual levels in our populations of rhesus
macaques.

CONCLUSIONS AND FUTURE RESEARCH

The computational network approach used on data collected
from large outdoor social groups of nonhuman primates
promises a broad translational tool that can realistically model
individual, family, and group health across the lifespan in
human populations. The approach and examples we described
here, however, are only the beginning. While nonhuman
primates have served as a translational model for humans
for decades, the importance of the complexity of the social
and physical environment in biomedical applications is still
essentially unrealized (e.g., Capitanio and Emborg, 2008; Shively

and Clarkson, 2009). Future biomedical research should address
this issue directly by using socially and environmentally
relevant subjects whenever possible. Indeed, with newer more
advanced and less invasive methods for collecting and analyzing

biological samples in the field, wild populations of nonhuman
primates may provide additional translational opportunities.
Field-based biomedical research on genetically, socially, and
behaviorally well-characterized nonhuman primate populations
could transform our understanding of threshold, collective,
and emergent effects of the social environment on health
outcomes.

In contrast to the nonhuman primate as a biomedical model,
computational approaches for modeling multidimensional and
dynamic systems are only in their infancy, but the computational
power and intellectual drive to model complexity in spatial
and temporal dynamics is certainly now present. Further
development of this approach could revolutionize medicine
by allowing us to develop individualized medicine on an
unprecedented scale. We believe that this innovative systems
science approach for studying complex emergent health
outcomes on socially and environmentally complex nonhuman
primate models in either captivity or the field promises better
and more timely solutions to the greatest physical and mental
health challenges we currently and will continue to face as
humans.
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The interplay between individuals forms building blocks for social structure. Here, we

examine the structure of behavioral interactions among kindergarten classroom with a

hierarchy-neutral approach to examine all possible underlying patterns in the formation

of layered networks of “reciprocal” interactions. To understand how these layers are

coordinated, we used a layered motif approach. Our dual layered motif analysis can

therefore be thought of as the dynamics of smaller groups that tile to create the group

structure, or alternatively they provide information on what the average child would

do in a given local social environment. When we examine the regulated motifs in

layered networks, we find that transitivity is at least partially involved in the formation

of these layered network structures. We also found complex combinations of the

expected reciprocal interactions. The mechanisms used to understand social networks

of kindergarten children here are also applicable on a more general scale to any group

of individuals where interactions and identities can be readily observed and scored.

Keywords: hierarchy, social, kindergarten children, social structure, layered networks, motifs

INTRODUCTION

The interplay between individuals forms building blocks for social structure. In some cases such as
baboon troupes and humanmilitary units, rank is evident to outside observers andwithin the group
(Hausfater, 1974; Dean et al., 1975). In other cases, such as schools of fish (Whiteman and Cote,
2004), flocks of birds (Noble, 1939) and groups ofDrosophila (Yurkovic et al., 2006) the presence of
hierarchical relations are less evident within the group, although they may emerge in the context of
resource scarcity. One method assumed to reveal hierarchy is through the evaluation of aggressive
conflicts. Winners and losers throughout the animal kingdom have to deal with the consequences
of battling and even when there are wounds to lick on both sides, there often appears to be a strong
correlation between winners and dominance on the one hand, losers and submission on the other.
There is a noteworthy caveat to this view; although dominant males may be able to guarantee
access to resources on demand, others may use alternative strategies to gain access. Consider the
sneaky copulator (or other alternative mating tactics Gross, 1996), for example. This “gray” area
extends through all interactions between organisms. Even when the fightmay be consistently “won”
by a specific individual the “dominant” label is often thought to transcend aggression and imply
dominance and resource monopoly (Drews, 1993). But this supposition is almost never empirically
tested.
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The dominance/submissive relationship is an attractive
framework within which to study social interactions as it allows
quantification of often complex interactions, and is known to
generate hierarchies which have been proven to affect many
aspects of the social organization and subsequent interactions
within the group (Barroso et al., 2000; Whiteman and Cote,
2004; Sapolsky, 2005). Charting interaction patterns within these
groups reveals a stratification within a group, where individuals
that are socially dominant hold positions that rank higher
than those who are socially subordinate. Classically, hierarchies
are described as a ladder-like relationship between an alpha
individual and individuals of ever-decreasing ranks where the
number of rungs, and the number of individuals occupying each
rung, varies (Drews, 1993). There are specific measures used
to describe and understand hierarchical arrangements—stability
(how consistent the arrangement is over time), steepness (ease
of movement between levels, de Vries et al., 2006) and linearity
or transitivity (such that if A>B and B>C then A>C, de Vries,
1995).

