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At the core of the many debates throughout cognitive science concerning how decisions are 
made are the processes governing the time course of preference formation and decision. From 
perceptual choices, such as whether the signal on a radar screen indicates an enemy missile or 
a spot on a CT scan indicates a tumor, to cognitive value-based decisions, such as selecting an 
agreeable flatmate or deciding the guilt of a defendant, significant and everyday decisions are 
dynamic over time. Phenomena such as decoy effects, preference reversals and order effects 
are still puzzling researchers. For example, in a legal context, jurors receive discrete pieces of 
evidence in sequence, and must integrate these pieces together to reach a singular verdict. 
From a standard Bayesian viewpoint the order in which people receive the evidence should 
not influence their final decision, and yet order effects seem a robust empirical phenomena 
in many decision contexts. Current research on how decisions unfold, especially in a dynamic 
environment, is advancing our theoretical understanding of decision making. 

This Research Topic aims to review and further explore the time course of a decision - from 
how prior beliefs are formed to how those beliefs are used and updated over time, towards the 
formation of preferences and choices and post-decision processes and effects. Research literatures 
encompassing varied approaches to the time-scale of decisions will be brought into scope: 

a) Speeded decisions (and post-decision processes) that require the accumulation of noisy and 
possibly non-stationary perceptual evidence (e.g., randomly moving dots stimuli), within a 
few seconds, with or without temporal uncertainty. 

b) Temporally-extended, value-based decisions that integrate feedback values (e.g., gambling 
machines) and internally-generated decision criteria (e.g., when one switches attention, 
selectively, between the various aspects of several choice alternatives). 

c) Temporally extended, belief-based decisions that build on the integration of evidence, 
which interacts with the decision maker's belief system, towards the updating of the beliefs 
and the formation of judgments and preferences (as in the legal context). 

Research that emphasizes theoretical concerns (including optimality analysis) and 
mechanisms underlying the decision process, both neural and cognitive, is presented, as well 
as research that combines experimental and computational levels of analysis. 
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Decision-making is a dynamic process that begins with the accu-
mulation of evidence and ends with the adjustment of belief.
Each step is itself subject to a number of dynamic processes, such
as planning, information search and evaluation. Furthermore,
choice behavior reveals a number of challenging patterns, such
as order effects and contextual preference reversal. Research in
this field has converged toward a standard computational frame-
work for the process of evidence integration and belief updating,
based on sequential sampling models, which under some con-
ditions are equivalent to normative Bayesian theory (Gold and
Shadlen, 2007). A variety of models have been developed within
the sequential sampling framework that can account for accuracy,
response-time distributional data, and the speed-accuracy trade-
off (Busemeyer and Townsend, 1993; Usher and Mcclelland, 2001;
Brown and Heathcote, 2008; Ratcliff and McKoon, 2008). Yet
there are differences between these models with regard to the
mechanism of decision-termination, the optimality of the deci-
sion and the temporal weighting of the evidence. There is also
a need to extend this framework to preference type of decisions
(where the criteria are up to the judge) and to enrich it so as
to include control processes (such as exploration/exploitation),
information search, and adaptation to the environment, thereby
allowing it to capture richer decision problems; for example,
when alternatives are not pre-defined, or when the decision-
maker is not just accumulating evidence but also adapting beliefs
about the data-generating process.

This Research Topic presents new work that investigates the
dynamical and mathematical properties of evidence integration
and its neural mechanisms and extends this framework to more
complex decisions, such as those that occur during risky choice,
preference formation, and belief updating. We hope these arti-
cles will encourage researchers to explore the computational
and normative aspects of the decision process and the observed
deviations. We briefly review here the contributions in this col-
lection, starting from simple perceptual decisions in which the
information flow is externally controlled to more complex deci-
sions, which allow the observer to control the information flow
and other learning strategies, and following on with preference
formation.

FAST PERCEPTUAL DECISIONS
The first group of seven articles examines issues that arise in fast
perceptual decisions that only allow the subject to control the

weighting of the incoming evidence and the termination rule.
Nevertheless, the integration time-scale, the temporal weights,
and evidence termination can vary and this strongly affects the
decision performance (how close people are to optimality) and
the fit with the data. Some of these papers also examine the neural
mechanisms that implement the decisions. In a mathematically-
oriented paper Heathcote and Love (2012) examine a variant
of a race model (the linear ballistic accumulator; LBA), which,
under certain assumptions about the underlying distributions of
starting point and drift-rate variability of evidence accumulation,
allows for closed analytical formulas for the full response-time
distribution in a lexical decision task and obtains a goodness of
fit almost as good as that of the standard LBA model. In another
formal paper, van Ravenzwaaij et al. (2012) examine, within the
standard drift-diffusion model, the optimality of evidence accu-
mulation strategies in decision situations with unequal frequency
of stimuli types. They converge on the result that a bias in the
decision starting point is optimal, in both fixed and variable dif-
ficulty conditions, though it appears that observers do not fully
follow this strategy (but see Moran and Usher, in preparation).
In another paper that examines sequential effects and decision
biases in binary choice tasks, Goldfarb et al. (2012) present a
simple extension of the standard decision model, which assumes
changes in starting point depend on stimulus repetitions and
alternations, combined with a response criteria increase following
errors. This model accounts for a rich data of sequential depen-
dence in response time and accuracy. In a paper contributed by
Tsetsos et al. (2012), the aim was to contrast the standard drift-
diffusion algorithm, which assumes that the evidence is given
temporally-uniform decision weights, and the leaky competing
accumulator model (LCA), which predicts a variety of tempo-
ral weighting patterns, including (for some model parameters)
a specific interaction between stimulus duration and temporal
weighting. While the LCA-predicted interaction was confirmed
in some of the observers (who performed multiple sessions with
the moving dots displays), future work will be needed to fur-
ther characterize how temporal weighting of evidence depends
on task characteristics and individual differences. The issue of
temporal weighting and its dependence on characteristics of evi-
dence accumulation and type of decision-boundary is further
discussed in a review paper by Zhang (2012), who also examines
how these characteristics affect decision optimality. Lastly, two
papers discuss the neural mechanisms of perceptual decisions.
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Simen (2012) examines a two-layer neural model that includes
accumulators and bistable cell-assemblies that can implement the
decision-boundary—which is assumed without much discussion
in the standard approach—and discusses the difficulties of map-
ping those processing units to the neural recordings observed in
brain data. van Vugt et al. (2012) use a model-driven approach
to reveal the EEG correlates of evidence accumulation for a
motion discrimination task. The authors use a novel computa-
tional technique to show that the time-course of the EEG activity
demonstrated a non-linear profile—a finding that may arbitrate
the dispute between linear (e.g., Brown and Heathcote, 2008)
and non-linear (e.g., Usher and Mcclelland, 2001) models of evi-
dence integration. Moreover, this paper indicates the possibility
of identifying individual differences in evidence integration (e.g.,
speed-accuracy trade-off) from the EEG signal, offering a use-
ful tool for characterizing the computational properties of the
decision mechanism.

ADAPTIVE DECISION MAKING
The second group of six articles examines decisions that extend
over a longer time-frame and which allow the subject to con-
trol the evidence accumulation process, and to form and update
beliefs about the state of the environment. The study by Knox
et al. (2011) of exploration and exploitation suggests that human
decision makers learn from interaction with their environment
in a reflective manner (without requiring direct observation of
changes in the environment) but yet do not plan optimally
because they do not consider the long-term information value
of actions. The contribution by Osman and Speekenbrink (2012)
extends this inquiry by studying how knowledge about the val-
ues of actions can be affected by tasks of prediction (outcome
estimation) and control (interventions to achieve an outcome).
They demonstrate a distinction between prediction and control
whereby controllers were able to transfer their knowledge to tests
of prediction but not vice versa. In this way, the concept of control
is similar to that of planning for a goal rather than for adapt-
ing to an environment as in Knox et al. (2011) but, in both of
these papers, decision makers cycle from evidence accumulation,
to action, to feedback, and back again (cf. model-based learning;
Sutton and Barto, 1998). Yu and Lagnado (2012) use this frame-
work in a slot machine paradigm to show that, while participants
over time came to understand the observed environment (slot
machine payouts) accurately, their understanding of the underly-
ing structure of the environment was flawed. Beliefs about struc-
ture and causality were more strongly influenced by initial beliefs
than by experience. Also studying decisions from experience, Dutt
and Gonzalez (2012) explore the role of inertia, or the tendency to
repeat one’s final decision, irrespective of its outcome. They show
both the advantages and disadvantages of incorporating inertia
into an instance-based learning model of repeated binary choice.
In contrast to this focus on inertia, Lange et al. (2012) demon-
strate how decision makers adapt to the environment, using a
new model that combines the HyGene model (Thomas et al.,
2008) with the context-activation model (Davelaar et al., 2005).
Across two experiments that manipulate serial order, consistency
of newly-acquired evidence with previously-generated hypothe-
ses, and elicitation timing, the authors show that not all data

have an equal impact on hypothesis generation processes: newly-
acquired data can cause inconsistent hypotheses to be purged
from working memory. The authors propose that whether this
results in a recency or primacy effect is likely to depend on the
richness of the information and its rate of presentation.

PREFERENCE-BASED DECISIONS
The next group of three articles addresses preference forma-
tion, in situations (risky choice and multi-attribute decisions)
that do not set up an objective/normative criterion, but rather
leaves this to the subject’s control. Fiedler and Glockner (2012)
monitor how people choose between lotteries using eye-tracking
to distinguish between competing models of risky choice. The
results disconfirmed Take-the-Best, or lexicographic heuristics,
in favor of compensatory models that assume observers inte-
grate outcomes with attentional weights determined by outcome
probability. In particular, people gather more information within
(rather than between) lotteries and they tend to gather more
information (toward the end of the decision) from the cho-
sen alternative, indicating top–down feedback from alternative
to processing representations. Also using eye-tracking, Krajbich
et al. (2012) propose a formalization of the influence of visual
fixations on the dynamics of preference formation. The authors
build on the attentional diffusion model (aDDM), which modu-
lates the rate of evidence-accumulation depending on the position
of visual fixation, to explain the responses and reaction times of
human subjects during purchasing (accept/reject) decisions. The
study demonstrates how small attentional fluctuations during
the deliberation period can influence the decision outcome. This
approach is closely related to theoretical models of multi-attribute
choice [e.g., decision field theory, Roe et al. (2001); and value-
based LCA, Usher and Mcclelland (2004)], in which attentional
switching to different choice aspects drives preference formation.
This class of models is extended in Wollschlager and Diederich
(2012), which presents a novel model of contextual preference
reversal (attraction, similarity, and compromise effects) for multi-
alternative, multi-attribute choice: the 2N-ary Choice Tree model.
The model offers closed-form expressions for choice probabilities
and response time distributions and, contrary to previous theo-
ries, explains reversal effects by assuming that attentional weights
depend on the alternatives in the choice-set [cf. a recent study,
which appeared after this Research Topic and provides an explicit
mechanism for how the alternatives affect weights to the choice
attributes: Bhatia (2013)].

NOVEL OR INTEGRATIVE APPROACHES
Finally, two papers aim to provide novel or integrative frame-
works for understanding dynamical decision making. Trueblood
and Busemeyer (2012) present a decision model based on prin-
ciples of quantum theory—a radical shift from the standard
framework—which provides a novel account of order effects in
belief updating and inference. This paper provides an introduc-
tion to the elegant principles of quantum probability. This theory
is of great potential, although stronger data might be needed
to persuade the skeptical readers (e.g., showing cyclic changes
in order effects). In the last paper Fox et al. (2013) present an
overarching framework for the entire decision making cycle, from
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the framing of a decision to establishing preferences and making
commitments. They extend the standard model to more ecolog-
ical and dynamic situations, in which the alternatives are not
predefined and the agent faces a variety of constraints and con-
flicts. The theory situates dynamical decision making with respect
to other high-level cognitive capabilities such as problem solving,
planning and collaborative decision-making.

CONCLUSIONS AND FUTURE WORK
We believe that this collection has revealed a number of impor-
tant aspects of the nature of decision processes. More importantly,
we hope that it will stimulate readers to keep probing these pro-
cesses. Various key questions are still unresolved. How close are

people to optimality when making decisions? Why does this vary
so much between the cases of evidence and preference? Is the
Bayesian framework a general one for all types of decisions (can
one extend it to more complex cases that allow the subject control
over the information flow and the decision criteria?). What are
the neural mechanisms, and the nature of individual differences?
Future research into these topics, should surely keep us stimulated
for the near future.
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We examine theories of simple choice as a race among evidence accumulation processes.
We focus on the class of deterministic race models, which assume that the effects
of fluctuations in the parameters of the accumulation processes between-choice trials
(between-choice noise) dominate the effects of fluctuations occurring while making a
choice (within-choice noise) in behavioral data (i.e., response times and choices). The lat-
ter deterministic approximation, when combined with the assumption that accumulation
is linear, leads to a class of models that can be readily applied to simple-choice behavior
because they are computationally tractable. We develop a new and mathematically simple
exemplar within the class of linear deterministic models, the Lognormal race (LNR). We
then examine how the LNR, and another widely applied linear deterministic model, Brown
and Heathcote’s (2008) LBA, account for a range of benchmark simple-choice effects in
lexical-decision task data reported by Wagenmakers et al. (2008). Our results indicate that
the LNR provides an accurate description of this data. Although the LBA model provides a
slightly better account, both models support similar psychological conclusions.

Keywords: evidence accumulation, mathematical modeling, response time, linear ballistic accumulator, lexical-
decision task

INTRODUCTION
Humans and other organisms often have to respond to stim-
uli under time pressure that requires them to make choices in
a few seconds or less. In contrast to complex choices requiring an
extended period of deliberation during which a long series of cog-
nitive operations are completed, rapid choices are usually assumed
to have a simple cognitive architecture consisting of three stages:
stimulus encoding, response selection, and response execution.
Response selection in simple choice is almost universally modeled
by evidence accumulation, that is, by a process that accumulates
evidence until the amount favoring one of the choices is sufficient
to exceed an evidence boundary. Evidence accumulation has the
disadvantage that it becomes increasingly time consuming when
the evidence boundary is high. However, increasing response cau-
tion by increasing the boundary is also assumed to have utility
because it ameliorates the effects of various types of noise that
can cause choice errors. This assumption, and the task of pro-
viding a quantitative account of the relationship between speed
and accuracy (speed-accuracy trade-off), has been pivotal for the
development of models of simple choice.

Since the earliest proposals (e.g., Stone, 1960), it has usually
been assumed that fluctuations in evidence occurring during the
accumulation process (i.e., within-choice noise) are the dominant
cause of both choice errors and of variations in response time
(RT) from choice-to-choice. However, it soon became evident
that within-choice noise is not by itself sufficient to enable mod-
els to provide a comprehensive account of choice behavior. In
seminal work, Laming (1968) and Ratcliff (1978) demonstrated
that accounting for not only the frequency with which different
choices are made but also the distribution of RT for every type
of choice requires the addition of effects due to choice-to-choice
fluctuations (i.e., between-choice noises).

In a departure from the usual assumption, Brown and Heath-
cote (2005a) asked whether between-choice noises alone could
provide a comprehensive account of simple-choice behavior.
Although acknowledging that a range of extrinsic (e.g., stimulus)
and intrinsic (e.g., neural) factors can cause within-choice noise,
they proposed that the attendant behavioral effects might some-
times be small enough to neglect. In support of this simplifying
approximation, which they described as “ballistic,” they demon-
strated that a model with no within-choice noise could provide
a detailed account of a broad range of benchmark simple-choice
behaviors. Their model, the ballistic accumulator (BA),was further
simplified by Brown and Heathcote (2008) into the linear ballistic
accumulator (LBA). The LBA was shown to provide an account of
benchmark phenomena on par with the BA while gaining consid-
erably in ease of application because of greater mathematical and
computational tractability.

Here we extend Brown and Heathcote’s (2005a, 2008) line of
argument by developing an even more mathematically tractable
evidence accumulation model that shares with the LBA the
assumptions that accumulation is linear and deterministic. We
first set the context for this development by reviewing the roles
of different types of noise in evidence accumulation models and
by defining a framework within which the LBA, and our new
proposal, the Lognormal race (LNR), are special cases.

Next we motivate the LNR model’s Lognormal distribution
assumption, derive mathematical results, and show that the LNR
model, because of its simplicity, is required to explain speed-
accuracy trade-offs in an unconventional way, via changes in
evidence accumulation. Finally, we test and compare the LBA and
LNR models by fitting them to behavioral data from a lexical-
decision task (i.e., classifying a letter string as either a word or a
non-word) reported by Wagenmaker et al.’s (2008, Experiment 1).
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We focused on Wagenmaker et al.’s (2008) experiment because
it produced a very large speed-accuracy trade-off using instruc-
tions that emphasized either response speed or response accuracy.
Fitting methods developed by Donkin et al. (2011a) enabled us
to systematically explore a large variety of LBA and LNR model
parameterizations that instantiate different ways to quantitatively
explain the speed-accuracy trade-off. We show that LNR model is
able to provide an accurate description of the frequency of each
choice and its associated RT distribution. We also show that the
LBA model is only able to provide the same accurate description
if it explains a large part of the observed speed-accuracy trade-off
in the same unconventional way as the LNR.

SOURCES OF NOISE IN EVIDENCE ACCUMULATION MODELS
Early evidence accumulation models – random walks and their
continuous analog, a diffusion process (e.g., Stone, 1960) –
assumed only within-choice noise. However, such simple models
are inadequate because they predict correct and error choices
have identical RT distributions, whereas empirically correct and
error RT differ in regular and often replicated ways. For example,
when decision accuracy is stressed errors are slower than cor-
rect responses, but when decision speed is stressed this difference
decreases and can even reverse (e.g., Ratcliff and Rouder, 1998).
These limitations can be remedied by the addition of two sources
of between-choice noise.

First, Laming (1968) showed that variability in the starting
point of a random walk process causes fast errors. As the starting
point determines the amount of evidence required for each choice,
there is an attendant between-choice fluctuation in response bias.
Second, Ratcliff (1978) accounted for the more commonly occur-
ring slow errors in a diffusion model by allowing the mean rate
of evidence accumulation to differ between trials. Between-choice
noise in the mean rate of evidence accumulation also allows these
models to escape a prediction that is clearly false for many choice
tasks; that perfect accuracy can be achieved by a sufficient increase
in the amount of evidence required to make a choice.

What are the causes of these types of between-choice noise?
In Ratcliff ’s (1978) application – episodic recognition memory –
mean rate variation could plausibly be attributed to substantial dif-
ferences in memorability between test items (words), as responses
to different words were aggregated within experimental condi-
tions. Subsequent research has shown that mean rate variation is
also required to fit behavioral data from paradigms using homoge-
nous test items within each experimental condition. This suggests
there may be other causes of mean rate variations not related to
item effects, such as choice-to-choice fluctuations in attention and
arousal. Shadlen and Newsome (1998) provide a potential neural
cause; they showed that correlations among the firing of neurons
coding the same stimulus also cause choice-to-choice variations
in mean spike-rates.

Sequential effects are the most commonly proposed cause of
between-choice noise in the starting points of evidence accumu-
lation (i.e., in the amount of evidence required for each choice).
Simple-choice paradigms typically require participants to make a
series of closely spaced decisions, so residual effects from previ-
ous decisions have been proposed as a source of start-point noise
in cognitive (e.g., Brown et al., 2008) and neurophysiological (e.g.,

Gao et al., 2009) process models. Van Maanen et al. (2011) recently
reported evidence that model-based estimates of choice-to-choice
fluctuations in the amount of evidence required for a response are
correlated with changes in hemodynamic responses in areas asso-
ciated with response caution, the pre-supplementary motor area
and anterior cingulate (see also Huettel et al., 2002).

The most widely and successfully applied evidence accumula-
tion model, the Ratcliff diffusion model (RDM, see Ratcliff and
McKoon, 2008, for a summary), owes its ability to provide a
comprehensive account of decision behavior to the inclusion of
between-choice noise in both start points and mean rates. More
recently, a third type of between-choice noise, in the time to com-
plete encoding and response production processes (denoted Ter).
Ter noise was required by Ratcliff et al. (2004) to be able to enforce
the assumption that word frequency selectively influences the rate
of evidence accumulation in a lexical-decision task, as otherwise
they could not account for systematic effects of word frequency
on fast responses.

Race models constitute a second important class of evidence
accumulation models (see Marley and Colonius, 1992, for an
overview). In a race model each choice is represented by a sep-
arate accumulator, with the choice made corresponding to the
first accumulator to hit its evidence boundary, and RT to the time
required to do so. Like the diffusion model, early race models
(e.g., Vickers, 1979) assumed a dominant role for within-choice
noise and linear accumulation (i.e., equal weighting of samples
taken earlier vs. later in the accumulation process). These simple
assumptions were shown to be problematic because they pre-
dicted that the distribution of RT became more symmetric as
overall RT slowed. Empirically, RT distributions show strong pos-
itive skew for all but the simplest and most rapid decisions (Luce,
1986).

This problem with race models was overcome by non-linear
accumulation in Usher and McClelland’s (2001) Leaky Compet-
itive Accumulator (LCA) model. Their model’s non-linear accu-
mulation mechanisms were inspired by the fact that single-cell
neural dynamics are commonly found to be “leaky” (i.e., firing
rates return to baseline in the absence of input) and competi-
tive (i.e., increased firing in one neuron can suppress firing in
another). The interplay between these two types of non-linearity
(i.e., either one or the other dominating) can result either in late-
arriving evidence being more influential on the eventual choice
(due to leakage) or in early arriving evidence being more influ-
ential (due to competition). Non-linear accumulation has also
been proposed in a generalization of the class of diffusion mod-
els, an Ornstein–Uhlenbeck process, as part of Busemeyer and
Townsend’s (1993) Decision Field Theory (DFT). Ratcliff and
Smith (2004) claimed that this generalization was not required
based on an analysis that estimated the degree of non-linearity
from fits to data. However, more recent work by Leite and Ratcliff
(2010), using the same type of analysis, found leakage to be neces-
sary in non-competitive race models dominated by within-choice
noise.

Brown and Heathcote’s (2005a, 2008) BA and LBA are race
models that have their roots in models from both cognitive
psychology and decision neuroscience. The BA is a race model
identical in architecture and deterministic non-linear dynamics
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to Usher and McClelland’s (2001) LCA, but with only between-
choice (start point and rate) noise. The LBA model removes two
further components of the LCA, leakage in accumulation, and
competition between accumulators. As a result accumulation is
linear in the LBA and the level of evidence in one accumulator is
independent of the level in other accumulators until one hits its
boundary. At that time all other accumulators are inhibited, so that
only one response is made. The overall architecture of the LBA is
identical to Logan and Cowan’s (1984) horse-race model of the
stop-signal paradigm. The LBA model’s assumption that inhibi-
tion plays a role after, rather than during, accumulation is largely
consistent with Boucher et al.’s (2007) neurobiological findings in
the stop-signal task.

The LBA’s assumption that accumulation is linear and deter-
ministic, and that the rate characterizing this linear accumulation
varies among choices according to a normal distribution, are
shared with Carpenter’s (1981) LATER model. The LATER model
has been widely applied to behavioral and neuroscience studies
where responding is via eye-movements and the focus is on mod-
eling (i.e., non-choice) RT. Ratcliff (2001) pointed out that LATER
is unable to account for effects related to error responses in choice
paradigms. The LBA differs from LATER in assuming that the
distance from the starting point of accumulation to the bound-
ary varies between trials according to a uniform distribution. This
added assumption allows the LBA to account for error related phe-
nomena, such as systematic differences between correct and error
responses and speed-accuracy trade-offs.

As pointed out by Ratcliff (2001), within-choice noise mod-
els account for speed-accuracy trade-off because accumulation
integrates out moment-to-moment fluctuations in evidence. In
the LBA speed-accuracy trade-off can occur because accumula-
tion integrates out response bias due to between-choice start-point
noise. In both model classes between-choice rate noise also serves
to limit the accuracy that can be achieved by increasing response
caution. This provides one explanation of the observation that
even very slow decisions can be inaccurate in some tasks.

It is important to clarify the meaning of the term “ballistic” as
employed by Brown and Heathcote (2005a, 2008), as it is non-
standard. It does not imply that, like a projectile fired from a
cannon, the trajectory of evidence accumulation is entirely deter-
mined when initiated. Rather, it indicates a lack of within-choice
noise. To illustrate this point, consider Brown and Heathcote’s
(2005b) experiment using stimuli that briefly (e.g., for 90 ms)
favored one choice, then switched to favor an alternative choice.
They conceived of the rate of evidence accumulation as being able
to change as a function of the stimulus change during a trial. Inter-
ference paradigms, such as the flanker task (e.g., Gratton et al.,
1988), provide another case where it is likely that the input to the
accumulation process is non-stationary (i.e., changes over time).
Naturally, sensitivity to stimulus change is limited by the low-pass
filtering imposed by sensory processes, and such sensitivity will
also vary depending on attention-mediated selection of task rele-
vant vs. irrelevant features. An example is provided by the global vs.
local motion classification task with random-dot kinematogram
stimuli used by Ho et al. (2009); they reported a successful appli-
cation of a stationary-rate LBA model to global motion choices
based on their rapidly time-varying stimuli.

THE LINEAR DETERMINISTIC ACCUMULATION FRAMEWORK
In this section we articulate a general framework for linear deter-
ministic accumulation models. Within this framework particular
models differ in the assumptions they make about the distribu-
tions followed by each type of between-choice noise. We begin
by outlining the general framework, using the LBA model as an
illustration, and then we develop a new model that makes different
distributional assumptions, the LNR.

The LBA assumes a uniform distribution of start-point noise
and normal distribution for rate noise. These assumptions were
made both as a matter of convention (e.g., the same assumptions
are made by the RDM) and mathematical convenience. Mathe-
matically, they enable computationally tractable solutions for the
density and cumulative density functions describing the distribu-
tion of times at which the evidence total first hits the boundary of
a single accumulator. These two functions can then be easily com-
bined to determine the likelihood of any given response at any
given time from a set of one or more potential responses (i.e., for
a race amongst any number of accumulators). A likelihood, which
is not easily computed for alternative models such as the LCA and
RDM, enables efficient model estimation, and so has facilitated
applications of the LBA (see Donkin et al., 2011a, for a tutorial).

Equation 1 characterizes the time, T, for a single evidence total
to accumulate to a boundary without the specific commitments
to distributional assumptions made by Brown and Heathcote’s
(2008) LBA.

T =
D

V
(1)

The numerator of the ratio in (1), D≥ 0, indicates the dis-
tance between the starting point of evidence accumulation and the
boundary, and (1) assumes that T is undefined if V ≤ 0. For the
LBA, D ∼B+U (0, A), where “∼” means “is distributed as,” U (0,
A) indicates the uniform start-point distribution on the interval
from 0 to A(A≥ 0), and B(B≥ 0) is the distance from the upper
bound of the start-point distribution to the evidence boundary.
The denominator, V, is the rate (velocity) of evidence accumula-
tion. The LBA rate distribution is normal with a mean of v and
standard deviation sv : V ∼N (v, sv).

A LEXICAL-DECISION TASK EXAMPLE
Figure 1 illustrates an LBA model of a lexical-decision task, in
which participants have to decide if a string of letters makes up a
word. Figure 1 illustrates a trial in which the stimulus is a word,and
so the rate distribution for the true (i.e., word) accumulator has a
higher mean than the rate distribution for the false (i.e., non-word)
accumulator. In this illustration the sampled rates (indicated by the
slope of the dotted line) follow the same order as the mean rates,
but a choice error (i.e., a non-word response) is made because
the non-word accumulator hit its boundary first. The error occurs
because the non-word accumulator starts with a higher level of
evidence.

One way in which a speed-accuracy trade-off can be explained is
illustrated by considering what would happen if the boundary were
sufficiently increased in Figure 1; the higher rate of the word accu-
mulator would eventually overcome the initial response bias in
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FIGURE 1 | A schematic illustration of an LBA model for the
lexical-decision task with a word stimulus.

favor of the non-word accumulator and an accurate word response
would be made. Past applications of the BA and LBA (Brown and
Heathcote, 2005a, 2008) have assumed that this response caution
based mechanism explains speed-accuracy trade-off caused by
speed vs. accuracy emphasis instructions. However, it might also be
explained by a change in the upper boundary of start-point noise
distribution, A. If A decreased under accuracy emphasis respond-
ing would slow, as the average distance from start-point to bound-
ary would increase, and become more accurate, as bias favoring
the false accumulator would become weaker on average. The same
is true of other accumulator models, such as LCA and DFT.

The overlap of the two rate distributions in Figure 1 illustrates
why responding may not always be entirely accurate even with a
very high boundary. On some trials a higher rate will be sampled
for the incorrect (non-word) accumulator. In this case, if a quick
correct response is not caused by response bias, an error will occur
no matter how high the boundary is set. Although they have not
conventionally done so, evidence accumulation models might also
explain the effects of speed vs. accuracy emphasis through changes
in mean rates and the level of rate noise (e.g., between-choice noise
in the LBA and both within-choice and between-choice noise
in the RDM, LCA, and DFT models). For example, if accuracy
emphasis caused v and sv parameters to decrease equally for all
accumulators, RT would slow (as it would take longer to hit an evi-
dence boundary) and errors would decrease (due to a reduction
in the overlap of the rate distributions).

Given that Wagenmakers et al. (2008) manipulated speed vs.
accuracy emphasis between trial blocks participants may have had
time to make global changes in factors like attention and arousal
that might plausibly affect accumulation rates (Kleinsorge, 2001).
Hence, rather than imposing one particular way of explaining the
effects of emphasis, we took a more exploratory approach in fit-
ting in Wagenmakers et al.’s data. That is we fit all of the different
possible ways of explaining the effect of emphasis by allowing
appropriate variation in the LBA’s B, A, v, and sv parameters.

MULTIPLE AND CONTINGENT CHOICE
The two-choice case illustrated in Figure 1 can be generalized to
choice between any numbers of alternatives, where one accumula-
tor corresponds to each alternative. Suppose the densities of T at
time t for each of i= 1. . .N accumulators are denoted by fi(t ) and
the survivor functions (i.e., the complements of the cumulative
densities) by Si(t ). If the corresponding Di and V i are assumed
independent between accumulators, as is the case for the LBA, the
likelihood of response i at time t, where Π denotes a repeated
product, is:

Td (i, t ) = fi (t )
∏

j 6=i
Sj (t ) (2)

The expression for decision time (T d) in (2) describes what is
sometimes called a defective density, a curve that integrates to a
value less than or equal to one, where that value corresponds to
the probability that response i wins the race.

Even more general, yet still computationally tractable, models
can be derived based on race equations such as (2). For example,
Eidels et al. (2010) describe a model in which binary responses are
made contingent on logical relations between two stimuli as com-
puted by four linear deterministic accumulators. This illustrates
the considerable power and generality afforded by independent
race models. As we discuss below, the LNR model extends the
power of this approach by providing a tractable approach to
including correlations between the inputs to accumulators.

RESIDUAL TIME
It is necessary to make one further addition to the framework to
describe observed behavior, an account of the “residual” compo-
nent of RT not accounted for by decision time. This non-decision
time is conventionally annotated “Ter,” an acronym for time (T )
for encoding (e) and response (r). As illustrated in Figure 1, RT
is typically assumed to be the sum of decision time and a resid-
ual time that does not vary as a function of either the stimulus
or response. This invariance is reasonable in typical rapid choice
paradigms where the difficulty of stimulus encoding and response
production is fairly homogenous, but it need not always apply. For
example, Karayanidis et al. (2009) reported large differences in
residual time for fits of a diffusion model in a cued-task-switching
paradigm as a function of whether the cue indicated a repeat or
switch in task.

A second consideration related to residual time concerns
whether it is a constant or whether it is variable. Although some
variation in the processes causing residual time is highly likely,
a constant will provide a reasonable approximation if that vari-
ation is small relative variation associated with decision time.
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For example, Smith (1995) reports evidence consistent with the
standard deviation of motor production time in button-pressing
tasks being of the order of 10 ms, which would mean it accounts
for less than 1% of the overall variability in RT in even quite rapid
choices. However, between-choice variability in residual time, in
particular the sum of a constant and a uniform random devi-
ate, has become standard in recent applications of the RDM (e.g.,
Ratcliff et al., 2004). We assume a constant residual time in the
model tests described later, as that provides a substantial advan-
tage in terms of computational speed for both the LBA and LNR.
Although that suited the exploratory aims of these tests it does not
indicate a commitment to residual time always being a constant in
the general linear deterministic framework.

THE LOGNORMAL RACE MODEL
We make two observations that provide some motivation for the
LNR. First, as Brown and Heathcote (2008) note, it is possible
for an LBA to fail to respond where no sampled rate is posi-
tive, although they found the probability of a non-response to
be negligible in fits to data. However, non-responding is not a
necessary characteristic of the general class of linear deterministic
accumulators. Non-responding does not occur in the LNR model
because the logarithm of the rate is assumed to have a normal
distribution, and hence the rate for every accumulator has a (nec-
essarily positive) Lognormal distribution. The same would be true
of any other linear deterministic model that assumes a positive
rate distribution.

Second, it turns out that the independence between accumula-
tors assumed in (2) is not necessary to derive a computationally
tractable expression for the LNR likelihood. Although widely
made, we argue that the assumption of independence between
accumulator inputs and/or between accumulator distances may be
questionable in at least some circumstances, such as when evidence
for each response alternative is derived from the same stimu-
lus characteristics. In such circumstances, it is natural to assume
choice-to-choice variations in stimuli will cause the inputs to dif-
ferent accumulators to be correlated to some degree, even if the
input to each accumulator also contains some stimulus indepen-
dent sources of noise. The Lognormal distributional assumption
allows us to avoid the independence assumption without greatly
increasing the computational cost of estimation.

The LNR model derives from the work of Ulrich and Miller
(1993), who proposed that RT dynamics could be approximated
by simple version of a “continuous flow” or “partial outputs” sys-
tem (Schweikert, 1989; Townsend and Fikes, 1995). They examined
a system that is time invariant (autonomous), in the sense that its
rate of change does not depend directly on time, and that has no
memory, in the sense that its rate of change is independent of its
current state (activation). The latter property distinguishes this
system from perhaps the most well known partial outputs model,
McClelland’s (1979) cascade process. Ulrich and Miller derived the
prediction of approximately Lognormal RT for a flow with stages
characterized by a constant rate of change (i.e., linear accumula-
tors). In the next section we briefly summarize their development
and show how it can be used to model simple (i.e., non-choice) RT
tasks (e.g., press a button when a light comes on). We then expand
the development to account tasks where participants must choose
between two or more responses.

SIMPLE RESPONSE TIME
Suppose a flow is made up of S linear accumulator stages, with
associated rates vs, s= 1..S, the activation, x, of the terminal stage
as a function of time, t, is given by xS= tV, where V =Πs=1..Svs.
The flow can be approximated as being “lumped,” in the sense that
transmission occurs instantaneously from the initial to a termi-
nal stage with any delay confined to a time, t 1, between stimulus
presentation and the time at which that presentation begins to
effect activation in the flow. Without loss of generality it can also
be assumed that the sensory input to the first stage is x0= 1, as
any differences in input magnitude can be absorbed in to the
rate of the first stage. The terminal stage is a unit that repre-
sents a response, in the sense that a response is initiated when the
activation of a terminal unit travels a distance D from its initial
state.

The time taken to traverse that distance from the time that sen-
sory processing commences has the same form, T =D/V, as (1)
from the general framework. Ulrich and Miller’s (1993) system is
sufficient to model simple RT given the specification of the time
required for response production, t 2. They assumed stage rates
vary from choice-to-choice with distributions, Z s, that are positive,
independent and identically distributed, with finite first and sec-
ond moments, µs and σ2

s . It follows from the central limit theorem
that the rate distributionV ∼ exp(Σs=1..S Z s) can be approximated
by LN(µV, σ2

V), where LN indicates a Lognormal distribution with
a mean, µV, and variance, σ2

V that equal the sums of the first and
second central moments, respectively, of the Z s.

We define the LNR as a model made up of one or more racing
Lognormal accumulators (i.e., accumulators for which T ∼ LN).
Of course, when there is only one accumulator there is not really a
race, but the single accumulator model is useful for modeling sim-
ple RT. Whether motivated by Ulrich and Miller’s (1993) flow argu-
ment, or simply made as an ad hoc assumption, a Lognormal dis-
tribution for the rate of evidence accumulation is very mathemat-
ically convenient in the linear deterministic accumulation frame-
work. This is so because both the inverse of a Lognormal variable,
and the product of independent Lognormal variables, also have a
Lognormal distribution. If one assumes, as did Ulrich and Miller,
that the distance D is a constant, it follows that T ∼ LN(µ, σ2),
where µ= ln(D)−µV and σ2

= σ2
V.Consequently, simple RT is

predicted to have a shifted Lognormal distribution, where the shift,
which defines the lower bound of the distribution, equals t 1+ t 2.
Note that if accumulators in which T ∼ LN are embedded in a race
architecture, choice RT is also predicted to be Lognormal in the
limit of high accuracy. This occurs because when accuracy is high
the race has no effect on RT distribution because one accumulator
(representing the correct response) always wins.

Consistent with these predictions, the shifted Lognormal has a
long history of use to describe simple and choice RT distributions
(e.g., Woodworth and Schlosberg, 1954), which it does with an
accuracy that has been found to be on par with the most widely
used descriptive model, the ExGaussian distribution (Ratcliff and
Murdock, 1976). The Lognormal distribution is bounded below
by zero (x > 0) with density:

f (x , µ, σ) =
1

xσ
√

2π
e
−

1
2

(
1n(x)−µ

σ

)2

(3)
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FIGURE 2 | Examples of independent Lognormal distributions, all with
shift θ=0.4 s. Solid lines represent the true (correct response) accumulator
distribution, dashed lines the false (error response) accumulator
distribution. The left panel represents a speed-emphasis condition, the right
panel an accuracy emphasis condition. For the speed condition the (µ, σ2)
parameters for each density are: solid line (−1.2, 0.2), dashed line (−0.5,
0.9). The corresponding mean RTs for correct and error responses are 0.7
and 0.64 s (fast errors) with 75% accuracy. For the accuracy condition the
(µ, σ2) parameters for each density are: solid line (−1, 0.2), dashed line (0,
0.4). The corresponding mean RTs for correct and error responses are 0.78
and 0.84 s (slow errors) with 90% accuracy.

The Lognormal survivor function (S) can be expressed in terms
of the standard normal cumulative distribution, Φ, which has
rapidly computable approximations:

S (x , µ, σ) = 1−Φ

(
1n (x)− µ

σ

)
(4)

To allow for a lower bound greater than zero a shift parameter,
0 < θ < min(x), can be added by substituting (x − θ) for x in (3)
and (4). Figure 2 shows four examples of the shifted Lognormal
density.

It is important to observe that this Lognormal form is not
uniquely predicted by assuming that distance is a constant. It also
follows if distance is a random variable that also has a Lognor-
mal distribution. That is, if D ∼ exp(Z D), where Z D ∼N (µD, σ2

D),
then T ∼ LN(µ, σ2), where µ=µD−µV and σ2

= σ2
D+σ2

V. Sim-
ilarly, if V is a constant and D ∼ exp(Z D) T ∼ LN(µ, σ2), where
µ=µD− ln(V ) and σ2

= σ2
D. These observations indicate that

it is not possible to determine which of D of V are constant or
Lognormal, or whether both are Lognormal, based only on the
form of the distribution of T.

In contrast, a Lognormal distribution for T does not follow
when D has alternative distributional forms. This is true even when
the two cases discussed so far are combined, so that D has a shifted
Lognormal form, D ∼ d + exp(N (µD,σ2

D)), where d is a constant.
Allowing distance to have a shifted Lognormal distribution would
provide similar flexibility to the LBA, where the analogous condi-
tion is that there is some distance greater than zero between the top
of the start-point distribution and the boundary (i.e., B > 0). This
type of flexibility is necessary for the LBA to be able to account
for responding under accuracy emphasis. That is, good fits of the
LBA can be obtained with small values of B under speed emphasis
(Brown and Heathcote, 2008), but in most other situations esti-
mates of B are substantially greater than zero. The fits of the LNR
model reported below enable us to test whether it fails because it

lacks similar flexibility (i.e., it does not allow distance to be both
variable and to have a minimum value greater than zero).

CHOICE RESPONSE TIME
As in the LBA, the LNR model of N -choice paradigms assumes
a race among n= 1. . .N linear accumulators. The winning unit
triggers its corresponding response production process and effec-
tively inhibits all other choice units instantaneously, so only one
response is made. In this section we explicitly derive the likeli-
hood for a two-choice LNR model and point out the relatively
straightforward extension required for the N -choice case. We do
so with a quite general characterization of the sets of rate and dis-
tance parameters defined over choice units in terms of arbitrary
finite variance-covariance matrices. We do, however, assume that
distance and rate variation can be approximated as independent,
which is plausible given they originate from different sources. We
also explicitly develop results for an LNR model in which both

distances and rates have Lognormal distributions, D ∼ eN (µd ,σ2
d )

andV ∼ eN (µv ,σ2
v ), an so:

T =
D

V
∼ eN

(
µd−µv ,σ2

d+σ2
v

)
= eN(µ,σ2) (5)

Note that in (5) and in the following, results for the case where
distance is a constant are obtained by assuming parameters related
to variability in distance (e.g., σd) are set to zero.

Consider a race between two accumulators, so we now have
two-vectors of random variable for distances and rates. Distances
might be correlated between the accumulators and rates might be
correlated between the accumulators, but distances and rates are
assumed not to be correlated within an accumulator, or between
accumulators. Given MVN (µ,Σ) denotes a multivariate normal
random variable with mean vector µ and variance-covariance
matrix Σ:

d ∼ eMVN(µd−Σd ),
∑

d
=

[
σ2

d1 σ2
d1.d2

σ2
d1.d2 σ2

d2

]
(6)

v ∼ eMVN(µv−Σv ),
∑

v
=

[
σ2

v1 σ2
v1.v2

σ2
v1.v2 σ2

v2

]
(7)

Using the fact that a difference between two independent mul-
tivariate normal random variables is also multivariate normal,
where the mean vector of the difference is the difference of the
mean vectors, and the variance/covariance matrix of the difference
is the sum of the variance/covariance matrices, we can write:

T ∼ eMVN(µ,Σ), µ = µd − µv ,∑
=

[
σ2

d1 + σ2
v1 σ2

d1.d2 + σ2
v1.v2

σ2
d1.d2 + σ2

v1.v2 σ2
d2 + σ2

v2

]
=

[
σ2

1 σ2
1.2

σ2
1.2 σ2

2

]
(8)

In order to get the likelihood that, say, accumulator 2 wins the
race at time x (i.e., hits its boundary at T = x and accumulator
1 has not yet hit its boundary) we need to multiply the marginal
density of accumulator 2 by the conditional survivor function
of accumulator 1. The marginal distribution of accumulator 2
is Lognormal, exp[N (µ2,σ2

2)], as is the conditional distribution
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of accumulator 1. That is, the distribution of T 1 conditional on
T 2= x is Lognormal. Denoting the correlation ρ = σ2

12/(σ1σ2) :

T1| (T2 = x) ∼ eN (µ1 + (σ1/σ2) ρ (ln (x)− µ2) ,
(
1− ρ2) σ2

1

)
(9)

For the case of N > 2 accumulators the required conditional is
multivariate Lognormal. In the N = 2 accumulator case:

L2 (x) = f (x , µ2, σ2)S

(
x , µ1 +

σ1

σ2
ρ (ln (x)− µ2) ,

(
1− ρ2) σ2

1

)
(10)

The likelihood that accumulator 1 finishes first at time T = x is
obtained by exchanging indices in (10).

CORRECT AND ERROR-RESPONSE SPEED
Consistent with many other studies (e.g., Ratcliff and Rouder,
1998), Wagenmaker et al.’s (2008) speed vs. accuracy emphasis
manipulation systematically affected the relative speed of correct
and error responses; error responses were slower than correct
responses under accuracy emphasis and equal or faster under
speed emphasis. In order to understand the LNR and LBA fitting
results that we report in the next section, it is useful to illustrate
how each model can produce fast and slow errors. This illustra-
tion particularly focuses on the variability parameters, which play
a more important role in the LNR than have analogous variability
parameters in previous applications of the LBA.

The LBA predicts fast errors when the distance B (see Figure 1)
is smaller. Errors are fast in this case because incorrect responses
mostly occur when there is a strong initial bias toward the wrong
response. This bias can occur on some trials due to random varia-
tion in the starting points of the accumulators. Hence, even if the
error accumulator has a slow rate it can quickly achieve its bound-
ary, and so produce a fast response. No similar characterization
of fast errors is possible for the LNR model as bias (distance) and
rate effects combine additively to determine distribution shape.

However, the LNR model can still produce fast errors, as illus-
trated by the left panel of Figure 2, which simulates results from
a speed-emphasis condition. In this panel the variance parameter
for the false (error response) accumulator is twice that of the true
(correct response) accumulator. Despite having a much slower
mean, and consequently only winning 25% of races (i.e., a 25%
error rate), its greater variance causes the false accumulator to
produce fast responses when it wins the race. This can be seen as
the higher density for the false accumulator (dashed line) than the
true accumulator (solid line) on the left of the RT distributions.
As a result, when errors occur they tend to be faster than correct
responses (0.64 vs. 0.7 s in the example). The right-hand panel of
Figure 2 shows that greater false than true accumulator variance
does not always produce fast errors. In this example performance
is slower overall and more accurate (10% errors) with the mean
for error responses being greater than for correct responses (0.84
vs. 0.78 s in the example).

These considerations suggest that the LNR will require dif-
ferent variances for true and false accumulators in order to fit
manipulations that affect the relative speed of correct and error

responses. Clearly these differences must arise from differences in
rate variance, as whether an accumulator represents a correct or
error response is determined by the stimulus. We consider how
such differences might arise after reporting the results of model
fitting in the next section.

Note that fast errors could also occur in the LBA if the sv
(rate standard deviation) parameter is greater for false than true
accumulators. This possibility has not been tested before because
previous applications of the LBA have either assumed a fixed value
of sv (e.g., unity), or that the same estimated value applies for all
accumulators and experimental conditions. These assumptions
about sv were motivated by the fact that an accumulation-related
LBA parameter must be fixed in order for the model to be iden-
tifiable. However, in a design such as was used by Wagenmakers
et al. (2008) identifiability requires only that one parameter value
be fixed for one accumulator in one condition (see Donkin et al.,
2009b). The next section reports fits of LBA models that only place
this minimal constraint on sv so that we can examine all potential
explanations for fast errors.

MODEL TESTING
We fit the LBA and LNR models to data from Wagenmaker et al.’s
(2008) experiment one, where participants made decisions about
whether a string of letters constituted a word. These lexical deci-
sions were made about four types of stimuli, non-words (nw) and
high-frequency (hf), low-frequency (lf), and very low-frequency
(vlf) words. Participants made decisions either under speed or
accuracy emphasis instructions in different experimental blocks.
Accuracy blocks were preceded by the message “Try to respond
accurately”and“ERROR”was displayed after each wrong response.
Speed blocks were preceded by the message “Try to respond accu-
rately” and “TOO SLOW” was displayed after each response slower
than 0.75 s. We report analyses of data from 17 participants (31,412
data points) in their Experiment 1, including the 15 participants
analyzed in Wagenmakers et al. (2008) and two extras (we thank
Eric-Jan Wagenmakers for supplying this data).

FITTING METHODS
As we examined a large number of parameterizations of each
model that varied widely in the number of estimated parame-
ters, we compared fits both within and between model types using
the AIC and BIC model selection criteria (Myung and Pitt, 1997).
These criteria measure badness-of-fit using twice minus the log-
likelihood, which we will call the deviance (D). A model is selected
from amongst a set of models if it has the lowest AIC or BIC. Both
criteria add to the deviance a penalty that increases with the num-
ber of parameters estimated to obtain a fit. Hence, better fitting
models (i.e., with a smaller D) that have a larger numbers of para-
meters may not be selected if the extra parameters do not produce
a sufficiently large improvement in fit (i.e., reduction in D). We
consider both AIC and BIC criteria as they have different merits
flowing from the underlying quantities that they approximate (see
Burnham and Anderson, 2004; Vrieze, 2012), with BIC generally
preferring simpler models.

Our LNR models assumed there were no correlation
among rates or among distances, so fits were obtained using
the correspondingly simplified from of (10) corresponding

www.frontiersin.org August 2012 | Volume 3 | Article 292 | 14

http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive


Heathcote and Love Linear deterministic accumulation

to (2), i.e., F1(x) = f (x , µ1, σ1)S(x , µ2, σ2) and F2(x) =

f (x , µ2, σ2)S(x , µ1, σ1). Although we argued correlations are
plausible, in this initial exploration we fixed them at zero for three
reasons: (1) to make understanding the LNR model easier, (2) to
determine if correlation is necessary to accommodate the bench-
mark effects present in Wagenmaker et al.’s (2008) data, and (3)
to make the LNR and LBA models more comparable.

As well as the standard LBA model described by Brown and
Heathcote (2008) we also fit two variations that guaranteed a
response on every trial. In the first variation rates for all accumu-
lators were guaranteed to be positive on every trial by sampling
them from univariate normal distributions truncated below at
zero, and in the second at least one sampled rate was guaranteed
to be positive on every trial by sampling the rates from a trun-
cated multivariate normal distribution1. All of these LBA models
produced similar fits and parameter estimates, so we report fits
from the second variant for two reasons: (1) it is most directly
comparable to the LNR model, which also has positive rates for
all accumulators on every trial and (2) it is of interest in itself
as an alternative to the LNR for solving the issue of potential
non-responding in the original LBA model.

As it is not our focus here we do not provide a direct compari-
son with fits of the RDM reported by Wagenmaker et al.’s (2008).
Note, however, that Donkin et al. (2011b) found similar quality
fits to this data for Ratcliff diffusion and LBA models with similar
numbers of parameters. In this comparison both parameteriza-
tions were strongly constrained based on past findings about these
models. In contrast, because past findings are not available for the
LNR model, and our aim here is exploratory, our most complex
LNR model was very flexibly parameterized. It freely estimated
both µ (mean) and σ2 (variance) parameters over a false vs. true
accumulator factor (C), a stimulus type factor (W ) with four lev-
els (hf, lf, vlf, and nw), and an instruction emphasis factor (E)
with two levels (speed vs. accuracy), so in total there are poten-
tially 2× 4× 2= 16 estimates of each type. Note that C factor
represents whether, for a given stimulus, a parameter corresponds
to the accumulator for the correct (true) response (i.e., the word
accumulator for a word stimulus or the non-word accumulator
for a non-word stimulus) or for an error (false) response (i.e.,
the word accumulator for a non-word stimulus or the non-word
accumulator for a word stimulus).

In order to allow similar flexibility for the LBA, and so that
we can compare effects on analogous parameters, we report fits
of an LBA model with a less constrained parameterization than
is conventional. The LBA B and A parameters were allowed to
vary with a word vs. non-word response accumulator factor (lR,
standing for“latent response”), in order to accommodate response
bias. We also allowed these parameters to vary as a function of the
speed vs. accuracy emphasis factor (E), as the analogous quantity
in the LNR model, the mean and variance of distance, have the
same freedom to vary as components of the Lognormal mean and
variance parameters. LBA rate mean (v) and variability (sv) were

1Density and cumulative density functions for the first “positive LBA” are obtained
by dividing the corresponding expressions in Brown and Heathcote (2008) by
Φ(v/sv). Heathcote and Hayes (2012) give details of the second, which introduces a
dependency between rates for different accumulators.

allowed to vary with C, E, and W as the analogous LNR quantities,
the rate mean and variance, are components of the LNR mean and
variance parameters.

We also allowed residual time to vary with emphasis instruc-
tions (E) for both models as this was favored by AIC and BIC
model selection in most cases (see Rinkenauer et al., 2004, for evi-
dence supporting an effect of emphasis instructions on response
production). We denote residual time as t 0, as it corresponds to
the lower bound of the distribution of RT. We used this nota-
tion rather than by the conventional Ter notation because, at least
in the flow interpretation of the LNR, stimulus-encoding time
might be seen as part of the accumulation process, in which case
t 0 should be thought of as the sum of response production time
and the “dead-time” between stimulus onset and the first stimulus
contingent change in the firing rates of sensory neurons.

In summary, there were 34 estimated LNR parameters (16 each
for µ and σ2 and two residual time parameters) compared to 41
LBA parameters (16 v, 15 sv, 4 B and 4A, and two residual time
parameters). Note that we fixed the intercept of sv estimates at
one (for the false accumulator in the accuracy condition for high-
frequency words) to make the LBA model identifiable, so there are
15 rather than 16 estimated sv parameters. In order to compactly
refer to models we useR (R Development Core Team, 2012) linear
model notation adapted to our multiple parameter-type setting.
For example the notation B ∼ lR∗E indicates estimation of the
main effects of lR and E, and their interaction (lR× E). Similarly
v ∼ E∗W ∗C indicates estimation of the three main effects, three
two-way interactions (E ×C, E ×W, and W ×C), and one three-
way interaction (E ×W ×C). Using“&”to indicate a join between
parameterizations for different parameter types, we denote the 34
parameter LNR model as µ∼ E∗W ∗C & σ2∼E∗W ∗C & t 0∼ E
and the 41 parameter LBA model as B ∼ lR∗E & A ∼ lR∗E &
v ∼ E∗W ∗C & sv ∼ E∗W ∗C & t 0∼ E.

The models were fit to each participant’s data separately using
the exact maximum-likelihood-based methods described in detail
in Donkin et al. (2011a)2. This method fits a hierarchy of sim-
plified models that are special cases of the most complex (“top”)
model (i.e., the 34 parameter LNR model and the 41 parameter
LBA model). The simplest LNR model in the hierarchy esti-
mated the same parameters of each type for all conditions, except
that it allowed different mean rate parameters for true and false
accumulators (i.e., model µ∼C & σ2 ∼ 1 & t 0∼ 1, where “∼1”
indicates an intercept-only estimate). Similarly, the simplest LBA
model allowed only mean rate to differ between true and false
accumulators (B ∼ 1 & A ∼ 1 & v ∼C & sv ∼ 1 & t 0∼ 1).

Best fitting parameters for the simplest models were used as
starting points when searching for best fits of models that esti-
mated the effect of one extra factor for one type of parameter. Best
fits for these models were used in turn as starting points for fits of

2We limited the influence of outlying observations, which can be problematic for
exact maximum-likelihood methods (Ratcliff and Tuerlinckx, 2002), by placing
a floor on the likelihood of an observation corresponding to the assumption of
a small (10−5) probability that participant’s data was contaminated by unbiased
guesses with an RT drawn from a uniform distribution over the range from 0.3 to
2.5 s beyond which Wagenmakers et al. (2008) censored their data. We experimented
with contamination probabilities up to 1% and obtained similar results.
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models that estimated one additional factor, and so on up to the
most complex model. For example the simplest LNR model,µ∼C
& σ2 ∼ 1 & t 0∼ 1, provides a start point for six models: µ∼W ∗C
& σ2 ∼ 1 & t 0∼ 1, µ∼ E∗C & σ2 ∼ 1 & t 0∼ 1, µ∼C & σ2 ∼C &
t 0∼ 1, µ∼C & σ2 ∼W & t 0∼ 1, µ∼C & σ2 ∼ E & t 0∼ 1, and
µ∼C & σ2 ∼ 1 & t 0∼ E. One or more of these (nested) models
then provided start points for further (nesting) models with three
free factors and so on up to the top model.

The aim of fitting nesting models from immediately nested
models is to avoid getting stuck in local minima and so to obtain
true maximum-likelihood fits for more complicated models by
fitting them from a variety of plausible starting points. We cannot
prove that the method always achieves its aim but have found it
does so in simulation studies fitting model of similar complexity
to those examined here when using similar sample sizes to the
data examined here. In contrast, we have found other less thor-
ough methods often fail badly, and although hand tuning can
often remedy such problems that is not feasible when exploring
large sets of models. For example, here we fit all possible combi-
nations of factors for different parameters, resulting in 64 LNR
model and 1024 LBA models per participant (i.e., 18,496 models
in total over 17 participants) and this was done for a number of
variants (e.g., different types of LBA models and different levels of
response contamination).

In total the results reported here were based on 193 LNR fits per
participant and 5121 LBA fits per participant (90,338 fits in total).
The R (R Development Core Team, 2012) optim function was used
for each fit with default settings. It was repeatedly applied (start-
ing each time from the previous solution) until the log-likelihood
increased by less than 0.1. All model hierarchies were checked to
ensure that nested models had an equal or higher deviance (within
numerical tolerance) than nesting models, and any exceptions
corrected by refitting.

MODEL SELECTION
Table 1 reports badness-of-fit (deviance) and AIC and BIC model
selection results relative to the best model according to that sta-
tistic (i.e., the model with a zero in the corresponding column of
Table 1). The table reports model selection results for three hier-
archies. The first two are the full hierarchies below the top LBA
(B ∼ lR∗E & A ∼ lR∗E & v ∼ E∗W ∗C & sv ∼ E∗W ∗C & t 0∼ E)
and LNR (µ∼ E∗W ∗C & σ2 ∼ E∗W ∗C & t 0∼ E) models. The
third hierarchy consists of all models nested within an LBA model
that enforces the conventional assumption that speed vs. accu-
racy emphasis does not influence evidence-rate-related parameters
(i.e., v and sv): B ∼ lR∗E & A ∼ lR∗E & v ∼W ∗C & sv ∼W ∗C &
t 0∼ E. We call this set of models the“conventional LBA”hierarchy,
although it is still somewhat more flexible than most previous LBA
applications as it allows changes in the A as well as the B parameter
with emphasis.

Table 1 reports results for the most flexible model in each hier-
archy its upper section, results for the best (smallest) AIC model
in each hierarchy in the middle section, and results for the best
(smallest) BIC model in each hierarchy in its lower section. Within
each section the first two models are from the full LBA and LNR
hierarchies, respectively, and the last model is from the conven-
tional LBA hierarchy. As might be expected, the full LBA model,

with the largest number of parameters, has the best fit (lowest
deviance). Models from this same LBA hierarchy were also selected
by AIC and BIC. Note that this is not because the selected models
are more flexible as indexed by number of parameters; the best
overall models have the same number parameters, or fewer, than
the best models from the other hierarchies. Selection between the
conventional LBA and LNR hierarchies is more equivocal, the LNR
clearly wins on AIC but just looses on BIC.

The AIC and BIC results from the full LBA hierarchy are con-
sistent in selecting the v ∼W ∗C and sv ∼ E∗C parameterization
for rate-related parameters. That is, there is a selective influence of
stimulus type on mean rate and selective influence of emphasis on
rate variability, with true and false accumulators differing on both
types of parameter. The conventional explanation of emphasis
effects in terms of the boundary (B) is also consistently supported.
However, an effect of emphasis on start-point noise (A) receives
support only from AIC, indicating it has a weaker effect. The same
is true of response bias (lR) effects on B, and there is no support for
any effect of response bias on A. Support for an effect of emphasis
on residual time (t 0) was also inconsistent.

Model selection for the conventional LBA hierarchy produces
results largely consistent with those for the full hierarchy. Stimulus
type has a selective influence on mean rate (v), with true and false
accumulators differing on both types of rate parameter. Both cri-
teria support an effect of emphasis on the B, A, and t 0 parameters,
consistent with these parameters making up some of the fit pro-
vided by the sv parameter in the full hierarchy. Stronger response-
bias effects, particularly on the B parameter, are also evident.

Within the LNR hierarchy both AIC and BIC pick the same
model, which drops only the effect of stimulus type on variance
relative to the full model. These results are largely consistent with
effects selections for analogous parameters in the full LBA hierar-
chy (i.e., neglecting distance effects µ is analogous to −ln(v) and
σ to sv), in that stimulus type selectively influences µ and both µ

and σ differ between true and false accumulators. Two differences
are that emphasis affects both µ and σ, not just the variability
parameter as in the LBA, and it also consistently affects t 0.

In summary, for the LBA, model selection results indicate that,
in contrast to the conventional assumption, the speed vs. accuracy
emphasis effect is best explained when rate variability changes with
emphasis. Model selection also supports a role for the conventional
boundary-based mechanism, but less so for the start-point based
mechanism. Further, in contrast to previous applications where
only the mean rate has been allowed to differ between correct
and false accumulators, there was clear support for a difference
in rate variability between accumulators. These results show that
the LBA, at least to some degree, uses the same mechanism as the
LNR to explain differences in the relative speed of correct and
error responses, differences in the variability associated with true
and false accumulators. The classes of models differ, at least in
terms of the AIC and BIC selected models, in that the LNR mean
parameter also has a role in explaining the emphasis effect.

MODEL FIT
We focus on the fit of the model selected by both AIC and BIC from
the full LNR hierarchy and by AIC for the LBA hierarchy in order
to determine how well these relatively simple models capture the
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Table 1 | Model selection statistics for the LBA and LNR top models and the conventional LBA top model (upper section) and the best AIC

(middle section) and BIC (bottom section) model in each hierarchy.

Model NP ∆D ∆AIC ∆BIC

B ∼ lR*E & A∼ lR*E & v ∼E*W*C & sv ∼E*W*C & t0∼E 41 0 15 210

µ∼E*W*C & σ2 ∼E*W*C & t0∼E 34 19 20 156

B ∼ lR*E & A∼ lR*E & v ∼W*C & sv ∼W*C & t0∼E 25 68 51 112

B ∼ lR*E & A∼E & v ∼W*C & sv ∼E*C & t0∼E 19 29 0 11

µ∼E*W*C & σ2 ∼E*C & t0∼E 22 36 13 49

B ∼ lR*E & A∼ lR*E & v ∼W*C & sv ∼C & t0∼E 19 79 50 61

B ∼E & A∼1 & v ∼W*C & sv ∼E*C & t0∼1 15 59 22 0

µ∼E*W*C & σ2 ∼E*C & t0∼E 22 36 13 49

B ∼ lR*E & A∼E & v ∼W*C & sv ∼C & t0∼E 17 83 51 45

NP, number of parameters per participant; ∆D, D−min(D), where D indicates deviance; ∆BIC, BIC−min(BIC); ∆AIC, AIC−min(AIC). D, BIC, and AIC values are

summed over participants then divided by number of participants.

pattern of effects on correct RT and error rates (Figure 3) and error
RT (Figure 4). The ability of the models to capture RT distribution
is indicated by displaying results for the 10th, 50th, and 90th per-
centiles3 of RT distribution. Fits to intermediate percentiles are
of similar quality to the percentiles shown, and are omitted for
display clarity.

The goodness-of-fit figures average corresponding observed
and predicted values over participants. Predicted values corre-
sponding to each observed RT were obtained by simulating 100
times as many values as were observed. For example, if there were
100 correct and 9 error responses, 10,000 correct and 900 error
RTs were simulated and predictions obtained from the order sta-
tistics of the simulated data (e.g., the fastest of the 90 error RTs
was assumed to correspond to the 10th percentile of the simu-
lated sample; in general the ith ordered observation from N was
equated with the i/(N + 1) quantile of the simulated data). Pro-
portion correct was calculated from the full set of samples required
to obtain the predicted RT values. Observed and predicted values
were treated in the same way to get the averages in the figures; RT
averages were calculated omitting missing values.

Figure 3 shows that the best LNR and AIC-best LBA models
accurately capture correct RT distribution. The simpler BIC-best
LBA model, whose results are not shown, provided an equally
accurate account of correct RT to the AIC-best LBA model. The
word frequency manipulation provides a strong test of the simpli-
fying assumption, which we made in fitting both the LNR and LBA
models, that residual time is a constant, given the Ratcliff diffusion
requires variable residual time to account for the effect of word fre-
quency on fast correct responses (i.e., the 10th percentile). Clearly
neither model requires variation in residual time to provide a very
accurate account of fast correct responses.

3Models were not fit to these or any other set of percentiles; percentiles are only used
to summarize goodness-of-fit. In contrast, the Ratliff diffusion model is usually fit
to the 10th, 30th, 50th, 70th, and 90th percentiles, as that requires only calculation
of the CDF, which is much quicker to compute for the RDM than the likelihood. We
used exact maximum likelihood because this allows us to compute exact AIC and
BIC values rather than relying on a multinomial-maximum-likelihood approxima-
tion (see Heathcote and Brown, 2004; Speckman and Rouder, 2004) required for
percentile methods.

Figure 3 shows that the best LNR model accurately captures
error rates, although it slightly under-predicts the accuracy-speed
effect for high-frequency words, although overall it captures 94%
of the average difference. The AIC-best LBA model does not
perform quite as well, capturing 83% of the average difference.
Although this might be attributed to the AIC-best LBA model
being simpler (19 parameters) than the best LNR model (22 para-
meters), the more complicated top LBA model (41 parameters)
does not do much better (86%). The simpler BIC-best LBA model
(15 parameters), which drops the effect of emphasis on A, does
considerably worse (67%). We also included in the comparisons
in Figure 3 the top model from the conventional LBA hierarchy.
This model is more complicated (25 parameters) than either of
the comparison models, and clearly it is able to accurately capture
the correct RT distribution. However, it captures only 20% of the
average speed-accuracy difference in error rates.

Figure 4 shows that the best LNR model and AIC-best LBA
model captures the overall pattern in error RT in the speed-
emphasis condition. In the accuracy emphasis condition there are
fewer errors, particularly in for high-frequency words and non-
words, so RT estimates are noisy. However, both models appear
to systematically underestimate overall variability, resulting either
in overestimation of the 10th percentile or underestimation of the
90th percentile. As was the case for correct RT, the simpler BIC-
best LBA model, whose results are not shown, provides a similar
account of error RT to the AIC-best LBA model.

Figure 5 focuses on the relative speeds of (median) correct and
error RT, with confidence intervals omitted to make the pattern of
results clearer. Both the best LNR and best LBA models capture
the general pattern of slower error than correct responses under
accuracy emphasis and faster error than correct responses under
speed emphasis.

DISCUSSION
Our fits show that the LNR model is able to provide
quite an accurate descriptive account of all of the effects in
Wagenmaker et al.’s (2008) first experiment. Recall that the LNR
model we fit is simplified in two senses; it assumes no variability in
residual time, and it assumes inputs and distances are uncorrelated
across accumulators. It is also without the LBA model’s freedom to
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combine trial-to-trial variability in distance with a distance greater
than zero. That none of these restrictions caused a bad fit is not,
by itself, evidence that these restrictions might not have to be
relaxed in other situations. However, it does encourage the wider
application of this simple and tractable form of the LNR model.

Figure 6 shows average mean (µ) and variance (σ2) parame-
ter estimates for the best LNR model (i.e., the model selected
by both AIC and BIC). The false accumulator (i.e., the accumu-
lator corresponding to the error response) has a greater mean
parameter than the true accumulator. Note that this results in
an increase in both the mean and variance of boundary-crossing
times for the false accumulator, because the µ parameter affects

both. We also found that the false accumulator had a greater
variance than the true accumulator, consistent with the exam-
ple given in Figure 2. Again, this results in an increase in both
the mean and variance of boundary-crossing times for the false
accumulator, because the parameter σ parameter also affects both.
These differences in µ and σmight arise, due to differences in
the distributions of evidence accumulation rates for true and
false accumulators. To provide a concrete example, suppose a
template-matching process produces evidence for each response.
If poorer matches produce outputs that at not only weaker on
average but also more variable than outputs for strong matches
the pattern displayed in Figure 6 could be found. In support

FIGURE 3 | Continued
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FIGURE 3 | Observed RT distributions (10th, 50th, and 90th percentiles,
left column) and error rates (right column) for Wagenmaker et al.’s
(2008) Experiment 1 with bias-corrected within-subject 95%
confidence intervals (Morey, 2008), and fits averaged over participants
for the best (selected by AIC and BIC) LNR (µ∼E ∗W∗C & σ2 ∼E ∗C &

t0∼E ) and best (selected by AIC) LBA (B∼ lR∗E & A∼E & v∼W∗C &
sv∼E ∗C & t0∼E ) models and the top conventional LBA (B∼ lR∗E &
A∼ lR∗E & v∼W∗C & sv∼W∗C & t0∼E ) model: hf, high-frequency
words; lf, low-frequency words, vlf, very low-frequency words; nw,
non-words.

FIGURE 4 | Observed error-response RT distributions (10th, 50th, and
90th percentiles) Wagenmaker et al.’s (2008) Experiment 1 with
bias-corrected within-subject 95% confidence intervals (Morey, 2008),
and fits averaged over participants for the best (selected by AIC and

BIC) LNR (µ∼E ∗W∗C & σ2∼E ∗C & t0∼E ) and best (selected by AIC)
LBA (B∼ lR∗E & A∼E & v∼W∗C & sv∼E ∗C & t0∼E ) models: hf,
high-frequency words; lf, low-frequency words; vlf, very low-frequency
words; nw, non-words.

of this possibility, there was a high positive correlation (r = 0.80,
p < 0.001) between the mean and variance estimates for the top
LNR model.

For both the LNR mean and variance, Figure 6 shows that the
increase from speed to accuracy conditions is larger for false than
true accumulators. This uneven increase cannot be explained by a
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FIGURE 5 | Observed and predicted median RTs for correct and error
responses in Wagenmaker et al.’s (2008) Experiment 1 and fits averaged
over participants for the best (selected by AIC and BIC) LNR µ∼E ∗W∗C &

σ2 ∼E∗C & t0∼E ) and best (selected by AIC) LBA (B∼ lR∗E & A∼E &
v∼W∗C & sv∼E ∗C & t0∼E ) models: hf, high-frequency words; lf,
low-frequency words, vlf, very low-frequency words; nw, non-words.

selective influence of speed vs. accuracy emphasis on distance (i.e.,
the LNR analog of a boundary effect), as that must cause an equal
effect on false and true accumulators (see Eq. 8). That is, accumu-
lators are only “false” and “true” with respect to the stimulus, so
the interactions evident in Figure 6 indicate that emphasis directly
affects the mean and variability of the rate at which information
is extracted from a stimulus. Clearly this conclusion is at odds
with the way that speed-accuracy trade-off has traditionally been
accounted for by evidence accumulation models. Note, however,
that these results do not rule out some change in distance under
accuracy emphasis, as long as this change is accompanied by
appropriate changes in rates to yield the total effect in Figure 6.

Perhaps more surprisingly,model selection failed to support the
traditional boundary-only account for the LBA; the best model
according to both AIC and BIC included emphasis effects on
the LBA sv parameter. Figure 7 shows the rate-related parameter
estimates for the AIC-best LBA model (BIC-best estimates were
almost identical). The sv estimates were greater for the true than
false accumulator, and vice versa for the v estimates, consistent
with the findings for the analogous LNR parameters. In contrast
to the LNR model, speed emphasis affected false accumulator vari-
ability in the opposite direction, increasing it greatly in the speed
condition. Regardless, of this difference, clearly neither LBA nor
LNR results are in line with conventional assumptions.
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FIGURE 6 | Best LNR (µ∼E ∗W ∗C & σ2 ∼E ∗C & t0∼E ) µ (Mean), and σ2

(Variance) parameter estimates averaged over participants, with
bias-corrected within-subject 95% confidence intervals (Morey, 2008).

FALSE, error-response accumulator; TRUE, correct-response accumulator; hf,
high-frequency words; lf, low-frequency words; vlf, very low-frequency words;
nw, non-words.

FIGURE 7 | AIC-best LBA (B∼ lR∗E & A∼E & v∼W∗C & sv∼E ∗C &
t0∼E ) v (mean rate) and sv (rate standard deviation) parameter
estimates averaged over participants, with bias-corrected within-subject

95% confidence intervals (Morey, 2008). FALSE, error-response
accumulator; TRUE, correct-response accumulator; hf, high-frequency words;
lf, low-frequency words; vlf, very low-frequency words; nw, non-words.

Our analysis of model fit indicated that effects of empha-
sis on the LBA boundary (B) and start-point noise (A) para-
meters, as well as on the sv parameter, were required to
describe the large effects on error rate shown in Figure 3.
Figure 8 plots these parameter estimates for the AIC-best
LBA model. Speed emphasis caused a decrease in B, and to
a lesser degree an increase in A. Figure 8 also plots results
for the top conventional LBA model, which does not allow
emphasis to affect any rate parameters. The pattern is similar,

except that the effects are larger and the overall level of is
B lower.

In summary, when free do to so, the LBA does not attribute the
speed-accuracy trade-off induced by instructions in Wagenmaker
et al.’s (2008) experiment purely to a change in response caution.
Although changes affecting the level of errors caused by start-point
noise (i.e., changes in the A and B parameters) could in principle
accommodate the large observed differences in error rate, they are
not able to do so while also providing an accurate account of RT
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FIGURE 8 | Emphasis effects on AIC-best (B∼ lR∗E & A∼E & v∼W∗C &
sv∼E ∗C & t0∼E ) and top conventional LBA model (B∼ lR∗E & A∼ lR∗E
& v∼W∗C & sv∼W∗C & t0∼E ) start-point noise (A) and boundary (B)

parameter estimates averaged over participants, with bias-corrected
within-subject 95% confidence intervals (Morey, 2008). NW, non-word
accumulator; W, word accumulator.

distribution in this data. In particular, the strength of start-point
noise in the LBA is limited because if it is too strong it can produce
a more uniform RT distribution than is observed. Instead, the LBA,
like the LNR, explains much of the speed-accuracy trade-off effect
by an increase in the overlap of false and true distributions under
speed emphasis.

GENERAL DISCUSSION
In this paper we have articulated framework for modeling simple-
choice behavior using linear deterministic evidence accumulation.
Within this framework the evidence is approximated as determin-
istic during accumulation, and the time for an evidence accu-
mulator to reach its boundary is characterized by a ratio of two
variables, one or more of which can vary randomly between-choice
trials (“between-choice noise”). The numerator variable is the dif-
ference between the level of evidence at the start of accumulation
and the boundary (“distance”) and the denominator variable is
the rate of accumulation. Accumulators participate in a race that
is non-interactive in the sense that that the state of one accumula-
tor does not directly affect the state of other accumulators during
accumulation. Response selection and RT are determined by the
times at which evidence totals first cross one or more accumulator
boundaries.

Different types of models within the linear deterministic frame-
work correspond to different assumptions about the distributional
forms of the variables in the ratio. Two previously proposed mod-
els that fall within the framework, Carpenter’s (1981) LATER
model and Brown and Heathcote’s (2008) LBA model assume
normally distributed rates; LATER also assumes distance is a con-
stant whereas the LBA assumes it is uniformly distributed. Model
types can also differ in three other ways: in how the random vari-
ables are related across accumulators, in the number of racers, and
in how boundary crossings determine response selection. In the
setup used in most previous applications of the LBA the random
variables are uncorrelated, there is a one-to-one mapping of rac-
ers to responses, and the winning racer (i.e., the first to cross its
boundary) triggers the corresponding response. However, it is also

possible to have more racers than responses, to have responding
contingent on more than one boundary crossing (see Eidels et al.,
2010, for an LBA based example), and to have correlations among
the random variables for different accumulators.

