
Edited by  

Bernd Kaina, Hans Raskov and Ismail Gögenur

Published in  

Frontiers in Oncology 

Frontiers in Immunology

The role of 
tumor-associated 
macrophages in 
tumor progression

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/research-topics/39722/the-role-of-tumor-associated-macrophages-in-tumor-progression
https://www.frontiersin.org/research-topics/39722/the-role-of-tumor-associated-macrophages-in-tumor-progression
https://www.frontiersin.org/research-topics/39722/the-role-of-tumor-associated-macrophages-in-tumor-progression
https://www.frontiersin.org/research-topics/39722/the-role-of-tumor-associated-macrophages-in-tumor-progression


May 2023

Frontiers in Oncology frontiersin.org1

About Frontiers

Frontiers is more than just an open access publisher of scholarly articles: it is 

a pioneering approach to the world of academia, radically improving the way 

scholarly research is managed. The grand vision of Frontiers is a world where 

all people have an equal opportunity to seek, share and generate knowledge. 

Frontiers provides immediate and permanent online open access to all its 

publications, but this alone is not enough to realize our grand goals.

Frontiers journal series

The Frontiers journal series is a multi-tier and interdisciplinary set of open-

access, online journals, promising a paradigm shift from the current review, 

selection and dissemination processes in academic publishing. All Frontiers 

journals are driven by researchers for researchers; therefore, they constitute 

a service to the scholarly community. At the same time, the Frontiers journal 

series operates on a revolutionary invention, the tiered publishing system, 

initially addressing specific communities of scholars, and gradually climbing 

up to broader public understanding, thus serving the interests of the lay 

society, too.

Dedication to quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include 

some of the world’s best academicians. Research must be certified by peers 

before entering a stream of knowledge that may eventually reach the public 

- and shape society; therefore, Frontiers only applies the most rigorous 

and unbiased reviews. Frontiers revolutionizes research publishing by freely 

delivering the most outstanding research, evaluated with no bias from both 

the academic and social point of view. By applying the most advanced 

information technologies, Frontiers is catapulting scholarly publishing into  

a new generation.

What are Frontiers Research Topics? 

Frontiers Research Topics are very popular trademarks of the Frontiers 

journals series: they are collections of at least ten articles, all centered  

on a particular subject. With their unique mix of varied contributions from  

Original Research to Review Articles, Frontiers Research Topics unify the 

most influential researchers, the latest key findings and historical advances  

in a hot research area.

Find out more on how to host your own Frontiers Research Topic or 

contribute to one as an author by contacting the Frontiers editorial office: 

frontiersin.org/about/contact

FRONTIERS EBOOK COPYRIGHT STATEMENT

The copyright in the text of individual 
articles in this ebook is the property 
of their respective authors or their 
respective institutions or funders.
The copyright in graphics and images 
within each article may be subject 
to copyright of other parties. In both 
cases this is subject to a license 
granted to Frontiers. 

The compilation of articles constituting 
this ebook is the property of Frontiers. 

Each article within this ebook, and the 
ebook itself, are published under the 
most recent version of the Creative 
Commons CC-BY licence. The version 
current at the date of publication of 
this ebook is CC-BY 4.0. If the CC-BY 
licence is updated, the licence granted 
by Frontiers is automatically updated 
to the new version. 

When exercising any right under  
the CC-BY licence, Frontiers must be 
attributed as the original publisher  
of the article or ebook, as applicable. 

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 
others may be included in the CC-BY 
licence, but this should be checked 
before relying on the CC-BY licence 
to reproduce those materials. Any 
copyright notices relating to those 
materials must be complied with. 

Copyright and source 
acknowledgement notices may not  
be removed and must be displayed 
in any copy, derivative work or partial 
copy which includes the elements  
in question. 

All copyright, and all rights therein,  
are protected by national and 
international copyright laws. The 
above represents a summary only. 
For further information please read 
Frontiers’ Conditions for Website Use 
and Copyright Statement, and the 
applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-8325-2468-8 
DOI 10.3389/978-2-8325-2468-8

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/
https://www.frontiersin.org/about/contact
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


May 2023

Frontiers in Oncology 2 frontiersin.org

The role of tumor-associated 
macrophages in tumor 
progression

Topic editors

Bernd Kaina — Johannes Gutenberg University Mainz, Germany

Hans Raskov — Zealand University Hospital, Denmark

Ismail Gögenur — Zealand University Hospital, Denmark 

Citation

Kaina, B., Raskov, H., Gögenur, I., eds. (2023). The role of tumor-associated 

macrophages in tumor progression. Lausanne: Frontiers Media SA. 

doi: 10.3389/978-2-8325-2468-8

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/
http://doi.org/10.3389/978-2-8325-2468-8


May 2023

Frontiers in Oncology frontiersin.org3

04 Tumor-Associated Macrophages: Recent Insights and 
Therapies
Jiawei Zhou, Ziwei Tang, Siyang Gao, Chunyu Li, Yiting Feng and 
Xikun Zhou

17 Expression of Monocarboxylate Transporter 1 in 
Immunosuppressive Macrophages Is Associated With the 
Poor Prognosis in Breast Cancer
Bei Li, Qian Yang, Zhiyu Li, Zhiliang Xu, Si Sun, Qi Wu and  
Shengrong Sun

28 Cancer-Associated Fibroblasts and Tumor-Associated 
Macrophages in Cancer and Cancer Immunotherapy
Hans Raskov, Adile Orhan, Shruti Gaggar and Ismail Gögenur

45 Significance of macrophage infiltration in the prognosis of 
lung adenocarcinoma patients evaluated by scRNA and 
bulkRNA analysis
Huaiyang Zhu, Chunning Zheng, Hongtao Liu, Fanhua Kong,  
Shuai Kong, Feng Chen and Yuan Tian

59 Tumor-associated macrophages in tumor progression and 
the role of traditional Chinese medicine in regulating TAMs to 
enhance antitumor effects
Jiatong Zhang, Jiafeng Gao, Jingwen Cui, Yongqiang Wang,  
Yipeng Jin, Di Zhang, Degui Lin and Jiahao Lin

69 Cutting edges and therapeutic opportunities on 
tumor-associated macrophages in lung cancer
Qin Hu, Gujie Wu, Runtian Wang, Huiyun Ma, Zhouwei Zhang and 
Qun Xue

81 Macrophage scavenger receptors: Tumor support and tumor 
inhibition
Elena Kazakova, Pavel Iamshchikov, Irina Larionova and  
Julia Kzhyshkowska

99 Human macrophage-engineered vesicles for utilization in 
ovarian cancer treatment
David Schweer, Namrata Anand, Abigail Anderson,  
J. Robert McCorkle, Khaga Neupane, Alexandra N. Nail, Brock Harvey, 
Kristen S. Hill, Frederick Ueland, Christopher Richards and Jill Kolesar

112 Pleiotropic effects of the COX-2/PGE2 axis in the 
glioblastoma tumor microenvironment
Phillip T. Dean and Shelley B. Hooks

121 Macrophage – tumor cell interaction beyond cytokines
Olga Kovaleva, Maxim Sorokin, Anastasija Egorova, Anatoly Petrenko, 
Ksenya Shelekhova and Alexei Gratchev

Table of
contents

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/


REVIEW
published: 25 February 2020

doi: 10.3389/fonc.2020.00188

Frontiers in Oncology | www.frontiersin.org 1 February 2020 | Volume 10 | Article 188

Edited by:

Bernd Kaina,

Johannes Gutenberg University

Mainz, Germany

Reviewed by:

Sabine Grösch,

Goethe University Frankfurt, Germany

Debora Decote-Ricardo,

Universidade Federal Rural Do Rio de

Janeiro, Brazil

*Correspondence:

Xikun Zhou

xikunzhou@scu.edu.cn

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Molecular and Cellular Oncology,

a section of the journal

Frontiers in Oncology

Received: 27 October 2019

Accepted: 04 February 2020

Published: 25 February 2020

Citation:

Zhou J, Tang Z, Gao S, Li C, Feng Y

and Zhou X (2020) Tumor-Associated

Macrophages: Recent Insights and

Therapies. Front. Oncol. 10:188.

doi: 10.3389/fonc.2020.00188

Tumor-Associated Macrophages:
Recent Insights and Therapies

Jiawei Zhou 1,2†, Ziwei Tang 1,2†, Siyang Gao 2, Chunyu Li 2, Yiting Feng 2 and Xikun Zhou 1*

1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative

Innovation Center for Biotherapy, Chengdu, China, 2 State Key Laboratory of Oral Diseases, National Clinical Research

Center for Oral Diseases, West China College of Stomatology, Chinese Academy of Medical Sciences Research Unit of Oral

Carcinogenesis and Management, Sichuan University, Chengdu, China

Macrophages, which have functions of engulfing and digesting foreign substances,

can clear away harmful matter, including cellular debris and tumor cells. Based

on the condition of the internal environment, circulating monocytes give rise to

mature macrophages, and when they are recruited into the tumor microenvironment

and in suitable conditions, they are converted into tumor-associated macrophages

(TAMs). Generally, macrophages grow into two main groups called classically activated

macrophages (M1) and alternatively activatedmacrophages (M2). M2 and a small fraction

of M1 cells, also known as TAMs, not only lack the function of phagocytizing tumor

cells but also help these tumor cells escape from being killed and help them spread

to other tissues and organs. In this review, we introduce several mechanisms by which

macrophages play a role in the immune regulation of tumor cells, including both killing

factors and promoting effects. Furthermore, the targeted therapy for treating tumors

based on macrophages is also referred to in our review. We confirm that further studies of

macrophage-focused therapeutic strategies and their use in clinical practice are needed

to verify their superior efficacy and potential in cancer treatment.

Keywords: macrophages, tumors, tumor-associated macrophages, immunity, immunity therapy

BACKGROUND

This review is based on the interaction of macrophages and tumor cells, and summarizes the
origin, function, and classification of macrophages. Emphasis is placed on the dual role of
macrophages in tumor cells and targeted therapy of related binding sites. The existing reviews
about macrophages and the interaction with tumor cells are not a few, but the most are focused
on one of the recognition mechanisms, specifically illustrating its molecular mechanism in detail.
Nevertheless, based on the research findings in recent years, this review summarizes a variety of
related mechanisms, sorts out and reintegration them to make them systematic. In the meanwhile,
we also provide new ideas about tumor targeted therapy. Regarding tumor-targeted therapy, this
review classifies them in treatment methods and sites to make the relevant treatment ideas clearer.
There are still some methods that need further research, and this review explains and looks forward
to the progress of the new step.
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INTRODUCTION

Macrophages, which are a type of white blood cells of the
mononuclear phagocyte immune system, play vitally important
roles in anti-infective immunity, the maintenance of tissue
homeostasis, and the protection of our body through the
functions of engulfing and digesting foreign substances (1, 2).
Macrophages also clear away harmful matter, including cellular
debris and tumor cells in vivo. Macrophages mediate non-specific
defense (innate immunity) and help initiate specific defense
mechanisms (adaptive immunity). In addition to stimulating
the immune system, macrophages exert an immune modulatory
impact by secreting various cytokines and activating the
complement system, which may lead to inflammation.

Based on the conditions of the internal environment, such
as the presence of chemokines, cytokines, and other factors
secreted by tumor cells, mesenchymal cells, and immune cells,
and the presence of local anoxia, inflammation, and high levels
of lactic acid, the monocytic series in the blood are recruited
to the tumor microenvironment and become tumor-associated
macrophages (TAMs) (3, 4). Macrophages roughly develop into
two main groups with different functions in immune defense
and immune surveillance called classically activatedmacrophages
(M1) and alternatively activated macrophages (M2), both of
which can transform into each other with the changes in the
internal environment.

Here, we introduce several kinds of mechanisms by which
macrophages interact with tumor cells and kill them. Also, we
compare thesemechanisms with those by which TAMs play a role
in promoting the development of tumor cells, in immune evasion
and in immunosuppression. Therefore, based on macrophages
differentiating into TAMs on cellular and molecular levels, our
review shows several therapeutic targets for treating tumors
caused by immunosuppression. In addition, we summarize some
tumor therapy strategies at present aimed at macrophages,
especially the theoretical basis and the feasibility of blocking the
CD47-SIRPα pathway to treat tumors. In this way, engineered

Abbreviations: TAMs, tumor-associatedmacrophages; M1,M1macrophages; M2,

M2 macrophages; LPS, lipopolysaccharides; CCL2, chemokine (C-C motif) ligand

2; STAT3, signal transducer and activator of transcription 3; EMT, epithelial-

mesenchymal transition; Bcl-2, B-cell lymphoma-2; JAK, janus kinase; ELMO1,

engulfment and cell motility 1; IBC, inflammatory breast cancer; GRO, growth-

related oncogene; TGF-β, growth factor-β; PGE2, prostaglandin E2; MMP-

7, matrix metalloproteinase-7; TLR4, Toll-like receptor 4; CIP2A, cancerous

inhibitor of PP2A; PI3K, phosphatidylinositide 3-kinases; PD-1, programmed

cell death protein; PD-L1, programmed cell death-ligand 1; NK, natural killer;

CD47, cluster of differentiation 47; SIRPα, signal regulatory protein alpha; ITIM,

immunoreceptor tyrosine-based inhibitory motif; MHC, major histocompatibility

complex; LILRB1, leukocyte immunoglobulin like receptor subfamily B member

1; Siglc-10, sialic-acid-binding Ig-like lectin 10; ApoE, apolipoprotein E; PDAC,

pancreatic ductal adenocarcinoma; MDE, macrophage-derived exosomes; PrCR,

programmed cell removal; Btk, Bruton’s tyrosine kinase; CRT, calreticulin; MDP,

muramyl dipeptide; BCG, bacilli calmette-guerin; sTn, Sialyl-Tn; tEVs, tumor-

derived extracellular vesicles; MCP-1, monocyte chemotactic protein-1; CSF-1,

colony stimulating factor-1; CREB, cAMP response element binding protein;

GCN2, general control nonderepressible 2; MDSCs, myeloid-derived suppressor

cells; ATF4, activating transcription factor 4; HAC, an engineered small protein

which can block human PD-L1; QPCTL, glutaminyl-peptide cyclotransferase-like

protein; ADCP, antibody-dependent cell phagocytosis; AZA, azacytidine; DFMO,

difluoromethylornithine; iSNAPS, integrated sensing and activating protein.

macrophages would play a significant role in suppressing tumors
with potential clinical utility.

A SIMPLE CHARACTERIZATION OF
MACROPHAGES

The origin of macrophages is still inconclusive, although it
is currently universally believed that the major portion of
macrophages is derived from monocytes in the peripheral blood
circulation, as the mechanism has been clarified in some studies
(5, 6). During the early stages of embryonic development,
monocytes are recruited from marrow circulating blood and
then travel to various tissues and organs via circulation, thus
developing and differentiating into tissue-specific macrophages.
Nevertheless, there are still some tissue-resident macrophages
that are not derived from blood monocytes, such as alveolar
macrophages in the lungs, microglia in the brain, and Kupffer
cells in the liver, and the mechanisms of their origin, self-renewal,
proliferation, and substitution have not been clarified as well
(7). Recent studies confirmed the coexistence of tissue-resident
macrophages proliferating in situ and those derived from blood
monocytes in several tissues, including the lungs, spleen, and
brain, and confirmed the phenotype and functions of these tissue-
resident macrophages (8).

In macrophage subpopulations, M1 macrophages, which
produce proinflammatory cytokines with strong killing effects on
pathogens invading the body, play an important role in human
immune function and may contribute to tissue destruction.
Cytokines, such as INF-γ, GM-CSF secreted by other immune
cells and lipopolysaccharides (LPS) of the outer membrane of
bacteria, can induce M1 macrophage activation (9, 10). M2
macrophages participate in parasite infection, tissue remodeling,
allergic diseases, and angiogenesis, playing an important role in
above processes. Previous studies have shown that CSF-1, IL-4,
IL-13, IL-10, parasite infections, and other kinds of stimulation
can lead macrophages to polarize to M2 macrophages (11, 12)
(Figure 1). M1 and M2 are only two extreme descriptions of
the polarization state of macrophages without covering a wide
range of macrophage subpopulations (13). As an example, there
are still CD169+ macrophages and TCR+ macrophages, and as
is confirmed by present knowledge, in tumor-related studies, a
large number of TAMs have been found in tumor-tissues (14).
There is not much information about CD169+macrophages and
TCR+ macrophages, but present research has shown that they
play certain roles in some respects. Some macrophages in the
spleen, liver, bone marrow, lymph nodes, etc., express high levels
of CD169 antigen on the surface. Relevant studies have failed
to elucidate the relevant functions of CD169+ macrophages,
but it is believed that CD169+ macrophages play a certain
role in maintaining the homeostasis of the body, in immune
regulation, and in immune tolerance (15–17). Concerning TCR+
macrophages, researchers discovered that TCR-αβ complex
existed on 5–8% of neutrophils in the circulation (18), and
Beham’s group found that TCRβ gene rearrangement occurred
in the early stage of bone marrow macrophages differentiation.
TCR+ macrophages express chemokine (C-C motif) ligand 2
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FIGURE 1 | The two main subpopulations of macrophages and TAMs. Macrophages can be classified to several subpopulations, and the two main subpopulations

are classically activated macrophages (M1) and alternatively activated macrophages (M2). M1 macrophages, active by IFNγ, GM-CSF, other cytokines and LPS, play

an important role in human immune function and contribute to tissue destruction by producing proinflammatory cytokines with strong killing effects on pathogens. M2

macrophages, that can be active by CSF-1, IL-4, IL-13, IL-10, and other stimulation, participate in parasite infection, tissue remodeling, allergic diseases, and

angiogenesis, and play an important role in above processes. TAMs, recruited in tumor microenvironment, are not a typical kind of macrophages and different from M1

or M2. They express special TAM receptors on membrane, and are interacted with tumor cells and play the dual role in tumor microenvironment.

(CCL2) and have strong phagocytic ability, which is not the same
as the functions of traditional macrophages (19).

TUMOR-ASSOCIATED MACROPHAGES, A
SPECIAL KIND OF MACROPHAGES

The solid tumor consists of neoplastic cells and blood-born
cells, including granulocytes, macrophages (up to 50%), and
mast cells, as well as periphery cells—fibroblasts and epithelia
(20, 21). Macrophages are recruited to the tumor site by
the microenvironment, which produces cytokines. It has been
proposed that the recruitment and differentiation progress are
related to local anoxia, inflammation, and high levels of lactic
acid. The CC chemokines, such as CCL2, CCL11, CCL16,
and CCL21, which are major determinants of macrophage
infiltration and angiogenesis, have been demonstrated to
function in the cancer of breast, lung, esophagus, ovary and
cervix, and CCL2 primarily contributes to the recruitment of
macrophages (4, 22). Moreover, TAMs can produce CCL2,
which means that they can recruit macrophages in turn.
To some extent, TAMs can enlarge the recruitment of
macrophages (23). Some studies and human diagnoses have
demonstrated that the density of CCL2 is related to the

quantity of TAMs, the tumor invasion and the clinical prognosis
(Figure 1).

Involved in different microenvironments, macrophages
acquire different specific phenotypes (3). The phenotypes of
TAMs are plastic and regulated by the local microenvironment.
Indeed, TAMs have been confirmed in recent studies to be
present in large amounts in tumor tissues and to be significantly
associated with tumor development progress. Strictly speaking,
the division of macrophage types is complex. TAMs are not
regarded as a classical subgroup of macrophages because these
cells cannot be observed in the steady state but rather related to
specific pathologic conditions, such as inflammation and tumors.
There are some special receptor tyrosine kinases consisting of
TAM receptor family, including Tyro3, Axl, and MerTK, and
these receptors not only are of importance in interacting with
tumor cells, but also play roles in macrophage polarization,
efferocytosis and autoimmune disease (24). Active TAMs have
several properties similar to M2. As a consequence, sometimes
M2 macrophages are defined as TAMs in a narrow sense (14, 25).
However, previous studies have shown that TAMs not only have

the characteristics of M2 but also share M1 and M2 signature

polarization. Therefore, the view that TAMs are equal to M2

is inaccurate (14). TAMs have profound effects on increases in
angiogenesis, tumor invasion and the depression of immunity,
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as a result, TAMs can be taken into consideration in tumor
immunotherapy (26, 27).

THE DUAL ROLE OF TAMs IN TUMOR
MICROENVIRONMENT

Regarding the process of immune cells specifically recognizing
and eliminating tumor cells, the mechanism is very complicated
since various immune system components are involved,
and macrophages are one of the most important members
in these processes. TAMs are a key component of the
leukocyte infiltrate that is seen broadly in various tumors.
Examination of the roles of TAMs in tumor progression,
in conjunction with investigations of other cells, has paved
the way to eliciting new methods for tumor therapies. It’s
well-recognized that TAMs infiltrated in malignant metastatic
cancers can promote tumor growth and metastasis, but that’s
not all, few kinds of macrophages subtypes can also have the
antineoplastic activity.

TAMs in Promoting Tumor Progression
Cytokines
Several studies have supported that TAMs can secrete
chemokines and cytokines that promote the development
of tumors, and studies on IL-6, IL-8, and IL-10
(typical examples) have made substantial progress in
this respect.

IL-6
IL-6, secreted by tumor-associated endothelial cells and TAMs,
is considered to increase the possibility of carcinogenesis and
the developmental progress of malignant tumors by regulating
the corresponding genes of the cell cycle, promoting tumor
angiogenesis, aggravating local inflammation, and helping stem
cell self-renewal. Because the major signaling pathway mediated
by IL-6 is regulated by signal transducer and activator of
transcription 3 (STAT3) phosphorylation and at the same
time the epithelial-mesenchymal transition (EMT) is the main
characteristic of tumor stem cells, the transcription factor Snail
may have an important regulatory function (28). Therefore,
researchers detected the expression of STAT3 phosphorylation
and Snail in tumor cells interacted with TAMs and tumor-
associated endothelial cells expressing or overexpressing B-
cell lymphoma-2 (Bcl-2), which could promote the secretion
of IL-6. And at the same time, they added a STAT3
suppressor to the group that overexpressed Bcl-2 and contained
more IL-6. To obtain the results, the researchers tested
the landmarks of the EMT. The results shows that IL-6
promotes STAT3 phosphorylation and the expression of Snail.
When the phosphorylation of STAT3 was suppressed, the
expression of Snail decreased simultaneously. The experimental
results suggest that IL-6 may mediate the EMT by the janus
kinase (JAK)/STAT3/Snail pathway (29). Another research also
show s that IL-6 combined with IL-6R can activate STAT3
phosphorylation and lead to anti-apoptosis in tumors (30)
(Figure 2).

IL-8
IL-8 is highly secreted by TAMs and serum IL-8 levels
can correctly monitor and predict clinical benefit from
immune checkpoint blockade. And experiments also showed
that angiogenesis, tumor invasion, and the depression of
immunity were more remarkable at higher levels of IL-
8 (31, 32). Engulfment and cell motility 1 (ELMO1) is
an evolutionarily conservative protein expressed in tumor
cells that mainly mediates cell phagocytosis, migration, and
morphological changes. Studies have shown that IL-8 can
escalate tumor metastasis by upregulating the expression of
ELMO1 in tumor cells (33). To a wide extent, the activation
of the JAK2/STAT3/Snail pathway is considered to be another
mechanism for the capability of IL-8 to promote carcinogenesis.
With the increase in exogenous IL-8, the expression of
p-JAK2, p-STAT3, and Snail shows extreme improvement.
Hence, it is reasonable to speculate that IL-8 can promote
EMT via the JAK2/STAT3/Snail pathway (34) (Figure 2). In
inflammatory breast cancer (IBC), IL-8 and the growth-related
oncogene (GRO) chemokines that activate STAT3 are strongly
expressed, withmonocytes recruitment and high-level expression
of macrophage polarizing factors, promoting macrophages
recruitment and transformation into M2, causing the highly
infiltration. The highly infiltration macrophages also secrete high
levels of IL-8 and GRO chemokines, resulting in a feed-forward
chemokine loop that further drives the EMT of IBC (35).

IL-10
In the tumor microenvironment, TAMs secrete cytokines such as
IL-10, transforming growth factor-β (TGF-β) and inflammatory
mediators, including prostaglandin E2 (PGE2) and matrix
metalloproteinase-7 (MMP-7), to inhibit the normal process of
antigen-presenting, which makes T cells lose their competence
in recognizing and even killing tumor cells. It is convinced
that IL-10 family cytokines play an essential role during
infection and inflammation to maintain tissue homeostasis,
through upregulation of innate immunity, restriction of
excessive inflammatory responses, and promotion of tissue
repairing mechanisms (36). During chronic inflammation,
toll-like receptor 4 (TLR4) can stimulate M2 to secrete
the cytokine IL-10 (37). Moreover, the activation of TLR4
signaling by lipopolysaccharide profoundly increased the
EMT in pancreatic cancer cells (Figure 2) and IL-10 increases
cancerous the expression of inhibitor of PP2A (CIP2A) via the
phosphatidylinositide 3-kinases (PI3K) signaling pathway and
promotes tumor aggressiveness in lung adenocarcinoma (38, 39).
Additionally, the researchers have found a positive correlation
between IL-10 levels in serum and tumor progression, which
shows that IL-10 has an important influence on promoting the
development of tumors (40).

Immunosuppressive Receptors and Ligands

PD-1/PD-L1 signaling
Programmed cell death protein (PD-1) is a significant molecule
in immunosuppression and belongs to the CD28 superfamily. It
is of great importance to consider PD-1 as a target for immune
regulation to fight tumors, for anti-infection, for autoimmune
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FIGURE 2 | The role of tumor-associated macrophages (TAMs) in promoting tumor progression and related mechanisms. TAMs can secrete chemokines and

cytokines that promote tumor development, such as IL-6, IL-8, and IL-10. Furthermore, various molecular mechanisms play a large role in immunosuppression. The

PD-1/L1 signaling pathway promotes the possibility of tumor immune escape because it can inhibit the normal function of macrophages. The SIRPα/CD47 pathway is

referred to as the “do-not-eat-me” signal, while tumor cells with CD47 expression can be recognized as self-normal cells. LILRB1/MHC class I component

β2-microglobulin is also a significant mechanism of tumor escape. In breast cancer and ovarian cancer, CD 24 on tumor cells can promote immune escape through

the interaction of Siglec-10. In addition, recent researchers have found that TAMs can promote the development of tumors through exosomes.

diseases and for organ transplantation survival. Its ligand,
programmed cell death-ligand 1 (PD-L1), is the first type of
transmembrane protein of 40 kDa. When the body is in a healthy
condition, PD-L1 is expressed in antigen-presenting cells, which
are combined with PD-1 carried by T cells, and the combination
with PD-1 indicates that T cells will not launch an attack (41).
However, just as tumor cells know the cipher sent to PD-1, PD-
L1 can sometimes be expressed on the surface of tumor cells
through poorly characterized oncogenic signaling pathways (42).
T effector cells make a judgement that tumor cells are part of the
“self ”; thus, they are unable to kill the shrewd invaders. And in the
meanwhile, PD-1 is also expressed on TAMs (43). The PD-1/L1
signaling pathway promotes the possibility of tumor immune
escape because it can limit the functions of T effector cells,
natural killer (NK) cells, dendritic cells, TAMs, and so on, such
as suppressing activation, proliferation and cytokine expression
effects on T cells and inhibiting the phagocytosis of TAMs (44)
(Figure 2).

CD47-SIRPα signaling
The cluster of differentiation 47 (CD47) molecule is a membrane
protein widely distributed on membrane surfaces of various cells,
including tumor cells. Its corresponding ligand, signal regulatory
protein alpha (SIRPα), is a membrane protein mainly expressed
on macrophages and bone marrow cells, informing a typical
immunoreceptor tyrosine-based inhibitory motif (ITIM). The

interaction between the NH2 terminal domain of the ITIM
motif and the single domain of CD47 can phosphorylate the
ITIM motif, recruit the cytosolic tyrosine phosphatase SHP-1 or
SHP-2 and activate it. As a consequence, this interaction can
dephosphorylate multiple substrates and regulate downstream
signaling pathways, ultimately inhibiting the phagocytosis of
macrophages to normal cells. Therefore, CD47 is often referred
to as the “do-not-eat-me” signal (45) (Figures 2, 3A).

The combination of these twomolecules can produce a variety
of physiological functions, and there is a balance between the two
molecules. When the expression level of CD47 on the cell surface
increases, the balance is upset, because CD47 sends out a “do-
not-eat-me” signal to inhibit the phagocytosis of the tumor cells,
promoting the occurrence, and development of tumors.

MHC class I component β2-microglobulin/LILRB1 signaling
Researchers have found that there are still some tumor cells
escaping from the phagocytosis of macrophages after inhibiting
the CD47 molecule. Recently, Weissman and colleagues have
found that there is another recognition mechanism between
tumor cells and macrophages that protects tumor cells from
the phagocytosis of macrophages (46). The signaling molecule is
the major histocompatibility complex (MHC) class I component
β2-microglobulin on the surface of tumor cells (Figures 2,
3A). When the molecule is blocked or negative expression,
macrophages can be awakened in vivo to enhance phagocytosis
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FIGURE 3 | The two important treatment strategies targeting SIRPα/CD47 and LILRB1/MHC I. (A) CD47 is identified as a marker of self, or as a signal of

“do-not-eat-me,” when the CD47 molecule of tumor cells is combined with its receptor, SIRPα, which is expressed on TAMs, and when MHC I on tumors is

recognized by LILRB1 on TAMs; the signals will inhibit the phagocytosis of macrophages, promoting the occurrence, and development of tumors. (B) When using

drugs such as monoclonal antibodies (anti-CD47 mAb, anti-SIRPα mAb, or anti-LILRB1 mAb), the recognition pathways are blocked, and the phagocytosis of

macrophages is enhanced. Furthermore, the better treatment effect occurs when both pathways are blocked. (C) As it was discovered earlier that knocking out

LILRB1 genes can cause macrophages to kill tumor cells, it could be predicted that more genetic modification of macrophages, such as making the SIRPα gene silent

to suppress its expression, can achieve a similar effect.

and eliminate tumor cells, extending the survival time of
tumor-bearing mice by 70%. In addition, when researchers
knockout the receptor leukocyte immunoglobulin like receptor
subfamily B member 1 (LILRB1) on the surface of macrophages
recognized by MHC class I molecules, macrophages change from
promoting tumor growth to inhibiting tumor growth. Current
studies have shown that the inhibition of the LILRB1 protein
with the simultaneous administration of anti-CD47 monoclonal
antibodies can significantly increase the phagocytosis and kill
capacity of macrophages on tumor cells (Figure 3B), and the
inhibition of LILRB1 does not damage normal tissue cells in
vivo. Nevertheless, this mechanism needs further researches and
clinical experiments (46).

CD24-siglec-10 signaling
Regarding the “do-not-eat-me” signal mentioned above, in the
study of the magnitude and durability of the response to these
agents such as monoclonal antibodies, the researchers found
that there were still unclear escape signals. In breast cancer
and ovarian cancer, Irving L, and his colleagues found that
CD 24 was a dominant innate immune checkpoint and a
promising target for tumor immunotherapy. They demonstrated
that tumors expressing CD24 could promote immune escape
through the interaction of inhibitory receptor sialic-acid-binding

Ig-like lectin 10 (Siglec-10), which was expressed on TAMs.
Further studies have shown that in addition to breast cancer and
ovarian cancer, other tumors can also overexpress CD24, while
TAMs express high levels of Siglec-10 (Figure 2). Blocking the
interaction of CD 24 and Siglec-10 with monoclonal antibodies,
or ablating the genes of CD 24 or Siglec-10, can both enhance
the phagocytic function of TAMs to all human tumors expressing
CD 24. This finding deserves further study and it proposes a new
approach to tumor immunotherapy (47).

Exosomes From TAMs
Exosomes are small cell vesicles originating from cells that
carry genetic information (proteins, nucleic acids, etc.) and
mediate the information transmission and exchange of material
between cells, which can affect the functions of target cells. In
malignancies, exosomes serve as important carriers for materials
and information exchange in the tumor microenvironment and
participate in the survival and outgrowth of cancer cells and
the different stages of tumor metastasis, which can be used as
targets for tumor immunotherapy (48, 49). Previous studies have
focused on the secretion of soluble signaling molecules such as
cytokines and chemokines (50), while the discovery of exosomes
provides a new idea for the correlation study of tumor immunity.
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Recently, researchers have discovered that TAMs
characterized by an M2-polarized phenotype can promote
the metastasis of gastric cancer cells through exosomes (51)
(Figure 2). TAMs can deliver exosomes to tumor cells, which
are rich in miRNA, lncRNA, and specific proteins that can
contribute to tumor metastasis. Mass spectrometric analysis
reveals that M2-derived exosomes are rich in apolipoprotein E
(ApoE), which can activate the PI3K-AKT pathway in tumor
cells and induce the EMT and cytoskeleton rearrangement of
gastric cancer cells, thus enhancing their metastatic potential
as a consequence (51). Coincidentally, another research group
studying the resistance of pancreatic ductal adenocarcinoma
(PDAC) to gemcitabine have found that the mechanism by which
TAMs help gemcitabine resistance may be related to exosomes.
Using a genetic mouse model of PDAC and electron microscopy
analysis, they found that TAMs secrete vesicles, with selective
internalization by tumor cells, which indicated that TAMs
and tumor cells communicate with each other. Furthermore,
these authors also proved that the sensitivity of PDAC cells to
gemcitabine could be significantly reduced by these macrophage-
derived exosomes (MDE), which was mediated by the transfer of
miR-365 in MDE (52). These discoveries open a new door for
the study of the interaction between macrophages and tumor
cells, and in quite a few ways, prompt researchers in this field
to think about and study relevant mechanisms in greater depth.
Perhaps further studies will discover the effects of exosomes
on other tumors and their mechanisms for promoting tumor
development, which are of great importance in clinical treatment.

Enhancing the Antineoplastic Activity
Macrophage-Mediated Programmed Cell Removal

(PrCR)
Macrophage-mediated programmed cell removal plays an
important role in tumor elimination and surveillance. The
activation of TLR pathways in macrophages induces the
activation of Bruton’s tyrosine kinase (Btk) signaling pathway
(53), which makes the cell surface calreticulin (CRT) in
endoplasmic reticulum phosphorylated and dissociated. The
dissociated CRT is expressed on the surface of macrophages and
then forms the CRT/CD91/C1q compounds to target cancer cells
for phagocytosis (54). The induction of PrCR by “eat-me” signals
on tumor cells is antagonized by “do-not-eat-me” signals, which
bind macrophages SIRPα to inhibit phagocytosis. Blocking CD47
on tumor cells will block “do-not-eat-me” signals. Therefore,
the activation of TLR signaling pathways in macrophages can
synergize with blocking CD47 of tumor cells to enhance PrCR.

Enhancing the Toxicity
Activated macrophages defend against tumors by directing
tumor cytotoxicity and by secreting cytokines. Researchers
enhance macrophage cytotoxicity through specificity to
stimulate activation, such as by adding M-CSF and muramyl
dipeptide (MDP) when macrophages are cultured in vitro
to enhance macrophage cytotoxicity; by using the adoptive
transfer treatment to achieve anti-tumor effects; or by using
intravenous liposomes that load immune modulators to enhance
the toxicity of macrophages. The molecules of microbial agents

and pathogens can stimulate the antitumor cytotoxicity of
macrophages, such as using bacilli calmette-guerin (BCG) in the
treatment of bladder cancer, through stimulating macrophages
to increase the cytotoxicity of macrophages to certain bladder
cancer cell lines (55). In addition, there is evidence that
the increased levels of IL-6, IL-12, and TNF in the urine of
bladder cancer patients treated with BCG may be related to the
enhancement of the function of macrophages. Sialyl-Tn (sTn) is
a kind of glycan that controls synthesis by sialic acid transferase
ST6GALNAC1 and is abnormally expressed in bladder cancer
cells. The researchers established a bladder cancer cell lines that
expressed sTn (MCRsTn) in the process of study where sTn
participated in the BCG treatment of bladder cancer. These
researchers found that the secretion of BCG could promote
MCRsTn to secrete IL-6 and IL-8. These cytokines further
stimulate macrophages to produce large amounts of IL-6, IL-1
and TNF-α to enhance the toxicity of macrophages to tumor
cells (56).

Preventing the Diffusion and Metastasis of Cancers
In recent years, researchers have discovered sub-membranous
lymphoid sinus macrophages (SCS macrophages), which can
form a protective membrane around lymph nodes to prevent
the growth and metastasis of tumors (57). Present studies have
demonstrated that a potential way in which information transfer
can occur between tumor cells and immune cells. Tumor-derived
extracellular vesicles (tEVs), especially highly concentrated near
lymph nodes, can leave the tumor tissue and migrate to the
whole body. They are vital participators in this way (58). As
has been found in some studies, tEVs can interact with SCS
macrophages, which form a layer of cells in the fibrous capsule
surrounding the lymph nodes, thus limiting the spread of tEVs,
preventing the entry of tEVs into lymph nodes, and blocking the
pathway that causes B cells to produce tumor-promoting growth
substances, thereby inhibiting the migration and transformation
of melanoma. The specific molecular mechanism remains to be
elucidated (59). In this case, the protection of SCS macrophages
against tumor growth can be considered in the treatment of
tumors; with further development of this research, additional
mechanisms and whether this mechanism exists in other tumors
will be discovered, and this recommendation needs more clinical
experiments and confirmation.

MACROPHAGES TARGETING IN TUMOR
THERAPY

In recent years, tumor immunotherapy has been widely
concerned and made remarkable progress. By adjusting the
immune defense function of the body, tumor immunotherapy
can transform immune cells or use various types of immune-
active substances to achieve balance between immune system
and tumors. CAR-T and PD-1/PD-L1 blockade therapy has
achieved significant clinical efficacy. Macrophages, as the
important members of tumor microenvironment, become
potential hot spots for immunotherapy drug development
because of their characters. Next, we will summarize various
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TABLE 1 | Macrophages targeting therapies.

Category Substance Target site Mechanisms of action

Inhibitor Zoledronic acid CCL2 Suppress the expression of CCL2

Gefitinib CCL5 Decrease the secretion of CCL5

PLX3397 CSF1R Inhibit the expression of CSF1R

GW2580 CSF1 Inhibit the expression of CSF1

Wortmannin PI3K Decrease serum cytokine levels by inhibiting PI3K

Monoclonal antibody or blocker HAC PD-L1 Block human PD-L1

BMS-936558 PD-1 Block the interaction between PD-1 and PD-L1

Hu5F9-G4 CD47 Bock CD47 that induces tumor-cell phagocytosis

KWAR23 SIRPα Combined with tumor-opsonizing antibodies to augment

neutrophils and TAMs antitumor activity

GHI/75 LILRB1 Bock the MHC I/LILRB1 signaling way

Trabectedin Macrophages Block the immunosuppressive effect

Immunomodulator linemode Macrophages Block the activity of macrophages in tumor angiogenesis

Biological response modifier DNMTi 5-Azacytidine (AZA) Macrophages Regulate of macrophages polarization

α-Difluoromethylornithine (DFMO) Macrophages Regulate of macrophages polarization

Dual-inhibitor-loaded nanoparticles (DNTs) M2 macrophages Make M2 macrophages repolarize to active M1

macrophages and inhibit CSF1R and SHP-2

In this table, we summarize the relevant macrophages targeting therapies mentioned in chapter 5 about anti-tumor cells. It divides the drugs into inhibitor, monoclonal antibody, or

blocker and biological response modifier, and in each category, it contains substance, target site, and mechanisms of action of these drugs.

tumor immunotherapy strategies targeting macrophages and
their application prospects.

Macrophages Targeting Therapy (Table 1)
It has been known that the use of non-discriminatory medicine
for the whole body in the treatment of tumors has many
disadvantages, such as damaging the immune system and
upsetting the equilibrium of the microenvironment or even the
entire balance. Therefore, in seeking a treatment that damages
the tumor only, one concern, the need for targeted therapy and
modification of molecules in the expression pathways, has been
present for a long time.

CCL2 and CCL5
Stimulated by proinflammatory factors, such as IL-8 and TNF-α,
a large secretion of CCL2 (also known as monocyte chemotactic
protein-1, MCP-1) occurs by activated macrophages, monocytes
and dendritic cells. In other words, the interaction between
resident macrophages and newly recruited macrophages is
bidirectional because resident TAMs conversely can recruit
macrophages to deteriorate tumor metastasis. As a peritumoral
function of TAMs, CCL2 is considered a promising target site
to prevent the tissue from collecting TAMs (60). Recently,
researchers have found that zoledronic acid, a diphosphate
compound, can suppress the expression of CCL2/MCP-1,
decreasing the number of recruitedmacrophages and performing
an antitumoral function (61). A high concentration of CCL5 can
also bring about the recruitment of TAMs by connecting with
CCR2 on the surface of monocytes in some cases. Gefitinib, a
tyrosine kinase inhibitor that can decrease the secretion of CCL5,
inhibits the cross-talk between TAMs and prostate cancer cells,
leading to the proliferation of the tumor cells and the inhibition
of docetaxel activity (62).

Colony Stimulating Factor-1 (CSF-1)
Many studies on targeted therapy are based on a purposeful
strategy of CSF1/CSF1R, that is, to focus on the recruitment of
TAMs and the secretion of cytokines, tumor cells secrete CSF1 for
the purpose of collecting TAMs by connecting CSF1 with CSF1R
on macrophages. CSF1 is related to macrophage recruitment,
differentiation and repolarization; thus, it is an effective way
to target CSF1/CSF1R. As was shown in a previous study, the
tyrosine kinase inhibitor PLX3397 was used for the treatment of
melanoma in mouse models driven by BRAFV00E. It shows the
ability to inhibit CSF1R, and through its inhibition of the CSF1R,
it is currently used as the treatment of patients with glioblastoma,
breast cancer, and other cancers in clinical. These researchers
found that the number of TAMswas remarkably reduced and that
the proportion of M2 also decreased (63). Similarly, in MMTV-
Neu transgenic mice, inhibiting the CSF1/CSF1R pathway by a
CSF1 inhibitor named GW2580 led to a noticeable decrease of
TAMs infiltration in tumor tissue (64). Another study showed
that with the assistance of inhibitor PLX3397 or a monoclonal
antibody of CSF1, CSF1-deficient mice showed specific changes,
such as the decrease number of TAMs (65). It is now generally
believed that the loss of the CSF1/CSF1R signal possesses the
ability to give absolute control for consuming M2 macrophages,
contrary to the uninfluential M1 macrophages (66).

Related Kinase Signaling Blocking
According to the description above, IL-10 promotes the growth
and transfer of tumors by increasing CIP2A expression via the
PI3K signaling pathway. Studies show that IL-10 secreted in E6-
positive lung cancer cells is regulated by the phosphorylation
of cAMP response element binding protein (CREB) via the
pathway, and the feedback of IL-10-CIP2A-phosphorylated-
CREB is likely to affect the progression of tumors. One of the
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targeted therapies uses specific inhibitors, such as wortmannin or
LY294002 (PI3K inhibitors), to block the signaling transduction
pathway. Wortmannin, a commonly used cell biology reagent,
has been previously used to suppress DNA repair, receptor-
mediated endocytosis and cell proliferation (67). Wortmannin
has been confirmed to be effective in decreasing serum cytokine
levels by inhibiting PI3K/Akt, which may suppress tumor
invasiveness. In recent research, Halaby et al. have discovered
serine-threonine kinase general control nonderepressible 2
(GCN2) is important to maturation and polarization of
macrophages and myeloid-derived suppressor cells (MDSCs)
by promoting translation of the transcription factor CREB-
2/activating transcription factor 4 (ATF4). Therefore, they
blocked the GCN2 signaling by targeting Atf4 with small
interfering RNA knockdown, and found that tumor growth was
reduced as a consequence. This finding demonstrates blocking
GCN2 signaling can promote anti-tumor immunity (68).

PD-1/PD-L1 Signaling Blocking
One study treated immunocompromised mice with either a PD-
L1 blocker (HAC, an engineered small protein which can block
human PD-L1) or a PD-1 blocker (anti-mouse PD-1 antibody).
The results show that both murine and human TAMs express
high levels of PD-1, and the level of PD-1 increases gradually
with the development of tumors. After PD-1/PD-L1 suppression
by inhibitors, the phagocytosis function of TAMs improves,
killing tumor cells. In addition, it is likely that PD-1/PD-L1
therapies interact with anti-CD47 in the context of macrophage-
mediated immunotherapy, and the combination therapy trends
toward increasing the survival rate more than monotherapy (43).
According to the PD-1/PD-L1 recognition mechanism, many
PD-1 monoclonal antibodies, such as BMS-936558, have been
approved by the FDA for use in clinic and have achieved great
efficacy in the treatment of certain advanced malignant tumors,
although PD-1 inhibitors have a curative effect only on a small
proportion of cancer patients (69).

Monoclonal Antibodies and Inhibitors
Immune escape is one of the most important mechanisms
of tumor establishment and diffusion. Currently, the most
widely used tumor immunotherapy is monoclonal antibodies.
Monoclonal antibodies can block multiple pathways involved
in TAMs and tumors recognition, disrupting tumors escape
pathways and thus acting as antitumor agents. After discovering
the CD47-SIRPα recognition mechanism of tumor cells and
macrophages, researchers used an anti-CD47 monoclonal
antibody to carry out in vivo experiments on tumor-bearing
mice, and found the antibody can block the CD47-SIRPα

pathway to interdict the signal of anti-phagocytosis (Figure 3B).
This antibody shows targeting to tumor cells, which increases
the macrophage phagocytosis of tumor cells and at the
same time, does not affect normal cells (70). The CD47
molecule is also expressed on the surface of normal cells,
and the anti-CD47 mAb triggers a strong self-reaction (71–
73). Current researches have found that anti-CD47 monoclonal
antibodies mainly induce transient anemia and mild neutrophil
reduction as well as no other obvious adverse effects or

the occurrence of autoimmune diseases (74, 75). However,
Hu5F9-G4, an anti-CD47 monoclonal antibody, selectively
eliminates malignant cells that express CD47 and not normal
cells (76). As is mentioned in a recent study, glutaminyl-
peptide cyclotransferase-like protein (QPCTL) is identified
as a new target to interfere with the CD47 pathway and
promotes the efficacy of antibody therapy of cancer (77).
Recently, Arely and colleagues switched to an anti-SIRPα

monoclonal antibody in the study and blocked this mechanism
to enhance the tumor phagocytosis of macrophages; the
effect was better than that in previous experiments (78),
and another research team found the anti-human SIRPα

antibody, KWAR23, could significantly promote the anti-
tumor activity of neutrophils and TAMs when it was in
combination with the tumor-opsonizing antibody rituximab (79)
(Figure 3B).

Though the mechanism of the anti-CD47 antibody is not
yet clear, the possible pathways are as follows: preventing
the combination of CD47 on tumor cells and SIRPα on
macrophages to activate phagocytosis, promoting the cytotoxic
effect of antibody dependence and complement dependence
based on Fc, directly inducing apoptosis to tumor cells,
or stimulating the phagocytosis of dendritic cells to tumor
cells. Additionally, it is likely the combined result of several
mechanisms mentioned above (45). Because the overexpression
of CD47 in myeloid leukemia cells prevents macrophages
from clearing tumor cells, the survival rate of tumor cells
increases. Taken together, these findings provide a rational
basis for targeting the interaction of CD47-SIRPα in cancer,
particularly to enhance the efficiency of antibody therapy in
cancer. Similarly, drugs of another recognition mechanism,
LILRB1/MHC class I, such as the LILRB1 monoclonal antibody
GHI/75 are still in the clinical trial stage, and no obvious damage
to the human body has been found for the time being (46)
(Figure 3B). These drugs have clear targets and few adverse
reactions, providing a theoretical basis and good prospects for
clinical application. In addition, in some studies, macrophage-
mediated antibody-dependent cell phagocytosis (ADCP) has
been elucidated, which needs more experiments to study its
mechanism (80).

Regulation of Macrophages Polarization
In recent years, using molecular targeted drugs to treat
hepatocellular carcinoma has led to new breakthroughs
with deep researches in the molecular biology of liver
cancer. The treatment strategies for macrophages in the
microenvironment of hepatocellular carcinoma include
promoting M2 macrophages to transform into M1 macrophages
(81) and blocking the immunosuppressive effect. Trabectedin
is a targeted drug for macrophages and is used to treat soft
tissue sarcomas. This drug is a marine bioactive extract
that is toxic to macrophages. Other potential drugs, such
as the immunomodulator linemode, can block the activity
of macrophages in tumor angiogenesis. The CCL2 antibody
can reduce the aggregation of macrophages as a potential
treatment. C-Fms is a CSF receptor that regulates the function
of macrophages. Clinical research is conducted using many
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drugs and these drug combinations may affect the interaction
of C-Fms with other immune cells, change macrophage
phenotypes and change the microenvironment that maintains
M2 macrophages.

Combination therapy can also be put in to use in the
treatment of cancer. A recent study held by Travers found that
DNMTi 5-Azacytidine (AZA) and α-difluoromethylornithine
(DFMO) in combination could significantly improve survival,
reduce tumor burden, and then they combined therapy in
a mouse model of ovarian cancer with normal immune
function. The survival rate significantly decreased, more than
that the two drugs were used alone. Significant reduction
in M2-polarized macrophages and increased number of
tumor-killing M1 macrophages in combination therapy
suggest that combination therapy can alter macrophage
polarization in the tumor microenvironment, recruit M1
macrophages and prolong survival period (82). This type of
tumor suppression treatment will have great prospects for
clinical application.

In addition, a new study by Ashish Kulkarni and his
colleagues have reported that self-assembled dual-inhibitor-
loaded nanoparticles (DNTs) target M2 macrophages and
make M2 macrophages repolarize to active M1 macrophages.
In the meanwhile, this drug simultaneously inhibits CSF1R
and SHP-2 signaling pathways. This research provides
an idea for anti-tumor therapy of macrophages and
DNTs has good perspective potential for individual drug
treatments (83).

Engineering Macrophages
Macrophage Gene Modification
In the discovery of a new mechanism for the recognition
between macrophages and tumor cells, the MHC class I
component β2-microglobulin/LILRB1 protein, researchers used
the gene modification of macrophages to knock out the gene
for the LILRB1 protein and downregulated its expression on
the membrane surface, allowing the macrophages to transform
from the state of promoting the growth of tumor cells to
eliminating the tumor cells (Figure 3C). While inhibiting the
receptor with the simultaneous administration of anti-CD47
monoclonal antibodies, the phagocytosis and killing capacity
of macrophages on tumor cells is significantly increased (46)
(Figure 3B). In recent research, researchers have found that
CD 24 expressed on tumor cells is a dominant innate immune
checkpoint, and can promote the escape of tumors with the
interaction of Siglec-10 on TAMs. Ablating the genes of CD 24
or Siglec-10 has been demonstrated an effective way to enhance
the phagocytic function of TAMs (47). At present, due to the
convenience of clinical application and cost issues, macrophage
gene modification is not as frequently used, as it is only at
the research stage; however, in future, with the development of
the technology, gene therapy, especially the progress of genetic
engineering, will have better prospect because of its stability
and longevity. When the technology is mature and applied on
a large scale, tumor treatment and precision medicine will take a
new step.

iSNAPS Smart Protein Molecules
A group of researchers designed a smart protein called the
integrated sensing and activating proteins (iSNAPS) protein,
which could reprogram white blood cells and ignore the self-
defense signaling mechanisms on which tumor cells rely for
survival and spreading in vivo. The emergence of this protein
will present new approaches and ideas for the editing of immune
cells. The iSNAPS protein is inserted into macrophages in
the study, and it reconnects macrophages, covering the escape
signals recognized by the tumor cells and interpreting them as
phagocytic signals. In addition, its rapid response and strong
lethality can significantly enhance the ability of macrophages to
divide, phagocytose, and kill tumor cells rapidly (84).

The design principle of this intelligent protein molecule can
also be used to redesign other immune cells for cancer treatment.
At present, the team plans to test iSNAPS in mice and may study
its application in other areas (84). This protein may influence not
only tumor treatment but also other diseases and self-regulation,
and further research is needed.

CONCLUSIONS

This review introduces the origin, classification and immune
function of macrophages and further explores the mechanisms of
the participation of macrophages in tumor microenvironment.
We focus on the killing effect and mechanisms of macrophages
on tumors, while tumor promoting factors such as IL-6, IL-
8, IL-10, TLR4 are briefly introduced as well (29, 37, 40, 85).
Based on existing research, we discuss the molecular mechanisms
of the interaction between macrophages and tumor cells, not
only the chemokines and cytokines but also some recognition
mechanisms including. For instance, the promoting pathways
of PD-1/PD-L1, SIRPα/CD47, and LILRB1/MHC I (41, 46, 86)
and the killing factors such as PrCR (54) are presented. In
addition, based on existing researches, we summarize a new
pathway by which TAMs can promote the development of
tumors through exosomes. The pathway has been found and
may exist in certain kinds of tumors, which opens a new door
for the study of tumor immunity (51, 52). Moreover, several
types of treatments, such as inhibiting M2 macrophages to
promote the growth of tumor cells, motivating the transition of
M2 macrophages to M1 macrophages, enhancing macrophage
phagocytosis of tumors and reinforcing the role of macrophages
in preventing tumor growth and metastasis, suggest that
macrophages can participate in tumor cells immune regulation
through various molecular mechanisms and should be given
more attention.