These measures all quantify the level of hierarchy, but
stability and steepness do not have clear null hypotheses—and
hierarchical and non-hierarchical categories will rely on extensive
study of interactions to determine what is a biologically relevant
amount of stability and steepness (e.g., not a hierarchy that flips
every 5min in primates). Transitivity on the other hand makes
definite predictions about the relationships between individuals,
and provides an intuitive classifier for hierarchy. Herein we
examine transitivity and not hierarchy, and we posit that highly
structured groups do not necessarily mean highly hierarchical
groups. While any dyadic interaction may be classified as
having a quantifiable “top” and “bottom,” these may simply be
“roles” within a highly structured, but cooperative group, where
dominant and subordinate labels are not static and dependent
on the immediate social surrounding (i.e., A above B, but in the
presence of C, B above A).

Many studies have shown that people innately behave in
more dominant or subordinate ways when interacting, and
that the roles a person takes affects education level, family
background, income, and socioeconomic status (Boyce et al.,
2012). In turn, these qualities also influence behaviors, leading
to the seemingly-stratified system of organization we see in many
human populations. Whether or not this social stratification is
based on innate hierarchical relationships between interacting
individuals, its effects on health and development are numerous
and often begin early in childhood (Adler et al., 1994; Boyce et al.,
2012). That these relationships exist and are relevant in young
children opens up the possibility of studying human interactions
in populations that may not be completely affected by cultural
stratification but based largely on behavior. Kindergarten
classrooms are therefore an excellent system within which to
study the patterns of social interactions and the networks that
they form.

In 2012 Boyce et al. examined the influence of socioeconomic
status (SES) on the types of behavioral interactions and
hierarchical positioning of kindergarten children within
classrooms in Western California, suggesting that classrooms are
stratified by behavioral rankings (Boyce et al., 2012). Here we use

the same data set (described briefly in methods and in detail in
Boyce et al., 2012) to examine all interactions within classrooms
settings. We focus on six main interaction types, forming three
reciprocal pairings (Resource Struggle and Prosocial, Aggression
and Submission, and Leadership and Followship), removing
hierarchy-specific quantitative classifications of individual
children made by the observers. While the first four interaction
types are easily understood, resource struggle and prosocial
are less intuitive. We follow Boyce’s definition of prosocial
behavior as “a voluntary behavior to benefit another child” and
resource struggle as the opposite, where a child struggles over
access to either an object or the attention of another student
or teacher (Boyce et al., 2012). These interactions are often
considered reciprocal such that outputting one ensures input
of the other (i.e., being led by someone equates to following
them, struggling for a resource once may establish a dynamic
of resource flow between individuals). Furthermore, our data
set does not include emotional reactions to the physical/verbal
interactions being observed and as such, bullying-type behaviors
were not examined.

We first look at children’s interactions through time from the
vantage point of the average child. We use transition matrices
to examine probabilities of moving from one interaction type to
another. Using principal component analysis on these transition
matrices allows us to look for group separation in the students
based on their likelihood of interacting in a specific order. While
this technique illustrates the effects of previous interactions
(incoming or outgoing) on the average child’s next interaction,
a child’s behavior is not only dependent on their past social
experiences but also where they are situated in their social
environment. To understand a kindergartener’s interactions in
the context of their broader social relationships, we use social
network analysis.

