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Hypoxic regions have been identified within tumors 
and its presence has been linked to malignant 
progression, metastasis, resistance to therapy, and 
poor clinical outcomes following treatment. Acute 
and chronic hypoxia are integral components of 
tumor microenvironment and conduce to metabolic 
adaptations of tumor cells leading to genetic 
instability, intratumor heterogeneity and malignant 
progression.

On the success of our fight against cancer, 
the continued adaptability of tumors to their 
microenvironmental stresses, such as hypoxia, must 
be considered. Tumor cells are endowed with a 
very high plasticity and capacity to adapt. It is our 
challenge to find populations and conditions of the 
tumor microenvironment germane for target success. 
Interdisciplinary work will be the key for achievement 
of these goals.

This e-book is a compendium of original reports and 
review articles contributed by world-class experts in 
the field of tumor hypoxia. This material will be useful 
to foster discussion and increase understanding of the 
involvement of hypoxia in tumorigenesis, biomarker 
development, and therapeutics.
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topic aiming to unravel the not yet 
understood involvement of hypoxia  
(what is beyond the dark zone?) on cancer 
origin, progression, and therapeutics.
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The Editorial on the Research Topic

Tumor Hypoxia: Impact in Tumorigenesis, Diagnosis, Prognosis, and Therapeutics

A key to advance the rational design of better tools for cancer detection, prognosis, and therapeu-
tics is to increase our knowledge of the tumor microenvironment. This concept is supported by 
a continuously growing volume of literature reviewed by Horsman and Vaupel. The stroma and 
tumor parenchyma coexist in a network of nutrients, growth factors, metabolites, acids, interstitial 
pressure, and other physiological agents (Elkhattouti et al.). The temporal and spatial dynamics of 
those complex interactions, considered “abnormal and adverse” relative to conditions of normal 
tissues (Horsman and Vaupel), affect individual cancer cells, contribute to the natural selection of 
distinct clones, and establish aggressive tumors.

Among the multiple components of the tumor microenvironment with strong effects on tumor 
aggressiveness, tumor-associated hypoxia is a particularly relevant one (Horsman and Vaupel). The 
abnormal and chaotic vasculature of growing solid tumors cannot provide proper delivery of oxygen 
to all tumor cells. Not only observed in solid tumors, but also in aggressive non-solid tumors as 
indicated by the Mazurier group (Deynoux et al.), irregular oxygen supply is a crucial component of 
tumorigenesis. A yet unexplored field related to the involvement of the hypoxia pathway in tumori-
genesis is its association with heritable cancer syndromes. Thus, the inactivating germline changes 
in tumor-suppressor genes belonging to DNA repair pathways are associated with an increased risk 
of carcinogenesis. Henegan and Gomez propose the hypoxia pathway can be linked to heritable 
cancer syndromes. Further exploration of this hypothesis may provide emergent concepts relevant 
for personalized stratification and treatment of tumors associated with germline mutations of genes 
associated with the hypoxia pathway.

Oxygen levels affect the cells largely by regulating activity of the transcription factor hypoxia-
inducible factor (HIF). Regulation of HIFα subunits is complex. As noted by Kietzmann et al., an 
array of kinases are key regulators of HIFα’s protein stability, subcellular localization, and transac-
tivatory properties. It is reasonable to propose that modulation of HIFα by phosphorylation may 
be cell type- and cellular context-dependent. This becomes relevant when kinases can be exploited 
as upstream therapeutic targets of HIFα subunits in cancer therapy. HIF is also controlled by other 
factors. Schober and Berra pinpoint deubiquitinating enzymes, known regulators of cellular protein 
stability, as counterbalancing factors of ubiquitin E3 ligases (Schober and Berra). Aberrant in cancer, 
the ubiquitination cycle of HIFα is associated with disease progression and poor prognosis (Schober 
and Berra).

Other intracellular signaling mechanisms such as stress or redox response mechanisms con-
stitute the hypoxia-activated gene expression program in tumors. For instance, the review from 
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Mazure  highlights the involvement of the voltage-dependent 
anion channel in cancer under the context of hypoxia. This chan-
nel, present in mitochondria, under hypoxia acts as a survival fac-
tor by promoting survival pathways in tumor cells and increased 
resistance to therapy agents (Mazure). These and other signaling 
molecules define a core for the response of cancer cells to varying 
oxygen conditions. Components of these networks adapt to low 
oxygen, play a critical role in tumor development, and offer a yet 
unexplored therapeutic potential.

Recently, tumor-associated hypoxia molecules have been 
identified as markers of poor prognosis. One example is carbonic 
anhydrase IX (CAIX), an enzyme involved in maintaining the 
cellular pH balance. Most of the studies, limited by low num-
bers of patients, were inconclusive. van Kuijk et al. provide the 
first comprehensive meta-analysis of the association between 
CAIX expression and treatment outcome in tumors. Patients 
having tumors with high CAIX expression have higher risk of 
locoregional failure and disease progression (van Kuijk et  al.). 
The results of this study suggest that measuring CAIX expression 
can improve disease management, which in turn may decrease 
overtreatment and clinical relapse.

Due to the adaptation mechanisms of cancer cells to low 
oxygen, hypoxic tumors have reduced sensitivity to cytotoxic 
therapeutic agents. Hepatoma upregulated protein (HURP), 
a hypoxia-related molecule (1), conferred radiation resistance 
to prostate cancer cells (2). Noted by Espinoza et  al. in their 
original research article, HURP expression in prostate tumors 
was associated with the increased expression of HIF-1α, vascular 
endothelial growth factor, and heat-shock protein 60, as well 
as increasing tumor grade. The data reinforce the relevance of 
hypoxia-related molecules as predictors of tumor aggressiveness, 
and propose a basis to further advance our understanding of the 
mechanistic role of hypoxia responsive molecules in therapy 
resistance.

On the establishment of novel approaches targeting hypoxia-
related targets, the Dedhar group proposes exploiting pH regula-
tion in the hypoxic niche (McDonald et al.). Since pH regulation 
is particularly relevant for cancer stem cells in hostile microen-
vironments, inhibition of pH regulatory enzymes, such as CAIX 
and monocarboxylate transporters, may result in a reduced 
response to hypoxia (McDonald et al.). Remarkably hypoxia pro-
motes various mechanisms of immunoevasion (McDonald et al.). 

A hypothesis that will need clinical validation can be proposed: 
use of checkpoint inhibitors to restore antitumor immunity in 
combination with inhibitors of pH regulation, in the context of 
hypoxia, may effectively target aggressive tumors.

Equally relevant for therapeutical development is the applica-
tion of novel models to study the adaptation of cancer cells to 
low oxygen. Chronic myeloid leukemia and hepatoblastoma 
are suggested by Cipolleschi et al. as tools to study low-oxygen-
sensitive, -resistant, and -adapted cancer stem cells. On the basis 
of new findings revealed by the use of these models, application 
of metabolic inhibitors to target cancer stem cells may have an 
unexplored therapeutic potential for treatment of highly refrac-
tory disease (Cipolleschi et al.).

On the success of any experimental drug targeting tumor 
hypoxia, the continued adaptability of tumors to their micro-
environmental stresses must be considered. Tumor cells are 
endowed with a very high plasticity and capacity to adapt. It is 
our challenge to find populations and conditions of the tumor 
microenvironment germane for target success. Interdisciplinary 
work will be the key for achievement of these goals. Benefits 
include; increased understanding of the involvement of hypoxia 
in tumorigenesis, development of better biomarker development, 
and more effective therapeutics.
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Pathophysiological Basis for the 
Formation of the Tumor 
Microenvironment
Michael R. Horsman1* and Peter Vaupel2
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Poor microenvironmental conditions are a characteristic feature of solid tumors. Such 
conditions occur because the tumor vascular supply, which develops from the normal 
host vasculature by the process of angiogenesis, is generally inadequate in meeting the 
oxygen and nutrient demands of the growing tumor mass. Regions of low oxygenation 
(hypoxia) is believed to be the most critical deficiency, since it has been well docu-
mented to play a significant role in influencing the response to conventional radiation 
and chemotherapy treatments, as well as influencing malignant progression in terms of 
aggressive growth and recurrence of the primary tumor and its metastatic spread. As a 
result, significant emphasis has been placed on finding clinically applicable approaches 
to identify those tumors that contain hypoxia and realistic methods to target this hypoxia. 
However, most studies consider hypoxia as a single entity, yet we now know that it is 
multifactorial. Furthermore, hypoxia is often associated with other microenvironmental 
parameters, such as elevated interstitial fluid pressure, glycolysis, low pH, and reduced 
bioenergetic status, and these can also influence the effects of hypoxia. Here, we review 
the various aspects of hypoxia, but also discuss the role of the other microenvironmental 
parameters associated with hypoxia.

Keywords: hypoxia, tumor microenvironment, radiotherapy, chemotherapy, malignant progression

iNTRODUCTiON

Most solid tumors are just like normal tissues in that they need a regular supply of oxygen and 
nutrients to be able to exist, as well as processes for the elimination of the waste products of cellular 
metabolism. When tumors first appear, this function is provided by the normal blood supply of the 
host organ in which the tumor arises. However, unlike normal tissues, tumors continually expand 
in size and a point is reached where the host vascular supply becomes inadequate in supplying 
these needs. To compensate, tumors will actually develop their own functional vascular supply. 
This they do from the normal host vessels by the process of angiogenesis. Unfortunately, the tumor 
neo-vasculature that is formed is not only primitive and chaotic when compared to the normal 
tissue vascular supply from which it develops, but it also suffers from numerous structural and 
functional abnormalities. As a result, it is still unable to meet all the demands of the growing tumor 
mass (with sizes larger than 2–3 mm). Consequently, a hostile microenvironment develops within 
the tumor and this can be summarized by the so-called “crucial Ps.” These are listed in Table 1 and 

http://www.frontiersin.org/Oncology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2016.00066&domain=pdf&date_stamp=2016-04-12
http://www.frontiersin.org/oncology/archive
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://dx.doi.org/10.3389/fonc.2016.00066
http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:mike@oncology.au.dk
http://dx.doi.org/10.3389/fonc.2016.00066
http://www.frontiersin.org/Journal/10.3389/fonc.2016.00066/abstract
http://www.frontiersin.org/Journal/10.3389/fonc.2016.00066/abstract
http://www.frontiersin.org/Journal/10.3389/fonc.2016.00066/abstract
http://loop.frontiersin.org/people/260224/overview
http://loop.frontiersin.org/people/70477/overview


FiGURe 1 | vascular casting images showing differences in 
microcirculation between normal tissues (top three panels) and 
malignant tumors (lower three panels). Specific details of the corrosion 
casting technique used to produce these images can be found in Konerding 
et al. (14). Images shown were obtained courtesy of Prof. Konerding, Dept. 
Functional and Clinical Anatomy, University Medical Center, Mainz, Germany 
and are from Vaupel (10). Bottom text lists the major structural and functional 
abnormalities of tumor vessels when compared to normal tissues; composite 
information based on work by Kimura et al. (12), Reinhold and van der 
Berg-Blok (15), Vaupel et al. (10, 16), and Baronzio et al. (17).

TABLe 1 | The crucial Ps characterizing the hostile tumor 
microenvironment.

Pathophysiological characteristics showing a reduced level
• Partial pressure of oxygen
• Production of high-energy compounds
• pH of the extracellular compartment
• Paucity of nutrients
• Paucity of bicarbonate

Pathophysiological characteristics showing an enhanced level
• Perfusion inadequacies/vascular chaos
• Perfusion heterogeneities
• Permeability of tumor microvessels
• Pressure of interstitial fluid
• Production of lactate
• Production of protons
• Production of adenosine
• Partial pressure of carbon dioxide

Modified from Ref. (1).
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basically reflect conditions of poor perfusion, oxygen depriva-
tion, nutrient deficiency, severe acidity, and elevated interstitial 
fluid pressure (IFP).

The tumor cells that exist in this hostile microenvironment are 
actually still viable. But, as a result of being in these adverse micro-
environmental conditions, those same tumor cells can exhibit 
resistance to conventional cancer therapies, including radiation 
and certain types of chemotherapy. The poor tumor microenvi-
ronment also causes these cells to upregulate the expression of 
various genes and biosynthesis of proteins, an effect that not only 
increases their survival potential but can also increase tumor 
aggressiveness and metastatic spread. Numerous attempts have, 
and are being made, to identify the microenvironmental condi-
tions within tumors so as to select appropriate therapies to target 
those cancer cells that thrive in the hostile microenvironment.

Of these poor microenvironmental conditions within tumors, 
low oxygenation (hypoxia) is the one that has been the focus of 
most studies and is often considered as the only factor of impor-
tance. While hypoxia is clearly critical for outcome of cancer 
patients, it is generally associated with the other crucial Ps and 
as such any discussion of the role of hypoxia in tumors must be 
made in connection with the other hostile microenvironmental 
parameters. Thus, we will review the general pathophysiologi-
cal characteristics of the tumor microenvironment, how that 
microenvironment develops, and what significance that has for 
cancer.

FACTORS iNFLUeNCiNG THe TUMOR 
MiCROeNviRONMeNT

importance of the Tumor vascular Supply
Angiogenesis is clearly an essential requirement for the growth 
and development of solid tumors (2–4). This process begins with 
the release of angiogenic factors, primarily vascular endothelial 
growth factor (VEGF), by the tumor cells (5). The actual triggers 
that initiate this process are not fully established. Loss of suppres-
sor gene function and oncogene activation certainly play a role (5, 
6), but the development of hypoxia as a result of tumor growth is 

also a major factor (6). Additional studies with tumor cells grown 
in culture have shown that the secretion rate of the VEGF protein 
increases as soon as the oxygen concentration is lowered from 21 
to only 5% and that this secretion rate increases as the oxygen 
concentration decreases reaching maximal levels at around 0.5% 
and below (7). Release of VEGF and other growth factors set in 
motion a number of biochemical and physical steps that include 
enzymatic destruction of the basal membrane of the endothelial 
cells of the host vasculature, migration of endothelial cells into the 
extracellular matrix to form sprouts, and endothelial cell division 
away from the sprout tip (8). Solid strands of endothelial cells are 
then formed in the extracellular matrix, a lumen develops within 
those strands, neighboring sprouts fuse to form loops, and from 
the primary loops new buds and sprouts emerge (8). Finally, 
functional vessels are established.

Although a functional tumor vascular supply is necessary, 
the neo-vasculature that develops is actually inadequate to meet 
all the demands of the growing tumor mass. Endothelial cells 
divide at a slower rate than tumor cells (9) and as a consequence, 
the developing tumor vasculature is unable to keep pace with 
the expanding tumor population. The tumor vasculature that 
is formed is also very different from that of normal tissues (see 
Figure  1). Structurally, it is very chaotic. Vascular density is 
abnormal with increased intervessel distances and the existence 
of avascular areas. There are contour irregularities reflected by 
vessels that are elongated, tortuous, and large, and have aberrant 
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branching and blind ends. The pattern of vessel interconnection is 
also haphazard. Unlike normal vessels, there is a loss of hierarchy. 
The vessels are also very primitive in nature, having incomplete or 
missing basement membranes and endothelial lining, and lacking 
pericytes, smooth muscle, pharmacological receptors, and even 
innervation. Tumor vessels are often highly permeable allowing 
significant plasma leakage. Due to an absence of vasomotion and 
flow regulation, blood flow velocities through tumor vessels can 
be unstable as can the direction of flow [for review, see Ref. (10)]. 
It has been estimated that 1–8% of vessels can experience flow 
stasis (11, 12) and that around 8% of all microvessels show plasma 
flow only (12). Some of these changes will be mediated through 
effects of the various blood-borne cells. These include erythrocyte 
sludging, leukocyte sticking, and blockage of vessels by circulating 
white blood cells or tumor cells. High IFP can also play a role here. 
In normal tissues, there exists a perfusion pressure difference of 
about 20 mmHg between the arterial and venous ends of microves-
sels and this drives blood flow through capillaries. However, in 
tumors, the increased leakiness of vessels and the lacking of func-
tional lymphatics result in an increased IFP. Transmural coupling 
between this high IFP and microvascular pressures can result in 
abolished perfusion pressure differences between the arterial and 
venous ends, thus, causing flow stasis and hypoxia (13). However, 
this is more likely to result in chronic rather than acute hypoxia 
(13). Finally, the hematocrit within tumor microvessels can be 
increased by 5–14% and this will also influence flow.

Other Parameters Affecting the 
Micromilieu
Apart from the inadequacies of the tumor vascular supply, there 
are a number of other important factors that can influence the 
microenvironment within tumors. Chief among these is the 
oxygen carrying capacity of the blood. This can be substantially 
reduced under specific conditions, thus making less oxygen avail-
able. Such an effect is seen with anemia where the normal hemo-
globin levels of 7.5–9.5  mmol/L in females and 8–10  mmol/L 
in males can be reduced by 50% in anemic patients. Additional 
studies in which tumor oxygenation status was directly measured 
with polarographic needle electrodes have reported a correlation 
between the level of tumor hypoxia and hemoglobin concentra-
tion (18). Reduced oxygen availability is also observed in patients 
who smoke. Smoking impairs the delivery of oxygen to tumors 
due to the presence of carboxyhemoglobin (HbCO) that is formed 
by the binding of carbon monoxide (CO) to hemoglobin (19). 
Heavy smokers can have up to 16–18% HbCO in their blood. This 
reaction not only decreases the amount of hemoglobin available 
for oxygen transport but will also shift the oxygen-dissociation 
curve to the left making it more difficult for the hemoglobin to 
release oxygen to the cells. Since the affinity of hemoglobin for 
CO is approximately 250 times the affinity for oxygen, even low 
concentrations of CO can result in significant levels of HbCO in 
the blood.

The microenvironment of tumors will also depend on the 
cellular consumption of oxygen and essential nutrients. As a 
result of tumor cells close to the vascular supply consuming what 
they need for growth and survival, less will be available for those 
cells further away. Consequently, radial oxygen, nutrient, and pH 

gradients are established (16). The extent of those gradients will 
depend not only on the rate of consumption but also on what 
is actually delivered to the cells by the blood supply. Indeed, it 
has been reported that in the case of oxygen the cells next to 
the blood vessel can have oxygen concentrations as low as 2% 
[approximately 15 mmHg; (20)] and this would certainly reduce 
the oxygen diffusion distance. As it is the case in normal physiol-
ogy, there is also an intravascular (longitudinal) oxygen partial 
pressure gradient when the blood moves from the arterial to 
venous end of the microvessels (21). All these factors, coupled 
with the structural and functional aberrations described in the 
previous section, will result in the development of areas within 
the tumor that can be considered “abnormal and adverse” when 
compared to those conditions found in normal tissues (10, 16).

MiCROeNviRONMeNTAL 
CHARACTeRiSTiCS OF TUMORS

Hypoxia
The microenvironmental parameter that has been the most 
extensively investigated is hypoxia. By definition, hypoxia is a 
state of reduced oxygenation that influences biological functions 
(22). The first indirect indication that hypoxia existed in tumors 
was made by Thomlinson and Gray (23). From histological sec-
tions of carcinomas of the bronchus, they typically found viable 
tumor regions surrounded by vascular stroma, with regions of 
necrosis evolving in the center of the tumor mass. The thickness 
of the resulting shell of viable tissue was found to be between 
100 and 180 μm. They suggested that as oxygen diffused from 
the stroma, it was consumed by the cells, and although those 
beyond the diffusion distance were unable to survive, the cells 
immediately bordering the necrosis might be viable yet hypoxic; 
unfortunately, in this concept, the diffusion of glucose and other 
nutrients is completely ignored. Later, an inverted version of the 
Thomlinson and Gray model was described, with functional 
blood vessels surrounded by cords of viable tumor cells outside of 
which were areas of necrosis [Krogh model of oxygen diffusion; 
(24)]. This corded structure is the more typical picture found 
in most solid tumors and is illustrated in Figure 2. As with the 
Thomlinson and Gray model, an oxygen gradient is created as 
the oxygen diffuses from the blood vessel, resulting in a region 
of cells at the edge of the cord that are oxygen deprived and are 
commonly referred to as diffusion-limited chronic hypoxia. This 
type of hypoxia has been seen in both animal and human tumors 
(25). It has been suggested that such hypoxic cells can survive 
under these adverse conditions for several days (26). Death will 
also occur as the hypoxic cells move further away from the blood 
supply as the tumor grows, although this is more likely to result 
from a glucose deficit rather than just a lack of oxygen.

Diffusion-limited chronic hypoxia was the working model for 
hypoxia from the 1950s until around the 1980s when it was then 
suggested that a second type of hypoxia could exist in tumors 
and one that was acute in nature (28). This was later confirmed 
and shown to be the result of the transient stoppages in tumor 
blood flow described earlier (29). The hypoxia that results was 
originally called perfusion limited acute hypoxia, although 
other terms are often used, including cyclic, intermittent, 
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FiGURe 2 | Schematic illustration of the relationship between the tumor vasculature and microenvironment. The left side shows tumor cells growing in a 
corded structure around a functional vessel from which the cells receive their oxygen and nutrient supply, but as these substances diffuse out from the vessel they 
are utilized by the cells so that gradients are established. On the right side is a flow chart showing the relationship between the hostile microenvironment of tumors 
and the factors that give rise to its development. Figure is modified from Ref. (1, 27).
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transient, repetitive, or fluctuating, and it is probably the lat-
ter term that is the most appropriate description. Evidence for 
fluctuating hypoxia has been reported in murine tumors (30), 
human tumor xeongrafts (31), and even in tumors in cancer 
patients (32–34).

Today, hypoxia is often considered as a single entity even 
though we know there are at least two types. However, even the 
concept of chronic and acute/fluctuating hypoxia is an over-
simplification of the real picture (13). Acute hypoxia can result 
from a total or partial shut-down in perfusion (12); a complete 
shut-down would starve cells of oxygen and nutrients and result 
in ischemic hypoxia, which would not be the case for a partial 
shut-down where plasma flow, thus nutrient supply, can occur 
leading to hypoxemic hypoxia. For chronic hypoxia, the picture 
is even more complicated. It can result from a diffusion limitation 
under “normal” conditions (diffusional hypoxia), or be due to 
reduced oxygen availability as with high HbCO or anemia (anemic 
hypoxia). But, it will also be dependent on the oxygenation level; 
cells close to the vessel could be slightly hypoxic, while cells next 
to necrosis could even be anoxic (a situation where no oxygen can 
be detected) but still viable if they have sufficient nutrient supply 
(i.e., glucose). Whatever the description, hypoxia is now known 
to be a characteristic feature of most solid animal tumor models 
(35) and numerous human cancers (16, 36).

interstitial Fluid Pressure
Unlike normal tissues, tumors often contain vessels that are 
abnormally leaky and also lack a functional lymphatic system 
(37). These, coupled with a large hydraulic conductivity, results 
in a significant bulk flow of free fluid in the interstitial space. In 
normal tissues, water influx into the interstitial compartment has 
been estimated to be between 0.5 and 1.0% of plasma flow, yet in 
human tumors values up to 15% can be reached (38). As a result 
of fluid accumulating in the tumor matrix, there is a build-up 
of interstitial pressure (39–41). Interstitial fibrosis, contraction of 
the interstitial space mediated by stromal fibroblasts, and high 
oncotic pressures within the interstitium may also contribute to 
the development of interstitial hypertension (42). In most normal 
tissues, IFP is just above or below atmospheric values (43), but in 
tumors it can reach 50 or even 100 mmHg (1). IFP is generally 
uniformally high throughout the center of tumors, but drops 
steeply in the tumor periphery (44). However, since vascular 
permeability varies from tumor to tumor and can be heterogene-
ous within the same tumor, IFP is not constant (1). It can also 
fluctuate with changes in microvascular pressures (45).

Glycolysis and pH
Warburg’s classic work in the 1920s showed that cancer cells 
intensively converted glucose to lactate (glycolysis) even in 
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the presence of oxygen [for a review see Ref. (46)]. Today, it is 
believed that there is no clear evidence that cancer cells are inher-
ently glycolytic, but that some tumors might be glycolytic in vivo 
as a result of hypoxic response mechanisms (47). Hypoxia will 
shift the balance of cellular energy production toward glycolysis 
with the generation and subsequent accumulation of lactate (48). 
Indeed, several studies have found high median lactate levels of 
around 7 mM in head and neck cancers (49) and up to 14 mM 
in uterine cervix (50). Although lactate is generally considered 
a waste product, there is evidence that the lactate produced by 
hypoxic cells can be taken up in normoxic cancer cells via the 
monocarboxylate transporter-1 and can then be utilized for 
oxidative phosphorylation instead of glucose as a substrate 
(51). However, cellular lactate production and release will lead 
to tumor acidosis. What is clear is that like normal cells, tumor 
cells have efficient mechanisms for exporting protons into the 
extracellular space (52, 53), thus a pH gradient exists across the 
tumor cell membrane so that intracellular pH (pHi) remains 
higher than the extracellular pH (pHe). In normal tissues, this 
gradient is reversed such that pHi is actually lower than pHe (16, 
54–56). The production and release of lactate alone does not fully 
account for the acidosis found in the extracellular compartment 
of solid tumors. Other key mechanisms may play an important 
role, especially ATP hydrolysis, glutaminolysis, carbon dioxide 
production, and bicarbonate depletion (48).

Bioenergetic Status
Various techniques have been used to monitor the bioenergetic 
status within tumors. These include ex vivo quantitative biolu-
minescence (57) and high-performance liquid chromatography 
[HPLC; (38, 58)], and non-invasive 31P-nuclear magnetic reso-
nance/spectroscopy [NMR/MRS; (59)]. The global concentra-
tions of ATP measured in experimental tumors using HPLC were 
found to be typically between 0.4 and 2.0 mM (38, 58). These global 
ATP concentrations and adenylate energy charge only changed 
marginally provided tumors did not exceed biologically relevant 
tumor sizes (i.e., 1% of the body weight). With increasing tumor 
mass, ATP hydrolysis increased. As a result of this increased ATP 
degradation, an accumulation of purine catabolites, and the final 
degradation product uric acid, has been observed (38). Using 
quantitative bioluminescence, the microregional distribution 
of ATP has been assessed in cryobiopsies of cervix tumors and 
found to be heterogeneous and comparable to high flow experi-
mental tumors (38). This ATP distribution profile was similar to 
those seen for both glucose and lactate, but there was no clear-cut 
correlation between tumor oxygenation and regional ATP levels 
(38). Bioluminescence measurements of regional ATP distribu-
tions in experimental brain tumors reported ATP levels that 
were similar to normal brain, whereas glucose was slightly lower 
and lactate substantially higher (38, 60), with these metabolites 
showing marked tumor heterogeneity (60). Additional studies 
using NMR have shown that in many human malignancies, high 
concentrations of phosphomonoesters, phosphodiesters, and 
inorganic phosphate, as well as low phosphocreatine, are often 
found. The exception is again in human brain tumors, where 
no significant differences in 31P-NMR spectra were seen when 
compared to normal brain tissue (38).

Hypoxia-Driven Adenosine Accumulation
The development of tumor hypoxia is accompanied by a sub-
stantial accumulation of the nucleoside adenosine (ADO) in the 
range of 50–100  μM (61). By contrast, ADO levels in normal 
tissues have been found to be in the range of 10–100 nM (62, 63). 
ADO accumulation is preferentially caused by an ATP release 
from cancer cells into the extracellular space upon hypoxic stress. 
After transport out of cancer cells, extracellular ATP is converted 
into ADO by hypoxia/hypoxia-inducible factor (HIF)-sensitive, 
membrane-bound ectoenzymes CD39 and CD73. Intracellular 
ADO-formation from AMP by a cytosolic AMP-nucleotidase 
with subsequent ADO-export into the extracellular space 
through a nucleoside transporter seems to play a subordinate 
role. ADO-actions (adenosinergic effects) are mediated upon 
binding to surface receptors, mainly A2A-receptors on tumor 
and immune cells. Receptor activation leads to a broad spectrum 
of strong immune-suppressive properties through modulation 
of the innate and adaptive immune system, thus facilitating 
tumor escape from immune control (62, 64–66). Mechanisms 
include (a) an impaired activity of CD4+ T and CD8+ T, NK 
cells, and dendritic cells (DCs), a decreased production of 
immune-stimulatory lymphokines, and (b) an activation of Treg 
cells, expansion of myeloid-derived suppressor cells (MDSCs), 
promotion of pro-tumor M2-macrophages, and increased activ-
ity of major immune-suppressive cytokines. In addition, ADO 
can directly stimulate tumor cell proliferation and angiogenesis. 
Taken together, there is clear evidence that ADO-mechanisms 
described can thwart anti-tumor immune responses elecited by 
radiotherapy and fever-range hyperthermia (67).

SiGNiFiCANCe OF THe TUMOR 
MiCROeNviRONMeNT FOR CANCeR

Radiation
The potential of microenvironmental parameters to influence 
outcome to radiotherapy was first suggested from experiments in 
which the radiation response of skin was markedly decreased if 
the blood flow to the irradiated area was reduced by compression 
(68). This was followed by a report that tissues in which blood 
flow was stimulated by diathermia showed a more prominent 
response to radiation (69). Further experimental observations 
led Gray and co-workers to finally postulate the role of oxygen 
deficiency as a major source of radiation resistance (70). This 
occurs because oxygen is critical for the response of cells to 
radiation. The mechanism responsible is generally referred to as 
the “oxygen-fixation hypothesis” (71). When radiation interacts 
with the cellular target, which is usually DNA, it results in the 
production of free radicals. These are produced either directly 
by the radiation itself or indirectly from other molecules that are 
affected by radiation and then diffuse sufficiently to reach and 
damage the DNA target. Since water constitutes around 70% of 
all mammalian cells, most of the indirect radicals are probably 
produced from water molecules. In the absence of oxygen or in 
the presence of hydrogen-donating species (i.e., thiols), the free 
radicals formed in the DNA can react with hydrogen ions and the 
target is then chemically restored to its original form. However, 
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if oxygen is present, it will react with the free radical to form a 
product that undergoes further reaction, ultimately producing a 
chemical change in the target. The damage is now fixed and can 
only be removed by enzymatic repair processes.

It has been demonstrated from rapid-mix studies that the 
oxygen effect occurs only if oxygen is present either during 
irradiation or within a few milliseconds thereafter (72, 73). 
The amount of oxygen is also critical. An almost maximum 
enhancement of radiation is seen with oxygen partial pressures 
above around 20 mmHg (approximately 3%). Below this partial 
pressure radiation sensitivity decreases in an oxygen-dependent 
fashion (71); in the absence of oxygen roughly three times as 
much radiation is required to kill the same number of cells as seen 
under normoxic conditions. This effect is generally referred to as 
the “oxygen enhancement ratio” (OER; ratio of the radiation dose 
in hypoxia/anoxia to that in air, to give the same biological effect). 
For radiation of higher energy than X-rays produced by modern 
radiotherapy units the OER actually decreases (74).

Numerous animal studies have demonstrated that hypoxia in 
tumors can influence radiation response. Three classical assays 
have been used (35, 75). They are (a) the clamped clonogenic sur-
vival assay, in which tumors are excised after treatment and cell 
survival measured in culture; (b) the clamped tumor growth delay 
assay, where measurements are made of the time taken for tumors 
to reach a specific size after treatment; and (c) the clamped tumor 
control assay, whereafter the percentage of animals showing local 
tumor control at a certain time after treatment is recorded. For 
each technique, it is necessary to produce full radiation dose–
response curves under air breathing and fully anoxic (clamped 
tumor) conditions. The results of such assays not only demon-
strate that hypoxia in tumors influences radiation response, but 
the degree of displacement of the dose–response curves also 
allows us to calculate the actual percentage of radiobiological cells 
in the tumor. Using these assays, the hypoxic fractions have been 
estimated to range from 1% to well over 50% of the viable tumor 
cells in animal tumors and human tumor xenografts (35).

Demonstrating that hypoxia can influence the radiation 
response of human tumors is more difficult, since none of the 
above approaches are applicable to humans. Although numerous 
other methods have been developed to try and identify hypoxia in 
human tumors (25, 76, 77), not all have been used to demonstrate 
the relationship between hypoxia and radiation response. The 
earliest attempts to do the latter were based on indirect approaches 
(78), and involved estimates of tumor vascularization, using such 
endpoints as intercapillary distance, vascular density and the 
distance from tumor cells to the nearest blood vessel (79–81). All 
showed that patients with less well vascularized tumors, and pre-
sumably more hypoxic, had a poorer outcome to radiation therapy. 
More direct approaches have used exogenous markers that are 
injected into the host and bind to regions of tumor hypoxia, or 
endogenous markers that are genes/proteins upregulated under 
hypoxia. The former include nitroimidazole or copper-based 
derivatives, which can be identified immunohistochemically 
from histological sections or non-invasively using positron emis-
sion tomography, SPECT, or magnetic resonance spectroscopy 
(25). Although such exogenous markers can be used to identify 
tumor hypoxia and even associated with outcome following 

radiation therapy in head-and-neck carcinoma patients (82), 
there has never been a proper radomized trial. The endogenous 
markers include such factors as carbonic anhydrase IX, GLUT-1, 
HIF-1, and osteopontin (83–86). These can be measured from 
biopsy material using protein immunohistochemistry or as gene 
expression, or proteins identified from blood samples. Although 
endogenous markers have been correlated with outcome to radia-
tion therapy in some studies, it is not a universal finding (82), 
which probably reflects the fact that many of these endogenous 
markers are not hypoxia-specific rather than any indication that 
hypoxia does not play a role in influencing radiation response.

Probably the most direct method for estimating tumor hypoxia 
and one that has certainly been used to show the negative influ-
ence of such hypoxia on radiation response is the measurement 
of oxygen partial pressure (pO2) distributions with polarographic 
electrodes. Early attempts to achieve this used “home-made” glass 
electrodes which were cumbersome, fragile, and only a few pO2 
values 3–4  mm below the surface of the tumor were possible. 
Nevertheless, clinical data were obtained in cervix (79) and head 
and neck (87) that clearly demonstrated a relationship between 
such oxygenation measurements and outcome to radiation 
therapy, in that those patients with tumors that were better oxy-
genated had a significantly superior local response to irradiation.

This whole area was revolutionized with the development 
of the Eppendorf histography system, which had two distinct 
improvements. The first was having the oxygen microsensor 
inside a metal needle and the second the attachment of this needle 
to a stepping motor that allowed for multiple measurements along 
the needle track through the tumor. Numerous clinical studies 
were, thus, undertaken in a variety of human tumor types. The 
results clearly showed that hypoxia was to be found in virtually all 
human tumors investigated, although the degree of hypoxia could 
be variable (16, 36, 88, 89). Probably the most significant finding 
from these studies was the confirmation that hypoxia influenced 
outcome to therapy, especially where radiation was given. This 
has been reported for cervix (90–95), head and neck (96–100), 
soft tissue sarcomas (101, 102), and prostate (103, 104). Results 
for all four tumor types are summarized in Table 2 and clearly 
illustrate that the patients with more hypoxic tumors had a poorer 
outcome response.

One major focus of current cancer research is the role of can-
cer stem cells in tumorigenesis and therapy. Such cells amount 
to around 1–25% of the total viable tumor cell population (105), 
but they are believed to be the cells that must be completely 
eliminated to obtain tumor control (106). Significant effort is 
currently being made to identify these cells and specifically 
target them. However, recent evidence suggests a possible link 
between hypoxia and cancer stem cells (106). Hypoxia may 
affect cancer stem cell generation and maintenance through the 
upregulation of hypoxia-induced factors (105, 106). Pre-clinical 
studies have also shown an inverse correlation between hypoxia 
and local tumor control after irradiation (107, 108), suggesting 
that hypoxia may also actually protect the cancer stem cells 
from the lethal effects of radiation. If the link between cancer 
stem cells and hypoxia is proven, then hypoxia may be an even 
more important issue for radiation response than we currently 
believe.

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive


TABLe 2 | Relationship between tumor oxygenation estimated prior to therapy using the eppendorf histograph and outcome to therapy.

Tumor type Patient 
treatmentsa

No. of  
patients

Response 
endpointsb

Less  
hypoxic (%)

More  
hypoxic (%)

Oxygenation endpointc Reference

Cervix RT/CT/SG 31 OS at 22 months 80 32 Median pO2 above or below 10 mmHg (90)
RT/CT/SG 89 OS at 5 years 69 37 Median pO2 above or below 10 mmHg (91)
RT 51 DFS at 3 years 69 33 Median pO2 above or below 10 mmHg (92)
RT 74 DFS at 3 years 69 34 HF5 above or below 50% (93)
RT 106 DFS at 5 years 58 42 HF5 above or below 50% (94)

Head and neck RT 35 LTC at 2 years 77 33 Median pO2 above or below 2.5 mmHg (96)
RT/SG 28 DFS at 12 months 78 22 Median pO2 above or below 10 mmHg (97)
RT/CT 59 OS at 12 months 63 31 Hypoxic subvolume (98)
RT/CT 134 OS at 3 years 22 7 Median pO2 above or below 2.5 mmHg (99)
RT/CT/SG 310 OS at 3 years 38 28 Median pO2 above or below 2.5 mmHg (100)

Sarcoma RT/HT/SG 22 DFS at 18 months 70 35 Median pO2 above or below 10 mmHg (101)
RT/SG 28 OS at 5 years 77 28 Median pO2 above or below 19 mmHg (102)

Prostate RT 57 FFBF at 8 years 78 46 P/M ratio above or below 0.10 (103)

aPatient treatments consisted of various combinations of RT (radiotherapy), CT (chemotherapy), SG (surgery), or HT (hyperthermia).
bResponse endpoints were either OS (overall survival), DFS (disease free survival), LTC (local tumor control), or FFBF (freedom from biochemical failure).
cHF5 (percentage pO2 values below 5 mmHg), hypoxic subvolume (percentage pO2 below 5 mmHg × total tumor volume), or P/M (prostate/muscle). 

TABLe 3 | influence of the hostile tumor microenvironment on the activity 
of chemotherapeutic drugs.

Hypoxia dependency pH (below 6.8) dependency

Decreased 
effect

increased  
effect

Decreased  
effect

increased  
effect

Doxorubicin Etoposide Doxorubicin Chlorambucil

Actinomycin D BCNU/CCNU (?) Daunorubicin Melphalan

Bleomycin Alkylating agents (?) Bleomycin Cyclophospamide

Vincristine Mitomycin C Vinblastin Mitomycin C

Methotrexate (?) EO9 Paclitaxol Tiophosphamide

Cisplatin (?) PR-104 Methotrexate Cisplatin

5-Flurouracil (?) TH-302 Mitoxantrone 5-Flurouracil

Procarbazine Tirapazamine Topotekan Camptothecin

Streptonigrin Banoxantrone

Drugs marked with (?) indicate those agents that are included in the relative categories 
due to their in vitro response, but in which in vivo studies suggest may not be correct. 
Classification is based on information from Ref. (111–114).
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Chemotherapy
The pathophysiological characteristics of tumors play a signifi-
cant role in influencing the response of the tumor cells to chemo-
therapy (109). An inadequate vascular supply will naturally be 
expected to hinder blood-borne drug delivery. A decrease in 
drug availability will certainly be seen in areas where flow fluctu-
ates, especially where complete cessations in flow occur (110). 
In addition, the mean vascular density in tumors is lower than 
that found in normal tissues and, thus, diffusion distances are 
enlarged (1). Thus, transport of drugs from tumor microvessels 
to tumor cells that are distant from them will be compromised. 
The high IFP within solid tumors will also decrease extravasa-
tion (111). IFP at the tumor to normal tissue interface is low 
and as a result interstitial fluid oozes out of the tumor into the 
surrounding normal tissue. At the same time, it will also carry 
away anti-cancer drugs (37).

Cells most distant from the vascular supply will also be cycling 
at a reduced rate and this can act as a protective mechanism against 
a number of chemotherapeutic agents that work by interacting 
with cellular DNA and only kill the cell when it divides. Such 
cells are also exposed to hypoxia and acidic conditions, factors 
which are known to influence chemotherapeutic agent activity 
(111). However, these adverse microenvironmental parameters 
do not always have a negative effect of drug activity; some drugs 
are actually more effective under such conditions as illustrated 
in Table 3.

Other Tumor Therapies
Hyperthermia is a less conventional therapy, but is one example 
where the more deficient the tumor vasculature and the more 
deprived the tumors cells, the better the tumor response. Blood 
flow, being one of the major means by which heat is dissipated 
from tissues, will affect the ability to heat tumors (115). Thus, the 
poorer the blood supply, the easier it should be to heat. This has 
been demonstrated in vivo in which blood flow was compromised 
using agents that could reduce tumor blood flow (116, 117). In 

vitro studies have also reported that cells under hypoxic conditions 
were more sensitive to killing by hyperthermia than the same cells 
in a well-oxygenated environment (118, 119). However, this is 
not a consequence of hypoxia per se because under well-defined 
nutrient conditions, acute hypoxia does not significantly alter 
cellular response to heat (119). However, cells under prolonged 
oxygen deprivation will show an increased sensitivity to heat, 
an effect that is the result of chronically hypoxic cells becoming 
acidic (118).

Another treatment modality in which the tumor microenvi-
ronment influences response is photodynamic therapy  (PDT). It 
involves the administration of a photosensitizing agent and its 
subsequent activation by light. This reaction is strongly depend-
ent on oxygen concentration (120–123). Cell killing by PDT 
appears to be complete at normal oxygen levels and above, but 
decreases as the oxygen concentration drops below 5% (123). This 
is perhaps not surprising since the mechanism of action of PDT 
involves the generation of singlet oxygen (124).
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Malignant Progression
One of the most striking results found with the Eppendorf 
electrode measurements made in cervix cancers and soft tissue 
sarcomas was that hypoxia influenced outcome in patients in 
which surgery was the primary or only treatment (90, 91, 102): 
this suggested that hypoxia could also influence malignant pro-
gression, especially metastatic spread. In fact, one other study in 
cervix was able to show that the primary tumors of patients with 
metastases were indeed less oxygenated than those of patients 
without metastases (125).