At present, with the development of precision medicine, the
therapeutic direction of tumors has gradually turned to targeted
therapy because non-discriminatory medicine for the whole
body during the treatment of tumors has many disadvantages.
With tumor immunity becoming a popular research direction,
increasing researches has been conducted to overcome the
unresolved issues in traditional tumor treatment, but this area
of research has been very limited in terms of adaptive immunity
until recent years. As suggested by some studies, macrophages
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influence tumor cells through various mechanisms and have
become a new research hotspot in immunotherapy research
(45, 46, 64), and researchers have found that certain cytokines
(56) secreted by macrophages or modified macrophages can
be used to kill tumor cells. In recent years, a variety of
recognition mechanisms have been discovered, and related
targeted therapies, such as the application of antibodies or
inhibitors (43, 71), genetic modification (46), and adoptive
transfer of immune cells, are under in-depth research. In
summary, macrophages are promising in terms of tumor-
targeted therapy, as several kinds of therapy has been applied,
but the technology is still immature at present, and current
researches are limited because cancer still cannot be completely
cured. Thus, quite a few unknown molecular mechanisms
may play a vitally important role in the regulation of tumor
growth and development, and some potential targets need more
research and attention. Thus, it is necessary to investigate the
communication of macrophages and tumor cells a bit deeper in
further studies.
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Monocarboxylate transporter 1 (MCT1) participates in the transport of lactate to facilitate

metabolic reprogramming during tumor progression. Tumor-associated macrophages

(TAMs) are also involved in the inflammatory adaptation of the tumor microenvironment

(TME). This study aimed to determine the correlation between metabolite changes and

the polarization of macrophages in the TME. We demonstrated that the expression of

CD163 on macrophages was significantly higher in breast cancer tissues than in normal

tissues, especially in the HER2 subtype, although it was not statistically associated with

recurrence-free survival (RFS). The presence of MCT1+ and CD163+ macrophages

in the invasive margin was significantly correlated with decreased RFS. A significant

correlation existed between MCT1 and CD163 expression in the margin, and high

infiltration of MCT1+CD163+ macrophages into the margin predicted rapid progression

and poor survival outcomes for breast cancer patients. These data suggested that

MCT1 at least partially promoted the alternative polarization of macrophages to inhibit

antitumor immunity, and blocking this interaction may be a promising method for breast

cancer therapy.

Keywords: breast cancer, tumor-associated macrophage, MCT1, CD163, recurrence-free survival

INTRODUCTION

The tumor microenvironment (TME) is a heterogeneous ecosystem, including infiltrating
immune cells, mesenchymal support cells, and matrix components (1). With the metabolic
and inflammatory reprogramming of tumor cells during cancer progression, the TME is
converted into an advantageous microenvironment with altered generation of metabolites, such
as lactate, pyruvate and ketone bodies, and adaptive infiltration of tumor-infiltrating lymphocytes.
Macrophages are one of the important immune cells recruited to the TME, which have two
subsets, “classically activated” M1 macrophages and “alternatively activated” M2 macrophages
(2). Generally, M1 macrophages are thought to be proinflammatory and are characterized by
high expression of proinflammatory factors, such as interleukin (IL)-12, nitric oxide synthase 2
(NOS2), and tumor necrosis factor (TNF)-α. However, M2 macrophages are considered to be
immunosuppressive and generate high levels of anti-inflammatory cytokines, such as IL-10 and
transforming growth factor (TGF)-β, and low levels of proinflammatory cytokines, to facilitate
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tumor evasion (2, 3). The pan-macrophage marker CD68 is
now generally utilized to identify tumor-associated macrophages
(TAMs) in diagnostic biopsy samples, and CD163 and CD206 are
used to identify M2 macrophages (3).

Monocarboxylate transporters (MCTs) are proteins
located primarily in the plasma membrane that transport
monocarboxylates bidirectionally depending on the
concentration gradient of their substrates, including lactate,
pyruvate, and ketone bodies (4). MCT1 is ubiquitously expressed
in normal tissues, such as gut epithelium (5), heart and red
skeletal muscle fibers (6), as well as in various cancer types,
including breast cancer (4), melanoma (7), and prostate cancer
(8). MCT1 can mediate lactate influx as well as efflux, while
MCT4 mainly facilitates the efflux of lactate to maintain steady
intracellular pH (9). In high-lactate microenvironment, MCT4
is the major exporting transporter of lactate (10), and high
expression of MCT1 on macrophages regulates the lactate
uptake and induces M2-like polarization of macrophages
(11). LPS and TNFα stimulate the expression of MCT1 in
macrophages (12). Macrophages increase the uptake of lactate
through MCT1, the possible reason is that lactate can be
utilized as energy source to generate ATP to meet the need
for production and secretion of cytokines. However, the
expression of MCT1 on tumor-associated macrophages is
still unknown.

Lactate, generated by glycolytic tumor cells and immune
cells, such as macrophages, and dendritic cells (13), is
involved in almost all of the main processes following
carcinogenesis, including immune evasion, angiogenesis,
cell metastasis, and metabolism (14). Functionally, a high
lactate concentration serves as an immune suppressor. Lactate
derived from tumor cells suppressed the proliferation and
cytokine generation of cytotoxic T lymphocytes (CTLs) (15).
In addition, the lactate concentration in cancerous tissues
was increased almost 10-fold compared to that of healthy
tissues. Lactate taken up by macrophages can also induce
alternative polarization of macrophages through hypoxia-
inducible factor 1α (HIF-1α) stabilization and the resulting
increased production of vascular endothelial growth factor
(VEGF) (16).

Here, we focus on the expression levels of MCT1 and CD163
on macrophages in breast cancer specimens to investigate the
correlation between the expression of MCT1 on macrophages,
macrophage phenotypes, and survival outcomes to explore the
impact of tumor metabolic reprogramming on the remodeling of
the immune microenvironment.

MATERIALS AND METHODS

Tissue Specimens
A total of 108 formalin-fixed paraffin-embedded (FFPE)
tissue samples of breast cancer were collected from Renmin
Hospital of Wuhan University, People’s Republic of China,
and 12 cases of benign breast disease were used as controls.
Clinical information was extracted from medical records
and pathology reports, and the detailed clinicopathological
characteristics of the patient are shown in Table 1. Patients

were all followed-up for at least 5 years from the date of
first diagnosis. All patients involved in the study have written
an informed consent form, and this study was approved by
the Institutional Ethics Committee of the Renmin Hospital
of Wuhan University (approval no. 2018K-C09). Patients did
not receive any financial compensation. All methods were
performed in accordance with the relevant guidelines and
local regulations.

Immunohistochemistry
A series of 108 paraffin-embedded human breast cancer
specimens was characterized by histopathology at Renmin
Hospital of Wuhan University from 2011 to 2013.
Immunohistochemistry (IHC) staining was performed as
follows: deparaffinization, antigen retrieval, blocking (2% bovine
serum albumin, 37◦C, for 30min), incubation with the primary
antibody (dilution 1:100, 37◦C for 2 h), washing, blocking,
incubation with the horseradish peroxidase (HRP)-conjugated
secondary antibody (dilution 1:500, 37◦C for 30min), washing,
and staining with diaminobenzidine (DAB). The specimen
incubated without the selective antibody was used as the negative
control. And we used the paraffin-embedded human non-small
cell lung cancer (CD163) or paraffin-embedded human liver
tissue (MCT1) as positive control provided by the antibody
companies. The staining results were scored by two independent
pathologists based on both the proportion of positively stained
tumor cells and the intensity of staining. According to the
expression, the protein expression level of CD163 was described
according to the numbers of CD163+ macrophages using
software Image-Pro plus, while the expression level of MCT1
was described according to the percentage of positive cells
calculating by the software ImageJ (17, 18). The proportion of
tumor cells was scored as follows: 0 (<10% positive cells), 1
(10–20% positive cells), 2 (21–50% positive cells) or 3 (more
than 50% positive cells). The intensity of protein expression was
determined as follows: 0 (no staining), 1 (weak staining, light
brown), 2 (moderate staining, brown), or 3 (strong staining,
dark brown). The protein staining positivity was determined
using the following formula: overall score = percentage
score × intensity score. In addition, the numbers of CD163+

macrophages were counted in 10 random fields of each breast
cancer specimen at 400× magnification. Receiver operating
characteristic (ROC) analysis was used to determine the optimal
cut-off values of all protein expression levels in regard to
survival rate.

Immunofluorescence Imaging
Immunofluorescence (IF) imaging was performed to
investigate the localization of MCT1 and CD163 as
well as the colocalization of CD68 (a marker of all
macrophages) and CD163. Tissue specimens undergoing
IF staining were incubated with a Cy3-conjugated
secondary antibody or a FITC-conjugated secondary
antibody for 1 h at room temperature, followed by
counterstaining with DAPI for 5min. Images were
captured using a fluorescence microscope (Olympus BX63;
Olympus Corporation).
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TABLE 1 | Clinicopathological associations of MCT1&CD163 expression in breast cancer.

Clinicopathological

parameters

CD163 margin CD163 tissue MCT1 MCT1—CD163 margin MCT1—CD163 Tissue

High expression

(%)

p High expression

(%)

p High expression

(%)

p High expression

(%)

p High expression

(%)

p

Age at diagnosis, y 0.333 0.645 0.298 0.350 0.750

≤50 33 (50) 10 (58.8) 29 (49.2) 22 (46.8) 6 (50.0)

≥51 33 (50) 7 (41.2) 30 (50.8) 25 (53.2) 6 (50.0)

Tumor size (cm) 0.005 0.239 0.183 0.025 0.322

<2 17 (25.8) 4 (23.5) 18 (30.5) 11 (23.4) 3 (25.0)

≥2 49 (74.2) 13 (76.5) 41 (69.5) 36 (76.6) 9 (75.0)

Lymph node

metastasis

0.005 0.283 0.471 0.062 0.191

Negative 24 (36.4) 6 (35.3) 26 (44.1) 16 (34.0) 3 (25.0)

Positive 42 (63.6) 11 (64.7) 33 (55.9) 31 (66.0) 9 (75.0)

Vascular invasion 0.545 0.698 0.091 0.469 0.198

Negative 59 (89.4) 15 (88.2) 51 (86.4) 40 (85.1) 10 (83.3)

Positive 7 (10.6) 2 (11.8) 8 (13.6) 7 (14.9) 2 (16.7)

ER 0.069 0.053 0.051 0.038 0.054

Negative 37 (56.1) 12 (70.6) 34 (57.6) 29 (61.7) 8 (66.7)

Positive 29 (43.9) 5 (29.4) 25 (42.4) 18 (38.3) 4 (33.3)

PR 0.006 0.004 0.004 0.002 0.002

Negative 40 (60.6) 14 (82.4) 37 (62.7) 32 (68.1) 10 (83.3)

Positive 26 (39.4) 3 (17.6) 22 (37.3) 15 (31.9) 2 (16.7)

HER2 0.058 0.238 0.086 0.062 0.196

Negative 46 (69.7) 11 (64.7) 41 (69.5) 31 (66.0) 8 (66.7)

Positive 20 (30.3) 6 (35.3) 18 (30.5) 16 (34.0) 4 (33.3)

Molecular

subtypes

0.004 0.038 0.088 0.007 0.001

Luminal A 10 (16.9) 14 (21.2) 1 (5.9) 23 (48.9) 10 (83.3)

Luminal B 15 (25.4) 15 (22.7) 4 (23.5) 7 (14.9) 1 (8.3)

HER2 10 (16.9) 10 (15.2) 4 (23.5) 4 (8.5) 0 (0.0)

Basal-like 24 (40.7) 27 (40.9) 8 (47.1) 13 (27.7) 1 (8.3)

Ki67 0.002 0.006 0.000 0.000 0.000

<14% 24 (36.4) 3 (17.6) 18 (30.5) 13 (27.7) 0 (0.0)

≥14% 42 (63.6) 14 (82.4) 41 (69.5) 34 (72.3) 12 (100.0)

Recurrence 0.012 0.191 0.001 0.001 0.006

No 38 (57.6) 9 (52.9) 31 (52.5) 23 (48.9) 5 (41.7)

Yes 28 (42.4) 8 (47.1) 28 (47.5) 24 (51.1) 7 (58.3)

*P-values calculated by Log-rank testing; Bold if statistically significant, P < 0.05. ER, estrogen receptor; PR, progesterone receptor; HER2, human epithelial growth factor receptor-2.

Analysis of Gene Expression Data
The expression data of breast cancer cases were downloaded
from The Cancer Genome Atlas (TCGA) database to
analyze the correlation between the mRNA expression of
MCT1 (SLC16A1) and CD163 in breast cancer patients. In
addition, the association between MCT1 and CD163 mRNA
levels and survival outcomes of patients with breast cancer
was analyzed.

Statistical Analysis
Statistical analyses were performed and survival probabilities
were determined with SPSS 22.0 (IBM Corporation, Armonk,

NY, USA). The relationships between MCT1 and CD163 and
the clinical characteristics of patients with breast cancer were
evaluated by the Chi-square test. Kaplan-Meier analysis was
utilized to calculate the patient survival probability, and the log-
rank test was used to assess the heterogeneity in the survival
data for each prognostic factor. Multivariate Cox proportional
hazard regressions were used to obtain hazard ratios (HRs) and
their respective 95% confidence intervals to show the strength
of the estimated relative risks. Pearson’s correlation analysis was
used to evaluate the correlation between MCT1 and CD163
expression levels. Significance levels were set at a p < 0.05. All
tests were two-sided.
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RESULTS

Significant Differences Existed in the
Expression of CD163 Between the Tumor
Invasive Margin and Malignant Tissues
Tumor-associated macrophage (TAM) were phenotypically
different between the invasive margin and the core in malignant
tumors (19, 20). In colorectal carcinoma, strong infiltration
of intraepithelial CD163+ macrophages was correlated with
unfavorable clinicopathological features, such as lymph node
invasion (21); however, in endometrial cancer, stromal TAMs
rather than tumor core TAMs promoted lymph node metastasis
(22). Therefore, we investigated whether this discrepancy also
existed in breast cancer tissues. Immunohistochemistry staining
was utilized to examine the expression level of CD163 in
108 cases of primary breast cancer and 12 cases of benign
breast disease. As shown in Figure 1A, CD163 protein was
positively expressed in both the tumor tissues and the invasive
margin near adipose tissues. Of 108 breast cancer specimens,
66 (61.1%) exhibited high expression of CD163 in the margin
(CD163Margin), whereas only 2 (16.7%) specimens of benign
breast disease showed high expression. However, for the
expression of CD163 in the tumor tissues (CD163Tissue), only
17 (15.7%) cases of breast cancer and no (0%) cases of benign
breast disease showed high expression. There are significant
differences in CD163 protein expression in the margin or
tumor tissue between 108 breast cancer specimens and 12
controls (Supplementary Figure 1A, p = 0.0015, p = 0.0002,
respectively). The significant difference also existed between
the expression level of CD163 in the margin and that in
tumor tissues, and the expression of CD163Tissue was much
higher than that of CD163Margin (p < 0.0001) (Figure 1B).
In addition, Table 1 shows the association between CD163
expression and the clinicopathological features of breast cancer
patients. Our results demonstrated that compared with low
expression of CD163Margin, high expression of CD163Margin
was significantly associated with larger tumor size (p = 0.005),
lymph node metastasis (p = 0.005), PR status (p = 0.006), and
higher Ki67 (p = 0.002), which indicated that CD163Margin
might be a predictor of prognosis for breast cancer patients.
On the other hand, high expression of CD163Tissue was only
significantly related to PR status (p = 0.004) and higher
Ki67 (p = 0.006). No correlations were detected between
CD163Tissue and other clinicopathological features, including
age, tumor size, lymph node metastasis, vascular invasion, ER
status, and human epithelial growth factor receptor-2 (HER2)
status. Moreover, Kaplan–Meier analysis and the log-rank test
showed that high expression of CD163Margin had a significant
association with decreased recurrence-free survival (RFS)
(Figure 1C). Multivariate Cox proportional hazard regressions
showed that CD163Margin was an independent prognostic
predictor in breast cancer (Figure 4, p = 0.016; HR = 2.705,
95% CI 1.203–6.083). However, such a relationship was not
observed between the expression of CD163Tissue and RFS
(Figures 1D, 4).

CD163 Overexpression Was Found in HER2
Breast Cancer Patients
It has been reported that there are significant differences
in the types and numbers of tumor-infiltrating lymphocytes
(TILs) among different molecular subtypes of breast cancer (23,
24). Therefore, we compared the infiltration level of CD163+

macrophages in different breast cancer subtypes. As for CD163
in the tumor margin, the HER2 subtype had the highest
expression level (Figures 2A,B), and a similar condition was
observed in the expression level of CD163 in the malignant tissue
(Figures 2C,D).

Increased Infiltration of MCT1+CD163+

Macrophages Was Associated With Poor
Prognosis in Breast Cancer
Previous observations have shown that high expression of MCT1
is significantly correlated with poor prognosis in breast cancer
(Supplementary Figure 1D) (25). Here, we further explored
the correlation between the expression of MCT1 and CD163
and whether MCT1 has an impact on the polarization of
macrophages to promote the expression of CD163. For this
purpose, we performed immunohistochemistry (IHC) staining
and immunofluorescence (IF) staining to detect the expression
of MCT1 and CD163 in a series of 108 cases of breast cancer.
We compared the expression of CD163 in MCT1− and MCT1+

groups, and the results demonstrated that the margin and
tissue expression of CD163 were higher in MCT1+ group than
that of MCT1− group (Supplementary Figure 1E, p = 0.0072,
p= 0.0166, respectively).

Pearson’s correlation analysis revealed that MCT1 expression
was positively correlated with the level of CD163Margin
(Figure 3A, r = 0.202, p = 0.036). The IHC and IF results
also revealed that MCT1 was frequently present in the margin
between tumor tissues and adipose tissues, accompanied by
positive expression of CD163 (Figures 3B,C). In addition, IF
images showed that the expression of MCT1 was almost
completely coincident with that of CD163, which meant that
macrophages were both MCT1-positive and CD163-positive
(Figure 3B). Overall, 47 (43.5%) breast cancer specimens
exhibited high expression of both MCT1 and CD163Margin,
and this combined high expression was significantly correlated
with tumor size (p = 0.025), ER status (p = 0.038), PR
status (p = 0.002), and increased Ki67 staining (p < 0.0001)
(Table 1). Kaplan-Meier analysis revealed that patients with
high infiltration of MCT1+CD163+ macrophages in the margin
displayed shorter RFS than patients with negative expression of
both markers or positive expression of one marker (Figure 3D,
p = 0.0012). Furthermore, multivariate Cox proportional hazard
regressions showed that high expression of both MCT1 and
CD163Margin was an independent prognostic factor for poor
prognosis in breast cancer (Figure 4, p= 0.002; HR= 3.145, 95%
CI 1.516–6.526; n = 108). These observations indicate that high
infiltration of MCT1+CD163+ macrophages in the margin can
be a useful biomarker for predicting rapid progression.
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FIGURE 1 | The expression of CD163 in tumor invasive margins and malignant tissues was associated with recurrence-free survival (RFS). (A) The positive expression

of CD163 in tumor invasive margins and malignant tissues, respectively. (B) A comparison of the expression levels of CD163 in tumor invasive margins and malignant

tissues. (C,D) Kaplan-Meier survival analysis of patients with CD163-positive and -negative IHC staining in the margin or tumor tissues, respectively.

MCT1 expression was also positively associated with the
level of CD163Tissue (Figure 3E, r = 0.209, p = 0.030). The
IHC and IF results showed similar co-occurrence of MCT1
and CD163 staining in the malignant tissue (Figures 3F,G).
However, only 12 (11.1%) specimens had high expression of both
MCT1 and CD163Tissue, and this combined expression only
displayed a significant association with PR status (p = 0.002)
and increased Ki67 staining (p < 0.0001) (Table 1). The Kaplan-
Meier analysis showed similar results: the RFS of patients
with high infiltration of MCT1+CD163+ macrophages in the
tissue was much shorter (Figure 3H, p = 0.0026) than that of
patients with low infiltration of MCT1+CD163+ macrophages
in the tissue. Multivariate Cox proportional hazard regressions
indicated that high infiltration of MCT1+CD163+ macrophages
in the tissue might not be an independent predictor of poor RFS
(Figure 4, p= 0.081; HR= 2.165, 95% CI 0.910–5.153; n= 108).
These findings suggest that high infiltration of MCT1+CD163+

macrophages in the tissue is not superior to high infiltration of
MCT1+CD163+ macrophages in the margin for the prediction
of breast cancer progression.

Validation in the TCGA Database
To explore whether the correlation between MCT1 and
CD163 also existed in additional breast cancer cases, we
downloaded breast cancer expression files from The Cancer
Genome Atlas (TCGA) database. Although mRNA expression

of MCT1 or CD163 alone was not significantly associated
with overall survival (data not shown) or recurrence-
free survival (Supplementary Figures 2A,B), there was a
significant correlation between MCT1 and CD163 expression
(Supplementary Figure 2C) and between the high mRNA
expression of both MCT1 and CD163 and shorter overall
survival (Supplementary Figure 2D), which may be a potential
prognostic marker for breast cancer.

DISCUSSION

There are increasing studies concentrating on tumor-infiltrating
lymphocytes, including T lymphocytes, macrophages and mast
cells, as well as the spatial distribution of these cells (21,
22, 26). Tumor-associated macrophages are important cells
involved in the tumor microenvironment and participate in
tumor progression, immune suppression, metastasis, and tumor
angiogenesis through cross-talk with tumor cells and other
stromal cells. Here, we showed that the expression of MCT1
and CD163 on macrophages in the infiltration boundary of
breast cancer was significantly increased and can be regarded as
a useful biomarker for predicting rapid progression. Likewise,
overexpression of both MCT1 and CD163 by macrophages in the
adjacent tissue may serve as a high-risk factor for poor prognosis
in breast cancer patients.

Frontiers in Oncology | www.frontiersin.org 5 October 2020 | Volume 10 | Article 57478721

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Li et al. MCT1+CD163+ Macrophages in Breast Cancer

FIGURE 2 | The expression of CD163 among molecular subtypes of breast cancer. (A) Representative images of CD163 protein abundance in the margin in different

subtypes. (B) A comparison of expression levels of CD163 in the margin in different subtypes. (C) Representative images of CD163 protein abundance in malignant

tissues from different subtypes. (D) A comparison of CD163 expression levels in malignant tissues from different subtypes. **p < 0.01.

The impacts of TAMs on clinicopathological features and
survival outcomes partially depend on their spatial distribution
(27, 28), which is consistent with the finding of the present study
that high numbers of CD163+ macrophages are an unfavorable
clinicopathological feature. In gastric cancer, the number of
infiltrating macrophages in the malignant tissues was much
higher than that in peritumoral tissues; however, infiltration
of TAMs into the tumor core was not correlated with any
clinicopathological characteristics, but the presence of TAMs
in the invasive front was associated with poor prognosis and

unfavorable survival (27, 28). The TAMs exhibited a more M2-
like phenotype at the margin, while a significant increase in the
proportion of M1-like TAMs was observed in the core (20).
Mechanically, some studies have speculated that TAMs in the
core of tumor are protective because they secrete signals to kill
tumor cells (29, 30). In contrast, TAMs located in the invasive
margin are immunosuppressive, promote tumor progression
and facilitate tumor evasion. Overexpression of cytokines in
the TME, such as chemokine (C–X–C motif) ligand 2 (CCL2)
and CCL5 (1), contributes to the progression of breast cancer.
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FIGURE 3 | Increased infiltration of MCT1+CD163+ macrophages is correlated with poor prognosis. (A) Correlation analyses between the protein expression levels of

MCT1 and CD163 in the margin. (B) Representative IF images of MCT1 and CD163 in the margin (red immunofluorescent signal for MCT1 and green

immunofluorescent signal for CD163). (C) Representative images of MCT1 in the margin. (D) Kaplan-Meier survival analysis of patients with biomarker-positive and

-negative IHC staining in the margin. (E) Correlation analyses between the protein expression levels of MCT1 and CD163 in malignant tissues. (F) Representative IF

images of MCT1 and CD163 in malignant tissues. (G) Representative image of MCT1 in malignant tissues. (H) Kaplan-Meier survival analysis of patients with

biomarker-positive and -negative IHC staining in the tissues.

CCL2 recruits more macrophages into the tumor to promote
lymphatic metastasis via VEGF-C secretion (31). In addition,
elevated CCL2 induces the secretion of chemokine (C–X–C

motif) ligand 12 (CXCL12) in macrophages, which acts on blood
vessels to enhance angiogenesis (32). Moreover, increased CCL5
binding to CCR5 activates the protein kinase B/mechanistic
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FIGURE 4 | Forest plot showing the results of multivariate Cox proportional hazard regression analyses.

target of rapamycin (AKT/mTOR) signaling pathway to promote
tumor cell growth and invasion and induces the production of
matrix metalloproteinase (MMPs) by macrophages to decrease
adhesion and facilitate migration (33). Our results established
that the infiltration of TAMs into the tumor margin rather
than into the malignant tissues was significantly associated with
poor prognosis in breast cancer patients. Further studies are
needed to clarify the potential mechanisms by which TAM spatial
distribution influences human solid tumors.

The subtype and number of tumor-infiltrating lymphocytes
track with tumor heterogeneity. P53 gene mutation is common
in multiple tumors, and inactivating mutations of P53 have been
associated with reduced immune infiltration (34). Interestingly,
induction of P53 resulted in increased expression of colony-
stimulating factor 1 (CSF1), CCL2, CXCL1, and IL-15 as well
as of the adhesion molecules intercellular adhesion molecule
1 (ICAM1) and vascular cell adhesion molecule 1 (VCAM1),
which further recruit natural killer (NK) cells to trigger tumor
regression, arguing that oncogenic pathways might also influence
immune cell types. Previous studies revealed that CD163+

macrophages were positively correlated with lymph node
metastasis, hormone receptor negativity, and Ki67 positivity
(35–37). The present study validated this relationship between
CD163 expression and clinicopathological features by showing
that CD163 expression was lower in PR-positive tumors that
had a low proliferation level than in highly proliferative PR-
negative tumors, and high CD163 expression was associated
with poor survival outcome. In addition, this study showed the
highest infiltration level of CD163+ macrophages in the HER2
subtype. It has been well-established that in response to the
Th2 cytokines interleukin-4 (IL-4) and interleukin-13 (IL-13),
macrophages undergo alternative activation, gaining abilities to
support tumor growth and inhibit antitumor immunity (38).
The expression of IL-4 and IL-13 was similarly correlated with
hormone receptor status, and IL-4 was increased in samples with
an ER-negative status (39, 40). IL-4 is generated by both tumor
cells and stromal cells, and IL-4 neutralization resulted in reduced
levels of the chemokines CCL2, CCL11, and CXCL5 in the TME
(41). Another study demonstrated that high expression of the

plasma membrane receptor for IL-13 (IL-13Rα1) was observed
in breast cancer patients with HER2 positivity (42). Therefore,
increased levels of IL-4 and IL-13may partially explain the higher
infiltration of CD163+ macrophages in the HER2 subtype. Given
the wide range of changes in chemokine production associated
with dysregulation of the HER2 pathway, additional studies will
be needed to investigate which immune cell types are affected in
patients with distinct types of cancer.

MCT1 functions as a transporter of lactate and has been
reported to be generally expressed in various human tumors,
including prostate, colon, breast, and lung tumors (43). In line
with a previous study (25), the present study demonstrated
that high expression of MCT1 was significantly associated with
poor prognostic clinicopathological parameters, including PR-
negative status and proliferation, as MCT1 was correlated with
Ki-67 positivity. Therefore, MCT1 contributes to the aggressive
features and is an independent prognostic factor for breast
cancer. In addition to participating in tumor metabolism, as
the IF results showed, MCT1 and CD163 were colocalized on
macrophages, and MCT1 may participate in the lactate uptake
into CD163+ macrophages in the high-lactate TME. MCT1
played a role in suppressing the phagocytosis of tumor-associated
macrophages (44). In glioblastoma, branched-chain ketoacids
excreted from tumor cells were taken up by TAMs through
MCT1 andwere converted to branched-chain amino acids, which
attenuated the phagocytosis by TAMs. Furthermore, lactate,
another important substrate of MCT1, can induce alternative
polarization of macrophages (45). Mechanically, lactate activated
the extracellular regulated protein kinase/signal transducer and
activator of transcription 3 (ERK/STAT3) signaling pathway to
stimulate M2 macrophage polarization to promote proliferation,
migration, and angiogenesis in breast cancer, which were
abolished with the suppression of ERK/STAT3 signaling (46). On
the other hand, lactate activated macrophage G protein-coupled
receptor 132 (Gpr132) to promote an alternatively activated
macrophage (M2)-like phenotype, which in turn facilitated
cancer cell migration and invasion to promote lung metastasis
in breast cancer (47). However, MCT4, which facilitates lactate
efflux, was highly expressed in the surrounding stromal cells (48).
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Therefore, in the tumor invasive margin, macrophages with
high expression of MCT1 uptake large amounts of lactate,
leading them to have immunosuppressive effects in the TME.
However, in the core of tumor tissues, due to an insufficient
supply of nutrients, tumor cells preferentially consume lactate,
which restricts the uptake of lactate by macrophages, thereby
resulting in reduced immunosuppressive effects. The present
study revealed that there was a significant correlation between
MCT1 positivity and CD163 positivity onmacrophages; however,
the underlying mechanisms are worthy of further investigation.

This is the first attempt to correlate monocarboxylate
transporters with macrophages utilizing immunohistochemistry
and immunofluorescence imaging methods. We demonstrated
that alternations of metabolic-associated proteins are greatly
associated with the infiltration and polarization of macrophages
in the TME. Increased infiltration of MCT1+CD163+

macrophages in the margin, rather than in the malignant tissues,
was associated with poor prognosis for breast cancer patients and
was an independent risk factor for predicting rapid progression
of breast cancer. This increased infiltration will be a promising
therapeutic target to impede breast cancer progression.
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Our understanding of the tumor microenvironment (TME), including the interplay between
tumor cells, stromal cells, immune cells, and extracellular matrix components, is
mandatory for the innovation of new therapeutic approaches in cancer. The cell-cell
communication within the TME plays a pivotal role in the evolution and progression of
cancer. Cancer-associated fibroblasts (CAF) and tumor-associated macrophages (TAM)
are major cell populations in the stroma of all solid tumors and often exert protumorigenic
functions; however, the origin and precise functions of CAF and TAM are still incompletely
understood. CAF and TAM hold significant potential as therapeutic targets to improve
outcomes in oncology when combined with existing therapies. The regulation of CAF/
TAM communication and/or their differentiation could be of high impact for improving the
future targeted treatment strategies. Nevertheless, there is much scope for research and
innovation in this field with regards to the development of novel drugs. In this review, we
elaborate on the current knowledge on CAF and TAM in cancer and cancer
immunotherapy. Additionally, by focusing on their heterogenous functions in different
stages and types of cancer, we explore their role as potential therapeutic targets and
highlight certain aspects of their functions that need further research.

Keywords: cancer-associated fibroblasts, tumor-associated macrophages, tumor microenvironment, cancer
immunotherapy, cancer biology
INTRODUCTION

Originating from the neighboring healthy tissues and recruited from the circulation, a multitude of
proliferating non-neoplastic cells such as fibroblasts, macrophages, immune cells, and endothelial
cells contribute to carcinogenesis within the tumor microenvironment (TME) (1). Cancer-
associated fibroblasts (CAF) and tumor-associated macrophages (TAM) are the major cell
populations within the stroma of all solid tumors in which they often exert protumorigenic
functions. Although their precise interactions remain to be elucidated, CAF and TAM strongly
modulate disease progression, therapy resistance, and clinical outcomes (2–7) and may function
in synergy.

Targeting the cytokines, inhibitory immune checkpoint ligands expressed by CAF and TAM,
and antiphagocytic signaling by tumor cells have shown some efficacy in preclinical trials. The
results of clinical trials are nonetheless ambiguous. Antibodies, chemokines, and chemokine ligands
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that interfere with CAF/TAM interactions, and their
combinations hereof, are highly prioritized in experimental
clinical regimens that are aimed at modulating the TME (8).
THE FIBROBLAST

Fibroblasts can be clearly identified and characterized by their
elongated morphology, the lack of epithelial, endothelial,
leukocytic, and malignant-cell markers, and the positivity for
mesenchymal markers such as vimentin. Under normal
circumstances, fibroblasts are present in abundance in the
connective tissues in a dormant state, transiently being activated
duringperiodsof tissue remodeling and repair. They are involved in
the production of extracellular matrix (ECM) and modulation of
inflammation, as well as the proliferation and differentiation of
epithelial cells.

Well-established fibroblast-activating signals include
inflammatory mediators, transforming growth factor-beta
(TGF-b), and lysophosphatidic acid which increase the activity of
SMAD transcription factors and drive the expression of alpha-
smooth muscle actin (a-SMA) that provides the fibroblast with a
highly contractile phenotype (usually known as myofibroblast or a-
SMA+

fibroblast). The activated fibroblasts produce chemokines and
cytokines to regulate the communication with other mesenchymal,
epithelial, and immune cells (9). Importantly, all of these functions
are utilized and enhanced in cancer (10, 11).
CANCER-ASSOCIATED FIBROBLASTS

Structure and Functions
Within a tumor, the mesenchymal cells that comply with the
aforementioned definitions above, are generally referred to as
CAF. Compared with regular fibroblasts, they tend to be slightly
larger with darker nuclei and branched cytoplasm. CAF may
differentiate from quiescent fibroblasts and bone marrow-
derived mesenchymal stem cells or trans-differentiate from
epithelial cells, smooth muscle cells, pericytes, and adipocytes (12).
Abbreviations: a-SMA, alpha smooth muscle actin; b-FGF, basic fibroblast
growth factor; CAF, cancer-associated fibroblasts; CAFEx, CAF-derived
exosomes; CCL, C-C motif ligand; CRC, colorectal cancer; CTC, circulating
tumor cell; CXCL, C-X-C motif ligand; CCR, C-C chemokine receptor; CD,
cluster of differentiation; CSF1R, colony-stimulating factor 1 receptor; CSM,
consensus molecular subtypes; ECM, extracellular matrix; EGF, epidermal
growth factor; EMT, epithelial-mesenchymal transition; FAP, fibroblast
activation protein; GM-CSF, granulocyte-macrophage colony-stimulating factor;
HCC, hepatocellular carcinoma; IL, interleukin; myCAF, cancer-associated
myofibroblast; miR, micro-RNA; MMP, matrix metalloproteinase; OPN,
osteopontin; PDAC, pancreatic ductal adenocarcinoma; PD-1, programmed
death receptor 1; PD-L1 and 2, programmed death receptor ligand 1 and 2;
PDGF, platelet-derived growth factor; PDGFR, platelet-derived growth receptor;
STAT3, signal transducer and activator of transcription 3; TAM, tumor-associated
macrophages; TGF, transforming growth factor; TME, tumor microenvironment;
TNF, tumor necrosis factor; TSE, tumor-derived exosomes; TSF, tumor-derived
factors; VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial
growth factor receptor.
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CAF are present during all stages of solid malignancies (13)
and their functional impact on the biology of cancer is assumed
to be similar across all tumor types (14).

CAF are the predominant cell type in the tumor stroma and they
contribute to theproliferative,pro-inflammatory, immunosuppressive,
angiogenic, pro-invasive, and pro-metastatic TME that is required for
the evolution and progression of cancer (15).

Inflammatory mediators such as TGF-b, interleukin (IL)-1,
and IL-6 produced by tumor cells and non-malignant stromal
cells promote CAF activation and contribute to a pro-
inflammatory profile, that directly support carcinogenesis (16).
The activation of specific transcriptional programs and the lack
of negative feedback mechanisms launch CAF into self-
sustaining trajectories (17, 18).

Additionally, CAF drive the epithelial-mesenchymal transition
(EMT), whereby cancer cells lose polarity and adhesion molecules
and gain the motility necessary for dissemination (19). Despite the
overall pro-tumorigenic effects, functional dualities have been
observed. A hypothesis is that initially CAF are tumor suppressive
but as cancer evolves they transform into pro-tumorigenic
cells (20).
Heterogeneity of CAF Subtypes
Withinamulti-clonal solid tumor,CAFaredifferentially exposed to a
multitude of tumor secreted factors (TSF) explaining their
heterogeneity. However, the essential molecular mechanisms
underlying the activation and pro-tumorigenic activities of
fibroblasts may be common to various cancers, which present a
manifold of targets for innovative CAF-targeted therapies. Signaling
cascades mainly involve the Wnt/b-catenin, TGF-b, epidermal
growth factor receptor, JAK/STAT, and Hippo pathways.

Several studies have characterized distinct CAF subgroups that
differentially express the CAF markers, e.g. a-SMA, fibroblast
activation protein (FAP), and platelet-derived growth factor
receptor (PDGFR), and show that CAF subpopulations may have
various and even opposing functions. Tumor-suppressive CAF
populations have been characterized by activated Hedgehog
signaling pathways in mouse models of colon, pancreatic, and
bladder cancers. However, the full complement of CAF
populations remains unclear, and more detailed classifications
and functions of CAF subtypes are needed (21–25).

In a mouse model of pancreatic ductal adenocarcinoma
(PDAC), the ablation of CAF led to enhanced hypoxia, EMT,
increased vascularity, cancer cell proliferation, and disease
progression demonstrating that CAF to some extent can
restrain tumor growth (26, 27). Similarly, an initial expansion
of local fibroblasts circumscribing early or premalignant lesions
in response to tissue neoplasia was observed in mouse models
and human tissue studies (14, 28, 29).

Thus, the TME comprises a heterogeneous population of CAF
subtypes or clusters with different functions associated with
immunomodulation, immunosuppression, and immunotherapy
resistance (30).

Furthermore, in a mouse model on early and late PDAC stages,
fibrosis associatedwith type I collagenprovided a protective response
from the host rather than a pro-tumorigenic response (26).
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These results demonstrate that at least some stromal
constituents may restrain rather than promote tumor
progression and illustrate the high degree of temporal
differentiation plasticity within the diverse cell populations of
tumors. This may also explain the conflicting reports regarding
antitumor and pro-tumor functions of CAF.

In a preclinical trial on lung cancer, the depletion of CAF
significantly reduced the number of metastases (31, 32). To
establish the clinical relevance of primary tumor CAF in the
formation of metastasis, this research group examined human
brain metastases (since the normal brain is devoid of fibroblasts)
from lung, breast, kidney, and endometrium, and found a
distribution of activated CAF within these metastases. These
findings support the view that the CAF shed from the primary
tumor, together with cancer and non-tumor cells from the TME,
survive during the blood circulation and proliferate at the
metastatic site (31).

With respect to human PDAC specimens, the patients with a
higher expression of FAP were found to be associated with shorter
disease-free survival and overall survival when compared to those
with low FAP expression (33). The immune suppression caused by
FAP+ CAF is mediated by the CXCL12 receptor CXCR4 that
excludes T cells from the tumor. Notably, CXCR4 inhibition leads
to an elimination of tumor cells by a rapid accumulation of
cytotoxic CD8+ T cells (34). Moreover, the deletion of FAP+

CAF using a FAP-targeted immune-based therapeutic approach
or a genetic ablation approach inhibited cancer growth in murine
PDAC models (32, 35). Thus, the inhibition of CAF-induced pro-
tumorigenic signals is a highly attractive future strategy to improve
outcomes in pancreatic cancer.

In human triple-negative breast cancer, a subset of CAF with
myofibroblast characteristics (myCAF) (a-SMA+/FAP+ or S1
CAF) was identified as a key player in immunosuppression
through the attraction of Tregs and inhibition of effector T cell
proliferation (36) and it was hypothesized that targeting the
CAF-S1-mediated immunosuppression could enhance anti-
tumor immunity.

In PDAC, CAF are linked to worse overall survival. PDAC is
infamous for the abundance of fibrotic ECM with the majority of
the tumor volume being composed of a-SMA+ CAF. Preclinical
and clinical trials targeting stromal a-SMA+ CAF, however,
resulted in an apparent, paradoxical acceleration in disease
progression and reduction in survival, halting clinical trials and
adding further layers of complexity to CAF functions (26, 37).

Another study on murine models of lung carcinoma and
PDAC revealed that the deletion of FAP led to a significant
reduction in CAF infiltration and tumor tissue necrosis, and an
increase in infiltration of CD8+ T cells (38). Moreover, in murine
models of breast and colon cancer, the administration of a DNA-
based vaccine targeting FAP induced the killing of CAF by CD8+

T cells and lead to a substantial increase in the uptake of
chemotherapeutic agents by otherwise multi-drug-resistant
cancer cells (39). Further, in immunocompetent mice, the cell
transfer of FAP-specific chimeric antigen receptor T cells
boosted host immunity and arrested pancreatic tumor growth;
however, it also led to significant lethal toxicity and cachexia
(40). These examples indicate that specific CAF subsets could be
Frontiers in Oncology | www.frontiersin.org 330
potential targets for improving immunotherapy. Future studies
are needed to develop targeted therapies aimed at specific CAF
populations (41).

Secreted Factors and Exosomes in
CAF-Tumor Cells Interplay
The cytokines and chemokines produced by CAF may have both
immunosuppressive and immuno-activating effects on various
leukocytes, including CD8+ T cells, immunosuppressive
regulatory T cells (Tregs), and macrophages (Figure 1).
However, the consensus is that the overall effects of CAF are
immunosuppressive (14). IL-6, CXC-chemokine ligand (CXCL)
9, and TGF-b, which are produced by CAF, have well-established
roles in suppressing anti-tumor T cell responses (34). This is also
supported by an inverse association between CAF and CD8+ T
cell cytotoxicity.

The staining of the inhibitory immune-receptor ligand
programmed death-ligand 2 (PD-L2) and tumor necrosis
factor-alpha (TNF-a) ligand OX40L in human breast cancer
sections revealed T lymphocytes at the surface of CAF. This
confirmed that subsets of CAF attract and retain T lymphocytes
at the periphery of the tumor through distinct mechanisms
involving chemokine signaling (chemokine ligand [CCL]-11,
CXCL12–14), cell adhesion molecules, activation of inhibitory
immune checkpoints, and CD8+ T cell anergy (36).

In a murine PDAC model, it was demonstrated that CAF,
programmed by TGF-b to express a leucine-rich protein
(LRRC15), were associated with a poor response to anti–PD‐L1
therapy (42). Additionally, CAF are a source of various growth
factors including TGF-b, vascular endothelial growth factor
(VEGF), fibroblast growth factor 5, growth differentiation factor
15, hepatocyte growth factor and insulin-like growth factor (43,
44). The secretion of pro-stemness paracrine factors such as
insulin-like growth factors, inflammatory cytokines (IL-6 and
IL-8), and chemokines (CCL2 and CCL5) promotes the
conversion of cancer cells into cancer stem cells and reinforce
the stemness of existing cancer stem cells (45–47). Moreover, the
secretion of IL-6 make CAF an important mediator of EMT in
cancer cells (48, 49).

Exosomes are extracellular vesicles released by all cell types
and are found in all bodily fluids (50). They contain genetic
material, proteins, and lipids and are essential for intercellular
communication. The activation, recruitment, and conversion of
fibroblasts into activated CAF depend on TSF and tumor-
secreted exosomes (TSE) containing various oncogenic
molecules such as microRNAs (miRs), fusion gene mRNAs,
long non-coding RNAs, mutated DNA fragments, and a
manifold of cell‐signaling molecules (51). The circulating levels
of exosomal miRNA accurately reflect disease progression and
could serve as a prognostic tool among various cancers following
resection of the primary tumor (52–58).

In addition to TSF, TSE and CAF-derived exosomes (CAFEx)
secreted by tumor cells and CAF, respectively, in the primary tumor
are critical mediators of cancer cell-immune cell communication
and they drive the formation of pre-metastatic niches (PMN) (59).
Moreover, CAF may enter the circulation and promote the
development of PMN and subsequent metastatic lesions (60, 61).
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Integrins (ITG) are known to determine tumor cell
organotropism. In a mouse model, CAF promoted lung
metastasis by the construction of PMN via CAFEx. CAFEx-
derived ITGa2b1 were found to home to the lung fibroblasts and
subsequently activate the TGF-b signaling pathway. To prepare
for subsequent colonization of the lung tissue by extravasating
circulating tumor cells (CTC), the lung microenvironment is
remodeled by the activated lung fibroblasts (58). Surface ITG
guide the TSE to organ-specific ECM ligands (collagen,
fibronectin, fibrinogen, and E-cadherin) in the target organs,
e.g. ITGa6b1 and ITGa6b4 adhere to the epithelial cells and
fibroblasts in the lung and ITGavb5 binds to resident liver
macrophages (Kupffer cells) and upregulate the genes for cell
migration and S100 protein (62). Organ-specific TSE have been
identified for 28 different metastatic cell lines. Furthermore, TSE
comprising TGF-b and PDGF mediate the activation,
differentiation, and recruitment of CAF through all stages of all
solid cancers (13).

In early-stage colorectal cancer (CRC), TSE were found to
promote highly proliferative and angiogenic CAF, while those
from late-stage metastatic CRC cell lines were observed to induce
highly invasive CAF which, through the secretion of ECM-
degrading proteases and increased expression of the pro‐
invasive modulators of membrane protrusion, enabled the
penetration of ECM (51).

In addition, TSE alter CAF metabolism and induce the
production of CAFEx containing nutrient metabolites (amino
acids and tricarboxylic acid cycle intermediates) that fuel the
Frontiers in Oncology | www.frontiersin.org 431
tumor cells and increase their survival (31, 63). A study on
breast-cancer cell lines revealed that TSE containing miR-105
could re-program CAF metabolism and enable them to increase
glucose metabolism when nutrient levels were sufficient as well as
detoxify metabolic wastes into energy-rich metabolites when
nutrients were scarce (64).

As shown in PDAC, lactate produced by cancer cells
promotes extensive epigenomic reprogramming of CAF (65).
In CRC, and during protein deprivation, CAF accumulate fatty
acids, phospholipids, and fatty acid synthetase. The uptake of
lipid metabolites by the CRC cells secreted by CAF seem to be
essential for their migration (66).

Another potent promotor of malignancy is the heat shock
factor 1 which is frequently activated in CAF. It drives a program
that supports the survival and metastatic potential of cancer cells
by inhibiting apoptosis and promoting migration. The activation
of heat shock factor 1 has been associated with poor outcomes in
CRC, lung-, breast-, and hepatocellular carcinoma (HCC) (67).

Of the important players, the gene that deservesmentioning is the
HMG-box 2 (SOX2). It codes for transcription factors controlling the
expressionof several genes involved inearly embryonicdevelopment.
The upregulated stromal SOX2 drives the reprogramming of colonic
fibroblasts that results inenhancedb-CateninandTGF-b signaling in
CRC cells supporting cancer progression. Nonetheless, the precise
mechanism remains to be determined (68).

The subset of CAF with myofibroblasts characteristics (myCAF)
mediate a chronically deranged wound healing program in tumors
and play a key role in the development of a continuously evolving
FIGURE 1 | Major effects of CAF on immune cells in the tumor microenvironment. TGF-b, transforming growth factor beta; VEGF, vascular endothelial growth factor;
IL, interleukin 6; GM-CSF, granulocyte-macrophage colony-stimulating factor; M-CSF, macrophage colony stimulating factor; CCL, C-C motif chemokine ligand;
CXCL, C-X-C motif ligand.
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fibrotic stroma. myCAF are highly responsive to chemokines and
metabolically and morphologically distinctive from CAF. When
activated, their proliferation rate drops and the production of
ECM components increases dramatically. The cytoplasmic
microfilaments of myCAF connect to the extracellular fibronectin
domains, creating very contractile mechanisms. The following
extracellular deposition of collagen reinforces and stiffens the
ECM (69).

Not only does it contribute to the increasing stromal density,
but the remodeling of the stroma by CAF-produced matrix-
enzymes also provides tracks for cancer cell invasion and
migration (14). The stromal stiffness results in increased
interstitial pressure, abnormal vasculature, collapsed blood
vessels, hypoxia, and acidity which lead to inefficient drug
delivery and reduced response to therapy. These physical and
chemical barriers are hostile to cytotoxic immune cells such as
CD8+ T cells and natural killer (NK) cells (70).

CAF and Circulating Tumor Cells (CTC)
The presence of CAF in the circulation of cancer patients and
their levels in the peripheral blood correlates with cancer
progression and worse prognosis. Notably, the high levels of
CAF-CTC aggregates in the blood samples from patients should
be considered an important marker of worse clinical outcomes
(71). For instance, CTC have higher viability in the blood stream
when accompanied by stroma cells that also provide an
advantage with respect to early survival and growth of tumor
cells at the metastatic site (31). Traveling in clusters with
macrophages, immune cells, and platelets, CAF support, shield,
and increase the survival of CTC. Adjoining neutrophils may aid
in the survival of CTC through the suppression of leukocyte
activation (72). Through strong intercellular adhesions, CAF
maintained the viability and proliferative capacity of CTC in
cellular aggregates in presence of high levels of hemodynamic
forces (> 1,000 dyn/cm2). This protective role was observed in
prostate cancer, usually spreading through blood vessels rather
than the lymphatic system (61).

Only a minority of CTC travel in clusters; however, in a
mouse model, it was estimated that the probability of metastasis
formation originating from clusters (and especially those of
Frontiers in Oncology | www.frontiersin.org 532
oligoclonal tumor cell groupings) is fifty times higher
compared with that originating from a single CTC (73).

As EMT of tumor cells may proceed within the clusters, the
association between neutrophils and CTC drives tumor cell
mitosis and expands the metastatic potential of CTC (74).
Upon arrival in the PMN, tissue-resident fibroblasts contribute
to the mesenchymal-epithelial transition (MET). Thus, CAF are
considered key players in promoting the survival of CTC.

Targeting CAF-Associated Pathways
To revert CAF to a quiescent state by targeting the activation
pathways is an appealing concept. CAF-secreted Wnt2 accelerates
the Wnt/b-catenin signaling pathway which corresponds with the
absence of CD8+ T cells. The effects of vitamin D seen in
epidemiological studies of PDAC and CRC are partly related to
the reduced CAF-related Wnt/b-catenin signaling which was
relayed by vitamin D metabolites (Table 1) (75).

Alternatively, targeting CAF-derived cytokines and chemokines
(e.g. CXCL, IL-6, and TGF-b) could improve anticancer efficiency
in combination with immunotherapy. Several IL-6 inhibitors such
as sarilumab and tocilizumab that are already approved for
autoimmune and myeloproliferative disorders, are being
investigated for their role in anticancer therapy either alone or
in combination.

Anti-TGF-b in combination with anti-PD-L1 antibodies
inhibited TGF-b signaling in CAF and facilitated T cell penetration
into solid tumors (76). A summary of RCT examining the effects of
targeting IL-6 and TGF-b have been presented in Table 2. The
complexity and incomplete understanding of CAF functions
necessitate further research before anti-CAF targeted therapy can
be integrated into clinical practice.
THE MACROPHAGE AND ITS M1
AND M2 SUBTYPES

Representing another major stromal cell population,
macrophages are remarkable, heterogenic, and versatile cells.
These cells are capable of switching functions and phenotypes,
depending on their unique microenvironment (77). They engulf
TABLE 1 | Clinical trials targeting Wnt/b-catenin signaling related to CAF in different types of cancer.

Cancer type Trial number Target Mechanism of action Treatment/Intervention

CRC NCT04094688 CAF-related Wnt/
b-catenin
signaling

Wnt pathway: Vitamin D3 promotes the upregulation of
DKK-1 (tumor suppressor) and downregulation of DKK 4
b catenin: Vitamin D3 promotes VDR-dependent
inhibition of b-catenin (1)

High dose vitamin D3 + FOLFOX/FOLFIRI +
Bevacizumab

PDAC NCT03520790 Gemcitabine + Nab-paclitaxel + Paricalcitol IV/oral
Melanoma NCT01748448 Vitamin D
Urothelial cancer NCT04197089 Vitamin D
Prostate cancer NCT03103152 High/Low dose Aspirin + Vitamin D
Gynecologic
cancers

NCT03192059 Vitamin D + Aspirin + Cyclophosphamide +
Lansoprazole + Pembrolizumab + Radiation +
Curcumin

Breast cancer NCT02786875 Low glycemic diet, Physical activity, and Vitamin D
FOLFOX: leucovorin, 5-fluorouracil, and oxaliplatin; FOLFIRI: leucovorin, 5-fluorouracil, and irinotecan
CRC, colorectal cancer; PDAC, pancreatic ductal adenocarcinoma; CAF, cancer-associated fibroblasts; VDR, vitamin D receptor; DKK 1, DICKKOPF 1.
(1) Pendás-Franco, Natalia et al. “Vitamin D and Wnt/beta-catenin pathway in colon cancer: role and regulation of DICKKOPF genes.” Anticancer research vol. 28,5A (2008): 2613-23.
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tissue and microbial debris; orchestrate inflammatory processes
(78); and contribute to tissue remodeling, angiogenesis, and
homeostasis. The conventional binary model distinguishes
between the M1 and M2 macrophages.

The M1 subtype consists of classically activated, pro‐
inflammatory macrophages with bactericidal, tumor‐suppressive,
and anti-angiogenic functions. They express inducible nitric oxide
synthase (CD86 and CD169) and are activated through their
pattern recognition receptors upon recognition of damage- or
pathogen-associated molecular patterns such as bacterial
lipopolysaccharides and DNA damage. They produce
inflammatory cytokines (e.g. IL‐1b, IL‐6, IL‐12, IL‐23, and
TNF‐a), proliferate, and self-renew in a macrophage colony-
stimulating factor 1 (M-CSF1)- and granulocyte-macrophage
(GM)-CSF-dependent manner (79).

The M2 subtype, the alternatively activated macrophages
expressing CD163, CD206, and CD204, are commonly known
as TAM. They are characterized by the production of anti‐
inflammatory, immunosuppressive chemokines and cytokines,
such as IL-4, IL-6, IL-8, IL-10, IL-13, and TGF-b (80, 81), and are
devoid of cytotoxic activity. They produce various growth
factors, such as basic fibroblast growth factor (b-FGF),
placental growth factor, insulin-like growth factor, epidermal
growth factor (EGF), VEGF, and PDGF (82).