While network analysis typically relies on a single network,
our analysis applies an average across multiple samples to
determine differences (Schneider et al., 2012; Kim et al.,
2015). We use standardized Z-scores which allow us to
ask about the regulation above or below what is expected
of a null model (randomizing who is connected to who
while maintaining the distribution of individual interactions).
Up regulation (significantly positive Z-scores) implies active
behavioral mechanisms are increasing the prevalence of a given
motif. Conversely down regulation (significantly negative Z-
scores) implies that behavioral mechanisms avoid the patterns of
given motifs. Additionally we extended our network analysis to
work with two behavioral interactions (one layered on top of the
other). These multilayer networks often inform on the network
dynamics (including robustness and transmission speed; see
(Kivelä et al., 2014; Wang et al., 2015), and reviewed thoroughly
in Boccaletti et al., 2014). We, however, are mainly interested in
understanding how these layers are coordinated, and so we used
a layered motif approach (Yeger-Lotem et al., 2004). Single layer
motifs have been called the building blocks of networks (Milo
et al., 2002), and represent distinct combinations of interactions
between 2, 3 or more individuals. Our dual layered motif analysis
can therefore be thought of as the dynamics of smaller groups
that tile to create the group structure, or alternatively they
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provide information on what the average child would do in a
given local social environment. It is worth noting that different
combinations of motifs could give similar-looking networks, in
which case the underlying mechanisms of networks formation in
different classrooms may vary.

While the ordering of the layers (e.g., Aggression/Submission
vs. Submission/Aggression) will determine the ID numbers of
regulated motifs, the underlying data distribution is not affected,
and the motif IDs can be interchanged with a look up table. Again
we use Z-scores (with the null indicating a lack of coordination
between layers) to understand the up and down regulation that
characterizes relationships between two types of interactions,
further elucidating the underlying interaction patterns and group
dynamics in a broad manner.

We examine the 2 layer motifs of 3 types of reciprocal
interactions to quantify the network structure and determine
whether transitivity (not necessarily hierarchy), is the main
mechanism behind their formation. With this approach we
therefore test the overarching hypothesis of whether there is
regulation of layered motifs. Specifically, if transitivity is the
driving force in network formation, we expect up regulation
of motifs that do not violate the transitive property, and down
regulation of motifs that do.

MATERIALS AND METHODS

The dataset is described elsewhere in detail (Boyce et al., 2012).
Briefly, 338 kindergarteners (representing ∼60% of the enrolled
students) within 29 classrooms were sampled from 6 public
school classrooms across Berkeley, California. The children were
aged 4.8–6.3 years old and included 163 girls and 175 boys.
The dataset was acquired from 2003 to 2005. Interactions were
observed by trained research assistants through focal sampling
over several weeks. Interactions scored were grouped into six
overarching categories:

• [Aggressive] Chase, Physical Aggression, Approach,
Relationship Aggression, Tease, Threat, and Verbal
Aggression.

• [Submissive] Apologize, Compliance, Seeks Help, Retreat, and
Submission.

• [Leadership] Directs Behavior, Reprimands, And Leadership
Other.

• [Followship] Follow/Copy, Solicit Instruction, Followship
Other, and Watching.

• [Resource Struggle] Object Struggle, Position Struggle, Student
Attention, Teacher Attention, and Resource Struggle.

• [Prosocial] Offers a Gift, Offers Help, Protects, Speaks Nicely,
and Prosocial Other.

All analyses were coded in Matlab [MathWorks]. For
transition matrices, interactions were imported and sorted
temporally by child. Both subsequent-interaction transition
probabilities and probabilities of outgoing-after-incoming
were normalized by child, then averaged over all children
and normalized again. For the analysis of child interactions,
individual transition probabilities (subsequent behavioral

outputs) were used to perform a principal component
analysis. The first two components were kept, all others
were not plotted as each explained less than 7.5% of the
variance.