Pre-clinical studies also support the importance of hypoxia in 
inducing metastatic spread. The earliest studies involved exposing 
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trations for up to 24 h and then intravenously injecting these cells 
and observing the number of lung metastasis that develop (126). 
That study clearly showed that the more hypoxic the exposure, the 
greater the number of lung metastases. In vivo attempts to investi-
gate this issue have involved either correlating the constitutive level 
of hypoxia in primary tumors or exposing the mice to different 
oxygen environments to change the level of tumor hypoxia, and 
then determining the number of metastases formed (127–130). 
The results generally show that the greater the degree of hypoxia, 
the more metastases observed and that acute hypoxia was bet-
ter at inducing metastases than chronic. These hypoxia-induced 
effects on malignant progression can be the result of changes at 
the transcriptional level in which a range of different genes are 
over-expressed or at the translational level with various proteins 
being upregulated. Such effects can be mediated via activation of 
various oxygen-sensitive signaling pathways (130, 131).

Other microenvironment factors found in tumors have also 
been shown to influence malignant progression. Tumor cells 
exposed to glucose deprivation and acidosis prior to intravenous 
injection into mice resulted in more lung metastases than cells not 
exposed to these conditions (132, 133). The deleterious effects of 
glucose deprivation in vivo have made it impossible to investigate 
its potential effects on malignancy in animals, but there have been 
attempts to relate pHe in vivo with metastases formation. Those 
studies involved either experimentally increasing tumor acidity 
(134) or simply making probe measurements of pHe in untreated 
tumors (135). But in both situations, no correlations were found 
between pH and metastases. This is perhaps somewhat surpris-
ing because one of the major factors causing acidity is lactate 
production and clinical studies have shown high tumor lactate 
concentrations to be associated with an increased risk of nodal 
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is also controversial. Using melanoma xenografts, an association 
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and for both nodal and distant metastases (94). A possible rela-
tionship between IFP and metastatic disease in other tumor sites 
is not yet known.

CONCLUSiON

The pathophysiological characteristics of the tumor microenvi-
ronment are very different from those conditions found in normal 
tissues. In many respects, the tumor microenvironment can be 
considered abnormal and hostile. These adverse pathophysi-
ological conditions, especially hypoxia, are now known to play 
a significant role in determining the tumor response to therapy 
and influencing the metastatic potential of tumors. Clearly, the 
future requirement is the application of methods by which one 
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environmental parameters, especially using techniques that are 
routinely available in the clinic. With such information, it should 
be possible to identify those patients, on an individual basis, that 
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appropriate additional treatments to dramatically improve that 
prognosis.
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Families of tumor-suppressor genes, such as those involved in homologous recom-
bination or mismatch repair, contain individual genes implicated in hereditary cancer 
syndromes. Collectively, such groupings establish that inactivating germline changes 
in genes within pathways related to genomic repair can promote carcinogenesis. The 
hypoxia pathway, whose activation is associated with aggressive and resistant sporadic 
tumors, is another pathway in which tumor-suppressor genes have been identified. von 
Hippel–Lindau disease, some of the hereditary paraganglioma–pheochromocytoma 
(PGL/PCC) syndromes, and the syndrome of hereditary leiomyomatosis and renal cell 
carcinoma are heritable conditions associated with genes involved or associated with 
the hypoxia pathway. This review links these heritable cancer syndromes to the hypoxia 
pathway while also comparing the relative aggression and treatment resistance of syn-
drome-associated tumors to similar, sporadic tumors. The reader will become aware of 
shared phenotypes (e.g., PGL/PCC, renal cell carcinoma) among these three hypox-
ia-pathway-associated heritable cancer syndromes as well as the known associations of 
tumor aggressiveness and treatment resistance within these pathways.

Keywords: von Hippel–Lindau disease, hereditary leiomyomatosis and renal cell cancer, SDHx hereditary 
paraganglioma–pheochromocytoma syndromes, hypoxia-inducible factor, pseudo-hypoxia

inTRODUCTiOn

Heritable cancer syndromes provide important clinical and research avenues. Clinically, diagnosing 
a heritable cancer syndrome allows a patient and his/her family to receive appropriate, targeted 
cancer screenings or preventive interventions. From a research standpoint, discovery and investiga-
tion of heritable cancer syndromes allows for better understanding of mechanisms of carcinogenesis 
and tumor behavior.

Families of tumor-suppressor genes consist of individual genes implicated in hereditary cancer 
syndromes that share common molecular pathways, such as the homologous recombination (e.g., 
BRCA1, BRCA2, PALB2) or mismatch repair (e.g., MLH1, MSH2, MSH6) pathways. Collectively, 
such groupings establish that inactivating germline changes in genes within pathways related 
to genomic repair can promote carcinogenesis. Insights related to these pathways led to the 

Abbreviations: FH, fumarate hydratase; HIF1, hypoxia-inducible factor 1; HLRCC, hereditary leiomyomatosis and renal cell 
cancer, PGL/PCC, paraganglioma–pheochromocytoma; RCC, renal cell carcinoma; SDH, succinate dehydrogenase; VEGF, 
vascular endothelial growth factor; VHL, von Hippel–Lindau.
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development of pathway-related therapy (e.g., poly ADP ribose 
polymerase inhibitors) (1) and promising hypotheses regarding 
personalized, targeted therapy (e.g., PD-1 blockade in mismatch 
repair-deficient tumors) (2).

Families of tumor-suppressor genes have also been identified 
within or affecting pathways related to the tumor microenviron-
ment – in particular, the hypoxia pathway (Figure 1). Under nor-
mal cellular conditions, the transcription factor hypoxia-inducible 
factor 1 (HIF1) (3) regulates the cellular response to variations in 
oxygen tension. This transcription factor is a heterodimer formed 
by an alpha and a beta subunit. Degradation of the alpha subunit 
(HIF1-α) is regulated by oxygenation – when cellular oxygena-
tion is low HIF1-α degradation is decreased, allowing HIF1 to 
promote cellular survival and growth (3). In malignancies, this 
“hypoxia driver” phenotype utilizes the hypoxia pathway to pro-
duce an aggressive and/or resistant tumor (4). Pseudo-hypoxic 

states are ones that display similar hypoxia-pathway gene expres-
sion but under normoxic conditions. Pseudo-hypoxia may be 
achieved through inactivation of tumor-suppressor genes, such 
as the von Hippel–Lindau (VHL) tumor suppressor, E3 ubiquitin 
ligase gene (VHL); the genes associated with the succinate dehy-
drogenase (SDH) complex (the SDHx genes); and the fumarate 
hydratase (FH) gene.

The purpose of this review is to highlight the grouping of herit-
able cancer syndromes associated with genes (i.e., VHL, the SDHx 
genes, and FH) in or related to the hypoxia pathway. Since these 
syndromes involve germline mutations associated with activation 
of the hypoxia pathway, and activation of this pathway may lead 
to aggressive and resistant sporadic tumors, this review will also 
compare clinical aspects of carcinogenesis, tumor growth, local/
distant spread, and treatment resistance between syndrome-
associated tumors and similar sporadic tumors.
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vOn HiPPeL–LinDAU DiSeASe

von Hippel–Lindau disease is an autosomal-dominant hereditary 
cancer syndrome involving a germline mutation in VHL (5). In a 
VHL disease registry (6), tumors with a frequency of more than 
10% in VHL disease included retinal angiomas (41%), cerebellar 
hemangioblastomas (60%), spinal hemangioblastomas (15%), 
renal cell carcinomas (RCCs) (25%), and PCCs (15%). Pancreatic 
carcinomas, pituitary hemangioblastomas, and duodenal 
carcinoid tumors are described in 5% or less of patients. These 
frequencies are in line with other VHL disease reviews (7).

von Hippel–Lindau disease is diagnosed (6) in a patient who 
fulfills any one of the following four conditions: (1) two or more 
CNS hemangioblastomas; (2) one CNS hemangioblastoma and 
a disease-associated visceral tumor (i.e., RCC, PCC, pancreatic 
tumor or cysts, or broad ligament cystadenomas); (3) a family his-
tory of VHL disease and one of the following: (a) retinal angioma, 
(b) spinal or cerebellar hemangioblastoma, (c) PCC, (d) RCC, (e) 
or multiple renal and pancreatic cysts; or (4) a pathogenic VHL 
variant.

Clinically, VHL disease is associated with high penetrance and 
a shortened lifespan. VHL disease penetrance is an estimated 97% 
by 60 years of age (8). The three most common disease-related 
causes of death in VHL disease include cerebellar hemangioblas-
toma (48%), RCC (27%), and pancreatic carcinoma (7%) with a 
mean age of death of 40.9 years (6). In a review of a heritable can-
cer registry review, patients with VHL disease had a significantly 
shorter life expectancy than patients with four other heritable 
cancer syndromes  –  neurofibromatosis 1, neurofibromatosis 2, 
familial adenomatous polyposis, and Gorlin syndrome (9).

VHL is translated into von Hippel–Lindau tumor suppressor 
(pVHL), a hypoxia-associated protein. pVHL is a component of 
an intracellular multi-protein complex that also includes elongin 
C, elongin B, and cullin-2. This complex is an E3 ubiquitin protein 
ligase that, under conditions of adequate cellular oxygenation, 
targets HIF1-α for destruction (10) (Figure  1). VHL disease 
requires a mutation or in-frame deletion/insertion (11) of VHL 
that leads to loss of a functional protein. Loss of functional 
pVHL leads to upregulation of HIF that increases expression of 
various proteins (e.g., vascular endothelial growth factor (VEGF), 
platelet-derived growth factor, matrix metalloproteinases, and 
transforming growth factor-alpha) involved in cancer growth 
and development.

Despite VHL disease-associated tumors manifesting earlier 
in life than comparable sporadic ones (8), the VHL disease-
associated malignancies are less aggressive in their risk of local 
recurrence and distant spread. Reviews of registry data indicate 
that patients with VHL-associated RCC have a higher primary 
tumor size threshold for metastatic disease, a significantly higher 
overall survival (12), and an increased cancer-specific survival 
when compared to patients with similarly sized sporadic RCC 
(13). Other tumors associated with VHL disease also have less 
relative aggressiveness in regard to disease progression or recur-
rence. For example, when compared to similar sporadic tumors, 
VHL-associated endolymphatic sac tumors are less likely to 
invade surrounding structures (14), VHL-associated spinal 
hemangioblastomas are less likely to be clinically symptomatic 

(15), and resected VHL-associated pancreatic neuroendocrine 
tumors have a significantly lower rate of recurrence than similar 
sporadic tumors (16).

Malignancies associated with VHL disease seem to be as 
responsive, if not more so, than sporadic tumors to pharmacologic 
interventions. In a small, single institution retrospective review of 
patients with VHL disease treated with first-line sunitinib for either 
multifocal (29%) or metastatic (71%) RCC, there was a median 
progression-free survival of approximately 3.5 years with 9 of 14 
patients obtaining a partial response on therapy (17). For compari-
son, the phase 3 trial which led to sunitinib’s approval in metastatic 
RCC reported a median progression-free survival of 11 months 
and an objective response rate of 42% (18). Perhaps the potential 
higher response rate in VHL disease is not surprising, as a study 
of sporadic metastatic clear cell RCC indicated that patients with 
VHL inactivation have a higher, albeit not statistically significant 
different, response rate (41 versus 31%) to VEGF targeted therapy 
than did sporadic tumors with wild-type VHL (19).

In summary, VHL disease is highly penetrant and has a 
relatively early age of onset for its manifestations. However, VHL 
disease-associated tumors are less aggressive in regard to local 
invasion and to potential for metastatic spread as well as more 
responsive to therapy when compared to similar tumors.

SDHx HeReDiTARY PARAGAnGLiOMA–
PHeOCHROMOCYTOMA SYnDROMeS

The hereditary paraganglioma–pheochromocytoma (PGL/PCC) 
syndromes are a collection of autosomal-dominant hereditary 
cancer syndromes. Germline mutations associated with PGL/
PCC are clustered into two groups: those involved with the 
pseudo-hypoxic pathway and those involved in kinase signaling 
pathways. The former cluster includes mutations in genes related 
to SDH, known as the SDHx genes (20).

The SDHx hereditary PGL/PCC syndromes are relatively 
newly described entities that involve a mutation in SDHA, SDHB, 
SDHC, SDHD, or SDHAF2. In 2000, the first report was published 
of an association of one of the SDHx genes with hereditary PGL/
PCC syndromes (21). Since that time, in addition to PGL/PCC, 
the recognized tumor spectrum among patients with a mutation 
in one of the SDHx genes has been expanded to also include RCC, 
pituitary tumors, gastrointestinal stromal tumors, and pancreatic 
neuroendocrine tumors (22, 23). A meta-analysis of prevalence 
studies found the pooled risk for malignant PGL to be 13 and 
4% for SDHB and SDHD mutations, respectively (24). Penetrance 
may be affected by environmental oxygenation factors as patients 
with SDHD mutations who lived at lower (as opposed to higher) 
altitudes have less disease penetrance, have more findings of sin-
gle (as opposed to multiple) tumors, and do not typically develop 
PCCs (25).

The diagnosis of a SDHx hereditary PGL/PCC syndrome 
requires finding a germline mutation in one of the SDHx genes. 
In clinical practice, germline genetic testing may be considered 
in all patients with a PGL or PCC. However, some providers may 
consider factors related to the probability of detecting a mutation, 
such as tumor location, presence of multiple tumors, age of onset, 
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and pathological characteristics of the tumors in their decision to 
recommend germline molecular testing (26, 27).

The SDHx genes are involved in the structure and/or function 
of SDH. SDH catalyzes the conversion of succinate to fumarate 
in the tricarboxylic acid cycle by removing one hydrogen atom 
from each of the two methylene carbons of succinate and placing 
them in the respiratory chain (28) (Figure 1). The four subunits of 
SDH include two anchorage proteins (SDHD and SDHC) that are 
part of the mitochondrial membrane and two catalytic proteins 
(SDHA and SDHB) that transfer an electron to coenzyme Q. 
SDHAF2 encodes a protein needed for flavination of SDHA.

Succinate’s contribution to pseudo-hypoxia has been attrib-
uted to competitive inhibition of enzymes involved in HIF1-α 
degradation, changes in oxidative stress, changes in energy uti-
lization, and alterations in gene expression. The relative increase 
in the succinate-to-fumarate ratio is associated with succinate 
competitively inhibiting alpha-ketoglutarate in its binding to 
HIF1/2-α prolyl hydroxylases, thus preventing these enzymes 
from aiding in the degradation of HIF (Figure 1) (29) and leading 
to pseudo-hypoxia (30). PCCs with SDHB knockdown, like those 
in familial PGL/PCC, demonstrate HIF1-α stabilization despite 
normoxic conditions, consistent with pseudo-hypoxia (31). This 
has been recapitulated in tumor specimens where dysfunction of 
SDH due to mutations in SDHx genes leads to events consistent 
with pseudo-hypoxia, including mitochondrial dysfunction (32); 
increased expression of HIF1-α by immunohistochemistry (33); 
increased expression of miR-210, a key regulator of response to 
hypoxia (34); and increased VEGF expression (35). Other factors 
that may be involved in the malignant transformation, prolifera-
tion, and survival of SDHx-related tumors include an increase in 
reactive oxygen species, augmentation of the Warburg effect by 
HIF1-α, and utilization of glutamine as an energy source (29). 
Alterations in epigenetic regulation (36) and differential expres-
sions of stemness may also impact the malignant potential of 
SDHx-mutated PGL/PCC (37).

Paragangliomas associated with SDHB mutations are more 
aggressive and resistant to treatment than sporadic PGLs. 
Malignant PGLs more frequently have SDHB mutations than 
do sporadic tumors (38). In a retrospective study of 34 patients 
undergoing primary carotid body PGL resections, there was 
significantly worse disease-free survival among patients 
with a SDHB mutation than among patients without a SDHB 
mutation (39). In a cohort of patients with malignant PCC/
PGL, there was an association of decreased survival for those 
patients with a SDHB mutation compared to others within this 
cohort (40). Clinical trials (e.g., NCT02495103) are underway 
to explore targeted therapies for RCC associated with SDHx 
gene mutations.

The relatively recently discovered SDHx hereditary PGL/PCC 
syndromes highlight a method of carcinogenesis involving the 
hypoxia pathway. Pseudo-hypoxia in SDHx hereditary PGL/PCC 
syndrome tumors is achieved after substrate accumulation leads 
to competitive inhibition of an enzyme involved in degradation 
of HIF1-α. In contrast to VHL-associated tumors, tumors in 
hereditary PGL/PCC syndromes (especially those associated 
with SDHB germline mutations) behave more aggressively and 
are more resistant to therapy than their sporadic counterparts.

HeReDiTARY LeiOMYOMATOSiS AnD 
RenAL CeLL CAnCeR

Hereditary leiomyomatosis and renal cell cancer (HLRCC) 
is an autosomal-dominant hereditary cancer syndrome first 
associated with mutations in FH in 2002 (41). Clinically, patients 
with HLRCC may present with single or multiple cutaneous 
leiomyomata; uterine leiomyomata; and/or a RCC, which may 
be tubolo-papillary, collecting-duct, or papillary type 2 (42). 
The risk of RCC associated with HLRCC appears variable based 
on geography as kindreds in the United States of America and 
Finland, when compared to other countries, more often have 
multiple HLRCC-associated RCC cases (43).

Like the SDHx hereditary PGL/PCC syndromes, the diagnosis 
of HLRCC is made by molecular testing. Evaluation of FH should 
be considered if either there is (a) histologically confirmed mul-
tiple cutaneous leiomyomata or (b) at least two of the following: 
surgery required for symptomatic uterine leiomyomata before 
40 years of age, type 2 papillary RCC before 40 years of age, or 
a first-degree relative who meets one of the above criteria (44).

There is variable expression in HLRCC, with one study report-
ing 87% of patients with FH mutations having skin leiomyomata, 
96% of females having uterine leiomyomata (typically younger in 
age than those with sporadic tumors) (45), and 42% having RCC 
(46) – although a separate reviews put the risk of RCC between 
15 and 20% (47). A rare manifestation of germline FH mutations 
is PCC (48).

FH encodes FH, the tricarboxylic acid cycle enzyme that 
catalyzes the conversion of fumarate to malate (49) (Figure 1). 
The identification of FH as a tumor suppressor was the second 
description, following the identification of the SDHx genes in 
hereditary PGL/PCC syndromes, of a gene translated into an 
intermediary metabolism enzyme also being a tumor-suppressor 
gene (50). HLRCC is associated with FH germline changes that 
lead to a significant reduction in FH enzyme activity (51) and 
an accumulation of fumarate. Like succinate, fumarate acts as a 
competitive inhibitor of HIF prolyl hydroxylases, causing HIF 
upregulation (52).

Tumor specimens from patients with HLRCC demonstrate 
changes consistent with FH inactivation and pseudo-hypoxia. 
Leiomyomata associated with HLRCC have large increases in 
fumarate consistent with levels needed to impair HIF degrada-
tion (53). Leiomyomata associated with HLRCC, compared to 
sporadic leiomyomata, also demonstrate higher microvessel 
density and increased expression of anaerobic-associated 
or hypoxia responsive genes (54, 55). Other mechanisms of 
carcinogenesis may contribute to HLRCC tumor development 
as cellular models and cell lines of HLRCC-associated tumors 
demonstrate a dependence on glycolysis (56); alterations 
in expression of antioxidant-response element genes (57); 
changes in expression of genes involved in lipid metabolism, 
apoptosis, and energy production/glycolysis (58); and aberrant 
succination (59).

Hereditary leiomyomatosis and renal cell cancer-associated 
RCC is aggressive in its regional and distant spread but its relative 
resistance or susceptibility to therapy has yet to be demonstrated. 
Up to 47% of HLRCC patients with RCC present with nodal or 
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distant metastases (60), as opposed to the 33% of patients with 
sporadic RCC (61). Some metastatic RCC lesions in HLRCC 
occur despite the primary tumor being <3  cm in size, leading 
to the recommendation that renal masses <3  cm cannot be 
observed in HLRCC – a departure from the recommendation for 
observation of small tumors in other RCC hereditary cancer syn-
dromes, including VHL disease (60). There is a lack of evidence 
to date regarding HLRCC-associated tumors’ responsiveness to 
therapy although clinical trials are underway to evaluate thera-
peutic options for patients with HLRCC-associated RCC (e.g., 
NCT01130519 and NCT02495103).

Hereditary leiomyomatosis and renal cell cancer shares many 
similarities with the SDHx hereditary PGL/PCC syndromes. 
Both are relatively newly discovered heritable cancer syndromes 
that involve a germline mutation in a tumor-suppressor gene that 
is translated into a tricarboxylic acid cycle enzyme. Both lead to 
competitive inhibition of an enzyme that in turn decreases the 
degradation of HIF1-α. Clinically, both are highly penetrant and 
can be associated with aggressive tumors.

DiSCUSSiOn

Like germline mutations in genes in the homologous recombina-
tion pathway and their association with hereditary breast and 
ovarian cancer; or germline mutations in mismatch repair genes 
and their association with colorectal cancer; germline mutations 
in genes associated with the hypoxia pathway (e.g., VHL, the SDHx 
genes, FH) appear to be associated with RCC and PGL/PCC. We 
suggest that future research should investigate the association of 
these germline mutations and these clinical phenotypes to assess, 
for instance, if perturbations within the hypoxia pathway drive a 
proportion of these tumor types.

A difference in aggressiveness and resistance to therapy was 
seen among these three heritable cancer syndromes associated 

with the hypoxia pathway (Table  1). VHL disease-associated 
tumors seem less aggressive and more responsive to therapy 
compared to similar sporadic tumors. However, tumors associ-
ated with the SDHx hereditary PGL/PCC syndromes as well 
as with HLRCC are more aggressive and there is ongoing 
research into potentially effective, personalized therapies for 
these syndromes. More research is needed to determine if the 
differential aggressiveness and resistance to therapy across 
these three syndromes is due to other effects associated with the 
germline mutations, such as alterations in energy metabolism or 
mitochondrial function.
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TABLe 1 | Aggressiveness and treatment resistance of tumors associated with heritable cancer syndromes that lead to pseudo-hypoxia compared to 
similar sporadic tumors.

 von Hippel–
Lindau Disease

Reference SDHx hereditary paraganglioma/
pheochromocytoma syndrome

Reference Hereditary leiomyomatosis 
and renal cell cancer

Reference 

Risk of local invasion Lower (14) No data NA No data NA

Risk of regional or 
distant spread

Lower (8) Higher (38) Higher (60)

Risk of recurrence Lower (8, 16) Higher (39) No data NA

Resistance to  
standard treatment

Less resistant (17) No data NA No data NA

Risk of death Lower (12, 13) Higher (40) No data NA
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The hypoxia-inducible factor α-subunits (HIFα) are key transcription factors in the

mammalian response to oxygen deficiency. The HIFα regulation in response to hypoxia

occurs primarily on the level of protein stability due to posttranslational hydroxylation

and proteasomal degradation. However, HIF α-subunits also respond to various growth

factors, hormones, or cytokines under normoxia indicating involvement of different

kinase pathways in their regulation. Because these proteins participate in angiogenesis,

glycolysis, programmed cell death, cancer, and ischemia, HIFα regulating kinases are

attractive therapeutic targets. Although numerous kinases were reported to regulate HIFα

indirectly, direct phosphorylation of HIFα affects HIFα stability, nuclear localization, and

transactivity. Herein, we review the role of phosphorylation-dependent HIFα regulation

with emphasis on protein stability, subcellular localization, and transactivation.

Keywords: phosphorylation, HIF-1α, hypoxia, kinase, MAPK pathway, PI3K/PKB pathway

INTRODUCTION

An adaequate supply of oxygen ismandatory for aerobic life. To cope with an inadequate O2 supply,
commonly termed hypoxia, mammals have developed response mechanisms which are crucial for
their survival.

To achieve responsiveness toward hypoxia on the molecular level, cells integrate a complex
biochemical system involving short-term reactions/modifications with no changes in gene
expression and a long-term programme including changes in gene expression. Both processes
can be interlinked; in particular, when the short-term response includes changes in the activity of
enzymes which initiate a series of posttranslational signaling events that often regulate the activity
of transcription factors and thus gene expression. On the level of gene expression the response to
hypoxia is crucially dependent on the α-subunits of hypoxia-inducible transcription factors (HIFα)
(Semenza, 2003; Kaelin, 2011; Masson and Ratcliffe, 2014).

As such, HIF α-subunit proteins contribute to proper embryonic development and to the
pathology ofmany diseases associated with hypoxia like anemia, myocardial infarction, thrombosis,
atherosclerosis, diabetes mellitus, or cancer (Semenza, 2003; Kaelin, 2011; Masson and Ratcliffe,
2014).

To achieve adaequate function, HIFα levels, subcellular distribution and activity need to be
tightly regulated. Although regulation at the transcriptional and translational level was shown to
play a role, posttranslational stabilization of HIFα proteins in response to hypoxia appears to be of
major importance (Wenger, 2002; Gross et al., 2003; Gorlach, 2009; Kietzmann, 2009).

Interestingly, the HIFα proteins are not only regulated by hypoxia, but also in response
to various stresses, growth and coagulation factors, hormones, or cytokines under normoxic
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conditions (reviewed by Dimova et al., 2009). These “normoxic”
HIFα stimuli often use different protein kinase regulated
pathways for signal transduction indicating an important role
of different kinases in HIFα regulation. Indeed, different kinases
have been identified to regulate HIFα in a direct or indirect
fashion (Figure 1). This review will primarily discuss the role
of the kinases using HIFα proteins as a direct substrate and
the impact of these modifications on HIFα stabilization, nuclear
translocation, and transactivation.

HYPOXIA-INDUCIBLE TRANSCRIPTION
FACTORS: α- AND β-SUBUNITS

Three O2-sensitive HIFα proteins (HIF-1α, HIF-2α -also known
as EPAS (Tian et al., 1997), HLF (Ema et al., 1997), HRF (Flamme
et al., 1997), or MOP2 (Hogenesch et al., 1998)—and HIF-
3α) are known today. Together with HIF β-subunits, primarily
represented by the stable nuclear and ubiquitously found ARNT
(arylhydrocarbon receptor-nuclear translocator) protein, they
form heterodimeric transcription factors binding to hypoxia
response elements (HRE) with the core DNA sequence 5′-
RCGTG-3′ (Wenger et al., 2005).

The best studied HIFα isoforms are HIF-1α andHIF-2αwhich
share a number of structural and functional similarities but
also show some differences with respect to cell type expression
pattern, embryonic deletion phenotypes, target genes, and effects
during carcinogenesis (Hu et al., 2003; Scortegagna et al., 2003;
Sowter et al., 2003). Not much is known about HIF-3α from
which several splice variants exist in humans (Pasanen et al.,
2010) and where some variants as well as a mouse splice variant
termed inhibitory PAS protein (IPAS) appear to act as negative
regulators of the hypoxic response (Makino et al., 2007; Heikkila
et al., 2011) while others appear to act as an oxygen-regulated
transcription activator (for review see Duan, 2015).

Like the ARNT proteins, the HIF α-proteins belong to the
basic helix-loop-helix (bHLH) PAS (Per-ARNT-Sim) protein

FIGURE 1 | Scheme of kinases involved in regulating HIF-1α either

direcly or indirectly. AMPK, AMP-activated kinase; ATM, ataxia and

teleangiectasia mutated; CK1, casein kinase1; CDK1, cyclin-dependent

kinase-1; ERK; extracellular regulated kinase; GSK3β, glycogen synthase

kinase-3β; PKA, protein kinase A; PKB/Akt, protein kinase B or Akt kinase;

p38, p38 mitogen activated protein kinase; Plk3, polo-like kinase-3.

family (Wang et al., 1995a); HIF-1α and HIF-2α show the
highest degree of sequence identity in the bHLH (∼85%), PAS-A
(∼68%), and PAS-B (∼73%) domains. Both contain also two
conserved nuclear localization sequences (NLS) responsible for
translocation to the nucleus; they are localized in the N-terminus
(aa 17–33 in HIF-1α; aa 1–50 in HIF-2α) and in the C-terminus
(aa 718–721 in HIF-1α; aa 689–870 in HIF-2α) (Kallio et al.,
1998). Except for the full length HIF-3α which does not contain
a C-terminal transactivation domain but a unique LZIP (leucine
zipper) C-terminal domain (Hara et al., 2001; Kietzmann et al.,
2001), HIF α-subunits contain also a N-terminal transactivation
domain (N-TAD) and a C-terminal transactivation domain
(C-TAD). An oxygen-dependent degradation domain (ODDD,
aa 401–603 in HIF-1α; aa 517–682 in HIF-2α) is overlapping the
N-TAD and is important for the oxygen-dependent regulation of
all vertebrate HIFα proteins (Huang et al., 1998; Duan, 2015). The
residues between the N-TAD and C-TAD constitute an inhibitory
domain (ID) (Jiang et al., 1997) (Figure 2).

HYPOXIA-INDUCIBLE REGULATION OF
α-SUBUNITS

The levels of the HIF α-subunits increase exponentially with
declining O2 concentration as a result of reduced hydroxylation,
ubiquitylation and proteasomal degradation (Semenza, 2003;
Kaelin, 2011; Masson and Ratcliffe, 2014). To date, four
HIF specific prolyl 4-hydroxylase domain containing enzymes
(PHDs) have been identified from which PHD2 appears to be
of major importance for HIFα degradation (Berra et al., 2003).
All HIF hydroxylases belong to a family of dioxygenases which
depend on the presence of O2 for their action. Thus, in the
presence of O2, i.e., normoxia, PHDs are able to hydroxylate
crucial proline residues in the HIFα ODDDs (P402/P564 in HIF-
1α; P405/P531 in HIF-2α; P492 in HIF-3α). This event recruits
the von Hippel-Lindau tumor suppressor protein (pVHL) which
together with Elongin C, Elongin B, RBX1, Cullin 2, and an
E2 ubiquitin-conjugating enzyme forms an ubiquitin E3 ligase
complex. As a consequence, HIFα proteins become ubiquitylated
and degraded by the proteosome (Semenza, 2003; Kaelin, 2011;
Masson and Ratcliffe, 2014).

Another hydroxylase called factor-inhibiting HIF (FIH-1)
hydroxylates an asparagine in the C-TADs of HIF-1α and HIF-
2α (N803 in HIF-1α and N847 in HIF-2α) with the result that the
interaction of the HIFα proteins with the co-activators CBP/p300
is inhibited (Mahon et al., 2001; Hewitson et al., 2002; Lando
et al., 2002). Thus, a limited O2 supply decreases the activities
of HIF hydroxylases and allows HIFα stabilization, followed
by nuclear translocation, dimerization, and transactivation (for
review see Kaelin, 2005).

REGULATION OF HIF α-SUBUNITS BY
PHOSPHORYLATION

Phosphorylation is a crucial posttranslational modification which
regulates the activity and stability of various proteins including
transcription factors. However, the extent to which transcription
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FIGURE 2 | Kinases and amino acid residues in HIF-1α involved in regulation of HIF-1α stability. Scheme of HIF-1α and its domain organization with specific

amino acid residues which can be phosphorylated; all have been shown to contribute to the regulation of HIF-1α protein stability. HIF-1α is phosphorylated on specific

residues (T498, S502, S505, T506, and S510 or S551, T555, and S589) by GSK3β; Plk3 can phosphorylate S576 and S657; ATM can phosphorylate S696 and

CDK1 can phosphorylate S668. ATM, ataxia and teleangiectasia mutated; CDK1, cyclin-dependent kinase-1; GSK3β, glycogen synthase kinase-3b; Plk3, polo-like

kinase 3; bHLH, basic helix loop helix domain; NLS, nuclear localization sequence; PAS, Per-ARNT-Sim domain; N-TAD, N-terminal transactivation domain; ID,

inhibitory domain; C-TAD, C-terminal transactivation domain; numbers indicate the amino acid residue range of the respective domain.

factors including HIFα proteins are phosphorylated may vary
according to the signal, cell-type, or tissue. Thus, it is plausible
that a modulation of HIFα action due to phosphorylation may
be a cell type specific event which could be explained by different
layers of regulations where kinases are affected depending on the
cellular context.

The first evidence indicating that phosphorylation plays a
role in HIFα regulation came from electrophoretic mobility
shift assay experiments where addition of calf intestinal alkaline
phosphatase to hypoxic nuclear extracts led to a loss of HIF-1
DNA-binding activity (Wang et al., 1995b). In the meantime a
panel of protein kinases was reported to affect HIFα regulation,
mainly HIF-1α, indirectly or directly (for review see Dimova
et al., 2009). Thereby it appeared that direct phosphorylation
of HIFα has an immediate impact on HIFα stability, nuclear
localization, transactivity, and protein-protein interactions.

Phosphorylation of HIFα Proteins: Role for
Subunit Stabilization
A number of findings indicated that the PI3K/PKB(Akt) pathway
can induce HIFα, transcription, stabilization (Mazure et al.,
1997; Zhong et al., 2000; Zundel et al., 2000; Hirota and
Semenza, 2001), translation (Koritzinsky et al., 2006), and
coactivator recruitment (Kallio et al., 1998). So far, no evidence
has been presented showing that HIFα proteins are directly
phosphorylated by PKB(Akt); rather its action is indirect
involving other PKB/Akt targets. Although a number of PKB/Akt
targets are known, so far only the human homolog of mouse
double minute-2 (HDM2) (Bardos et al., 2004; Skinner et al.,
2004), mammalian target of rapamycin (mTOR) (Treins et al.,
2002), and glycogen synthase kinase-3 (GSK3) (Flügel et al., 2007,
2012) were shown to affect HIF-1α levels with most evidence
indicating that only GSK3 acts directly on HIF-1α.

Although the name GSK3 implies that this is a specific
kinase acting only on glycogen synthase, it is rather pleiotropic
with a number of substrates through which GSK3 may affect
various signaling pathways often associated with hypoxia like

developmental processes, stem cell renewal, cell proliferation,
and apoptosis (reviewed in Cohen and Frame, 2001; Grimes and
Jope, 2001; Force and Woodgett, 2009).

Mammals possess two GSK3 isoforms, GSK3α (51 kDa) and
GSK3β (47 kDa) which are structurally similar, but not entirely
functionally overlapping (reviewed in Force and Woodgett,
2009). This became evident from the different phenotypes of
GSK3 knockout mice. GSK3β−/− mice are embryonically lethal
and die around day 16 because of hepatic apoptosis and a cardiac
pattern defect (Hoeflich et al., 2000; Kerkela et al., 2008). By
contrast, GSK3α−/− mice are viable, and fertile (MacAulay et al.,
2007). Interestingly, it exists also a minor spliced GSK3β variant
called GSK3β2 that contains a 13-amino acid residue insert
within the kinase domain. This isoform was shown to be neuron-
specific and has reduced kinase activity toward the microtubule-
associated protein, tau, compared to GSK3β (Mukai et al., 2002;
Saeki et al., 2011).

GSK3 is a target of the PKB/Akt pathway and it is unusual
that its protein kinase activity tends to be high in resting
cells. Furthermore, its inhibition is mediated by various stimuli,
such as growth factors, cytokines, and hormones. PKB/Akt can
phosphorylate both GSK3 isoforms (S21 of GSK3α and S9 of
GSK3β), leading to an inhibition of GSK3 activity (Cross et al.,
1995). Several other kinases are also able to phosphorylate
these serine residues like ERK1/2, a downstream kinase of the
MAPK pathway (Brady et al., 1998), p70 ribosomal S6 kinase-
1 (Armstrong et al., 2001), cAMP-dependent protein kinase A
(PKA) (Li et al., 2000), and PKC (Ballou et al., 2001).

Findings showing that inhibition of GSK3, siRNA-mediated
depletion of GSK3β and absence of GSK3β inMEFs inducedHIF-
1α protein levels (Schnitzer et al., 2005; Flügel et al., 2007, 2012)
were in line with the notion that GSK3 can phosphorylate at
least HIF-1α. Indeed, GSK3βwas found to directly phosphorylate
HIF-1α in the ODDD andN-TAD (Sodhi et al., 2001; Flügel et al.,
2007, 2012; Cassavaugh et al., 2011). The residues phosphorylated
in HIF-1α by GSK3β were reported to be S551, T555, and
S589 in one study (Flügel et al., 2007) whereas another study
showed involvement of T498, S502, S505, T506, and S510
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(Cassavaugh et al., 2011) (Figure 2). The difference between
studies may have resulted from different oxygen concentrations
(8% O2 compared to 2% O2) and the different cell types
(HepG2 compared to SK-OV-3) used. Despite the different
phosphorylation sites, both studies show that regulation of HIF-
1α by GSK3β is independent of O2, hydroxylation, and VHL-
mediated proteasomal degradation (Flügel et al., 2007, 2012;
Cassavaugh et al., 2011). Thereby, phosphorylation of HIF-
1α by GSK3β recruits the F-box and WD protein Fbw7 (also
known as hCdc4 in yeast, hSel10 in Caenorhabditis elegans, or
Ago in Drosophila) as the substrate-recognition component of
a multi-subunit E3 ubiquitin ligase and forms together with
SKP1 (S-phase kinase-associated protein 1), CUL1 (cullin 1), and
RBX1 (RING box 1, also called ROC1 or HRT1) the so called
SCF complex which then contributes to HIF-1α degradation
(Cassavaugh et al., 2011; Flügel et al., 2012).

Similar to pVHL, Fbw7 is also a tumor suppressor; 6%
from 1500 investigated human tumors showed mutations in
the Fbw7 coding region. Strikingly, nearly half (43%) of these
were missense mutations within the WD40 domain (Arg465
and Arg479), shared by all three alternatively spliced Fbw7
isoforms. In line, all three Fbw7 isoforms could target HIF-1α
for proteasomal degradation and loss of the Fbw7 WD domain
abolished GSK3β initiated HIF-1α degradation (Flügel et al.,
2012).

Together, the findings showing that two different E3 substrate
recognition proteins which both are tumor suppressors can
contribute to HIFα degradation indicates the importance of the
highly dynamic HIF system for carcinogenesis.

Ubiquitylation of proteins is reversible and the reversion is
mediated by a family of deubiquitylating enzymes (DUBs). About
100 DUBs encoded by the human genome are supposed to
counteract the action of around 600 E3 ligases (Nijman et al.,
2005; Scheel and Hofmann, 2005). DUBs can be divided into five
groups: ubiquitin-specific proteases (USPs), ubiquitin C-terminal
hydrolases (UCHs), ovarian tumor proteases (OTUs), Josephins,
and JAMMs. The USP, UCH, OUT, and Josephins are papain-
like cysteine proteases, whereas the JAMM members are zinc
metalloproteases (reviewed in Love et al., 2007).

Based on this, it appears plausible that the normoxia and
pVHL-mediated ubiquitylation as well as the GSK3β and Fbw7-
mediated ubiquitylation can be opposed by DUBs. Indeed, two
VHL-interacting deubiquitylating enzymes, VDU1 (USP33) and
VDU2 (USP20) were identified (Li et al., 2002a,b). However, by
using in vitro pull down assays with GST-HIF-1α (amino acid
530–826) and co-immunoprecipitation experiments in COS-7
cells it was shown that only VDU2 but not VDU1 could interact
with HIF-1α (Li et al., 2005). In addition, it was shown that
VDU2 but not VDU1 can deubiquitylate HIF-1α and increase it’s
half-life (Li et al., 2005).

Experiments with GSK3β and Fbw7-deficient cells revealed
that the GSK3β and Fbw7-dependent HIF-1α degradation can
be antagonized by the ubiquitin specific protease 28 (USP28)
(Flügel et al., 2012). In contrast to VDU2 which directly interacts
with HIF-1α, USP28 forms a ternary complex with HIF-1α via its
association with HIF-1α bound Fbw7 (Flügel et al., 2012).

Together, degradation of HIF-1α by the GSK3/Fbw7/USP28
system appears to be an additional mode to regulate HIF-1α

function in response to various physiologic and non-physiologic
signals affecting cell division, cell growth, differentiation, and
apoptosis independent of the O2 tension.

While GSK3 provides a metabolic link to cell growth and
differentiation, p38 MAP kinases link different stress stimuli,
such as ultraviolet irradiation, heat shock, and osmotic shock
with cell differentiation, apoptosis, and autophagy (Olson
and Hallahan, 2004; Raman et al., 2007; Tormos et al.,
2013; Sabio and Davis, 2014). Indeed, p38 was supposed to
regulate HIF-1α stability during ischemic stress and in line,
the p38 inhibitors SKF86002 and SB203580 decreased HIF-
1 dependent gene expression (Sodhi et al., 2001). Further,
treatment of theMiaPaca2 pancreatic cancer cell line with the p38
inhibitor SB203580 caused an increase in VHL-HIF-1α binding
(Kwon et al., 2005) suggesting that p38 contributes to HIF-1α
stabilization, though no half-life measurements were performed.
Two members of the p38 MAPK family, p38α and p38γ, were
then shown to possess the ability to phosphorylate HIF-1α (Sodhi
et al., 2000). Altogether, this implies that p38 can contribute to
HIF-1α stabilization, the phosphorylation by p38 occurred in the
inhibitory domain (aa 576–785) (Sodhi et al., 2001) which has not
yet been shown to be involved in VHL-dependent degradation.
Moreover, the exact localization of the eight serine residues which
could serve as putative p38 phosphorylation sites in the HIF-
1α inhibitory domain as well as their contribution to HIFα
degradation remains still to be determined (Figure 2).

Another kinase linking HIFα function with regulation of
cell division is cyclin-dependent kinase 1 (CDK1). Although
about 20 CDKs known to date can contribute to cell cycle
control, CDK1 was found to be the only one essential for
the cell cycle in all eukaryotic cells (Malumbres et al., 2009).
CDK1 belongs to a highly conserved family of heterodimeric
serine/threonine kinases which require a regulatory cyclin
subunit for their activity. As such, the CDK1-cyclin B complex
constitutes a serine/threonine protein kinase composed of the
catalytic subunit CDK1 and its positive regulatory subunit cyclin
B (B1 isoform) (Malumbres et al., 2009).

Activation of CDK1 promotes entry into theM phase
of the cell cycle. This is achieved in the late G2 phase
by phosphorylation mediated by the CDK activating kinase
(CAK) phosphorylating T161 in its kinase-activation loop
(Russo et al., 1996) as well as Cdc25C phosphatase mediated
dephosphorylation of T14 and Y15 within CDK1. The inactive
state of CDK1 throughout the S and G2 phases of the cell cycle
is achieved by phosphorylation at two negative regulatory sites,
T14 and Y15, by the CDK1 inhibitory protein kinases, Myt1
and Wee1 respectively (Watanabe et al., 2005) for review see
(Malumbres, 2014, 2015).