In this paper we proposed a new type of linear deterministic
model, the LNR, and compared it to a slight variant of previous
LBA models through fits of both models to Wagenmaker et al.’s
(2008) speed-accuracy trade-off experiment. The version of the
LNR that we focused on is mathematically simple because the
random-variable ratio has the same distributional form as its con-
stituents, a Lognormal distribution. A Lognormal ratio also results
if the numerator (distance) is a constant and only the denomi-
nator (rate) is a Lognormal random variable or vice versa. The
Lognormal form makes it tractable to allow rates and boundaries
to be correlated over accumulators. However, in our initial explo-
ration we assumed no correlation to see if this simple form of the
LNR could still provide adequate fits. The LBA variant that we fit
has a normal rate distribution truncated at zero, so on every trial
all accumulators have a rate greater than zero. The latter property
also applies to the LNR, as the Lognormal distribution is positive,
so in both cases a response must eventually be selected on every
choice trial.

The findings reported in this paper – both theoretical results
related to the LNR and empirical results from fitting the LNR and
LBA – bear most directly on the deterministic assumption made
by our framework. On the theoretical front, the “flow” motivation
of the LNR has implications for the division between stimulus
encoding and response selection stages, and the effect of assuming
a Lognormal distance has implications for the way in which deter-
ministic models explain speed-accuracy trade-off by integrating
out start-point noise. On the empirical front, our results point
to the utility of the LNR as a tractable descriptive model and also
highlight the issue of whether speed vs. accuracy emphasis instruc-
tions have effects beyond changes in the evidence boundary. Before
addressing these implications, we first discuss the other funda-
mental assumption made by our framework, that accumulation
is linear. As exemplified by the BA model (Brown and Heathcote,
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2005a), there is no necessary relationship between the determin-
istic and linear assumptions, but linearity is closely related to
another assumption, that accumulation is non-interactive.

LINEAR ACCUMULATION
The nervous system is pervaded by non-linear dynamics,
caused by factors such as imperfect (“leaky”) neural integration
and recurrent self-excitation and lateral inhibition. Behavioral
evidence for non-linear evidence accumulation has been sought
using stimuli with non-stationary discriminative information, that
is, stimuli that can briefly switch between the choices they support
during the time course of accumulation. Usher and McClelland’s
(2001) seminal experiments investigated the influence of the time
within a stream of information favoring one response at which
a brief pulse of contradictory information occurred. They found
strong differences between participants ranging from leaky inte-
gration (i.e., a greater influence for late pulses occurring before
response selection) through linear integration (sometimes abbre-
viated TSI for “time-shift invariance”) to results consistent with
recurrent interactions (i.e., a greater influence of early pulses).

Huk and Shadlen (2005) performed a similar experiment on
temporal integration of motion information in the lateral intra-
parietal (LIP) area of two rhesus monkeys. They found a greater
influence for late pulses and concluded, based on modeling assum-
ing within-choice noise, that: “. . . the time course of the pulse
effects is consistent with the hypothesis that LIP reflects approxi-
mately linear integration that stops when the accumulation reaches
a bound.” (p. 10443). Wong et al. (2007) simulated integra-
tion by a recurrent circuit perturbed by within-choice noise and
found it displayed a: “violation of . . . TSI, similar to the viola-
tion observed in the Huk and Shadlen (2005) experiment.” (p.
8). Zhou et al. (2009) provide an insightful discussion of diffi-
culties in distinguishing different types of integration using pulse
paradigms.

Individual differences, and potential confounding of inferences
about the nature of integration, might occur in these experiments
if some participants noticed the pulse and employ compensatory
strategies such as delaying the onset of sampling (to avoid being
mislead by an early pulse) or prematurely terminating sampling (to
avoid being mislead by a late pulse). Usher and McClelland (2001)
attempted to minimize such problems using fairly brief pulses, as
did Huk and Shadlen (2005) by making the pulse unrelated to
rewards, but the success of these measures was not directly tested.
Brown and Heathcote (2005b) attempted to avoid these problems
using a very brief pulse (90 ms) that was meta-contrast masked.
Masking was shown to be effective as detection of trials with a
pulse was at chance levels for most participants. At the start of the
experiment later arriving evidence had greater weight than earlier
arriving evidence (i.e., accumulation was leaky), but as subjects
practiced at the task integration quickly became linear.

One possible interpretation of why practice might promotes
linear integration, is that it makes decision-making more efficient
when evidence is stationary. That is, when early arriving evidence
is no better guide to the correct choice than late-arriving evidence
it is best to weigh each equally. In many simple-choice tasks where
stimuli remain available until a choice is made, evidence is likely
stationary, particularly as rapid responding means the stimulus

is sampled for a relatively brief period of time. Stationarity does,
however, require that sampling not begin prematurely (i.e., before
stimulus information first becomes available), although Laming
(1968) suggested the effects of premature sampling might be mim-
icked by start-point variability. When the stimulus is only available
briefly evidence will be non-stationarity unless it is sampled from
a mnemonic representation of the stimulus (e.g., Smith and Rat-
cliff, 2009). Of course, this type of non-stationary is different to the
effects of non-linearity intrinsic to some evidence accumulation
models, although they might mimic it.

More recently Tsetsos et al. (2011) introduced an innovative
new multiple-pulse paradigm that manipulates temporal corre-
lations among the evidence for three alternatives. In agreement
with Usher and McClelland (2001), they found strong individual
differences, and their analysis supported the LCA over two other
within-choice noise models (a race and diffusion model). Over-
all, then, it appears that models that can accommodate all types of
integration by adjusting the balance of leaky and recurrent dynam-
ics best accommodate the full range of pulse-paradigm data. Such
models include not only the LCA but also Wong et al.’s (2007)
model, DFT (Busemeyer and Townsend, 1993), and Brown and
Heathcote’s (2005a) BA. Even so, models assuming linear accu-
mulation, such as the LBA and Ratcliff diffusion, often provide a
good fit to data from the simple-choice paradigms used to evalu-
ate evidence accumulation models. A potential reason is that large
numbers of responses are collected in these paradigms in order
to facilitate model fitting, and so participants are afforded sub-
stantial practice. Brown and Heathcote’s (2005b) results suggest
that practice might cause an adjustment of recurrent interactions
so they balance leakage, resulting in efficient integration that is
approximately linear.

DETERMINISTIC ACCUMULATION
That the deterministic assumption can support a comprehensive
account of simple-choice behavior (i.e., of benchmark findings
about the choices made and the times to make them) is perhaps
surprising. The nervous system is not deterministic at the level of
individual cell activity and most evidence accumulation models
assume a dominant role for within-choice noise, although they
can only provide a comprehensive account by also assuming a
role for between-choice noise. The success of the deterministic
assumption maybe less surprising, however, if it is kept in mind
that it is an assertion about the importance of different types of
noise for explaining choice responding. Importantly, this charac-
terization as an approximation targeting behavioral measurement
entails the implication that the deterministic assumption may not
be appropriate for explaining other measurements of choice (e.g.,
single-cell firing rates). Even so, progress in science has often relied
on developing approximations appropriate for different levels of
description (e.g., the diffusive micro-scale behavior of gas mole-
cules vs. the macro-level interactions between pressure, volume,
and temperature captured by the gas laws).

The mechanism by which macro-scale deterministic behav-
ior might emerge from the micro-scale variability intrinsic to
the nervous system remains to be determined. Local averaging
mechanisms have been argued not to be sufficient because of cor-
relations between the activities of nearby cells that share inputs
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(Zohary et al., 1994). One possible explanation is that global rather
than local brain dynamics determine behavior, and that it is these
global dynamics emerging from the interaction of a variety of
widely distributed areas that are deterministic. For example, Ho
et al. (2009) suggested that activity consistent with evidence accu-
mulation recorded in a variety of sensorimotor regions reflects a
modality independent downstream input from right insula. Sim-
ilarly, Forstmann et al. (2008) found that activity in the striatum
and pre-SMA serves to implement the response boundary envi-
sioned by evidence accumulation models. In both cases LBA model
parameters provided a coherent link between observed behavior
and neuroimaging measures.

Whatever the mechanism that achieves deterministic accumu-
lation at the scale that determines behavior, it seems clear that
deterministic accumulation could potentially give an organism
a great adaptive advantage. Optimal methods of integrating out
within-choice noise via accumulation have been of great inter-
est on adaptive grounds (e.g., Gold and Shadlen, 2007). On these
ground it might be even more desirable to remove noise intrinsic
to the nervous system before accumulation (i.e., if accumulation
was effectively deterministic), although in doing so there might be
some trade-off with the level of between-choice noise. Regardless,
given that no serious contender as a model of choice behav-
ior can do without between-choice noise, it would seem to be
desirable that optimality analyses take account of the effects of
between-choice noise.

Our specific proposal that between-choice noise in the rate
of linear accumulation has a Lognormal distribution has a novel
implication for the conventional division between stimulus encod-
ing and response selection stages in models of simple choice. This
proposal can be derived from Ulrich and Miller’s (1993) idea that
a cascade or “flow” of linear accumulation that characterizes all
stages of processing from sensory processing up to and includ-
ing response selection. A Lognormal distribution emerges as a
Central Limit Theorem approximation when the rates of units in
each stage are identically and independently distributed and vary
independently between-choices, as assumed by Ulrich and Miller
(1993), without strong assumptions on the form of that variation.
If stimulus encoding does continuously feed activation into the
response selection process, estimates of residual time might not,
at least in part, reflect the time for stimulus encoding as is conven-
tionally assumed. Instead, they would largely reflect the response
execution stage, with only a small contribution from an initial
“dead-time” before sensory neurons begin to respond.

Our mathematical results for an LNR with a Lognormal dis-
tance distribution might appear to show that not all linear
deterministic models can explain speed-accuracy trade-off by inte-
grating out random biases due to differences in the distance from
starting point to boundary between accumulators. In the LBA the
tendency for differences in rates to overcome random biases can
be increased by an equal increase in the parameter controlling
the position of the boundary (b) for all accumulators, resulting
in slower but more accurate responses. An analogous effect is not
obtained by increasing the LNR parameter determining the mean
of the log-distance distribution, µD, while holding the variance
in log-distance, σ2

D, constant. This is because and increase in µD

increases not only the mean distance (MD = eµD+σ2
D/2) but also

the variability in distance (VD = (eσ2
D−1)e2µD+σ2

D ), and hence the
magnitude of random bias. However, as pointed out by a reviewer,
a change in M D while holding V D constant, although the effect
is not exactly analogous to a change the bin the LBA (as it also
changes the shape of the distance distribution), does result in a
speed-accuracy trade-off in the LNR.

Future research could fruitfully explore not only different LNR
parameterizations (such as in terms of M D and V D) but also a

wider variety of distributional assumptions. A range of positive
distributions similar to the Lognormal, such as the Gamma dis-
tribution and extreme-value distributions such as the Weibull and
Gumbel (see Heathcote et al., 2004), are plausible candidates for
rate distributions. As they are positive, these distributions ensure
that a response will be selected on every trial. Combinations
of these rate distributions with different distance distributions
(notably the analytically tractable shifted uniform distribution
used in the LBA) will then help to provide a better understanding
of the general strengths and limitations of the linear deterministic
framework. A second area for further exploration concerns cor-
relations in parameters across accumulators. The LNR model is
particularly suited to such exploration, both because an LNR with
such correlations remains tractable.

Our model fits show that the LNR can provide an accurate and
comprehensive account of behavioral data from a simple-choice
experiment. If this finding generalizes to other data sets the LNR
could provide a useful descriptive model of simple-choice data. It
is suited to this role because it sacrifices little of the tractability of
distributions commonly applied to simple and correct-choice RTs
(e.g., the Wald and ExGaussian, see Ratcliff and Murdock, 1976;
Heathcote et al., 1991; Heathcote, 2004; Matzke and Wagenmak-
ers, 2009), and is better able to describe differences in correct and
error RT than the tractable EZ and EZ2 simplifications of the RDM
(Wagenmakers et al., 2007; Grasman et al., 2009). Although both
LBA and LNR likelihoods are easy to compute, the LNR has one
distinct advantage: it is also easy to obtain full conditional like-
lihoods (i.e., likelihoods based on fixing all but one parameter).
This is particularly useful for Bayesian approaches as it enables effi-
cient Gibbs sampling steps rather than the less efficient methods
required for the LBA (see Donkin et al., 2009a).

Our model fitting results could have the implication that,
contrary to Brown and Heathcote’s (2005a, 2008) assertions,
between-choice noise alone is insufficient to provide a comprehen-
sive account of simple-choice behavior. This implication follows
from the assumption that instruction manipulations cannot influ-
ence the rate of evidence accumulation. The LBA with this selective
influence assumption has previously provided a comprehensive
account of emphasis manipulations producing smaller effects on
accuracy (e.g., Forstmann et al., 2008, 2010, 2011). In contrast,
we found that this type of LBA was clearly unable to fit the
changes in accuracy of up to almost 15% in Wagenmaker et al.’s
(2008) data.

Although this selective influence assumption is conventional,
recently there has been increasing evidence that instructions do
influence drift rates, particularly in applications of the RDM. The
RDM has always assumed that the relative values of the mean rates
for stimuli associated with different responses are determined by
a drift criterion parameter (Ratcliff and McKoon, 2008). Changes
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in the drift criterion and evidence boundaries both affect response
bias but in different ways (e.g., Criss, 2010; Starns et al., 2012),
and the drift criterion can be influenced by instructions (Leite
and Ratcliff, 2011). Factors affecting attentional focus have also
been argued to affect drift rates. For example, in White et al.’s
(2011) RDM model of the flanker task drift rates change due to
changes in “attentional focus” brought about by manipulating the
proportion of trials involving response conflict. Arguably speed
vs. accuracy emphasis instructions might also affect attentional
focus, and hence the rate of information accumulation. Finally,
Kleinsorge (2001) demonstrated that, given sufficient warning,
participants can, in response to instructions, mobilize an extra
effort that genuinely improves performance in a way that cannot be
accounted for by a speed-accuracy trade-off. Given Wagenmakers
et al. (2008) manipulated speed vs. accuracy instructions between
blocks of trials participants had plenty of time to focus attention
and/or make an extra effort that could affect performance through
changes in drift rates.

On the basis of these recent findings, and the fact that the LBA
and LNR did provide an accurate and comprehensive account of
Wagenmaker et al.’s (2008) data when emphasis was allowed to
affect drift rates, we believe it would be premature to reject the
deterministic approximation. However, further research on this

point is clearly called for. Neuroscience methods that can provide
fairly direct evidence about the effect of instruction manipulations
on the statistical characteristics (e.g., mean and variance) of
evidence extracted from a stimulus will likely be particularly useful
in this regard (see Ho et al., in press). Our results, and the others
just reviewed, also suggest that it may also be fruitful to revisit tra-
ditional assumptions about the effects of a variety of instruction
and expectancy (e.g., for a particular response or type of sensory
information) manipulation in order to determine whether they
can have multiple effects. That is, can these manipulations cause
changes not only evidence accumulation parameters traditionally
associated with strategic factors (e.g., boundaries and systematic
bias) but also on rate means and on the variability of rates and
biases?
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In speeded two-choice tasks, optimal performance is prescribed by the drift diffusion
model. In this model, prior information or advance knowledge about the correct response
can manifest itself as a shift in starting point or as a shift in drift rate criterion. These
two mechanisms lead to qualitatively different choice behavior. Analyses of optimal per-
formance (i.e., Bogacz et al., 2006; Hanks et al., 2011) have suggested that bias should
manifest itself in starting point when difficulty is fixed over trials, whereas bias should
(additionally) manifest itself in drift rate criterion when difficulty is variable over trials. In
this article, we challenge the claim that a shift in drift criterion is necessary to perform opti-
mally in a biased decision environment with variable stimulus difficulty.This paper consists
of two parts. Firstly, we demonstrate that optimal behavior for biased decision problems
is prescribed by a shift in starting point, irrespective of variability in stimulus difficulty. Sec-
ondly, we present empirical data which show that decision makers do not adopt different
strategies when dealing with bias in conditions of fixed or variable across-trial stimulus
difficulty. We also perform a test of specific influence for drift rate variability.

Keywords: drift diffusion model, decision making, bias

INTRODUCTION
In real-life decision making, people often have a priori preferences
for and against certain choice alternatives. For instance, some
people may prefer Audi to Mercedes, Mac to PC, or Gillette to
Wilkinson, even before seeing the product specification. For prod-
uct preferences, people are influenced by prior experiences and
advertising. Here we study the effects of prior information in the
context of perceptual decision making, where participants have to
decide quickly whether a cloud of dots is moving to the left or
to the right. Crucially, participants are given advance information
about the likely direction of the dots. In the experiment reported
below, for instance, participants were sometimes told that 80% of
the stimuli will be moving to the right. How does this advance
information influence decision making?

In general, advance information that favors one choice alterna-
tive over the other biases the decision process: people will prefer
the choice alternative that has a higher prior probability of being
correct. This bias usually manifests itself as a shorter response time
(RT) and a higher proportion correct when compared to a deci-
sion process with equal prior probabilities. Because bias expresses
itself in two dependent variables simultaneously (i.e., RT and pro-
portion correct), and because people only have control over a
specific subset of the decision environment (e.g., the participant
cannot control task difficulty) an analysis of optimal adjustments
is traditionally carried out in the context of a sequential sam-
pling model. Prototypical sequential sampling models such as the
Sequential Probability Ratio Test (SPRT; e.g., Wald and Wolfowitz,

1948; Laming, 1968) or the drift diffusion model (DDM; Ratcliff,
1978) are based on the assumption that the decision maker grad-
ually accumulates noisy information until an evidence threshold
is reached.

In such sequential sampling models, the biasing influence of
prior knowledge can manifest itself in two ways (e.g., Diederich
and Busemeyer, 2006; Ratcliff and McKoon, 2008; Mulder et al.,
2012). The first manifestation, which we call prior bias, is that
a decision maker decides in advance of the information accu-
mulation process to lower the evidence threshold for the biased
alternative. The second manifestation, which we call dynamic bias
(cf. Hanks et al., 2011), is that a decision maker weighs more heav-
ily the evidence accumulated in favor of the biased alternative.
There is both theoretical and empirical evidence that shows that
both types of bias manifest itself in different situations.

The situation that has been studied most often is one in which
task difficulty is fixed across trials. For this case, Edwards (1965)
has shown that optimal performance can be achieved by prior bias
alone. In empirical support for this theoretical analysis, Bogacz
et al. (2006) demonstrated that in three experiments the perfor-
mance of participants approximated the optimality criterion from
Edwards (1965). In a recent paper by Gao et al. (2011), it was
demonstrated that for fixed stimulus difficulty, but varied response
deadlines over trials, behavioral data was best described by the
implementation of prior bias.

Another situation is one in which task difficulty varies across
trials. For this case, Hanks et al. (2011) reasoned that people should
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tend ever more strongly toward the biased response option as the
information accumulation process continues (see also Yang et al.,
2005; Bogacz et al., 2006, p. 730). The intuitive argument is that a
lengthy decision process indicates that the decision is difficult (i.e.,
the stimulus does not possess much diagnostic information), and
this makes it adaptive to attach more importance to the advance
information. In the extreme case, a particular stimulus can be so
difficult that it is better to simply go with the advance information
and guess that the biased response option is the correct answer.

Thus, in an environment of constant difficulty an optimal
decision maker accommodates advance information by prior bias
alone, such that a choice for the likely choice alternative requires
less evidence than that for the unlikely choice alternative. The
conjecture of Hanks et al. (2011) is that, in an environment of vari-
able difficulty, an optimal decision maker accommodates advance
information not just by prior bias, but also by dynamic bias.

This paper has two main goals. The first goal is to extend
the analytical work of Edwards (1965) and show that prior bias
accounts for optimal performance regardless of whether stimu-
lus difficulty is fixed or variable across trials. The second goal
is to examine empirically which kind of bias decision makers
implement when stimulus difficulty is fixed or variable.

The organization of the paper is as follows. In the first
section we briefly introduce the drift diffusion model (DDM),
the prototypical sequential sampling model that can be used to
model both prior bias and dynamic bias (Bogacz et al., 2006;

van Ravenzwaaij et al., 2012). Next we present analytical work that
shows how optimal performance in biased decision environments
may be achieved with prior bias alone, regardless of whether
stimulus difficulty is fixed or variable. We then present an empir-
ical study showing how people accommodate bias for fixed and
variable stimulus difficulty in similar fashion.

THE DRIFT DIFFUSION MODEL (DDM)
In the DDM (Ratcliff, 1978; Ratcliff and Rouder, 2000; Wagen-
makers, 2009; van Ravenzwaaij et al., 2012), a decision process
with two response alternatives is conceptualized as the accumu-
lation of noisy evidence over time. Evidence is represented by a
single accumulator, so that evidence in favor of one alternative is
evidence against the other alternative. A response is initiated when
the accumulated evidence reaches one of two predefined thresh-
olds. For instance, in a lexical decision task, participants have to
decide whether a letter string is an English word, such as TANGO,
or a non-word, such as TANAG (Figure 1).

The model assumes that the decision process commences at
the starting point z, from which point evidence is accumulated
with a signal-to-noise ratio that is governed by mean drift rate v
and Wiener noise. Without trial-to-trial variability in drift rate,
the change in evidence x is described by the following stochastic
differential equation

dx(t ) = v · dt + s · dW (t ), (1)

Drift R
ate

Starting Point

B
ou

nd
ar

y 
S

ep
ar

at
io

n

’Word!’

’Non−word!’

Stimulus
Encoding

Decision
Time

Response
Execution

FIGURE 1 |The DDM and its key parameters, illustrated for a

lexical decision task. Evidence accumulation begins at starting point
z, proceeds over time guided by mean drift rate v, but subject to
random noise, and stops when either the upper or the lower

boundary is reached. Boundary separation a quantifies response
caution. The predicted RT equals the accumulation time plus the time
required for non-decision processes Ter (i.e., stimulus encoding and
response execution).
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where W represents the Wiener noise process (i.e., idealized
Brownian motion). Parameter s represents the standard deviation
of dW (t )1. Values of v near zero produce long RTs and high error
rates. Trial-to-trial variability in drift rate is quantified by η.

Evidence accumulation stops and a decision is initiated once
the evidence accumulator hits one of two response boundaries.
The difference between these boundaries, boundary separation a,
determines the speed–accuracy trade-off; lowering a leads to faster
RTs at the cost of a higher error rate. When the starting point, z,
is set at a/2, bias in the decision process is not manifested in the
starting point. Together, these parameters generate a distribution
of decision times (DTs). The observed RT, however, also consists of
stimulus-non-specific components such as response preparation
and motor execution, which together make up non-decision time
Ter. The model assumes that Ter simply shifts the distribution of
DT, such that RT = DT + Ter (Luce, 1986).

Thus, the five key parameters of the DDM are (1 and 2) speed
of information processing, quantified by mean drift rate v and
standard deviation of drift rate η; (3) response caution, quanti-
fied by boundary separation a; (4) evidence criterion, quantified
by starting point z ; and (5) non-decision time, quantified by Ter.
In addition to these five parameters, the full DDM also includes
parameters that specify across-trial variability in starting point,
and non-decision time (Ratcliff and Tuerlinckx, 2002).

BIAS IN THE DDM
Recall from the introduction that decision makers may implement
bias in two ways. A decision maker may decide prior to the start of
the decision process that less evidence is required for a response in
favor of the biased alternative than for the non-biased alternative.
This type of bias, which we call prior bias, is manifested in the
DDM as a shift in starting point (see the top panel of Figure 2, see

1Parameter s is a scaling parameter that is usually fixed. For the remainder of this
paper, we set it to 0.1.
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FIGURE 2 | Schematic representation of bias due to a shift in starting

point z (top panel) or a shift in drift rate criterion vc (bottom panel). The
gray lines represent neutral stimuli for comparison.

also Ratcliff, 1985; Ratcliff and McKoon, 2008; Mulder et al., 2012).
Prior bias is most pronounced at the onset of the decision process,
but dissipates over time due to the effects of the diffusion noise s.
Edwards (1965) showed that when across-trial stimulus difficulty
is fixed, it is optimal to shift the starting point an amount pro-
portional to the odds of the prior probabilities of each response
alternative.

Alternatively, a decision maker may weigh evidence in favor of
the biased response alternative more heavily than evidence in favor
of the non-biased response alternative. This type of bias, which we
call dynamic bias, is manifested in the DDM as a shift in drift rate
criterion (see the bottom panel of Figure 2, see also Ratcliff, 1985;
Ratcliff and McKoon, 2008; Mulder et al., 2012). With a shift in
the drift rate criterion, drift rate for the likely choice alternative
is enhanced by a bias component, such that the cumulative effect
of dynamic bias grows stronger over time (compare the differ-
ence between the biased and neutral lines for shift in z and shift
in vc).

BIAS IN THEORY
Below, we examine analytically which DDM parameter shifts in
starting point and drift rate criterion produce optimal perfor-
mance. We differentiate between fixed and variable difficulty. Two
criteria of optimality are discussed: highest mean proportion cor-
rect when there is a fixed response deadline (i.e., the interrogation
paradigm) and lowest mean RT (MRT) for a fixed mean propor-
tion correct (see also Bogacz et al., 2006). In the next section,
we discuss highest mean proportion correct for the interrogation
paradigm.

OPTIMALITY ANALYSIS I: THE INTERROGATION PARADIGM
In the interrogation paradigm, participants are presented with
a stimulus for a fixed period of time. Once the response dead-
line T is reached, participants are required to immediately make
a response (see Figure 3). Thus, for the interrogation paradigm,
there are no response boundaries. As such, the unbiased start-
ing point z is 0. In this section, we will look at optimal DDM
parameter settings for a biased decision in the interrogation par-
adigm. The performance criterion is the mean proportion cor-
rect. First, we discuss fixed stimulus difficulty across trials, or
η= 0. Second, we discuss variable stimulus difficulty across trials,
or η> 0.

Fixed difficulty
In order to find the maximum mean proportion correct for
the interrogation paradigm, we assume that participants base
their response depending on whether the evidence accumula-
tor is above or below zero when the accumulation process is
interrupted (see, e.g., van Ravenzwaaij et al., 2011; Figure 9).
We choose parameter settings such that if the accumulator is
above zero at time T, the biased response is given, whereas if the
accumulator is below zero at time T, the non-biased response is
given.

Across trials, the final point of the evidence accumulator will
be normally distributed with mean vT + z and standard devia-
tion s

√
T (e.g., Bogacz et al., 2006; van Ravenzwaaij et al., 2011).

In what follows, we assume that stimuli corresponding to either
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FIGURE 3 |The interrogation paradigm. At deadline T, decision makers choose a response alternative depending on the sign of the evidence accumulator. The
shaded area under the distribution represents the proportion of correct answers.

of the two response alternatives are equally difficult2. For fixed
difficulty, the analytical expression for mean proportion correct
for an unbiased decision in the interrogation paradigm, denoted
by PcIF,U, is given by

PcIF ,U = �

[
vT + z

s
√

T

]
, (2)

where � denotes the standard normal cumulative distribution3.
In PcIF,U, the I denotes “Interrogation,” the F denotes “Fixed Dif-
ficulty,” and the U denotes “Unbiased.” For a biased decision, this
expression becomes:

PcIF ,B = β�

[
(v + vc )T + z

s
√

T

]
+ (1 − β)�

[
(v − vc )T − z

s
√

T

]
.

(3)

where β denotes the proportion of stimuli that are consistent with
the prior information (i.e., in the experiment below,β = 0.80) and
vc denotes the shift in drift rate criterion. In PcIF,B, the I denotes
“Interrogation,” the F denotes“Fixed Difficulty,”and the B denotes
“Biased.” Equation (3) is derived from equation (2) as follows. To
incorporate a shift in starting point z toward the biased alternative,
the left-hand side of equation (3) contains z (cf. equation (2)). In
the right-hand side, z is replaced by −z to account for the fact that
the correct answer lies at the non-biased threshold. To incorporate
a shift in drift rate criterion, the left-hand side of equation (3) adds

2This is commonly the case in perceptual decision tasks, such as the random dot
motion task (Newsome et al., 1989), which we will be using in the experiment
reported below.
3Note that for an unbiased decision, z = 0.

a shift vc to mean drift rate v. In the right-hand side, the shift vc is
subtracted from mean drift rate v.

Maxima for PcIF,B occur for:

zmax + vc · T =
s2 log

(
β

1−β
)

2v
, (4)

where zmax denotes the value of the starting point that leads to
the highest PcIF,B (e.g., Edwards, 1965; Bogacz et al., 2006, for
expressions without vc·T ).

The addition of vc·T to the left-hand side of equation (4) fol-
lows from inspection of both numerators in equation (3): it shows
a trade-off between the starting point z and the shift in drift rate
criterion vc, such that �z =�vc·T, where � denotes a parameter
shift. Therefore, the maximum value of PcIF,B does not belong to a
unique set of parameters, but exists along an infinite combination
of values for z and vc. This trade-off is graphically displayed for
different sets of parameter values in Figure 4.

Figure 4 shows that for a drift rate v of 0.2 or 0.3, combined
with a deadline T of 300 or 500 ms, every maximum that occurs
for a particular value of z with vc = 0 may also be reached for dif-
ferent combinations of z and vc (bias β is set to 0.8). Results for
different sets of parameters look qualitatively similar.

Taken at face value, this result challenges the claim that optimal
behavior in biased decision problems is exclusively accomplished
by a shift in starting point z : the same level of accuracy may
be accomplished by, for instance, setting z = 0 and vc = zmax/T
or any other combination of values that is consistent with the
parameter trade-off �z =�vc·T. Importantly, however, partic-
ipants have to be aware of the exact moment of the deadline
T to be able to utilize the trade-off between starting point and
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FIGURE 4 | Mean percentage correct for fixed difficulty (η = 0) in the interrogation paradigm for different combinations of starting point z and shift in

mean drift rate vc. Due to the trade-off �z =�vc·T, no unique maximum exists.

drift rate criterion. Recent work by Gao et al. (2011) exam-
ined the type of bias people implement when the deadline T
is varied across blocks of trials, so that exact knowledge of the
deadline is absent. The authors used the leaky competing accu-
mulator model (LCA), a model akin to the DDM with separate
accumulators for each response alternative. Using the LCA, the
authors were able to differentiate between dynamic bias (shift in
the input of the biased accumulator), and two accounts of prior
bias (shift in starting point of the biased accumulator and shift
in response threshold of the biased accumulator). The results
showed that for varying deadline T, people implement a shift in
starting point for the biased accumulator. This is indicative of
prior bias.

Next, we examine optimal decision making in the interroga-
tion paradigm when participants have no a priori knowledge of
the difficulty of the decision problem. In other words, stimulus
difficulty varies across trials.

Variable difficulty
To obtain an expression for the mean proportion correct in
the interrogation paradigm when there is across-trial variabil-
ity in stimulus difficulty, it is necessary to include across-trial
variability in drift rate, or η. The mean proportion correct
for this situation, or PcIV,B, is derived by multiplying equa-
tion (3) by a Gaussian distribution of drift rates with mean
v and standard deviation η. The resulting expression needs to
be integrated over the interval (−∞, ∞) with respect to drift
rate ξ :

PcIV ,B =
∫ ∞

−∞

(
β�

[
(ξ + vc )T + z

s
√

T

]
+ (1 − β)�

×
[
(ξ − vc )T − z

s
√

T

])
1√

2πη2
exp

(
− (ξ − v)2

2η2

)
dξ ,

(5)

www.frontiersin.org May 2012 | Volume 3 | Article 132 | 31

http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive


van Ravenzwaaij et al. BIAS

which simplifies to

PcIV ,B = β�

⎡
⎢⎣ (v + vc )T + z

s
√

T + T 2η2
/

s2

⎤
⎥⎦

+ (1 − β)�

⎡
⎢⎣ (v − vc )T − z

s
√

T + T 2η2
/

s2

⎤
⎥⎦ . (6)

In PcIV,B, the I denotes “Interrogation,” the V denotes “Variable
Difficulty,” and the B denotes “Biased.” The derivation can be
found in the appendix.

By differentiating with respect to z in a way analogous to the
derivation of equation (4) from equation (3), maxima for PcIV,B

occur for:

zmax + vc · T =
(
s2 + η2T

)
log

(
β

1−β
)

2v
, (7)

where zmax denotes the value of the starting point that leads to the
highest PcIV,B.

Once again, the addition of vc·T to the left-hand side of equa-
tion (7) follows from inspection of both numerators in equation
(6): it shows a trade-off between the starting point z and the shift
in drift rate criterion vc, such that �z =�vc·T, where � denotes
a parameter shift. Figure 5 graphically displays the parameter
trade-off for the same sets of parameter values that were used
in Figure 4 (η is set to 0.1). Results for different sets of parameters
look qualitatively similar.

In sum, our derivations and figures show that in the inter-
rogation paradigm with variable across-trial stimulus difficulty,
optimal decisions may again be reached by shifting either starting
point z, drift rate criterion vc, or a combination of the two. For an
Ornstein–Uhlenbeck process, the fact that both types of bias can-
not be distinguished in the interrogation paradigm for both fixed
and variable stimulus difficulty had already been demonstrated
(Feng et al., 2009, see also Rorie et al., 2010). Contrary to the fixed
difficulty situation, however, participants need to know the value
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FIGURE 5 | Mean percentage correct for variable difficulty (η = 0.1) in the interrogation paradigm for different combinations of starting point z and

shift in mean drift rate vc. Due to the trade-off �z =�vc·T, no unique maximum exists.
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of deadline T to optimize performance even when just shifting
starting point.

As noted in the introduction, Hanks et al. (2011) suggested that
bias should manifest itself as shifts in both starting point and the
drift rate criterion when stimulus difficulty varies over trials. The
authors reasoned that decision makers should decide in favor of
the biased alternative when the decision process is lengthy, because
slow decisions are likely to be difficult decisions. However, in the
interrogation paradigm, all decisions take equally long. In order to
more thoroughly investigate the claim of Hanks et al. (2011), it is
necessary to eliminate the deadline T and examine a different cri-
terion of optimality: minimum MRT for a fixed percentage correct.

OPTIMALITY ANALYSIS II: MINIMUM MRT FOR FIXED ACCURACY
In this section we consider the minimum mean RT for fixed accu-
racy in a free response paradigm. In the free response paradigm,
a response is made once the evidence accumulator hits an upper
boundary a or a lower boundary 0; the unbiased starting point z
is a/2. First, we discuss the situation in which across-trial stimulus
difficulty is fixed.

Fixed difficulty
In order to find the minimum MRT for a given level of accuracy,
we need expressions for both MRT and accuracy in the DDM for
a biased decision. We can then calculate combinations of starting
point z and drift criterion shift vc that yield a given level of accuracy
for a given set of parameter values for drift rate v, boundary sepa-
ration a, and diffusion noise s. The last step is to calculate the MRT
for each combination of starting point z and drift criterion shift vc.

For fixed difficulty, the analytical expression for mean propor-
tion correct for an unbiased decision without a deadline, denoted
by PcF,U, is given by

PcF ,U =
exp

(
2av
s2

)
− exp

(
2(a−z)v

s2

)
exp

(
2av
s2

)
− 1

, (8)

(see, e.g., Wagenmakers et al., 2007, equation (2))4. In PcF,U,
the F denotes “Fixed Difficulty,” and the U denotes “Unbiased.”
Transforming equation (8) to an expression for a biased decision
occurs in a similar fashion as the derivation of equation (3) from
equation (2):

PcF ,B = βPc+F ,B + (1 − β) Pc−F ,B , (9)

where

Pc+F ,B =
⎡
⎣exp

(
2a(v+vc )

s2

)
− exp

(
2(a−z)(v+vc )

s2

)
exp

(
2a(v+vc )

s2

)
− 1

⎤
⎦

Pc−F ,B =
⎡
⎣exp

(
2a(v−vc )

s2

)
− exp

(
2z(v−vc )

s2

)
exp

(
2a(v−vc )

s2

)
− 1

⎤
⎦ .

(10)

In PcF,B, the B denotes “Biased.”

4Note that for an unbiased decision, z = a/2.

To incorporate a shift in starting point z toward the biased
alternative, Pc + F,B contains z as in equation (8). For Pc − F,B, z is
replaced by a − z to account for the fact that the correct answer
lies at the non-biased threshold. To incorporate a shift in drift rate
criterion, Pc + F,B adds a shift vc to mean drift rate v. For Pc − F,B,
the shift vc is subtracted from mean drift rate v.

Now that we have an expression for mean proportion correct
for a biased decision without a response deadline, we need an
expression for MRT. For an unbiased decision without deadline,
MRT is given by

MRTU = − z

v
+ a

[
exp

(−2vz/s2
)− 1

]
v
[
exp

(−2va/s2
)− 1

] , (11)

(e.g., Grasman et al., 2009, equation (5)). For a biased decision,
this expression becomes

MRTB = β

(
− z

v + vc
+ a

[
exp

(−2(v + vc)z/s2
)− 1

]
(v + vc)

[
exp

(−2(v + vc)a/s2
)− 1

]
)

+ (1 − β)

(
− a − z

v − vc
+ a

[
exp

(−2(v − vc)(a − z)/s2
)− 1

]
(v − vc)

[
exp

(−2(v − vc)a/s2
)− 1

]
)

.

(12)

In what follows, we will fix PcF,B to two percentages (i.e., 90 and
95%). Then, we calculate MRTB for each combination of starting
point z and drift rate criterion vc that yields the predetermined
value of PcF,B and determine which combination is optimal in the
sense that it results in the lowest MRTB.

Firstly we considered the following set of parameters: mean
drift rate v = 0.2, boundary separation a = 0.12, and bias β = 0.85.
The top-left panel of Figure 6 shows that an accuracy level of 90%
may be achieved by a combination of shifts for starting point z and
shifts of drift rate criterion vc. Again, both parameters exist in a
trade-off relationship, such that higher values of z combined with
lower values of vc produce the same mean proportion correct.

The bottom-left panel of Figure 6 shows MRT for each calcu-
lated combination of starting point z and drift rate criterion vc.
The x-axis shows the value for starting point z (as a proportion of
boundary separation a), the associated value for drift rate criterion
vc can be found in the top-left panel. The MRT results show that
the lowest value for MRT is reached when all bias is accounted for
by a shift in starting point z.

Secondly we considered a mean drift rate v = 0.3 and an accu-
racy level of 95%. The results, shown in the right two panels of
Figure 6, are qualitatively similar6.

In sum, when there is no response deadline and across-trial
difficulty is fixed, the optimal way to deal with bias is by shifting
the starting point toward the biased response alternative, without
shifting the drift rate criterion. In an empirical paper by Simen
et al. (2009), it was demonstrated that human participants do
indeed shift starting point toward the biased response alternative.

5For the remainder of this article we set non-decision time Ter = 0.
6We explored a range of values for Bias β, accuracy, and drift rate. The results were
always qualitatively similar: the lowest MRT was achieved when vc = 0.
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FIGURE 6 | Fixed difficulty (η = 0) in the free response paradigm.

Minimum MRT is achieved when all bias is accounted for by a shift in
starting point z. Bias β = 0.8, boundary separation a = 0.12. Top panel:
Parameter combinations of starting point as a ratio of boundary

separation z /a and shift in drift rate criterion vc that lead to the same
fixed level of accuracy (90% for v = 0.2, 95% for v = 0.3). Bottom
panel: Mean RT that corresponds to the parameter combinations of the
top panel.

No explicit mention of shifts in drift rate criterion are made. In
the next subsection, we examine optimal performance for variable
stimulus difficulty across trials.

Variable difficulty
Unfortunately, for variable difficulty there are no expressions for
mean percentage correct and MRT. As such, we approximate
the results for fixed difficulty by numerically obtaining combi-
nations of starting point z and drift rate criterion vc that yield
two percentages correct (i.e., 90 and 95%). Then, we determine
which combination is optimal in the sense that it results in the
lowest MRT.

The top-left panel of Figure 7 shows the set of parameter values
of starting point z and drift rate shift vc that lead to a percentage
correct of 90% with a mean drift rate v = 0.2. The top-right panel
shows the set of parameter values of starting point z and drift
rate shift vc that lead to a percentage correct of 95% with a mean
drift rate v = 0.3. For both panels, boundary separation a = 0.12,
bias β = 0.8, and standard deviation of drift rate η= 0.1. The bot-
tom panels of Figure 7 show corresponding values of MRT. The
MRT results show that as for fixed difficulty, the lowest value for
MRT is reached when all bias is accounted for by a shift in starting
point z.

In sum, in paradigms with variable across-trial difficulty, but no
response deadline, the optimal way to deal with bias is by shifting
the starting point toward the biased response alternative, without

shifting the drift rate criterion. This result mirrors the result for
fixed difficulty.

Interim conclusion
Hanks et al. (2011) claimed that for biased decisions with variable
across-trial stimulus difficulty, optimal performance requires not
just a shift in starting point but also a shift in drift rate criterion
(i.e., dynamic bias). Our results challenge this claim: regardless
of whether stimulus difficulty is fixed or variable, optimal per-
formance can be obtained by having bias only shift the starting
point, and not the drift rate criterion. In the next section, we will
investigate how people perform in practice.

BIAS IN PRACTICE
We have demonstrated that optimal performance in decision con-
ditions with a biased response alternative can be achieved by
shifting only the starting point criterion. However, people may
not accommodate bias in an optimal manner. For instance, Hanks
et al. (2011) demonstrated that in a decision environment with
variable across-trial stimulus difficulty, participants accommo-
date advance information by dynamic bias. The authors did not,
however, directly compare the performance of participants in con-
ditions with fixed and variable across-trial stimulus difficulty. In
this section, we perform such a comparison and address the ques-
tion whether the inclusion of variability in stimulus difficulty alters
the way in which people accommodate advance information. We
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FIGURE 7 | Variable difficulty (η = 0.1) in the free response

paradigm. Minimum MRT is achieved when all bias is accounted for by
a shift in starting point z. Bias β = 0.8, boundary separation a = 0.12.
Top panel: Parameter combinations of starting point as a ratio of

boundary separation z /a and shift in drift rate criterion vc that lead to
the same fixed level of accuracy (90% for v = 0.2, 95% for v = 0.3).
Bottom panel: Mean RT that corresponds to the parameter
combinations of the top panel.

also examine if the performance of people in practice corresponds
to the theoretical optimality indicated in the previous sections.

Our experiment also allows us to test a prediction from the
DDM, namely that increasing the variability in across-trial stim-
ulus difficulty results in a higher estimate of across-trial drift
rate variability η. The experiment used a random dot motion
task (Newsome et al., 1989) with advance information about the
upcoming direction of movement. In a within-subjects design,
each participant was administered a condition with fixed stimulus
difficulty (i.e., identical coherence of movement from trial-to-
trial) and a condition with variable stimulus difficulty (i.e., variable
coherence).

PARTICIPANTS
Eleven healthy participants (8 female), aged 19–40 years (mean
24.6) performed a random-dots motion (RDM) paradigm in
exchange for course credit or a monetary reward of 28 euros.
Participants were recruited through the University of Amsterdam
and had normal or corrected-to-normal vision. The procedure
was approved by the ethical review board at the University of
Amsterdam and informed consent was obtained from each par-
ticipant. According to self-report, no participant had a history of
neurological, major medical, or psychiatric disorder.

Materials
Participants performed an RT version of an RDM task. Partici-
pants were instructed to maintain fixation on a cross at the middle

of the screen and decide the direction of motion of a cloud of par-
tially randomly moving white dots on a black background. The
decision was made at any time during motion viewing with a left
or right button press. The stimulus remained on screen until a
choice was made. The motion stimuli were similar to those used
elsewhere (e.g., Newsome and Paré, 1988; Britten et al., 1992; Gold
and Shadlen, 2003; Palmer et al., 2005; Ratcliff and McKoon, 2008;
Mulder et al., 2010): white dots, with a size of 3 × 3 pixels, moved
within a circle with diameter of 5˚ with a speed of 5˚/s and a density
of 16.7 dots/degree2/s on a black background. On the first three
frames of the motion stimulus, the dots were located in random
positions. For each of these frames the dots were repositioned after
two subsequent frames (the dots in frame one were repositioned
in frame four, the dots in frame two were repositioned in frame
five, etc.). For each dot, the new location was either random or in
line with the motion direction. The probability that a dot moved
coherent with the motion direction is defined as coherence. For
example, at a coherence of 50%, each dot had a probability of
50% to participate in the motion–stimulus, every third frame (see
also Britten et al., 1992; Gold and Shadlen, 2003; Palmer et al.,
2005).

Visual stimuli were generated on a personal computer (Intel
Core2 Quad 2.66 GHz processor, 3 GB RAM, two graphical cards:
nvidia GeForce 8400 GS and a nvidia GeForce 9500 GT, run-
ning MS Windows XP SP3) using custom software and the Psy-
chophysics Toolbox Version 3.0.8 (Brainard, 1997) for Matlab
(version 2007b, Mathworks, 1984).
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Difficulty
To get acquainted with the task, each participant performed a
practice block of 40 easy trials (60% coherence). To match the
difficulty level of the motion stimuli across participants, each
participant performed an additional block of 400 trials of ran-
domly interleaved stimuli with different motion strengths (resp.
0, 10, 20, 40, and 80% coherence, 80 trials each). We fitted the
DDM to the mean response times and accuracy data of this block
using a maximum likelihood procedure, constraining the drift
rates to be proportional to the coherence settings (Palmer et al.,
2005). For each participant, the motion strength at 75% accuracy
was then interpolated from the psychometric curve (predicted by
the proportional-rate diffusion model) and used in the experi-
mental blocks with fixed coherence across trials. For blocks with
mixed coherences, we randomly sampled performance levels from
a uniform distribution (range: 51–99), and interpolated for each
randomly chosen performance level the associated coherence from
the psychometric curve.

Design
Each participant performed four sessions of the RDM task. In
each session, participants performed six blocks of 100 trials: three
blocks with the coherence fixed across trials, and three blocks
with coherence varied across trials. For each condition (fixed
and variable coherence) there were two biased and one neutral
block. Prior information was given at the start of each experi-
mental block. In the first experimental block, participants were
told that there was a larger probability that the dots will move
to the left (left-bias). In the second block, participants were told
that there was an equal probability that the dots will move to
the left or to the right (neutral). In a third block, the instruc-
tions indicated that there was a larger probability that the dots
will move to the right (right-bias). For the biased blocks, prior
information was consistent with the stimulus direction in 80% of
the trials. The sequence of conditions was counterbalanced across
participants.

Analyses
In order to quantify bias in the starting point and the drift rate
criterion, we fit the diffusion model to the data with the Diffusion
Model Analysis Toolbox (DMAT, Vandekerckhove and Tuerlinckx,
2007). We estimated the following parameters: mean drift rate v,
boundary separation a, non-decision time Ter, starting point z,
standard deviation of drift rate η, range of starting point sz, and
range of non-decision time st.

For both the fixed difficulty condition and the variable diffi-
culty condition we estimated a mean drift rate v for consistent,
neutral, and inconsistent stimuli. This resulted in six different
estimates for mean drift rate v. In addition, for both the fixed
difficulty condition and the variable difficulty condition we esti-
mated a starting point z for left-biased, neutral, and right-biased
stimuli. This resulted in six different estimates for starting point
z. Furthermore, for the fixed difficulty condition and the variable
difficulty condition we estimated a boundary separation a and a
standard deviation of drift rate η, resulting in two different esti-
mates for these parameter. Finally, we constrained non-decision
time Ter, range of starting point sz, and range of non-decision

time st to be equal over stimulus type, conditions, and sessions,
resulting in a single estimate for each of those parameters.

Starting point bias was calculated as half of the difference
between the starting point z for left-biased stimuli and the start-
ing point z for right-biased stimuli, scaled by boundary separation
a. The maximum bias in starting point was therefore 50%. Drift
rate criterion bias was calculated as half of the difference between
mean drift rate v for consistent stimuli and mean drift rate v for
inconsistent stimuli, scaled by the sum of mean drift rate v for
consistent and inconsistent stimuli. The maximum bias in drift
rate criterion was therefore 50% as well7.

RESULTS
For the presented analyses, we report Bayesian posterior probabil-
ities in addition to conventional p-values. When we assume, for
fairness, that the null-hypothesis and the alternative hypothesis
are equally plausible a priori, a default Bayesian t -test (Rouder
et al., 2009) allows one to determine the posterior plausibility
of the null-hypothesis and the alternative hypothesis. We denote

the posterior probability for the null-hypothesis as p
Bayes
H 0 . When,

for example, p
Bayes
H 0 = 0.9, this means that the plausibility for

the null-hypothesis has increased from 0.5 to 0.9. Posterior prob-
abilities avoid the problems that plague p-values, allow one to
directly quantify evidence in favor of the null-hypothesis, and
arguably relate more closely to what researchers want to know
(e.g., Wagenmakers, 2007).

In order to assess whether our manipulation of across-trial
parameter difficulty was successful, we compared the estimate
of across-trial drift rate variability η between the fixed and vari-
able difficulty conditions. The results show that across-trial drift
rate variability η was larger in the variable difficulty condi-
tion (mean: 0.23) then in the fixed difficulty condition (mean:

0.14; t (20) = 2.25, p< 0.05, p
Bayes
H 0 = 0.34), suggesting that the

across-trial difficulty manipulation was successful8.
The left panel of Figure 8 shows both starting point bias and

drift rate criterion bias for the fixed difficulty condition and the
variable difficulty condition. In the fixed difficulty condition, both
the bias in starting point and the bias in drift rate are larger

than zero (t (10) = 5.85, p< 0.01, p
Bayes
H 0 < 0.01, and t (10) = 3.43,

p< 0.01, p
Bayes
H 0 = 0.10, respectively). In the variable difficulty

condition, both the bias in starting point and the bias in drift rate

also are larger than zero (t (10) = 6.89, p< 0.01, p
Bayes
H 0 < 0.01,

and t (10) = 4.14, p< 0.01, p
Bayes
H 0 = 0.04, respectively). The right

panel of Figure 8 shows MRT and proportion correct for consis-
tent, neutral, and inconsistent stimuli for the fixed and variable
difficulty conditions.

Since both types of bias are measured on different scales, they
cannot be compared directly. The important claim by Hanks et al.
(2011) is that bias in the drift rate criterion is larger in the vari-
able difficulty condition than in the fixed difficulty condition. In
order to assess this claim we compared both types of bias directly

7In theory, negative drift rates could lead to a larger bias. However, none of our
participants had negative drift rates for any of the stimulus types.
8Note that the alternative hypothesis is roughly twice as likely as the null-hypothesis

according to p
Bayes
H 0 .

Frontiers in Psychology | Cognitive Science May 2012 | Volume 3 | Article 132 | 36

http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science/archive


van Ravenzwaaij et al. BIAS

B
ia

s 
(%

)

Fixed Variable Fixed Variable

−20

0

20

40

60

      z−Bias                               v−Bias       

Fixed

M
R

T

Con Neu Inc

500

550

600

650

700

P
c

Con Neu Inc

0.5

0.6

0.7

0.8

0.9

1.0

Variable

Con Neu Inc

500

550

600

650

700

Con Neu Inc

0.5

0.6

0.7

0.8

0.9

1.0

FIGURE 8 | Left panel: starting point bias and drift rate criterion bias.

Right four panels: MRT (top) and proportion correct (bottom) for fixed (left)
and variable (right) difficulty. Dots represent the mean, error bars represent
95% confidence intervals. Con, consistent; Neu, neutral; Inc, inconsistent.

between the two conditions. Consistent with the visual impres-
sion from the left panel of Figure 8, the statistical analysis reveal
no differences for starting point bias and drift rate criterion bias

(t (20) = 0.61, p> 0.05, p
Bayes
H 0 = 0.74, and t (20) = 0.75, p> 0.05,

p
Bayes
H 0 = 0.73, respectively).

In sum, both in the fixed difficulty condition and in the vari-
able difficulty condition, participants exhibit bias in starting point
and drift rate criterion. The results suggest there is no difference
between the two conditions in the amount of each type of bias,
challenging the claim by Hanks et al. (2011) that bias in the drift
rate criterion should be more pronounced when stimulus difficulty
is variable than when it is fixed.

MODEL PREDICTIVES
In cognitive modeling, model fit can be assessed by means of model
predictives. Model predictives are simulated data generated from
the cognitive model, based on the parameter estimates for the real
data. If the generated data closely resemble the real empirical data,
then the model fit is deemed adequate (e.g., Gelman and Hill,
2007).

For this experiment, we drew 100 samples from the real data
set and generated diffusion model parameter estimates for each
participant and each condition separately using a bootstrap pro-
cedure. For each of these samples, we generated synthetic data,

for which we calculated the 0.1, 0.3, 0.5, 0.7, and 0.9 RT quantiles
for both the real data set and the synthetic data set. The real and
synthetic RT quantiles are shown in Figure 9.

Figure 9 shows a quantile probability plot (e.g., Ratcliff, 2002),
where the left-hand side represents error RTs for the five quan-
tiles, and the right-hand side represents correct RTs for those same
quantiles. The circles represent stimuli that were consistent with
the biased response direction, the squares represent stimuli that
were neutral, and the triangles represent stimuli that were incon-
sistent with the biased response direction. The filled symbols in
the figure show the empirical data, the open symbols show the
simulated data that were generated using the DMAT parameter
estimates.

For response accuracy, the correspondence between the empir-
ical data and the synthetic data can be judged by the horizontal
disparity between the data points and the model points. Figure 9
shows that the diffusion model captures the error rate reasonably
well for most of the stimulus types, as indicated by the horizon-
tal disparity between the filled and open symbols. The diffusion
model does capture the RTs well, as can be judged from the ver-
tical disparity between the filled and open symbols. The quantile
probability plot nicely shows how correct responses are fastest for
consistent stimuli and slowest for inconsistent stimuli, whereas
error responses are fastest for inconsistent stimuli and slowest for
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FIGURE 9 | Model predictives indicate that the parameter estimates of DMAT describe the data well. Filled symbols: empirical data. Open symbols:
bootstrapped synthetic data, based on the model parameter estimates.

consistent stimuli, which is consistent with prior bias (see, e.g.,
Mulder et al., 2012).

CONCLUSION
It is not straightforward to perform optimally in response time
tasks in which one response option is more likely than the
other. When stimulus difficulty is fixed across trials, Edwards
(1965) has demonstrated that optimal performance requires
advance information to be accommodated solely by a shift
in starting point. Recently, Hanks et al. (2011) claimed that
when stimulus difficulty varies from trial-to-trial, optimal per-
formance also requires a shift in drift rate criterion (i.e.,
dynamic bias).

The contribution of this paper is twofold. Firstly, we demon-
strated that in theory, optimal performance can be achieved by a
shift in starting point only. This result holds regardless of whether
stimulus difficulty is fixed or variable from trial-to-trial. Secondly,
we presented empirical data showing that people accommodate
bias similarly for conditions of fixed and variable across-trial dif-
ficulty. Specifically, decision makers incorporate both prior and
dynamic bias, and no evidence suggested that the presence of vari-
ability in stimulus difficulty made participants rely more on shifts
in the drift rate criterion.

In the theoretical part, we first considered the interrogation
paradigm. We demonstrated that optimal performance can be
achieved by entertaining a bias in starting point, by entertaining
a bias in the drift rate criterion, or by a combination of the two.
There was no qualitative difference between conditions of fixed
and variable across-trial stimulus difficulty.

It could be argued that the theoretical results of the interro-
gation paradigm are unlikely to apply in practice. Specifically,
participants need to know the exact moment of the deadline T
to be able to utilize the trade-off between starting point and drift
rate criterion. Also, the argument of Hanks et al. (2011) depends
on the time course of the decision process: long decisions are most
likely difficult decisions, so the longer a decision takes, the more
adaptive it becomes to select the biased response alternative. In the
interrogation paradigm, however, each decision process takes an
identical amount of time.

Another complication when interpreting results for the interro-
gation paradigm is that for variable difficulty, the optimal setting
of the starting point depends on the time deadline (see equa-
tion (7)). Because the decision maker does not know the exact
value of the time deadline, a more realistic expression should
integrate over some unknown distribution of time deadlines
that describes the uncertainty in T on the part of the decision
maker.

In a task setting without response deadline, our results show
that optimal performance is achieved by shifting only the start-
ing point; additionally shifting the drift rate criterion only serves
to deteriorate performance. Crucially, we found that this result is
true for both fixed and variable across-trial stimulus difficulty. As
such, our results conflict with the claim by Hanks et al. (2011) that
optimal decision makers should entertain a shift in drift rate cri-
terion to accommodate bias under conditions of variable stimulus
difficulty.

In the empirical part, we conducted an experiment in which we
manipulated across-trial stimulus difficulty in order to investigate
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if performance of decision makers is optimal. We also wanted
to test whether decision makers accommodate bias differently in
decision environments with fixed and variable across-trial stimu-
lus difficulty. We successfully manipulated across-trial variability
in difficulty, as evidenced by a higher value of across-trial drift rate
variability η for variable across-trial difficulty than for fixed-trial
difficulty. Our results showed that performance of participants was
not optimal: decision makers implemented both a shift in starting
point and a shift in drift rate criterion in order to deal with bias
in prior information about the decision alternatives. Contrary to
the theory of Hanks et al. (2011), there was no difference in the
implementation of dynamic bias between conditions of fixed and
variable across-trial stimulus difficulty.

In sum, we conclude that dynamic bias is not needed for opti-
mal performance, not when stimulus difficulty is fixed and not
when it is variable. From the perspective of optimality, advance

information should affect only prior bias (i.e., starting point),
such that the evidence threshold is lowered for the choice alterna-
tive that is most likely to be correct a priori. In practice it appears
that people use both prior bias and dynamic bias; our experi-
ment suggests that increasing the variability of stimulus difficulty
does not cause participants to accommodate advance information
preferentially by shifting the drift rate criterion.
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APPENDIX
DERIVATION OF EQUATION (6)
To understand the derivation of equation (6) from equation (5),

let us focus on the first part �
[
(ξ+vc )T+z

s
√

T

]
(the treatment of the

second part is analogous) and write it as�[Aξ + B], with A =
√

T
s

and B = vc T+z
s
√

T
. We then have the following integral I :

I =
∫ +∞

−∞
� [Aξ + B]φ

(
ξ ; v , η2) dξ ,

where φ(ξ ; v,η2) stands for the normal density function for ξ with
mean v and variance η2. We can continue as follows:

I =
∫ +∞

−∞
� [Aξ + B]φ

(
ξ ; v , η2) dξ

=
∫ +∞

−∞

∫ Aξ+B

−∞
φ (x ; 0, 1) dxφ

(
ξ ; v , η2) dξ

=
∫ +∞

−∞

∫ B

−∞
φ (x ; −Aξ , 1) φ

(
ξ ; v , η2) dxdξ

=
∫ +∞

−∞

∫ B/A

−∞
φ
(
x ; −ξ , 1/A2)φ (ξ ; v , η2) dxdξ

=
∫ B/A

−∞

∫ +∞

−∞
φ
(
x ; −ξ , 1/A2)φ (ξ ; v , η2) dξdx .

The inner integral is a known integral in Bayesian statistics (see,
e.g., Gelman et al., 2004). The kernel of the product of the two nor-
mal distributions contains an exponent with quadratic terms in ξ
and x (Gelman et al., 2004). Thus, ξ and x have a bivariate nor-
mal distribution and thus marginalizing over ξ results in a normal
distribution for x.

Using the double expectation theorem (see Gelman et al., 2004),
we can find the marginal mean of x :

E(x) = E [E(x|ξ)]
= E[−ξ ]
= −v .

Applying a similar theorem for the marginal variance of x gives
(Gelman et al., 2004):

Var(x) = E [Var(x|ξ)] + Var [E(x|ξ)]
= E

[
1/A2]+ Var(−ξ)

= 1/A2 + η2.

Therefore, we can simplify the inner integral to φ(x ; − v,
1/A2 + η2):

I =
∫ B/A

−∞
φ
(
x ; −v , 1/A2 + η2) dx

=
∫ B/A+v√

1/A2+η2

−∞
φ (x ; 0, 1) dx

= �

⎡
⎢⎣ B

/
A + v√

1
/

A2 + η2

⎤
⎥⎦

= �

⎡
⎢⎣ vc T+z

T + v√
s2
/

T + η2

⎤
⎥⎦

= �

⎡
⎢⎣ (vc + v)T + z

s
√

T + T 2η2
/

s2

⎤
⎥⎦ ,

which is, after multiplication with β, equal to the first term of
equation (6). The second part can be found in a similar way.
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We investigate human error dynamics in sequential two-alternative choice tasks. When
subjects repeatedly discriminate between two stimuli, their error rates and reaction times
(RTs) systematically depend on prior sequences of stimuli. We analyze these sequential
effects on RTs, separating error and correct responses, and identify a sequential RT trade-
off: a sequence of stimuli which yields a relatively fast RT on error trials will produce a
relatively slow RT on correct trials and vice versa. We reanalyze previous data and acquire
and analyze new data in a choice task with stimulus sequences generated by a first-order
Markov process having unequal probabilities of repetitions and alternations. We then show
that relationships among these stimulus sequences and the corresponding RTs for correct
trials, error trials, and averaged over all trials are significantly influenced by the probability
of alternations; these relationships have not been captured by previous models. Finally, we
show that simple, sequential updates to the initial condition and thresholds of a pure drift
diffusion model can account for the trends in RT for correct and error trials. Our results
suggest that error-based parameter adjustments are critical to modeling sequential effects.

Keywords: drift diffusion model, error rate, perceptual decision making, post-error slowing, reaction time, sequential
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1. INTRODUCTION
Efforts to model and predict human behavior are informed by
an understanding of the dynamics of error rates (ERs) and reac-
tion times (RTs) in simple tasks. In particular, in two-alternative
forced-choice (TAFC) tasks (e.g., Laming, 1968; Link, 1975; Link
and Heath, 1975; Ratcliff and Rouder, 1998) human participants
are known to slow down after committing an error, and gener-
ally to exhibit RTs and ERs that systematically depend on prior
stimulus sequences (Bertelson, 1961; Capaldi, 1966; Laming, 1968;
Remington, 1969; Kirby, 1976; Vervaeck and Boer, 1980; Soetens
et al., 1984, 1985). However, while much previous work has con-
sidered post-error slowing and sequential effects separately, we are
not aware of studies that explicitly account for interactions among
these effects.

Patterns in RTs for individual trials are well documented in
the literature. In particular, relative to their mean RTs on correct
trials, subjects are known to respond faster on error trials and
more slowly immediately following errors (Rabbitt, 1966; Laming,
1979a,b). On average it has been shown that participants return
to their mean RT values within two trials after an error (Rab-
bitt, 1968b). Various models of TAFC tasks have accounted for
this post-error slowing (Ratcliff and Rouder, 1998; Dudschig and
Jentzsch, 2009). However, to our knowledge the mean RTs on trials
following specific sequences of stimuli have not been studied inde-
pendently for trials ending in an error, and deliberate post-error

adjustments have not been incorporated into models of sequential
effects.

Moreover, the characteristic patterns in speed and accuracy
following sequences of repetitions and alternations are well doc-
umented only for tasks in which the stimuli are equally likely.
While overall trends in speed and accuracy have received signifi-
cant attention (Carpenter and Williams, 1995; Ratcliff and Smith,
2004; Bogacz et al., 2006; Simen et al., 2009), for tasks in which the
stimuli are not equally likely, such sequential patterns in mean RT
have not been considered.

In a majority of TAFC studies, participants are either rewarded
equally for overall participation or they are rewarded for each
correct response. However, several studies (e.g., Corrado et al.,
2005; Feng et al., 2009) have investigated tasks which reward cor-
rect responses to one stimulus more highly than another and have
shown that reward contingencies influence choice behavior. When
reward probabilities or reward values are unequal, participants are
known to select the stimulus corresponding to the most probable
or most valuable reward more frequently (Corrado et al., 2005;
Feng et al., 2009), and they may do so almost optimally (Gao et al.,
2011).

When stimuli are equally probable and correct responses are
equally rewarded, several effects are known. For small (<500 ms)
response to stimulus intervals (RSIs), the behavior typically illus-
trates automatic facilitation (AF): mean RTs on the current trial are
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faster if the previous trial was a repetition, regardless of whether
the current trial is a repetition or an alternation. For slow RSIs
(≈1000 ms), mean RTs on the current trial after a series of alter-
nations are faster if the current trial is a repetition and slower if
the current trial is an alternation (Bertelson, 1961; Laming, 1968;
Kirby, 1976). This effect is called strategic expectancy (SE), sug-
gesting a relationship between a participant’s expectations and his
or her reaction time. Moreover, a transition occurs from AF to
SE as RSI increases (Soetens et al., 1985; Jentzsch and Sommer,
2002) and can be illustrated graphically (Audley, 1973). Prior to
the present paper, it was unknown whether such a transition from
AF to SE could also occur for a constant RSI with increasing prob-
ability of alternations, or, more generally, how sequential effects
carry over from equally probable to biased stimuli.

In this paper, we study sequential patterns in ERs as well as
in RTs for error and correct responses independently in TAFC
tasks in which stimuli are equally probable or strongly biased
toward repetitions or alternations, focusing on sequences of three
trials. Stimulus sequences can be biased by specifying stimulus
probabilities (state orientation) or by specifying transition prob-
abilities between states (transition orientation), and it is known
that these processes produce distinct response patterns in RT
(Brodersen et al., 2008). Since we are interested in sequential
effects and expectancy, we generate stimuli by a first-order Markov
process with unequal (as well as equal) transition probabilities (see
Figure 1): The unequal case sets the probability of an alternation
(PA) to be unequal to the probability of a repetition (1− PA).
Transition probabilities PA and 1− PA are held fixed over blocks
of trials, and we use relatively long RSIs (800 and 1,000 ms mean),
for which SE is most apparent. We reanalyze behavioral data from
an equal-probability experiment (Cho et al., 2002), and we collect
and analyze a new data set with PA set to 10, 50, and 90%. We
find significant transition probability effects on RTs for error and
correct responses and on ERs.

To further study patterns in RT and ER we extend the pure
drift diffusion model (DDM) to account for sequential patterns.
The pure DDM describes choice between two alternatives by rep-
resenting the noisy accumulation of the difference in evidence

FIGURE 1 | Stimulus order is generated by a transition-oriented
Markov process. Given current stimulus 1, the next stimulus will be
stimulus 2 (an alternation) with probability PA and stimulus 1 (a repetition)
with probability 1−PA.

(logarithmic likelihood) from a given initial condition to one of
two decision thresholds. This process is known to mimic aspects
of neural integration (Carpenter and Williams, 1995; Gold and
Shadlen, 2000; Bogacz et al., 2006; Gold et al., 2008). Adapting
the DDM, we propose two simple update mechanisms to vary
the initial condition and thresholds from trial to trial, depend-
ing on previous stimuli and response correctness. We show how
our adapted DDM can account for the observed trends in RT for
correct and error trials.

Related TAFC models frequently involve a variant of the leaky
competing accumulator (LCA; Usher and McClelland, 2001), fea-
turing two coupled stochastic differential equations which contain
multiple parameters to account for leakage (decay of previous evi-
dence) and for the interaction between neural populations. LCA
models have been shown to capture sequential effects for equally
probable stimuli (Cho et al., 2002; Gao et al., 2009). For certain
parameter ranges, it can be shown that the LCA, along with race,
inhibition, and other models, reduces to a DDM, and the DDM
itself may be extended to account for variability in the model para-
meters (Ratcliff and Smith, 2004; Bogacz et al., 2006). However, we
are aware only of modeling studies that predict both ERs and RTs
for sequential effects (Cho et al., 2002; Gao et al., 2009), and these
studies did not analyze patterns in error RTs, nor did they incorpo-
rate post-error parameter adjustments into the analysis. Bayesian
models of TAFC, which can also be represented by DDMs for cer-
tain parameter ranges (Liu et al., 2009), have also been used to
model sequential effects (Yu and Cohen, 2009; Wilder et al., 2009),
but none of these models yet accounts for patterns in errors.

Physiological evidence suggests sources of systematic changes
in behavior from trial to trial, providing some neurobiological
basis for our proposed update mechanisms. An electroencephalo-
gram (EEG) study has identified a SE pattern in the P300 response
(Sommer et al., 1999), an event related potential signal which
follows 300–600 ms after unexpected, alternating, stimuli. The
prefrontal cortex is also activated following an alternation after
frequent repetitions, with greater activation following a longer
run of repetitions prior to the alternation (Huettel et al., 2005). In
addition, the anterior cingulate cortex (ACC) is known to show
increased activity with increased conflict in representation, or
alternation of stimuli, and ACC activity has been linked to cogni-
tive control and post-error corrections and corresponding increase
in RT (Botvinick et al., 2001). Prior work has incorporated ACC
conflict signals into models of sequential and error effects (Jones
et al., 2002).

An understanding of the relationship between error correction
and sequential biasing mechanisms may allow us to further dif-
ferentiate between corresponding physiological processes. Such an
understanding could have broad implications. Indeed, recent work
suggests that the same mechanisms that account for sequential
effects also account for sequence learning (Soetens et al., 2004):
a general mechanism may therefore lend insight into sequence
learning (Soetens et al., 1985; Pashler and Baylis, 1991a,b; Frensch
and Miner, 1994), including linguistic processes. Further, better
understanding of the mechanisms behind simple discrimination
tasks may also allow for improved prediction and prevention of
errors.
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This paper is organized as follows. In Section 2, we describe two
experiments: the first originally reported in Cho et al. (2002) and
the second conducted specifically for the present study. We then
describe a diffusion model account of participant behavior in the
tasks. In Section 3, we describe the experimental results and dis-
cuss diffusion model fits to participant behavior. Finally, Section 4
contains further discussion and our conclusions, and it identifies
directions for future experimental and modeling work.

2. MATERIALS AND METHODS
In this section, we describe the protocol followed for the two exper-
iments presented in this paper. We then describe a general model
of decision making, which accounts for choice behavior with two
simple mechanistic adaptations to the pure drift diffusion model
(DDM). Finally, we describe a procedure for fitting the model to
match participant data in our adapted DDM.

2.1. EXPERIMENT 1: ERROR DYNAMICS IN UNBIASED TASKS
The first experiment (reanalyzed from Cho et al., 2002) served as a
control in which stimulus probabilities were equal and transition
probabilities were held constant at 50% throughout the experi-
ment. As the details of the experiment have been described in the
literature previously, we discuss them only briefly here. In Experi-
ment 1, six Princeton University undergraduates participated in a
task over a single session by identifying the upper or lowercase “o”
character on the screen with the appropriate keypress. The index
finger was used to identify the uppercase letter, and the middle
finger to identify the lowercase letter. Each session consisted of 13
blocks of 120 trials each, and a response to stimulus interval (RSI)
of 800 ms was used. Participants received course credit in exchange
for their participation in the study. For additional details see Cho
et al. (2002). No trials were omitted from our reanalysis.

2.2. EXPERIMENT 2: ERROR DYNAMICS IN TRANSITION-BIASED
TASKS

In the second experiment stimulus transition probabilities were
varied from block to block, so that in a given block a partici-
pant would have a constant high, medium, or low probability of
alternations. That is, given the current stimulus 1, a participant
would next see the other stimulus 2 with probability PA and the
same stimulus 1 again with probability 1− PA, and the sequence
of stimuli would be drawn from a transition-oriented Markov
process, as shown in Figure 1.

2.2.1. Participants
Sixteen adults (6 males) participated in exchange for a standard
payment of $12 per session of 9 blocks. Participants were recruited
from the Princeton University community via announcements
posted online and on campus. The experiment was approved by
the Institutional Review Panel for Human Subjects of Princeton
University, and all participants provided their informed consent
prior to participation.

2.2.2. Stimuli
Participants performed an RT version of a motion discrimination
task. The visual stimulus consisted of a black screen showing a
cloud of white moving dots with a red, stationary fixation dot at

its center. The red dot had size 0.30˚ visual angle, and the white
dots had size 0.15˚ each and moved within a circle of diameter 10˚
at a speed of 7˚/s and a density of 20 dots/degree2. On each trial
90% of the white dots would move coherently in a given, “correct”
direction, and the remaining white dots would move randomly.
The high coherence of motion was selected to ensure that some
processing was necessary but that the difficulty of the task would
remain low, consistent with other studies of sequential effects. A
decision could be indicated with a left or right keypress at any
point after dots appeared on the screen. Responses were collected
via the standard Macintosh computer keyboard, with the “Z” key
used to indicate leftward motion and the “M” key used to indicate
rightward motion. The experiment was performed on a Macintosh
computer using the Psychophysics Toolbox extension (Brainard,
1997).

2.2.3. Procedure
The participants were instructed to fixate upon the red dot and
then determine the direction of the moving dots. They were also
instructed to complete the session as quickly and as accurately as
possible. Each participant completed 1 session of approximately
60 min duration.

Each session consisted of 9 blocks of 200 trials each in which the
PA remained fixed at 10, 50, or 90% (3 blocks for each condition).
The order of the blocks was constrained to follow a Latin Square
design. Participants were allowed a short break between blocks.
To minimize anticipatory responding, response to stimulus inter-
vals were drawn from a gamma distribution with a mean of 1 s
for each trial, following the convention set in previous sequential
RT tasks (Rabbitt, 1966; Simen et al., 2006; Brodersen et al., 2008;
Balci et al., 2011). Outlier RTs (less than 100 ms or greater than
900 ms, comprising less than 1.5% of the data) were not included
in the analysis. We note that only the outlier was removed from
the RT and error analysis; it was included in sorting RR, AR, RA
and AA sequences, since it precedes a trial that is included in the
analysis. In addition, one participant failed to follow instructions
and the corresponding data were omitted from the analysis.

During each block in the session, the subjects received the fol-
lowing feedback. Correct responses were denoted with a short
beep sound, and error and premature, anticipatory responses were
denoted with a buzz sound. In addition, on every fifth trial, the
number of correct responses provided in that block so far was
briefly flashed across the screen. This was the only feedback that
was provided. Participants were seated at a viewing distance of
approximately 60 cm from the screen. Our protocol in Experi-
ment 2 is similar to others in the literature (e.g., Newsome and
Pare, 1988; Britten et al., 1992; Ratcliff and McKoon, 2008).