It should be emphasized that macrophages are extremely
plastic. Many context- and tissue- dependant phenotypes on
the spectrum between M1 and M2 exist, depending on multiple
factors of stimulation, and these in-between phenotypes are not
captured by the classical nomenclature. A more comprehensive
classification system that takes the dynamic nature of
macrophages into account has been proposed but so far not
adopted in the literature (83).

Although their origin is still debated, it is generally believed
that macrophages originate via common dendritic cell precursors
in blood, spleen, and from bone marrow hematopoietic stem cell-
derived progenitors with myeloid restricted differentiation.
Embryonic precursors may seed tissues already in the fetal
period and become tissue-resident macrophages (84). Attracted
by chemokines, macrophage progenitors enter the circulation
from reservoirs in the bone marrow and spleen. They leave the
peripheral blood flow and migrate to tissues where local growth
factors and cytokines control their differentiation (85).
Frontiers in Oncology | www.frontiersin.org 633
TUMOR-ASSOCIATED MACROPHAGES

The level of infiltratingTAMcorrelateswith tumorprogression and
reduced survival in patients (Figure 2). Growth factors and
immunosuppressive cytokines produced by TAM can enhance
motility, intravasation, and invasion of tumor cells, as well as
stimulate angiogenesis and prevent attacks by T cells and NK cells
(90, 91) as observed in various tumor types including carcinomas,
sarcomas, and lymphomas (92–94). The recruitment of
macrophages and their differentiation into TAM are primarily
promoted by TSF and CAF-derived factors such as M-CSF1,
GM-CSF, CCL2, VEGF, IL-6, and IL-8 (95); and are related to
local anoxia, acidity, and inflammation. The infiltration into the
TME is determined by CC chemokines such as the C-C motif
ligands CCL2, CCL11, CCL16, and CCL21 produced by local
lymphatic endothelial cells and stromal cells as demonstrated in
breast-, lung-, oesophageal-, ovarian-, and cervical cancers (96, 97).
Especially CCL2 exhibits strong chemotactic activity for
macrophages. Producing CCL2 themselves, macrophages recruit
macrophages in a feed-forward loop.

Homing towards increasing gradients of chemotactic
molecules, TAM massively infiltrate hypoxic/necrotic regions
of tumors and survive by shifting their metabolism towards
glycolysis (98). Hypoxic TAM express the transcription factor
hypoxia-inducible factor 1a and secrete VEGF, b-FGF, PDGF,
cyclooxygenase-2, prostaglandin E2, and MMPs (99, 100). In
response to hypoxia, TAM also overexpress PD-L1, PD-L2, and
cytotoxic T-lymphocyte-associated protein 4 ligands that
contribute to immune cell dysfunction and limit the effects of
checkpoint inhibitors (101, 102). Furthermore, the high levels of
IL‐10 and TGF‐b produced by TAM block T cell proliferation
and T cell cytotoxicity, while activating Tregs (92, 103, 104).

Exploring TAM in Different Cancer Types
Activated TAM are significant prognostic biomarkers for breast
cancer, PDAC (105), non-small-cell lung cancer (106), gastric
cancer (107), HCC (108), and stage II colon cancer (109).

In breast cancer, TAM produce metalloproteinases (MMP)
and cathepsins which degrade the ECM and release angiogenic
factors stored in the ECM. TAM-derived MMP-2 and MMP-9
have been correlated to a worse prognosis (110). Using human
metastatic breast cancer cells, it was demonstrated that these cells
TABLE 2 | Clinical trials targeting CAF associated pathways involving IL-6 and TGF-b in different cancers.

Cancer type Trial number Target Mechanism of action Treatment/Intervention

Pancreatic cancer NCT02767557 IL-6 Anti-IL-6 antibody Tocilizumab + Nab-paclitaxel + Gemcitabine
Melanoma NCT03999749 IL-6 Tocilizumab + Nivolumab + Ipilimumab
Prostate cancer NCT03821246 IL-6 Tocilizumab + Atezolizumab + Etrumadenant
Esophageal cancer NCT04595149 TGF-b + PD-L1 Bifunctional antibody against 3 isoforms

of TGF-b and PD-L1 (1)
Paclitaxel + Carboplatin + Bintrafusp alfa + Radiotherapy

Head and neck cancer NCT04247282 TGF-b + PD-L1 Bintrafusp alfa alone/+ TriAd vaccine + N-803
HPV-associated
cancers

NCT04432597 TGF-b + PD-L1 PRGN-2009 alone/+ Bintrafusp alfa
Bintrafusp alfa, Anti-PD-L1/TGF-Beta Trap; N-803, IL-15 super agonist; TriAd vaccine, novel agent targeting 3 human tumor-associated antigens-CEA, MUC1, and brachyury; PRGN-
2009, HPV vaccine.
IL, interleukin; TGF-b, transforming growth factor b; PD-L1, programmed death-ligand 1; HPV, human papillomavirus.
(1) Lind, Hanne et al. “Dual targeting of TGF-b and PD-L1 via a bifunctional anti-PD-L1/TGF-bRII agent: status of preclinical and clinical advances.” Journal for immunotherapy of cancer vol.
8,1 (2020): e000433. doi: 10.1136/jitc-2019-000433.
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stimulate TAM with M-CSF1 and in turn, TAM supply EGF to
them. This paracrine feed forward mechanism between tumor
cells and TAM facilitates the dissemination, intravasation, and
metastatic spread of cancer (111, 112).

In gastric cancer, TAM-derived exosomes that are rich in
miRNA, lncRNA, and specific proteins contribute to tumor cell
dissemination. Mass spectrometric analysis revealed that these
exosomes activated mitogenic signaling through the
phosphatidylinositol 3-kinase (PI3K)/AKT pathway in tumor
cells, inducing EMT and increasing the metastatic potential (113).

In PDAC, TAM-derived exosomes reportedly contribute to
the resistance of tumor cells to gemcitabine. Using a genetic
mouse model of PDAC and electron microscopy analyses, it was
demonstrated that TAM exosomes are selectively internalized by
tumor cells indicating that TAM and tumor cells communicate
closely with each other. Furthermore, it was shown that the
sensitivity of PDAC to gemcitabine was significantly reduced by
the exosomal TAM-derived miR-365 (114).

In non-small-cell lung cancer tissue samples from 104
patients, M1 macrophages and TAM were identified using
multiplex immunofluorescence staining. TAM predominated
over M1 macrophages in number and proximity to tumor
cells, which was linked with tumor cell survival, particularly in
the hypoxic regions (109).
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In stage II colon cancer, postoperative adjuvant
chemotherapy generally has limited effect, with an improved
survival rate of less than 5% at 5 years after surgery (115, 116). In
a clinical study on human stage II colon cancer, a high density of
CD206+ TAM was significantly associated with poor
differentiation and worse disease-free survival. A high CD206/
CD68 ratio (CD68 being an unspecific marker for the
macrophage lineages) was significantly associated with poor
differentiation, T4 stage, and lymphatic/vascular/perineural
invasion. This ratio was a more reliable prognostic factor than
CD206+ TAM density and other traditional clinicopathologic
high-risk factors. Notably, the CD206/CD68 ratio identified
patients with a low and high risk of tumor recurrence and
effectively predicted which patients would benefit from
adjuvant chemotherapy (117).

Targeting TAM-Associated Pathways
The field of research exploring the mechanisms by which TAM
impact the tumor progression and lower the response to
anticancer therapies is very active, and it includes several
pharmacological strategies to target TAM. While some
strategies revolve around blocking recruitment and depleting
TAM through direct inhibition using small molecules and
monoclonal antibodies, others focus on reprogramming of TAM.
FIGURE 2 | Kaplan–Meier curves depicting overall survival for high and low TAM densities across different cancer types. Overall survival curves, merged data,
various cancers. Gastric cancer: Kaplan–Meier overall survival curves for gastric cancer patients with high TAM density (> 671 cells in five 400x microscopic fields;
green dotted line) and low density (< 671 cells in five 400x microscopic fields; green solid line). The TAM density in the tumor tissue was negatively associated with
overall survival [p=0.0073; (86)]. Breast cancer: Kaplan–Meier curves showing significant correlation (p<0.001) with overall survival according to the numbers of M2
TAM (CD163 high: yellow dotted line; CD163 low: yellow solid line) (87). Multiple myeloma: overall survival outcome based on low and high CD163 TAM (≤ 55 per
high power microscopic field; solid blue line) vs. high CD163 TAM (> 55 per high power microscopic field; dotted blue line) showing significant survival difference
(p<0.001) (88). Ovarian cancer: Kaplan–Meier survival curves comparing high and low M1 (CD80)/M2 (CD163) ratios in patients with ovarian cancer. Patients with an
M1/M2 ratio ≥ 1.4 (solid red line) showed a significantly higher overall survival (p=0.02) than those with an M1/M2 ratio < 1.4 (dotted red line) (89).
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With respect to TAM recruitment, it has been demonstrated
that the blockade of CCR2 suppresses the accumulation of TAM
in tumors. CCR2 inhibitors and anti-CCL2 antibodies (CNTO
888) have demonstrated efficacy in reducing tumor growth and
metastasis in several pre-clinical murine models (118, 119).

It has been reported across multiple murine tumor- and
metastasis models that CCR2 antagonism in combination with
anti-PD-1 therapy lead to sensitization and enhanced tumor
response over anti-PD-1 monotherapy (120). Additionally, in a
clinical trial on PDAC, an objective tumor response was observed
in 16 of the 33 patients (49%) receiving a CCR2 inhibitor (PF-
04136309) plus FOLFIRINOX, compared to FOLFIRINOX alone
(Table 3) (121). CCR5 is another receptor which is highly
upregulated in metastatic cancers, and a study in mice showed
promising response upon treatment with CCR5 antagonist,
maraviroc (118, 122).

Furthermore, several trials investigating the effect of dual
inhibition of CCR2 and CCR5 in patients with locally advanced
pancreatic cancer, CRC, HCC, advanced renal cell carcinoma
and non-small-cell lung cancer are underway (Table 3).

Another strategy is to deplete TAM by pharmacological
blockade of CSF and its receptor CSF-1R, in mono- or
combination therapy, preferentially in patients with advanced
solid tumors. The depletion of TAM by CSF-1R blockade showed
increased infiltration of CD8+ cytotoxic T cells and improved
treatment response in murine models of breast, prostate, and
cervical tumors (123–125). Inhibition of the CSF-1/CSF-1R axis,
using antibodies (AMG 820, IMC-CS4) and small molecule
inhibitors like pexidartinib, is presently being explored in
phase I/II clinical trials (Table 4).

Additionally, the plasticity of macrophages opens up new
avenues for reprogramming TAM to switch to an anti-tumor,
M1-subtype. While drugs targeting toll-like receptors
(imiquimod) are already approved for use, many novel
antibodies and fusion proteins targeting CD47/SIRPa axis are
under investigation (Table 5) (126). Adding to that list, some
preclinical trials are currently investigating the use of CAR-T
adoptive cell transfer and mRNA tumor vaccines. Theoretically,
strategies to reprogram TAM by the delivery of mRNA are
attractive, but this research is still in its nascent stages.
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To this end, TAM are a promising therapeutic target and
further research will benefit in the development of combinational
regimens utilizing multifaceted targeting of the cancers.
THE CAF–TAM COLLABORATION

Although CAF and TAM can play both supportive and
restrictive roles in carcinogenesis and tumor progression, they
are emerging as key players in orchestrating cancer-promoting
inflammation and their interactions likely increase the
malignancy of tumors (127).

Further to the recruitment of monocytes and M2 polarization,
recent data have linked CAF and TAM to a reciprocal interplay
with cancer cells. The anti-inflammatory and immunosuppressive
M2 phenotype facilitates tumor growth and converts healthy
fibroblasts into CAF. Activated CAF secrete factors that
promote TAM, cancer cell aggressiveness, EMT, and stemness.
In return, cancer cell secrete factors that increase CAF activation
and reactivity in a complex that involves various interleukins,
chemokines, growth factors and proteinases (128).

As the synergistic interaction between TAM and CAF was
only recently identified, only a few studies describe their cell-cell
interactions. In CRC and oral squamous cell carcinoma, high
levels and combined presence of CAF and TAM within the TME
was reported as a negative prognostic factor (7, 129). In high-risk
neuroblastoma, pro-inflammatory lipid mediators produced by
CAF contributed to tumor growth and were accompanied by a
high infiltration of CD163+ TAM (130).

The CAF secretome seems to regulate the composition of
tumor-related inflammation, including the presence, phenotypes,
and levels of infiltrating TAM (13). In this case, CAF together with
tumor cells shape the environment to which monocytes/
macrophages are recruited to promote tumor progression (127,
131). To evaluate the effects of CAF on tumor growth and
metastasis, monocytes were co-cultured with colon cancer cells
and stimulated with colon cancer-activated CAF. The inducible
factors that drove monocyte differentiation into pro-invasive TAM
were primarily characterized as CAF-derived GM-CSF and IL-6,
and are known to regulate the presence of TAM and promote
TABLE 3 | Clinical trials targeting CCR2-CCL2 axis and CCR2/CCR5 in TAM.

Cancer type Trial number Target Mechanism Treatment/Intervention

Metastatic PDAC NCT02732938 CCR2 PF-04136309 binds to CCR2 and inhibits
interaction between CCR2 and CCL2

PF-04136309 + Nab-paclitaxel + Gemcitabine
Locally advanced PDAC NCT01413022 PF-04136309 + FOLFIRINOX
Solid tumors, Bone
metastases

NCT01015560 CCR2 Monoclonal antibody MLN1202

Locally advanced PDAC NCT03767582 CCR2 +
CCR5

BMS-813160 is a small-molecule dual
antagonist of CCR2 and CCR5

BMS-813160 + SBRT + Nivolumab +/- GVAX
CRC and PDAC NCT03184870 BMS-813160 alone or combined with: Nivolumab,

Gemcitabine, Leucovorin, Irinotecan, Nab-paclitaxel, 5-FU
PDAC NCT03496662 BMS-813160, Nivolumab, Gemcitabine, Nab-paclitaxel
NSCLC, HCC NCT04123379 BMS-813160 + BMS-986253 + Nivolumab
Advanced RCC NCT02996110 Nivolumab + Ipilumab/Relatlimab/BMS-986205/BMS813160
Solid tumors NCT00537368 CCL2 Anti-CCL2 recombinant monoclonal antibody CNTO 888 (discontinued)
FOLFIRINOX, 5-fluorouracil, leucovorin, irinotecan, and oxaliplatin; SBRT, stereotactic body radiotherapy; 5-FU, 5-fluorouracil; GVAX, granulocyte-macrophage colony-stimulating factor
(GM-CSF) gene-transfected tumor cell vaccine; PDAC, pancreatic ductal adenocarcinoma; CRC, colorectal cancer; HCC, hepatocellular carcinoma; RCC, renal cell carcinoma; NSCLC,
non-small-cell lung cancer; CCR2/5, C-C chemokine receptor type 2/5; CCL2, chemokine (C-C motif) ligand 2.
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cancer cell invasion and metastasis. Therefore, in the triple cross-
talk between tumor cells, CAF, and TAM, IL-6 and GM-CSF could
become important targets for modulating their interaction (95).

In HCC, osteopontin (OPN) was identified as a key molecule
involved in cancer-CAF-TAM interactions. OPN is a
chemokine-like phosphorylated glycoprotein released by TAM
in the TME. The TAM-secreted OPN promotes the secretion of
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OPN from CAF and leads to increased cancer cell malignancy
through upregulation of proliferation, ECM degradation, and
migration. Thus, OPN could be a potential new therapeutic
target to inhibit cancer-CAF-TAM interactions in HCC (132).

Based on global gene expression profiles inCRC, bioinformatics
and immunohistochemistry identified stromal markers that were
significantly associated with resistance to therapy, recurrence and
TABLE 4 | Clinical trials targeting TAM through CSF-1 inhibition.

Cancer type Trial number Target Mechanism of action Treatment/Intervention

PC, CRC, NSCLC NCT02713529 CSF1R CSF1R antibody inhibiting binding of
CSF1 and IL34

AMG 820 + Pembrolizumab
Solid tumors NCT01444404 AMG 820 monotherapy
Advanced solid tumors NCT02734433 CSF1R, c-KIT,

FLT3
Multi-targeted receptor tyrosine
kinase inhibitor

Pexidartinib monotherapy
NCT01525602 Pexidartinib + Paclitaxel

Acral and mucosal melanoma NCT02071940 Pexidartinib monotherapy
PVNS, GCT-TS, TGCT NCT02371369 Pexidartinib monotherapy
Sarcoma and Malignant Peripheral
Nerve Sheath Tumors

NCT02584647 Pexidartinib + Sirolimus (rapamycin)

Metastatic breast cancer NCT01596751 Pexidartinib + Eribulin
Breast cancer, neoplasms, and
angiosarcoma

NCT01042379 Standard/neoadjuvant therapies with novel agents
(Pexidartinib in one arm)

Leukemia and solid tumors NCT02390752 Pexidartinib monotherapy
Prostate cancer NCT02472275 Pexidartinib + radiation + antiandrogen therapy
Glioblastoma NCT01790503 Pexidartinib + radiation + Temozolomide
Metastatic/Advanced PC and CRC NCT02777710 Pexidartinib + Durvalumab
Melanoma, NSCLC, GIST, HNSCC,
and ovarian cancer

NCT02452424 Pexidartinib + Pembrolizumab

Advanced solid tumors NCT01346358 CSF1R Monoclonal antibody against
CSF1R

IMC-CS4 monotherapy
NCT02718911 IMC-CS4 + Durvalumab/Tremelimumab

PC NCT03153410 IMC-CS4 + Cyclophosphamide + Pembrolizumab +
GVAX

Breast/Prostate cancer NCT02265536 IMC-CS4 monotherapy
Metastatic sarcomas NCT04242238 Switch pocket of

CSF1R
Highly selective kinase inhibitor DCC-3014 + Avelumab

TGCT and advanced tumors NCT03069469 DCC-3014
PC, pancreatic cancer; CRC, colorectal cancer; PVNS, Pigmented villonodular synovitis; GCT-TS, Giant cell tumors of the tendon sheath; TGCT, Tenosynovial Giant Cell Tumor; CSF1,
colony stimulating factor 1; IL-34, interleukin 34; c-KIT, KIT proto-oncogene receptor tyrosine kinase; CSF1R, CSF1 receptor; FLT-3, FMS like tyrosine kinase 3; NSCLC, non-small-cell
lung cancer; GIST, gastrointestinal stromal tumor; HNSCC, head and neck squamous cell carcinoma; GVAX, granulocyte-macrophage colony-stimulating factor (GM-CSF) gene-
transfected tumor cell vaccine.
TABLE 5 | Clinical trials investigating reprogramming of TAM in combination with other therapies.

Cancer type Trial number Target Mechanism of action Treatment/Intervention

Ovarian cancer NCT03558139 CD47 Monoclonal antibody recognizes CD47 and
blocks the “don’t eat me” signal on SIRPa
receptor on TAM

Magrolimab + Avelumab
Hodgkin lymphoma NCT04788043 Magrolimab + Pembrolizumab
Urothelial carcinoma NCT03869190 Several treatment combinations including Magrolimab
AML NCT04435691 Magrolimab + Azacitidine + Venetoclax
AML and myelodysplastic syndrome NCT03248479 Magrolimab +/- Azacitidine
Solid tumors and advanced CRC NCT02953782 Magrolimab + Cetuximab
Non-Hodgkin lymphoma NCT02953509 Magrolimab + Rituximab + Gemcitabine + Oxaliplatin
Hematologic malignancies and solid
tumors

NCT02663518 CD47 TTI-621 is SIRPaFc, a recombinant fusion
protein blocking CD47:SIRPa axis

TTI-621 alone/+ Rituximab/+ Nivolumab

Lymphoma and myeloma NCT03530683 CD47 SIRPa-IgG4Fc, a recombinant fusion protein
binding to CD47

TTI-622 alone/+ Rituximab/+ Nivolumab/+
Carfilzomib

Hematologic cancers and advanced
solid tumors

NCT03512340 CD47 Anti-CD47 antibody SRF231

PDAC NCT01456585 CD40 CP-870,893 is a fully human, CD40-specific
agonist monoclonal antibody

CP-870,893 + Gemcitabine
Metastatic melanoma NCT01103635 CP-870,893 + Tremelimumab
Metastatic CRC NCT03555149 CD40 Selicrelumab is a human IgG2 agonistic anti-

CD40 monoclonal antibody
Several combinations including Selicrelumab

Metastatic PDAC NCT03193190 Several combinations including Selicrelumab
Locally advanced and metastatic
solid tumors

NCT02304393 Selicrelumab + Atezolizumab
AML, acute myeloid leukemia; CRC, colorectal cancer; PDAC, pancreatic ductal adenocarcinoma; CD47, cluster of differentiation protein-47; TAM, tumor associated macrophages; IgG,
immunoglobulin G; SIRPa, signal regulatory protein a.
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poor prognosis. The predictive power of stromal cell genes was
higher than the power of tumor cell genes (4). In accordance with
and by investigating the four consensus molecular subtypes (CMS)
in CRC, the CMS4 tumors were characterized by heavy infiltration
of mesenchymal cells and displayed worse recurrence-free survival
andoverall survival comparedwith otherCMS subtypes.Moreover,
the CMS4 tumors showed a clear upregulation of genes controlling
EMT, TGF-b signaling, angiogenesis, matrix remodelling, and
inflammation (5).

Compared with TAM, and playing a dominant role in the
evolution of TME, a higher density of CAF is usually observed in
tumors of the gastrointestinal tract, pancreas, lung, and prostate. It is
important to mention that TAM are associated with migration and
intravasationof tumor cells,CTC formation, andaidingCTCclusters
in the peripheral circulation in the patients (73, 133, 134). Despite
them being appealing targets, owing to the lack of selectivity,
strategies to attack CAF and TAM have resulted in unwanted side-
effects and thereby, limited their clinical use (14, 135).
THE EXTRACELLULAR MATRIX

The ECM mainly consists of proteins and glycosaminoglycans
that are constantly remodeled by fibroblasts and macrophages in
response to environmental changes.

In preclinical trials on breast and lung cancer, it was reported
that CAF-produced collagen and CAF-derived FAP transformed
the ECM into an environment facilitating the cancer cell motility
through a parallel alignment of the collagen fibers that enhanced
the direction and speed of the migrating cells (136).

Regular tissue fibroblasts synthesize and release ECM
components such as collagen, elastin, fibronectin, and a variety
of proteoglycans that combine to form a web of fibers. This
network regulates the homeostasis of cells, tissues, and organs
and allows the ECM and tumor cells to resist a wide range of
chemical and mechanical stress factors (137).

In a solid tumor, the assembly of ECM fibrils is crucial for the
barrier formation and exclusion of immune cells and therapeutics.
Further, the collagen network in the stroma is key for the
maintenance and exchange offluids and solutes within the tumor.

Elastin, an abundantly expressed protein in the ECM, is
secreted by fibroblasts as a precursor protein, tropoelastin,
which assembles in the elastic fibers that are rich in crosslinks.
The crosslinks render the elastin insoluble and equip the fibers
with the ability to withstand repeated distension. Additionally,
the elastin fibers are tightly associated with collagen fibrils which
are mediated by the cell surface proteoglycans (138).

Fibronectin, also secreted by fibroblasts, binds to the ECM
components such as collagen and fibrin and anchors the fibrils to
the cell-surface integrin receptors (139).

The tyrosine kinase inhibitor, Imatinib—specific to ABL1,
PDGFR, and c-kit—is used to treat hematological malignancies
and gastrointestinal stromal tumors. It is found to increase the
flow of fluids through the interstitial compartment of the tumor,
improving drug delivery, mainly due to a decreased collagen
fibril diameter (140, 141).
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CAF and TAM produce various enzymes, including matrix
metalloproteinases (MMP), fibrinolysin, and cathepsins that
degrade ECM components, accelerate local invasion of tumor
cells, and facilitate their dissemination (142, 143). Some ECM
degradation fragments may even stimulate angiogenesis and
migration (144). MMPs are zinc-dependent ECM-remodelling
endopeptidases deeply implicated in almost all steps of
metastasis. A high MMP expression in the tumor correlates
with poor prognosis and increased risk of recurrence (145). The
CAF expression of MMP-11 in CRC, MMP-2 and MMP-9 in
breast cancer, and MMP-21 in HCC was significantly related to a
high risk of tumor recurrence (146–148).

The presence of hypoxia, acidity, increased interstitial
pressure, and aberrant vasculature in the TME confer tumor
cells with a survival advantage. The environment inhibits the
penetration, navigation, and functionality of cytotoxic immune
cells in their quest to kill tumor cells (149, 150).

To prevent intracellular acidity, tumor cells express various
proton flux regulators, such as H+-ATPases, Na+/H+ exchangers,
monocarboxylate transporters, carbonic anhydrases, and Na+/
HCO3 transporters. Proton pump inhibitors are currently being
used in clinical trials (151, 152), in combination with therapies
targeting carbonic anhydrases: Acetazolamide (carbonic
anhydrase inhibitor) and radiotherapy for small cell lung
cancer (NCT03467360), carbonic anhydrase IX inhibitor and
Gemcitabine (antimetabolite) for PDAC (NCT03450018), and
Acetazolamide and Temozolomide (alkylating agent) for
malignant glioma of the brain (NCT03011671). Additional
clinical trials of therapies that aim to target ECM and ECM-
associated molecules are on-going; however, as therapeutics,
ECM degrading agents must be used with caution as they may
have fundamental consequences on cell and tissue functions,
which could ease the metastatic spread instead of inhibiting
tumor progression (153).
CAF AND TAM IN IMMUNOTHERAPY
AND ANTI-ANGIOGENESIS

The introduction of monoclonal antibodies targeting inhibitory
receptors on immune cells, known as immune checkpoint
inhibitors, has been a great breakthrough in oncology,
immensely improving the clinical outcomes of several cancers.
This therapeutic strategy enhances the efficacy of anti-tumor
immune responses and revitalizes exhausted killer cells such as
CD8+ T cells and NK cells (154).

The exclusion of immune cells from solid tumors is not only
caused by the physical and chemical barrier of the ECM, but also
by the immune checkpoint ligands expressed by cancer cells,
CAF, and TAM (155). In line with this, a study on tissue samples
from patients with PDAC demonstrated that PD-L1 and PD-L2
(both ligands to PD-1) expressed by CAF were involved in
immune cell exclusion and anergy (156).

Adding to the complexity of stromal cell functions, preclinical
studies suggest that some CAF, along with normal fibroblasts, have
the ability to overrule oncogenic signaling from the surroundings
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and act as tumor suppressors (20, 157). Whether these fibroblasts
are subtypes of normal fibroblasts resistant to CAF conversion or
distinct anti-tumor CAF subpopulations remains unknown.
However, the CAF/TAM collaboration do play a vital tumor-
promoting role. It fuels the growth of tumors; induces stemness
and EMT in cancer cells by the production of cytokines,
chemokines, e.g. interleukins, TGF-b, CCL, and CXCL
chemokines (158). It supplies the tumors with energy-rich
metabolites and upregulate the tumor-cell mitochondrial oxidative
phosphorylation (159). Thus, therapeutic regimens targeting the
TAM-CAF interaction in combination with immunotherapy could
improve anti-tumor therapeutic efficacy (160).

CSF-1R receptors are overexpressed on TAM in many cancers,
controlling the production, differentiation, and function of
macrophages. In a mouse model, a CSF-1R-inhibitor blocked the
production of inflammatory mediators in TAM, inhibited the
recruitment of bone marrow-derived suppressor cells (BMDSC),
and enhanced T-cell infiltration and CD8+ T cell activity. However,
the inhibition of CSF-1R signaling caused CAF to secrete
chemokines and chemokine ligands that neutralized the CSF-1R
inhibitor. The supplementation of a chemokine receptor antagonist
reduced the tumor burden, and tumor growth was completely
blocked when an immune checkpoint inhibitor (anti-PD-1) was
further added to the combination (161).

There are currently several clinical trials evaluating the effect
of CSF1R monoclonal antibodies in combination with immune
checkpoint inhibitors in a variety of solid tumors (Table 4).

In a human trial on solid tumors, dual antibody blockade (anti-
TGF-b and anti-PD-L1) led to a significant increase in the number
of cytotoxic CD8+ T cells in the TME. The co-inhibition of TGF-b
and PD-L1 converted an immune excluded tumor phenotype to
an inflamed phenotype, supporting the fact that TGF-b signaling
prevents T-cell invasion. T cell localization was not affected with
either antibody as monotherapy (162). Thus, TAM expressing
immune checkpoint receptor ligands limit the functions of effector
T cells, NK cells, and dendritic cells, and attenuate the effects of
immune checkpoint inhibitor therapy (101, 102).

To prevent phagocytosis, upregulated CD47 surface proteins
on tumor cells provide a “do not eat me” signal by ligating the
inhibitory TAM-receptor signal regulatory protein alpha
(SIRPa). As CD47 also promotes the proliferation of cancer
cells via the PI3K/AKT pathway, the CD47 signaling pathway is
considered an important mechanism of therapy resistance.
Inhibition of CD47 could be a promising therapeutic strategy,
particularly in combination with immune checkpoint inhibitors.

In mouse models of melanoma, colon carcinoma, and
lymphoma, dual targeting of CD47 and PD-L1 was found to
enhance anti-tumor effects (163–165) and several clinical trials
evaluating the efficacy of CD47 or SIRPa monoclonal antibodies
as monotherapy or in combination with immune checkpoint
inhibitors are underway (Table 5; ClinicalTrials.gov).

As VEGF-A is overexpressed in both tumor cells, CAF, and
TAM and is associated with cancer progression and dissemination,
it represents the main target of anti-angiogenic drugs in cancer
therapy. These drugs are widely used in the treatment of various
cancers and have resulted in increased overall survival or
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progression-free survival in gynecologic cancers (166), CRC (167),
and gastric cancer (168). However, due to antiangiogenic drug
resistance of tumor cells, metastasis and mortality continue to occur
during and after cessation of treatment. This resistance comprises
the amplification of pro-angiogenic genes, secretion of multiple
proangiogenic factors, and recruitment of proangiogenic BMDSC
(169). Bevacizumab, a humanized monoclonal antibody that targets
all VEGF-A isoforms and the first anti-angiogenic drug approved
for clinical application, is efficacious in various malignancies such as
CRC and glioblastoma (170). Today, most clinical studies use anti-
angiogenetic drugs in combinatory regimens, e.g. lenvatinib
(multiple kinase inhibitor) inhibiting both VEGFR 1–3 and
PDGFR and Pembrolizumab (anti-PD-1) for the treatment of
endometrial cancer (NCT03517449).

The anti-diabetic drug metformin appears to be a promising
therapeutic agent in neoadjuvant and adjuvant settings. The
metformin‐induced antitumor and anti‐angiogenic effects are
partly related to the skewing of TAM polarization from M2‐ to
M1‐like phenotype and significant inhibition of tumor angiogenesis.
Currently, there is very little insight into the mechanism through
which metformin modulates macrophage function. However, an in
vitro study on breast cancer cells andTAMpolarization revealed that
metformin treatment activated AMPK-NF-kB signaling in cancer
cells. These molecules participate in the regulation of M1 and M2
inducing cytokines.Metforminwasobserved to increasemacrophage
expression of M1-related cytokines IL-12 and TNF-a and attenuate
the expression of the M2-related cytokines IL-8, IL-10, and TGF-b.
Furthermore, the secretion of important cytokines for the M2
phenotype (e.g. IL-4, IL-10, and IL-13) was inhibited in
metformin-treated cancer cells (171).

In cultures of human cholangiocarcinoma cells, and at
concentrations corresponding to plasma levels of metformin in
diabetic patients, metformin inhibited proliferation and cell
migration and induced apoptosis. Expression of vimentin
(mesenchymal marker) and EMT genes was downregulated
and expression of cytokeratin-19 (epithelial marker) was
upregulated (172). The findings from the multiple ongoing
trials (173) may convey a deeper understanding of the anti-
tumor function of metformin in the near future.
DISCUSSION

In a solid tumor, the balance between growth and differentiation
is determined by the TME. TAM and CAF promote cancer
evolution through the inflammatory, immunosuppressive,
angiogenic, energy-rich environment, and also suppress cancer
cells via predominantly unknown mechanisms. The presence
and precise functions of CAF and TAM in the TME are
extremely complex (Figure 3) and incompletely understood,
and only a few studies describe the interplay between these
cells. The general perception is that the TME strongly modulates
tumor cells through all phases of disease progression, and as each
tumor is comprised of multiple clones with myriads of cell types
and signaling molecules, the heterogeneity of each tumor may
therefore require unique therapeutic approaches.
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Improving our understanding of the TME including the
impact of stromal cells, immune cells, and ECM components,
is vital for the innovation of therapeutic strategies. Hence, cell-
cell communication within the TME should be integrated into
future cancer research. However, the manipulation of the
immune system and/or stromal components within the TME
during cancer treatment can be unpredictable. The regulation/
eradication of a-SMA+ or FAP+ CAF have had variable results
and currently, targeting CAF or TAM individually does not seem
to be an appropriate approach.

A CAF-directed therapy could be designed against specific
pro-tumorigenic factors that in turn could prevent CAF
activation or CAF functions. The reprogramming of CAF back
into a normal resting phenotype would be a desirable option;
however, targeting FAP has had a minimal response in human
trials (20). Drugs that target CAF may emerge as a complement
to immunotherapies in solid tumors, though a major obstacle in
the precision strategy of CAF-based therapy is that neither a-
SMA nor FAP is exclusively expressed by CAF.

In theory, TAM antagonists could be used to overcome
resistance to immunotherapy; nevertheless, the type of
approach is yet to be determined. The lack of macrophage
selectivity has so far hindered its introduction into the clinic.

Monoclonal antibodies blocking the interaction between CD47
on tumor cells and SIRPa on innate immune cells is another
interesting direction for future research. Other potential treatment
targets are the MMPs. In the TME, MMPs are expressed by various
cell types, and anumber ofMMP inhibitors have been tested inphase
1, 2, and 3 clinical trials. Unfortunately, all trials across different
cancer types and stages have failed to provide any improvements in
the clinical outcomes (174). Nonetheless, the field is advancing fast
with the development of small-molecule inhibitors and antibodies
targeting specific domains of pro-tumorigenic MMPs.
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In PDAC, the TME is an important contributor to tumor
progression and prognosis. The increasing amount of ECM and
fibrosis promote tumor progression and correlate with shorter
survival. The aberrant TGF-b signaling in cancer cells leads to an
increased epithelial signal transducer and activator of transcription
3 (STAT3) activity, resulting in increased ECM fibrosis (175).
Therefore, the concept of reducing tumor aggressiveness by
interfering with STAT3 hyperactivity seems intriguing.

Notably, a recent study demonstrated that increased
phosphorylation of STAT3 in CAF was associated with
reduced overall survival in CRC patients (176). To improve
response rates and increase the number of responding cancer
types, combination therapies using STAT3 inhibitors and
immune checkpoint inhibitors are now being undertaken (177).

In conclusion, combinations of immune-modulating agents
are gaining more and more ground in oncology. CAF and TAM
hold significant potential to improve targeted therapy and
outcomes in cancer treatment when combined with existing
therapies. Although in its naive stages, the TME modulating
technology is an active field of research that holds immense
prospects for researchers, clinicians, and patients.
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FIGURE 3 | Interplay between tumor, stromal, and immune cells. Depicts the interplay between cancer-associated fibroblasts (CAF), tumor-associated
macrophages (TAM), growth factors, cytokines, interleukins, and immune cells in the tumor microenvironment (TME). CAF are the predominant cell type in the tumor
stroma, contributing to the proliferative, pro-inflammatory, immunosuppressive, angiogenic, pro-invasive and pro-metastatic TME. They secrete various growth
factors including TGF-b, vascular endothelial growth factor (VEGF), fibroblast growth factor 5, growth differentiation factor 15, and hepatocyte growth factor. CAF
also produce cytokines and interleukins that may have both immunosuppressive and immuno-activating effects on various leukocytes, including CD8+ T cells,
immunosuppressive regulatory T cells (Tregs) and macrophages. A subset of CAFs have myofibroblasts characteristics (myCAF) and play a major role in the
development of the fibrotic stroma in the TME including the regulation of collagen fibre elongation. Growth factors and immunosuppressive cytokines produced by
TAM enhance motility, intravasation, and invasion of tumor cells, while stimulating angiogenesis and suppressing T cell infiltration. Additionally, TGF‐b produced by
TAMs activate immunosuppressive Tregs.
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evaluated by scRNA and
bulkRNA analysis
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Taian City Centeral Hospital of Qingdao University, Taian, China, 5Department of Thoracic Surgery,
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of Medical Sciences, Jinan, China, 6Department of Otolaryngology-Head and Neck Surgery,
Shandong Provincial ENT Hospital, Shandong University, Jinan, China, 7Radiotherapy Department,
Shandong Second Provincial General Hospital, Shandong University, Jinan, China
Purpose: To investigate the significance of macrophage infiltration to the

prognosis of lung adenocarcinoma.

Methods: R language bioinformatics analysis technology, was used to obtain

macrophage infiltration-related module genes through WGCNA (Weighted

Gene Co-Expression Network Analysis). Marker genes of macrophage

subtypes were identified using single-cell sequencing of lung adenocarcinoma

tissue. Risk score models were constructed and validated using external data

cohorts and clinical samples.

Results: Analysis of cohorts TCGA-LUAD, GSE11969, GSE31210, GSE50081,

GSE72094 and GSE8894, revealed a negative correlation between

macrophage infiltration and survival. Immunohistochemical analyses of

clinical samples were consistent with these data. Based on cell-cluster-

markers and TAMs-related-genes, TOP8 genes were obtained (C1QTNF6,

CCNB1, FSCN1, HMMR, KPNA2, PRC1, RRM2, and TK1) with a significant

association to prognosis. Risk score models including 9 factors (C1QTNF6,

FSCN1, KPNA2, GLI2, TYMS, BIRC3, RBBP7, KRT8, GPR65) for prognosis were

constructed. The efficacy, stability and generalizability of the risk score models

were validated using multiple data cohorts (GSE19188, GSE26939, GSE31210,

GSE50081, GSE42127, and GSE72094).

Conclusions: Macrophage infiltration negatively correlates with prognosis in

patients with lung adenocarcinoma. Based on cell-cluster-markers and
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TAMs-related-genes, both TOP8 genes (C1QTNF6, CCNB1, FSCN1, HMMR,

KPNA2, PRC1, RRM2, TK1) and risk score models using C1QTNF6, FSCN1,

KPNA2, GLI2, TYMS, BIRC3, RBBP7, KRT8, GPR65 could predict disease

prognosis.
KEYWORDS

macrophages, prognosis, lung adenocarcinoma, ScRNA, bulkRNA, infilitration, marker
gene, WGCNA (weighted gene co- expression network analyses)
1 Introduction

Lung cancer remains the most common malignancy

worldwide and a leading cause of cancer-related death, despite

advances in screening and treatment (1, 2). Whether it was for the

non-small cell lung cancer (NSCLC) or small cell lung cancer

(SCLC) patients, immunotherapy was the most shining one among

many treatment methods, which had changed the landscape of

anti-tumor therapy and brought anti-tumor therapy into a new era

(3–7). However, there were still many details in the screening of

immunotherapy benefit populations and related predictors needed

to be further elucidated (8–16). Specific macrophage phenotypes

can act as indicators of lung cancer prognosis and the efficacy of

immunotherapy (17–24). Sequencing technologies and R language

based bioinformatics, formerly reported (25–27), can be used for

studies in this area (28–30). Based on our previous studies (28–30),

we performed bioinformatics analysis and clinical sample

validation to identify specific macrophage signatures that can act

as indicators of therapeutic efficacy.
2 Methods

2.1 Data analysis

2.1.1 TCGA data
mRNA expression profiles, clinical information, copy

number alterations and mutations of GDC TCGA Lung

Adenocarcinoma (LUAD) samples were downloaded from

https://xenabrowser.net/datapages/. Tumor samples were

screened according to sample name. RNA-seq data for 513

tumor samples and 59 paracancerous samples were obtained.
ation and Projection;

l lung cancer; LUAD,

-Expression Network

, Gene Set Variation

embedding; IHC,

DEGs, Differential

d Selection Operator.
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2.1.2 GEO data
Expression data and sample survival information for

GSE11969, GSE19188, GSE26939, GSE31210, GSE42127,

GSE50081, GSE72094 and GSE8894 were downloaded from the

GEO database (https://www.ncbi.nlm.nih.gov/geo). Survival

information of the samples were summarized as follows:

(Supplementary Table 1_train_clin.tsv; Supplementary Table 1_

GSE11969_clin.txt; Supplementary Table 1_GSE19188_clin.txt;

Supplementary Table 1_ GSE26939_clin.txt; Supplementary

Table 1_GSE31210_clin.txt; Supplementary Table 1_

GSE42127_clin.txt; Supplementary Table 1_GSE50081_clin.txt;

Supplementary Table 1_ GSE72094_clin.txt; Supplementary

Table 1_ GSE8894_clin.txt). Single-cell sequencing data from

GSE131907 were downloaded from the GEO database (https://

www.ncbi.nlm.nih.gov/geo). A total of 42,995 cells and 29,634

genes were obtained.
2.2 Immune infiltration analysis

Immune infiltration for each sample was calculated using

IOBR of the R package for the training set TCGA expression

matrix and GEO data, respectively (method = ‘cibersort’).
2.3 Survival analysis

For survival assessments, R packages “survminer” and

“survival” were analyzed and survival curves were constructed

based on survival time and status. Differences in prognosis

among the groups were assessed.
2.4 Screening of modules corresponding
to macrophages using WGCNA

Hierarchical clustering analysis was performed on the

TCGA expression matrix using the R package “hclust”,

“method=average”. Phenotypic information was obtained
frontiersin.org
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using the infiltration ratio of macrophages. A correlation

between different modules and macrophages was obtained.
2.5 Clustering analysis of samples

The R package “ConsesusClusterPlus” was used to perform

consensus clustering analysis. After clustering on the TCGA and

GEO data, the optimal number of categories were determined

according to the change of area under the CDF curve. The k

value of the cluster category ranged from 2 to 6.
2.6 Analysis of single-cell data

Single-cell data were filtered using the R package “seurat” to

remove cells with ≥ 20% mitochondrial expression. Data were

analyzed using the “seurat” normalization pipeline. To identify

tumor-associated macrophage (TAM) populations, marker

genes from published studies were used to identify

corresponding clusters. TAM populations were selected for

standardization analysis using “Seurat”.
2.7 Trajectory analysis of single-cell data

Trajectory analysis was performed on TAM subclasses using

the R package “monocle” with default parameters. This resulted

in differentiation trajectories and key genes determining

these trajectories.
2.8 Gene set variation analysis

To investigate differences in the expression patterns of

specific TAM isoforms in biological processes, GSVA

enrichment analysis was performed using the R package

“GSVA”. GSVA is a nonparametric, unsupervised method

primarily used to assess alterations in signaling pathways and

biological processes in samples.
2.9 Construction of risk scoring model

Univariate cox regression analysis was performed on “cell-

cluster-markers” and “TAMs-related-genes”, and genes

significantly associated with OS survival were screened at the

p<0.05 level. According to the identified prognosis-related genes,

the R package ‘glmnet’ was used to construct a prognosis model

(or classifier model) with a 10-fold cross-validation fold using

the cox method. Characteristic factors were then screened.

Kaplan-Meier survival analysis and ROC curves were used to

evaluate the predictive power of the prognostic model.
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2.10 Clinical sample validation (sample
collection and immunohistochemistry)

Lung Cancer samples were collected from the First Affiliated

Hospital of Shandong First Medical University & Shandong

Provincial Qianfoshan Hospital from June 2012 to February

2020. Written informed consent was provided by all

participants. Tumor tissues were surgically resected, formalin

fixed and paraffin embedded (FFPE) for histological evaluation.

HE-stained and immunohistochemical (IHC) slides were

examined by two independent and experienced pathologists

according to the WHO criteria.

Samples were IHC stained with mouse anti-human CD68

monoclonal antibodies (MAB-0863, clone MX075) and mouse

anti-human CD163 monoclonal antibodies (MAB-0869, clone

MX081). CD68 was used as a general surface marker for

macrophages, whilst CD163 was used as a marker for M2

macrophages (31). Double-labeled immunohistochemical

staining was performed using alkaline phosphatase and

horseradish peroxidase conjugated secondary antibodies.

Substrates were fast red (AP-Red) and diaminobenzidine

(DAB) (Roche Ltd) stained. Slides were processed using an

automated Roche BenchMark XT staining system according to

the manufacturer’s protocol.
3 Results

3.1 Proportion of immune infiltrating
cells and the prognostic efficacy
of macrophages

CIBERSORT was used to evaluate the levels of immune-

infiltration from different lung adenocarcinoma datasets

(TCGA-LUAD, GSE11969, GSE31210, GSE50081, GSE72094, and

GSE8894). According to the median macrophage ratio, samples were

divided into high- and low-levels of macrophage infiltration. Survival

differences between high- and low-groups showed a significant

correlation with macrophage infiltration (Figure 1; Supplementary

Table 2_train_cibersort.txt; Supplementary Table 2_GSE

11969_cibersort .txt ; Supplementary Table 2_GSE31

210_cibersort.txt; Supplementary Table 2_GSE50081_cibersort.txt;

Supplementary Table 2_GSE72094_cibersort.txt; Supplementary

Table 2_GSE8894_cibersort.txt).
3.2 Screening of modules corresponding
to macrophages

To identify macrophage-related genes related to infiltration,

WGCNA module analysis was performed on the training dataset

(Supplementary Figure 1, Supplementary Table 3_gene_module.txt).
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Genes corresponding to red modules were named “TAMs-related-

genes” for subsequent analysis.
3.3 TAMs-related-gene-based clustering
analysis, molecular typing and prognostic
assessments

We analyzed the expression profiles of TAMs-related-genes in

samples from different lung adenocarcinoma datasets (TCGA-

LUAD, GSE13213, GSE31210, GSE72094, and GSE8894) to

construct consistent clustering profiles. Based on cumulative

distribution functions and incremental area maps, we selected

stable clusters of TAMs-related-genes to obtain multiple subtypes

(Supplementary Figures 2A–E, Supplementary Table 4_TCGA_

consensusClass.csv; Supplementary Table 4_GSE13213_consensus

Class.csv; Supplementary Table 4_GSE31210_consensusClass.csv;

Supplementary Table 4_GSE72094_consensusClass.csv;

Supplementary Table 4_GSE8894_consensusClass.csv).

Survival analysis was performed on cluster subtypes from

different datasets, revealing significant survival differences

(Supplementary Figures 2F–I). Dimensionality reduction

analysis was performed on each dataset, revealing significant

differences in sample characteristics between different subtypes

(Supplementary Figures 2K–O).
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3.4 Preprocessing of single-cell data

To further investigate the role of macrophages in lung

adenocarcinoma, published single-cell sequencing data of lung

adenocarcinoma patients was analyzed (PMC7210975) (32). Gene

distribution and mitochondrial gene expression were screened

(Supplementary Figures 3A–C). Cells with mitochondrial

expression ≥20% were identified as dead and removed.
3.5 Identification of TAMs in total cells

Markers were used to detect the presence of TAMs in the lung

adenocarcinoma single-cell datasets (Supplementary Figures 3D–

I). TAMs were then extracted and subtype analysis performed to

obtain a TAMs subtype map (Supplementary Figure 3I).
3.6 Screening of differential expression
genes among TAMs subsets

To identify marker genes amongst the different TAM subgroups,

samples were screened in “Seurat”. Dot and violin plots revealed the

top5 marker genes for each TAM subtype (Supplementary Figure 4;

Supplementary Table 5_TAM_marker_genes.txt).
A B

D E F

C

FIGURE 1

Survival curves of high and low macrophage infiltration in lung adenocarcinoma datasets. Horizontal axis: survival time. Vertical axis: survival
probability. Color: level of macrophage infiltration. Survival analysis using (A) TCGA data, (B) GSE11969, (C) GSE31210, (D) GSE50081, (E)
GSE72094, (F) GSE8894.
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3.7 Simulation of dynamic changes
in macrophages

“Monocle” was used to identify dynamic changes

of macrophages in the tumors and cell polarization

(Supplementary Figures 5A–C). Cluster 0 could be divided into

Cluster 1 and Cluster 2 amongst TAM subtypes. The identified

genes were found to regulate differentiation (Supplementary

Figure 5D). Gene enrichment analysis on the subtypes of TAM

showed that Cluster 2 positively correlated with E2F TARGETS

and G2M CHECKPOINT, whilst Cluster 4 negatively correlated

with these pathways (Supplementary Figure 5E).
3.8 Screening of prognostic factors
based on cell-cluster-markers and
TAMS-related-genes using univariate
cox regression analysis

Markers of each TAM subtype and TAMs-related-genes

were used to identify genes related to the prognosis. Samples

were divided into high- and low-expression groups according

to the median of gene expression. Univariate Cox analysis

was performed and survival curves of the top8 prognostic

genes were displayed (Figures 2A–H; Supplementary

Table 6_cox_significant.txt).
3.9 Construction of risk score models
and evaluation of the prognostic efficacy

Based on the “GLMNET” of the R package, LASSO (Least

Absolute Shrinkage and Selection Operator) regression

analysis was used to construct a regression model for the

expression matrix of prognosis related genes corresponding

to “Cell-Cluster-Markers” and “Tams-Related-Genes”. By

analysis, when the value of the freedom degree was 9, the

model was accurate (Figures 2I–O; Supplementary Table 7_

forest.univariate_cox.txt, Supplementary Table 7_Signature_

Coef.txt). The calculation formula of the risk score model are

listed as follows:

Risk Score = 0.0354754835*C1QTNF6 (Expression Value) +

0.0023344103* FSCN1 (Expression Value) + 0.0022298189*GLI2

(Expression Value) + 0.0001616254 * KPNA2 (Expression value) +

0.0005176419*TYMS (Expression Value) + 0.0037498174 *BIRC3

(Expression Value) + 0.0033257017*RBBP7 (Expression Value) +

0.0002465129 *KRT8 (Expression Value) - 0.0263442444 *GPR65

(Expression Value). Kaplan-Meier survival curves indicated a

significant difference in survival between high and low risk

groups. The ROC curve indicated high performance of the risk

score model.
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3.10 Validation of risk score prognostic
models in external datasets

To further verify the stability of the risk score model,

external and independent data GSE19188, GSE26939,

GSE31210, GSE50081, GSE42127 and GSE72094 were used to

verify predictive efficacy. Through Kaplan-Meier survival

analysis, the constructed risk score model performed well for

all external data predictions (Figure 3).
3.11 Robust principal component analysis
of risk scoring models in clinical factors

To confirm the stability of the risk score model according to

clinical characteristics, differences in survival status between

high- and low-risk groups in terms of age, gender,

radiotherapy, clinical characteristics and Pathlogic M were

explored. Significant differences in survival between high- and

low-risk groups were observed in those aged ≥ 60 and ≤ 60 years

(Figures 4A, B; Supplementary Table 8_clinical_inf.txt). Similar

differences were observed between gender subgroups

(Figures 4C, D). In the radiotherapy group, differences

between high- and low-risk groups were more pronounced

(Figures 4E, F). In Pathologic M (Figures 4G, I), significant

differences between high- and low-risk groups were observed for

M0, indicative of higher stability.
3.12 Differences in risk score models
among cancer clinical factors

To investigate the relationship between the risk score model

and clinical characteristics, specific features were selected for

analysis. The risk score was found to be related to radiation

therapy, pathologic T and tumor stage. No significant relationship

to age or gender were observed (Supplementary Figure 6).
3.13 Evaluation of risk score models
through univariate and multivariate cox
regression analysis

To determine whether the risk score model could act as an

independent prognostic factor for cancer, the “coxph()” function

in the R package “survival” was adopted for univariate and

multivariate regression analysis on training and test sets,

respectively. We found that in all validation and test sets, the

p value of the risk score was ≤ 0.05 (Figure 5; Supplementary

Table 9_TCGA_clinical.multivariate_cox.txt; Supplementary

Table 9_TCGA_ clinical.univariate_cox.txt; Supplementary
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FIGURE 2

Survival analysis of top8 genes is significantly associated with prognosis. Abscissa axis: survival time. Ordinate axis: survival probability. Colors:
differential gene expression. Survival analysis of (A) C1QTNF6, (B) CCNB1, (C), FSCN1, (D) HMMR, (E) KPNA2, (F) PRC1, (H) RRM2, and (I) TK1.
(J) Construction of the risk score model and evaluation of its prognostic efficacy. Forest plots of genes included in the risk score model. Right
column: 9 genes included in the risk score model. Left column: corresponding forest plot. (K) Risk score plot for cancer samples (line graph).
(L) Risk score plot for cancer samples (scatter plot graph). (M) Dynamic process diagram of variables screened by LASSO regression analysis and
selection process diagram of the cross-validation parameter l. (N) Survival analysis of the training dataset. Abscissa axis: survival time; ordinate
axis: survival probability. (O) ROC curve of training datasets. Abscissa axis: specificity; Ordinate axis: sensitivity. Colors represent different years.
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FIGURE 3

Validation of the risk score model with external independent data. A1: Validation (ROC curve) of the risk score model using external independent
data GSE19188; A2: survival analysis. B1: Validation (ROC curve) of the risk score model using GSE26939. B2: Survival analysis using GSE26939.
C1: Validation (ROC curve) of the risk score model using GSE31210. C2: Validation (survival analysis) using GSE31210. D1: Validation results (ROC
curve) of the risk score model using GSE50081. D2: (survival analysis) of the risk score model using GSE50081. E1: Validation results (ROC curve)
of the risk score model using GSE42127. E2: survival analysis using E42127. F1: Validation (ROC curve) of the risk score model using GSE72094.
F2: Survival analysis using GSE72094. Abscissa axis: survival time; Ordinate axis: survival probability. Colors: different risk groups.
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Tab l e 9 _GSE1 9 1 8 8 .mu l t i v a r i a t e _ c o x _ r e s u l t . t x t ;

Supplementary Table 9_GSE19188.univariate_cox_result.txt;

Supplementary Table 9_GSE26939. multivariate_cox_result.txt;

Supplementary Table 9_GSE26939.univariate_cox_result.txt;

Supplementary Table 9_GSE42127.multivariate_cox_result.txt;

Supplementary Table 9_GSE42127. univariate_cox_result.txt;

Supplementary Table 9_GSE50081. multivariate_cox_result.txt;

Supplementary Table 9_GSE50081.univariate_cox_result.txt;

Supplementary Table 9_GSE72094. multivariate_cox_result.txt;

Supplementary Table 9_GSE72094.univariate_cox_result.txt).