A recent report showed that siRNA-mediated knockdown or
Ro-3306-mediated inhibition of CDK1 reduced HIF-1α half-life
whereas overexpression of CDK1 enhanced HIF-1α levels. In
vitro kinase assays revealed that S668 in HIF-1α is the CDK1
target site (Figure 2). Accordingly, a construct of HIF-1α with
a phospho-site mimicking mutation (S668E) was more stable
under both normoxia and hypoxia. Moreover, phosphorylation
of HIF-1α at S668 lead to an expression of HIF-1 target genes
and promoted tumor angiogenesis, proliferation, and tumor
growth (Warfel et al., 2013). Together, these findings underlie
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the importance of HIF-1α for the M-phase of the cell cycle since
it can be stabilized by CDK1-mediated phosphorylation already
under normoxia.

Genotoxic stress represents a burden under which cell cycle
progression and cell cycle checkpoints need to be tightly
controlled. A kinase participating in the response to genotoxic
stresses is Polo-like kinase 3 (Plk3) (Barr et al., 2004). Plk3
is a member of a family consisting of four proteins (Plk1,
Plk2, Plk3, and Plk4) not only involved in the stress response,
but also strongly involved in tumorigenesis with an abnormal
expression found in multiple tumors (Archambault and Glover,
2009; Degenhardt and Lampkin, 2010). The role of Plk3 in the
development of tumors remains controversial. While one study
showed a non-tumorigenic phenotype in Plk3 deficient mice
(Myer et al., 2011), another study reported that mice deficient
in Plk3 develop highly vascularized tumors in multiple organs
suggesting a tumor-suppressing activity in particular via HIF
driven angiogenesis (Yang et al., 2008). The latter finding is in
line with the finding that Plk3 can regulate HIF-1α stability
(Xu et al., 2010). Plk3 immunoprecipitation and pulldown
analyses revealed interaction between HIF-1α and Plk3 which
was able to phosphorylate S576 and S657 of HIF-1α (Xu et al.,
2010) (Figure 2). Further, Plk3−/− murine embryonic fibroblasts
contained increased HIF-1α levels. In line with that, half-life
measurements demonstrated that the half-life of wild-type HIF-
1α was <10min, whereas the half-lives of the HIF-1α-S576A,
HIF-1α-S657A, and HIF-1α-S576A/S657A mutants were about
37, 49, and 51min, respectively (Xu et al., 2010). Together, these
studies indicate that Plk3-mediated phosphorylation destabilizes
HIF-1α.

In contrast to the above mentioned kinases, the knowledge
about the involvement of the Jun N-terminal kinases (c-JNK) in
regulating HIF-1α is quite limited and inconsistent. One study
reported that c-JNK contributes to the activation of HIF-1α
(Comerford et al., 2004) whereas other studies showed that HIF-
1α is not phosphorylated by c-JNK (Richard et al., 1999; Sodhi
et al., 2001).

Links between Hypoxia and Kinases in the

Regulation of HIFα Stabilization
In addition to hormones or growth factors, hypoxia may also
have an impact on the activity of certain kinases and thus
activation of the hypoxia signal chain and a kinase pathway at
the same time may lead to interference at the level of HIFα.

It has been shown that hypoxia is capable to induce GSK3β
phosphorylation and thus its inactivation in different cell types
such as PC-12 cells (Beitner-Johnson et al., 2001), HT1080
cells (Chen et al., 2001), and HepG2 cells (Mottet et al., 2003;
Flügel et al., 2007) as well as in vivo (Roh et al., 2005).
Further, early/acute hypoxia also enhanced PI3K/Akt activity,
inhibited GSK3, and increased HIF-1α protein levels whereas
prolonged/chronic hypoxia increased GSK3β activity which led
to decreased HIF-1α protein levels in HepG2 cells (Mottet et al.,
2003; Flügel et al., 2007). This indicates that hypoxia can also
be a signal for the PI3K/Akt/GSK3 pathway and depending on
the duration of hypoxia it is possible to induce a biphasic HIF-
1α response. This would imply that GSK3β inhibition could

reverse the negative effect of prolonged hypoxia on HIF-1α
accumulation; however, these effects may be cell type specific
since the hypoxia effects on GSK3β phosphorylation were not
observed in other cell types including some different breast
cancer cell lines (Blancher et al., 2000), PC-3 prostate cancer cells
(Zhong et al., 2000), and 3T3 cells (Laughner et al., 2001).

GSK3 appears not to be the only kinase which may regulate
HIFα stability by phosphorylation under normoxia and hypoxia.
Recently it was found that the protein kinase ataxia-telangiectasia
mutated (ATM) may be involved in the hypoxia-dependent
modulation of HIF-1α function. Although ATM is best known
for its role as an upstream activator of the DNA damage response
due to DNA double-strand breaks (DSBs) (Shiloh and Ziv, 2013),
it was described that ATM-deficient cells failed to accumulate
HIF-1α under hypoxic conditions. In addition, ATM activity—
but not protein—was found to be increased by about two-fold
when NHFB cells were exposed to 0.2% oxygen; an increase
in activity similar to that seen after ionizing irradiation. ATM
was also able to phosphorylate HIF-1α at S696 in the ID and
a HIF-1α S696A mutant was found to be less stable than wild-
type HIF-1α under hypoxic conditions suggesting that S696
phosphorylation stabilizes HIF-1α (Cam et al., 2010) (Figure 2).
However, not only stability but also activity of the HIF-1α S696A
mutant was reduced with the consequence of reduced DNA-
damage-inducible transcript 4 (DDIT4; also known as Dig2,
HIF-1-responsive RTP801, REDD-1) expression (Shoshani et al.,
2002). These features integrate the ATM DNA damage response
pathway with the hypoxia signaling pathway.

In addition to hypoxia, reactive oxygen species (ROS) are also
an important trigger of the DNA damage response and have been
shown to be involved in the regulation of HIFα levels (Kietzmann
and Gorlach, 2005; Gorlach and Kietzmann, 2007; Kietzmann,
2010). Although their major effects on HIFα stabilization are
exerted via regulation of the proline hydroxylation- and VHL-
dependent degradation pathway (Kietzmann and Gorlach, 2005;
Gorlach and Kietzmann, 2007), also the PI3K/Akt and ERK1/2
pathway contributed to the ROS mediated HIFα regulation
(Gorlach et al., 2001, 2003; Diebold et al., 2010). Recent studies in
the roundworm C. elegans indicated that another kinase, namely
AMP-activated protein kinase (AMPK) couples ROS and HIF-
1α regulation in a direct manner. AMPK is a key sensor of the
cellular energy status (Hardie et al., 2015) and considered to
act downstream of reduced mitochondrial respiration. In their
studies the authors demonstrated that mutations in the AMPK
ortholog of C. elegans led to increased levels of HIF-1α indicating
that AMPK is required for reducing HIF-1α. Further analyses
revealed that AMPK regulates HIF-1α post-transcriptionally and
by combining in vitro kinase assays with LC-MS analyses it
was shown that AMPK phosphorylates S419 in C. elegans HIF-
1α (Hwang et al., 2014) (Figure 2). Although, these data raise
the possibility that AMPK down-regulates HIF-1α via direct
phosphorylation, that study did not address to which extent this
phosphorylation involves or requires VHL.

Although the C. elegans study also left open whether the
direct regulation of HIFα is conserved among other species, it is
known from studies with cancer cells that ROS-dependent HIF-
1α activation requires AMPK (Jung et al., 2008). Interestingly and
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opposite to the regulation of HIF-1α by AMPK in C. elegans a
recent study showed a link between AMPK function and HIF-
1α regulation in the human hepatic cancer cell line Hep3B
(Irigoyen et al., 1999; Chen et al., 2015). In these cells, the
link between AMPK and HIF-1α appeared to be rather indirect
involving histone deacetylase 5 (HDAC5) activity which can
be phosphorylated by AMPK at S259 and S498. Since this
phosphorylation of HDAC5 by AMPK promotes its shuttling
from the nucleus to the cytosol (McKinsey et al., 2001) the
authors examined whether cytosolic HDAC5 activity is involved
in HIF-1α stabilization. They found that activation of AMPK
by AICAR enhanced cytosolic presence of HDAC5 and levels
of HIF-1α whereas the AMPK inhibitor compound C blocked
HDAC5 nuclear export andHIF-1α accumulation (Irigoyen et al.,
1999; Chen et al., 2015). Compound C, has also been shown
to prevent hypoxia-dependent HIF-1α activation in DU145 cells
(Lee et al., 2003; Hwang et al., 2004); however, this could be an
independent effect since the inhibition of HIF-1α by compound
C was also seen in AMPK−/− cells (Emerling et al., 2007).
Together, it appears that AMPK can be involved in regulation of
HIF-1α in a direct and indirect manner where the extent may be
also depending on the species.

Altogether, these findings indicate that the HIFα system
displays an enormous plasticity since its protein stabilization can
be induced by hydroxylation and phosphorylation events either
alone or in combination.

Regulation of HIF α-Subunit Nuclear
Localization and Transactivity by
Phosphorylation
Activation of multiple oncogenic pathways including growth
factor signaling coupled with enhanced MAPK signaling is
a common event in tumors (Raman et al., 2007). From
the conventional MAP kinases the extracellular regulated
kinases, ERK1 and ERK2 (p44/p42), c-Jun NH2-terminal kinase
(JNK1/2/3), p38 MAPK (p38α/β/γ/δ) are known to be of
importance for regulating cellular processes like proliferation,
differentiation, development, stress responses, and apoptosis
(Morrison andDavis, 2003; Olson andHallahan, 2004; Coulombe
and Meloche, 2007; Raman et al., 2007; Rincon and Davis,
2009; Gaestel, 2013; Serviddio et al., 2013; Tormos et al., 2013).
Therefore, up-regulation of HIFα activity by MAPK signaling
may play an essential role during tumor growth and metastasis.

To be able to act as transcription factor, stabilized HIFα
proteins need to be translocated to the nucleus. This nuclear
translocation was shown to be independent of ARNT and
to be a dynamic process where nuclear import is commonly
counterbalanced by nuclear export. Thus, the degree of nuclear
HIFα accumulation depends on the relative nuclear import
and export rates. In the case of HIFα, nuclear translocation
was shown to involve its N-terminal and C-terminal NLS,
respectively, as well as its interaction with importin 4 and 7
(Depping et al., 2015). The nuclear presence was then further
shown to be regulated by ERK1 (p44)—and ERK2 (p42)-
dependent phosphorylation. Thereby, mass spectroscopy with
in vitro phosphorylated recombinant HIF-1α revealed that HIF-
1α S641 and S643 (within the ID) served as p42/p44 MAPK

targets (Mylonis et al., 2006; Triantafyllou et al., 2006) (Figure 3).
Intriguingly, inhibition of these phosphorylation sites impaired
HIF-1α nuclear accumulation and transcriptional activity by
favoring nuclear export (Mylonis et al., 2006; Triantafyllou
et al., 2006). This implies that ERK1/2 regulates rather the
ability of HIFα to exit the nucleus rather than the import.
Indeed, an atypical but CRM1 (exportin 1 or chromosome region
maintenance)-dependent nuclear export signal (NES) (within
aa 616–658 in HIF-1α) (Mylonis et al., 2008) was found to be
phosphorylation-sensitive. Phosphorylation of S641 and S643
within the NES by ERK1/2 inhibited interaction between HIF-1α
and the exporting CRM1 and facilitated nuclear accumulation.

In line with the nuclear accumulation are findings reporting
that enhanced transcriptional activity of both HIF-1α and HIF-
2α can be observed after direct phosphorylation of the HIFα
isoforms by ERK1/2 in vitro and in vivo (Richard et al., 1999;
Conrad et al., 2000; Minet et al., 2000; Sang et al., 2003; Mylonis
et al., 2008). In line, the MEK1 inhibitor PD98059 and MKK
inhibitor U0126 decreasedHIF-target gene expression (Hur et al.,
2001; Sodhi et al., 2001; Comerford et al., 2004; Dimova et al.,
2005; Kaluz et al., 2006).

While the C-TAD of HIF-1α and HIF-2α is important for
recruitment of the coactivator CBP/p300, phosphorylation sites
within the C-TAD (Minet et al., 2000; Sodhi et al., 2001;
Lee et al., 2002) and within the ID (Sodhi et al., 2001; Lee
et al., 2002; Sang et al., 2003) of HIFα may also contribute to
induction of transactivity. Indeed, the first functionally relevant
phosphorylation sites were reported to be T796 in HIF-1α and
T844 in HIF-2α (Gradin et al., 2002). Although the kinases
phosphorylating these sites were not defined, phosphorylation of
these residues increased interaction between the HIFα-C-TAD
and CBP/p300. Moreover, it was shown that the MEK1 inhibitor
PD98059 affected the transactivity of CBP/p300 and that ERK1
could also phosphorylate the transactivation domain of p300 (aa
1751–2414) which subsequently facilitated interaction between
the HIF-1α C-TAD and p300 (Sang et al., 2003). Together
with the finding that phosphorylated HIF-1α is the major form
binding to ARNT (Suzuki et al., 2001), it appears plausible that
HIF-1 transcriptional activity increases in response to induction
of the MAPK pathway.

All together, these reports indicate that direct phosphorylation
of HIF-1α and HIF-2α by ERK1/2 can affect their nuclear
localization and transactivity.

Links between Hypoxia and Kinases in the

Regulation of HIF-1α Transactivity
A number of findings have indicated that ERK1/2 can also serve
as additional transmitter of the hypoxic signal since hypoxia
has been shown to moderately activate ERK1/2 in different
cell lines (Salceda et al., 1997; Conrad et al., 1999; Minet
et al., 2000). Thereby cell type specific variations may appear as
shown for HMEC-1 cells where involvement of ERK1 but not
ERK2 in hypoxia-mediated HIF-1 transactivation was reported
(Minet et al., 2000). In addition, by using PD98059 and by
employing a mammalian two-hybrid assay, it was shown that
the ERK pathway is also involved in hypoxia-dependent HIF-1α
transactivation (Lee et al., 2002; Sang et al., 2003). By contrast,
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FIGURE 3 | Kinases involved in nuclear accumulation of HIF-1α. Scheme of HIF-1α and its domain organization with specific amino acid residues

phosphorylation of which affects nuclear translocation. ERK2, extracellular regulated kinase2; bHLH, basic helix loop helix domain; NLS, nuclear localization

sequence; PAS, Per-ARNT-Sim domain; N-TAD, N-terminal transactivation domain; ID, inhibitory domain; C-TAD, C-terminal transactivation domain; numbers indicate

the amino acid residue range of the respective domain.

ERK1/2 activity was not increased in hypoxic growth-arrested
Chinese hamster fibroblast CCL39 cells (Richard et al., 1999)
implying that an activation of either ERK1 or ERK2 in response
to hypoxia as well as their involvement in HIFα regulation may
be cell type specific. Accordingly, the MEK1 inhibitor PD98059
suppressed hypoxia-mediated HIF-1α transcriptional activity in
Hep3B and HMEC-1 cells (Salceda et al., 1997; Minet et al.,
2000) whereas the same inhibitor was ineffective in fibroblasts
exposed to hypoxia (Agani and Semenza, 1998). However, in
all these studies direct mapping of the involved residues within
HIFα proteins were not performed; thus only an approximate
localization can be given (Figure 4).

In addition to ERK1/2, protein kinase CK2 (formerly known
as casein kinase II) has important functions in the regulation
of various cellular processes (Niefind et al., 2009; St-Denis and
Litchfield, 2009; Montenarh, 2010). CK2 was shown to affect
HIF-1α transcriptional activity (Mottet et al., 2005; Hubert et al.,
2006); however, the exact mechanisms and CK2 phosphorylation
sites in HIF-1α were not determined; likely CK2-mediated
HIF-1α phosphorylation prevents recruitment of cofactors like
CBP/p300 or stimulates HIF-1α degradation in an indirect
manner (see below).

Together, these findings indicate an interrelation between
hypoxia, ERK1/2, and CK2 signaling pathways in particular for
the regulation of HIF-1α transactivity.

KINASES REGULATING HIFα ABUNDANCE
IN AN INDIRECT MANNER

In addition to being a direct substrate for kinases, HIFα appears
to be regulated via phosphorylation of HIFα regulating proteins
in an indirect manner.

The protein kinase A (PKA) is among the best characterized
kinases and was suggested to be involved in HIF-1α
phosphorylation under intermittent hypoxia in EAhy926
endothelial cells (Toffoli et al., 2007). However, from that study
it remained open whether or not HIFα proteins can be direct
substrates for that kinase since no functional phosphorylation
site(s) was identified yet.

As mentioned above, protein kinase CK2, a constitutive
serine/threonine kinase which interestingly shows high CK2
activity in most human cancers can indirectly contribute to HIF-
1α degradation. Thereby, CK2 phosphorylates S33, S38, and S43

within VHL. Mutation of the CK2 sites within VHL or inhibition
of VHL phosphorylation with CK2 inhibitors increased VHL
protein half-life and promoted degradation of HIF-1α (Ampofo
et al., 2010). At the same time inhibited CK2 could also sequester
p53 and reduce the transcriptional activity of p53. Together, this
indicates that the indirect action of CK2 on HIF-1α and p53 can
contribute to the survival of tumor cells (Figure 5).

One of the best known kinase pathways affecting HIFα
in an indirect manner by regulating HIFα protein synthesis
involves the mammalian target of rapamycin (mTOR). The
mTOR is a serine/threonine protein kinase [also known as FK506
binding protein 12-rapamycin associated protein 1 (FRAP1)]
(Brown et al., 1994; Moore et al., 1996) that apart from
cell growth, cell proliferation, cell motility, cell survival, and
transcription contributes to the regulation of protein synthesis
in response to nutrients, hormones, growth factors, cytokines,
and stress (for review see Hay and Sonenberg, 2004; Beevers
et al., 2006; Dunlop and Tee, 2009). Thereby mTOR regulates
translation primarily via phosphorylation of eukaryotic initiation
factor 4E-binding protein 1 (4E-BP1) and ribosomal S6 kinase
(S6K) (reviewed by Hay and Sonenberg, 2004; Inoki et al.,
2005). By binding to translation initiation factor 4E (eIF4E)
4E-BP1 prevents interaction of eIF4E with other members
of the translation initiation complex and inhibits ribosomal
complex formation at the 5′-cap mRNAs. The phosphorylation
of 4E-BP1 by mTOR results in its dissociation from eIF4E
and in activation of mRNA translation (reviewed by Hay and
Sonenberg, 2004; Inoki et al., 2005). In addition, phosphorylation
of ribosomal S6K promotes translation of mRNAs containing
a terminal oligopyrimidine tract (5′TOP) in their 5′-UTR
(Figure 5).

Two major multiprotein complexes can be distinguished in
whichmTOR contributes to signaling; (i) the rapamycin-sensitive
mTOR complex 1 (mTORC1) and (ii) the rapamycin-insensitive
mTOR complex 2 (mTORC2) (Wullschleger et al., 2006). Several
excellent reviews discussing in detail the composition of the
TOR complexes and the impact of the participating proteins
for signaling are available (see Hay and Sonenberg, 2004;
Dunlop and Tee, 2009) and therefore we limit ourselves to
the issue of HIFα regulation. While mTORC1 appears to be
involved in nutrient/energy/redox sensing, mTORC2 seems to
be mainly regulated by insulin, growth factors, serum and
nutrients (Kim et al., 2003; Sarbassov et al., 2004; Frias et al.,
2006).
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FIGURE 4 | Kinases involved in regulating HIF-1α transactivity. Scheme of HIF-1α and its domains in which phosphorylation has been shown to affect

transactivity. P, represents a phosphorylated amino acid, no specific single residues sites have been mapped. ERK1/2, extracellular regulated kinase1/2; bHLH, basic

helix loop helix domain; NLS, nuclear localization sequence; PAS, Per-ARNT-Sim domain; N-TAD, N-terminal transactivation domain; ID, inhibitory domain; C-TAD,

C-terminal transactivation domain; numbers indicate the amino acid residue range of the respective domain.

FIGURE 5 | Kinases contributing to HIF-1α regulation in an indirect manner. In response to various hormones, growth factors, cytokines, oncogenes, and

stress phosphorylation events can be initiated which contribute to the regulation of HIF-1α in an indirect manner. These can influence HIF-1α mRNA translation, the

interaction with cofactors or components of the protein degradation machinery like HDM2 and VHL. Some kinases may act in both ways, however, the knowledge

about the exact mechanisms is limited. See text for more details.

The participation of mTOR in the regulation of HIF-1α
protein translation was first shown in a study with breast cancer
cells where stimulation with heregulin and HER2 signaling
increased the rate of HIF-1α synthesis in a rapamycin-dependent
manner (Laughner et al., 2001). Other studies in HUVEC and

HeLa cells (Kim et al., 2009) supported that view and also showed
that not only HIF-1α but also HIF-2α was found to be regulated
by mTOR signaling, though HIF-1α expression seems to be
regulatable by TORC1 and TORC2 whereas HIF-2α expression
is primarily dependent on TORC2 (Toschi et al., 2008).
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Hypoxia has been reported to inhibit mTOR (Arsham
et al., 2003) via induction of the hypoxia-responsive gene
DDIT4 (Dig2/RTP801/REDD1) and subsequent formation of a
complex consisting of the tuberous sclerosis tumor suppressor
proteins TSC1 (hamartin) and TSC2 (tuberin) (Brugarolas et al.,
2004). The TSC1/TSC2 complex inhibits primarily mTORC1
signaling; destruction/inhibition of the TSC1/2 complex due
to growth factors leads to activation of mTORC1 signaling
(Hay and Sonenberg, 2004). For removal of TSC2 different
kinase pathways, including PI3K/AKT, and ERK1/2 appear to
be important (Hay and Sonenberg, 2004). Once phosphorylated,
TSC2 can be captured by 14-3-3 proteins, thus leaving the
complex with TSC1 and rendering mTORC1 active (Li et al.,
2003).

Reciprocally, the hypoxia mediated inhibition of mTORC1
signaling (Brugarolas et al., 2004) appeared to be the result of a
dissociation of TSC2 from the growth factor stimulated TSC2/14-
3-3 complex. Thereby, hypoxic induction of DDIT4 seemed to
be critical. Due to the ability of DDIT4 to bind 14-3-3 proteins
this resulted in a release of TSC2 with formation of TSC1/2
complexes which subsequently inhibited of mTORC1 (DeYoung
et al., 2008).

Thus, DDIT4 and TSC1/TSC2 formation could decrease
mTOR activity and would reduce HIF-1α translation under
hypoxia. However, under hypoxia when the cellular protein
translation is generally suppressed, HIF-1α is still translated.
This occurs likely by a mechanism involving the 5′-UTR of the
HIF-1α mRNA which contains a terminal oligopyrimidine tract
that enables HIF-1α translation even when mTOR is inhibited
(Laughner et al., 2001; Thomas et al., 2006). Like with mTOR,
ATR (for ataxia telangiectasia and Rad3 related kinase) appeared
also to regulate HIF-1α translation in a region located within the
HIF-1α ORF (Fallone et al., 2013).

The involvement of mTOR in HIF-1α translation was
challenged in studies showing that rapamycin decreased hypoxia-
induced HIF-1α stability at the ODD in PC-3 cells (Hudson
et al., 2002; Dayan et al., 2009). Further, mTORC1 appeared
to act also directly on HIF-1α since an mTOR signaling motif
(FVMVL) modulating recruitment of CBP/p300 was found
immediately C-terminal of the PAS-A domain in HIF-1α (Land
and Tee, 2007). Thus, although mTOR signaling appears to affect
HIFα abundance in a more indirect manner, it appears that
also direct interactions are possible which may depend on the
stimulus.

Growth factor stimulation and hence kinase signaling is
not only important for mTOR signaling but also for crosstalk
between the HIF-1α and the p53 network (Fukuda et al., 2002;
Bardos et al., 2004). The murine double minute-2 (mdm2)
and its human ortholog HDM2 protein are negative regulators
of the p53 tumor suppressor protein (for review see Eischen
and Lozano, 2009; Kruiswijk et al., 2015). In addition to p53,
HDM2, which is a direct target of PKB/Akt (Ashcroft et al.,
2002), was shown to regulate HIF-1α expression in response
to IGF-1 in p53-null mouse embryo fibroblasts (p53−/− MEFs)
(Bardos et al., 2004). Moreover, this appeared to involve protein
synthesis and HDM2 phosphorylation at S166 by PKB/Akt
(Bardos et al., 2004) suggesting that the PKB/Akt pathway also

affects HIF-1α synthesis via HDM2 in a p53 independent manner
(Figure 5).

Altogether, kinases regulating HIFα synthesis or degradation
by acting on critical regulators of these processes are important
mediators which interlink growth factor controlled pathways
with hypoxia signaling.

EXPLOITING KINASES AS UPSTREAM
REGULATORS OF HIF-1α IN CANCER
THERAPY

An impaired regulation of kinase signaling is associated with a
number of systemic diseases including cardiovascular diseases,
pulmonary diseases, Alzheimer’s disease, type 2 diabetes mellitus,
and last but not least cancer. In particular, intermittent
hypoxia in pre-malignant lesions and HIF-1α were proposed
to contribute to the reprogramming of metabolism toward
permanent conversion of glucose to lactate even in aerobic
conditions (Gatenby and Gillies, 2004) known as the “Warburg
effect,” mitochondrial suppression as well as to acidosis. This
provides a growth advantage, and an altered response to
growth factors which are major actors on kinase signaling
pathways. Thus, the interconnection of kinase signaling pathways
and hypoxia signaling, i.e., HIFα regulation, is of high
therapeutic interest. This is most obvious in cancer therapy
where different kinase inhibitors are in clinical use and where
severe hypoxic tumors are more resistant to chemotherapy and
radiation. Interestingly the most successful kinase inhibitors
currently used in cancer therapy are tyrosine kinase inhibitors
like imatinib, gefitinib, and erlotinib. Tyrosine kinases are
often found to act as receptors for hormones and growth
factors and therefore they appear often to have an effect
also on HIF-1α which is either direct or indirect (Figure 5).
In addition to the tyrosine kinase inhibitors, other small
molecules with the potential to act on MAPK, mTOR, or
Akt pathways are under heavy investigation. Interestingly, the
inhibitor of pyruvate dehydrogenase kinase II, dichloroacetate,
has been shown to reactivate mitochondria via inhibition of
HIF1α involving a PHD-dependent mechanism and a PHD-
independent mechanism, involving activation of p53 and GSK3β
(Sutendra et al., 2013).

However, these inhibitors are often not entirely specific
but rather selective which explains their variety of actions as
well as their effectiveness also in other disorders, including
immunological, neurological, metabolic, and infectious diseases.
Although this is already an advantage, it is difficult to predict to
which extent kinase inhibitors could be made selective or even
specific to target the HIF pathway. This is not only complicated
by the fact that the respective kinase having a dominant role in
HIFα regulation needs to have a role in the particular tumor
entity. Thus, significant challenges remain. In addition to quick
evolvement of tumors resistant to kinases inhibitors, appropriate
multi-targeted inhibitors or combinations appear currently to be
of advance in clinical therapy. Further, more understanding of the
kinase inhibitor specificities toward HIF-1α, metabolic and toxic
side effects would be needed to optimize cancer therapy.
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CONCLUSION

Detailed knowledge about the kinase pathways and their effect
on HIFα regulation is essential to optimize and to develop highly
efficient cancer therapies. It is now especially necessary to gather
more knowledge about the involvement of kinase pathways for
the regulation of HIF-2α and HIF-3α since most of the data so
far, with respect to kinases andHIFα regulation, have been gained
from studies on HIF-1α. Given that certain aspects between HIF-
1α and HIF-2α as well as the occurrence of several splice variants
of HIF-3α point to more different roles of each HIFα protein in a
number of processes, it is obvious that this knowledge would be
beneficial for therapeutic purposes.

Overall, the HIFα system appears to be a central integrator
of various signals coming from different pathways. Thereby it
displays an enormous plasticity being regulated by a number of

post-translational modifications, among them phosphorylation,
either alone or in combination.
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Cellular protein homeostasis is tightly regulated by ubiquitination. Responsible for target 
protein ubiquitination is a class of enzymes, the so-called ubiquitin E3 ligases. They 
are opposed to a second class of enzymes, called deubiquitinating enzymes (DUBs), 
which can remove polyubiquitin chains from their specific target proteins. The coaction 
of the two sets of enzymes allows the cell to adapt its overall protein content and the 
abundance of particular proteins to a variety of cellular and environmental stresses, 
including hypoxia. In recent years, DUBs have been highlighted to play major roles in 
many diseases, including cancer, both as tumor suppressors and oncogenes. Therefore, 
DUBs are emerging as promising targets for cancer-cell specific treatment. Here, we will 
review the current understanding of DUBs implicated in the control of hypoxia-inducible 
factor, the regulation of DUBs by hypoxia, and the use of DUB-specific drugs to target 
tumor hypoxia-signaling.

Keywords: DUBs, ubiquitination, HiF, protein homeostasis, cancer

inTRODUCTiOn

Like most other posttranslational modifications (PTMs), ubiquitin (Ub) conjugation is a reversible 
modification (1). Ub E3 ligases covalently attach monomers of Ub to lysine (and also cysteine) 
residues of their target proteins. Furthermore, ligases also convert monoubiquitination into poly-
ubiquitin chains by attaching one by one further Ub monomers to one of the seven internal lysine 
residues (K6/K11/K27/K29/K33/K48/K63) of the preceding Ub molecule. In contrast, the family of 
DeUBiquitinating enzymes (DUBs) breaks down those mono- and polyubiquitin chains from the 
target protein. Besides counteracting the action of the Ub E3 ligases, DUBs are proteases that process 
Ub precursors.

Of the nearly 100 DUBs encoded by the human genome, 79 are predicted to be active and mostly 
cleave particular types of Ub chain linkages from their respective target proteins. DUBs can be 
grouped into six families based on sequence and structure similarity: ubiquitin-specific proteases 
(USPs) that comprise the largest and most diverse subfamily, ubiquitin carboxyl-terminal hydrolases 
(UCHs), ovarian tumor proteases (OTUs), Josephins, JAB1/MPN/MOV34 (JAMMs), and the more 
recently discovered monocyte chemotactic protein-induced proteins (MCPIP). With the exception 
of JAMMs, which belong to the Zn2+-dependent metalloproteases, all the rest use the classical 
cysteine protease triad in the catalytical side (2).

Classically, the reversal of the polyubiquitination protects the target protein from being degraded 
by the proteasome, but ubiquitination has also been shown to have a broad range of non-catabolic 
functions (3). Thus, it is not surprising that DUB activity or inappropriate expression impacts on the 
regulation of multiple biological processes and several signaling pathways that are frequently altered 
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in many disorders from cancer over neurodegenerative patholo-
gies to inflammatory diseases [for more details, please refer to 
Ref. (4)]. Because of their direct or indirect implications in those 
diseases and because of their potential druggability, DUBs have 
become of increasing interest in recent years.

Hypoxia is a feature of most human cancers (5). The cancer 
cells and their environment adapt to and survive under low 
oxygen availability. The activation of the hypoxia-inducible 
factor (HIF) that orchestrates the hypoxia-signaling pathway is 
instrumental to this adaptation. HIF is a heterodimeric transcrip-
tion factor that consists of a constitutively expressed β-subunit 
(HIF-β) and HIF-α, whose expression is tightly regulated 
through the ubiquitin-proteasome system (UPS) (6–8). HIF trig-
gers the expression of hundreds of direct target genes, indirect 
transcription factors, and non-coding RNAs that enable cancer 
cell survival and tumor progression by promoting, among oth-
ers, angiogenesis, metabolic rewiring, genomic instability, drug 
resistance, and the self-renewal capacity of cancer stem cells. HIFs 
are also activated by genetic alterations in human cancers, such 
as the von Hippel–Lindau protein (pVHL) loss of function in 
clear-cell renal carcinoma (9). Accordingly, sustained expression 
of HIF-α in tumors has been associated with higher aggressive-
ness, migratory, and metastasis-initiating potential and therefore 
worse prognosis (10, 11).

In this review, we will summarize the current knowledge about 
the action of DUBs on HIF-α and the regulation of those enzymes 
by hypoxia. We will also discuss the potential of exploiting DUBs 
to target tumor hypoxia signaling.

THe CAnOniCAL HiF SiGnALinG 
PATHwAY

The adaptive cellular program in response to low oxygen avail-
ability is mainly triggered by two HIF-α subunits (HIF-1α and 
HIF-2α), which share several common targets but also exhibit 
non-redundant functions (12). Anyhow, the levels of both 
HIF-α subunits result from the dynamic interplay between their 
ubiquitination and deubiquitination. In well-oxygenated cells, 
HIF-α is very unstable, as it is degraded by the proteasome within 
approximately <5 min after translation, whereas HIF-α’s half-life 
is greatly increased in hypoxia (7, 8, 13). Proteasomal degrada-
tion is triggered by the continuous polyubiquitination of HIF-α 
by pVHL (9). pVHL is part of an E3 ligase complex and binds to 
HIF-α after the hydroxylation of two designated proline residues 
in HIF-α’s oxygen-dependent degradation domain (ODDD), the 
central regulatory domain that confers its oxygen sensibility (8). 
This binding can be stabilized by SSAT2, therefore enhancing HIF-
α ubiquitination (14). The family of prolyl hydroxylase domain-
containing proteins (PHDs), the oxygen sensors also referred to 
as EGLNs or HPHs, catalyze the hydroxylation of HIF-α (Pro402 
and Pro564, in the case of HIF-1α) (15–19). HIF-α also harbors an 
N-terminal basic helix-loop-helix (bHLH) domain that mediates 
HIF-binding to the target DNA after heterodimerization with 
HIF-β/ARNT via the adjacent PAS domain. Of the two transacti-
vation domains (TAD), the N-terminal TAD (N-TAD) lies within 
the ODDD, while the C-terminal TAD (C-TAD) is responsible 
for the recruitment of CBP/p300 needed to successfully induce 

the transcription of the HIF target genes that are characterized 
by having one or more HREs (hypoxia response elements) (20, 
21). This C-TAD contains an asparagine residue (Asn803, in the 
case of HIF-1α) that upon oxygen-dependent hydroxylation by 
FIH (factor inhibiting HIF) hinders the successful interaction of 
HIF with CBP/p300 and therefore, HIF’s transactivation activity 
is reduced (22). Interestingly, HIF induces the expression of two 
of its negative regulators, PHD2 and PHD3, in order to ensure its 
own rapid degradation upon reoxygenation (19, 23). However, in 
conditions of chronic hypoxia, once the transcriptional adaptive 
program has been triggered, HIF-α levels drop again to avoid 
sustained HIF signaling and assure cell survival (24).

In the context of the canonical HIF signaling pathway, so 
far there are relatively few DUBs reported in the literature, and 
reports are mostly focused on the impact on HIF-1α (Figure 1 
upper part). USP20 (also called pVHL interacting DUB2, VDU2) 
was the first DUB to be described to reverse pVHL-mediated 
HIF-1α ubiquitination (25). In turn, USP20 is a pVHL target (26). 
MCPIP1 also deubiquitinates HIF-1α to promote angiogenesis 
(27). In the context of ciliogenesis, USP8 has been found to bind 
to HIF-1α’s PAS domain and to partially protect HIF-1α from 
degradation (28). More recently, UCHL1 has been shown to be a 
positive regulator of HIF-1α protein stability acting on HIF-1α’s 
ODDD (29).

THe nOn-CAnOniCAL HiF SiGnALinG

Not surprisingly because of HIF’s crucial role in cell fate, many 
more proteins have been described to be involved in the control 
of its stability (Figure 1 lower part). The heat-shock protein 90 
(HSP90) that interacts with the PAS domain of HIF-α regulates 
its degradation in an O2/PHD/pVHL-independent manner (30). 
HSP90 competes with RACK1 for binding to HIF-α and prevents 
the recruitment of the elongin C/B Ub E3 ligase complex (31). 
A similar mechanism has been proposed for HIF-α activation 
by ErbB4 (32). As for other HSP90 client proteins, Cullin5 also 
regulates HIF-α degradation independently of elongin C/B func-
tion (33). The tumor suppressors p53, TAp73, and pTEN promote 
the Ub-mediated degradation of HIF-1α via recruitment of the 
Ub E3 ligase Mdm2 (34–36). Furthermore, Fbw7 ubiquitinates 
and induces HIF-1α degradation following phosphorylation by 
GSK3β (37, 38). Interestingly, this degradation can be antago-
nized by the Ub-specific protease (USP28) (38). Until now, this 
is the only non-canonical Ub E3 ligase–DUB pair identified for 
proteasomal degradation of HIF-α. HAF, the hypoxia-associated 
factor, seems to play a dual role in the control of HIF-α stabil-
ity and/or activity. While HAF acts as an Ub E3 ligase targeting 
HIF-1α for degradation independently of oxygen availability, 
hypoxia-induced SUMOylated HAF promotes HIF-2α transacti-
vation without affecting its stability (39, 40). Furthermore, RNF4 
controls the levels of SUMOylated HIF-2α (41). USP19 seems to 
be required for the hypoxic accumulation of HIF-1α, though the 
effect is not dependent on its deubiquitinase activity (42). USP19 
is further substrate of Siah-1 and Siah-2 Ub E3 ligases, which also 
control the stability of PHD1, PHD3, and FIH (43–45). Thus, 
further studies are necessary to clarify the direct impact of USP19 
in HIF-1α ubiquitination.
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The chaperone-dependent Ub ligase CHIP targets HIF-1α but 
not HIF-2α for degradation either by the proteasome or by the 
autophagic machinery, the second big protein degradation and 
recycling pathway that has been implicated in the elimination of 
ubiquitinated HIF-α (46–49). In this regard, Cezanne (OTUD7B), 
a deubiquitinase targeting K11 Ub chains (50), has been reported 
to protect HIF-1α from lysosomal degradation. While this pro-
cess is independent of HIF-1α prolyl hydroxylation, it depends on 
the presence of pVHL (51).

Calpain and the activation of the forkhead transcription factor 
FOXO4 destabilize HIF-α, although the underlying molecular 
mechanisms are unknown (52, 53). Further studies are also 
needed to characterize the role of Parkin in the regulation of 
HIF-α, based on its identification within the Parkin-dependent 
ubiquitinome by a proteomic approach (54). In contrast with 
all the previous reports, it is worth mentioning the role played 
by the Ub E3 ligase TRAF6. TRAF6 increases HIF-1α but not 
HIF-2α polyK-63 ubiquitination and protects the protein from 
proteasomal degradation (55).

In addition to HIF-α stability, mRNA expression and activity 
of the transcriptional complex fine-tune HIF regulation. In this 
regard, USP52 is required for the protection of HIF-1α (but not 
HIF-2α) mRNA from premature degradation and therefore, 
allows the normal hypoxic induction of HIF-1α (56). The case of 
USP52 is somewhat special as this protein, although structurally 
related to the family of USPs, lacks the catalytic cysteine (57). 

Besides protecting HIF-1α protein from its degradation, Cezanne’s  
catalytical activity is also required for maintaining basal levels of 
the E2F1 transcription factor. Moniz et al. demonstrated that E2F1 
controls the expression of HIF-2α mRNA and therefore, established 
an indirect role of the DUB Cezanne in HIF-2α expression (58).

Finally, a number of DUBs have been shown to regulate 
transcription factors and signaling pathways that cross talk with 
HIFs, likely contributing to the complexity and specificity of the 
cellular hypoxic response, even though they go beyond the scope 
of this review (59–61).

ReGULATiOn OF DUBs BY HYPOXiA

As for other enzymes, there are several possible layers of regula-
tion of DUB activity. Next to the transcriptional regulation, the 
stability and translation of the mRNA can be regulated by 
mRNA-processing enzymes. The turnover and therefore, the 
availability of the mature protein can be set by a variety of PTMs. 
PTMs can also interfere with the binding of the DUBs to their 
target proteins or other interactors, as well as modulate revers-
ibly and irreversibly the (auto) catalytical activity of the DUB. 
Hypoxia, being an extreme cellular stress condition, should be 
able to regulate deubiquitinating activity on all the possible dif-
ferent layers in order to adapt DUB functions to the cell’s needs. 
However, the literature about the regulation of specific DUBs 
by hypoxia (1% O2, if not specified differently) is still scarce and 
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almost exclusively restricted to transcriptional regulation. For 
instance, the expression of USP13 is reduced upon treatment with 
as little as 6 h of 2% O2 in melanoma cell lines (59). The reduc-
tion of the mRNA also translates to the protein level and causes 
the loss of Siah-2 stabilization. Similarly, in colon cancer cells 
hypoxia reduces USP46 mRNA and protein levels and, therefore, 
diminishes USP46’s stabilizing effect on the tumor suppressors 
PHLPP1 and PHLPP2, conferring to the colon cancer cells an 
increased paclitaxel resistance (62, 63). Guo et al. provide more 
detailed information about the hypoxia-mediated transcriptional 
regulation of the UCH CYLD. They suggest that the decrease of 
CYLD mRNA and protein seen in glioblastoma cells is due to the 
hypoxia-induced increase of the transcriptional repressors Snail 
and Hes1 (64). In contrast, hypoxia has been shown to increase 
Cezanne via p38 MAPK (65).

An et al. claimed that CYLD is targeted for proteasomal deg-
radation after interaction with the HPV E6 protein in hypoxia 
(66). This is to date the only report of a posttranslational regula-
tion of DUB activity by hypoxia. However, Lee et  al. present 
evidence that the activity of many, if not most, DUBs depends 
on the redox state of the cell. They show that the catalytically 
active cysteine residue can be oxidized, for instance, by intra-
cellular hydrogen peroxide, leading to the abolishment of the 
deubiquitinating activity. The inactivating oxidation can be 
reversed in the presence of reducing agents, such as DTT, or 
prevented by antioxidants (67). As hypoxia and mitochondrial 
ROS production are intrinsically linked it might not be too 
far-fetched to propose that hypoxia directly modulates DUB 
activity via ROS.

DYSReGULATiOn OF HYPOXiA-ReLATeD 
DUBs in CAnCeR

Given the importance of Ub-mediated changes in protein func-
tion and homeostasis, it is not by chance that the entire process 
is highly regulated. Disruption of the ubiquitination cycle by 
mutations or altered expression of specific components within 
the cascade has been associated with several disorders. In par-
ticular, more than 30 DUBs have been associated with cancer 
directly or indirectly. Both, the loss of a specific DUB activity or 
its hyperactivity are non-desired events if the targets are tumor 
suppressors or oncogenes, respectively. Recurrent mutations of 
DUBs are rare in cancer with only few exceptions. Gene fusions 
with RUNX are reported for USP42 and USP16 in hematologic 
diseases, such as chronic myelomonocytic leukemia and acute 
myeloid leukemia. However, dysregulated mRNA levels of DUBs 
are implicated in many malignancies. Here, we will focus only on 
a few examples of hypoxia-related DUBs, for a more extensive 
overview please refer to the very comprehensive review by 
D’Arcy et al. (68).