For network measurements (assortativity coefficient,
betweenness centrality, clustering, and efficiency) the brain
connectivity toolbox was used, and we extended it for the
layered network motif analysis (Rubinov and Sporns, 2010). For
betweenness centrality, clustering, and local efficiency, individual
values were calculated for each child as well as for individual
classrooms. For assortativity, only classroom level values were
calculated. Raw scores (x) were normalized to Z-scores based on
random expectation:

Z =
x− µrandom

σrandom

Where µ is the mean and σ is the standard deviation. For each
Z-Score, 10,000 random networks were used, constrained to have
the same in- and out- degree distribution.

Layered network motif analysis similarly used Z-Score
normalization. Each network’s motif count was normalized by
permuting the order of children in one network while keeping
the other constant. In this way, the number of motifs remained
constant within each layer of the network, but any correlation
between them was destroyed:

Z =
x− µuncorrelated

σuncorrelated

For each Z-Score, 10,000 uncorrelated networks were used.
Z-Scores were tested with a modified sign test against the
null (no regulation—0). Probabilities were calculated as follows;
if the majority of Z-scores (z+) for a specific motif were
positive the p-value was calculated as the chance of observing
this result out of the total number of classrooms (classes);

p =

(
classes
z+

)
0.5classes. Similarly if there was a majority of negative

Z-scores (z−), p =

(
classes
z−

)
0.5classes otherwise the probability

was set at 1 if the majority of Z-scores were not regulated
(i.e., 0). The p-value was evaluated at an alpha value of 0.05
divided by the number of possible layered-network motifs—
for dyadic motifs (9 possible motifs) this value is 0.0056,
for triadic motifs (710 possible motifs) this value is 7.04
23× 10−5.

RESULTS

To visualize the connectivity and temporal order of interactions
across all classrooms, we used transition matrices indicating the
percent likelihood that one behavioral output will follow another
(e.g., there is a 22.23% probability of leading after following;
Figure 1A), and the likelihood of a behavioral output given
a specific behavioral input (e.g., leadership is the most likely
response (28.48%) to a prosocial interaction; Figure 1B). Using
principal component analyses on these transition matrices we
can see slight group separations based on interaction patterns
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FIGURE 1 | Transition probabilities between interaction types. (A) The transition probabilities between subsequent outgoing interaction types. (B) The transition

probabilities of a subsequent outgoing interaction given a specific incoming interaction type. Interaction types: (L)eadership, (F)ollowship, (A)ggression, (S)ubmissive,

(R)esource struggle, and (P)rosoci.

Resource Struggle

Aggression

Leadership

Prosocial
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Followship

Complex
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F

Non-Transitive
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D E
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Transitive

A
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FIGURE 2 | Reciprocal, transitive, intransitive, and complex relations between interaction types. (A) Illustration of dyadic reciprocation (B) Pass along (C)

Focused A (D) Focused B (E) Complete. (F) The non-transitive relationship (G–J) Complex relationships that are significantly over-represented in both

Aggressive/Submissive and Leadership/Followship networks.

(Figure S1). We found a small group of kindergarteners that
seemed separated from the rest of their classmates based on
their likelihood to move from a prosocial interaction to a
leadership interaction, lending support to the idea that while
an average kindergartener may be a useful model, a child’s
behavioral repertoire can be a diagnostic tool to categorize
children.

When moving from the individual child as a focus to a more
group-level analysis, we aim to quantify the organization that

classrooms exhibit. Social interaction networks can be described
with four main parameters:

• Betweenness centrality: The number of shortest paths (between

other nodes) that traverse a given node (e.g., the importance of

an average node for information flow and network cohesion).

• Clustering coefficient: The likelihood that node neighbors

interact amongst themselves (e.g., in a friendship network, are

a node’s friends are friends).
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• Assortativity: The correlation between a node’s degree (number
of incoming and outgoing interactions) and the degree of
his neighbors (e.g., do popular kids interact more with other
popular kids).

• Efficiency: The inverse of the average shortest paths through a
network (e.g., how quickly could information flow through the
network).