This indicated that the risk score model was an accurate

independent prognostic factor for cancer.
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3.14 Construction of a nomogram model
of risk scores and clinical factors to
predict cancer progression

We next sought to apply the risk scoring model to the

prediction of cancer progression in the clinic. The R package

“rms” was adopted to construct a nomogram using a variety of

clinical features. Calibration curves were used to calculate 1, 2, 3,

and 5-year survival times (Supplementary Figure 6,

Supplementary Table 10_nomogram_patient_info_part.txt).

All survival calibration curves were near the 45° slope,

indicating high accuracy of the nomogram.
A B
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C

FIGURE 4

Kaplan-Meier survival analysis between high- and low risk groups. Abscissa axis: survival time; Ordinate axis: survival probability. Colors: different
risk groups. (A) Kaplan-Meier survival analysis between high- and low-risk groups in those aged ≤ 60 years. (B) >60 years. (C) Female patients.
(D) Male patients. (E) + Radiation therapy. (F) - Radiation therapy. (G) M:M0. (H) M: M1. (I) M: Mx.
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FIGURE 5

Univariate and multivariate cox regression analysis of the risk score model in training and validation datasets. (A) Univariate cox regression
analysis. (B) Multivariate cox regression analysis. (C) GSE19188 univariate cox regression analysis. (D) GSE19188 multivariate cox regression
analysis. (E) GSE26939 univariate cox regression analysis. (F) GSE26939 multivariate cox regression analysis. (G) GSE42127 univariate cox
regression analysis. (H) GSE42127 multivariate cox regression analysis. (I) GSE50081 univariate cox regression analysis. (J) GSE50081 multivariate
cox regression analysis. (K) GSE72094 univariate cox regression analysis. (L) GSE72094 multivariate cox regression analysis.
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3.15 Prediction of immunotherapy
efficacy amongst subtypes

We next investigated whether the risk score model could

predict the prognosis of immunotherapy. Data were calculated

using the risk score model and the K-M survival status between

high- and low-risk groups evaluated (Supplementary Figure 7A,

Supplementary Table 11_Immune_treatment.xlsx). Upon

statistical analysis of the distribution of CR/PR and PD/SD,

the proportion of treatment response rates significantly differed

between high- and low-risk groups (Supplementary Figure 7B,

chi-square test p= 0.004133). No significant differences in the

risk scores between the different treatment response groups were

observed (Supplementary Figure 7C).
3.16 Overall survival analyses of M1 and
M2 macrophage subtypes in patients
with lung cancer

A total of 32 patients with lung cancer were evaluated for M1

and M2 macrophage subtypes. Samples were stained using

double-labeled IHC. The majority of patients were in

patho log ica l S tage I I (62 .5%) and the dominant

histopathological type was adenocarcinoma (68.8%). The

clinicopathological characteristics of the lung cancer patients

are shown in (Table 1).

To identify M1 and M2 macrophage subtypes, CD68 and

CD163 antibodies were used for double-labeled IHC staining.

CD68 (brown/yellow) as a surface marker for all macrophages

primarily localized to the cytoplasm, whilst CD163 (red)
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localized to the plasma membrane. M2 macrophages were

identified through double staining for CD68 and CD163. M1

macrophages were identified through staining with CD68 alone.

Representative IHC images are shown in (Figures 6A, B).

The prognostic value of macrophage infiltration was next

evaluated. Total macrophages, M2 to M1, and M2 macrophage

infiltration were identified as detrimental to patient survival

(Figures 6C, E, F), whilst M1 macrophage infiltration was

beneficial to prognosis (Figure 6D). The infiltration of M1

macrophages in adenocarcinoma was significantly higher than

that in squamous cell carcinoma of lung cancer. No significant

differences in M2 nor total macrophage infiltration were

observed between these two histological subtypes (Figure 6G).
4 Discussion

Macrophages with different phenotypes are frequently cited

as indicators of the prognosis of lung cancer patients and the

efficacy of immunotherapy (17–24). In our preliminary analyses,

macrophage infiltration, rarely reported in lung cancer, had a

significant detrimental effect on the prognosis of lung cancer

patients (Figure 1). These data were consistent across cohorts

(Figures 1A–F) and fur ther ver ified in fo l low-up

immunohistochemical analysis of clinical samples (Figure 6C).

Collectively, these data highlight how macrophages not only act

as innate immune cells to regulate immunological responses

(23), but play an important role in the prognosis of lung cancer.

This lays the foundation for subsequent module analysis based

on macrophage infiltration (Supplementary Figure 1).

Based on the expression profiles of TAMs-related-genes, a

consistent clustering profile was constructed (Supplementary

Figures 2A–E). Significant differences in both survival analysis

and PCA (Supplementary Figures 2F–O) were observed. These

apparent differences were further identified in single-cell data

(Supplementary Figure 3) confirming the importance of

macrophages to the prognosis of lung cancer patients (17–24,

32). These data also highlight the need for further refinement of

relevant factors to more favorably evaluate patient prognosis.

Given the advantages and progress of single-cell sequencing

in lung cancer immunity (33–35), the single-cell data was further

analyzed (Supplementary Figures 4, 5, and Figure 2) (32). Based

on cell-cluster-markers and TAMs-related-genes, TOP 8 genes

(C1QTNF6, CCNB1, FSCN1, HMMR, KPNA2, PRC1, RRM2,

and TK1) significantly associated with prognosis were obtained

(Figure 2). These have obvious benefits to clinicians for the

assessment of patient prognosis (36–49). The same data were

used to construct a risk score model containing 9 factors

(C1QTNF6, FSCN1, KPNA2, GLI2, TYMS, BIRC3, RBBP7,

KRT8, and GPR65) for prognostic evaluation (Figure 2) (50–

55). The model was validated using external data cohorts

(Figure 3) and identified as robust and accurate for prognostic

evaluation (Figure 4). Significant differences in the risk scores
TABLE 1 Basic characteristics of enrolled clinical samples.

Characteristic levels Overall

n 32

Age, n (%) >65 12 (37.5%)

≤65 20 (62.5%)

Gender, n (%) Female 16 (50%)

Male 16 (50%)

T stage, n (%) T1 5 (15.6%)

T2 20 (62.5%)

T3 7 (21.9%)

N stage, n (%) N0 21 (65.6%)

N1 8 (25%)

N2 3 (9.4%)

Pathological Stage, n (%) I 8 (25%)

II 20 (62.5%)

III 4 (12.5%)

Histologic type, n (%) Adenomcarcinoma 22 (68.8%)

Mucoepidermoid carcinoma 2 (6.2%)

Squamous cell carcinoma 8 (25%)
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FIGURE 6

Validation analysis of clinical samples. A1: Immunohistochemical staining of M1 macrophages. A2: Enlargement of the boxed regions. B1:
Immunohistochemical staining of M2 macrophages. B2: Enlargement of the boxed regions. Images were obtained at 40×10 magnification under
a light microscope. (C) Kaplan-Meier survival analysis of macrophage infiltration. (D) M1 macrophage infiltration. (E) M2 macrophage infiltration.
(F) M2 to M1 macrophage infiltration. (G) M1, M2 and total macrophage infiltration between adenocarcinoma and squamous cell carcinoma.
Horizontal axis: survival time. Vertical axis: survival probability. Colors: macrophage infiltration.
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were observed for clinical characteristics including radiation

therapy, pathologic T, and Tumor stage (Supplementary

Figures 6A–E). This further highlighted the efficiency of the

risk score to predict therapeutic efficacy.

Through univariate and multivariate cox regression analysis,

the risk score model held utility as an independent prognostic

factor for cancer, further affirming its clinical benefits (Figure 5).

Furthermore, cancer progression could be more accurately

predicted using nomogram models constructed based on risk

scores and clinical factors (Supplementary Figures 6F–J). For

prognostic assessments of immunotherapy, the risk score model

could also act as an accurate evaluation tool (Supplementary

Figure 7). Upon immunohistochemical analysis of clinical tissue

samples to verify the correlation between the macrophage

phenotype and patient prognosis, similar conclusions were

obtained (Table 1; Figures 1, 6). Macrophage infiltration,

particularly for the M2 phenotype, were not conducive to the

prognosis and survival of patients, consistent with previous

studies (20–24, 56, 57).

We used WGCNA to identify macrophage infiltration-

related module genes and single-cell sequencing of lung

adenocarcinoma tissue to identify marker genes of

macrophage subtypes. This permitted the construction of a

risk assessment model with high prognostic efficacy. The

model performed well on external and independent datasets.

Immunohistochemistry analysis of clinical samples were

consistent with our data. We therefore infer that the risk score

has both high clinical practicability and application.
5 Conclusion

Macrophage infiltration was negatively correlated with

prognosis for patients with lung adenocarcinoma. Based on

cell-cluster-markers and TAMs-related-genes, both TOP8

genes (C1QTNF6, CCNB1, FSCN1, HMMR, KPNA2, PRC1,

RRM2, TK1) and the risk score model containing 9 risk factors

(C1QTNF6, FSCN1, KPNA2, GLI2, TYMS, BIRC3, RBBP7,

KRT8, GPR65) had a high efficacy for the prediction

of prognosis.
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SUPPLEMENTARY FIGURE 1

Screening of modules corresponding to macrophages using WGCNA
(Weighted Gene Co-Expression Network Analysis). (A) The cluster

dendrogram of modular genes associated with macrophage infiltration.
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(B) Heatmap of module-trait relationships associated with macrophage
infiltration. (C) Module genes relevant heatmap related to macrophage

infiltration. (D) Scatter plot of correlation between modules and
gene features.

SUPPLEMENTARY FIGURE 2

Sample clustering, molecular typing, and prognosis evaluation analyses
based on TAMs-related-genes. (A) Subtypes of clustering profiles

obtained through analysis of the expression profiles of TAMs-related-

genes in TCGA-LUAD samples (consensus matrix k=3). (B) Subtypes of
consistent clustering profiles obtained through analysis of the expression

profiles of TAMs-related-genes in GSE13213 samples (consensus matrix
k=3). (C) Subtypes of the consistent clustering profiles obtained from

GSE31210 samples (consensus matrix k=2). (D) Clustering profiles from
GSE72094 samples (consensus matrix k=2). (E) GSE8894 samples

(consensus matrix k=3). (F) Survival analysis of different cluster subtypes

in TCGA-LUAD samples. (G) Results of survival analysis of different cluster
subtypes in GSE13213 samples; The horizontal axis represents survival

time; the vertical axis represents survival probability; Curves with different
colors represent different cluster subtypes. (H) Results of survival analysis
of different cluster subtypes in GSE31210 samples; The horizontal axis
represents survival time; the vertical axis represents survival probability;

Curves with different colors represent different cluster subtypes. (I)
Results of survival analysis of different cluster subtypes in GSE72094
samples; The horizontal axis represents survival time; the vertical axis

represents survival probability; Curves with different colors represent
different cluster subtypes. (J) Results of survival analysis of different

cluster subtypes in GSE8894 samples; The horizontal axis represents
survival time; the vertical axis represents survival probability; Curves

with different colors represent different cluster subtypes. (K) Results of

principal component analysis (PCA) on TCGA-LUAD samples; (L) Results
of principal component analysis (PCA) on GSE13213 samples; (M)
Results of principal component analysis (PCA) on GSE31210 samples;
(N) Results of principal component analysis (PCA) on GSE72094 samples;

(O) Results of principal component analysis (PCA) on GSE8894 samples.

SUPPLEMENTARY FIGURE 3

Single-cell data. (A) Number of genes expressed in cells; (B) Total counts.
(C) Mitochondrial gene expression. (D–I) UMAP (Uniform Manifold

Approximation and Projection) dimensionality reduction analysis results
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of TAM subgroups. (D) C1QA. (E) C1QB. (F) APOE. (G) C1QC. (H) Analysis
of TAM clusters. (I) Subtypes derived from re-clustering of TAM

cell populations.

SUPPLEMENTARY FIGURE 4

Screening of differentially expressed genes amongst tumor macrophage

subsets. (A) Dotplot of Top5 maker genes of each subtype. Abscissa axis:
marker genes. Ordinate axis: top5 of TAM subtypes. Colors: mean

expression per-group; Dot sizes represent the fraction of cells in each

group (%). (B–G) Violin plots of the expression of the top5 marker genes.
Abscissa axis: different TAM subtypes. Ordinate axis: gene expression.

SUPPLEMENTARY FIGURE 5

Pseudo-chronological analysis of tumor macrophages for simulation of
the dynamic changes of macrophages. (A–C)Differential states according
to monocle trajectory analysis, distribution of TAMs in trajectories, and

pseudo-sequences of differentiation. (D)Genes influencing differentiation
states in the clusters. Left column: different clusters. Right column: names

of genes. (E) Pathway enrichment analysis of different TAM subtypes.
Color: correlation; Red: positive correlation; Blue: negative correlation.

Numerical values: correlation p-value.

SUPPLEMENTARY FIGURE 6

Comparison of risk scores corresponding to the clinical characteristics of
the different groups. (A) Age, (B) Gender, (C) Radiation therapy. (E)
Pathologic T cells; (E) Tumor stage. Abscissa axis: Different groups.
Ordinate axis: risk scores. (F) Nomogram model for risk scores and

clinical factors according to the clinical characteristics of prognosis. (G)
Calibration curve for 1-year survival. (H). 2-year survival. (I) 3-year survival.
(J) 5-year survival. Abscissa axis: predicted probability of survival. Ordinate

axis: actual survival.

SUPPLEMENTARY FIGURE 7

Assessment of immunotherapy prognosis according to the risk score. (A)
Survival analysis of immunotherapy responses in the training set. Abscissa
axis: survival time. Ordinate axis: survival probability. Colors represent

different risk groups. (B) Comparative analysis of the proportion of

treatment response states between high and low risk groups. (C)
Comparat ive analysis of risk scores for different treatment

response states.
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medicine in regulating TAMs
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Purpose: To emphasize the importance of tumor-associated macrophages

(TAMs) in tumor immunity and to describe the ways in which extracts from

Tradit ional Chinese Medicine (TCM) achieve tumor therapy by

modulating macrophages.

Significance: By summarizing these available data, this review focused on

TAMs and TCM and can build the foundation for future research on

antitumor therapeutics.

Methods: In this review, we summarized the key functions of TAMs in cancer

development and overviewed literature on TCM targeting TAMs together with

other immune cells aiming to enhance antitumor immunity.

Conclusions: With an indispensable role in antitumor immunity, TAMs

contribute to tumor progression, migration, invasion, angiogenesis,

lymphangiogenesis, and immunosuppressive microenvironment. In recent

years, TCM has gradually gained attention as a potential antitumor adjunctive

therapy in preclinical and clinical trials. TCM is also a regulator of cytokine

secretion and cell surface molecule expression in balancing the tumor

microenvironment (TME), especially macrophage activation and polarization.

Therefore, it is believed that TCM could serve as modifiers with

immunomodulatory capability.
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tumor-associated macrophages, traditional Chinese medicine, cancer, immunotherapy,
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Introduction

Macrophages are unique components of innate and adaptive

immunity to defeat foreign pathogens and tumor cells (1).

Tissue-resident macrophages spread through the blood and are

usually immobile unless they are induced by stimulations (2).

The initial state of tissue macrophages is called M0

macrophages, also known as Mj macrophages, before being

stimulated into the M1(classically activated state) or M2

phenotype (alternatively activated state). The phenotypes can

be interchanged in response to various stimuli, (or activation) (3,

4) (Table 1). M1 macrophages are induced by Th1 cytokines,

such as lipopolysaccharide (LPS), interferon-g (IFN-g), tumor

necrosis factor a (TNF-a), granulocyte-macrophage colony-

stimulating factor (GM-CSF) and glucocorticoid. They highly

express major histocompatibility complex (MHC) molecules

and produce nitric oxide (NO), reactive oxygen species (ROS),

and pro-inflammatory cytokines, including interleukin (IL)-1b,
IL-6, and IL-12. Above all, M1 macrophages are considered to

exert antitumor activity.

Initially, macrophages were simply divided into M1 and M2

two subtypes. With the later research, M2 macrophages could be

divided into M2a, M2b, and M2c subtypes according to different

activators. M2a macrophages are activated by IL-4 or IL-13, and

M2b macrophages are stimulated by immune complexes. M2c

macrophages are induced by IL-10 and transforming growth

factor (TGF)-b. M2 macrophages secrete anti-inflammatory

cytokines and chemokines, including a large amount of IL-10

and little of IL-12 as well as chemokine ligand (CCL)-17, CCL-

18, CCL-22, vascular endothelial growth factor (VEGF), TGF-b,
and Arginase1 (ARG1). Because of the different cytokines and

chemokines they secreted, these three subtypes undertake

different functions. M2a macrophages are responsible for Th2

responses, and M2b macrophages could also regulate immune

status and therefore lead to the Th2 response. M2c macrophages

could suppress immune responses and increase tissue

remodeling (6). The dynamic character of phenotype allows
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macrophages to perform various functions. However, due to the

complex internal and external environment, it is difficult to

comprehensively summarize the types of macrophages by

centralized classification. Therefore, when describing the

subtypes of macrophages, it is favorable to choose a series of

markers to replace the previous classification methods (3).

Tumor-associated macrophages (TAMs), which are exposed to

the tumor microenvironment (TME), undergo M1-like or M2-like

activation and then display tumor promoting or suppressing

activities (7). When defining the classification of TAMs, we

should analyze them in combination with the course of the

tumor and the time of cell separation. Choose as many markers

as possible, including surface proteins and intracellular proteomics

(8), to jointly define the properties of macrophages. TAMs can

express VEGF, TGF-b, angiogenesis chemokine CXCL12, and

platelet-derived growth factor (PDGF), which promote the

formation of partial blood vessels and lymphatic vessels of tumor

and even further tumor invasion and migration. During tumor

initiation, the infiltrated macrophages display the M1 phenotype,

which secretes inflammatory cytokines to defeat tumor cells along

with other immune cells (9). However, as cancer advances to the

later stages, TAMs convert to the M2 phenotype and create an

immunosuppressive microenvironment to support further cancer

proliferation, invasion, and metastasis, leading to poor prognoses.

However, it is difficult to classify them with specific markers, and a

series of markers are typically used for classification (10). The

biomarkers of tissue macrophages are complicated because of their

distinct locations and functions. F4/80hi cells have been identified as

the phenotypic definition of tissue macrophages in mice.

Additionally, human macrophages exhibit characteristics that are

similar to those of mice macrophages (11).

M1 macrophages express CD68, CD86, CD80, and high

MHC class II complex. Scavenger receptor (SR), mannose

receptor (MR), low MHC class II complex, and ARG1 are

used as M2 phenotype markers (5).

Traditional Chinese Medicine (TCM) has developed for

many years and is used as an adjuvant to chemotherapy.
TABLE 1 Classically and alternatively activated macrophages (3, 5).

M1 M2a M2b M2c

Activators LPS, IFN-g, TNF-a IL-4, IL-13 immune complexes, TLRs, or
IL-1ra

IL-10, TGF-b, or glucocorticoids

Receptors CD86, CD80, MHC II CD163, CD206 CD86 CD163

Cytokines TNF-a, IL-1, IL-6, IL-12, and
IL-23

IL-10, TGF-b TNF-a, IL-1, IL-6, IL-10 IL-10, TGF-b

Chemokines CXCL10 CCL17, CCL13 CXCL13, CCL1,
CCL20

Arginase
metabolism

L-citrulline and NO polyamine and urea

Functions Th1 responses, tumor
resistance

Th2 responses, type II inflammation,
allergy

Th2 activation,
immunoregulation

Inhibition of immune response, tissue
remodeling
1 Characteristics of classically and alternatively activated macrophages. M1 macrophages are classically polarized macrophages, while M2 macrophages could be divided into M2a, M2b and
M2c depending on different activators.
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Many antitumor natural products come from TCM. However,

little is known about its underlying mechanisms and bioactivities

because of the complex components and chemical structure and

the difficult extraction and purification processes. In addition to

the direct cytotoxic effects on tumors, TCM plays various

immunomodulatory roles in TME, including angiogenesis

inhibition, cell-cycle arrest or apoptosis induction (12), and

immune cell regulators, such as activating antigen-presenting

cells (APCs) and enhancing NK cell-mediated killing activity.

Overall, TCM presents the ability to inhibit tumor progression,

angiogenesis, invasion, and metastasis (13).

In this article, we summarized and discussed the

characteristics and functions of TAMs in the TME and the

mechanisms of TCM targeting TAMs in cancer biological

therapy. The evaluations of TCM and TAMs will guide new

opportunities in cancer therapeutic strategies.
TAMs and tumor progression

TAMs play indispensable roles in tumor progression,

including initiation, promotion, immune suppression,

angiogenesis, invasion, and metastasis (14). In the early stages

of the tumor, stromal cells secrete colony-stimulating factor

(CSF)-1 and other factors to recruit macrophages, which are

primarily antitumor M1-like macrophages. However, in the

advanced stages, tumor cells secrete other anti-inflammatory

cytokines and chemical factors, such as CCL-2 and epidermal

growth factor (EGF), leading to the recruitment and conversion

of TAMs from the M1 to the M2 phenotype. The flow cytometry

results showed that macrophages from advanced stages of

hepatic carcinoma were mostly MHC class IIlow TAMs, which

were alternatively activated (15). It has also been confirmed that

macrophages could be induced from M1 to M2 in a direct or

indirect contact co-culture system with tumor cells (16, 17).

Cancer-related inflammation (CRI) refers to the relevance

between the instability of the genome and inflammatory

mediators, which are mainly composed of TAMs and other

white blood cells, representing a hallmark of cancer. The fact

that inflammation induces tumor progression through

endogenous and exogenous pathways, suggests a relationship

between the initiation of cancer and chronic inflammation

caused by inflammatory cytokines produced by TAMs (18).

DNA damage could destroy the stability of genome stability.

Poor DNA repair, apoptosis disorder, and radiotherapy or

chemotherapy can lead to tumor initiation (19). Oxygen-free

radicals have also been found to be critical in the initiation and

progression of tumors (20). TAMs could produce IL-1 and TNF-

a, promoting the formation of oxygen free radicals and further

stimulating the macrophage response to other agonists (21).

Meanwhile, the accumulation of reactive oxygen species (ROS)

encourages macrophages to differentiate into a pro-inflammatory
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state, and therefore participate in the inflammation-induced

tumorigenesis (22).

The density of the infiltrated TAMs and the M2/M1 ratio

increases as tumors develop, leading to a poor prognosis (23).

For example, the high proportion of CD163+ tumor infiltrated

macrophages is related to the poor clinical prognosis in clear cell

renal cell carcinoma (RCC) (24), which is supported by another

report where the decrease of macrophages partially inhibited the

growth of hepatocellular carcinoma (HCC) (15). Clinical

datasets show that the overall survival rate of patients with

positive expression of M2 macrophages was significantly lower

than patients with negative expression. Tian et al. (25) found

that among patients with Wilms’ tumor, longer survival time is

correlated with a lower density of M2 phenotype macrophages,

suggesting that the M2 macrophage index could be a predictor in

the pathological examination. CD11c/CD206 signature is

associated with macrophage polarization and can be used as

an index to predict the prognosis. A CD11chigh/CD206low

immune profile leads to a favorable outcome (26). Moreover,

TAMs with the M2 phenotype could even affect the efficacy of

chemotherapy and radiotherapy through the suppression of T

cells (27).
TAMs in invasion and metastases

The protease produced or induced by invasive tumor cells

can degrade the extracellular matrix (ECM). Thus, the invasion

and migration of tumor cells are significantly enhanced

compared to those of normal cells. In tumor stroma, TAMs

produce enzymes, such as matrix metalloproteinases (MMPs)

and urokinase fibrinolytic enzymes (uPA) to promote matrix

degradation, and hence the invasion and metastasis of tumor

cells (28).

As one of the MMPs, MMP-9 is a paracrine regulator of

tumor progression (29) that degrades ECM, destructs the

basement membrane, and spreads cancer through the

circulatory system (30). The secretion of MMP-9 and VEGF

by M2 phenotype TAMs was notably higher than that by M1

macrophages (31). It has been identified that MMPs are involved

in the degrading and remodelling process of ECM (32), and

induce epithelial-mesenchymal transition (EMT) by

decomposing the adhesion molecules (33). EMT, a process

that transits immotile cells to motile mesenchymal cells and

therefore weakens the tight junction of tumor cells (34). Within

these pathways, the transforming growth factor-b(TGF-b) is the
primary regulator, which is also the key factor facilitating the

proliferation and differentiation of TAMs (35). As demonstrated

in gastric carcinoma (36) and hepatocellular carcinoma (37),

EMT is related to the high infiltration of TAMs, which produce

higher TGF-b1 than macrophages with other phenotypes.
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TAMs in angiogenesis and
lymphangiogenesis

Inducing angiogenesis and lymphangiogenesis is one of the

major characteristics of tumor cells, the symbol of tumor

expansion to distant metastasis. TAMs regulate tumor

angiogenesis and lymphangiogenesis in two approaches:

paracrine and cell autonomous mode (38). As the tumor

proliferates, the supply of oxygen becomes insufficient,

generating a hypoxia tumor microenvironment. Macrophages

are recruited to the regions between tumor and interstitial cells

where vascularization is poor (39). After being stimulated by

hypoxia-inducible factor (HIF-1a), TAMs release a set of

angiogenic cytokines, such as vascular endothelial growth

factors (VEGF)-A (40), TGF-b, CXCL12, PDGF, and MMPs

(7), which in turn promote tumor angiogenesis (40). At the same

time, macrophages deliver more VEGF-receptors (VEGFRs)

under hypoxia to combine with VEGF in the TME, which

affects downstream pathways and promotes the transformation

of TAMs toM2 phenotype. TAMs could also activate endothelial

cells in cervical carcinoma, which highly express VEGF-C and

VEGF-D, and stimulate existing lymphatic endothelial cells’

proliferation (41). Furthermore, the existence of macrophage-

derived lymphatic endothelial cell progenitors (M-LECP) has

proved the autonomous mode. Under the stimulation of

inflammatory factors, M-LECP could differentiate into

lymphatic endothelial cells (LEC), contributing to pre-existing

lymphatic vessels and subsequent lymphogenesis (38).

TAMs could overexpress HIF-1 and HIF-2, further up-

regulating CXCL12. CXCL12 was found to be critical in

enhancing the GM-CSF/Heparin-binding epidermal growth factor

(HB-EGF) paracrine loop of colon cancer metastases in the liver,
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advancing tumor anti-apoptosis and the recruitment of TAMs (42).

CXCL12 has also been identified to promote monocytes to

differentiate into CD163+ macrophages and increase the

expressions of VEGF and angiogenic chemokine CCL1 (43). To

overcome the hypoxia and immunosuppress of the TME, a

biomimetic nano-RBC system (V(Hb)) combined with

hemoglobin–poly(ϵ-caprolactone) (Hb–PCL) and doxorubicin (V

(Hb)@DOX)) was engineered. V(Hb)@DOX could effectively limit

the recruitment of CD163+ M2-type macrophages and improve

tumor hypoxia by reducing HIF-1a expression. Furthermore, the

alleviation of the immunosuppressive TME decreased the secretion

of MMP-9 and VEGF-A in tumors, which in turn inhibited tumor

growth and metastasis (44).
TAMs and immunosuppressive
microenvironment

The immunosuppressive tumor microenvironment consists

of tumor cells, endothelial cells, fibroblasts, ECM, and immune

cells et al. Immune cells therein include macrophages, dendritic

cells (DCs), T cells, B cells, myeloid-derived suppressor cells

(MDSCs), natural killer (NK) cells and regulatory T cells (45). As

chronic inflammation is essential in the immunosuppressive

microenvironment, immune cells and inflammatory factors

highly interacted with each other (46), which are summarized

in Figure 1. It has been proposed that IL-10 secreted by MDSCs

could down-regulate IL-12 produced by macrophages and thus

induce macrophage polarization into the M2 phenotype (47).

TAMs restrain T cell-specific response in various aspects

according to the recent findings. Extracellular vesicles (EVs),

isolated from M2 phenotype macrophages, crippled CD8+ T cell
FIGURE 1

The role of macrophages in the immunosuppressive tumor microenvironment.
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proliferation, and killing activity, leading to tumor immune

evasion in murine hepatocellular carcinoma (48), colon

cancer (49) and gastric cancer (50). TAMs depletion with a

nanocarrier named BLZ-945SCNs/Pt, which delivers both CSF-1R

inhibitor-BLZ-945 and platinum (Pt)-prodrug, can achieve the

synergistic antitumor activity of chemoimmunotherapy. The

decrease in TAMs significantly reduced the expressions of

TAMs-derived VEGF-A and MMP-9 and further less lung

metastasis, which demonstrated the therapeutic efficacy of

targeting TAMs in tumors (51). Sun (52) reported that

Doxorubicin (DOX)-loaded micelles with a hemoglobin crown

(Hb-DOXM) have also achieved significant antitumor effects in

reprograming the immunosuppressive microenvironment into

the immunostimulatory microenvironment by augmenting the

release of O2 and DOX and reducing the recruitment of M2-type

macrophages in tumors.

For one thing, TAMs act as T cell activators using their

surface MHC I or II molecules also by producing cytokines. For

another, TAMs could induce T cell inhibition and exhaustion.

Through direct and indirect regulations, TAMs are important in

each of three steps to activate T cell response: specific binding of

T cell receptors and MHC molecules on TAMs, costimulatory

molecule signaling pathways, and environmental cytokines

derived from TAMs (53). TAMs could secrete IL-10 to induce

the expression of inhibitory receptors by T cells, such as

programmed death (PD)-1 and cytotoxic T lymphocyte-

associated antigen (CTLA)-4. The bindings of receptors and

the corresponding ligands (PD-L1 and CD80/CD86) on the

surface of TAMs, lead to negative regulations of T cell

immune response, including apoptosis, anergy, and

exhaustion (54).

Regulatory T cells can also weaken the immune functions

of CD4+ and CD8+ T cel ls (55) . Thymus-der ived

CD4+CD25+Foxp3+ regulatory T cells could increase the

percentage of CD206+ and CD163+ macrophages differentiated

from monocytes and up-regulate CCL18 and IL-1Ra produced

by macrophages (56). Moreover, TAMs and DCs could increase

the production of IL-10 and TGF-b, which transform naïve T

cells into regulatory T cells (55) and further inhibit the

antitumor immunity contributed by NK cells.

In summary, targeting the regulation of immune cell balance

and augmenting tumor immunity in the microenvironment has

always been the focus of tumor immunotherapy.
TAMs in canine tumors

Similar to human tumors, many studies suggest that TAMs

have a relationship with the grading of malignant tumors in

veterinary science.

In canine lymphoma, tumor-infiltrating macrophages could

be characterized as M1 and M2 according to iNOS, CD204 and

CD163. As shown in the immunohistochemical results, the type
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of macrophages changed from M1 to M2 in the high histological

grade. Among the two immunophenotypes of lymphomas, type

B and type T, M2 macrophages have a dominant position in T-

type lymphoma (57). Unlike human tumors, in many cases, it

has been reported that CD204 is a better choice than using

CD163 as the marker of the M2 macrophage subtype in canine

tumors (58).

In canine mammary gland tumors, another result supported

that tumor-infiltrating M2 macrophages have been correlated

with the grading of malignant lesions (59). Furthermore, the

high density of TAMs in canine mammary tumors has also been

considered as a poor prognosis (60). TAMs also have a

significant relationship with the expression of VEGF in canine

mammary tumors, suggesting that TAMs synergistically

promote tumor angiogenesis (61). Above all, TAMs may act as

a potential target in the therapy of canine mammary tumors.
TAMs regulated by TCM

Many studies supported that TCM plays an important role

in cancer treatment, including promoting immune function,

activating immune cel ls , enhancing the efficacy of

antineoplastic, and reducing the side effects of radiotherapy

and chemotherapy (62). Some kinds of TCM can directly

inhibit the proliferation of tumor cells, while others suppress

tumor growth, invasion, and metastasis indirectly by indirectly

regulating the immune system (63). Vincristine and paclitaxel

are common commercialized chemotherapeutics extracted from

TCM in clinical applications. According to National Medical

Products Administration, there are more extractions from TCM

that are used as adjuvant therapies with radiotherapy and

chemotherapy, such as lentinan, krestin et al. Since the 1980s,

both China and Japan have approved the use of the mushroom

polysaccharide, lentinan, as an adjuvant medicinal medication

for the treatment of cancers. Lentinan was mainly used in

treating lung (64), gastric, and colorectal cancers as adjuvant

therapies and exhibited better efficacy and clinal response rates,

as well as improved the quality of life of cancer patients,

according to a review that summarized 9474 reported

lentinan-associated cancer treatment cases (65). Additionally,

polysaccharide-kureha (PSK), also known as Krestin, was

authorized for the treatment of various cancers (66). PSK is

frequently given orally, either alone or in combination with

other drugs. Together with tegafur/uracil (UFT), PSK

significantly increased stage II and stage III colorectal cancer

patients’ 5-year disease-free survival and reduced the risk of

recurrence and lung metastases (67).

The common active components from TCM with

macrophage regulatory effects are glycosides, alkaloids, and

polysaccharides, which could activate MAPKs, MyD88, and

NF-kB related pathways by one or more receptors. The

downstream phagocytic activity, ROS, NO, and relevant anti-
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tumor cytokines of TAMs are further enhanced accounting for

the complete antitumor immune regulation (68).
TCM activates antitumor phenotype and
inhibits tumor-promoting phenotype
of TAMs

TCM regulates macrophages in various ways, including

activating anti-tumor macrophages, inhibiting the recruitment

and activation of TAMs, transforming the phenotype of TAMs,

and indirectly regulating TAMs by altering cytokine secretions

in the tumor microenvironment.

It has been proven that acidic polysaccharides from Plantago

major leaves could activate J774 macrophages and increase

the release of NO and TNF-a (69). The polysaccharide

extracts from Plantago depressa have also been shown as an

immunomodulatory agent by promoting lymphocyte

proliferation and NO production (70). Emodin inhibited

the expressions of CCL2 and CSF1, which were involved in

the differentiation of macrophages (71). It could also reduce the

growth of EO771 and 4T1 breast tumor cells by suppressing

macrophage migration and polarization, and inhibiting IRF4

and C/EBPb signalings (72). Although astragalus polysaccharide

(APS) could not inhibit the MCF-7 cell viability directly, it could

activate RAW264.7 cells and up-regulate the production of NO

and TNF-a, to induce the apoptosis of breast tumor cells (63).

Ginseng polysaccharide (GPS) was shown to have similar

functions as APS and exerted a cytotoxic effect against mice

tumor cells via activating the peritoneal macrophages (PMs)

rather than direct cytotoxicity (73).

Furthermore, TCM could cooperate with radiotherapy and

chemotherapy, to enhance the curative effect of both and

meanwhile alleviate the common side effects. A kind of water-

extracted polysaccharides from Fuzi was found to promote the

phagocytic activity and the release of NO, IL-6, IL-1, and TNF-a
in RAW264.7 cells. Also, it had the ability to reverse the spleen

index and thymus index in cyclophosphamide-induced

immunosuppressed mice, demonstrating its possible

application in antitumor therapy as an immunomodulator

(74). Interestingly, not all TCM act as anti-tumor agents.

Methanol extracts of Xanthium sibiricum roots (MXS) inhibit

the NO, IL-6, IL-1b and TNF-a by suppressing IkBa and

STAT3 signaling pathways in LPS-induced RAW264.7

macrophages (75).

Not only the monomers of TCM but also some complex

TCM formulas have been proved to have macrophage-regulating

functions. Bu-Fei Decoction (BFD), a conventional TCM

constituted of six herbs, is often used for tonification and

alleviating symptoms of lung cancer. In non-small cell lung

cancer (NSCLC), BFD decreased the expressions of IL-10, PD-

L1, and CD206 in TAMs induced in vitro by PMA and IL-4.

Besides, BFD exhibited a dose-dependent inhibition of the
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invasion and migration of NSCLC cells via downregulating IL-

10 and PD-L1 both in vivo and in vitro (76).
TCM and macrophage polarization

M1-like TAM is the dominant phenotype suppressing tumor

growth in the initial immune microenvironment of the tumor,

but the M2 phenotype gradually replaces its leading position by

recruiting tumor cells as the tumor advances to the later stages

(7). In the tumor microenvironment, TAMs can switch between

M1 and M2 states depending on the different signal inductions

(13). Hence, finding new approaches to change TAMs from M2

to M1 phenotype could assist the antitumor immunity and

prevent tumors from immune escape.

Astragalus polysaccharide (PG2) has been indicated as a

modifier of macrophage polarization in NSCLC both in vivo and

in vitro. PG2 enhanced the M1 polarization and reduced the

CD206+ M2 cells in a dose-dependent manner. Also, PG2 could

inhibit the tumor enhancement (including proliferation,

clonogenicity to form tumorspheres, and invasion via IL-6/

STAT3 signaling suppression) from a stem-cell-like phenotype

of NSCLC induced by M2 macrophage. Furthermore, PG2

prominently strengthened the tumor-suppressive effect of

cisplatin in NSCLC tumor-bearing mice models, but also

alleviated dysuria and weight loss caused by cisplatin (77).

Macrophages play an important role in baicalin-mediated

inhibition of hepatocellular carcinoma (HCC). They were re-

programmed towards the M1 phenotype to prevent tumor cells

from immune escape, which is characterized as the descending

proliferation and invasiveness of HCC cells. This repolarization

was related to the autophagy-associated up-regulation of RelB/

p52 (78).

A novel polysaccharide WCCP-N-b isolated from

Cantharellus cibarius can induce M2-like bone marrow-

derived macrophages (BMDMs), mouse peri toneal

macrophages, and RAW264.7, to M1 phenotype. After being

treated by WCCP-N-b, macrophages affected melanoma cell

viability via increasing the production of TNF-a, which was

cytotoxic to tumor cells (79). Water extract of ginseng and

astragalus (WEGA) is reported to promote macrophages to

express M1 markers and down-regulate M2 marker

expressions simultaneously. Furthermore, WEGA also

promoted immune responses, which were suppressed by

cisplatin (62).

Emodin has received much attention due to its inhibiting

effect on TAMs and its antitumor activity. It has been found that

Emodin could inhibit IRF4, STAT6, and C/EBPb signaling

pathways in vivo to suppress macrophage infiltration and M2

polarization accompanied by T-cell activation, and therefore

reduce breast cancer growth (72). Moreover, Emodin

significantly inhibited breast cancer lung metastasis by

inhibiting M2 polarization in metastatic lungs (80). Emodin
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inhibited the activation of NF-kB, STAT1, and IRF5 signaling

pathways induced by LPS/IFNg, and the stimulation of STAT6

and IRF4 signaling pathways stimulated by IL4 (81). Taken

together, Emodin adopts an inhibitory effect on tumor growth by

restoring macrophage homeostasis in the tumor-suppressive

immune microenvironment.
TCM and TME regulation

Some TCMs have direct cell killing effects, while most have

lower cytotoxicity, but could enhance the bioactivity of immune

cells or inhibit immunosuppressive cells for anti-tumor purposes.

Evidence showed that a polysaccharide extracted from the

whole plant of Plantago Asiatica L. could recruit immune cells

(DCs, macrophages, and T cells) in the murine breast tumor

model and accelerate the maturation of DCs, which promoted

the proliferation and differentiation of T cells. Plantain

polysaccharides had no direct cytotoxicity to breast tumor

cells. However, it inhibited tumor growth by promoting the

autoimmune response in mice (82). Modified citrus pectin

(MCP) has been identified to accelerate the activation of the

T-lymphocyte subset, B cells, and NK cells (83). Astragalus

polysaccharide (PG2) not only regulated the macrophage

phenotype but also promoted the maturation of immature

DCs and recruitment of CD8+ T cells for anticancer immune

response in NSCLC (77).

Besides, many studies showed a close relationship between

immunosuppressive cells and TCM. TCM could suppress the

recruitment and metastasis of immunosuppressive cells when

tumor-promoting immune cells are dominant in quantity and

function. Silibinin, extracted from milk thistle, dwindled tumors in

4T1 tumor-bearing mice by decreasing MDSCs infiltration and M2-

like polarization of macrophages. However, in an immunodeficient

mouse model, similar efficacy was not observed, suggesting the anti-

tumor response of Silibinin was based upon the integrity of the

immune system (84).Maitake D (MD)-Fraction, a b-glucan extracted
from Grifola frondose, inhibited the growth of mammary carcinoma

and colonic adenocarcinoma cells and enhanced immune cell

infiltration in the tumor microenvironment, including T cells, B

cells, DCs andNK cells. DCmaturation, specific T cell responses, and

the infiltration and anergy of Tregs and MDSCs were induced by

orally administered MD-Fraction, suggesting the significance of

converting immunosuppressive elements of the TME in tumor

immunotherapy (85).

Not only polysaccharides from TCM could enhance the

immune system, but other types of natural products, including

terpenes, alkaloids, saponins, and flavonoids, also have the

ability. Andrographolide, an isoprenoid extracted from

Andrographis paniculate, has been reported to exhibit

cytotoxicity to nearly all kinds of cancer cells and mediation of

the immune system (86). In another study, Andrographolide

released a high level of IL-2 and IFN-g, promoted cytotoxic T
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lymphocyte (CTL) production and prolonged the survival time

of mice bearing lymphoma (87).
TCM delivery system

Considering the instability and low bioavailability of active

components from natural TCM, it is quite challenging to apply

them directly in vivo. In recent years, the rapid development of

nano-drug delivery systems has made it possible to deliver TCM

or employ TCM as drug carriers for cancer treatment. A growing

amount of TCM has been delivered to tumor tissues and their

stroma through nano-drug delivery, such as liposome, or

precision targeted therapy and immune regulation. Astragalus

polysaccharide liposome (APSL) has been demonstrated to

enhance the phagocytosis of murine peritoneal macrophages

and speed up the DC-mediated immune reactions compared to

applying AP alone (88). Moreover, cell-membrane-coated

nanoparticles showed high efficiency in passing through the

biofilm barrier and slowing down the metabolism of the loaded

drugs. A novel macrophage-biomimetic drug delivery system

carrying Saikosaponin D was reported to inhibit cell migration

of MCF-7 and 4T1 cells in vitro and significantly reduced tumor

growth and lung and spleen metastasis by promoting

dephosphorylation of AKT and Erk in tumor-bearing mice (89).
TCM and canine tumors

The application of TCM in human treatment has gradually

increased because of its chemopreventive and chemotherapeutic

effects. However, its role in the small animal clinical field should

not be underestimated. TCM could also be considered as an

approach for clinical therapy to inhibit the growth of canine

tumor cells. For example, Paclitaxel has been widely used to treat

lung, ovarian, and breast cancer. It was reported to inhibit the

migration of canine hemangiosarcoma (HSA) cells with the

increase of time and concentration (90). In canine melanoma

cells, oral paclitaxel was also tested to decrease the proliferation

of tumor cells both in vivo and in vitro by arresting cell cycle

(91). Canine mammary tumors are common among female dogs

and the risks of malignancy are relatively high. BmKn-2, a

peptide extracted from the venom of scorpions, has been

proved to have antitumor activity in both human and canine

tumor cells. It inhibited canine mammary gland tumor cell

proliferation via inducing apoptosis, which was represented by

the decrease of Bcl-2 to Bax ratios (92). Besides the direct tumor-

killing effect, TCM could contribute to the immunomodulatory

effects targeting immune cells and consequently hinder tumor

progress. Our team has been focused on the study of TCM in

antitumor immunity regulations and proved that although

Plantain polysaccharide (PLP) showed no cytotoxicity to

canine mammary cells (CIPp), conditioned medium obtained
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from PLP to DCs had inhibitory effects on CIPp cells. Moreover,

it could promote the maturation of DCs and thus facilitate the

proliferation of lymphocytes, which exert the main toxicity effect

(82). All in all, TCM is of great significance in regulating animals

with poor immune status, especially for the tumor patients.
Conclusions

Overall, TAMs could suppress anti-tumor immunity by

promoting cancer proliferation, invasion, metastases, and

angiogenesis. Besides, TAMs contribute to the immunosuppressive

microenvironment to further advance cancer development. TCMhas

been proved to be an effective method for reprogramming TAMs and

other immune cells and turning the immunosuppressive

microenvironment into an antitumor one. In this study, we

provide support for further studies on antitumor immunity

and immunotherapy.
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Lung cancer is a disease with remarkable heterogeneity. A deep understanding

of the tumor microenvironment (TME) offers potential therapeutic strategies

against this malignant disease. More and more attention has been paid to the

roles of macrophages in the TME. This article briefly summarizes the origin of

macrophages, the mutual regulation between anti-tumoral immunity and pro-

tumoral statuses derived from macrophage polarization, and the therapeutic

opportunities targeting alternately activated macrophages (AAM)-type

macrophage polarization. Among them, cellular components including T

cells, as well as acellular components represented by IL-4 and IL-13 are key

regulators driving the polarization of AAM macrophages. Novel treatments

targeting macrophage-associated mechanisms are mainly divided into small

molecule inhibitors, monoclonal antibodies, and other therapies to re-

acclimate AMM macrophages. Finally, we paid special attention to an

immunosuppressive subgroup of macrophages with T cell immunoglobulin

and mucin domain-3 (TIM-3) expression. Based on cellular interactions with

cancer cells, TIM3+ macrophages facilitate the proliferation and progression of

cancer cells, yet this process exposes targets blocking the ligand-receptor

recognition. To sum up, this is a systematic review on the mechanism of

tumor-associated macrophages (TAM) polarization, therapeutic strategies and

the biological functions of Tim-3 positive macrophages that aims to provide

new insights into the pathogenesis and treatment of lung cancer.

KEYWORDS

lung cancer, tumor microenvironment (TME), macrophages, anti-tumoral immunity,
macrophage polarization
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Introduction

Lung cancer is the second most common cancer worldwide

and the leading cause of death (1). In recent years, the morbidity

and mortality of lung cancer have accelerated significantly.

Taking the United States as an example, it is estimated that

there will be 1,898,160 new cancer cases in 2021, of which lung

cancer ranks second in both male and female patients,

accounting for 12% and 13%, respectively. And among the

608,570 estimated cancer deaths, lung cancer ranks first in

mortality. Lung cancer is the leading cause of cancer death

among men in both developed and underdeveloped countries

(2). According to the clinical histological characteristics, lung

cancer is mainly divided into small cell lung cancer (SCLC) and

non-small cell lung cancer (NSCLC) which make up 85% of all

cases. The common subtypes of NSCLC mainly include lung

adenocarcinoma, lung squamous cell carcinoma (LUSC) and

large cell carcinoma (3, 4). The annual survival rate of lung

cancer cases is only 15.9%, and this data has only improved

slightly over the past few decades (5).

The TME is the environment surrounding tumor cells. The

TME is heterogeneous and consists of immune cells, fibroblasts,

endothelial cells and neuronal cells, their extracellular matrix

(ECM) proteins, signaling molecules and surrounding blood

vessels (6). The TME is closely related with tumorigenesis and

cancer progression through multiple mechanisms, including

promoting epithelial-to-mesenchymal transition (EMT),

facilitating tumor infiltration and contributing to immune

suppression (7). The lung cancer microenvironment is

characterized with prominent intra-tumoral heterogeneity,

which could be caused by the heterogeneity of TME including

mechanical properties, acidity conditions, and signaling

molecules (8). A full understanding of the TME will facilitate

the further development of effective therapies for lung cancer. In

this review, we focused on TAMs, a critical component of the

TME that plays an important role in the pathogenesis of lung

cancer. We discussed the mutual regulation between anti-

tumoral immunity and pro-tumoral statuses derived from
Abbreviations: EMT, Epithelial-to-mesenchymal transition; TME, Tumor

microenvironment; TIM-3, T cell immunoglobulin and mucin domain-3;

SCLC, small cell lung cancer; NSCLC, non-small cell lung cancer; LUSC, lung

squamous cell carcinoma; ECM, extracellular matrix; NK cells, natural killer

cells; DC cells, dendritic cells; MDSC, myeloid-derived suppresser cells

regulatory T Treg cells; TAM, tumor-associated macrophages; MPS,

mononuclear phagocytic system; CAM, classically activated macrophages;

AAM, alternately activated macrophages; MDSCs, myeloid-derived

suppressor cells; TLRs, Toll-like receptors; TGF-b, transforming growth

factor-b; GCs, glucocorticoids; IgSF, immunoglobulin superfamily; IgV,

immunoglobulin domain; CVB3, coxsackievirus B3; Mtb, mycobacterium

tuberculosis; MDSC, myeloid-derived suppressor cells.
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macrophage polarization, and explore potential therapeutic

opportunities targeting alternately activated macrophages

(AAM)-type macrophage polarization in lung cancer.
Macrophages: An important
component in the immune
microenvironment of lung cancer

Tumors are increasingly seen as complex ‘ecosystems’ where

multiple interactions take place among cancer cells, immune

cells as well as various components in the extracellular matrix

(ECM) (9). The ECM comprises the majority of non-cellular

TME, such as laminin, collagen, and fibronectin, while the

cellular components surrounding tumor cells include immune

cells (such as lymphocytes, NK cells, macrophages and dendritic

cells) and non-immune cells (such as fibroblasts and vascular

endothelial cells), collectively determining their roles in

tumorigenesis and tumor progression. More and more

evidence suggested that instead of driving uncontrollable

proliferation and distant metastases on its own, cancer cells

interact with the TME cells to re-shape the lesion into an

immunosuppressive, chronic inflammatory, and pro-

angiogenic microenvironment (10, 11). During the early stage

of tumorigenesis, TME cells including the infiltrating

inflammatory cells, endothelial progenitor cells, and cancer-

associated fibroblasts constituted the infrastructure of cancer

niches. With the proliferation of cancer cells, more immune cells

infiltrated in. According to its role in carcinogenesis, TME cells

could be divided into pro- and anti-tumoral components (12).

Anti-tumoral macrophages, lymphocytes, natural killer (NK)

cells, and dendritic cells (DC), which originated from the host

microenvironment or recruited from the circulating system,

were inhibited and acclimated by the immunosuppressive

components, represented by myeloid-derived suppresser cells

(MDSC), regulatory T (Treg) cells and M2 subtype macrophages

(also known as tumor-associated macrophages, TAM) (10). M2-

polarized macrophages can secrete interleukins that promote

lung cancer tumorigenesis and metastasis. In turn, some

interleukins can prime macrophage M2-polarization through

stimulating the expression of interleukin receptors (13). Initially,

macrophages performed both phagocytosis and antigen-

presentation, while TAMs nourished tumor cells through a

multitude of signaling pathways, hindered effector cells from

attacking cancer cells, and promoted the occurrence,

development and metastasis of malignant cancers (14–17).
Origin of macrophages

In view of its tissue of origin, macrophages can be divided

into two main subtypes. Belong to the mononuclear phagocytic
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1007812
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hu et al. 10.3389/fimmu.2022.1007812
system (MPS), some macrophages are differentiated from

monocytes that were released from the bone marrow (18).

Other tissue macrophages were derived from embryonic

progenitor cells, maintained by in situ self-renewal without

being replenished from the bone marrow (19–21). For

example, in the epidermis and central nervous system, the vast

majority of macrophages were maintained in a self-renewing

manner instead from the recruitment of circulating monocytes

(19, 22, 23). However, in the spleen and gut, bone marrow-

derived macrophages contributed more (20, 24). Additionally,

based on pathways of activation, macrophages were classified

into “activated” macrophages involved in Th1-response and

“alternatively activated” macrophages involved in Th2-

response, and some researchers proposed that antigen-

presenting DC in the circulation were also a member of the

MPS lineage (14). Under pathological conditions, the monocyte/

macrophage distribution was re-arranged. For instance,

cytomegalovirus infection resulted in an accumulation of MPS

cells in the bone marrow whereas a decrease in the peripheral

circulation (17). Another report demonstrated that Th2-type

inflammation promoted rapidly in situ proliferation of

macrophages to avert potential tissue damage caused by

universal recruitment of circulating inflammatory cells (25). In

addition, extramedullary sites, such as the spleen, can generate

bone marrow-derived monocytes and store, expand, and

distribute in response to inflammatory signals (26, 27).
Polarization of macrophages

Under pathological circumstances, TAMs played an

indispensable role in the initiation and progression of lung

tumors (28, 29). Since the discovery in the 1990s that IL-4

induces macrophage gene expression differently from classical

gamma-interferon and bacterial lipopolysaccharide activation,

this IL-4-inducible macrophage gene has been termed

“alternative activated” macrophages (30). Meanwhile,

macrophages are phenotypica l ly and funct iona l ly

heterogeneous, and macrophages can also be divided into two

groups based on their phenotypic profi le and local

microenvironment: the pro-inflammatory “classically activated

macrophages (CAM)” and the anti-inflammatory “alternately

activated macrophages (AAM)” (31). CAMs perform the

functions of immune surveillance and antigen presentation,

secrete pro-inflammatory cytokines and chemokines,

participate in positive immune responses. On the contrary,

AAMs have a much weaker antigen-presenting ability, while

playing an important role in immune regulation by secreting

inhibitory cytokines such as IL-10 and/or TGF-b ,
downregulating anti-tumoral immune response. For surface

biomarkers, CD14 is a common biomarker of monocyte/

macrophages (32, 33), but the two subtypes of macrophages

have differentiated expression of CD206, IL-10, and IL-12 (34,
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35). CAM-type macrophages express MHC II, CD86, NO, iNOS,

showing the characteristics of pro-inflammatory response and

anti-tumor, while AAM-type macrophages express IL-10, arg-1,

CD206, CD163, TGF-b, showing immunosuppressive and

tumor-promoting characteristics (36). The classification of

CAM-type macrophages and AAM-type macrophages was

originally proposed for tissue macrophages and can also be

extended to peripheral circulating blood monocytes (37). In

the field of oncology, two macrophage subclusters were

investigated, and the polarization of CAM towards AAM was

reported to be correlated with poor prognosis and treatment

failure (34, 36). Cellular and molecular mechanisms were

reported. The cancer-AAM interactions facilitated the

invasiveness of cancer cells and destruction of TME matrix in

co-culture system (36). AAM also communicated with cancer

cells by chemokines. Interleukin-6 secreted by AAM activated

STAT3 signaling pathway and promoted proliferation and

sphere formation of lung cancer cells (37).
Mutual regulation between TAM
and TME

Chronic inflammation and wound healing have a close

relationship with carcinogenesis and tumor progression (38).