Germline mutations of the tumor-suppressor gene CYLD are 
prevalent in familial cylindromatosis, a genetic condition that 
leads to predisposition for developing multiple skin tumors (69, 
70). In addition, CYLD deubiquitinating activity has been seen 
to be abolished in different cancers on the protein level by inac-
tivating phosphorylations or destabilizing polyubiquitination 

(71). More recently, it has been reported that USP8 is frequently 
mutated in adenomas causing Cushing’s disease (72).

USP28 is a DUB whose overexpression has been reported 
in breast and colon cancer and glioblastoma (73, 74). A recent 
publication has proposed USP28 to be a potential predictive 
marker in bladder cancer, as they found correlation of USP28 
with tumor histological grade, clinical stage, recurrence, and 
survival (75). Similar to USP28, UCHL1 has also been proposed 
to be a useful biomarker, being overexpressed in gastric cancer 
(76) and in myeloma (77), and epigenetically down-regulated in 
colorectal cancer (78). As mentioned above, downregulation of 
USP46 may serve as a biomarker of resistance to chemotherapy 
in colon cancer (63). Finally, despite being inconsistent to its 
role in the regulation of HIF-1α and HIF-2α, decreased Cezanne 
expression is associated with the progression and poor prognosis 
in hepatocellular carcinoma (79).

DUBs AS DRUGGABLe TARGeTS FOR 
THeRAPY

Modulators of individual UPS components are emerging as a 
novel class of anticancer drugs. The initial research focus had 
been directed toward targeting the proteasome, with activity 
described for many compounds with proteasome inhibitory 
activity, including bortezomib. Because Ub E3 ligases provide 
substrate specificity, their direct targeting may avoid the del-
eterious side effects associated with the global inhibition of the 
proteasome, making them interesting candidates as drug targets. 
Nutlin-3 and JNJ-26854165 are classic examples directed against 
the Ub E3 ligase MDM2 and are currently undergoing clinical 
evaluation as anticancer therapy.

Newly arising, DUBs may serve as equally or more useful 
targets. Indeed, DUBs are highly specialized and evolutionary 
linked to proteases, a typified pharmaceutical target class for drug 
discovery, thanks to their well-characterized catalytical domain. 
Several partial and specific inhibitors against a small number of 
DUBs have been developed, have proved active in preclinical 
studies as reviewed recently by D’Arcy and Linder (80), and have 
provided feasibility for targeting these enzymes for anticancer 
purposes. Among them, HBX 41,108 is a partially selective USP 
inhibitor because it inhibits USP5, USP7, USP8, and UCHL3 in 
addition to caspase 3 (81). This is to our knowledge the only DUB 
inhibitor so far described as targeting one of the DUBs linked to 
the HIF signaling pathway. Interestingly, the inhibition of USP8 
suppresses growth of gefitinib-resistant non-small cell lung 
cancer cells, though no link to the potential impact on HIF-1α is 
reported (82). It is tempting to speculate about new drugs directed 
against hypoxia-related DUBs that succeed to fight intratumoral 
hypoxia-signaling in the coming years.

COnCLUSiOn

HIF-α protein homeostasis is tightly controlled in healthy cells in 
order to avoid inappropriate activation of HIF signaling. A variety 
of E3 ligases and DUBs are involved in this task by triggering and 
protecting HIF-α from its degradation, respectively. Permanent 
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activation of the HIF signaling pathway has been found in many 
tumors and seems to be beneficial for tumor growth and cancer 
progression. In most cases, the reason for sustained HIF-α pro-
tein levels in the tumor cells are still not revealed, but a possible 
mechanism is the pathological increase of HIF-α specific DUB 
activity. In recent years, the dysregulation of deubiquinating 
enzymes in cancer (and other diseases) has become of increasing 
interest, and alterations of their expression and activities have 
been shown to have diagnostic value. Whether cancer-related 
events that lead to the upregulation of DUB activity are the 
primary cause of uncontrolled HIF signaling, or whether initial 
hypoxia upregulates DUB expression as a positive feed-back-loop 
is not determined. But in the light of DUBs being druggable 
enzymes, it is important to understand their implications in HIF 
and tumor hypoxia-signaling.
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The voltage-dependent anion channel (VDAC) is the main interface between the cytosol 
and mitochondria of cells. It plays a crucial role in both mitochondrial metabolism and 
cell death. The main basic function of this channel is to mediate and gate the flux of 
small ions, metabolites, and adenosine triphosphate. Changes in its structure, and thus 
conformation, are expected to affect its activity and modulate the ability of cancer cells 
to expand. In this review, we describe a novel mechanism by which mitochondria of cells 
in hypoxia, a low level of oxygen, protects from apoptosis. In hypoxia, some mitochon-
dria become enlarged due to hyperfusion. These mitochondria possess a truncated 
form of VDAC1 (VDAC1-ΔC), which is linked to the higher metabolic capacity and the 
greater resistance to cell death of hypoxic cells. However, not all of the VDAC1 protein is 
truncated, but the amount of the full-length form is diminished compared to the amount 
in normoxic cells. First, we describe how such a decrease effects cell proliferation, respi-
ration, glycolysis, and other processes. Second, we report on a novel mitochondrial-en-
dolysosomal crosstalk that leads to VDAC1 truncation. By pharmacological targeting of 
VDAC1-ΔC, the production of energy could be turned off and the sensitivity to cell death 
restored. This could counteract the favorable microenvironment that gives cancer cells 
a growth advantage and thereby disrupts the balance between life and death, which is 
controlled by VDAC1.

Keywords: cancer, mitochondria dysfunction, vDAC1, hypoxia-inducible factor 1, resistance to cell death

inTRODUCTiOn

Mitochondria have evolved over time to take on a symbiotic relationship within eukaryotic cells 
to produce adenosine triphosphate (ATP) through activation of the electron transport chain 
(1). The production of ATP is probably the most important function of mitochondria, together 
with the regulation of apoptosis. Thereby, they are involved in different processes essential to the 
maintenance of cellular homeostasis. Modifications in metabolism and the redox status, critical 
steps in tumor cell transformation and progression, make mitochondria attractive targets for 
therapeutic treatment. Therefore, any modification to cancer cell metabolism and more specifi-
cally to mitochondrial metabolism, by increasing reactive oxygen species (ROS) production, or 
stimulating mitochondrial permeability transition to induce cell death, could be promising new 
therapeutic strategies (2).

How do mitochondria behave in hypoxia? Hypoxia is a decrease in the oxygen concentration 
compared to the normal physiological concentration and is a characteristic of the tumor microenvi-
ronment. Far from being a disadvantage, hypoxia is an undeniable force for the tumor cell. Functional 
benefits of hypoxia include epigenetic modifications, tumor vascularization, modified metabolism, 
signaling of metastasis, invasion and extravasation, cancer stemness, and innate immune activation, 
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all of which are under the control of complex molecular pathways 
driven by the transcription factor the hypoxia-inducible factor 
(HIF) (3, 4). These changes help cells to proliferate and resist 
cell death induced by chemotherapy or radiation. Among the 
processes activated during tumor growth, metabolism, and more 
specifically glycolysis, is the one that is the most exacerbated by 
hypoxia (5, 6). To counterbalance mitochondrial generation of 
ROS that interfere with cell survival, HIF-1 activates pyruvate 
dehydrogenase kinase (PDK1) to block the conversion of 
pyruvate to acetyl CoA resulting in decreased flux through the 
tricarboxylic acid (TCA) cycle (7, 8). Moreover, HIF-1 upregu-
lates the expression of COX4-2, present in complex IV, and the 
mitochondrial protease LONP1, which in turn degrades COX4-1. 
COX4-2 is then more efficient at facilitating electron transfer 
to O2 and thereby protects the cell from oxidative damage in 
hypoxia (9). HIF-1-mediated inhibition of MYC (10) and PGC-1 
also results in reduced mitochondrial biogenesis (11). However, 
cancer cells have selectively found new mechanisms that promote 
their survival.

In this mini review, we highlight a new hypoxic mechanism 
that modulates the amount (decrease) and structure (a cleaved 
form lacking its C-terminus) of the most abundant protein of 
the outer mitochondrial membrane (12), the voltage-dependent 
anion channel (VDAC), which profoundly impacts cancer cell 
proliferation and survival.

THe vOLTAGe-DePenDenT AniOn 
CHAnneL: FUnCTiOn, ORGAniZATiOn, 
AnD STRUCTURe

Voltage-dependent anion channel plays a key role in both mito-
chondrial metabolism and cell death, acting as a convergent point 
of control (13, 14). The function of VDACs as a pore seems quite 
clear-cut, but other suspected more complex functions are yet to 
be elucidated. VDACs play a crucial role as a gatekeeper for the 
entry and exit of many metabolites. They mediate and gate the 
flux of small ions (Cl−, K+, Na+) with a preference for anions and 
metabolites (NADH, citrate, succinate, glutamate, pyruvate, and 
glucose) and act as channels that constitute the main pathway 
for passage of ATP/ADP (15–18). In addition to their role in 
bioenergetics, VDACs act as a scaffold through interactions with 
numerous proteins. They are anchors for pro- and anti-apoptotic 
proteins, respectively, of the hexokinase (HK) (19, 20) and Bcl-2 
families (21–24) of proteins, which contribute to the balance 
between survival and cell death.

Voltage-dependent anion channels exist as three isoforms: 
VDAC1, VDAC2, and VDAC3, encoded by three different 
genes. The three human VDAC genes share the same number 
of exons for each gene isoform (25). The human VDAC1 gene 
spans about 30 kb localized on the chromosome 5q31-32 (26), 
the human VDAC2 has been mapped to chromosome 10q22 and 
is 16.4 kb in length whereas the human VDAC3 is localized on 
chromosome 8p11.21 with a length of 14.3 kb. The VDAC2 gene 
uses several polyadenylation sites, thus giving rise to multiple 
mRNA, whereas the VDAC3 gene presents an alternative splic-
ing event that corresponds to an additional ATG. At the protein 

level and in mammals, VDACs share ~70% identity with a very 
similar molecular mass of 30–35  kDa. They are known to be 
expressed ubiquitously in mammalian mitochondria, where 
VDAC1 remains the most abundantly expressed of the three 
isoforms (27). VDAC1 has also been detected in the plasma 
membrane of human lymphocytes (27, 28) and in the sarco-
plasmic reticulum (29).

Analysis of the structure of VDACs revealed a 19-stranded 
β-barrel fold (13), yet only 13 of these strands form the wall of the 
channel. The N-terminal region of VDACs is very dynamic and 
exposed to the cytoplasm but located inside the pore. It acts as 
the voltage sensor and maintains the channel in an open or closed 
status (25). In an open-state configuration, VDACs are capable of 
passing millions of ATP molecules per second in vitro (17) and up 
to 100,000 ATP molecules per second under physiological condi-
tions (16, 17), using at least five different trajectories (30). By 
contrast, very little is known about the function of the C-terminus 
of VDACs. It possesses NAD+-binding sites, considered essential 
for glycolysis (31). Finally, VDAC1 can oligomerize and assemble 
into a dynamic equilibrium of dimers, trimers, tetramers, and 
higher oligomers (32). These conformational changes could 
occur upon induction of apoptosis (33). However, the function 
of VDAC1 oligomers is not known. They may contribute to the 
stabilization of the protein (34) and may offer a more stable 
platform to anchor HKs I and II (32).

THe vOLTAGe-DePenDenT AniOn 
CHAnneL: MODiFiCATiOnS, SiLenCinG, 
AnD OveR-eXPReSSiOn

Post-translational modifications, changes in expression, or 
even mutation in VDACs profoundly disrupt metabolism and, 
thus, the balance between cell survival and cell death. The 
three isoforms of VDAC can be post-translationally modi-
fied by phosphorylation and acetylation at multiple sites (35). 
The role of VDAC1 phosphorylation remains unclear, as it is 
difficult to study these modifications on highly hydrophobic 
integral mitochondrial outer membrane proteins. The impact of 
these modifications has been studied mostly in the context of 
apoptosis. However, no direct relationship to VDAC function 
or activity has been demonstrated. The relevance of acetylation 
remains to be determined. Recently, our studies showed a new 
form of post-translational modification of VDAC1; C-terminal 
truncation of the protein to give VDAC1-ΔC (discussed in 
Section “The Hypoxic Mitochondrial Phenotype and VDAC1-
ΔC”) (Figure 1). This modification occurred specifically under 
hypoxic conditions. This hypoxic form was associated in some 
cancer cell lines with resistance to chemotherapy-induced apop-
tosis, a higher output of ATP and was found in late stage tumors 
of patients with lung cancer (36). A mutation in VDAC1 that 
resulted in the removal of 60% of the length of the C-terminal 
region has been described in colorectal and gastric cancers, 
but the consequence on metabolism and apoptosis is still to be 
determined (37).

Deletion of genes coding Vdac in mice models has provided 
information concerning the functions of VDACs. Vdac1 and 
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FiGURe 1 | A HiF- and TP53/73-dependent model that potentiates tumor cell survival in hypoxia through the formation of enlarged mitochondria that 
interact with endolysosomes to modify mitochondrial vDAC1, an ATP channel-regulating metabolism and apoptosis. As oxygen diffuses from a vessel, 
a decreasing gradient in the oxygen concentration occurs in the adjacent tissue (top). As the level in oxygen decreases, resistance to radiotherapy and 
chemotherapy increases since the former requires oxygen for DNA damage, and the latter depends on the limits of tissue diffusion of the drug. Hypoxic cells with 
resistance to chemotherapy show the presence of enlarged hypoxic mitochondria (magnified on the bottom left). Microfusion between the mitochondrial outer 
membrane and an endolysosomal membrane takes place (magnified on the bottom right), and a cleaved form of VDAC1 is produced, according to the following 
steps: (1) VDAC1 is exposed to an endolysosome, (2) a complex formed of BNIP3/Mieap (mitochondrial proteins) and clathrin (endolysosomal protein) maintained 
microfusion of both membranes, (3) the endolysosomal asparagine endopeptidase (AEP), in contact with the mitochondrial outer membrane, specifically cleaves 
VDAC1, and (4) VDAC1-ΔC promotes resistance to apoptosis and a blockade in cytochrome c release.
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Vdac3 heterozygote embryonic stem cells have been generated to 
obtain hetero- and homozygote knockout mice (38, 39). Vdac1−/− 
mice did not meet the normal Mendelian pattern, suggesting 
partial embryonic lethality at days 10.5–11.5. For the mice that 
survived, multiple respiratory defects appeared in skeletal and 
cardiac muscles. The mice were fertile but were retarded in growth. 
Mitochondria from muscle fibers of skin contained enlarged 
mitochondria with very compact cristea. Vdac3−/− mice survived 
with defects in mitochondrial respiration in heart tissue. Males 
were also infertile with alterations to their sperm. A combination 
of both Vdac1−/− and Vdac3−/− deletions was not lethal. Finally, the 
homozygote mice lacking Vdac2 died during development (40). 
Although it seems surprising not to find VDACs in a tissue, we 
recently reported, using the Cancer Genome Atlas (TCGA) data 
sets from 89 cancer studies, that deletion of the VDAC1 gene is 
found in some cancer types (41). Even if the VDAC1 gene was 

mainly heterologously lost, some homologous loss was found. 
Clear cell renal cell carcinoma (ccRCC) and ovarian cancers 
seemed to be the most affected by the homologous loss of the 
VDAC1 gene, whereas the heterologous loss was almost ubiq-
uitous. It might be interesting to further examine these data to 
check if the VDAC2 and VDAC3 genes are also deleted or if com-
pensation has taken place to counterbalance for the homologous 
loss of VDAC1. New aspects of the function of VDAC1 were high-
lighted in our recent transcriptome analysis of mouse embryonic 
fibroblasts (MEFs) knocked out for Vdac1 (41). We characterized 
the cellular and molecular phenotype of both Vdac1−/− MEF and 
MEFs transformed with the pBabe-RASv12 vector, Vdac1−/− RAS 
MEF. Our results pointed to alterations in programs controlling 
HIF-1, cell death, and survival, as well as cell proliferation and 
motility. We confirmed the presence of alterations in OXPHOS 
and glycolysis in knocked out cells, which was accompanied by 
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a higher level of apoptosis. Of note, Vdac1−/− MEF and Vdac1−/− 
RAS MEF grew better in hypoxia, by maintaining respiration and 
promoting glycolysis. Vdac1−/− RAS MEF formed tumors faster 
than Wt RAS MEF in nod-scid mice. Moreover, after dissection 
of the various mechanisms involved, our results showed a strong 
impact of VDAC1 on tumor development, through alterations in 
the inflammatory response as a result of an abnormal vascula-
ture due to ROS production and HIF-1α stabilization. Changes 
in metabolism were also observed in both Vdac1−/− MEF and 
Vdac1−/− RAS MEF. The first surprise came from the impact of 
hypoxia on the behavior of Vdac1−/− cells, in particular on cell 
proliferation. These initial results lead us to revisit the Mendelian 
ratio observed in the Vdac1−/− mice. Indeed, a large number of 
Vdac1−/− embryos did not survive (60%), whereas the Vdac1−/− 
embryos that survived gave an almost normal phenotype. Is it 
possible that the non-viable Vdac1−/− embryos were not exposed 
to low oxygen concentrations during development and, therefore, 
apoptosis prevailed? Our second hypothesis is that non-viable 
Vdac1−/− embryos may have developed dysfunctional blood ves-
sels during embryogenesis. The second surprise came from our 
result that suggested the involvement of VDAC1 in modulating 
the structure of blood vessels and in enhancing the inflammatory 
response (41). Indeed, accumulation of ROS in Vdac1−/− RAS 
MEF-derived tumors triggered HIF-1α stabilization, abnormal 
vasculature, and leakage of red blood cells, thus generating an 
inflammatory response that resulted on a strong impact on 
VDAC1 tumor development. To our knowledge, this is the first 
time that VDAC1 has been connected to such events. These 
pathways should not be neglected in the future when considering 
VDAC1 as a therapeutic target.

Exogenous over-expression of VDAC1 in different cell lines 
always seems to be linked to apoptosis (24, 25, 42, 43). However, 
the impact of VDAC1 directly or indirectly on apoptosis is not 
yet clear. It may depolarize the inner membrane (44) as it could 
trigger the mitochondrial permeability transition pore (MPTP) 
(45). However, we showed that VDAC1 was over-expressed in 
lung adenocarcinomas tumor tissue from 44 patients (36). More 
recently, after analysis of the same TCGA data sets, as described 
above, expression of Vdac1 was also gained and amplified (41). 
The in  vitro results contrast with the in  vivo ones. It is easy to 
hypothesize that as VDAC1 regulates metabolism through its 
association with HK, cancer cells draw a substantial profit from 
increasing glycolysis. Similarly, because of its association with 
members of the Bcl-2 family, cancer cells, again, take advantage 
of such an association by minimizing apoptosis.

THe HYPOXiC MiTOCHOnDRiAL 
PHenOTYPe AnD vDAC1-ΔC

Mitochondria are dynamic organelles that undergo membrane 
remodeling through cycles of fusion and fission (Figure  1). 
This balance controls the mitochondrial structure and, thus, 
mitochondrial activity. The key factors regulating fusion are the 
dynamin-related GTPases mitofusin 1 (Mfn1) and 2 (Mfn2), 

and optic atrophy 1 (OPA1) that mediate the OMM, while 
the dynamin-related protein 1 (DRP1) regulates the oppos-
ing process of fission of the inner mitochondrial membrane 
(IMM) (46). Cells lacking mitochondrial fusion show changes 
in mitochondrial shape associated with a loss of their mem-
brane potential, a reduced growth rate, and a lower activity 
of respiratory complexes (47). By contrast, forced expression 
of Mfns resulted in the formation of clusters with enlarged 
mitochondria due to the fusion of the OMM (48). In 2010, 
we reported that a number of human cancer cells, including 
colon carcinoma cells (LS174) and non-neoplastic CCL39 
lung fibroblasts exposed to long-term hypoxia (72 h – 1% O2) 
showed a change in mitochondrial phenotype from a tubular 
network to an enlarged morphology (49). The modification of 
the shape of mitochondria observed in LS174 cells was HIF-1-
dependent (36). The formation of these enlarged mitochondria 
resulted from hyperfusion as expression of Mfn1 was increased 
in hypoxia and as silencing of the expression of Mfn1 reverted 
the mitochondrial morphology. Moreover, we reported that 
Bcl-2/adenovirus E1B 19-kDa interacting protein (BNIP3) 
and BNIP3 like (BNIP3L), two pro-autophagy proteins from 
the Bcl-2 family, also participated in the dynamic process of 
fusion induced in hypoxia. Finally, cytochrome c was retained 
inside these structurally unusual mitochondria when the cells 
were treated with staurosporine, a pro-apoptotic drug. We 
concluded that cells with enlarged mitochondria were more 
resistant to cell death than normoxic cells and that these cells 
possessed a selective growth advantage.

We were, therefore, faced with the challenge of exploring the 
underlying mechanisms that lead to the protective phenotype 
of hypoxic cancer cell. We found that VDAC1 was detected in 
hypoxia as a smaller than usual form (26 kDa rather than 30 kDa 
on SDS-PAGE). The amount of the 30 kDa form was decreased by 
around 50% with a parallel increase in the smaller 26 kDa form 
in hypoxia. Using a VDAC1 antibody directed to the C-terminus 
of VDAC1 that did not detect this fast migrating form of VDAC1 
on immunoblots (36) and after analysis by mass spectrometry 
(50), we concluded that it was a form truncated in the C-terminal 
region: VDAC1-ΔC. After reconstitution into a planar lipid 
bilayer system, VDAC1-ΔC presented a similar but not identical 
channel activity and voltage dependency as VDAC1. At a higher 
voltage of −40  mV, the full-length channel showed two major 
conducting states with higher occupancy at the closed substate, 
whereas VDAC1-ΔC showed a higher open-state occupancy 
in comparison to the occupancy of low-conducting substates. 
Moreover, at the high voltages, VDAC1-ΔC showed a slightly 
higher conductance than VDAC1 (36). Indeed, we observed an 
increase in ATP levels in cells in hypoxia when VDAC1-ΔC and 
enlarged mitochondria were present. We also demonstrated that 
VDAC1-ΔC associated with the same partners as VDAC1, i.e., 
HKI/II and Bcl-XL. Anchoring of HKI/II is probably involved 
in the exacerbated metabolism of tumor cells in hypoxia in the 
presence of VDAC1-ΔC. Both the association of VDAC1-ΔC 
with HK and the increase in the expression of HKI/II in hypoxia 
increased OXPHOS and glycolysis. Thus, VDAC1-ΔC seems to 
control cell survival in hypoxia by regulating the export of ATP 
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and probably NADH and brings advantage to cancer cells in 
promoting survival via mitochondria that are probably not as 
dormant as previously described. We do not know yet whether 
the conformation and the oligomerization of VDAC1-ΔC are 
different to that of VDAC1.

The VDAC1–HK complex has been reported to also play 
an important role in apoptosis (14). Thus, the VDAC1–HK 
complex already represents a target for cancer therapy, using, 
for example, specific VDAC1-based peptides that disrupt the 
connections between these proteins (51). HK provides an 
apoptosis-suppressive capacity by interfering with the ability 
of Bax to bind to mitochondria and induce apoptosis (52, 53). 
In addition, Bcl-XL, which interacts with VDAC1-ΔC (36), was 
found to protect cells from apoptosis via a block in the Bax–Bak 
interaction, subsequently preventing cytochrome c release (54, 
55). Currently, cytochrome c is considered to play an important 
role in the resistance to cell death observed in cells with enlarged 
mitochondria and VDAC1-ΔC. We have previously shown 
that resistance to chemotherapy was linked to the phenotype 
of enlarged mitochondria. Subsequently, we demonstrated that 
silencing of VDAC1/VDAC1-ΔC in hypoxia or re-exposure of 
cells to normoxia, which inhibited the formation of VDAC1-
ΔC, restored the sensitivity of the cells to apoptosis. We also 
showed that the mitochondrial transmembrane potential was 
unchanged in hypoxia and that cytochrome c was not released 
in the presence of staurosporine-induced apoptosis, whereas the 
transmembrane potential was decreased in normoxic cells under 
these conditions. We showed that cytochrome c was trapped 
inside the mitochondrial intermembrane space due to a change in 
the mitochondrial conformation and a hypothetical modification 
to VDAC oligomerization. These interactions occur specifically 
in hypoxia, when cancer cells are known to be highly resistant 
to anti-cancer treatments, and may, therefore, be exploited for 
therapy in the future.

Finally, we investigated further the mechanism behind the 
hypoxic regulation of the truncated form of VDAC1. We found 
that the cleavage of VDAC1 was dependent on TP53 or p73 
as only cells expressing p53 (LS174, A549, or HepG2 cells) or 
p73 (HeLa cells) contained the hypoxic VDAC1-ΔC. Moreover, 
silencing of TP53 and/or HIF-1α diminished VDAC1 truncation 
and, thus, cell survival in the presence of staurosporine. Mieap, a 
TP53-inducible protein that controls mitochondrial quality was 
also involved, as silencing of MIEAP diminished also the hypoxic 
VDAC1-ΔC. We found that bafilomycin A1 and chloroquine, 
two compounds that increase the lysosomal pH, inhibited the 
cleavage of VDAC1 to VDAC1-ΔC, suggesting implication of 
lysosomes. This was confirmed by electron microscopy, which 
showed microfusion between mitochondria and endolysosomes 
and by cleavage of VDAC1 by an endolysosomal asparagine 
endopeptidase (AEP). Analysis by mass spectrometry of 
VDAC1-ΔC showed cleavage at asparagine 214 and glycine 
213. Of note, AEP is also regulated by TP53 (56). Moreover, we 
reported that BNIP3, already known to be involved in regulating 
mitochondria morphology in hypoxia (36), acted as a docking 
site for lysosomes together with clathrin, a protein involved 

in multiple membrane vesicle trafficking pathways (57). This 
mechanism was identified not only in  vitro but also in  vivo in 
patients with lung cancer. We propose that this novel mechanism 
is a readout of mitochondrial–endolysosomal microfusion in 
hypoxia, in vitro and most importantly in vivo, and represents an 
additional defense mechanism that cancer cells have developed 
to resist chemotherapy.

TARGeTinG vDAC1 FOR THeRAPY

Studies into cellular metabolism have lead to the characterization 
of a number of drugs that have already showed promise in pre-
clinical and clinical trials. However, the quest for new therapeutic 
targets is hampered by the fact that cells show a great degree of 
plasticity, which already augurs the challenges we face. Studying 
metabolism per se is important and will allow us to identify new 
targets. However, metabolism should be studied in the context 
of a changing microenvironment (hypoxia, pH, changes in con-
centrations of metabolites, etc.) and in the context of malignant 
transformation. Thus, VDAC1-ΔC appears to be an interesting 
therapeutic target. Various compounds have already been identi-
fied for their capability to directly interact with and modify the 
activity of VDAC. Avicins (closes VDAC) (58), acrolein (used in 
Alzheimer’s disease to carbonylate VDAC) (59), erastine (binds 
to VDAC2) (60), endostatin (inducing PTP opening) (61), fluox-
etine and cisplatin (inhibition of PTP opening and apoptosis) (62, 
63), furanonaphthoquinones (induces VDAC-dependent apop-
tosis) (64), and oblimersen (blocks channel activity) (65, 66) are 
chemicals that will be tested under hypoxic conditions in the near 
future. In addition, VDAC-based peptides, novel pro-apoptotic 
agents that specifically target domains for interaction with HK, 
Bcl-2, and Bcl-XL, could be an interesting alternative to chemicals 
to restore the sensitivity to apoptosis in hypoxia (67).

We hope that, in the near future, this hypoxia/VDAC1-ΔC duo 
will meet the expectations that we have discussed in this review.
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Despite huge improvements in the treatment of leukemia, the percentage of patients 
suffering relapse still remains significant. Relapse most often results from a small number 
of leukemic stem cells (LSCs) within the bone marrow, which are able to self-renew, and 
therefore reestablish the full tumor. The marrow microenvironment contributes consider-
ably in supporting the protection and development of leukemic cells. LSCs share specific 
niches with normal hematopoietic stem cells with the niche itself being composed of 
a variety of cell types, including mesenchymal stem/stromal cells, bone cells, immune 
cells, neuronal cells, and vascular cells. A hallmark of the hematopoietic niche is low 
oxygen partial pressure, indeed this hypoxia is necessary for the long-term maintenance 
of hematopoietic stem/progenitor cells. Hypoxia is a strong signal, principally maintained 
by members of the hypoxia-inducible factor (HIF) family. In solid tumors, it has been well 
established that hypoxia triggers intrinsic metabolic changes and microenvironmental 
modifications, such as the stimulation of angiogenesis, through activation of HIFs. As leu-
kemia is not considered a “solid” tumor, the role of oxygen in the disease was presumed 
to be inconsequential and remained long overlooked. This view has now been revised 
since hypoxia has been shown to influence leukemic cell proliferation, differentiation, and 
resistance to chemotherapy. However, the role of HIF proteins remains controversial with 
HIFs being considered as either oncogenes or tumor suppressor genes, depending on 
the study and model. The purpose of this review is to highlight our knowledge of hypoxia 
and HIFs in leukemic development and therapeutic resistance and to discuss the recent 
hypoxia-based strategies proposed to eradicate leukemias.

Keywords: hypoxia, hypoxia-inducible factors, leukemia, microenvironment, cancer

LeUKeMiAS AnD HYPOXiA

Leukemia is characterized by uncontrolled proliferation of hematopoietic cells within bone mar-
row (BM). Lymphoid leukemias can be distinguished from myeloid according to the abnormal cell 
lineage, and acute from chronic leukemias according to the maturity of the blood cells involved and 
progression rate. Acute leukemias are characterized by rapid proliferation of immature hematopoi-
etic cells, termed blasts, which fail to differentiate into mature cells. Their accumulation in BM also 
prevents growth and differentiation of normal hematopoietic cells. The clinical evolution is fast (1). 
In contrast, in chronic leukemia, the growth advantage of neoplastic cells leads to the generation 
of a more mature cell population that outcompetes normal hematopoiesis, and clinical evolution 
is longer (several months to years) (2). To date, although the majority of pediatric acute lymphoid 
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leukemia (ALL) and chronic myeloid leukemia (CML) cases (3) 
are cured or well controlled under treatment, chronic lymphoid 
leukemia (CLL) and, even more, acute myeloid leukemia (AML) 
have a high risk of relapse, despite therapeutic progressions (4). 
While treatments often target cycling cells, the idea that a small 
population of quiescent leukemic cells survive and trigger relapse 
regardless of treatment has emerged (5). In the early 90s, the team 
of John E. Dick established a hierarchy in leukemic cell populations 
which, by analogy with that of normal hematopoietic cells, led to 
the introduction of the concept of cancer stem cells for all cancers 
[reviewied in Ref. (5, 6)]. Their work identified a subpopulation of 
leukemic cells able to initiate leukemic growth after transplanta-
tion into immune-deficient mice. These stem-like cells, named 
leukemia-initiating cells (LICs) or leukemic stem cells (LSCs) 
(7, 8), arise from hematopoietic stem/progenitor cells (HSCs) 
that reside in the most hypoxic tissue areas within the normal 
HSC niche (9, 10). The oxygen partial pressure (ppO2) in tissues 
is much lower compared to that in the atmosphere (160 mmHg 
corresponding to around 21% oxygen). In particular, in BM an 
oxygen gradient exists ranging from <6% oxygen, close to the 
vessels, to anoxia in the most distant regions from blood vessels 
(11–15). However, O2 level differs according to the nature of the 
hematopoietic niche; the sinusoidal niche is around 10 mmHg 
(equivalent to 1.3% O2) (16).

In solid cancers, it is well established that uncontrolled 
proliferation leads to profound hypoxia, associated with tumor 
development, metabolic changes, metastatic propagation, 
immune response modulation, and increased mortality (17, 
18). Consequently, it could be assumed that intense blast cell 
proliferation would eventually decrease the oxygen availability 
by high consumption. This assumption is particularly difficult to 
validate by direct measurement in human BM. However, Fiegl 
et al. (19) demonstrated in total BM aspirates from AML patients 
that oxygen percentage was highly comparable to the normal 
counterpart. Using a rat model of an acute AML subtype, the 
promyelocytic leukemia, Jensen et al. (20) noted an increasing 
level of hypoxia during disease progression, comparable to that 
observed with solid tumours. In this model, both normal and 
leukemic cells stained with 2-nitroimidazole (hypoxic marker) 
underwent decreased proliferation. In agreement with this obser-
vation, the hypoxic culture of normal hematopoietic (21–23) and 
CML cells (24–27) led to decreased proliferation. Nevertheless, a 
small fraction of leukemic cells remained insensitive to hypoxia-
induced proliferation arrest (26), probably triggering tumor 
growth (20). Moreover, it has been established that mild hypoxia 
such as ≤3% O2 sustains both primary CML (24) and AML cell 
(28) maintenance longer than normoxia.

Low oxygen might also affect hematopoietic cells through the 
modulation of the stromal cells. Indeed, hypoxia has been shown 
to impact on survival, proliferation capability, and differentiation 
as well as metabolism of mesenchymal stem/stromal cells (MSCs) 
(29–31). Hypoxia triggers secretion by MSCs of numerous fac-
tors, including SDF-1, VEGF, and IL-6, known to promote HSC 
maintenance. Interestingly, even in normoxia, HSCs present a 
hypoxic profile when seeded on MSCs, suggesting appearance of 
“microhypoxic” regions (32, 33). Moreover, MSCs and hypoxic 
culture synergize to sustain in vitro normal stem cells (23) and 

primary AML cells (28). Finally, the poorly oxygenized niche 
enhances resistance to treatments (28, 34, 35), thus protecting 
from various stresses, such as DNA damage, cell death stimuli, or 
oxidative stress signals (36–38).

HYPOXiA-inDUCiBLe FACTORS in 
LeUKeMiAS

The master regulators mediating cell responses to hypoxia are the 
hypoxia-inducible factors (HIFs). These heterodimer complexes 
are composed of one of three oxygen-regulated HIF-alpha 
subunits (HIF-1alpha, HIF-2alpha, and HIF-3alpha) and the con-
stitutively expressed HIF-beta subunit [HIF-1-beta, also known 
as aryl hydrocarbon receptor nuclear translocator (ARNT)] 
(39–41). The HIF1A gene is ubiquitously expressed (42). HIF2A, 
also termed endothelial Per-ARNT-Sim (PAS) protein 1 (EPAS1), 
is expressed in a more tissue specific manner, particularly in blood 
vessels (39, 40, 43). Little is currently known about expression 
and function of HIF3A, but at least 10 splice variants have been 
described to date (44, 45). HIF-1alpha and HIF-2alpha proteins 
share similar structural domains such as an N-terminal basic 
helix-loop-helix (bHLH) domain involved in DNA binding, the 
two PAS domains allowing dimerization, an oxygen-dependent 
degradation domain (ODDD) plus N- and C-terminal transacti-
vation domains (NTAD and CTAD). Although HIF-3alpha also 
exhibits high similarity in bHLH and PAS domains, the lack of 
the CTAD precludes binding to p300 coactivator (45, 46). Under 
atmospheric conditions, HIF-alpha subunits are differentially 
hydroxylated by prolyl hydroxylase domain 1–3 (PHDs) on two 
proline residues in the ODDD, with oxygen and α-ketoglutarate 
as substrates. The hydroxylated motif allows binding to von 
Hippel–Lindau (VHL) tumor suppressor, which leads to HIF-
alpha ubiquitination and consequent degradation by 26S protea-
some (39–41, 47). In parallel, the hydroxylation of HIF-1alpha by 
factor inhibiting HIF-1 (FIH1) triggers inhibition of p300/CBP 
coactivator recruitment (48). PHD activity falls with decreasing 
oxygen levels, thereby triggering HIF-alpha stabilization and 
nuclear translocation where it heterodimerizes with HIF-1beta. 
HIF complexes bind to specific HIF-response elements consist-
ing of specific RCGTG sequences within target gene promoters. 
Although HIF-1 and HIF-2 share common targets, additional 
genomic regions and cofactor-binding specifically drive the tran-
scriptional initiation of genes involved in many pathways, such as 
angiogenesis, differentiation, stem cells maintenance, apoptosis, 
and invasion (35, 39, 40).

HIF-1alpha mainly participates in the initial response to acute 
hypoxia, whereas HIF-2alpha responds to chronic exposure 
(47, 49). Additionally, even in prolonged hypoxia HIF-1alpha 
undergoes feedback control, whereas HIF-2alpha is stabilized. 
The multiple HIF-3alpha splice variants appear essentially to 
regulate HIF-1alpha and HIF-2alpha activity by sequestrating 
HIF-1beta or by acting as dominant negative regulators (40, 44, 
45, 50). HIFs, moreover, can be regulated by oxygen-independent 
mechanisms. Factors involved in hematopoiesis such as MEIS1 
(51), TPO (52), and SCF (53, 54) positively regulate expression 
of HIFs. Conversely, factors implicated in metabolic changes like 
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the SIRT1 (55, 56) or SDH (57) inhibit the expression of HIFs. 
Furthermore, downregulation of HIFs may be achieved by tumor 
suppressor genes like p53 (58, 59) or GSK3 (60) and the upregula-
tion by oncogenes such as PI3K/AKT (60, 61) or mTORC1 (62). 
Genetic abnormalities encountered in leukemia such as the IDH 
mutation decrease expression of HIFs by stimulating PHD activ-
ity (63) or conversely, FLT3-ITD stimulates translation of HIFs 
via the PI3K/AKT pathway (40).

Elevated expression of HIFs is considered to be a marker 
of poor prognosis in solid cancers (64–77). Overall, increased 
expression of HIFs is correlated with tumor growth and resist-
ance to therapies, which leads to disease relapse (37). The subject 
is somewhat more complex and controversial in leukemia. 
Overexpression of HIF-1alpha in leukemia has been suggested 
as a marker of poor prognosis and chemotherapy outcomes 
(78–81). Elevated levels of HIF-1alpha are reported, in the major-
ity of studies, in AML (79, 82–84), acute promyelocytic leukemia 
(APL) (85), ALL (82), and CML (86, 87). Disease severity and 
survival have been shown to be influenced by HIF-1alpha levels, 
in AML and myelodysplastic syndromes (84, 88, 89); the protein 
expression of HIF-2alpha, usually absent in normal cells, has been 
observed in both AML and ALL, but has not been correlated with 
outcome (82, 90, 91). Thus, leukemic subtype, disease stage or the 
molecular abnormality involved might explain the variability. To 
explore potential functions of HIFs in leukemogenesis, various 
mouse models have been proposed (Table 1). Several studies have 
shown that inhibition of HIF-1alpha, either by RNAi targeting 
or by small molecular inhibition, resulted in a failure of primary 
cells to form in vitro colonies and decreased tumor growth and 
leukemic progression. In vivo, dramatic decrease and potential 
eradication of primary AML cell xenografts have been shown and 
a complete absence of leukemic induction in secondary trans-
plantation has been reported in cells in which HIF-1alpha was 
inhibited (79, 84, 85, 92). This has also been confirmed in ALL 
(93, 94) and CML (83, 87). Similarly, knockdown of HIF-2alpha 
with shRNA triggers leukemic inhibition (82, 85, 90), which is 
demonstrated in vitro by limited cellular proliferation as well as 
in vivo by absence or poor engraftment.

Hypoxia via HIFs may promote disease maintenance and 
progression through different mechanisms including energy 
metabolism (98–100), cycle and quiescence (101, 102), and 
immune function (103) that are important in normal physiology 
and deregulated in cancer (47, 104). On one hand, HIF-1alpha and 
HIF-2alpha influence signaling pathways relevant to leukemia 
maintenance and propagation. HIF-1alpha activates the Notch1 
pathway, which leads to leukemia invasion (94), and promotes 
the Wnt pathway, consequently preserving LSCs (93). On the 
other hand, HIF-1alpha acts as an inhibitor of the expression of 
tumor suppressor genes, such as p15, p16, p19, and p53 (79, 87). 
Indeed, HIF-1alpha-transactivated DNMT3a methylates DNA, 
which inhibits tumor suppressors and leads to tumor growth 
(79). In AML, DNMT3a plays a crucial role since more than 20% 
of patients exhibit DNMT3A mutation (105), conferring a global 
hypomethylation of DNA and predisposition to developing 
hematological diseases (106). In contrast, in T-ALL this mutation 
confers hypermethylation, so the contribution of hypomethyla-
tion and hypermethylation to disease development remains to be 

elucidated (106). Interestingly, taken from non-hematopoietic 
tissue and cancers, studies have explored the role of hypoxia in 
epigenetic modifications, through HIF-1alpha stabilization, such 
as DNA methylation, histone modifications, and non-coding 
RNA expression (107). Promoter methylation is modified by 
hypoxia and regulates neural progenitor cell fate (108). The his-
tone demethylase JMJD1A and 1B are targets of HIFs in normal 
and cancer cells (109–111). Finally in HIF-2alpha-deficient cells, 
transcriptomic approaches have identified deregulated genes 
involved in energetic and oxidative metabolisms, plus endoplas-
mic reticulum (ER) stress, indicating that HIF-2alpha protects 
AML cells from apoptosis induced by ER stress (90).

One consequences of the expression of HIFs is the promotion 
of quiescence, which favors chemoresistance. Hypoxia-induced 
HIF-1alpha promotes entry into G0/G1 and decreases S phase in 
AML cells through, in part, upregulation of p27 (112). Quiescence 
enhances chemoresistance of leukemic cells to cytosine arabino-
side (Ara-C) (112, 113) and adriamycin (ADR) (88), since these 
agents target cycling cells. Coculture of primary AML cells with 
stromal cells in hypoxia (3% O2) confers resistance to Ara-C 
through stabilization of HIFs and induction of quiescence (28). 
Antiapoptotic signaling is observed through increased XIAP 
level, an apoptosis-inhibitory protein, and the activation of the 
PI3K/AKT pro-survival pathway (112). HIF-1alpha activation 
by a PHD inhibitor, cobalt chloride (CoCl2), protects HL-60 
leukemic cells against arsenic trioxide (ATO) by inhibiting BAX 
and Caspase 3 and 9 and promoting HSP70 protein and p38/ERK 
pro-survival factors (114). In T-ALL, through Notch1 activation, 
HIF-1alpha induces BCL2 and BCL-XL upregulation and the 
downregulation of Caspase 3 and 9 activities, which decreased 
dexamethasone-induced apoptosis in leukemic cells (94).