The calculation of these measures are described in detail
elsewhere (Newman, 2010). Once networks were extracted
from each classroom for each interaction type, we compared
the Z-scores for each network parameter among all students
and classrooms to look at relationships between underlying
mechanisms or characteristics in the formation of different
interaction networks. Z-scores allow us to determine whether
or not the classroom is up or down regulating aspects of
organization above/below what is expected randomly. The
highest correlation was found for the clustering coefficient of
submissive and leadership interactions for all classrooms (r2 =

0.58242; Figure S2). The assortativity (r2 = 0.21406) and
efficiency (r2 = 0.17387) measures for these social interactions
were also correlated, but the betweenness centrality measure was
not (r2 = 3.519e-05). This is a preliminary analysis; we look at
correlations between all interaction types for both the same and
different network measures at both the classroom and student
levels. There is little to no statistical rigor associated with these
comparisons, however, they provide preliminary data for future
hypotheses.

To examine patterns in the reciprocal interaction pairings
we looked at dyadic and triadic motifs (2 and 3 individuals
respectively) of all types, rather than simply the transitive
and non-transitive (cyclic) motifs. We found that the
interaction pairings were not simply reciprocated in the dyadic
motifs of Aggression/Submissive, Leadership/Followship and
Resource Struggle/Prosocial networks (reciprocated interactions
accounting for 46.78, 45.67, and 16.46% of all dyadic interactions
respectively) (Figure 2A; see Table S1). To examine the level
of similarity between motifs formed in the different layered
networks we looked at the correlations between all up/down
regulated motifs between each layered network. Down-regulated
motifs were highly correlated among all three layered networks,
however, the up-regulated ones were only correlated among
Aggressive/Submissive and Leadership/Followship networks
(Figure S3). These universally down-regulated motifs are often
patterns where only one interaction type is present, indicating
that the relationship between our interaction pairs is non-trivial
and suggesting that their regulation is interdependent.

We found up regulation of one transitive triadic motif
(termed “Focused A”) in the Aggressive/Submissive and
Leadership/Followship networks (Figure 2C and Table 1).
Due to our relatively strict p-value correction, other transitive
triadic motifs (“Pass Along,” “Focused B,” and “Transitive
Triangle”; Figures 2B,D,E) for Aggressive/Submissive and
Leadership/Followship networks had positive Z-scores and
relatively small p-values but failed to achieve statistical
significance. We found no evidence of down regulation of
the non-transitive cyclic motif in the Aggressive/Submissive

and Leadership/Followship networks (Figure 2F). In addition
to these motifs commonly discussed in relation to hierarchy, we
found up regulation of 4 complex triadic motifs (Figures 2G–J;
Table 1). We note that the complex motifs of Figures 2G,H

are the reciprocals of Figures 2I,J, and together with the
high correlation in Figure S3, indicate that the relationship
of Leading to Following is more similar to the relationship
of Submissive to Aggressive than Aggressive to Submissive.
We found an additional 27, 185, and 180 up/down regulated
motifs (for Resource/Prosocial, Aggression/Submission and
Leadership/Followship respectively; Table S2). Taken together,
the results suggest transitivity is not the only social relationship
organizing these interactions.

DISCUSSION

When examining dominant and subordinate behaviors within a
population, the ways in which these behaviors or interactions
are measured can influence the results identified. There are
multiple methods of establishing winner/loser identity based on
a particular signal, or behavior following a fight. Oftentimes
pitting individuals against each other is done in round-robin
or tournament set-ups to classify individuals as dominant or
subordinate on the basis of their number of wins. Other times
proxies of dominance, including body size (Archie et al., 2006,
Fujimoto et al., 2011), age (Côté, 2000; Archie et al., 2006) or
specific markings (Tibbetts and Lindsay, 2008), are used. The
application of these calculated hierarchies to the group as a whole
is limited, both in implied transitivity as well as in the sense that
dyadic competition is likely not equivalent to combat within a
group setting (Haemisch et al., 1994). This is in addition to the
fact that designing tournaments that minimize previous-match
effects are non-trivial (Russell, 1980). To generalize, the methods
with which dominance and subordination are coded or classified
dictates the scope of the results that can be appropriately
interpreted. Furthermore, examining patterns of interactions
with the intention of finding hierarchies limits and/or biases the
extent to which the results characterize the social interaction
patterns themselves. That is, searching for an answer to a specific
question or phenomenon may lead to the acceptance of an
incomplete explanation.