TAMs are the most abundant immune cells in the TME, and

have the characteristic of polarizing towards AAM-type

macrophages. As a major component of infiltrating immune

cells present in tumor tissue, TAMs are closely related to the

inflammatory response in the tumor tissue, and aids tumor

progression as well as metastasis (15, 16, 38). After being

“educated” into TAMs, macrophages nourish the survival of

tumor cells through various signaling pathways (15).

TAMs and tumor cells mutually promote each other through

paracrine EGF/CSF-1 signaling (39, 40). Cancer cells secret

CCL2 and CSF1 to recruit macrophages from circulating

monocytes, and simultaneously IL-10 and PGE2 to facilitate

immune evasion (41–43). To fuel tumorigenesis in the TME,

TAM can secrete pro-angiogenic cytokines in the hypoxic TME

including VEGFA, VEGFC and PDGF to facilitate tumor

angiogenesis (14, 40). To destruct the tumor stroma, TAM

also secrets proteases such as cysteine cathepsin and further

promotes the invasion of cancer cells into the neo-

vascularization to drive tumor progression (41). In addition to

expressing VEGF-A and other angiogenic factors, TAMs also

express Tie2 receptors that interact with endothelial cells and

pericytes lining the tumoral vascularization to up-regulate

angiogenesis (44). TAMs functions as a pivotal cellular

component, in that macrophages also interact with other

immune cells in the immunosuppressive TME. The PD-L1/

PD-1 pair exists between the antigen-presenting TAMs and

cytotoxic T cells, thereby inhibiting the antitumor effect of

effector T cells (45, 46). Increased numbers of neutrophils are
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1007812
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hu et al. 10.3389/fimmu.2022.1007812
closely associated with poor prognosis in non-small cell lung

cancer (NSCLC), possibly due to their expression of elastase that

degrades the stroma in the microenvironment (47, 48). As

tumors grow, immunosuppressive cells such as myeloid-

derived suppressor cells (MDSCs) and regulatory T (Treg)

cells enter the circulation in response to activate cytokine axes

such as TGF-b and CXCL5-CXCR2 pathways (49). MDSCs and

Treg cells infiltrate into the growing tumors, promote tumor

angiogenesis and interferes with innate immunity by immune

surveillance and antigen presentation, adaptive immunity via

disrupting lymphocyte proliferation and biological functions,

and damaging cytotoxicity of effector cells (50–53). Moreover,

accumulated MDSCs can increase the degradation of stroma,

thereby attenuating structural resistance for tumor proliferation,

metastasis and angiogenesis (54, 55). In conclusion, TAM is the

key to the immunosuppressive TME, and the crosstalk between

TAM and various immune cells and TME cytokines plays an

irreplaceable role. Understanding the main mechanisms by

which TAMs are involved in tumor immunosuppression will

help us improve clinical considerations and develop potential

new strategies to overcome macrophage-related immune

tolerance (Figure 1).
Molecular mechanisms of AAM-type
macrophage polarization

IL-4, IL-13 signaling promotes
polarization towards AAM macrophages

AAM-type macrophages involved in Th2-type polarization

can help the body eliminate parasites, suppress inflammation,

promote tissue repair, promote tumor growth, and participate in

other immune regulations. Compared with the activation of

CAM-type macrophages, the activation of AAM-type

macrophages is relatively diverse. The polarization of AAM-

type macrophages was first reported to result from the action of

Th2-type cytokines IL-4 and IL-13 (30, 56, 57). The main

receptors of the IL-4 signaling pathway are type I IL-4

receptors (IL-4Ra or IL-4Rgc) or type II IL-4 receptors (IL-

4Ra or IL-13Ra1), while IL-13 signals through type II IL-4

receptor (58). The differential expression of type I or type II

receptors on different cell types determines their different

sensitivities to IL-4 and IL-13. Monocytes and macrophages

have type I and type II receptors and are responsive to both

cytokines (58, 59). IL-13Ra2, as a component of type II

receptors, can act as a decoy for IL-13 and inhibit the selective

activation of monocytes (60). The downstream signaling

pathway of the IL-4 receptor involves the activation of

multiple Janus kinases (56, 57, 61). Stat3 and Stat6 play crucial

roles in AAM-type macrophage polarization (56, 62).

Phosphorylated Stat is further transferred into the nucleus to
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regulate targeted genes involved in macrophage polarization

(62). IL-10 secreted by Treg cells and B cells acts on IL-10R of

macrophages, and then regulates Stat3 to promote the

polarization of AAM-type macrophages and play an

immunosuppressive role. In recent years, it has been found

that Stat3 is highly activated in various tumor tissues (63, 64).

At the same time, other regulatory genes PPAR-g, IRF4,
JMJD3, and p50 are also involved in regulating the expression of

AAM macrophage marker genes such as YM1, FIZZ1, Arg1,

CCL17, and CCL22. STAT6 also induces the expression of the

transcription factor PPAR-g, which cooperates with STAT6 to

regulate macrophage polarization and increase the expression of

AAM-type biomarkers in a murine model of obesity (65). At the

epigenetic level, the histone demethylase JMJD3 regulates the

AAMmacrophage-related genes Arg1, Chi3l3 (Ym1) and Retnla

through the mutual change of histone H3 Lys4 (H3K4) and

histone H3 Lys27 (H3K27) (Fizz1) transcription (66). IL-4

induces upregulation of JMJD3, which in turn reduces the

histone methylation and activates transcription on the

promoters of polarization driver genes (30, 62). IL-4 also

causes activation of the PI3K signaling pathway, and studies

have found that the PI3K subunit PI3Kg promotes the

polarization of AAM-type macrophages in pancreatic ductal

carcinoma to exacerbate cancer progression (67, 68). The mutual

regulatory function of Stat6 and PI3K in the induction of TAMs

polarization has not been directly reported, but IL-4 has been

shown to be an important mediator of TAMs polarization in

some murine tumor models (59).

Notably, molecular interactions of various signaling

pathways also promoted the AAM polarization in the TME.

For example, studies found that IL-4 induce the IRF4 expression

to promote macrophage polarization not only by Stat6 or PI3K

signaling pathway, but also by metabolic regulation such as

glycolysis (69), and IRF4 has been reported to be a contributing

factor of AAM-type polarization (70). To sum, IL-4 and IL-13

mediated macrophage polarization toward the anti-

inflammatory and pro-tumoral phenotype, and function as

pivotal molecules connecting several mechanisms.
Other elements inducing
AAM polarization

According to different activation mechanisms, AAM

macrophages can be further divided into three subtypes: M2a,

M2b, and M2c (71). M2a macrophages are mainly stimulated by

Th2 cytokines represented by IL-4 and IL-14 (72). M2b

macrophages are induced by ICs and agonists of Toll-like

receptors (TLRs) or IL-1R (15, 71). M2c macrophages are

activated by IL-10, transforming growth factor-b (TGF-b), and
glucocorticoids (GCs) to antagonize effector cells and induce

immune regulation (71, 73).
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Immune complexes can promote the polarization of AAM

macrophages through FcgR. Binding of immune complexes to

activated FcgRs on macrophages triggers a tyrosine kinase Syk-

dependent pathway that not only inhibits TLR4 signaling but

also inhibits type I interferon through upregulation of IL-10 and

negative regulation of A20, ABIN3 and SOCS3 type interferon

signal, indicating an increased biological effect of anti-tumoral

macrophages (74). Ligation of immune complexes to the

inhibitory receptor FcgRIIb on macrophages induces

prostaglandin E2 production, thereby inhibiting TLR4-

triggered expression of inflammatory cytokines such as IL-6

and TNF7 (75).

Reprogramming metabolism is an emerging hallmark of

cancer (76). Cancer cells alter their metabolism to adapt to

their microenvironment and facilitate immune evasion. Tumor-

derived metabolic factors play key roles in regulating

macrophage polarization (77). For instance, lactic acid is

highly enriched in the TME due to the intense energy

production by glycolysis (78). Lactic acid derived from

malignant tumor tissues is found to promote tumor

progression by promoting macrophages polarization (79). In

addition, lactic acid was shown to drive TAM proliferation

during EMT (80). These studies collectively demonstrate a role
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of lactic acid and glucose metabolic reprogramming in

macrophage polarization.

Research on tuberculosis reported that B cells also take part

in modulating the phenotype and functions of macrophages

(81). In the inflammation milieu, B cells produced type I IFN via

STING pathway, triggered the preference for M2 polarization

and activated the regulatory macrophages (81). In addition, Treg

cells also significantly affect the function of macrophages.

Human monocytes co-cultured with CD4+CD25+Foxp3+ Treg

cells presented high expression of M2 biomarkers (such as

CD163, CD206 and CCL18), low expression of inflammatory

cytokines such as TNF, IL-1b, IL-6 and CCL3, and were more

prone to polarize into AAM-type macrophages (82). Treg cell-

driven IL-10 is involved in the suppression of inflammatory

cytokines and the expression of CD163 and CCL18 (82, 83).

CD4+CD25+ T cells were found to polarize tissue macrophages

into AAM-type through arginase, IL-10 and TGF-b pathways

(84). In contrast, AAM-type macrophage polarization not only

drives the differentiation of CD25+GITR+Foxp3+ Treg cells, but

also regulates their recruitment by releasing CCL22 (64, 85).

Moreover, research demonstrated that HIV infection up-

regulated PD-1 ligation and promoted the recruitment of IL-

10-releasing monocytes, and these two molecules synergized to
FIGURE 1

Interactions between macrophages and tumor microenvironment. (MDSC, myeloid-derived suppressor cells.) (By Figdraw.).
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potentiate AAM polarization via ligand-receptor pair and in the

milieu (86) (Figure 2).
Therapeutic strategies targeting
AAM-type macrophage polarization

As mentioned above, TAMs account for an important

proportion of the entire tumor microenvironment, and they

are involved in various aspects of tumor progression.

Immunotherapy targeting TAMs is gradually becoming a

research hotspot. Herein, we discuss potential therapeutic

strategies targeting AAM-type macrophage polarization in

lung cancer.
CCL2 monoclonal antibody or
CSF1R inhibitor

Since chemotaxis is the main contributing factor driving

monocyte recruitment and colonization, chemokines regulating

chemotaxis become targets to inhibit the subsequent phenotypes

and functions of macrophages. The monoclonal antibody

CNT0888 (carlumab) targeting CCL2 has been investigated in
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clinical trials and showed good efficacy and tolerability in

patients with advanced malignant tumors (87). Inhibition to

CSF1R pathway also attenuated macrophage polarization. There

are two ways to inhibit the CSF1/CSF1R signaling pathway:

direct inhibition to CSF1R tyrosine kinase, indirect blocking

CSF1 from binding to CSF1R. Many inhibitors of the CSF1/

CSF1R signaling pathway have been reported, most of which are

small-molecule heterocyclic compounds with different scaffold

structures. The phosphorylation process of tyrosine residues can

achieve the effect of receptor inactivation (88). CSF-1R tyrosine

kinase inhibitors that block the CSF-1 signaling pathway have

shown good therapeutic effects in preclinical models of various

tumors, including acute myeloid leukemia, malignant

melanoma, and malignant glioma (88, 89), and CSF-1R

inhibitor RG7155 significantly reduced the macrophage

infiltration in a case of sarcoma with high CSF-1 expression

(90). AZ683 is a potent and highly selective CSF1R inhibitor

with good oral bioavailability. In vivo experiments show that

AZ683 can effectively inhibit TAMs and exert anti-tumor effect

(91). However, the latest data show that the therapeutic effect of

these antibodies and inhibitors is not durable, and it is easy to

relapse and aggravate the disease after treatment is completed. In

lung cancer treatment, preclinical study has suggested that

CSF1R inhibition by BLZ945, a CSF1R inhibitor, substantially
FIGURE 2

Brief mechanisms of macrophage polarization from CAM to AAM. (By Figdraw.).
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limits malignant pleural effusion formation induced by lung

adenocarcinoma (92). PLX647 is a pyrrolopyridine compound

that can bind to the juxtamembrane domain of the kinase to

maintain the autoinhibitory state of the protein, thereby

inhibiting the phosphorylation of CSF1R with an IC50 of 28

nmol/L. PLX647 improves systematic immunosuppressive state

by inhibiting CSF1/CSF1R signaling and has been shown to be

effective in the treatment of breast cancer, melanoma and lung

cancer (88). The presence of TAMs will also affect the efficacy of

chemotherapy drugs. Studies have confirmed that during

treatment of docetaxel, CSF-1 monoclonal antibody or CSF-1R

blockade will improve the anti-tumoral effects of paclitaxel, and

since TAMs secrete the immunosuppressive molecule IL-10,

thereby blocking IL-10 combined with docetaxel resulted in

better clinical outcomes (93). Therefore, reducing the

infiltration of TAMs directly or indirectly will improve the

therapeutic effect of malignant tumors.
Re-acclimation of AAM-type
macrophages and new strategies

Besides inhibiting TAM infiltration, alternatively, re-

educating TAMs by immune checkpoint inhibitors or TAM

surface biomarkers reactivate the antitumoral activity of TAMs

and relieves their immunosuppressive function. The immune

checkpoints on TAMs that have been discovered so far include

PDL1, CSF1R, Dectin-1, PI3Kg, etc., and the corresponding

inhibitors and antibodies have achieved good therapeutic

effects in clinical practice (94, 95). In the field of

immunotherapy, current strategies mainly include blocking

immune checkpoints such as PD-1 and CTLA-4 by antibodies

or small-molecule inhibitors, thereby “re-firing up” the anti-

tumor immune response. PD-1 is mainly expressed in activated

T cells and is an important immune checkpoint receptor. After

PD-1 binds to its ligands PD-L1 or PD-L2 in tumor cells and

tumor microenvironment, it transmits inhibitory signals to T

effector cells, hinders T cell survival, and facilitates immune

tolerance (96, 97). Chronic exposure to inflammatory cytokines

and high levels of antigens can also lead to increased expression

of PD-1 and PD-L1, which are hallmarks of T cell exhaustion

and dysfunction (98). It was found that PD-1 blocks proximal

activation of PI3K/Akt signaling pathway, and the extent of T

cell inhibition depends on the signaling of T cell receptors (99).

Immune checkpoint antibodies currently in development or

clinically approved include the PD-1 antibodies nivolumab

and pembrolizumab and the PD-L1 antibodies atezolizumab,

durvalumab, and avelumab (100). The latest research has found

that combining these immune checkpoint inhibitors and

antibodies with chemotherapy or targeted therapy shows

synergistic effects.

In recent years, with the rapid development of tumor

immunity research, immune checkpoint inhibitors such as
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CTLA-4 antibody and PD-1/PD-L1 antibody have been

successfully applied in a variety of cancers, such as melanoma,

non-small cell lung cancer, advanced cervical cancer,

hepatocellular carcinoma, skin squamous cell carcinoma,

bladder cancer, etc. Immunotherapy has become one of the

main treatment options for patients with advanced cancer.

Among them, the combination therapy of immune checkpoint

inhibitors with precision and multi-pathway targeting has

unique advantages in overcoming drug resistance and

enhancing the specific recognition and killing of tumor cells

by immune cells (101). For example, the combination of

nivolumab, a PD-1 inhibitor, and ipilimumab, a CTLA-4

inhibitor, can prolong the progression-free survival of lung

cancer patients with good complementarity. Nivolumab

combined with LAG-3 inhibitor BMS-986016 in the treatment

of advanced melanoma can effectively overcome the resistance of

PD-1 monotherapy. The combination of PD-1 inhibitor and

TIM-3 inhibitor in the treatment of non-small cell lung cancer

can inhibit the resistance to PD-1 inhibitor (102). The

combination of CTLA-4 inhibitor and LAG-3 inhibitor can

induce immune tolerance through co-inhibiting signaling

pathway. The combination with IDO inhibitor can effectively

reduce the tumor volume and prolong the survival time of a

melanoma murine model. In addition, the emergence of

bifunctional antibodies with good targeting property, which

can effectively exert synergistic effects through dual-pathway

or dual-target blocking, has given new enlightenment to cancer

treatment, and may become one of the key therapeutic strategies

for human to conquer cancer.

The existing treatment strategies have their own advantages

and disadvantages. In order to better improve the tumor

treatment effect, new treatment strategies are future-oriented.

For example, to improve the “phagocytic ability”, in a

physiological state, normal cells have a “phagocytic

checkpoint”, that is, the expression of anti-phagocytic

molecules to avoid the self-elimination of phagocytic cells, and

tumor cells also rely on this phagocytic checkpoint to carry out

immune evasion. Therefore, the identification and intervention

of phagocytic checkpoints may provide a new method to re-

educate TAMs to restore the phagocytosis against tumor cells.

For example, under immunosuppressive conditions, the cancer

cell membrane protein CD47 can recognize SIRPa on the

surface of macrophages to form the CD47-SIRPa signaling

complex, inhibiting the phagocytosis of tumor cells by

macrophages and enabling tumor cells to escape immune

surveillance for tumor development (103, 104). Therefore,

CD47-SIRPa blocking antibody may restore the phagocytosis

of macrophages. Furthermore, given that TAMs have the ability

to phagocytose nanoparticles, nanoparticles are ideal therapeutic

targets. Nanoparticles containing tumor peptides are used to

promote the recording of TAMs, and the characteristics of

nanoparticles targeting TAMs can be used to promote

antitumor immunity.
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Biological features of Tim-3
positive TAMs

In recent years, Tim-3 positive macrophages have attracted

great attention. The discovery of immune checkpoint molecules

and the elucidation of their functions have provided new targets

and therapeutic methods for tumor therapy, such as CTLA-4,

PD-1, Lag-3 and Tim-3. Tim-3 belongs to the immunoglobulin

superfamily (IgSF), which consists of four known domains,

including a variable immunoglobulin domain (IgV), a mucin

domain, a transmembrane domain, and a cellular inner tail

region (105). In the immune system, Tim-3 was initially

identified as a specific membrane marker selectively expressed

on IFN-g-producing CD4+ helper T cells (Th1) and CD8+

cytotoxic T cells (Tc1) (105). Later research on tumor

microenvironment demonstrated that Tim-3 is expressed by

other cell types, such as natural killer cells (NK cells), dendritic

cells (DC cells), monocytes, macrophages, and even different

types of tumor cells (106, 107). The study of Anderson et al.

showed that Tim-3 can be highly expressed on macrophages and

promote the inflammatory response of macrophages through

the NF-kB pathway (108). Tim-3 expression can be used as an

independent prognostic factor in colon cancer patients, and

Tim-3 can directly promote tumor growth through STAT3 or

STAT3-pSTAT3 pathway. Researchers detected the expression

of Tim-3 in tumor-associated macrophages in lung cancer

tissues, and in CD68+ tumor-associated macrophages, lung

cancer patients with high Tim-3 expression had shorter OS

and poorer prognosis (109). The specific mechanism of Tim-3-

positive macrophages in lung cancer is still unclear, but its

findings in other tumors can provide ideas for our follow-up

research. Tim-3 expression on TAMs in hepatocellular

carcinoma is induced by tumor-derived signals including

TGF-b (110). This further promotes TAM-mediated growth of

HCC due to the secretion of soluble factors such as IL-6. Some

studies have found that TLR ligand lipopolysaccharide can

inhibit the expression of TIM-3 protein in macrophages and

restore the immune activity of macrophages (107). This suggests

that the expression of TIM-3 may be related to the TLR

expression and its downstream signaling pathways. In

addition, in HCC, TIM-3 protein regulates the transformation

of CAM macrophages towards AAM macrophages, which

further inhibits the inflammatory response (110, 111).

Secondly, TGF-b-mediated Tim-3 expression in turn regulates

the ability of macrophages to secrete cytokines via the NF-kB-
IL-6 pathway. Researchers detected Tim-3 expression on tumor

cells and CD204+ tumor-associated macrophages in clear cell

renal cell carcinoma, and found that higher Tim-3 expression

levels were associated with shorter PFS in patients, and similar to

reports on lung cancer, Tim-3 was found to induce resistance in

renal cancer cells to standard treatments as sunitinib and mTOR

inhibitors (112). Based on previous findings, we hypothesized

that Tim-3 may directly promote tumor growth through the IL-
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6-STAT3 pathway or the NF-kB-IL-6 pathway, or negatively

regulate anti-tumor immunity, thereby facilitating tumor

immune escape and promoting tumor cell growth.

In addition, 1 ug/ml LPS treated macrophages for 6 h not

only up-regulated TLR4 and MyD88 mRNA expressions, but

also significantly up-regulated Tim-3 mRNA expression,

indicating that activation of TLR4 signaling pathway can

regulate the expression of Tim-3 on the surface of

macrophages. Yang et al. used LPS to treat peritoneal

macrophages derived from a mouse model of sepsis for 4

hours and found that the expression of Tim-3 mRNA on the

cell surface was significantly up-regulated, but they used the

same concentration of LPS to treat mouse-derived RAW264.7

cells and found that Tim-3 mRNA expression was down-

regulated with the increase of LPS concentration, and

decreased to the lowest level at 100ng/ml, suggesting that the

regulation of Tim-3 by TLR4/LPS signaling pathway is closely

related to the cell origin, and this signaling pathway affects

macrophages from different sources (113).

Besides its role in tumor progression, macrophages are also

involved in other pathological conditions. Monney et al.

established an experimental mouse model of autoimmune

encephalomyelitis and showed that Tim-3 can promote the

massive activation and proliferation of monocyte-macrophages

and promote the inflammatory response (106). The Tim-3-

galectin-9 interaction can also transduce reverse signaling, and

a murine model of pulmonary infection with Mycobacterium

tuberculosis (Mtb) has also shown that the Tim-3 signaling

pathway can activate macrophages and activate innate immune

responses (114). Tim-3 is essential for the induction of IL-1b and
enhanced macrophage anti-mycobacterial activity through a

galectin-9-dependent mechanism. When mycobacterium

tuberculosis-infected cells were treated with the Tim-3 fusion

protein. In the case of macrophages, fewer CFUs were recovered

in this case. Tim-3 is essential for induction of IL-1b and

enhanced macrophage anti-mycobacterial activity through a

galectin 9-dependent mechanism. Zhang et al. showed that

blocking or silencing Tim-3 on the surface of macrophages

can induce increased secretion of pro-inflammatory factors IL-

12 and IL-6, as well as increased secretion of anti-inflammatory

factor IL-10. The authors speculate that the regulatory role of

Tim-3 on immune inflammation is influenced not only by Tim-

3 expression itself, but also by the state of macrophages and the

balance between inhibitory and stimulatory molecules involved

(115). Tim-3 expression is lower on M1 macrophages that have

multiple functions (eg, phagocytosis, antigen presentation, and

production of pro-inflammatory cytokines) and are used to

eliminate cancer cells. To illustrate the immunosuppressive

role of Tim-3 in various cell types and its role in regulating

immune cell cross-talk in the tumor environment.

Extensive preclinical data support that blocking the TIM-3

signaling pathway may promote immune cells to mediate anti-

tumor responses, and can be combined with other immune
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checkpoint receptor blockers to further enhance the anti-tumor

effect. Preliminary signs of clinical efficacy have also been

observed in patients with solid tumors, including NSCLC, who

received sabatolimab and anti-PD-1 antibody spartalizumab,

suggesting that blockade of TIM-3 might represent a potential

therapeutic strategy in lung cancer (116).
Summary

TAMs are important immune cells in the immune

microenvironment of lung cancer with high heterogeneity. The

polarization of macrophages and related mechanisms play an

important role in the progression of lung cancer. In this review,

we aimed to overview the current understanding of TAMs in the

context of lung cancer. First, we discussed mutual regulation

between TAM and TME, and established the key role of TAM

and TME in supporting tumor cell survival: TAM nourishes

tumor cell survival through a large number of signals from the

TME, and in turn regulate the TME from many aspects. We also

described the molecular mechanism of AAM polarization and

therapeutic strategies for cancer-promoting AAM macrophages,

including CCL2 monoclonal antibodies or CSF1R inhibitors,

AAM re-acclimation targeting immune checkpoints, and new

strategies to improve the “phagocytic ability” of cells. Finally, we

discussed the involvement of TIM-3 positive macrophages in

cancer pathogenesis, and explored TIM-3 inhibition as a

potential therapeutic strategy for lung cancer. The extensive

involvement of TAM in cancer pathogenesis and promising

preclinical and early clinical data summarized above have

emphasized the opportunities of the development of AAM-

targeting therapeutic strategies against lung cancer.
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Tumor-associated macrophages (TAMs) are a heterogeneous population of

myeloid cells that constitute up to 50% of the cell mass of human tumors. TAMs

interact with the components of the tumor microenvironment (TME) by using

scavenger receptors (SRs), a large superfamily of multifunctional receptors that

recognize, internalize and transport to the endosomal/lysosomal pathway

apoptotic cells, cytokines, matrix molecules, lipid modified lipoproteins and

other unwanted-self ligands. In our review, we summarized state-of-the art for

the role of macrophage scavenger receptors in tumor development and their

significance as cancer biomarkers. In this review we focused on functional

activity of TAM-expressing SRs in animal models and in patients, and

summarized the data for different human cancer types about the prognostic

significance of TAM-expressed SRs. We discussed the role of SRs in the

regulation of cancer cell biology, cell-cell and cell-matrix interaction in TME,

immune status in TME, angiogenesis, and intratumoral metabolism. Targeting

of tumor-promoting SRs can be a promising therapeutic approach in anti-

cancer therapy. In our review we provide evidence for both tumor supporting

and tumor inhibiting functions of scavenger receptors expressed on TAMs. We

focused on the key differences in the prognostic and functional roles of SRs

that are specific for cancer types. We highlighted perspectives for inhibition of

tumor-promoting SRs in anti-cancer therapy.

KEYWORDS

tumor-associated macrophage, scavenger receptor, angiogenesis, extracellular
matrix, cancer, tumor microenvironment, endocytosis, phagocytosis
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1 Introduction

Tumor-associated macrophages (TAMs) are key innate

immune cells that control intratumoral inflammation, cancer

cell proliferation, migration and metabolism, angiogenesis, and

extracellular matrix composition (1–6). Major sources of TAMs

are resident tissue macrophages as well as monocyte-derived

macrophages, intensively recruited into the growing tumor by

chemotactic factors, like CCL2 (4, 7, 8) The are two major

vectors of macrophage polarization: M1-type, classically

activated, pro-inflammatory, and M2-type, alternatively

activated, generally considered as anti-inflammatory or

tolerogenic macrophages (4–6). The classification based on the

M1/M2 dichotomy is traditionally used as simplified schema to

distinguish between two major directions of macrophage

activity. M1 macrophages play an important role in the innate

immune response, while M2 macrophages are involved in tissue

repair, as well as in the progression of many types of cancer

(9, 10).

Within tumor tissues, TAMs interact with cancer cells and

with other cell types in tumor microenvironment (TME) not

only by secreting different cytokines, chemokines and growth

factors, but also by clearance of dying cells, soluble mediators

and matrix components mediated by scavenger receptors (SRs).

SRs can recognize and internalize high range of unwanted-self

ligands including cytokines, growth factors, modified

lipoproteins, apoptotic cells, as well as non-self ligands

including bacteria, viruses and fungi (11–13).

SRs are large superfamily of transmembrane proteins with

high structural diversity (13–15). SRs are categorized into classes

A-L depending on their structure, cell-type specific expression

and recognition of host-derived ligands (13, 16, 17). Functional

diversity of SRs are crucial for numerous biological processes

such as endocytosis, phagocytosis, cell adhesion, nutrient

exchange and waste clearance, as well as immunity processes,

e.g. inflammation regulation and antigen presentation (13, 14).

In tumors, SRs can be expressed by both tumor cells (TCs)

and by components of the TME including macrophages,

monocytes, endothelial cells and dendritic cells (15, 18, 19).

Most commonly used SRs for the identification of TAM

subpopulation in different types of tumors include CD68,

CD163, CD204 and CD206 (8). Both tumoricidal M1 and

tumor-promoting M2 macrophages express CD68, while M2

polarization can be identified by CD163, CD204 and CD206

biomarkers (8). However, this nomenclature does not fully

reflect all phenotypic diversity of TAMs that can combine M1

and M2 features and functions (3).

In this review, we focus on functional activity of scavenger

receptors expressed by TAMs in tumor. We summarize the latest

knowledge on the functional activity of TAM-expressing

scavenger receptors in the TME. We discuss how expression of

scavenger receptors in TAMs can be used for the evaluation of

prognostic value in numerous cancers.
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2 Scavenger receptors
expressed by TAMs

Several SRs play essential role in the regulation of TME

where they can be expressed by TAMs, NK cells, dendritic cells,

neutrophils, B cells, endothelial cells, epithelial cells and cancer

cells (13). TAM-expressing scavenger receptors are structurally

heterogeneous proteins that consist out of diverse structural

domains including collagenouse domain, C-type lectin-like

domain, fibronectin domain, EGF-like and others (Figure 1).

SRs expressed by TAMs are involved in diverse signaling

pathway and have a predictive value for tumor progression

(Table 1) (23, 25–27, 29, 30, 48).
2.1 Class A scavenger receptors

Scavenger receptors of class A (SR-A) are transmembrane

proteins containing a collagen-like domain with collagen-

binding activity (15). SR-A family comprises five members:

SR-A1 (CD204), SR-A3, SR-A4, SR-A5, and SR-A6 (MARCO),

which recognize a variety of ligands such as LPS, LTA and

integrins. SR-A are implicated in several pathologies including

atherosclerosis, infectious diseases and cancer (13, 70, 71). In

most of studies the question about tumor-specific ligand of

CD204 was not addressed experimentally. The expression of

SR-A was found on monocytes, macrophages, dendritic cells

(DCs), mast cells and endothelial cells (71, 72). Out of five SR-A

family members, only CD204 and MARCO have been found to

be expressed by TAMs (21, 22, 25).

2.1.1 SR-A1/CD204
SR-A1 (also known as CD204, or MSR1) is a pattern

recognition receptor expressed primarily on macrophages, and

is involved in the inflammatory responses and tumorigenesis

(21, 25, 73). CD204 has a dual role in cancer progression (21, 22,

26, 27, 74).

The mechanisms of CD204 anti-tumor activity in TME

include inhibition of macrophage infiltration, inhibition of

tumor cell migration and invasion, as well as suppression of

tumor angiogenesis (21, 22) (Figure 2). In a mouse model of LLC,

bone marrow-derived cells transplanted from CD204 KO (knock-

out) mice into WT mice enhanced tumor growth and

angiogenesis through elevated COX-2, SDF1, VEGF and MMP9

expression in tumor (21). CD204 deficiency activated recruitment

of CD68+ and F4/80+ macrophages into tumor mass by

upregulation of MCP-1 in the CD204 KO bone marrow

transplantation model (22). Peritoneal macrophages isolated out

of CD204 KO mice significantly enhanced the migration and

invasion of lung cancer cells in vitro (22). Moreover, CD204

suppresses tumor development through the upregulation of serum

amyloid A1 (SAA1) expression in TAMs via JNK/ERK/IkB/NFkB
frontiersin.org

https://doi.org/10.3389/fonc.2022.1096897
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Kazakova et al. 10.3389/fonc.2022.1096897
signaling pathways (22). CD204 deficiency promoted tumor

growth, angiogenesis and TAM infiltration via skewing TAM

phenotype toward M2 in murine glioma model (25). Tumor

volume as well as the expression of angiogenic factors CD31,

CD34, IB4 and VEGF were significantly elevated in CD204−/−

mice in comparison with CD204+/+ mice in glioma model (25).

In CD204−/− glioma, the number of VCAM1+ TAMs and CCR2

+ TAM precursor cells was significantly elevated compared to

CD204+/+ glioma (25). In vitro, CD204 deficiency resulted in the

increased expression of M2-like markers (MMP2, TGFb, MRC2,

MGL1, FIZZ1), but no M1-like marker (TNFa) in the presence of

GL261 glioma cells (25). Meta-analysis of patients with prostate

cancer showed that increased expression of CD204 significantly

correlated with better recurrence-free survival (RFS) (23).

Immunohistochemical (IHC) analysis demonstrated that high

expression of CD204 correlated with better survival rate and less

recurrence than those with less CD204 expression in patients with

glioma (25).

However, controversial data also exist (Figure 3). Several studies

demonstrated that CD204+TAMs promote tumor development

and correlate with worse prognoses in prostate cancer, lung cancer,

colorectal cancer, cervical cancer, breast cancers and oral squamous

cell carcinoma patients (24, 26, 27, 74–76). Tumor-supporting

function of CD204+ TAMs was demonstrated for lung cancer

and glioma, however anti-tumor function was shown for breast

cancer, ovarian cancer and pancreatic cancer (21, 24, 25, 27, 74–76).

CIBERSORT analysis of CD204 mRNA expression obtained from

TCGA database demonstrated that high CD204 expression

correlated to high proportions of M2 macrophages and the

expression of immunosuppressive molecules, including HIF1A,

FAP, IL-10, and TGFB1 in breast cancer (27). CD204 KO
Frontiers in Oncology 03
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macrophages reduced tumor cell invasion via TLR-dependent

pathways upon co-culture with ID8 (ovarian cancer cell line) and

Panc02 (pancreatic adenocarcinoma cell line) (26). Macrophage-

specific loss of CD204 significantly reduced lung metastasis in a

mouse model of pancreatic adenocarcinoma (26). In vitro CD204+

TAMs promoted proliferation, migration and invasion of MCF7,

T47D, SKBR3 andMDA-MB-231 breast cancer cell lines (27). High

CD204 expression in TAMs correlates with short overall survival

(OS), disease-free survival (DFS) and RFS in colorectal cancer,

cervical cancer, breast cancers and oral squamous cell carcinoma

(OSCC) (24, 74–76). CD204 expression is associated with T stage,

nodal involvement, lymphovascular invasion and tumor relapse

after surgery in lung adenocarcinoma (25, 77). In prostate cancer,

high CD204 protein expression in the main tumor area predicted a

worse prognosis, while CD204 expression in seminal vesicle

invasion area was positively associated with the biochemical

recurrence (78).

In summary, majority of reports show that CD204 correlates

with good prognosis in prostate cancer and glioma, and with worse

prognosis in colorectal cancer, cervical cancer, breast cancers, oral

squamous cell carcinoma, lung cancer and prostate cancers. Murine

experimental systems demonstrated both tumor-promoting and

tumor-inhibiting role of CD204+ TAMs (Figures 2, 3).

2.1.2 SR-A1/CD204
SR-A6 (also known as macrophage receptor with

collagenous structure, MARCO) is another member of the SR-

A family that is also expressed by macrophages and is involved

in clearance of cancer cells, in regulation of epithelial-

mesenchymal transition (EMT), in the interferon-alpha

response, and in antigen presentation (28, 79).
FIGURE 1

Schematic representation of different classes of scavenger receptors expressed by TAMs.
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TABLE 1 The function of TAM-expressing scavenger receptors in the TME.

Scavenging
receptors

Ligands Function/mechanism Correlation with clinical parameters

Class A

SR-A1
(CD204)

Lipopolysaccharide
(LPS), lipoteichoic acid
(LTA) and bacterial
CpG DNA

Anti-tumor: Suppression of tumor growth and
angiogenesis via inhibition of COX-2, SDF1,
VEGF, and MMP9 expression and down-
regulation of JNK/ERK/IkB/NFkB signaling
pathway in
LLC tumors, as well as inhibition of macrophage
polarization (20) and monocyte recruitment (21,
22).

Correlation with better RFS in prostate cancer (23).
Negative correlation with human lung cancer progression
(21).
Positive correlation with short OS and RFS in colorectal
cancer (24).
Correlation with better survival rate and less recurrence in
glioma (25).

Pro-tumor: Promotion of proliferation, migration
and invasion of MCF7, T47D, SKBR3, MDA-MB-
231, ID8 cell lines in vitro (26, 27). Induction of
lung metastasis in a mouse model of pancreatic
adenocarcinoma (26).

SR-A6
(MARCO)

Oxidized lipids,
unopsonized particles,
bacteria, integrins

Anti-tumor: Clearance of colon carcinoma cells via
the SYK-PI3K-Rac1 signaling pathway (28).

Positive correlation of the number of MARCO+ TAMs with
DFS and OS in pancreatic cancer and squamous cell
carcinoma (29, 30).
Increase amount of MARCO+TAMs associates with
prolonged OS in human HCC (31).

Pro-tumor: Association with high expression of
tumor-supporting genes in NSCLC and
glioblastoma (30, 32). Activates
immunosuppressive phenotype of TAMs (33).

Class B

SR-B3
(CD36)

Thrombospondin-1,
long-chain free fatty
acids, ox-LDL, advanced
glycation endproducts
(AGE), collagens I and
IV

Anti-tumor: N/A N/A

Pro-tumor: Promotion of tumor growth via up-
regulation of pro-tumor genes, M2-signature genes
in TAMs and enhancing TAM infiltration in
lymphoma (34). Supporting tumor development
through activation of S100A4-PPAR-g pathway in
TAMs in breast cancer and fibrosarcoma (35).
Increasing of tumor growth via promotion of TAM
infiltration in tumor in breast cancer (36).

Class D

SR-D1 (CD68) oxLDL,
phosphatidylserine,
apoptotic cells, malaria
sporozoite

Anti-tumor: N/A Correlation with to worse prognosis in glioblastoma, kidney
renal clear cell carcinoma, lower-grade glioma, hepatocellular
carcinoma, lung squamous cell carcinoma, thyroid
carcinoma, thymoma and a favorable prognosis in
chromophobe renal cell carcinoma, LSCC, breast cancer (37,
38). Correlation with recurrence in cutaneous melanoma
(39).
Positive correlation with favorable neoadjuvant
chemotherapy responses in osteosarcoma (40). Correlation
with anti-tumor TAM phenotype in melanoma (41).

Pro-tumor: promotion of angiogenesis in LSCC
(37).

Class E

SR-E1 (LOX-1) Ox-LDL,
apoptotic cells, gram-
positive and gram-
negative bacteria, acute
phase C-reactive
proteins, HSP

Anti-tumor: N/A Decreased amount of LOX-1+ TAMs is associated with poor
OS in colorectal cancer (42).

Pro-tumor: Promotion of M2 TAM polarization
via PI3K/Akt/mTOR signaling in HNSC (43).

SR-E2 (Dectin-
1)

b-1,3-glucan, galectin-9,
annexins, vimentin, N-
glycan

Anti-tumor: Supporting of TAM tumoricidal
activity against lymphoma and ovarian
adenocarcinoma (44).

Correlation with shorter patient recurrence free survival and
overall survival in cell renal cell carcinoma (45).

Pro-tumor: Promoting pancreatic cancer
progression via increasing TAM infiltration,

(Continued)
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In vitro, TAMs suppress tumor development utilizing

MARCO to phagocytose cancer cells (Figure 2) (28). MARCO

overexpression in peritoneal murine macrophages led to the

increased expression of SYK, PI3K and Rac-1, and facilitated

macrophage-mediated phagocytosis of SL4 (colon carcinoma

cell line) via binding to integrin b5 on cancer cells and activation

of SYK-PI3K-Rac1 signaling pathway in TAMs in the co-culture

system (28) (Figure 4).

Several studies on clinical material revealed tumor-supporting

phenotype of MARCO-expressing TAMs (30, 32, 33). Single-cell
Frontiers in Oncology 05
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transcriptomic analysis of glioblastoma demonstrated that a

cluster of MARCO+ TAMs coincides with high expression of

genes involved in epithelial-mesenchymal transition,

angiogenesis, glycolysis, hypoxia and low expression of

genes associated with interferon-alpha response, interferon-

gamma response, allograft rejection, and TNFa signaling (32).

MARCO+ TAMs support tumorigenesis by activating

immunosuppression in the TME. Transcriptomic analysis of

non-small cell lung cancer (NSCLC) samples showed that

MARCO expression significantly correlated with gene
TABLE 1 Continued

Scavenging
receptors

Ligands Function/mechanism Correlation with clinical parameters

reprogramming TAMs toward M2 phenotype and
reduced T-cell infiltration (46).

SR-E3 (CD206) Collagens, N-
acetylgalactosamine
(GalNAc)

Anti-tumor: Suppression melanoma growth via
activation of tumoricidal T cells (47).

Positive correlation with tumor relapse and metastasis after
chemotherapy in breast cancer (48) and correlation with
worse clinical prognosis in OSCC (49).
Increased amount of CD206+TAMs associated with
improved overall survival in cutaneous melanoma (47).

Pro-tumor: Promoting proliferation and invasion
of OSCC cells by producing EGF (49).

Class G

SR-G1
(CXCL16)

oxLDL Anti-tumor: overexpression in colorectal cancer
cells causes TNFa-mediated apoptosis (50).

Associated with aggressive pathologic phenotypes, the higher
TNM staging and lymph node metastasis in papillary thyroid
cancer (51).
Decrease of the overall survival due to CXCR6
overexpression, receptor of CXCL16 (52).

Pro-tumor: enhancing tumor cell migration,
invasion, proliferation and promoting M2 TAM
polarization (51–54).

Class H

SR-H1 (STAB1) ac-LDL, placental
lactogen, SPARC,
advanced glycation end
products, apoptotic cells,
microparticles from
gram-positive and
negative bacteria

Anti-tumor: N/A Positive correlation with long DSS and favorable prognosis in
early stage I CRC patients (55).
Correlation with poor OS, RFS, tumor stage and histological
grade in urothelial carcinoma of the bladder and rectal
cancer (55, 56).

Pro-tumor: Supporting breast cancer progression
through activation of PKCb expression in TAMs
resulted in SPARC uptake from TME by TAMs
(57).

Class I

SR-I (CD163) Haptoglobin-hemoglobin
complex

Anti-tumor: N/A Correlation with tumor grade in breast cancer (58). Positive
correlation with severe prognosis of myeloma,
gastroesophageal adenocarcinoma, triple negative breast
cancer (59–61). Correlation with lymph node metastasis poor
prognosis in breast cancer (62). Negative correlation with
recurrence and poor overall survival in primary melanoma
(39).

Pro-tumor: Promoting TAM polarization toward
tumor-supporting TAM phenotype in
cholangiocarcinoma (63). Induction of tumor
progression via production of IL-6 and CXCL2 and
activation of STAT3 in fibrosarcoma (64).

Class J

RAGE AGEs, HMGB1, S100
proteins, amyloid-beta
peptide, dsDNA and
dsRNA

Anti-tumor: AGEs and HMGB1 promote M1
polarization in macrophages and TAMs,
respectively (65),93,94. HMGB1 exposure to M1
macrophages abrogates invasion of gastric tumor
cells and growth of endothelial cells (66).

HMGB1 and CD163 positive macrophages were found as
detrimental prognostic factors for OS in laryngeal squamous
cell carcinoma (67). High KRASG12D expression in CD68+

cells in PDAC patients correlated with worse OS rates (68).

Pro-tumor: HMGB1 activation of RAGE in M2
macrophages promotes invasion of gastric tumor
cells (66), production of VEGF (66, 67, 69) and
angiogenesis (66, 67). Mediates KRASG12D uptake,
which promotes M2 polarization of TAMs (68).
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expression of immunosuppressive TAM-related genes (CD163,

MSR1, IL4R, CHIA, TGFB1, and IL10), genes involved in T-cell

regulation (FOXP3, TGFB1, IL10, EBI3, PDCD1, and CTLA4)

and genes encoding immune checkpoint molecules (PD-L1, PD-

L1, VISTA, PD-1, and CTLA4) (30). High infiltration of MARCO

+ TAMs in tumor was associated with worse OS and DFS in

patients with squamous cell carcinoma (30) and pancreatic

cancer (29).

MARCO-expressing TAMs suppressed tumoricidal activity of

T cells and NK cells through skewing TAM phenotype toward anti-

inflammatory one (Figure 3). In vitro MARCO-expressing TAMs

suppressed activation, proliferation and IFNg production in T cells,

resulted in inhibition of T-cell killing activity towards NSCLC

tumor cells (33). Moreover, human PBMC-derived MARCO+
Frontiers in Oncology 06
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TAMs inhibited migration, degranulation, proliferation and IFNg
production in NK cells (33). MARCO+ macrophages cultured with

lung cancer cell lines displayed decreased expression of pro-

inflammatory cytokines (TNFa, IL1B and IL12B) and increased

expression of anti-inflammatory molecules (IL10, MRC1, COX2,

TIMP1, and FIZZ1) (33). High expression of MARCO in TAMs

from the tumor tissues was associated with increased OS in patients

with hepatocellular carcinoma (HCC) (31).

Thus, role of SR-A family members depends on the tumor

context. Despite strong tumor-supporting activity identified for

several members of SR-A family expressed by TAMs (26, 27, 30,

32, 33), solid body of evidence is available for SR-A1 and SR-A6

demonstrating their anti-tumor action that depends primarily

on the cancer types (20–22, 28) (Figure 3, Table 1).
FIGURE 2

Summary of processes that are regulated by scavenger receptors in tumor-suppressing microenvironment.
FIGURE 3

Summary of processes that are regulated by scavenger receptors in tumor-supporting microenvironment.
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2.2 B scavenger receptors

Class B scavenger receptors includes the following members:

SR-B1, SR-B2 and SR-B3. Structurally Class B scavenger

receptors are constructed out of two transmembrane domains

flanking an extracellular loop, with both the N- and C-termini

located within the cytoplasm (80). Class B scavenger receptors

mediate transport of cholesterol and lipids, and are involved in

tumor development (34, 35, 81). The role of TAMs expressing

SR-B1 and SR-B3 was demonstrated in several types of cancers,

including liposarcoma, nasopharyngeal carcinoma, breast

cancer, colon cancer and prostate cancer (35, 36, 82).

2.2.1 SR-B1
Scavenger Receptor Class B Type 1 (SR-B1) is a transmembrane

protein that act as a major high-density lipoprotein (HDL) receptor

(81, 82). SR-B1 is expressed by endothelial cells, smooth muscle

cells, keratinocytes, adipocytes, tumor cells and macrophages (19).

In the TME, SR-B1 participates in HDL metabolism and promotes

invasion, proliferation and metastasis of tumor cells (82). In

macrophages, SR-B1 regulates cholesterol metabolism through

selective uptake of HDL-cholesterol and cholesteryl esters (83). In

a syngeneic mouse model of prostate cancer, knock out of SR-B1

inhibited HDL-mediated tumor growth and progression (84). In

SR-B1−/− mice had lower levels of total cholesterol and HDL-

cholesterol. SR-B1−/− mice developed smaller tumor compared to

SR-B1+/+ mice, and SR-B1−/− mice showed also the decreased

survival (84). Application of HDL-mimetic nanoparticles that

interacted with SR-B1 reduced tumor growth in a mouse

xenograft model for human nasopharyngeal carcinoma (82).

Thus, the selective uptake of HDL-cholesterol by SR-B1 in

macrophages is a promising pathway for pharmacological
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inhibition of pro-tumor TAM actions. SR-B1 activity in

macrophages is mediated by Src/PI3K/Akt/Rac1 and PPARg/
LXRa signaling pathways (85, 86). The data about the role of

TAM-expressing SR-B1 in cancer are limited, but SR-B1 expression

was found in head and neck cancer, lung cancer, prostate cancer

and breast cancer, where it positively correlates with the tumor

aggressiveness and poor prognosis (82, 87, 88).
2.2.2 SR-B3/CD36
SR-B3 (also known as CD36) is expressed on monocytes,

macrophages, platelets, endothelial cells, adipocytes (89, 90).

CD36 mediates lipid uptake, ligand, clearance of apoptotic cells

and cell-cell adhesion (90–92). CD36-expressing macrophages

facilitate tumor progression, pro-tumor TAM polarization and

mediate fatty acid uptake from TME (Figure 3) (35, 36, 93).

CD36 regulates polarization of TAMs towards pro-tumor

phenotype and promotes tumor growth via regulation of fatty

acid (FA) metabolism (94, 95). CD36 was demonstrated as a

major SR on macrophages involved in the lipid uptake and

accumulation, FA oxidation and oxidative phosphorylation (94,

95). In TME extracellular free fatty acids, including palmitic

acid, oxLDL or oleic acid, are transported into cells via

membrane-associated CD36 and promoted tumor growth and

metastasis (94–97). Essential feature of CD36 is that its

endocytic function is linked to the inflammatory pathways. In

macrophages CD36 is involved in diverse signaling cascade

including NF-kB pathway, TLR1/2 signaling, TLR4 signaling

and NOD-, LRR-, and pyrin domain-containing protein

inflammasome pathways (98).

In co-culture of human PBMCs and tumor cells CD36

regulates macrophage response by enhanced lipid uptake and

increased expression of pro-tumor genes in modeled TAMs
FIGURE 4

Major signaling pathways of TAM-expressing scavenger receptors in the TME: tumor-supporting and tumor-inhibiting.
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(Arg1, Ccl2) (34). Subcutaneously injection of CD36-KO TAMs

in a mouse model of lymphoma decreased tumor volume,

impaired TAMs infiltration into tumor site, increased

expression of M1-signature genes and decreased expression of

M2-signature genes (34). CD36 in TAMs mediates FA uptake

through S100A4-PPAR-g axis that promotes tumor growth in a

mouse models of breast cancer and fibrosarcoma (35). In the

mouse model of breast cancer CD36 regulates TME via clearance

of tumor-derived miR-375, a prominent tumor suppressor (36,

93). In co-culture system of MCF-7 cells and human PBMCs,

apoptotic tumor cell-derived miR-375 binds to LDL and is

scavenged by TAMs via CD36 receptor resulting in increased

macrophage migration and infiltration into tumor (36).

Association of CD36 with worse prognosis was

demonstrated in several human cancers including bladder

cancer, glioblastoma, oral carcinoma and gastric cancer (97,

99). However, currently prognostic significance of CD36

expressed specifically on TAMs is still unclear.
2.3 Class D scavenger receptors

Scavenger receptor SR-D1 (also known as CD68) is the only

known class D scavenger receptor that is highly specifically

expressed on macrophages and other mononuclear phagocytes

but not on other cell types, even of myeloid origin. CD68 is the

major biomarker for the quantification of total TAM amounts.

CD68 is also a well-established pan-macrophage marker used as

a cancer-associated diagnostic and prognostic marker (8, 13).

CD68+TAM infiltration and accumulation in tumor results

in tumor progression and adverse prognosis in numerous

cancers (8, 37, 38). In our recent review we have summarized

data from large number of studies on patients with 5 types of

cancer: breast, colorectal, lung, ovarian and prostate (9).

Number of studies on patients representing diverse genetics,

life style and geographical localizations indicate that amount of

intramural CD68+TAMs positively correlates with negative

prognosis, distant hematogenous and local lymphatic

metastasis in breast, lung, ovarian and prostate cancers.

However, amount of intramural CD68+TAMs showed

negative correlation with the bad outcome in patients with

colorectal cancer. Recent analysis of Genotype-Tissue

Expression datasets (TCGA) and immunohistology have

demonstrated that high expression of CD68 was correlated

with worse prognosis in glioblastoma, renal clear cell

carcinoma, lower-grade glioma, HCC, lung squamous cell

carcinoma, thyroid carcinoma, and thymoma, but with

favorable prognosis in chromophobe renal cell carcinoma (38).

In laryngeal squamous cell carcinoma (LSCC), CD68+ cells were

involved in angiogenesis and correlated with worse prognosis

(37). High expression of CD68 was associated with CD34+ cells

in tumor and low 5-year DFS in 45 patients with LSCC from

China (37). High amounts of CD68+ TAMs in tumor nest
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correlated with recurrence in 184 cutaneous melanoma

patients from Finland (39). Number of CD68+ TAMs in

tumor stroma were positively correlated with tumor size in

breast cancer both in 144 patients from Sweden and in 60

patients from Egypt (100, 101). Controversially, in melanoma,

CD68+ TAMs characterized by M1 phenotype, however, not

statistically significant correlations were found for the total

amount of CD68+TAMs and clinical parameters of melanoma

progression in patients (41). RNA-seq and IHC analysis of 57

human melanoma samples showed that CD68+ TAMs were

associated with increased iNOS and arginase expression (41). In

human osteosarcoma, elevated expression levels of macrophage

and CD4 T-cell markers (defined as CD4/IFNGR2/CD68/

CSF1R signature) was associated with favorable neoadjuvant

chemotherapy responses (40).