2.3. AN ADAPTED DRIFT DIFFUSION MODEL
To account for sequential effects and error effects, we consider a
simple adaptation of the pure drift diffusion model (DDM) in
which the initial condition and thresholds are updated sequen-
tially following each trial (Ratcliff and Rouder, 1998; Ratcliff and
Smith, 2004; Bogacz et al., 2006). In the pure DDM, information
is accumulated stochastically according to the following equation:

dx = µdt + σdW , x(0) = x0. (1)
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Here x(t ) represents the difference in logarithmic likelihood ratio
for the two choices, the drift rate µ (conventionally taken to be
positive) represents the difference in incoming evidence for the
correct alternative relative to the incorrect alternative, and σdW
is a Wiener (white noise) process with mean 0 and variance σ 2.
The evidence thresholds are set at ±z, and noisy accumulation
continues until x(t ) first crosses either +z (a correct decision)
or −z (an error). If the non-decision time is then given by
T nd such that RT=DT+T nd where DT is the decision time, it
can be shown that the mean DT and ER are (Gardiner, 1985;
Busemeyer and Townsend, 1992):

〈DT〉 = z̃tanh (z̃µ̃)+

{
2z̃
(
1− exp (−2 x̃0 µ̃)

)
exp (2z̃µ̃)− exp (−2z̃µ̃)

− x̃0

}
, (2)

and

〈ER〉 =
1

1+ exp(2z̃µ̃)
−

{
1− exp(−2 x̃0 µ̃)

exp(2z̃µ̃)− exp(−2z̃µ̃)

}
, (3)

in which the parameters have been scaled so that

z̃ =
z

µ
, x̃0 =

x0

µ
, and µ̃ =

(µ
σ

)2
. (4)

Given a non-zero initial condition x̃0, mean DTs are different for
correct and error trials:

〈DTcorrect〉 =
exp((z̃ − x̃0)µ̃)

1− ER

×
[(z̃ − x̃0)cosh((z̃ + x̃0)µ̃) sinh(2z̃µ̃)− 2z̃sinh((z̃ − x̃0)µ̃)]

sinh2 (2z̃µ̃)
,

(5)

〈DTerror〉 =
exp (− (z̃ + x̃0) µ̃)

ER

×
[(z̃ + x̃0)cosh ((z̃ − x̃0)µ̃) sinh(2z̃µ̃)− 2z̃sinh((z̃ + x̃) µ̃)]

sinh2(2z̃µ̃)
.

(6)

See the Appendix for derivations of equations (5 and 6).
The simplicity and analytical tractability of the DDM is a moti-

vating factor in our decision to use it as a basis for our study. We
note that the DDM is much simpler than the leaky competing
accumulator (LCA) Model (Usher and McClelland, 2001), which
has been used in prior models of sequential effects (Cho et al.,
2002; Jones et al., 2002; Gao et al., 2009). LCA processes involve
two or more coupled non-linear and stochastic differential equa-
tions. We compare the adapted DDM with the LCA-based Cho
et al. (2002), Jones et al. (2002), and Gao et al. (2009) models in
Section 3.1, using the data of Experiment 1.

2.3.1. Priming mechanism
As with other sequential effects models (e.g., Cho et al., 2002; Jones
et al., 2002; Gao et al., 2009), parameters are updated by a prim-
ing mechanism to reflect the stimulus history of repetitions and
alternations. In the Cho, Jones, and Gao Models, priming is imple-
mented by small history-based changes to the drift parameter, µ.

In contrast, in our adapted DDM we update the initial conditions
at trial n+ 1 by setting

x̃0 (n + 1) = ±k

(
M (n)−

1

2

)
± x̃offset, (7)

in which n is the previous trial number, k > 0 is a scaling constant,
and M (n) serves as a dynamic memory of repetitions and updates
at the start of each new trial. M (n) is confined to the interval [0,1],
so that M (n)− 1/2 ranges from−1/2 to 1/2. A symmetry between
R and A biases is then enforced: a positive value of M (n)− 1/2
corresponds to bias toward R trials and a negative M (n)− 1/2
corresponds to bias toward A trials. Moreover, updates to M (n)
are defined such that an increase in bias toward R trials will corre-
spond to a decrease in bias toward A trials, and vice versa. Without
loss of generality, we define our model terms such that the positive
direction for x̃offset always corresponds to the correct response.
The normalized drift parameter µ̃ must then always take a pos-
itive value, and the sign of the offset bias x̃offset and the scaling
constant k will vary from trial to trial, with positive coefficients
selected if the current trial is a repetition of the previous stimulus
and negative coefficients if it is an alternation.

The memory function is updated as follows:

M (n) = 1M (n − 1)+

{
1−1, if repetition from n − 1 to n,

0, if alternation from n − 1 to n,

(8)

where 0<1< 1. The1 parameter determines the dependence of
behavior on previous trials, with higher values corresponding to
the level of influence of trials further back in the sequence and
lower values corresponding to dependence on only recent trials.
A 1 value of 0.5 corresponds to a memory length of approxi-
mately four trials (14

= 0.0625), after which history dependence
goes below 5%. A single update parameter1 can then account for
responses to both R and A trials. In contrast, the Cho, Jones, and
Gao models used a memory function M (n) but separately tracked
R and A trials. Our model is always initialized with no bias, so that
M (1)=M (2)= 1/2, after which M (n) updates according to the
above expression. This mechanism allows for large adjustments to
initial conditions to follow the termination of strings of repetitions
or alternations. The updating mechanism is similar to updates to
biasing terms proposed in previous work (Cho et al., 2002; Gao
et al., 2009), where initial conditions and drift rates are updated.

2.3.2. Error-correcting mechanism
We also employ error-correction threshold modulation. Threshold
modulation has been studied in the context of several sequential
choice tasks (Bogacz et al., 2006; Simen et al., 2006). In particular,
models have used variable thresholds in describing optimal behav-
ior, as well as to account for variability in reaction time. Increased
caution is attributed to a higher threshold, which is understood
to follow error commission. However, prior models of sequential
effects have not included threshold modulation.

In the adapted DDM, the thresholds are adjusted after every
trial and constrained to remain symmetric at ±z̃ . After a correct
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trial, z̃ is reduced by z̃down > 0, and after an error trial, increased
by z̃up > 0 :

z̃ (n) = z̃ (n − 1)+

{
−z̃down, if correct at n − 1,

z̃up if error at n − 1.
(9)

The range of z̃(n) is constrained so that the thresholds always have
a magnitude greater than or equal to the magnitude of the ini-
tial conditions, i.e., such that z̃(n) ≥ k

2 + x̃offset; z̃(n) is also
constrained so that z̃(n) ≤ z̃max . The thresholds are initialized
conservatively such that z̃(1) = z̃max . If an update causes z̃(n) to
fall outside its bounds, z̃(n) is then set to the value of the nearest
bound until the next trial.

Sequential, error-correcting variations in the evidence thresh-
olds z̃(n) can produce significant differences between reaction
times for correct and error trials. Trials with lower thresholds have
higher ERs and faster RTs; thus, on average, error trials are faster
and correct trials slower. This effect is modulated by adjustments
to the initial condition x̃0, which result in faster correct or incor-
rect responses by biasing the system asymmetrically toward one
of the choices. The memory function and initial condition and
threshold updates add six parameters to the model: k, x̃offset, 1,
z̃down, z̃up, and z̃max, in addition to µ̃ and T nd, for a total of eight
parameters.

2.4. MODEL SIMULATION AND DATA FITTING PROCEDURE
Fitted model parameters were used to validate the adapted DDM
against data from the two experiments. Separate analysis and fit-
ting was conducted for Experiments 1 and 2. In each case, the
data were sorted by sequence, RT, and ER. Model behavior was
computed for each parameter set and then sorted similarly. The
model was run using the same stimulus sequences that each par-
ticipant had encountered. Parameters were selected by attempting
to minimize the sum of squares error between model prediction
and participant data,

Err =
N∑
i

(
ri,model − ri,data

)2
, (10)

in which the elements ri include unweighted overall mean RTs for
each of the four possible second-order sequences for repeating (R)
and alternating (A) stimuli. We considered RR, AR, RA, and AA
sequences for correct trials, for error trials, and for trials overall,
mean ERs for these sequences, as well as mean RTs before error
trials, on error trials, and after error trials. For Experiment 1, r
had N = 19 elements. For Experiment 2, r had N = 3× 19= 57
elements, because data was included for each of the 3 values of
PA. Time was considered in units of seconds and ERs in decimal
fractions of trials, so that range of parameters for elements of r
were comparable.

The search for parameters was conducted using a Trust-Region-
Reflective Optimization (TRRO) algorithm (Coleman and Li,
1994, 1996). The function lsqnonlin in Matlab was used with
default options to search and select parameters that minimize
equation (10). For each parameter set and experimental condi-
tion, the model ran at least 5 times through the stimulus sequence
that each participant had encountered in a given block of trials.

(Thus, if a participant were to see left, then left, then right stimuli,
the model was presented with those same stimuli in sequence left-
left-right, along with the stimuli preceding and following them,
and these entire sequences would be repeated for the model sub-
ject at least 5 times.) For each trial the probability of error was
computed from equation (3) and from this number the correct-
ness or error of that trial was decided by biased coin flip. The
expected correct or error RT for the trial was then obtained from
equation (5) or equation (6), and parameter updates were imple-
mented according to equations (7–9). The individual trial results
were then sorted and averaged in the same manner as the experi-
mental data, model predictions were inserted into equation (10),
and model parameters were updated by the TRRO algorithm. This
was repeated until the lsqnonlin convergence criterion was met.
To produce the model data plots in Section 3, each model with its
best fit parameters was rerun 10 times and the resulting RTs and
ERs computed by averaging over these runs.

Use of the analytical expressions of equations (3–6) for expected
ERs and RTs substantially speeds up the fitting process, since
direct numerical simulations of equation (1) are avoided. The
final parameter selections are listed in Table 1, and the results
and implications of the fitting process are considered in the results
and discussion sections of this paper.

A study of the differences between the two tasks can lend some
insight into the different fit parameterizations for each of the
experiments. We note that the choice tasks presented in Experi-
ment 2 are more challenging than those of Experiment 1, in which
stimuli were highly discernable. The difference in signal to noise
ratios (µ̃) in the fits to the two experiments is therefore to be
expected. In addition, more difficult tasks generally incur more
conservative or cautious behavior in subjects, even when it is not
in the subjects’ best interests (Bogacz et al., 2006). Increased cau-
tion (and consequently higher thresholds in DDM fits) have been
shown to correspond to more difficult tasks (e.g., Ratcliff et al.,
2000, 2001, 2004). Thus, after correct responses in Experiment 2,
model threshold adjustments (z̃down) are small, whereas in Experi-
ment 1 they are larger, and corrections after errors (z̃up) are smaller
in Experiment 1 than in Experiment 2. Our 1 values are consis-
tent with studies showing stimulus history dependence of up to 4
trials back (e.g., Soetens et al., 1984). The remaining parameters
are relatively closer in magnitude for both experiments.

3. RESULTS
In order to better understand the relationship between sequen-
tial effects and error effects, data from the two experiments were
sorted by stimulus sequence and response correctness and com-
pared with model predictions. We first note several trends from
this analysis in the Experiment 1 data. We then analyze data from
Experiment 2, and we consider how error and sequential effects
are influenced by the relative frequencies of repetition (R) and
alternation (A) trials. At the same time, we validate our model fits
by comparing them with the data from the two experiments.

In our analysis, we refer to RA and AR sequences as unexpected
sequences, and RR and AA sequences as expected sequences. The RT
for an RA sequence is the RT corresponding to the A trial, and for
an AR sequence, the RT corresponding to the R trial. We call an R
line one which connects plotted data for RR and AR, and an A line
one which connects plotted data for RA and AA. We consider only
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the two most recent trials in each sequence in our calculations, as
the effects of errors are known to have a limited duration (Rabbitt,
1966); moreover, for the strongly biased stimuli (PA= 10, 90%)
of Experiment 2, longer sequences of A’s, respectively, R’s, occur
too rarely to yield sufficient data. The degrees of freedom for the
F-tests were Greenhouse-Geisser adjusted for all reported main
effects and interactions in which there were significant violations
of sphericity.

3.1. EXPERIMENT 1: ERROR DYNAMICS IN UNBIASED TASKS
We consider sequential effects and error effects in Experiment
1 data (referred to as Cho Data), in which R and A trials were
equally likely, and as has been customary, we initially average over
all responses, correct and incorrect. We first discuss overall sequen-
tial effects in RT and ER, as shown in Figure 2. As expected, we find
the smallest mean RT and ER for expected trials (RR, AA), and the
largest mean RT and ER for unexpected trials (AR, RA). The effects
of sequence on RT [F(3,15)= 14.81, p< 0.001, η2

= 0.13] and ER
[F(3,15)= 8.80, p< 0.01, η2

= 0.25] were significant in two one-
way, within-groups ANOVAs. We consider also three published,
generative models of the data in Experiment 1, which we refer to
as the Cho et al. (2002), Jones et al. (2002), and Gao et al. (2009)
Models, respectively. These models were designed to account for
these basic sequential effects, and we note that they, as well as the
adapted drift diffusion model (DDM) described in Section 2.3,
account for trends in mean RTs and ERs.

We next consider the data separated into correct and error tri-
als, shown in Figure 3A as solid and dotted lines, respectively.

Splitting the data in this way reveals a separation in mean RT for
correct and error responses that is greatest for unexpected trials
(AR, RA) and least for expected ones (RR, AA). For unexpected
trials, error responses are fast, and correct responses are slow.
A two-way within-groups ANOVA shows the effect of response
correctness is significant [F(1,5)= 113.93, p< 0.001, η2

= 0.35)],
along with the interaction of response correctness and expected-
ness of a stimulus [F(1,5)= 16.51, p< 0.01, η2

= 0.19]. We note a
slight asymmetry in the responses such that RTs for error and cor-
rect trials are closer for the R lines than for the A lines. Figures 3B,C
illustrate the results of the Cho and Jones Models, respectively, and
Figures 3D,E those of the two versions of the Gao Model. While
all four of these models capture the trends in RT for correct tri-
als, none of them predicts the qualitative patterns or quantitative
results for error trials. Since the ERs are generally low, RTs averaged
over both correct and error trials are close to the mean RTs for the
correct trials alone, and this failure of the models becomes appar-
ent only when error trials are considered separately (cf. Figure 2,
which displays fairly good fits, and see Cho et al., 2002; Jones et al.,
2002; Gao et al., 2009). This analysis also reveals that the errors,
while fast on average, are not uniformly so, being significantly
faster for unexpected sequences (AR, RA). Moreover, as shown in
Figure 3F, the adapted DDM accounts for all the RT data.

Strikingly, we note that when plotted against each other as in
Figure 4, RTs for correct and error trials for the sequences RR, AR,
RA, and AA display a monotonic and nearly linear relationship,
which we call the sequential RT tradeoff. As we shall see, such a
tradeoff also holds for Experiment 2. In Figure 4 we show the

Table 1 | DDM parameterization.

µ̃ T nd K x̃0,offset 1 z̃down z̃up z̃max

Experiment 1 38.1747 0.2626 0.0943 0.0051 0.6860 0.0058 0.0348 0.2857

Experiment 2 19.3312 0.3359 0.1181 0.0034 0.6882 0.0034 0.1635 0.2062

A B

FIGURE 2 | Mean (A) RTs and (B) ERs for the data in Experiment 1
(Cho Data), the three published fits to the data (Cho, Jones, Gao), and
the fit presented for this data in the adapted DDM of the present
study. In the diagram, an RR sequence refers to the RT on the second

repetition of a stimulus (e.g., left, left, left ) and an AR sequence refers to
the RT on the first repetition of a stimulus (e.g., left, right, right ), etc. The
adapted DDM provides the best fit to RTs, but underestimates errors,
especially for AA sequences.
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FIGURE 3 | Sequential effects in Experiment 1: (A) data, (B) results of the
Cho Model (Cho et al., 2002), (C) results of the Jones Model (Jones et al.,
2002), (D,E) results of the Gao Models (Gao et al., 2009), and (F) results
of the adapted DDM. The Cho and Jones models predict a dimensionless
reaction time, which we give here in non-dimensional units (B,C). The adapted

DDM captures the slopes of the R and A curves for error and correct trials. In
these figures, the correctness or lack thereof of a given trial corresponds only
to that trial itself, so a left-right-left sequence is tabulated as correct for the
final left stimulus if and only if the final trial were identified correctly as a left
stimulus.

data from Experiment 1 (R2
= 0.995, p< 0.01) and the adapted

DDM, and from a separate study by Jentzsch and Sommer, 2002;
R2
= 0.96, p< 0.05). The area of the circles are proportional to the

ERs for the given sequences. We note that the smallest ERs corre-
spond to sequences with relatively fast correct responses and slow
errors, while the high ERs occur with relatively fast errors and slow
correct responses. While the overall ordering of the sequences (RR,
AR, RA, AA) in the tradeoff differs between the two experimen-
tal studies, in both cases the points corresponding to unexpected
trials (AR, RA) lie at the upper left, and those corresponding to
expected trials (RR, AA) lie at the lower right.

The ordering of the tradeoffs is influenced by the nature of
the task. However, in each task we see that an increase in time to
respond correctly (or a bias toward the correct response) is corre-
lated with a decrease in time to respond in error, and vice versa.
Our proposed biasing mechanism achieves a similar effect.

Finally, we consider the RTs before, during, and after an error
in Experiment 1, as shown in Figure 5. Mean RTs for trials imme-
diately following an error are longer than both those for the error
trial itself and for the trial immediately before the error. A one-way
within-groups ANOVA confirms that this effect on RT is signif-
icant [F(2,10)= 16.37, p< 0.001, η2

= 0.48]. We again compare
the behavior with the adapted DDM and the three previous mod-
els. In the Cho Model, the RT after an error is slower than the
RT on the error trial but faster than the trial immediately prior to

FIGURE 4 | Sequential RT tradeoff for unbiased tasks: a slower RT for
correct trials corresponds to a faster RT for error trials for the
sequences RR, AR, RA, and AA. The RT tradeoff for Experiment 1 is shown
in red. Also shown, in blue: the RT tradeoff from a prior study by Jentzsch
and Sommer (2002). Adapted DDM fits to Experiment 1 data are shown in
black. The areas of the circles are proportional to the ERs.

the error. The Jones Model maintains the trends in the data but
parameter values are skewed so that the range of RTs is larger. In
the two Gao Models, mean RTs for trials immediately preceding
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and following an error are faster than those on the error trial itself:
opposite to the data. The adapted DDM provides the best fit, with
the RTs for error trials and post-error trials closely matching the
data, although it underestimates RTs on the pre-error trial.

We compare the adapted DDM with the other models using
the Akaike Information Criterion (AIC; Akaike, 1974; Stone,
1979), corrected AIC (AICc; Hurvich and Tsai, 1989; Burnham
and Anderson, 2002), and Bayesian Information Criterion (BIC;
Akaike, 1980; Smith and Spiegelhalter, 1980), which provide
model fit comparisons that account for the number of parame-
ters included in each model. Scores for the different model fits
are shown in Table 2. The adapted DDM receives the best overall
and relative scores on all three metrics, confirming the fit qualities
shown in Figures 2–5. AICc values cannot be computed for the
Gao model, because the number of means being compared is too
close to the number of parameters used in the model itself.

3.2. EXPERIMENT 2: INFLUENCE OF STIMULUS ALTERNATION
FREQUENCY

We now consider the role that alternation frequency plays in
sequential and error effects. We first address overall trends in
RT and ER, as shown in Figures 6A,B, respectively, following the

convention in the sequential effects literature (e.g., Soetens et al.,
1985; Jentzsch and Sommer, 2001; Cho et al., 2002). Trends for the
PA= 50% blocks match trends from Experiment 1 with longer
RTs and higher ERs for unexpected trials, and shorter RTs and
lower ERs for expected trials. Trends for the PA= 10% blocks and
PA= 90% blocks are clearly distinguishable from the trends for
PA= 50% blocks, notably in the magnitudes of the slopes of R
and A lines. Further, there is an approximate symmetry between
the PA= 10% case and the PA= 90% case.

Sequential effects in mean RTs are clearly influenced by the
probability of alternations, with respect to both overall mean RTs
and ERs (Figures 6A,B). Mean RTs for unexpected sequences (AR,
RA) remain similar for all PA conditions but there are signifi-
cant differences in mean RTs for expected sequences (RR, AA).
For the highest PA, RT is faster on AA trials than the correspond-
ing sequence RTs for lower PAs, and for the lowest PA, the RT
is faster on RR trials than the corresponding sequence RTs for
higher PAs. As expected, we find that the effects of sequence
[F(3,42)= 50.62, p< 0.001, η2

= 0.26] and its interaction with
PA [F(3.36, 47.04)= 43.09, p< 0.001, η2

= 0.26] on RT are both
significant. Error rates are greatest for AR trials at the highest PA

and RA trials at the lowest PA. The effects of sequence [F(1.95,

FIGURE 5 | Post-error slowing in Experiment 1 data and in the
models of Cho et al. (2002), Jones et al. (2002), Gao (first model;
Gao et al., 2009), and the adapted DDM of the present study. In the
Experiment 1 data, the mean RT for a trial immediately following the
error trial is slower than that for the trial before the error, and the mean

RT for the error trial itself is fast. The Cho and Gao models fail to
account for both trends. The Jones Model accounts for the proper
trends but overestimates the magnitude of the post-error slowing. The
adapted DDM accounts for both trends but underestimates post-error
RTs.

Table 2 | Model performance comparison.

Model Total parameters R2 AIC AICc BIC

Adapted DDM 8 0.996 84.7 115.1 108.2

Cho 13 0.936 138.2 237.0 176.5

Gao 1 18 0.915 140.4 – 193.4

Gao 2 18 0.951 137.0 – 190.0

Jones 16 0.943 146.9 450.9 194.1
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FIGURE 6 | Mean (A) RTs and (B) ERs for the three values of PA in
Experiment 2, averaged over correct and error trials. The influence of PA is
most apparent in the mean RT plot on expected trials (RR, AA) and in the
mean ER on unexpected trials (AR, RA). Model fits for (C) RTs and (D) ERs

re-create behavioral trends in RTs and ERs but overestimate RTs for expected
trials (RR, AA). The error bars in plots (A,B) represent the standard error of the
mean, and in (C,D) the average value of standard error of the mean over 10
simulation runs (see Section 2.4 for details).

27.30)= 20.86, p< 0.001, η2
= 0.31] and its interaction with PA

[F(2.46, 34.44)= 20.19, p< 0.001, η2
= 0.32] on ER are also both

significant. The adapted DDM reproduces the qualitative pat-
terns in the data, but overestimates RTs for expected sequences
when their probabilities are low (RR, with PA= 90%; AA, with
PA= 10%), and underestimates ERs for unexpected sequences
(AR, RA): Figures 6C,D.

We also found that the overall sequential effects are influenced
by the probability of alternations. The relationship between the
time to respond to sequences ending in R versus A on the final
sequence is known to indicate relative preference for R or A tri-
als (Audley, 1973). Prior work has shown that preference for A
trials varies with RSI, but the role of the likelihood of A trials in
determining the relative preference for A has not been studied.

The green lines corresponding to PA= 50% in Figures 7A,C
show no preference for R or A: expected sequences (RR, AA) yield
faster RTs symmetrically in R and A than unexpected sequences
(AR, RA). The red PA= 10% blocks show a strong preference for
R: the mean RT after an R is faster in the case of RR than it is for
AR, whereas the RT after A is similar for both RA and AA. The blue
lines corresponding to PA= 90% show a strong preference for A:

the RT after an A is faster in the case of AA than it is for RA, whereas
the RT after an R is similar for both RR and AR. For PA= 10%, the
model predicts, as in the data, that the repetition RT is faster for
RR than it is for AR, but the model predicts a slower alternation RT
for AA than for RA, and it shows a symmetric trend for PA= 90%.
In summary, both data and model exhibit increases in preference
for A with increased probability of alternations, showing that rel-
ative preferences for R or A trials can be influenced by transition
probabilities in addition to task properties such as RSI.

In Figures 7A–C we replot the mean RT data, separated
into correct and incorrect responses, thus revealing differing
sequential effects for each PA. A two-way within-groups ANOVA
shows that the effects of correctness [F(1,14)= 249.64, p< 0.001,
η2
= 0.80], whether or not the trial was expected [F(1,14)= 54.70,

p< 0.001, η2
= 0.44], and the interaction of these two factors

[F(1,14)= 88.38, p< 0.001, η2
= 0.62] are all significant. For

unbiased sequences (PA= 50%), sequential effects are again simi-
lar to those for correct and error trials in Experiment 1 (Figure 7B,
cf. Figure 3A). For both low and high PA blocks, the orientations
of the R and A lines are maintained, with correct R lines sloping
upwards from RR to AR and correct A lines sloping down from RA
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FIGURE 7 | (A–C) RT data for error and correct trials in Experiment 2
compared with the adapted DDM (D–F). The slopes of the R and A
lines are reversed for correct and incorrect responses. Error trials
incur faster responses on unexpected trials (RA, AR) than on
expected trials (RR, AA); this trend is reversed for correct responses.
For low PA, the R lines overlap, and for high PA, the A lines overlap,

resulting in an approximate reflectional symmetry between data for
the high and low PA blocks, so that sometimes the mean time for an
error trial is slower than for a correct trial. The error bars in plots (A–C)
represent the standard error of the mean, and in (D–F) the average
value of standard error of the mean over 10 simulation runs (see
Section 2.4 for details).

to AA. For PA= 50%, the slopes of the R and A lines for incorrect
responses are nearly opposite the slopes of the R and A lines for
correct responses. For PA= 10% blocks, the R lines cross and the A
lines are further apart than in the PA= 50% blocks. For PA= 90%
blocks, we see a mirrored trend, in which the A lines cross and the
R lines are further apart than in the PA= 50% block. We also note
a striking asymmetry for the biased stimuli: for PA= 10% R lines
are, on average, closer together than A lines, and for PA= 90%
this relationship is mirrored, so that A lines are closer than R lines.
However, the mirroring is not perfect: the degree of overlap in R
lines is greater for PA= 10% than the corresponding overlap in A
lines for PA= 90%.

The trends in correct and error trial RTs, including the crossover
of the R and A lines, are generally captured by the adapted DDM,
as shown in Figures 7D–F. However, the steepness of slope of the
R (respectively, A) lines are underestimated for correct trials for
PA= 90% (10%), due to overestimation of the RR (AA) RTs.

Next, we note that the sequential RT tradeoff between correct
and error responses is also observed in Experiment 2, as shown
in Figure 8A. As in Figure 4, the areas of the circles are propor-
tional to the corresponding ERs. The relationship between RTs
for correct and error trials for each of the sequences RR, AR, RA,
and AA is monotone (and nearly linear) for all points shown in

the figure (R2
= 0.75, p< 0.001), and this correlation is also cap-

tured by our model (R2
= 0.74, p< 0.001). The sequences with

the largest ER have relatively fast RTs for errors and relatively
slow RTs for correct trials. Note, however, that data for individ-
ual PA

’s of 10, 50, and 90% is not quite as strongly correlated.
Differences in order can be expected because the sequential effects
for each probability of alternation are influenced by the probability
of alternation.

Finally, we note that post-error slowing occurs for all PA blocks
with the same trend: the error trial itself incurs a slightly faster RT
than the trial which precedes it, and the post-error trial incurs an
RT significantly slower than RTs for the preceding two trials, as
shown in Figure 9. A two-way within-groups ANOVA indicates
that the effects of time before, upon, and after an error com-
mission [F(1.36, 19.04)= 68.25, p< 0.001, η2

= 0.57] and on PA

[F(2,28)= 5.83, p< 0.01, η2
= 0.07] are both significant, but the

effect of their interaction is not significant. Thus, in Experiment 2,
pre- and post-error RTs share the pattern of RTs in Experiment 1,
and this pattern is preserved over all three values of PA. The bottom
panel shows that our model both qualitatively and quantitatively
captures the post-error slowing in Experiment 2. However, as in
Experiment 1 (Figure 5), the model fails to produce the observed
speed-up on the error trial itself.
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FIGURE 8 | Sequential RT tradeoff for Experiment 2. Mean RTs for correct trials are strongly correlated with mean RTs for error trials for each of the
sequences RR, AR, RA, AA, for each value of PA for both (A) data and (B) adapted DDM.

FIGURE 9 | (A) Post-error slowing in Experiment 2 data is
independent of PA. (B) The model fit also predicts post-error slowing
but does not fully account for pre-error speeding. The error bars in

plot (A) represent the standard error of the mean, and in (B) the
average value of standard error of the mean over 10 simulation runs
(see Section 2.4 for details).

4. DISCUSSION
In this paper, we propose priming and error-correcting mecha-
nisms to account for sequential effects and post-error slowing,
respectively. Each mechanism, on its own, is commonplace in
models of decision making. Indeed, various priming mechanisms
have been previously proposed to account for sequential effects
(Cho et al., 2002; Jones et al., 2002; Gao et al., 2009). Post-error
slowing is also known to occur and exert a significant influence
on RT patterns (Rabbitt, 1966, 1968a; Laming, 1979b). The imple-
mentation of post-error slowing is understood to be a simple one:
in an accumulator model, the response thresholds can be raised
following an error to increase the necessary processing time before
a decision is reached (Rabbitt and Rodgers, 1977; Rabbitt and Vyas,
1981; Brewer and Smith, 1984; Jentzsch and Dudschig, 2009). To
the best of our knowledge, no prior model of sequential effects
has explicitly incorporated such an error-correcting mechanism to
also account for post-error slowing. We consider sequential effects
for both high and low probabilities of alternations, a consideration
unique to this paper: previously, sequential effects for sequences of

alternating and repeating stimuli had been studied only for stim-
uli in which the probabilities of alternations and repetitions were
equal.

Our model is informed by previous work: the initial conditions
are varied according to a priming function similar to those in other
models (Cho et al., 2002; Jones et al., 2002; Gao et al., 2009), and the
thresholds are raised after incorrect responses and lowered after
correct ones (Simen et al., 2006). Variability in thresholds of drift
diffusion processes during a trial can result in fast errors (Ratcliff
and Rouder, 1998). Our implementation, however, is unique: we
use both priming and error-correcting mechanisms in the same
model. In doing so, we can account for many of the observed
trends in behavior.

Our adaptation of the pure drift diffusion model has multi-
ple advantages. The pure DDM is analytically simple, and explicit
expressions exist for both RT distributions and accuracy, and sep-
arate and closed-form expressions for mean RTs can be derived
for correct and error responses, as shown in the Appendix. With
non-zero initial conditions, the pure DDM can also account for
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RT distributions for correct and error trials. Moreover, the prim-
ing and error-correction mechanisms that we have proposed are
conceptually straightforward. With the error-correction mecha-
nism, our model accounts for post-error slowing: the RT for the
trial which immediately follows an error trial is not only signif-
icantly slower than the error trial but also slower than the RT
for the trial immediately preceding the error. We show that when
thresholds are systematically adjusted to account for error and cor-
rect responses and priming is implemented, sequential patterns in
error and correct response trial RTs emerge and are consistent with
participant behavior, as shown in Figures 5 and 9.

Indeed, our adapted DDM predicts the characteristic trends in
mean RTs for sequences ending in correct or incorrect responses
whereas several other models do not. We show experimentally and
for the first time that unexpected trials (AR or RA) result in rel-
atively slow correct responses and fast errors, whereas expected
trials (RR or AA) result in relatively fast correct responses and
slow errors as shown again in Figures 3 and 7. Our model cap-
tures aspects of this behavior with the incorporation of post-error
adjustments to the model thresholds: priming accounts for the
sequential patterns in RT for correct trials, and error-correction
accounts for the patterns in RT for the error trials.

The relationship between RTs for correct and error trials
is central to our model: biasing the initial conditions toward
expected sequences automatically biases them against unexpected
sequences. Subjects biased against an unexpected stimulus will
then respond to it slowly if they are to respond correctly, and
rapidly if they are to respond in error. In contrast, in pre-
vious work (Cho et al., 2002; Jones et al., 2002; Gao et al.,
2009), the biasing was instead applied to sensitivity to stimu-
lus, so that the relationship between RT for error and correct
trials was less direct. Moreover, when biasing is coupled with
explicit post-error adjustments, further nuances in the relation-
ship between mean time to respond correctly versus in error may
be realized.

Significantly, we also identify a sequential RT tradeoff, in which
the correlation between the mean RTs for error and correct trials
for each of the sequences (RR, AR, RA, AA) is quite strong: a faster
RT on an error response corresponds to a slower RT on a correct
response. The correlation between mean RTs for correct and error
trials is captured by our model, as shown in Figures 4 and 8.

We then show that sequential effects in mean RTs overall, as
well as in mean RTs for correct and error trials, are significantly
influenced by the probability of alternations. Our data reveals
remarkable near-mirror-symmetry between RT patterns for alter-
nations when the probability of alternations is low and repetitions
when the probability of alternations is high: incorrect responses
are fast and correct responses are significantly slower. Sequential
effects in ER also vary with the probability of alternations. Our
model captures this near-symmetry in Figures 6 and 7.

Moreover, we have shown, both in our data and in our model,
that an increase in the likelihood of alternations corresponds to
an increase in relative preference for alternations. This can be
inferred from the RT versus sequence plots in Figure 6A. The
change in alternation preference with changing likelihood of alter-
nations suggests that choice behavior can be informed and even
manipulated by the probabilistic structure of the environment.

The sequential effects in RT and ER for various probabilities
of alternation are of particular interest due to their relevance
to prior physiological studies. In particular, previous work has
shown that the anterior cingulate cortex (ACC) is sensitive to
alternations in a sequence of stimuli and identified correspond-
ing neural signals (e.g., Botvinick et al., 2001). Prior models
of sequential effects, such as those of Jones et al. (2002) and
Gao et al. (2009) have included a “conflict” signal informed by
activity in the ACC, and the signal increases in strength with fre-
quent alternations. However, the near-symmetry of behavior at
high and low probabilities of alternations in our data suggests
a comparable sensitivity to repetitions and alternations, rather
than to alternations alone. Indeed, prior work has suggested that
the role of the conflict signal in trials with long RSI, such as
those considered in this paper, is a minor one (Jones et al., 2002;
Jentzsch and Leuthold, 2005) and secondary to that of explicit
error correction. Jones et al. (2002) found that the incorpora-
tion of a conflict signal in their model resulted in a small but
significant improvement in model fit. For short RSI, however,
the role of response conflict is more significant (Jentzsch et al.,
2007; Jentzsch and Dudschig, 2009). Future work could further
clarify the respective roles of response caution (thresholds) and
response conflict (ACC) co-varying RSIs and probabilities of
alternation.

Additional directions for future work include a considera-
tion of alternative error-correction and priming mechanisms. For
example, the magnitude of adjustments made due to our prim-
ing mechanism varies from trial to trial, while adjustments from
the error-correction mechanism are consistent. Alternate models
in which different update schemes are employed are worthy of
consideration. Such a study could allow for further model simpli-
fication and provide a stronger account of behavior in choice tasks.
Moreover, sufficient data should be gathered so that sequential and
error effects can be studied and described for individual partici-
pants, by fitting RT distributions for different stimulus sequences
and individual participants. Finally, a consideration of human
behavior in more difficult tasks, such as those with low or vari-
able stimulus discriminability, or tasks in which the probability
of alternations varies during blocks of trials, can build upon our
work.

In this paper, we have presented a neurally plausible and con-
ceptually straightforward account of sequential effects and post-
error slowing by developing a simple repetition-based priming
mechanism, coupled with an error-correction mechanism. We
implemented these mechanisms within the context of a pure
DDM, so the behavior can be described analytically and in closed
form. Despite its simplicity, our implementation of the DDM
accounts for nuances in behavior which are not found in pre-
vious models. In particular, we identified in our data, and our
model accounted for, sequential effects for correct and error trials,
as well as for trials during blocks with high and low probabili-
ties of alternations. This suggests that an error-correction process,
such as a simple adjustment of response thresholds after each
trial, plays an instrumental role in sequential patterns in RT.
Future work may further clarify the implementation of the error-
correction process and its implications for perceptual decision
making tasks.
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APPENDIX
In this section, we derive the mean reaction time for the drift diffusion model (DDM) conditioned on hitting either the upper zu or
lower−z l boundaries, and for a general initial condition x0 ∈ (−z l, zu).

Suppose that x(t ) is the position of a Brownian particle at time t. The dynamics of the movement of this particle are governed by
the drift diffusion equation:

dx = µdt + σdW (A1)

x (0) = x0, (A2)

in which µ is the deterministic drift of the particle, x0 is the starting position, and σdW are independent white noise (Weiner) incre-
ments of r.m.s strength σ . We assume that the particle is allowed to move until it hits either an upper boundary x(T )= zu or a lower
boundary x(T )=−z l where T is the hitting time. In this case, the joint densities of the hitting time for boundaries at zu and −z l are
given by

g (t , x (T ) = zu) =
πσ 2

(zu + z l)
2 e

µ

σ 2 (zu−x0)
∞∑

n=1

ne−αn t sin

(
nπ (zu − x0)

zu + z l

)
, t ≥ 0, (A3)

g (t , x (T ) = −z l) =
πσ 2

(zu + z l)
2 e
−
µ

σ 2 (z l+x0)
∞∑

n=1

ne−αn t sin

(
nπ (z l + x0)

zu + z l

)
, t ≥ 0, (A4)

where αn =
1
2

[
µ2

σ 2 +

(
nπσ

zu+z l

)2
]

(cf. Feller, 1968; Ratcliff, 1978; Ratcliff and Smith, 2004).

To obtain the conditional densities, one must divide the above equations by the probability of hitting that particular boundary, i.e.,
g (t |x(T ) = zu) = g (t , x(T ) = zu)/P[x(T ) = zu]. These probabilities are (Feller, 1968)

P [x (T ) = zu] =
e
−2

µx0
σ 2 − e

2
µz l
σ 2

e
−2

µzu
σ 2 − e

2
µz l
σ 2

, (A5)

P [x (T ) = −z l] =
e
−2

µzu
σ 2 − e

−2
µx0
σ 2

e
−2

µzu
σ 2 − e

2
µz l
σ 2

. (A6)

Thus, the mean reaction time conditioned on hitting the upper boundary is given by

〈T 〉|zu
=

∫
∞

0
tg (t |x (T ) = zu) dt

=
1

P [x (T ) = zu]

πσ 2

(zu + z l)
2 e

µ

σ 2 (zu−x0)
∞∑

n=1

nsin
(

nπ(zu−x0)
zu+z l

)
α2

n
.

(A7)

Fortunately, a closed-form expression exists for the sum of the infinite series (Prudnikov et al., 1986; Tuerlinckx, 2004):

∞∑
n=1

nsin
(
ny
)(

C2 + D2n2
)2 =

1

D2

[
πy

4 C
D

cosh
((
π − y

) C
D

)
sinh

(
π C

D

) −
π2

4 C
D

sinh
(
y C

D

)
sinh2 (π C

D

)] . (A8)

We set C2
= µ2/2σ 2, D2

= (πσ)2/2(zu + z l)
2, and y = (zu− x0). After some algebra, we arrive at a closed form for the mean decision

time conditioned on hitting the upper boundary:

〈T 〉|zu
=

1

P [x (T ) = zu]

1

µ
e
µ(zu−x0)

σ 2

 (zu − x0) cosh
(
µ(z l+x0)

σ 2

)
sinh

(
µ(zu+z l)

σ 2

)
− (zu + z l) sinh

(
µ(zu−x0)

σ 2

)
sinh2

(
µ(zu+z l)

σ 2

)
 . (A9)
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In a similar fashion we obtain the mean decision time conditioned on hitting the lower boundary:

〈T 〉|−z l
=

1

P [x (T ) = −z l]

1

µ
e
−µ(z l+x0)

σ 2

 (z l + x0) cosh
(
µ(zu−x0)

σ 2

)
sinh

(
µ(zu+z l)

σ 2

)
− (zu + z l) sinh

(
µ(z l+x0)

σ 2

)
sinh2

(
µ(zu+z l)

σ 2

)
 . (A10)
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When people make decisions, do they give equal weight to evidence arriving at different
times? A recent study (Kiani et al., 2008) using brief motion pulses (superimposed on a
random moving dot display) reported a primacy effect: pulses presented early in a motion
observation period had a stronger impact than pulses presented later. This observation
was interpreted as supporting the bounded diffusion (BD) model and ruling out models in
which evidence accumulation is subject to leakage or decay of early-arriving information.
We use motion pulses and other manipulations of the timing of the perceptual evidence
in new experiments and simulations that support the leaky competing accumulator (LCA)
model as an alternative to the BD model. While the LCA does include leakage, we show
that it can exhibit primacy as a result of competition between alternatives (implemented
via mutual inhibition), when the inhibition is strong relative to the leak. Our experiments
replicate the primacy effect when participants must be prepared to respond quickly at the
end of a motion observation period. With less time pressure, however, the primacy effect
is much weaker. For 2 (out of 10) participants, a primacy bias observed in trials where
the motion observation period is short becomes weaker or reverses (becoming a recency
effect) as the observation period lengthens. Our simulation studies show that primacy is
equally consistent with the LCA or with BD. The transition from primacy-to-recency can
also be captured by the LCA but not by BD. Individual differences and relations between
the LCA and other models are discussed.

Keywords: bounded diffusion, LCA, perceptual choice, non-stationary evidence, order effects

INTRODUCTION
The process of decision making has been the subject of intensive
recent investigations in both experimental psychology (Usher and
McClelland, 2001; Ratcliff and Smith, 2004; Brown and Heath-
cote, 2005; Bogacz et al., 2006; Ratcliff and McKoon, 2008; van
Ravenzwaaij et al., 2012) and neuroscience (Huk and Shadlen,
2005; Gold and Shadlen, 2007; Ratcliff et al., 2007; Wong et al.,
2007; Wang, 2008; Ditterich, 2010; Rorie et al., 2010). A central
idea emerging from these investigations is that decision makers
take multiple samples of noisy evidence and integrate them over
time until the integrated evidence reaches a decision boundary.
The time to reach the bound determines the reaction time (Gold
and Shadlen, 2001, 2002; Roitman and Shadlen, 2002). Some
of these decision making models generate optimal decisions in
the sense that they achieve the shortest possible mean reaction
time for a fixed error-rate (Wald, 1946; Gold and Shadlen, 2001,
2002; Bogacz et al., 2006). In addition, neurophysiological stud-
ies have reported that when monkeys make decisions about the
direction of motion in a noisy moving dots display, neurons in sev-
eral visual-motor integration areas (e.g., the lateral intraparietal
cortex, LIP) show ramping activity consistent with the integra-
tion of evidence (Hanes and Schall, 1996; Gold and Shadlen,

2000, 2001; Horwitz and Newsome, 2001; Shadlen and Newsome,
2001).

A number of computational models that can account for both
the behavioral and physiological choice data have been developed.
These models not only account for the accuracy of participants’
responses, but also for details of the distributions of response times
and their dependence on experiment conditions such as diffi-
culty levels and speed-accuracy instructions (Ratcliff and McKoon,
2008).

The starting point for a wide range of decision making research
is the drift-diffusion model (Ratcliff, 1978; Ratcliff and Rouder,
1998; Ratcliff and McKoon, 2008). In this model, the difference
in evidence supporting each of two decision-alternatives is accu-
mulated linearly over time, without loss or distortion. Here we
consider a variant of this model that is often used to address neuro-
physiological data (Mazurek et al., 2003; Figure 1B). This model is
represented as a process in which accumulators integrate the differ-
ence in the momentary evidence for the two alternatives via a com-
bination of feed-forward excitation and inhibition, such that pos-
itive evidence for one alternative is negative evidence for the other.

In recent years, several researchers have proposed decision mak-
ing models that do not adhere to the perfect integration of the
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FIGURE 1 | Architecture of the two-choice reaction-time models.

(A) The leaky competing accumulator model (Usher and McClelland, 2001),
(B) Mazurek et al. (2003) model. Arrows and filled circles indicate excitatory
and inhibitory connections respectively. Blue tears indicate leakage.

drift-diffusion model. These models include variations based on
the Decision Field Theory (Busemeyer and Townsend, 1993; Roe
et al., 2001; Johnson and Busemeyer, 2005), the neurophysiologi-
cally grounded attractor network model (Wang, 2002; Wong and
Wang, 2006) and the leaky competing accumulator model (LCA;
Usher and McClelland, 2001; Bogacz et al., 2007). To varying
degrees, all of these models draw on inspiration from princi-
ples of neural computation and attempt to capture ways in which
decision making deviates from perfect optimality. For example,
these models incorporate the possibility of leakage or decay of
information, as well as mutual inhibition between the representa-
tions of the decision-alternatives, and both the attractor and LCA
models incorporate non-linearities that can affect information
integration.

In the present work we focus primarily on the LCA (Figure 1A).
In this model, as in the model of Mazurek et al. (2003), accu-
mulators representing the available alternatives accumulate noisy
evidence over time, but in this case, there is no feed-forward inhi-
bition. Instead, accumulated evidence is subject to leak, and the
accumulators compete with each other through mutual inhibition.
The LCA has been successful in capturing a number of features of
human decision making data (Usher and McClelland, 2001, 2004;
Bogacz et al., 2007; Gao et al., 2011; Tsetsos et al., 2011). This
model is intermediate in complexity between the other models;
it introduces a lower bound on activation, unlike the decision
field theory, but it lacks additional features that are present in the
attractor model, including an activity dependent gating of special
channels that change its leakage characteristics. We retain the lower
bound at 0 because it has important implications for aspects of the
dynamics of decision making that have already received support
in another recent study (Tsetsos et al., 2011). As we shall see, this
lower bound will also play a role in understanding the findings
we will present in the present article. The greater simplicity of the
LCA compared to the attractor model (Wang, 2002) makes it more
tractable for analysis, and this is one of the prime reasons for our
focus on the LCA. We are open, however, to the possibility that the
added features of the attractor model may be important, and we
will return to this class of models in the Section “Discussion.”

Research on decision making often employs what is called the
free-response paradigm, which sets up decision-time under the
control of the observer. In this paradigm, a stimulus is presented
on each trial, and participants are assumed to integrate evidence
until they reach a decision bound. All of the models under con-
sideration assume that this bound represents a criterion amount
of accumulated evidence. However, the models differ in their han-
dling of decision making in time-controlled paradigms, in which
evidence is presented for a period of time controlled by the exper-
imenter, and in which the overt response is prompted by a cue
called a go cue. When difficult stimuli are used in such experi-
ments, stimulus sensitivity (measured by d ′) is 0 with very short
evidence accumulation times, then rises to a finite asymptotic level
after about 1 s, remaining constant even if more integration time
is allowed (Wickelgren, 1977; Usher and McClelland, 2001; Kiani
et al., 2008). The LCA and the diffusion model have different ways
of addressing this finding. In the LCA and related models, evidence
accumulation is assumed to continue until the end of the evidence
evaluation period, at which point the decision maker is thought to
choose the alternative associated with the most active accumula-
tor. The fact that accuracy levels off is attributed to an imbalance
between leak and inhibition, as discussed in more detail below. In
contrast, in the Mazurek et al. version of the drift-diffusion model,
decision sensitivity can increase without bound as integration time
increases, since there is no loss or distortion in evidence accu-
mulation; the model predicts that the signal to noise ratio should
increase with

√
t . To address the fact that performance levels off in

time-controlled paradigms, Mazurek et al. (2003) proposed that,
just as in free-response paradigms, participants employ a decision
bound in time-controlled situations, such that evidence integra-
tion stops when the boundary is reached, even though stimulus
input continues and the response must be withheld until a cue to
respond is presented (see also Ratcliff, 2006). Because of the pres-
ence of this decision bound, even in time-controlled situations, we
call this model the bounded diffusion (BD) model in the remainder
of this article.

In a recent paper (Kiani et al., 2008), the authors proposed a
way to determine whether the leveling off of accuracy in time-
controlled paradigms is more consistent with the presence of a
bound, or alternatively with leaky integration. The paper consid-
ered the BD model and what they referred to as the leaky accu-
mulation model, a variant of the LCA in which leakage is stronger
than inhibition (henceforth called the leak-dominant LCA). The
leaky accumulation model predicts that late information is more
important (a pattern called recency) since early information has
more time to leak away. This contrasts with the BD model, which
predicts that early information is more important (a pattern called
primacy) because late information is more likely to arrive after the
bound is reached and therefore to be ignored.

Two pieces of evidence were shown to support the primacy
pattern in the experiment. The first was based on the reverse cor-
relation technique. The reverse correlation analysis is applied to
experimental trials in which the evidence (in the form of dot
motion) is completely random. Trials are grouped according to
the observed response choice between the two available alter-
natives, which we will label A and B. The analysis examines the
averaged input signal in the time course of the entire trial in the
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two groups. If the analysis reveals no difference between the A and
B groups at some time points, it means that inputs at those time
points do not contribute to the outcome. On the other hand, if
the analysis reveals a large difference between the two groups of
trials at some time points, it means inputs at those time points
are contributing to determining the response. When this analysis
was applied to model simulations, it confirmed that the BD model
predicts a primacy pattern while the leaky accumulation model
predicts a recency pattern (Figure 2A). The same analysis based
on behavioral data demonstrated a primacy pattern (Figure 2B).
The second source of support for the primacy pattern was based
on a pulse perturbation study, using 200 ms motion pulses that
influenced monkey’s choices in the direction of the pulse. The size
of the pulse effect was largest when the pulse was applied early in
the trial, and decreased when pulses occurred later, consistent with
BD rather than leaky accumulation.

In the present paper, we further examine the temporal weight-
ing of evidence in experiments and in the LCA and BD models.
Our examination is motivated by both empirical and model-
based observations presented in Usher and McClelland (2001).
On the empirical side, the result of the perturbation study in
Kiani et al. (2008) stands in contrast with experimental findings
reported in Usher and McClelland, 2001; Experiment 3). In that

experiment, participants viewed a stream of interleaved S’s and
H’s and reported after the end of the sequence which letter was
predominant. While most of the trials contained sequences with
a majority of either S or H, some of the trials contained equal
numbers of S’s and H’s. Within the latter type of trials, one of the
letters sometimes predominated early in the trial, with the other
letter predominating later. Out of the six subjects, two showed a
primacy bias, favoring the letter that predominated early in the
sequence; two showed a recency bias, favoring the latter that pre-
dominated late; and two showed approximate balance, or little bias
in either direction.

On the theoretical side, the LCA was able to account for all
three types of behavior. While the model shows a recency pat-
tern when leak is stronger than inhibition, it shows a primacy
pattern when inhibition is stronger than leak, and it shows equal
weight of early and late information when the strength of leak
and inhibition are equal. All else being equal, balanced leak, and
inhibition lead to greater accuracy, and indeed, the experimen-
tal data indicated the expected relationship between accuracy on
trials when the number of S’s and H’s were different, and the
degree of bias (either toward primacy or recency) exhibited on
trials when the number of S’s and H’s was the same. Specifically,
greater imbalance when the number of S’s and H’s was the same

FIGURE 2 | Reverse correlation analysis (reproduced from Kiani et al.,

2008). (A) Expected separation of motion energy profiles for rightward
(red) and leftward (blue) choices for bounded diffusion (top) and
leak-dominant LCA (bottom). Late information is more critical in the
leak-dominant LCA model while early information is more critical in the

bounded diffusion model. (B) Left, signals aligned with motion onset,
right signals aligned with motion offset. One can observe that in the data
(Panel B), the difference between the evidence that favors the response
(red) and the one that opposes it (blue) is larger at the beginning of the
choice interval.
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was associated with lower accuracy when the number of S’s and
H’s was different.

The present study seeks to examine these empirical and model-
based considerations further. On the empirical side, there are many
differences between the experiments of Usher and McClelland
(2001) and Kiani et al. (2008). Among other things, Usher and
McClelland’s study involved six relatively unpracticed human par-
ticipants who were not placed under strong time pressure. Kiani et
al. used two highly practiced rhesus macaque monkey participants
who received a go cue (on half of their experimental trials) coin-
cident with the end of the stimulus presentation period, requiring
them to respond within 500 ms. Several questions naturally arise:
Would different patterns have been observed in the Kiani et al.
study if it had been conducted on humans? Would individual dif-
ferences have emerged had a larger number of participants been
tested? Does extensive practice, or the need to be prepared to
respond quickly, alter the tendency to observe a pattern of primacy
vs. recency? The present research attempts to address these issues
by using a paradigm quite similar to that of Kiani et al. (2008),
employing highly practiced human participants, and manipulat-
ing the time pressure to respond across experiments. While our
studies still use relatively small numbers of participants, we will
see that there are indeed considerable individual differences within
the set of participants.

Another goal of our research is to further explore the pri-
macy pattern seen in some participants in both the Usher and
McClelland (2001) and Kiani et al. (2008) studies. We will exam-
ine whether the LCA can capture the primacy pattern as well as
the BD model does, and whether it can also capture other aspects
of performance that are challenging to the BD model. As we will
see, the LCA can exhibit primacy on some trials and recency on
others, using the same parameter values. That is, it can exhibit
a primacy effect when the length of the evidence accumulation
interval is short, while exhibiting a recency effect when the length
of the evidence accumulation interval is long. Our study will allow
us to examine whether such a pattern can be observed in human
participants.

We begin by reviewing an analysis of the LCA presented in
Usher and McClelland (2001), extending this analysis by further
examining the model using the same reverse correlation analysis
as in Kiani et al. We then discuss the primacy-to-recency shift that
can occur in the LCA model under certain ranges of its parameter
values. Following this, we report two experimental studies with
human observers1. In the first we place participants under high
time pressure, using procedures similar to Kiani et al. and we find
similar primacy patterns. In the second, we relax the time pressure
by lengthening the response window and introducing longer tri-
als, and we find the primacy bias diminishes significantly. We see
individual differences in both studies, with one participant in the
second study showing recency for short evidence integration peri-
ods and primacy for long integration periods. As the moving dots
paradigm is a central one to the neuroscience of decision making
(Burr and Santoro, 2001; Shadlen and Newsome, 2001; Kiani et al.,

1The data set is available at: http://www.stanford.edu/group/pdplab/projects/
Frontiers2012/.

2008), we use moving dot stimuli in our study. Our use of tempo-
rally manipulated stimuli builds on the pioneering efforts of Huk
and Shadlen (2005) and Wong et al. (2007) as well as the study of
Kiani et al. (2008).

MATERIALS AND METHODS
EXPERIMENTAL METHODS
Moving dot stimuli
The moving dot stimuli were created following the method
described in Kiani et al. (2008). The motion stimulus consisted
of circular dots of radius 2 pixels, moving horizontally at a speed
of 5˚/s. Total dot density was 16.7 dots per degree squared per sec-
ond. The stimulus was viewed through a circular aperture of radius
5˚. The coherence of the motion stimulus varied from trial to trial
and within trials as specified below.

Dots were randomly divided into three sets. One set of dots
was displayed per frame, which lasted 13.33 ms. Each set of dots
appeared on the monitor once every frame-triple, each of which
contains three frames, spanning 50 ms. On every displayed frame,
each dot had a (1 – coherence) probability of being redrawn at ran-
dom coordinates within the circular aperture. Those not redrawn
at random would be redrawn to move horizontally 5˚/s in the
direction specified for the trial. At 0% coherence, every dot would
be redrawn randomly on every frame.

Experiment 1A
In this experiment, 80% of trials with duration 300 ms or greater
contained a “pulse,” or momentary change of coherence level. A
pulse consisted of a ±3.2% change in coherence level for 200 ms,
or four frame-triples. The motion pulse could originate between
100 ms after the beginning of the stimulus and 200 ms before it
ended. See Appendix for detailed information about the pulse.

Observers. Three participants (CS, MT, and SC; two male, one
female) with normal or corrected-to-normal vision were tested.
Participants CS, MT, and SC performed 32, 46, and 34 sessions
respectively. Ordinarily, successive sessions were separated by less
than 5 days, but there were some exceptions (this was also the case
for experiments 1B and 2A,B). We excluded initial sessions while
participants’ performance stabilized, excluding 5 sessions for CS,
14 for MT, and 12 for SC, leaving 27 sessions for CS, 32 sessions
for MT and 22 sessions for SC that were treated as test sessions
included in our analysis.

Procedure. In each session, participants completed 9 blocks of
100 trials. A self-paced break occurred between blocks to allow
rest. Each trial began with a fixation cross at the center of the
screen. The moving dots stimulus was displayed 1000 ms later.
Coherence values employed were 6.4, 12.8, 25.6, and 51.2%. Stim-
ulus duration followed an exponential distribution taking values
from 100 to 1750 with an increment of 50 ms. Stimulus termina-
tion occurred simultaneously with an auditory go signal. In order
to earn points, participants had to respond by pressing the correct
key on the computer keyboard within a 300 ms response window
following the go cue.

Visual and auditory feedback was used to indicate to the
participant whether the response occurred within the specified
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response interval, and (if so) whether it was correct. If partici-
pants responded within the response window and chose correctly,
they heard a pleasant noise and saw the number of total points
they earned (which increased from the previous value by 1) in
a box at the position of the fixation. Incorrect, early, or too late
responses earned no points and were followed by an “X,” “Early,”
and “Too Slow” signs in the box together with an error, early, or
late tone. The total time allotted for feedback of any type was 1 s.
After the feedback time had elapsed, the fixation point appeared
and the next trial began.

Experiment 1B
This experiment was carried out in order to obtain a more robust
measure of the recency-primacy bias. Instead of applying pulses
at different times of the trial as in Experiment 1A, for each coher-
ence level we created three conditions: (i) the constant condition
in which a fixed non-zero coherence was used during the entire
trial, (ii) the early condition in which the coherence was one of the
four values as in Experiment 1A during the first half of the trial
and zero during the second half, (iii) the late condition in which
the coherence was zero in the first half and non-zero in the second
half. In addition, for the two weakest coherence levels only, we
included a switch condition, in which the coherence value stayed
constant in magnitude but the direction of motion switched in
the middle of the stimulus duration. For the constant, early, and
late conditions, the correct response was defined as the response
supported by the stimulus. In the switch condition, one alternative
was designated as correct at random on each trial.

Observers. The same three participants, CS, MT, SC, from Exper-
iment 1A, participated in Experiment 1B and completed 14, 19,
and 12 sessions respectively. One session was excluded for CS and
MT due to a programming error2, and nine more sessions were
excluded for MT due to unstable performance (See Excluded Ses-
sions in Experiment 1B in Appendix). This resulted in 13, 9, and
12 analyzed sessions for CS, MT, SC respectively.

Procedure. General features of the procedure were the same as in
Experiment 1A. Coherence values were 6.4, 12.8, 25.6, and 51.2%,
except in the switch condition where only 6.4 and 12.8% were used.
Stimulus duration followed an exponential distribution from 150
to 1750 ms with an increment of 50 ms. As in Experiment 1A the
response window was 300 ms.

Experiment 2A
In this experiment, we relaxed the time pressure by using a longer
response window after the go cue and by using more long trials.

Observers. Four participants (one male, three female) with nor-
mal or corrected-to-normal vision were tested repeatedly in 1-h
sessions over several weeks. We obtained 16, 19, 11, and 25 sessions
for participants DG, LK, WW, and MM respectively. All sessions
were included in our analyses.

2Due to a programming error, the direction of motion in the first half of each switch
trial was treated as correct in the first session for participants MT and CS.

Procedure. The procedure of the experiment was the same as
Experiment 1B, except for two changes. First, the response window
after the go cue was extended from 300 ms to 1 s. As in previous
experiments, if a response was made outside of the response win-
dow, no points were awarded even if the response was correct.
Second, we employed a flat distribution of trial durations over the
range of 150–1750 ms with an increment of 100 ms.

Experiment 2B
Experiment 2B was the same as Experiment 2A except that: (i)
there were only early, late, and constant conditions (no switch)
in this experiment, (ii) the stimulus duration was sampled from
a longer range (150–2350 ms, increment of 200 ms), and (iii) an
adaptive procedure was used to maintain accuracy at an approx-
imately constant level across subjects. This was done by using a
baseline coherence level b, which was adaptively changed from
block to block, decreasing b by amount δ when the overall accu-
racy in that block was above 80% or incrementing it by δ when
accuracy fell below 65%. Three coherence levels were used, equal
to b, 2b, and 4b. In the first session, the baseline coherence was
initially set to 12% and δ was set to 1.6%; for later sessions, the
initial value of b was determined based on the last block from
the previous session, and δ was set to 0.86% (this value changes
the average coherence by 2%). For example, if in a given block in
session 2 or later, the coherence levels were 5, 10, and 20%, and
performance fell below 65% correct, the resulting coherence levels
would be set to 5.86, 11.72, and 23.44%.

Observers. Three participants with normal or corrected-to-
normal vision were tested in 5 (AP) or 10 (CB, SY) 1-h sessions
over several weeks. We intended to run each participant for 10
sessions, treating the first three as practice and for stabilization
of coherence levels, and analyzing the results from the remain-
ing seven sessions. However, participant AP stopped participating
after five sessions. Rather than exclude the participant completely,
we excluded only the first session of this participant, leaving four
sessions for inclusion in the analysis.

COMPUTATIONAL METHODS
The LCA and BD models were simulated as two-layered neural
networks illustrated in Figures 1A,B respectively. The simulation
of the LCA model was based on the following finite difference
equations3:

Δx1 = I1 − kx1 − βx2 + I0 + N (0,σ) ; (1)

Δx2 = I2 − kx2 − βx1 + I0 + N (0,σ) ,

subject to a lower bound on activation at 0:

x1 (t + 1) = max (0, x1 (t )+ Δx1) ;

x2 (t + 1) = max (0, x2 (t )+ Δx2) .

3These equations correspond to discrete versions of the differential Equations dx1 =
dt
[
I ′

1 − k ′x1 − β′x2 + I ′
0
]+N

(
0, σ′)√dt ; dx2 = dt

[
I ′

2 − k ′x2 − β′x1 + I ′
0
]+

N
(
0, σ′)√dt with the following correspondences with the parameters in the finite

difference equations: I1 = I ′
1 dt , I2 = I ′

2 dt , I0 = I ′
0 dt , k = k ′ dt , β =

β′ dt , and σ = σ′√dt . In the simulations, dt = 0.0035 s (3.5 ms) and the reported
parameter values are those in the finite difference equations.
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In Eq. 1, Δ represents a change or increment in the adjacent vari-
able, I 0 is a baseline input, k and β stand for the leak and the lateral
inhibition and N (0, σ) stands for normally distributed noise of
standard deviation σ. The output of the max function is equal to
its second argument when this is positive and is equal to 0 oth-
erwise. This max function introduces non-linearity to the system
that prevents x1 or x2 from becoming negative.

In time-controlled paradigms such as the one used here and in
Kiani et al. (2008), in which a decision is called for by presenting
a go cue, the model assigns the decision to the most active accu-
mulator a short time after the go cue occurs as discussed further
below.

The simulation of the BD model was based on

Δx1 = I1 + N (0,σ) ; (2)

Δx2 = I2 + N (0,σ) ,

The decision variables are y1 = x1 − x2, and y2 = x2 − x1.
In BD, information integration is subject to a bound, even in

time-controlled paradigms. When the activation of one of the
accumulators, y1 or y2, corresponding to the difference between
the integrated evidence for the two alternatives, in Eq. 2, reaches
the bound, the race ends and the more active unit at that time
wins the trial. If the bound is not reached, the model assigns the
decision to the most active accumulator a short time after the go
cue occurs, as in the LCA.

Shared parameters
The noise strength was set at σ = 0.1 in both models. The inputs
to the units were I 1 = c × s, and I 2 = 0, where c stands for the
coherence level and where sensitivity, s, is a free parameter fitted
for each model. All simulations employed an integration time step
of 3.5 ms.

The experiments we will report involve presenting a visual stim-
ulus at some time t = 0 and then presenting a response signal or
“go cue” at a variable time post stimulus onset. Responses are
considered to be triggered by the go cue. Thus, the time between
the stimulus onset and the presentation of the go cue – the go
cue delay – could be taken as the duration of the information
integration period. In relating both models to experimental data,
however, we included a “dead-time” parameter, T 0, to allow for
the possibility that the presentation of an imperative signal to
respond terminates evidence integration before all the evidence
actually presented up to that time has been integrated. Previous
research has established that evidence accumulation in area LIP
lags behind the actual presentation of the visual evidence by about
200 ms (Mazurek et al., 2003; Rorie et al., 2010). If the go cue can
terminate evidence accumulation with a shorter lag, T g< 200 ms,
then the total time available for evidence integration would be
equal to the go cue delay less the difference between T g and 200.
The parameter T 0 represents this difference (200 − T g) and is
assumed to be greater than or equal to 0.

Model specific parameters: bounded diffusion
In addition to the parameters already mentioned, the BD model
had one additional parameter, the position of the decision bound,
A. The value of A was assumed to take a single fixed value for each

participant, independently of the coherence level of the stimulus or
the trial duration, since all levels of both variables were randomly
intermixed and therefore unpredictable from trial to trial.

Model specific parameters: LCA
The LCA model was implemented with two additional free para-
meters that were optimized to fit the data, namely the leak and
inhibition strengths k and β. The LCA also includes a parameter
representing the common input to the two accumulators, I 0, which
was set at I 0 = 0.2 in fitting the model to all participants. This para-
meter determines how likely it is that the activation bound of zero
is reached by the losing accumulator in the LCA. The particular
value was chosen on the basis of exploratory simulations so that
this boundary is often but not always reached on longer trials, and
was not otherwise adjusted in fitting data from individual par-
ticipants in our experiments. This parameter had different values
in the simulation studies; the values are explicitly reported in the
relevant sections below.

Simulation protocol
According to the protocol of experiment 1B (see Experimental
Methods), there were four levels of motion coherencies (c = 6.4,
12.8, 25.6, 51.2%) and four different timing conditions (constant,
early, late, and switch). Since we have less data for the switch condi-
tion, which occurred only with the two lowest coherences, we fitted
the models based on the constant, early, and late conditions and
used the optimized parameters to predict the choice preference in
the switch condition. Assuming that unit one is supported by the
stimulus and unit two is not supported, the inputs in the three
conditions were assigned in the following way. In the constant
condition I 1 = c × s, I 2 = 0 throughout the entire trial. In the early
condition I 1 = c × s, I 2 = 0 for the first half of the trial and I 1 = 0,
I 2 = 0 for the second half. In the late condition, I 1 = 0, I 2 = 0
for the first half and I 1 = c × s, I 2 = 0 for the second half. The
durations of the simulation trials were sampled from an exponen-
tial distribution with a mean of μ = 243 simulation time-steps, or
850 ms. The minimum duration was set at 43 time-steps (150 ms)
and the maximum at 500 time-steps (1750 ms). The trials were
grouped in quartiles according to stimulus durations, resulting in
48 conditions (4 coherencies × 3 conditions × 4 durations).

Optimization procedure
The best fitting parameters of the models were obtained by an
optimization procedure performed on the 48 (4 coherencies × 3
timing conditions × 4 durations) mean accuracy scores of each
participant. For presentation purposes we averaged the experi-
mental data and the fits across the four coherency levels. Assuming
that the correct responses follow a binomial distribution, we can
compute the likelihood of a model given the N = 48 experimen-
tal conditions as: L = ∏N

i (
ni
yi )p

yi
i (1 − pi)

ni−yi , where N = 48 is
the number of data points, ni is the number of trials for the i-th
data point, yi is the corresponding number of correct responses
and pi the probability of correct response predicted by the model.
The cost function we minimized was the negative logarithm of
L, i.e., −LL = −loge(L). For optimization we used the SUBPLEX
minimization routine (Bogacz and Cohen, 2004), which extends
the multi-dimensional simplex algorithm in order to better han-
dle noisy functions for simulation-based models. For each subject
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and each model we ran the optimization 200 times with starting
points randomly sampled from uniform distributions within a
parameter-specific range. At that stage, each predicted data point
was generated from 1000 simulated trials. We re-evaluated each of
these 200 fits by running more iterations of the model with the
best fitting parameters (10,000 simulated trials per data point). At
the final refinement stage, the parameters of the best fit (after the
re-evaluation of the 200 parameter sets) were used as the start-
ing point of one last run of the SIMPLEX routine, using 2000
simulated trials per data point.

In order to compare the quantitative fits of the two models we
used the Bayesian information criterion (BIC), which takes into
account both the goodness of fit and the complexity of the model.
The BIC penalizes the extra free parameters much more strongly
than other similar measures such as the Akaike information cri-
terion. The BIC is computed as: −2LL + P1n(N ), where P is the
number of the free parameters of the model, N the number of
data points and LL is as defined above. For Figure 7 and for the
calculation of BIC values, the models were run with the best fitting
parameters for 100,000 simulated trials per data point.

RESULTS
We start with a computational investigation showing that the
LCA model can capture all three of the patterns seen in Experi-
ment 2 of Usher and McClelland (2001), namely primacy, recency
and perfect balance. We also demonstrate that the LCA model
with moderate inhibition dominance predicts a transition from
primacy-to-recency as the duration of the trial increases. Follow-
ing the computational investigations, we present the experimental
results.

CONTRASTING BOUNDED DIFFUSION AND LEAKY INTEGRATION: A
SIMULATION STUDY
For binary choices, the LCA is a stochastic two-dimensional system
described by two variables x1 and x2, each corresponding to the
accumulated evidence for one of the two alternatives. Each accu-
mulator is updated at every simulation time step according to Eq.
1 presented in Section “Materials and Methods,” and reproduced
here for convenience:

Δx1 = I1 − kx1 − βx2 + I0 + N (0,σ) ; (1)

Δx2 = I2 − kx2 − βx1 + I0 + N (0,σ) .

As noted in the Section “Materials and Methods,” the values of x1

and x2 were subject to a lower bound on activation at 0.
When x1 and x2 are both positive, the LCA dynamics stay in

the linear regime. Since decisions are based only on which of the
two decision variables is more active, we only need to examine the
difference between them: x = x1 − x2. In this case, LCA is reduced
to the Ornstein–Uhlenbeck (OU) diffusion process (Busemeyer
and Townsend, 1993; Usher and McClelland, 2001):

Δx = I − (k − β) x + N
(

0,
√

2σ
)

(3)

where I = I 1 − I 2. When leak exceeds inhibition, the activation
difference x is characterized by leaky accumulating dynamics. Both

the mean and the standard deviation of x stop changing once the
net leak [equal to (k − β)x] in Eq. 3 becomes equal in magnitude
to the input term I. The left column in Figure 3 demonstrates how
the distribution of x evolves with time. The resulting accuracy,
which corresponds to the area of the distribution to the right of
the vertical neutral line, therefore also levels off at an asymptotic
value. Since evidence that arrives early has a longer time to leak
away than the information that arrives late, late information over-
weighs early information under these circumstances, causing the
recency effect.

On the other hand, when inhibition dominates leak in the full
model, k < β, the quantity (k − β) in Eq. 3 becomes negative; tak-
ing this together with the minus sign in front of the (k − β)x term,
we see that net effect of leak and inhibition becomes self excitation.
In that case, any difference between the two decision variables will
grow and explode with time. See Figure 3, middle column. Since
early evidence has more time to grow than late information, early
evidence overweighs late information in determining decisions,
causing primacy. Although the mean and the standard deviation
of the distribution in this condition both grow without bound as
time increases, the resulting choice probability, determined by the
ratio between the two, evolves and levels off with time in the same
way in this condition as in the leak-dominant condition (see Usher
and McClelland, 2001; Gao et al., 2011 for more details). Finally,
when leak and inhibition are in perfect balance, k = β, neither leak
nor self excitation occurs. The (k − β)x term disappears from Eq.
3, and the model behaves as the drift-diffusion model (Bogacz
et al., 2006; this case is not illustrated in the figure).

Non-linearity comes into play in the inhibition-dominant
regime. According to the linear version of the LCA in Equation 3,
the self excitation drives the evidence difference, x, to infinity with
time. However, in the full LCA model, including the non-linearity
at 0, once the losing unit’s activation reaches 0, it stops going
further down and stops sending any inhibitory signal. The activ-
ity of the winning unit will be driven only by its leak and by its
input (I 1 or I 2 depending on which unit is the winner). There-
fore its activity, as well as the difference between its activity, levels
off as further time passes. Figure 3, right column demonstrates
the dynamics of the evidence difference variable x in this situa-
tion. Although the detailed dynamic of x in the non-linear model
differs from that in the linear version, the choice probability dis-
tributions for the two models are very similar. This is because the
non-linearity takes effect only after some time has passed. By this
time, the amplification of early signals has already exerted its influ-
ence on the outcome (Usher and McClelland, 2001). Therefore, in
the inhibition-dominant regime, both the full non-linear LCA and
the linearized LCA produce a primacy pattern.

To illustrate the recency and primacy effects exhibited by the
leak and inhibition-dominant LCA we performed the same reverse
correlation analysis as in Figure 2, comparing leak-dominant
and inhibition-dominant LCA with the BD model (Figure 4).
Both alternatives (left/right) received noisy input for 200 sim-
ulation time-steps (Gaussian values with zero mean and SD of
0.1). BD was simulated with A = 0.8, inhibition-dominant LCA
with k = 0.05, β = 0.095, I 0 = 0.1 and leak-dominant LCA with
k = 0.05, β = 0.025, I 0 = 0.1. Larger differences between the left
choice activity curve (blue) and the right choice activity curve
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FIGURE 3 |Time evolution of the decision variable x = x 1 − x 2 in three different leak-inhibition conditions. Adapted with permission from Usher and
McClelland (2001).

(red) at the beginning of the trial indicates primacy, while larger
differences at the end indicates recency. Figure 4 demonstrates that
although the leak-dominant LCA (Figure 4C) results in recency,
the inhibition-dominant LCA results in primacy (Figure 4B). The
behavioral results reported in Kiani et al. (2008), although incon-
sistent with the leak-dominant LCA, are thus shown to be consis-
tent with either the BD model or the inhibition-dominant LCA.

The rich dynamics of the LCA model also allows it, with certain
settings of its parameters, to produce a transition between pri-
macy and recency. In Figure 5A, we demonstrate such a case with
the following values of the leak, inhibition and baseline parame-
ters: k = 0.172, β = 0.748, I 0 = 0.095, and σ = 0.1. We simulated a
switch trial, where the motion coherence stays constant in magni-
tude throughout the trial but the direction switches in the middle.
Inputs are I 1 = 0.026, I 2 = 0 for the first half of the trial and I 1 = 0,
I 2 = 0.026 for the second half. We plot the probability of choices
supported by the early half of the trial. A value above 0.5 implies
early information determines the final decision more often than
late information, i.e., primacy, and a value below 0.5 implies early
information determines decisions less often than late information,
i.e., recency. Each data point is based on simulations of 30,000 tri-
als, and five durations were used consisting of 71, 157, 243, 329, and
414 time-steps. One can see a transition from primacy to recency
as stimulus duration increases.

In order to explain how the transition results from the LCA,
we show activations of the two accumulators in a typical trial in
Figure 5B. The red curve stands for the alternative supported in
the first half of the trial, and the blue curve for the one supported
in the second half. When stimulus duration is short (top panel),
the accumulator associated with the red curve wins because the

input during the first half of the trial leads it to suppress the other
alternative, which does not have a chance to recover after the evi-
dence reverses. At the time of the switch, the early-supported (red)
accumulator is sending strong inhibition to the other accumula-
tor (blue curve). Although the blue accumulator is supported by
the stimulus input in the second half of the trial, its activation
grows very slowly, rising only after the red accumulator’s activa-
tion has sufficiently decayed. This takes long enough so that the
blue accumulator does not have a chance to win out. When stim-
ulus duration is long (bottom panel, solid lines), the activity of
the blue accumulator reaches zero well before the switch and stays
pinned at this value. Following that, the activity of the red curve
levels off; it no longer receives any inhibition from the other accu-
mulator, but its activation levels off due to the effect of the leak.
Therefore, although the first half of the trial in this case is much
longer than that in the short duration scenario, the activity levels
of the two accumulators are similar at the time of the switch. After
the switch, the two curves evolve with time in the same manner as
they do in the top panel. However, in this case, the activation of the
red accumulator has more time to decay. The activation of the blue
accumulator has more time to grow and its activation eventually
comes to surpass the activation of the red alternative. Note that
this transition from primacy to recency is caused by the interplay
between the non-linearity at zero and the greater weight to early
evidence caused by inhibition dominance. It does not occur in the
linear case (dashed lines, lower panel of Figure 5B), nor does it
occur with a high level of inhibition dominance.