Here, we take a hierarchy-neutral approach to examine
all possible underlying patterns in the formation of layered
networks of “reciprocal” interactions. Like other studies
specifically examining hierarchy, we examine interactions
between individuals looking for transitive and non-transitive
relationships that may indicate a hierarchical structure in the
classrooms of kindergarten children (Shizuka and McDonald,
2015), with a couple of caveats. First, we do not focus on
only a subset of the patterns, instead looking at all motifs to
take a comprehensive approach to the mechanisms that could
potentially be contributing to classroom structure. Second, we
do not consider order in the hierarchical structure. That is, we
avoid imposing the generally accepted order of aggressive or
leading individuals being dominant to submissive or following
individuals. We do this for two reasons. First, we did not have
specific questions in mind where such an ordering was required
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TABLE 1 | Observed, expected and Z-scores for motifs displayed in Figure 2.

Motif # (*) Figure 2 Frequency Expected Frequency Z-Score P-value

Mean Std Mean Std Mean Std

Resource struggle/Prosocial 3 (3) A 2.93 2.62 1.78 1.16 0.94 1.60 1.87E−02

470 (470) B 0.45 0.91 0.10 0.09 1.13 2.96 7.99E−03

424 (574) C 0.17 0.60 0.07 0.07 0.44 2.10 8.85E−04

574 (424) D 0.41 1.15 0.07 0.08 1.11 2.92 1.87E−02

622 (622) E 0.00 0.00 0.00 0.00 −0.03 0.04 1.00E+00

678 (678) F 0.00 0.00 0.00 0.00 −0.01 0.02 1.00E+00

44 (242) G 0.45 0.99 0.29 0.49 0.22 0.99 1.00E+00

45 (243) H 0.41 0.82 0.25 0.42 0.28 1.12 1.00E+00

242 (44) I 1.66 3.56 0.69 1.17 0.65 1.99 1.00E+00

243 (45) J 1.55 3.70 0.64 1.10 0.35 1.08 1.00E+00

Aggressive/Submissive 3 (3) A 13.21 5.45 5.47 2.12 3.73 1.75 1.86E-09

470 (470) B 3.24 3.39 0.44 0.23 3.69 4.14 7.99E−03

424 (574) C 4.00 3.55 0.47 0.30 3.99 3.22 4.42E−05

574 (424) D 2.62 2.91 0.27 0.19 4.23 4.70 8.85E−04

622 (622) E 0.66 1.20 0.05 0.05 2.57 4.21 9.67E−02

678 (678) F 0.10 0.41 0.01 0.01 0.81 3.28 1.00E+00

44 (242) G 8.52 8.14 2.24 2.03 2.67 1.84 6.81E-06

45 (243) H 9.10 7.38 2.63 2.02 2.48 1.75 7.56E−07

242 (44) I 1.86 1.94 1.29 1.17 0.46 1.15 9.67E−02

243 (45) J 1.79 1.72 1.02 0.91 0.69 1.14 6.44E−02

Leadership/Followship 3 (3) A 16.66 10.25 5.93 2.92 4.62 2.31 1.86E−09

470 (470) B 6.21 8.79 0.47 0.37 5.90 6.63 8.85E−04

424 (574) C 6.14 8.09 0.63 0.58 4.79 4.88 7.56E−07

574 (424) D 2.72 3.30 0.30 0.18 3.65 3.91 7.99E−03

622 (622) E 1.45 2.40 0.08 0.11 3.67 5.00 1.44E−01

678 (678) F 0.10 0.41 0.00 0.01 0.82 3.27 1.00E+00

44 (242) G 0.90 1.35 0.69 0.65 0.14 0.98 1.87E−02

45 (243) H 1.55 1.92 0.85 0.74 0.52 1.18 1.00E+00

242 (44) I 8.14 7.80 1.65 1.37 3.03 2.46 4.42E−05

243 (45) J 5.00 4.52 1.12 0.97 2.37 1.75 4.42E−05

Significant Z-Scores are indicated in bold. *Motifs IDs are indicated along with their reciprocal IDs if the layers were reversed.

and second, the order applied to these interaction types depends
on the frame of reference, or more specifically, what would be
defined as a “win.” Specifically, if we were to define winning
as controlling information in a group, all six interactions we
examine could be considered “dominant” to their partner
interaction depending on the frame of reference. Leaders could
be dominant because they choose which followers to share
information with or followers could be dominant because they
get information from all those they follow; aggressors fight
and access information, submissives do not have to fight to get