Conversely, low oxygen and hypoxia-mimicking agents such 
as CoCl2 or desferrioxamine induce AML cell differentiation 
through HIF-1alpha accumulation (115, 116). In fact, HIF-1alpha 
mediates differentiation by binding to C/EBPα and promoting its 
transcriptional activity (115–117) as well as that of RUNX1 and 
PU.1 (118, 119). Additionally, C/EBPα/HIF-1alpha induces AML 
differentiation through c-MYC inhibition and further suppres-
sion of miR17 and miR20a expression. The knockdown of p21 
and STAT3, two inhibitory targets of miR17 and miR20A, reverses 
HIF-1alpha-induced AML differentiation (120). In renal cell 
carcinoma, HIF-1alpha inhibits c-MYC/MAX association, which 
decreases c-MYC promoter binding and thus blocks cells in G1 
(121). Conversely, HIF-2alpha triggers cell cycle progression and 
proliferation by enhancing the formation of c-MYC/MAX and its 
activity. Since HIF-2alpha and HIF-1alpha have dual effects on cell 
cycle progression according to cell types, more investigations are 
needed on their antagonistic effects in leukemias. Nguyen-Khac 
et al. (122) discovered a translocation involving TEL and ARNT 
in an AML patient exerting a dominant/negative activity on HIF-
1alpha. The fusion protein blocks leukemic differentiation, thus 
conferring a tumor suppressor function for HIF-1alpha. In line 
with this, data have previously shown that intermittent hypoxia 
slows down leukemic development in mice (123). However, 
in vivo hypoxia may have unrelated consequences on leukemic 
cell physiology. More recently, Velasco-Hernandez et  al. (124) 
using different AML models found reduced survival of mice 
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TABLe 1 | Models used to characterize HIF1A and HIF2A as oncogenes in leukemias.

Leukemia Cell types Mouse models HiFs inhibition or overexpression Phenotypes Reference

CML Human cells
K562 Nude (in subcutaneous) Human HIF1A cDNA + l-ascorbic 

acida

No decreased tumor growth (83)

Mouse cells
Vav-Cre-HIF1aflox/flox 
transduced with  
BCR–ABL retrovirus

C57BL/6 J Vav-Cre-Hif1aflox/flox system No leukemia induction in second 
transplantation
Decreased LSCs number

(87)

AML Human cells
Primary NOD-SCID Echinomycinb Decreased/eliminated leukemia cells (84)

No leukemia induction in serial transplantation

Primary NOD-SCID gamma shHIF2A Decreased/no engraftment (90)

HL-60 NOD-SCID gamma shHIF2A Increased mice survival (82)

NB4 NOD-SCID gamma shHIF1A, shHIF2A, or EZN-2968c Increased mice survival (85)
Delayed leukemia progression

SKNO-1 Athymic nude Echinomycinb Decreased tumor growth (79)

HL-60 Nude (in subcutaneous) l-ascorbic acida Decreased tumor growth (83)

Mouse cells
PML-RARα Lin− 129Sv Ex vivo electroporation with 

EZN-2968c

Increased mice survival (85)

PML-RARα Lin− 129Sv EZN-2208c Increased mice survival (95)
ATRAd + EZN-2208c Synergy of both treatments to leukemia 

eradication
No leukemia induction in serial transplantation

FDCP1 DBA/2 Human HIF2A cDNA Accelerated leukemia progression (82)

Relapsed MllPTD/WT:Flt3ITD/WT C57BL/6 Ly5.1 Echinomycinb Decreased AML blasts (≤20%) (92)
Increased mice survival

A/E9a transgenic mouse 
cells

C57BL/6 J Human HIF1A cDNA Enhanced leukemia disease (79)
siHIF1A Suppressed leukemia disease

ALL Human cells

Jurkat Transwell matrigel-
coated chambers

Hypoxia (2% O2) Increased tumor invasion (94)
Sup-T1

Primary T-ALL NOD-SCID gamma shHIF1A Increased mice survival (93)
Decreased LSCs frequency

Mouse cells
Primary (NOTCH1-ΔE/
NGFR retrovirus)

NOD-SCID gamma Hif1aloxP/loxP/CreERT2/GFP system Increased mice survival (93)

al-ascorbic acid indirectly inhibits HIF-1alpha expression by inhibiting NF-κB translocation into the nucleus (83).
bEchinomycin binds the core-binding site of HIF-1alpha and inhibits its DNA-binding activity (96).
cEZN-2968 and EZN-2208 specifically target HIF-1alpha (85, 95, 97).
dATRA target RARα moiety in PML-RARα mutation of APL (95).
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transplanted with HIF-1alpha KO cells (Table 2). These observa-
tions were confirmed in myeloproliferative neoplasia through a 
FLT3ITD-induced mouse model (125). Overall, Hifa KO enhanced 
disease progression and severity, making it a tumor suppressor 
gene. However, authors show that HIF-1alpha deletion may 
promote compensatory effects via overexpression of HIF-2alpha, 
which may eventually mask the role of HIF-1alpha. This elevation 
was already seen in HIF-1alpha-deficient cells (90). The Hif2a KO 
in MLL-AF9-driven and Meis1/HoxA9-induced murine AML 
enhances LSCs development but, once leukemias are established, 
HIF-2alpha has no impact on their maintenance and propagation. 
Furthermore, double inhibition of HIF-1alpha and HIF-2alpha 

demonstrated that HIFs synergize to inhibit AML development, 
without any role in leukemic propagation (126). Transcriptomic 
analysis reveals that HIF-1alpha and HIF-2alpha promote a set 
of genes that fosters survival and proliferation of leukemic cells.

Off-target effects of shRNAs and poor specificity of drugs that 
inhibit HIFs compared to KO might explain this controversy 
between studies. However, KO may also induce slow cellular 
adaptation with compensatory effects. Differences may also arise 
from the model used, mouse versus human, and the different 
protumoral gene constructions used to generate the leukemia. It 
will be pertinent to assess the overexpression of HIFs in AML 
models, and thus observe whether increased HIF delays disease 
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TABLe 2 | Models used to characterize HIF1A and HIF2A as tumor suppressor genes in leukemias.

Leukemia Cell types Mouse 
models

HiFs inhibition or overexpression Phenotypes Reference

CML Human
K562 – Mixture with 10% O2 for 5 or 22 + 1 or 

24 h of reoxygenation
Survival signals with 5 h hypoxia 
Death signals with 22 h hypoxia

(127)

AML Human
MLL-AF9 THP-1 transduced with 
HIF2A sgRNAs + Cas9 nuclease

– Two independent sgRNAs against the 
exon 12 of HIF2A

Same leukemic propagation than control (126)

Mouse
hMRP8-PML-RARα FVB-NICO Intermittent hypoxia equivalent to an 

altitude of 6000 m (≈10% O2) for 18 h/day
Increased mice survival 
Decreased tumor infiltration/invasion

Hif1afl/fl; Mx1-Cre transduced with  
A/E9a retrovirus

B6SJL Hif1afl/fl/CreERT2 system HIF-1alpha does not affect AML initiation/
progression

(123)

Decreased mice survival in second 
transplantation

Hif1afl/fl; Mx1-Cre transduced with 
HoxA9-Meis1 retrovirus

C57BL/6 
Ly5.1/
Ly5.2

Hif2afl/fl; Vav-iCre system HIF-1alpha does not affect AML initiation/
progression

(124)

Hif1afl/fl; Mx1-Cre transduced with 
MLL-AF9 retrovirus

HIF-1alpha does not affect AML initiation/
progression

Hif2afl/fl; Vav-iCre transduced with 
Meis1 and HoxA9 retroviruses

Decreased mice survival
Same AML aggressiveness to control mice

MLL-AF9KI/+; Hif2afl/fl; Vav-iCre C57BL/6 
Ly5.1/
Ly5.2

Hif1afl/fl; Hif2afl/fl; Vav-iCre system Accelerated leukemia disease (126)
Hif1afl/fl; Hif2afl/fl; Vav-iCre transduced 
with Meis1 and HoxA9 retrovirus

Decreased mice survival
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development and, even, eradicate leukemia. HIFs may also dif-
ferently impact on LSCs and more mature blasts cells, conferring 
pro-survival effect on LSCs and differentiation on blasts. In favor 
of this hypothesis, intermittent hypoxia increases survival of APL 
mice (123). Similarly, in CML, HIF-1alpha induction following 
short (5 h) hypoxia exposure delivered a survival signal to cells, 
whereas it promoted cell death within a longer period (22  h) 
(127). In the ALL model, 24  h-exposure to hypoxia conferred 
chemoresistance in contrast to longer exposure (48–72 h) (128). 
These data suggest that duration of hypoxia incubation may 
promote or inhibit leukemia progression and maintenance, thus 
explaining the oncogenic or tumor suppressor activity. The link 
between HIFs and tumor suppressor activity has been previously 
demonstrated in other cancers (71, 129–131). Taken together, 
these data suggest that not only the level but also the duration 
of activity dictates HIF action and hence cellular response in 
leukemia.

THeRAPeUTiC STRATeGieS: TARGeTinG 
HiFs OR nOT?

In light of the results summarized above, it could be difficult 
to affirm that downregulation of HIFs could be a therapeutic 
approach. Nevertheless, chemical inhibitors have been tested 
and the proof-of-concept was first illustrated using echinomycin, 
which blocks HIF-1alpha-binding activity. This drug preferen-
tially targets AML LSCs through apoptosis, decreasing leukemia 
burden, prolonging mouse survival, and abrogating disease  

development in secondary transplantation (84, 92). Echinomycin 
does not impact on self-renewal and differentiation of normal 
HSCs, which makes it an ideal molecule to treat leukemia (92). 
l-ascorbic acid has also been shown to inhibit expression of HIF-
1alpha in CML cells and consequently reduces tumor growth. 
This effect is specific to HIF-1alpha since its overexpression in 
l-ascorbic acid-treated mice antagonizes leukemic growth inhibi-
tion (83). In APL, EZN-2968 and EZN-2208 confer antileukemic 
activity and prolong mouse survival; in combination with all-
trans retinoic acid (ATRA), leukemia eradication was observed, 
along with survival of mice; fortunately, both compounds are 
non-toxic to normal HSCs (85, 95). Overall, these data offer new 
therapeutic options, targeting HIF in leukemia with no impact on 
normal hematopoiesis. Another approach will be the combina-
tion of HIF inhibitors with treatments capable of determining the 
departure of LSCs from quiescence, and then with treatments that 
target cycling cells, such as Ara-C.

An alternative strategy will consist of taking advantage 
of hypoxia to activate drugs and thus to target LSCs in the 
niche. TH-302 is a hypoxia-activated prodrug, which exhib-
its a specific cytotoxicity in hypoxia (132, 133). In primary 
AML, TH-302 hampers tumor growth through multiple 
mechanisms (cycle arrest, DNA cross-linking, DNA damage). 
In mouse models, it decreases leukemia burden and prolongs 
survival (133). PR-104 quickly undergoes alcohol hydrolysis 
and induces DNA cross-linking in hypoxic cells, impairs ALL 
progression, decreases tissue infiltration, and prolongs mice 
survival (134, 135). In a phase I/II study, PR-104 reduced 
the number of AML and ALL cells in refractory and relapsed 
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patients (136). Despite some side effects, including myelosup-
pression, febrile neutropenia, and infections, collectively, 
these results propose innovative therapies for leukemia based 
on hypoxia-activated prodrugs.

COnCLUSiOn

Overall, these data argue that hypoxia and HIF-mediated signal-
ing play a crucial role in leukemia and leukemogenic processes. 
However, they conflict in determining whether HIFs act as 
oncogenes or tumor suppressors, certainly because of the dif-
ferent leukemic models, study design, oxygen level, and hypoxia 
duration. However, therapies targeting hypoxia and HIFs have 

proven their efficacy in treating mouse models and may benefit 
leukemic patients.
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Chronic Myeloid Leukemia and 
Hepatoblastoma: Two Cancer 
Models to Link Metabolism to 
Stem Cells
Maria Grazia Cipolleschi* , Ilaria Marzi , Elisabetta Rovida and Persio Dello Sbarba*

Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Università degli Studi di Firenze, Florence, Italy

Low oxygen tension is a critical aspect of the stem cell niche where stem cells are 
long-term maintained. In “physiologically hypoxic” stem cell niches, low oxygen tension 
restrains the clonal expansion of stem cells without blocking their cycling, thereby con-
tributing substantially to favor their self-renewal. The capacity of stem cells, hematopoi-
etic stem cells in particular, to reside in low oxygen is likely due to their specific metabolic 
profile. A strong drive to the characterization of this profile emerges from the notion 
that cancer stem cells (CSC), like normal stem cells, most likely rely on metabolic cues 
for the balance between self-renewal/maintenance and clonal expansion/differentiation. 
Accordingly, CSC homing to low oxygen stem cell niches is the best candidate mech-
anism to sustain the so-called minimal residual disease. Thus, the metabolic profile of 
CSC impacts long-term cancer response to therapy. On that basis, strategies to target 
CSC are intensely sought as a means to eradicate neoplastic diseases. Our “metabolic” 
approach to this challenge was based on two different experimental models: (A) the 
Yoshida’s ascites hepatoma AH130 cells, a highly homogeneous cancer cell population 
expressing stem cell features, used to identify, in CSC adapted to oxygen and/or nutrient 
shortage, metabolic features of potential therapeutic interest; (B) chronic myeloid leuke-
mia, used to evaluate the impact of oxygen and/or nutrient shortage on the expression 
of an oncogenetic protein, the loss of which determines the refractoriness of CSC to 
oncogene-targeting therapies.

Keywords: cancer stem cells, microenvironment, metabolism, hypoxia, glucose shortage, chronic myeloid 
leukemia

iNTRODUCTiON

Low oxygen tension is a critical aspect of the environment where stem cells reside. On the basis of 
in vitro data, we were the first to put forward, in 1993, the hypothesis that hematopoietic stem cell 
(HSC) niches, where HSC are physiologically hosted in vivo, are bone marrow areas maintained at 
relatively low oxygen tension (1). Our results, limited to short-term repopulating HSC, were later 
confirmed by others and extended to comprise long-term repopulating HSC (2). The capacity of 
HSC, but not of hematopoietic progenitor cells (HPC), to home in low oxygen tissue areas is crucial 
to ensure HSC self-renewal and long-term maintenance. This capacity is likely due to the specific 
metabolic profile of HSC. We also found that low oxygen does not inhibit HSC cycling but limits 
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cycling to support HSC self-renewal (3). Thus, the environment 
of “physiologically hypoxic” niches (4) contributes substantially 
to maintain stem cell potential. A number of excellent reviews 
addressed the relationship of niche environment to oxygen ten-
sion and blood supply in bone marrow. Moreover, the overall 
architecture of niche, which includes stromal cells, extracellular 
matrix, and soluble or matrix-bound cytokines has also been 
extensively described (5, 6). The physiological role of relatively 
low oxygen tensions in the regulation of stem cell compartments 
was further supported by later studies on pluripotent embryonal 
stem cells. Indeed, in the developing embryo, the inner cell mass 
of blastocyst is a relatively “hypoxic” (pO2 < 2%) structure (7), 
where embryonal stem cells largely rely on glycolytic ATP gen-
eration independently of oxygen shortage (8), i.e., exploiting the 
“aerobic” glycolysis or Warburg effect (9).

Cancer cell populations are usually characterized by a marked 
phenotypical heterogeneity to include differentiating cells as well 
as cancer stem cells (CSC). CSC seem to rely on environmental 
cues similar to those characterizing physiological stem cell niches 
for either their survival or the regulation of balance between 
self-renewal/maintenance and clonal expansion/differentiation. 
CSC continuously interact with non-neoplastic components of 
the niche, which decisively contribute to the maintenance of CSC 
via their protection from insults of different nature coming from 
outside the niche. These insults range from the physiological 
pressure of cytokines boosting clonal expansion at the expense of 
stem cell maintenance to the action of therapeutic agents (10, 11). 
The location itself of the niche may represent a powerful protec-
tion factor. Indeed, being far away from blood vessels implies the 
exposure to significantly lower concentrations of systemically 
administered drugs than in the rest of tissue. Furthermore, 
although CSC are allowed to cycle in the niche, their slow cycling 
or even quiescence provides an obvious protection from the effects 
of chemotherapeutic agents designed to suppress proliferating 
cells (12). On the other hand, CSC hosting in niches at extremely 
low oxygen tension has the straightforward consequence that 
CSC are protected from the effects of reactive oxygen radicals 
(ROS), which are instead typically generated in better oxygenated 
tissue areas. This represents a serious problem in relation to the 
effectiveness of radiotherapy on CSC, which largely relies on ROS 
generation to induce DNA damage in tumor cells (13).

Moreover, it is worth noting here that CSC have intrinsic 
properties that make them resistant to treatments. These proper-
ties, including the expression of aldehyde dehydrogenase and 
of the two ABC transporters MDR1 and ABCG2, which drive 
drug efflux from cells, have been excellently reviewed elsewhere 
(14). The association between multidrug resistance (MDR) and 
stem cell markers in human chronic myeloid leukemia (CML) 
cell lines has been clearly shown (15). The combination of CSC-
intrinsic properties with the CSC-sheltering effects of stem cell 
niche makes it impossible to obtain a homogeneous therapeutic 
efficacy on the whole cancer tissue. In this scenario, CSC homing 
within niches is the best candidate mechanism to sustain minimal 
residual disease (MRD). Such a clinical state may determine late 
relapse of disease even in patients who brilliantly responded to 
therapy undergoing to complete remission. Low oxygen turns 
out to represent “the,” or at least “one of the,” most important 

factors ensuring MRD persistence (16). This implies that CSC, 
like normal stem cells, are capable to metabolically adapt to low 
oxygen. More in general, CSC are capable to adopt a nutrient 
uptake pattern and energy metabolism profile that favors their 
homing into niches (i.e., an adequate interaction between the 
oxygen-sensing and the nutrient-sensing signaling pathways). To 
conclude, one can affirm that the metabolic profile of CSC heavily 
impacts cancer response to therapy.

Modern oncology is testing selective CSC targeting as a 
means to eradicate neoplastic disease (17), aiming at their cure 
rather than care. The latter outcome is, instead, typical of actions 
directed to suppress the proliferating bulk of cancer population. 
Our “metabolic” approach to this challenge was based on two 
different experimental models. We used AH130 ascites hepatoma 
cells (18) to try to identify some step of metabolic pathways, 
which is particularly vulnerable in CSC adapted to low oxygen. 
On the other hand, we choose CML as a model disease to evaluate 
the therapeutic targeting of CSC in cell populations where low 
oxygen determines the suppression of an oncogenetic protein and 
the consequent loss of oncogene addiction.

AH130 CeLLS AS A PROTOTYPe OF 
CANCeR STeM CeLLS

The metabolic studies we summarize here were necessarily pre-
ceded by a reappraisal of the nature of the AH130 cell population. 
This hepatoma can be maintained indefinitely via serial trans-
plantations in the rat peritoneal cavity, where huge amounts of 
immature cells are produced each time. AH130 cells express fun-
damental embryonic transcription factors (ETF), such as Nanog, 
Klf4, and c-Myc. When peritoneal cavity is cell-saturated and 
cell growth is arrested, glucose concentration as well as oxygen 
tension approach 0. In spite of that all hepatoma cells are alive, 
75% of which expressing Nanog and more than 90% the stem cell 
marker CD133 (19). Thus, the AH130 hepatoma is an inexhaust-
ible source of stem cells, which provides a decisive advantage in 
view of the characterization of their metabolic profile.

Well in keeping with the scenario summarized in the 
Introduction, AH130 cells are, like other stem cells, adapted to 
low oxygen (20). The metabolic profile of AH130 cells is indeed 
centered on an extremely high capacity of converting pyruvate 
into lactate, so that cells, when exposed ex vivo to high glucose 
concentrations (upto 15 mM) in air, convert up to 80% of the 
available glucose to lactate, exhibiting an excellent example 
of Warburg metabolism. This enormous energy waste implies 
that the elimination of pyruvate produced by aerobic glycolysis 
is a primary exigency, due to a detrimental effect of pyruvate 
accumulation on G1–S transition. A key finding to understand 
the mechanism of this effect was that the addition of exogenous 
pyruvate to AH130 cells (incubated in air in the presence of 
15-mM glucose) faithfully mimicked that of antimycin A, which 
blocks electron transport chain (ETC) inhibiting its complex 
III. On the contrary, 2,4-dinitrophenol, which uncouples (but 
does not block) ETC function from ATP generation, did not 
mimic the effects of exogenous pyruvate or antimycin A. This 
indicates that in AH130 cells glycolytic energy production is 
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FiGURe 1 | Role of cellular Redox state in the control of cell cycling. 
The core of the metabolic network controlling AH130 hepatoma cell cycling is 
the cellular RedOx state expressed by the cytosolic NADP/NADPH ratio. The 
transfer of reducing equivalents (H+) from methylene-tetrahydro-folate 
(CH2-FH4) to NADP, generating methenyl-tetrahydro-folate (CH-FH4) and 
NADPH, is a limiting step of the assembly of purine ring required for the 
amplification of purine pools indispensable for the G1–S transition of mitotic 
cycle. An accumulation of cytosolic NADPH inhibits cell recruitment into S.  
A fundamental role in the regulation of NADP/NADPH ratio is played by folate 
(F), whose reduction to tetrahydro-folate (FH4) by dehydrofolate-reductase 
(DHFR) generates NADP. When DHFR activity is impaired by the addition of 
its inhibitor Methotrexate or of an excess of the reaction product (FH4), 
NADPH increases with the consequent reductive shift of NADP/NADPH ratio 
and the inhibition of purine synthesis. However, the major antagonist of this 
shift is the transfer of cytosolic reducing equivalents onto the mitochondrial 
ETC through suitable shuttles, accounting for the crucial role of ETC in purine 
synthesis. This transfer is antagonized whenever ETC, although not inhibited, 
is saturated by reducing equivalents produced by oxidizable substrates of the 
Krebs cycle, such as pyruvate.
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sufficient and that the role of ETC is related instead to the fact 
that some pyruvate cannot be converted to lactate and needs to 
be oxidized. In other words, ETC seems necessary to prevent a 
detrimental accumulation of reducing equivalents coming from 
oxidizable substrates. In turn, an excess of oxidizable substrates 
can saturate ETC. In this respect, the differentiation state of cells 
is critical. ETC saturation is easily prevented in cells endowed 
with large mitochondrial equipment (“transit” progenitor cells 
characterized by high proliferation rate), but easily produced 
in cells with few mitochondria (21). AH130 cells possess, as a 
consequence of their adaptation to low oxygen, a very scanty 
mitochondrial apparatus, easily saturable by pyruvate at concen-
trations which are instead easily catabolized by progenitor cells. 
Thus, AH130 cells represent the prototype of stem cells that 
are vulnerable to physiological metabolites totally innocuous 
to non-stem cells. In conclusion, AH130 cell recruitment into 
S can be limited in two ways: (a) hindering respiration, either 
under oxygen shortage or by impairing the electron transport 
to oxygen using ETC inhibitors (antimycin A) and (b) saturat-
ing the ETC with an excess of oxidizable substrates (pyruvate). 
The metabolic network vulnerable to pyruvate is outlined in 
Figure 1. AH130 cell recruitment into S implies, to control the 
neo-synthesis of DNA, a tight complementation of glycolysis, 
cellular RedOx state, and folate metabolism. This recruitment 
is controlled by a cytosolic NADP-dependent step of folate 
utilization in the synthesis of purine ring, a step where NADPH 
produced is re-oxidated through the transport of reducing 
equivalents (electrons) to ETC (21, 22).

CHRONiC MYeLOiD LeUKeMiA AND THe 
MeTABOLiC CONTROL OF ONCOGeNe 
ADDiCTiON

Chronic myeloid leukemia is determined by a reciprocal 
translocation between chromosomes 9 and 22, resulting in the 
formation of the chimeric BCR/Abl protein (hereafter “BCR/
Abl”) that functions as a constitutively active tyrosine kinase. 
Tyrosine kinase inhibitors (TKI), such as imatinib-mesylate (IM), 
are highly effective to suppress BCR/Abl enzymatic activity and 
to treat chronic phase CML patients. However, in a large majority 
of patients, IM does not efficiently kill leukemic stem cells (LSC), 
the crucial event to cure CML (23). It is becoming clear that 
second-/third-generation TKI remain unable to eradicate LSC. 
Therefore, strategies directed to hit TKI-resistant LSC aiming at 
targets different from BCR/Abl are intensely sought after.

Mechanisms traditionally believed to determine resistance to 
IM and TKI are (24): (a) mutations of BCR/abl gene within the 
tyrosine kinase domain (primary or secondary to treatment), 
(b) amplification of BCR/abl, (c) mutations outside BCR/abl 
determining BCR/Abl-independent survival and proliferation, 
(d) enhanced activity of drug exporters, and (e) quiescence.  
A novel mechanism of resistance to IM emerged from our 
studies in vitro. We showed indeed, using CML cell lines, that 
a very low oxygen tension (0.1% oxygen) in the incubation 
atmosphere maintains the stem cell potential while cell growth 
is inhibited and the oncogenic BCR/Abl protein is suppressed 

(25, 26). Being deprived of BCR/Abl, LSC selected in low oxygen 
are independent of BCR/Abl signaling, i.e., they lack oncogene 
addiction (27). In spite of this, LSC selected in low oxygen 
remain genetically leukemic, so that they are capable to regen-
erate a BCR/Abl-expressing/dependent progeny (25, 26). Thus, 
BCR/Abl suppression in low oxygen is not a genetically blocked 
event, but a fully reversible phenotypical adaptation. This fact 
is in keeping with the “chiaroscuro stem cell” model proposed 
to describe the relationship between the HSC and HPC pheno-
types (28). The refractoriness to TKI of LSC of CML adapted to 
low oxygen is a straightforward consequence of the transient 
and reversible suppression of their molecular target. We defined 
“environment-enforced BCR/Abl suppression” this mechanism 
of resistance to TKI. This mechanism does not require, to explain 
the onset of resistance, to postulate the occurrence of permanent 
changes in a CML subclone due to secondary mutations (29). 
Our in vitro findings are strongly supported by the observation 
that LSC do not depend on BCR/Abl kinase activity for their 
survival (30), as well as by the clinical evidences that MRD and 
the related CML relapse following successful IM treatment is 
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FiGURe 2 | Cancer stem cell models, oncogene dependence, and 
metabolic profile. Correspondence to the normal stem and progenitor cell 
phenotypes of two complementary subsets of CSC identified on the basis of 
two models for their generation. Relationship of these subsets to oxygen and 
glucose supply in tissue microenvironment as well as to the activity of 
growth-promoting oncogene signaling. CSC, cancer stem cell; CPC, cancer 
progenitor cell; MRD, minimal residual disease; the width of arrows 
corresponds to the hypothesized level of activity.
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usually sustained by cells expressing wild-type BCR/Abl (31). 
On the other hand, our model well explains: (a) the discrepancy 
observed in CML patients between the expression of BCR/abl 
transcript and that of BCR/Abl protein (32) and (b) the IM 
resistance of CML progenitors shown to be BCR/abl-positive by 
FISH or PCR (33), which we believe to be in fact transcript-
positive/protein-negative cells.

The environment-enforced BCR/Abl-negative/TKI-resistant 
phenotype implies that LSC are metabolically adapted to home 
within the “hypoxic” stem cell niches of bone marrow where HSC 
physiologically reside (see Introduction). Interestingly, we found 
that LSC adaptation to low oxygen and BCR/Abl suppression are 
not necessarily linked to quiescence (unpublished data). This is 
in keeping with the findings we obtained for HSC indicating that 
low oxygen restrains and redirects their cycling to support self-
renewal (3). The capacity of cycling in low oxygen is obviously 
crucial to allow LSC self-renewal within the stem cell niche and, 
therefore, to maintain MRD. On the other hand, as cell cycling 
is necessary for the permanent incorporation of mutations in a 
cell population, this capacity appears the key factor for neoplastic 
progression during silent/subclinical phases of the disease. Thus, 
the metabolic adaptation of LSC seems to warrant all the features 
necessary to keep CML going in a therapy-resistant fashion.

A first attempt to characterize the adaptation of LSC to a low 
oxygen environment and its relationship to BCR/Abl suppres-
sion showed that this suppression occurs when, in low oxygen, 
glucose approaches exhaustion (26). Therefore, a low-oxygen/
low-glucose environment appeared as the appropriate condition 
for the maintenance of TKI-refractory CSC sustaining MRD 
(CSC/MRD). In this respect, it is worth pointing out that glucose 
exhaustion, under our standard experimental conditions, is 
reached only after 7 days of incubation in low oxygen. Thus, it is 
evident that a cell subset exists which can stand low oxygen but 
still takes advantage of glucose availability and BCR/Abl signal-
ing. It is likely that this cell subset includes CSC that dedicate 
most of their proliferative potential to oncogene-driven clonal 
expansion, although they maintain a – probably low –  level of 
self-renewal. We are convinced that this CSC subset and the 
CSC/MRD subset correspond to the two CSC models originally 
proposed as alternative: the “CSC in normal stem cell” and the 
“CSC in normal progenitor cell” (34). Our CML data strongly 
suggest considering rather these models as complementary. The 
relationships among CSC models, self-renewal/clonal expansion 
balance, MRD, role of growth-promoting oncogene signaling, 
and dependence on oxygen and/or glucose supply are summa-
rized in Figure 2.

CONCLUDiNG ReMARKS

A question arising from the information summarized above 
was whether the Yoshida’s hepatoma and the CML models 
could complement each other contributing to define a unifying 
scenario for CSC adaptation to low oxygen. We believe that one 
can answer this question affirmatively. Indeed, AH130 hepatoma 
cells exhibit a Warburg-type metabolic profile in vitro and in vivo 
until oxygen is available, adapt to oxygen shortage relying on 
glycolysis, and undergo mitotic arrest when glucose shortage 

complicates oxygen shortage. Thus, the AH130 hepatoma rep-
resents a phenotypically homogeneous CSC-like cell population, 
which is very well suitable for biochemical, molecular, as well as 
biological studies. CML cell lines, on the other side, are hetero-
geneous populations, which retain the capacity to differentiate 
under different environmental conditions, yet, including a cell 
subset with stem cell traits. However, CML, like hepatoma, cells 
exhibit the aerobic or the anaerobic glycolytic profile depending 
on oxygen availability. Moreover, depending on glucose avail-
ability or shortage, LSC of CML cells are subjected, rather than 
to growth promotion/arrest, to a switch between two different 
CSC phenotypes characterized by different metabolic profiles. 
This phenotypical difference reflects the expression or suppres-
sion of the oncogenetic protein responsible for the disease and 
underscores the partition of CSC compartment in two subsets, 
which are dynamically related to each other and reversibly 
linked to environmental conditions. These subsets drive either 
the florid state of disease (CSC) or the maintenance of disease 
during clinical remission (CSC/MRD). Interestingly, the revers-
ibility of the two CSC phenotypes emerged from studies carried 
out using stabilized CML cell lines, in particular, K562 cells. This 
strengthens considerably the issue of the genetic identity of the 
two CSC subsets. A high percentage of K562 cells expresses ETF 
and exhibits a high level of sensitivity to pyruvate addition. Thus, 
these cells appear to share with AH130 cells important aspects 
of gene expression and metabolism profiles. On the other hand, 
it is also of high interest that the most relevant results obtained 
using stabilized CML cell lines were confirmed using a number 
of different primary explants from CML patients (26, 35). These 
findings allow to export the above conclusions about the CML 
stem cell compartment to clinical settings.
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Stem cells, besides being characterized by a high glycolytic 
activity, also consume oxygen via a functional ETC (36). Referring 
to CML, the emerging question is whether, when glucose is 
exhausted, this oxidative activity can be sufficient to sustain 
energy production from other substrates (29). This scenario 
may describe appropriately the metabolic profile of CSC/MRD, 
whereas CSC and cancer progenitor cells (CPC) would follow the 
AH130-type glucose-dependent metabolic pattern. Metabolic 
differences between quiescent or slow-cycling CSC/MRD and 
rapidly proliferating CSC/CPC are emerging from recent litera-
ture (37, 38). On the other hand, it has been demonstrated that 
a dormant subset of pancreatic cancer cells capable to survive 
oncogene ablation (like CML cells subjected to environment-
enforced BCR/Abl suppression) is responsible for tumor relapse, 
has CSC features, and relies on oxidative phosphorylation for 
survival (39). CML studies led us to envision a two-tier model 
of CML stem cell niche where different LSC subsets establish a 
sort of “metabolic symbiosis” conceptually similar to that shown 
between cancer cells and stroma within solid tumors (29). 
According to this model, a drop of oxygen tension in the niche 
periphery would stimulate glycolysis therein via the activation 
of transcriptional activity mediated by hypoxia-inducible factor 
1α (HIF1α). The consequent high rate of glucose consumption 
would determine a sharp decrease of pH and increase of lactate 
concentration in the niche core. There, low pH would inhibit 
HIF1α, and available substrates, such as lactate itself, would be 
oxidized to produce energy suitable for LSC survival.

In summary, the combination of data from the hepatoma 
and CML models led us to hypothesize the following coupling 
between metabolic profiles and functional subsets of cancer cell 
populations:

 (A) Low oxygen-sensitive CPC (proliferation directed to clonal 
expansion coupled with differentiation); high-level onco-
genetic proliferative signaling (e.g., BCR/Abl expressed); 
high-level oxidative energy production; and many (and 
elongated/cristae-rich) mitochondria.

 (B) Low oxygen-resistant self-renewing CSC (proliferation cou-
pled with commitment to clonal expansion); reduced but not 
suppressed oncogenetic proliferative signaling (e.g., BCR/
Abl undergoing suppression); upregulated glycolytic energy 
production, sustained by glucose availability (maintained 
even if oxygen supply is restored  –  Warburg effect); few 
(and rounded/cristae-poor) mitochondria; and low-level 
oxidative activity directed, rather than to provide energy, to 
prevent a detrimental accumulation of reducing equivalents 
produced in high quantities by upregulated glycolysis.

 (C) Low oxygen-adapted self-renewing CSC (prolif-
eration uncoupled with commitment to clonal expansion); 

suppressed oncogenetic proliferative signaling (e.g., BCR/
Abl suppressed); downregulated glycolytic energy produc-
tion due to glucose exhaustion; few mitochondria; and low-
level oxidative activity sufficient to sustain energetically the 
slow-cycling/quiescent cell subset responsible for MRD.

On the basis of all above, the use of metabolic inhibitors to 
target CSC emerges as a therapeutic strategy well worth being 
explored if one aims at the cure of disease, i.e., at its eradication. In 
this respect, a number of attempts have been actually carried out 
using inhibitors of the best known pathways of energy metabolism, 
such as glycolysis and mitochondrial function. These inhibitors 
include the glucose analog 2-deoxyglucose, which accumulates 
in cells and inhibits hexokinase; dichloroacetate, an inhibitor 
of pyruvate dehydrogenase kinase, which forces pyruvate to 
mitochondrial metabolism; metformin, an anti-diabetic drug 
endowed with insulin-dependent and direct insulin-independent 
anticancer effects (40–43).

Perhaps even more interesting therapeutic alternatives are rep-
resented by the use of physiological substrates related to “energy” 
metabolism. We have previously shown that peculiar metabolic 
features of cell adaptation to, and survival in, low oxygen imply 
growth restriction points that can be targeted by physiological 
factors, such as pyruvate, tetrahydrofolate, and glutamine (20). 
For instance, in the presence of pyruvate (upto 20 mM), tumors 
of various histogenesis (melanoma and neuroblastoma, in addi-
tion to AH130 hepatoma and CML) undergo growth inhibition 
in  vitro, to levels apparently proportional to their degree of 
anaplasia, being this inhibition maximal (up to 90%) for AH130 
cells. Remarkably, pyruvate is innocuous, even at the highest 
doses, to normal differentiated cells. Thus, cancer growth can be 
attacked not only via the targeting of metabolic pathways in gen-
eral but also via their targeting, in particular, using physiological 
substrates. The possibility of transferring the latter strategy to 
preclinical settings is being addressed in our laboratory.
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Hypoxia is a characteristic of many solid tumors and an adverse prognostic factor for 
treatment outcome. Hypoxia increases the expression of carbonic anhydrase IX (CAIX), 
an enzyme that is predominantly found on tumor cells and is involved in maintaining 
the cellular pH balance. Many clinical studies investigated the prognostic value of CAIX 
expression, but most have been inconclusive, partly due to small numbers of patients 
included. The present meta-analysis was therefore performed utilizing the results of all 
clinical studies to determine the prognostic value of CAIX expression in solid tumors. 
Renal cell carcinoma was excluded from this meta-analysis due to an alternative mech-
anism of upregulation. 958 papers were identified from a literature search performed in 
PubMed and Embase. These papers were independently evaluated by two reviewers 
and 147 studies were included in the analysis. The meta-analysis revealed strong 
significant associations between CAIX expression and all endpoints: overall survival 
[hazard ratio (HR)  =  1.76, 95% confidence interval (95%CI) 1.58–1.98], disease-free 
survival (HR  =  1.87, 95%CI 1.62–2.16), locoregional control (HR  =  1.54, 95%CI 
1.22–1.93), disease-specific survival (HR  =  1.78, 95%CI 1.41–2.25), metastasis-free 
survival (HR  =  1.82, 95%CI 1.33–2.50), and progression-free survival (HR  =  1.58, 
95%CI 1.27–1.96). Subgroup analyses revealed similar associations in the majority of 
tumor sites and types. In conclusion, these results show that patients having tumors 
with high CAIX expression have higher risk of locoregional failure, disease progression, 
and higher risk to develop metastases, independent of tumor type or site. The results 
of this meta-analysis further support the development of a clinical test to determine 
patient prognosis based on CAIX expression and may have important implications for 
the development of new treatment strategies.

Keywords: cancer, carbonic anhydrase iX, hypoxia, meta-analysis, prognosis

Abbreviations: 95%CI, 95% confidence interval; CAIX, carbonic anhydrase IX; DFS, disease-free survival; DSS, disease-
specific survival; HIF, hypoxia-inducible factor; HR, hazard ratio; LC, locoregional control; MFS, metastasis-free survival; 
NOS, Newcastle–Ottawa scale; OS, overall survival; PFS, progression-free survival; RCC, renal cell carcinoma; TMAs, tissue 
microarrays; VHL, Von Hippel–Lindau protein.
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FiGURe 1 | Flowchart of selecting articles describing the association 
between tumoral CAiX expression and prognosis.
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iNTRODUCTiON

Hypoxia is a characteristic of many different types of solid tumors 
and is caused by an inadequate vascular supply. Hypoxic areas 
are characterized by low oxygen concentrations, limited nutrient 
supply, and an acidic extracellular environment. Hypoxia is an 
independent prognostic factor of poor outcome in patients (1) 
and decreases the efficacy of standard treatment modalities, such 
as surgery, chemotherapy, and radiotherapy (2–4). Many strate-
gies are therefore being investigated to measure tumor hypoxia 
to predict treatment outcome and to overcome or target tumor 
hypoxia with newly designed treatments (5–8).

Tumor cells have adopted several mechanisms to survive the 
hostile conditions during hypoxia, of which one is the hypoxia-
inducible factor (HIF) pathway (9, 10). Upon hypoxic conditions, 
the expression of the dimeric zinc-containing glycoprotein 
carbonic anhydrase IX (CAIX) is enhanced as a consequence 
of HIF stabilization (11, 12). CAIX is important in maintaining 
the cellular pH regulation and is located on the cell membrane 
where it hydrolyzes carbon dioxide, produced as a waste product 
during glycolysis, to bicarbonate and a proton. The bicarbonate 
is transported intracellularly by different proteins (e.g., anion 
exchangers), thereby slightly increasing the intracellular pH to 
promote tumor cell proliferation. The protons in turn add to an 
acidic extracellular environment causing extracellular matrix 
degradation favoring invasion, migration, and subsequent 
metastasis formation (12). Hypoxia-induced CAIX expression, 
tumor-specific expression of CAIX, and its important role in 
maintaining the pH balance make CAIX a promising endogenous 
marker of tumor hypoxia and an attractive target for anti-cancer 
therapies with newly designed inhibitors (6, 11, 12).

Many clinical studies investigated the prognostic value of 
CAIX, and a recent meta-analysis of renal cell carcinoma (RCC) 
concluded that high CAIX expression was associated with a better 
overall survival (OS) (13). By contrast, a meta-analysis in head 
and neck cancer patients showed high CAIX expression was 
associated with a decrease in both OS and disease-free survival 
(DFS) (14). This discrepancy can be explained by the fact that 
RCCs are often characterized by an inactive mutant version of 
the Von Hippel–Lindau (VHL) protein preventing proteasomal 
degradation of CAIX upon normoxia and making its expression 
therefore independent of hypoxia (15, 16). To the best of our 
knowledge, a comprehensive meta-analysis of the association 
between CAIX expression and treatment outcome in other tumor 
types has not been performed. The aim of this meta-analysis of 
published clinical studies is therefore to elucidate the prognostic 
value of CAIX expression in all solid tumor types besides RCC. In 
addition, current analysis has included sensitivity and subgroup 
analysis to be able to determine if the prognostic value of CAIX 
expression varies in patients with different tumor types.

MeTHODS

Literature Search
The research question of this meta-analysis was defined as fol-
lows: “what is the prognostic value of tumoral CAIX expression 
in patients with solid tumors?” From this research question, three 

distinctive keywords were identified, i.e., prognosis, CAIX, and 
tumor. Different formulations and truncations of the keywords 
were tested as free text searches to see if appropriate papers 
could be identified. The search algorithm was applied as a free 
text search and consisted of the combined mention of all three 
keywords, in any of the formulations or truncations (Data sheet 
1 in Supplementary Material). The search for literature was 
performed on the 31st of August 2015 in both the PubMed and 
Embase databases. A total of 958 papers were identified from 
both databases (Figure 1).

exclusion Criteria
From the total number of papers, 134 reviews, conference abstracts, 
commentaries, meta-analyses, editorials, or book chapters were 
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excluded, as were 26 duplicates or non-English papers. From the 
remaining articles, 132 papers about RCC were excluded, since 
upregulation of CAIX in RCC is biologically different from other 
solid tumor types (15, 16). Furthermore, from our experience, 
we know that papers that describe solely the development and 
synthesis of CAIX inhibitors do not include patient data, and 53 
papers were therefore also excluded. The total number of papers 
for further screening was thereby reduced to 613 (Figure 1).