In summary, primacy bias is consistent with both the BD and
the inhibition-dominant LCA. However, LCA is also consistent
with recency or balanced weighting of early vs. late evidence. A
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FIGURE 5 |The transition from primacy-to-recency as stimulus duration

increases. (A) Probability of choices toward the alternative supported in the
first half of the trial in the switch condition. See text for parameter values.
(B) Activity trajectories of the two accumulators when stimulus duration is

short (top) and long (bottom). Red denotes the alternative supported in the
first half of the trial, while blue denotes the alternative supported in the
second half. In the bottom panel, we also plotted out the simulation results
using the linear LCA (dashed lines).

distinctive signature of the non-linear inhibition-dominant LCA
is the transition from primacy at short durations to recency at long
durations with some parameter settings. In the following section,
we report the experimental findings of our studies, considering
whether they exhibit features consistent with the greater flexibility
of the LCA.

EXPERIMENT 1A
The experiment followed the procedures used in Kiani et al. (2008),
as described in Section “Materials and Methods.” Observers were
asked to determine the predominant direction of moving dots.
While some dots were moving randomly, some were moving
coherently either to the left or to the right. As in Kiani et al., we
used four coherence levels and exponentially distributed stimulus
durations in the range 150–1750 ms. Participants were trained to
respond within a window of 300 ms following onset of the go cue

in order to earn points. The critical manipulation of the evidence
was applied in a subset of trials (80% of the trials with dura-
tions 300 ms or longer), in the form of a 200 ms “motion pulse”
corresponding to a change in coherence of ±3.2%.

All of the observers learned to respond within the 300 ms
response window and their accuracy increased with motion coher-
ence according to a sigmoidal function (results from participant
CS are shown in Figure 6A). As in Kiani et al. (2008), the pulse
resulted in a shift of the psychometric curves. A logistic regres-
sion was performed to measure the size of the horizontal shift in
units of coherence (see also Equation 4 in Kiani et al., 2008). Of
special interest is that the effect size of the shift dropped as the
pulse was applied later in the trial, indicating that early informa-
tion has a larger effect on choices. To quantify this, we considered
trials with durations of 700 ms or more, and divided the trials into
three quantiles according to the time of the pulse (Figure 6C).
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FIGURE 6 | Results of experiment 1A with pulse perturbations. (A) The
pulse results in a shift in the observer’s psychometric function. As an
example, the result of CS is shown here. The percentage of rightward
choices is plotted against rightward coherence levels. The red curve
denotes rightward pulse and the blue curve denotes leftward pulse.

(B,C) The effect size of the shift varies with the time of the pulse. (C) The
psychometric function of participant CS as the pulse comes early,
intermediate and late in the trial. (B) The effect size of the pulse in the unit
of the equivalent motion coherence as a function of pulse time for all of
the three observers.

Figure 6B shows that this primacy pattern was present in all par-
ticipants, with some variability as the effect of the pulse weakens
in later quantiles.

EXPERIMENT 1B
Because the effect size in Experiment 1A is very small and there-
fore difficult to quantify, Experiment 1B was carried out in order to
obtain a more robust measure of the temporal weighting profile. To
do so, for each coherence and duration combination we created
four conditions: (i) the constant condition, in which coherence
stays fixed throughout the entire trial, (ii) the early condition, in
which coherence is a fixed non-zero value during the first half of
the trial and zero during the second half, (iii) the late condition, in
which the coherence is zero in the first half of the trial and is a fixed

non-zero value during the second half, and (iv) the switch condi-
tion, in which the coherence stays constant in magnitude but the
direction of motion switches in the middle of the trial. The switch
condition occurred only with the two low coherence levels to min-
imize the possibility of participants noticing the switch in motion
direction. It is expected that the constant condition will result in
higher choice accuracy, as it contains twice as much information
as the early/late conditions. There are two critical tests. The first
one is the accuracy level in the early condition relative to that in
the late condition; and the second is the choice preference toward
the alternative supported in the first half relative to that in the
second half in the switch condition. A primacy pattern means
higher accuracy in the early condition than in the late condition,
and more choices toward the alternative supported in the first half
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of the trial. Recency means the opposite. The observations are
shown in Figure 7.

In Figure 7A, the accuracy averaged across coherence levels
is displayed as a function of stimulus duration for the con-
stant (blue), early (black), and late (red) conditions for the three
observers. The results are also fitted by the LCA (left panel) and
the BD (right panel) models. In all observers, accuracy increases
with stimulus duration and the accuracy in the constant condition
is higher than in the early and late conditions. More importantly,
accuracy in the early condition is higher than in the late condition,
implying a primacy effect. The size of the accuracy difference in
the two conditions, however, varies among the three observers.
It is very large in one of them (MT), who completely neglected
late evidence except in the shortest lag condition, but is smaller
in the other two. In SC, this difference also declines as stimulus
duration lengthens. The interaction between the recency-primacy
pattern and stimulus duration was consistent with the non-linear
LCA model, but it provides a challenge to the BD model as shown
below.

Quantitative measures of goodness of fit are shown for the LCA
and BD models in Table 1. We used BIC, which takes the number
of degrees of freedom into account, to measure the goodness of fit.
BD and LCA fit the data of CS and MT equally well, while LCA pro-
vides a better fit to the data from SC – the participant who showed
an interaction between the primacy effect and stimulus duration.

In Figure 7B, we plotted choice probabilities toward the alter-
native supported in the first half of the trial. A value above 0.5
means primacy, while a value below 0.5 means recency. Consistent
with the results in the early/late conditions, the switch condition
also reveals a clear primacy in CS and MT, and this effect is par-
ticularly strong in MT. For SC, we see a primacy pattern when
stimulus duration is short, and it disappears and even reverses to
a recency pattern as the stimulus duration lengthens. Due to its
smaller data size, we did not use the switch condition in model
fitting. Rather, we adopted the parameters from the fitting of the
constant/early/late condition and plotted the model predictions in
the switch condition (solid lines in Figure 7B). Again, both models
fit the first two participants about equally well, but BD does not
fit the data of SC as well as LCA does.

EXPERIMENTS 2A AND 2B
Both versions of Experiment 1 replicate the primacy bias reported
by Kiani et al. (2008). Since the results of Experiment 1B and the
data fitting we conducted showed that it was not possible in two of
the three participants to discriminate the two models using fits of
the data, we chose in our second set of experiments to focus on the
detection of the qualitative pattern of data that can discriminate
the models (Figure 5). While this pattern only arises at a particular
set of LCA parameters, it is special because it goes against what a
BD model can predict. In particular,we wished to examine whether

FIGURE 7 | Results of experiment 1B. (A) Accuracy as a function of
stimulus duration in the constant, early and late conditions. Left: Data
(symbols) and the leaky competing accumulator fit (lines). Error bars
correspond to 95% CI. Right: Data and bounded diffusion fit.
(B) Predictions of the leaky competing accumulator (cyan) and

bounded diffusion (magenta) in the switch condition. Parameters of the
models are from the fitting in Panel A. Proportion of choices supported early
in the trial was plotted against stimulus duration. Error bars correspond to
95% CI. Larger error bars are due to smaller sample size in the switch
condition.
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Table 1 | Bayesian information criterion values and model parameters for the LCA and BD models for the three subjects in experiment 1B.

Participant BIC values Parameters

C-E-L SW LCA BD

LCA BD LCA BD β K s T 0 A s T 0

CS 355.5 355.0 99.3 97.6 0.037 0.034 0.05 12.61 2.50 0.06 17.09

MT 349.5 348.4 78.5 78.7 0.129 0.089 0.06 15.72 0.69 0.06 13.53

SC 350.7 397.7 92.9 155.7 0.028 0.029 0.08 20.19 5.76 0.08 27.33

C-E-L stands for constant-early-late conditions and SW for the switch condition. T0 values correspond to simulation time-steps.

any of the observers show a transition from primacy-to-recency,
which is a signature prediction of the non-linear LCA model and
is a challenge to the BD model.

A further goal of our second experiment is to examine if the
primacy bias observed in Experiment 1 can be reversed or attenu-
ated. Although the primacy bias seems to be a robust observation
(Kiani et al., 2008), it is possible that it may be task-dependent.
The time pressure in Experiment 1, is very high, to an extent that
is similar to, and perhaps even more extreme than that in Kiani
et al. (see text footnote 5). Under such circumstances, decision
makers presumably need to be ready to make a prompt response
when the go cue comes; this could promote either a lower decision
bound for the BD model or stronger lateral inhibition in the LCA.

In order to investigate this question, we relaxed the time pres-
sure in our remaining experiments. First, we relaxed the response
window after the go cue from 300 ms to 1 s. This allowed observers
enough time to prepare their response after the go cue. Second, we
used uniformly distributed stimulus durations instead of expo-
nentially distributed durations. This way, long stimulus durations
are equally likely as short stimulus durations (see Discussion for
further consideration of this issue).

As in Experiment 1, each participant was tested for several ses-
sions to provide statistical power (see Materials and Methods). In
total seven observers were tested with this procedure. The first
four participants were tested in Experiment 2A with stimulus
durations of 150–1750 ms. After noticing that their accuracy levels
differed dramatically, we adapted the difficulty level individually
and employed a wider range of stimulus durations (150–2350 ms)
for another three participants.

The results are summarized in Figure 8A. The average primacy
score, defined as the average accuracy level in the early condi-
tion minus that in the late condition, drops dramatically from
Experiment 1B to Experiment 2A and 2B. Since there is no signif-
icant difference in procedure or results between the participants
in 2A and 2B, we collapse these two groups into one, and refer to
this as Experiment 2. The primacy score was significantly larger
in Experiment 1B than in Experiment 2 [11 vs. 2%; t (8) = 2.98;
p< 0.02]. While all the observers in the Experiment 1B showed the
primacy effect, there was considerable variation among observers
in the second group. We therefore conducted a subject-by-subject
ANOVA on the main effect of early vs. late and on the interac-
tion between the size of this effect and the stimulus duration.
To carry out this analysis, we divided the data of each observer
into mini-sessions or quasi-subjects that corresponded to all of

the session-by-coherence combinations. Each such quasi-subject
contributed an equal number of trials to the relevant dependent
variables of duration and condition (early vs. late), factoring out
the common variability related to fatigue, practice, or performance
levels. We thus subjected the mini-session data to a repeated-
measure (4 × 2) ANOVA, with 4 levels of trial duration and 2
levels of timing within trial (early vs. late). The ANOVA results are
summarized in Table 2.

Table 2 revealed that only two of the seven observers (LK and
CB) showed a significant main effect of primacy. More interest-
ingly, participant WW showed a significant interaction between
temporal weighting and duration (Figure 8B). WW’s decisions
were mainly driven by early information when stimulus duration
was short, while they were driven by late information when stim-
ulus duration was long. This transition from primacy-to-recency
is a signature of the non-linear LCA model and it is not consis-
tent with the BD model. Please refer to the Appendix for detailed
individual data for all seven participants (Figure A3).

DISCUSSION
Stimulated by the recent study of Kiani et al. (2008), we have exam-
ined the temporal weighting of evidence in decision making using
a time-controlled protocol. In both of the tested monkeys, Kiani et
al. found a primacy bias – early information was more important in
decision making – and they proposed the BD model as the mecha-
nistic basis for this observation. According to this model, observers
make a decision when a decision bound is reached and ignore any
information afterward. In Experiment 1 we examined two types
of evidence manipulations: brief motion pulses (or perturbations;
see also Huk and Shadlen, 2005) and larger within trial evidence
changes at the middle of the stimulus duration. The two methods
gave similar results, indicating primacy, though the effect of the
latter manipulation was more robust. In our first pair of experi-
ments (1A and 1B), we used a procedure with high time pressure,
similar to Kiani et al. In the second pair of experiments (2A and
2B), we relaxed the time pressure by allowing slower responses
after the go cue and by using relatively more long trials. Experi-
ments 1A and 1B replicated the primacy bias reported by Kiani et
al. while in Experiments 2A and 2B the primacy bias significantly
diminished. With some participants, we also found that primacy
bias drops, or even transitions to recency (with a stronger weight
to late evidence relative to early evidence) as stimulus duration
lengthens. We showed that the LCA model can account for the
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FIGURE 8 | Results of experiment 2. (A) Primacy scores of all the
participants in experiments 2A and 2B in comparison to those in Experiment
1B. The primacy score is calculated as the accuracy in the early minus that in
the late condition, averaged across all coherences and all stimulus durations.

Red circles correspond to individual data. Error bars correspond to 1 SE.
(B) Accuracy as a function of stimulus duration for participant WW in
Experiment 2A. Constant, early, and late conditions are shown in blue, black,
and red respectively. Error bars correspond to 95% CI.

primacy bias as well as the BD model, and that it can also cap-
ture the transition from primacy to recency, a pattern that poses a
challenge to the BD model.

The LCA model does not assume the presence of a decision
bound in the time-controlled paradigm. In this model, accuracy
levels off due to the imbalance between the leak and the inhibition,
and the time scale of this process is determined by the absolute
value of the difference between the strength of the leak and the
strength of the inhibition. The sign of this difference, although it
does not affect the overall time-accuracy profile, has a profound
effect on the relative weight of early vs. late evidence (Usher and
McClelland, 2001; Gao et al., 2011). Unlike in the leak-dominant
LCA, which gives a higher weight to late evidence, the inhibition-
dominant LCA gives a higher weight to early evidence. Thus, this
framework, as well as the attractor model (Wang, 2002)4, provides
an alternative to the BD model’s account of the primacy pattern.
The LCA and related models are also consistent with aspects of the
results of an earlier perturbation study by Huk and Shadlen (2005).
In this study, the effect of a transient change in evidence on activity
in putative evidence accumulation neurons in area LIP is higher
when applied early during the observation interval, and becomes
very weak near the end (Huk and Shadlen, 2005; Figure 10B). The
authors attempted to fit these results using the BD model and
noted that it did not explain the very weak impact of later pulses
on the neuron’s responses (p. 3027). These authors suggested the
attractor model of Wang (2002) as one mechanism that could
account for the residual effect. In Figure 9, we present an informal
simulation showing that the inhibition-dominant LCA can also
capture the pattern Huk and Shadlen (2005) found in their data.
Like neurons in LIP, the accumulators in the LCA are highly sen-
sitive to motion pulses occurring early in a stimulus presentation
period, and this effect becomes progressively weaker as integration
time continues.

4The attractor model was not directly simulated in relation to the tempo-
ral weighting of evidence, but we expect it to have similar predictions as the
inhibition-dominant LCA, as both have unstable Ornstein–Uhlenbeck dynamics.

The main result of Experiment 2 was a reduction in the primacy
bias, compared to Experiment 1. This difference in the temporal
weighting of evidence can be understood in relation to two pro-
cedural differences between the two experiments. The first change
is that the response window was relaxed from 300 to 1000 ms.
With a 300 ms response window, participants must be prepared
to respond very quickly once the go cue comes. Under the BD
model, this time pressure could lead them to adopt a lower deci-
sion bound, so that they will be ready to respond when the go cue
occurs. Similarly, under the LCA, this time pressure could encour-
age adjusting the strength of lateral inhibition, since stronger
inhibition helps to encourage a difference in the activation of the
two accumulators, which may facilitate faster responding (Gao
et al., 2011; Gao and McClelland, in preparation). In any case,
time pressure may be one factor contributing to the strong pri-
macy pattern observed in our Experiment 1 and in Kiani et al.
(2008)5.

The second experimental change is that we used uniformly dis-
tributed stimulus durations rather than exponentially distributed
durations. The reason Kiani et al. (2008) used exponentially dis-
tributed stimulus durations was to ensure that observers have no
information about the time when the go cue would appear. This
choice, however, results in much more frequent short trials than
long trials. This factor could encourage participants to ensure they
are ready to respond early in the trial, a factor that could further
encourage a primacy bias. The empirical findings of our study
suggest two potential reasons why Kiani et al. found only pri-
macy while the study of Usher and McClelland (2001) found all

5We note that in Kiani et al. (2008), a delay period was included in half of the
trials after the stimulus offset. However, trials with and without delays were mixed
randomly within blocks, making it necessary for the animal to be ready to respond
promptly at the termination of the stimulus, which was very brief on many trials.
The response window was 500 ms in Kiani et al. as compared with only 300 ms in
our Experiment 1. We conducted a small experiment with a 500 ms response win-
dow and found that the primacy bias was not distinguishable in the 500 ms and the
300 ms conditions.
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Table 2 | Results of ANOVA examining the effect of timing within trial

(early vs. late) and its interaction with trial duration for all

participants in experiments 2A and 2B.

Subject Main effect of early/late Interaction: duration × early/late

DG F (1, 63) = 2.715; p = 0.104 F (3, 63) = 1.353; p = 0.259

LK F (1, 75) = 40.527; p< 0.001 F (3, 75) = 1.297; p = 0.276

MM F (1, 99) = 0.721; p = 0.398 F (3, 99) = 0.192; p = 0.662

WW F (1, 43) = 0.062; p = 0.805 F (3, 43) = 3.410; p = 0.020

AP F (1, 11) = 0.026; p = 0.876 F (3, 11) = 0.563; p = 0.643

CB F (1, 20) = 6.678; p = 0.018 F (3, 20) = 1.365; p = 0.262

SY F (1, 20) = 1.815; p = 0.193 F (3, 20) =0.55; p = 0.650

The bold fonts highlight the places where the differences were statistically

significant

three patterns of primacy, recency, and balanced integration. Like
in Experiment 2, participants in the Usher and McClelland study
were not presented with predominantly short stimuli, or a short
deadline. Our findings also suggest that time pressure, exerted by
a narrow response window and/or by more short trials, is one of
the factors determining the relative importance of information at
different time points.

The results of these experiments also show important indi-
vidual differences (see also Usher and McClelland, 2001). We
were particularly interested in examining whether observers show
a transition from primacy, when stimulus duration is short, to
recency, when stimulus duration is long. This signature prediction
of the inhibition-dominant LCA is challenging for the BD model.
Such a transition was found in the performance of subject WW
in Experiment 2A, and a similar pattern was found in observer
SC in Experiment 1B. Despite detecting the predicted signature of
the non-linear LCA, we believe that any conclusions at this stage
should be tentative, since they are only supported by the data from
2 of 10 participants.

Further experimentation with additional observers and exper-
imental protocols will be needed to more thoroughly examine
the relative merits of the BD and LCA models and to delineate
in more detail the conditions under which recency as well as
primacy patterns might be obtained. This is important because
a number of other experimental paradigms have shown recency
patterns (Pietsch and Vickers, 1997; Usher and McClelland, 2001;
Newell et al., 2009). Note also that here we only examined temporal
weighting of perceptual evidence in a time-controlled paradigm.
Although more challenging (since one cannot plan a mid-point
evidence change when RT is under subject control), the examina-
tion of temporal evidence is also possible in the free-response par-
adigm. Recently, Zhou et al. (2009) have developed a sophisticated
perturbation protocol that can distinguish between a number of
competing choice-RT-models in conditions of high signal-to-nose
(low error-rate). Future work with such perturbation protocols as
well as with balanced or non-balanced evidence switches (e.g.,
40% left vs. 60% right) are vital to fully understand the details
of the mechanisms of decision making, as are investigations that
collect enough data per participant to reliably explore individual
differences.
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FIGURE 9 |The effect of a short pulse on the activation states of two

leaky competing accumulators, at different times in the trial. Each trial
lasted for 200 time-steps. The two accumulators received Gaussian inputs
with mean and standard deviation both equal to 1. The pulse was inserted
for 40 time-steps and increased the mean input to the target accumulator
by 1 unit. In the y -axis we plot the change that the pulse conferred to the
difference between the target and the non-target accumulator. The change
is calculated by subtracting the difference between the accumulators’
activity 40 time-steps after the offset of the pulse minus the activity
difference at the onset of the pulse. The effect diminishes as the time of
the pulse onset increases. The leaky competing accumulator model was
simulated with inhibition three times larger than the leakage (β = 0.15,
k = 0.05). Error bars correspond to 95% CI.

One additional factor that may explain the difference in tem-
poral profile obtained in this study and that in Kiani et al. (2008),
compared to studies that showed recency effects is the degree of
practice. Practice is quite extensive in our studies as well as in the
Kiani study. One possibility, suggested by Brown and Heathcote
(2005), is that practice increases the efficiency of evidence accu-
mulation by reducing the effective leak. This factor could play a
role in the comparison between our Experiment 1 and 2 as well,
since participants in Experiment 1 had more practice, on average,
than those in Experiment 2.

Kiani et al. (2008) proposed that bounded integration is a
universal decision principle that applies not only to self-paced
decisions but also to tasks in which the duration of evidence accu-
mulation is controlled by the experimenter. The results we report
here, taken together with other studies showing recency effects,
suggest that this conclusion should be reconsidered. Interestingly,
one of the motivations suggested by Kiani and colleagues against
leaky integration was the idea that leaky integration might be mal-
adaptive in that it discards some of the evidence. While this may
be true in some conditions, it is also true that placing a bound
on information integration also disregards important decision-
relevant information6. It might be supposed that unbounded

6We do not argue against the idea that decision boundaries are sometimes used even
when the stimulus duration is experimentally controlled (Ratcliff, 2006). However,
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integration (achieved in the drift-diffusion model without a bound
or by a linear version of the LCA with a perfect balance between
leak and inhibition) would always be the best policy, but this may
ignore important contingencies that could make a recency vs. a
primacy strategy more adaptive. These contingencies include the
need to be ready to respond quickly and the need to be sensitive
to a change in evidence as well as other factors.

We propose that the mechanism in play in the non-linear
inhibition-dominant LCA has the advantage of prioritizing early
information in a flexible and reversible manner. Interestingly, while
the non-linearity reduces the optimality of the model in choices
between two alternatives, it has the advantage of making the mech-
anism more optimal and robust when there is a larger number of
alternatives (Bogacz et al., 2007). In other work in our labs, this
mechanism is supported by data showing that responses triggered
by a go cue are faster for correct than incorrect choices (Gao and
McClelland, in preparation) and also by decision biases in favor
of alternatives whose evidence is temporally anti-correlated with
evidence for other alternatives (Tsetsos et al., 2011). Yet other work
indicates that some participants exhibit the bimodal decision states
like these exhibited by the inhibition-dominant LCA (as illustrated
in Figure 3, right column; Lachter et al., 2011).

we suspect that such boundaries should be under subject control, and reflect a vari-
ety of experimental demands (such as speed-accuracy trade-offs) and contingencies
(such as information about expected stimulus durations). Additionally, the bound
should be soft rather than rigid.

In closing, we suggest that the principles that are at play in the
LCA – leaky integration and lateral inhibition – may generalize
beyond the domain of evidence based decisions that we have
focused on here. These principles, inspired by known properties of
neural systems (Usher and McClelland, 2001), are also found in the
attractor model of Wang (2002), and in models based on Decision
Field Theory, an approach that has been successfully applied to
various aspects of preference based decisions, such as risky choice
(Busemeyer and Townsend, 1993; Johnson and Busemeyer, 2005),
and to several distinctive characteristics of performance in multi-
attribute, multi-alternative decisions (Roe et al., 2001; Usher and
McClelland, 2004; Tsetsos et al., 2010).
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APPENDIX
PERTURBATION PROTOCOL IN EXPERIMENT 1A
In experiment 1A, a momentary change (or pulse) in the motion
coherence was introduced in 80% of the trials with duration
longer than 300 ms. The motion pulse could be inserted between
100 ms after the beginning of the stimulus and 200 ms before it
ended. Figure A1 illustrates the perturbation protocol: T ms after
the stimulus onset (100 ms<T <T overall − 200 ms) the motion
coherence which previously equaled to a, increased by p (i.e.,
coherence level during the pulse was a + p, with p = ±3.2%). The
duration of the pulse was ΔT = 200 ms.

EXCLUDED SESSIONS IN EXPERIMENT 1B
For participants CS and MT the first session was discarded due
to a programming mistake (see text footnote 2). Participants CS
and SC had high and stable mean accuracy for all sessions (SD of
accuracy was 2.2 and 3% respectively) and therefore we used 13
(after excluding the first session) and 12 sessions correspondingly.
For participant MT the performance was unstable during the first
10 sessions (see Figure A2). These sessions were not included in
the analysis, resulting in 9 analyzed sessions (the SD of accuracy
for the first 10 sessions was 5%; after excluding these sessions SD
was 1.7% for the remaining 9 sessions).

INDIVIDUAL RESULTS FROM EXPERIMENT 2A AND 2B
In Figure A3 the results of all participants (4 for Experiment 2A
and 3 for Experiment 2B) are presented. Table 2 in the main text
shows the statistical analysis performed on each subject regarding
the direction of the timing effect (primacy/recency) and its inter-
action with the trial duration. Participants LK and CB showed
a significant primacy while participant WW showed a signifi-
cant interaction between primacy/recency and trial duration. This
interaction is uniquely predicted by the LCA model (see Experi-
ment 1A). The patterns exhibited by the other participants do not
discriminate between the models.

FIGURE A1 | Illustration of perturbation protocol in Experiment 1B.

After T ms the motion coherence level changes from a to a + p for a
duration of 200 ms.
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Converging findings from behavioral, neurophysiological, and neuroimaging studies sug-
gest an integration-to-boundary mechanism governing decision formation and choice
selection. This mechanism is supported by sequential sampling models of choice deci-
sions, which can implement statistically optimal decision strategies for selecting between
multiple alternative options on the basis of sensory evidence. This review focuses on
recent developments in understanding the evidence boundary, an important component of
decision-making raised by experimental findings and models. The article starts by review-
ing the neurobiology of perceptual decisions and several influential sequential sampling
models, in particular the drift-diffusion model, the Ornstein–Uhlenbeck model and the leaky-
competing-accumulator model. In the second part, the article examines how the boundary
may affect a model’s dynamics and performance and to what extent it may improve a
model’s fits to experimental data. In the third part, the article examines recent findings
that support the presence and site of boundaries in the brain. The article considers two
questions: (1) whether the boundary is a spontaneous property of neural integrators, or
is controlled by dedicated neural circuits; (2) if the boundary is variable, what could be
the driving factors behind boundary changes? The review brings together studies using
different experimental methods in seeking answers to these questions, highlights psycho-
logical and physiological factors that may be associated with the boundary and its changes,
and further considers the evidence boundary as a generic mechanism to guide complex
behavior.

Keywords: decision, boundary, integration, modeling

NEURAL MECHANISMS OF PERCEPTUAL DECISIONS
Making decisions on the basis of sensory information is a fre-
quent and critical element of human lives. Imagine you are driving
toward a traffic light in clear weather. You can easily decide to stop
or accelerate depending on the color of the traffic light ahead.
When driving in foggy weather, however, since the scene is less vis-
ible, it is more difficult to distinguish between the red and green
light. You may need longer to make the correct decision, and may
sometimes even make a mistake.

This type of process is often referred to as perceptual decision-
making (Newsome et al., 1989; Gold and Shadlen, 2001, 2007;
Heekeren et al., 2008), which requires one to discriminate sen-
sory attributes from either stationary or dynamic stimuli – such
as an illumination with different colors (Yellott, 1971), a geomet-
ric shape with different orientations (Swensson, 1972), or a pixel
array with different brightness (Ratcliff and Rouder, 1998) – and
map the subjective perception onto multiple alternative responses.
Laboratory studies of the decision process often employ one of two
forced-choice paradigms. In the time-controlled (TC) paradigm,
subjects are required to give their response immediately after a
decision time set by the experimenter (Yellott, 1971; Swensson,
1972; Dosher, 1976, 1984). In the information-controlled (IC)
paradigm, subjects are allowed to respond freely whenever they
feel confident, from which subjects’ response times (RTs) can be

measured as a second dependent variable (Luce, 1986). The neural
mechanisms of perceptual decisions have been extensively studied
using a prototypical random dot motion (RDM) discrimination
task (Britten et al., 1993; Shadlen and Newsome, 2001; Roitman
and Shadlen, 2002; Palmer et al., 2005; Churchland et al., 2008;
Kiani et al., 2008). The RDM stimulus consists of a dynamic field
of moving dots, a proportion of which move coherently in one
direction, while the other dots move randomly (Figure 1). The
task is to decide the direction of coherent motion and respond
with an eye movement or a button press. Its difficulty can be
manipulated by varying the strength of motion coherence.

Single-unit recordings in trained monkeys performing the
RDM task indicate that the formation of perceptual decisions
involve distinct neural processes across different brain regions.
First, neuronal activity in motion sensitive areas (MT/V5; Maun-
sell and Van Essen, 1983; Born and Bradley, 2005; Zeki, 2007)
are closely related to the statistics of the RDM stimulus (i.e., the
motion coherence; Newsome and Pare, 1988; Salzman et al., 1990,
1992; Ditterich et al., 2003), but only weakly correlate with behav-
ioral responses (Britten et al., 1992, 1993, 1996), suggesting that
sensory neurons encode noisy, transient, and stimulus dependent
evidence to support an alternative (Gold and Shadlen, 2001, 2007).
Second,neurons in the lateral intraparietal (LIP) area respond with
ramp-like changes, and the rate of change depends on the level of
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FIGURE 1 | Schematic diagram of the RDM stimulus with different
motion coherence levels. In each frame a proportion of the dots (solid
dots) are repositioned with fixed spatial offset, indicating the coherent
motion direction, and the rest of the dots (open dots) are repositioned
randomly. More detailed specification of the stimulus is available in Britten
et al. (1992).

motion coherence (Shadlen and Newsome, 2001; Roitman and
Shadlen, 2002). Unlike the MT neurons that respond transiently
to visual stimuli, the LIP neurons gradually build up or attenu-
ate their activity even if the visual stimuli remain ambiguous (i.e.,
0% coherence). This activity pattern starts shortly after the stimu-
lus onset and terminates before a saccadic response. Importantly,
around ∼80 ms before a response, there is no obvious variability
in firing rates of LIP neurons when responses are made under dif-
ferent motion coherence levels, and neural activity correlates only
with the direction of eye movement (i.e., the decision). These find-
ings suggest that LIP neurons integrate sensory evidence up to a
decision boundary1 prior to a response (Mazurek et al., 2003; Huk
and Shadlen, 2005; Hanks et al., 2006). Similar activity patterns
have also been observed in other brain regions, including frontal
eye fields (FEF; Schall, 2002), superior colliculus (SC; Basso and
Wurtz, 1998), and dorsolateral prefrontal cortex (DLPFC; Kim
and Shadlen, 1999). Taken together, these studies suggest a generic
integration-to-boundary mechanism manifested in different brain
regions for perceptual decisions. That is, certain neuronal popu-
lations integrate sensory information over time, and a response is
committed to when the accumulated evidence reaches a decision
boundary (Schall and Thompson, 1999; Gold and Shadlen, 2001,
2007; Heekeren et al., 2008).

The integration-to-boundary mechanism receives further sup-
port from psychological models of choice decisions that have been
developed over the last half-century, namely sequential sampling
models (Wald, 1947; Lehmann, 1959; Stone, 1960; Link, 1975; Link
and Heath, 1975; Townsend and Ashby, 1983; Luce, 1986; Ratcliff
and Smith, 2004; Smith and Ratcliff, 2004; Bogacz et al., 2006;
Barnard, 2007). Sequential sampling models assume that evidence
supporting alternatives are represented by a sequence of noisy
observations over time. A process essential to reduce the noise in
evidence is to integrate momentary observations over time and
make a decision on the basis of the accumulated evidence. The

1The term “decision boundary” is referred to the type of evidence boundary that
directly affects the termination of the decision. The tem “evidence boundary” is
referred to all types of boundaries that limit the accumulation process. See Section
“Theoretical Considerations of Evidence Boundaries” for a detailed discussion.

sequential sampling models provide a detailed account of behav-
ioral performance on choice tasks, including RT distributions,
response accuracy, and relationships between the two (e.g., the
speed–accuracy tradeoff). These models have been widely used as
a mechanistic framework for isolating the decision process from
sensory inputs or motor outputs.

A key prediction of almost all sequential sampling models is the
presence of evidence boundaries, which limit the quantity of evi-
dence available for making a decision. This article reviews recent
theoretical and experimental developments in understanding the
functions and mechanisms of the evidence boundary. The focus
on the boundary mechanisms in general, rather than on partic-
ular decision models, is primarily due to its empirical relevance
and importance. First, both experimental data and psychological
models imply that the evidence boundary does not depend solely
on sensory evidence, but can be internally set and controlled by a
decision-maker. This unique characteristic of the boundary raises
two important questions: (1) how can the evidence boundary
influence decision performance? (2) How is the boundary imple-
mented and adapted in neural circuits? Answers to such questions
may provide insight into high-level cognitive control that sub-
serves decision-making processes. Second, although the presence
of the boundary is consistently supported by the neurophysiolog-
ical (Mazurek et al., 2003; Huk and Shadlen, 2005; Hanks et al.,
2006; Kiani et al., 2008) and neuroimaging (Ploran et al., 2007;
Heekeren et al., 2008; Kayser et al., 2010a,b) data, only recently
have researchers begun to investigate the function and effects of the
evidence boundary. The understanding of its neural mechanisms
is still insufficient.

The article is organized as follows: Section“Models of Decision-
Making” reviews the decision-making problem and three repre-
sentative sequential sampling models: the drift-diffusion model
(DDM; Ratcliff, 1978), the Ornstein–Uhlenbeck (OU) model
(Busemeyer and Townsend, 1993), and the leaky-competing-
accumulator (LCA) model (Usher and McClelland, 2001). Section
“Theoretical Considerations of Evidence Boundaries” examines
the effects of the evidence boundary on the three models. This
section discusses how the boundary may affect the models’dynam-
ics and fits to experimental data, and to what extent the boundary
may affect the performance of these models. Section “Neural
Implementation of Decision Boundary” and “Effects of Boundary
Changes” review recent experimental findings that reveal possible
neural underpinnings and behavioral influences on the decision
boundary. Finally, Section “Discussion” offers some concluding
remarks.

MODELS OF DECISION-MAKING
THE DECISION PROBLEM AND THE OPTIMAL DECISION-MAKING
THEORIES
Perceptual decision-making can be formalized as a problem of sta-
tistical inference (Gold and Shadlen, 2001, 2007). Let us consider
a decision task with a choice between N (N≥ 2) alternatives, each
supported by a population of sensory neurons exclusively selective
to a choice (e.g., motion sensitive neurons in area MT/V5). Stim-
uli drive the N populations of sensory neurons to generate noisy
evidence streams Ii(t ) at time t, with mean µi and variance σ2

i
(i= 1, 2, 3, . . ., N ). The goal of the decision process (e.g., reflected
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in activity of LIP neurons) is to identify which sensory population
has the highest mean activity based on the evidence Ii(t ). This
article mainly considers three representative models under this
framework, as a more complete survey on sequential sampling
models is available elsewhere (Ratcliff and Smith, 2004; Smith and
Ratcliff, 2004; Bogacz et al., 2006).

Statistically optimal strategies exit for solving the decision
problem with two alternatives (N= 2), which would achieve the
lowest error rates (ER; the probability of making an incorrect
choice in a block of trials) and the shortest RT compared with
all other decision-making strategies. This optimality criterion can
be divided into two sub-criteria (Bogacz et al., 2006): (1) the strat-
egy yielding the lowest ER for any fixed amount of evidence, and
(2) the strategy yielding the fastest response for any given ER.
The two criteria correspond with the optimal conditions of the
TC and IC paradigms, respectively. The optimal strategy for the
TC paradigm, i.e., the lowest ER for fixed RT, is provided by the
Neyman–Pearson test (NPT; Neyman and Pearson, 1933). The
optimal strategy for the IC paradigm, i.e., the fastest RT for a given
ER, is provided by the sequential probability ratio test (SPRT;Wald,
1947; Wald and Wolfowitz, 1948; Barnard, 2007). For multiple
alternative decision tasks (N > 2), asymptotically optimal strate-
gies are also available for the TC (Mcmillen and Holmes, 2006)
and IC paradigms (Draglia et al., 1999; Dragalin et al., 2000).

Decision strategies that meet the optimal criteria above require
linear integration of evidence over time, which, as reviewed below,
can be implemented by many accumulator models on different
level of abstraction (the implementation of optimal strategies
for multiple alternative decisions requires models with additional
complexity to those discussed here, see Bogacz and Gurney, 2007;
Zhang and Bogacz, 2010b). Models that can accomplish optimal
strategies have been shown to provide better explanations of exper-
imental data than other, non-optimal, models (Ratcliff and Smith,
2004). This leads us to an ecologically motivated assumption that
the brain may implement strategies for optimizing the speed and
accuracy of decision-making, and hence optimal decision theories
may offer a normative benchmark to generate experimental pre-
dictions and link behaviors to neural circuits for decision-making
(Bogacz, 2007).

The perspective that the brain implements optimal decision-
making relies on precise and circumspect definitions of the deci-
sion problem and criteria for optimality per se. For the simple
decision problem with time-invariant evidence, linear integration
is the optimal strategy in the sense of its speed and accuracy (see
van Ravenzwaaij et al., 2012 for a discussion on other possible defi-
nitions of optimality). For tasks with time-varying signal-to-noise
ratio within each trial (Huk and Shadlen, 2005; Tsetsos et al., 2011),
linear integration may no longer be optimal. Intuitively, if the sta-
tistics and regularities of the time-varying evidence (i.e., when
more reliable evidence arrives) are known, a decision strategy that
exploits such knowledge and gives greater weight to more reliable
evidence would have better performance than linear integration
strategy (Papoulis, 1977). Whether humans are biased toward early
or late evidence, or if their weights of evidence vary with practice
(Brown and Heathcote, 2005b), or if their decision strategies are
flexibly adapted (Brown et al., 2005), is still not fully understood
and merits further investigation.

DRIFT-DIFFUSION MODEL
The DDM was proposed for two-alternative forced-choice (2AFC)
tasks (Stone, 1960; Ratcliff, 1978). Mathematically, the DDM can
be thought of as a standard Wiener process with external drift
(Wiener, 1923), and is equivalent to a continuous limit of the ran-
dom walk models (Estes, 1955; Laming, 1968; Link, 1975; Link
and Heath, 1975; Luce, 1986). The model implies a single integra-
tor that integrates the momentary difference between two sensory
streams [I 1(t )− I 2(t )] supporting two alternatives (Figure 2A).
The dynamics of the DDM can be characterized by a stochastic
differential equation:

dX (t ) = µdt + σdW (t ) . (1)

Here dX(t ) denotes the increment of the accumulated evidence
X(t ) over a small unit of time dt. The sign of dX(t ) implies that
the momentary evidence at time t supports the first [dX(t ) > 0]
or the second [dX(t ) < 0] alternative. µ is the drift rate of inte-
gration, representing the mean evidence difference (µ1 – µ2) per
unit of time. If σ1= σ2. The magnitude of µ is determined by the
quality of the stimulus (the drift rate may be also determined by
the allocation of attention, see Schmiedek et al., 2007). For exam-
ple, for the RDM task, µ would represent the coherence level of
the RDM stimulus: a large µ implies high motion coherence and
an easy task, while a small µ implies low motion coherence and
a high-level of difficulty in distinguishing between two coherent
motion directions. The second term σdW (t ) denotes Gaussian
noise with mean 0 and variance σ2dt. The DDM can be applied to
either IC or TC paradigms. In the IC paradigm, decision time is
unrestricted and two decision boundaries are introduced to indi-
cate termination states (see Boundary Mechanisms). Once X(t )
reaches a boundary, a corresponding choice is made. The predicted
RT is equal to the duration of the integration, plus a non-decision
time, corresponding to other cognitive processes unrelated to evi-
dence integration (e.g., sensory encoding or response execution).

A B C

FIGURE 2 |The sequential sampling models for 2AFC tasks: (A) the
DDM, (B) the OU model, (C) the LCA model. Arrows denote excitatory
connections. Dashed lines with solid circle end denote inhibitory
connections. For the OU model, the dashed line with an open circle end
denotes the effect of the growth-decay parameter. For each model, the
bottom nodes denote sensory evidence, and the top notes denote neural
integrators. Model parameters are defined in Eqs 1–3.
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For the TC paradigm, which requires subjects to respond at the
experimenter-determined decision time Tc, the model selects an
alternative by locating the ultimate integrator state X(Tc) and
selecting the first alternative if X(Tc) > 0, or the second alternative
if X(Tc) < 0.

Several extensions of the DDM have been proposed since its
original introduction, allowing model parameters to vary across
trials. First, between-trial variability in the starting point of the
integrator X(0) was introduced to account for premature sam-
pling (Laming, 1968), which predicts faster errors than correct
responses. Second, between-trial variability in the drift rate was
introduced to account for slower errors when compared to correct
responses (Ratcliff, 1978). The additional sources of parameter
viabilities have been shown to improve fits to experimental data
(Ratcliff et al., 1999).

The DDM have been applied to a number of cognitive tasks,
including memory retrieval (Ratcliff, 1978), lexical decisions (Rat-
cliff et al., 2004a; Wagenmakers et al., 2008), letter identification
(Ratcliff and Rouder, 2000), and visual discrimination includ-
ing the brightness discrimination (Ratcliff, 2002; Ratcliff et al.,
2003b) and the RDM task (Palmer et al., 2005). In all its applica-
tions, the model has successfully accounted for response accuracies
and RT distributions observed from individual subjects (Ratcliff
and Rouder, 1998; Ratcliff and Smith, 2004; Ratcliff and McKoon,
2008). More importantly, the simple DDM without between-trial
parameter variability has been shown to implement the statisti-
cally optimal strategies for choosing between two alternatives (the
NPT and the SPRT) in both TC and IC paradigms (Wald, 1947;
Edwards, 1965; Gold and Shadlen, 2001, 2007; Bogacz et al., 2006),
and hence the DDM is often used as a benchmark to compare the
performance of other decision models. For the extended version
of the DDM, previous studies suggest that the DDM with variable
drift rate may still be the optimal model in the TC paradigm but
the DDM with variable starting point is not optimal compared to
other models (Bogacz et al., 2006). However a strict proof of the
optimality of the DDM with between-trial visibilities is still not
available yet.

One limitation of the DDM is that it was initially designed for
binary choice tasks. Recent studies have attempted to extend the
DDM to account for N-alternative forced-choice (NAFC) tasks
(N > 2). One approach has been suggested by Niwa and Ditterich
(2008). For a RDM task with three alternatives (i.e., three possible
motion directions), Niwa and Ditterich (2008) modeled three inte-
grators supporting the three alternatives rather than using a single
integrator. The three integrators compete against each other in a
race toward a common decision boundary and a response is deter-
mined by the winning integrator. Crucially, each integrator not
only integrates sensory evidence supporting its preferred choice in
a diffusion process, but also receives weighted feed-forward inhi-
bition from evidence supporting the other two alternatives (Dit-
terich, 2010; see also Mazurek et al., 2003 for a similar approach).
Churchland et al. (2008) proposed a slightly different approach
for modeling a RDM task with four possible motion directions
orthogonal to each other. Their hypothesis was that discriminat-
ing between two opposite motion directions (e.g., upper-left and
lower-right) is independent of sensory evidence supporting the
other two orthogonal directions (e.g., lower-left and upper-right).

As a result, any sensory evidence supporting the two alternatives
neighboring the true alternative was assumed to have a zero mean.
The model nicely predicts a feature of their behavioral data that the
probability for choosing the alternative directly opposing the true
alternative is higher than that for the two alternatives neighboring
the true alternative (Churchland et al., 2008). Leite and Ratcliff
(2010) examined a family of models with multiple integrators
in NAFC tasks with different number of alternatives (N= 2, 3, 4).
Their results suggest that the models with independent integrators
(i.e., no mutual inhibition) and zero to moderate decay produce
qualitatively good fits to the RT distributions.

ORNSTEIN–UHLENBECK MODEL
Similar to the DDM, the OU model has been proposed for 2AFC
tasks (Busemeyer and Townsend, 1993), and has been applied to a
variety of choice tasks to account for response accuracies and RT
distributions (Heath, 1992; Diederich, 1995, 1997; Smith, 1995;
Busemeyer, 2002). The OU model is identical to the DDM except
that it includes a first-order filter that varies the change rate of
an integrator (Busemeyer et al., 2006; Figure 2B). More precisely,
the model is equivalent to a one-dimensional OU process (Uhlen-
beck and Ornstein, 1930) and its dynamics can be described by the
following differential equation:

dX (t ) = [µ+ λX (t )] dt + σdW (t ) . (2)

The drift rate µ and the noise term σdW (t ) have the same
definitions as in Eq. 1 (see “Drift-diffusion model” above). The
model contains a linear coefficient λ, a growth-decay parameter.
As a result the rate of change of X(t ) depends not only on the
mean drift rate, but also on the current state of the integrator.

The growth-decay parameter brings some interesting proper-
ties to the OU model. First, in the TC paradigm, the response
accuracy of the OU model reaches an asymptote for a large deci-
sion time Tc. Note that the same prediction can be made from
the DDM by introducing variability in drift rate across trials (Rat-
cliff et al., 1999), and that therefore theoretically the two models
can account for behavioral data equally well (but, see Ratcliff and
Smith, 2004). However, recent studies suggest that the two mod-
els are distinguishable by introducing temporal uncertainty to the
stimulus (Huk and Shadlen, 2005; Kiani et al., 2008; Zhou et al.,
2009). Second, the value of λ can account for the serial position
effects observed in decision-making tasks (Wallsten and Barton,
1982; Busemeyer and Townsend, 1993; Usher and McClelland,
2001). For λ < 0, the linear term λX(t ) inhibits the integrator
and the evolution of X(t ) tends toward a stable attractor −µ/λ.
Because evidence presented earlier in a trial decays over time, the
choice mainly depends on the evidence later in the trial (a recency
effect). In contrast, for λ > 0, the evolution of X(t ) is repelled
from the unstable fixed point −µ/λ, and the speed of repulsion
is proportional to the distance between the current stage X(t )
and −µ/λ. Therefore after X(t ) has been driven to one side or
other of the fixed point, subsequent evidence has little effect on
the final choice due to repulsion (a primacy effect). For λ= 0, the
OU model reduces to the DDM and hence implements the optimal
decision strategy.
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LEAKY-COMPETING-ACCUMULATOR MODEL
The LCA model was proposed by Usher and McClelland (2001).
Unlike the DDM and the OU model which integrate the rela-
tive evidence for one alternative compared with another, the LCA
model assumes that evidence supporting different alternatives is
integrated by separate integrators (Figure 2C). Therefore the LCA
model can be naturally extended to account for decision tasks with
multiple alternatives (Usher and McClelland, 2004; Mcmillen and
Holmes, 2006; Tsetsos et al., 2011). Each integrator in the LCA
model is leaky, as accumulated information continuously decays,
and receives mutual inhibition from other integrators. For 2AFC
tasks, the dynamics of the two integrators Y 1(t ) and Y 2(t ) can be
described by:{

dY1 (t ) =
(
µ1 − ky1 (t )− wy2 (t )

)
dt + σdW1 (t )

dY2 (t ) =
(
µ2 − ky2 (t )− wy1 (t )

)
dt + σdW2 (t )

. (3)

Here k (k≥ 0) denotes the rate of decay, and w (w≥ 0) denotes
the weight of mutual inhibition from the other integrator. In the
absence of sensory evidence (µ1=µ2= 0), the two integrators will
converge to zero due to the effect of decay. The additional mutual
inhibition means that the integrators are not independent, as each
integrator can access the evidence that supports other alternatives.
The LCA model can be applied to both IC and TC paradigms. In
the IC paradigm, the first integrator that reaches a decision bound-
ary renders its preferred choice. In the TC paradigm, the decision
is determined by identifying which integrator has higher activity at
a decision time Tc. The model in Eq. 3 is a simplified linear version
of the LCA model and the integrators’ values are unconstrained. In
their original publication, Usher and McClelland (2001) assumed
that the integrators’ stages are transformed by using a threshold-
linear activation function, which prevents any integrator having
negative values (Brown and Holmes, 2001; Brown et al., 2005).
This non-linearity is motivated by the fact that activities of neural
integrators can never be negative (see Boundary Mechanisms).

The LCA model is closely related to other sequential sampling
models. For w= k= 0 (no decay or inhibition), the LCA model is
equivalent to a model with independent integrators, which resem-
bles a continuous version of the accumulator or counter models
(Pike, 1966; Vickers, 1970). For 2AFC tasks, the LCA model can
be reduced to an OU model if both decay and inhibition are large
relative to the noise strength σ (Bogacz et al., 2006, 2007). The
relative difference between w and k determines the growth-decay
parameter λ in the reduced OU model (λ=w− k). That is, if the
inhibition is larger than the decay (w > k), the LCA model can
be reduced to an OU model with λ > 0. In contrast, if the inhi-
bition is smaller than the decay (w < k), the LCA model can be
reduced to the OU model with λ < 0. Therefore, similar to the
OU model with λ 6= 0, the LCA model with unbalanced inhibition
and decay (w 6= k) can account for primacy and recency effects
(Usher and McClelland, 2001). For balanced decay and inhibition
(w= k), the LCA model can be approximated by the DDM and
hence implements the optimal decision strategy.

Because the LCA model can mimic the DDM and the OU
model within a certain parameter range, the LCA model retains
the strength of the simpler models to account for detailed aspects
of behavioral data from 2AFC tasks. The LCA model has also

been successfully applied to perceptual decision tasks with multi-
ple alternatives (Usher and McClelland, 2001; Tsetsos et al., 2011),
and value-based decisions, in which the decisions are settled on
subjective preferences, rather than perceptual information (Usher
and McClelland, 2004; Usher et al., 2008).

DECISION-MAKING MODELS AT DIFFERENT LEVELS OF COMPLEXITY
The sequential sampling models do an excellent job of account-
ing for the variability of responses and RTs in various decision
tasks. Over decades researchers have tended to extend existing
models to account for more systematic effects (e.g., RT differ-
ences between correct and error responses) or more biologically
realistic constraints (e.g., the mutual inhibition and decay in the
LCA model). These attempts led to an increase of model complex-
ity and number of model parameters, which, in practice, makes
such models difficult to apply to experimental data. There are sev-
eral previous attempts to simplify existing models. For example,
Wagenmakers et al. (2007) proposed a simplified version of the
DDM by assuming that there is no between-trial variability, and a
further simplified DDM proposed by Grasman et al. (2009) addi-
tionally assumes the starting point of the integrator is not biased
toward any alternative. These simplified models can directly esti-
mate the DDM parameters from analytical solutions without a
parameter-fitting procedure.

More recently, Brown and Heathcote (2008) proposed a linear
ballistic accumulator (LBA) model of choice decisions (see Brown
and Heathcote, 2005a for a non-linear version of the model).
The LBA model has been applied to many choice tasks includ-
ing perceptual discrimination (Forstmann et al., 2008, 2010a,b;
Ho et al., 2009), absolute identification (Brown and Heathcote,
2008), lexical decisions (Donkin and Heathcote, 2009), and sac-
cadic eye movements (Ludwig et al., 2009; Farrell et al., 2010).
Similar to the LCA model, the LBA model assumes each integrator
integrates evidence supporting one alternative and hence can be
applied to NAFC tasks, but with two major simplifications. First,
the integrators are independent (no mutual inhibition) and have
no leakage (no decay). Second, the integration process within each
trial is linear and deterministic (i.e., ballistic), omitting the within-
trial variability in momentary evidence. These two assumptions
greatly simplify the model dynamics and hence the LBA model
has analytical solutions for RT distributions and response accu-
racies for NAFC tasks. This is a significant advantage in terms of
computational complexity as one can estimate the model parame-
ters without using Monte Carlo simulations. However, the strong
assumptions inevitably introduce limitations. Because the inte-
gration process is assumed to be linear and deterministic, the LBA
model cannot distinguish evidence arriving at different times over
a trial, and hence it is not straightforward to apply the LBA model
when accounting for primacy and recency effects, or any task par-
adigms that deliberately introduce temporal uncertainty within a
trial (Usher and McClelland, 2001; Huk and Shadlen, 2005; Tsetsos
et al., 2011).

Decision-making models can be used to isolate decision
components (e.g., boundary and drift rates), from which esti-
mated model parameters can infer experimental data collected
from different sources, such as fMRI or EEG/MEG signals. This
model-based approach provides an invaluable way of linking latent
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decision processes predicted by the accumulator models with their
implementations in large neural populations, and not surprisingly
has attracted increasing interest over the last few years (Philiastides
et al., 2006; Philiastides and Sajda, 2007; Forstmann et al., 2008,
2010b; Ho et al., 2009; Ratcliff et al., 2009; Kayser et al., 2010a,b;
Wenzlaff et al., 2011). It is worth noting that all models can be used
for this purpose, although simpler models are often employed due
to less computational complexity.

However, models at a highly abstract level (e.g., the DDM
and the LBA model) are not sufficient to address some more
fundamental questions of decision-making, such as the neural
mechanism of slow ramping activity in LIP neurons during RDM
tasks, or the mechanisms of decay and inhibition in neural integra-
tors. The answers to these questions require more detailed models
at the level of single neurons (the LCA model provides a middle
ground in neural plausibility between single neuron models and
the DDM). Wang (2002) proposed a biophysically based spiking
neuron model for perceptual decision-making. For the RDM task
with two alternatives, the model assumes two LIP neural popula-
tions supporting each alternative. Instead of mutual inhibition in
the LCA model, all neurons from different populations project to
a common pool of inhibitory neurons, which then inhibits each
population via feedback inhibitory connections. Wang (2002) pro-
posed that evidence integration over a long timescale (on the order
of several hundred milliseconds to over 1 s), as assumed by most
sequential sampling models, could be realistically carried out by
neural populations with recurrent excitatory connections medi-
ated by NMDA receptors at a very short timescale (on the order of
less than 100 ms). This model has been demonstrated to success-
fully account for the activity of LIP neurons as well as behavioral
performance in the RDM tasks (Wong and Wang, 2006; Wong
et al., 2007), and has recently been applied to multiple alterna-
tive decision tasks (Furman and Wang, 2008). However, although
the biophysical model is important for understanding the neural
mechanisms of decision processes, due to the model complexity
and the large number of model parameters it could be difficult
to use such a specialized model as an exploratory tool for other
decision tasks, or to search through the parameter space to fit the
model to RT distributions. Smith and McKenzie (2011) recently
proposed a simplified version of Wang’s (2002) model that over-
comes these difficulties. In their minimal recurrent loop model,
evidence is represented by Poisson shot noise processes (Smith,
2010) and evidence integration for each alternative is represented
by the superposition of Poisson processes, resembling the essen-
tial statistical features of the reverberation loops in Wang’s model.
The model provides a theoretical account of how diffusive-like
evidence integration at an abstract level naturally emerges from
the spike densities in the recurrent loops. Further, at a cost of two
more free parameters, the minimal recurrent loop model can fit the
RT distributions and associated choice accuracies almost equally
well as the DDM (Smith and McKenzie, 2011), suggesting that the
model offers a promising balance between biological plausibility
and generality to predict experimental data. In summary, decision
models at different levels of complexity could be useful to capture
experimental data obtained from different modalities (Figure 3),
and empirical researchers should choose an appropriate model
that suits their research questions.

FIGURE 3 |The complexity and generality of the decision-making
models. All models are capable of capturing basic behavioral statistics such
as the RT and the response accuracy. The simple accumulator models and
the sequential sampling models are suitable to describe the congregate
activity of large neural populations (e.g., fMRI or EEG/MEG signals). The
most complex model (i.e., the spiking neural network) can be used to
account for dynamics of neural circuits.

THEORETICAL CONSIDERATIONS OF EVIDENCE
BOUNDARIES
BOUNDARY MECHANISMS
All the sequential sampling models discussed above describe a
diffusion-like evidence integration during the decision process
(Brown and Holmes, 2001; Brown et al., 2005). However they need
to be bundled with evidence boundaries that constrain accumu-
lation. This section examines evidence boundaries according to
two different but not mutually exclusive definitions: (1) evidence
boundaries that determine the amount of accumulated evidence
required to make a decision (i.e., the decision boundaries), and
(2) evidence boundaries that act as barriers to the amount of
accumulated evidence (Figure 4A).

The first type of evidence boundary, hereafter referred to as the
absorbing boundary, provides an evidence criterion or threshold
for the termination state of an integration process, and assumes
a decision is made once accumulated evidence supporting one
alternative reaches the boundary. The absorbing boundary is nec-
essary for modeling tasks that require subjects to implement a
self-initiated stopping rule (e.g., in the IC paradigm) and hence it
has been widely used by many models in the choice RT modeling
literature (Ratcliff, 1988, 2006; Gomez et al., 2007).

The second type of evidence boundary introduces biologically
inspired constraints that limit the amount of accumulated evi-
dence. Early decision models did not explicitly constrain activity of
integrators (Ratcliff, 1978), which raised theoretical and practical
concerns to the validity of the models. The theoretical concern is
that unconstrained integrators imply a possibility of an unlimited
amount of evidence being maintained by the model (Figure 4A).
For example, in the TC paradigm, the integrator state of the
DDM has infinite mean and variance as Tc approaches infinity
(see Eq. 1). For the LCA model, unconstrained integrators further
imply the possibility that model activation may become negative
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FIGURE 4 |Time course of the integrators of the DDM and LCA model
with boundaries. (A) Examples of trajectories of the absorbing (red),
reflecting (blue) and unbounded (gray) DDM.Two boundaries (±b) are indicated

by the gray dashed lines. (B) Examples of trajectories of the absorbing (left
panel) and reflecting (right panel) LCA models. The lower boundary (b−) and
the upper boundary (b+) boundaries are indicated by the gray dashed lines.

due to mutual inhibition. Unlimited or negative activations are
undesirable for a biologically plausible model, because neural inte-
grators cannot exceed certain values due to intrinsic limitations of
biological neurons. Their activity should also be non-negative.
These constraints need to be satisfied before attempting to extend
abstract models to qualitatively account for neural firing rate pat-
terns during the decision process (Usher and McClelland, 2001;
Ratcliff et al., 2003a; Huk and Shadlen, 2005; Ditterich, 2006;
Purcell et al., 2010).

The practical concern is that models with unconstrained inte-
grators may not fit experimental data well. In the TC paradigm, the
ER of the DDM with an unconstrained integrator diminishes to
zero for a large decision time Tc (without between-trial variability),
and hence the model predicts that subjects can achieve arbitrarily
small ER even for difficult tasks. Nevertheless, it is known that
humans cannot achieve 100% accuracy even for large Tc (Meyer
et al., 1988; Usher and McClelland, 2001). Furthermore, negative
activation in the LCA model may result in abnormal model pre-
dictions. Bogacz et al. (2007) showed that in a multi-alternative
decision task, if the inputs to an LCA model favor only a small sub-
set of possible alternatives, integrators favoring irrelevant choices
(i.e., those that do not receive inputs) would become negative and
send uninformative positive evidence via mutual inhibition to the
relevant competing integrators (i.e., those receiving inputs). As a
result the LCA model without truncation of negative activation
may select inferior alternatives in value-based decisions (Usher
and McClelland, 2004; Usher et al., 2008), and provide qualitatively
poorer fits to experimental data than the models with non-negative
evidence only (Leite and Ratcliff, 2010). The same problem also
exists in models with feed-forward inhibitory connections (van
Ravenzwaaij et al., 2012).

One way to introduce constraints is to transform the integra-
tor state through a non-linear activation function (Brown and
Holmes, 2001; Usher and McClelland, 2001; Brown et al., 2005),
or to assume high-level baseline activity for avoiding non-negative
activations (van Ravenzwaaij et al., 2012). A simpler approach,
without losing the explicit nature and tractability of a linear system
and yet offering a good approximation of the non-linear activation
functions, is to introduce explicit evidence boundaries to existing
models. This type of boundary is hereafter referred to as the reflect-
ing boundary (Diederich, 1995; Bogacz et al., 2007; Zhang et al.,

2009; Zhang and Bogacz, 2010a; Smith and McKenzie, 2011). The
reflecting boundary only constrains the maximum or minimum
amount of evidence that can be presented by an integrator (much
as a non-linear activation function provides cutoffs at high or
low activations), but unlike the absorbing boundary, reaching a
reflecting boundary does not terminate the integration process
(Figure 4A).

Both types of boundary mechanisms have been applied to var-
ious decision models (Ratcliff, 2006; Bogacz et al., 2007; Zhang
et al., 2009; Zhang and Bogacz, 2010a; Tsetsos et al., 2011; van
Ravenzwaaij et al., 2012). The decision models with boundaries are
hereafter referred to as bounded, and the models without a bound-
ary as unbounded. For the DDM and the OU model, when there
is no bias toward either alternative, two symmetric absorbing or
reflecting boundaries (±b) can be imposed to limit the integrator’s
activity (Figure 4A). For simplicity, the terms absorbing DDM and
absorbing OU model are used when the two absorbing boundaries
apply to the models, and the reflecting DDM and reflecting OU
model when referring to models with two reflecting boundaries.
For an LCA model with multiple integrators, if one assumes that
integrators cannot have arbitrarily large or negative values, then
two boundary conditions need to be applied to each integrator
(Figure 4B). First, each integrator requires one lower boundary
b− at zero to constrain the minimum activity to be non-negative
(Bogacz et al., 2007). This lower boundary needs to be a reflecting
boundary, since otherwise the model may not render a decision
(i.e., if the lower boundary is absorbing, activities of all integrators
could be fixed at the boundary). Second, each integrator requires
one upper boundary b+ (b+> 0) to limit the maximum activity.
The upper boundary b+ could be either absorbing or reflecting.
The LCA model with an absorbing boundary at b+ is referred to as
the absorbing LCA model, and the model with a reflecting bound-
ary at b+ as the reflecting LCA model. Table 1 summarizes the
bounded decision models discussed above and their properties.

It is worth noting that models with absorbing boundaries pro-
vide a unified account for both IC and TC paradigms (Ratcliff
and McKoon, 2008), because contact with absorbing boundaries
induces a decision. In contrast, models with pure reflecting bound-
aries require an external criterion to stop (e.g., decision deadline
Tc), and hence they are only for the TC paradigm but cannot
account for the IC paradigm. Although the pure reflecting model
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Table 1 | Properties of the sequential sampling models with and without boundaries.

Primacy Recency Optimality TC paradigm IC paradigm

DDM Unbound – – Optimal X X

Absorbing X – – X X

Reflecting – X – X –

OU Unbound λ > 0 λ < 0 λ=0 X X

Absorbing Various λ < 0 λ < 0 X X

Reflecting λ > 0 Various λ > 0 X –

LCA Unbound w > k w < k k=w X X

Lower-bound w > k w < k Unknown X X

Absorbing Unknown Unknown w < k X X

Reflecting Unknown Unknown w > k X –

The lower-bound LCA model refers to the LCA model that has only lower reflecting boundary at zero but no upper boundary.

may be criticized for its lack of generality, it is necessary to consider
the models with pure reflecting boundaries together alongside
models with absorbing boundaries in order to illustrate some
complementary properties of the two types of boundary. First,
absorbing boundaries, together with the reflecting boundaries,
provide a simple solution for primacy and recency effects in dif-
ferent models (see Primacy and Recency Effects). Second, the two
types of boundary could characterize different decision strategies
in the TC paradigm (Zhang and Bogacz, 2010a). The absorb-
ing boundary implies that subjects make their choice before the
response deadline (i.e., once the absorbing boundary is reached)
and withhold their decision. The reflecting boundary implies that
subjects continuously hesitate between the choices even when suf-
ficient evidence is available (i.e., when the reflecting boundary is
reached) and may change their decision later. Whether subjects
adopt one of the two strategies, or are able to switch between the
two (see Tsetsos et al., 2012), would be an interesting question for
future research.

PRIMACY AND RECENCY EFFECTS
The unbounded DDM integrates evidence independent of the cur-
rent integrator state (Eq. 1), and hence the model implies that
influence of sensory evidence on the final choice does not depend
on the timing of its occurrence (i.e., neither primacy nor recency).
One recent study suggests that the DDM can account for primacy
and recency effects by introducing the two types of boundaries
(Zhang et al., 2009). For the absorbing DDM, if a boundary is
reached before decision time, the preferred decision is determined
and only evidence occurring prior to the boundary hit contributes
to the integration process, indicating a primacy effect. For the
reflecting DDM, each boundary hit results in a partial loss of
evidence, since the integrator does not fully integrate momen-
tary evidence that would otherwise exceed the boundary. As a
result, the momentary evidence arriving earlier is partially lost
and on average a decision depends to a greater extent on later
evidence, indicating a recency effect (Figure 5A). A further study
indicates that the primacy/recency effects introduced by the two
types of boundaries can coincide and interact with the effects
introduced by the growth-decay parameter λ in a bounded OU
model (Zhang and Bogacz, 2010a). If the boundary and λ provide

the same effect, the joint primacy/recency effect of the bounded
OU model is maintained. On the contrary, the joint effect of
the bounded OU model is weakened or canceled if λ and the
boundary present opposite effects (Figures 5B,C). For example,
for λ > 0 (primacy effect), an OU model with absorbing bound-
aries (also the primacy effect) will also exhibit a strong primacy
effect, but an OU model with reflecting boundaries will show a
weaker effect. There is as yet no study systematically reporting
primacy and recency effects in the bounded LCA model. Given
the close relationship between LCA model and OU model, one
may expect that the primacy/recency effects of bounded LCA
model are jointly determined by the type of boundary and the
value of inhibition and decay parameters. Recent studies (Tsetsos
et al., 2011, 2012) demonstrates that the LCA model with only
lower reflecting boundary demonstrates a strong primacy effect
when the inhibition is large relative to the decay (w > k), and
a recency effect when the inhibition is small relative to the decay
(w < k), consistent with results obtained from the unbounded LCA
model.

This section has shown that primacy and recency effects can
be readily produced by evidence boundaries or their interactions
with other model parameters. Nevertheless, existing experimen-
tal data is insufficient to demonstrate the strength of these effects
in the way predicted by the models. An ideal paradigm to sys-
tematically investigate and differentiate these effects would be
a decision task using time-varying evidence, which favors one
alternative early in a trial and another alternative later in a trial.
However, the interpretation of results from such an experiment
would need to proceed cautiously in case of potential confounds.
First, if non-stationary stimuli extends for a long period of time
(as in the expanded judgment paradigm, see Pietsch and Vick-
ers, 1997), the observed primacy/recency effects may be to some
extent associated with additional attention or working memory
processes. Second, if non-stationarity in the evidence is apparent
to subjects, they may consciously change their decision strat-
egy. Several studies on rapid perceptual decisions avoided these
methodological problems by using carefully designed paradigms.
Brown and Heathcote (2005b) presented strong prime stimuli
for a very short time and used a metacontrast mask to ensure
subjects did not consciously aware the non-stationarity. They
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A

B

C

FIGURE 5 |The primacy and recency effects of the DDM and OU
model. (A) The bounded and unbounded DDM. (B) The bounded and
unbounded OU models with λ > 0. (C) The bounded and unbounded OU
model with λ < 0. All the models were simulated with µ=0.71 s−1,
σ=1 s−1, b=0.47, and Tc =1 s. The growth-decay parameter of the OU
models was set to λ=5.5 (B) and λ=−5.5 (C). In each panel, the model
was simulated for 10,000 trials, and the sensory evidence from all

correct trials was recorded and averaged. The data points show the
means and standard errors of the sensory evidence at every time step.
For µ > 0, a larger averaged input indicates that the sensory evidence at
that time point has, on average, a larger influence on the final choice, and
a smaller averaged input indicates that the choice depends to a lesser
extent on the evidence at that time. Figure modified from Zhang and
Bogacz (2010a).

showed that early evidence is weighted less in a perceptual deci-
sion task (i.e., the integration is leaky), but the leakage quickly
decreased with practice. In Usher and McClelland’s (2001) study,
primacy/recency effects were tested with fast visual streams of
alternating letters lasting for only 256 ms. They randomly mixed
shorter trials with non-stationary evidence and longer trials with
constant evidence. Such a design encouraged subjects to estimate
the entire sequence of the non-stationary evidence, because mak-
ing decisions on only a fraction of early evidence would result
in low performance on longer trials. Their results suggest a gen-
eral recency effect with strong individual differences, although the
source of the large between-subject variability has not yet been
identified.

PERFORMANCE OF THE BOUNDED DECISION-MAKING MODELS
Several studies have reported significant improvements in model
fit by introducing evidence boundaries. Ratcliff (2006) fitted data
for the DDM and the LCA model from a categorization task in
which subjects were required to decide whether the number of dots
on the screen is large or small. The absorbing DDM and absorbing
LCA model provide much better fits than the unbounded models,
in particular for the TC paradigm with very short or long decision
times. Another study showed that for a shape discrimination task
(Usher and McClelland, 2001), the behavioral data is more likely to
have been fitted by the bounded DDM than by the unbounded OU
model (Zhang et al., 2009). Leite and Ratcliff (2010) showed that
the LCA model with zero reflecting boundary produced better fits
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to the RT distributions than the unbounded model in perceptual
decision tasks with different number of alternatives. Zhang et al.
(2009) observed that for a given set of model parameters, the ER
of the absorbing and reflecting DDM are identical at any decision
time. Therefore, although the two types of boundary influence
the model dynamics, and weight the order of the momentary
evidence in different ways, the two bounded DDMs can fit the
experimental data from the TC paradigm equally well. A similar
equality between absorbing and reflecting OU models has also
been observed (Zhang and Bogacz, 2010a).

The successful applications of the bounded models promote
us to consider how different types of evidence boundaries may
affect the models’ performance. For the IC paradigm, adding lower
reflecting boundaries at zero generally decreases mean RT of the
LCA model for a given ER, and this change is more significant
for decision tasks with multiple alternatives (Bogacz et al., 2007;
Leite and Ratcliff, 2010). Increasing the upper boundary in the
absorbing LCA model, or the distance between the two bound-
aries in the absorbing DDM and absorbing OU model, leads to

an increase in the mean and variance of RT distributions (Wagen-
makers et al., 2005) and a decrease of ER (i.e., trading speed for
accuracy, see Fast Boundary Modulation: Speed–Accuracy Trade-
off). For the TC paradigm, the bounded DDM has an asymptotic
accuracy as Tc increases, which is consistent with experimental
observations (Meyer et al., 1988; Usher and McClelland, 2001).
Increasing boundary separation in the bounded DDM monotoni-
cally decrease the ER for a given decision time, until the boundary
is sufficiently large that the integrator can barely reach the bound-
ary before Tc, and under this condition the bounded DDM model
is equivalent to the unbounded DDM (Zhang et al., 2009; Leite
and Ratcliff, 2010). Interestingly, the relationship between the evi-
dence boundary and the ER is not monotonic in the bounded
OU model (Zhang and Bogacz, 2010a). For the OU model with
a negative λ value, a finite absorbing boundary yields lower ER
than the unbounded OU model. In contrast, a finite reflecting
boundary lowers the ER for the OU model with a positive λ value
(Figure 6A). Simulation results suggested that as Tc increases, the
value of λ that yields the lowest ER decreases for the absorbing OU

A

B C

FIGURE 6 | Performance of the bounded models. (A) The error rates of
the absorbing (left) and reflecting (right) OU models in the TC paradigm. The
bounded OU models are simulated with the following parameters: λ in (−3,
3) with step 0.1, b in (0.1, 3) with step 0.1, µ= σ=1 s−1, and Tc =1 s. The
contour plots illustrate the mean error rates of the bounded OU models
estimated from 10,000 simulations for each possible parameter
combinations. Figure modified from Zhang and Bogacz (2010a). (B) The

estimated optimal λ values of the absorbing and reflecting OU models that
yield minimum error rate for different Tc varying from 0.5 to 5 s. Figure
modified from Zhang and Bogacz (2010a). (C) The error rates of the bounded
LCA model. The models were simulated with parameters: µ1 =5.41 s−1,
µ2 =4 s−1, σ=1 s−1, b+ =1.5, b− =0, and Tc =3 s. The sum of decay and
inhibition was fixed at w+ k=6, while their difference changed from −6
to 6.
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model and increases for the reflecting OU model (Figure 6B). This
relationship can be explained by the joint primacy/recency effects
from the boundary and the λ value of the bounded OU model
(see Primacy and Recency Effects). Recall that the optimal decision
strategy, as suggested by the SPRT and NPT, would be to equally
weight the momentary evidence received at different time points
(i.e., no primacy or recency effects). The bounded OU model
approximates to the optimal strategy when the primacy/recency
effects introduced by the boundary and λ are balanced. That is,
the absorbing OU model needs to be coupled with negative λ and
the reflecting OU model needs to be coupled with positive λ. The
relative strengths of the primacy/recency effects introduced by the
boundary and λ values deserve further research.

The findings from one-dimensional bounded models provide
clues to the understanding of performance of the bounded LCA
model. Recall that the unbounded LCA model implements the
optimal decision strategy when the decay and inhibition are bal-
anced (w= k), i.e., when the LCA model is reduced to the DDM.
Bogacz et al. (2007) showed that the balance of decay and inhi-
bition does not optimize the performance of the bounded LCA
model in the TC paradigm. Instead, by decreasing inhibition rela-
tive to decay (w < k) the absorbing LCA model can achieve lower
ER. Conversely, the reflecting LCA model has lower ER when inhi-
bition is larger than decay (w > k; Figure 6C). The symmetric
relationship between the absorbing and reflecting LCA models is
analogous to that of bounded OU models with positive and neg-
ative λ. Therefore it is possible that the bounded LCA model can
be reduced to the bounded OU model for certain parameters (cf.
van Ravenzwaaij et al., 2012). Bogacz et al. (2007) also suggest that
by limiting the integrator stages to be non-negative, the absorbing
LCA model can approximates the asymptotically optimal decision
strategy (Draglia et al., 1999; Dragalin et al., 2000) for multiple
alternative tasks (Bogacz and Gurney, 2007).

NEURAL IMPLEMENTATION OF DECISION BOUNDARY
How is the decision boundary realized in neural circuits? In the
minimal recurrent loop model by Smith and McKenzie (2011),
the decision boundary is implemented by an interaction between
the recurrent loops and separate decision neurons. The decision
neurons receive spiking inputs from the recurrent loops that rep-
resent the accumulated evidence. A decision is rendered as soon
as the membrane potential of one decision neuron reaches a
threshold. This mechanism predicts a causal link between the
firing of decision neurons and overt actions. But an important
question remains: where in the brain is the decision boundary
implemented?