information; prosocial individuals control sharing of information
or those involved in resource struggle retain information they
hold. Because we do not impose order on the interactions we are
investigating, we need not refer to one or the other as dominant
or subordinate (those labels would depend on context), rather
we simply refer to their networks as having a transitive structure
or not.

We first showed that these interactions were not as reciprocal
as they are often considered (Figures 1B, 2). That is, a Leadership
interaction does not ensure a Followship response, similarly

for Aggression and Submission, and Prosocial and Resource
Struggle.We note here that these dyadicmotifs do not encompass
order of interactions or timing as the individual analysis
of transitions do. Both incoming Aggression then outputting
Submission and incoming Submission then outgoing Aggression,
over any time period, would be considered reciprocal.
When we examine the regulated motifs in all three layered
networks, we find that there are similarly high correlations
in down-regulated motifs between the three layered networks
(Figure S3A). However, only the Aggressive/Submissive and
Leadership/Followship layered networks showed correlation
for the positively regulated motifs (Figure S3B). This suggests
that while there is a shared structure of highly unlikely motifs
(mostly consisting of motifs of one layer only), the Resource
Struggle/Prosocial has a different structure compared to the
Leadership/Followship and Aggressive/Submissive networks.

Figure 2 shows the up regulated motifs common to
Aggression/Submission and Leadership/Followship layered
networks. The most intuitive are those in Figures 2B–E,
and we can easily imagine kindergarten children behaving
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in such reciprocal ways (e.g., two kindergarteners being
mean to one other; Focused A). The final 4 motifs shown
in Figure 2 are more difficult to understand in terms of
children’s interactions. They illustrate how non-intuitive,
abstract, and non-hierarchical patterns of interactions can
be found using unbiased network and motif approaches.
Furthermore, by examining the order of layers in the networks,
we can observe which behavioral relationships are similar.
We see higher correlations between Leadership/Followship
and Submissive/Aggressive than Leadership/Followship and
Aggressive/Submissive (Figures 2G–J and Figure S3). This hints
that the mechanisms and environmental pressures which shape
the interactions of social “leaders” may be more similar to the
interactions of social “submissives” and not social “aggressives.”

The up regulation of the transitive motif Focused A indicates
that transitivity is at least partially involved in the formation
of these layered network structures. Transitivity is perhaps the
most important property of structural hierarchy in a group (the
other two being stability and linearity) as it, by definition (A>B
and B>C then A>C), creates the characteristic orderly stratified
layers. We also found complex combinations of the expected
reciprocal interactions: two individuals in a fully connected
dyad interacting with a third (Figures 2G–J). None of these
can be created by overlapping the above transitive motifs,
and their up regulation in both Aggressive/Submissive and
Leadership/Followship networks is intriguing. While we cannot
rule out “un-resolved” hierarchy (i.e., these are fingerprints of
hierarchical establishment itself), another exciting possibility
hints at more underlying mechanisms of network structure than
simply hierarchy.