In several independent studies amount of intratumoral CD68+

TAMs were indicative for reduced tumor growth and better

prognosis (8). CD68+ macrophage infiltrates correlated with

better RFS in 468 patients with ER-negative tumors from

Scotland (102). In a Norway study of 553 primary NSCLCs

CD68+ expression correlated with favorable NSCLC-specific

survival (103). Correlation of high expression of CD68 with

favorable prognosis was also demonstrated in colorectal cancer

(104, 105). Thus, total amount of CD68+ TAMs is a potential

prognostic biomarker that can predict negative scenario in

progression for majority of human cancer types, however

opposite correlations were identified for specific cancer types, in

particular colorectal cancer, raising urgent question about intrinsic

anti-tumor activates of TAMs that cannot be converted by growing

tumor. However, functional role of CD68 in inflammation and

carcinogenesis is not sufficiently understood despite its routine

application as an immunochemical marker of TAMs.
2.4 Class E scavenger receptors

The class E of scavenger receptors comprises SR-E1, SR-E2,

SR-E3 and SR-E4 members (13). The class E SRs belong to a

subfamily of NK cell C-type lectin-like (CLEC) receptor family

that plays role in diverse biological processes such as immune

response, antigen presentation and phagocytosis (13). Several

members of the Class E SR family are expressed in TAMs and

involved in tumor progression (42, 43).
2.4.1 SR-E1/LOX-1
SR-E1 (also known as LOX-1) is mainly expressed by

endothelial cells, but is also found on smooth muscle cells,

cardiomiocytes, adipocytes, platelets and on TAMs (106).

LOX-1 participates in multiple physiological and pathological

processes, including lipid metabolism, cholesterol biosynthesis

and tumorigenesis (107, 108). In tumors, LOX-1 regulates

macrophage polarization (43). Correlation analysis of TCGA
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data, single-cell RNA-seq data and in vitro models showed, that

TAMs increased the uptake of heat shock protein HSPA12B by

LOX-1 that resulted in the activation of PI3K/Akt/mTOR

signaling and enhanced M2-type marker expression (CD163

and CD206) in TAMs in head and neck squamous cell

carcinoma (HNSC) (43) (Figure 4). At the moment, the

detailed mechanism of LOX-1+ TAM activity in the TME is

not well defined, but the prognostic value of LOX-1+ TAMs was

found in colorectal cancer (42). IHC analysis demonstrated that

low expression on TAMs was associated with poor OS in

patients with colorectal cancer (42).

2.4.2 SR-E2/Dectin-1
SR-E2 (also known as Dectin-1) is a C-type lectin receptor

that is involved in large number of biological processes such as

phagocytosis, activation of signaling pathways, generation of

reactive oxygen species (ROS) and production of cytokines

(109). Dectin-1 is encoded by Clec7a gene and primary

expressed on the surface of the myeloid-monocytic lineage

cells including macrophages, but can be also found on

neutrophils, dendritic cells, and on a minor subpopulation of

splenic T cells (46, 110). Dectin-1 is an innate immune receptor

playing role in anti-fungal immune response. In cancer, dectin-1

regulates immune microenvironment and has an ambiguous

function in tumor progression (44, 46, 111).

IL-13-activated macrophages expressing both dectin-1 and

mannose receptor (MR) inhibited T-cell lymphoma and ovarian

adenocarcinoma progression via binding to tumoral sialic acid

(44). Dectin-1 and MR interaction of with sialic acid enhanced

antitumor effect of IL-13- activated macrophages in vitro (44).

Depletion of dectin-1 and MR in IL-13-activated macrophages

resulted in inhibition of TAM tumoricidal activity and decrease

in death of Jurkat (human T-cell leukemia cell line) and EL4

(murine T-lymphoma cell line) tumor cells (44).

Dectin-1 promotes tumor progression via the regulation of

immune microenvironment of human OSCC (111). Dectin-1

deficiency decreased the amount of IL-1b+ cells, Tregs, MDSC

cells and PD-1 induction in CD8+ T cells resulted in slower

dysplasia progression and lower number and size of tumors in

mouse model of OSCC (111). Dectin-1 promotes pancreatic

ductal adenocarcinoma (PDA) progression by enhanced TAM

infiltration and by reprogramming TAMs towards M2

phenotype (46). In a mouse model of PDA, Clec7a deletion

significantly reduced the infiltration of PDA with F4/80+,

CD206+ and Arg1+ TAMs, as well as upregulated MHCII,

TNF-a and iNOS expression in tumor (46). Moreover,

depletion of Clec7a in macrophages in vivo elevated

infiltration by CD4+ and CD8+ T cells selectively in wt hosts,

but not in Clec7a−/− hosts, indicating that dectin-1-expressing

macrophages drive T cell suppression in PDA (46). In renal cell

carcinoma, high expression of tumor cell-derived but not TAM-

derived dectin-1 was associated with shorter RFS and OS (45).
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2.4.3 SR-E3/CD206
Scavenger receptor SR-E3 (also known as CD206) is a C-type

lectin that mediates antigen presentation, endocytosis,

phagocytosis and immune homeostasis (112, 113). It is

commonly accepted that CD206 is a marker of tumor-

supporting M2 phenotype of TAMs, but recent studies

demonstrated controversial activity of CD206+ TAMs in

tumor (47–49).

CD206+ TAMs produced EGF to promote OSCC

progression in vitro (49). Proliferation and invasion of OSCC

cells cultured with conditioned medium of CD206+ TAMs were

strongly enhanced by EGF (49). CD206 mediated breast cancer

post-chemotherapy progression (48). In mouse model of breast

cancer high expression of CD206+F4/80+ TAMs was associated

with tumor relapse and lymph node metastasis after

cyclophosphamide treatment (48). Number of CD206+ TAMs

positively correlated with worse clinical prognosis in OSCC,

CRC, lung cancer (49, 114, 115).

In contrast, CD206+TAMs were shown to program T cells to

attack melanoma tumor cells (47). Antigen cross-presentation in

tumor remains to be a challenging issue for development of anti-

cancer therapy. Primary human as well as mouse CD206+

macrophages were recently shown to be efficient in functional

cross-presentation of soluble self-Ag and non-self-Ag, including

tumor-associated Ag (TAA) (47). CD11b+CD206+ TAM were

found to express a unique cell surface repertoire, promoting

antigen cross-presentation and antigen-specific activation of

CD8+ T cells. In murine tumor models, the levels of cross-

presenting CD206+ TAMs correlated with reduced tumor

burden (47). CD206+ TAMs also correlated with improved

overall survival of cutaneous melanoma patients. It is an

intriguing question to be addressed in future, which self-

antigens can be presented to the adaptive immunity in

different types of solid cancers by CD206 TAMs, and what is

the impact of this process in overall role of CD206 in cancer (47).
2.5 Class G scavenger receptors

2.5.1 SR-G/CXCL16
CXCL16 (also known as SR-G1, or SR-PSOX) is a scavenger

receptor mediating endocytosis of oxidized low-density

lipoproteins (OxLDL). CXCL16 is primarily expressed on

macrophages and dendritic cells. CXCL16 exists in both

transmembrane and soluble forms. The soluble form acts as a

chemokine specifically binding to CXCR6, and the

transmembrane SR-G1 represents an adhesion molecule for

CXCR6-expressing cells (116, 117).

CXCL16 has been shown to have a pro-tumoral function in

papillary thyroid cancer (PTC) (53). In co-culture of PTC cells

with primary monocytes or macrophage-like THP1 celles, high

levels of CXCL16 were detected compared to separate PTC cell
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culture. Treatment of PTC cells with CXCL16 or co-culture with

macrophages enhanced their migration potential. In turn, co-

culture up-regulated the expression of M2-markers in

macrophages, e.g., CD163, IL-10 and CD206, that was

abrogated by an anti-CXCL16 antibody (53). An analysis of

the TCGA PTC revealed an association of CXCL16 with M2

macrophage- and angiogenesis-related genes. High CXCL16

expression was associated with aggressive pathologic

phenotypes, the higher TNM staging and lymph node

metastasis in 77 patients with papillary thyroid cancers, in 25

patients with thyroid follicular adenomas, and 81 - with normal

thyroid tissues from the SNUH cohort (51).

CXCL16 pro-tumoral activity was suggested for

glioblastoma (GBM) patient’s (52). CXCL16 expression in

GBM tissues was upregulated, compared to normal brain

tissues. However, isolated tumor cells, even if cultured for 1-3

passages, had a substantial reduction in the CXCL16 expression

levels. Treatment of mouse glioblastoma microglia with both

recombinant and glioma-released CXCL16 increased the

expression of anti-inflammatory genes ARG1, CHIL3,

RETNLA and CD163 that was impaired by anti-CXCL16

antibodies. Microglia from glioma-bearing CXCR6-ko mice

had lower expression levels of anti-inflammatory genes,

compared to glioma-bearing wt mice that suggested CXCL16/

CXCR6 axis involvement in the anti-inflammatory

programming of microglia (Figure 4). Patient-derived GBM

cells significantly increased cell chemotactic index, invasion

and proliferation under CXCL16 exposure. Use of TCGA data

with GBM patients revealed a significant increase in patient’s

survival associated with CXCR6 deletion and a significant

decrease in the survival associated with CXCR6 mRNA

overexpression (52).

Human ovarian cancer tissue significantly increased

expression of CXCL16 in comparison with both corresponding

adjacent and para-cancerous tissues (54). The correlation

analysis indicated a positive association of CXCL16 expression

with an activation of macrophages in ovarian cancer (54).

Macrophage-derived CXCL16 promoted migration and

invasion of ovarian cancer SCOV3 cells by enhancing the

activity of the PI3K/Akt pathway (54). Silencing of CXCR6 by

shRNA in SCOV3 cells diminished above-mentioned effects of

CXCL16 (54). In the co-culture of AIF1-overexpressed

macrophages with hepatocellular carcinoma Hepa1-6 cells,

CXCL16 secreted by macrophages enhanced proliferation and

migration of cancer cells, and this effect was abrogated by a

neutralizing antibody against CXCL16 (118).

We were able to find only one report describing CXCL16-

mediating tumor-inhibiting function in colorectal cancer (CRC)

(50). In co-culture of colorectal cancer SL4 cells with RAW 264.7

cells, CXCL16 induced tumor cell apoptosis mediated by TNFa-
expressing macrophages. A susceptibility of CXCL16-

overexpressing CRC cells to apoptosis was attenuated by

neutralization of TNFa with a corresponding antibody (50).
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In summary, CXCL16 tend to have predominantly a pro-

tumoral role through promoting an anti-inflammatory

phenotype of TAMs, and by activating proliferative and

invasive potentials of cancer cells. Nevertheless, there is an

evidence of CXCL16 anti-tumoral role too through sensitizing

of CRC cells to apoptosis.
2.6 Class J scavenger receptors

2.6.1 SR-J1/RAGE
SR-J1 (AGER, or RAGE) is a cell surface receptor from the

immunoglobulin superfamily that specifically binds advanced

glycation end products (AGEs) (119). RAGE is the only member

of class J scavenger receptors and capable of binding multiple

ligands (72). Except for AGEs, SR-J1 recognizes HMGB1 (120),

members of the S100 protein family (121), amyloid-beta peptide

(122) and binds dsDNA and dsRNA directly (123). RAGE is

expressed by diverse cell types, including macrophages,

monocytes, endothelial cells, fibroblasts and smooth muscle

cells (124).

Multiple evidences indicate a pro-inflammatory role of

RAGE activation, in particular, the HMGB1-induced

activation of RAGE in inflammation-related context (125–

127). RAGE is involved in ROS production and M1

polarization of macrophages under AGE exposure (65, 128).

In macrophages, AGEs significantly elevated the expression of

IL-6, IL-12, TNFa and TLR4, as well as the phosphorylation

levels of STAT1 in cytoplasm in RAGE/ROS dependent manner

(Figure 4). TLR4 inhibition by siRNA diminished effect of the

AGE-dependent RAGE activation, while both RAGE expression

and ROS production remained unchanged. This evidence

suggests TLR4 as a downstream regulator of RAGE activation

and further ROS production (65).

RAGE was studied in human GBM treated with

temozolomide (TMZ) (129). TMZ treatment caused HMGB1

release from GBM cells in tumor tissue of patients. Affinity

examination showed that RAGE is the main receptor binding

extracellular HMGB1. Immunofluorescent analysis of patients`

GBM samples indicated co-localization of RAGE and HMGB1

on TAMs. In vitro stimulation of THP-1 macrophages with

recombinant HMGB1 promoted release of pro-inflammatory

cytokines through NLRP3-dependent inflammasomes that was

diminished by RAGE inhibition (129). The mechanism of RAGE

activation by HMGB1 was related to phosphorylation of ERK1/2

and IKB resulting in NFkB activation. In patients with GBM,

HMGB1 expression is associated with improved OS. These

results indicate that RAGE interaction with HMGB1 can be

favorable factor in GBM treatment response (129). Irreversible

electroporation caused the release of nucleus HMGB1 out of

PDAC cells followed by binding of HMGB1 to RAGE in THP1-

derived macrophages, that skewed macrophages toward pro-

inflammatory phenotype via MAPK-ERK activation (130).
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Macrophages enhanced phagocytosis of dying electroporated

PDAC cells. This effect was neutralized by RAGE inhibition.

MAPK-ERK inhibition significantly decreased the RAGE

expression and the release of autocrine HMGB1 by

macrophages (130).

In vitro RAGE is equally expressed in both M1- and M2-

polarized macrophages, but has distinct effects on the cancer cells

that depends on a polarization state of macrophages (69). In

contrast to M1 macrophages, HMGB1-dependent stimulation of

RAGE facilitated pro-tumor activity in M2 macrophages. RAGE

activation by HMGB1 enhanced invasion of gastric tumor cells

(MKN45) in co-culture withM2-polarized THP1macrophages and

vice versa with M1 macrophages (66). RAGE induced VEGF

production in M2 macrophages. The conditioned medium of M2

macrophages treated with HMGB1 stimulated the growth of

endothelial cells in vitro; this effect was opposite for M1

macrophages. In contrast to M1 polarization, the RAGE

activation in M2 macrophages did not lead to NFkB activation.

Two negative regulators of the NFkB activation, SOCS1 and SHIP-

1, were significantly upregulated under theHMGB1 exposure inM2

macrophages (66). HMGB1-mediated RAGE activation in THP1-

derived M2 macrophages also stimulated lymphangiogenesis by

increasing both proliferation and migration of lymphatic

endothelial cells as well as VEGF-C production in M2, but not in

M0 macrophages (67). RAGE inhibition significantly reduced M2-

dependent lymphangiogenesis (67). HMGB1+CD163+ M2

macrophages were found as detrimental prognostic factors for OS

in laryngeal squamous cell carcinoma patients (67). RAGEmediates

chemotaxis of THP1-differentiated macrophages upon stimulation

with a conditioned medium of S100A7-overexpressing breast

cancer MDA-MB-231 cells. This effect was significantly abrogated

by RAGE blockage (131).

In vivo RAGE-depleted mouse models of GBM indicated

RAGE as a significant TAM-specific factor participating in

inflammation and angiogenesis in the TME (69). Survival

analysis of tumor-bearing mice revealed that RAGE ablation

significantly prolonged survival of mice in comparison with wild

type (wt) mice. RAGE-depleted tumor exhibited lower

expression of pro-inflammatory cytokines, and RAGE-depleted

TAMs expressed significantly lower levels of IL-6 and VEGF-A.

RAGE expression in tumor microglia or bone marrow-derived

macrophages stimulated angiogenesis in GBM. Patient’s GBM

samples had abundance of CD163+ TAMs with high RAGE

expression (69).

RAGE was shown to mediate uptake of an oncogenic mutant

KRASG12D protein by peripheral blood mononuclear cell-

derived macrophages during autophagy-dependent ferroptosis

of PDAC cells (68). Under oxidative stress conditions, tumor

cells released KRASG12D protein via exosomes secretion.

Exosomes were engulfed by macrophages in a RAGE-

dependent manner that was confirmed by the knockdown of

RAGE by shRNAs in macrophages. KRASG12D promoted M2

polarization via STAT3-dependent fatty acid oxidation (FAO).
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Inhibition of FAO reduced mRNA expression of IL10, ARG1,

and TGFB1 in the macrophages. The knockdown of RAGE and

ablation of STAT3 by shRNA abrogated the FAO and the M2

polarization. In PDAC patients, high KRASG12D expression in

CD68+ cells correlated with worse OS rates. The KRASG12D

uptake by macrophages may significantly contribute to the

human PDAC progression (68).

In summary, RAGE activation of TAMs has controversial

impact on TME and tumor cells. Evidence indicates that pro-

tumor and anti-tumor RAGE role through distinct TAMs

activation depends on TME context and RAGE ligands. Is of

great interest to identify in future the spectrum of tumor-specific

sets of RAGE ligands, and to examine how cooperation of M1 or

M2-specific receptors with RAGE can a decide about pro-and

anti-tumor programming of TAMs.
2.7 Class H scavenger receptors

The class H scavenger receptors are transmembrane protein

receptors containing in their extracellular part fasciclin, EGF-

like and lamin-type domains. Class H scavenger receptors has

two members: SR-H1 (also known as Stabilin-1, or Clever-1) and

SR-H2 (known as stabilin-2, or HARE) (132, 133). Despite high

similarity in domain organization and endocytic functions,

stabilin-1, but not stabilin-2 is expressed on TAMs and plays

an essential role in tumor development.
2.7.1 SR-H1/Stabilin-1
SR-H1, originally identified as stabilin-1 (134) and as

CLEVER-1 (135) is multifunctional scavenger and intracellular

sorting receptor with adhesive activities expressed by

immunosuppressive monocytes and macrophages, sinusoidal

endothelial cells and lymphatic endothelial cells (134, 136–138).

Stabilin-1 performs endocytosis, phagocytosis, intracellular

sorting of newly synthetized proteins and transcytosis of growth

hormone family member placental lactogen (9, 139–144). Large

body of evidence demonstrated that stabilin-1/CLEVER-1 can

mediate cell-matrix and cell-cell interactions during primary

tumor growth and in metastatic state (135, 138, 145–147).

Stabilin-1 is abundantly expressed on TAMs in number of

solid cancers in patients and in murine models (8, 57, 132, 148).

TAM-expressed stabilin-1 mediates clearance of tumor growth-

inhibiting factor SPARC in a mouse model of breast cancer, and

germinal knock-out of stabilin-1 results in the statistically

significant reduction of primary tumor growth in this model

(57). In orthotopic mouse models of lung cancer, breast cancer

and lymphoma, genetic deficiency of macrophage stabilin-1

significantly reduced tumor growth (149). In stabilin-1 KO

mice TME was shifted towards inflammatory program and

was enriched in the activated endogenous CD8+ T cells.

Immunotherapeutic blockade of stabilin-1 had similar
frontiersin.org

https://doi.org/10.3389/fonc.2022.1096897
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Kazakova et al. 10.3389/fonc.2022.1096897
consequences, and had synergistic effect with anti-PD-1

checkpoint inhibition (149).

Strong association of stabilin-1+ TAMs with worse

prognosis was shown in several human cancers (55, 56, 150).

Stabilin-1 expression in TAMs was associated with poor OS,

RFS, tumor stage and histological grade in patients with

urothelial carcinoma (56). High intratumoral expression of

stabilin-1 on CD68+ TAMs was associated with poor DSS in

stage I–IV rectal cancer (55). In contrast, high number of CD68+

stabilin-1+ TAMs correlated with longer DSS and predicted a

favorable prognosis in early stage I colorectal cancer (CRC)

patients (55).

Contribution of intracellular sorting function of stabilin-1 to

tumor progression is linked to the ability of the extracellular

domains of stabilin-1 to interact with at least two human

chitinase-like proteins, SI-CLP and YKL-39, while the

interaction with true chitinases CHIT1 and AMCase and with

YKL-40 was not studied to date (6, 141, 151, 152).

We have demonstrated that stabilin-1 mediates intracellular

delivery of newly synthetized SI-CLP, stabilin-1interacting

chitinase-like protein, that interacted with a fasciclin domain

of stabilin-1 in the yeast two-hybrid screening and in the affinity

chromatography assay (141, 152). In a murine model for breast

adenocarcinoma we demonstrated that SI-CLP being ectopically

expressed in subcutaneously injected TS-A cells significantly

reduced tumor growth and reduced infiltration of TAMs (153).

Recently, we have also found that stabilin-1 is able to interact

with YKL-39 (CHI3L2), that for a long-time was known as

highly specific biomarker of rheumatoid arthritis, and later has

been found to be overexpressed in glioblastoma affecting biology

of transformed cells (6, 154). In patients with glioma high levels

of CHI3L2 expressed in cancer cells and on microglia cells

correlated with poor prognosis. Mechanistically the authors

found that CHI3L2 induces the apoptosis of CD8+ T cells

(155). We found that YKL-39 has two functions that can

promote tumor growth: it stimulates monocyte migration, and

it stimulates as well angiogenic activity of endothelial cells in

vitro (6). In patients with breast cancer YKL-39 was exclusively

expressed in TAMs in tumor mass, and elevated levels of YKL-39

in primary tumors significantly correlated with metastatic

relapse after therapy onset (6). However, whether similar

mechanisms can act in other types of cancer has to be studied,

while application of purified SI-CLP and blocking agents for

YKL-39 is a promising strategy to reprogram tumor-

promoting microenvironment.

In summary, stabilin-1 has a highly complex function in

cancer. Its deficiency is cancer-inhibiting, at least due to the

reduction of SPARC clearance. Its ability to modulate

concentrations of tumor-promoting YKL-39 and tumor-

inhibiting SI-CLP can contribute to tumor growth and

metastasis in a cancer-specific way, since not necessarily both
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proteins are present at the same time in TME. In particular, the

role of stabilin-1 in CRC is of interest, while total amount of

TAMs in this cancer type, in contrast to majority of other types,

correlates with reduced tumor growth and good prognosis (8).
2.8 Class I scavenger receptors

SR-I (also known as CD163) is a hemoglobin-haptoglobin

complex scavenger receptor that is mostly expressed in

monocytes and macrophages (13, 156). In tumors, CD163

promotes tumor development and is associated with worth

prognosis in breast cancer, head and neck cancer, lymphoma

and melanoma (39, 59–62, 64, 100). CD163, mediates clearance

of hemoglobin-haptoglobin complexes out of circulation is a

silent way, however, in hyperglyceamic conditions this

scavenging process leads to inflammatory macrophage

responses (157).

CD163 is commonly defined as a marker for tumor-

supporting TAM phenotype. In human breast cancer, CD163+

TAMs accumulation was inhibited by tumor suppressor TAp73

(58). Amount of CD163+ TAMs negatively correlated with

Tap73 expression and positively correlated with tumor grade

(58). High amount of CD68+ and CD163+ TAMs was associated

with lymph node metastasis, high Ki67 expression and poor

prognosis in 1579 breast cancer patients from Zhejiang

Provincial People’s Hospital and Zhejiang Tiantai People’s

Hospital (62, 100). Elevated levels of CD163+ TAMs in tumor

stroma and tumor nest correlated with poor prognosis in 107

patients with triple negative breast cancer operated on at

Dokkyo Medical University Hospital (59). CD163 was

identified as a good predictor of pre-metastatic status of

colorectal cancer (158). High levels of CD163+ cells were

associated with tumor node metastasis stage, depth of

infiltration, and lymphatic metastasis in 197 patients with

colorectal cancer from China (158). Using multispectral

immunofluorescence it was demonstrated that CD163+ cells

have immunosuppressive phenotype in 17 patients with

colorectal cancer who underwent resection of primary and

liver metastases (159). High number of CD163+ cells was

found in peritumoral region of tumor and in liver

metastases (159).

Several studies confirmed that tumor-supporting effect of

CD163+ TAMs is mediated by the activation of STAT3 signaling

pathway (60, 63). Tumor-mediated activation of STAT3 in

CD163+ TAMs resulted in pro-tumor TAM polarization (63).

In vitro, conditioned medium from cholangiocarcinoma cell

lines (HuCCT1, RBE and MEC) induced activation of STAT3

in modeled TAMs and enhanced production of IL-10, VEGF-a,
TGF-b and MMP-2 in CD163+ TAMs (63) (Figure 4). CD163+

TAMs produced tumor-supporting cytokines (IL-6 and CXCL2)
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activated STAT3 in tumor cells and supported tumor

progression. CD163-KO TAMs had decreased production of

IL-6 and CXCL2 in comparison to WT TAMs in co-culture with

MCA205 (mouse fibrosarcoma) cells (64). Conditioned medium

of CD163-KO TAMs significantly impaired activation of STAT3

in MCA205 cells (64). CD163-expressing TAMs displayed

elevated levels of pSTAT3 and correlated to poor prognosis in

77 patients with myeloma from STAT3 is over-activated within

CD163pos bone marrow macrophages in both Multiple

Myeloma and the benign pre-condition MGUS (60). Increased

infiltration of both CD68+ and CD163+ TAMs in tumor mass

correlated with decreased survival of 174 patients with

gastroesophageal adenocarcinoma from Sweden (61). CD68

and CD163 overexpression was indicative for worse prognosis

in 105 HCC patients from Japan (160). Increased levels of

CD163+ TAMs correlated with decreased OS and higher

histological grade in human sarcoma (64). Oppositely, in

human primary melanoma low amount of CD163-expressing

TAMs in tumor stroma was associated with recurrence and poor

OS (39).

Overall, at least two molecular mechanism for tumor-

supporting function of CD163+ TAMs were identified to date:

inhibition of tumor suppressor TAp73 in breast cancer and

activation of STAT3 signaling in TAMs and in r fibrosarcoma

cells (58, 63, 64). Moreover, high expression of CD163+ TAMs

was related to poor prognosis in breast cancer, gastroesophageal

adenocarcinoma, HCC, human sarcoma, but not in melanoma

patients (39, 59, 61, 62, 64).
3 Genetics of scavenger receptors

Deleterious germline mutations cause a broad range of distinct

pathological conditions including cancer (161) There is limited

information describing association of SR gene mutations with

tumor progression, especially in non-malignant cells, e.g.,

macrophages. The only reliable evidence for such association are

germline mutations in MSR1 coding scavenger receptor CD204

(162, 163). Genetic analysis of hereditary prostate cancer revealed

significant co-segregation of prostate cancer with the nonsense

mutation R293X in man of European descent and the missense

mutation D174Y in man of African American descent (163). The

truncating mutation R293X resulted in deletion of most of the

collagen-like domain of MSR1 gene, including the ligand-binding

region and the cysteine-rich domain. The missense mutation

D174Y can affect proper polymerization of three MSR1

polypeptide chains. Both mutations disrupted MSR1 function that

affected MSR1 ability to bind oxLDL involved in the oxidative

stress. MSR1 is predominantly expressed by macrophages in both

benign and cancerous prostate tissues, emphasizing the role of
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macrophage-derived mutated MSR1 in prostate cancer

development (163).

MSR1 mutations are also involved in Barrett esophagus (BE)

and esophageal adenocarcinoma (EAC) development (162). The

nonsense R293X and missense L254V mutations contributed to

BE/EAC risk, or were required for BE/EAC predisposition. The

L254V mutation was found within the conserved coiled-coil

domain of MSR1, so both R293X and L254V led to MSR1

function disruption. MSR1 mutation caused overexpression of

key nuclear cell cycle molecule Cyclin D1 (CCND1) in BE and

EAC tissue samples that was impaired by overexpression of wild-

type MSR1 in HEK293 cells (162).

Association of MSR1 mutations with progression of prostate

cancer and esophageal adenocarcinoma confirmed the

involvement of this scavenger receptor to carcionogenesis.
4 Conclusions

Macrophage SRs have dual role in tumor development. Tumor-

supporting activity mediated by macrophage SRs includes

regulation of tumor invasion, proliferation and migration (for

CD204, CD206, CXCL16, Stabilin-1, and RAGE), as well as M2-

like TAM polarization (for CD36, LOX-1, CXCL16, CD 163, and

RAGE) and tumor angiogenesis (for CD68, Dectin-1, RAGE). The

anti-tumor functions of TAM-expressing SRs include suppression

of tumor angiogenesis (for CD204), tumor invasion (for RAGE),

inducing tumor cells clearance (for MARCO) and M1-like TAM

polarization (for CD204 and RAGE). In cancer patients, number of

TAM-expressed SRs (CD204, MARCO, CD68, LOX-1, Dectin-1,

CD206, CXCL16, Stabilin-1, CD163, and RAGE) associates with

negative and more sever prognosis. Targeting of tumor-promoting

SRs can be a promising approach in cancer immunotherapy.

Accumulating clinical data demonstrate that SRs can serve as

potential prognostic biomarkers for patients with cancer (29, 84,

164). For example, in mouse model of triple negative breast cancer

specific targeting of CD206+ TAMs inhibited tumorigenesis and

metastatic dissemination of tumor cells (165). Application of

antibodies against MARCO resulted in the reduction of tumor

growth and inhibition of metastasis in murine models for

melanoma and breast cancer (166). There are multiple studies

describing effects of SR targeting in various cellular in vitro and pre-

clinical in vivomodels (145, 165, 167–169). Drug targeting of CD36

demonstrated promising results for patients with advanced soft

tissue sarcoma in the initial clinical trials (167, 170). However,

targeting CD36 failed in phase 2 clinical trials because of ineffective

performance and severe adverse events. The complications can be

explained by the expression of majority of various SRs on resident

macrophages and on other cell types in healthy organs and tissues.

Moreover, we still have very limited information about cancer-
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specific ligands of SRs, in particular for the ability of SRs to

internalize and target for degradation cytokines and growth factors.

The investigation of the mechanisms of tumor development

and progression mediated by SRs is a foreground goal for the

developing immunotherapeutic approaches that can help to

suppress tumor cell invasion, proliferation and migration, to

inhibit macrophage recruitment and pro-tumor macrophage

polarization as well as to enhance clearance of tumor cells by

TAMs. Moreover, the ability of SRs to internalize both particles and

molecular complexes still remains to be explored for the design of

targeted drug delivery for macrophage re-programming in

tumor microenvironment.
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Human macrophage-
engineered vesicles for
utilization in ovarian
cancer treatment
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J. Robert McCorkle2, Khaga Neupane4, Alexandra N. Nail3†,
Brock Harvey4, Kristen S. Hill2, Frederick Ueland1,
Christopher Richards4 and Jill Kolesar1,3*

1Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, College of
Medicine, University of Kentucky, Lexington, KY, United States, 2Markey Cancer Center, University
of Kentucky, Lexington, KY, United States, 3Department of Pharmacy and Practice, College of
Pharmacy, University of Kentucky, Lexington, KY, United States, 4Department of Chemistry, College
of Arts and Sciences, University of Kentucky, Lexington, KY, United States
Background: Ovarian cancer is a deadly female malignancy with a high rate of

recurrent and chemotherapy-resistant disease. Tumor-associated

macrophages (TAMs) are a significant component of the tumor

microenvironment and include high levels of M2-protumor macrophages

that promote chemoresistance and metastatic spread. M2 macrophages can

be converted to M1 anti-tumor macrophages, representing a novel therapeutic

approach. Vesicles engineered from M1 macrophages (MEVs) are a novel

method for converting M2 macrophages to M1 phenotype-like macrophages.

Methods: Macrophages were isolated and cultured from human peripheral

blood mononuclear cells. Macrophages were stimulated to M1 or M2

phenotypes utilizing LPS/IFN-g and IL-4/IL-13, respectively. M1 MEVs were

generated with nitrogen cavitation and ultracentrifugation. Co-culture of

ovarian cancer cells with macrophages and M1 MEVs was followed by

cytokine, PCR, and cell viability analysis. Murine macrophage cell line,

RAW264.7 cells were cultured and used to generate M1 MEVs for use in

ovarian cancer xenograft models.

Results: M1 MEVs can effectively convert M2 macrophages to an M1-like state

both in isolation and when co-cultured with ovarian cancer cells in vitro,

resulting in a reduced ovarian cancer cell viability. Additionally, RAW264.7 M1

MEVs can localize to ovarian cancer tumor xenografts in mice.

Conclusion: Human M1 MEVs can repolarize M2 macrophages to a M1 state

and have anti-cancer activity against ovarian cancer cell lines. RAW264.7 M1

MEVs localize to tumor xenografts in vivo murine models.
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1 Introduction

Ovarian cancer is the leading cause of death in gynecological

cancers. The American Cancer Society estimates that in 2022

there will be 19,880 new cases of ovarian cancer and 12,810

deaths (1). Most patients are diagnosed at an advanced stage,

with a 5-year survival rate of less than 50% (2). Patients with

advanced-stage ovarian cancer are treated with combination

platinum and taxane chemotherapy in the front-line setting.

While many patients initially show a response to chemotherapy,

the majority will ultimately relapse (2, 3). Unlike other solid

tumors, immunotherapy has been largely ineffective in ovarian

cancer (4, 5), emphasizing the need for novel immunotherapies

to treat this disease.

Recent research suggests that tumor-supportive

tumor-associated macrophages (TAMs) promote tumor

vascularization and metastasis and are predominantly anti-

inflammatory, M2-like macrophages (6, 7). In contrast, pro-

inflammatory, M1-like macrophages can clear cancer cells and

are associated with a better prognosis (8–10). A recent meta-

analysis demonstrated that high numbers of TAMs are negatively

associated with overall survival in multiple solid tumor types,

including ovarian cancer (11). As macrophages are highly plastic,

an area of growing interest is the repolarization of anti-

inflammatory TAMs to pro-inflammatory TAMs as a potential

mechanism of increasing the sensitivity of cancer cells to multiple

therapies, including immunotherapy. Approaches to initiate

macrophage repolarization include small molecule inhibitors, in

vitro-transcribed mRNA, toll-like receptor (TLR) agonists, and

siRNAs delivered via nanoparticles, all of which have

demonstrated repolarization of M2-like TAMs to a M1

phenotype, resulting in downregulation of pro-tumor markers,

such as vascular endothelial growth factor (VEGF) and

transforming growth factor-beta (TGF-b), and upregulation of

pro-inflammatory markers, including tumor necrosis factor-

alpha (TNF-a) and interferon-g (IFN-g). However, the

aforementioned approaches are limited because they fail to

localize to tumor associated cells, and therefore heighten the

potential for off-target side effects (7, 12–14). Additional

approaches include increasing the antibody-dependent cell-

mediated cytotoxicity (ADCC) of TAMs utilizing low-

fucosylated antibodies, such as humanized glyco-engineered

anti-AMHRII monoclonal antibody murlentamab, holds

potential promise, via stimulating an antitumor adaptive

immune response via TAM repolarization (15). Interest in

using vesicles as potential therapeutics has grown significantly

in recent years (16). Vesicles are structures of varying sizes that

are created endogenously by cells and they can also be

bioengineered by several techniques. In biological systems,

vesicles enable cell-to-cell communication, via the transfer of

proteins, lipids, and nucleic acids (17, 18). As a therapeutic

modality, vesicles can encapsulate various therapeutic agents,
Frontiers in Oncology 02
100
while minimizing immunogenicity and can efficiently target the

same cell type as the donor cell (16, 19, 20). This targeting

property has led to the investigation of endogenous vesicles,

exosomes, isolated from cancer cells to target comparable

primary malignant cells (21, 22). Currently, there is limited

data on the role of cancer cell exosomes to specifically target

ovarian cancer. One study examined exosomes from SKOV3

ovarian cancer cells, subsequently loaded with triptolide, an

antineoplastic agent, and demonstrated anti-tumor efficacy in

ovarian cancer models (23). Yet, it should be noted there are

significant theoretical and practical concerns with the utilization

of exosomes derived from cancer cells as prior studies have

suggested that tumor cell exosomes may enhance tumor

progression and metastasis (17, 21, 22, 24–31).

Another approach is the utilization of vesicles derived from

macrophages to target the macrophage-abundant tumor

microenvironment seen in ovarian cancer (32). M1-type

exosomes from RAW 264.7 cells, a murine macrophage line,

can polarize unstimulated RAW 264.7 macrophages to the M1

phenotype (33). However, exosomes are limited in their

therapeutic use due to low production yields and limitations in

loading drug cargo. An alternative approach that has recently

shown promise is bioengineering vesicles from macrophage cell

membranes. These macrophages engineered vesicles (MEVs)

can be formed by rupturing the cell membrane into fragments

via nitrogen cavitation and allowing them to reconstitute into

smaller distinct vesicle units. Engineered vesicles derived from

the mouse RAW 264.7 cell line show similar properties as

macrophage exosomes and can be loaded with a broad range

of cargo, including therapeutics (34, 35).

MEVs derived from M1 macrophages can serve dual

purposes; they can be used as a novel delivery vector for

chemotherapeutics and can immunomodulate TAMs (35–37).

Prior studies have demonstrated that mouse-derived M1 MEVs

can repolarize mouse M2 macrophages back to an M1 state in

vitro (35, 36). In addition, mouse M1 MEVs can be loaded with

platinum-chemotherapeutics and have in vitro anti-cancer

activity (36). Additional studies have shown that macrophage-

derived vesicles loaded with paclitaxel have anti-cancer effects

against multidrug-resistant cancer cell lines and murine breast

cancer models (38, 39).

Here we describe the generation of MEVs from human

peripheral blood mononuclear cells (PBMCs) that have been

differentiated into macrophages. This is an advancement in our

prior work by utilizing primary non-tumor human cells from

fresh primary isolations (35, 36). We show that human M1

MEVs localize to both human macrophages and cancer cells and

can repolarize M2 macrophages to an M1 phenotype. Human

M1 MEVs display anticancer effects in co-culture with ovarian

cancer cells. Additionally, using ovarian xenografts in mice, we

demonstrate localization of RAW264.7 M1 MEVs to ovarian

tumors in vivo.
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2 Materials and methods

2.1 Cell lines

The ovarian adenocarcinoma cell lines: Caov-3, OVCAR3,

and SKOV3 along with the murine macrophage line: RAW264.7,

were obtained from ATCC. Caov-3 cells and RAW264.7 cells

were maintained in Dulbecco’s Modified Eagle’s Medium

(DMEM, ATCC), supplemented with 10% fetal bovine serum

(FBS, Sigma). OVCAR3 cells were maintained in RPMI-1640

medium with glutamine and glucose (ATCC), supplemented

with 10mg/mL insulin from bovine pancreas (Sigma) and 20%

fetal bovine serum (FBS, Sigma). SKOV3 cells were maintained

in McCoy’s 5a Medium Modified (ATCC), supplemented with

10% fetal bovine serum (FBS, Sigma). Cells were maintained at

37˚C with 5% CO2.
2.2 Human PBMC isolation and
differentiation

Human PBMCs were isolated from buffy coats from 4-5

healthy donors (Kentucky Blood Center, Lexington, KY) by

density gradient centrifugation (Ficoll-Paque Premium, GE

Healthcare, Sweden) for each preparation of MEVs.

Monocytes were isolated from PBMCs by immunomagnetic

negative selection (EasySep Human Monocyte Enrichment Kit,

Stemcell Technologies, Cambridge, MA). Human PBMC-

derived monocytes were cultured in RPMI-1640 (ATCC) with

10% heat-inactivated Fetal Bovine Serum (Sigma-Aldrich, St.

Louis, MO), 1% penicillin-streptomycin (Gibco), and

recombinant human macrophage colony-stimulating factor

(M-CSF, 50ng/mL, PeproTech, Rocky Hill, NJ) for 5-6 days.

Media was replaced every 48 hours. M0 macrophages were

stimulated for 24 hours with lipopolysaccharide (LPS, 20ng/

mL, In vivogen) plus recombinant human interferon-g (IFN-g,
20ng/mL, PeproTech) for M1 macrophages or with recombinant

human interleukin-4 (IL-4, 20ng/mL, PeproTech) plus

recombinant human interleukin-13 (IL-13, 20ng/mL,

PeproTech) for M2 macrophages. Cells were maintained at 37°

C with 5% CO2.
2.3 Vesicle generation and
characterization

M1 MEVs were generated from human M1 macrophages

using nitrogen (N2) cavitation. Cells were washed to remove any

remaining cytokines, manually disrupted from cell flasks using a

cell scraper, and then resuspended in phosphate-buffered saline

(VWR) plus protease inhibitor (Thermo Scientific). N2

cavitation was performed by maintaining cells in a pre-chilled
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250 psi for 5 minutes at 4 ˚C. Vesicles were purified from cellular

debris by centrifugation at 4 ˚C for 20 minutes at 4,000 x g then

10,000 x g. The supernatant was then withdrawn and

ultracentrifuged at 100,000 x g for 1 hour at 4 ˚C. The

subsequent pellet was washed five times with PBS and

resuspended in PBS. Fluorescein-loaded human M1 MEVs

were generated as described above, with the addition that the

N2 cavitation step was performed in a 1mM solution of

fluorescein in PBS. For the complete removal of free dye, a

diluted vesicle suspension was subjected to an additional

ultracentrifugation step at 100,000 x g for 60 minutes at 4°C.

The mean diameter, concentration, and zeta potential values of

MEVs were obtained via particle tracking analysis using a Zeta

View PMX-120 using MEVs generated from 3.1x107 human M1

macrophages. Nanoparticle tracking analysis was performed on

human M1 MEVs generated from 2.8x107 human M1

macrophages to determine the vesicle size distribution and

concentration (NanoSight 300, Malvern Panalytical,

United Kingdom).
2.4 Vesicle electron microscopy

The suspended sample of MEVs was fixed with 4%

paraformaldehyde for 1 hour and rinsed with 1X PBS. The

sample was serially dehydrated with different concentrations of

ethanol from 30%, 50%, 70%, 75%, 80%, 90%, 95%, and 100% for

10 minutes. A droplet of the sample was pipetted and deposited

onto a glass cover slip previously treated with 0.1% solution of

poly-L-lysine1 to promote adhesion. Before the sample could

fully dry, it was briefly immersed in ethanol (200 proof) and

transferred into a critical point dryer (EM CPD 300, Leica

Microsystems, Wetzlar, Germany) system. After drying, the

surface of the sample was metallized by sputter coating 5 nm

of platinum (EM ACE 600, Leica Microsystems, Wetzlar,

Germany) to enhance surface electrical conductivity and

subsequently imaged using a field-emission scanning electron

microscope (SEM, Quanta 250 FEG, ThermoFisher Scientific,

formerly FEI, Hillsboro, OR, USA).

SKOV3 cells were incubated with M1 vesicles for 24 hours.

After incubation, the cells were washed with PBS and fixed with

4% paraformaldehyde for 40 minutes at room temperature (RT).

The cells were then processed for immunogold labeled silver

enhancement stain (IGSS). Cells were blocked with 3% BSA for 2

hours and then incubated with monoclonal rabbit anti-human

CD86 (1:250 dilution) overnight at 40C. Cells were then

incubated with secondary anti-rabbit IgG Alexa Fluor® 647

Fluoro Nanogold (Nanoprobes) at 1:100 dilution for 2 hours

at RT. Silver enhancement was performed using HQ silver

enhancement kit (Nanoprobes) for 5 minutes at RT. The cells

were then washed three times with deionized water and further
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incubated with 0.2% osmium tetraoxide in PBS at 4C for 1 hour.

Cell samples were exposed with 0.25% uranyl acetate for 1 hour

at 40C. Samples were then dehydrated using serial

concentrations of ethanol: 50%, 70%, 90% and 100% (three

times). Samples were then embedded with 100% resin. Samples

were washed with resin twice, with the second wash added to

samples and incubated for 45-60 minutes in a 600C oven. A final

resin polymerization was performed for 48 hours at 600 C.

Cultured cells were then separated from plates and a 100nm

section was cut with a microtome and mounted on FCF-200-Cu

grids. Images were acquired using a Thermo Scientific™ Talos™

F200X TEM (40).
2.5 Imaging of fluorescently-labeled
vesicles

Fluorescein-labeled vesicles were generated as discussed

previously and fixed onto a glass-bottom dish before imaging

using a fluorescence microscope. Fluorescein-loaded vesicles

were imaged using a 488 nm laser of 0.8 mW power and an

exposure time of 200 ms.
2.6 Cytokine analysis

Human PBMC-derived monocytes were plated in 24-well

plates at 1 x 106 cells/well and cultured with M-CSF (50 ng/mL)

for six days. Cells were stimulated in duplicate to M1 or M2

macrophages as previously described. M1 macrophages from the

same PBMC isolation plated on separate plates were used to

generate MEVs. Vesicles were washed to remove any remaining

cytokines, then plated with M2 macrophages. Media

supernatants were collected following a 24-hour incubation

period and were assayed in duplicate using a human TNF-a
Quantikine ELISA kit (R&D Systems, Inc., Minneapolis, MN).

Optical density was measured using a microplate reader

(Varioskan LUX, Thermo Scientific, Finland). Experiments

were performed in triplicate.
2.7 Real-time PCR of macrophage
biomarkers

Human peripheral blood monocytes were isolated, plated,

and cultured for five days into differentiated M0 macrophages.

M0 macrophages plated in a 6-well plate at a concentration of

5.0 x 105 per well, after which macrophages were polarized to

either an M1 or M2 state using LPS/IFNg or IL4/IL13,

respectively. M1 MEVs were prepared from additional M1

macrophages as previously described and were then used to

treat M2 macrophages. Following an additional 24-hour

incubation, RNA was purified from human macrophages (M0,
Frontiers in Oncology 04
102
M1, M2, MEV-treated M2) with RNeasy Plus Universal Mini Kit

(Qiagen), and 500 ng of each sample was converted to cDNA

using High-Capacity cDNA Reverse Transcription Kit

(ThermoFisher Scientific) with random primers. Real-time

semi-quantitative PCR measured gene expression using

TaqMan Advanced Master Mix with TaqMan Gene

Expression Assays (ThermoFisher Scientific). Expression of

human CXCL8 (assay ID Hs00174103_m1), CXCL10 (assay

ID Hs00171042_m1), relative to endogenous control GAPDH

(assay ID Hs02758991_g1) was measured in triplicate using a

QuantStudio 3 Real-Time PCR instrument (Applied

Biosystems). Relative expression was evaluated across samples

with QuantStudio Software (Applied Biosystems) using the

Comparative CT (DDCT) method.
2.8 Co-culture of human M2
macrophages and cancer cells

For co-culture imaging experiments, human M0

macrophages were plated at 5 x 104 cells/well in a 96-well

clear-bottom, black-walled plate. M0 cells were stimulated to

M1 or M2 for 24 hours. Caov-3 ovarian adenocarcinoma cells

were then plated at 5000 cells/well with M1 or M2

macrophages. Human M1 MEVs were generated and labeled

with a lipophilic dialkylcarbocyanine fluorescent dye, DiI (1,1’-

Dioctadecy l -3 ,3 ,3 ’ , 3 ’-Tetramethyl indocarbocyanine

Perchlorate, Molecular Probes Inc., Invitrogen, Eugene, OR).

DiI labeled vesicles were obtained by incubating MEV-

resuspension with 5 µM DiI for 30 minutes at 37°C. The free

dye molecules were separated from the fluorescently-labeled

vesicles using a size exclusion spin column (PD MidiTrap

column) following the manufacturer’s protocol. Human M1

DiI-labeled MEVs at a 10% dilution were added to Caov-3 cells,

M2 macrophages, or Caov-3 plus M2 macrophage co-culture.

After a 24-hour incubation period, cells were imaged at 40x

with confocal microscopy (CellInsight CX7 High-Content

Screening Platform). Cells were incubated with Hoescht

(1:2000) for 30 minutes before imaging to label nuclei.

For cell viability experiments, human M0 macrophages were

plated at 2.5-5 x 104 cells/well in a 96-well plate. M0 cells were

stimulated to M1 or M2 for 24 hours. Supernatant was then

removed and Caov-3 ovarian adenocarcinoma cells (ATCC)

were then plated at 5000 cells/well with M1 or M2

macrophages. M0, M1, and M2 macrophages and Caov-3

controls were each plated in at least duplicate. Supernatants

were collected after 24 hours. A 20% or 10% dilution of human

M1 MEVs was added to Caov-3 cells only and Caov-3 plus M2

cells in duplicate. Supernatants were collected after 24-hour

incubation with MEVs, and wells were replaced with complete

media. A cell viability assay was performed after 96 hours

fol lowing the addit ion of MEVs according to the

manufacturer’s instructions (CellTiter-Glo 2.0, Promega).
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Luminescence was measured with a microplate reader

(Varioskan LUX). This process was repeated in the same

manner with OVCAR3 cells. Experiments for both cell lines

were performed in triplicate. The collected supernatants were

assayed in duplicate using a human TNF-a Quantikine ELISA

kit (R&D Systems, Inc., Minneapolis, MN).
2.9 RAW264.7 MEV generation and
mouse localization experiments

RAW264.7 cells were maintained at 37°C with 5% CO2.

RAW264.7 cells were stimulated to an M1 state using LPS/IFNg
at a concentration of 20 ng/ml for 24 hours. Cells were then

manually collected using a cell scraper, and vesicles were

generated in the same manner as described above. The vesicle

pellet was resuspended in 2 ml of sucrose buffer (10 mM HEPES,

250 mM Sucrose pH 7.5). DiR (DiIC18(7); 1,1′-dioctadecyl-
3,3,3′,3′-tetramethylindotricarbocyanine iodide) (ThermoFisher

Scientific) was utilized as a lipophilic fluorescent dye, with 5 ml
of 2 mM added to the vesicle solution and then incubated for 30

minutes at 37°C. The vesicle solution was then layered with a 50%

and 10% OptiPrep™ density gradient medium. The combined

solution was then ultracentrifuged at 112,000 x g for 60 minutes at

4°C. A peristaltic pump was then used to collect DiR labeled

vesicles between the gradients. The collected vesicles were purified

using size exclusion PDMiditrap columns (Cytiva) to remove any

free dye.

Under the University of Kentucky Institutional Animal Care

& Use Committee (IACUC) protocol #2017-2674, we did a

transperitoneal injection of 5-week-old female BALB/c SCID

mice (Jackson Lab) with 5 x 106 Caov-3 cells in 100 ml of sterile
PBS. After visible tumor progression, 100-200ul of labeled

RAW264.7 MEVs were injected via lateral tail veins of via

intraperitoneal injection in the right lower quadrant. Athymic

nude homozygous 5-week-old female (Jackson Lab) were

subcutaneously injected with 2.5-5.0 x 106 SKOV3 cells in

100ul of sterile PBS in the dorsal shoulder region. Mice were

imaged 72 hours post-injection using a LagoX Small Animal

Optical Imager (Spectral Instruments) at a fluorescent excitation

wavelength of 710 nm and emission of 770 nm for 10 seconds.

Images were processed with Aura Imaging software (Spectral

Instruments). After euthanasia, necropsy performed with tumor

and organs of interest isolated and imaged independently.
3 Results

3.1 Characterization of human MEVs

MEVs are formed via mechanical disruption of macrophage

cell membranes with nitrogen cavitation (35). The generated

cellular fragments subsequently reform into vesicles in a
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pressurized chamber. To determine the ability of human

MEVs to encapsulate cargo, human MEVs were generated in

the presence offluorescein, a fluorescent dye. MEVs were imaged

using a fluorescence microscope using a 488 nm laser of 0.8 mW

power with a gain of 990 and an exposure time of 200 ms. MEVs

were visible as bright punctate regions (Figure 1A). This

illustrates that human MEVs can encapsulate cargo during

vesicle generation, similar to MEVs generated from RAW

264.7 cells (35). To characterize the vesicle size distribution

within an individual preparation of MEVs, we quantified the

vesicle diameter and concentration using multiple particle

tracking using a Zeta View PMX-120 (Figure 1B) and

Nanosight 300 (Figures 1C, D). We generated vesicles from

3.1 x 107 human M1 macrophages with a cavitation pressure of

250 psi, which yielded 6.6 x 1010 vesicles with a mean diameter of

125.1 nm (SD ± 60.2 nm). Additionally, we measured the Zeta

potential at -127mV; a large negative value is an indicator of

stability in an aqueous solution. Additional characterization

performed with Nanosight 300 (Figures 1C–E) using 2.8 x 107

human M1 macrophages yielding 6.45x1011 with a mean

diameter of 165.1nm (SD ± 66.4nm).

Scanning electron microscopy (SEM) was performed in

order to determine the shape and morphology of the

generated MEVs. MEVs were fixed and serially dehydrated

prior to SEM. Examination confirmed the round smooth-

edged morphology with diameter of a single MEV of~200nm

(Figure 2A). The dense MEV spherical morphology suggests a

tendency to encapsulate the cargo drug with firm stability.

Utilizing transmission electron microscopy (TEM), M1 vesicles

were then identified using CD86 monoclonal antibody. CD86 is

a known glycoprotein found in the membrane of the antigen

presenting cells, such as blood monocytes and macrophages.

Figure 2B shows positive immunogold staining of M1 MEVs

(positive for CD86) as seen as dark black silver particles within a

SKOV3 cell. The SKOV3 cell membrane and nucleus containing

chromatin were also visible.
3.2 M1 MEVs are taken up by M2
macrophages and cancer cells

Next, we examined if M1 MEVs can localize to M2

macrophages and ovarian carcinoma cells. We generated M1

MEVs labeled with DiI, a lipophilic fluorescent dye that is loaded

in the membrane. MEVs were incubated with M2 macrophages,

Caov-3 cells, and co-culture of M2 macrophages plus Caov-3

cells. Confocal imaging with a CellInsight CX7 High-Content

Screening Platform demonstrated that both human M2

macrophages and Caov-3 cells uptake MEVs in co-culture

(Figure 3A). Caov-3 cells and macrophages demonstrated

different nuclear sizes when cocultured alone, with Caov-3

nuclei significantly larger (Figure 3B). While Caov-3 cells

showed a low level of punctate MEVs co-localizing to the cells,
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FIGURE 1

Characterization of human PBMC-derived M1 vesicles. (A) Wide field image of human M1 MEVs loaded with fluorescein. (B) Particle tracking
analysis for human M1 MEVs. 2.4 x 107 human M1 macrophages generated 2 x 1010 vesicles. (C) Finite track length adjustment (FTLA)/size graph
obtained via nanoparticle tracking analysis (NTA) with five separate experimental replicates. (D) Intensity/size graph obtained via NTA with five
separate experimental replicates. (E) Composite FTLA concentrations/size obtained via NTA with a mean of 165.1nm (SD: 66.4nm).
A B

FIGURE 2

(A) Scanning electron microscope image of a single human M1 MEV. Sample was imaged using a field-emission scanning electron microscope.
(B) Transmission electron microscopy of SKOV3 ovarian cell with intracellular MEVs as identified with positive silver staining for CD86. MEVs
(black dots) are identified within the cell (red arrows). The nuclear membrane, chromatin, and Mitochondria (M) are also visible.
Frontiers in Oncology frontiersin.org06
104

https://doi.org/10.3389/fonc.2022.1042730
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Schweer et al. 10.3389/fonc.2022.1042730
most macrophages, indicated by smaller nuclei, display a

distinctly higher number of MEVs (Figure 3C). These results

show that human MEVs are capable of localizing to both human

macrophages and human ovarian cancer cells in vitro.
3.3 M1 MEVs repolarize M2 macrophages

Next, we tested if human M1 MEVs can repolarize M2

macrophages to an M1-like, pro-inflammatory phenotype. We

compared the production of the pro-inflammatory cytokine

TNF-a in M1 macrophages, M2 macrophages, and M2

macrophages incubated with M1 MEVs. We observed high

levels of TNF-a, measured via ELISA, in the M1 macrophages

and significantly lower TNF-a in the M2 culture and in

controls (Mean ± SD pg/ml: M1 vs. M2: 2021 ± 383.8 vs.