One possibility is that the decision boundary is implemented
within neural integrators, namely the local hypothesis. Wong and
Wang (2006) studied a simplified version of the biologically based
model of Wang (2002) by using mean-field theory. Their analysis
showed that if neural integrators are mediated by recurrent excita-
tory connections between spiking neurons, the dynamics of neural
integrators may contain multiple stable attractor states, which act
as implicit decision boundaries to terminate integration processes.
This model successfully accounts for psychophysical data and LIP
neural activity in RDM tasks (Wong and Wang, 2006; Wong et al.,
2007). However, previous studies using the RDM task or other

visual discrimination tasks have identified putative neural inte-
grators in the FEF (Hanes and Schall, 1996; Schall and Thompson,
1999; Schall, 2002), the SC (Basso and Wurtz, 1998; Ratcliff et al.,
2003a), and the DLPFC (Kim and Shadlen, 1999; Domenech and
Dreher, 2010), which exhibit activity patterns similar to LIP neu-
rons. A recent study showed that the inferior frontal sulcus is
also likely to integrate evidence from multiple sensory modalities
(Noppeney et al., 2010). Therefore, multiple neural integrators
may coexist in different brain regions and may be simultaneously
functioning during a decision process, though we do not know
whether the neural integrators across different regions are inde-
pendent or are more likely to interact with each other. If the local
hypothesis is correct, it is yet not clear whether observed boundary
crossing in one integrator region has a causal role in rendering a
decision, or could merely reflect terminal integration in other inte-
grator regions. Further experiments testing the activity of neural
integrators in predefined regions under different decision tasks are
necessary to confirm this hypothesis.

An alternative possibility, the central hypothesis, proposes that
detection of boundary crossing is implemented by a central neural
circuit outside integrator regions, rather than an intrinsic property
of neural integrators. This hypothesis predicts that a central cir-
cuit is capable of detecting boundary crossing in integrators within
different regions. One potential component of the central circuit
is the basal ganglia (BG) because of its unique anatomy. First, the
two BG input nuclei, the striatum and the subthalamic nucleus,
receive direct inputs from multiple cortical regions including the
LIP, FEF, and DLPFC (Smith et al., 1998; Hikosaka et al., 2000;
Nakano et al., 2000). Second, most BG nuclei are organized in
separate somatotopic areas representing different body parts, and
each broad somatotopic area is further subdivided into function-
ally defined parallel channels, based upon specific movements of
an individual body part (Alexander et al., 1986, 1990; Parent and
Hazrati, 1995). Therefore the BG can access a number of informa-
tion sources from the cortex and control complex motor responses,
which make the BG important loci of action selection, reinforce-
ment learning, and motor control (Karabelas and Moschovakis,
1985; Graybiel et al., 1994; Gurney et al., 2001a,b; Frank et al.,
2004; Samejima et al., 2005). Lo and Wang (2006) proposed that
detection of boundary crossing is implemented through a BG-SC
pathway. By default the BG output nuclei send tonic inhibition
(Hopkins and Niessen, 1976; Francois et al., 1984; Karabelas and
Moschovakis, 1985) to downstream motor areas (e.g., the SC) to
suppress any saccadic response. When the activity of a neural inte-
grator (e.g., LIP neurons) is large enough, the striatum inhibits
BG output nuclei and hence releases inhibition to the SC. The
boundary crossing is then detected by burst neurons (Munoz and
Wurtz, 1995) in the SC by an all-or-nothing burst signal. Bogacz
and Gurney (2007) showed that the BG is necessary for the brain
to implement asymptotically optimal decision strategy for NAFC
tasks. Nevertheless, although Lo and Wang (2006) demonstrated
that the central hypothesis can be implemented by the BG-SC
circuit, the model relies on the unique burst property of the SC
neurons to detect boundary crossing, which is primarily associated
with eye movements. It is not clear whether the same mecha-
nism can be applied to decision tasks requiring other response
modalities (e.g., Ho et al., 2009), or tasks which require subjects
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to withhold their responses before a response signal (i.e., the TC
paradigm).

Taken together, although convincing data exists for the presence
of neural integrators in the cortex, current findings are inconclu-
sive regarding the neural implementation of decision boundaries.
Part of the difficulty in investigating the boundary mechanism
is that decision neurons may exhibit task-modulated ramping
activity that is similar to neural integrators, if there exists posi-
tive feedback connections between the decision neurons and the
integrators (Simen, 2012). As a result the two processes may be
indistinguishable solely by the observation of ramping activity
from neural recording data.

EFFECTS OF BOUNDARY CHANGES
The decision boundary is usually assumed to be under subjective
control. On one hand, the decision boundary should be stable in
regards to sensory evidence, enabling subjects to respond consis-
tently when faced with similar environments or goals. The stability
of the decision boundary is evident from the fact that in both
IC and TC versions of the RDM tasks, LIP neurons attain the
same level of activity before saccadic responses, independent of
motion coherence (Shadlen and Newsome, 2001; Roitman and
Shadlen, 2002). On the other hand, the decision boundary may
also exhibit a certain degree of flexibility, allowing subjects to tai-
lor their responses on demand, or accounting for changes in some
internally driven factors. This section reviews psychological and
physiological factors that could be modulated by changes in the
decision boundary at different time scales.

FAST BOUNDARY MODULATION: SPEED–ACCURACY TRADEOFF
The change in decision boundary provides a straightforward
account of the speed–accuracy tradeoff (SAT) effect that is often
observed in decision-making tasks (Schouten and Bekker, 1967;
Wickelgren, 1977; Luce, 1986; Franks et al., 2003; Chittka et al.,
2009). For the DDM and the OU model (Figure 7A), decreas-
ing the distance between two decision boundaries reduces the
amount of accumulated evidence prior to a decision, leading to
fast but error-prone responses. Conversely, increasing the distance
between boundaries leads to slow but accurate decisions. For the
LCA model or other models that have multiple integrators (e.g., the

LBA model), the SAT can be manipulated by changing either the
upper boundary (Figure 7B) or the lower baseline activity at the
beginning of the trial (Figure 7C) (Bogacz et al., 2010b). Behav-
ioral studies suggest that subjects can effectively trade speed for
accuracy when instructed to respond as accurately as possible, or
vice versa when instructed to respond as quickly as possible, and
the behavioral differences between speed and accuracy instruc-
tions can be explained by a change of decision boundaries in the
DDM (Palmer et al., 2005; Ratcliff, 2006; Ratcliff and McKoon,
2008). In a similar attempt to study SAT using the LBA model,
Forstmann et al. (2008) observed that SAT in the RDM task can
be best accounted for by a change in the decision boundary, not
by changes of the drift rate or other model parameters. It has been
suggested that humans can set the SAT to maximize the reward
rate (producing the most correct decisions in a given period of
time) by learning the optimal decision boundaries through feed-
back (Simen et al., 2006, 2009; Bogacz et al., 2010a; Starns and
Ratcliff, 2010; Balci et al., 2011). Furthermore, impairments in the
optimization of the SAT in neuropsychiatric patients with impul-
sive behaviors, such as attention-deficit hyperactivity disorder,
has been associated with maladaptive regulation of the decision
boundary in perceptual tasks (Mulder et al., 2010).

Can we consider the SAT as a signature for identifying neural
correlates of decision boundaries? Several recent fMRI studies
reveal brain regions associated with the SAT, including the SMA,
the pre-SMA, the anterior cingulate cortex, the striatum, and the
DLPFC (Forstmann et al., 2008; Ivanoff et al., 2008; van Veen et al.,
2008; Blumen et al., 2011; van Maanen et al., 2011; for review, see
Bogacz et al., 2010b; Figure 8A). Using a model-based fMRI analy-
sis, Forstmann et al. (2008) showed that the extent of response
facilitation for the speed condition in the RDM task, as quantified
by a decrease of the decision boundary in the LBA model, corre-
lated with BOLD response increase in the pre-SMA and striatum
between the speed and the accuracy conditions (Figure 8B). Fur-
ther studies suggest that the strength of structural connectivity
between the two regions predicts the amount of boundary change
in individual subjects (Forstmann et al., 2010a, 2011; Figure 8C).
These results support the central hypothesis that the BG circuit
is involved in controlling the decision boundary (Lo and Wang,
2006; Bogacz et al., 2010b).

A B C

FIGURE 7 |The sequential sampling models account for SAT.
(A) For the models with a single integrator (e.g., the DDM and the
OU model), increasing the distance between two boundaries
(blue boundaries ±b) leads to slow but accurate decisions, while
decreasing the boundary distance (red boundaries ±b’) leads to

fast but risky decisions. (B) For the models with multiple
integrator (e.g., the LCA model), the SAT can be accounted for by
changes in the upper boundary (b+ and b’+). (C) The SAT can also
be accounted for by changes in the lower baseline activity (b− and
b ′
−
).
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FIGURE 8 |The neural correlates of SAT. (A) Brain regions associated with
the SAT are projected onto a cortical surface using Caret software (Van Essen
et al., 2001). The foci represent the coordinates of the peak voxels reported by
four fMRI studies (Forstmann et al., 2008; Ivanoff et al., 2008; van Veen et al.,
2008; van Maanen et al., 2011). All the studies manipulated the SAT of
perceptual decision tasks by speed emphasis or accuracy emphasis. The red
foci illustrate increased BOLD response with speed emphasis and the blue
foci illustrate increased BOLD response with accuracy emphasis. (B) In the

RDM task, the BOLD response increases in the right Pre-SMA and the right
Striatum in the speed versus the accuracy condition. These BOLD response
changes are associated with decreases in the response caution parameter,
which is quantified by boundary changes in the LBA model. Figure modified
from Forstmann et al. (2008). (C) The strength of structural connections
between the Pre-SMA and the Striatum in individual subjects correlate with
the changes of the LBA decision boundary between the speed and the
accuracy condition. Figure modified from Forstmann et al. (2010a).

Nevertheless, some concerns remain regarding the causal role
of decision boundary in SAT. First, an emphasis on speed may
be associated with other cognitive processes (Rinkenauer et al.,
2004). For example, some studies have proposed that the integra-
tion process is coupled with an urgency signal that increases as
a function of time (Churchland et al., 2008; Cisek et al., 2009).
The urgency signal effectively lowers the decision boundary as
time elapses (Ditterich, 2006), and the SAT can be attributed to
a change in strength of the urgency signal. Second, some mod-
els predict that SAT is in fact controlled by the distance between
the boundary and baseline (Figure 7C). Hence emphasizing speed
or accuracy may modulate the decision boundary, baseline, or a
combination of the two (Bogacz et al., 2010b; Simen, 2012). In par-
ticular, decreasing decision boundary is equivalent to increasing
baseline activations in the LBA model. Recent fMRI studies sug-
gest that the SAT is more likely to modulate baseline activity in the
medial frontal cortex (pre-SMA and SMA), as these regions exhibit
a greater BOLD response in the speed instruction compared to the
accuracy instruction. Other studies suggest that SAT may mod-
ulate a decision boundary in the lateral PFC, where the speed
instruction is associated with decreased BOLD responses (Ivanoff
et al., 2008; Wenzlaff et al., 2011). However, it is possible that the
aforementioned cortical areas do not directly change the decision
boundary or baseline, but provide a control signal that modulates
striatal activity (Bogacz et al., 2010b). In a recent neurophysiolog-
ical study (Heitz and Schall, 2011), monkeys were trained to trade
accuracy for speed in a visual search task. Fitting the behavioral
data with the LBA model showed that the speed instruction can

be accounted for by a decrease in the decision boundary. Interest-
ingly, speed instruction led to an increased baseline activity as well
as an increased presaccadic activity in the FEF, suggesting that the
neural implementation of SAT likely involves multiple processes,
rather than a single boundary or baseline change predicted by
psychological models.

SLOW BOUNDARY MODULATION: PERCEPTUAL LEARNING AND AGING
It is well-known that practice can improve performance in many
perceptual tasks, resulting in higher accuracy and shorter RTs
(Logan, 1992; Heathcote et al., 2000). Traditional approaches usu-
ally quantify learning effects as changes in the mean accuracy or
RT. Several recent studies have attempted to decompose compo-
nent processes mediating perceptual learning by using sequential
sampling models. Petrov et al. (2011) fitted the DDM to behav-
ioral data from a fine motion-discrimination task and showed
that learning effects across multiple training sessions are mainly
associated with an increase in drift rate and a decrease in non-
decision time (see also Dutilh et al., 2009). This result is consistent
with previous findings that learning facilitates neural represen-
tation of task-relevant features by tuning neural selectivity in
the sensory areas (Gilbert et al., 2001; Yang and Maunsell, 2004;
Kourtzi and DiCarlo, 2006; Raiguel et al., 2006; Kourtzi, 2010;
Zhang et al., 2010). Other studies suggest that extensive train-
ing also leads to a significant reduction in the boundary distance
in the DDM (Ratcliff et al., 2006; Dutilh et al., 2009; Liu and
Watanabe, 2011). Using the RDM task, Liu and Watanabe (2011)
investigated the learning effect across different days and showed
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that training without feedback decreases the decision boundary in
the DDM and also increases drift rate. Dutilh et al. (2009) pro-
posed that a dual process (changes in both boundary and drift
rate) is necessary to account for the noticeable decrease in RT even
after the improvement in accuracy saturates during training. The
involvement of boundary reduction in perceptual learning is sup-
ported by experimental findings that perceptual learning may not
only change sensory representation, but also enhance the decision
process in intraparietal regions (Law and Gold, 2008; Zhang and
Kourtzi, 2010). Further research combining a modeling approach
with multiple imaging sessions over the course of training may
reveal how learning and feedback modulate sensory representation
and decision processes during perceptual decisions.

While training may improve the ability of subjects to make
faster decisions in perceptual decision tasks and result in a lower
decision boundary, one primary finding in aging is that RTs in cog-
nitive tasks increase as people age, and this generalized slowing is
sometimes coupled with impairments in accuracy (Cerella, 1985,
1991; Fisk and Warr, 1996; Salthouse, 1996). Recent studies have
employed the DDM with behavioral data to identify the effects
of aging in a number of choice tasks (Ratcliff et al., 2001, 2003b,
2004b, 2007; Thapar et al., 2003; Spaniol et al., 2006). A consistent
observation is that slowing in older adults can be explained by two
factors: an increase in the decision boundary and a prolongation
of non-decision time. The decision boundary increase in aging
suggests that older subjects are more cautious in making deci-
sions compared with younger subjects (Ratcliff et al., 2006; Starns
and Ratcliff, 2010). This age-dependent change in the decision
boundary may be due to structural limits in pre-SMA and striatal
connectivity (Forstmann et al., 2011) or functional impairments
in the striatum (Kühn et al., 2011) in the aging brain. These find-
ings are consistent with the central hypothesis that the striatum is
involved in modulating decision boundaries.

DISCUSSION
This article has reviewed recent developments that shed light on
the effects and mechanisms of evidence boundaries. Theoreti-
cally, boundaries shape the dynamics of decision processes in two
aspects. First, the evidence boundary provides an ecological func-
tion to constrain the evidence needed for rendering a decision,
since the nervous system cannot process an unlimited amount of
information. Second, the evidence boundary provides a mecha-
nistic function to determine the termination of a decision process.
The necessity of the evidence boundary is not limited to a specific
model,but is a common feature shared by different sequential sam-
pling models and other accumulator models (e.g., the LBA model),
independent of the model structures. Empirically, the presence of
evidence boundary is evident from behavioral, neurophysiological
and neuroimaging data. Existing findings suggest that evidence
boundaries remains stable to changes in the external environ-
ment (e.g., sensory information), but may vary systematically with
some internal factors (e.g., speed or accuracy emphasis, practice,
or aging). Whether acting on its own, or interacting with other
decision-related processes, boundaries play a crucial role in the
formation of decisions. Therefore boundary mechanisms provide
a window into understanding the cognitive processes associated
with choice behavior.

Despite the increasing number of recent studies examining the
evidence boundary, we are still far from a complete picture of
its functions and neural implementations. Here I suggest several
directions that merit further investigation. First, among decision
models that implement the integration-to-boundary mechanism,
it is not clear to what extent the effect of a boundary depend on
the specific structure of the models. For example, if for a given
dataset the DDM predicts a change in the boundary between
two experimental conditions, or a correlation between the esti-
mated boundary and cognitive assessment scores (e.g., Ratcliff
et al., 2008), would we reach the same conclusion if using the LCA
model or the LBA model? van Ravenzwaaij and Oberauer (2009)
suggested that boundaries estimated from different sequential
sampling models are generally consistent, but do not necessarily
correspond with those estimated from the LBA model (cf. Donkin
et al., 2011). Such discrepancies between models need be con-
sidered if researchers plan to estimate boundary changes from
experimental data, or use estimated model parameters to guide
subsequent neuroimaging analysis.

Psychological models conceptualize the evidence boundary as
a unitary representation. The neural implementation of evidence
boundaries is likely to be more sophisticated and remains to be
determined (see Simen et al., 2011; Smith and McKenzie, 2011 for
recent attempts to bridge the gap between the two). The existing
findings favor the central hypothesis over the local hypothesis, but
we do not yet fully understand the causal relationship between the
activity of the BG nuclei and the changes of the boundary. Studies
discussed in this article suggests that boundary changes can occur
at different time scales, ranging from a few seconds during which
the SAT can be effectively adapted, to a few days during which it
is necessary to modulate the boundary through extensive training
and feedback. Hence if a central neural circuit exists for the detec-
tion of boundary crossing, this system is likely to be affected by
different underlying control signals, but we do not know how and
where in the brain the control signals for boundary changes are
encoded. A related question is how the evidence boundary may
be affected by aging or neurodegenerative diseases. Could these
long-term factors alter control signals that modulate the bound-
ary, or directly act upon the neural circuits that implement the
boundary? Answering these questions will require researchers to
combine established modeling approaches with comprehensive
neuroimaging protocols.

Finally, existing findings suggest that the integration-to-
boundary process governs a broad range of cognitive tasks (Gold
and Shadlen, 2007). An important direction for future research
is to investigate the effects of boundaries in choice tasks other
than perceptual decisions. One example is interval timing esti-
mation, in which subjects produce or estimate a specific duration
(Church and Deluty, 1977; Roberts, 1981; Rakitin et al., 1998;
Macar et al., 1999; Allan and Gerhardt, 2001). A variant of the
DDM has recently been proposed for interval timing (Simen et al.,
2011). The model assumes a single integrator with variable drift
rate representing elapsed time at different durations and a con-
stant decision boundary. A fixed boundary predicted by the model
is supported by experimental findings that slow cortical poten-
tials measured in the pre-SMA/SMA, which have been interpreted
as a signature of time accumulation process, show no amplitude
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difference between different interval times (Elbert et al., 1991;
Pfeuty et al., 2005; Kononowicz and van Rijn, 2011; Ng et al., 2011).
Another example is voluntary action decision, which require sub-
jects to make selections between actions that have no differential
sensory attributes or action outcomes (Brass and Haggard, 2008;
Haggard, 2008; Soon et al., 2008; Andersen and Cui, 2009; Roskies,
2010). Recent studies propose that during the formation of vol-
untary decisions the intention of selecting each action gradually
builds up in independent integrators until the winning integra-
tors reaches the boundary and renders the decision (Zhang et al.,
2012). This hypothesis is supported by observations of a progres-
sive rise in the readiness potential and neural activity in the medial
prefrontal cortex before consciously aware of voluntary actions
(Libet, 1985; Sirigu et al., 2004; Fried et al., 2011). These find-
ings from different types of cognitive tasks suggest that the brain

may encode the evidence boundary as a common currency for per-
ceptual information, subjective intention, or individual preference
(e.g., Chib et al., 2009; Krajbich et al., 2010) to guide behavioral
responses, depending on the context of the task. An intriguing
possibility is that evidence boundaries associated with different
cognitive tasks may be mediated by the same neural implemen-
tation. This generic implementation provides a potential bridge
between behavioral and neural data to regulate the formation and
initiation of complex behavior.
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Most psychological models of perceptual decision making are of the accumulation-to-
threshold variety. The neural basis of accumulation in parietal and prefrontal cortex is
therefore a topic of great interest in neuroscience. In contrast, threshold mechanisms
have received less attention, and their neural basis has usually been sought in subcorti-
cal structures. Here I analyze a model of a decision threshold that can be implemented
in the same cortical areas as evidence accumulators, and whose behavior bears on two
open questions in decision neuroscience: (1) When ramping activity is observed in a brain
region during decision making, does it reflect evidence accumulation? (2) Are changes in
speed-accuracy tradeoffs and response biases more likely to be achieved by changes in
thresholds, or in accumulation rates and starting points? The analysis suggests that task-
modulated ramping activity, by itself, is weak evidence that a brain area mediates evidence
accumulation as opposed to threshold readout; and that signs of modulated accumulation
are as likely to indicate threshold adaptation as adaptation of starting points and accumu-
lation rates. These conclusions imply that how thresholds are modeled can dramatically
impact accumulator-based interpretations of this data.
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1. THE THRESHOLD CONCEPT IN ABSTRACT
DECISION-MAKING MODELS

Simple perceptual decision making is typically thought to involve
some kind of weighing of evidence. According to this story, sen-
sory data is repeatedly sampled in order to build confidence that
one decision option is correct, and the others incorrect.

Accumulating evidence is only half the battle when making a
decision, however. The other half requires that a subject have a
physically implemented policy governing the termination of evi-
dence collection and the transition into action. Indeed, many of
the most important results in decision theory consist of carefully
designed stopping rules that terminate decisions. These policies
result in hypothesis-testing procedures that are optimal or near-
optimal according to some objective function. Psychological mod-
elers are therefore naturally guided to focus on decision rules as
an important source of performance adaptation in humans and
other animals.

A common view in neuroscience, in contrast, is premised on the
routine finding that firing rates of suspected accumulator-neurons
reach a fixed threshold near the time of a behavioral response,
suggesting that the critical level that causes responding or decision
commitment (in monkeys at least) is close to the peak firing rate.
Performance by these animals (their response times and accuracy)
is therefore thought to be adapted by changing the rate, starting
point, or starting time of evidence accumulation.

Once constraints on how networks of neurons can compute
are taken into consideration, pressing theoretical questions arise
for both views of performance adaptation. First, how can accu-
mulating evidence produce a behavioral response when it exceeds

a critical level by some small value, but not when it is just slightly
below that level? Further, once a model of a threshold mechanism
is proposed that answers this question, how can physiological signs
of its operation be discriminated from signs of evidence accumu-
lation? Finally, is behavioral performance adapted by modulating
the activity of accumulators, thresholds, or both?

Here I formally define some basic, unavoidable physical
assumptions about decision-threshold mechanisms, and I con-
sider how these must affect interpretations of neural data. I argue
that firing-rate data commonly thought to be observations of
accumulators in action may instead be observations of thresh-
old mechanisms, and that mistaken identities of this sort may
be the source of an apparent conflict between findings in neuro-
science (fixed thresholds) and findings in psychology (strategically
controlled thresholds).

I show that this conflict eases if neural accumulators have
sometimes been confused with neural threshold mechanisms. As
I demonstrate with a simple decision-making model, the final-
firing-rate-premise of the fixed-threshold account actually implies
very little, if we allow for threshold mechanisms to send positive
feedback to accumulators – a concept consistent with anatom-
ical patterns of connectivity in parietal and prefrontal cortex.
With this addition to an otherwise purely feedforward model,
threshold mechanisms can serve to lift accumulators to a com-
mon final level of activation near the time of responding, even
when different levels actually trigger decision commitment under
different task conditions. These theoretical considerations suggest
that physiological data is frequently ambiguous regarding the locus
of decision-circuit control.

www.frontiersin.org June 2012 | Volume 3 | Article 183 | 94

http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/about
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=PatrickSimen&UID=21587
mailto:psimen@oberlin.edu
http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive
http://www.frontiersin.org/Cognitive_Science/10.3389/fpsyg.2012.00183/abstract


Simen Threshold mechanisms in decision-making

2. IMPLICATIONS FOR MAPPING DECISION-MAKING
PROCESSES ONTO BRAIN ACTIVITY

In this section, I present a generic model of a neural threshold
mechanism inspired by the individual neuron’s action potential
threshold. I then discuss what its implementation at the cortical
population level would predict in terms of a firing-rate profile dur-
ing threshold-crossing (while acknowledging that this threshold
model could in fact be implemented subcortically). If the model is
correct, these predictions imply that some current interpretations
of single-unit recordings from monkeys performing perceptual
decision-making and visual search tasks may need to be revised.

2.1. NEURAL IMPLEMENTATIONS OF ABSTRACT DECISION-MAKING
MODELS REQUIRE PHYSICAL THRESHOLD MECHANISMS

Decision thresholds traditionally play an important role in psy-
chology in explaining one of the most salient features of human
perceptual categorization. This is that spending more time observ-
ing a stimulus tends to increase decision accuracy regarding which
category the stimulus belongs to. Such speed-accuracy tradeoffs
are easily explained as a process of accumulation to threshold:
to make a decision, evidence must accumulate to a point that a
decision threshold is crossed and an action is triggered. Higher
thresholds imply greater accuracy (less chance of crossing the
wrong threshold), but longer response times (the decision variable
has a greater distance to travel). Furthermore, just as incentives are
hypothesized to change category boundaries in signal detection
theory (Green and Swets, 1966), top-down control strategies have
been hypothesized to adapt decision thresholds in response-time
tasks in order to modify speed-accuracy tradeoff functions (see
Luce, 1986)1.

This basic scheme of accumulation-to-threshold is imple-
mented by most decision models, although even simpler, non-
evidence-accumulating models can account for speed-accuracy
tradeoffs (e.g., the “urgency-gating” model of Cisek et al., 2009,
which responds whenever an unusually favorable sample of evi-
dence arrives and weights evidence by a ramping urgency signal;
or purely ballistic models that sample evidence only at one instant,
such as the ballistic accumulator model of Brown and Heathcote,
2005, and the LATER model of saccade response times, Reddi and
Carpenter, 2000). In addition, recent accumulation-based mod-
eling approaches attempt to account for physiological evidence
of fixed thresholds by adapting baseline levels of activity in com-
peting response channels. Adapting baseline activity results in an
effective change of threshold height without any change in the level
of channel-activation necessary to make a response (Bogacz et al.,
2010b; see also van Ravenzwaaij et al., 2011). This approach is simi-
lar but not identical to decision-threshold adaptation. Activating a
response channel in these models must initiate a decision process
based on accumulated noise that will ultimately culminate in a
decision, even if no stimulus is present. Actual decision-threshold
adaptation, in contrast, can be achieved without producing any
response until a stimulus is present, allowing for top-down control
to be exerted over arbitrarily long delays prior to stimulus onset.

1Note that the use of the term “threshold” here is equivalent to that term’s use in
neurophysiology. It is distinct from its common use in psychology as the name of
an arbitrary accuracy criterion for characterizing perceptual acuity.

In all cases, however, decisions must not be initiated before
some critical level of evidence or some other quantity either
accumulates or is momentarily sampled. Before committing to
a particular decision – a period that may theoretically last an arbi-
trarily long time – the motor system is often assumed to receive
no input from the evidence-weighing process. Thus a physical
barrier must be assumed, which, once exceeded, leads inexorably
to a particular outcome, but below which no response is possi-
ble. What sort of non-linear transformation of the net evidence
or the “urgency to respond” can meet this specification and be
implemented physically?

The simplest answer is: the same sort of transformation imple-
mented by threshold-crossing detectors in human-engineered sys-
tems, namely switches. Physically implemented switches nearly
always have two, related, dynamical properties – bistability and
hysteresis – that define them specifically to be latches in engineer-
ing terminology. Bistability means that these systems are attracted
to one of two stable states that are separated by an unstable equilib-
rium point; hysteresis means that the response of such a system to
a given input depends heavily on its past output (loosely speaking,
hysteresis means“stickiness”and involves a basic form of persisting
memory of the past; in contrast, linear systems are non-sticky and
respond to constant inputs in such a way that the system’s initial
conditions are forgotten at an exponential rate over time). Energy
functions can be defined for such systems, consisting of two wells
separated by a hump (see Figure 1). Any such system can then
be accurately visualized as a particle bouncing around inside one
or the other well under the influence of gravity, and occasion-
ally escaping over the hump into the other well. Each “escape” is
analogous to the flipping of the switch. The importance of the
double-well design is that it reduces chatter, or bouncing of the
switch between states as a result of noise (it“latches”into one or the
other state), imposing a repulsive force away from the undefined
region between ON and OFF.

It is important to note that such devices do not implement
a simple step-function applied to their inputs, as suggested by a

Decision 
preparation

Decision 
commitment

FIGURE 1 | Double-well energy potential function, with system

trapped in left well. Transitions to the right well (“escapes”) maybe
considered transitions from an OFF state to an ON state, or a
decision-preparation to a decision-committed state.
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common, simplified representation of switching behavior in the
form of a step-function (or “Heaviside function”). Instead, their
input-output relationships are not strictly functions at all: a given
input level maps to more than one output level. Step-functions are
nonetheless frequently used to formalize the ideal of an abstract
decision threshold. This idealization is frequently very useful in
both psychology and neuroscience, but it has the potential to bias
the interpretation of various kinds of physiological recordings,
since these are usually easier to map onto the gradual accumula-
tion of evidence than onto the sudden, quantum leap represented
by a step-function.

An analogous problem holds in the design of digital electron-
ics: logic engineers who use idealized switch representations must
factor in lower limits on the switching-speed of their basic com-
ponents in their circuit designs. If they violate these constraints on
assumed switching speeds, then their assumptions that a particu-
lar component will output a 1 or 0 at a given time may in turn be
violated (the output may not yet have changed from its previous
value, or it may be in an indeterminate level representing neither
1 nor 0). The end result is unpredictable circuit behavior (Hayes,
1993). This analogy suggests that when it comes to interpreting,
for example, single-unit firing-rate data in decision making, we
may be in the position of the physicists and engineers who design
the transistors, rather than those who compose switching devices
into large circuits. Using idealized models of switching at the sub-
digital scale leads to substantial errors of prediction in electronics;
making the same sort of mistake in psychology and neuroscience
may lead to substantial errors of interpretation.

2.2. THE AXONAL MEMBRANE IMPLEMENTS A PHYSICAL
THRESHOLD

Another constructive analogy for modeling decision-making cir-
cuits comes from a well known physical threshold device even
more familiar to neuroscientists: the axonal membrane of an indi-
vidual neuron. In central nervous system neurons, a high density
of voltage-gated sodium-channels in the axon imparts bistability
to the voltage across its membrane. This channel-density is typi-
cally highest at the axon hillock, where the axon leaves the soma,
so that most action potentials are generated in this area, known
as the “trigger zone” (Kandel et al., 2000). In contrast, the soma
itself typically has a much higher (possibly non-existent) action
potential threshold, and is classically thought to function more as
a spatiotemporal integrator than as a switch.

According to the deterministic Hodgkin-Huxley equations,
raising the membrane to nearly its threshold potential and then
shutting off input current leads to a return to the negative rest-
ing potential – the axon-potential’s low stable value – without an
action potential. Physically, this corresponds to a failure to trig-
ger a chain reaction of voltage-gated sodium-channel openings.
Injecting a current that is slightly larger instead triggers this chain
reaction with high probability, producing an action potential that
is stereotyped in magnitude and duration under fixed conditions
of temperature and chemical concentration. During the action
potential, the membrane traverses a no-man’s-land of positive
voltages, reaches its stereotyped peak – its high stable value –
and then resets to its low stable value as voltage-gated potassium
channels open up. These are hallmarks of a double-well system.

The primary player in this all-or-none process is a voltage-
amplifying mechanism with strong positive feedback – the voltage-
gated sodium-channel population – which ranges between two
stable, attracting values: all-open (1), and all-closed (0). A time-
delayed version of these activation dynamics is then employed by a
voltage-gated potassium-channel population to produce a shutoff
switch. A central claim of this paper is that these roles may easily be
played by any neural population conforming to certain assump-
tions, and that some cortical populations may indeed conform
to them.

This important feature of individual membrane potential
dynamics does more than provide a useful analogy for modeling
decision-making circuits. It suggests that a simple mathematical
model may be usefully employed to describe both the dynamics of
the individual neuron and the dynamics of interconnected neural
populations. The generation of an individual action potential in
a neuron, after all, qualitatively fits the description of a typical
decision process: sub-threshold, leaky integration of post-synaptic
potentials in a neural soma is analogous to evidence accumulation
in a decision circuit; action potential generation in the trigger zone
is analogous to crossing a decision threshold.

The other major claim of this paper regards interpretation
of behavioral and physiological data collected during decision
making. Many researchers (e.g., Shadlen and Newsome, 2001;
Purcell et al., 2010) describe their findings in ways that suggest
they are observing the population-analog of a neuron’s somatic
membrane potential, when a better analogy in some cases may
be that they are observing the analog of an axon’s membrane
potential.

2.3. “TURTLES ALL THE WAY DOWN”: NEURONS AND NEURAL
POPULATIONS AS THRESHOLDED LEAKY INTEGRATORS

Since so much inspiration for the present model of decision-
making circuits comes from the individual neuron, I now show
briefly how the dynamics of the individual neuron can, in prin-
ciple, be reproduced by whole populations. Figure 2 depicts
how a population of leaky-integrate-and-fire (LIF) neurons can
collectively implement a single leaky integrator whose out-
put is the population’s spike train. Suppose that many neu-
rons project to a given receiving population and have uncor-
related spike times; that the resulting post-synaptic potentials
are small due to weak synaptic connections; and that excita-
tion is balanced by some level of inhibition. In that case, each
unit in the receiving population can be modeled as a leaky
integrator (Figure 3), whose sub-threshold membrane potential
approaches some asymptotic level (see Smith, 2010). A similar
model of sub-threshold membrane dynamics as a drift-diffusion
process (without leak) was given in Gerstein and Mandelbrot
(1964).

If the receiving population is large enough, then the receiving
population’s spiking output represents what the population’s aver-
age membrane potential would be if its units lacked voltage-gated
sodium-channels and therefore generated no action potentials. An
asymptotic potential would be reached, with the level depending
on the input strength and the leak. (Action potentials naturally
tend to erase the record of previous potential levels in each unit
after resetting.)
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FIGURE 2 |The multiple spatial-scale modeling approach. (A) For
simplicity, an individual neuron is modeled as a Poisson spike generator, with
rate parameter determined by the leaky integral of weighted inputs from
other units. (B) The population model, which allows for chaining a leaky

integrator and a latch. (C) Correspondence of each circuit component to parts
of a more classical model of a neuron. The axon hillock corresponds to a latch;
the soma corresponds to a leaky integrator; shading indicates density of
voltage-gated sodium-channels.

If this asymptotic level is below the action potential thresh-
old, however, then the inter-spike times of the model will
be largely memoryless. The hazard rate of a new spike is

almost flat, meaning that if a spike has not occurred at
some time t following the previous spike, then it has a con-
stant probability of occurring in the next small time window,
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FIGURE 3 | Demonstration that a thresholded Ornstein-Uhlenbeck

(OU) process, or leaky integrator, can give approximately

exponential inter-spike times if the asymptotic level of the

integrator is below threshold. (A) Close-up view of an OU process
rising to a threshold, then resetting and rising again. (B) A longer
time-course of the same process; inter-spike times are the times
between resets (downward jumps). (C) Histogram of threshold-OU
model’s inter-spike intervals. The main deviation from true Poisson

statistics is the lack of inter-spike intervals below a 2 ms limit – in other
words, a refractory period. (D) Distributions of trajectories relative to
spike time, showing that aside from the brief refractory period when the
system has not reached asymptote (on average), the model is essentially
a white noise process positioned just under the action potential
threshold, leading to memoryless inter-spike times. The rate of those
spikes depends on the distance between the threshold and the
sub-threshold asymptote (Gardiner, 2004).

for all t > 0. This occurs because threshold-crossings will be
due only to momentary noise. Formally, this is once again
a problem of escape from an energy well. Note, here, how-
ever, that an idealized step-function threshold is employed for
its simplicity. For the purpose of modeling population activ-
ity over the course of a perceptual decision as an emergent
property of collective spiking, the assumption here is that
the biophysical details of action potential generation make no
difference.

The first-passage time distribution of this system would be
approximately exponential (Gardiner, 2004), deviating from the
exponential mainly by lacking a high probability of very short
inter-spike times: the resetting of the membrane to its resting
potential, followed by increase toward asymptote, must produce a
refractory period that would prevent truly exponential inter-spike
time distributions (see Figure 3C). The model’s average inter-
spike interval is an exponential function of the distance between
the firing threshold and the asymptotic average potential (Gar-
diner, 2004): stronger inputs to a unit lead to a higher asymptote

and higher firing rate. If inputs lift the asymptote above the firing
threshold, the model breaks down, and inter-spike time distribu-
tions approach the Wald distribution (Gerstein and Mandelbrot,
1964).

Thus we can recreate the dynamics of the individual neuron
at the population level by building a circuit consisting of a leaky
integrator population feeding into a switch population (see the
mapping from Figures 2B,C).

2.4. THE FORMAL MODEL OF POPULATION ACTIVITY
The model is based on the assumptions outlined above and in more
detail in Simen and Cohen (2009); Simen et al. (2011b), most of
which are common in neural network models of decision making.
It is assumed that neural population activity (firing rate) can be
represented approximately as a non-homogeneous Poisson spike
train (equation 1). Its rate parameter λ is governed by an ordinary
differential equation with a leak term and a sigmoidal activation
function f. The input I to the activation function is a shot-noise
process, equal to the weighted sum of input spikes received from
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other populations, convolved with an exponential decay term (see
Figure 2A):

Poisson rate λ(t ) = f

(∫ t

−inf
e−s/τ · I (s) · ds

)

with Ii(t ) =
∑

j

wij · δ (t − sj
)

,

and f (y) = 1

1 + exp
(−αy + β

)
(1)

Here, wij = connection strength between input j and unit i,
sj = input spike time, δ= Dirac delta function.

The resulting population model approximates a leaky integra-
tor, or stable Ornstein-Uhlenbeck (OU) process x(t ) (defined by
equation (2)), as long as the input I (t ) is positive, and as long
as inputs remain in the linear region of the sigmoidal activation
function f:

τ · dxi = (−xi + f (Ii)
) · dt + c · dWi ,

Ii =
∑

j

wij xj . (2)

Unlike a true OU process, when the population’s net input I is
negative, its output goes to 0, but not below it.

For readers not familiar with stochastic differential equations,
the following discrete time approximation to equation (2) may be
easier to understand:

τ ·xi (t +�t ) = xi (t )+
[−xi (t ) + f (Ii (t ))

]·�t + c
√
�t ·N (0, 1).

(3)

Here, a normal random variable is added to the deterministic sys-
tem at each time step, with magnitude weighted by the square root
of the time step size. Equation (3) also defines the “Euler method”
by which simulations of the system in equation (2) are carried out
(Gardiner, 2004).

When recurrent self-excitation, k ≡ wii, is included in the input
term I, the population’s intrinsic leak parameter can be reduced or,
at a higher level of precisely tuned positive feedback, completely
canceled (Seung, 1996). Exact cancelation gives rise to perfect
(leakless) temporal integration, which is critical for implementing
decision-making algorithms that are optimal in certain contexts
(Gold and Shadlen, 2002). Such exact cancelation requires more
precise tuning for larger leak terms (Simen et al., 2011a). At still
higher levels of positive feedback, bistability results (see Figure 4).
The likely consequence for an explicit, purely excitatory, spiking
LIF model of populations in the case of stronger self-excitation
would be synchronization of spiking, since stronger excitatory
connectivity in a population would make any given spike more
likely to produce another spike in another cell at nearly the same
time. However, we assume further that a form of balanced inhi-
bition can cancel spike-time correlations (Simen et al., 2011b).
Under this assumption, any excitatory input of magnitude M to a
population would be balanced by inhibitory input of magnitude
γM, with γ defining the excitatory-inhibitory ratio. That is, if

every excitatory spike received by a population produces an excita-
tory post-synaptic potential of magnitude 1 in one of its cells, then
that population also receives an inhibitory post-synaptic potential
of magnitude γ in one of its cells, on average.

These changes in self-excitation strength can be depicted in
the form of an “effective” activation function, fγ ,k , specifying the
output level of firing rate for a given level of net weighted input
strength, parameterized by the level of positive, recurrent feedback,
k, and the inhibitory balance, γ . As the model transitions from
leaky (Figure 4A) to bistable (Figure 4C) behavior through the
bifurcation point at which perfect integration occurs (Figure 4B),
this effective activation folds back on itself (Figure 4D). This
folding is known as a “cusp catastrophe” in the terminology of
non-linear dynamical systems.

The bistable behavior demonstrated in Figures 4C,E now serves
to establish a threshold level of input values: beginning with an
output level on the bottom stable attracting arm of the folded sig-
moid, inputs that exceed a critical level (the horizontal coordinate
of the bottom fold) trigger a transition toward the upper stable
attracting arm. Two key dynamical features now result. The first
is a clearly defined quantization – in fact, binarization – of output
levels. The upper stable arm of the folded sigmoid now represents
an ON state (Figure 4E); the lower stable arm represents an OFF
state; and potential confusion about which state the system is in
is reduced by a large no-man’s land of unstable activation lev-
els. Hysteresis also results: a dip in the input below the threshold
level does not now reduce the output to its OFF state; instead, it
remains ON until input dips below the horizontal coordinate of
the upper fold.

Figure 5 demonstrates an extremely simple circuit composed
of an integrator sandwiched between two latches, along with their
corresponding, predicted activation levels over time.

2.5. BEHAVIOR OF THE THRESHOLD MECHANISM, AND COMPARISON
TO FIRING-RATE DATA

Since we are concerned with discriminating between accumula-
tors and threshold mechanisms in perceptual decision making, a
critical question is the following: what should we expect the pop-
ulation activity corresponding to each mechanism to look like?
Previous work (e.g., Lo and Wang, 2006; Boucher et al., 2007) has
suggested that, in the case of eye movements, a successive sharpen-
ing of bursting activity occurs as activity propagates from cortical
circuits to the basal ganglia, and thereafter to the superior col-
liculus. That is, bursting activity begins more abruptly, with less
gradual ramping, and also ends more abruptly, at later stages of
processing.

The model shown in Figure 6 illustrates similar progressive
sharpening as signals progress from the accumulator to the thresh-
old latch2. Figure 6 also clearly shows, however, that the threshold
mechanism’s activation (in red) qualitatively matches the descrip-
tion of an accumulator, in that the level of activation rises through-
out the stimulus presentation to a maximum that is time-locked to
the response. Compared to the accumulator in this trace (green),
the threshold is very distinct, since its activation accelerates during

2Matlab code for this model is available at: www.oberlin.edu/faculty/psimen/
ThresholdModelCode.m
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complete catastrophe manifold defined over the space of input and
self-excitation pairs. (E) Binarization diagram demonstrating separated ON (1)
and OFF (0) areas of output activation and hysteresis. Dashed section of
S-curve denotes unstable equilibria; solid sections denote stable equilibria.

the stimulus into a final ballistic component. However, without the
green trace for comparison, the red threshold trace would be dif-
ficult to rule out as the signature of an evidence accumulator. Fur-
thermore, as shown later, task variables that modulate the ramping
activity of putative neural accumulators should also be expected
to modulate threshold-unit activity, compounding the difficulty of
discriminating between accumulator and threshold mechanisms.

One additional feature of the model in Figure 6 – the “shutoff
latch”component (black) – is worth mentioning at this point, since
without it, connection weights in the circuit can easily be tuned
to preserve a decision commitment over a delay period (note how

long the threshold mechanism is active in Figure 5, for exam-
ple). Without a shutoff signal, the circuit could make a decision
commitment and maintain it indefinitely (the red threshold latch
could latch into the ON state). Such behavior would be required
in working memory tasks, and may occur even in tasks for which
such behavior would seem to be suboptimal (e.g., Kiani et al.,
2008). For tasks that require immediate responding and resetting
for future decisions, however, adding a shutoff latch increases reset
speed and can prevent undesired latching of the threshold-unit.

Examining traces of FEF activity during visual search tasks for
neurons that have been interpreted as accumulators (reprinted in

www.frontiersin.org June 2012 | Volume 3 | Article 183 | 100

http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive


Simen Threshold mechanisms in decision-making

Start

Ramp

Trigger

0 5 10 15

0

0.5

1

0 5 10 15

0

0.5

1

0 5 10 15

0

0.5

1

Time (seconds)

FIGURE 5 | A simple circuit composed of latches and an integrator. This
particular circuit can be used for interval timing by tuning the slope of the
ramp, which reduces to tuning how hard the Start unit drives the integrator
(Simen et al., 2011b). Here the Start unit is clamped to an output of 1 at 2 s,
then is clamped to 0 when the threshold-unit exceeds an output of 0.8.

Figure 7) shows how similar their average activation pattern is
to the pattern produced by the threshold model in Figure 6 (red
trace). Much the same is true for FEF recordings collected dur-
ing dot-motion discrimination tasks, as shown, for example, in
Figure 2 of Ding and Gold (2012, reprinted here as Figure 8).
In the model, furthermore, differences in evidence-accumulation
rates lead to corresponding differences in the ramp-up rate of the
threshold mechanism (see Figure 9C). Stochastic model simula-
tions in Figure 9C show that changes in the threshold mechanism
activation naturally mimic changes in the neural firing-rate data
in Figure 7 across fast/slow response-time conditions, as well as
the firing-rate changes in Figure 8 across motion coherence-level
conditions.

The pattern of activity shown in Figure 7 also motivates a
theoretical alternative to the threshold-interpretation proposed
in this paper. This alternative is known as the “gated accumu-
lation” theory of FEF movement neuron activity (Purcell et al.,
2010). According to this theory (at least as applied to monkey
eye movements during visual search tasks), evidence accumu-
lation is a process that may happen close to the time of the
response, after a kind of initial quality check determines whether
stimulus information should pass through a gate into the accu-
mulator. Changes in the rate of this accumulation determine
response time.

“Gate” is another word for threshold. Thus the gated accumu-
lation theory incorporates a threshold mechanism between the
retina and the accumulator that is not directly observed in the

recordings of Figure 7. What seems more parsimonious and con-
sistent with the predictions of the model presented here, however,
is that gated accumulators are themselves the gates. The rise-
time of any physical switching mechanism must be non-zero, so
ramping, or accumulation, is probably a necessary feature of gate
dynamics. Figures 9B,C show an example in which stronger, faster,
negative feedback is applied to the threshold latch by the shutoff
latch, as compared to the system in Figure 6 (to reduce the height
of the peak response). When noise is added to the processing,
the stimulus-locked and response-locked averages of the thresh-
old mechanism’s activation in this case look remarkably like the
gated-accumulator in Figure 7. In Figure 9, three different levels
of input signal were applied to the model in Figure 6 while keeping
the noise level constant.

One objection to this characterization of the (Purcell et al.,
2010) data might be based on the relatively long switching time
of such FEF switches, which according to Figure 7 could exceed
100 ms. Neural populations in the brain are clearly capable of tran-
sitioning much more quickly from low firing rates to high firing
rates, after all. For example, Figure 3 of Boucher et al. (2007) shows
a much more rapid transition from low to high firing rates, over the
course of only a few msec, in bursting neurons in the brainstem.
This extremely rapid switching behavior contrasts with hypoth-
esized switch dynamics in FEF that take 100 ms to complete a
transition from low to high firing rates. Such extended switch-on
times might therefore reasonably be taken to support accumulator
dynamics that do not involve bistability. However, it is important
to note that any bistable positive feedback system can be made to
linger at its inflection point of activation (the lower fold of the
cusp catastrophe manifold) for arbitrarily long times, if the inputs
to it are tuned precisely enough. The first gates/thresholds in the
processing cascade, when faced with weak signals, may be expected
therefore to ramp-up very gradually in some task conditions. Fur-
thermore, time-locked averaging of abrupt activation-increases
across trials can in any case smear out the abrupt onsets into a
gradual ramp if the onset-times are not perfectly locked to the
average-triggering event. Figure 9 demonstrates similar smearing
in panel b, in which Threshold Layer activation seems to rise to
a different average level in the “Low” vs. the “High” condition,
whereas response-locking as in panel c shows that activation rises
to the same level in all conditions, and ramping is less gradual than
in panel b.

Given these considerations, what phenomena would clearly dis-
tinguish threshold mechanisms from accumulator mechanisms?
So far, the green accumulator component of the model in Figure 6
lacks the red threshold trace’s late, ballistic component, and the
upward inflection point that initiates that component. This differ-
ence might seem to be a useful feature for distinguishing between
accumulator and threshold activations. Unfortunately, there is
good reason to suspect that the lack of feedback connections
from the threshold mechanism to the accumulator in the model
in Figure 6 is unrealistic. There are known to be connections
from FEF back to parietal cortex and extrastriate visual cortex
that can conduct spatial attentional signals, for example (Moore
and Fallah, 2001; Moore and Armstrong, 2003). When such feed-
back connections are included, as in Figure 10, the ballistic
component produced in the threshold mechanism is transferred
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FIGURE 6 | Noiseless activation traces of a complete circuit comprising

an accumulator/integrator, threshold latch, and shutoff latch, but lacking

positive feedback from threshold-to-accumulator. Blue: input signal;

green: accumulator; red: threshold latch; black: shutoff latch. Here the
stimulus was arbitrarily terminated when the threshold latch exceeded 0.8
activation. Note the post-response dip below baseline in the accumulator.

FIGURE 7 | Reprint of Figure 10A, from Purcell et al. (2010), showing

movement neurons in monkey FEF whose activation profiles correlate

with reaction-time in a visual search task.

backward to the accumulator as well. Under this plausible scenario,
the activation profiles of evidence accumulators and threshold
mechanisms become qualitatively indistinguishable.

According to the model in Figure 10, activation in both compo-
nents should ramp up during the course of a decision, then finish

with a ballistic jump near the time of the decision commitment.
As Figure 11 shows, activation in both components of this model
should be modulated by the stimulus presented and the choice
ultimately made – two criteria commonly used to associate firing-
rate data with accumulators. Furthermore, activation should be
modulated by the incentives offered, regardless of where in the
circuit any incentive-induced control signals are actually applied.
Applying a continuous, constant, additive biasing signal, either to
the accumulator (Figure 11A) or to the threshold (Figure 11B),
has qualitatively similar effects on the pre-ballistic components of
ramping activation in both mechanisms.

One possibility for discriminating between two candidates for
an accumulator/threshold pair would be to microstimulate one
area while inactivating the other, e.g., with muscimol. A threshold
mechanism should continue to display bistability in response to
increasing current injections when accumulators are inactivated,
whereas an accumulator should lack bistability and hysteresis – its
response to increasing currents should be a monotonic function of
that current when the feedback excitation from the corresponding
threshold mechanism is disabled.
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FIGURE 8 | Reprint of Figure 2, Ding and Gold (2012), showing accumulator-dynamics in FEF neurons likely to be inhibitory (top row) and excitatory

(bottom row). Data were obtained during a reaction-time version of a dot-motion discrimination task (A,D) and a memory-guided saccade task (B,E). (C) The
narrow action potential profile of the presumably inhibitory interneuron in (A,B). (F) The broader action potential profile of the presumably excitatory pyramidal
cell in (D,E).
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FIGURE 9 | Dynamics of a threshold latch in response to three different

signal strengths, with non-zero noise. Blue: strong signal; green: medium
signal; red: weak signal. (A) Input-output evolution of the threshold-unit’s
dynamics, starting at the origin and moving rightward, and upward along the
bottom branch of the folded, effective activation function. Note the failure of
the system’s output value to exceed 0.4 before the shutoff inhibition drives

the system down and to the left well before the system’s output reaches its
stable attracting value just below 1. (B) Stimulus-locked averages of activation
(dashed: accumulator; solid: threshold-unit). (C) Response-locked averages of
the threshold-unit activations, showing a common final level of activation, but
differences in buildup rate for different signal qualities defining the gray area
in the magnified inset (compare to Figures 7 and 8).

Of course, it is quite possible that accumulator and
threshold mechanisms consist of networks of neurons dis-
tributed widely across the brain. In that case, it would be

difficult to cleanly inactivate one component without affect-
ing the other. If clean, independent inactivation could be
achieved, however, then clear behavioral distinctions should
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FIGURE 10 | Same circuit as in Figure 6, except that excitatory

threshold-to-accumulator feedback is included. The green trace now
has a late ballistic component, reflecting the ballistic activation of the

threshold latch. Positive feedback also shortens the decision time
considerably relative to the same model without threshold-to-accumulator
feedback.

emerge: knocking out integrators should spare the ability to
respond, while performance accuracy should approach chance;
knocking out threshold mechanisms, in contrast, would abol-
ish responding altogether. A more graded impairment could
emerge from less potent inactivation: by inhibiting a thresh-
old mechanism, more evidence would be required to accumu-
late to produce a decision, leading to improved accuracy, and
increased response time; inhibiting an accumulator, in contrast,
would presumably both increase response times and decrease
accuracy.

Yet another possibility is that ramping activity in an area
during decision making might be more or less epiphenome-
nal – relating neither to evidence accumulation nor thresh-
old readout, per se, but instead to some sort of performance
monitoring, or even simply to spreading correlations of activ-
ity that play no functional role. In this case, the inactiva-
tion tests proposed here would fail to produce the intended
effects, but this outcome would at least suggest that a given
area is not functionally relevant to the decision-making task
at hand.

3. CONCLUDING REMARKS
Here I have assembled a list of reasons to consider a two-layer
neural model, much like others discussed in neuroscience and
psychology that are either explicitly composed of two layers, or
that combine an evidence-accumulation process with an idealized
decision threshold (e.g., Usher and McClelland, 2001; Corrado
et al., 2005; Diederich and Busemeyer, 2006; Lo and Wang, 2006;
Boucher et al., 2007; Ratcliff and McKoon, 2008; Gao et al., 2011).
Like those models, the model proposed here splits different func-
tions across different layers, rather than lumping them into a
single layer (e.g., Wang, 2002). It thereby sacrifices parsimony for
potentially better, more rewarding performance.

Unlike most multi-layer models, however, a model previ-
ously proposed by my colleagues and me (Simen et al., 2006)
sends continuous, additive biasing signals to control the sec-
ond layer (the threshold layer) rather than the first (the accu-
mulator layer). Other models that we have proposed (Simen
and Cohen, 2009; McMillen et al., 2011) tune multiplicative
weights applied to the accumulated evidence before it is fed
into the threshold mechanism. Increasing these weights amounts
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FIGURE 11 | Effects of biasing on the threshold-unit’s activation.

(A,B) Constant additive biasing of the accumulator can dramatically
decrease response times for a fixed level of stimulus strength
[offsets of stimulus-locked traces, (A)] and slightly modulates the
initial rise period of the activation [slight changes in response-locked
traces (B)]. (C–G) Constant additive biasing of the threshold-unit

also affects stimulus-locked response times (C) and dramatically
modulates the duration of the initial rise in response-locked
averages (D). (E–G) Three different levels of biasing (shifts of the
initial input level denoted by the colored circle) with colors
corresponding to the traces in (C) and (D) blue = low bias;
green = medium bias; red = high bias.

to reducing thresholds divisively. In certain tasks (e.g., Bogacz
et al., 2006), such approaches are both approximately optimal and
mechanistically feasible.

Optimal biasing of accumulators rather than thresholds, in
contrast, requires the biasing signals to be punctate rather than

continuous, and I have raised doubts here about the physiological
plausibility of punctate signals. These doubts are premised on
the idea that any switch-like process in the brain must have a
non-negligible rise-time and thus a non-zero, minimal duration –
a duration that might plausibly take up a substantial proportion of
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a typical response time in perceptual decision making. Human and
non-human primate behavior is frequently suboptimal, however,
so considerations of optimality do not rule out accumulator-
biasing. Behavioral data, nonetheless often appear to support
the notion that thresholds are strategically controlled, sometimes
optimally (Simen et al., 2009; Bogacz et al., 2010a; Balci et al.,
2011; Starns and Ratcliff, 2012). Furthermore, Ferrera et al. (2009)
observed FEF activity that is consistent with a role for FEF as a
tunable threshold mechanism, and (Ding and Gold, 2012) found a
multitude of different functions expressed in FEF after previously
finding much the same in the caudate nucleus (Ding and Gold,
2010). An inelegant but likely hypothesis supported by these and
similar findings is that the separate functions of decision-making
models are implemented by neural populations that are themselves
distributed widely across the brain. What seems unquestionable,
in any case, is that bistable switch mechanisms in either a one- or
two-layer model would appear to play a necessary role in any full
account of the data reviewed here.

It is also noteworthy that adaptive properties of the indi-
vidual neuron’s inter-spike time behavior have been explained
by a form of threshold adaptation that is analogous to the
population level threshold adaptation proposed here. As with
neural population models, different models of the individual
neuron can frequently mimic each other, whether they adapt
action potential thresholds (Kobayashi et al., 2009) or the rest-
ing membrane potential after firing (Brette and Gerstner, 2005).
In an international competition to model spike-time data, how-
ever, a relatively simple model with adjustable action poten-
tial thresholds (Kobayashi et al., 2009) defeated all other mod-
eling approaches (Gerstner and Naud, 2009). Consistent with
this evidence for adjustable action potential thresholds, recent
findings suggest that sophisticated signal processing can occur
at the axon’s initial segment (Kole and Stuart, 2012). The
same principles of accumulation, bistable readout, and thresh-
old adaptation may therefore play out at multiple levels of neural
organization.

I have argued that population threshold mechanisms are suffi-
ciently non-ideal in their physical implementation that they should
often be modeled explicitly rather than abstractly. What are the
risks of getting this modeling choice wrong? Erring on the side of
abstractness and simplicity risks:

1. misplacing the locus of evidence accumulation in the brain;
2. amplifying a disconnect between psychology and neuroscience

in terms of which model-parameter or neural mechanism is
modulated when speed-accuracy tradeoffs are adapted;

3. missing the possibility that cortical switch mechanisms might
allow the cerebral cortex to implement a complex, sequential
system (see Simen and Polk, 2010) without always requiring
the involvement of structures such as the basal ganglia.

Conversely, insisting on an overly elaborate model of thresholds
risks raising counterproductive doubts about neural data that is
in fact tied to evidence accumulation. It also risks unnecessary
inelegance and lack of parsimony. The optimal tradeoff between
such risks is rarely obvious, and this article has not derived one.
Its primary intent is to guard against the first kind of risk, since
much of the decision neuroscience community currently seems
safe from the second type.

A final, important point that should be kept in mind when
neural evidence is brought to bear on psychological models (made
elsewhere – e.g., Cohen et al., 2009 – but worth repeating) is that
apparently slight changes in tasks may have dramatic consequences
on the firing-rate patterns subserving performance of the tasks.
Thus, although the conventional wisdom appears to be that there
has been little electrophysiological evidence of threshold adapta-
tion as a mechanism underlying behavioral performance adapta-
tion, this lack probably depends heavily on the types of tasks that
neuroscientists have examined. Fairly strong behavioral support
(Simen et al., 2009; Bogacz et al., 2010a; Balci et al., 2011; Starns and
Ratcliff, 2012) has been gathered for models of threshold adapta-
tion in tasks for which such adaptation tends to maximize rewards
(e.g., Bogacz et al., 2006). The tasks proposed in Bogacz et al.
(2006) hold signal-to-noise ratios at a constant level across tri-
als within any block of trials, whereas most physiological research
with monkeys involves varying levels of signal-to-noise ratio from
trial to trial. It therefore appears that valuable information could
be gained about the neural mechanisms of economic influence on
decision making if the exact task described in, for example, Bogacz
et al. (2006), were tested directly in awake, behaving monkeys.
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Recent studies have begun to elucidate the neural correlates of evidence accumula-
tion in perceptual decision making, but few of them have used a combined modeling-
electrophysiological approach to studying evidence accumulation. We introduce a multi-
variate approach to EEG analysis with which we can perform a comprehensive search
for the neural correlate of dynamics predicted by accumulator models. We show that the
dynamics of evidence accumulation are most strongly correlated with ramping of oscilla-
tory power in the 4–9 Hz theta band over the course of a trial, although it also correlates
with oscillatory power in other frequency bands. The rate of power decrease in the theta
band correlates with individual differences in the parameters of drift diffusion models fitted
to individuals’ behavioral data.

Keywords: EEG, drift diffusion model, decision making, oscillations

1. INTRODUCTION
Every day we make thousands of decisions, and modeling work
has attempted to describe the nature of these decision processes
(e.g., Ratcliff, 1978; Usher and McClelland, 2001). With the advent
of cognitive neuroscience there has been a growing interest in
its neural correlates. Here we introduce a novel approach to
studying decision dynamics with human electrophysiology. By
using model-predicted decision dynamics as regressors, we per-
form a comprehensive search for oscillatory features of elec-
troencephalographic (EEG) activity that could reflect evidence
accumulation.

There exist two main approaches to analyzing EEG data: look-
ing at the raw potential, averaged time-locked to an event of
interest (“event-related potentials”) or looking at periodic activity
or oscillations (not necessarily averaged). The presence of oscil-
lations in EEG measurements indicates that neurons in a region
have more synchronized synaptic and membrane activity (Wang,
2010). Through being synchronized, oscillations become strong
enough in power to be detectable on the scalp. Synchronization
is thought to allow groups of neurons to communicate with each
other (Womelsdorf et al., 2007; Fries, 2009). Synchronized activity
is crucial for plasticity and learning in the brain (STDP; Wang,
2010). The brain also appears to use oscillations in conjunction
with spikes to encode specific information. Certain phases of oscil-
lations often show an increased level of spiking relative to their
baseline (Fries et al., 2007). A clear example of how the brain
makes use of that oscillation-related change in excitability is phase
coding, in which the phase of an oscillation at which a neuron
fires encodes the spatial location of an animal (O’Keefe and Recce,
1993; Fries et al., 2007).

Without attempting to review the oscillations literature in full,
we point out here a few relevant findings of this literature (see

Buzsáki, 2006; Wang, 2010, for a more complete review). Prob-
ably the most-discussed oscillations are those in the 28–90 Hz
gamma band, which have been studied extensively in the context
of attention tasks. A prominent finding is that attention increases
the amplitude of occipital 28–90 Hz gamma oscillations (e.g., Fries
et al., 2007). Yet some studies have shown that oscillations of lower
frequency are also important for attention and perception. For
example Busch and VanRullen (2010) found that stimuli are better
perceived at certain phases of the on-going 4–9 Hz theta oscilla-
tion than at other phases. This has led to the idea that so-called
sustained attention is not uniformly sustained, but rather has an
oscillating quality. Moreover, it suggests that in addition to hip-
pocampal theta oscillations, which have primarily been associated
with memory (e.g.,Kahana et al.,2001) and spatial navigation (e.g.,
O’Keefe and Burgess, 1999), there exist cortical theta oscillations
that are relevant to, among other things, perception.

In fact, it has also been suggested that cortical theta oscillations
are crucial for the coordination of multiple sources of activity at
decision points (Womelsdorf et al., 2010), and for combining vari-
ous pieces of evidence (van Vugt et al., in press). Theta oscillations
have also been found to covary with decision certainty (Jacobs
et al., 2006) and prediction errors in decision making (Cavanagh
et al., 2010). This suggests that theta oscillations could have a fun-
damental role in perceptual decision making and specifically in
the accumulation of evidence. Nevertheless, other sources suggest
that evidence accumulation is correlated with higher frequency
oscillations in the beta and gamma bands (e.g., Donner et al.,
2009).

The aim of this study is therefore to use a data-driven approach
to find oscillatory correlates of evidence accumulation. To be able
to do so, we need precise predictions for the dynamics of evi-
dence accumulation provided by mathematical models. Probably
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the most-discussed model for evidence accumulation is the Drift
Diffusion Model (DDM; Ratcliff, 1978). This model posits that to
make a decision, a person accumulates information until it reaches
a threshold, at which time they make the response that corresponds
to that threshold. Their response times (RTs) can be predicted by
adding a fixed non-decision time to the time it takes to reach the
threshold to account for sensory and motor latencies. The speed
with which one accumulates evidence on average is referred to
as the “drift rate” of the accumulation process. The height of the
decision threshold reflects response caution. This model, and vari-
ants of it, is capable of explaining complete RT distributions, not
just average RTs like most other models of cognition (Ratcliff and
Smith, 2004).

In this study we examine what frequency bands of brain oscilla-
tions best reflect evidence accumulation as predicted by accumula-
tor models. We also test whether the dynamics of the thus-selected
oscillations covary with individual differences in DDM parameters
estimated on the basis of participants’ behavioral data. This work
not only furthers our understanding of human decision making,
but may eventually allow us to distinguish different implementa-
tions of the DDM that cannot be disentangled based on behavioral
data alone (Ditterich, 2010).

2. MATERIALS AND METHODS
2.1. TASK
Participants performed a perceptual decision making task in which
they judged the direction of motion (left or right) of a display of
randomly moving dots of which a percentage moved to the left or
the right. These random dot kinematograms were similar to those
used in a series of psychophysical and decision making exper-
iments with monkeys as participants (e.g., Britten et al., 1992;
Shadlen and Newsome, 2001; Gold and Shadlen, 2003). Stim-
uli consisted of an aperture of ∼7.6 cm diameter viewed from
∼100 cm (∼4˚ visual angle) in which white dots (2× 2 pixels)
moved on a black background. A subset of dots moved coherently
either to the left or to the right on each trial, whereas the remainder
of dots jumped randomly from frame to frame. Motion coherence
was defined as the percentage of coherently moving dots. Dot den-
sity was 17 dots/square degree, selected such that individual dots
could not easily be tracked. Tracking was further discouraged by
using three interleaved sets of dots of equal size, each of which
was used in every three successive video frames. Therefore each set
of dots returned only after three frames, with a random displace-
ment. The speed of the dots was∼7˚/s. Participants indicated their
responses by pressing the “Z” key with their left index finger for
left-ward motion or the “M” key with their right index finger for
right-ward motion.

Participants also performed a control task in which they did
not need to integrate motion evidence (non-integration condi-
tion). In this condition, each trial started with entirely random
(0% coherence) dot-motion, followed by an arrow indicating the
direction to which a participant should respond. The arrow onset
time was calibrated (based on RTs in previous blocks of the non-
integration condition) such that the dot-motion-viewing times in
these trials mirrored the response time distribution of the dots
trials. This was done by taking the RT distributions from previ-
ous blocks, and subtracting from that the average time required

for pressing a button in response to a stimulus (“signal detection
trials”).

The experiment presentation code was written in PsychTool-
box (Brainard, 1997). Dots were presented with PsychToolbox
extensions written by J. I. Gold1.

2.2. PARTICIPANTS
Twenty-three participants (12 female; 21 right-handed; mean age
25; range 18–38) participated in our experiment in exchange
for payment. The experiment was approved by the Institutional
Review Board of Princeton University. Participants engaged in
three separate hour-long training sessions in which they became
familiar with the task. At the beginning of these training sessions,
performance on a psychometric block (with fixed viewing times of
1000 ms and five different coherence levels) was used to determine
the coherences at which they performed at ∼70 and 90% correct.
These coherence levels were used for the remainder of the session,
and the coherences from the last training session were used for the
two EEG sessions.

2.3. RECORDING METHODS
We recorded EEG data from 128 channels using Neuroscan EEG
caps with a Sensorium EPA-6 amplifier. Data were digitized at
1000 Hz and band-pass filtered from 0.02 to 300 Hz; all imped-
ances <30 kΩ. Acquisition was controlled by Cogniscan soft-
ware. All data were referenced to the left mastoid and off-line
rereferenced to an average reference after automatic bad-channel
removal (Friederici et al., 2000; Hestvik et al., 2007). We wavelet-
transformed the data in six standard frequency bands (delta
(2–4 Hz), theta (4–9 Hz), alpha (9–14 Hz), beta (14–28 Hz), low
gamma (28–48 Hz), and high gamma (48–90 Hz); van Vugt et al.,
2010) using six-cycle Morlet wavelets. Morlet wavelets have an
optimal trade-off between temporal- and frequency resolution for
EEG data (van Vugt et al., 2007) and six cycles are often used for
the analysis of EEG data (e.g., Caplan et al., 2001).

2.4. GENERAL LINEAR MODEL FOR EEG
To find neural correlates of the dynamics of decision making in
EEG data, we developed a General Linear Model (GLM) method,
in which we correlated the predicted accumulator dynamics with
the EEG time series. GLMs are a type of regression that is generally
used with functional magnetic resonance imaging (fMRI) to find
voxels that display a hypothesized pattern of activation, such as
“high” when an object is presented and “low” when a scrambled
object is presented. Here we used a similar technique with EEG
data, to detect electrodes that display a pattern of activation that
is predicted by the DDM.

For every trial, we modeled a ramp of activity starting at stim-
ulus onset and ending at the response. This “upramp” had a height
of one, and its slope was constrained by the response time for that
trial (see Figure 1 for examples). We compared the correlations
of the ramp regressors to those of regressors reflecting the alter-
native hypotheses of neural activity that is “on” during the trial
(“boxcar”) and of neural activity that reflects a transient initial

1http://code.google.com/p/dotsx/
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FIGURE 1 | Sample regressors. Pictured are, from top to bottom: upramp,
downramp, stimulus regressor, response regressor, and eyeblink regressor.
X -axis represents time in samples, y -axis regressor amplitude in arbitrary
units.

response slowly decreasing over the trial duration (“downramp”).
Evidence accumulation activity extracted with the upramp regres-
sor should look clearly different from these alternative hypotheses.
We did not employ separate regressors for left- and right-ward
dot-motion. In other work (van Vugt et al., in revision), we have
similarly detected lateralized readiness potentials, but these depart
from baseline much later than the theta band activity discussed
below, and we believe they are primarily motor (response) related.

We created a set of parallel upramps, downramps, and boxcars
for the arrow control task, which had the same height as the dots
ramps (i.e., a unit height), and also started at dots onset and ended
at dots offset. Note, however, that in that case the arrows appeared
somewhere in the middle of the interval between dots onset and
offset, and the response followed fairly promptly thereafter.

We compared the fits of these regressors to an alternative model
that did not take trial-by-trial variation in response time (RT)
into account. In that model, we created regressors with a slope
and height modulated by the individual’s drift rate and threshold,
respectively. In addition, the slope did not depart from baseline
until T0 (non-decision time) milliseconds after stimulus onset.
We created one such regressor for the low-coherence condition,
and a second for the high-coherence condition. We inserted in
each trial the respective regressor shape. Importantly, these regres-
sors did not covary with individual trial RTs (see Figure 2). As a
result, the DDM model only has five parameters (low- and high-
coherence drift rates, low- and high-coherence non-decision times,
and decision thresholds), whereas the RT model has as many para-
meters as there are trials (namely, the RT for every trial). The DDM
parameters were obtained by fitting the pure DDM (i.e., a DDM
without variability in starting point, non-decision time, and drift
rates) to each participant’s behavioral data with the DMA toolbox
(VandeKerckhove and Tuerlinckx, 2007, 2008).

In addition to these regressors of interest, we created a set of
nuisance regressors that modeled transient neural responses to
stimulus onset and button press, as well as eye activity. These

nuisance regressors are used to remove those sources of vari-
ance from the EEG signal, such that only the signal of interest
remained. To determine the transient response to a stimulus, we
first looked at the grand average of stimulus-related EEG activity
(Figure 3A), from which we chose a time window to plot a topo-
graphical distribution (Figure 3B). Although this topography does
not exhibit a single clear maximum, we chose to use electrode Cz
to compute for every participant individually the stimulus-related
average. We then inserted this average waveform (from 0 to 300 ms
post-stimulus) in the regressor at any time point where a stimulus
was presented (“stimulus regressor”).

Similarly, we examined the grand average response-locked ERP
(Figure 3C) to define a time window for which to compute a
topographical plot (Figure 3D) which was then used to define
a response-related electrode. We chose CPz (Cz is slightly more
anterior than CPz). We then used the average response-locked
waveform from−200 to 0 ms in CPz to model the transient neural
response to a button press (“response regressor”). See Figure 3 for
an illustration of the locations of Cz and CPz. Response-related
ERP peaks typically exhibit their maximum more posteriorly than
stimulus-related ERP peaks. CPz and Cz are two central electrodes
that show peak responses to stimulus presentation and button
presses, respectively. The eye blink regressor was created from the
activity of the eye channel. We focused exclusively on eye blinks
and not on horizontal eye movements because we only collected
eye movements from a single eye electrode placed underneath the
left eye. We set the eye blink regressor to zero outside the eye blink
episodes detected with an amplitude threshold to ensure that no
random fluctuations in the eye channel could distort our results.

A major problem in GLM analyses of EEG data is the poor
signal-to-noise ratio (SNR). To improve the SNR we created fea-
tures (independent variables in the regression) that only consisted
of the trials themselves. This thus excluded the inter-trial time in
which participants may have moved or been engaged in unspec-
ified cognitive processes such as contemplating their lunch). We
padded the trials with 300 ms before the stimulus and after the
response. The reason for including this extra-trial time is that the
neural activity of interest should display the hypothesized ramping
behavior during the trial, but should also be relatively quiet outside
this period, since at that time no evidence is being accumulated,
and participants’ attention will not yet have wandered very far
away just after the trials. Moreover, not including this extra-trial
period will make the upramp and downramp regressors identical
up to an inversion, and this causes problems for the analysis. We
can exploit the additional variance provided by this baseline to
find our signal of interest in the EEG data. We then appended all
these padded trials into a feature vector. The features were cre-
ated both from the raw EEG time series, and wavelet-convolved
signals in the delta (2–4 Hz), theta (4–9 Hz), alpha (9–14 Hz),
beta (14–28 Hz), low gamma (28–48 Hz), and high gamma (48–
90 Hz) ranges. After construction, we downsampled these features
to 50 Hz, and z-transformed them to put them on the same scale
across participants (van Vugt et al., 2010). Downsampling was
done to reduce memory load for the computations.

We ran the GLM in two steps. In the first step we modeled all the
nuisance regressors. The regressors of interest (ramps) were then
modeled on the residuals of this first regression,which ensured that
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FIGURE 2 | Schematic of the different models we used to create
regressors from. Top row: RT model. Bottom row: DDM model. Left
column: low-coherence condition. Right column: high-coherence
condition. In the RT model, the ramp always starts at stimulus onset and
ends always at the response, and it always has a height of one. It
therefore has a different length for the slower and faster trials within a

coherence condition. Conversely, the DDM model has a fixed shape for all
trials within the low-coherence condition, and another shape for all trials
within the high-coherence condition. This shape is determined by three
DDM parameters: non-decision time (which determines ramp onset),
decision threshold (which determines ramp height) and drift rate (which
determines the slope of the ramp).

FIGURE 3 | Stimulus and response-locked event-related potentials
(ERPs) used for creating the stimulus and response regressors. (A)
Grand average stimulus-locked ERP (i.e., average across all channels). (B)
Topographical plot of ERP amplitude in the gray time window in the time

course in (A) which represents the first stimulus-evoked peak. (C) Grand
average response-locked ERP. (D) Topographical plot of ERP amplitude in
the gray time window in the time course in (C) which represents the
maximum response-related peak.

the nuisance regressors could not influence the fits for the regres-
sors of interest. In addition to computing the regression coeffi-
cients for each feature, we also computed the (square root of the)
variance explained by correlating the feature with the fitted regres-
sors as a measure of goodness of fit (Tabachnick and Fidell, 2005).

2.5. MULTIVARIATE GROUP ANALYSIS
To combine across participants, we included all participants’ data
into a single canonical correlation analysis (CCA; Calhoun et al.,
2009). In general, CCA is a multivariate technique to find corre-
lated components between two datasets. When given two matrices
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(e.g., a set of regressors and a set of time courses from electrodes),
it finds a set of weights on these two matrices such that they are
maximally correlated. The CCA method we used (see Figure 4)
was designed to do a group analysis across all of the participants.