Screening of Papers
Two researchers (SK and AY) screened the remaining papers 
independently. The first round of screening was based on the 
title and abstract, whereas the second round consisted of a 
detailed evaluation of the full-text. Papers were evaluated based 
on the predetermined inclusion criteria. First, only solid primary 
tumors of various types were included, thereby automatically 
excluding hematological cancer. Second, only immunohis-
tochemical detection of CAIX was included, because mRNA 
upregulation of CA9 does not fully correlate with an increase 
in functional protein expression, possibly due to posttranscrip-
tional processing and/or differences in stability (17–19). Third, 
all endpoints were included (see below) with a minimal median 
follow-up of 1 year. Fourth, all treatment modalities along with 
experimental treatments were included. Finally, we included 
every human patient population without making distinction 
based on tumor grades or stages. Discrepancies between the 
included papers by both reviewers were discussed and consen-
sus was reached on all. An additional 14 papers were excluded 
because their patient populations were similar or overlapping 
with other papers. Among these repetitive studies, the paper that 
was included contained the most detailed information about the 
patient population. A total of 144 papers were included in the 
meta-analysis (Figure 1).

Data extraction
Several different parameters, if reported, were extracted from 
each paper, i.e., the number and origin of patients, number of 
events, treatment modalities, tumor site, tumor stage, tumor 
type, group dichotomization, antibody supplier, expression pat-
tern, cellular localization, and endpoints. The univariate hazard 
ratio (HR) was extracted to assess prognostic value of CAIX 
expression. When the univariate HR with corresponding 95% 
confidence interval (95%CI) was not reported, the method from 
Tierney et al. was used to estimate the HR (20). Multivariate HR 
was only included in the meta-analysis when the univariate HR 
was not reported or could not be estimated. When insufficient 
data were reported for estimating HR, the authors were contacted 
to obtain additional data.

Quality Assessment
The methodological quality of the included papers was evaluated 
with an adjusted version of the Newcastle–Ottawa scale (NOS) 
to better suit the study design of the included papers (Data sheet 
2 in Supplementary Material). The method of scoring based 
on awarding stars in different categories remained, however, 
identical. The NOS was commended in the 2011 version of the 
Cochrane Collaboration handbook and is an easy method to 

evaluate the methodological quality of cohort studies (available 
at http://www.ohri.ca/programs/clinical_epidemiology/oxford.
asp) (21).

Statistical Analysis and Sensitivity 
Analysis
Distribution and frequencies of the extracted data parameters 
were analyzed using SPSS (version 22). Meta-analysis was per-
formed using R statistical software with the Metafor Library 
(version 1.9-8) (22). Fixed-effect modeling was performed when 
no statistical significant heterogeneity between studies was 
observed. When the heterogeneity between studies was statisti-
cally significant, random-effects modeling was applied based on 
the DerSimonian and Laird method (23). The assigned weight of 
each study in the analysis was based on its inverse variance. The 
following endpoints have been addressed: OS, DFS, locoregional 
control (LC), disease-specific survival (DSS), metastasis-free 
survival (MFS), and progression-free survival (PFS). Sensitivity 
analysis was performed by analyzing subgroups of studies 
separately, e.g., per tumor organ site. Funnel plots were created 
to visualize possible publication bias or heterogeneity between 
studies. Asymmetric funnel plots and studies outside the funnel 
plot suggest heterogeneity between them and/or publication bias 
(21). p-Values <0.05 were considered as statistically significant.

ReSULTS

This meta-analysis encompassed a total number of 24,523 
patients across 147 independent studies. Many studies included 
only a small number of patients (median per study 93, range 
15–3630) with a median follow-up time between 12.6  months 
and 13.9 years and are often inconclusive, which underlines the 
need for a meta-analysis. All papers were published between 2001 
and 2015 of which approximately 50% were published after 2010. 
The majority of the included studies treated patients with surgery 
alone (36.7%) or in combination with either chemotherapy (8.8%) 
or standard radiotherapy (8.8%), or the combination of all three 
modalities (23.1%). Single radiotherapy treatment or combined 
with chemotherapy was reported in 5.4 and 6.1% of the papers, 
respectively. In 4.8% of the studies, a form of experimental treat-
ment was administered, including experimental radiotherapy 
(24–28), hormonal treatment (29), and VEGF-targeted therapy 
(30). Most of the studies reported on head and neck cancer 
patients (21.8%) followed by breast (16.3%) and brain cancer 
patients (10.2%). By contrast, cancers of the adrenal gland, the 
cartilage, and the penis were only described once.

Immunohistochemical staining of CAIX was predominantly 
performed using the M75 antibody (46.3%) targeting the proteo-
glycan domain of CAIX (31, 32). Other studies used anti-CAIX 
antibodies obtained from different suppliers. A membranous 
expression of CAIX was described in 46.3% of the studies, 
although cytoplasmatic staining or a combination of the two 
was also reported (4.8 and 17.7%, respectively). Nuclear staining 
was only reported in one paper, whereas the rest did not state 
the staining localization. Different quantification methods and 
thresholds have been applied to stratify patients into groups with 
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FiGURe 2 | Summary plot of the overall HRs from each endpoint 
analyzed. Symbols represent the HR with 95%CI, and dashed line indicates 
no association between CAIX expression and prognosis.

71

van Kuijk et al. Meta-Analysis CAIX and Prognosis

Frontiers in Oncology | www.frontiersin.org March 2016 | Volume 6 | Article 69

low and high tumoral CAIX expression. Taken together, 33.9% of 
the total tumors were classified as expressing high levels of CAIX.

Overall, patients suffering from tumors with high CAIX 
expression had a worse treatment outcome (Figure 2). This asso-
ciation was strong and significant for all endpoints. The negative 
association of CAIX expression with outcome was dominant 
for DFS and weaker for LC. Systematic heterogeneity in the 
present meta-analysis as demonstrated by an asymmetric funnel 
plot (21) for most of the endpoints (Image 1 in Supplementary 
Material) can at least in part be attributed to the considerable 
variation in tumor types and sites across the studies. Therefore, 
in addition, subgroup analysis based on organ site of the tumor 
was performed. The results of the subgroup analysis demonstrate 
a significant prognostic value of CAIX in most of the cancer types 
investigated (see below).

Overall Survival
Effect of pretreatment expression of CAIX on OS could be evalu-
ated in 104 studies. The complete data to estimate the HR could 
not be retrieved from 11 papers and were therefore not included in 
the analysis [Table 1 in Supplementary Material (33–43)]. Overall, 
high CAIX expression was associated with a worse OS (HR = 1.76, 
95%CI 1.58–1.98, p < 0.0001, Figure 3). Subgroup analysis of the 
different organ sites revealed a similar significant association 
between tumoral CAIX expression and OS in 11 organ sites: blad-
der (HR = 1.64, 95%CI = 1.21–2.22), brain (HR = 2.18, 95%CI 
1.60–2.96), breast (HR = 1.90, 95%CI = 1.45–2.50), esophagus 
(HR = 1.97, 95%CI 1.50–2.60), gall bladder (HR = 2.35, 95%CI 
1.33–4.15), gastroenteropancreatic tract (HR  =  2.57, 95%CI 
1.45–4.56), head and neck (HR = 1.66, 95%CI 1.29–2.13), lung 
(HR  =  1.57, 95%CI 1.06–2.33), pancreas (HR  =  2.37, 95%CI 
1.04–5.43), soft tissue (HR  =  2.97, 95%CI 1.65–5.34), and the 
stomach (HR  =  1.92, 95%CI 1.39–2.67). The other six organ 
sites show a similar trend with worse OS, albeit not statistically 
significant (Table 1). Similar results were often, but not always, 
observed for different tumor types per organ site (Table 2 in 
Supplementary Material). A hypoxia-associated perinecrotic 
staining pattern was reported in 16 of these studies, whereas a 
diffuse staining pattern was reported in 3 papers. Interestingly, 
both patterns of CAIX expression significantly associated with OS 
(perinecrotic: HR = 1.99, 95%CI 1.60–2.48; diffuse: HR = 1.77, 

95%CI 1.22–2.56). These results suggest that the expression pat-
tern of CAIX does not affect its prognostic value.

Disease-Free Survival
A total of 40 from the selected 147 studies investigated the associa-
tion between CAIX expression and DFS. Five studies could not be 
included in this analysis due to incomplete reporting [Table 1 in 
Supplementary Material (39, 40, 43, 124, 130)]. Based on 35 studies, 
high CAIX expression was statistically significantly associated with a 
decreased DFS (HR = 1.87, 95%CI 1.62–2.16, p < 0.001) (Figure 4). 
Subgroup analysis based on organ site of the tumor showed that high 
CAIX expression was significantly associated with shorter DFS in 
bladder (HR = 2.63, 95%CI 1.56–4.40), breast (HR = 1.74, 95%CI 
1.34–2.27), colorectal (HR  =  3.31, 95%CI 1.23–8.89), esophagus 
(HR = 2.70, 95%CI 2.08–3.50), head and neck (HR = 1.98, 95%CI 
1.51–2.61), liver (HR = 1.51, 95%CI 1.26–1.81), lung (HR = 1.87, 
95%CI 1.27–2.74), and soft tissue tumors (HR = 3.41, 95%CI 1.58–
7.30). By contrast, no significant association with DFS was observed 
for tumors in the cervix (HR = 1.12, 95%CI 0.75–1.68), pancreas 
(HR = 2.98, 95%CI 0.56–15.9), penis (HR = 1.35, 95%CI 0.55–3.30), 
stomach (HR = 1.27, 95%CI 0.77–2.10), and vulva (HR = 1.52, 95%CI 
0.79–2.90) (Table 1). A similar trend was observed for all different 
tumor types per organ sites (Table 2 in Supplementary Material).

Locoregional Control
The risk of locoregional relapse associated with CAIX expression 
was evaluated in 25 studies in 6 different organ sites. Figure 5 
shows the overall LC outcome, which indicates that patients with 
high tumoral CAIX expression have a higher risk of locoregional 
recurrences than patients with low expression of CAIX in 
tumors (HR = 1.54, 95%CI 1.22–1.93, p = 0.0002). The negative 
association between high CAIX expression in tumors and worse 
LC remained significant in head and neck (HR =  1.54, 95%CI 
1.12–2.12) and liver tumors (HR  =  1.39, 95%CI 1.09–4.10) 
(Table  1). A similar association was observed in most of the 
tumor types per organ sites (Table 2 in Supplementary Material).

Disease-Specific Survival
Disease-specific survival was reported in 23 studies, of which 
1 study provided incomplete data to estimate the HR [Table 1 
in Supplementary Material (43)]. In the remaining 22 studies, 
patients suffering from tumors with high CAIX expression 
had a significantly shorter DSS (HR  =  1.78, 95%CI 1.41–2.25, 
p < 0.0001) (Figure 6). Subgroup analyses by organ site revealed 
significant associations between high CAIX expression and worse 
DSS in tumors of the breast (HR = 1.75, 95%CI 1.28–2.38), cervix 
(HR =  2.19, 95%CI 1.29–3.70), esophagus (HR =  2.78, 95%CI 
1.56–5.00), head and neck (HR = 2.21, 95%CI 1.12–4.36), pan-
creas (HR = 1.49, 95%CI 1.07–2.10), and soft tissue (HR = 1.65, 
95%CI 1.11–2.45) (Table  1). Subgroup analyses of the tumor 
types per organ sites revealed a worse DSS to be associated with 
high CAIX expression in the majority of tumor types (Table 2 in 
Supplementary Material).

Metastasis-Free Survival
Metastasis-free survival was reported in 12 of the 147 
included studies. Based on 11 of these studies, high CAIX 
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expression was significantly associated with a shorter MFS 
(HR =  1.82, 95%CI 1.33–2.50, p =  0.0002) [Figure 7; Table 
1 in Supplementary Material (166)]. Subgroup analyses of 
the different organ sites of the tumors, independent of tumor 
types, revealed high CAIX expression to be significantly 
associated with a worse MFS in most of the organ sites 
reported, i.e., breast (HR = 1.76, 95%CI 1.13–2.74), cartilage 
(HR  =  6.46, 95%CI 2.05–20.0), cervix (HR  =  2.37, 95%CI 
1.35–4.10), colorectal (HR  =  5.17, 95%CI 2.07–13.0), and 
vulva (HR  =  2.25, 95%CI 1.42–3.60), but not in head and 
neck (HR  =  0.77, 95%CI 0.27–2.26) and soft tissue cancers 
(HR  =  1.65, 95%CI 0.72–3.80) (Table  1). Interestingly, one 
study reported a significant positive association between high 
CAIX expression and better MFS in squamous cell carcinoma 
of the head and neck (HR = 0.27, 95%CI 0.09–0.80) (Table 2 

in Supplementary Material), which may be attributed to the 
hypoxia-modifying component of the treatment (24).

Progression-Free Survival
Eleven out of 12 studies could be included to estimate the risk of 
disease progression after treatment based on CAIX expression 
in tumors [Table 1 in Supplementary Material (169)]. Similar 
to the other endpoints, PFS was significantly shorter in patients 
with tumors expressing high levels of CAIX (HR = 1.58, 95%CI 
1.27–1.96, p < 0.0001) (Figure 8). Subgroup analyses per organ 
site revealed that the association with PFS only remained statisti-
cally significant in breast (HR = 1.88, 95%CI 1.13–3.10), colo-
rectal (HR = 2.38, 95%CI 1.06–5.56), and head and neck tumors 
(HR = 1.62, 95%CI 1.01–2.59) (Table 1). The subgroup analyses 
of tumor types per organ site showed similar associations between 
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TABLe 1 | Results of subgroup meta-analyses of different organ sites reported.

Organ site OS DFS LC DSS MFS PFS

Bladder 1.64 (1.21–2.22) 2.63 (1.56–4.40) 0.88 (0.40–1.90) 0.82 (0.47–1.4) 0.68 (0.21–2.20)

Brain 2.18 (1.60–2.96) 1.44 (0.91–2.27)

Breast 1.90 (1.45–2.50) 1.74 (1.34–2.27) 1.37 (0.95–1.96) 1.75 (1.28–2.38) 1.76 (1.13–2.74) 1.88 (1.13–3.10)

Cartillage 6.46 (2.05–20.0)

Cervix 1.11 (0.91–1.35) 1.12 (0.75–1.68) 1.17 (0.74–1.87) 2.19 (1.29–3.70) 2.37 (1.35–4.10) 1.76 (0.99–3.10)

Colorectal 1.41 (0.67–2.98) 3.31 (1.23–8.89) 3.33 (1.76–6.30) 1.31 (0.18–9.41) 5.17 (2.07–13.0) 2.38 (1.06–5.56)

Esophagus 1.97 (1.50–2.60) 2.70 (2.08–3.50) 2.78 (1.56–5.00)

Esop, Stom 1.53 (1.00–2.30)

Gall Bladder 2.35 (1.33–4.15)

GEP 2.57 (1.45–4.56)

H&N 1.66 (1.29–2.13) 1.98 (1.51–2.61) 1.54 (1.12–2.12) 2.21 (1.12–4.36) 0.77 (0.27–2.26) 1.62 (1.01–2.59)

Liver 1.41 (0.98–2.03) 1.51 (1.26–1.81) 1.39 (1.09–4.10)

Lung 1.57 (1.06–2.33) 1.87 (1.27–2.74) 1.75 (0.59–5.15)

Ovary 1.42 (0.82–2.45) 1.24 (0.67–2.30)

Pancreas 2.37 (1.04–5.43) 2.98 (0.56–15.9) 1.49 (1.07–2.10)

Penis 1.35 (0.55–3.30)

Small Intestine 2.58 (0.21–31.8)

Soft tissue 2.97 (1.65–5.34) 3.41 (1.58–7.30) 1.65 (1.11–2.45) 1.65 (0.72–3.80)

Stomach 1.92 (1.39–2.67) 1.27 (0.77–2.10)

Vulva 1.52 (0.79–2.90) 1.34 (0.67–2.70) 2.25 (1.42–3.60)

The overall HR (with 95%CI) is shown. When HR was available from only one paper, the values were adopted from that single paper. Bold numbers indicate statistical significant 
associations between CAIX expression and prognosis (p < 0.01).
Esop, Stom, esophagus and stomach; GEP, gastroenteropancreatic tract.

74

van Kuijk et al. Meta-Analysis CAIX and Prognosis

Frontiers in Oncology | www.frontiersin.org March 2016 | Volume 6 | Article 69

high CAIX expression and a worse PFS (Table 2 in Supplementary 
Material).

High-Quality Papers
This meta-analysis used an adjusted version of the NOS to evalu-
ate the quality of a study. The scores of this quality assessment 
ranged between 1 and 7 stars, i.e., the maximum, awarded per 
study. Approximately half of the studies (52.4%) were considered 
as high-quality studies, i.e., with a number of stars greater or 
equal to the median (5 stars). Meta-analysis of only the high-
quality studies revealed significant prognostic values of CAIX 
expression for OS (HR = 1.81, 95%CI 1.57–2.09, n = 50), DFS 
(HR = 1.81, 95%CI 1.47–2.23, n = 18), DSS (HR = 1.71, 95%CI 
1.16–2.51, n = 10), and PFS (HR = 1.59, 95%CI 1.21–2.07, n = 7). 
For both LC (HR  =  1.90, 95%CI 1.58–2.30, n  =  14) and MFS 
(HR = 2.47, 95%CI 1.92–3.19, n = 7), the association with CAIX 
expression became even stronger when only high-quality studies 
were included.

DiSCUSSiON

Many clinical studies investigated the prognostic association 
of CAIX expression with treatment outcome. Most of these 
studies, however, include only limited numbers of patients 
and remain inconclusive. This current meta-analysis is 
the first complete overview of all reported clinical studies 
investigating the impact of pretreatment CAIX expression in 
solid tumors on prognosis. Overall, these results clearly show 
that high CAIX expression is an adverse prognostic marker 
in solid tumors, irrespectively of the endpoint evaluated, as 

summarized in Figure 2. A strong association between high 
CAIX expression and poor prognosis was also found in the 
majority of different tumor sites, supporting an important role 
of CAIX in disease progression and treatment resistance in 
many cancer types.

The papers included in the current meta-analysis were all 
published between 2001 and 2015, which is likely attributed to the 
identification of the hypoxic responsive element in the promotor 
region of ca9 in the end of 2000 (170). This study identified a 
direct link between CAIX expression and its hypoxic upregula-
tion through HIF stabilization. This crucial finding encouraged 
research to evaluate CAIX as an endogenous marker of tumor 
hypoxia, a known biological factor of therapy resistance (2–4). 
Nevertheless, because alternative mechanisms can also regulate 
CAIX expression, e.g., via PI3K (171) or the unfolded protein 
response (10, 172), tumoral CAIX expression may not accurately 
identify hypoxic tumors. Apart from the hypoxia-associated 
mechanisms underlying resistance of tumor cells to several treat-
ment modalities, CAIX can directly affect cancer prognosis as its 
main function is to maintain the balance between intracellular 
and extracellular pH, thereby generating an acidic extracellular 
microenvironment (11, 12). This is supported by data demonstrat-
ing that CAIX is involved in promoting tumorigenesis and leads 
to a more aggressive phenotype of tumor cells (173). This can 
partly be explained by the association between CAIX expression 
and the induction of tumor cell migration and invasion, which 
could be caused by the reduction in extracellular pH (174–176). 
In addition, cancer stem cell markers also appear to be enriched 
in the CAIX expressing population of tumor cells (57, 177). The 
important role of CAIX, either directly or indirectly, in cancer 
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FiGURe 4 | Forest plot of the papers describing the association between CAiX expression and DFS. Horizontal bars represent HR with corresponding 
95%CI. Symbol size represents the assigned weight of the study. The overall HR with 95%CI is visualized with the diamond shape. Dashed line indicates no 
association between CAIX and prognosis (29, 33, 34, 48, 57, 59, 68, 73, 74, 82, 84, 85, 87, 89, 90, 97, 98, 112, 117, 119, 121, 125, 131–143).
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prognosis is also supported by the results of the current meta-
analysis, which shows that tumors with high CAIX expression 
have higher risk of locoregional failure, disease progression, and 
higher risk to develop metastasis. Other proton exchangers and 
transporters have been shown preclinically and clinically to play 
an important role in the regulation of cellular pH homeostasis 
promoting survival and invasion as well as causing treatment 
resistance (178–180). Therefore, assessment of several major pH 
regulators in tumors prior and/or during therapy may represent 
a more powerful prognostic and predictive biomarker as well as 
important targets for new anti-cancer treatments, which warrants 
further investigations.

A meta-analysis usually overestimates its results because of 
selective reporting and publication bias (21). This meta-analysis 

identified a total of 147 studies reported in 144 papers of which 
15 could not be included in final analysis because the HR could 
not be estimated due to incomplete reporting (33–43, 124, 
130, 166, 169). Non-significant association between CAIX and 
outcome was found in these studies (Table 1 in Supplementary 
Material). Including these 15 papers in the analysis might 
therefore decrease the magnitude of the prognostic values 
of CAIX expression reported here. This overestimation can 
be further increased by publication bias, i.e., when negative 
associations are not published at all and can therefore not be 
identified and included in this meta-analysis. Nevertheless, 
since the prognostic value of CAIX expression was highly 
statistically significant, we believe that the possible effect of 
publication bias on this association is minimal.
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FiGURe 5 | Forest plot of the papers describing the association between CAiX expression and LC. Horizontal bars represent HR with corresponding 
95%CI. Symbol size represents the assigned weight of the study. The overall HR with 95%CI is visualized with the diamond shape. Dashed line indicates no 
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The different staining and scoring methods used in the included 
papers to quantify CAIX expression might be an additional 
source of bias. Visual quantification was used in the majority of 
the reports and could either be based on staining intensity, the 
number of stained cells, or a combination of both. In addition, 
different thresholds have been used to dichotomize patients based 
on their CAIX expression. This discrepancy in methods is one of 
the reasons of significant heterogeneity between studies, which 
therefore requires the use of a random-effect model in the meta-
analysis (181, 182). Additionally, tissue microarrays (TMAs) are 
used in the majority of included papers to visualize and quantify 
CAIX expression, even though TMAs may underestimate the 
actual expression levels of the protein (183). The use of TMAs 
might therefore bias the prognostic value of CAIX when CAIX 
expression levels are dichotomized erroneous. Furthermore, this 
meta-analysis is limited by difficulties in obtaining homogenous 
endpoints and by non-uniform observation times, although most 
of the data are based on reports with a median follow-up of more 
than 1 year.

To identify possible bias in a selected study, an adjusted ver-
sion of the NOS was used, which is a quick and easy method to 
assess the quality of studies that has been commended in the 

Cochrane handbook (21). However, the validity and reproduc-
ibility of the NOS have been questioned because of the subjec-
tive interpretation of certain criteria, which require detailed 
guidelines to obtain a better inter-rater agreement (184–186). 
The test–retest reliability of the NOS is, however, better, which 
allows for a single reviewer to continuously use uniform criteria 
while rating papers (185). When only high-quality papers, i.e., 
those with minimal bias, were included in our analyses, there 
was no significant difference in the results as compared with all 
studies included.

It remains impossible to eliminate every source of bias in 
a meta-analysis. Nevertheless, the high statistical significance 
of the results presented here clearly show that CAIX expres-
sion is associated with worse prognosis in a global patient 
population and in the majority of tumor sites. These find-
ings are similar to the results of the meta-analysis in head 
and neck cancer (14), but different from RCC (13) due to the 
alternative mechanism of CAIX upregulation in RCC (15, 16). 
New treatment options are currently being developed to spe-
cifically inhibit CAIX function (6, 187), of which one is cur-
rently in a Phase I clinical trial (NCT02215850). These types 
of compounds might prove to be beneficial for the specific 
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FiGURe 6 | Forest plot of the papers describing the association between CAiX expression and DSS. Horizontal bars represent HR with corresponding 
95%CI. Symbol size represents the assigned weight of the study. The overall HR with 95%CI is visualized with the diamond shape. Dashed line indicates no 
association between CAIX and prognosis (29, 78, 95, 102, 136, 138, 140, 144, 150, 152, 154, 156–165).

FiGURe 7 | Forest plot of the papers describing the association between CAiX expression and MFS. Horizontal bars represent HR with corresponding 
95%CI. Symbol size represents the assigned weight of the study. The overall HR with 95%CI is visualized with the diamond shape. Dashed line indicates no 
association between CAIX and prognosis (24, 27, 34, 52, 95, 102, 140, 34, 150, 165, 167, 168).
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treatment of tumors with high CAIX expression. The results 
of this meta-analysis further support the development of a 
clinical test to determine patient prognosis based on CAIX 
expression, although a standardized protocol remains to be 
developed and validated.
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Hepatoma upregulated protein (HURP) is a multifunctional protein with clinical prom-
ise. This protein has been demonstrated to be a predictive marker for the outcome 
in high-risk prostate cancer (PCa) patients, besides being a resistance factor in PCa. 
Although changes in oxygen tension (pO2) are associated with PCa aggressiveness, 
the role of hypoxia in the regulation of tumor progression genes such as HURP has not 
yet been described. We hypothesized that pO2 alteration is involved in the regulation of 
HURP expression in PCa cells. In the present study, PCa cells were incubated at 2% O2 
(hypoxia) and 20% O2 (normoxia) conditions. Hypoxia reduced cell growth rate of PCa 
cells, when compared to the growth rate of cells cultured under normoxia (p < 0.05). The 
decrease in cell viability was accompanied by fivefold (p < 0.05) elevated rate of vascular 
endothelial growth factor (VEGF) release. The expression of VEGF and the hypoxia-in-
ducible metabolic enzyme carbonic anhydrase 9 were elevated maximally nearly 61-fold 
and 200-fold, respectively (p < 0.05). Noted in two cell lines (LNCaP and C4-2B) and 
independent of the oxygen levels, HURP expression assessed at both mRNA and pro-
tein levels was reduced. However, the decrease was more pronounced in cells cultured 
under hypoxia (p < 0.05). Interestingly, the analysis of patients’ specimens by Western 
blot revealed a marked increase of HURP protein (fivefold), when compared to control 
(cystoprostatectomy) tissue (p  <  0.05). Immunohistochemistry analysis showed an 
increase in the immunostaining intensity of HURP and the hypoxia-sensitive molecules, 
hypoxia-inducible factor 1-alpha (HIF-1α), VEGF, and heat-shock protein 60 (HSP60) in 
association with tumor grade. The data also suggested a redistribution of subcellular 
localization for HURP and HIF-1α from the nucleus to the cytoplasmic compartment in 
relation to increasing tumor grade. Analysis of HURP Promoter for HIF-1-binding sites 

Abbreviations: CA9, carbonic anhydrase 9; CO2, carbon dioxide; DLGAP5, discs, large (Drosophila) homolog-associated pro-
tein 5; DNA, deoxyribonucleic acid; ELISA, enzyme-linked immunosorbent assay; HIF-1α, hypoxia-inducible factor 1-alpha; 
HIFs, hypoxia-inducible factors; HSP, heat-shock protein; HURP, hepatoma upregulated protein; IHC, immunohistochemistry; 
mRNA, messenger ribonucleic acid; O2, dioxygen; PCa, prostate cancer; pO2, oxygen tension; qRT-PCR, reverse transcription 
polymerase chain reaction; RNA, ribonucleic acid; VEGF, vascular endothelial growth factor.
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revealed presence of four putative HIF binding sites on the promoter of DLGAP5/HURP 
gene in the non-translated region upstream from the start codon, suggesting association 
between HIF-1α and the regulation of HURP protein. Taken together, our findings suggest 
a modulatory role of hypoxia on the expression of HURP. Additionally our results provide 
basis for utilization of tumor-associated molecules as predictors of aggressive PCa.

Keywords: hUrP, hypoxia, prostate cancer, lncaP, c4-2B, tumor

inTrODUcTiOn

Prostate cancer (PCa) remains the most common form of cancer 
affecting men in the Western Hemisphere. In 2015, an estimated 
220,800 new cases of PCa are expected to occur in the US and 
an estimated 27,540 deaths are expected nationwide (1). On the 
assessment of the aggressiveness of PCa, factors of tumor micro-
environment have received increasing attention. In particular, the 
role of oxygen tension [potentia oxygenii (pO2)] in tumor biol-
ogy is of special relevance. Unappreciated for a long time, tumor 
hypoxia has been recently linked to malignant progression, 
metastasis, resistance to therapy, and poor clinical outcomes, 
particularly in the case of PCa (2–4). Likewise, addition of 
hypoxia as a variable improved prognostic accuracy of aggressive 
PCa, when added to currently used clinicopathological variables 
(5). This demonstrates the relevance of hypoxia, a variable of the 
microenvironment, as a factor of aggressiveness in PCa.

We previously reported that a subset of transcripts of hypoxia-
associated genes are relevant as markers of PCa progression 
(6). One of these genes, namely hepatoma upregulated protein 
(HURP), was found to be associated with Gleason score and 
systemic progression of PCa, in addition to being a potential 
independent outcome predictor in high-risk PCa (6). Moreover, 
the induction of HURP expression in PCa cells was shown by us 
to inhibit γ-irradiation-induced apoptosis via destabilization of 
p53 and ATM, key proteins in the modulation of γ-irradiation-
induced apoptosis (7). Thus, in addition to its reliability as a 
prognostic biomarker in patients at high-risk of developing 
aggressive PCa, HURP seems to trigger PCa resistance to stand-
ard antitumor therapies.

It has been generally accepted that conditions of tumor 
microenvironment including hypoxia promote disease progres-
sion and metastasis via mechanisms mediated by chromosomal 
instability, gene amplification, and decreasing tumor sensitivity 
to DNA damaging agents (8, 9). The above mentioned tumor-
associated aberrations contribute to disease development and 
resistance to therapies (10–12). HURP expression is tightly 
regulated during cell cycle progression (13–15) and is a compo-
nent of the Ran-importin β-regulated spindle assembly pathway 
(16). HURP possesses significant regions of positive charge that 
are postulated to interact with microtubules (17), suggesting 
an essential role for this protein on the regulation of cell cycle 
control. Accordingly, the overexpression of HURP in 293T 
cells and NIH3T3 embryonic fibroblasts at low serum levels 
was associated with the promotion of cell growth and colony 
formation, respectively (14, 18, 19). In contrast, the knockdown 
of HURP in SK-Hep-1-derived hepatoma model delayed tumor 
formation (19).

When analyzed in total, the available information utilizing 
in vitro and in vivo models suggest that HURP’s biological prop-
erties are compatible with its role in carcinogenesis. Changes in 
pO2 contribute to the aggressiveness of tumors as well, but it is 
less clear whether hypoxia affects HURP expression. The present 
study provides the first insight into the biological properties of 
HURP as a hypoxia-associated gene in tumor development and 
progression.

MaTerials anD MeThODs

cell culture
The human PCa cell lines LNCaP and C4-2B were obtained from 
the Characterized Cell Line Core Facility, University of Texas MD 
Anderson Cancer Center. C4-2B cells represent a human bone 
metastatic PCa and were derived from LNCaP cells. They have 
more aggressive characteristics when compared to their parental 
cells (20). For methylation experiments, we utilized LNCaP, 
DU-145, and PC3 PCa cell lines purchased from the ATCC. Cells 
were cultured as recommended by the company. All utilized cell 
lines were genotyped by STR DNA fingerprinting. They were 
mycoplasma-free following the detection with the MycoAlert™ 
Mycoplasma Detection Kit (cat # LT07-218; Lonza, Allendale, NJ, 
USA). Cells were routinely cultured in phenol red RPMI-1640 
supplemented with 10% heat-inactivated fetal bovine serum 
(Cellgro, Manassas, VA, USA) at 37°C in humidified air enriched 
with 5% CO2 and with O2 content either 20% (normoxic) or 2% 
(hypoxic) in a CB-150 (Binder, Germany) CO2 incubator. The cells 
were trypsinized at 80–90% confluence and plated at the density 
of 12,000 cells/cm2. The medium was not refreshed during the 
course of the experiments. To evaluate cell viability, cells exclud-
ing trypan blue were counted by the aid of a hemocytometer.

Measurement of VegF concentration in 
conditioned Media
Concentrations of vascular endothelial growth factor (VEGF) 
in supernatants were measured by a commercial enzyme-
linked immunosorbent assay (ELISA) kit (R&D Systems, Inc., 
Minneapolis, MN, USA) according to the manufacturer’s instruc-
tions. This ELISA kit has been shown to recognize recombinant 
human VEGF165, recombinant human VEGF121, and recombinant 
human VEGF165b. The lower detection limit of the kit was 31.3 pg/
mL. Rate of VEGF secretion was expressed as pg/(mL/cell/day).

Quantitative rT-Pcr
Total mRNA was isolated using RNeasy Mini kit (Qiagen, 
Germantown, MD, USA) according to the manufacturer’s 
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instructions: 1-μg RNA was reversely transcribed using 
SuperScript III First Strand Synthesis (Invitrogen, Grand Island, 
NY, USA). Subsequently, quantitative PCR was performed with 
a LightCycler 480 SYBR Green I Master (Roche, Madison, WI, 
USA). Levels of mRNA were normalized relative to the levels 
of control ribosomal protein S28 (RPS28) mRNA (21). Data 
were analyzed by the Delta Delta Ct (2-ΔΔCT) method using 
Excel program. Primer sequences used were (forward/reverse): 
VEGF-α: 5′-AGT CCA ACA TCA CCA TGC AG-3′/5′-TTC 
CCT TTC CTC GAA CTG ATT T-3′, carbonic anhydrase 9 
(CA9): 5′-TTT GCC AGA GTT GAC GAG G-3′/5′-AGC CTT 
CCT CAG CGA TTT C-3′, HURP: 5′-CAT TTT CCT TCA TAT 
TAT CAA TG-3′/5′-CAT TAT ATG CTA TAG AAG TGA ACA 
C-3′, and ribosomal protein S28 (RPS28): 5′-TTT TGG AGT 
CAG AGC GAG AAG-3′/5′-AGC ATC TCA GTT ACG TGT 
GG-3′.

Preparation of Protein extracts
Cells were washed with cold phosphate-buffered saline (PBS) 
and lysed in RIPA buffer. Cells lysates were sonicated on ice 
for 2 min with 30 s intervals followed by vortexing every 5 min 
during 45 min at 4°C. Lysates were centrifuged at 24,000 × g for 
10 min. Supernatants were collected and saved at −80°C. For flash 
frozen tissue, prostate obtained from PCa patients (n = 8) and 
cystoprostatectomy patients (n = 4; used as control) was utilized. 
Cystoprostatectomy is a surgical procedure, which combines 
a cystectomy and a prostatectomy for the removal of bladder 
cancer tumors. Tissues were homogenized in an IKA Work tissue 
homogenizer (Wilmington, NC, USA). Proteins were extracted 
from the homogenate with the AllPrep DNA/RNA/Protein Mini 
Kit (Qiagen, Germantown, MD, USA) according to the manu-
facturer’s guidelines. Protein concentration was determined by 
Bradford assay (Bio-Rad, Hercules, CA, USA) using bovine 
γ-globulin (Pierce, Rockford, IL, USA) as standard.

sDs-Page and Western Blot analysis
Fifty micrograms of protein were separated in a 10.5–14% SDS-
PAGE gradient gel, transferred to a nitrocellulose membrane, and 
incubated with blocking buffer containing primary antibodies 
(Santa Cruz Biotechnology, Santa Cruz, CA, USA) specific for 
HURP (diluted 1/400; sc-68540), β-actin (1/5000; Sc-8432), and 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH, 1/5000; 
Sc-25778). The anti hypoxia-inducible factor 1-alpha [HIF-1α 
antibody (1/500)] was from R&D Systems (AF1935). Bound pri-
mary antibodies were visualized with HRP-conjugated antibodies 
specific for human IgG (diluted 1/1000 in blocking buffer; Abcam, 
Cambridge, MA, USA). After addition of a chemiluminescent sub-
strate (Rockford, IL, USA), the membrane was immediately exposed 
on a CL-XPosure film (Thermo Fisher Scientific) and scanned with 
an Epson Perfection 4490 Photo scanner to detect bands. Relative 
intensities of the bands were quantified using ImageJ software (NIH 
online, Bethesda, MD, USA); the recorded values were normalized 
to the intensity of the respective β-actin signal.

immunohistochemistry
According to the manufacturer’s instruction provided in 
ABC Kit (Vector Laboratories Inc., Burlingame, CA, USA), 

immunohistochemistry (IHC) was performed on formalin fixed 
and paraffin embedded samples of benign prostatic tissues, low 
grade PCa, and high grade PCa. Briefly, 5-μm sections in thick-
ness were deparaffinized and rehydrated followed by antigen 
retrieval with citrate buffer (pH 6.0) for 20 min. Endogenous 
peroxidase activity was quenched with 3% hydrogen peroxide 
for 10  min and unspecific bindings were blocked with 10% 
normal serum in room temperature for 1 h. Next, the slides were 
incubated with primary antibodies against HURP [rabbit poly-
clonal diluted 1/100 (cat # ab84509; Santa Cruz Biotechnology, 
Inc., Dallas, TX, USA)]; hypoxia-inducible factor 1-alpha 
(HIF-1α) [H-206, rabbit polyclonal diluted 1/50 (cat # sc-10790; 
Santa Cruz Biotechnology)]; heat-shock protein 60 (HSP60) 
[mouse monoclonal (LK1) diluted 1/50 (Abcam, Cambridge, 
MA, USA)]; and VEGF [VEGF (147), rabbit polyclonal diluted 
1/50 (cat # sc-507; Santa Cruz Biotechnology)]. Sections were 
incubated overnight at 4°C. Negative controls were prepared 
by using a normal anti-rabbit IgG. After PBS wash, the slides 
were incubated with the components in ABC kits, and with 
3,3 ′-diaminobenzidine (DAB) for color development. Finally, 
slides were counterstained in hematoxylin and mounted. Under 
microscope, subcellular localizations of IHC signals for each 
antibody were defined as membranous, cytoplasmic, or nuclear 
stain. The stain intensity was graded as no stain, weak, moder-
ate, and strong.

Methylation assay
DNA (500  ng) from log growing LNCaP, DU-145, and PC3 
cell lines was treated with sodium bisulfite and later purified 
using the EZ DNA Methylation Kit from Zymo Research (San 
Diego, CA, USA), as recommended. The bisulfite-treated DNA 
(BST-DNA) was denatured with 0.1  N NaOH for 10  min at 
room temperature and then amplified at 37°C for 24 h follow-
ing Illumina’s recommended protocols, as we have previously 
published (22). The amplified DNA sample was then fragmented 
at 37°C for 1 h and precipitated with 2-propanol by centrifugation 
at 3000  ×  g for 20  min at 4°C. The DNA pellet was air dried, 
resuspended in buffer, and hybridized for 24  h at 48°C to the 
Illumina chips HumanMethylation27 to interrogate 27,000 CpG 
in more than 14,000 genes. A single-base extension protocol is 
followed by staining of the beadchip and several washing steps, 
as recommended by the manufacturer (Illumina). The chips 
were dried under vacuum for 55  min and scanned using the 
BeadArray reader (Illumina). The beta fraction (β value) of the 
HURP gene was obtained utilizing the GenomeStudio software 
v2011.1. For methylation analysis of HURP, we focused on cg 
25465634-4010161.

Bioinformatics analysis for hUrP 
Promoter
The promoter region of DLGAP5/HURP was studied for the bind-
ing sites of the transcription factor HIF using reported evidence 
(23, 24) on the minimal cis-regulatory elements required for HIF-
dependent transactivation. Identified potential binding sites were 
analyzed in context of their location in methylated DNA regions. 
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FigUre 2 | effect of hypoxia on VegF production: rates of vascular 
endothelial growth factor (VegF) release in conditioned culture media 
were measured by elisa for c4-2B cells growing under hypoxia (■) 
or normoxia (□). *p < 0.05 when data at 2% O2 are compared to values at 
20% O2 at the same time point; #p < 0.05 when data at 2% O2 or 20% O2 are 
compared to a previous time point within the same O2%; and &p < 0.05 when 
a specific data point is compared to the point at day 0 within the same O2%.

FigUre 1 | effect of hypoxia on cell viability: c4-2B cells were 
cultured at under hypoxia (■) or normoxia (□). Alive cells were counted 
in triplicate flasks using trypan blue exclusion to differentiate dead cells. 
*p < 0.05 when data at 2% O2 are compared to values at 20% O2 at the 
same time point; #p < 0.05 when data at 2% O2 or 20% O2 are compared to 
a previous time point within the same O2%; and &p < 0.05 when a specific 
data point is compared to the point at day 0 within the same O2%.
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The possible binding sites were defined by those having at least 
80% of nucleotide content identical to the reported canonical 
binding site for HIF (23, 24).

statistics
All reported values represent three independent cell culture 
experiments expressed as means ± SEM. Data for cell numbers, 
VEGF release, and mRNA expression were analyzed by two-way 
ANOVA (pO2 vs. day), followed by a post hoc Student–Newman–
Keuls multiple comparisons test. Difference in HURP protein 
between tumor and normal tissue lysates were analyzed by the 
Mann–Whitney U test. A difference was considered significant 
at p < 0.05.

resUlTs

sensitivity to hypoxia
We first evaluated the effect of hypoxia on cell viability in 
C4-2B cells exposed to 20% O2 (normoxia) or 2% O2 (hypoxia). 
Accordingly, the number of living cells was counted in a time 
course experiment. Under normoxia (Figure  1), a significant 
increase of cell numbers was noted on day 2 (p  <  0.05), and 
increased thereafter to reach a maximum on day 8, while under 
hypoxia, the increased cell numbers were markedly higher (three-
fold), when compared to the cell numbers on day 0 (p < 0.05). 
Numbers remained unchanged until day 6, and slightly increased 
by 20% at day 8. Cell numbers under normoxia, in contrast, did 
not experience further variation until completion of the experi-
ment at day 8. Taken together, these findings show that C4-2B 
cells cultured under hypoxia have a significantly reduced growth 
kinetics relative to those cultured under normoxia.