259.9 ± 133.7, p<0.001, M1 MEVs+M2 vs. M2: 787.5 ± 298.3

vs. 259.9 ± 133.7 p<0.05) (Figure 4A). In contrast, we observed

an increase in TNF-a in M2 macrophages that were incubated

with M1 MEVs, indicating that M1 MEVs can repolarize M2

macrophages towards a pro-inflammatory, M1-l ike

macrophage phenotype. Figure 4B demonstrates the

difference in TNF- a levels of M1+M1 MEVs vs M1 cells

alone is not significant. However, M2+ M1 MEVs vs M2 cells is

statistically significant. From this data we’ve concluded that the

MEVs alone are not the sole driver of the experimental

increased TNF-a levels, but rather the interaction with the

M2 cells via repolarization. The comparatively lower TNF-a
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levels seen in the M1 between Figures 4A, B is likely secondary

to the difference in analyzed time points (24 vs 48 hrs) and

experimental methodology. We subsequently sought to

validate M1 MEV repolarization of M2 macrophages via

real-time PCR of mRNA expression of CXCL8 and CXCL10

proteins. Figure 4C shows significant differences in the relative

expression of CXCL8 in M2 cells alone compared to M2 cells

treated with M1 MEVs (p<0.0001). This finding was not

demonstrated in relative mRNA expression of CXCL10

(Figure 4D). CXCL8 expression is marker for M1

macrophages (41–43). Therefore, based on CXCL8 mRNA

expression, M1 MEVs can repolarize M2 to an M1 state.

Taken together, M1 MEVs can repolarize M2 macrophages

into an M1-like phenotype based on both cytokine secretion

and mRNA expression profiles.
3.4 Human M1 MEVs repolarize M2
macrophages in co-culture

To test if M1 MEVs can convert M2 TAMs to a pro-

inflammatory phenotype, we cultured human M2 macrophages

with the Caov-3 or OVCAR3 ovarian cancer cell lines and treated

the co-cultured cells withM1MEVs. Co-cultured cells treated with

M1 MEVs show an increase in the pro-inflammatory cytokine,

TNF-a (Mean ± SD pg/ml: M2+Caov-3+M1MEVs vs M2+Caov-

3; 383.6 ± 120.4 vs. 0.1389 ± 20.03, p<0.05, M2+OVCAR3+M1

MEVs vs M2+OVCAR3: 207.1 ± 170.2 vs -45.65 ± 55.35 p=0.18)
A B C

FIGURE 3

(A) Human macrophages display a higher uptake of human M1 MEVs compared to ovarian cancer cells. Confocal imaging of human M2
macrophages alone, Caov-3 cells alone, and co-cultured human M2 macrophages plus Caov-3 cells following a 24-hour incubation with M1
MEVs. Brightfield of co-cultured human M2 macrophages plus Caov-3 cells. Nuclei were labeled with Hoescht (1:2000, blue) and M1 MEVs were
DiI-labeled (green). Representative Caov-3 cells (yellow arrows) and human macrophages (red arrows) are indicated. Scale bars indicate 50 µm.
Imaging was performed at 40X magnification using a CellInsight CX7 High-Content Screening Platform. (B) Graph of the nuclear size mean +/-
SEM showing significantly different nuclear area of the M2 cells compared to the Caov3 cells, with coculture mean between the two cell types.
Greater than 100 cells were analyzed per cell type. (P<0.001 all comparisons by One-way ANOVA with Newman Keuls Multiple Comparison
Test.) (C) MEV staining in cells with nuclei <3000 sq. pixels (M2) and >3500 sq. pixels (Caov3) from the cocultured wells only, demonstrated
significantly less MEV staining in the large nuclei (Caov3) cells in the co-cultured well then the small nuclei (M2) cells as determined by unpaired
two-tailed t-test (p<0.0001). * indicates a p<0.05.
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(Figures 5A, D), suggesting that M1 MEVs convert M2 TAMs to

an M1 phenotype. The comparatively lower TNF-a levels seen in

the M1 plus cancer cells (Figures 5A, D) compared to the high

levels of TNF-a in the M1 macrophages alone (Figure 4) is likely

secondary to the difference in time points (24 vs 48 hrs) and

experimental methodology.

We then tested if M1 MEVs are capable of inhibiting cell

viability. M1 MEVs at high concentrations has an inhibitory

effect in both Caov-3 (Mean ± SD 100.0 ± 8.232 vs 82.27± 2.853,

p<0.0001) and OVCAR3 cell lines (Mean ± SD 100.0 ± 5.710 vs

87.69± 11.62, p<0.05) (Figures 5B, E), with continued significant

decreases appreciated at a lower dose (10%) in Caov-3 (Mean ±

SD: 100.0 ± 8.232 vs 87.95± 6.069, p<0.0001). Interestingly, in

Caov-3 this inhibition appears to be dose-dependent and is

significantly higher in the co-cultured cells as compared to

cancer cells alone (Mean ± SD 100.0 ± 2.930 vs. 70.54 ± 9.955,

p<0.0001) (Figure 5C), indicating that MEVs are more effective

in the presence of pro-inflammatory macrophages. The

inhibition seen in OVCAR3 cells co-cultured with M2

macrophages is more modest but still significant at a high
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MEV dose (Mean ± SD 100.0± 6.821 vs 93.61 ± 5.558, p <

0.01) (Figure 5F).
3.5 RAW264.7-derived M1 MEVs localize
to ovarian xenografts in vivo

As part of a pilot experiment, we sought to demonstrate the

localization of M1 MEVs to human tumor xenografts. A BALB/c

SCID mouse was injected transperitoneally with Caov-3 ovarian

cancer cells and developed a visible tumor xenograft in the

abdominal right lower quadrant approximately seven months

post-injection. Fluorescent DiR-labeled M1 MEVs were created

from RAW264.7 cells and were injected via lateral tail vein.

Importantly, RAW164.7 are a mouse macrophages cell line. The

mouse was imaged 72hrs post-injection (Figure 6) using

appropriate corresponding emission and excitation

wavelengths for DiR. An additional mouse (left) without a

tumor xenograft was not injected was imaged for baseline null

comparison purposes. The dye-labeled MEVs demonstrate
A B

DC

FIGURE 4

(A) Human M1 vesicles repolarize M2 macrophages. Human PBMC-derived monocytes were cultured with M-CSF (50ng/mL) for six days. Cells
were stimulated, and supernatants were assayed for human TNF-a after 24 hours. From left to right on the graph: M0 macrophages (black), M1
cells polarized with LPS plus IFN-g (20ng/mL each, green, M2 polarized with IL-4 plus IL-13 (20ng/mL each, blue, and M2 cells treated with M1
vesicles (yellow). Statistical analysis performed with Statistical analysis performed with one-way ANOVA with post-hoc Tukey’s Multiple
Comparison Test (*p < 0.05; ***p < 0.001). Error bars indicate SD. (B) Human PBMC-derived monocytes were cultured, plated, and stimulated
to respective states as described above. After 24 hours, supernatant was removed and M1 vesicles were added to M1 and M2 cells. After an
additional 24 hours supernatants were collected and subsequently assayed for human TNF-a. Statistical analysis performed with one-way
ANOVA with post-hoc Tukey’s Multiple Comparison Test (*p < 0.05; ***p < 0.001). Error bars indicate SD. (C, D) CXCL8 and CXCL10 mRNA
expression as biomarkers of human macrophage polarization. Total RNA was purified from human M0, M1, M2 macrophages, and M2
macrophages treated with M1 MEVs (M2 + MEVs) and analyzed by real-time PCR. Relative expression (versus M0 macrophages) of CXCL8 and
CXCL10 was measured in 4 independent experiments and summarized in box and whisker plots (median, interquartile range, 5th-95th
percentile). Statistical analyses were performed with Kruskal-Wallis tests followed by Dunn’s Multiple Comparison tests (*p < 0.05;
***p < 0.001). ns, not significant.
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precise localization to the tumor (Figures 6B, C). Additional

pilot experiments were performed with athymic nude mice

injected subcutaneously with SKOV3 ovarian cancer cells

xenografts in the mouse scapular region. Fluorescent DiR-

labeled M1 MEVs were created from RAW264.7 cells and
Frontiers in Oncology 09
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were injected via lateral tail vein (Figure 7) or intraperitoneally

(Figure 8). Post-necropsy images demonstrate localization of M1

MEVs to tumor (Figure 7E). Intermittent fluorescent signalling

demonstrated in the murine cranium at 24 hours is noted, but

desists at 72hours. This is suggestive of a transient circulatory
A B

D E F

C

FIGURE 5

Human M1 MEVs shift co-cultured M2 macrophages to M1 phenotype. (A, D). Supernatants were collected 24 hours after the addition of M1 MEVs
(48 hours after macrophage plating). Supernatants were assayed in duplicate using a human TNF-a Quantikine ELISA kit (R&D Systems, Inc.).
Significance was assessed with a two-tailed paired t-test (A, D) ; p = 0.0259 & p=0.18, respectively). Human M1 MEVs show dose-dependent
inhibition of cell viability in co-cultured cells. Graphs indicate the percent cell viability of the (B) Caov-3 cancer cells alone and (E) OVCAR3 cancer
cells alone treated with M1 MEVs or (C) Caov-3 and (F) OVCAR3 co-cultured cancer cells plus M2 macrophages treated with M1 MEVs. Cell viability
was measured at 96 hours (CellTiter-Glo 2.0). % of MEVs refers to the relative percentage of supernatant with MEVs added. The percent cell viability
was calculated by comparing cells treated with M1 MEVs to the respective untreated control. Statistical analyses were performed using Kruskal-
Wallis with Dunn’s Multiple Comparison posthoc test (*p < 0.05; **p < 0.01; ***p < 0.001). Experiments were performed in triplicate. Bars
correspond to SEM. * indicates a p<0.05.
A B C

FIGURE 6

RAW.264.7 M1 polarized vesicles localize to Caov-3 tumor xenografts in vivo. (A) Two BALB/c-SCID mice displayed – one without tumor (left)
and one with visible tumor (right) marked by the arrow. The mouse on the right was injected with 100 µl of fluorescent dye-labeled vesicles and
imaged 72 hours post-injection. The fluorescent overlay was reduced to display visible tumor for comparison (B) Same mice shown in A with
clear fluorescent uptake seen in the vicinity of the tumor in the right lower quadrant displayed in Image (A, C) Tail veins covered to reduce
emission background, displaying accentuated M1 MEV localization to the tumor.
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phenomenon or may reflect additional M2 macrophage

target populations.
4 Discussion

While there have been several recent advances in

immunotherapy for other gynecological malignancies [cervical

(25) and uterine (26)], success in ovarian cancer has been limited

(27). This lack of activity in ovarian cancer is thought to be

related to infiltration of TAMs, which render cancer “cold” and

thus immunotherapy ineffective (34, 44). Therefore, strategies to

repolarize M2 macrophages to the M1 phenotype may promote

anti-cancer activity. Our study, the first to use MEVs derived

from human blood monocytes, effectively demonstrates that M1

MEVs can localize primarily to M2 macrophages when co-

cultured with ovarian cancer cells and treatment with M1

MEVs repolarizes M2 macrophages to an anti-tumor M1 state

with subsequent anti-cancer activity. This effect was

demonstrated both in cancer cells alone and with macrophages

co-cultured in the presence of cancer cells. Since ovarian cancer

cells themselves are significant drivers for macrophage

polarization to an M2 state (45), repolarization within co-

culture is particularly salient as it suggests the capacity of

MEVs to overcome an innate preferential differentiation

towards the protumor M2 state.

Macrophages are the most abundant immune system cells

within the tumor microenvironment and compose up to 50% of

a tumor’s volume (46–48). A major benefit of exosome

formulations from macrophages is the inherent targeting

properties exhibited by their origin cell (18). Exosomes derived

from human cells are non-immunogenic compared to liposomal
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formulation (18). Therefore, the use of exosome-like MEVs

derived from human blood cells has the potential to avoid off-

target immunogenic effects while honing in on macrophage-

laden tissue (e.g., tumors). Additionally, engineered macrophage

vesicles carry a higher yield potential than other endogenous

sources while avoiding a cancer-derived source that could

impact tumorigenesis (27, 49, 50).

One of the main strengths of this study is the exclusive use of

non-carcinoma human-derived cells. This eliminates any future

translational risk of reintroducing tumor-derived cells into the

patient. Another major strength is the immunological and

therapeutic potential of M1 MEVs that is demonstrated using

several ovarian cancer cell lines. Caov-3 and OVCAR3 are both

BRCA wild-type, however, Caov-3 is platinum-sensitive whereas

OVCAR3 are platinum resistant. In murine models, SKOV3 is

an aggressive platinum resistant cell line that displays rapid

xenograft growth. Additionally, pilot animal data demonstrate

precise localization of dye-labeled mouse M1 MEVs to ovarian

cancer tumor xenografts in mice. This is an intriguing finding

and provides further evidence for the tumor precision of MEVs.

Localization was seen in both intravenous and intraperitoneal

administration routes. This is of compelling interest as ovarian

cancer is a peritoneal disease and intraperitoneal chemotherapy

has a long-studied role in the treatment of the disease (51, 52).

Limitations include a lack of in vivo modeling to demonstrate

sustained macrophage repolarization. In terms of generalization

of in vivo models, SCID and nude mice are particularly

immunosuppressed, future modeling using syngeic murine

models may more accurately reflect physiologic conditions and

reveal the interplay of circulating MEVs with the immune

system targets. Additionally, there was high variability and size

heterogeneity seen with the vesicle preparation that may be
A B D EC

FIGURE 7

RAW.264.7 M1 polarized vesicles localize to SKOV3 tumor xenografts in vivo via an intravenous route. (A) Preinjection (0 hr – immediately prior
to injection) of single athymic nude mouse with SKOV3 tumor xenograft in dorsal shoulder region (red arrow). The mouse was injected with 100
µl of fluorescent dye-labeled vesicles and imaged (B) 24 hours post-injection and (C) 72 hours post-injection. There is clear fluorescent uptake
seen in the tumor. (D) 72 hours post-injection Tail vein covered to reduce emission background, displaying accentuated vesicle localization to
the tumor 72 hours post injection. (E) Post-necropsy with 1=tumor, 2=spleen, 3=kidneys, 4=heart, 5=lungs, 6=liver; there is accentuated
localization to the tumor. The size of the subcutaneous lesion resulted sagittal instability and displacement to the right over the time series.
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ameliorated in future studies with further filtration methods.

Additional characterization methods of the vesicles via

transmission electron microscopy is warranted. While

promising as a therapeutic avenue, significant obstacles remain

prior to transition from a preclinical to clinical approach,

including standardization of MEV characterization, dosing,

precision of imaging localization, and delineation of off-target

effects. Future research will be needed to evaluate the role of

drug-loaded MEVs as another therapeutic approach and

evaluate in vivo efficacy in terms of distribution, toxicity, and

tumor response.
5 Conclusions

The studies described are the first to demonstrate that

human-derived M1 MEVs can serve as immunomodulatory

agents by repolarizing M2 macrophages to an M1-like state.

This effect was seen in M2 macrophages when cultured alone

and in co-culture with ovarian cancer cells. Overall, human-

derived M1 MEVs effectively repolarize M2 macrophages. Initial

pilot data demonstrates that M1 MEVs target ovarian tumor

xenografts. Future in vivo studies are warranted.
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FIGURE 8

RAW.264.7 M1 polarized vesicles localize to SKOV3 tumor xenografts in vivo via an intraperitoneal route. (A) Four athymic nude mice displayed
– each with SKOV3 tumor xenograft in the dorsal shoulder region. Image taken preinjection for comparison purposes. (B) Mice 1 & 2 injected
with 200ul of sterile PBS. The two mice on the right were injected with 50ul (Mouse 3) and 100ul (Mouse 4) of DiR labeled vesicles and imaged
24 hours post-injection. There is clear localization of fluorescent uptake in the vicinity of the tumor in the far-right mouse. The fluorescent
overlay was reduced to display visible tumor for comparison. (C) Same mice shown with clear and persistent fluorescent uptake seen in far-right
mouse’s tumor.
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et al. Different tumor microenvironments contain functionally distinct subsets of
macrophages derived from Ly6C(high) monocytes. Cancer Res (2010) 70
(14):5728–39. doi: 10.1158/0008-5472.CAN-09-4672

7. Yin W, Yu X, Kang X, Zhao Y, Zhao P, Jin H, et al. Remodeling tumor-
associated macrophages and neovascularization overcomes EGFR(T790M)
-associated drug resistance by PD-L1 nanobody-mediated codelivery. Small
(2018) 14(47):e1802372. doi: 10.1002/smll.201802372

8. Petty AJ, Yang Y. Tumor-associated macrophages: implications in cancer
immunotherapy. Immunotherapy (2017) 9(3):289–302. doi: 10.2217/imt-2016-
0135

9. Honkanen TJ, Tikkanen A, Karihtala P, Mäkinen M, Väyrynen JP, Koivunen
JP. Prognostic and predictive role of tumour-associated macrophages in HER2
positive breast cancer. Sci Rep (2019) 9(1):10961. doi: 10.1038/s41598-019-47375-2

10. Macciò A, Gramignano G, Cherchi MC, Tanca L, Melis L, Madeddu C. Role
of M1-polarized tumor-associated macrophages in the prognosis of advanced
ovarian cancer patients. Sci Rep (2020) 10(1):6096. doi: 10.1038/s41598-020-
63276-1

11. Zhang QW, Liu L, Gong CY, Shi HS, Zeng YH, Wang XZ, et al. Prognostic
significance of tumor-associated macrophages in solid tumor: a meta-analysis of
the literature. PloS One (2012) 7(12):e50946. doi: 10.1371/journal.pone.0050946

12. Rodell CB, Arlauckas SP, Cuccarese MF, Garris CS, Li R, Ahmed MS, et al.
TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-
associated macrophages to enhance cancer immunotherapy. Nat BioMed Eng
(2018) 2(8):578–88. doi: 10.1038/s41551-018-0236-8

13. Zhang F, Parayath NN, Ene CI, Stephan SB, Koehne AL, Coon ME, et al.
Genetic programming of macrophages to perform anti-tumor functions using
targeted mRNA nanocarriers. Nat Commun (2019) 10(1):3974. doi: 10.1038/
s41467-019-11911-5

14. Xiao H, Guo Y, Li B, Li X, Wang Y, Han S, et al. M2-like tumor-associated
macrophage-targeted codelivery of STAT6 inhibitor and IKKbeta siRNA induces
M2-to-M1 repolarization for cancer immunotherapy with low immune side effects.
ACS Cent Sci (2020) 6(7):1208–22. doi: 10.1021/acscentsci.9b01235

15. Prat M, Salon M, Allain T, Dubreuil O, Noël G, Preisser L, et al.
Murlentamab, a low fucosylated anti-müllerian hormone type II receptor
(AMHRII) antibody, exhibits anti-tumor activity through tumor-associated
macrophage reprogrammation and T cell activation. Cancers (Basel) (2021) 13
(8). doi: 10.3390/cancers13081845

16. Gyorgy B, Hung ME, Breakefield XO, Leonard JN. Therapeutic applications
of extracellular vesicles: clinical promise and open questions. Annu Rev Pharmacol
Toxicol (2015) 55:439–64. doi: 10.1146/annurev-pharmtox-010814-124630

17. Zhang L, Yu D. Exosomes in cancer development, metastasis, and
immunity. Biochim Biophys Acta Rev Cancer (2019) 1871(2):455–68. doi:
10.1016/j.bbcan.2019.04.004

18. Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and
delivery vehicles across biological membranes: current perspectives and future
challenges. Acta Pharm Sin B (2016) 6(4):287–96. doi: 10.1016/j.apsb.2016.02.001
19. Robbins PD, Morelli AE. Regulation of immune responses by extracellular
vesicles. Nat Rev Immunol (2014) 14(3):195–208. doi: 10.1038/nri3622

20. Cheng L, Wang Y, Huang L. Exosomes from M1-polarized macrophages
potentiate the cancer vaccine by creating a pro-inflammatory microenvironment
in the lymph node.Mol Ther (2017) 25(7):1665–75. doi: 10.1016/j.ymthe.2017.02.007

21. Walker S, Busatto S, Pham A, Tian M, Suh A, Carson K, et al. Extracellular
vesicle-based drug delivery systems for cancer treatment. Theranostics (2019) 9
(26):8001–17. doi: 10.7150/thno.37097

22. Shao J, Zaro J, Shen Y. Advances in exosome-based drug delivery and tumor
targeting: From tissue distribution to intracellular fate. Int J Nanomed (2020)
15:9355–71. doi: 10.2147/IJN.S281890

23. Liu H, ShenM, Zhao D, Ru D, Duan Y, Ding C, et al. The effect of triptolide-
loaded exosomes on the proliferation and apoptosis of human ovarian cancer
SKOV3 cells. BioMed Res International 2019. (2019) p:2595801. doi: 10.1155/2019/
2595801

24. Balaj L, Lessard R, Dai L, Cho YJ, Pomeroy SL, Breakefield XO, et al.
Tumour microvesicles contain retrotransposon elements and amplified oncogene
sequences. Nat Commun (2011) 2:180. doi: 10.1038/ncomms1180

25. Bai S, Wang Z, Wang M, Li J, Wei Y, Xu R, et al. Tumor-derived exosomes
modulate primary site tumor metastasis. Front Cell Dev Biol (2022) 10:752818. doi:
10.3389/fcell.2022.752818

26. Kosaka N, Yoshioka Y, Fujita Y, Ochiya T. Versatile roles of extracellular
vesicles in cancer. J Clin Invest (2016) 126(4):1163–72. doi: 10.1172/JCI81130

27. Vakhshiteh F, Atyabi F, Ostad SN. Mesenchymal stem cell exosomes: a two-
edged sword in cancer therapy. Int J Nanomed (2019) 14:2847–59. doi: 10.2147/
IJN.S200036

28. Li K, Chen Y, Li A, Tan C, Liu X. Exosomes play roles in sequential
processes of tumor metastasis. Int J Cancer (2019) 144(7):1486–95. doi: 10.1002/
ijc.31774

29. Saleem SN, Abdel-Mageed AB. Tumor-derived exosomes in oncogenic
reprogramming and cancer progression. Cell Mol Life Sci (2015) 72(1):1–10. doi:
10.1007/s00018-014-1710-4

30. Tai YL, Chu PY, Lee BH, Chen KC, Yang CY, Kuo WH, et al. Basics and
applications of tumor-derived extracellular vesicles. J BioMed Sci (2019) 26(1):35.
doi: 10.1186/s12929-019-0533-x

31. Giusti I, Di Francesco M, Poppa G, Esposito L, D'Ascenzo S, Dolo V.
Tumor-derived extracellular vesicles activate normal human fibroblasts to a
cancer-associated fibroblast-like phenotype, sustaining a pro-tumorigenic
microenvironment. Front Oncol (2022) 12:839880. doi: 10.3389/fonc.2022.839880

32. Colvin EK. Tumor-associated macrophages contribute to tumor progression
in ovarian cancer. Front Oncol (2014) 4:137. doi: 10.3389/fonc.2014.00137

33. Shi Y, Luo P, Wang W, Horst K, Bläsius F, Relja B, et al. M1 but not M0
extracellular vesicles induce polarization of RAW264.7 macrophages via the TLR4-
NFkappaB pathway In vitro. Inflammation (2020) 43(5):1611–9. doi: 10.1007/
s10753-020-01236-7

34. Choo YW, Kang M, Kim HY, Han J, Kang S, Lee JR, et al. M1 macrophage-
derived nanovesicles potentiate the anticancer efficacy of immune checkpoint
inhibitors. ACS Nano (2018) 12(9):8977–93. doi: 10.1021/acsnano.8b02446

35. Snell AA, Neupane KR, McCorkle JR, Fu X, Moonschi FH, Caudill EB, et al.
Cell-derived vesicles for in vitro and in vivo targeted therapeutic delivery. ACS
Omega (2019) 4(7):12657–64. doi: 10.1021/acsomega.9b01353

36. Neupane KR, McCorkle JR, Kopper TJ, Lakes JE, Aryal SP, Abdullah M,
et al. Macrophage-engineered vesicles for therapeutic delivery and bidirectional
reprogramming of immune cell polarization. ACS Omega (2021) 6(5):3847–57. doi:
10.1021/acsomega.0c05632

37. Cabeza L, Perazzoli G, Peña M, Cepero A, Luque C, Melguizo C, et al.
Cancer therapy based on extracellular vesicles as drug delivery vehicles. J Control
Release (2020) 327:296–315. doi: 10.1016/j.jconrel.2020.08.018

38. Kim MS, Haney MJ, Zhao Y, Mahajan V, Deygen I, Klyachko NL, et al.
Development of exosome-encapsulated paclitaxel to overcome MDR in cancer
cells. Nanomedicine (2016) 12(3):655–64. doi: 10.1016/j.nano.2015.10.012
frontiersin.org

https://doi.org/10.3322/caac.21708
https://doi.org/10.1007/s40495-018-0133-6
https://doi.org/10.1007/s40495-018-0133-6
https://doi.org/10.1093/annonc/mdw079
https://doi.org/10.1093/annonc/mdz135
https://doi.org/10.1001/jamaoncol.2018.6258
https://doi.org/10.1158/0008-5472.CAN-09-4672
https://doi.org/10.1002/smll.201802372
https://doi.org/10.2217/imt-2016-0135
https://doi.org/10.2217/imt-2016-0135
https://doi.org/10.1038/s41598-019-47375-2
https://doi.org/10.1038/s41598-020-63276-1
https://doi.org/10.1038/s41598-020-63276-1
https://doi.org/10.1371/journal.pone.0050946
https://doi.org/10.1038/s41551-018-0236-8
https://doi.org/10.1038/s41467-019-11911-5
https://doi.org/10.1038/s41467-019-11911-5
https://doi.org/10.1021/acscentsci.9b01235
https://doi.org/10.3390/cancers13081845
https://doi.org/10.1146/annurev-pharmtox-010814-124630
https://doi.org/10.1016/j.bbcan.2019.04.004
https://doi.org/10.1016/j.apsb.2016.02.001
https://doi.org/10.1038/nri3622
https://doi.org/10.1016/j.ymthe.2017.02.007
https://doi.org/10.7150/thno.37097
https://doi.org/10.2147/IJN.S281890
https://doi.org/10.1155/2019/2595801
https://doi.org/10.1155/2019/2595801
https://doi.org/10.1038/ncomms1180
https://doi.org/10.3389/fcell.2022.752818
https://doi.org/10.1172/JCI81130
https://doi.org/10.2147/IJN.S200036
https://doi.org/10.2147/IJN.S200036
https://doi.org/10.1002/ijc.31774
https://doi.org/10.1002/ijc.31774
https://doi.org/10.1007/s00018-014-1710-4
https://doi.org/10.1186/s12929-019-0533-x
https://doi.org/10.3389/fonc.2022.839880
https://doi.org/10.3389/fonc.2014.00137
https://doi.org/10.1007/s10753-020-01236-7
https://doi.org/10.1007/s10753-020-01236-7
https://doi.org/10.1021/acsnano.8b02446
https://doi.org/10.1021/acsomega.9b01353
https://doi.org/10.1021/acsomega.0c05632
https://doi.org/10.1016/j.jconrel.2020.08.018
https://doi.org/10.1016/j.nano.2015.10.012
https://doi.org/10.3389/fonc.2022.1042730
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Schweer et al. 10.3389/fonc.2022.1042730
39. Wang P, Wang H, Huang Q, Peng C, Yao L, Chen H, et al. Exosomes from
M1-polarized macrophages enhance paclitaxel antitumor activity by activating
macrophages-mediated inflammation. Theranostics (2019) 9(6):1714–27. doi:
10.7150/thno.30716

40. Crivelli SM, Giovagnoni C, Zhu Z, Tripathi P, Elsherbini A, Quadri Z, et al.
Function of ceramide transfer protein for biogenesis and sphingolipid composition of
extracellular vesicles. J Extracell Vesicles (2022) 11(6):e12233. doi: 10.1002/jev2.12233

41. Meniailo ME, Malashchenko VV, Shmarov VA, Gazatova ND,
Melashchenko OB, Goncharov AG, et al. Interleukin-8 favors pro-inflammatory
activity of human monocytes/macrophages. Int Immunopharmacol (2018) 56:217–
21. doi: 10.1016/j.intimp.2018.01.036

42. Xuan W, Qu Q, Zheng B, Xiong S, Fan GH. The chemotaxis of M1 and M2
macrophages is regulated by different chemokines. J Leukoc Biol (2015) 97(1):61–9.
doi: 10.1189/jlb.1A0314-170R

43. Tsai TH, Yang CC, Kou TC, Yang CE, Dai JZ, Chen CL, et al.
Overexpression of GLUT3 promotes metastasis of triple-negative breast cancer
by modulating the inflammatory tumor microenvironment. J Cell Physiol (2021)
236(6):4669–80. doi: 10.1002/jcp.30189

44. Anderson NR, Minutolo NG, Gill S, Klichinsky M. Macrophage-based
approaches for cancer immunotherapy. Cancer Res (2021) 81(5):1201–8. doi:
10.1158/0008-5472.CAN-20-2990

45. Hagemann T, Wilson J, Burke F, Kulbe H, Li NF, Plüddemann A, et al.
Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype.
J Immunol (2006) 176(8):5023–32. doi: 10.4049/jimmunol.176.8.5023
Frontiers in Oncology 13
111
46. Zhou K, Cheng T, Zhan J, Peng X, Zhang Y, Wen J, et al. Targeting tumor-
associated macrophages in the tumor microenvironment. Oncol Lett (2020) 20
(5):234. doi: 10.3892/ol.2020.12097

47. Van Overmeire E, Laoui D, Keirsse J, Van Ginderachter JA, Sarukhan A.
Mechanisms driving macrophage diversity and specialization in distinct tumor
microenvironments and parallelisms with other tissues. Front Immunol (2014)
5:127. doi: 10.3389/fimmu.2014.00127

48. Kim J, Bae JS. Tumor-associated macrophages and neutrophils in tumor
microenvironment.Mediators Inflamm 2016. (2016) p:6058147. doi: 10.1155/2016/
6058147

49. Meng W, He C, Hao Y, Wang L, Li L, Zhu G. Prospects and challenges of
extracellular vesicle-based drug delivery system: considering cell source. Drug
Delivery (2020) 27(1):585–98. doi: 10.1080/10717544.2020.1748758

50. Kim H, Kim EH, Kwak G, Chi SG, Kim SH, Yang Y, et al. Exosomes: Cell-
derived nanoplatforms for the delivery of cancer therapeutics. Int J Mol Sci (2020)
22(1). doi: 10.3390/ijms22010014

51. Armstrong DK, Bundy B, Wenzel L, Huang HQ, Baergen R, Lele S, et al.
Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N Engl J Med (2006) 354
(1):34–43. doi: 10.1056/NEJMoa052985

52. Walker JL, Brady MF, Wenzel L, Fleming GF, Huang HQ, DiSilvestro PA,
et al. Randomized trial of intravenous versus intraperitoneal chemotherapy plus
bevacizumab in advanced ovarian carcinoma: An NRG Oncology/Gynecologic
oncology group study. J Clin Oncol (2019) 37(16):1380–90. doi: 10.1200/
JCO.18.01568
frontiersin.org

https://doi.org/10.7150/thno.30716
https://doi.org/10.1002/jev2.12233
https://doi.org/10.1016/j.intimp.2018.01.036
https://doi.org/10.1189/jlb.1A0314-170R
https://doi.org/10.1002/jcp.30189
https://doi.org/10.1158/0008-5472.CAN-20-2990
https://doi.org/10.4049/jimmunol.176.8.5023
https://doi.org/10.3892/ol.2020.12097
https://doi.org/10.3389/fimmu.2014.00127
https://doi.org/10.1155/2016/6058147
https://doi.org/10.1155/2016/6058147
https://doi.org/10.1080/10717544.2020.1748758
https://doi.org/10.3390/ijms22010014
https://doi.org/10.1056/NEJMoa052985
https://doi.org/10.1200/JCO.18.01568
https://doi.org/10.1200/JCO.18.01568
https://doi.org/10.3389/fonc.2022.1042730
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Frontiers in Oncology

OPEN ACCESS

EDITED BY

Nguan Soon Tan,
Nanyang Technological University,
Singapore

REVIEWED BY

Melissa Fullwood,
Nanyang Technological University,
Singapore

*CORRESPONDENCE

Shelley B. Hooks

shooks@uga.edu

SPECIALTY SECTION

This article was submitted to
Molecular and Cellular Oncology,
a section of the journal
Frontiers in Oncology

RECEIVED 04 December 2022

ACCEPTED 19 December 2022
PUBLISHED 26 January 2023

CITATION

Dean PT and Hooks SB (2023)
Pleiotropic effects of the COX-2/PGE2
axis in the glioblastoma tumor
microenvironment.
Front. Oncol. 12:1116014.
doi: 10.3389/fonc.2022.1116014

COPYRIGHT

© 2023 Dean and Hooks. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Mini Review
PUBLISHED 26 January 2023

DOI 10.3389/fonc.2022.1116014
Pleiotropic effects of the
COX-2/PGE2 axis in the
glioblastoma tumor
microenvironment

Phillip T. Dean and Shelley B. Hooks*

Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of
Georgia, Athens, GA, United States
Glioblastoma (GBM) is the most common and aggressive form of malignant

glioma. The GBM tumor microenvironment (TME) is a complex ecosystem of

heterogeneous cells and signaling factors. Glioma associated macrophages

and microglia (GAMs) constitute a significant portion of the TME, suggesting

that their functional attributes play a crucial role in cancer homeostasis. In

GBM, an elevated GAM population is associated with poor prognosis and

therapeutic resistance. Neoplastic cells recruit these myeloid populations

through release of chemoattractant factors and dysregulate their induction

of inflammatory programs. GAMs become protumoral advocates through

production a variety of cytokines, inflammatory mediators, and growth

factors that can drive cancer proliferation, invasion, immune evasion, and

angiogenesis. Among these inflammatory factors, cyclooxygenase-2 (COX-2)

and its downstream product, prostaglandin E2 (PGE2), are highly enriched in

GBM and their overexpression is positively correlated with poor prognosis in

patients. Both tumor cells and GAMs have the ability to signal through the COX-

2 PGE2 axis and respond in an autocrine/paracrine manner. In the GBM TME,

enhanced signaling through the COX-2/PGE2 axis leads to pleotropic effects

that impact GAM dynamics and drive tumor progression.

KEYWORDS

glioblastoma, COX-2, PGE2, microglia, macrophage, inflammation, tumor
microenvironment, cancer
Introduction

Glioblastoma multiforme (GBM) is the most common and aggressive form of central

nervous system (CNS) tumor. GBM accounts for 48.3% of all malignant brain tumors.

GBM patients have a median survival rate of only 14-17 months with standard treatment

including surgical resection, chemotherapy, and radiotherapy, and a median survival of

less than 6 months without therapeutic intervention (1–3). Poor prognosis in GBM
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patients is linked to high intra-and inter-tumor heterogeneity,

chemoresistance, and an immunosuppressive environment (4).

The GBM tumor microenvironment (TME) plays a crucial role

in development and progression of the disease. The TME is a

dynamic cellular and molecular ecosystem of tumor cells,

glioblastoma stem cells (GSCs), stromal cells (fibroblasts,

endothelial), and immune cells (microglia, macrophages, T-

cells, B-Cells) actively responding to their surrounding cells,

tissues, and molecular cues (5, 6). This highly complex network

communicates through production of cytokines, chemokines,

bioactive lipids, and extracellular matrix components. Together

they dictate diverse pro-inflammatory and anti-inflammatory

responses that shape their environment through communication

and interaction (7).

The most abundant and multifaceted members of the GBM-

TME are the glioma associated microglia and peripheral

macrophages (GAMs). They constitute up to 30-50% of tumor

associated cells, and thus have a strong influence on the GBM-

TME (8, 9). The degree of GAM integration in the GBM-TME is

positively correlated with tumor grade and inversely correlated

with patient survival (7, 10). The presence of these inflammatory

cells in the TME leads to dysregulated inflammation and plays a

key role in the immunosuppressive nature of GBM, consistent

with the well-established association between cancer and

inflammation (11). In contrast to their phagocytic and

cytotoxic capabilities against infection, GAMs produce

inflammatory mediators that promote tumor growth,

immunosuppression, and angiogenesis. GAMs produce an

array of cytokines, growth factors, and bioactive lipids that aid

in a pro-tumoral shift, such as Interleukin (IL)-1b, IL-6,

transforming growth factor-b (TGF-b), epidermal growth

factor (EGF), and the prostaglandin E2 (PGE2) (12, 13). PGE2

is highly enriched in the GBM-TME and has a substantial

impact on proliferation, migration, immunosuppression, and

angiogenesis. Similarly, cyclooxygenase 2 (COX-2), the enzyme

responsible for PGE2 production, is also highly upregulated in

GBM and is associated with tumor growth (Shono et al., no date;

14–16). Here, we review the current understanding of the COX-

2/PGE2 signaling axis in GAMs, its regulation of the tumor

microenvironment, and its impact on GBM tumor progression.

Inflammation is well established as a robust driver of cancer

and is now considered to be one of the hallmarks of cancer (11). In

natural inflammatory responses, infections and cell damage are

cleared by immune cells that launch an acute proinflammatory

response to neutralize the threat. Once the threat has been

neutralized, immune cells launch an anti-inflammatory response

to resolve inflammation. In aberrant situations, such as chronic

inflammation and cancer, the threat may not be neutralized,

causing dysregulation of the inflammatory program. The

relationship between glioma and inflammation is characterized

by multiple key steps: first, the recruitment and infiltration of

immune cells to the site of the tumor; second, complex signaling

crosstalk between the tumor cells and multiple types of immune
Frontiers in Oncology 02
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cells mediated through small molecule release and activation of

receptors on neighboring cells; third, tumor cell responses

including proliferation, transcriptional regulation, migration,

and differentiation; and finally, tumor progression driven by

immune evasion, neovascularization, and tissue remodeling.

Activation of GAMs induces the release of cytokines, growth

factors, and other inflammatory mediators that promote tumor

growth, angiogenesis, and an immunosuppressed state.
Microglia and macrophages in
the CNS

Microglia and brain infiltrating macrophages serve an

essential role as immune sentinels, responding to infection and

injury in the central nervous system (CNS) to maintain brain

homeostasis (5, 17). Bone marrow derived macrophages

(BMDMs) originate in the bone marrow as peripheral

hematopoietic progenitors, and they become circulating

monocytes in the blood stream. BMDMs are highly motile as

they locate to target tissue, but motility lowers as they approach a

tumor and eventually take residence in the tumor tissue.

Microglia, found throughout the brain, represent a distinct

myeloid population, and are considered the resident

macrophages of the CNS. Microglia are primarily derived from

erythro-myeloid progenitor cells in the yolk sac during early

embryogenesis and are long lived, relying on self-renewal in the

CNS (18, 19). They maintain homeostatic conditions by

supporting neurogenesis, synaptic pruning, and phagocytotic

clearing of apoptotic cells and debris (20, 21). Microglia exhibit

diverse morphologies and phenotypes in response to various

stimuli. Surveilling microglia are highly ramified to efficiently

respond to environmental stimuli (22). Once activated, they

rapidly change to an amoeboid morphology (23, 24). Microglia

activation leads to production of IL-1b, which plays an

important role in modulating the blood brain barrier (BBB)

and promotes a leaky state that allows entrance of bone marrow

derived immune cells to enter the brain (25). BMDMs have

remarkably similar morphology to the ameboid shaped

microglia making it challenging to distinguish between the two

histologically (19). Thus, both BMDM-derived brain infiltrating

macrophages and resident microglia are present in the brain and

in the GBM-TME, and these cells can be functionally and

phenotypically difficult to distinguish. Compared to BMDMs,

microglia have limited migratory capacity and instead use their

processes to extend and retract, constantly surveilling their

surroundings (26). These migratory differences lead to the

differential distributions between macrophages and microglia

in the GBM-TME. Single-cell RNAseq analysis of GBM revealed

that highly motile infiltrating macrophages were primarily

located in the central regions of the tumor while microglia

tend to surround the outer edge of the tumor (27).

Additionally, GBM tumors typically display necrotic cores and
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microvascular hyperplasia due to the hypoxic environment.

GAMs accumulate in these hypoxic/necrotic areas of tumors

where they support tumor proliferation and angiogenesis

(28, 29).
GAMS in the GBM microenvironment

In glioma, macrophages and microglia are recruited to the

tumor site by glioma-derived chemoattractant factors such as

colony stimulating factor 1 (CSF1), C-C motif chemokine ligand 2

(CCL2; also known as monocyte chemoattractant protein 1,

MCP-1), fractalkine (CX3CL1), and vascular endothelial growth

factor (VEGF) (30–33). Following recruitment, GAMs secrete

inflammatory mediators that regulate angiogenesis, proliferation,

and immunosuppression in the GBM-TME. PGE2 is emerging as

a key mediator of these effects, and both PGE2 and its upstream

biosynthetic enzyme COX-2 are overexpressed in the GBM-TME,

are associated with poor prognosis, and mediate pleiotropic effects

that support glioma proliferation, angiogenesis, and

immunosuppression (16, 34).

GBM tumors are highly vascular and rely on neovascularization

for tumor growth. Microglia and macrophages play a supporting

role in this process through the production of angiogenic factors

and degradation of the extracellular matrix (ECM) (35). Depletion

of microglia and macrophages in an animal model of GBM resulted

in reduced micro-vessel density (MVD), proliferation, and overall

tumor volume (36). Additionally, selective depletion of only

microglia led to a comparable attenuation of MVD to that of

total GAM depletion, suggesting that microglia are particularly

important immune facilitators of angiogenesis in glioma (36).

GAMs release multiple angiogenic factors that promote

angiogenesis and invasiveness, including transforming growth

factor b (TGF-b), IL-6, and vascular endothelial growth factor

(VEGF) (37). VEGF expression is upregulated in hypoxic regions

where it acts as a robust chemoattractant to recruit GAMs, which in

turn promote angiogenesis (29). In the presence of glioma cells,

microglia produce significant amounts of TGF-b, which in turn

induces production of matrix metalloproteinase 9 (MMP9) and

MMP2, leading to degradation of ECM and supporting glioma stem

cell invasion (38). GSCs are treatment resistant, multipotent, self-

renewing cells with high heterogeneity (39, 40). GAMs and GSCs

are often functionally interconnected and co-localized. Mapping of

cellular distribution in human GBM revealed that striking numbers

of GAMs were located around GSC clusters and, as observed with

GAMS, the density of GSCs positively correlated to tumor grade

(40). GAMs accumulate in perivascular regions where they produce

proangiogenic factors such as VEGF and CXCL2, due to

chemoattractant release from GSCs (36). Taken together, these

observations suggest a complex signaling interplay between tumor

cells, stem cells, and GAMs to regulate angiogenesis and invasion.

Growing evidence suggests that COX-2 and PGE2 are key

mediators of the effect of GAMs on angiogenesis. COX-2 and
Frontiers in Oncology 03
114
PGE2 are produced by microglia and macrophages, and PGE2

accumulation is particularly high in hypoxic/necrotic regions of the

TME (16, 41). PGE2 in the TME is linked to increased expression of

glioma-derived monocyte chemoattractant CCL2/MCP-1, leading

to active recruitment of GAMs (31, 42). In response, GAMs induce

IL-6 production, which increases GBM invasiveness (31). COX-2

and PGE2 regulate expression of VEGF and trigger increasedMVD,

suggesting that this pathway is critical to the signaling networks that

regulate angiogenesis in the GBM-TME (15).

Growing evidence suggests that GAMs also play a key role in

establishing the immunosuppressant microenvironment that is

characteristic of GBM. Specifically, GAMs regulate the ability of

GBM tumor cells to evade clearance by the immune system by

down regulation of antigen presentation and subsequent T-cell

activation (43). Importantly, elevated levels of PGE2 in the

GBM-TME were demonstrated to downregulate major

histocompatibility complex class II (MHC class II), responsible

for antigen presentation, in microglia (44). In patients,

expression of MHC class II is downregulated in GAMs

isolated from patients with GBM, leading to ineffective T-cell

activation and immunosuppression (45). Induction of COX-2/

PGE2 leads to robust production of immunosuppressive

mediators such as IL-6, IL-10, and GM-CSF that lead to

induction of regulatory T cells, further exacerbating

immunosuppression (44, 46). Microglial mTOR/STAT3

s igna l ing i s a lso upregula ted in GBM, tr igger ing

immunosuppression through induced expression of IL-6 and

IL-10 and inactivation of microglial mTOR (43).

Advances in the genomic landscape of the GBM TME has

demonstrated the significant roles that GAMs play in tumor

progression, but there is still much to be elucidated concerning

GAM heterogeneity, plasticity, and classification. It has become

apparent that these myeloid populations are highly dynamic,

represent spatial diversity, and need to be evaluated

multidimensionally. This complexity is in poorly represented

by simplified M1/M2 framework that is commonly used to

describe macrophage phenotypes. Classically, macrophages

and microglia have been categorized through the dualistic lens

of M1 (pro-inflammatory) and M2 (anti-inflammatory)

activation states. In context of GBM, M1 represents an anti-

tumor phenotype, while M2 is described as pro-tumor (47).

Microglia being the resident brain macrophages, adopted this

nomenclature as well without regard to the distinct differences

between them. As research in the field advanced, it became clear

that a significant amount of in vitro data that supported the M1/

M2 framework could not be recapitulated in vivo (48–50).

Additionally, single cell analysis revealed distinct phenotypic

and spatial differences between GAMs in human GBM samples

and that both M1 and M2 markers were expressed concurrently

in microglia (51). The dichotomous M1/M2 system fails to

reflect heterogeneity, spatial landscape, ontogeny, or disease

states (52, 53). A recent review has elegantly demonstrated this

new concept by presenting GAMs in spatial association to
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primary brain tumor type, identified potential markers that

differentiate macrophages from microglia, and outlined factors

that may support microglia heterogeneity in the TME (22).
COX-2: Activity and expression

COX-1/2, also known as Prostaglandin G/H synthase 1/2

(PTGS1/2) respectively, are key rate limiting enzymes that covert

arachidonic acid (AA) into prostaglandin G2 (PGG2) and PGH2

which can then be metabolized by prostaglandin E synthase

(PGES) downstream to form 5 bioactive lipids known as

prostanoids (16, 54). These five prostanoids are PGE2, PGI2,

PGD2, PGF2a, and thromboxane A2 (TXA2). Induction of COX

activity and its downstream products are linked to classic

inflammatory states such as fever, acute pain, local tissue

injury, and arthritis, and as such it is targeted by classic non-

steroidal anti-inflammatory drugs in treating these conditions

(55). While COX-1 is expressed constitutively throughout most

tissues and acts a homeostatic inflammatory mediator for

requisite physiological tasks, COX-2 has very low constitutive

expression in most tissues, but its expression is rapidly inducible

in response to pathological insults and inflammatory stimuli

such as cytokines, growth factors, and various tumor promoters

(16, 56). COX-2 gene expression is regulated by regulatory cis-

elements in its promoter. The two most well characterized

critical elements for regulation are the cAMP response element

(CRE), which is recognized and activated by dimeric

transcription factor activator protein 1 (AP1) and CRE

binding protein (CREB), and two nuclear factor kappa B (NF-

kB) consensus binding sites, which bind p65 NFkB. Additional
sites include a CCAAT/enhancer, which is activated by and the

CCAAT/enhancer binding protein (C/EBP). Together, these

transcription factors recruit transcriptional co-activator p300

to the AP1/CREB/NFkB/C/EBP regulatory complex, and this

complex is essential for proper COX-2 transcription initiation

(57). Therefore, COX-2 expression is induced by multiple

interacting transcription factors and their associated binding

partners (57).

Diverse extracellular stimuli induce the expression of COX-2

through activation of cell surface receptors that initiate signaling

cascades which culminate in the regulation of these transcription

factors. Classically, lipopolysaccharide (LPS) stimulates toll-like

receptor 4 (TLR4) to engage the adapter molecule myeloid

differentiation factor 88 (MyD88), which then signals through

Mitogen Activate Protein (MAP) kinase cascades to induce AP1

activation and association with the COX-2 promoter. The IL-1

receptor induces COX-2 expression through similar MyD88-

dependent MAP kinase activation upon activation by its ligand,

IL-1b (58). C/EBP is also activated downstream of MAP kinase

activation. LPS/TLR4 activation also triggers MyD88-dependent
Frontiers in Oncology 04
115
activation of tumor progression locus 2 (Tpl2), which leads to

nuclear translocation and activation of both NFkB and CREB. In

addition to receptor-stimulated regulation, COX-2 expression

can be upregulated by hypoxia, which triggers NF-kB interaction

with the NF-kB regulatory element and recruitment of Hypoxia

Inducible Factor 1a (HIF-1a) to the COX-2 promoter (59, 60).

Finally, Nitric oxide (NO), a small molecule converted from L-

arginine by inducible nitric oxide synthase (iNOS), can enhance

COX-2 expression through activation of CREB (61). Therefore,

COX-2 transcriptional regulation reflects convergent, integrated

regulation by multiple stimuli.
PGE2/EP2 signaling

The diversity of effects of COX-2/PGE2 on angiogenesis,

t umo r - p r omo t i n g i nfl amma t i o n , i n v a s i o n , a n d

immunosuppression in GBM reflects the diversity of signaling

pathways regulated by these mediators (Figure 1). PGE2 binds

and signals through the EP family of receptors (EP1-4). Due to

the functional variability of these receptors, PGE2 initiates

pleiotropic downstream effects. EP receptors are all G-protein

coupled receptors (GPCRs) with distinct downstream effects

depending on their G-protein coupling. Activation of Gq-

coupled EP-1 leads to activation of phospholipase C (PLC),

which increases intracellular Ca2+ and activates protein kinase C

(PKC). The EP-3 receptor is primarily Gi-coupled, resulting in

inhibition of the adenylate cyclase/cAMP signaling and

activation of Gbg dependent signaling. EP-2 and EP-4 are

both Gs-coupled receptors that activate cAMP formation

through adenylate cyclase which leads to activation of the

protein kinase A (PKA) pathway. EP2/4 activation by PGE2

leads to b-arrestin recruitment, activation of proto-oncogene

tyrosine-protein kinase (c-Src), and subsequent transactivation

of epidermal growth factor receptor (EGFR), initiating

downstream phosphoinositide 3-kinase (PI3K)–Akt,

MAPKinase, Ras/Raf, and c-Jun N-terminal kinase (JNK)

pathway signaling, all known to increase cell proliferation,

migration, and differentiation (62–65). A distinct difference

between EP-2/4 is that, upon PGE2 activation, the EP-4

receptor becomes rapidly internalized and desensitized, while

EP-2 rarely internalizes and sustains persistent receptor

signaling at the cell surface (66).

PGE2 is the predominant downstream product of COX-2

and is implicated in tumor growth and progression in multiple

solid malignancies such as breast (67), colorectal (68), lung (69),

skin (70), pancreatic (71), prostate (69) and CNS tumors (16). In

gliomas COX-2/PGE2 expression is correlated with an increase

in glioma grade and poor prognosis. A study of 66 patient glioma

samples revealed that 71% of GBM tumor samples had higher

than 50% COX-2 positive cells (3% had less than 25% COX-2
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positive cells) compared to 30% COX-2 positive cells of low-

grade gliomas (40% had less than 25% COX-2 positive cells)

(72). COX-2 production of PGE2 is induced upon the treatment

of GBM patients with both radiation and chemotherapy leading

to a steep increase of immunosuppressive cytokines (16).

Elevated COX-2/PGE2 has been shown to correlate with

decreased survival and earlier recurrence following

radiaotherapy (14, 41). Additionally, levels of circulating PGE2

in patients were shown to decrease significantly following

surgical resection of malignant tumors (73). Spatial expression

of COX-2 in GBM shows that the majority of COX-2 expression

is localized to the core of the tumor, dissipating in the periphery,

and is negligible in adjacent tissues. This pattern of expression is

consistent with the fact that GBM characteristically maintains a

hypoxic microenvironment particularly in the central regions of

tumor and hypoxia facilitates COX-2 upregulation in a HIF-1a
dependent manner (60, 74).