Boyce examined the influence of socioeconomic status on
hierarchies in the same kindergarten classroom data we have
presented here (Boyce et al., 2012). While we were aware that
classrooms were not homogeneous for characteristics including
SES, teacher profiles, instructional methods etc., we did not
separate the dataset according to these external factors. That
is, we did not perform separate analyses on low SES vs. high
SES, similar for other potentially confounding factors which may
be at play. We note, however, that our statistic (sign test) is
non-parametric and does not require all classrooms to behave
similarly to draw overall conclusions.

In children, the ability to examine behaviors in both one-on-
one situations and within a larger social group could be used as a
tool for finding behavioral abnormalities. Much of the diagnosis
process for autism is based on behavioral observations of a child
and understanding how such an individual would appear within,
be affected by, and affect their social environment, could go a
long way to clearer diagnoses (Stone et al., 1990). A potential
avenue of diagnostic implication is the nurturing of extended
social interactions within a group. By identifying normal rates
of participation within a group via network motifs, one may be
able to identify abnormal motif participation by students who
may require more intervention to be able to properly flourish
within a highly structured group (so called “orchid” as opposed
to “dandelion” children Ellis and Boyce, 2008). The methodology
outlined here could therefore provide a framework for identifying
children to more readily ensure their support in an appropriately

protective environment if they participate in abnormal network
relationships (i.e., motifs).

The mechanisms used to understand social networks of
kindergarten children here are also applicable on a more general
scale to any group of individuals where interactions and identities
can be readily observed and scored. We have shown that social
interactions are not isolated behaviors and that the commonly
paired types (Leadership/Followship, Aggression/Submission)
interact with each other in a complex manner unpredictable
given simple rules of reciprocation and transitivity. We further
predict this method can be extended tomore than two interaction
types and to quadratic motifs and as computational resources
improve, and will continue to improve our understanding of
the multi-layered networks that more accurately represent the
natural social environment in humans and other animals.

AUTHOR CONTRIBUTIONS

JL conceived of study together with JS and MG. Contributed
to writing the paper with JS and MG and co-authors. JS wrote
the code, conceived study and helped write paper. MG wrote
first draft, conceived study. WB, NB, and NA provided data for
analysis.

FUNDING

This work was funded grants awarded to JDL by CIHR, NSERC,
CRC, and CIFAR.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fpsyg.
2016.00276

Figure S1 | Principal Component (PC) analysis of subsequent interaction

transitions. The first and second principal components account for 22.11% of

the total variance in a kindergartener’s transition probabilities between interaction

types. There appears to be a subset of kindergarteners that are defined by their

shared propensity to transition from Prosocial to Submissive. Factors are plotted if

their loading was greater than 0.25. Kindergarteners are colored by classroom.

Figure S2 | Correlation analysis between clustering of Submissive

interactions and Leadership interactions. (A) The correlation when measuring

local clustering. (B) The correlation when measuring the average clustering per

classroom. Kindergarteners are colored by classroom.

Figure S3 | Correlation analysis using the Z-scores of the triadic motifs.

(A) The Leadership/Followship network displays correlated significant motifs

when compared to the Submissive/Aggressive network, even with very highly

up-regulated motifs. (B,C) The Resource Struggle/Prosocial network correlates

well with under-represented motifs, but poorly with over represented motifs with

both the Submissive/Aggressive and Leadership/Followship networks. Motifs

were excluded if they were never detected as significantly different (Z-scores) in

any network. The ordering of the network layers was arranged to generate the

higher correlation.

Table S1 | Observed, expected and Z-scores for dyadic motifs. Significant

Z-Scores are indicated in bold. *Motifs IDs are indicated along with their reciprocal

IDs if the layers were reversed.

Table S2 | Observed, expected and Z-scores for triadic motifs. Significant

Z-Scores are indicated in bold. *Motifs IDs are indicated along with their reciprocal

IDs if the layers were reversed.
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