Rate of release of VEGF and the hypoxia-inducible 
 pro-angiogenic factor associated with growth and aggressiveness 
(25) was next evaluated in cell culture supernatants by ELISA. As 
shown in Figure 2, under normoxia, the rate of released VEGF 
to the conditioned media was constant (2.5 pg/cell/day) up to day 
8 (≈2.5 pg/cell/day). Cells cultured under hypoxia had constant 
induction until day 6. At that time point, a maximum release rate 
at day 6 (12.3 pg/cell/day) was noted. The release rate of VEGF 
decreased thereafter (p < 0.05) on day 8. At that last time point a 
release rate of 8.3 pg/cell/day was observed. The results indicate 
that exposure of C4-2B cells to low levels of oxygen enhances the 
production of the angiogenic factor, VEGF.

We next assessed whether transcriptional regulation of 
VEGF was associated with its production in cells cultured under 
hypoxia. Cells were incubated under normoxia or hypoxia over 
a period of 8  days, mRNA was extracted, and qRT-PCR was 
performed. The induction of VEGF expression (61-fold) was 
noted first on day 4 (p < 0.05) in cells growing under hypoxia, 
when compared with control cells (Figure 3A). In cells growing 
under normoxia, induction of VEGF transcripts was noted as 
well (p < 0.05). Particularly, on day 8, a 10-fold induction was 
evidenced. Observed levels in cells under normoxia at that time 
point were comparable to those noted in cells growing at 2% O2 
(15.9-fold over base line).

Similar to VEGF, hypoxia-inducible metabolic enzyme CA9 
is overexpressed in cancer cells (26) and has been proposed as a 
useful marker for hypoxic exposure (27). When measured, the 
transcripts of CA9 had a sustained induction over the 8 days of 
exposure to low oxygen (Figure 3B). On day 8, nearly 200-fold 
induction over baseline on day 0 was observed in hypoxic C4-2B 
cells (p < 0.05). In cells cultured under normoxia, no expression 
of CA9 was noted for most of the analyzed time course, but for 
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FigUre 3 | assessment transcripts of hypoxia-responsive genes: 
mrna levels of; (a) Vascular endothelial growth factor (VegF) and; (B) 
carbonic anhydrase 9 (ca9) were analyzed in c4-2B cells growing 
under hypoxia (■) or normoxia (□). *p < 0.05 when data at 2% O2 are 
compared to values at 20% O2 at the same time point; #p < 0.05 when data 
at 2% O2 or 20% O2 are compared to a previous time point within the same 
O2%; and &p < 0.05 when a specific data point is compared to the point at 
day 0 within the same O2%.
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11.4-fold induction over basal levels, observed at day 6 (p < 0.05). 
In consistency with our recent publication (28) and reports from 
others (29, 30), our findings show that PCa cells exhibit features of 
increased aggressiveness when they are cultured under hypoxia.

effects of Oxygen Tension on the 
expression of hUrP
We previously reported on the value of hypoxia-associated genes 
as prognostic markers of aggressive PCa (6). Among identified 
genes, transcripts of HURP independently predicted outcome in 
high-risk PCa (6). Because the role of hypoxia in the regulation 
of HURP expression is poorly understood, we set out to inves-
tigate the effect of varying oxygen levels on its expression. We 
assessed protein levels by Western blot analysis (Figures 4A,B) 
in C4-2B cells and their precursor cells, the LNCaP cell line 
(20). HURP protein levels were relatively low in LNCaP cells, 
compared to those detected in C4-2B at day 0. When quantified 
(Figures 4C,D), HURP protein increased to a similar extent at 

day 2 in LNCaP cells under normoxia (7.7-fold) and hypoxia (6.8-
fold). In C4-2B cells, the increase was more pronounced in cells 
cultured under normoxia (1.6-fold) relative to those cultured at 
2% O2 (1.2-fold). Irrespective of cell line and oxygen levels, HURP 
protein was drastically reduced over time. Under normoxia, the 
reduction of HURP expression was first noted at culture day 4 (21 
and 61% decrease for LNCaP and C4-2B cells, respectively) and 
was reduced thereafter close to 90% over maximum induction, 
regardless of the cell line, on day 8. Under hypoxic conditions the 
reduction of HURP protein was more pronounced. This observa-
tion was particularly evident in the case of C4-2B cells; HURP 
protein was reduced by 93% on day 4 and was undetectable at 
days 6 and 8 in this cell line.

We next studied the expression level of HIF-1α protein 
(Figures 4A,B), a key regulator of cellular responses to variation 
in pO2. Expression level of HIF-1α quantified on day 2 (Figure 4E) 
was increased in LNCaP cultured under normoxia (3-fold) and 
hypoxia (1.8-fold). At that time point, HIF-1α protein was reduced 
(Figure 4F) by 10% in normoxia and 20% in hypoxia in C4-2B 
cells. From day 4, HIF-1α protein was considerably reduced under 
normoxic condition. In C4-2B cells, however, a more pronounced 
decrease (68% reduction at day 8), relative to that observed in 
LNCaP cells (55% reduction at day 8) was noted when the 
maximum level of HIF-1α for each corresponding condition was 
used as reference. The expression of HIF-1α was differentially 
affected by hypoxia in LNCaP and C4-2B cells. Following maxi-
mal expression at day 2 (1.8-fold), levels of expression of HIF-1α 
remained unchanged until day 8. C4-2B cells growing in hypoxia 
had 50% reduction in HIF-1α protein from base level after 4 days 
of culture; however, the decrease was not as pronounced as that 
observed in cells growing in normoxia. Under low oxygen level, 
HIF-1α protein levels remained unchanged (42% of base level) 
until culture day 8.

Next, we studied the transcriptional regulation of HURP 
under hypoxia using qRT-PCR analysis. In LNCaP cells, induc-
tion of HURP transcripts on day 2 (1.3-fold, p < 0.05) was evident 
for cells cultured under normoxic condition (Figure 5A). At that 
time point, cells growing under hypoxia had a 65% decrease in 
HURP transcripts (p < 0.05). From day 4 and thereafter, a pro-
nounced reduction in HURP transcripts was noted irrespective 
of pO2 in LNCaP cells. Accordingly, at day 8, a decline of 98 and 
94% over maximum levels was noted for cells growing under 
normoxia and hypoxia, respectively (p  <  0.05). In accordance 
with protein expression data in C4-2B cells, early induction of 
mRNAs for HURP (Figure 5B) was noted on day 2. The increase 
in HURP transcripts observed at 20% O2 (3-fold, p < 0.05), was 
more pronounced than that noted in cells growing at 2% O2 (1.2-
fold, n.s.). In C4-2B cells growing under normoxia, a reduction to 
baseline level was noted on day 4 (p < 0.05). At this oxygen level, 
additional decline in HURP transcripts was noted as function of 
time (p < 0.05), 68% on day 6 and 95% decrease on day 8. Under 
hypoxia, HURP transcripts increased by 27% on day 2 (p < 0.05), 
relative to the levels on day 0. Moreover, a time-dependent reduc-
tion of HURP expression was noted on day 4 (~70%), on day 6 
(~70%), and on day 8 (85%). These findings suggest that HURP 
expression is associated to adaptive mechanisms of cellular 
response to varying oxygen tension.

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive


FigUre 4 | assessment transcripts of hypoxia-responsive genes: prostate cancer cells were cultured under hypoxia or normoxia during the 
indicated time intervals. Protein lysates were prepared and 50 μg of the total protein was fractionated on the 12% SDS-PAGE, blotted onto the nitrocellulose 
membrane, and tested against antibodies. Western blot analysis using anti-hepatoma upregulated protein (HURP), hypoxia-inducible factor 1-alpha (HIF-1α), and 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) antibodies in (a) LNCaP cells and (B) C4-2B cells. The relative intensities of the bands under hypoxia (■) or 
normoxia (□) were quantified using the ImageJ software, and all the values were normalized to the intensities of the respective GAPDH signal. Data are expressed 
as the fold change obtained after dividing the optical density of HURP (c,D); and HIF-1α (e,F) proteins for a given cell line and time point, relative to the OD 
observed of the respective protein under the corresponding value at 0 days.
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levels of hUrP Protein in Pca Tissues
Based on our publication regarding the prognostic value of 
HURP in aggressive PCa (6), we next explored the expression 
of HURP protein in PCa tumors. For this purpose, we prepared 
protein lysates from PCa tumors obtained from patients selected 
over the basis of their HURP mRNA expression and analyzed 
them by Western blot. Prostatic tissue was obtained from patients 
suffering with PCa or cystoprostatectomy (controls). Separated 
proteins were transferred onto a nitrocellulose membrane and 
blotted against anti-human HURP antibodies. The level of HURP 
protein (Figure 6A) was analyzed by Western blot. Densitometry 
analysis revealed almost fivefold higher relative in PCa tissue rela-
tive to control (cystoprostatectomy) tissue (p < 0.05) (Figure 6B). 
These data suggest that protein expression for HURP can be 
elevated in PCa tumors at the protein level.

histological localization of hUrP in the 
context of hypoxia-responsive Molecules
We next performed IHC in FFPE tissue blocks obtained from 
benign, low grade, and high grade PCa, as shown in Figure 7A 
(low magnification, 10×) and 7B (high magnification, 40×). IHC 
signals for HURP were moderate in nuclei staining and weak in 
cytoplasm localization of both benign prostatic epithelia and low 
grade PCa. High staining was found in the nuclei and cytoplasm 
of high grade PCa. Since expression of hypoxia-regulated mol-
ecules has been found associated with pathology and aggressive 
phenotype in PCa (3, 29, 31), we next evaluated their histological 
localization in relation with tumor grade. Similarly to HURP, IHC 
signals for HIF-1α were moderate in nuclei, and weak in cytoplasm 
of benign prostatic epithelia, moderate in both cytoplasm and 
nuclei of low grade PCa, and strong in both nuclei and plasma of 
high grade PCa. The immune intensity of VEGF, a HIF-1α induced 
protein, was also analyzed. IHC signals for VEGF were strong in 
nuclei and moderate in cytoplasm of benign prostatic epithelia, 
moderated in both nuclei and cytoplasm of low grade PCa, and 
strong in both nuclei and cytoplasm of high grade PCa. Finally, 
histological expression of HSP60, the mitochondrial chaperonin, 
actively involved in the accumulation of HIF-1α (32) was also 
analyzed. The pattern of IHC signals for HSP60 was different to 

FigUre 5 | effect of hypoxia on hUrP mrna: mrna levels of 
hepatoma upregulated protein (hUrP) were analyzed in lncaP (a) 
and c4-2B (B) cells growing under hypoxia (■) or normoxia (□) during 
8 days. *p < 0.05 when data at 2% O2 are compared to values at 20% O2 at 
the same time point; #p < 0.05 when data at 2% O2 or 20% O2 are compared 
to a previous time point within the same O2%; and &p < 0.05 when a specific 
data point is compared to the point at day 0 within the same O2%.

FigUre 6 | expression of hUrP protein in Pca tissues. Protein lysates (50 μg) extracted from frozen prostate tissues (C1–C4 samples from cytoprostatectomy 
patients and P1–P8 samples from PCa patients) were separated by SDS-PAGE. (a) Hepatoma upregulated protein (HURP) and beta (β)-actin levels in the samples 
were identified by Western blot as described in Section “Materials and Methods.” (B) The results were normalized to β-actin. Normalized ratios were compared 
between controls and PCa tumors. The level of significance was set at p < 0.05 between PCa and cytoprostatectomy samples.
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FigUre 7 | histopathology of hUrP and hypoxia-sensitive molecules in association with prostate cancer progression. Hepatoma upregulated 
protein (HURP), hypoxia-inducible factor 1-alpha (HIF-1α), Vascular endothelial growth factor (VEGF), and Heat-shock protein 60 (HSP60) immunostaining was 
assessed in benign tissues, Gleason <7 low grade PCa, and Gleason >7 high grade PCa tumors. Slides were counterstained in hematoxylin and mounted. 
Representative images of HURP, HIF-1α, VEGF, and HSP60 expression in bening tissue, low grade and high grade PCa tissues are shown. (a) Analysis of 
immunostaining intensity. Under a 100× magnification, the stain intensity was graded as no stain, weak, moderate, and strong stain. (B) Subcellular localization 
is shown under a 400× magnification.
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that of HIF-1α, HURP, and VEGF: IHC signals were not present in 
benign prostatic epithelia and in low grade of PCa, and not present 
in nuclei of high grade PCa cells. However, staining was strong in 
cellular membrane and cytoplasm of high grade PCa.

Methylation of hUrP Promoter is 
associated with the Decrease of hUrP 
expression in Pca cell lines
Aberrant DNA methylation is a common epigenetic aberration 
in PCa and has led to the identification of markers for disease 
diagnosis and prognosis (33). To determine whether an epige-
netic mechanism contributes to the downregulation of HURP 
expression in PCa cells, DNA methylation status at the promoter 
region of the HURP gene was examined in the PCa cell lines 
LNCaP, DU-145, and PC3. Analysis of the methylation status 
of the promoter for two independent experiments in the cell 
lines revealed a significant increase of the methylation level of 
the promoter of HURP (cg 25465634-4010161) in LNCaP cells, 
when compared to the methylation level noted in DU-145 or PC3 
cell as shown in Figure 8A. Interestingly, the noted increase of 
the promoter methylation was associated with decrease of protein 
level of HURP (4.5, 1.1, and 0.5 relative density units for PC3, 
DU-145, and LNCaP, respectively) as evidenced by densitometry 
analysis of the Western blot signals (Figures 8B,C).

analysis of hUrP Promoter for  
hiF-1-Binding sites
To show whether the regulation of DLGAP5/HURP gene expres-
sion is HIF-1-dependent, we analyzed the putative HIF binding 
sites on the promoter of DLGAP5/HURP gene. The analysis of the 
non-translated region upstream from the start codon (9057 nt), 
using the 5′-rcgtg-3′ (R = g/a) motif identified by Wenger et al. 
(24), revealed four putative HIF binding sites, 5′-GCGTG-3′ at 
position: −8310; 5′-ACGTG-3′ at position: −3815; 5′-ACGTG-
3′ at position: −2616; and 5′-GCGTG-3′ at position: −1134 
upstream from the start codon (+1). The positions of the identified 
binding sites are outlined in Table 1. This information suggests an 
essential role for HIF-1 transcription factor in the transcriptional 
activation DLGAP5/HURP promoter in response to hypoxia.

DiscUssiOn

We investigated the effect of hypoxia on the expression of HURP 
in human PCa cells. In the C4-2B cell line hypoxia, as expected, 
modified cell viability and increased the rate of release and 
mRNA expression of VEGF, the pro-angiogenic factor. Likewise, 
mRNA expression of CA9, a marker for hypoxic exposure and 
tumor aggressiveness, was highly induced in response to low pO2. 
Both Western blot and mRNA expression analyses in LNCaP and 
C4-2B cells showed that HURP expression was reduced by time 
of culture in normoxia. Hypoxia, however, accelerated the rate of 
decrease of HURP expression. In contrast to what was observed 
in vitro, HURP expression was increased in PCa tumors, and its 
elevated expression seems to be associated with tumor grade. 
Overall, our studies suggest that tumor-associated hypoxia is a 
relevant determinant of the expression of HURP in PCa cells.

FigUre 8 | Methylation of hUrP promoter and hUrP expression in 
Pca cell lines. (a) Epigenetic analysis of the promoter of HURP 
demonstrated the methylation status in LNCaP, DU-145, and PC3 cells in 
two independent experiments per cell line. (B) Protein lysates (50 μg) 
extracted from whole cell lysates were separated by SDS-PAGE. Hepatoma 
upregulated protein (HURP) and glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH) levels in the samples were identified by Western blot as described 
in Section “Materials and Methods.” GAPDH was used as internal control for 
loading and transfer. (c) The relative intensities of the bands were quantified 
using the ImageJ software, and all the values were normalized to the 
intensities of the respective GAPDH signal.

We and others have demonstrated the effects of low pO2 on 
viability responses in cultured PCa cells (28, 34–40). In agreement 
with our previous findings (28) the C4-2B subline, a derivative of 
the LNCaP cell line, grew slower in hypoxia than cells cultured 
under normoxia (Figure 1). The methodology for assessment of 

TaBle 1 | identified putative hiF-1-binding sites in the promoter 
sequence of the DLGAP5 gene.

Upstream position sequence (5′–3′)

8310–8306 GCGTG
3815–3811 ACGTG
2616–2612 ACGTG
1134–1130 GCGTG
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cell viability was validated by us in the initial phase of our study. 
We used different cell densities and various timelines including 
the one referred herein (8 days) or even longer time points. As 
expected, effects on cell numbers and VEGF production were 
proportional to cell densities. Although our studies have the 
limitation of the lack of information regarding the effect of oxy-
gen on cells of those with prostatic carcinoma origin, they add to 
the information indicating the effect of low pO2 on the viability 
responses in cultured PCa cells.

The adaptive response of PCa cells to a changing metabolism 
and survival environment has been considered a relevant factor 
of tumor aggressiveness. A component of the response of cancer 
cells to hypoxia is VEGF. Since hypoxia promotes secretion of 
this pro-angiogenic factor (30, 41, 42), assessment of its release 
to the culture medium can be used as an indicator of low pO2. 
C4-2B cells cultured under low pO2 showed increased VEGF 
release rate. The increase in VEGF secretion rate was tran-
scriptionally driven, as it could be expected (30, 41, 42). The 
hypoxia-inducible enzyme CA9, overexpressed in cancer cells 
(26), has been proposed as a marker for hypoxic exposure and 
tumor aggressiveness (27). Accordingly, we demonstrated that 
under hypoxic culture CA9 transcripts were elevated nearly 
by 200-fold in hypoxic C4-2B cells, when compared to cells 
growing under normoxic conditions. All together these results 
show that, in agreement to reported findings obtained in other 
cell lines (28, 43), the C4-2B subline shows characteristics of 
increased aggressiveness when cultured under hypoxia.

In a previous report, using a validated data mining approach 
(21, 44–46), we identified hypoxia-associated genes that can be 
utilized as markers of aggressive PCa (6). Among these genes, 
transcripts of HURP were associated with Gleason score and 
systemic progression. We further validated HURP as an inde-
pendent outcome predictor in high-risk PCa (6). Our published 
data supported the association of the hypoxic transcriptome 
and PCa, and provided evidence to sustain the participation of 
hypoxia-associated genes into the mechanisms of PCa progres-
sion. To further support this hypothesis, we scrutinized the pro-
moter region of HURP for binding sites of HIF-1α (Table 1). We 
found four putative HIF binding sites upstream of the HURP 
transcription start.

Most of the identified binding sites for HIF-1α on the pro-
moter of HURP reside in highly methylated regions, known 
to be commonly inversely correlated with gene expression and 
gene methylation in cancer cells (47), including PCa cell lines 
(48). In support of a notion for the regulatory effects of promoter 
methylation on HURP expression, we found that the increased 
methylation of HURP promoter (Figure 8A) is associated with 
a reduction in protein levels in the cell lines LNCaP, DU-145, 
and PC3 (Figure 8B). Epigenetic modification of the HURP pro-
moter, therefore, correlates with reduction of HURP expression. 
Although the data does not include hypoxia as an experimental 
variable, these findings suggest that the methylation of HURP 
promoter is responsible for the reduction of the basal expression 
of HURP in PCa cell lines. It may be anticipated that low oxygen, 
a condition known to increase tumor aggressiveness will have 
regulatory effects on HURP expression. Increased methylation 
of promoters can repress gene expression by directly preventing 

binding of transcription factors (49). It may be plausible to sug-
gest that methylation of HURP promoter may prevent the bind-
ing of HIF to its promoter region. As a consequence, inhibition of 
HURP expression may occur. This highly speculative hypothesis 
is interesting since it suggests a regulatory effect of methylation in 
silencing HURP gene expression in PCa cells exposed to hypoxia. 
Future studies are necessary to directly prove the importance 
of HIF-1α binding sites on HURP promoter, or that of other 
signaling factors associated with cellular responses to hypoxia, 
on the regulation of HURP expression under hypoxia condition. 
Utilization of epigenetic drug treatment of PCa cell lines followed 
by gene expression analysis for HURP may allow us to assess the 
effects of pO2 on the expression of HURP. Those experiments 
deserve special attention due to the reported effects that promoter 
methylation exerts on expression of hypoxia-controlled genes 
(e.g., CA9, studied herein) in context of tumor microenviron-
ment (23).

Analysis of protein levels of HIF-1α showed that expression 
of this transcription factor, essentially involved in the cellular 
response to hypoxia, was observed in PCa cells cultured under 
normoxia. Those findings are consistent with literature showing 
that HIF-1α is expressed in normoxic conditions as a means 
to carry out a regulatory role in response to regulatory factors 
such as cytokines, hormones, and genetic alterations (50, 51). 
Independent of the cell line, HIF-1α expression was maintained 
at a higher level under prolonged (8 days) hypoxia. Elevated and 
sustained HIF-1α expression via a non-transcriptional mecha-
nism has been demonstrated to block DNA replication (52). By 
binding to components of the pre-replicative complexes that 
assemble at origins of replication, HIF-1α inhibited the activa-
tion of minichromosome maintenance helicase, consequently 
hindering unwinding of the DNA during replication (52). It is 
likely, that the transcription-independent mechanism of cell cycle 
arrest in response to hypoxia may be operating in the studied PCa 
cell lines. Additional experiments are needed to clarify this point.

We analyzed protein expression of HURP in tumors and 
made associations with the expression of hypoxia-associated 
molecules. As a follow-up of our report showing increased 
transcripts of HURP in association with increase in the Gleason 
score and systemic progression (6), the level of HURP protein 
analyzed by Western blot (Figure 6) and IHC (Figures 7A,B) 
was higher in tumors relative to control tissue. These results 
agree with a previous study showing elevated expression of 
HURP protein in fine needle cell aspirates obtained from hepa-
tocellular carcinoma patients (53). In the cited study, further 
analysis revealed association between positive HURP staining 
and a shorter disease-free survival (53). In our case, analysis of 
larger number of samples will allow us to establish an associa-
tion between HURP expression and aggressive PCa. This study 
is certainly needed given the inter-individual heterogeneity in 
HURP expression noted by us in non-tumor tissue as well as in 
prostate carcinomas. We cannot provide explanation for those 
findings at this point. However, we suggest that histological 
observation is certainly a good complement to Western blot 
analysis. Histological techniques helped us to reveal with higher 
sensitivity distinct features for tissue expression of HURP not 
clearly revealed by Western blot analysis.
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Our results in PCa tumors, however, somehow, contra-
dict evidence in PCa cell line cultures showing that HURP 
expression was reduced as a function of incubation time and 
hypoxia. We attribute the apparent discordant results in part 
to the presence of complex interactions of the tumor micro-
environment observed in tumors (54). Equally relevant is the 
variability provided by the well-known heterogeneity in PCa 
(55). A reduction in HURP expression in relation with incuba-
tion time is expected based on the cell cycle-associated nature 
of this protein (13–15). We still do not have direct evidence 
experimental of the direct role of hypoxia in HURP’s expres-
sion and the status of other signaling pathways involved in its 
regulation. Despite of the lack of information, the literature 
has illustrated pathway-specific differences between tumor cell 
lines and tumor cells (56). Use of pathway-specific enrichment 
analysis of publicly accessible microarray data and quantified 
the gene expression differences between cell lines, tumor, and 
normal tissue cells for different tissue types including PCa, 
revealed substantive numbers of genes and associated pathways 
common between cell lines and tumor cells (56). In that study, 
however, a fraction of pathways showed expression profiles that 
differed significantly between cell lines and tumors included 
cell cycle and a number of metabolic and transcription-related 
pathways (56). Among them, metabolic pathways closely sen-
sitive to variation of the tumor microenvironment (e.g., ATP 
synthesis, oxidative phosphorylation, pyrimidine and purine 
metabolism, and proteasome) were significantly altered in cell 
lines compared to tumors (56). Over the basis of those results, 
we can postulate that characteristics of the tumor microenvi-
ronment, including presence of metabolites, cell-to-cell inter-
action in the multilayered structure of solid tumors, among 
many others may be particularly relevant for the expression 
of HURP in tumors. Differences in environmental selection 
pressure between in vitro culture and tumor tissue may help to 
explain, in part, our dissimilar results.

Hypoxia in tumor regions exists due to multiple factors, such 
as low blood irrigation, aberrant angiogenesis, and excessive 
oxygen consumption by cancer cells. The hypoxic areas are 
characterized by variable blood flow and pO2. In common with 
other solid tumors, pO2 in PCa fluctuates, resulting in acute and 
chronic hypoxia (3). Mostly because of the conflicting informa-
tion showing lack of correlation between pO2 values measured 
in the PCa nidus and clinical outcome (3), assessing pO2 in PCa 
tissue is at preliminary stages. A number of publications have 
indicated a correlation of hypoxia-associated molecules, such 
as VEGF, HIF-1α, osteopontin, lysil oxidase, and glucose trans-
porter-1 with pathology and patient features in PCa [reviewed 
in Stewart et  al. (3)]. Therefore, hypoxia-associated molecules 
are reliable as subrogates of hypoxia and indicators of aggres-
sive tumors. In agreement with this notion, tumor expression 
of HURP, along with expression of HIF-1α, VEGF (a HIF-1α 
target), and HSP60 (involved in the regulation of HIF-1α protein 
stability) were associated with PCa progression. It is therefore 
likely that the relationship between expression of HURP and 
hypoxia-responsive molecules that we observed in  vitro has 

a histological counterpart in PCa tumors. We postulate that 
localization of HURP protein in PCa tumors should be further 
explored as subrogate of tumor hypoxia and as marker of aggres-
sive disease.

cOnclUsiOn

The role of pO2 in PCa pathobiology has been underappreci-
ated. Tumor-associated hypoxia has been associated with 
malignant progression, metastasis, resistance to therapy, and 
poor clinical outcome. Among hypoxia-associated proteins, 
HURP has multifunctional biological properties, which are 
compatible with its role in carcinogenesis. A direct cause 
and effect relationship between hypoxia and HURP expres-
sion is yet to be established. Nevertheless, our findings bring 
insight into the effect of low oxygen on expression of HURP 
in PCa. Additionally our results provide basis for utilization 
of tumor-associated molecules as relevant tumor markers. The 
expression of HURP, together with that of hypoxia-responsive 
molecules, such as HIF-1α, VEGF, and HSP60, may serve as 
predictor of aggressive tumors.
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Hypoxia is an important contributor to the heterogeneity of the microenvironment

of solid tumors and is a significant environmental stressor that drives adaptations

which are essential for the survival and metastatic capabilities of tumor cells. Critical

adaptivemechanisms include alteredmetabolism, pH regulation, epithelial-mesenchymal

transition, angiogenesis, migration/invasion, diminished response to immune cells and

resistance to chemotherapy and radiation therapy. In particular, pH regulation by hypoxic

tumor cells, through the modulation of cell surface molecules such as extracellular

carbonic anhydrases (CAIX and CAXII) and monocarboxylate transporters (MCT-1 and

MCT-4) functions to increase cancer cell survival and enhance cell invasion while also

contributing to immune evasion. Indeed, CAIX is a vital regulator of hypoxia mediated

tumor progression, and targeted inhibition of its function results in reduced tumor growth,

metastasis, and cancer stem cell function. However, the integrated contributions of the

repertoire of hypoxia-induced effectors of pH regulation for tumor survival and invasion

remain to be fully explored and exploited as therapeutic avenues. For example, the

clinical use of anti-angiogenic agents has identified a conundrum whereby this treatment

increases hypoxia and cancer stem cell components of tumors, and accelerates

metastasis. Furthermore, hypoxia results in the infiltration of myeloid-derived suppressor

cells (MDSCs), regulatory T cells (Treg) and Tumor Associated Macrophages (TAMs),

and also stimulates the expression of PD-L1 on tumor cells, which collectively suppress

T-cell mediated tumor cell killing. Therefore, combinatorial targeting of angiogenesis, the

immune system and pH regulation in the context of hypoxia may lead to more effective

strategies for curbing tumor progression and therapeutic resistance, thereby increasing

therapeutic efficacy and leading to more effective strategies for the treatment of patients

with aggressive cancer.

Keywords: hypoxia, tumormicroenvironment, carbonic anhydrase IX,monocarboxylate transporter, angiogenesis,

immune checkpoint inhibitors
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INTRODUCTION

The tumor microenvironment (TME) is heterogeneous in
its composition and dynamic in its evolution. Hypoxia is a
prominent component of the TME of solid cancers and is a result
of an imbalance between the increasing demand for oxygen and
nutrients by rapidly proliferating tumor cells and an inadequate,
dysfunctional blood supply resulting from tumor angiogenesis
(Lendahl et al., 2009; Bailey et al., 2012). The presence of hypoxia
is an independent marker of poor prognosis in many types
of human cancer, including breast, non-small cell lung, head
and neck, ovarian and cervical cancer (Brahimi-Horn et al.,
2007; Semenza, 2014). Furthermore, hypoxia is a functional
contributor to several biological processes critical for cancer
progression, including angiogenesis, epithelial-mesenchymal
transition (EMT), migration/invasion, maintenance of cancer
stem cells (CSCs) and the associated CSC niche, metastasis,
immune surveillance and resistance to chemotherapy and
radiotherapy (Gillies et al., 2012; Parks et al., 2013). Thus,
it is not surprising that hypoxia is associated with reduced
patient survival in many cancers (Semenza, 2014). Importantly,
the development of hypoxia in the TME produces substantial
cellular stress that drives adaptive responses by cancer cells aimed
at providing advantages for survival, growth and metastasis
(Gatenby and Gillies, 2008; Kroemer and Pouyssegur, 2008;
Damaghi et al., 2013; Marchiq and Pouysségur, 2015). Targeting
the molecular machinery necessary for driving these adaptations
is a critical strategy required for the development of effective
cancer therapy.

Role of Metabolic Reprogramming and
Angiogenesis in pH Dysregulation
Early in tumor development, cancer cells proliferate beyond
the limit of diffusion and confront hypoxia, resulting in the
inhibition of energy production by oxidative phosphorylation.
The increasing demand for energy in the form of ATP and
for anabolic precursors by rapidly proliferating cancer cells
in this low oxygen environment triggers rapid metabolic
reprogramming (Marchiq and Pouysségur, 2015). Tumor cells
undergo a “metabolic switch” and, through activation of HIF-
1α, shift toward increased use of glycolysis to efficiently
maintain cellular bioenergetics and macromolecular biosynthesis
in increasingly restrictive growth conditions (Pouyssegur et al.,
2006; Marchiq and Pouysségur, 2015). As a result of metabolic
reprogramming, cancer cells display increased heterogeneity in
glucose metabolism, investing most heavily, but not exclusively,
in glycolysis, while continuing to utilize glucose oxidation, albeit
at a reduced level in hypoxic regions (Sonveaux et al., 2008;
Hensley et al., 2016; Pavlova and Thompson, 2016). Furthermore,
it is now recognized that cancer cells use alternative carbon
sources, especially glutamine, to promote the tricarboxylic acid
(TCA) cycle (Sonveaux et al., 2008; Hensley et al., 2016;
Pavlova and Thompson, 2016). The perpetuation of a level of
oxidative phosphorylation in the hypoxic microenvironment
further reduces the amount of oxygen available, effectively
exacerbating hypoxia (Sonveaux et al., 2008; Hensley et al., 2016).
Importantly, glycolytic metabolism is associated with increased

metabolic plasticity, allows cancer cells to utilize glucose for
both energy and biosynthesis (Payen et al., 2015a,b), and fuels
the “Warburg effect” in which cancer cells maintain highly
glycolytic metabolism even in the presence of oxygen (Marchiq
and Pouysségur, 2015). However, a major consequence of the
switch to glycolytic metabolism by hypoxic cancer cells is the
production of acidic metabolites, including lactate and protons
(H+), which result in increased tumor acidosis and further
challenge cell survival (Brahimi-Horn et al., 2011; Webb et al.,
2011; Damaghi et al., 2013; Gillies and Gatenby, 2015).

In addition to regulating metabolic reprogramming, the
HIF-1-mediated transcriptional program induced by cancer
cells in hypoxia drives the process of tumor angiogenesis, a
hallmark of cancer progression (Hanahan and Weinberg, 2011).
Angiogenesis may be viewed as an initial attempt by the growing
tumor to alleviate hypoxia and provide vital nutrients and oxygen
to cancer cells (Kerbel, 2008; Rapisarda and Melillo, 2012; Welti
et al., 2013; McIntyre and Harris, 2015). However, in contrast to
the balanced, tightly regulated multistage process of angiogenesis
in normal tissues, tumor angiogenesis is aberrantly regulated
and leads to vessels that are tortuous, leaky and dysfunctional
(Kerbel, 2008; De Bock et al., 2011; Rapisarda and Melillo, 2012;
Welti et al., 2013). As a result, tumor tissues generally exhibit
poor perfusion and increased interstitial pressure, a situation
that leads to significant biological consequences, including the
further development of hypoxic regions, a reduction in nutrient
delivery and a reduced ability to remove rapidly accumulating
acidic metabolites from the TME (Gillies et al., 2012; Rapisarda
andMelillo, 2012). Therefore, the switch to glycolytic metabolism
by cancer cells and the angiogenic response to tumor hypoxia
collude to create an increasingly acidic, hypoxic TME that fuels
adaptations by tumor cells that are geared toward enhanced
survival and growth in an otherwise hostile environment.

TARGETING pH REGULATION AND
HYPOXIA-DRIVEN ACIDOSIS

A major ramification of the generation of large amounts of
acidic metabolites by glycolytic cancer cells, coupled with
impaired perfusion and diffusion capacity in hypoxia, is
increasing intracellular and extracellular acidosis (Webb et al.,
2011; Damaghi et al., 2013; McIntyre and Harris, 2015). The
accumulation of lactate and H+ in glycolytic cells, if left
unbuffered, leads to intracellular acidification and apoptosis
(Webb et al., 2011; Damaghi et al., 2013), while a slightly
alkaline intracellular pH (pHi) is permissive for proliferation
(Webb et al., 2011). In contrast, acidification of the TME
stimulates breakdown of the extracellular matrix, and promotes
migration, invasion and metastasis (Webb et al., 2011; Damaghi
et al., 2013). Therefore, to both mitigate the potentially lethal
consequences of increasing intracellular acidosis and exploit the
advantages of a hypoxic, acidic TME, cancer cells upregulate
the molecular machinery necessary to maintain a reverse pH
gradient (i.e., alkaline pHi and acidic pHe) that acts to promote
survival, proliferation, invasion and metastasis (Webb et al.,
2011; Damaghi et al., 2013). Key pH regulatory components that
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cancer cells upregulate in hypoxia include membrane-bound,
extracellular carbonic anhydrases (CAs), particularly CAIX
and CAXII, which maintain an intracellular and extracellular
acid-base balance (McDonald et al., 2012; Damaghi et al.,
2013; McDonald and Dedhar, 2014), and monocarboxylate
transporters (MCTs), especially MCT4, which facilitate lactate
extrusion (Marchiq and Pouysségur, 2015). The importance of
these factors in regulating pH in hypoxia has resulted in their
exploitation as therapeutic targets across a broad spectrum of
solid tumors, as discussed below.

Carbonic Anhydrase IX
Carbonic Anhydrase IX (CAIX) is a major effector of the
HIF-1-mediated transcriptional response to tumor hypoxia
and its critical role in tumor progression is well-recognized
(McDonald et al., 2012; McDonald and Dedhar, 2014; Pastorek
and Pastorekova, 2015). It is highly expressed in the hypoxic
regions of many types of solid tumors, has a very restricted
expression profile in normal tissues and is a well-established
marker of poor prognosis across a wide spectrum of solid cancers
(McDonald et al., 2012; Pastorek and Pastorekova, 2015). Of
importance for its utility as a cancer therapeutic target, CAIX is a
critical, hypoxia-induced functional effector of several biological
processes necessary for cancer growth and metastasis, including
pH regulation and cell survival, migration and invasion,
maintenance of cancer stem cell (CSC) function, development
of the pre-metastatic niche and acquisition of chemo and
radioresistant properties (McDonald et al., 2012; McDonald
and Dedhar, 2014; Chafe and Dedhar, 2015; Pastorek and
Pastorekova, 2015). By catalyzing the reversible hydration of CO2

to bicarbonate (HCO−

3 ) and protons (H+) at the extracellular
surface (Gillies et al., 2008; McDonald et al., 2012; Parks et al.,
2013; Sedlakova et al., 2014), CAIX controls an intracellular
and extracellular acid-base balance that regulates both survival
and invasive properties (Figure 1). The HCO−

3 produced by
CAIX re-enters the cell through bicarbonate transporters and
anion exchangers, thereby buffering intracellular acidosis and
facilitating tumor cell survival and growth. The H+ participate
in the generation of an increasingly acidic extracellular
environment, a phenomenon recently demonstrated in models
of colorectal cancer in vivo using hyperpolarized 13C-magnetic
resonance spectroscopy (Gallagher et al., 2015), fueling the
breakdown of the extracellular matrix and facilitating tumor
cell invasion and metastasis (Swietach et al., 2010; McDonald
et al., 2012; Parks et al., 2013; Sedlakova et al., 2014). Congruent
with its role in regulating pH, several studies have demonstrated
that perturbing CAIX function in hypoxia elicits biological
consequences that impede cancer progression and demonstrate
its utility as a therapeutic target.

Stable depletion of CAIX expression or inhibition of its
activity with small molecule inhibitors (discussed in detail below)
in the context of hypoxia results in the inhibition of tumor
growth across multiple models, including breast cancer (Lou
et al., 2011), colorectal cancer (Chiche et al., 2009; McIntyre
et al., 2012) and glioblastoma (McIntyre et al., 2012), and
demonstrates a critical role for CAIX in cancer cell survival
in vivo. Perturbation of CAIX function in hypoxia also blunts

migration and invasion of cancer cells in vitro (Proescholdt
et al., 2012; Lock et al., 2013), and inhibits the formation
of metastases in vivo (Lou et al., 2011; Gieling et al., 2012).
Importantly, the role of CAIX in migration, invasion and
metastasis is linked to its catalytic activity and the production
of H+, which helps to drive development of acidosis within
the extracellular environment and facilitates local invasion
through disruption of the extracellular matrix, activation of
metalloproteases and increased cell invasiveness (Estrella et al.,
2013; Svastova and Pastorekova, 2013; Sedlakova et al., 2014;
Pastorek and Pastorekova, 2015). Furthermore, evidence now
strongly suggests that CAIX is an integral functional component
of CSCs. Several studies have shown that CAIX is required
for stemness properties of CSCs in hypoxia (Lock et al., 2013;
Papi et al., 2013; Ledaki et al., 2015; Pore et al., 2015),
and treatment of orthotopic human breast cancer xenografts
with specific small molecule inhibitors of CAIX significantly
reduced the CSC population. Increased CAIX expression was also
observed in the tumor initiating cell fraction of pancreatic ductal
adenocarcinoma in a patient-derived xenograft cell line and
targeting CAIX expression in this population of cells with shRNA
greatly reduced their tumor initiating capacity (Pore et al., 2015).
Together, these studies demonstrate a functional role of CAIX
in maintenance of the CSC population in vivo and suggest that
pharmacologic targeting of CAIX may be effective at reducing or
eliminating CSCs in hypoxia, a cell population that is resistant to
conventional chemotherapy and radiotherapy. These attributes,
together with its ease of accessibility to pharmacologic agents
due to its membrane-bound, extracellular catalytic domain, have
made CAIX a very attractive target for cancer therapy (Neri and
Supuran, 2011; Wilson and Hay, 2011; McDonald et al., 2012;
Supuran, 2012; Pastorek and Pastorekova, 2015).

It is clear from the discussion above that therapeutic
targeting of CAIX holds potential for enhanced treatment efficacy
through the elimination of aggressive cancer cells that have
adapted to hypoxia, a realization that has spawned extensive
efforts to develop therapeutics targeting CAIX. Two overarching
and complementary approaches have been utilized to target
CAIX for cancer treatment. One approach has involved the
development of therapeutic modalities, especially CAIX-specific
small molecule inhibitors that directly target the catalytic activity
of CAIX, thereby exploiting the biological roles of CAIX,
including pH regulation, migration and invasion, and CSC
maintenance (Figure 1). A second, complementary approach
exploits the tumor-specific upregulation of CAIX as a highly
selective “address” to which to deliver CAIX-specific monoclonal
antibodies, either alone or in combination with cytotoxic or
radioactive warheads to elicit killing of hypoxic tumor cells. Both
of these approaches are discussed below.

Small Molecule Inhibitors
The development of small molecule inhibitors of CA activity
that are selective for cancer associated extracellular CAs such
as CAIX (and CAXII) over other, closely related “off-target”
CA isoforms has been an area of intense investigation during
the past few years (Neri and Supuran, 2011; Supuran, 2012).
These studies have resulted in a large number of novel, potent
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FIGURE 1 | Combinatorial approaches to target the hypoxic TME and anti-angiogenic resistance. Hypoxia induces a HIF-1-mediated signaling cascade that

results in nuclear translocation of HIF-1α and activation of hypoxia-regulated genes, including GLUT1, MCT4, and CAIX. The decreased oxygen availability forces

tumor cells to become reliant upon glycolysis for energy production, the “glycolytic switch”; the concomitant accumulation of intracellular glycolytic byproducts forces

the upregulation of transporters, MCT1/4, to cope with the declining pHi, thus acidifying the extracellular environment. The upregulation of CAIX contributes to the

decreasing pHe, through the production of H+, and to the regulation of pHi through the production of HCO−

3 , which re-enters the cell and buffers intracellular

acidosis. The declining pHe activates proteases, increasing migration and invasion and reduces immune function. The use of anti-angiogenic drugs, tyrosine kinase

inhibitors or VEGF antibodies (Bevacizumab and TKI’s), increases the hypoxic fraction of the tumor and engages the HIF program. This adaptation may then render

those cancer cells vulnerable to the metabolic adaptations initiated above. Blocking the pH regulatory machinery, CAIX and MCTs, may be an effective combinatorial

strategy for reducing tumor cell survival and overcoming resistance to anti-angiogenic therapy. Stromal cell populations (MDSC, TAM, and Treg) recruited to the

hypoxic niches of solid tumors contribute to resistance to anti-angiogenic therapy. Limiting their recruitment to the TME by reducing circulating levels of soluble factors

(e.g., G-CSF, CCL28) or antagonizing cellular receptors (PLX3397) needed for their chemotaxis in combination with the modalities mentioned above may reduce

resistance to anti-angiogenic therapy and improve therapeutic outcome. pHe, extracellular pH; pHi, intracellular pH; mAb, monoclonal antibody; CAI, carbonic

anhydrase inhibitor; HCO−

3 , bicarbonate; H+, proton; CO2, carbon dioxide; H2O, water; NBC, sodium/bicarbonate cotransporter; MCT1/4, monocarboxylate

transporter 1 and 4; HIF-1α, hypoxia-inducible factor 1 alpha; ARNT, aryl hydrocarbon receptor nuclear translocator; LDH, lactate dehydrogenase; OXPHOS, oxidative

phosphorylation; CAII, carbonic anhydrase II; CAIX, carbonic anhydrase IX; GLUT-1, glucose transporter 1; Sema3A, semaphorin 3A; VEGF, vascular endothelial

growth factor; CCL28, chemokine (C-C motif) ligand 28; CCR10, chemokine (C-C motif) receptor 10; Arg1, arginase 1; iNOS, inducible nitric oxide synthase; CSF1R,

colony stimulating factor 1 receptor; TCR, T cell receptor; G-CSF, granulocyte colony stimulating factor; TAM, tumor associated macrophage; MDSC, myeloid-derived

suppressor cell; Treg, regulatory T cell; ECM, extracellular matrix; MMP9, matrix metalloprotease 9; VEGFR1, vascular endothelial growth factor receptor 1; VEGFR2,

vascular endothelial growth factor receptor 2; TKI, tyrosine kinase inhibitor.