There is no clear agreement in the literature on how to com-
bine data across participants when using decomposition methods
such as ICA and CCA (Calhoun et al., 2001). One approach is

to perform the decomposition for each participant separately and
then sort the resulting components. A problem with that method
is that it is unclear how this sorting should be done reliably because
the decomposition may have resulted in somewhat different com-
ponents for every participant. Another approach is to concatenate
all participants’ data and to perform the decomposition on the
resulting group data. The advantage of this method is that there is

A

B

C

FIGURE 4 | Graphical overview of the CCA/GLM method we
developed. In the first step (A), the electrodes-by-time matrices are
concatenated in the time dimension for all participants, where only a
subset of the data of each participant is used (orange rectangles). This
concatenated matrix with EEG data is then used together with the
corresponding concatenation of regressors (purple; the DDM-inspired
model time series) in the second step. (B) In this second step, the
electrode-by-time matrix that contains data from all participants is
correlated with the corresponding time course of the regressor (e.g.,

upramp) using CCA. This yields a correlation value, a weight on the
regressor, and a set of weights on the electrodes (all in cyan). In the third
step (C), the weight map on the electrodes is applied to the remainder of
every participants’ EEG data (white) and the correlation (green) of this
weighted EEG data to the regressor (purple) is compared to the correlation
based on the group data in the random effects analysis (cyan). This whole
procedure is done for the raw EEG data and separately for each frequency
band (cf. Figure 9 below). The number of time points indicated above the
matrices are just an indication.
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only a single set of weights on electrodes across all participants
(i.e., a common spatial structure), while each participant has
their own time course. It therefore becomes very easy to compare
results across participants. A disadvantage of this method is that it
forces components to have a similar spatial distribution across
participants (Calhoun and Eichele, 2010). However, the added
benefit of increased reliability derived from not having to aggregate
potentially disparate components outweighed this limitation.

In this study we therefore decided to use temporal concatena-
tion, such that we still had 116 features (corresponding to one
feature for every EEG channel) but had hundreds of thousands of
time points (see Figure 4A). The CCA then resulted in a single
set of canonical correlation weights on electrodes across partici-
pants. We had sufficiently many time points to run into memory
problems. To overcome these, we took a representative subset of
each participants’ data (i.e., six 4-min blocks from each of the
different conditions). We checked that including only a subset of
each participants’ data in the group decomposition is a reasonable
approach in Figure 10 (see Results for more details). We computed
a Bayes Factor to check whether indeed there was no strong evi-
dence for a difference between the subset of the data and the full
data by using the Bayes Factor calculator2 (Rouder et al., 2009).

The CCA produced a single set of electrode weights across
all participants for each regressor (Figure 4B). These electrode
weights can take either sign, a negative correlation with an upramp
implying that power decreases as time progresses.

2.6. RANDOM EFFECTS ANALYSIS
We developed a random effects analysis as a complementary means
to assess the significance of the various correlations between
regressors and EEG data. To this, we made use of the fact that
we had only used a subset of each participants’ data to run the
CCA. We used the remaining data to compute for each partici-
pant separately a correlation between the EEG data to which the
CCA-derived electrode weights were applied, and the correspond-
ing regressors. We then Fisher-transformed these correlations and
compared them with t -tests. As such, we could for example assess
whether the correlation between EEG and the dots time course
was larger than the correlation between EEG and the arrows time
course. Because this involved many t -tests, we applied a False Dis-
covery Rate procedure (Benjamini and Hochberg, 1995). A False
Discovery Rate of 0.001, which is the level we used, indicates that
on average 1 in 1000 of the significant effects we find is a false
positive.

2.7. PERMUTATION ANALYSIS
Since it is possible that the results we obtained were due to ran-
dom correlations between the EEG data and the regressors, we
performed an additional permutation analysis to assess what the
levels of canonical correlation would be for random data. We cre-
ated random data by shuffling the ramps in time for random
amounts and repeated the canonical correlation analysis with these
regressors. We did this for 1000 iterations. We then compared the
correlations obtained from the empirical data to those obtained

2http://pcl.missouri.edu/bf-one-sample

from the random data, and computed the probability that our
empirical data were derived from these random distributions.

3. RESULTS
3.1. BEHAVIORAL DATA
Before turning to the electrophysiological results, we discuss our
behavioral data. Participants were engaged in a random dot-
motion discrimination paradigm, where the level of motion coher-
ence was set such that they performed at ∼70 and 90% cor-
rect (Figure 5C). Accuracy was significantly higher [t (22)= 21.6,
p < 0.001, Figure 5A] and RT was significantly faster [t (22)= 5.7,
p < 0.001, Figure 5B] in the 90% correct condition. The two coher-
ence levels used to create the 70 and 90% correct conditions
were also significantly different from each other [t (22)= 17.3,
p < 0.001].

These results are consistent with a DDM parametrization in
which thresholds are approximately constant, starting points are
approximately midway between thresholds, and the drift rate is
high for the high-coherence condition, and low for the low-
coherence condition. This was confirmed by fitting a DDM to
the behavioral data (Table 1). The mean (sem) Maximum Likeli-
hood of these fits across subjects was 3466 (167) and the mean BIC
(Bayesian Information Criterion) was 3508 (167). The fits showed
that indeed the drift rate was higher for the high-coherence com-
pared to the low-coherence condition. The drift rate was even
higher for the arrows non-integration control condition, where
evidence was so abundantly clear that participants barely needed
to integrate information.

3.2. ELECTROPHYSIOLOGICAL DATA
Before turning to our novel model-based EEG analyses, we first
examine the basic EEG data. We looked at all electrodes and picked
a few representative samples of standard electrodes that are typi-
cally shown in EEG studies. Figure 6 shows the basic characteristics
of our EEG data. The spectrograms of oscillatory power for cen-
tral electrode Cz show task modulation and a decrease in 4–9 Hz
theta power over the course of the trial (Figure 6A). Figure 6B
shows the effect of motion coherence (i.e., task difficulty), where
trials in the easy high-coherence condition tend to show higher
theta power near the response, compared to trials in the more dif-
ficult low-coherence condition. There also seems to be a difference
in 14–28 Hz beta power occurring after the mean response time.
This may reflect motor activity, which occurs later for the diffi-
cult compared to the easy trials, because the difficult trials have
longer response times. Figure 6C shows the difference between
the integration (dot-motion) and non-integration (arrows) con-
ditions. Across the whole task, the non-integration condition is
associated with higher 9–14 Hz alpha power than the integration
condition. Furthermore, a decrease in theta is visible between stim-
ulus and response, where the response is associated with lower
theta.

Another notable effect that can be observed in the raw data is
increased gamma oscillatory power for the integration condition,
compared to the non-integration condition (shown for the frontal
electrode FPz in Figure 7). This difference appears to be fairly
constant across the whole task period. On the basis of these spec-
trograms, we expect evidence accumulation dynamics in the form
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FIGURE 5 | Mean accuracy (A), response time (B), and coherences (C) across subjects for the low and high-coherence (difficult and easy) task
conditions.

Table 1 | Mean (sem) DDM parameters for best fitting model to data from Experiment 1, separately for low and high-coherence trials

(integration conditions), and arrows trials (non-integration condition).

Condition Drift Decision threshold Non-decision time Starting point

Low-coherence 0.057 (0.004) 0.151 (0.007) 0.439 (0.011) 0.077 (0.004)

High-coherence 0.167 (0.008) 0.151 (0.007) 0.408 (0.014) 0.078 (0.005)

Arrows control 0.784 (0.069) 0.210 (0.036) 0.219 (0.009) 0.094 (0.027)

The threshold was held constant between the low and high-coherence conditions. The fits adhere to the Ratcliff convention where the non-biased starting point is

half the decision threshold value.

of ramps (Figure 1) to be primarily associated with low-frequency
oscillations as shown in Figure 6A.

3.3. GLM METHOD CHECKS
Before running the CCA on the ramp regressors, we verified our
method by plotting the weights for the eye blink, stimulus, and
response regressors on a topographical plot. If the GLM method
works correctly, we expect the highest regression coefficients on
the electrodes that were used to generate the relevant regressor.
That is, for the eyeblink regressor, we expect the largest weights on
the frontal electrodes. For the stimulus regressor that was gener-
ated based on Cz, the maximum correlation should occur with this
electrode, and the response regressor should maximally correlate
with CPz. Figure 8 shows that this was indeed the case.

Having established that the GLM, which predicts the time series
of a single electrode by a linear combination of regressors, is a
viable method to analyze EEG data, we used the multivariate CCA
method to search for the hypothesized ramp dynamics in our data.
The advantage of CCA is that rather than focusing on a single elec-
trode at a time, it allows linear combinations of channels to predict
linear combinations of regressors. It is therefore much more flexi-
ble. Yet, because it is more difficult to interpret linear combinations
of regressors than single regressors, we restricted our attention
to single regressors. Nevertheless, preliminary observations indi-
cate that ∼40% larger canonical correlations can be obtained by
allowing linear combinations of regressors. Linear combinations
of regressors could for example create boxcars from a roughly
equal weighting of upramp and downramp regressors, in a com-
pletely data-driven manner. Future work should further explore
this option.

We performed a CCA between the regressors and the EEG
time series for every channel. We did this analysis separately for
every frequency band (2–4 Hz delta; 4–9 Hz theta; 9–14 Hz alpha;
14–28 Hz beta; 28–48 Hz low gamma; 48–90 Hz high gamma)
because we sought to make inferences about which band shows
most evidence of ramping activity.

Figure 9A shows the canonical correlation of the upramp with
EEG data in every frequency band, as well as for non-wavelet-
transformed (plain) EEG. The correlation between hypothesized
ramping dynamics and EEG activity is largest in the 2–4 Hz delta
and 4–9 Hz theta bands. Note that all correlations given by CCA
are constrained to be positive, and that any negative relations
between regressors and EEG will be reflected in a negative sign
of the weights on the electrodes. We did a random effects analysis
as a follow-up, in which we applied the CCA-derived electrode
weights to each participants’ left-out EEG data (only a subset of
each participants’ data was used for CCA due to memory con-
straints) and computed the correlation between these data and
the regressors. We then assessed whether the Fisher-transformed
individual-subject correlation values were significantly different
from zero. We found that this was the case for all frequencies,
except for the high gamma band [all t -values up to low gamma >6,
which reflects p-values smaller than 0.0005, which is the p-value
level corresponding to a False Discovery Rate of 0.001].

We also assessed whether the different frequency bands
reflected evidence accumulation or rather a more general dot-
motion-induced ramping process by repeating the same analy-
sis for the non-integration condition. Figure 9B shows that the
canonical correlate in the theta band is specific to the integra-
tion (dots) condition, whereas the canonical correlate in the delta
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FIGURE 6 | Basic spectrograms for electrode Cz (a representative
electrode). Black line indicates the event to which the data are aligned
(onset of dot-motion for the stimulus-locked graphs and the response for
the response-locked graphs). Cyan line indicates the average response
time and stimulus onset time, respectively. (A) stimulus-locked
spectrograms for the high-coherence, low-coherence, and non-integration

condition. There is a gradual decrease in oscillatory power over the course
of the trial. (B) Difference spectrograms comparing low- and
high-coherence conditions. Left column: stimulus-locked. Right column:
response-locked. (C) Difference spectrograms indicating the contrast
between integration and non-integration conditions. Left column:
stimulus-locked. Right column: response-locked.

band is also fairly high for the non-integration (arrows) condition.
Indeed, comparing the distributions of individual-participant cor-
relation values between the dots and arrows conditions for the
delta band indicates that those are not significantly different when
using a False Discovery Rate of 0.001 [t (22)= 2.98, p= 0.0069].
This means that in the non-integration condition, delta oscillatory
power increases (or decreases-depending on the sign of the canon-
ical correlation weights) over the course of a trial from dots onset
until response, while according to our theory the participant only
starts to accumulate evidence (and does so quite rapidly) once the
arrow stimulus appears on the screen at a later point.

Theta oscillations show a dramatic drop in (canonical) correla-
tion value in the non-integration condition, as would be expected
from a neural correlate of evidence accumulation, because in the
non-integration condition virtually no evidence has to be accu-
mulated, and evidence accumulation only starts when the arrows
appear on the screen. Indeed, there is a significant difference

between the correlations of theta power with the upramp for
dots versus arrows conditions [t (22)= 11.6, p < 0.001]. This sug-
gests that theta oscillations are a more likely candidate for a
neural correlate of evidence accumulation than delta oscillations
because only the theta oscillations are specific to the integration
condition.

We further tested whether the correlations we obtained could
be due to a better match between temporal structure of the EEG
data in the delta and theta frequency bands and the structure of
the regressor than with EEG data in other frequency bands. In
other words, we tested the alternative hypothesis that any random
sequence of ramps would produce the correlations we observed,
with the highest correlations in the delta and theta bands. To that
end, we performed a permutation test. We created a set of 1000
regressors in which we randomly moved the ramps around across
time, and redid the CCA. The white dots in Figure 9 indicate the
97.5th percentile of the distribution of correlations that would
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be expected based on random regressors. These random correla-
tions are clearly below the observed correlations. Moreover, all of
the observed canonical correlations based on the empirical data

FIGURE 7 | Basic electrophysiological data for electrode FPz. Black line
indicates the event to which the data are aligned (onset of dot-motion for
the stimulus-locked graphs and the response for the response-locked
graphs). Cyan line indicates the average response time and stimulus onset
time, respectively. These are difference spectrograms contrasting the
integration and non-integration conditions. Left column: stimulus-locked.
Right column: response-locked.

FIGURE 8 |Topographical overviews of the 10% most significant
electrodes for the (A) eye blink, (B) stimulus, and (C) response
regressors. Red and blue reflect positive and negative regression weights,
respectively, and the intensity of the shading indicates the magnitude of
the regression weights. The most significant electrodes are in the locations
from which the regressors were generated [indicated with arrows in (B,C)].

are larger than the canonical correlations based on random data,
so the probability that the empirical canonical correlations are
obtained from random data is <0.001.

We further asked whether our CCA, which was based on only
a subset of each participant’s data (see Methods), is a good repre-
sentation of the participant’s data. To this end we compared the
correlation value of the canonical correlate of interest with the
correlations between the regressor and the weighted set of elec-
trodes for the entire time course within each subject (i.e., using the
complete data for each subject). If the CCA decomposition were
the same for every participant, then the canonical correlation of
the across-subject data would be identical to the within-subject
correlation based on the same weights. Figure 10 shows that the
within-subject correlations based on a subject’s complete data,
weighted by the coefficients obtained from the CCA, have gen-
erally similar values to the across-subject CCA based on a subset
of a subject’s data [one-sample t -test comparing mean propor-
tion between the within and across-subject correlations to one:
t (22)= 2.0, p < 0.1, Bayes factor for the alternative hypothesis of
a mean correlation different from one versus the null hypothesis
of a mean correlation equal to one: 1.02, indicating there is also
little evidence for the null hypothesis].

We then wondered to what extent EEG activity would show cor-
relation with alternative patterns of activity. Rather than upramps,
there could also be neural correlates of downward ramps, which
start at a high level and then return to baseline by the time of the
response. Note that such a downramp is clearly different from a
negative correlation of EEG with an upramp: the downramp starts
at a high level and then drops down to baseline by the end of the
trial, while the negative upramp starts at baseline and then goes
down to a level of −1 at the end of the trial. The inclusion of
between-trial baseline data allows us to distinguish between neg-
ative weights on upramps and (positive weights on) downramps.
Finally, there could be patterns of neural activity that turn on at the
start of the trial, and turn off at the end that reflects task engage-
ment. We modeled this with a boxcar between stimulus onset and
response.

FIGURE 9 | Canonical correlations as a function of frequency, with
the DDM-modulated model in blue and additional correlation
achieved by the RT-modulated model in red, shown separately for
the ramp regressor of (A) dots (integration condition) and (B)
arrows (non-integration condition). White dots indicate the 97.5th

percentile of the distribution of canonical correlations expected based
on random regressors. Letters indicate frequency bands: EEG= raw
EEG, D=2–4 Hz delta, T=4–9 Hz theta, A=9–14 Hz alpha,
B=14–28 Hz beta, G1=28–48 Hz low gamma, and G2=48–90 Hz high
gamma.
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FIGURE 10 |Validation of the subset method: within-subject correlation
of weighted regressors with EEG data divided by the across-subject
canonical correlates. Perfect validity of the subset method would yield a
fraction of one (within-subject correlations equal to across-subject canonical
correlation). Each datapoint used to create this histogram reflects a single
participant. This distribution has a mean that is not different from one.

Our results show that potential accumulators (upramps) are
more consistent with the EEG data than these alternative hypoth-
esis. Both downramp and boxcar regressors showed much lower
correlations [in the theta band the canonical correlations are 0.11
for the boxcar, 0.076 for downramp dots, and 0.15 for downramp
arrows]. This was corroborated by a random effects analysis, which
showed that for all but the high gamma band, the upramp had a
significantly higher correlation than the downramp [all t s > 6.04,
p < 0.001].

We then asked to what extent the DDM, free from trial-to-trial
variations in RT, could predict our EEG data. To do this, we com-
pared the canonical correlations for a regressor that was ramping
up or down exactly in accord with RT to that of a regressor that
was more stereotyped, having a fixed length (time-locked to the
response) but modulated by an individual’s DDM parameters as
obtained from fitting the DDM to the participant’s behavioral
data. Regressor height was modulated by the threshold parame-
ter; its slope by the drift parameter and ramp onset was delayed
by the participants’ non-decision time (see Figure 2). Because the
DDM-modulated regressor is not yoked to RT, it fails to capture the
stochastic noise in RT. Although, as would be expected, the canon-
ical correlations are uniformly higher for the RT-based regressor
than for the DDM-modulated regressor, it is remarkable that the
DDM still explains a large fraction (0.58–0.73) of the variance that
the RT-yoked regressor can (Figure 9, red boxes labeled RT mod).
In other words, the model is able to account for a large portion of
the neural variance in ramp-like behavior.

Figures 11A,B show the time courses of the canonical correlate
in the theta band: the frequency band that shows the greatest dif-
ference in upramp weights between dots and arrows (Figure 9).

The time course of the upramp regressor is much more peaked
for the integration condition (green) than for the non-integration
condition (arrow trials; magenta). In the stimulus-locked average,
the dots upramp time course departs significantly from baseline
around 240 ms [one-tailed t -test with a p < 0.01 significance level],
whereas the arrows upramp time course does not depart signif-
icantly from baseline until 400 ms post-stimulus. From 260 ms
post-stimulus, the dots upramp and arrows upramp are signifi-
cantly different. Similarly, in the response-locked time courses, the
dots upramp differs from baseline from −580 ms, but the arrows
upramp not until −380 ms. The two time courses start to dif-
fer significantly at −520 ms. The smaller amplitude of the arrows
upramp is what we expected based on the lower correlations of
theta activity with the upramp regressor in the non-integration
compared to the integration condition. Figure 11C shows the
topographical distribution of the weights on the electrodes that
define the canonical correlate in the theta band. They have a pos-
terior parietal distribution and are negative. This means that theta
power in these parietal channels starts near baseline, and then as
the trial progresses, theta power decreases away from baseline.

We next asked whether the dynamics of this theta upramp (the
most promising candidate for evidence accumulation) also covar-
ied with individual differences in DDM parameters. We found a
significant correlation [r(45)= 0.44, p= 0.0024] between an indi-
vidual’s drift rate and the slope of the average theta band time
course between 500 and 100 ms pre-response for that same per-
son. There was no significant correlation between the level the
time course reached at the end of the response interval and the
individual’s behaviorally fitted decision threshold [r(45)= 0.08,
p= 0.48].

4. DISCUSSION
We have shown that EEG oscillations exhibit dynamics consistent
with evidence accumulation in a perceptual decision making task.
In addition, the magnitude of the slopes of these potential “neural
accumulators” in the 4–9 Hz theta band covaried with individual
differences in the drift rates obtained from the behavioral data.

While correlations with accumulator dynamics occur in dif-
ferent frequency bands, previous studies have implicated theta
oscillations in various aspects of decision making (e.g., Jacobs
et al., 2006; Cavanagh et al., 2010). For example Jacobs et al. (2006)
showed an increase in parietal theta oscillations with decision con-
fidence during a recognition memory task. Cavanagh et al. (2010)
observed a correlation between post-decision error monitoring
and theta oscillations in frontal regions. Our findings add to this
body of evidence. One may wonder what is particular about the
theta frequency that would make it suitable for a function in deci-
sion making. A modeling study by Smerieri et al. (2010) suggests
an answer. They showed that in simulated spiking neural networks
of two populations of mutually inhibiting neurons, RTs decreased
and drift rates increased with increasing theta power. This effect
was specific to the theta range because higher frequencies are too
fast to modulate the cell’s membrane potential, which acts as a
low-pass filter.

Nevertheless, the correlations of accumulator dynamics with
other frequency bands are also not too surprising. For example,
a previous study has associated 14–28 Hz beta, rather than theta,
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FIGURE 11 | Stimulus-locked (A) and response-locked (B) time
courses of the canonical correlate in the 4–9 Hz theta band,
correlated with the dots upramp, cyan line indicates RT in (A) and
dots onset in (B). (C) Dots upramp topography (red indicates a positive

correlation between oscillatory power and the regressor, blue a
negative correlation). The shade of the color indicates the magnitude of
the correlation. Note that there are no positive correlations for the dots
upramp.

oscillations with evidence accumulation (Donner et al., 2009). One
reason for that difference with our findings may be that that study
was conducted with magnetoencephalography (MEG) rather than
EEG recordings. MEG may be better able to detect higher fre-
quency oscillatory activity because of its higher spatial sensitivity
(e.g., Dominguez et al., 2005). Another difference with Donner’s
study is that the beta oscillations they observed were lateralized,
that is, they increased in one hemisphere for one choice and in
the other hemisphere for the other choice. While we have exam-
ined such lateralized oscillations as well with our model, this did
not yield very strong correlations, because the lateralized beta and
gamma oscillations only started to rise just before the response.

To further explore how analysis methods affect our results,
we redid the same analysis on a Laplace-transformed version of
our data, which is a method that improves spatial resolution for
some sources, but decreases resolution for other sources (Hauk
et al., 2002). This version of the analysis (available from the first
author on request) still yielded correlations of EEG with evidence
accumulation dynamics, but now the dots-selective accumulator
dynamics shifted to more lateral locations and to the alpha and
beta bands, quite similar to those observed by Donner et al. (2009).
We should also note that our use of wavelets biases us to finding
results in the lower frequencies, while multitapers would instead
cause a bias toward finding results in higher frequencies (van Vugt
et al., 2007). Together, this suggests that evidence accumulation
involves oscillations at different frequencies, and the type of oscil-
lations one observes most prominently depends on the recording
and analysis methods.

The ramp regressor not only correlates with theta activity but
also loads fairly strongly on EEG activity in the 2–4 Hz delta band.
Nevertheless, unlike the theta band, the delta band shows a signif-
icant correlation with the ramp regressor in both the integration
and the non-integration control task (Figures 9A,B). This suggests
that while theta may be more specific to evidence accumulation,
delta may reflect a more generic “on-task” process that is triggered
by the dot stimuli on the screen. The relatively large loading on the
alpha regressor may reflect bleeding-in of theta activity because
there are individual differences in the ranges of alpha and theta

oscillations (Klimesch et al., 1993). It may thus be the case that
the 9–14 Hz alpha band contains theta accumulator activity from
individuals with a high-frequency theta band.

It is also important to consider alternative explanations for
the observed correlation with upramp dynamics. For example,
the upramp could alternatively reflect time-on-task, which also
increases with RT. Arguing against this interpretation is the fact
that the correlate of the upramp in the theta band is much lower
for the non-integration control task, in which stimulus-viewing-
duration has not changed, but the need for evidence accumulation
has mostly disappeared. Alternatively, upramp dynamics could
reflect response preparation. While some accounts argue that
motor preparation already starts at the time of stimulus presenta-
tion (Miller and Hackley, 1992), it mostly occurs a few hundred
milliseconds before the response (see also Figure 3). A third alter-
native explanation is that pre-response increases in medial frontal
theta increases have previously been associated with response con-
flict (Cohen and Cavanagh, 2011). The dots and arrows condition
do not only differ in accumulation dynamics, but also in the
amount of response conflict, and while the effect we observe has
different sign and topography from the effects reported by Cohen
and Cavanagh (2011), we cannot exclude the possibility that our
results represent response conflict.

Another issue to consider is that while the correlation with
the ramp regressor is stronger in the theta band than in other
frequency bands, evidence accumulation is also a broad-band
phenomenon: it is significantly different from zero in almost all
frequency bands according to our random effects analysis. Several
recent studies have suggested that broad-band increases in oscilla-
tory power reflect increased neuronal spiking more than increases
in power in specific frequency bands (Manning et al., 2009). Fur-
thermore, changes in broad-band power have been associated with
cognitive processes, such as verbal and spatial memory (Ekstrom
et al., 2007; Sederberg et al., 2007).

Although the correlations we obtained between the regressors
and the EEG data are on the order of magnitude of correlations
obtained from GLMs applied to fMRI data, there is room for
methodological improvement. Correlations of fMRI and EEG with
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task conditions or cognitive models tend to be fairly low due to
the large amount of noise in neural data. Nevertheless, we specif-
ically showed that the correlations we obtained are larger than
correlations found based on random regressors with a similar
temporal structure (Figure 9). Future studies should investigate
whether correlations could be improved by applying e.g., Inde-
pendent Component Analysis (Delorme et al., 2001). In addition,
the use of regularization, which zooms in on the informative fea-
tures in the data, could potentially help to increase the correlation
between model dynamics and EEG data.

What may seem surprising about the neural correlate of evi-
dence accumulation in the theta band is that instead of increasing,
oscillatory power decreases over the course of the decision inter-
val (Figure 11C). Nevertheless, these decreases in oscillatory power
may in fact reflect increases in functional brain activity. This is con-
sistent with (Lorist et al., 2009), who found that oscillatory power
increases with fatigue, thereby implying it should decrease with
productive task performance. It may also be the case that over the
course of evidence accumulation, one moves from a more global
mode of processing, in which information is combined from a
large number of neurons, to combining information from a much
smaller set of neurons associated with less synchronization and
lower oscillatory power (von Stein and Sarnthein, 2000). Both
of these hypotheses could be tested with more localized neural
recordings obtained from e.g., intracranial EEG. A third possi-
bility is that theta may reflect the amount of uncertainty or an
urgency to respond (Cisek et al., 2009), rather than the evidence
accumulation process per se, and that other oscillations (e.g., beta
which is more prominently observed in Laplace-transformed EEG
and MEG data) may reflect evidence accumulation itself.

Our findings have several implications for future research. First,
the correlates of the DDM that are observable in EEG can be
used to assess the effect of task manipulations (such as speed-
accuracy trade-off or reward rate) on accumulation dynamics.
Second, there are large individual differences in decision making
(e.g., Forstmann et al., 2010). EEG signatures of neural accumu-
lators may allow us to distinguish different types of participants
or strategies, given that individual differences in DDM parameters
covaried with the slope of the neural accumulation signal. The
“neural accumulators” could thereby soak up some portion of the
noise in the model. These “neural accumulators” may also capture

individual trial noise, such as attentional fluctuations, although
that remains to be proven. Third, we could use the same multi-
variate methods to clarify the topographical location of possible
neural accumulators with fMRI data, which has poorer temporal
but better spatial resolution than EEG. Using identical methods
for the analysis of EEG and fMRI data in the same task could thus
provide new perspectives on data fusion.

Finally, it is important to consider what implications our results
have for models of decision making. For example, the non-
linearity of the accumulator time courses suggests that evidence
accumulation may better be described by a competitive evidence
integration than by a linear ballistic accumulator (Brown and
Heathcote, 2008). Yet, it is difficult to distinguish between the
remaining accumulator models based solely on their dynamics
in two-alternative forced choice tasks (Ditterich, 2010). In fact,
we have tried different versions of our evidence accumulation
model, such as a version where only onset of evidence accumu-
lation changed rather than both onset of evidence accumulation
and the slope. We found no appreciable change in our results.
However, it is possible to distinguish between some models by
employing brief pulses of strong evidence, as in Wong and Huk
(2008) and Zhou et al. (2009).

In short, we have developed a novel method for detecting and
examining the electrophysiological correlates of model dynam-
ics. Using this method, we have provided evidence for a neural
correlate of the dynamics of evidence accumulation in decision
making measured in human EEG. Accumulation dynamics were
captured best by 4–9 Hz theta oscillations in a set of superior
parietal channels, and they covaried with individual differences
in DDM parameters fitted to behavioral data.
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In non-stationary environments, there is a conflict between exploiting currently favored
options and gaining information by exploring lesser-known options that in the past have
proven less rewarding. Optimal decision-making in such tasks requires considering future
states of the environment (i.e., planning) and properly updating beliefs about the state
of the environment after observing outcomes associated with choices. Optimal belief-
updating is reflective in that beliefs can change without directly observing environmental
change. For example, after 10 s elapse, one might correctly believe that a traffic light last
observed to be red is now more likely to be green. To understand human decision-making
when rewards associated with choice options change over time, we develop a variant of
the classic “bandit” task that is both rich enough to encompass relevant phenomena and
sufficiently tractable to allow for ideal actor analysis of sequential choice behavior. We eval-
uate whether people update beliefs about the state of environment in a reflexive (i.e., only
in response to observed changes in reward structure) or reflective manner. In contrast to
purely “random” accounts of exploratory behavior, model-based analyses of the subjects’
choices and latencies indicate that people are reflective belief updaters. However, unlike
the Ideal Actor model, our analyses indicate that people’s choice behavior does not reflect
consideration of future environmental states. Thus, although people update beliefs in a
reflective manner consistent with the Ideal Actor, they do not engage in optimal long-term
planning, but instead myopically choose the option on every trial that is believed to have
the highest immediate payoff.

Keywords: decision making, reinforcement learning, Ideal Actor, Ideal Observer, POMDP, exploration, exploitation,

planning

INTRODUCTION
Effective decision-making often requires a delicate balance of
exploratory and exploitative behavior. For example, consider the
problem of choosing where to dine out from a set of competing
options. The quality of restaurants changes over time such that one
cannot be certain which restaurant is currently best. In this non-
stationary environment, one either chooses the best-experienced
restaurant so far (i.e., exploit) or visits a restaurant that was infe-
rior in the past but now may be superior (i.e., explore). The actions
a diner should take in a series of choices is a non-trivial problem
as optimal decision-making requires factoring in the uncertainty
of the environment and the impact of the current action on one’s
future understanding of restaurant quality.

How humans and artificial agents balance and structure
exploratory and exploitative actions is an important topic in rein-
forcement learning (RL) research (Sutton and Barto, 1998; Cohen
et al., 2007; Lee et al., 2011). Exploring when one should exploit
and, conversely, exploiting when one should explore both incur
costs. For example, an actor who excessively exploits will fail to
notice when another action becomes superior. Conversely, an actor
who excessively explores incurs an opportunity cost by frequently
forgoing the high payoff option.

In deciding whether to explore or exploit, an agent should con-
sider its uncertainty about the environmental state. In the dining
example above, the agent’s decision to explore or exploit should
depend on the volatility of the environment (e.g., the rate at which
restaurant quality changes over time) and how recently the agent
has explored options observed to be inferior in the past. For exam-
ple, an agent should exploit when it has recently confirmed that
alternative restaurants remain inferior and the environment is
fairly stable (i.e., restaurant quality does not rapidly change). On
the other hand, an agent should explore when alternatives have not
been recently sampled and the environment is volatile. Between
these two extremes lie a host of intermediate cases.

In this contribution, we examine how people update their belief
states about the relative superiority of actions. In one view, reflec-
tive belief updates incorporate predictions of unobserved changes
in the environment. For example, a reflective belief-updater would
be more likely to believe that an inferior restaurant has improved
as time passes since its last visit to the restaurant. In contrast, a
reflexive model of choice is only informed by direct observations
of rewards and, therefore, does not fully utilize environmental
structure to update beliefs and guide actions. This distinction
closely echoes contemporary dual-system frameworks of RL in
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which a reflexive, computationally parsimonious model-free con-
troller putatively competes for control of behavior with a reflective
and model-based controller (Daw et al., 2005).

For reflexive models, exploratory choices are the result of
a purely stochastic decision process. Thus, reflexive accounts
do not predict sequential structure in humans’ patterns of
exploratory choice (cf. Otto et al., 2010). Perhaps because of
their simplicity and unexamined intuitions about the “random-
ness” of exploratory behavior, reflexive approaches are commonly
adopted to model human behavior (Daw et al., 2006; Wor-
thy et al., 2007; Gureckis and Love, 2009; Pearson et al., 2009;
Jepma and Nieuwenhuis, 2011). Reflexive approaches are also
prominent in the design of artificial agents (Sutton and Barto,
1998).

THE LEAPFROG VARIANT OF THE CLASSIC BANDIT TASK
To understand how people balance exploration and exploitation
given uncertainty about the state of the environment, we devel-
oped a variant of the commonly used n-armed bandit task, as the
restaurant example given above can be formally described. In the
classic n-armed bandit task, there are multiple actions (i.e., ban-
dits) with unknown payoffs associated with them. Crucially, the
payoffs at each time point are not explicitly revealed to decision-
makers but instead must be determined by repeated sampling of
actions. In restless bandit tasks, the actions’ payoffs change over
time, necessitating the aforementioned balancing of exploratory
and exploitive actions.

Previous studies of exploratory choice have utilized n-armed
bandit tasks in which the payoff distributions associated with
the actions noisily drift over the course of decision-making (Daw
et al., 2006; Pearson et al., 2009; Jepma and Nieuwenhuis, 2011).
Although these tasks assess how people behave in changing envi-
ronments, one major drawback of existing tasks is that there is
no accompanying formal analysis of what decisions people should
ideally make. In particular, existing work does not specify a sta-
tistically optimal process for updating estimates of action payoffs,
and the action selection methods posited ignore the informational
value of exploring. The failure of existing tasks to prescribe opti-
mal choice behavior makes it difficult to assess how people differ
from an optimal agent. In part, these shortcomings reflect that for-
mulating ideal agents for existing tasks is an intractable problem
(e.g., Daw et al., 2006).

In this contribution, we develop and use a novel laboratory task
that is sufficiently constrained to allow for formal specification of
the ideal agent. This formulation will be used to assess human
behavior (e.g., Are people reflective or reflexive belief updaters?
Do they act optimally given their beliefs?). In our Leapfrog task,
the rewards for two possible actions continually alternate in their
superiority, “leapfrogging” over each other. The underlying state
of the environment – that is, which option currently has the
higher payoff – is only partially observable to the decision-maker.
This class of problems is referred to as a partially observable
Markov decision process (POMDP) in the Artificial Intelligence
literature (Kaelbling et al., 1998). Choosing the best-observed
action (“exploiting”) generally provides little information about
the underlying state while exploration can resolve the underlying
state but potentially incurs opportunity costs.

An example instantiation of the Leapfrog task is depicted in
Figure 1A. In the Leapfrog task there are two actions, A and B,
with different payoffs. The participants’ task is to try to choose
the higher payoff option as often as possible (this proportion, not
total points, is the key metric). Option B’s payoff is initially higher
(at 20 points) than option A’s payoff (10 points). On each trial,
there is a fixed probability, which we refer to as volatility, that the
inferior action increases its payoff by 20 points, “leapfrogging” the
other option to give higher payoff. In summary, jumps are subject
to three constraints: they occur at a fixed volatility unknown to the
decision-maker, the two actions alternate in making jumps, and a
jump always increases an action’s point payoff by 20. Critically,
instructions make clear to participants that they will be rewarded
at the end of the experiment based on the proportion of “correct”
choices (i.e., choices for which the option with the higher true
payoff was chosen) as opposed total points earned. Jumps are not
explicitly made known to the decision-maker, but rather must be
inferred indirectly from observing choice payoffs.

Consistent with previous frameworks (Daw et al., 2006),
we define exploitation as choosing the action with the highest
observed payoff. A decision-maker must explore to detect when
the alternative action has leapfrogged over the action presently
being exploited. The Leapfrog task has only two actions, and all
possible underlying environment states can be mapped to the
number of unobserved jumps. For example, when there are no
unobserved jumps, the exploitative option still yields the higher
payoff. On the other hand, when there is one unobserved jump,
the exploratory option has the higher payoff. Consequently, unlike
previously studied bandit tasks, the prescription for optimal choice
behavior in the Leapfrog task is tractable, though non-trivial. Our
task also affords a straightforward manipulation of the rate at
which decision-makers should explore. Namely, across conditions,
we vary the volatility of the environment to examine whether sub-
jects in low and high volatility conditions differ in their balance
of exploratory and exploitative choice. Intuitively and in accord
with the Ideal Actor, we expect that subjects should explore more
frequently in more volatile environments.

MODELS EVALUATED
A number of model variants are evaluated to shed light on human
choice behavior in the Leapfrog task. In addition to examining
whether choice is better described by reflexive versus reflective
strategies, the second main question we ask is whether people
plan ahead optimally, taking the value of the information gained
through exploration into account when acting, or myopically
choose the action expected to receive the larger reward, regardless
of the action’s impact on later reward. We compare human data
from the Leapfrog task to three models: a reflexive and myopic
model we term the “Naïve RL” model, which expects payoffs (or
rewards) to be as they were last experienced; a reflective and
myopic model we call the “Belief model,” which directly acts on
the basis of its beliefs about current payoffs; and a model that
plans optimally from reflective beliefs, the “Ideal Actor.” For full
algorithmic descriptions of the models we refer the reader to the
Appendix.

Both reflective models employ an “Ideal Observer,” which opti-
mally updates beliefs based on past actions and observed payoffs.
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FIGURE 1 | Choice behavior and model-inferred beliefs and values in

the Leapfrog bandit task. At each trial, there is a fixed probability, which
we refer to as volatility or P (flip), that the inferior action increases its
point payoff by 20 points. After the first “jump,” Action A “pays” 30
points, superior to Action B’s 20 points. After this jump, Action B’s payoff
will increase by 20 points with the same probability. (A) An example
participant’s sequence of choices over 100 trials in an environment with
volatility rate P (flip) = 0.075. The two solid lines indicate the true payoffs
for each option, and the × and • marks indicate the participant’s choices

among these options. (B) The Ideal Observer’s belief that the exploitative
options will yield larger the higher payoff – and thus the higher
immediate reward – at each trial in the task instantiation at top. Note that
the subject’s certainty about the options’ relative payoffs generally
decreases during exploitation-only runs. (C) The relative long-term value
of the exploitative option at each trial as determined by the Ideal Actor,
using the beliefs from (B) and an optimal valuation function. Also note
that changes in the relative value follow changes in belief in a non-linear
fashion.

Figure 1B depicts beliefs as determined by the Ideal Observer for
the actions and observations in Figure 1A. Similar Ideal Observer
models have been employed in task domains such as visual search
(Najemnik and Geisler, 2005) and prediction and change point
detection (Steyvers and Brown,2005). Of the two reflective models,
only the Ideal Actor builds upon its optimal beliefs by consid-
ering the effect of exploration on reducing uncertainty in its
future beliefs. Optimal beliefs about current payoffs and correct
assessments of each action’s informational value together yield a

numeric expression of each action’s overall value – expressed as Q-
values – determining optimal choice behavior. The Ideal Actor’s
Q-values are calculated by converting the task to a POMDP and
solving it in this form. In Figure 1C, the options’ relative Q-values
are shown as a function of the beliefs in Figure 1B and the number
of remaining trials.

Because people may act noisily, in all three models we make
choice a stochastic function of action values using the Softmax
choice rule (Sutton and Barto, 1998), parameterizing the extent
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to which the choice rule is sensitive to value differences using the
inverse temperature parameter (henceforth the “Softmax parame-
ter”). This constitutes the Naïve RL model’s only free parameter,
while the two reflective models have an additional parameter,
P(flip), which represents the model’s estimate of the environment
volatility.

We rely on two complementary results to assess the belief-
directed nature of subjects’ choices in the Leapfrog task. First, we
define a hazard rate metric elucidating the increasing likelihood
of exploratory choice over time, for which reflective and reflex-
ive models make clear and divergent predictions. Second, these
qualitative results in turn motivate quantitative comparison of the
extent to which these models characterize human choice. To fore-
shadow, we find that humans are best described by the reflective,
but myopic, Belief model, suggesting that exploratory choice is not
necessarily directed by a planning process that takes into account
the value of future information yielded by actions. Finally, we ana-
lyze people’s choice latencies in terms of the Ideal Actor’s action
prescriptions, observing that people exhibit larger latencies when
they act suboptimally, demonstrating the Ideal Actor’s potential as
a tool for online, process-oriented analysis of exploratory choice
behavior.

MATERIALS AND METHODS
SUBJECTS
A total of 139 undergraduates at the University of Texas partici-
pated in this experiment in exchange for course credit and a small
cash bonus tied to proportion of trials for which the higher pay-
off option was chosen. The sample from which our sample was
drawn is 54.3% female and 42.5% male, with 3.2% who declined
to report their gender. The ages of participants in this pool ranged
from 18 to 55 (M = 19.08, SD = 1.76). Participants were randomly
assigned to three volatility level conditions, defined by the prob-
ability at each trial that the payoff ordering of options would
flip, P(flip): low volatility [P(flip) = 0.025], medium volatility
[P(flip) = 0.075], and high volatility [P(flip) = 0.125]. There were
51, 41, and 47 subjects in the low, middle, and high volatility
conditions respectively.

MATERIALS AND PROCEDURE
The task instructions explained that one option was always
worth 10 more points than the other option, that the superi-
ority of the two options alternated over time, and that options
always changed values by 20 points. Subjects were informed
that their payment was tied to the number of times they
chose the higher payoff option. Additionally, they were told
at the outset which option, A or B, was initially superior at
the start of the experiment and that the experiment consisted
of 500 choices in total. The bandit task interface consisted of
two buttons on a computer screen marked “OPTION A” and
“OPTION B.”

Prior to the main bandit task, subjects completed a num-
ber of training trials intended to familiarize them with the
procedure and the volatility rate. In these training trials, par-
ticipants first completed a passive viewing task in which they
viewed 500 trials of the bandit task whose payoffs were ran-
domly generated as previously described in the section on the

Leapfrog task. To focus subjects’ attention on the volatility
rather than the true payoffs in the volatility-training phase, the
payoffs for each option either read “SAME” or “CHANGED.”
Before each block of 100 trials, participants then provided an
estimate of the number of flips they expected in the next
block.

Following training, participants completed 500 trials of the
main bandit task. On each trial, subjects saw the word “CHOOSE”
and had 1.5 s to make a choice using the using the “Z” or “?” keys
for the left and right options respectively. Following each choice,
numerical feedback was provided for 1 s, indicating the number
of points that resulted from the choice. When a response deadline
was missed, the computer displayed the message “TOO SLOW”
accompanied by a large red X for 1 s and the participant repeated
that trial. Payoffs for options A and B started at 10 and 20 respec-
tively and, as described above, alternated jumping by 20 points
with probability governed by P(flip). An example instantiation
of the payoffs is depicted in Figure 1A along with an example
subjects’ sequence of choices.

RESULTS
CHOICE BEHAVIOR
The primary dependent measure is whether subjects explored or
exploited on a trial. We classified each choice made by a participant
as either exploratory or exploitative based on their experienced
payoffs up to that choice point: when the decision-maker chose
the option with the highest-seen payoffs, that choice was con-
sidered an exploitative choice, and when they chose the other
option, that was considered an exploratory choice (cf. Daw et al.,
2006).

Figure 2A depicts the hazard rates of subjects’ exploratory
choice across the three conditions, calculated as the probabil-
ity that an exploratory choice is made on trial t given that a
payoff jump was observed on trial t − n, restricted to a five-
trial window. In other words, this hazard rate is the probability
of making an exploratory choice as a function of the num-
ber of consecutive exploitative choices. These hazard rates are
calculated from 139 simulations – one for each subject in the
experiment – of each model allocated across the three volatil-
ity conditions. Each model was “yoked” to a subject’s particular
instantiation of the Leapfrog payoff structure and, consequently,
their environment volatility rate. To determine model choice
behavior, we used the average of participants’ best-fitting para-
meter values for each volatility condition and model (see Table 1;
procedure described below). For each model, we calculated the
hazard rate of exploration in the same way as subjects and report
these rates in Figures 2B–D. It can be seen that subjects’ rate of
exploration increased monotonically over time, F(1,137) = 5.96,
p< 0.05, contrasting with the predictions of the purely reflexive
Naïve RL model but in accordance with the qualitative predic-
tions of the reflective Belief and Ideal Actor models. Further,
subjects in more volatile environments explored more frequently,
F(2,137) = 31.50, p< 0.001, which is an intuitive result as beliefs
about the relative expected payoffs of the options should change
more rapidly in more volatile environments. There was a signif-
icant interaction between volatility and run length of exploitive
trials, F(2,137) = 4.47, p< 0.001.
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FIGURE 2 | “Hazard rate of exploration” for participants (A) and the three

models under consideration (B–D), defined as the probability of exploring

as a function of the number of consecutive exploitative choices after

observing a payoff jump. Thus, for example, n = 4 refers to a situation where,

beginning with the observation of a jump, three exploitative choices are made
before an exploratory choice. Critically, the reflective nature of the Belief model
and the Ideal Actor results in a monotonically increasing hazard rate as the
models’ certainty about the relative optimality of the options decays over time.

MODEL FITS
Having specified the three models computationally, we deter-
mined which model(s) best characterized participants’ choices
across the three volatility conditions. We used maximum likeli-
hood estimation to find the set of parameters that maximized the
likelihood of each model for each subject. To compare goodness
of fit across models, we used the Bayesian information criterion
(BIC: Schwartz, 1978) as the models have differing numbers of
free parameters. Note that lower BIC values indicate better fit.

Across all three conditions, subjects were best fit by the Belief
model as judged by log-likelihood scores (see Figure 3A). Though
the Ideal Actor model fit worse overall (see Figure 3B), it provided
the best fit for a considerable number of subjects. Very few sub-
jects were best fit by the Naïve RL model. These results suggest that
subjects’ exploration manifests a reflective belief-updating rather
than a reflexive process, but they do not appear to be optimally
using these beliefs to conduct long-term planning.

CHOICE LATENCY
We also hypothesized that choice latencies (as measured by RTs)
would provide an online assessment of a reflective and belief-
driven decision process. We intuited that RTs would be larger
in situations in which participants acted against their beliefs about
the currently optimal action – that is, people would exhibit larger
choice latencies when they made errors. Supporting this conjec-
ture and following the data pattern of most studies of speeded
choice in which response bias is minimal, leading models of choice
predict that errors are associated with larger response times than
are correct responses (cf. Ratcliff and Rouder, 1998). Accord-
ingly, we factorially examined exploratory and exploitative choice
RTs, classifying them as “explore optimal” or “exploit optimal,”
defining the two bins based on the Ideal Actor’s choice prescrip-
tion. To ensure that any effects of choice RT observed were not
attributable to sequential effects such as response repetitions or
switches (Walton et al., 2004) – which may be confounded with
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Table 1 | Best-fitting parameter values by model and condition.

Condition P (flip) (SD) Softmax parameter (SD) Total BIC

NAl̈VE RL

P (flip) = 0.025 1.9 (0.04) 16365

P (flip) = 0.075 1.4 (0.03) 16730

P (flip) = 0.125 1.1 (0.03) 21134

BELIEF MODEL

P (flip) = 0.025 0.046 (0.033) 3.87 (1.40) 14757

P (flip) = 0.075 0.103 (0.059) 4.78 (2.02) 13668

P (flip) = 0.125 0.134 (0.069) 4.90 (2.28) 16807

IDEAL ACTOR

P (flip) = 0.025 0.01 (0.01) 0.58 (0.23) 16535

P (flip) = 0.075 0.04 (0.05) 0.55 (0.23) 13995

P (flip) = 0.125 0.07 (0.07) 0.59 (0.25) 16914

exploratory choices – we first performed a regression to partial
out these effects. This model assumed that choice RTs were a
linear function of the response repetitions and switches (in rela-
tion to the present response) of the previous 10 trials. We then
performed the analysis of interest on the resultant residual RTs.
Figure 4 depicts the average median reconstructed RTs across the
three volatility conditions in the four unique situations described
above.

It is apparent that, in the medium [P(flip) = 0.075] and
high [P(flip) = 0.125] volatility conditions, participants exhibited
larger choice latencies when they acted against the prescription of
the Ideal Actor. A mixed-effects linear regression (Pinheiro and
Bates, 2000) conducted on these residual RTs (random effects
over subjects) revealed a significant interaction between chosen
action (explore versus exploit, mirroring non-human primate
results reported by Pearson et al., 2009) and prescribed opti-
mal action (exploration-optimal versus exploitation-optimal),
β = −8.90, SE = 3.41, p< 0.01. A full list of regression coefficients
are provided in Table 2. It is important to note that these effects
are prevalent even when explanations such as switch costs are
taken into consideration. These patterns did not appear to vary
significantly with volatility condition, F = 0.18, p = 0.67.

MODEL PERFORMANCE
To examine the importance of optimal planning (as opposed to
myopic choice) in reflective belief models, we simulated deter-
ministic versions of the Ideal Actor and the Belief model on
10,000 independent instantiations of the Leapfrog task. Rather
than use a Softmax choice rule, these models act deterministi-
cally: the deterministic Ideal Actor always chooses the highest-
valued action and the deterministic Belief model always exploits
when the model’s belief that the exploitative option yields higher
payoff is greater than 0.5. Both models also employ optimal
belief-updating by the Ideal Observer, using the condition’s true
P(flip) value. To examine how the addition of stochasticity might
improve the Belief model’s performance in this task, we simu-
lated a Softmax variant of the Belief model using the true P(flip)
values and Softmax parameters that were optimized to give the
best performance. The results reported in Table 3 confirm the
importance of planning in the Leapfrog task and the benefit the

FIGURE 3 | Model goodness of fit measures as a function of

model and volatility condition. (A) The proportion of participants
that were best fit by each model in each condition. (B) Log-likelihood
ratios comparing the Ideal Actor and the Belief model. Negative
values indicate that participants were better described by the Belief
model.

Belief model derives from an element of stochastic (i.e., random)
choice.

DISCUSSION
We examined whether human decision-makers approach
exploratory choice in a reflective and belief-directed fashion as
opposed to a stochastic and undirected fashion. Using a novel
task that allowed for unambiguous identification of the two can-
didate strategies, we found that decision-makers appeared to be
updating their beliefs about relative payoffs in a reflective man-
ner – including knowledge about possible unseen changes in the
task structure – but did not seem to be fully utilizing these beliefs
by planning ahead with assessments of the informational value of
actions. Indeed, for both subjects and reflective models, hazard
rates reveal that the probability of exploratory choice increases
with the number of immediately previous consecutive exploitive
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FIGURE 4 | Adjusted choice reaction times (RTs) across volatility

conditions as a function of choice type (exploratory versus exploitative)

and Ideal Actor choice prescription (exploit optimal versus explore

optimal). For example, the far right bars represent situations in which

participants explored when the Ideal Actor prescribed exploiting. Of note is
that across the medium [P (flip) = 0.075] and high [P (flip) = 0.125] volatility
conditions, participants exhibited larger RTs when they acted against the
prescription of the Ideal Actor. See main text for analysis details.

choices (see Figure 2). This quality is not predicted by the reflexive
Naïve RL model.

Given the reflexive and reflective models’ qualitatively differ-
ent predictions of sequential dependency, this comparison yields
a strong test for determining which type of belief-updating better
matches human behavior. Furthermore, our quantitative model
comparisons revealed that the two reflective models clearly provide
better fits than the purely reflexive Naïve RL model (see Figure 3A).
These results suggest that people do exhibit marked sequential
dependency and that their belief updates are reflective. Further,

these results give credence to previous usage of reflective mod-
els of human choice behavior in bandit tasks (Daw et al., 2006;
Boorman et al., 2009), which until now has not been empirically
justified.

A number of related contributions dovetail with our reflexive
versus reflective distinction. However, the tasks used in these stud-
ies differ in important ways. Recent work has sought to identify the
contributions of model-based (i.e., reflective) and model-free (i.e.,
reflexive) strategies of choice in a multistep decision task (Daw et
al., 2011). However, model-based behavior in Daw et al.’s study
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Table 2 | Choice latency regression coefficients.

Coefficient Estimate (SE) p-Value

Volatility −367.13 (185.93) 0.054

Choice type 5.96 (3.74) 0.1

Optimal choice 3.14 (4.26) 0.24

Volatility × choice type 0.06 (42.21) 0.76

Volatility × prescribed choice 35.06 (48.17) 0.4

Choice type × optimal choice −8.87 (3.42) 0.006

Volatility × choice type × prescribed choice 7.89 (37.99) 0.71

Table 3 | Choice performance relative to deterministic Ideal Actor.

Condition Deterministic Belief model Stochastic Belief model

P (flip) = 0.025 0.854 0.988

P (flip) = 0.075 0.943 0.978

P (flip) = 0.125 0.946 0.954

did not entail updating beliefs about option payoffs across trials
as uncertainty grew. Instead, a forward model of the environment
was used to prospectively evaluate option values in accordance
with the environment’s transition structure. Related, Biele et al.
(2009) found that a model prescribing use of higher-level strategies
in a series of exploration–exploitation problems better predicted
the patterns of sequential dependency in human behavior than
a naïve sampling model that shared qualities with the Naïve RL
model presented here

Critically, participants’ differing levels of exploration across
conditions could not be explained by the stochasticity with which
they made choices: the best-fitting Softmax parameters did not
decrease with environment volatility in either of the two models.
Rather, the differences in rates of exploratory choice appear to be
accounted for by the best-fitting P(flip) rates.

Notably, we also found that when decision-makers in medium
and high volatility environments made sub-optimal decisions
(insofar as the choices did not accord with the Ideal Actor’s pre-
scription), they exhibited larger choice RTs compared to when
they made optimal choices. Since the Ideal Actor’s choice prescrip-
tions are a function of subjects’ inferred trial-by-trial beliefs, these
choice RTs provide another window into the belief-directed and
reflective nature of their choices. Indeed, previous experimental
work revealed that decision-makers exhibit greater choice latency
when choosing options that will result in increased cognitive costs
(Botvinick and Rosen, 2009) or when perceived logical conflict –
and thus, the potential for making erroneous responses – is high
(De Neys and Glumicic, 2008).

Quantitative comparison of the two reflective models – the
Belief model and the Ideal Actor – favors the Belief model as a
characterization of human choice behavior. Both models employ
an Ideal Observer to maintain optimal beliefs about the expecta-
tion of immediate reward. However, the Ideal Actor also considers
how an exploitative or exploratory action would inform its beliefs
and precisely calculates the expected benefit of this information
on future reward. Adding this value of information to the Ideal
Observer’s expectation of immediate reward, as the Ideal Actor

does, decreases the model’s ability to fit participants’ choice behav-
ior (shown in Figure 3B). Thus, it appears that people do not fully
utilize these beliefs in a forward-planning way but, rather, appear
to use the beliefs in a myopic fashion, in accordance with the Belief
model.

In addition to providing a qualitative characterization of the
structure of human exploratory choice, this paper contributes
two tools for the study of exploratory decision-making. First, we
present a task that allows us to disentangle reflective and belief-
directed exploration from stochastic and undirected exploration,
a feature absent in previous tasks used to examine exploratory
choice (Worthy et al., 2007; Jepma and Nieuwenhuis, 2011). Fur-
ther, the task is also sufficiently constrained to prescribe a sta-
tistically optimal pattern of choice, yielding the Ideal Actor. In
turn, this model’s belief-updating mechanism provides powerful
tools for characterizing human choice behavior in this task, and its
choice prescriptions afford the revelation of nuanced patterns of
choice latencies that would be undetectable without such a model.

These formal models offer new ways of understanding what
exploration is. The definition of exploratory choice depends on
how one views the relationship between the actor and the struc-
ture of the environment or, even more abstractly, the relation-
ship between the action and the hierarchical structure of the
actor (Levinthal and March, 1993). In this paper, we define the
exploitative action as a choice of the option that has yielded the
highest-experienced payoff up to the time of choice. An alternative
trial classification scheme could define an exploitative action as a
choice of the option believed – according to a specific model –
to give the highest payoff at the time of choice. However, we
chose our definition because it avoids commitment to a particular
model of choice; a choice is exploitative or exploratory regardless
of any model under consideration. Under the alternative defin-
ition, exploration in our models could only arise from a purely
stochastic process.

Simulations of the Ideal Actor and Belief model suggest an
intriguing hypothesis, namely that stochastic behavior may be an
adaptation to cognitive capacity limitations in long-range plan-
ning. As detailed in Table 3, performance of the Belief model
(which does not plan) approaches that of the Ideal Actor (which
does plan optimally) when stochasticity is incorporated into the
Belief model’s action selection. Consequently, we hypothesize
that stochasticity in human decision-making may arise from a
sub-optimal valuation process; the knowledge gained from poten-
tial exploration is not explicitly incorporated in valuation but is
still obtained by random behavior. This hypothesis warrants fur-
ther investigation through tasks and models that afford requisite
discrimination.
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APPENDIX
THE LEAPFROG TASK
Here we give a more technical description of the Leapfrog task,
using the framework of reinforcement learning (RL). We then
briefly introduce partially observable Markov decision processes
(POMDPs) and map the Leapfrog task to a highly compacted
POMDP task, which we use in the following section to formu-
late the Ideal Observer, the belief-maintaining component of our
reflective models, and the Ideal Actor itself.

We now describe the Leapfrog task more formally within the
RL framework. Our task consists of two actions, A and B, two cor-
responding state variables, sa or sb, and reward is 1 for one action
and 0 for the other. Given an action X, the reward is 1 if sX> sY

and 0 otherwise. sa = 10 and sb = 20 when the task starts. At each
trial, there is a fixed probability that the lower sa and sb increases by
20, switching the two actions’ rewards and, consequentially, which
action is optimal (thus the name Leapfrog). We call this probabil-
ity volatility or P(flip). To create uncertainty that propagates from
trial to trial – thus motivating exploration – the agent is not shown
its reward. Rather, the agent only observes the value of the state
variable that is tied to its action, sa or sb. The benefit of showing
only sa or sb is that the lower-valued state variable can “jump” by
20 points and the agent will not know that the optimal actions are
switched until it explores.

The task has a finite horizon (i.e., a set number of trials), and an
agent’s performance is evaluated by how much reward it accumu-
lates. Note that, because of the limited observability and stochastic
nature of the task, no decision-maker can guarantee to always
choose the correct action. Therefore the Ideal Actor, in addition
to its use as a model of the human, provides an upper bound on
expected performance that facilitates assessment of how well peo-
ple perform with various volatilities (and consequently, various
difficulty levels).

Partially observable Markov decision processes
If the dynamics of a task are determined by a Markov decision
process (see Sutton and Barto, 1998; for an introduction to MDPs),
but the state cannot be directly observed by the agent – as is the
case with the Leapfrog task – the task can often be modeled as a
partially observable Markov decision process (POMDP).

To illustrate, consider a navigation task through a maze with
a known map. When the decision-maker knows its exact location
state at any time (e.g., via GPS), the task maps naturally to an
MDP. On the other hand, a decision-maker without such global
knowledge must use local features, such as corridors and corners,
to localize itself. In this case, more than one location could share
the same local features, and the decision-maker must use these
observations along with its knowledge of recent movements and
previous estimates of location to probabilistically estimate its loca-
tion. In this case, the task maps well to a POMDP, as Stankiewicz
et al. (2006) did for a similar navigation task.

More formally, a POMDP is defined by the set of variables {S,
A, T, R, Ω, O} (Kaelbling et al., 1998). S and A are respectively the
sets of states and actions. Given an action at and a current state st

at time t, the state transitions to st + 1 at time t + 1 with probability
T (st, at, st + 1) [i.e., P(st + 1 | st, at)]. At each time step, the agent
also receives a real-valued reward, r = R(s, a), and an observation

O from the set Ω of possible observations. The probability of an
observation ot can be modeled equivalently as either O(at + 1, st,
ot) or O(at, st, ot) (Kaelbling et al., 1998). In the undiscounted case
such as the Leapfrog task, an agent’s goal in a POMDP is to choose
actions that maximize return, defined as E [∑∞

t=0 rt ].
Within a POMDP, optimal actions are determined not only by

expectations of immediate reward and transitions to next states
(as in MDPs), but also by the value of knowledge that actions
yield. Therefore, an optimal action can have the sole purpose of
gathering information about the true state. Note that a POMDP
is a formal description of a task and is separate from a model of
choice within the task.

Specifying the Leapfrog task as a three-state POMDP
As described, the leapfrog task can be specified as a POMDP with
two state variables; sA and sB can respectively take values in {10, 30,
. . ., 10 + 10n} and {20, 40, . . ., 20 + (10n)}, where n is the number
of trials.

However, we can specify the task much more compactly, reduc-
ing the belief space to three dimensions (one per state) from the
n2 dimensions it would otherwise have, making the Leapfrog task
tractable to solve exactly. To justify this more compact representa-
tion, we first let sH be the action-tied state variable (sA or sB) with
the Highest observed number, which we call oH, and s¬H be the
other action-tied state variable; H and ¬H are their corresponding
actions. Thus H frequently changes its mapping between the two
possible actions in the task. Consequently, according to the defini-
tions in the main text, choosing H would constitute an exploitative
choice and choosing ¬H would constitute an exploratory choice.
At any trial, the agent knows the minimal states for (sH, s¬H) are
(oH, oH − 10), based on the leapfrogging nature of the task.

For a trial with oH, there are three possible action-tied state pairs
(sH, s¬H). The pairs (oH, oH − 10) and (oH, oH + 10) occur when
there are zero and one unobserved jumps, respectively. When there
are two unobserved jumps, resulting in the pair (oH + 20, oH + 10),
the agent is guaranteed to observe at least one jump regardless of its
action. Since there is at most one new jump per trial, this guarantee
of observing a jump makes it impossible to have more than two
unobserved jumps. Note that action H (i.e., exploiting) receives a
reward of 1 only when there are zero or two unobserved jumps.
Therefore, the three possible states of our compacted POMDP
are 0, 1, or 2 unobserved jumps. Additionally, a belief within this
compacted POMDP is a vector of the probabilities that there are
0, 1, or 2 jumps, which necessarily sum to 1. Following this, the
compacted observations are the number of previously unobserved
jumps seen in a trial (0, 1, or 2), where payoffs oH − 10 and oH yield
the same observation of 0 previously unseen jumps. In summary,
the compacted POMDP has three states, three observations, two
actions, and two possible rewards values.

MODELS OF HUMAN BEHAVIOR AND THE IDEAL OBSERVER
This section gives a full technical description of the Ideal Observer,
which optimally maintains a distribution over possible state, and
the Ideal Actor, the model that reflectively incorporates optimal
beliefs along with an exact assessment of the information-based
value of actions. On the explicative path to the Ideal Actor, we
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comment on the other two models of human behavior used in our
evaluations, Naïve RL and Belief.

All models choose options based on a Softmax choice rule that
takes a model’s valuation of each action as input. The probability
of choosing option A at time t with payoff belief bt, is

Pt (A) = eγQt (bt ,A)

eγQt (bt ,A) + eγQt (bt ,B)
.

Here, Qt(bt, ·) is the model’s assessed value of option A or B,
and γ is the Softmax inverse temperature parameter, the deter-
mination of which is described in the Model Fits section of this
paper’s body.

Naïve RL model
The simplest model reflexively maintains beliefs about payoffs
based only on what it has seen. In other words, it believes the point
payoffs for each action are those most recently observed. Therefore,
the Naïve RL model assumes that action H and ¬H respectively
give rewards of 1 and 0. Its expectation of each action’s reward,
Q(·), is input into a Softmax action selector, giving it a constant
probability of exploring or exploiting:

P (H ) = exp [γQ (H )]

exp [γQ (H )] + exp [γQ (¬H )]
= exp [γ]

exp [γ] + 1
.

Here, γ is the Softmax inverse temperature parameter. In Soft-
max action selection, as this parameter rises, the probability that
the highest-valued action (i.e., the greedy action) will be cho-
sen increases. When the Softmax parameter approaches infinity,
actions become deterministically greedy; at zero, the parameter
creates uniformly random action selection. As mentioned in the
main text, the Naïve RL model is equivalent to a memory-based
RL agent, with a memory size of one, which is appropriate given
the deterministic nature of the payoffs and that payoffs never
return to previous values; a larger memory would not yield useful
information for a reflexive model performing the Leapfrog task.
Algorithmically, this model is equivalent to the Softmax model
used in Worthy et al. (2007) and Otto et al. (2010), with a learning
rate of 1.

Ideal Observer
An Ideal Observer uses past actions and observations optimally
to update its belief distribution over the set of states. The Ideal
Observer – agnostic to action selection – is used as a component of
the belief and Ideal Actor models described below, providing cor-
rect beliefs at each time step. Because POMPDs by definition satisfy
the Markov property (Kaelbling et al., 1998), belief updates can be
performed with only the past belief, the last action, and the last
observation, given knowledge of the observation and transition
functions. In other words, the Ideal Observer can dispense with
the remainder of its history of actions, beliefs, and observations.

Below, we show the derivation of our optimal Bayesian belief-
updating procedure, which is specific to the case of POMDPs

where observation ot is a function of st and at, not the more typ-
ical st and at − 1,1 since the number of unobserved jumps and the
action determine the number of newly observed jumps. The final
line of this derivation, a function of known distributions, is used to
calculate the next state belief. In this notation, we put at and bt after
a “;” because they are fixed and known and are thus considered to
parameterize the probability distributions.

P (st+1 = i|ot ; at , bt ) = P (st+1 = i|ot ; at , bt )

P (ot ; at , bt )

P (st+1 = i|ot ; at , bt ) ∝ P (st+1 = i, ot ; at , bt )

bt+1 (i) ∝ P (st+1 = i, ot ; at , bt )

bt+1 (i) ∝
∑

j

P
(
st+1 = i, ot , st = j ; at , bt

)

bt+1 (i) ∝
∑

j

P
(
ot |st+1 = i, st = j ; at

)
P
(
st+1 = i, st = j ; at , bt

)
(
ot is cond. indep. of st+1 given st

)
bt+1 (i) ∝

∑
j

P
(
ot |st = j ; at

)
P
(
st+1 = i |st = j ; at

)
P
(
st = j ; bt

)

bt+1 (i) ∝
∑

j

P
(
ot |st = j ; at

)
P
(
st+1 = i|st = j ; at

)
bt
(
j
)

Belief model
We can easily specify a model that values actions by their
expected immediate rewards according to the Ideal Observer,
creating a more sophisticated action selection technique than sim-
ply always choosing H. More precisely, this more sophisticated
Belief model is more likely to choose action H than ¬H when
bt + 1(0) + bt + 1(2)> 0.5 – that is, when it believes that there are
probably 0 or 2 unobserved jumps and thusly action H is expected
to yield the higher immediate reward.

If the Belief model chooses the action deterministically, the
model is optimal with respect to maximizing immediate reward.
However, this model would not be fully optimal in the long-term
because its choices fail to take into account the informational
benefit of each action.

Ideal Actor model
An Ideal Actor uses beliefs reflectively provided by its Ideal
Observer component to consider expected immediate reward,
but it also evaluates an action’s effect on its longer-term expec-
tation of return caused by the change in its belief distribution.
In other words, the Ideal Actor sometimes chooses actions with
lower immediate rewards to increase its knowledge about the
true state, facilitating more informed decisions in future trials.
To implement the Ideal Actor, we employed the Incremental
Pruning algorithm (using the POMDP-Solve library, Cassandra
et al., 1997), an exact inference method that calculates action-
value functions (i.e., Q-functions) for each time horizon (i.e.,

1By our subscripting, ot occurs after st is set, immediately after at, and before st + 1.
This ordering is because the action is a causal factor of the observation, and the
observation intuitively comes before the probabilistic jump that finally determines
st + 1. However, calling the observation ot + 1 is an appropriate alternative.
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number of trials remaining).2 We used the implementation of
Incremental Pruning from the POMDP-Solve library. This action-
value function Qt, where t is the horizon, takes as input a belief
bt and an action H or ¬H and outputs a real-number value.
The belief vector input to Qt comes from the Ideal Observer’s
belief, making the Ideal Actor a reflective model. If acting opti-
mally, the Ideal Actor deterministically chooses argmaxa Qt(bt,
a), where a ∈ {H, ¬H }. Unlike other actor models examined
in this paper and in previous work, the Ideal Actor chooses
actions based on both its belief about the immediate reward
and the expected benefit from the knowledge gained by choos-
ing each action. Figure 1A illustrates the trial-by-trial relative
Q-values – that is, Qt(bt, H ) – Qt(bt, ¬H ) – which are a
function of the Ideal Observer’s trial-by-trial belief (shown in
Figure 1B).

2The time horizon affects the optimal action for a given belief vector because the
value of knowledge changes as the final trial approaches.

MODEL-FITTING PROCEDURE
For each model, we sought parameter estimates that maximized
the likelihood of each participant’s observed choices given their
previous history of choices and outcomes:

Lmodel =
∏

t

Pc ,t

where c,t reflects the choice made on trial t and Pc,t is the proba-
bility of the model choosing c,t, informed by participant’s choice
and payoff experience up to trial t. We conducted an exhaustive
grid search to optimize parameter values for each participant. To
compare models, we utilized the Bayesian information criterion
(BIC: Schwartz, 1978), which is calculated by

BICmodel = −2 × 1n (Lmodel)+ kmodel · 1n (n)

where k is the model’s number of free parameters and n is the
number of trials being fit (500 in all cases).
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The present study compared the accuracy of cue-outcome knowledge gained during
prediction-based and control-based learning in stable and unstable dynamic environments.
Participants either learnt to make cue-interventions in order to control an outcome, or
learnt to predict the outcome from observing changes to the cue values. Study 1 (N = 60)
revealed that in tests of control, after a short period of familiarization, performance of Pre-
dictors was equivalent to Controllers. Study 2 (N = 28) showed that Controllers showed
equivalent task knowledge when to compared to Predictors. Though both Controllers and
Predictors showed good performance at test, overall Controllers showed an advantage.
The cue-outcome knowledge acquired during learning was sufficiently flexible to enable
successful transfer to tests of control and prediction.

Keywords: dynamic, decision making, learning, prediction, control

INTRODUCTION
Imagine a scenario in which after a visit to your doctor, you are told
that your blood pressure is too high. Following the doctor’s recom-
mendation, you have decided to take up more exercise by jogging,
and to change your diet by reducing your salt intake. In addi-
tion you have bought the latest mobile phone application which
is a self monitoring device that can help you track and analyze
your blood pressure. By steadily increasing exercise and reducing
intake of salty foods (interventions), and measuring your blood
pressure at regular intervals, the idea is to track the relationship
between exercise and salt intake (cues) and blood pressure (out-
come) to assess how effective the new healthy regime is. You notice
that your blood pressure recordings fluctuate while you are resting
(internal, or endogenous, changes in the outcome), as well as when
you have gone for a jog, or eaten (external, or exogenous, changes
in the outcome1). On some days your blood pressure does not
reduce as substantially as on other days, and so on those occasions
you decide to take more exercise.

The above example can be described as dynamic decision mak-
ing, in which decisions (i.e., choosing a course of action) are
adapted to the ongoing changes in the outcome. More specifically
this type of dynamic decision making involves learning about the
cue-outcome relations via cue-intervention (control-based deci-
sion making). A different approach may involve first monitoring
for a period of time the cue-outcome relations by tracking changes
in cues (i.e., observing your usual salt intake from day to day)
from which one can make predictions about changes to the out-
come. This is an example of prediction-based decision making
in which cue-outcome relations are acquired via estimates of the
expected outcome value. The difference between the two is that in

1“An endogenous variable [that] at time t has an effect of its own state at time t + 1
independent of exogenous influences that might add to the effect” (Funke, 1993,
p. 322).

the latter case there is no cue-intervention; instead, changes in cue
and outcome values are used to adjust the predictions made.

Both prediction and control are methods of acquiring
cue-outcome knowledge, and are examples of dynamic deci-
sion making. General models of learning (e.g., Reinforcement
learning/reward-based learning, Schultz et al., 1997; Sutton and
Barto, 1998; Schultz, 2006) would propose that both predic-
tion and control are comparable ways of acquiring cue-outcome
knowledge, because both rely on prediction errors signals arising
from a comparison between predicted and actually obtained out-
comes. One avenue that this present study explores is to directly
compare the accuracy of cue-outcome knowledge when gained via
prediction and when gained via control, in order to explore these
general claims.

Dynamic decision making (hereafter DDM) is an area of deci-
sion making research that is growing in popularity (Brown and
Steyvers, 2005; Osman et al., 2008; Lurie and Swaminathan, 2009;
Osman, 2010a,b, 2011; Speekenbrink and Shanks, 2010). Typically,
tasks designed to examine this type of process involve situations
in which the decision maker has a clearly defined goal from the
outset. Because the environment is probabilistic and/or dynamic,
the desired goal cannot usually be achieved in one step. There-
fore the decision maker must plan a series of actions that will
help to incrementally move them closer to the goal. Thus, the
process of decision making in dynamic environments is often
described as goal directed, and the decisions themselves are usu-
ally inter-dependent across trials (Brehmer, 1992; Funke, 1992;
Osman, 2010a).

Given this type of characterization, planning actions in order
to obtain future outcomes is an important component of DDM,
and therefore it is likely that some control-based decision are
informed by predictions (Osman, 2010a,b). Moreover, the decision
maker needs to be sensitive to possible changes in the environment
in order to adapt their planned interventions accordingly. For
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this reason DDM is also referred to as adaptive decision making
(Cohen et al., 1996; Klein, 1997; Lipshitz et al., 2001). Typically
in DDM contexts accurate estimates of the environment’s future
behavior are important for planning the best interventions that
would achieve the right outcome. Consider the following engineer-
ing example, in which the goal is to maintain a supply of electricity
from a power station that meets the consumers’ needs. Since there
are obvious changes in the demand according to daily as well as sea-
sonal changes, this enables fairly stable predictions as to consumer
use that enables matching the generator’s output to load predic-
tions. However, it is important to estimate future demands in order
to adjust the system quickly enough as the changes arise (e.g., sud-
den unseasonably low temperatures). Predictions regarding fuel
consumption are essential to informing the choice of intervention
needed to control power supply, and research in the engineering
domain supports this (e.g., Leigh, 1992). In fact, optimal control
theory (Bryson and Ho, 1975) provides a formal basis for analyz-
ing the changing states of a system in order to provide a complete
stochastic description of control under uncertainty. Moreover, the
theory has been implemented in psychological research on human
motor control (e.g., Körding and Wolpert, 2006).