Multiple feed-back regulatory loops exist between COX-2

production of PGE2 and PGE2 regulation of COX-2 expression,

amplifying the pro-tumor, immunosuppressive influences of

COX-2/PGE2 on the TME (Figure 2A) (75–77). PGE2

stimulation of the EP2 and EP4 receptors activates nuclear

translocation of CREB and binding to the COX-2 promoter,

COX-2 expression, and production of more PGE2 (78). In the

presence of glioma-derived soluble factors, microglia produce

significant amounts PGE2, establishing a paracrine mechanism
Frontiers in Oncology 05
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as well (12). This feedback loop may give context to the high

correlation of COX-2/PGE2, as well as the percentage of

infiltrating GAMs with high grade gliomas and poor

prognosis. Additionally, PGE2 induces VEGF through HIF-1a
activation, and VEGF can stimulate COX-2/PGE2 production,

suggesting that these mediators are also co-regulated in a feed-

forward, amplifying mechanism (76, 79). VEGF overexpression

in the GBM-TME is associated with poor prognosis, and this

PGE2/VEGF axis may contribute to the prevalence of

angiogenesis and invasiveness of GBM. Macrophages,

microglia, and tumor cells sustain the ability to produce and

respond to COX-2/PGE2 through autocrine/paracrine signals

creating a cyclical storm of inflammatory mediators (Figure 2B).
Therapeutic implications

GBM is notoriously resistant to conventional therapies,

driving a need for additional targets and approaches. COX-2’s

multifaceted role in cancer progression suggests it may be a

potential target for therapy. Inhibition of COX-2 by nonsteroidal

anti-inflammatory drugs (NSAIDs) is a common treatment of

cancers and it has increased patient survival in some cancers

(80). However, NSAIDs are not selective for COX-2; they also

target COX-1 and the related side-effects, including upper

gastrointestinal (GI) stress, limit their use (81). The
FIGURE 1

Pleiotropic effects of COX2/PGE2 axis in GBM. COX-2 dependent production of PGE2 leads to multiple tumor promoting effects through
activation of EP1-4 receptors. These include angiogenesis, immune evasion, glioma stem cell renewal, invasion and ECM remodeling, and
enhance proliferation. Created with BioRender.com
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development of COX-2 selective inhibitors (COXIBs) in the late

1990s was met with major enthusiasm and great expectations for

safer COX-2 inhibition. However, while these drugs do indeed

display lower GI stress, the initial enthusiasm for their use has

been dampened by significant cardio- and cerebro-vascular

toxicities (82). COX-2 selective inhibitors have shown some

efficacy in clinical trials as an adjuvant to chemotherapy and

radiotherapy (16, 81). Therefore, even though there is clear

evidence that COX-2 function is a plausible target in the

treatment of GBM, direct inhibition of the enzyme with

selective inhibitors may not be an effective strategy.

The multifaceted physiological roles of COX-2 limit its

potential as a direct target for long-term therapeutic use.

However, therapeutic intervention targeting the cyclical

upregulation of COX-2/PGE2 in the TME can be achieved

without direct COX-2 inhibition, and these indirect strategies

may provide safety and efficacy advantages. A promising

approach is targeting of downstream mediators of COX-2,

especially PGE2, and their receptors. The pleiotropic effects of

autocrine and paracrine signaling through the COX-2/PGE2 axis

in the tumor microenvironment need to be further delineated to

target specific paths that lead to malignant progression. Isolating

the specific effects of COX-2/PGE2 for individual EP receptors

and how they each shape GBM TME in a spatial and temporal

manner will inform future therapeutic avenues. For example,

PGE2/EP2 signals through a G protein-dependent pathway

(cAMP/CREB) and PGE2 stimulates VEGF production

through multiple mechanisms (HIF-1a activation, cAMP

signaling, and EGFR transactivation) promoting angiogenesis

(76). The essential role of the EP2 receptor in the autocrine/

paracrine signaling establish it as an attractive target for

intervention. In recent years, multiple EP2 small molecule
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inhibitors have been identified and tested, including butaprost,

CAY10399, ONO-AE1–259, and TG6‐10‐1 (83). The brain-

permeable, small molecule EP2 antagonist TG6‐10‐1 has

shown early promise as a possible therapeutic. In a recent

study, inhibition of the PGE2/EP2 signal cascade by TG6‐10‐1

demonstrated significantly reduced GBM tumor growth in both

subcutaneous and intercranial in vivo models (84).

While there has been extensive research into COX- in

inflammation and cancer, the specifics of its dynamic

regulation within and among the diverse cell types in the TME

has yet to be fully elucidated. Understanding how induction of

COX-2 expression is regulated in the context of GBM-TME may

reveal therapeutic targets and strategies that are more selective

than global COX-2 inhibition. For example, RGS10, a small G-

protein regulator, has been shown to be a robust regulator of

COX-2/PGE2 in both macrophages and microglia. RGS10

strongly suppresses COX-2 following activation by diverse

upstream activators, including LPS, TNFa, and interferon

gamma (85, 86). RGS10 does not completely abrogate COX-2,

but attenuates the stimulated induction of COX-2 expression in

stimulated cells (87). Therefore, RGS10 represents a potential

target to break the cycle of COX-2 expression and PGE-2

production in GBM (86).
Concluding remarks

The GBM microenvironment is a dynamic system, and its

high heterogeneity leads to an immunosuppressive

environment. Tumor cells recruit immune cells which aid in

this immunosuppression through production of inflammatory

mediators. Infiltration of GAMs leads to dysregulated
A B

FIGURE 2

COX-2/PGE2 autocrine and paracrine feedback loops in the GBM TME. (A) COX-2 expression is induced through the activation of EP-2/4 by
PGE2. Activation of CREB leads to association with the COX-2 promoter region and upregulation of COX-2 expression. (B) Tumor cells and
GAMs upregulate COX-2 expression upon PGE2 activation through autocrine and paracrine mechanisms. Exacerbation of this cycle enhances
robust upregulation of COX2/PGE2 in the GBM TME leading to tumor promoting effects and poor prognosis. Created with BioRender.com
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inflammatory states that promote tumor progression. COX-2

and PGE2 are increased in GBM, and their pleiotropic signals

impact proliferation, angiogenesis, immune evasion, stem cell

renewal, and invasion. GBM lacks an effective treatment

strategy. Harnessing the COX-2/PGE2 axis and understanding

GBM microenvironment dynamics are important steps to

revealing potential targets and informing new therapeutics.
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Anatoly Petrenko1, Ksenya Shelekhova2,3 and Alexei Gratchev1*
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Tumor cells communication with tumor associated macrophages is a highly

important factor of tumor malignant potential development. For a long time,

studies of this interaction were focused on a cytokine- and other soluble

factors -mediated processes. Discovery of exosomes and regulatory RNAs as

their cargo opened a broad field of research. Non-coding RNAs (ncRNAs) were

demonstrated to contribute significantly to the development of macrophage

phenotype, not only by regulating expression of certain genes, but also by

providing for feedback loops of macrophage activation. Being a usual cargo of

macrophage- or tumor cell-derived exosomes ncRNAs provide an important

mechanism of tumor-stromal cell interaction that contributes significantly to

the pathogenesis of various types of tumors. Despite the volume of ongoing

research there are still many gaps that must be filled before the practical use of

ncRNAs will be possible. In this review we discuss the role of regulatory RNAs in

the development of macrophage phenotype. Further we review recent studies

supporting the hypothesis that macrophages may affect the properties of

tumor cells and vice versa tumor cells influence macrophage phenotype by

miRNA and lncRNA transported between these cells by exosomes. We suggest

that this mechanism of tumor cell – macrophage interaction is highly

promising for the development of novel diagnostic and therapeutic

strategies, though many problems are still to be solved.

KEYWORDS

macrophage, exosome, cancer, miRNA, lncRNA
Introduction

Macrophages are a heterogeneous cell population consisting of cells of various

phenotypes. Within the continuum of macrophage functional states two extremes are

designated as classically activated M1 macrophages and alternatively activated M2

macrophages. M1 is characterized by the production of signaling molecules that

promote inflammation - TNFa, IL-1beta and others (1). M2 macrophages are

characterized by the production of anti-inflammatory cytokines - TGFb, IL-10 and some
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others (2). However, the macrophage dichotomy is rather

conditional and macrophage phenotype is highly flexible and can

be regulated by various factors.

The molecular basis of macrophage polarization by cytokines is

quite well understood. The IRF/STAT signaling pathway activated

by IFNg, and various bacterial products via TLRs, leads to the

development of M1 polarization, while M2 polarization is induced

by IL-4 or IL-13. These processes are reversible both in vitro and in

vivo (3, 4). Interferons and TLRs activate the IRF/STAT cascade

through STAT1, and M2-stimulating cytokines through STAT6 (2).

Additional cytokines or hormones influence the macrophage

phenotype in their specific ways. Physical factors, such as

hypoxia, may also influence the macrophage phenotype (5).

In the development of solid tumors, macrophages of different

phenotypes can play opposite roles. Thus, pro-inflammatory M1

macrophages can suppress tumor progress ion, whi le

immunosuppressive M2 stimulate angiogenesis and invasion (4, 6,

7). The M1/M2 ratio of tumor associated macrophage population

changes significantly with tumor development and depends on the

disease stage. For the early stages, M1 macrophages are the

predominant population, with tumor development the ratio shifts

towards M2 (7, 8). M1 macrophages are able to prevent tumor

development, largely due to the presentation of antigens on their

surface and the recruitment of CD8+ T cells and NK cells (9).

Although interaction of tumor cells and tumor associated

macrophages (TAMs) is usually studied in regard of cytokines

and other secreted mediators produced by both types of cells,

there are several emerging directions of research including

regulatory RNA molecules.
microRNA in defining
macrophage phenotype

In addition to cytokines, microRNA plays an important role in

macrophage polarization and the performance of the corresponding

functions by these cells. MicroRNA is a sequence of ~22

ribonucleotides, their main function is the inhibition of mRNA

translation. About 60% of all eukaryotic cell mRNAs contain

miRNA complementarity sites, both at the 5’- and 3’-non-coding

regions (10). Pre-miRNAs are assembled into a RISC complex,

which also includes the RNA-specific endonuclease Dicer and

Drosha, which are involved in the processing of pre-miRNA into

a mature form, as well as proteins from the Argonaut family (11).

Guided by miRNA, the RISC complex is involved in the inhibition

of translation of an mRNA (10, 12, 13). RISC can inhibit assembly

of the 80S translational complex. The Ago2 protein in the RISC

complex competes with the 5’ recognition site of the eukaryotic

initiation factor 4G (eIF4G). According to other data, translation

inhibition is associated with the interaction of RISC with the anti-

associating factor eIF6, which also prevents the assembly of the 80S

translation complex (10).

MicroRNAs can be encoded within introns, exons, and between

different genes (14). The expression of miRNA is under the control

of various transcription factors, but may also depend on the level of
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already expressed miRNA by the feedback principle with its own

transcription factors (11). MicroRNAs can be used as a diagnostic

markers for various diseases (11).

A number of miRNAs control the macrophage phenotype and

function. Here we provide just several examples of those. In the case

of increased expression miR-720 inhibits GATA3 protein, an

important regulator of the M2 polarization of macrophages,

suppresses the manifestation of the M2 phenotype and shifts it

towards M1, and reduces the phagocytic activity of tumor-

associated macrophages. Normally, the expression of this miRNA

is significantly reduced in M2 macrophages in comparison with M0

and practically does not change when the M1 phenotype is induced.

At the same time, stimulation of GATA3 expression in

macrophages overexpressing miR-720 contributed to the

restoration of the M2 phenotype, which indicates a close

relationship between this microRNA and the macrophage

phenotype (15).

Another interesting example is miR-127 that was shown to

inhibit the B-cell lymphoma receptor Bcl6 and Dusp1 phosphatase,

which promotes JNK activation and development of M1

macrophages. The authors demonstrated that overexpression of

miR-127 in macrophages significantly increases the expression of

pro-inflammatory markers such as IL-6, IL-1b, tumor necrosis

factor alpha, and inducible NO synthase (iNOs), typical for M1

polarization (16).

Both miR-720 and miR-127 are expressed in macrophage upon

their stimulation with pro-inflammatory stimuli (15, 16), so they

can be considered a part of the intracellular machinery, necessary

for the macrophage phenotype development. This contribution can

be modulated by transfecting macrophages with corresponding

miRNA inhibitors.

Various miRNA-mediated patterns have also been shown to be

associated with M2 polarization (17). For instance, the miR-23a/

27a/24-2 are overexpressed upon macrophage stimulation with M2-

associated cytokines and down regulated by M1-associated stimuli.

At the same time forced expression of these miRNAs led to M1

phenotype development via different mechanisms. Amplification of

miR-23a expression enhances activation of the NF-kB pathway by

binding to one of the NF-kB suppressors A20 and simultaneously

stimulates the expression of M1 cytokines (18). Therefore, these

miRNAs can be considered as a part of a negative feedback loop of

M2 phenotype development.

MiR-301a was demonstrated to attenuate macrophage

migration and phagocytosis in a mouse KO model. This study

was done without induction of any specific macrophage phenotype

demonstrating that miRNA affects the basic function of

macrophages (19).

There are more studies of miRNAs involved in modulation of

macrophage phenotype, reviewed elsewhere (20, 21) though our

knowledge of the biological significance of observed effects remains

limited due to the absence of unified experimental systems

(Table 1). One of the common shortcomings of many studies on

microRNA role in macrophage activation is the absence of time

course experiments. Especially important this can be for the

induction of M1 phenotype that is in many cases a very rapid event.
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Long noncoding RNA

In addition to miRNAs, long noncoding RNAs (lncRNAs) can

also be involved in macrophage phenotype development (31). Long

non-coding RNAs are sequences of more than 200 nucleotides and

are not used as templates for protein synthesis, while carrying

exclusively regulatory functions (32). It is noteworthy that various

tumors are characterized by impaired expression of lncRNAs

associated with tumor progression (33, 34). As miRNAs

macrophage phenotype modulating lncRNAs can be expressed by

macrophages themselves or delivered to macrophages by exosomes

or artificial delivery systems.

For instance, MM2P lncRNA is overexpressed in macrophages

upon their stimulation with IL-4 and suppressed by LPS

stimulation. Further it was demonstrated that transfection of

macrophages with MM2P lncRNA enhance M2 polarization of

macrophages induced by IL-4 or IL13 (22). The authors also

established that MM2P knockdown leads to a decrease in the

concentration of phosphorylated STAT6 in macrophages and by

this way prevent their M2 polarization (22).

Not only the lncRNAs are expressed in macrophages upon their

stimulation with pro- or anti-inflammatory stimuli. LncRNA

RPPH1 is expressed in colorectal cancer (CRC) cells and may be
Frontiers in Oncology 03123
transported to macrophages inside exosomes. In macrophages

lncRNA RPPH1 triggers M2 development contributing to tumor

aggressiveness (23).
Exosomes

Transfer of molecules by extracellular vesicles (EVs) has been

studied as a mechanism of intercellular communication since about 2

decades. EVs is a group of membrane-enclosed vesicles that are

naturally released by almost all cell types. EVs are the most important

carriers that transport “cargo” from parent cells to target cells,

regulating physiological or pathological processes in recipient cells.

By origin and size, EVs were originally divided into exosomes (30–

200 nm), microvesicles (200–1000 nm), and apoptotic bodies (1–5

mm), but not so long ago, with increasing interest in Other EV

subpopulations have also been identified, such as exomers (<50 nm)

and large oncosomes (1–10 µm) (35). It has been shown that

exosomes carry complex and highly cell-specific cargoes, including

DNA, RNA, lipids, metabolites, cytosolic and surface proteins (36).

They can be selectively captured by neighboring cells, or cells far from

the place of release, and reprogram recipient cells with the help of

biologically active molecules contained inside. It is generally accepted
TABLE 1 ncRNA in macrophage polarization and TAM-tumor cells interaction.

ncRNA Source Effect Experimental system Reference

miR-720 macrophages, upon
inflammatory stimulation

M1 polarization Human cell lines (15)

miR-127 macrophages upon stimulation M1 polarization Mouse cell lines (16)

miR-23a/27a/24-2 macrophages upon IL-4
stimulation

M1 polarization Mouse cell lines, mouse BMDM (18)

miR-301a macrophages decrease of migration and
phagocytosis

Mouse cell lines, mouse BMDM (19)

lncRNA MM2P macrophages upon IL-4
stimulation

M2 polarization Mouse cell lines, mouse BMDM (22)

lncRNA RPPH1 CRC cells exosomes M2 polarization Human peripheral blood monocytes (23)

miR-155, miR-181, miR-
451

M1 macrophages M1 polarization Mouse BMDM (24)

miR-146a, miR-125a,
miR-145-5p

M2 macrophages M2 polarization Mouse BMDM (24)

miR-511-3p M2 macrophages M2 polarization Mouse BMDM, mouse TAMs (25)

miR-193a-5p TAMs Renal cell carcinoma
progression

Human cell lines (26)

miR-501-3p TAMs Pancreatic cancer
progression

Human cell lines (27)

miR-223 TAMs Breast cancer progression Human peripheral blood monocytes derived
macrophages

(28)

miR-155-5p and miR-
21-5p

TAMs Colorectal cancer
progression

Human TAMs (29)

miR-181a Tumor-associated fibroblasts
educated TAMs

Breast cancer progression Human peripheral blood monocytes derived
macrophages, human cell lines

(30)
f
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that their content can vary greatly depending on the types of cells,

their secretion and their current physiological state. Thus, exosomes

represent a mechanism of intercellular communication that plays an

important role in many cellular processes, including the immune

response (37, 38). Exosomes and the molecules they contain may be

of prognostic value in chronic inflammation, cardiovascular and

renal diseases, lipid metabolism disorders, and cancer (39, 40).

Thus, through exosomes, tumor cel ls influence their

microenvironment, which leads to adaptation of the tumor stroma

with subsequent stimulation of tumor growth. On the other hand,

exosomes secreted by cells of the tumor microenvironment, in

particular tumor-associated macrophages (TAMs), may affect

tumor growth.
TAM exosomes

The functions of macrophage exosomes have been widely

studied, and the data obtained indicate their key role in disease

progression. It should be noted that in recent studies, macrophage

extracellular vesicles (EV) are considered to be one of the most

important mediators of inflammatory diseases and cancer. As well

macrophage EV are thought to be mediators of a positive effect on

immunoregulation, tumor therapy, protection against infections,

and tissue repair (41).

The content of macrophage exosomes may differ depending on

the macrophage phenotype or the composition of their

microenvironment. Since macrophages can form a complex

mixed phenotype in various diseases or even at different stages of

the same disease in vivo, it is quite difficult to identify the

composition of their exosomes. Proteome analysis revealed

different proteins, including cathepsins, 20S proteasome subunits,

ribosomal proteins, and heterogeneous nuclear ribonucleoproteins

in exosomes released from TAMs, indicating that macrophages may

release exosome proteins with increased proteolytic activity and

reduced RNA binding capacity (42).

Among the most important molecules contained in

macrophage exosomes are various types of RNA molecules. Being

protected from ribonuclease degradation within exosomes, ncRNAs

can be secreted into various body fluids. MicroRNAs appear to be

the most abundant regulatory RNAs in exosomes. In a study by

Zhang et al. 109 microRNAs were identified that are differentially

expressed in M1- and M2-polarized human and mouse

macrophages, including miR-155, miR-181, miR-451 in M1

macrophages and miR-146a, miR-125a, miR-145-5p in M2

macrophages (24). Several miRNAs, miR-146 and miR-155, affect

the activation of pathways associated with immune control and the

consequences of inflammation (43). Other miRNAs highly

expressed in M2 macrophages are miR-511-3p, miR-223 and let-

7c, all of which promote M2 polarization (20). MiR-511-3p, which

is highly expressed in TAM, targets ROCK2 (Rho-associated helical

coil containing protein kinase 2) and maintains the expression of

genes associated with M2 polarization (25). TAM-secreted

exosomes downregulate TIMP2 expression in RCC cells,

promoting vasculogenic mimicry and invasion by miR-193a-5p

transfer, which ultimately promotes metastasis (26).
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miR-501-3p miRNA isolated from exosomes secreted by

tumor-associated M2 macrophages promotes tumor growth and

progression of pancreatic cancer. This microRNA inhibits the

expression of the TGFBR3 gene, which is an important tumor

suppressor, which stimulates an increase in the rate of cell

migration and metastasis (27). A decrease in TGFBR3 expression

is observed in a number of tumors, which indicates the importance

of this cascade in the context of tumor development (44, 45).

The transmission of various microRNAs from macrophages to

tumor cells was demonstrated in a study by Mei Yang et al. IL-4

polarized M2 macrophages secrete exosomes containing miR-223.

As a result of cocultivation of macrophages with breast cancer cells,

it was possible to detect the appearance of this miRNA in tumor

cells (28). Data on the differential expression of miR-223 in normal

and tumor cells indicate that this miRNA can contribute to the

progression of tumors of various types, including renal cell

carcinoma and bladder cancer (46, 47).

M2 macrophages are also able to stimulate tumor invasion and

angiogenesis through exosomal miRNAs. According to a study by

Jingqin Lan et al., in the case of colorectal carcinoma, miR-155-5p

and miR-21-5p are transported from M2 macrophages to tumor

cells via exosomes. In turn, the target of these miRNAs is the BRG1

sequence: this gene is recognized as one of the important

suppressors of metastasis in colorectal carcinoma. When miR-

155-5p or miR-21-5p interact, a significant drop in the level of

BRG1 expression is observed, which may be associated with an

acceleration of tumor progression and invasion (29).

Not only tumor cells can modulate TAM phenotype in a way

that these cells produce miRNA supporting tumor growth. It was

demonstrated that cancer associated fibroblasts stimulate TAMs to

express high levels of miR-181a. These TAMs produce miR-181

containing exosomes that activate AKT signaling in breast cancer

cells and increase the aggressiveness of the tumor (30).

Recent studies have shown that TAM exosomes also contain

various long non-coding RNAs (lncRNAs). The interactions of

lncRNA with RNA, DNA, and proteins allow them to regulate

gene expression at several levels, so roles in gene regulation are

usually divided into epigenetic, transcriptional, and post-

transcriptional levels. LncRNAs reside either in the cytoplasm or

in the nucleus, where they can interact with miRNAs, mRNAs,

RNA-binding proteins (RBPs), transcription factors, and

chromatins and act as enhancer-like RNAs (48). Accumulated

data have shown that cytoplasmic lncRNAs can be involved in

gene regulation at the post-transcriptional level, including acting as

ceRNAs and protecting target mRNAs from repression (49).

Accumulated data show that lncRNAs are actively involved in

the regulation of many fundamental biological processes of

development. At the moment, their participation in epigenetic

regulation (gene dosage compensation, genomic imprinting), cell

differentiation, and organogenesis has already been shown (50).

Some lncRNAs—MALAT1, HOTAIR, and ANRIL—are associated

with various pathologies, including cancer (51). Extracellular

vesicular transmission of myeloid-derived HIF-1a-stabilizing long

non-coding RNA (HISLA) is positively correlated with poor overall

survival in breast cancer patients. It has also been shown that

HISLA within TAM-derived exosomes can promote aerobic
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glycolysis, apoptosis resistance, and chemoresistance in breast

cancer cells (52).
Tumor cell-derived exosomes

Studies have shown that tumor cells produce much more

exosomes than normal cells. Due to the presence of adhesion

receptors and ligands specific for various types of cells and tissues

on their membranes, these exosomes “target” certain types of cells,

delivering the widest spectrum of biological molecules. Exosomes

secreted by tumor cells carry various proinflammatory and

immunosuppressive factors, such as macrophage migration

inhibitory factor (MIF) and PD-L1, which act in nearby or distant

tissues or organs to induce vascular permeability, inflammatory

infiltration, extracellular matrix remodeling, and downregulation.

immune response. Activated stromal cells can release a variety of

cytokines and chemoattractants via exosomes, such as IL-6, IL-8 and

S100A9, which promote tumor cell proliferation and invasion, as well

as the acquisition of chemoresistance and stem cell phenotype (53).

In addition to proteins, miRNAs contained in tumor cell-

derived exosomes may affect macrophage polarization. Exosomal

miR-301a-3p stimulates macrophage polarization to the M2

phenotype via the PTEN/PI3Kg signaling pathway. Circulating

miR-301a-3p levels are positively correlated with later tumor

stage, TNM grade; an increase in the level of circulating this

microRNA is associated with a worse prognosis of survival in

case of pancreatic cancer (54). Tumor cell derived exosomal miR-

138-5p inhibits KDM3B expression, thereby promoting the M2

phenotype and blocking M1 polarization. In the case of breast

cancer, an increase in the content of exosomal miR-138-5p was

associated with a worse prognosis (55). Considering the plasticity of

macrophage phenotype it would be important to investigate the

stability of macrophage phenotype change induced by tumor cell-

derived miRNA.
Conclusions

The investigation of exosome-mediated intercellular

communication between tumor cells and tumor-associated

macrophages (TAMs) has provided valuable insights into the

potential for identifying new targets for anticancer therapy,

particularly regulatory RNAs. The results of this research suggest

that the inhibitory effects mediated by M1-like macrophages

can be a promising approach for cancer therapy. Macrophage

reprogramming towards the M1 phenotype, through the

modification of exosomal cargoes, may serve as a strategy for

suppressing tumor growth.

However, despite the extensive research in this field, there are

still many gaps in our understanding of the complex exosome-

mediated communication process between tumor cells and

macrophages. One of the main challenges is the lack of

comparability between different experimental systems, particularly

with regards to non-coding RNAs in macrophages and the limited
Frontiers in Oncology 05125
comparability between mouse and human macrophage cell lines

(Table 1). Additionally, there is a need for a more nuanced

approach to the selection of macrophage phenotype markers,

rather than relying solely on the M1/M2 dichotomy. Further

research in this area should consider the dynamic changes in

macrophage phenotype that can occur in response to different

stimuli, and the use of multiple markers to accurately characterize

macrophage phenotype.

In order to fully understand the impact of non-coding RNAs on

macrophages and tumor cells, extensive kinetics studies are crucial.

Studies have been performed to assess the kinetics of LPS-induced

TNF production (56) and the cytokine production induced by IFN-

g or IL-4 in macrophages (57), revealing the complexity of

macrophage behavior over time. Similar studies of ncRNAs can

provide insight into the regulatory networks controlling

macrophage biology and identify key hubs that can be targeted

for therapeutic intervention. Additionally, further investigation into

the role of exosomes in tumor progression and the cross-talk

between different cell types within the tumor microenvironment

will provide a more comprehensive understanding of the complex

interplay between tumor cells, macrophages, and the surrounding

microenvironment. This knowledge can be leveraged to design

more effective, targeted therapeutic strategies for cancer treatment.
Author contributions

OK wrote the manuscript. MS wrote the manuscript. AE wrote

the manuscript. AP wrote and proofread the manuscript. KS wrote

and proofread the manuscript. AG designed the concept, proofread

the manuscipt. All authors contributed to the article and approved

the submitted version.
Funding

The study was supported by the Russian Science Foundation

grant No. 22-15-00291 to AG.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1078029
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Kovaleva et al. 10.3389/fonc.2023.1078029
References
1. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation.
Nat Rev Immunol (2008) 8(12):958–69. doi: 10.1038/nri2448

2. Wang N, Liang H, Zen K. Molecular mechanisms that influence the macrophage
m1-m2 polarization balance. Front Immunol (2014) 5:614. doi: 10.3389/
fimmu.2014.00614

3. Sica A, Bronte V. Altered macrophage differentiation and immune dysfunction in
tumor development. J Clin Invest (2007) 117(5):1155–66. doi: 10.1172/JCI31422

4. Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J
Clin Invest (2012) 122(3):787–95. doi: 10.1172/JCI59643

5. Escribese MM, Casas M, Corbi AL. Influence of low oxygen tensions on
macrophage polarization. Immunobiology (2012) 217(12):1233–40. doi: 10.1016/
j.imbio.2012.07.002

6. Pan Y, Yu Y, Wang X, Zhang T. Tumor-associated macrophages in tumor
immunity. Front Immunol (2020) 11:583084. doi: 10.3389/fimmu.2020.583084

7. Zhang M, He Y, Sun X, Li Q, Wang W, Zhao A, et al. A high M1/M2 ratio of
tumor-associated macrophages is associated with extended survival in ovarian cancer
patients. J Ovarian Res (2014) 7:19. doi: 10.1186/1757-2215-7-19

8. Boutilier AJ, Elsawa SF. Macrophage polarization states in the tumor
microenvironment. Int J Mol Sci (2021) 22(13):6995. doi: 10.3390/ijms22136995

9. Hadrup S, Donia M, Thor Straten P. Effector CD4 and CD8 T cells and their role
in the tumor microenvironment. Cancer Microenviron. (2013) 6(2):123–33.
doi: 10.1007/s12307-012-0127-6

10. Sayed D, Abdellatif M. MicroRNAs in development and disease. Physiol Rev
(2011) 91(3):827–87. doi: 10.1152/physrev.00006.2010

11. Mohr AM, Mott JL. Overview of microRNA biology. Semin Liver Dis (2015) 35
(1):3–11. doi: 10.1055/s-0034-1397344

12. O'Carroll D, Mecklenbrauker I, Das PP, Santana A, Koenig U, Enright AJ, et al.
A slicer-independent role for argonaute 2 in hematopoiesis and the microRNA
pathway. Genes Dev (2007) 21(16):1999–2004. doi: 10.1101/gad.1565607

13. Hombach S, Kretz M. Non-coding RNAs: Classification, biology and
functioning. Adv Exp Med Biol (2016) 937:3–17. doi: 10.1007/978-3-319-42059-2_1

14. Hsu PW, Huang HD, Hsu SD, Lin LZ, Tsou AP, Tseng CP, et al. miRNAMap:
genomic maps of microRNA genes and their target genes in mammalian genomes.
Nucleic Acids Res (2006) 34(Database issue):D135–9. doi: 10.1093/nar/gkj135

15. Zhong Y, Yi C. MicroRNA-720 suppresses M2 macrophage polarization by
targeting GATA3. Biosci Rep (2016) 36(4):e00363. doi: 10.1042/BSR20160105

16. Ying H, Kang Y, Zhang H, Zhao D, Xia J, Lu Z, et al. MiR-127 modulates
macrophage polarization and promotes lung inflammation and injury by activating
the JNK pathway. J Immunol (2015) 194(3) :1239–51. doi : 10 .4049/
jimmunol.1402088

17. Locati M, Curtale G, Mantovani A. Diversity, mechanisms, and significance of
macrophage plasticity. Annu Rev Pathol. (2020) 15:123–47. doi: 10.1146/annurev-
pathmechdis-012418-012718

18. Ma S, Liu M, Xu Z, Li Y, Guo H, Ge Y, et al. A double feedback loop mediated by
microRNA-23a/27a/24-2 regulates M1 versus M2 macrophage polarization and thus
regulates cancer progression. Oncotarget (2016) 7(12):13502–19. doi: 10.18632/
oncotarget.6284

19. Xu J, Fu L, Deng J, Zhang J, Zou Y, Liao L, et al. miR-301a deficiency attenuates
the macrophage migration and phagocytosis through YY1/CXCR4 pathway. Cells
(2022) 11(24):3952. doi: 10.3390/cells11243952

20. Curtale G, Rubino M, Locati M. MicroRNAs as molecular switches in
macrophage activation. Front Immunol (2019) 10:799. doi : 10.3389/
fimmu.2019.00799

21. Mohapatra S, Pioppini C, Ozpolat B, Calin GA. Non-coding RNAs regulation of
macrophage polarization in cancer. Mol cancer. (2021) 20(1):24. doi: 10.1186/s12943-
021-01313-x

22. Cao J, Dong R, Jiang L, Gong Y, Yuan M, You J, et al. LncRNA-MM2P identified
as a modulator of macrophage M2 polarization. Cancer Immunol Res (2019) 7(2):292–
305. doi: 10.1158/2326-6066.CIR-18-0145

23. Liang ZX, Liu HS, Wang FW, Xiong L, Zhou C, Hu T, et al. LncRNA RPPH1
promotes colorectal cancer metastasis by interacting with TUBB3 and by promoting
exosomes-mediated macrophage M2 polarization. Cell Death disease. (2019) 10
(11):829. doi: 10.1038/s41419-019-2077-0

24. Zhang Y, Zhang M, Zhong M, Suo Q, Lv K. Expression profiles of miRNAs in
polarized macrophages. Int J Mol Med (2013) 31(4):797–802. doi: 10.3892/
ijmm.2013.1260

25. Squadrito ML, Pucci F, Magri L, Moi D, Gilfillan GD, Ranghetti A, et al. miR-
511-3p modulates genetic programs of tumor-associated macrophages. Cell Rep (2012)
1(2):141–54. doi: 10.1016/j.celrep.2011.12.005

26. Liu Q, Zhao E, Geng B, Gao S, Yu H, He X, et al. Tumor-associated macrophage-
derived exosomes transmitting miR-193a-5p promote the progression of renal cell
carcinoma via TIMP2-dependent vasculogenic mimicry. Cell Death disease. (2022) 13
(4):382. doi: 10.1038/s41419-022-04814-9
Frontiers in Oncology 06126
27. Yin Z, Ma T, Huang B, Lin L, Zhou Y, Yan J, et al. Macrophage-derived
exosomal microRNA-501-3p promotes progression of pancreatic ductal
adenocarcinoma through the TGFBR3-mediated TGF-beta signaling pathway. J Exp
Clin Cancer Res CR. (2019) 38(1):310. doi: 10.1186/s13046-019-1313-x

28. Yang M, Chen J, Su F, Yu B, Su F, Lin L, et al. Microvesicles secreted by
macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol
cancer. (2011) 10:117. doi: 10.1186/1476-4598-10-117

29. Lan J, Sun L, Xu F, Liu L, Hu F, Song D, et al. M2 macrophage-derived exosomes
promote cell migration and invasion in colon cancer. Cancer Res (2019) 79(1):146–58.
doi: 10.1158/0008-5472.CAN-18-0014

30. Pakravan K, Mossahebi-Mohammadi M, Ghazimoradi MH, Cho WC,
Sadeghizadeh M, Babashah S. Monocytes educated by cancer-associated fibroblasts
secrete exosomal miR-181a to activate AKT signaling in breast cancer cells. J Trans Med
(2022) 20(1):559. doi: 10.1186/s12967-022-03780-2

31. Liang Y, Song X, Li Y, Chen B, Zhao W, Wang L, et al. LncRNA BCRT1
promotes breast cancer progression by targeting miR-1303/PTBP3 axis. Mol cancer.
(2020) 19(1):85. doi: 10.1186/s12943-020-01206-5

32. Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, et al. A
long noncoding RNA maintains active chromatin to coordinate homeotic gene
expression. Nature (2011) 472(7341):120–4. doi: 10.1038/nature09819

33. Wu XS, Wang F, Li HF, Hu YP, Jiang L, Zhang F, et al. LncRNA-PAGBC acts as
a microRNA sponge and promotes gallbladder tumorigenesis. EMBO Rep (2017) 18
(10):1837–53. doi: 10.15252/embr.201744147

34. Liang Y, Song X, Li Y, Sang Y, Zhang N, Zhang H, et al. A novel long non-coding
RNA-PRLB acts as a tumor promoter through regulating miR-4766-5p/SIRT1 axis in
breast cancer. Cell Death disease. (2018) 9(5):563. doi: 10.1038/s41419-018-0582-1

35. Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q, Zimmerman
LJ, et al. Reassessment of exosome composition. Cell (2019) 177(2):428–45.e18.
doi: 10.1016/j.cell.2019.02.029

36. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of
exosomes. Science (2020) 367(6478):eaau6977. doi: 10.1126/science.aau6977

37. Schwarzenbach H, Gahan PB. Exosomes in immune regulation. Noncoding
RNA. (2021) 7(1). doi: 10.3390/ncrna7010004

38. Greening DW, Gopal SK, Xu R, Simpson RJ, Chen W. Exosomes and their roles
in immune regulation and cancer. Semin Cell Dev Biol (2015) 40:72–81. doi: 10.1016/
j.semcdb.2015.02.009

39. Gonzalez-Calero L, Martin-Lorenzo M, Alvarez-Llamas G. Exosomes: a
potential key target in cardio-renal syndrome. Front Immunol (2014) 5:465.
doi: 10.3389/fimmu.2014.00465

40. Howitt J, Hill AF. Exosomes in the pathology of neurodegenerative diseases. J
Biol Chem (2016) 291(52):26589–97. doi: 10.1074/jbc.R116.757955

41. Wang Y, Zhao M, Liu S, Guo J, Lu Y, Cheng J, et al. Macrophage-derived
extracellular vesicles: diverse mediators of pathology and therapeutics in multiple
diseases. Cell Death disease. (2020) 11(10):924. doi: 10.1038/s41419-020-03127-z

42. Zhu Y, Chen X, Pan Q, Wang Y, Su S, Jiang C, et al. A comprehensive
proteomics analysis reveals a secretory path- and status-dependent signature of
exosomes released from tumor-associated macrophages. J Proteome Res (2015) 14
(10):4319–31. doi: 10.1021/acs.jproteome.5b00770

43. Foster PS, Plank M, Collison A, Tay HL, Kaiko GE, Li J, et al. The emerging role
of microRNAs in regulating immune and inflammatory responses in the lung.
Immunol Rev (2013) 253(1):198–215. doi: 10.1111/imr.12058

44. Meng W, Xia Q, Wu L, Chen S, He X, Zhang L, et al. Downregulation of TGF-
beta receptor types II and III in oral squamous cell carcinoma and oral carcinoma-
associated fibroblasts. BMC cancer. (2011) 11:88. doi: 10.1186/1471-2407-11-88

45. Lambert KE, Huang H, Mythreye K, Blobe GC. The type III transforming
growth factor-beta receptor inhibits proliferation, migration, and adhesion in human
myeloma cells. Mol Biol Cell (2011) 22(9):1463–72. doi: 10.1091/mbc.E10-11-0877

46. Xu J, Wu C, Che X, Wang L, Yu D, Zhang T, et al. Circulating microRNAs, miR-
21, miR-122, and miR-223, in patients with hepatocellular carcinoma or chronic
hepatitis. Mol carcinogenesis. (2011) 50(2):136–42. doi: 10.1002/mc.20712

47. Gottardo F, Liu CG, Ferracin M, Calin GA, Fassan M, Bassi P, et al. Micro-RNA
profiling in kidney and bladder cancers. Urologic Oncol (2007) 25(5):387–92.
doi: 10.1016/j.urolonc.2007.01.019

48. Zhang Y, Tao Y, Liao Q. Long noncoding RNA: a crosslink in biological
regulatory network. Brief Bioinform (2018) 19(5):930–45. doi: 10.1093/bib/bbx042

49. Matsumura K, Kawasaki Y, Miyamoto M, Kamoshida Y, Nakamura J, Negishi L,
et al. The novel G-quadruplex-containing long non-coding RNA GSEC antagonizes
DHX36 and modulates colon cancer cell migration. Oncogene (2017) 36(9):1191–9.
doi: 10.1038/onc.2016.282

50. Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation
and development. Nat Rev Genet (2014) 15(1):7–21. doi: 10.1038/nrg3606

51. Tano K, Akimitsu N. Long non-coding RNAs in cancer progression. Front Genet
(2012) 3:219. doi: 10.3389/fgene.2012.00219
frontiersin.org

https://doi.org/10.1038/nri2448
https://doi.org/10.3389/fimmu.2014.00614
https://doi.org/10.3389/fimmu.2014.00614
https://doi.org/10.1172/JCI31422
https://doi.org/10.1172/JCI59643
https://doi.org/10.1016/j.imbio.2012.07.002
https://doi.org/10.1016/j.imbio.2012.07.002
https://doi.org/10.3389/fimmu.2020.583084
https://doi.org/10.1186/1757-2215-7-19
https://doi.org/10.3390/ijms22136995
https://doi.org/10.1007/s12307-012-0127-6
https://doi.org/10.1152/physrev.00006.2010
https://doi.org/10.1055/s-0034-1397344
https://doi.org/10.1101/gad.1565607
https://doi.org/10.1007/978-3-319-42059-2_1
https://doi.org/10.1093/nar/gkj135
https://doi.org/10.1042/BSR20160105
https://doi.org/10.4049/jimmunol.1402088
https://doi.org/10.4049/jimmunol.1402088
https://doi.org/10.1146/annurev-pathmechdis-012418-012718
https://doi.org/10.1146/annurev-pathmechdis-012418-012718
https://doi.org/10.18632/oncotarget.6284
https://doi.org/10.18632/oncotarget.6284
https://doi.org/10.3390/cells11243952
https://doi.org/10.3389/fimmu.2019.00799
https://doi.org/10.3389/fimmu.2019.00799
https://doi.org/10.1186/s12943-021-01313-x
https://doi.org/10.1186/s12943-021-01313-x
https://doi.org/10.1158/2326-6066.CIR-18-0145
https://doi.org/10.1038/s41419-019-2077-0
https://doi.org/10.3892/ijmm.2013.1260
https://doi.org/10.3892/ijmm.2013.1260
https://doi.org/10.1016/j.celrep.2011.12.005
https://doi.org/10.1038/s41419-022-04814-9
https://doi.org/10.1186/s13046-019-1313-x
https://doi.org/10.1186/1476-4598-10-117
https://doi.org/10.1158/0008-5472.CAN-18-0014
https://doi.org/10.1186/s12967-022-03780-2
https://doi.org/10.1186/s12943-020-01206-5
https://doi.org/10.1038/nature09819
https://doi.org/10.15252/embr.201744147
https://doi.org/10.1038/s41419-018-0582-1
https://doi.org/10.1016/j.cell.2019.02.029
https://doi.org/10.1126/science.aau6977
https://doi.org/10.3390/ncrna7010004
https://doi.org/10.1016/j.semcdb.2015.02.009
https://doi.org/10.1016/j.semcdb.2015.02.009
https://doi.org/10.3389/fimmu.2014.00465
https://doi.org/10.1074/jbc.R116.757955
https://doi.org/10.1038/s41419-020-03127-z
https://doi.org/10.1021/acs.jproteome.5b00770
https://doi.org/10.1111/imr.12058
https://doi.org/10.1186/1471-2407-11-88
https://doi.org/10.1091/mbc.E10-11-0877
https://doi.org/10.1002/mc.20712
https://doi.org/10.1016/j.urolonc.2007.01.019
https://doi.org/10.1093/bib/bbx042
https://doi.org/10.1038/onc.2016.282
https://doi.org/10.1038/nrg3606
https://doi.org/10.3389/fgene.2012.00219
https://doi.org/10.3389/fonc.2023.1078029
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Kovaleva et al. 10.3389/fonc.2023.1078029
52. Chen F, Chen J, Yang L, Liu J, Zhang X, Zhang Y, et al. Extracellular vesicle-
packaged HIF-1alpha-stabilizing lncRNA from tumour-associated macrophages
regulates aerobic glycolysis of breast cancer cells. Nat Cell Biol (2019) 21(4):498–510.
doi: 10.1038/s41556-019-0299-0

53. Han S, Qi Y, Luo Y, Chen X, Liang H. Exosomal long non-coding RNA:
Interaction between cancer cells and non-cancer cells. Front Oncol (2020) 10:617837.
doi: 10.3389/fonc.2020.617837

54. Wang X, Luo G, Zhang K, Cao J, Huang C, Jiang T, et al. Hypoxic tumor-derived
exosomal miR-301a mediates M2 macrophage polarization via PTEN/PI3Kgamma to
promote pancreatic cancer metastasis. Cancer Res (2018) 78(16):4586–98. doi: 10.1158/
0008-5472.CAN-17-3841
Frontiers in Oncology 07127
55. Xun J, Du L, Gao R, Shen L, Wang D, Kang L, et al. Cancer-derived exosomal
miR-138-5p modulates polarization of tumor-associated macrophages through
inhibition of KDM6B. Theranostics (2021) 11(14):6847–59. doi: 10.7150/thno.51864

56. Hobbs S, Reynoso M, Geddis AV, Mitrophanov AY, Matheny RWJr. LPS-
stimulated NF-kappaB p65 dynamic response marks the initiation of TNF expression
and transition to IL-10 expression in RAW 264.7 macrophages. Physiol Rep (2018) 6
(21):e13914. doi: 10.14814/phy2.13914

57. Gratchev A, Kzhyshkowska J, Kothe K, Muller-Molinet I, Kannookadan S,
Utikal J, et al. Mphi1 and Mphi2 can be re-polarized by Th2 or Th1 cytokines,
respectively, and respond to exogenous danger signals. Immunobiology (2006) 211(6-
8):473–86. doi: 10.1016/j.imbio.2006.05.017
frontiersin.org

https://doi.org/10.1038/s41556-019-0299-0
https://doi.org/10.3389/fonc.2020.617837
https://doi.org/10.1158/0008-5472.CAN-17-3841
https://doi.org/10.1158/0008-5472.CAN-17-3841
https://doi.org/10.7150/thno.51864
https://doi.org/10.14814/phy2.13914
https://doi.org/10.1016/j.imbio.2006.05.017
https://doi.org/10.3389/fonc.2023.1078029
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


+41 (0)21 510 17 00 
frontiersin.org/about/contact

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

Frontiers

Advances knowledge of carcinogenesis and 

tumor progression for better treatment and 

management

The third most-cited oncology journal, which 

highlights research in carcinogenesis and tumor 

progression, bridging the gap between basic 

research and applications to imrpove diagnosis, 

therapeutics and management strategies.

Discover the latest 
Research Topics

See more 

Frontiers in
Oncology

https://www.frontiersin.org/journals/Oncology/research-topics

	Cover
	FRONTIERS EBOOK COPYRIGHT STATEMENT
	The role of tumor-associated macrophages in tumor progression
	Table of contents
	Tumor-Associated Macrophages: Recent Insights and Therapies
	Background
	Introduction
	A Simple Characterization of Macrophages
	Tumor-Associated Macrophages, A Special Kind of Macrophages
	The Dual Role of Tams in Tumor Microenvironment
	TAMs in Promoting Tumor Progression
	Cytokines
	IL-6
	IL-8
	IL-10

	Immunosuppressive Receptors and Ligands
	PD-1/PD-L1 signaling
	CD47-SIRPα signaling
	MHC class I component β2-microglobulin/LILRB1 signaling
	CD24-siglec-10 signaling

	Exosomes From TAMs

	Enhancing the Antineoplastic Activity
	Macrophage-Mediated Programmed Cell Removal (PrCR)
	Enhancing the Toxicity
	Preventing the Diffusion and Metastasis of Cancers


	Macrophages Targeting in Tumor Therapy
	Macrophages Targeting Therapy (Table 1)
	CCL2 and CCL5
	Colony Stimulating Factor-1 (CSF-1)
	Related Kinase Signaling Blocking
	PD-1/PD-L1 Signaling Blocking
	Monoclonal Antibodies and Inhibitors
	Regulation of Macrophages Polarization

	Engineering Macrophages
	Macrophage Gene Modification
	iSNAPS Smart Protein Molecules


	Conclusions
	Author Contributions
	Funding
	References

	Expression of Monocarboxylate Transporter 1 in Immunosuppressive Macrophages Is Associated With the Poor Prognosis in Breast Cancer
	Introduction
	Materials and Methods
	Tissue Specimens
	Immunohistochemistry
	Immunofluorescence Imaging
	Analysis of Gene Expression Data
	Statistical Analysis

	Results
	Significant Differences Existed in the Expression of CD163 Between the Tumor Invasive Margin and Malignant Tissues
	CD163 Overexpression Was Found in HER2 Breast Cancer Patients
	Increased Infiltration of MCT1+CD163+ Macrophages Was Associated With Poor Prognosis in Breast Cancer
	Validation in the TCGA Database

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Cancer-Associated Fibroblasts and Tumor-Associated Macrophages in Cancer and Cancer Immunotherapy
	Introduction
	The Fibroblast
	Cancer-Associated Fibroblasts
	Structure and Functions
	Heterogeneity of CAF Subtypes
	Secreted Factors and Exosomes in CAF-Tumor Cells Interplay
	CAF and Circulating Tumor Cells (CTC)
	Targeting CAF-Associated Pathways

	The Macrophage and Its M1 and M2 Subtypes
	Tumor-Associated Macrophages
	Exploring TAM in Different Cancer Types
	Targeting TAM-Associated Pathways

	The CAF–TAM Collaboration
	The Extracellular Matrix
	CAF and TAM in Immunotherapy and Anti-Angiogenesis
	Discussion
	Author Contributions
	References

	Significance of macrophage infiltration in the prognosis of lung adenocarcinoma patients evaluated by scRNA and bulkRNA analysis
	1 Introduction
	2 Methods
	2.1 Data analysis
	2.1.1 TCGA data
	2.1.2 GEO data

	2.2 Immune infiltration analysis
	2.3 Survival analysis
	2.4 Screening of modules corresponding to macrophages using WGCNA
	2.5 Clustering analysis of samples
	2.6 Analysis of single-cell data
	2.7 Trajectory analysis of single-cell data
	2.8 Gene set variation analysis
	2.9 Construction of risk scoring model
	2.10 Clinical sample validation (sample collection and immunohistochemistry)

	3 Results
	3.1 Proportion of immune infiltrating cells and the prognostic efficacy of macrophages
	3.2 Screening of modules corresponding to macrophages
	3.3 TAMs-related-gene-based clustering analysis, molecular typing and prognostic assessments
	3.4 Preprocessing of single-cell data
	3.5 Identification of TAMs in total cells
	3.6 Screening of differential expression genes among TAMs subsets
	3.7 Simulation of dynamic changes in macrophages
	3.8 Screening of prognostic factors based on cell-cluster-markers and TAMS-related-genes using univariate cox regression analysis
	3.9 Construction of risk score models and evaluation of the prognostic efficacy
	3.10 Validation of risk score prognostic models in external datasets
	3.11 Robust&nbsp;principal component analysis of risk scoring models in clinical factors
	3.12 Differences in risk score models among cancer clinical factors
	3.13 Evaluation of risk score models through univariate and multivariate cox regression analysis
	3.14 Construction of a nomogram model of risk scores and clinical factors to predict cancer progression
	3.15 Prediction of immunotherapy efficacy amongst subtypes
	3.16 Overall survival analyses of M1 and M2 macrophage subtypes in patients with lung cancer

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Supplementary material
	References

	Tumor-associated macrophages in tumor progression and the role of traditional Chinese medicine in regulating TAMs to enhance antitumor effects
	Introduction
	TAMs and tumor progression
	TAMs in invasion and metastases
	TAMs in angiogenesis and lymphangiogenesis
	TAMs and immunosuppressive microenvironment
	TAMs in canine tumors
	TAMs regulated by TCM
	TCM activates antitumor phenotype and inhibits tumor-promoting phenotype of&#146;TAMs
	TCM and macrophage polarization
	TCM and TME regulation
	TCM delivery system
	TCM and canine tumors

	Conclusions
	Author contributions
	Funding
	References

	Cutting edges and therapeutic opportunities on tumor-associated macrophages in lung cancer
	Introduction
	Macrophages: An important component in the immune microenvironment of lung cancer
	Origin of macrophages
	Polarization of macrophages
	Mutual regulation between TAM and TME

	Molecular mechanisms of AAM-type macrophage polarization
	IL-4, IL-13 signaling promotes polarization towards AAM macrophages
	Other elements inducing AAM polarization

	Therapeutic strategies targeting AAM-type macrophage polarization
	CCL2 monoclonal antibody or CSF1R inhibitor
	Re-acclimation of AAM-type macrophages and new strategies

	Biological features of Tim-3 positive TAMs
	Summary
	Author contributions
	Funding
	References

	Macrophage scavenger receptors: Tumor support and tumor inhibition
	1 Introduction
	2 Scavenger receptors expressed by TAMs
	2.1 Class A scavenger receptors
	2.1.1 SR-A1/CD204
	2.1.2 SR-A1/CD204

	2.2 B scavenger receptors
	2.2.1 SR-B1
	2.2.2 SR-B3/CD36

	2.3 Class D scavenger receptors
	2.4 Class E scavenger receptors
	2.4.1 SR-E1/LOX-1
	2.4.2 SR-E2/Dectin-1
	2.4.3 SR-E3/CD206

	2.5 Class G scavenger receptors
	2.5.1 SR-G/CXCL16

	2.6 Class J scavenger receptors
	2.6.1 SR-J1/RAGE

	2.7 Class H scavenger receptors
	2.7.1 SR-H1/Stabilin-1

	2.8 Class I scavenger receptors

	3 Genetics of scavenger receptors
	4 Conclusions
	Author contributions
	Funding
	References

	Human macrophage-engineered vesicles for utilization in ovarian cancer treatment
	1 Introduction
	2 Materials and methods
	2.1 Cell lines
	2.2 Human PBMC isolation and differentiation
	2.3 Vesicle generation and characterization
	2.4 Vesicle electron microscopy
	2.5 Imaging of fluorescently-labeled vesicles
	2.6 Cytokine analysis
	2.7 Real-time PCR of macrophage biomarkers
	2.8 Co-culture of human M2 macrophages and cancer cells
	2.9 RAW264.7 MEV generation and mouse localization experiments

	3 Results
	3.1 Characterization of human MEVs
	3.2 M1 MEVs are taken up by M2 macrophages and cancer cells
	3.3 M1 MEVs repolarize M2 macrophages
	3.4 Human M1 MEVs repolarize M2 macrophages in co-culture
	3.5 RAW264.7-derived M1 MEVs localize to ovarian xenografts in vivo

	4 Discussion
	5 Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	References

	Pleiotropic effects of the COX-2/PGE2 axis in the glioblastoma tumor microenvironment
	Introduction
	Microglia and macrophages in the CNS
	GAMS in the GBM microenvironment
	COX-2: Activity and expression
	PGE2/EP2 signaling
	Therapeutic implications
	Concluding remarks
	Author contributions
	References

	Macrophage – tumor cell interaction beyond cytokines
	Introduction
	microRNA in defining macrophage phenotype
	Long noncoding RNA
	Exosomes
	TAM exosomes
	Tumor cell-derived exosomes
	Conclusions
	Author contributions
	Funding
	References

	Back cover


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