CAIX-selective inhibitory compounds, some of which are now
being evaluated in vivo and in the clinic (McDonald et al., 2012;
McDonald and Dedhar, 2014). While initial strategies to enhance
CAIX selectivity of the pan CA inhibitor, acetazolamide, were
met with limited success (Ahlskog et al., 2009; Chiche et al.,
2009), a series of novel, potent, CAIX-selective “next generation”
small molecule inhibitors are showing great promise. Several
classes of novel CAIX inhibitors, including ureidosulfonamides

(Pacchiano et al., 2011), glycosyl coumarins (Touisni et al., 2011)
and indanesulfonamides (Dubois et al., 2011) have been used
successfully to inhibit tumor growth in preclinical models of
hypoxic, CAIX-positive breast cancer (Lou et al., 2011; Pacchiano
et al., 2011; Touisni et al., 2011) and colorectal cancer (Dubois
et al., 2011), demonstrating that the selective pharmacologic
inhibition of CAIX activity elicits an anti-tumor effect in vivo.
Furthermore, the ureidosulfonamide and glycosyl coumarin
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TABLE 1 | Clinical trials targeting pH regulators in cancer.

Target Drug Intervention Phase Identifier

CAIX SLC-0111 Advanced solid tumors 1 NCT02215850

CAIX Girentuximab

(cG250)

Kidney Cancer 3 NCT00087022

CAIX DTP-348 Solid tumors 1 NCT02216669

CAIX 177Lu-cG250 Metastatic RCC 2 NCT00142415

CAIX AdGMCAIX

transduced DC

Metastatic RCC 1 NCT01826877

MCT1 AZD3965 Solid tumors, Gastric

and prostate cancer,

DLBCL

1 NCT01791595

DC, dendritic cell; RCC, renal cell carcinoma; DLBCL, diffuse large B cell lymphoma.

inhibitors were effective in reducing lung metastases (Lou et al.,
2011; Pacchiano et al., 2011), as was a sulfamate inhibitor of CAIX
(Gieling et al., 2012), and in depleting CSCs in models of breast
cancer metastasis (Lock et al., 2013), showing the value of CAIX
inhibitors as therapeutic agents for use in targeting metastasis
and chemoresistant tumor initiating cells.

These exciting data and further assessment of lead compounds
resulted in the selection of a novel, first in class, highly selective
ureidosulfonamide inhibitor of CAIX and CAXII, SLC-0111
(aka U-104; Lou et al., 2011; Pacchiano et al., 2011), for
clinical development. Pharmacokinetic and toxicology studies
demonstrated negligible toxicity and>10-fold therapeutic index,
and SLC-0111 is orally bioavailable. SLC-0111 is now the
subject of a first in man, multi-center phase 1 clinical trial
(NCT02215850) in patients with solid tumors and is nearing
completion of recruitment (Table 1). In addition to this pivotal
clinical trial, data demonstrating preclinical efficacy of another
CAIX inhibitor/radiosensitizer, DTP-348, in breast and colorectal
models alone and in combination with either ionizing radiation
(Dubois et al., 2013; Ward et al., 2015) or doxorubicin (Rami
et al., 2013) has resulted in reports of a phase 1 clinical trial
(NCT02216669) in patients with solid tumors (McIntyre and
Harris, 2015; Table 1). However, this study is not currently open
for recruitment of patients. Importantly, if clinical trials utilizing
inhibitors of CAIX activity are to be successful, selection of those
patients likely to respond to therapy is critical. Only patients
whose tumors require CAIX function for survival, growth and
metastasis are likely to benefit. Thus, predictive biomarkers,
including CAIX expression and additional measures of hypoxia
response, will be necessary to guide patient selection for these
therapies.

Therapeutic Antibodies against CAIX
Immunotherapy using CAIX-specific monoclonal antibodies
(mAbs) may derive its therapeutic efficacy through several
mechanisms (McDonald et al., 2012; Pastorek and Pastorekova,
2015) (Figure 1). For example, direct binding of the mAb
to CAIX can elicit an anti-tumor response due to antibody-
mediated cell cytotoxicity (ADCC). Alternatively, high affinity
CAIX mAbs capable of receptor-mediated internalization have
the potential to provide effective vehicles for targeted delivery
of various therapeutic compounds, including cytotoxins and

radionuclides, as has been demonstrated clinically for antibody-
drug conjugates such as ado-trastuzumab emtansine (T-DM1) in
breast cancer (Lambert and Chari, 2014).Thus, the development
of CAIX-specific therapeutic mAbs is an active area of research
and one with potential to yield important advances in cancer
therapy.

Girentuximab (cG250) is arguably the most clinically
advanced mAb against CAIX, particularly for renal cell
carcinoma (Oosterwijk, 2008; Oosterwijk-Wakka et al., 2013).
Initial studies demonstrated that cG250 could elicit antibody-
dependent cellular cytotoxicity (ADCC) (Surfus et al., 1996), an
established mechanism by which therapeutic mAbs function to
destroy tumor cells. This property of therapeutic mAbs is well-
established clinically, and a recent study has demonstrated that
modification of the Fc region of a CAIXmAb originally identified
in a high throughput screen (Xu et al., 2010) increased ADCC
in vitro and was effective at targeting orthotopic RCC tumors
in an immunocompromised mouse model following allogeneic
transplantation of human peripheral blood mononuclear cells
(Chang et al., 2015). Girentuximab is marketed by WILEX AG
under the trade name RENCAREX R© and Phase I and II trials
demonstrated that this Ab was safe, well-tolerated and able to
positively impact disease burden, alone and together with IL-2
treatment (Davis et al., 2007; Zatovicova et al., 2010; Neri and
Supuran, 2011; Siebels et al., 2011). However, a phase 3 trial
(ARISER; NCT00087022) targeting patients with non-metastatic
renal cell carcinoma failed to show an improvement in disease-
free survival with treatment (Pastorek and Pastorekova, 2015). It
should be noted that this study lacked stratification of patients
based on CAIX expression which, if accounted for, showed
significant improvement in the subset of patients with high CAIX
expression, demonstrating the need for guided patient selection
for CAIX-based therapies.

In addition to direct stimulation of the host immune response,
mAbs may be used as a target-specific vehicle for the delivery
of therapeutic payloads (Scott et al., 2012). Internalization of
mAbs is required for delivery of radioisotopes and cytotoxic
drugs to cancer cells, and CAIX mAbs have been developed
that exploit this functionality. For example, the cG250 mAb
can be internalized by cancer cells (Zatovicova et al., 2014),
and treatment of xenograft tumors with radioimmunoconjugates
employing the cG250 mAb has demonstrated a delay in growth
(Brouwers et al., 2004). Recently, a phase II trial in patients
with metastatic clear cell renal carcinoma (mccRCC) treated
with 177Lu-Girentuximab achieved stable disease in 9 of 14
patients (Muselaers et al., 2015; Table 1), demonstrating the
potential utility of such conjugates in CAIX-positive disease.
Furthermore, a study in which a novel CAIX mAb was
conjugated to the microtubule inhibitor monomethyl auristatin
E (MMAE) (BAY79-4620) demonstrated efficacy in several
preclinical human xenograft tumor models in which the level
of efficacy correlated with the level of CAIX expression (Petrul
et al., 2011). A phase 1 clinical trial (NCT01028755) involving
the treatment of patients with solid tumors with BAY79-4620
was initiated, but was terminated early due to issues related to
patient safety. While the basis for the adverse safety profile of this
ADC is not known, recent improvements in ADC technology,
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including the use of non-cleavable linkers, will certainly provide
avenues for continued development of ADCs using CAIX as a
target.

In addition to small molecule inhibitors and antibodies, other
modalities for targeting CAIX in vivo are showing promise.
For example, small molecule drug conjugates comprised of
an acetazolamide derivative linked to the maytansinoid DM1
were found to accumulate in CAIX-positive lesions and have
antitumor effects using the SKRC52 renal cell carcinoma model
(Krall et al., 2014). Such conjugates have the advantage of
increased access to tumor tissue while enabling delivery of
potent cytotoxic compounds (Wichert and Krall, 2015) and
engineering of conjugates using current, highly CAIX-specific
small molecules may prove effective. Interestingly, a dendritic cell
(DC) based vaccine designed to use CAIX as a tumor associated
antigen for immune targeting where DCs are engineered to
express the GM-CSF-CAIX (AdGMCAIX) fusion protein has
been developed. This vaccine has demonstrated preclinical
success in a model of RCC when treated in an immunization or
intervention setting (Birkhäuser et al., 2013). Based on the recent
FDA approval of the DC based vaccine Sipuleucel-T and with
other vaccines in phase III evaluation (Palucka and Banchereau,
2013), it will be interesting to see how the AdGMCAIX vaccine
progresses clinically as a trial has been initiated (Table 1) and
is recruiting patients to test this vaccine in metastatic RCC
(NCT01826877). Together, these therapeutic strategies provide
a robust platform for targeted treatment of hypoxic tumors in
patients.

MCT1 and MCT4
Cancer cells relying on glycolysis to support survival and
rapid proliferation in hypoxia produce large amounts of acidic
byproducts, particularly lactate (Gatenby and Gillies, 2008;
Gillies et al., 2012; Marchiq and Pouysségur, 2015; Parks et al.,
2015). The production of lactate contributes to intracellular
acidosis, a situation requiring an adaptive response to increase
lactate efflux and potentiate survival (Parks et al., 2015). Cancer
cells enhance the efflux of lactate through the upregulation
of members of the MCT family of lactate/H+ symporters
(Doherty and Cleveland, 2013). Two members of this family,
MCT1 and MCT4, are upregulated in several cancers, including
breast, colorectal, lung, kidney, and glioblastoma (Doherty and
Cleveland, 2013; Doyen et al., 2014), and function to regulate
lactate transport across the plasma membrane (Halestrap, 2013;
Marchiq and Pouysségur, 2015). The differential distribution of
MCT1 and MCT4 in cancer cells highlights their distinct roles
in lactate transport and demonstrates cooperativity between the
two transporters. MCT4 is upregulated in hypoxia as a direct
target of HIF-1α and functions to export lactate from hypoxic
tumor cells (Doherty and Cleveland, 2013; Parks et al., 2015).
Importantly, MCT-mediated extrusion of lactate contributes to
acidosis of the TME and plays a role in tumor cell migration
and invasion, angiogenesis and immunosuppression (Marchiq
and Pouysségur, 2015; Figure 1). MCT1, in contrast, is expressed
on oxidative tumor cells and functions to import lactate to feed
the TCA cycle through conversion to pyruvate, forming a lactate
shuttle and engaging a process termed “metabolic symbiosis”

(Payen et al., 2015b). The reliance of hypoxic tumor cells onMCT
function to adapt to the potentially detrimental consequences
of acidosis and the cooperativity that exists between MCT1 and
MCT4 in regulating lactate levels in hypoxia has opened the door
to targeting both of these transporters for cancer therapy.

Significant efforts are currently underway to target the MCTs
with small molecule inhibitors. While the first generation MCT
inhibitors were not clinically viable, owing to a lack of MCT
specificity and associated toxicity (Marchiq and Pouysségur,
2015), a potent, second generation MCT1 inhibitor from
AstraZeneca, AZD3965, has shown anticancer effects in a
variety of cancer cell lines (Bola et al., 2014; Polanski et al.,
2014) and treatment of tumors in vivo reduced tumor growth
and increased sensitivity to radiation (Bola et al., 2014).
AZD3965 is undergoing phase 1 clinical trials (NCT01791595)
for solid tumors and diffuse large B cell lymphoma (Marchiq
and Pouysségur, 2015; Table 1). There have also been efforts
to target CD147/Basigin, a transmembrane glycoprotein that
functions as a chaperone for folding and trafficking of MCT1
and MCT4 to the plasma membrane (Doherty and Cleveland,
2013; Marchiq and Pouysségur, 2015). Genetic depletion of
CD147, when coupled to MCT1 and MCT4, reduced the
growth of colon carcinoma tumors (Le Floch et al., 2011).
Directed targeting of CD147 has focused on antibody-based
therapeutics and mAbs against CD147 have shown efficacy
in preclinical cancer models. However, studies have shown
that functional redundancy exists between MCT1 and MCT4,
and genetic silencing or pharmacological inhibition of MCT1
in human colon adenocarcinoma cells was effective only
when combined with MCT4 depletion (Le Floch et al.,
2011; Marchiq and Pouysségur, 2015). These results suggest
that combinatorial targeting of MCT1 and MCT4 may be
required to elicit a robust therapeutic response. It has also
been suggested that a limitation of targeting MCTs may be
the potential for on-target toxicity in normal tissues and
dose limiting side effects in humans due to their ubiquitous
expression and involvement in multiple functions, including
metabolism, pH regulation, angiogenesis and the immune
response (Marchiq and Pouysségur, 2015). However, despite
these potential challenges, emerging data demonstrates the
potential power of targeting MCT4, particularly for hard-to-treat
cancers.

Upregulated MCT4 expression has been reported in human
breast cancer, with especially high levels in aggressive, triple
negative breast cancer cells that correlated with decreased
overall survival (Doyen et al., 2014). MCT4 was also found
to be a key regulator of breast cancer cell metabolism and
survival in an unbiased, functional RNAi screen and silencing
its expression reduced glycolytic flux, increased dependence
on oxidative phosphorylation and glutamine metabolism, and
reduced spheroid growth (Baenke et al., 2015). It has also been
shown recently that MCT4 is over-expressed in a glycolytic
subtype of pancreatic cancer and its depletion in xenograft
models significantly impacted tumor metabolism and rapid
tumor growth (Baek et al., 2014). To date, inhibitors specific
for MCT4 have not become available, although one report has
suggested that AstraZeneca is currently testing a potent, specific
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MCT4 inhibitor (Marchiq and Pouysségur, 2015). It remains to
be seen whether co-targeting of MCT1 and MCT4 in the context
of hypoxia will provide therapeutic benefit. However, together
with CAIX, MCT4 plays an important role in the maintenance
of glycolytic flux and pH regulation in hypoxic tumor cells and
suggests that cotargeting of MCTs and CAIXmay serve to further
limit the growth of hypoxic solid tumors.

TARGETING ANGIOGENESIS

Inhibition of vascularization by treatment with inhibitors of
angiogenesis, generally termed anti-angiogenic agents, thereby
effectively starving tumor cells of nutrients and oxygen, is a
clinically validated strategy for cancer therapy (De Bock et al.,
2011; Jain, 2014). However, what was seen initially as a panacea
for cancer patients has fallen short of expectations. In particular,
many patients fail to respond to anti-angiogenic therapy and
those who do often show only a modest survival benefit
(Rapisarda and Melillo, 2012; McIntyre and Harris, 2015). While
vascular “normalization” can occur and leads to reduced hypoxia
and interstitial pressure in the TME, thereby increasing perfusion
and improving delivery of chemotherapeutic agents (Jain, 2014;
McIntyre and Harris, 2015), the most frequent response to anti-
angiogenic therapy is vascular regression and vessel pruning,
resulting in increased intratumoral hypoxia (Rapisarda and
Melillo, 2012; McIntyre and Harris, 2015), as assessed by hypoxic
gene signatures and increased expression of hypoxia-induced
effectors, including CAIX.

Many patients are innately resistant to anti-angiogenic agents
or rapidly develop acquired resistance in response to treatment.
Amongst several resistance mechanisms that have been identified
to enable cancer cells to circumvent angiogenesis blockade (van
Beijnum et al., 2015), the development of increased intratumoral
hypoxia as a result of extensive vessel pruning is of critical
importance (Rapisarda et al., 2009; Hu et al., 2012;McIntyre et al.,
2012; Rapisarda and Melillo, 2012; Kim et al., 2013; McIntyre
and Harris, 2015). Treatment with anti-angiogenic agents has
resulted in increased invasiveness and consequently metastases
preclinically (Ebos et al., 2009; Pàez-Ribes et al., 2009). However,
at least one retrospective study suggests that this is not the
case in the clinical setting, although the patients investigated
often had metastatic disease at the time of treatment initiation
(Miles et al., 2011). In addition, it was recently demonstrated
that this difference between the preclinical and clinical realms
was likely the result of patients being treated with chemotherapy
in combination with anti-angiogenic agents, as this combination
tested preclinically eliminated the increased metastasis observed
from treatment with anti-angiogenic agents alone (Paez-Ribes
et al., 2015).

Since the hypoxia induced by anti-angiogenic therapy
stimulates adaptations by the tumor cells that promote
therapeutic resistance, it has been suggested that these
adaptations may now be critical for survival, producing
a type of synthetic lethality termed “induced essentiality”
(McIntyre and Harris, 2015). Targeting critical downstream
effectors of hypoxia, or HIF-1α itself, has provided a therapeutic

advantage in preclinical models (Rapisarda et al., 2009; Hu et al.,
2012; McIntyre et al., 2012; Kim et al., 2013). Furthermore, as
a consequence of treatment induced hypoxia, CAIX expression
is significantly upregulated, suggesting that targeting CAIX
in combination with anti-angiogenic agents may provide an
effective therapeutic strategy (Hu et al., 2012; Kim et al., 2013).
McIntyre and colleagues provided proof of principle data for
this co-targeting strategy by showing that genetic depletion
of CAIX in combination with bevacizumab in models of
colorectal cancer and glioblastoma resulted in a significant
delay in tumor growth (McIntyre et al., 2012). Similar results
were observed upon treatment with the broad spectrum
carbonic anhydrase inhibitor, acetazolamide. Acetazolamide
was also utilized recently in combination with bevacizumab
in a model of cholangiocarcinoma. While bevacizumab alone
showed considerable efficacy in this model, the combination
of bevacizumab with acetazolamide further delayed tumor
growth (Vaeteewoottacharn et al., 2016). However, the lack of
specificity of acetazolamide is a significant caveat of these studies,
and investigation of therapeutic combinations using inhibitors
specific for CAIX, such as SLC-0111, should be undertaken. In
addition to VEGF antibodies, tyrosine kinase inhibitors have
been utilized to block angiogenic signaling at the level of the
cellular receptors. Treatment of patients with metastatic clear cell
renal cell carcinoma with sunitinib results in objective response
rates of 40% (Molina et al., 2014). Combinatorial treatment with
the CAIX antibody, cG250/Girentuximab, in combination with
sunitinib was tested clinically in patients with metastatic RCC
(NCT00520533). Unfortunately, the trial ended early due to
toxicity issues. Based on preclinical studies, it is clear that this is
an area that warrants careful evaluation clinically with rational
therapeutic combinations targeting treatment induced hypoxia.

The hypoxic niche of solid tumors is an environment
that drives aggressive tumor cell behavior and is a known
source of cancer stem cells (CSCs; Currie et al., 2013). As
conventional chemotherapy and radiation treatment are known
to be less effective in this microenvironment, rational drug
combinations need to be developed in order to effectively
overcome treatment failure due to therapy induced adaptations.
Interestingly, sunitinib and bevacizumab treatment of breast
cancer xenografts was demonstrated to increase intratumoral
hypoxia and the population of stem cells found within the
tumor (Conley et al., 2012). Therefore, it is conceivable that
combining drugs that increase intratumoral hypoxia with a drug
that can effectively eradicate the CSC pool in the hypoxic niche,
such as CAIX inhibitors, may overcome treatment resistance.
Alternatively, therapeutic initiatives aimed at promoting re-
oxygenation of tumor tissues, including vessel normalization
strategies (Jain, 2014) and the use mild hyperthermia (Moon
et al., 2010; Datta et al., 2015) in combination with radiotherapy
or chemotherapy are proving successful in the clinic. Recent
technological advances in the delivery of hyperthermia as a
radio- and chemosensitizer, together with the relative absence
of additional significant toxicity, have reinvigorated efforts using
thermoradiotherapy and thermochemotherapy (Moon et al.,
2010; Datta et al., 2015) as combinatorial treatment strategies for
hypoxic, solid tumors.
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TARGETING IMMUNE DYSFUNCTION

The cellular composition of solid tumors consists of many
stromal cell types in addition to the epithelial cancer
cells (Gabrilovich et al., 2012). There exists an extensive
communication network between the stroma and the tumor
that ultimately results in the hijacking of the stroma by the
tumor supporting disease progression, increased invasiveness
and enhanced metastatic propensity, angiogenesis, therapeutic
resistance and resistance to immune cell eradication mechanisms
(Gabrilovich et al., 2012; Quail and Joyce, 2013). The
contribution of the various stromal cell types to the tumor
have been reviewed extensively elsewhere (Hanahan and
Coussens, 2012; Junttila and de Sauvage, 2013). Here, we will
focus on three very prominent stromal cell types that mediate
immunosuppression in the hypoxic TME and allow the tumor
to escape immune detection: myeloid-derived suppressor
cells (MDSC), regulatory T cells (Treg) and tumor associated
macrophages (TAMs). We will discuss the various mechanisms
by which these cell types contribute to tumor progression
and therapeutic resistance in the context of hypoxia, as well
as the efforts to target the immunosuppressive functions of
these cell populations, especially using immune checkpoint
inhibitors.

Myeloid-Derived Suppressor Cells
Myeloid-derived suppressor cells (MDSC) are an
immature myeloid cell population named for their potent
immunosuppressive ability toward T and NK cells (Bronte, 2009;
Gabrilovich and Nagaraj, 2009) which play a prominent role in
tumor progression (Talmadge and Gabrilovich, 2013). In healthy
individuals this population is present in very small numbers
in the bone marrow, lacks immunosuppressive activity and
readily differentiates into mature macrophages and neutrophils.
However, in mice and patients with cancer this differentiation is
diverted by the abnormally high levels of tumor-derived myeloid
growth factors in the blood (Messmer et al., 2015) and circulating
MDSC levels have been shown to correlate with increased disease
burden in patients with cancer (Diaz-Montero et al., 2009;
Messmer et al., 2015). Recruitment of MDSC to tumors has been
shown to occur in response to multiple soluble factors, although
the precise chemotactic factors involved vary depending on the
tumor model interrogated (Acharyya et al., 2012; Gabrilovich
et al., 2012; Wesolowski et al., 2013; Highfill et al., 2014; Palazon
et al., 2014). Together with these soluble factors, tumor hypoxia,
via HIF-1α stabilization and the production of downstream
effectors, plays a role in facilitating MDSC mobilization into
the circulation and recruitment to tumors (Du et al., 2008;
Erler et al., 2009; Wong et al., 2011; Sceneay et al., 2012; Chafe
et al., 2015; Figure 2), and regulates the immunosuppressive
functions of MDSC (Corzo et al., 2010). Recently, hypoxia
was further implicated in expanding the immunosuppressive
arsenal of MDSC through the HIF-1 mediated upregulation
of programmed cell death 1 ligand 1 (PD-L1; Noman et al.,
2014). Moreover, the response to hypoxia has been shown to
impact MDSC by triggering rapid differentiation into TAM
(Corzo et al., 2010). The same study also identified increased

F4/80 (macrophages) positivity relative to Gr1 (MDSC) in
hypoxic, pimonidazole staining regions of tumors, suggesting
that TAM arising from MDSC may be vitally important for
tumor progression in these niches.

MDSC suppress the anti-tumor immune response
(Gabrilovich et al., 2012), therapeutic efforts to restore this
response (Highfill et al., 2014; Kim et al., 2014), as well as
limit the efficacy of anti-angiogenic (Shojaei et al., 2007, 2009)
and chemotherapies (Acharyya et al., 2012). Consequently, a
number of therapeutic approaches to target MDSC are being
explored which can be grouped into 4 distinct categories: (1)
forced differentiation (2) targeting soluble factors mediating
expansion and/or recruitment (3) direct targeting with the use of
chemotherapy (4) reducing their immunosuppressive capacity.
Each of these therapeutic strategies has been reviewed extensively
in Wesolowski et al. (2013) and targeting MDSCs using immune
checkpoint inhibitors is discussed below.

Regulatory T Cells
Regulatory T cells (Treg) are another important stromal cell
population that supports tumor progression by contributing
to immune evasion (Facciabene et al., 2012). Similar to
MDSC, Treg are normally required to keep the immune
system tightly regulated and prevent autoimmunity. Treg are
found in one of two forms: natural Treg (nTreg) which are
thymically derived, or induced Treg (iTreg) which can be
induced from naïve CD4 T cells. The fate and function of
these populations are controlled by the expression of the
FoxP3 transcription factor (Facciabene et al., 2012). Treg
have been identified in many cancers where they have been
associated with worse prognosis (Zou, 2006; Facciabene et al.,
2012).

Like MDSC, Treg have a number of weapons to reduce anti-
tumor immunity such as the secretion of immunosuppressive
cytokines, direct killing of effector cells, increasing local pools
of the toxic metabolite adenosine and disruption of dendritic
cell function (Facciabene et al., 2012). Hypoxia-induced CCL28
secretion by the tumor has been shown to induce the
CCR-10-dependent recruitment of Treg to tumors (Figure 2),
exacerbating the immunosuppressive pressure that allows the
tumor to evade host destruction (Schlecker et al., 2012). It has
also been shown that Treg are important for the formation of new
blood vessels in the tumor (Facciabene et al., 2011). Importantly,
these cells can be targeted by immune checkpoint inhibitors such
as ipilimumab (anti-CTLA-4; Selby et al., 2013).

Tumor Associated Macrophages (TAM)
Tumor-associated macrophages make up the largest population
of stromal cells within growing solid tumors and while they
are generally described as belonging to the classically activated
M1 or the alternatively activated M2 phenotype, these cells
actually display a great degree of phenotypic plasticity (Noy
and Pollard, 2014). The M1 phenotype is tumoricidal and
pro-inflammatory, whereas the M2 phenotype is pro-tumoral
and suppresses the inflammatory response (Noy and Pollard,
2014). The recruitment of macrophages to tumors is largely
dependent upon soluble factors released into the circulation
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FIGURE 2 | Combinatorial approaches to target the hypoxic TME and immune dysfunction. In addition to the metabolic adaptations initiated by engagement

of the HIF program in the hypoxic niches of the tumor contributing to the migratory and invasive phenotype of the cancer cells, metabolic byproducts (e.g., low pH)

reduce anti-tumor immune function. Furthermore, many HIF target genes (e.g., VEGF, Sema3A, CCL28) secreted by the tumor result in chemotaxis of immune

suppressive cell populations (MDSC, TAM, and Treg), limiting the function of anti-tumor immune response. In addition HIF-1-mediated upregulation of PD-L1 by the

tumor, MDSC and TAM populations provides an additional layer of resistance to immune surveillance mechanisms. Consequently the use of checkpoint inhibitors to

restore anti-tumor immunity to eradicate the therapy resistant cells in the hypoxic TME in combination with inhibitors of pH regulation and recruitment of immune

suppressive stromal cell populations may circumvent many of the hurdles facing anti-tumor immunity. pHe, extracellular pH; pHi, intracellular pH; mAb, monoclonal

antibody; CAI, carbonic anhydrase inhibitor; HCO−

3 , bicarbonate; H+, proton; CO2, carbon dioxide; H2O, water; NBC, sodium/bicarbonate cotransporter; MCT1/4,

monocarboxylate transporter 1 and 4; HIF-1α, hypoxia-inducible factor 1 alpha; ARNT, aryl hydrocarbon receptor nuclear translocator; LDH, lactate dehydrogenase;

OXPHOS, oxidative phosphorylation; CAII, carbonic anhydrase II; CAIX, carbonic anhydrase IX; GLUT-1, glucose transporter 1; Sema3A, semaphorin 3A; VEGF,

vascular endothelial growth factor; CCL28, chemokine (C-C motif) ligand 28; CCR10, chemokine (C-C motif) receptor 10; Arg1, arginase 1; iNOS, inducible nitric

oxide synthase; CSF1R, colony stimulating factor 1 receptor; TCR, T cell receptor; G-CSF, granulocyte colony stimulating factor; TAM, tumor associated macrophage;

MDSC, myeloid-derived suppressor cell; Treg, regulatory T cell; APC, antigen presenting cell; VEGFR1, vascular endothelial growth factor receptor 1; VEGFR2,

vascular endothelial growth factor receptor 2; CTLA-4, cytotoxic T lymphocyte antigen-4; PD-1, programmed cell death receptor 1; PD-L1, programmed cell death 1

ligand.

by the tumor, including CCL2, CCL5, VEGF, Endothelins,
endothelial monocyte activating polypeptide (EMAP) II and
colony stimulating factor 1 (CSF1), resulting in the mobilization
of monocytes from the bone marrow (Murdoch et al., 2004;
Franklin et al., 2014). Once macrophages reach the tumor,
migration to the hypoxic regions is driven by VEGF, EMAPII,
Endothelin-2, CXCR4 and Semaphorin3A (Murdoch et al., 2004;
Casazza et al., 2013; Figure 2). While tumor hypoxia was thought
to play a prominent role in polarizing TAMs, recent findings
suggest that tumor hypoxia merely enhances the expression of
pro-angiogenic and metastasis promoting genes (Laoui et al.,
2014). TAMs expressing M2 markers were found in the same
proportion in well oxygenated and poorly oxygenated tumors
in a model of PHD2 haploinsufficiency (Laoui et al., 2014).

However, immunosuppressive M2 macrophages are found in
greater number in hypoxic regions of solid tumors compared to
M1 macrophages (Murdoch et al., 2004; Movahedi et al., 2010;
Laoui et al., 2014), supporting a role for hypoxia in M2 TAM
chemotaxis and retention in these niches. Hypoxic TAMs provide
a rich source of VEGF, augmenting tumor angiogenesis, blood
vessel dysfunction and exacerbation of the hypoxia (Stockmann
et al., 2008; Figure 2). VEGF secreted by macrophages is also
responsible for a role of macrophages in assisting the transit
of migratory tumor cells into the vasculature to facilitate their
entrance into the circulation (Harney et al., 2015). These
macrophages, together with the migratory cancer cells and
the endothelial cells, form the “tumor microenvironment of
metastasis” (TMEM). The TMEM has been observed in the
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tumors of breast cancer patients where it has been shown to be
predictive of metastatic potential in ER+HER2− cases (Rohan
et al., 2014).

The highly immunosuppressive nature of macrophages poses
a significant hurdle to anti-tumor immunity especially in hypoxic
regions of tumors and TAM presence has been shown to
impact breast cancer patient survival (Doedens et al., 2010;
DeNardo et al., 2011; Casazza et al., 2013). The stabilization
of HIF-1α is required for the immunosuppressive activity of
macrophages by increasing the expression of Arg1 and iNos
activity (Doedens et al., 2010). Therefore, eliminating this
immunosuppressive population is critical for restoring anti-
tumor immunity. Recently it was shown that blocking the
recruitment of macrophages using antibody blockade of CSF1 or
CSF1R antagonism with the small molecule inhibitor PLX3397,
which is being evaluated clinically, resulted in a CD8 T cell
dependent reduction in tumor burden in the MMTV-PyMT
model (DeNardo et al., 2011). As hypoxia has also been
shown to upregulate PD-L1 expression on TAMs, treatment
of tumors with high TAM presence with immune checkpoint
inhibitors may also restore anti-tumor immunity (Noman et al.,
2014).

Targeting the Immune Response with
Checkpoint Inhibitors
Recent clinical breakthroughs in targeting tumor immunology
through the use of immune checkpoint inhibitors have revitalized
interest in the field (Hodi et al., 2010; Brahmer et al., 2012;
Topalian et al., 2012; Wolchok et al., 2013). However, despite the
significant measurable responses observed clinically, treatment
with inhibitors to PD-1 and CTLA-4 have only produced
objective responses in 10–28% of patients treated when utilized
as a monotherapy (Hodi et al., 2010; Brahmer et al., 2012;
Topalian et al., 2012). Achieving an understanding of the
mechanisms limiting the response to these antibodies as well as
the identification of biomarkers that can be utilized to stratify
patients that will respond to this therapy alone or may require
a combinatorial approach will improve patient outcome.

In order to achieve activation, a T cell must recognize a
peptide antigen presented by a major histocompatibility complex
(MHC) molecule on the surface of an antigen presenting cell
(APC) or cancer cell via its T cell receptor (TCR). When this is
done in the context of appropriate stimulating signals through
the engagement of costimulatory molecules (e.g., CD28) with
their cognate receptors (e.g., CD80), activation of a T cell occurs
(Pardoll, 2012; Mahoney et al., 2015). Fail safe mechanisms
exist to regulate the activity of the T cell and the duration
of the response through the activity of inhibitory receptors or
checkpoint molecules. As an example, molecules such as PD-
L1 expressed on the surface of APCs or cancer cells binds
to its cognate receptor PD-1. This engagement reduces T cell
activation and cytolytic activity (Pardoll, 2012; Mahoney et al.,
2015; Topalian et al., 2015). Similarly, the expression of cytotoxic
T lymphocyte antigen (CTLA)-4 binds, with higher affinity
than CD28, to CD80 and CD86 on APCs achieving the same
reduction in T cell activation (Pardoll, 2012; Mahoney et al.,

2015; Topalian et al., 2015). This is the basis for immune
checkpoint blockade where antibodies such as ipilimumab (α-
CTLA-4), pembrolizumab (α-PD-1) and nivolumab (α-PD-1)
interfere with the engagement of the inhibitory ligand with the
receptor to maximize anti-tumor immunity (Figure 2). However,
there are significant hurdles to initiating and maintaining this
immune response in various cancers, which include the presence
of a hypoxic, acidic tumor microenvironment (Kareva and
Hahnfeldt, 2013; Motz and Coukos, 2013; Palazon et al., 2014;
Joyce and Fearon, 2015; Wherry and Kurachi, 2015).

Recently it has been shown that hypoxia contributes
to the limited success of an anti-tumor immune response
(Barsoum et al., 2014a). Hypoxia triggers the shedding of
major histocompatibility complex (MHC) class I chain-related
molecule A (MICA), a ligand required for natural killer (NK) cell
and effector cell activation, in an ADAM10 dependent manner,
contributing to the evasion of immune surveillance mechanisms
(Siemens et al., 2008; Barsoum et al., 2011). Furthermore,
hypoxia-induced autophagy was demonstrated to limit NK-
mediated cell death inmodels of breast cancer andmelanoma due
to autophagosome degradation of granzyme B (Baginska et al.,
2013). However, it appears that NK cell mediated tumor killing is
one of several immune surveillance mechanisms in place in the
syngeneic models interrogated as complete tumor regression was
not observed upon autophagy inhibition (Baginska et al., 2013).
Nevertheless, it is clear that cancer cells in low oxygen become
increasingly more difficult for the immune system to eliminate.

It was identified recently that hypoxia, through the action
of HIF-1α, increases the expression of PD-L1 by tumor cells
and by tumor-infiltrating MDSC (Barsoum et al., 2014b; Noman
et al., 2014). In both cases, HIF-1α was found to bind directly
to the hypoxia response element (HRE) in the PD-L1 promoter.
It has been known for a number of years now that cancer
cells within the tumor are capable of expressing PD-L1 in
response to interferon-γ, a significant counter measure to the
activation of T cells (Dong et al., 2002; Curiel et al., 2003; Pardoll,
2012). Barsoum and colleagues demonstrate in vitro that tumor-
educated T cells are much less capable of eliciting a cytolytic
effect on hypoxic cancer cells in a PD-L1 dependent manner
(Barsoum et al., 2014b). However, preclinical studies in multiple
tumor models where antibodies to PD-L1, PD-1 and CTLA-4 are
used as a monotherapy have not achieved much success (Grosso
and Jure-Kunkel, 2013; Highfill et al., 2014; Kim et al., 2014; Guo
et al., 2015; Hu-Lieskovan et al., 2015; Ngiow et al., 2015). Recent
success has been achieved by depleting MDSC in combination
with checkpoint inhibitors (Highfill et al., 2014; Kim et al., 2014).
Depletion through the use of epigenetic modifiers 5-azacytidine
and entinostat, a combination currently being explored clinically
(Kim et al., 2014) (NCT01928576), in models of colorectal and
breast cancer achieved significant anti-tumor effects. A similar
enhancement was observed upon blocking MDSC recruitment
through CXCR2 antagonism in a model of sarcoma (Highfill
et al., 2014). Both studies achieved significant enhancement of
immune checkpoint inhibitor efficacy as a result of removing
multiple layers of immune suppression within the TME. Since
hypoxia is known to recruit MDSC to tumors and induce their
immunosuppressive behavior it is intriguing to explore hypoxia
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driven therapies that may limit the recruitment of MDSC to the
tumor. Indeed, CAIX was shown to be required for mobilization
of MDSC in an implantable model of breast cancer in a G-CSF-
dependent manner facilitating establishment of a breast cancer
pre-metastatic niche (Chafe et al., 2015). Thus, targeting CAIX
in combination with checkpoint inhibitors may prove effective in
this regard.

HYPOXIA-INDEPENDENT MECHANISMS
FOR CAIX INDUCTION

Although hypoxia is arguably the major pathophysiological
stimulus for HIF-1-mediated upregulation of CAIX in solid
tumors, several alternative “provocateurs” present in the TME
may contribute to its induction. For example, it has been
demonstrated that lactate promotes HIF-1α accumulation in
a hypoxia-independent manner in tumor cells through the
inhibition of proline hydroxylation, driving expression of
downstream effectors such as VEGF (Lu et al., 2002; De Saedeleer
et al., 2012), and, potentially, CAIX. The common chemotherapy
drugs paclitaxel, gemcitabine and carboplatin have been recently
shown to induce HIF-1α expression in various models of breast
cancer in a reactive oxygen species dependent manner (Samanta
et al., 2014; Lu et al., 2015). Combination treatments of tumor
xenografts with paclitaxel or gemcitabine in combination with
the HIF-1α inhibitor digoxin proved more effective than either
of the drugs tested as a single agent (Samanta et al., 2014). As the
chemotherapy induced expression of HIF-1α, and downstream
targets, increased the tumorsphere forming capacity of the basal
breast cancer lines tested, it is conceivable that chemotherapy
induced HIF-1α stabilization and a concomitant increase in the
CSC population is a contributing factor to treatment resistance in
vivo. However, randomized clinical trials are needed to confirm
these preclinical findings. In line with these findings, we have
demonstrated in both human and murine breast cancer models
that the combination of paclitaxel with the small molecule
CAIX inhibitor SLC-0111 significantly delayed tumor growth
over either single agent (Lock et al., 2013). Based on the data
presented by Samanta et al. (2014) and Lu et al. (2015), our
observations may be related to increased CAIX expression in
the tumor models tested in response to the chemotherapy
induced initiation of the HIF program in a hypoxia independent
manner, especially in the CSCs. Furthermore, while paclitaxel
and doxorubicin treatment of the MMTV-PyMTmodel of breast
cancer was previously shown to result in increased TAMpresence
in the tumor, hypoxia was not investigated in this setting
(DeNardo et al., 2011). Based on recent findings and the role
of tumor hypoxia in TAM recruitment and promotion of the
alternatively activated, immunosuppressive phenotype, it would
be worthwhile to test inhibitors of HIF targets in combination
with the above chemotherapy drugs in this model to prevent
TAM enrichment and immune evasion following treatment. It

has also recently been demonstrated that estrogen signaling
induces HIF-1α expression by direct binding of the estrogen
receptor (ER)-α to the estrogen response element (ERE) in the
HIF-1α promoter (Yang et al., 2015). HIF-1α expression was

associated with resistance to tamoxifen in in vitro studies and was
correlated with reduced overall survival in ER+ patients treated
with tamoxifen and chemotherapy, correlating HIF-1α with
tamoxifen resistance in patients (Yang et al., 2015). Interestingly,
the CAIX promoter was also found to have an ERE and was
shown to be induced in rat uteri following estrogen treatment
(Yang et al., 2015; Karim et al., 2016). Given the correlation
with HIF-1α and tamoxifen resistance, it would be interesting to
investigate whether CAIX expression is increased in this patient
population. If so, CAIX inhibition might offer a second-line
treatment for ER+ breast cancer patients that have relapsed on
hormone ablation therapy.

CONCLUSION

Therapeutic resistance is a critical determinant of cancer patient
outcome. Identifying biomarkers of response and determinants
of treatment failure is paramount to improving treatment
modalities. The acidic pH and low oxygen tension within
the hypoxic tumor microenvironment of solid tumors poses
a significant hurdle to the efficacy of chemo-, radio- and
immunotherapies. The body of work described here points
to combinatorial treatment approaches designed to eliminate
hypoxic niche cells and improve the response to immunotherapy
and chemotherapy. For example, combining immune checkpoint
inhibitors such as α-PD-1 or α-CTLA-4 with inhibitors of pH
regulatory enzymes such as CAIX and MCT-4 may result in a
reduced response to hypoxia while simultaneously stimulating
the anti-tumor immune response. Furthermore, the application
of CAIX inhibitors in combination with anti-angiogenic agents
has the potential to reduce the cancer stem cell compartment
in the hypoxic niche that is generated as a byproduct of
use of therapies such as bevacizumab and sunitinib. Rational
combinatorial approaches such as these may lead to improved
clinical trial design and ultimately identify effective regimens to
overcome treatment resistance.
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