Many theoretical accounts of DDM (Vancouver and Putka,
2000; Burns and Vollmeyer, 2002; Bandura and Locke, 2003;
Goode and Beckmann, 2010; Osman, 2010a,b) and formal descrip-
tions of DDM (Gibson et al., 1997; Sun et al., 2001; Gibson, 2007)
claim that controlling outcomes to a target goal involves decisions
based on prediction. In their Social-Cognitive theory, Bandura and
Locke (2003) refer to prediction as a feedforward process which
has a motivational component attached to it. They propose that by
estimating future outcomes and future success, when reinforced,
successful predictions drive the decision maker to achieve even
more accurate or more successful control of the environment.
Burns and Vollmeyer (2002) describe DDM within the context of
hypothesis testing. They posit that decision makers learn best by
exploring the DDM environment. This entails generating expecta-
tions about the associations between their actions and the effects
they will produce. The effects they achieve through their actions
are used as feedback to update hypotheses about the relationship
between cues and outcomes in the environment. Gibson’s (Gibson
et al., 1997; Gibson, 2007) neural network model also posits that
DDM involves the development of hypotheses about cue-outcome
associations, from which planned interventions are made. The
model includes two submodels: a forward model and an action
model. The action submodel decides what action to take based on
the current state of the environment and the distance from the
target goal. Each action generates an expected outcome which is
then compared against the goal; from this the action which is most
likely to minimize the distance between the expected state and the
goal is chosen. The forward submodel takes as input an action that
has been executed and compares its outcome with the goal. It then
generates as output an expected outcome which is used to derive
an error signal. Back propagation is then used to adjust the connec-
tion weights between action and predicted outcome, to improve
the ability to predict the effects of actions on the environment.

Osman’s (2010a,b, 2011) Monitoring and Control framework
also proposes that there are two different judgments made regard-
ing a DDM environment: its predictability and its controllability.

People are sensitive to the endogenous as well as the exogenous
changes in the environment. This is because they are repeatedly
updating their expectancies of the outcomes that will occur in
the environment, and this informs their subjective estimates of
confidence in predicting outcomes of events in a dynamic envi-
ronment (predictability of the environment). As well as developing
expectancies about the outcomes that are likely to occur, the
actions taken in the environment generate outcomes which can
be fed back in order to update one’s expectancies. This informs
their subjective estimates of expectancy that an action executed
will achieve a specific outcome in a control system (predictability
of control).

In sum, the consensus amongst many theorists in the DDM
research domain is that prediction forms a strong component of
the decision making process needed to plan interventions in order
to reliably achieve a target goal (Vollmeyer et al., 1996; Burns and
Vollmeyer, 2002; Gibson, 2007; Osman, 2010b). However, there are
alternative accounts of DDM that do not assign a role to predic-
tion. For instance, Berry and Broadbent (1984, 1987, 1988) claim
that people typically fail to provide a veridical verbal description of
their acquired knowledge or to accurately predict different states
of the DDM task because the cue-outcome associations are far
too complex to learn explicitly. Accurate control of the outcome
is achieved through active intervention, from which successful
cue-interventions that generate desired outcomes are stored in
memory and later recalled when faced with similar task situations.
Because there is no need for predictive learning, there is no cue-
abstraction, instead successful control performance is based solely
on representations of action-outcome associations.

There is little empirical research that has investigated the contri-
bution of prediction (i.e., estimating the outcome that will occur)
to control (i.e., planning actions to achieve an outcome) in a
dynamic environment. Thus, it is not clear whether controlling
a dynamic environment relies on prediction, or for that matter,
whether it is possible to learn about a dynamic environment from
prediction alone. This is a limitation given the kinds of different
theoretical claims made about the relevance of prediction to con-
trol. Therefore, the present study aims to separate prediction-based
from control-based learning, and directly compare the accuracy of
cue-outcome knowledge gained from both forms of learning.

There are two relevant literatures that have considered these
issues in isolation, namely, multiple cue probability learning
(MCPL) and complex dynamic control (CDC). Research on MCPL
examines how we integrate information from different sources
in order to learn to predict outcomes in probabilistic environ-
ments (Speekenbrink and Shanks, 2010). Typically, MCPL tasks
involve presenting people with cues (e.g., symptoms – rash, fever,
headaches) which are probabilistically associated with an outcome
(e.g., disease – flu, cold). Participants are asked to predict the out-
come (e.g., flu) for various cue combinations (e.g., rash, fever),
and then receive outcome feedback on their prediction. Research
on CDC has investigated the way in which decisions are formed
over time in order to reliably control outcomes in dynamic and
probabilistic environments (Osman, 2008a). People decide from
a set of inputs (cues; e.g., drug A, drug B, drug C) actions that
are relevant (e.g., selecting drug A at dosage X) for achieving and
maintaining a particular output (outcome; e.g., reduce the spread
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of disease Y). As with MCPL environments, input–output (here-
after: cue-outcome) associations are probabilistic, and also need to
be learned. In addition, the environment can also be dynamic, in
the sense that the outcome may change independently of actions
made by the individual (e.g., disease Y spreads at a particular
rate). In MCPL tasks, learning about the cue-outcome associa-
tions is indirect because only observations of the cue patterns are
used to predict the events with the aim of reducing the discrep-
ancy between expected and actual outcomes. By contrast, learning
about the cue-outcome associations is direct in CDC tasks because
the cues are manipulated and the change in outcome that fol-
lows serves as feedback which is used to update knowledge of
cue-outcome associations.

We briefly review the MCPL and CDC literature in the next
section. These research domains have remained relatively sepa-
rate (Osman, 2010a). A secondary objective of this study, besides
comparing prediction-based decision making with control-based
decision making in a DDM environment, is to consider the poten-
tial common ground shared by the MCPL and CDC research
paradigms.

Early MCPL studies were largely concerned with varying differ-
ent properties of the task environment and examining the effects
on predictive accuracy. Properties of the environment that were
varied include: the number of cue-outcome associations (Slovic
et al., 1971), the combination of continuous cue and binary out-
comes (Vlek and van der Heijden, 1970), the presence of irrelevant
cues (Castellan, 1973), the type of feedback presented (Björk-
man, 1971; Hammond et al., 1973; Muchinsky and Dudycha,
1975; Holzworth and Doherty, 1976), time constraints (Rothstein,
1986), and cue validities (Castellan and Edgell, 1973; Edgell, 1974).
In the main, the evidence suggests that people show sensitivity to
the cue validities and cue probabilities. Moreover, it has been sug-
gested that people update their knowledge of the cue-outcome
associations by developing hypothesis testing strategies.

More recently, the weather prediction task (WPT), developed
by Knowlton et al. (1994), has become a popular paradigm
for studying prediction-based decision making. It was originally
designed to study incremental learning processes in clinical pop-
ulations (e.g., amnesic patients). Knowlton et al. (1994) proposed
that amnesics were able to successfully predict outcomes in the
task through incidental acquisition of cue-outcome associations
(procedurally) rather than explicit cue-abstraction (declaratively).
That is to say, accurate cue-outcome knowledge of a probabilistic
environment was acquired through processes that did not require
deliberate evaluation of expected outcomes and actual outcomes.
In support, others (e.g., Knowlton et al., 1996; Poldrack et al.,
2001) have since shown that knowledge acquired procedurally
is not available to conscious inspection, because of the implicit
nature of learning of cue-outcome knowledge. However, critics of
this position have investigated these claims in non-clinical (Price,
2009) as well as clinical populations (Speekenbrink et al., 2008)
and have found evidence to suggest a correspondence between
the accuracy of explicit cue-outcome knowledge and predictive
accuracy, suggesting that people do have insight into the cue-
outcome knowledge they have acquired. This has been taken to
suggest that the strategies people develop to make their predic-
tions are consciously accessible, and that there is an exhaustive

evaluative process involved in comparing expected outcomes with
actual outcomes on a trial by trial basis.

Research on CDC originated with the work of Dörner (1975),
who used control tasks to simulate real world decision making
in complex domains (e.g., maintaining ecologies). This line of
research is now referred to as complex problem solving (Buchner,
1995). Better known however is Broadbent’s early work on con-
trol tasks (Broadbent, 1977; Berry and Broadbent, 1984), which,
like MCPL studies, demonstrated that procedural learning is the
mechanism that supports control-based decision making. As with
the WPT, much of the work that followed from Berry and Broad-
bent’s (1984) pivotal study has examined the type of knowledge
acquired under procedural learning. Broadbent’s Exemplar theory
proposes that while interacting with a CDC task, manipulations
of specific inputs that lead to successful outcomes are stored as
exemplars in a type of “look-up table.” Controlling a CDC task is
then based on a process of matching environmental cues to similar
stored exemplars, rather than through following the rules acquired
in cue-abstraction. In support, some studies have shown that there
is limited transfer of control performance to versions that differ
from the initial training task, and that people lack insight into the
knowledge gained during learning (Dienes and Fahey, 1995, 1998;
Gonzales et al., 2003).

In contrast, studies that have encouraged hypothesis testing
behavior – either through explicit instruction, or task manipula-
tions such as presenting a task history of action-outcome associa-
tions during learning – have shown that rule learning can lead to
successful control performance. Moreover, under these conditions
cue-outcome knowledge is transferable beyond the trained task
environment to other variants as well as other goal criteria, and
people show accurate reportable knowledge of cue-outcome asso-
ciations (Sanderson, 1989; Burns and Vollmeyer, 2002; Osman,
2008a,b,c). In particular, two recent studies (Osman, 2008a,b)
examined if actively engaging with a CDC task during learn-
ing is necessary for accurate control. Berry (1991) claimed that
successful control is dependent on procedural learning, which
does not generate cue-outcome knowledge. By extension, learning
purely through observation would prevent the uptake of decision-
action-outcome associations, and reduce control performance.
Osman (2008a,b) used a yoking design to compare the effects
of learning through action vs. learning through observation (i.e.,
simply observing cue changes and tracking their effects on the
outcomes). The findings challenged Berry’s original claims by
demonstrating that learning through observation and learning
through action generate equivalent declarative as well as proce-
dural knowledge. Moreover, the findings demonstrated that rather
than independent, accuracy of cue-outcome knowledge was posi-
tively associated with control performance. There is an emerging
consensus from recent work with CDC tasks that people apply
hypothesis testing strategies when planning actions which enables
cue-abstraction (e.g., Sun et al., 2001; Burns and Vollmeyer, 2002;
Osman, 2010a,b). Much like the MCPL studies, these finding sug-
gest that learning to control outcomes involves a deliberate process
of evaluating actions against expected outcomes. Though crucially
in CDC tasks there is an additional step which involves selecting
actions that are expected to reduce the discrepancy between an
achieved and target outcome.
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As discussed earlier, MCPL and CDC tasks share many common
properties. In particular they are environments in which the deci-
sion maker is required to learn probabilistic relationships between
cues and outcomes. Moreover, both predicting and controlling an
outcome rely on inferring changes in outcome values from patterns
of cue/input values. Besides the obvious difference that controlling
an outcome involves direct manipulation of the inputs whereas
predicting outcomes does not, the other key difference is the way
in which the outcome is evaluated (Osman, 2010a). When control-
ling outcomes, the achieved outcome is evaluated with respect to
the target goal. When predicting outcomes, the predicted outcome
is evaluated with respect to the achieved outcome. While there are
no direct comparisons of prediction- and control-based decision
making in dynamic environments, Enkvist et al. (2006) compared
the accuracy of cue-outcome knowledge of a group instructed
to predict the outcome in a MCPL task with a group instructed
to control the outcome to a specific criterion. They found that
control-based decision making led to more accurate cue-outcome
knowledge. However, this finding was reversed when binary rather
than continuous cues were used. Also, as already mentioned, Berry
(1991) and Osman (2008a,b,c) yoked active controllers with pas-
sive observers and compared both groups on their ability to control
an outcome to criterion over successive trials. While Berry found
an advantage for active controllers, Osman found no difference
between passive and active learners. Osman noted that this diver-
gence can be explained by a critical difference between the stud-
ies: in Osman’s study, all participants were encouraged to learn
through hypothesis testing, while in Berry’s study participants
were explicitly instructed not to engage in hypothesis testing.

We may conclude from these findings that, under certain condi-
tions (i.e., in MCPL tasks when cue-outcome associations involve
continuous variables, and in CDC tasks where instructions pre-
vent hypothesis testing), cue-outcome knowledge is more accurate
when learning is control-based as compared to prediction-based.
However, this conclusion is only tentative, given that to date there
have been no studies that compared both forms of learning within
the same dynamic decision making task.

In the present study, we sought to induce prediction-based
DDM by asking people to first learn to predict the effects of
observed actions on the state of the environment. Later on, they
were then asked to control the environment. We compared this
condition to one in which people were instructed to achieve and
maintain a specific target outcome from the outset. The present
study used a yoking design such that Controllers and Predictors
experienced exactly the same cue-outcome information. To our
knowledge, this study is the first to allow such a direct comparison
of prediction and control-based learning in a DDM environment.
Based on reinforcement learning models, if accurate cue-outcome
knowledge is dependent on the generation of prediction errors that
are generated either through prediction or control, then perfor-
mance at test should be equivalent regardless of training condition
(Controllers, Predictors). If however, there are fundamental differ-
ences between prediction-based and control-based learning, then
from previous results in the DDM and MCPL domain, we would
expect that at Predictors should show an overall advantage in test
of prediction, whereas Controllers should show an advantage on
tests of control.

EXPERIMENT 1
In Experiment 1, we compared control performance between a
group who learnt to control an outcome from the outset (Con-
trollers) and a yoked group who first learnt to predict the outcome
from the cue manipulations of those in the first group (Predic-
tors). In addition, we manipulated the level of perturbation (i.e.,
noise) in the environment. A recent study (Osman and Speeken-
brink, 2011) investigated DDM in tasks in which the stability of the
environment was varied such that the autonomous changes to the
outcome were relatively small (low noise) or large (high noise).
The findings revealed that people were sensitive to the different
rates at which the outcome fluctuated; accuracy of control perfor-
mance suffered in high noise environments and more sub-optimal
strategies were developed. By manipulating the level of noise in
Experiment 1, we examined whether this effect on performance
generalizes to prediction as well as control.

METHODS
Participants
The 60 graduate and undergraduate students who took part in
the study were recruited from the University College London
subject pool and were paid £6 for their participation. The assign-
ment of participants to the four conditions was semi-randomized.
There were a total of four groups (Control High Noise, Con-
trol Low Noise, Prediction High Noise, Prediction Low Noise2),
with 15 participants in each. Pairs of participants (controller and
yoked predictor) were randomly allocated to one of the two noise
conditions3.

DESIGN AND MATERIALS
Experiment 1 included two between subject manipulations,
namely learning mode (prediction-based vs. control-based) and
stability (high noise vs. low noise). Control performance was mea-
sured in two control tests. The task environment consisted of three
cues and one outcome. One of the cues increased and one of the
cues decreased the outcome. The third cue had no effect on the
outcome. More formally, the task environment can be described
as in the following equation

y (t ) = y (t − 1)+ 0.65x1 (t )− 0.65x2 (t )+ e (t )

in which y(t ) is the outcome on trial t, x1 is the positive cue, x2

is the negative cue, and e a random noise component, normally
distributed with a zero mean and SD of 4 (Low Noise) or 16 (High
Noise). The null cue x3 is not included in the equation as it had
no effect on the outcome.

PROCEDURE
Controllers were informed that as part of a medical research team
they would be conducting tests in which they could inject a patient

2The assignment of noise to the system was first piloted in order to generate High
variance (16 SD) and low variance (4 SD).
3In order to implement the yoking design in which a participant from each Predic-
tion condition was yoked to a participant from the corresponding control condition,
a control participant performed the experiment first in order to generate the learning
trials presented to the yoked predictor.
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with any combination of three hormones (labeled as hormones A,
B, and C), with the aim of maintaining a specific safe level of
neurotransmitter release. Predictors were assigned the same role,
but were told that they would have to predict the level of neuro-
transmitter release by observing the level of hormones injected.
Figure 1 presents a screen-shot of a learning trial as experienced
by Predictors and Controllers in the experiment. The task was
performed on a desktop computer, using custom software written
in C# for the .NET framework. The task consisted of a total of
80 trials, divided into two phases. The learning phase involved 40
learning trials and the test phase included two tests of 20 trials
each.

Learning phase
On each trial, Controllers adjusted a slider to decide how much
of each hormone to release (a value between 0 and 100). After
confirming their decision, the effect was revealed visually on the
outcome graph. On the next trial, the input values were reset to
0, but the outcome value was retained from the previous trial.
Predictors were shown the input values chosen on that trial by

FIGURE 1 | Screen-shot of a learning trial for predictors and controller.

the Controller they were yoked to. They were asked to predict the
resulting outcome value by moving a slider. Once they were satis-
fied with their prediction, the actual outcome value was revealed
alongside their prediction. On a subsequent trial, the previously
predicted outcome value was omitted from the outcome graph,
but the history of the actual outcome values on the previous five
trials remained.

Test phase
The test phase was identical for Controllers and Predictors. Con-
trol Test 1 involved the same task as performed by Controllers in
the learning phase; this was the first opportunity for Predictors
to control the environment. Control Test 2 involved a different
desired outcome level in order to examine success in controlling
the system to a different criterion4.

SCORING
Prediction performance was measured by a prediction error score
Sp(t ) calculated as the absolute difference between predicted and
expected outcome values:

Sp (t ) = ∣∣P (t )− y (t − 1)− 0.65x1 (t )+ 0.65x2 (t )
∣∣ ,

in which P(t ) is a participant’s prediction on trial t. We chose
to compare predictions to expected rather than actual outcomes
as the latter are subject to random noise, resulting in a biased
comparison between the High and Low Noise conditions.

Control performance was measured by a control error score
Sc(t ) calculated as the absolute difference between the expected
and best possible outcome:

Sc (t ) = ∣∣G (t )− y (t − 1)− 0.65x1 (t )+ 0.65x2 (t )
∣∣ ,

in which G(t ) is the goal on trial t: either the target outcome if
achievable on that trial, or the closest achievable outcome.

RESULTS AND DISCUSSION
Learning phase: controllers
The learning phase was divided into four blocks of 10 trials each.
For the following analyses, prediction and control error scores
were averaged across each block for each participant; these are
presented in Figure 2. A 4 × 2 ANOVA was conducted on the con-
trol scores, with Block (learning block 1, 2, 3, 4) as within-subject
factor and Noise (high, low) as a between subject factor. As indi-
cated in Figure 2, there was a main effect of Block, F(3,84) = 28.89,
p< 0.001, partial η2 = 0.508. To explore the possibility that accu-
racy of control-based decisions improved over blocks of trials,
t -tests revealed that error scores were lower in Blocks 2, 3, and
4 as compare to Block 1 (t = 3.72, p = 0.036, t = 3.76, p = 0.013,
t = 3.04, p = 0.013), no other differences reached significance. A
main effect of Noise, F(1,28) = 9.48, p = 0.004, partial η2 = 0.253,
suggests that control performance was poorer in the High com-
pared to the Low Noise condition. Figure 2 also suggests more

4In the learning phase and in Control Test 1, the starting value was 178 and the tar-
get value throughout was 62. Participants were instructed to maintain the outcome
within a safe range (±10) of the target value. In Control Test 2, the starting value
was 156, the target value was 74, and the safe range ±5 from the target value.
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FIGURE 2 | Error scores (± SE) in the learning phase of Experiment 1.

For Controllers, these are control error scores, and for Predictors, these are
predictive error scores.

pronounced learning in the Low Noise compared to the High Noise
condition, which was supported by a significant Noise × Block
interaction, F(3,84) = 3.93, p = 0.011, partial η2 = 0.123.

Learning phase: predictors
A similar ANOVA on the prediction error scores showed a main
effect of Noise, F(1,28) = 6.72, p = 0.015, partial η2 = 0.193, con-
firming that Predictors in the Low Noise condition outperformed
those in the High Noise condition. The main effect of Block,
F(3,84) = 2.95, p = 0.037, partial η2 = 0.095. To examine if dif-
ferences in performance across-blocks reflected learning, t -test
comparisons were conducted, and revealed that prediction error
scores were lower in Blocks 2, 3, and 4 as compare to Block 1
(t = 2.02, p = 0.036, t = 2.63, p = 0.013, t = 2.63, p = 0.013), no
other differences reached significance. To summarize, both Pre-
dictors and Controllers showed clear evidence of learning, and
performance in both groups was negatively affected by increasing
the level of noise in the system.

Test phase
The test phase provided the opportunity to compare the four con-
ditions on an equivalent measure of performance. Each test was
divided into two blocks of 10 trials each. The following analy-
ses are based on participants’ average control error scores in each
block and test, as presented in Figure 3. Control error scores were
first analyzed with a 2 × 2 × 2 × 2 ANOVA with Test (Control Test
1, 2) and Block (block 1, 2) as within-subject factors, and Learn-
ing Mode (prediction, control), and Noise (high, low) as between
subject factors. The main effect of Test, F(1,56) = 14.94, p< 0.001,
partial η2 = 0.211, suggests a general practice effect: even though it
included an unfamiliar goal, participants performed better in Con-
trol Test 2 than in Control Test 1. There were also practice effects
within tests, as shown by a main effect of Block, F(1,56) = 56.99,
p< 0.001, partial η2 = 0.504. A significant Test × Learning Mode
interaction, F(1,56) = 6.00, p< 0.017, partial η2 = 0.097, indi-
cates that Predictors improved their performance more over tests
than Controllers. Controllers performed better than Predictors
in Control Test 1, t (58) = 2.11, p = 0.038, but there was no dif-
ference in Control Test 2, t (58) = 0.68, p = 0.51. In addition,

FIGURE 3 | Control error scores (± SE) of predictors and controllers in

the test phase of Experiment 1.

there was a significant Block × Task × Learning Mode interaction,
F(1,56) = 6.38, p = 0.014, partial η2 = 0.102. Follow-up t -tests
indicated that Controllers outperformed Predictors only in the
first block of Control Test 1, t (58) = 3.14, p< 0.003; there was no
significant difference elsewhere (all p’s> 0.29).

There were two significant effects involving noise. Over-
all, participants in the low noise conditions outperformed
those in the high noise conditions, F(1,56) = 14.52, p< 0.001,
partial η2 = 0.206. In addition, a Block × Noise interaction,
F(1,56) = 13.31, p< 0.001, partial η2 = 0.192, indicates that this
difference was particularly strong in the second block. To explore
the difference between Controllers and Predictors in the first
block of Control Test 1 in more detail, we compared Controllers’
and Predictors’ performance when they were first exposed to
the control task. That is, we compared Controllers’ performance
in the first block of the learning phase with Predictors’ per-
formance in the first block of Control Test 1. The aim of this
across-blocks comparison was to assess the benefit for predic-
tion training prior to encountering the control task. The analysis
revealed no significant difference, F(1,28) = 0.44, p = 0.51, par-
tial η2 = 0.016, suggesting that Predictors did not benefit from
their four blocks of prediction learning. In contrast, the same
analysis comparing Controllers performance in the first block of
learning with their performance in the first block of Control Test
1, F(1,28) = 17.38, p = 0.0002, partial η2 = 0.375, suggested that
their prior experience was beneficial.

The results from this first experiment can be summarized as
follows: given that the accuracy of controlling an environment is
dependent to a greater extent on the way the outcome fluctuates
(either in a less noisy or more noisy manner) rather than the mode
of learning of the environment (either predicting or controlling
the outcome), the results are broadly consistent with the view that
control and prediction involve similar processes. Moreover, the
evidence suggests that Osman and Speekenbrink’s (2011) findings
generalize to prediction as well as control. In addition, Predic-
tors required a short period of familiarization with controlling
the system in the first 10 trials of Control Test 1, but after that
were able to control the environment as well as the Controllers
who had been doing so from the outset. However, in this initial
first block of testing, Predictors’ performance was no different to
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Controllers’ performance in the first block of learning, suggest-
ing that prediction-based learning about cue-outcome relations,
regardless of environmental stability, was not directly transferable
to control. This raises the question whether control-based learn-
ing generates flexible cue-outcome knowledge that would facilitate
performance on tests of prediction.

EXPERIMENT 2
Experiment 1 indicated a small and transient difference in per-
formance between Controllers and Predictors. In Experiment 2
we sought to further examine this by replicating our findings and
also examining whether control-based learning generates flexible
knowledge which can be used to predict as well as control the
outcome.

METHOD
Participants
The 30 graduate and undergraduate students that took part were
recruited from Queen Mary College and were paid £6 for their
participation. The assignment of participants to the conditions
followed the same yoking design as Experiment 1. There were two
conditions (Controllers, Predictors), each with 15 participants.

DESIGN AND PROCEDURE
Experiment 2 was identical to Experiment 1 with two exceptions.
First, the SD of the noise was kept at a single intermediate value of 8
(between the High and Low conditions of Experiment 1). Second,
tests of cue-outcome associations (Insight Tests) were presented
directly after Control Test 1 and again after Control Test 2. In the
Insight Tests participants were asked to predict the value of the out-
come or one of the cues, given the values of the other variables. No
feedback was presented in either Insight Test. Each test included

16 trials which were divided into 8 old and 8 new trials, each set
containing 2 trials to predict each target (the outcome, positive,
negative, and null cue). Old trials were randomly selected from
the learning phase (for Controllers these were trials that they had
generated themselves, for Predictors these were the same yoked
learning trials). The eight new trials were designed prior to the
experiment, so neither group had prior experience of them. The
presentation of the 16 trials in each Insight Test was randomized
for each participant. Performance on the insight tests was mea-
sured similarly to the prediction error scores in Experiment 1 as
the absolute difference between predicted and expected value.

RESULTS AND DISCUSSION
Learning phase
The average control and prediction error scores by block (4
blocks of 10 trials each) in the learning phase are presented in
Figure 4. For the Controllers, a one-way ANOVA on control scores
showed a significant effect of Block, F(3,42) = 21.93, p< 0.001,
partial η2 = 0.610. Further t -test comparisons were conducted and
revealed that control error scores were lower in Blocks 2, 3, and
4 as compare to Block 1 (t = 6.67, p< 0.005, t = 5.90, p< 0.005,
t = 11.76, p< 0.005). A similar analysis on the prediction scores
for Predictors showed no effect of Block, F(3,42) = 0.36, p = 0.78,
partial η2 = 0.025. Again, t -tests were conducted to examine if
performance improved across-block. Analyses revealed that com-
pared with Block 1, prediction error scores were lower in Block 2, 3,
and 4 (t = 2.95, p = 0.011, t = 3.88, p = 0.002, t = 4.18, p = 0.001),
no other comparisons were significant.

Test phase
The following analyses were based on the mean control scores by
Block (block, 1, 2) and Test (Control Test 1 and 2) as presented in

FIGURE 4 | Error scores (± SE) in the learning phase of Experiment 2. For Controllers, these are control error scores, and for Predictors, these are predictive
error scores.

www.frontiersin.org March 2012 | Volume 3 | Article 68 | 139

http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive


Osman and Speekenbrink Prediction vs. control

FIGURE 5 | Control error scores (± SE) of predictors and controllers in the test phase of Experiment 2.

Figure 5. A 2 × 2 × 2 ANOVA was conducted with Test and Block
as within-subject factors, and Learning Mode (prediction, control)
as between subject factor. As in Experiment 1, there was a main
effect of Block, F(1,28) = 26.01, p< 0.001, partial η2 = 0.482.
There was a trend toward an effect of Test, F(1,28) = 3.66,
p = 0.066, partial η2 = 0.115; while failing to reach significance,
this effect is consistent with Experiment 1. No other main effects
were significant. As with Experiment 1, we used an across-blocks
comparison to assess the benefit for prediction training prior to
encountering the control task. As in Experiment 1, Predictors did
not show an advantage when they first came to control the out-
come compared to Controllers, F(1,28) = 1.57, p = 0.221, partial
η2 = 0.057. However, when comparing Controllers’ performance
between block 1 of the learning phase and block 1 of Control
Test 1, their prior experience did facilitate control accuracy at test,
F(1,28) = 3.73, p = 0.064, partial η2 = 0.152.

Insights tests
Experiment 2 also included tests that enabled comparisons of
groups on their ability to accurately predict the states of the sys-
tem. In all analyses reported below, predictions for the null cue
were not taken into account; as this cue had no effect on the out-
come, its value was effectively unpredictable (it was only included
in the set of questions not to alert participants to this fact). We
computed error scores as the absolute difference between partic-
ipants’ predictions and optimal predictions; these are presented
in Figure 6. A 2 × 2 × 3 × 2 ANOVA was conducted with Insight
Test (first, second), Trial Type (old, new) and Target (positive cue,
negative cue, outcome) as within-subject factors, and Learning
Mode (prediction, control) as a between subject factor. This analy-
sis showed only a significant effect of Trial Type, F(1,28) = 14.51,
p< 0.001, partial η2 = 0.341, indicating better performance for
old than for new items. Other effects were not significant. In par-
ticular, there were no effects involving condition (all p’s> 0.10).

Comparing the error scores for predictions of the outcome to the
prediction error scores of Predictors in the learning phase showed
no difference for either Predictors, t (14) = 1.06, p = 0.31 (depen-
dent samples), or Controllers, t (28) = 0.17, p = 0.87 (independent
samples). Thus, Controllers were able to predict the outcome with
a similar accuracy as Predictors who had learned to do so from the
outset.

In sum, the findings from Experiment 2 suggest that control-
based learning generates cue-outcome knowledge that is suffi-
ciently flexible to enable transfer from control tasks to tests of
cue-outcome knowledge. Moreover, the findings indicate that
regardless of mode of learning, cue-outcome knowledge is acces-
sible, to the extent that it can be reported in measures of task
insight.

GENERAL DISCUSSION
Many accounts of DDM have referred to the importance of pre-
diction in processes designed to control outcomes in a dynamic
environment (Gibson et al., 1997; Osman, 2010a). In fact cog-
nitive architectures such as ACT-R have been developed to
model dynamic decision making, and variants of the frame-
work also include components that assume a prediction-based
process (Gonzales et al., 2003). In addition, general models of
learning (reinforcement learning models/reward-based learning)
claim that prediction-based and control-based decisions generate
equivalent knowledge in dynamic learning environment (Schultz
et al., 1997; Schultz, 2006). However, to date, there has been little
empirical support for this claim in DDM research.

The aim of this investigation was to examine the accuracy
of cue-outcome knowledge when applied to tests of control and
prediction, by comparing prediction-based learning and control-
based learning in the same dynamic environment. We developed
a task in which Controllers and Predictors experienced identi-
cal cue-outcome information in a dynamic environment. Both
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FIGURE 6 | Insight scores (± SE) for predictors and controllers for the insight tests of Experiment 2.

Predictors and Controllers were sensitive to the stability of the
DDM environment, suggesting that there is greater accuracy in
controlling and predicting outcomes in stable than in unstable
environments. In both experiments we showed that predictive
learning is sufficient to enable accurate control of an outcome in
dynamic environments that varied according to stability. After an
initial period of familiarization (approximately 10 trials) with the
control test, Predictors’ control accuracy was equivalent to that
of Controllers. However, in both experiments Predictors’ expe-
rience during learning did not generate cue-outcome knowledge
that initially facilitated control performance. In contrast, we found
that control-based experience during learning enabled successful
transfer to predictive tests of cue-outcome associations as well as
to tests of control. The discussion focuses on two questions: Did
Predictors and Controllers learn in the same way? and How do
prediction and control in the present study relate to conceptual-
izations of prediction and control in other decision making and
learning domains?

DID PREDICTORS AND CONTROLLERS LEARN IN THE SAME WAY?
We propose that fundamentally prediction and control share basic
properties when it comes to evaluating the outcome. In line
with Gibson et al.’s (1997) action model, control-based learning
involves an online comparison between the expected outcome and
achieved outcome, as well as an online comparison between the
achieved outcome and the target outcome. Both comparisons are
used to form a judgment as to which action to take in order to
reach and maintain the target outcome in dynamic tasks with
a non-independent trial structure (Gibson et al., 1997; Gibson,
2007). We also propose that, in line with Gibson’s action model,
prediction-based learning involves an online comparison between
an expected outcome and an achieved outcome, whereas control-
based decisions are based on a comparison between the achieved
and target outcome. Thus, prediction-based and control-based
DDM are similar because both evaluate the achieved outcome
according to their expected outcome. Given that in general pre-
dictive accuracy was equivalent for Predictors and Controllers,
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the comparison between actual outcome and expected outcome
appears to be sufficient to enable the acquisition of accurate cue-
outcome knowledge. However, in both experiments the findings
suggest that this comparison is not sufficient to facilitate initial
transfer to tests of control, instead training that involves deci-
sions based on comparisons between expected outcome and target
outcome is needed. These comparisons are required for plan-
ning and our results suggest that such comparisons may need
some time to develop, even when cue-outcome knowledge itself is
already accurate. Learning cue-outcome relations involves updat-
ing expected outcomes in light of achieved outcomes. Learning to
control involves updating the expected distance from the goal to
the actually achieved distance from the goal.

We have suggested that the critical factor differentiating Pre-
dictors from Controllers is related to the type of comparison
made (comparing expected to achieved outcomes, and compar-
ing achieved outcomes to the goal outcome). However, there were
other factors that may have contributed to the difference between
Predictors and Controllers in initial tests of control. In the present
study both types of learners could be differentiated in the follow-
ing three ways. For instance, Controllers intervened on the cues
directly, while Predictors could not. Some in the CDC research
domain treat this as an important difference given that CDC tasks
lend themselves to procedural rather than declarative forms of
learning (Berry, 1991; Lee, 1995). In addition, Controllers received
different feedback to Predictors. Controllers received feedback
with respect to the deviation of their achieved outcome from
the target outcome on a trial by trial basis. While this informa-
tion was also presented to Predictors during learning, it was not
directly relevant for their decisions. Only Predictors received direct
feedback about the difference between their predicted (expected)
outcome and the outcome actually achieved. However, we would
argue that Controllers also formed expectations of the outcome
value based on their cue-interventions and re-evaluated these
predictions in light of to the actual achieved outcome. Finally,
Controllers’ actions had direct effects on the outcome in the actual
DDM environment, whereas for Predictors an action (prediction)
had no consequence on the outcome in the DDM environment.
It may be the case that the advantage for Controllers stems from
a more thorough evaluation of their decisions because errors not
only affect the current outcome, but also future actions and out-
comes. For instance, by making a poor cue-intervention which
increases the deviation between achieved outcome and target out-
come, future actions will have to compensate, and several more
actions may be needed to reach the goal. Although Predictors may
feel intrinsically motivated to make accurate predictions, and so
an error would generate some personal dissonance, predictions
do not require the type of planning behaviors needed in control.
Further investigation is needed to examine these potential factors,
for instance by varying feedback (e.g., positive, negative feedback)
and reward (e.g., incentivizing accurate decisions).

HOW DOES PREDICTION AND CONTROL IN THE PRESENT STUDY
RELATE TO CONCEPTUALIZATIONS OF PREDICTION AND CONTROL IN
OTHER DECISION MAKING AND LEARNING DOMAINS?
MCPL vs. CDC tasks
With respect to the CDC research community the paradigm we
used to examine prediction and control relates directly to other

dynamic decision making tasks (Berry and Broadbent, 1987; Burns
and Vollmeyer, 2002; Gonzales et al., 2003; Osman, 2008a). Cru-
cially, the findings are consistent with the claim that Controllers
base their decisions on predictions (Burns and Vollmeyer, 2002;
Gibson et al., 1997; Goode and Beckmann, 2010; Osman, 2010a,b;
Sun et al., 2001). In the present study the task environment
in which prediction was examined involved cumulative changes
across trials, whereas in typical MCPL tasks there is no depen-
dency between trials. If prediction and control are determined by
the type of environment in which they are tested, it may be that
this qualitative difference between MCPL and CDC tasks does
not allow one to draw strong conclusions about the similarities
between prediction and control, or to generalize our findings to
MCPL research. However, if MCPL tasks were designed with a
dependent trial structure then our findings suggest that in sta-
ble and unstable dynamic environments, cue-outcome knowledge
via prediction does not prevent accurate control-based decisions,
although it does not facilitate initial transfer of knowledge to
control tasks. Further research is required to examine the extent
to which these findings generalize to task environments that are
traditionally studied in MCPL tasks. If the trial structure makes
little difference, then based on the findings from this experiment,
we would still predict that overall cue-outcome knowledge for
Controllers over Predictors should be equivalent.

Observation vs. intervention
Prediction- and control-based learning can also be viewed within
the context of causal reasoning research which contrasts learning
via intervention and observation (Meder et al., 2008; Hagmayer
et al., 2010). Prediction and observation are both indirect ways
of learning about an environment, whereas control and inter-
vention involve direct interaction with the environment while
learning (Lagnado and Sloman, 2004; Osman, 2010b). The dis-
tinction between these forms of interaction with the environment
has been made using formal models (Spirtes et al., 1993; Pearl,
2000) which capture probabilistic dependencies in a given set of
data as well as their relationship to the causal structures that could
have generated the data. These models provide a strong theoretical
basis for arguing that intervention is a crucial component in the
acquisition of causal structures.

Studies that examine causal structure learning often require
participants to either infer the causal structure from observing
causes and effects, or from active learning by manipulating a can-
didate cause and observing the effects that follow. The evidence
suggests that causal knowledge is more accurate when making
interventions on causes than when observing causes and their
effects (Steyvers et al., 2003; Lagnado and Sloman, 2004). Com-
parisons between observation and intervention have typically been
conducted in static environments (for an exception see Hagmayer
et al., 2010), and observation-based learning involves tracking
causes and their effects as well as predicting changes in effects
given specific causes. Though not commonly referred to, there is a
close association between causal reasoning and DDM according to
the ways in which prediction (observation) and control (interven-
tion) generate cue-outcome knowledge. Funke and Müller (1988)
found that while control performance was marginally impaired
when learning was observation-based, causal knowledge of the
environment was generally not influenced by mode of learning,
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and accuracy of casual knowledge predicted control performance.
Moreover, recent work that has explored different types of inter-
vention suggests that it is not always the case that intervention is
superior to observation. There is converging evidence that atomic
interventions (i.e., ones in which acting on the environment will
clearly reveal some aspect of the causal structure) lead to supe-
rior casual knowledge as compared with uncertain interventions
(i.e., ones in which actions may not fix the state of a variable quite
so clearly; e.g., Hagmayer et al., 2010; Meder et al., 2008). While
interventions are generally helpful in uncovering casual structures,
there is evidence to suggest that observation-based learning can
generate more accurate causal knowledge than uncertain interven-
tions for particular environments (e.g., Meder et al., 2008). Viewed
from this perspective, the findings from the present study suggest
that the accuracy of casual knowledge is not impaired when learn-
ing is observation-based rather than intervention-based, assuming
that parallels can be drawn between observation and prediction.
However, again, to forge links between CDC research and causal
learning, research is needed to explore the extent to which the
types of interventions involved in controlling a dynamic environ-
ment are similar to the kinds of interventions used to uncover
causal structures, where the latter are typically studied in static
environments.

Model-free vs. model-based learning
It is worth examining the possible relationship between predic-
tion and control in the present study with a distinction made in
machine learning concerning model-free and model-based rein-
forcement learning systems (e.g., Sutton and Barto, 1998; Dayan
and Daw, 2008; Gläscher et al., 2010). Both model-free and model-
based learning involve predictions about the expected reward from
future actions, but the mechanism by which this is acquired is
different. Model-based learning involves constructing a model
of the task environment, which informs the agent about the
expected consequences of actions taken in particular situations.
Actions can move the environment from one state to another
and the agent’s aim is to move the environment to the state with
the highest reward. Thus, the agent’s learning involves the full
sequence from action to state to reward whereas in model-free
learning the agent learns action-reward pairings directly. Model-
based methods are more flexible and can more easily accommodate
changes in the state-reward pairings. Adaptation to changes in

the reward structure is much slower with model-free methods. In
our study Predictors were encouraged to learn the cue-outcome
associations before being tested on their ability to decide upon
actions to move the system to a desired state. In this way, Predic-
tors could be described as model-based learners. The Controllers
on the other hand were not explicitly encouraged (though not
discouraged) to learn about the structure of the system. But
given their performance in tests of prediction, we would spec-
ulate that their learning was also model-based. While the initial
differences in control performance imply that Predictors and Con-
trollers may have been using different strategies, further research
is needed to explore the association between learning strategies
(model-free vs. model-based) and modes of learning (prediction
vs. control).

CONCLUSION
While prediction is crucial to control, and both tend to be
described as complementary processes, in this article we consid-
ered the question whether learning to control a dynamic environ-
ment involves decisions based on prediction, and whether learning
via prediction is sufficient to enable accurate control. The evidence
from two experiments suggests that accurate cue-outcome knowl-
edge is gained via prediction and control, and in general both
forms of learning enable transfer to tests of prediction and control.
However, Predictors required some familiarization with control
whereas Controllers were able to transfer their knowledge to tests
of prediction without familiarization to the tests. We propose that
Predictors and Controllers evaluated the outcome according to the
discrepancy between expected and actual outcomes, whereas Con-
trollers also evaluate the outcome with respect to an intended goal.
While there are processes shared by prediction and control, the
critical difference between them appears enough to generate more
flexible cue-outcome knowledge for Controllers than Predictors.
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This study aims to investigate whether experimentally induced prior beliefs affect process-
ing of evidence including the updating of beliefs under uncertainty about the unknown
probabilities of outcomes and the structural, outcome-generating nature of the environ-
ment. Participants played a gambling task in the form of computer-simulated slot machines
and were given information about the slot machines’ possible outcomes without their asso-
ciated probabilities. One group was induced with a prior belief about the outcome space
that matched the space of actual outcomes to be sampled; the other group was induced
with a skewed prior belief that included the actual outcomes and also fictional higher out-
comes. In reality, however, all participants sampled evidence from the same underlying
outcome distribution, regardless of priors given. Before and during sampling, participants
expressed their beliefs about the outcome distribution (values and probabilities). Evaluation
of those subjective probability distributions suggests that all participants’ judgments con-
verged toward the observed outcome distribution. However, despite observing no support-
ing evidence for fictional outcomes, a significant proportion of participants in the skewed
priors condition expected them in the future. A probe of the participants’ understanding of
the underlying outcome-generating processes indicated that participants’ judgments were
based on the information given in the induced priors and consequently, a significant pro-
portion of participants in the skewed condition believed the slot machines were not games
of chance while participants in the control condition believed the machines generated out-
comes at random. Beyond Bayesian or heuristic belief updating, priors not only contribute
to belief revision but also affect one’s deeper understanding of the environment.

Keywords: model-based learning, belief revision, priors, gambling, probability judgment

INTRODUCTION
When a decision making process occurs over a temporally
extended interval, new evidence may accumulate over time that
warrants the updating of initial beliefs. Particularly in novel envi-
ronments where initial beliefs may be based on only scant infor-
mation, how should we integrate our initial beliefs about the
environment with subsequent observations?

Combining a prior description with experience is an everyday
activity, as mundane as judging the likelihood that it will rain
later in the afternoon, given a weather forecast and one’s own
observations from looking out the window. Consider, for example,
slot machines. At most slot machines today, the only information
known to players before the start of a game is a long-run payout
percentage and a succinct payout table that lists which outcomes
are associated with which combinations of symbols (or, as some
might have you believe: which combinations of symbols cause
which outcomes). This incomplete description of the environment
lacks probability information for the listed outcomes. Players must
repeatedly play the machines to learn about the missing probability
distributions and learn which machines may be most valuable to
play at. In other words, the slot machine is an inductive inference
problem. Gambles are of particular interest to the study of induc-
tive inference because they are so similar to everyday reasoning and
yet very dissimilar at the same time. Due to the underlying ran-
domness in many gambles (such as slot machines), people who

fare well in everyday reasoning can fail in the face of gambles.
Indeed, it is still a mystery why people can be so good at some
gambles (such as poker) and yet so bad at others (roulette). How
can we account for this?

In this paper, we investigate the impact of initial descriptive
information about an environment of uncertainty on judgments
about the environment’s structure. Our study extends previous
work on the topic by investigating the impact of induced pri-
ors as well as evidence on judgments and beliefs about structure.
To accompany the slot machines in our full-feedback paradigm,
we provide payout tables, thereby controlling the initial beliefs
of which outcomes are possible. However, we do not provide the
probability distribution nor set one machine to be more profitable.
Instead, we manipulate whether the evidence is congruent or
incongruent with prior beliefs. How will participants update their
prior beliefs given this evidence? To anticipate our results, we find
that neither simple Bayesian nor heuristic-based accounts of belief
revision can explain our findings; instead, a model-based frame-
work is proposed for a descriptive account of decision making over
time.

Prior knowledge is a central factor of decision making theo-
ries, across the spectrum from heuristic (gambler’s fallacy: a prior
regarding representativeness of outcomes; Tversky and Kahne-
man, 1971; Kahneman and Tversky, 1972; anchoring and adjust-
ment: insufficiently adjusting estimates from a reference point;
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Tversky and Kahneman, 1974) to rational (game theory: consis-
tency of prior beliefs between players in a game; Harsanyi, 1967).
Likewise, research has demonstrated that different assumptions
for priors can lead to different posterior beliefs (Troutman and
Shanteau, 1977; Koehler, 1993) as can prior outcomes affect sub-
sequent judgments and decisions (Thaler and Johnson, 1990).
Decision makers may maintain their initial hypotheses by dis-
missing disconfirming evidence (Klayman and Ha, 1987) or even
inappropriately using disconfirming evidence to support initial
hypotheses (Snyder and Swann, 1978; Doherty et al., 1979; Fis-
chhoff and Beyth-Marom, 1983). Under uncertainty, prior beliefs
can have a cascading effect on subsequent judgment and decision
making that is deeper than mere belief-adjustment.

The model-based approach to understanding learning uniquely
captures this relationship between prior and posterior beliefs. It
derives psychological validity from theories of internal representa-
tions of external events or ideas. Well-known examples of internal
representations in the literature include schemas, structures of
knowledge that include concepts of components, attributes, and
relationships between specific instances (Simon, 1957; Schank and
Abelson, 1977; Bower, 1981; Pearson et al., 1984), and mental
models, internal symbolic understanding of the external world
(Johnson-Laird, 1983). Models in this sense are small-scale rep-
resentations of reality, neglecting facts, and relationships that
are outside one’s scope of knowledge with cascading effects on
reasoning. As in previous theories of decision making that use
models, this approach includes representations of the states of
the environment, actions, and rewards (as opposed to model-free
learning, which assumes no representation of structure; Dayan and
Niv, 2008); however, the present model-based approach focuses
on inference in contrast to optimized decision making. A close
and very interesting example of model-based inference can be
found in Lopes (1976) though here, too, the emphasis is on how
to optimize betting rather than how models influence under-
standing of the structure of the game. Although computational
model-based learning considers the value of these representa-
tions in the construction of a model of the environment, the
present perspective emphasizes representations of explanatory,
causal, and goal-directed beliefs about the relationships between
these components.

The top-down structure enables the agent to reason broadly
and make inferences about classes and categories of events and
relationships using prior knowledge as well as in a more detailed
manner about the specifications of the current problem using data.
The revision process, in which models are updated as new evidence
is acquired, utilizes the structure of the models to exploit previ-
ous experience and knowledge, including information about the
relationship between events such as data-generating processes, not
just the events themselves (Sutton and Barto, 1998). The learner
evaluates new information against his or her prior beliefs, much
like Edwards (1968) and the belief-adjustment model of Hogarth
and Einhorn (1992) in which new evidence is added or averaged
with previous information using anchoring and adjustment. How-
ever, within the model-based framework, new evidence can be
observed without requiring adjustment to the model. The overall
process can be depicted as a feedback loop whereby the outcomes
of the learner’s actions are fed back into his or her beliefs about

the problem. Figure 1 illustrates this loop: the consequence of
an outcome after an agent’s action may be to update the policy
directly or to feed back to the agent’s model and be integrated
with prior beliefs. For example, fluctuations in outcome within a
range of expected possible outcomes, such as those in scenarios
with random processes, need not change the learner’s model of
the environment (Yu and Dayan, 2005). A player at a slot machine
may avoid a machine after experiencing losses or, depending on
his model of the outcome-generating process, stay at the machine
because a win is more likely to occur after a string of losses. A poker
player may fold after observing another player raise or, depending
on his model of the player, re-raise because he believes based on
previous games with that player the raise to be a bluff. Because
models of the environment are highly structured and include his-
tories of previously held beliefs, new information can go beyond
adjustments to cause qualitative and systemic changes in models.

Critically, as a consequence of these two dissociable compo-
nents of model and belief revision, an individual may appear to
behave irrationally while implementing rational inference. If the
player at the slot machine holds a model of the game whereby a
string of losses is certainly followed by a win, then he acts rationally
when he continues to play despite losing. If the model of the prob-
lem is inaccurate, it may be the case that new evidence does not
correct errors despite the correct implementation of the updat-
ing process. The individual may persist in believing inaccurate
information.

The model-based learning framework is not commonly cited
in psychological research on decision making. Researchers more
often appeal to rational Bayesian accounts (Edwards et al., 1963;
Steyvers et al., 2003; Tenenbaum et al., 2006). Bayes’ theorem,
a general mathematical rule commonly used for belief updating
using evidence, results in a posterior probability expressing the
degree of belief about the likelihood of a hypothesis being true
after observing data. However, while Bayesian inference itself may
be straightforward, the assumptions made about the hypothesis
sets and approximation algorithms are less clear, and sometimes
lacking in theoretical and empirical grounding (Jones and Love,
2011). The psychological implications as regards to the cognitive
capacity required to consider all evidence even-handedly, generate
exhaustive sets of hypotheses, and calculate likelihoods are out of

FIGURE 1 |The cycle of model revision over time (Sutton and Barto,
1998, p. 231).
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reach for most people, including experts (Meehl, 1954; Fischhoff
et al., 1978; Fischhoff and Beyth-Marom, 1983).

To study the integration of prior beliefs with evidence accu-
mulated over time, we use a slot machine modification of the
“computerized money machine” typically used in decision-from-
experience tasks (e.g., Barron and Erev, 2003). Two slot machines
each present a “button” to push that offer probabilistic payouts
based on distributions unknown to the participant at the start.
One difference to previous experiments is that, in the present task,
the machines are identical. As we are primarily interested in how
the descriptive information is combined with experience, we did
not complicate the task further. A second critical difference is that
the slot machine provides additional descriptive information to
the participant in the form of a payout table that lists the space of
potential outcomes. This will be discussed in greater detail below.

Previous work using this decision making over time paradigm
has focused on finding differences between problems based on
description and those based on experience (Barron and Erev, 2003;
Hertwig and Erev, 2009; Ungemach et al., 2009). This paper focuses
instead on an area slightly outside of that dialog: the combined
effect of description and experience. Newell and Rakow (2007)
discuss this research question with a binary prediction game using
dice for which participants are given outcome probabilities and the
opportunity to experience outcomes over time. When given only
abstract, descriptive information about the outcomes and prob-
abilities, participants were likely to choose the optimal strategy;
when given both abstract information and experience, participants
were more likely to sub-optimally probability match. Although
this finding reveals the combined effect of descriptive and expe-
riential information on risky choice, it does not provide a deeper
insight into the cognitive processes participants may be using in
such tasks. Strategy probes questioned participants only at the
end of games and did not capture the reasons behind response
choices. Critically, with dice stimuli that represent a definitively
random outcome-generating process with known probabilities,
questions of how participants learn about structure and probabil-
ity distributions under uncertainty are outside the scope of that
study.

To test the effects of prior knowledge on learning, we manip-
ulate the content of the prior. Some participants were induced
with the “control” condition prior, which accurately reflected the
abstract outcome information for the task to be played: the slot
machine payout table included all valid outcomes only. In con-
trast, other participants were induced with a skewed prior, which
reflected the same information as controls with the addition of fic-
tional higher outcomes. All participants played the same machines
and observed effectively the same evidence. What effect would the
different priors have on beliefs about structure and probability as
new evidence was attained?

MATERIALS AND METHODS
PARTICIPANTS
Fifty-three participants were recruited to participate in paid stud-
ies on gambling from the University College London Psychology
Department Subject Pool, a popular online UK notice board, and
local newspapers. All individuals gave their informed consent to

participate in the experiment, as approved by the Department of
Psychology at University College London.

DESIGN
The design comprised one within-subjects factor over time with
three levels (before the start of the game, after 30 trials, after 80 tri-
als) and one between-subjects factor with two levels (congruency
of payout table and outcomes, “skewed” in congruency). Partic-
ipants were randomly assigned to conditions, resulting in a final
sample of 27 participants in the congruent payout table group
and 26 participants in the skewed payout table group. Participants
played 80 mandatory pulls on the machines and answered ques-
tions before the start of play, after 30 arm pulls, and at the end after
80 arm pulls; machine choice and pace were up to participants but
the total number of pulls played was fixed.

All participants played the same task with equivalent slot
machines that sampled from the same underlying distribution of
outcomes: 0, 2, 3, 4, 5, and 10. Participants in the control condi-
tion were shown a payout table before the start of the game that
displayed the outcome values of the game and their associated reel
symbol combinations (i.e., congruent with the observed evidence:
0, 2, 3, 4, 5, and 10). The other group of participants was shown the
same payout table, but now with fictional higher-value outcomes
(i.e., incongruent with the observed evidence: 0, 2, 3, 4, 5, 10, 15,
20, 25, and 100). Despite the different payout tables, both groups
played the same task and observed random draws from the same
underlying distribution. No participants were shown the proba-
bilities associated with the outcomes. The skewed table suggested
an initial belief that overlapped with the control participants’ but
also included fictional higher-value outcomes that would not be
observed during the experiment1.

Participants were randomly assigned to either the experimen-
tal skewed or the control condition and remained unaware of any
alternative task specifications. In each condition, participants were
informed that their compensation would depend on the bank’s
value at the end of the task.

MATERIALS
The slot machines required a five pence stake for each play, which
was taken from the £3.00 bank endowed by the experimenter to the
participant at the start of the task. The machines used a random
process to select outcomes from a fixed distribution: an outcome
of 0, 2, 3, 4, or 5 pence with 17.4% probability each or 10 pence
with 13.0%. The expected value of a play at any machine was 3.9
pence, at a loss of 1.1 pence given the cost to play.

The experiment interface used fruit graphics, which are highly
associated with slot machines imagery, and animations such as
spinning reels and moving levers to simulate the appearance of
real-world slot machines. The size of the screen display allowed
the participant to see up to three symbols on each reel depend-
ing on the reel position. The machines had a single payout line
(combinations of symbols must fall on the payout line to qualify
for winnings) through the middle; symbols above and below (near

1Although the higher-value outcomes were fictional in this instance, the distribution
is not dissimilar from real-world slot machines for which the desirable high-value
outcomes are generated at infinitesimally low probabilities.
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misses) were also viewable but randomized. When a participant
clicked on a machine to play it, the reels appeared to spin, and then
slow to a rest after 3 s, displaying the final screen of fruit symbol
graphics that matched the outcome received on that trial. The final
screen and numerical outcome value (e.g., four pence) was shown
on the screen for 1.5 s. The screen then returned to the initial state
and participants could click on the machine they wished to play
next. No bank or cumulative total information was shown to the
participant at any time during the task except after completion.

When asked to illustrate their beliefs about what outcomes the
machines paid out and how likely those outcomes were, partici-
pants were given blank pie chart templates and pens. Each template
sheet had one blank circle for the machine on the left and another
identical one for the machine on the right, each with an indica-
tor for the center of circle to aid in drawing. Most participants
readily understood this instruction but all watched the experi-
menter create an example pie chart and had the opportunity to
ask questions. This method was chosen both for its familiarity
for participants and for its convenience for eliciting comparable
judgments between groups of the size of the outcome space. By
providing blank response templates, this design requires partici-
pants to generate the outcome space and associated probabilities
without being prompted by the experimenter for different out-
come values. Alternative methods of elicitation of probabilities,
such as prompting responses one outcome at a time, or listing the
full space of outcome values for the participant, may have defined
the outcome space for the participant and consequently rendered
their subjective probability distributions invalid. Although phe-
nomena such as sub additivity cannot be investigated in this
paradigm, the benefits for the relevant hypotheses being tested
are greater than this limitation.

PROCEDURE
At the start of the task and at two times during the task, partici-
pants were asked to answer questions. Before beginning machine
play but after being shown the playing environment including the
machines and payout tables, participants were asked to give their
best guess as to the hidden probabilities associated with the out-
come distribution. After completing a pie chart for the machine
on the left of the screen and another for the machine on the
right, participants then began to play the machines. After 30 trials,
the program automatically stopped and prompted participants to
respond to questions. The experimenter presented pen and clean
paper and asked the participant to again illustrate the different pay-
outs they believed the machines generally paid out, and how likely
those payouts were. After 80 trials, the prompts were repeated. The
timing of the prompts after 30 and 80 trials was not known to the
participants. The payout tables that displayed the outcome space
were visible during the first response time before play had begun
but were not visible during the latter two judgment collections;
participants completed these pie charts from memory.

After completing the 80 trials, participants responded to a
forced choice question about the machines’ outcome-generating
processes. Participants were asked which statement most closely
matched their belief: “playing required skill to avoid bad luck or
bad streaks at machines” or “it did not matter what I did or how I
played.”

RESULTS
In this experiment, a mixed design compared two groups’changing
beliefs over time about a hidden outcome distribution, measured
by probability judgments and responses to direct questions after
completion of the task. Neither group was compared to the true
underlying distribution because an infinite number of processes
might have produced the sequences observed by the participants;
only summary statistics (expected value) of the judged probabil-
ity distribution were compared to the observed distribution. The
experience of the two groups varied only on the range of outcomes
listed in the payout tables shown during the task; all participants
experienced slightly different sequences of outcomes due to ran-
dom sampling but no significant differences in the final sum of
outcomes received were found between groups, t (52)= 1.23, ns.

ESTIMATES OF MEAN PAYOUT
Participants in both experimental groups made probability dis-
tribution judgments before play began, after 30 trials, and after
80 trials. At these collection times, participants were asked to
report what payouts they thought the machine paid out in general,
and how likely were those payouts. An example of a participant’s
response in pie chart form is shown in Figure 2.

The first analysis of these data is of the raw mean estimates
calculated using participants’ pie charts, as shown in Figure 3. By
measuring each pie chart segment, we were able to assess how
likely the participant believed each outcome to be and there-
fore the participant’s subjective expected value for a play of the
slot machine. In the example shown in Figure 2, the participant
expresses a belief that the probability of an outcome of 0 pence is
50% and the subjective expected value of a play of the machine
is 7.74 pence. Estimates of the left and right machines were aver-
aged (no differences between expected value estimates given for
left and right machines (paired samples t tests, all ps > 0.24),
resulting in a single data point for each subject at each time
point. Analysis of these data finds that there are significant dif-
ferences between the two experimental groups [F(1,49)= 29.95,
p < 0.001, η2

p = 0.38], demonstrating that, overall, the payout
table with fictional higher-value outcomes led to higher valuations

FIGURE 2 | Example of a participant’s hand-drawn initial judgment of a
machine’s underlying probability distribution of outcomes. This
participant indicated that the possible outcome space included 0, 2, 3, 4, 5,
10, 15, 20, 25, and 100 pence outcomes and that the most likely outcome
would be of no matching symbols, or 0 pence.
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of the slot machines. Significant effects were also found within
groups over the three judgment times [F(2,98)= 4.18, p < 0.02,
η2

p = 0.08]; post hoc Bonferroni-adjusted comparisons show the
difference lies between the first and third judgment times only
(p < 0.01; between first and second: p < 0.92 and between sec-
ond and third: p < 0.09). In other words, valuations gradually
decreased. The payout table and time interaction was also sig-
nificant [F(2,102)= 4.12, p < 0.02, η2

p = 0.08] with follow-up
tests showing that the payout tables with the fictional higher-value
outcomes led to higher valuations compared to the control group
at all judgment times (all ps < 0.02). These findings suggest that
participants who were shown skewed payout tables consistently
gave higher estimates of the expected value of a machine play than
control participants, but showed a trend of converging toward
observed values as a function of number of trials played. Splitting
those participants who were shown skewed payout tables further
into those who persisted in representing fictional higher-value out-
comes throughout the duration of the game (shown in Figure 3)
suggests that this difference is primarily driven by the represen-
tation of higher-value outcomes rather than misestimates of the
probability of the true observed outcomes.

Remembering that each participant observed a different ran-
domly generated sequence of outcomes, the next analysis illus-
trated in Figure 4 examines each participant’s pie estimates of the
expected value given their unique observed sequence of outcomes
to assess whether group differences in estimates are due to differ-
ences in observed sequences. Their observed values were compared
to their reported estimates from collection times after 30 and 80
trials, with the left and right machine estimates averaged for each
participant, to calculate an error measure; initial judgments are not
included in this analysis because participants did not observe any
outcomes before making initial judgments. These data confirm
the analysis of the raw estimates: there are significant differences
between the two experimental groups [F(1,51)= 7.06, p < 0.01,
η2

p = 0.12] and within groups over the three judgment times

[F(1,51)= 6.45, p < 0.01, η2
p = 0.11]. The interaction of the two

factors is also significant [F(1, 51)= 6.29, p < 0.02, η2
p = 0.11].

ACCURACY OF PIE ESTIMATES
As shown in Figure 4, control participants who were shown an
accurate payout table made precise estimates not significantly
different from the observed data after 80 trials [M=−0.09,
SE= 0.13; one-sample t -test against 0: t (26)= 0.67, ns] and after
only 30 trials [M=−0.10, SE= 0.13; one-sample t -test against 0:
t (26)= 0.77, ns]. This accuracy provides support for the valid-
ity of this method of subjective probability elicitation to capture
sensible data.

REPRESENTATION OF FICTIONAL HIGHER-VALUE OUTCOMES
Although it is evident that the participants of the two groups per-
ceive the expected value of each machine play differently, further
analysis of the pie charts may explain this difference. Estimates
of the means alone cannot distinguish overestimation of the like-
lihood of observed outcomes (e.g., believing the 5 or 10 pence
outcome happen more frequently than the observed data sug-
gest) from categorically representing higher-value outcomes with
any degree of likelihood (e.g., believing the 100 pence outcome

FIGURE 3 | Implied estimates of mean payout across time. Data from
participants’ pie charts were used to calculate each participants implied
estimate of mean payout. Data shown in solid gray bars are from
participants who were shown accurate payout tables including only valid
outcomes. The data are split based on whether the participant persisted
throughout the game in including the fictional higher-value outcomes of 15,
20, 25, and 100 pence; 8 of 26 participants given skewed payout tables
included the fictional outcomes; no participants given accurate payout
tables did so. Responses for the left and right machines at each judgment
collection time were averaged resulting in one response per participant for
each of the three judgment times.

is possible with 1% probability). The pie charts show that the
primary source of the overestimation comes from maintaining
a belief in the likelihood of the fictional higher-value outcomes.
After 30 trials, 61.54% of participants (16 of 26 participants) in
the skewed payout table group continued to maintain the unsup-
ported belief of at least one higher-value outcome while only
3.70% (1 of 27 participants) indicated the same in the control
group (p < 0.001,Fisher’s exact test). After even 80 trials, the differ-
ence in number of participants maintaining beliefs in higher-value
outcomes remains significant (Skewed: 30.77% or 8 of 26 partic-
ipants; Controls: 0%; p < 0.01, Fisher’s exact test). This pattern
shows that participants converged toward the observed data and
no participants developed a skewed belief of unsupported fictional
higher-value outcomes after having expressed a belief reflecting the
observed outcome values only.

BELIEFS ABOUT THE NATURE OF THE OUTCOME-GENERATING
PROCESS
A direct question probed participants for their beliefs about the
nature of the underlying outcome-generating process. Although
participants were probed only once after the completion of the
task, this assessment enables us to infer, assuming no differ-
ences in beliefs about the outcome-generating processes of slot
machines before beginning the task, whether the task environment
changed participants’ beliefs. It was hypothesized that partici-
pants who were shown the skewed payout table and expected
to receive higher-value outcomes may believe that they are per-
forming poorly on the task when they do not receive the expected
outcomes. When asked whether the outcomes were generated by
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FIGURE 4 | Mean error in payout estimation based on condition and
belief in fictional outcomes. Each participant’s mean observed payout for
each machine was subtracted from each participant’s pie chart estimate of
mean payout for that machine to calculate errors in estimation. The data are
split based on whether the participant persisted throughout the game in
including the fictional higher-value outcomes of 15, 20, 25, and 100 pence;
8 of 26 participants given skewed payout tables included the fictional
outcomes; no participants given accurate payout tables did so. Values
greater than zero indicate overestimation and values close to zero indicate
accurate estimation. Errors for both the left and right machines were
averaged resulting in one error measure per participant per judgment during
machine play.

a random process (a choice between the two statements: “play-
ing required skill to avoid bad luck or bad streaks at machines”
or “it did not matter what I did or how I played”), only 3.84%
(1 of 26 participants) in the control group indicated that skill
was a significant factor while 30.77% (8 of 26 participants) indi-
cated this from the group who viewed skewed payout tables. This
analysis suggests that the different payout tables influenced the
participants’ beliefs about the outcome-generating process. This
difference between groups within the Skewed condition is shown
in Figure 5: those participants who believe skill to be involved
in machine play estimate the machines to be significantly more
valuable than the machines actually are. Indeed, the two are
highly related: a logistic regression predicting belief type finds that
those participants who categorically represent at least one fictional
higher-value outcome are 8.00 times more likely to also believe the
outcome-generating process is based on skill (B= 2.08, p < 0.02).
Although these correlations cannot provide directional explana-
tions for participants’ responses, they support the hypothesis that
beliefs about an underlying outcome distribution and associated
underlying outcome-generating process may be related.

GENERAL DISCUSSION
In this study, we induced different initial beliefs about the task
environment and observed how the accumulation of evidence
changed those beliefs. The initial beliefs informed participants
of the outcome space in the environment; some participants

FIGURE 5 | Mean error in payout estimation based on structural
beliefs. Mean payout estimate errors are shown for those participants given
skewed payout tables, split based on whether the participant responded
with the belief that the machine play was random or based on skill (8 of 26
participants); data from the control group of participants shown accurate
payout tables is not included because only 1 of 27 participants expressed
belief that machine play was based on skill. Values greater than zero indicate
overestimation and values close to zero indicate accurate estimation. Errors
for both the left and right machines were averaged resulting in one error
measure per participant per judgment during machine play.

were given information congruent with what they would subse-
quently observe while others were given incongruent information
(the description of the outcome space included fictional higher-
value outcomes). Participants who predicted that the machines
would produce fictional higher-value outcomes did so despite
never observing their occurrence, and ultimately attributed the
absence of those outcomes to (lack of) skill. From this experiment,
there are two broad findings: participants integrated observed
evidence with their initial beliefs for probability judgments but
relied heavily on initial information to understand the struc-
ture of the environment. In other words, prior beliefs are more
than just initial information; priors are the basis of internal mod-
els that affect beliefs about the structure of the data-generating
processes.

When participants created pie charts from blank templates, they
had to express not only the probabilities they thought were associ-
ated with outcomes but also the outcomes themselves. Despite
the limitations of this study due to possible error in manual
measurement of participants’ responses, the pattern of categor-
ical responses is clear. The pie charts showed that many partic-
ipants who initially believed that higher-value outcomes would
occur continued to believe so even after playing 30 and 80 trials
and never seeing those outcomes occurring. Observed evidence
alone cannot account for this. The results are contrary to most
memory-based theories that would predict the non-observance
of these outcomes resulting in their absence from the subjec-
tive probability distributions, including those based on availability

Frontiers in Psychology | Cognitive Science October 2012 | Volume 3 | Article 381 | 150

http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science/archive


Yu and Lagnado Influence of initial beliefs

(Tversky and Kahneman, 1973). Similarly, model-free theories, in
which judgment is based solely on experience, are also unable to
account for this. Alternatives such as Bayesian accounts are more
successful in explaining the role of prior beliefs in these judgments.
Bayesian belief revision corresponds with the convergence of judg-
ments over time and the variable weight on prior beliefs relative
to observed evidence. From this perspective, participants’ skewed
judgment in persistently predicting the fictional higher-value out-
comes despite their non-occurrence can be seen as a rational belief:
not enough evidence had been presented to outweigh the initial
belief in the higher-value outcomes.

Up to this point in the analysis, Bayesian accounts are con-
sistent with the behavior we found in this task. However, basic
Bayesian theories do not specify the underlying cognitive process
and have no explanation for the differences in the beliefs of ran-
domness in the outcome-generating process required to explain
the critical results. The evident difference in beliefs about how the
outcomes are generated dictates that more is needed to explain
the overall results – beliefs about the structure of the environment
is the critical element. The model-based approach, which relies
on the player’s representation and understanding of the struc-
ture of the game, tolerates the updating of probabilities based on
evidence in parallel with the persistent representation of higher-
value outcomes on the basis of no observed evidence at all.
Although we probed participants only once for their attitudes
regarding the data-generating process, those responses consid-
ered along with the probability judgments illustrate that initial
beliefs have qualitative effects on subsequent judgments of prob-
ability and understanding of the structure of the environment.
Future research should aim to capture a richer understanding
of belief revision and decision making strategies by using addi-
tional measures and analysis methods, such as measuring prob-
ability judgments more often or such methods as those used in
Jansen et al. (2012). This experiment demonstrates that theories
of decision making must account for beliefs about the under-
lying data-generating process. In this broad sense, both heuris-
tic and Bayesian theories that either approximate or explicitly
include such causal beliefs may adequately describe the behav-
ior in this task (Krynski and Tenenbaum, 2007). Future research
should seek to refine and enrich our understanding of model
structure.

Gambles are effectively inference problems in which the player
must learn about hidden underlying outcome distributions and

outcome-generating processes by generalizing from samples. Slot
machines are a paradigm in which decision makers must learn
over time about the value of their actions. While a die has six
sides each with equal likelihood of landing face-up, a slot machine
has an unknown number of symbols in unknown locations and
ratios on each reel and an unknown algorithm determining the
outcomes. Ultimately, slot machines pose the highest risk among
games of chance because the unknown probabilities permit play-
ers to persist in believing (Griffiths, 1990). A question often
raised is, “How many times did the individual continue to bet
despite losing?” But it is the nature of the data-generating process
that informs the predictability of the game and the rational-
ity of a wager. It is the player’s representation of the game and
how outcomes are generated that determines whether he suc-
ceeds in learning or persists in failing in the face of uncertainty.
The models internal to the player are critical to understand-
ing why people can persist in gambling despite losses (Gilovich,
1983; Walker, 1992). The conclusions from this research could be
applied to future treatment research, improving targeted efforts
to modify beliefs about the data-generating processes underly-
ing gambles. Cognitive-based treatments have shown therapeutic
gains (Bujold et al., 1994; Ladouceur et al., 1998); however, our
research suggests that further efficacy gains may be made by
focusing on the patient’s internal model of the gamble rather
than teaching general principles of randomness. Similarly, simple
changes to game infrastructure, such as displaying the proba-
bilities of all outcomes rather than only the long-run expected
value, may reduce inappropriate beliefs about the games. Gam-
bles can be such difficult inference problems precisely because
the player has so little information about his environment but
must use his model nonetheless. Under uncertainty, the focus of
our research should be on the cognitive process as well as the
outcomes.
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One form of inertia is the tendency to repeat the last decision irrespective of the obtained
outcomes while making decisions from experience (DFE). A number of computational
models based upon the Instance-Based Learning Theory, a theory of DFE, have included
different inertia implementations and have shown to simultaneously account for both risk-
taking and alternations between alternatives. The role that inertia plays in these models,
however, is unclear as the same model without inertia is also able to account for observed
risk-taking quite well.This paper demonstrates the predictive benefits of incorporating one
particular implementation of inertia in an existing IBL model. We use two large datasets,
estimation and competition, from theTechnion PredictionTournament involving a repeated
binary-choice task to show that incorporating an inertia mechanism in an IBL model enables
it to account for the observed average risk-taking and alternations. Including inertia, how-
ever, does not help the model to account for the trends in risk-taking and alternations over
trials compared to the IBL model without the inertia mechanism. We generalize the two
IBL models, with and without inertia, to the competition set by using the parameters deter-
mined in the estimation set.The generalization process demonstrates both the advantages
and disadvantages of including inertia in an IBL model.

Keywords: decisions from experience, instance-based learning, binary-choice, inertia, risk-taking, alternations

INTRODUCTION
People’s reliance on inertia, the tendency to repeat the last decision
irrespective of the obtained outcomes (successes or failures), has
been documented in literature concerning managerial and organi-
zational sciences as well as behavioral sciences (Samuelson, 1994;
Reger and Palmer, 1996; Hodgkinson, 1997; Tripsas and Gavetti,
2000; Gladwell, 2007; Biele et al., 2009; Gonzalez and Dutt, 2011;
Nevo and Erev,2012). For example, inertia acts like a status quo bias
and helps to account for the commonly observed phenomenon
whereby managers fail to update and revise their understanding
of a situation when it changes, a phenomenon that acts as a psy-
chological barrier to organizational change (Reger and Palmer,
1996; Tripsas and Gavetti, 2000; Gladwell, 2007). In these situ-
ations, inertia is generally believed to have a negative effect on
decision making (Sandri et al., 2010).

Inertia has also been incorporated to account for human behav-
ior in existing computational models of decisions from experience
(DFE). DFE are choices that are based on previous encounters
with one’s alternatives; as opposed to decisions from description,
which are based on summary descriptions detailing all possible
outcomes and their respective likelihoods of each option (Her-
twig and Erev, 2009). In DFE, researchers have studied both
the risk-taking behavior and alternations between alternatives
in repeated binary-choice tasks, where decision makers conse-
quentially choose between risky and safe alternatives repeatedly
(Samuelson, 1994; Börgers and Sarin, 2000; Barron and Erev, 2003;
Erev and Barron, 2005; Biele et al., 2009; Hertwig and Erev, 2009;
Erev et al., 2010a; Gonzalez and Dutt, 2011; Nevo and Erev, 2012).

The alternations explain how individuals search information and
how this search pattern changes over repeated trials. Thus, alter-
nations tell us about the information-search patterns and learning
in DFE (Erev et al., 2010a). Accounting for both risk-taking and
alternations helps to develop a complete understanding about how
decision makers reach certain long-term outcomes, which cannot
be determined by solely studying one of these measures in the
isolation of the other (Gonzalez and Dutt, 2011).

Most recently, models based upon the Instance-Based Learning
Theory (IBLT; and “IBL models” hereafter), a theory of dynamic
DFE, have shown to account for both the observed risk-taking
and alternations in a binary-choice task better than most of the
best known computational models. A number of these IBL models
have incorporated some form of the inertia mechanism (Gonza-
lez and Dutt, 2011; Gonzalez et al., 2011), while others have not
incorporated inertia and still accounted for the risk-taking behav-
ior (Lejarraga et al., 2012). For example, Lejarraga et al. (2012)
have shown that a single IBL model, without inertia, is able to
explain observed risk-taking and generalize across several vari-
ants of the repeated binary-choice task. Therefore, it appears that
inertia may not be needed in computational models to account
for the observed risk-taking. However, Lejarraga et al. (2012)
model does not demonstrate how alternations are accounted for
or how alternations and risk-taking are accounted for simulta-
neously. As discussed above, people’s experiential decisions may
likely rely on inertia, and computational models might need some
form of inertia to account for both observed risk-taking and
alternations. Yet, the role that inertia mechanisms play in existing
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computational models is unclear and needs to be systematically
investigated.

In this paper, we evaluate the role of an inertia mechanism
in an IBL model. We evaluate a model with inertia and another
without inertia for their ability to account for observed risk-taking
and alternation behaviors. In order to evaluate the inertia mecha-
nism, we use two large human datasets that were collected in the
Technion Prediction Tournament (TPT) involving the repeated
binary-choice task (Erev et al., 2010b). In what follows, we first dis-
cuss the current understanding of the role of inertia in accounting
for DFE. Next, we present the results of calibrating two existing IBL
models, with and without inertia, in the TPT’s estimation dataset
and evaluate the added value and contribution of including iner-
tia. Finally, we present the results that generalize these models into
the TPT’s competition dataset. We close this paper by discussing
our results and highlighting some future directions in this ongoing
research program.

THE ROLE OF INERTIA IN DECISIONS FROM EXPERIENCE
Inertia may be a psychological barrier to changes in an organi-
zation if decision makers fail to update their understanding of a
situation when it changes (Reger and Palmer, 1996; Hodgkinson,
1997; Tripsas and Gavetti, 2000; Gladwell, 2007). For example,
Tripsas and Gavetti (2000) provided a popular example of iner-
tia in a managerial setting concerning the Polaroid Corporation.
Polaroid believed that it could only make money by producing
consumables and not the hardware. Thus, it decided to stick to
producing only consumables. This decision led the company to
neglect the growth in digital imaging technologies. Because of the
prevailing inertial “mental model” of their business, the corpora-
tion failed to adapt effectively to market changes. Furthermore,
Gladwell (2007) has suggested that inertia is one powerful expla-
nation as to why established firms are not as innovative as young,
less established firms. For example, as an established firm, Kodak’s
management is reported to have suffered from a status quo bias
due to inertia: They believed that what has worked in the past will
also work in the future (Gladwell, 2007).

In judgment and decision making, inertia has been shown to
play a role in determining the proportion of risk-taking due to
the timing of a descriptive warning message (Barron et al., 2008).
Barron et al. (2008) compared the effect of a descriptive warning
received before or after making risky decisions in a repeated binary-
choice task. In this task, participants made a choice between a safe
option with a sure gain and a risky option with the possibility of
incurring a loss or a gain such that the probability of incurring
the loss was very small (p = 0.001). Thus, most of the time, the
task offered gains for both safe and risky choices. These authors
show that when an early warning coincides with the beginning of a
decision making process, the warning is both weighted more heav-
ily in future decisions and induces safer behavior (i.e., a decrease
in the proportion of risky choices), which becomes the status quo
for future choices. Thus, although the proportion of risk-taking
is lower for an early warning message compared to a late warning
message, the risky and safe choices in both cases show excessive
reliance on inertia to repeat the last choice made. Here, inertia acts
like a double-edged sword: It is likely to encourage or discourage
ongoing risky behavior depending upon the timing of a warning.

Some researchers have depicted inertia as an irrational behavior
in which individuals hold onto choices that clearly do not pro-
vide the maximizing outcome for too long (Sandri et al., 2010).
However, these authors have only shown that behavior may be
inconsistent with one specific rational model of maximization,
which may be an arbitrary standard that is difficult to generalize
to other rational models of maximization. There are certain other
situations where inertia is likely to produce positive effects as well.
In psychology, inertia is also believed to be a key component of
love, trust, and friendship (Cook et al., 2005). If evidence shows
that a friend is dishonest, then the decision to mistrust the friend
in future interactions would demand much more instances of dis-
honesty from the friend than that required to form an opinion
about a stranger. Thus, the inertia of continuing to trust the friend
makes it difficult to break the friendship.

Inertia has been incorporated in a number of existing cogni-
tive models of DFE. It is believed that inertia helps these models
account for both observed risk-taking and alternations in the
repeated binary-choice (Samuelson,1994; Börgers and Sarin,2000;
Biele et al., 2009; Erev et al., 2010a; Gonzalez and Dutt, 2011; Nevo
and Erev, 2012). For example, Erev et al. (2010a) observed that in
the repeated binary-choice task, participants selected the alterna-
tive that led to an observed high outcome in the last trial in 67.4%
of the trials, while they repeated their last choice for an alter-
native, irrespective of it being high or low, in 75% of the trials.
These observations suggest that participants tend to repeat their
last choice even when it does not agree with the high outcome
in their last experience, exhibiting robust reliance on inertia that
seems to be independent of observed outcomes. Some researchers
have suggested that in situations where estimating the choice that
yields high outcomes from observation is costly, difficult, or time
consuming, relying on inertia might be the most feasible course of
action (Samuelson, 1994). But other researchers have found this
inertia effect even when the forgone outcome (i.e., what respon-
dents would have gotten had they chosen the other alternative) is
greater than the obtained outcome (Biele et al., 2009).

In order to account for these observations, recent computa-
tional models of DFE have explicitly incorporated three different
forms of inertia as part of their specification (Erev et al., 2010a;
Gonzalez and Dutt, 2011; Gonzalez et al., 2011). In the first form,
inertia increases over time as a result of a decrease in surprise,
where surprise is defined as the difference in expected values of
the two alternatives (Erev et al., 2010a). This definition of iner-
tia has been included in the Inertia Sampling and Weighting
(I-SAW) model. The I-SAW model was designed for a repeated
binary-choice market-entry task, and it distinguishes between
three explicit response modes: exploration, exploitation, and iner-
tia (Erev et al., 2010a; Chen et al., 2011). The I-SAW model also
provides reasonable predictions in the repeated binary-choice task
(Nevo and Erev, 2012). Inertia is represented in this model with
the assumption that individuals tend to repeat their last choice,
and the probability of inertia in a trial is a function of surprise.
Surprise is calculated as the difference in the expected value of the
two alternatives due to the observed outcomes in each alternative
in previous trials. The probability of inertia is assumed to increase
over trials, as surprise decreases over trials. This definition based
upon surprise incorporates the idea of learning over repeated trials
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of game play where, due to repeated presentations of the same set
of outcomes, participants tend to get increasingly less surprised
and begin to stick to an option that they prefer (i.e., show inertia
in their decisions).

In the second form (that is similar to the first form), inertia
increases over time as a result of a decrease in surprise, which is
based upon the difference in blended values (a measure of utility
of alternatives based on past experience in Gonzalez et al., 2011
model). This definition of inertia has been included in the IBL
model that was runner-up in the market-entry competition (Gon-
zalez et al., 2011). This model includes an inertia mechanism that
is driven by surprise like in the I-SAW model; however, surprise
here is calculated as the difference between the blended values of
two alternatives.

In the third and simpler form, inertia is a probabilistic process
that is triggered randomly over trials, where the random occur-
rences of inertia are based upon a calibrated probability parameter,
pInertia (Gonzalez and Dutt, 2011). This definition of inertia is the
one we evaluate in this paper, as it was recently included in an IBL
model that produced robust predictions superior to many existing
models (Gonzalez and Dutt, 2011). According to Gonzalez and
Dutt (2011), the IBL model with the pInertia parameter accounts
for both observed risk-taking and alternations simultaneously in
different paradigms of DFE and performs consistently better than
most existing computational models of DFE that competed in the
TPT.

Although computational models have included inertia in sev-
eral forms, Lejarraga et al. (2012) have recently shown that a
single IBL model without any inertia assumption is also able to
account for the observed risk-taking behavior in different tasks
that included probability-learning, binary-choice with fixed prob-
ability, and binary-choice with changing probability. Although the
use of some form of inertia seems necessary in many computa-
tional models of DFE (Erev et al., 2010a; Chen et al., 2011; Gonzalez
and Dutt, 2011; Gonzalez et al., 2011; Nevo and Erev, 2012), its
role in accounting for risk-taking and alternations in DFE is still
unclear and a systematic investigation of its role in computational
models is needed.

Given the wide use of inertia in computational models, it is
likely that incorporating inertia assumptions might make them
more ecologically valid. That seems likely because if a model
accounts for risk-taking behavior already, then incorporating a
form of inertia in its specification might directly influence its
ability to account for alternations as well. However, we currently
do not know how inertia in a model might impact its ability to
account for both the risk-taking behavior and the alternations
simultaneously. The incorporation of inertia in a model is likely
to be beneficial only if it improves the model’s ability to account
for both risk-taking and alternations, and not solely one of these
measures.

MATERIALS AND METHODS
RISK-TAKING AND ALTERNATIONS IN THE TECHNION PREDICTION
TOURNAMENT
The TPT (Erev et al., 2010b) was a modeling competition orga-
nized in 2008 in which different models were submitted to predict
choices made by human participants. Competing models were

evaluated following the generalization criterion method (Buse-
meyer and Wang, 2000), by which models were fitted to choices
made by participants in 60 problems (the estimation set) and
later tested in a new set of 60 problems (the competition set)
with the parameters obtained in the estimation set. Although the
TPT involved three different experimental paradigms, here we use
data from the E-repeated paradigm that involved consequential
choices in a repeated binary-choice task with immediate feedback
on the chosen alternative. We use this dataset to evaluate the inertia
mechanism in an IBL model.

The TPT dataset’s 120 problems involved a choice between a
safe alternative that offered a medium (M) outcome with certainty;
and a risky alternative that offered a high (H) outcome with some
probability (pH) and a low (L) outcome with the complementary
probability. The M, H, pH, and L were generated randomly, and a
selection algorithm assured that the 60 problems in each set were
different in domain (positive, negative, and mixed outcomes) and
probability (high, medium, and low pH). The positive domain was
such that each of the M, H, and L outcomes in a problem were posi-
tive numbers (>0). The mixed domain was such that one or two of
the outcomes among M, H, and L (but not all three) in a problem
were negative (<0). The negative domain was such that each of the
M, H, and L outcomes in a problem were negative numbers (<0).
The low, medium, and high probability in a problem corresponded
to the value of pH between 0.01–0.09, 0.1–0.9, and 0.91–0.99,
respectively. The selection algorithm ensured that there were 20
problems each for the three domains and about 20 problems each
for the three probability values in the estimation and the compe-
tition sets. The resulting set of problems in the three domains and
the three probability values was large and representative. For each
of the 60 problems in the estimation and competition set, a sam-
ple of 100 participants was randomly assigned into 5 groups, and
each group completed 12 of the 60 problems. Each participant
was instructed to repeatedly and consequentially select between
two unlabeled buttons on a computer screen in order to maximize
long-term rewards for a block of 100 trials per problem (the end
point on trials was not provided or known to participants). One
button was associated with a risky alternative and the other button
with a safe alternative. Clicking a button corresponding to either
the safe or risky alternative generated an outcome associated with
the selected button (i.e., there was only partial feedback and par-
ticipants were not shown the foregone outcome on the unselected
button). The alternative with the higher expected value, which
could be either the safe or risky, could maximize a participant’s
long-term rewards. Other details about the E-repeated paradigm
are reported in Erev et al. (2010b).

The models submitted to the TPT were not provided with the
alternation data (i.e., the A-rate), and they were evaluated only
according to their ability to account for risk-taking behavior (i.e.,
the R-rate; Erev et al., 2010b). Gonzalez and Dutt (2011) had calcu-
lated the A-rate for analyses of alternations from the TPT datasets
and we followed the exact same procedures in this paper. First,
alternations were either coded as 1 s (a respondent switched from
making a risky or safe choice in the last trial to making a safe or
risky choice in the current trial) or as 0 s (the respondent repeated
the same choice in the current trial as that in the last trial). Then,
the A-rate is computed as the proportion of alternations in each
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trial starting in trial 2 (the A-rate in trial 1 is undefined as there
is no preceding trial to calculate alternations). The proportion of
alternations in each trial is computed by averaging the alternations
over 20 participants per problem and 60 problems in each dataset.
The R-rate is the proportion of risky choices (i.e., choices of the
risky alternative) in each trial averaged over 20 participants per
problem and 60 problems in each dataset.

Figure 1 shows the overall R-rate and A-rate over 99 trials from
trial 2 to 100 in the estimation and competition sets. As seen in
both datasets, the R-rate decreases slightly across trials, although
there is a sharp decrease in the A-rate. The sharp decrease in the
A-rate shows a change in the exploration (information-search)
pattern across repeated trials. Overall, the R-rate and A-rate curves
suggest that participants’ risk-taking behavior remains relatively
steady across trials, while they learn to alternate less and choose
one of the two alternatives more often. Later in this paper, we

evaluate the role of inertia mechanism to account for these R- and
A-rate curves in Figure 1 in a computational IBL model.

AN INSTANCE-BASED LEARNING MODEL OF REPEATED
BINARY-CHOICE
Instance-Based Learning Theory has been used for developing
computational models that explain human behavior in a wide
variety of dynamic decision making tasks. These tasks include
dynamically complex tasks (Gonzalez and Lebiere, 2005; Gonzalez
et al., 2003; Martin et al., 2004), training paradigms of simple and
complex tasks (Gonzalez et al., 2010), simple stimulus-response
practice and skill acquisition tasks (Dutt et al., 2009), and repeated
binary-choice tasks (Lebiere et al., 2007; Gonzalez and Dutt, 2011;
Gonzalez et al., 2011; Lejarraga et al., 2012) among others. Its
applications to these diverse tasks illustrate its generality and its
ability to explain DFE in multiple contexts.

FIGURE 1 | (A) The R-rate and A-rate across trials observed in human data in the estimation set of the TPT between trial 2 and trial 100. (B) The R-rate and
A-rate across trials observed in human data in the competition set of the TPT between trial 2 and trial 100.
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Here, we briefly discuss an IBL model that has shown to suc-
cessfully account for both risk-taking and alternation behaviors in
DFE (Gonzalez and Dutt, 2011). This model assumes reliance on
recency, frequency, and random inertia to make choice selections.
Here, we evaluate how the same IBL model, with and without
the random inertia mechanism, can simultaneously account for
risk-taking and alternation in repeated binary-choice. This evalu-
ation will enable us to better understand the role of this particular
simpler formulation of inertia in computational IBL models.

IBL model
All IBL models propose an “instance” as a key representation of
cognitive information. An instance is a representation of each deci-
sion alternative and consists of three parts: a situation (a set of
attributes that define the alternative), a decision for one of the
many alternatives, and an outcome resulting from making that
decision. An IBL model of repeated binary-choice has assumed
a simple instantiation of inertia mechanism (Gonzalez and Dutt,
2011): A free parameter, called pInertia, determines the repeti-
tion of the previous choice in the current decision according to
this probabilistic mechanism (see the Appendix for the formal
definitions of all the mechanisms of the IBL model for repeated
binary-choice and the pInertia parameter). If a uniformly distrib-
uted random number is less than the probability pInertia, then
the model repeats its last choice; otherwise, the model compares
blended values for the risky and safe alternatives, and makes a
choice for the alternative with the higher blended value.

In this paper, we call this IBL model implementation with the
random inertia mechanism, the “IBL-Inertia model.” In addition,
we consider another version of the same model, but without this
inertia mechanism (Lejarraga et al., 2012) as a baseline to com-
pare against the IBL-Inertia model. We call this implementation
without inertia, the “IBL model.” In the absence of inertia, this
model relies solely on the comparison between the blended val-
ues for the risky and safe alternatives to make choice selections in
each trial (the IBL-Inertia model also compares blended values to
make choice selections; however, blended values are used only in
the IBL-Inertia model when a random number is greater than or
equal to the pInertia parameter in a trial). With the exception of
the presence of pInertia in the IBL-Inertia model and its absence
in the IBL model, both models are identical in all other respects.

Blending, as proposed in both model implementations, is a
function of the probability of retrieving instances from mem-
ory multiplied by their respective outcomes stored in instances
(Lebiere, 1999; Gonzalez and Dutt, 2011; Lejarraga et al., 2012).
Each instance consists of a label that identifies a decision alter-
native in the task and the outcome obtained. For example (A,
$32) is an instance where the decision was to choose the risky
alternative (A) and the outcome obtained was $32. The proba-
bility of retrieving an instance from memory is a function of its
activation (Anderson and Lebiere, 1998). A simplified version of
the activation mechanism, which relies on recency and frequency
of using instances and noise in retrieval, has been shown to be
sufficient to capture human choices in several repeated binary-
choice and probability-learning tasks (Gonzalez and Dutt, 2011;
Lejarraga et al., 2012). The activation is influenced by the decay
parameter d that captures the rate of forgetting or reliance on

recency. The higher the value of the d parameter, the greater is
the model’s reliance on recent experiences. The activation is also
influenced by a noise parameter s that is important for capturing
the variability in human behavior from one participant to another.

For the first trial, both model implementations, IBL-Inertia
and IBL, have no instances in memory from which to calculate
blended values. Therefore, these implementations make a selec-
tion between instances that are pre-populated in their memory.
We used a value of +30 in the outcome slot of the two alternatives’
instances (Gonzalez and Dutt, 2011). The +30 value is arbitrary,
but most importantly, it should be greater than any possible out-
comes in the TPT problems to trigger an initial exploration of
the two alternatives. For the first trial, the choice between the
two alternatives in both implementations is solely based on the
blended values. From the second trial onward, the inertia mech-
anism is used along with blending in IBL-Inertia model and only
blending is used in the IBL model.

RESULTS
MODEL CALIBRATION AND EVALUATION OF INERTIA
The IBL model is compared with the IBL-Inertia model for their
ability to account for both the proportion of risk-taking (R-rate)
and alternations (A-rate) across trials. We will first calibrate the
models’ shared parameters, noise s and decay d, to the data in
the TPT’s estimation set. Then, we explore the role of adding the
pInertia parameter to the IBL model (i.e., the IBL-Inertia model)
by recalibrating all its parameters. Then, we generalize both the
calibrated models, IBL and IBL-Inertia, to the TPT’s competition
set.

Calibrating a model to human data means finding the para-
meter values that minimize the mean-squared deviation (MSD)
between the model’s predictions and the observed human per-
formance on a dependent measure. We used a genetic algorithm
program to calibrate the model’s parameters. The genetic algo-
rithm tried different combinations of parameters to minimize the
sum of MSDs between the model’s average R-rate per problem and
the average A-rate per problem measures and the corresponding
values in human data (we call this sum as the combined R-rate
and A-rate measure). Calibrating on the combined R-rate and A-
rate measure is expected to produce the best account for both
measures in human data compared to using only one of these
measures (Dutt and Gonzalez, under review). Also, calibrating on
the combined R-rate and A-rate measure allows us to test the IBL
model’s maximum potential to account for both these measures.

In order to compare results on the R-rate and A-rate during cal-
ibration, we use the AIC (Akaike Information Criterion) measure
in addition to the MSD (mean-squared deviation) measure. The
AIC definition takes into account both a model’s complexity (esti-
mated by the number of free parameters in the model), as well as its
accuracy (estimated by G2, defined the “lack of fit” between model
and human data; Pitt and Myung, 2002; Busemeyer and Diederich,
2009). The AIC definition and the computation procedures used
here are the same as those used by Gonzalez and Dutt, 2011; for
more details on the AIC definition refer to the Appendix). The
use of AIC during calibration is relevant because the IBL and IBL-
Inertia models are hierarchical (or nested) models (Maruyama,
1997; Loehlin, 2003; Kline, 2004) and they differ only in terms of
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the inertia mechanism. Thus, the IBL model can be simply derived
from the IBL-Inertia model by restricting the pInertia parameter’s
value to 0 during model calibration. Furthermore, in order to cap-
ture the trend of R-rate and A-rate from a model over trials, we
used the Pearson’s correlation coefficient (r) between model and
human data across trials (for the A-rate we used trials 2–100 and
for the R-rate we used trials 1–100; the A-rate is undefined for trial
1). Also, we computed the MSE (mean-squared error) between
model and human data across trials. For the MSE, we averaged
the R-rate and A-rate in model and human data across all partici-
pants and problems in a dataset for each trial. Then, we calculated
the mean of the squared differences between model and human
data for each trial. Because the MSE is computed across trials, it
measures the distance between the model and human data curves
trial-by-trial (for more details on the MSE definition refer to the
Appendix).

For the purpose of calibration, the average R-rate per problem
and the average A-rate per problem were computed by averaging
the risky choices and alternations in each problem over 20 par-
ticipants per problem and 100 trials per problem (for the A-rate
per problem, only 99 trials per problem were used for comput-
ing the average). Later, the MSDs were calculated across the 60
problems by using the average R-rate per problem and the average
A-rate per problem measures from the model and human data in
the estimation set. Some researchers suggest calibrating models to
the data of each participant per problem rather than to aggregate
measures (Pitt and Myung, 2002; Busemeyer and Diederich, 2009);
however, the calibration to aggregate behavior is quite common in
the cognitive and behavioral sciences (e.g., Anderson et al., 2004;
Erev et al., 2010a; Gonzalez and Dutt, 2011; Lejarraga et al., 2012).
In fact, calibrating to aggregate measures is especially meaningful
when the participant-to-participant variability in the dependent
measure is small compared to the value of the dependent mea-
sure itself (Busemeyer and Diederich, 2009). In the estimation
and competition sets, the standard deviations for the A-rate and
R-rate were similar and very small (∼0.1) compared to the values
of the R-rate (∼0.5) and the A-rate (∼0.3) measures themselves.
Thus, we use the average dependent measures for the purposes of
model calibration in this paper.

For calibrating the models, both the s parameter and the d
parameters were varied between 0.0 and 10.0, and the pInertia
parameter was varied between 0.0 and 1.0. Although the genetic
algorithm can continue to indefinitely optimize parameters, it
was stopped when there was no change in the parameter val-
ues obtained for a consecutive period of 200 generations. The
assumed range of variation for the pInertia, s, and d parameters,

and the decision process to stop the genetic algorithm are expected
to provide good optimal parameter estimates (Gonzalez and Dutt,
2011). Also, the large range of parameters’ variation ensures that
the optimization process does not miss the minimum sum of
MSDs (for more details about genetic algorithm optimization,
please see Gonzalez and Dutt (2011).

We calibrated both the IBL and IBL-Inertia models to the com-
bined R-rate and A-rate in TPT’s estimation set. The purpose of the
calibration was to obtain optimized values of d and s parameters
in the IBL model and pInertia, d, and s parameters in the IBL-
Inertia model. Later, keeping d and s parameters at their optimized
values in the IBL-Inertia model, we varied the pInertia parame-
ter from 0.0 to 1.0 in increments of 0.05. By only varying the
pInertia parameter and keeping the other parameter values fixed
at their optimized values, we were able to determine the inertia
mechanism’s full contribution in the model.

Table 1 shows the values of calibrated parameters, MSD, r, AIC,
and MSE compared to baseline for IBL and IBL-Inertia models
in TPT’s estimation set. First, both models’ d and s parameters
have values in the same range as those reported by Lejarraga et al.
(2012). Lejarraga et al. (2012) reported d = 5 and s = 1.5 for a
MSD = 0.0056 calibrated on R-rate using the IBL model. As doc-
umented by Lejarraga et al. (2012), the values of both d and s
reported in Table 1 are high compared to the ACT-R default values
of d = 0.5 and s = 0.25 (the default values were reported by Ander-
son and Lebiere (1998,2003). A high d value points to a quick decay
in memory and a strong dependence on recently experienced out-
comes (i.e., reliance on recency). The high s value allows the model
to exhibit participant-to-participant variability in capturing the R-
rate and A-rate. The pInertia value in IBL-Inertia model (=0.62)
is high and it shows that on a trial, this model is likely to repeat
its previous choice with a 62% chance. In general, the results from
both models are generally good (MSDs <0.05 and MSEs <0.05),
where both models perform slightly better at capturing the human
A-rate than the human R-rate.

Secondly, the individual MSDs, MSEs, and AICs on the R-rate
and A-rate in the IBL model are larger than those in the IBL-Inertia
model. For example, in the IBL-Inertia model, the MSDs for the
R-rate, A-rate, and the sum of R-rate and A-rate are consistently
smaller than those in the IBL model (0.008< 0.016, an improve-
ment of +0.008; 0.003< 0.005, an improvement of +0.002; and,
0.011< 0.021, an improvement of +0.010). Also, the relative AIC
in the IBL-Inertia model is negative (i.e., better) for both the R-rate
and the A-rate. Thus, even with an extraparametric complexity
(the pInertia parameter), the IBL-Inertia model performs more
accurately compared to the IBL model. Although the MSE in the

Table 1 |The values of calibrated parameters for IBL and IBL-Inertia models and the MSD, r, AIC, and MSE inTPT’s estimation set.

Model Calibrated parameters MSD r AIC MSE

IBL (calibrated upon R-rate +A-rate) d = 8.31; s = 1.26 0.005 (A-rate) 0.95 (A-rate) −479.2 (A-rate) 0.0076 (A-rate)

0.016 (R-rate) 0.94 (R-rate) −546.3 (R-rate) 0.0041 (R-rate)

0.021 (R-rate +A-rate)

IBL-Inertia (calibrated upon

R-rate +A-rate)

d = 6.71; s = 1.40;

pInertia = 0.62

0.003 (A-rate)

0.008 (R-rate)

0.011 (R-rate +A-rate)

0.85 (A-rate)

0.92 (R-rate)

−561.3 (A-rate)

680.0 (R-rate)

0.0032 (A-rate)

0.0010 (R-rate)
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IBL model is larger than that in the IBL-Inertia model for both
R-rate and A-rate; however, as is also shown in Table 1, the IBL-
Inertia model does not account for the trends in the R-rate and
the A-rate across trials compared with the IBL model (the r in the
IBL model is greater than that in the IBL-Inertia model for both
the R-rate and the A-rate).

Figure 2 presents the R-rate and A-rate across trials predicted
by the calibrated IBL and IBL-Inertia models and that observed in
human data in the TPT’s estimation set. In general, these results
reveal that both models generate good accounts for both observed
risk-taking and alternation behaviors. The IBL model is able to
capture the gradual decreasing trend in the A-rate as well as the
slightly decreasing trend in risk-taking across trials. However, the
model’s account for the R-rate exhibit as lightly greater decrease
compared with that observed in human data across increasing
number of trials. Also, the model’s account for the A-rate shows
more alternations during about the first half of the trials than that
observed in human data. This latter observation is likely due to
the +30 pre-populated instances initially put in model’s memory,
which make it explore both options for a longer time and causes a
higher A-rate in the first few trials. However, with increasing trials,
the activation of these pre-populated instances becomes weak (as
these values are not observed in the problems) and their influence
on the A-rate diminishes, causing the A-rate to decrease sharply
and meet the human data.

As shown in the bottom graphs of Figure 2, the IBL-Inertia
model corrects for the under-estimation and over-estimation in
the R-rate and A-rate. However, because of the pInertia parame-
ter, the model is unable to account for the initial decrease in the
A-rate in the first few trials as well as the IBL model, which does
so naturally. A likely reason is the high calibrated value of pInertia

parameter (=0.62) that overshadows the effect of pre-populated
instances in the first few trials. Also, it seems that the random effect
of pInertia across trials causes disruptions in IBL-Inertia model’s
R-rate trends over trials. Overall, these observations explain why
the IBL-Inertia accounts for overall behavior better than the IBL
model, but it does not account for the trends in the R-rate and the
A-rate.

EVALUATING THE INERTIA MECHANISM
Although the analyses above provide some benefits of including
pInertia in the IBL model, one would like to understand these
benefits more thoroughly for different values of the pInertia para-
meter over its entire range. If including pInertia in the IBL model
is beneficial, then we should observe smaller MSDs on the R-rate
and A-rate across a large part of the parameter’s range of variation
compared with the IBL model without pInertia. Also, this analysis
is important because the calibrated value of pInertia in the IBL
model was found to be high (=0.62), minimizing the role of the
blending mechanism.

For this investigation, we used the IBL-Inertia model with
its optimized parameters calibrated on the combined R-rate and
A-rate measure (i.e., d = 6.71; s = 1.40) and varied the pInertia
parameter from 0.0 to 1.0 in increments of 0.05 in TPT’s estima-
tion set. Varying pInertia like so allows us to determine the range
of values for which the sum of the MSDs computed on the aver-
age R-rate per problem and the average A-rate per problem are
minimized.

Figure 3 shows the MSDs for the IBL-Inertia model calibrated
on the combined R-rate and A-rate as a function of pInertia values
in the estimation set. It also shows the three corresponding MSDs
from the original IBL model (shown as dotted lines in Figure 3) for

FIGURE 2 |The R-rate and A-rate across trials predicted by the IBL and IBL-Inertia models and that observed in human data in theTPT’s estimation set.
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comparison purposes (these MSDs are also reported in Table 1).
The MSDs for the R-rate, the A-rate, and the sum of the MSDs for
the R-rate and A-rate in the IBL-Inertia model are below the corre-
sponding MSDs in the IBL model for all values of pInertia greater
than 0.05 and less than 0.90. Thus, including inertia in the IBL
model and calibrating all model parameters improves the model’s
ability to account for the average R-rate and A-rate compared with
the IBL model without inertia. Also, the advantages of including
pInertia parameter seem to be present over a large range of this
parameter’s variation.

GENERALIZING THE IBL MODELS TO THE COMPETITION SET
A popular method of comparing models of different complex-
ity is through models’ generalization in novel conditions (Stone,
1977; Busemeyer and Wang, 2000; Ahn et al., 2008). In general-
ization, the calibrated models with different complexities (num-
ber of free parameters) are run in novel conditions to com-
pare their performance. The novel conditions would minimize
any advantage the model with more parameters has over the
model with fewer parameters. In fact, TPT also accounted for
model complexity among submitted models by generalization,
i.e., by running models in the new competition set with the
parameters obtained in the estimation set (Erev et al., 2010b).
We used the same procedures as used in the TPT and gen-
eralized the calibrated IBL and IBL-Inertia models to TPT’s
competition set.

In related research, we have claimed that the TPT’s estima-
tion and competition data sets are too similar, raising questions

regarding the value of using the competition set for generalization
(Gonzalez and Dutt, 2011; Gonzalez et al., 2011). These similarities
arise because the problems used in the estimation and competi-
tion sets were generated by using the same algorithm. However,
given that the TPT competition set was collected in a new exper-
iment, involving new problems, and involving a different set of
participants from that of the estimation set, testing the models
in the competition set is still a relevant exercise to determine the
robustness of the models. This generalization further helps us to
take into account both models’ complexity (number of parame-
ters) and their accuracy of predictions (MSDs; Busemeyer and
Diederich, 2009).

The IBL model and IBL-Inertia model were run in the TPT’s
competition set problems using the parameters determined in the
estimation set: d = 6.71, s = 1.40, and pInertia = 0.62 (the pInertia
parameter is only for the IBL-Inertia model). As previously men-
tioned, these parameter values had resulted in the lowest MSDs on
the combined R-rate and A-rate measure for the two models in the
estimation set. Table 2 shows the values of MSD, r, and MSE for
the IBL and IBL-Inertia models upon their generalization in TPT’s
competition set. The IBL-Inertia model’s predictions resulted in
overall MSDs and MSEs for the R-rate and the A-rate that were
smaller than those for the IBL model. Like in the estimation set,
however, the IBL-Inertia model did not account for the over trial
trend in the R-rate and the A-rate compared with the IBL model
(demonstrated by the r calculations). These results demonstrate
that the IBL-Inertia model can generalize to new problems more
accurately (in terms of average overall performance in both the

FIGURE 3 |The MSD for the R-rate, the MSD for the A-rate, and the MSD

for the combined R-rate and A-rate for different values of pInertia
parameter in IBL-Inertia model (the corresponding MSDs for the IBL

model are also plotted as dotted lines for comparison). The IBL-Inertia
model used the calibrated parameters for d and s parameters (i.e., d = 6.41
and s = 1.40).
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Table 2 |The values of MSD, r, and MSE for IBL and IBL-Inertia models

upon their generalization inTPT’s competition set.

Model MSD r MSE

IBL 0.011 (A-rate) 0.96 (A-rate) 0.010 (A-rate)

0.022 (R-rate) 0.96 (R-rate) 0.010 (R-rate)

0.033 (R-rate +A-rate)

IBL-Inertia 0.003 (A-rate) 0.87 (A-rate) 0.003 (A-rate)

0.007 (R-rate) 0.94 (R-rate) 0.001 (R-rate)

0.010 (R-rate +A-rate)

A-rate and R-rate measures across problems and across trials com-
pared with the IBL model; but the IBL-Inertia model also cannot
account for trends across trials in these measures compared with
the IBL model without inertia).

Figure 4 shows the R-rate and the A-rate over trials for human
data, and how the IBL and IBL-Inertia models generalized in the
competition set. The IBL model, upon generalization, underesti-
mates the observed R-rate and overestimates the observed A-rate in
the competition set. These patterns of under- and over-estimations
are similar to those observed in the model’s predictions in the esti-
mation set in Figure 2. The IBL-Inertia model’s predictions about
the human R-rate and A-rate in the competition set, however,
were very good with very little under- and over-estimations of
the observed R-rate and A-rate curves. Furthermore, because the
pInertia parameter (=0.62) is fixed across trials at a high value in
the IBL-Inertia model, the model does not alternate as much as
humans in the first few trials. As seen in the lower right graph, the
IBL-Inertia model’s A-rate starts around 40%, rather than the 85%
as observed in human data. Thus, the IBL-Inertia model is not able
to account for the initially high A-rate and the rapid decrease in
the A-rate in the first few trials compared with the IBL model in
its predictions.

DISCUSSION
Some computational models of DFE do not include any inertia
assumptions and are still able to account for the observed risk-
taking behavior (Lejarraga et al., 2012). However, a number of
recent computational models have included some form of inertia
to account for observed DFE (Erev et al., 2010a; Gonzalez and
Dutt, 2011; Gonzalez et al., 2011). Three different inertial forms
have been proposed: random inertia (Gonzalez and Dutt, 2011);
inertia as a function of surprise determined by the differences in
expected values (Erev et al., 2010a); and inertia as a function of sur-
prise determined by the differences in blended values (Gonzalez
et al., 2011). This research uses the particular case of random iner-
tia in an IBL model and determines the benefits of this mechanism
by considering two IBL models with and without this mechanism.
We selected the random inertia form for our evaluation because of
its simplistic formulation, but also because an existing IBL model
with this definition accounts for DFE better than other best known
models of DFE (Gonzalez and Dutt, 2011).

Our results reveal that a simple instantiation of the inertia
mechanism can be used to improve the ability of the IBL model
to account for the average risk-taking (R-rate) and alternations
(A-rate; based upon MSDs, MSEs, and AICs) observed in human

data. However, we also find that the inclusion of random inertia
does not help the model to account for the trends across trials
in the R-rate and A-rate compared with the same model without
inertia (based upon correlation coefficients, r). We draw our con-
clusions based upon model calibration and model generalization
that is known to account for increased model complexity (num-
ber of parameters) in novel test environments (Busemeyer and
Diederich, 2009).

Most current models of DFE have been successful at captur-
ing the risk-taking behavior, but not the underlying alternations
observed in repeated binary-choice; such as the tendency to repeat
choices irrespective of the obtained outcome in the last trial (Biele
et al., 2009). This observation is perhaps not a coincidence, because
predicting risk-taking behavior and alternation effects simultane-
ously is a very challenging task (Rapoport et al., 1997; Erev and
Barron, 2005; Estes and Maddox, 2005). In order to overcome
some of the challenges, a number of computational models have
considered the inclusion of some form of inertia with some initial
success (Erev et al., 2010a; Gonzalez and Dutt, 2011; Gonzalez
et al., 2011). As can be seen in our results, the random iner-
tia’s inclusion into the IBL model helps the model to account
for both the average A-rate and R-rate in terms of MSDs, MSEs,
and AICs, but not in terms of trends in these rates over trials.
Because random inertia accounts for the average A-rate and R-rate
in human data, it helps to reduce the observed under-estimation
and over-estimation of the observed R-rate and A-rate, respec-
tively, which is seen in the model without the inertia mechanism.
This finding might suggest that the inclusion of some form of
inertia into computational models might be ecologically plausible
for capturing the average risk-taking and alternation behaviors
more accurately, but not for the trend in these behaviors over
time.

Although the introduction of inertia into the IBL model gen-
erally improves the fits to the average human data (based upon
MSDs, MSEs, and AICs), it is likely that few modelers may
be impressed by this particular result. It is well-known that
a model with more parameters (i.e., greater model complex-
ity) can fit a dataset better than a model with fewer parame-
ters (Pitt and Myung, 2002). We dealt with this issue through
model generalization (Stone, 1977). The generalization helped
to test models with different parametric assumptions in a novel
environment (Busemeyer and Diederich, 2009). We used these
procedures and generalized the IBL and the IBL-Inertia mod-
els to the TPT’s competition dataset to compare their perfor-
mance.

Although the error across trials between IBL-Inertia model and
human data was smaller compared to that between IBL model and
human data; however, unlike the IBL model, the IBL-Inertia model
did not capture the trends in the R-rate and A-rate across trials.
The most likely reason is that the inertia parameter in its current
formulation is a noisy selection of choices across trials, which dis-
regards the choices derived based upon blended values. Gonzalez
et al. (2011) had assumed an inertia formulation that was based
upon surprise, where surprise was a function of the difference in
blended values of the two alternatives. Perhaps, if the inertia mech-
anism in the model is formulated as described by Gonzalez et al.
(2011), then the trends across trials might be better accounted for
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FIGURE 4 |The R-rate and A-rate over trials predicted by the IBL and IBL-Inertia models upon their generalization in the competition set. The R-rate and
A-rate observed in human data in the competition set are also shown.

compared to that based upon inertia’s current formulation. Over-
all, these observations indicate that there are many aspects still left
in the literature to explore. For example, it is unclear whether peo-
ple exhibit inertia after receiving both rewards and punishments.
Although inertia has been defined as the tendency to repeat the last
choice irrespective of the obtained outcomes (Biele et al., 2009),
it is clear that inertia needs to be defined more precisely. Some
researchers have argued inertia as an irrational behavior in which
individuals hold onto choices that clearly do not provide the max-
imizing outcome for too long (Sandri et al., 2010). Inertia has also
been portrayed as desirable, however, as it believed to be a key
component of love, trust, and friendship in the real world (Cook
et al., 2005). Even when we consider inertia as we defined it in this
paper, it may be the result of strong preferences for the high out-
comes or the result of an apparently irrational behavior of holding
on too long to non-maximizing (low) outcomes. As part of our
future research, we propose to define the reasons for inertia more
precisely by investigating its relationship with the exploration of
alternatives due to the nature of outcomes, high or low. One way
we may do this analysis is by controlling for the nature of rewards
or punishments received after a decision choice and by evaluating
its effects on repeating the last choice as the current decision. Also,
we would like to consider the alternation behaviors of individuals
depending upon the nature of rewards or punishments received
by them in the last trial.

Finally, as part of future research, we would also like to compare
the different formulations of inertia in computational models of
DFE. As detailed above, there have been at least three different
inertia formulations proposed: A random variation across trials
(Gonzalez and Dutt, 2011), a function of surprise determined by
the difference in expected values (Erev et al., 2010a), and a func-
tion of surprise determined by the differences in blended values
(Gonzalez et al., 2011). Which one of these formulations performs
best in different DFE tasks? How well do these different formula-
tions account for the over trial trends in the R-rates and A-rates?
Still, how are these formulations impacted by task complexity: by
the nature and number of outcomes on each alternative, and the
nature of the probability distribution of outcomes on each alter-
native? These are also some important questions that we would
like to attend to as part of future research.
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APPENDIX
IBL MODEL EQUATIONS
Inertia mechanism
A choice is made in the model in trial t + 1 as:
If

The draw of a random value in the uniform distribution U (0,
1)< pInertia,
Then

Repeat the choice as made in the previous trial
Else

Select an alternative with the highest blended value as per

Eq. A2 (below) (A1)

The pInertia parameter could vary between 0 and 1, and it does
not change across trials or participants.

Blending and activation mechanisms
The blended value of alternative j is defined as

Vj =
n∑

i=1

pixi (A2)

Where xi is the value of the observed outcome in the outcome slot
of an instance i corresponding to the alternative j, and pi is the
probability of that instance’s retrieval from memory (for the case
of our binary-choice task in the experience condition, the value
of j in Eq. A2 could be either risky or safe). The blended value of
an alternative is the sum of all observed outcomes xi in the out-
come slot of corresponding instances, weighted by the instances’
probability of retrieval.

Probability of retrieving instances
In any trial t, the probability of retrieving instance i from memory
is a function of that instance’s activation relative to the activation
of all other instances corresponding to that alternative, given by

pi,t = e
Ai,t/τ∑
j eAj ,t/τ

(A3)

Where τ is random noise defined as s × √
2, and s is a free noise

parameter. The noise parameter s captures the imprecision of
retrieving instances from memory.

Activation of instances
The activation of each instance in memory depends upon the
activation mechanism originally proposed in ACT-R (Anderson
and Lebiere, 2003). According to this mechanism, for each trial t,
activation Ai,t of instance is:

Ai,t = ln

⎛
⎝ ∑

ti∈{1,...,t−1}
(t − ti)

−d

⎞
⎠+ s × 1n

(
1 − γi,t

γi,t

)
(A4)

Where d is a free decay parameter, and ti is a previous trial
when the instance i was created or its activation was reinforced
due to an outcome observed in the task (the instance i is the
one that has the observed outcome as the value in its out-
come slot). The summation will include a number of terms
that coincides with the number of times an outcome has been
observed in previous trials and the corresponding instance i’s
activation that has been reinforced in memory (by encoding a
timestamp of the trial ti). Therefore, the activation of an instance
corresponding to an observed outcome increases with the fre-
quency of observation and with the recency of those observa-
tions. The decay parameter d affects the activation of an instance
directly, as it captures the rate of forgetting or reliance on
recency.

Noise in activation
The γi,t term is a random draw from a uniform distribution U (0,
1), and the s×ln ( 1−γi.t

γi,t
) term represents Gaussian noise important

for capturing the variability of human behavior.

Definition of Akaike information criterion

AIC = G2 + 2∗k (A5)

G2 =t∗ ln
SSE

t
(A6)

SSE =
t∑

i=1

(
xmodel,i − xhuman,i

)2
(A7)

Where, G2 is defined as the lack of fit between model and human
data (Gonzalez and Dutt, 2011). Furthermore, the xmodel,i and
xhuman,i refer to the average dependent measure (e.g., average R-
rate or A-rate) in the model and human data over t trials of a
task (t = 100 for the R-rate and t = 99 for the A-rate). The aver-
age in the dependent measure (R-rate or A-rate) has been taken
over all problems and participants. The SSE is the sum of squared
errors between human and model datasets that is calculated for the
average dependent measure (A-rate or R-rate). The mean-squared
error (MSE) is defined as SSE/100 for the R-rate measure and
SSE/99 for the A-rate measure. The t is the number of trials in the
task, and k is the number of parameters in the model. The AIC
in its formulation incorporates both the effect of an MSD (the G2

term) as well as the number of free parameters in a model (the
2 ∗ k term). The smaller the value of AIC, the better the respective
model is.
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The pre-decisional process of hypothesis generation is a ubiquitous cognitive faculty that
we continually employ in an effort to understand our environment and thereby support
appropriate judgments and decisions. Although we are beginning to understand the funda-
mental processes underlying hypothesis generation, little is known about how various
temporal dynamics, inherent in real world generation tasks, influence the retrieval of
hypotheses from long-term memory. This paper presents two experiments investigating
three data acquisition dynamics in a simulated medical diagnosis task.The results indicate
that the mere serial order of data, data consistency (with previously generated hypothe-
ses), and mode of responding influence the hypothesis generation process. An extension
of the HyGene computational model endowed with dynamic data acquisition processes is
forwarded and explored to provide an account of the present data.

Keywords: hypothesis generation, temporal dynamics, working memory, information acquisition, decision making

Hypothesis generation is a pre-decisional process by which we
formulate explanations and beliefs regarding the occurrences we
observe in our environment. The hypotheses we generate from
long-term memory (LTM) bring structure to many of the ill-
structured decision making tasks we commonly encounter. As
such, hypothesis generation represents a fundamental and ubiqui-
tous cognitive faculty on which we constantly rely in our day-to-
day lives. Given the regularity with which we employ this process,
it is no surprise that hypothesis generation forms a core compo-
nent of several professions. Auditors, for instance, must gener-
ate hypotheses regarding abnormal financial patterns, mechanics
must generate hypotheses concerning car failure, and intelligence
analysts must interpret the information they receive. Perhaps the
clearest example, however, is that of medical diagnosis. A physi-
cian observes a pattern of symptoms presented by a patient (i.e.,
data) and uses this information to generate likely diagnoses (i.e.,
hypotheses) in an effort to explain the patient’s presenting symp-
toms. Given these examples, the importance of developing a full
understanding of the processes underlying hypothesis genera-
tion is clear, as the consequences of impoverished or inaccurate
hypothesis generation can be injurious.

Issues of temporality pervade hypothesis generation and its
underlying information acquisition processes. Hypothesis gener-
ation is a task situated at the confluence of external environmental
dynamics and internal cognitive dynamics. External dynamics in
the environment dictate the manifestation of the information we
acquire and use as cues to retrieve likely hypotheses from LTM.
Internal cognitive dynamics then determine how this information
is used in service of the generation process and how the result-
ing hypotheses are maintained over the further course of time as

judgments and decisions are rendered. Additionally, these further
internal processes are influenced by and interact with the ongoing
environmental dynamics as new information is acquired. These
complicated interactions govern the beliefs (i.e., hypotheses) we
entertain over time. It is likely that these factors interact in such a
manner that would cause the data acquisition process to deviate
from normative prescriptions.

Important to the present work is the fact that data acquisition
generally occurs serially over some span of time. This, in turn,
dictates that individual pieces of data are acquired in some relative
temporal relation to one another. These constraints, individual
data acquisition over time and the relative ordering of data, are
likely to have significant consequences for hypothesis generation
processes. Given these basic constraints, it is intuitive that tem-
poral dynamics must form an integral part of any comprehensive
account of hypothesis generation processes. At present there exists
only a scant amount of data concerning the temporal dynamics
of hypothesis generation. Thus, the influences of the constraints
operating over these processes are not yet well understood. Until
such influences are addressed more deeply at an empirical and
theoretical level, a full understanding of hypothesis generation
processes will remain speculative.

The empirical paradigm used in the following experiments is
a simulated diagnosis task comprised of two main phases. The
first phase represents a form of category learning in which the
participant learns the conditional probabilities of medical symp-
toms (i.e., data) and fictitious diseases (i.e., hypotheses), from
experience over time by observing a large sample of hypotheti-
cal pre-diagnosed patients. The second phase of the task involves
presenting symptoms to the participant whose task it is to generate
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(i.e., retrieve) likely disease states from memory. At a broader level,
such experiments involving a learning phase followed by a decision
making phase have been utilized widely in previous experiments
(e.g., McKenzie, 1998; Cooper et al., 2003; Nelson et al., 2010;
Sprenger and Dougherty, 2012). In the to-be-presented experi-
ments, we presented the symptoms sequentially and manipulated
the symptom’s sequence structures in the“decision making phase.”
As the data acquisition unfolds over time, the results of these
experiments provide insight into the dynamic data acquisition
and hypothesis generation processes operating over time that are
important for computational models.

In this paper, we present a novel extension of an existing
computational model of hypothesis generation. This extension
is designed to capture the working memory dynamics operating
during data acquisition and how these factors contribute to the
process of hypothesis generation. Additionally, two experiments
exploring three questions of interest to dynamic hypothesis gen-
eration are described whose results are captured by this model.
Experiment 1 utilized an adapted generalized order effects par-
adigm to assess how the serial position of an informative piece
of information (i.e., a diagnostic datum), amongst uninformative
information (i.e., non-diagnostic data), influences its contribu-
tion to the generation process. Experiment 2 investigated (1)
how the acquisition of data inconsistent with previously gener-
ated hypotheses influences further generation and maintenance
processes and (2) if generation behavior differs when it is based
on the acquisition of a set of data vs. when those same pieces
of data are acquired in isolation and generation is carried out
successively as each datum is acquired. This distinction under-
scores different scenarios in which it is advantageous to main-
tain previously acquired data vs. previously generated hypotheses
over time.

HYGENE: A COMPUTATIONAL MODEL OF HYPOTHESIS
GENERATION
HyGene (Thomas et al., 2008; Dougherty et al., 2010), short for
hypothesis generation, is a computational architecture addressing
hypothesis generation,evaluation,and testing. This framework has
provided a useful account through which to understand the cog-
nitive mechanisms underlying these processes. This process model
is presented in Figure 1.

HyGene rests upon three core principles. First, as underscored
by the above examples, it is assumed that hypothesis generation
represents a generalized case of cued recall. That is, the data
observed in the environment (Dobs), which one would like to
explain, act as cues prompting the retrieval of hypotheses from
LTM. For instance, when a physician examines a patient, he/she
uses the symptoms expressed by the patient as cues to related
experiences stored in LTM. These cues activate a subset of related
memories from which hypotheses are retrieved. These retrieval
processes are indicated in Steps 1, 2, and 3 shown in Figure 1.
Step 1 represents the environmental data being matched against
episodic memory. In step 2, the instances in episodic memory that
are highly activated by the environmental data contribute to the
extraction of an unspecified probe representing a prototype of these
highly activated episodic instances. This probe is then matched
against all known hypotheses in semantic memory as indicated in

Step 3. Hypotheses are then sampled into working memory based
on their activations resulting from this semantic memory match.

As viable hypotheses are retrieved from LTM, they are placed
in the Set of Leading Contenders (SOC) as demonstrated in Step
4. The SOC represents HyGene’s working memory construct to
which HyGene’s second principle applies. The second principle
holds that the number of hypotheses that can be maintained at one
time is constrained by cognitive limitations (e.g., working mem-
ory capacity) as well as task characteristics (e.g., divided attention,
time pressure). Accordingly, the more working memory resources
that one has available to devote to the generation and maintenance
of hypotheses, the greater the number of additional hypotheses can
be placed in the SOC. Working memory capacity places an upper
bound on the amount of hypotheses and data that one will be able
to maintain at any point in time. In many circumstances, however,
attention will be divided by a secondary task. Under such condi-
tions this upper bound is reduced as the alternative task siphons
resource that would otherwise allow the population of the SOC
to its unencumbered capacity (Dougherty and Hunter, 2003a,b;
Sprenger and Dougherty, 2006; Sprenger et al., 2011).

The third principle states that the hypotheses maintained in
the SOC form the basis from which probability judgments are
derived and provide the basis from which hypothesis testing is
implemented. This principle underscores the function of hypoth-
esis generation as a pre-decisional process underlying higher-level
decision making tasks. The tradition of much of the prior research
on probability judgment and hypothesis testing has been to pro-
vide the participant with the options to be judged or tested.
HyGene highlights this as somewhat limiting the scope of the con-
clusions drawn from such procedures, as decision makers in real
world tasks must generally generate the to-be-evaluated hypothe-
ses themselves. As these higher-level tasks are contingent upon
the output of the hypothesis generation process, any conclusions
drawn from such experimenter-provided tasks are likely limited
to such conditions.

HYPOTHESIS GENERATION PROCESSES IN HYGENE
The representation used by HyGene was borrowed from the
multiple-trace global matching memory model MINERVA II
(Hintzman, 1986, 1988) and the decision making model
MINERVA-DM (Dougherty et al., 1999)1. Memory traces are rep-
resented in the model as a series of concatenated minivectors
arbitrarily consisting of 1, 0, and−1 s where each minivector rep-
resents either a hypothesis or a piece of data (i.e., a feature of
the memory). Separate episodic and semantic memory stores are
present in HyGene which are made up of separate instances of
such concatenated feature minivectors. While semantic memory
contains prototypes of each disease, episodic memory contains
individual traces for every experience the model acquires.

Retrieval is initiated when Dobs are matched against each of
data minivectors in episodic LTM. This returns an LTM activa-
tion value for each trace in episodic LTM whereby greater overlap
of features present in the trace and present in the Dobs results
in greater activation. A threshold is applied to these episodic

1For a more thorough treatment of HyGene’s computational architecture please see
Thomas et al. (2008) or Dougherty et al. (2010).
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FIGURE 1 | Flow diagram of the HyGene model of hypothesis
generation, judgment, and testing. As, semantic activation of retrieved
hypothesis; ActMinH, minimum semantic activation criterion for placement

of hypothesis in SOC; T, total number of retrieval failures; and K max,
number of retrieval failures allowed before terminating hypothesis
generation.

activation values such that only traces with long-term episodic
activation values exceeding this threshold contribute to additional
processing in the model. A prototype is extracted from this sub-
set of traces which is then used as a cue to semantic memory for
the retrieval of hypotheses. We refer to this cue as the unspecified
probe. This unspecified probe is matched against all hypotheses
in semantic memory which returns an activation value for each
known hypothesis. The activation values for each hypothesis serve
as input into retrieval through sampling via Luce’s choice rule.
Generation proceeds in this way until a stopping rule is reached
based on the total number of resamples of previously generated
hypotheses (i.e., retrieval failures).

In its current form, the HyGene model is static with regards to
data acquisition and utilization. The model receives all available
data from the environment simultaneously and engages in only a
single iteration of hypothesis generation. Given the static nature of
the model, each piece of data used to cue LTM contributes equally
to the recall process. Based on effects observed in related domains,
however, it seems reasonable to suspect that all available data do
not contribute equally in hypothesis generation tasks. For exam-
ple, Anderson (1965), for instance, observed primacy weightings
in an impression formation task in which attributes describing
a person were revealed sequentially. Moreover, recent work has
demonstrated biases in the serial position of data used to support
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hypothesis generation tasks (Sprenger and Dougherty, 2012). By
ignoring differential use of available data in the generation process,
HyGene, as previously implemented, ignores temporal dynam-
ics influencing hypothesis generation tasks. In our view, what is
needed is an understanding of working memory dynamics as data
acquisition, hypothesis generation, and maintenance processes
unfold and evolve over time in hypothesis generation tasks.

DYNAMIC WORKING MEMORY BUFFER OF THE
CONTEXT-ACTIVATION MODEL
The context-activation model of memory (Davelaar et al., 2005)
is one of the most comprehensive models of memory recall to
date. It is a dual-trace model of list memory accounting for a large
set of data from various recall paradigms. Integral to the model’s
behavior are the activation-based working memory dynamics of
its buffer. The working memory buffer of the model dictates that
the activations of the items in working memory systematically
fluctuate over time as the result of competing processes described
by Eq. 1.

xi (t + 1) = λxi (t )+ (1− λ) {αF [xi (t )] + Ii (t )

− β
∑
j 6=i

F [xj (t )] + N (0, σ)} (1)

Equation 1: activation calculation of the context-activation model

The activation level of each item, x i, is determined by the item’s
activation on the previous time step, self-recurrent excitation that
each item recycles onto itself α, inhibition from the other active
items β, and zero-mean Gaussian noise N with standard devia-
tion σ. Lastly, λ is the Euler integration constant that discretizes
the differential equation. Note, however, that as this equation is
applied in the present model, noise was only applied to an item’s
activation value once it was presented to the model2.

Figure 2 illustrates the interplay between the competitive buffer
dynamics in a noiseless run of the buffer when four pieces of data
have been presented to the model successively. The activation of
each datum rises as it is presented to the model and its bottom-up
sensory input contributes to the activation. These activations are
then dampened in the absence of bottom-up input as inhibition
from the other items drive activation down. Self-recurrency can
keep an item in the buffer in the absence of bottom-up input,
but this ability is in proportion to the amount of competition
from other items in the buffer. The line at 0.2 represents the
model’s working memory threshold. In the combined dynamic
HyGene model (utilizing the dynamics of the buffer to determine
the weights of the data) this WM threshold separates data that are
available to contribute to generation (>0.2) from those that will
not (<0.2). That is, if a piece of data’s activation is greater than
this threshold at the time of generation then it contributes to the
retrieval of hypotheses from LTM and is weighted by its amount

2This was done from the pragmatic view that the buffer cannot apply noise to an
item representation that does not yet exist in the environment or in the system. A
full and systematic analysis of how this assumption affects the behavior of the buffer
has not been carried out as of yet, but in the context of the current simulations
preliminary analysis suggests that this change affects the activation values produced
by the buffer only slightly.

FIGURE 2 | Noiseless activation trajectories for four sequentially
received data in the dynamic activation-based buffer. Each item
presented to the buffer for 1500 iterations. F (x )=memory activation.

of activation. However, if, on the other hand, a piece of data falls
below the WM threshold then it is weighted zero and as a result
does not contribute to the hypothesis retrieval.

The activations of individual items are sensitive the amount of
recurrency (alpha) and inhibition (beta) operating in the buffer.
Figure 3 demonstrates differential sensitivity to values of alpha
and beta by item presentation serial position (1 through 4 in this
case). This plot was generated by running the working memory
buffer across a range of alpha and beta values for 50 runs at each
parameter combination. Each panel presents the activation of an
item in a four-item sequence after the final item has been pre-
sented. The activation levels vary with serial position, as shown by
the differences among the four panels and with the value of the
alpha and beta parameters, as shown within each panel. It can be
seen that items one and two are mainly sensitive to the value of
alpha. As alpha is increased, these items are more likely to main-
tain high activation values at the end of the data presentation. Item
three demonstrates a similar pattern under low values of beta, but
under higher values of beta this item only achieves modest activa-
tion as it cannot overcome the strong competition exerted by item
one and two. Item four demonstrates a pattern distinct from the
others. Like the previous three items the value of alpha limits the
influence of beta up to a certain point. At moderate to high values
of alpha, however, beta has a large impact on the activation value
of the fourth item. At very low values of beta (under high alpha)
this item is able to attain high activation, but quickly moves to very
low activation values with modest increases in beta. These modest
increases in beta are enough to make the competition from the
three preceding items severe enough that the fourth item cannot
overcome it.

Taken as a whole, these plots describe differences in the activa-
tion gradients (profiles of activation across all four items) taken on
by the buffer across various values of alpha and beta. For instance,
the stars in the plot represent two different settings of alpha and
beta which result in different activation gradients across the items.
The settings of alpha= 2 and beta= 0.2 represented by the white
stars, for instance, represent an instance of recency in the item
activations. That is, the earlier items have only slight activation,
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FIGURE 3 | Contour plot displaying activation values of four items at end of data presentation across a range of Beta (X axes) and Alpha (Y axes)
demonstrating differences in activation weight gradients produced by the working memory buffer.

the third item modest activation, and the last item is highly active
relative to the others. Tracing the activations across the settings of
alpha= 3 and beta= 0.4 represented by the yellow stars, on the
other hand, shows a primacy gradient in which the earlier items
are highly active, item three is less so, and the last item’s activa-
tion is very low. As will be seen, this pattern of activation values
across different values of alpha and beta will become important
for the computational account of Experiment 2. At a broader level,
however, this plot shows possible activation gradients that can be
obtained with the working memory buffer. In general, the acti-
vation gradients produce recency, but primacy gradients are also
possible. Additionally, there are patterns of activation across items
that the buffer cannot produce. For instance an inverted U shape
of item activations would not result from the buffer’s processes.

These dynamics are theoretically meaningful as they produce
data patterns which item-based working memory buffers (e.g.,
SAM; Raaijmakers and Shiffrin, 1981) cannot account for. For
example, the buffer dynamics of the context-activation model dic-
tate that items presented early in a sequence will remain high
in activation (i.e., remain in working memory) under fast pre-
sentation rates. That is, under fast presentation rates the model
predicts a primacy effect. Such effects have been observed in cued
recall (Davelaar et al., 2005), free recall (Usher et al., 2008), and
in a hypothesis generation task (Lange et al., 2012). Given these
findings and the unique ability of the activation-based buffer to
account for these effects, we have selected the activation-based
buffer as our starting point for endowing the HyGene model with
dynamic data acquisition processes.

A DYNAMIC MODEL OF HYPOTHESIS GENERATION:
ENDOWING HYGENE WITH DYNAMIC DATA ACQUISITION
The competitive working memory processes of the context-
activation model’s dynamic buffer provide a principled means
for incorporating fine-grained temporal dynamics into currently
static portions of HyGene. As a first step in incorporating the
dynamic working memory processes of the working memory
buffer, we use the buffer as a means to endow HyGene with

dynamic data acquisition. In so doing, the HyGene architecture
gains two main advantages. As pointed out by Sprenger and
Dougherty (2012), any model of hypothesis generation seeking
to account for situations in which data are presented sequentially
needs a means of weighting the contribution of individual data.
In using the buffer’s output as weights on the generation process
we provide such a weighting mechanism. Additionally, as a nat-
ural consequence of utilizing the buffer to provide weights on
data observed in the environment, working memory capacity con-
straints are imposed on the amount of data that can contribute to
the generation process. As data acquisition was not a focus of the
original instantiation of HyGene, capacity limitations in this part
of the generation process were not addressed. However, recent data
suggest that capacity constraints operating over data acquisition
influence hypothesis generation (Lange et al., 2012). Lastly, at a less
pragmatic level, this integration provides insight into the work-
ing memory dynamics unfolding throughout the data acquisition
period thereby providing a window into processing occurring over
this previously unmodeled epoch of the hypothesis generation
process.

In order to endow HyGene with dynamic data acquisition, each
run of the model begins with the context-activation model being
sequentially presented with a series of items. In the context of
this model these items are the environmental data the model has
observed. The activation values for each piece of data at the end
of the data acquisition period are then used as the weights on the
generation process. A working memory threshold is imposed on
the data activations such that data with activations falling below
0.2 are weighted with a zero rather than their actual activation
value3. Specifically, the global memory match performed between
the current Dobs and episodic memory in HyGene is weighted by
the individual item activations in the dynamic working memory
buffer (with the application of the working memory threshold).

3This working memory threshold has been carried over from the context-activation
model as it proved valuable for that model’s account of data from a host of list recall
paradigms (Davelaar et al., 2005).
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As each trace in HyGene’s episodic memory is made up of concate-
nated minivectors, each representing a particular data feature (e.g.,
fever vs. normal temperature), this weighting is applied in a feature
by feature manner in the global matching process. From this point
on in the model everything operates in accordance with the origi-
nal instantiation of HyGene. That is, a subset of the highly activated
traces in episodic memory is then used as the basis for the extrac-
tion of the unspecified probe. This probe is then matched against
semantic memory from which hypotheses are serially retrieved
into working memory for further processing.

In order to demonstrate how the integrated dynamic HyGene
model responds to variation in the buffer dynamics a simulation
was run in which alpha and beta were manipulated at the two levels
highlighted above in Figure 3. In this simulation, the model was
sequentially presented with four pieces of data. Only one of these
pieces of data was diagnostic whereas the remaining three were
completely non-diagnostic. An additional independent variable
in this simulation was the serial position in which the diagnos-
tic piece of data was placed. Displayed in Figure 4 is the model’s
generation of the most likely hypothesis (i.e., the hypothesis sug-
gested by the diagnostic piece of data) across that data’s serial
position plotted by the two levels of alpha (recurrent activation)
and beta (global lateral inhibition). What this plot demonstrates,
in effect, is how the contribution of each data’s serial position to
the model’s generation process is influenced by alpha and beta. As
displayed on the left side of the plot, at the lower value of alpha
there are clear recency effects. This is due to the buffer dynam-
ics which under these settings predict an “early in – early out”
cycling of items through the buffer as shown in Figure 2. The
recency effects emerge as earlier data are less likely to reside in
the buffer at the time of generation than later data. It should be
noted that these parameters (alpha= 2, beta= 0.2) have been used
in previous work accounting for the data from multiple list recall
paradigms (Davelaar et al., 2005). By means of preview, we utilize
the model’s prediction of recency under these standard parameter
settings in guiding our expectations and the implementation of
Experiment 1.

FIGURE 4 | Influence of data serial position on the hypothesis
generation behavior of the dynamic HyGene model at two levels of
alpha and beta (and the performance of an equal weighted model in
blue). Data plotted represents the proportion of simulation runs on which
the most likely hypothesis was generated.

Under the higher value of alpha however, recency does not
obtain. In this case, the serial position function flattens substan-
tially as the increased recurrency allows more items to be available
to contribute to generation at the end of the sequential data pre-
sentation. That is, even when the diagnostic datum appears early,
it is maintained long enough in the buffer to be incorporated into
the cue to episodic memory. Under the higher value of beta, we
see this flattening out transition to a mild primacy gradient. This
results from the increased inhibition making it more difficult for
the later items to gain enough activation in working memory to
contribute to the retrieval process. The greater amount of inhi-
bition essentially renders the later items uncompetitive as they
face more competition than they are able, in general, to overcome.
Figure 4 additionally plots a line in blue demonstrating the gen-
eration level of the static HyGene model in which, rather than
utilizing the weights produced by the buffer, each piece of data
was weighted equally with a value of one. It can be seen that this
line of performance is intermediate under low alpha, but some-
what consistent with the high alpha condition in which more data
contribute to the generation process more regularly.

EXPERIMENT 1: DATA SERIAL POSITION
Order effects are pervasive in investigations of memory and deci-
sion making (Murdock, 1962; Weiss and Anderson, 1969; Hogarth
and Einhorn, 1992; Page and Norris, 1998). Such effects have
even been obtained in a hypothesis generation task specifically.
Although observed under different conditions than addressed by
the present experiment, Sprenger and Dougherty, 2012, Experi-
ments 1 and 3) found that people sometimes tend to generate
hypotheses suggested by more recent cues.

The generalized order effect paradigm was developed by Ander-
son (1965, 1973) and couched within the algebra of information
integration theory to derive weight estimates for individual pieces
of information presented in impression formation tasks (e.g.,
adjectives describing a person). This procedure involved embed-
ding a fixed list of information with a critical piece of information
at various serial positions. The differences in the serial position
occupied by the piece of critical information thus defined the
independent variable, and given that all other information was
held constant between conditions, the differences in final judg-
ment were attributable to this difference in serial position. The
present experiment represents an adaptation of this paradigm to
assess the impact of data serial position on hypothesis generation.

METHOD
Participants
Seventy-two participants from the University of Oklahoma par-
ticipated in this experiment for course credit.

Design and procedure
The design of Experiment 1 was a one-way within-subjects design
with symptom order as the independent variable. The statistical
ecology for this experiment, as defined by the conditional prob-
abilities between the various diseases and symptoms, is shown
in Table 1. Each of the values appearing in this table represents
the probability that the symptom will be positive (e.g., fever)
given the disease [where the complementary probability repre-
sents the probability of the symptom being negative (e.g., normal
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temperature) given the disease]. The only diagnostic (i.e., infor-
mative) symptom is S1 whereas the remaining symptoms, S2–S4,
are non-diagnostic (uninformative).

Table 2 displays the four symptom orders. Each of these orders
was identical (S2→ S3→ S4) except for the position of S1 within
them. All participants received and judged all four symptom
orders.

There were three main phases to the experiment, an exemplar
training phase to learn the contingencies displayed in Table 1,
a learning test to allow discrimination of participants that had
learned in the training from those that had not, and an elicitation
phase in which the symptom order manipulation was applied in a
diagnosis task in which the patient’s symptoms were presented
sequentially. The procedure began with the exemplar training
phase in which a series of hypothetical pre-diagnosed patients was
presented to the participant in order for them to learn, through
experience, the contingencies between the diseases and symptoms.
Each of these patients was represented by a diagnosis at the top of
the screen and a series of test results (i.e., symptoms) pertaining
to the columns of S1, S2, S3, and S4 as can be seen in the example
displayed by Figure 5.

Each participant saw 50 exemplars of each disease for a total of
150 exemplars, thus making the base rates of the diseases equal.
The specific results of these tests respected the probabilities in
Table 1. The exemplars were drawn in blocks of 10 in which the
symptoms would be drawn from the fixed distribution of symp-
tom states given that disease. These symptom states were sampled
independently without replacement from exemplar to exemplar.
Therefore over the 10 exemplars presented in each individual dis-
ease block, the symptoms observed by the participant perfectly
represented the distribution of symptoms for that disease. The

Table 1 | Disease×Symptom ecology of Experiment 1.

Symptoms

S1 S2 S3 S4

Diseases D1: Metalytis 0.8 0.6 0.6 0.6

D2: Zymosis 0.2 0.6 0.6 0.6

D3: Gwaronia 0.2 0.6 0.6 0.6

Values represent the probability of the symptom being positive (i.e., present)

given the disease state. S1 was the only diagnostic symptom as indicated by the

values in gray.

Table 2 | Symptom presentation orders used in Experiment 1.

→Presentation position→

1 2 3 4

Order 1 S1 S2 S3 S4

Order 2 S2 S1 S3 S4

Order 3 S2 S3 S1 S4

Order 4 S2 S3 S4 S1

The diagnostic symptom, S1, appeared in different serial positions within each

cue order condition as indicated in bold.

FIGURE 5 | Example exemplar used in Experiment 1.

disease blocks were randomly sampled without replacement which
was repeated after the third disease block was presented. Thus, over
the course of training the participants were repeatedly presented
with the exact probabilities displayed in Table 1. Each exemplar
appeared on the screen for a minimum of 5000 ms at which point
they could continue studying the current exemplar or advance to
the next exemplar by entering (on the keyboard) the first letter
of the current disease exemplar. This optional prolonged study-
ing made the training pseudo-self-paced. Prior to beginning the
exemplar training phase, the participants were informed that they
had an opportunity to earn a $5.00 gift card to Wal-Mart if they
performed well enough in the task.

The diagnosis test phase directly followed exemplar training.
This test was included to allow discrimination of participants
that learned the contingencies between the symptoms and the
diseases in the training phase4. The participants were presented
with the symptoms of a series of 12 patients (four of each disease)
as defined principally by the presence or absence of S1. That is,
four of the patients had S1 present (suffering from Metalytis) and
the remaining eight had S1 absent (four suffering from Zymosis
and four suffering from Gwaronia). The remaining symptoms for
the four patients of each disease were the same across the three
diseases. On one patient these symptoms were all positive. On
the remaining three patients one of these symptoms (S2, S3, S4)
was selected without replacement to be absent while the other two
were present. Note that as S2, S3, and S4 were completely non-
diagnostic as the presence or absence of their symptoms does not
influence the likelihood of the disease state. The disease likelihood
is completely dependent on the state of S1. The symptoms of each
of the patients were presented simultaneously on a single screen.
The participants’ task was to correctly diagnose the patients with
the disease of greatest posterior probability given their presenting
symptoms. No feedback on this test performance was provided.
As only S1 was diagnostic, the participants’ scores on this test were
tallied based on their correct discrimination of each patient as
Metalytis vs. Gwaronia or Zymosis. There were 12 test patients in
this diagnosis test. If the participant scored greater than 60% on

4Previous investigations in our lab utilizing exemplar training tasks have demon-
strated variation in conclusions drawn from results conditionalized on such learning
data against entire non-conditionalized data set. Therefore including this learning
test allows us a check on the presence of such discrepancies in addition to obtain-
ing data that may inform how greater or lesser learning influences the generation
process.
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a diagnosis test they were awarded the gift card at the end of the
experiment5. Prior to the end of the experiment, the participants
were not informed of their performance on the diagnosis test. The
participant then completed a series of arithmetic distracters in
order to clear working memory of information processed during
the diagnosis test phase. The distracter task consisted of a series of
15 arithmetic equations for which the correctness or incorrectness
was to be reported (e.g., 15/3+ 2= 7? Correct or Incorrect?). This
distracter task was self-paced.

The elicitation phase then proceeded. First, the diagnosis task
was described to the participants as follows: “You will now be pre-
sented with additional patients that need to be diagnosed. Each
symptom of the patient will be presented one at a time. Following
the last symptom you will be asked to diagnose the patient based
on their symptoms. Keep in mind that sometimes the symptoms
will help you narrow down the list of likely diagnoses to a single
disease and other times the symptoms may not help you narrow
down the list of likely diagnoses at all. It is up to you to determine
if the patient is likely to be suffering from 1 disease, 2 diseases, or
all 3 diseases. When you input your response make sure that you
respond with the most likely disease first. You will then be asked if
you think there is another likely disease. If you think so then you
will enter the next most likely disease second. If you do not think
there is another likely disease then just hit the Spacebar. You will
then have the option to enter a third disease or hit the Spacebar
in the same manner. To input the diseases you will use the first
letter of the disease, just as you have been during the training and
previous test.”

The participant was then presented with the first patient
and triggered the onset of the stream of symptoms themselves
when they were ready. Each of the four symptoms was presented
individually for 1.5 s with a 250 ms interstimulus interval fol-
lowing each symptom. The order in which the symptoms were
presented was determined by the order condition as shown in
Table 2. Additionally, all of the patient symptoms presented in
this phase positive (i.e., present, as the values in Table 2 rep-
resent the likelihood of the symptoms being present given the
disease state). The Bayesian posterior probability of D1 was 0.67
whereas the posterior probability of either D2 or D3 was 0.17.
Following the presentation of the last symptom the participant
responded to two sets of prompts: the diagnosis prompts (as pre-
viously described in the instructions to the participants) and a
single probability judgment of their highest ranked diagnosis.
The probability judgment was elicited with the following prompt:
“If you were presented 100 patients with the symptoms of the
patient you just observed how many would have [INSERT HIGH-
EST RANKED DISEASE]?” The participant was then presented
with the remaining symptom orders in the same manner with
distracter tasks intervening between each trial. The first order
received by each participant was randomized between participants
and the sequence of the remaining three orders was randomized
within participants. Eighteen participants received each symptom
order first.

5Thirty-five participants (48%) exceeded this 60% criterion.

Hypotheses and predictions
A recency effect was predicted on the grounds that more recent
cues would be more active in working memory and contribute
to the hypothesis generation process to a greater degree than less
recent cues. Given that the activation of the diagnostic symptom
(S1) in working memory at the time of generation was predicted to
increase in correspondence with its serial position, increases in the
generation of Metalytis were predicted to be observed with greater
recency of S1. As suggested by Figure 2, the context-activation
model, under parameters based on previous work in list recall
paradigms (Davelaar et al., 2005) predicts this generally recency
effect as later items are more often more active in memory at the
end of list presentation. Correspondingly, decreases in the gener-
ation of the alternatives to Metalytis were expected with increases
in the serial position of S1. This prediction stems directly from the
buffer activation dynamics of the context-activation model.

RESULTS
The main DV for the analyses was the discrete generation vs. non-
generation of Metalytis as the most likely disease (i.e., first disease
generated). All participants were included in the analyses regard-
less of performance in the diagnosis test phase and there were no
differences in results based on learning. Carry-over effects were
evident as demonstrated by a significant interaction between order
condition and trial, χ2(3)= 12.68, p < 0.0166. In light of this, only
the data from the first trial for each participant was subjected to
further analysis as it was assumed that this was the only uncontam-
inated trial for each subject. Nominal logistic regression was used
to examine the effect of data serial position on the generation of
Metalytis (the disease with the greatest posterior probability given
the data). A logistic regression contrast test demonstrated a trend
for the generation of Metalytis as it was more often generated
as the most likely hypothesis with increases in the serial posi-
tion of the diagnostic data, χ2(1)= 4.32, p < 0.05. The number
of hypotheses generated between order conditions did not differ,
F(3,68)= 0.567, p= 0.64, η2

p = 0.02, ranging from an average of
1.67–1.89 hypotheses. There were no differences in the probabil-
ity judgments of Metalytis as a function of data order when it was
generated as the most likely hypothesis (with group means ranging
from 56.00 to 67.13), F(3,33)= 0.66, p= 0.58, η2

p = 0.06.

SIMULATING EXPERIMENT 1
To simulate Experiment 1, the model’s episodic memory was
endowed with the Disease-Symptom contingencies described in
Table 1. On each trial, each symptom was presented to the buffer
for 1500 iterations (mapping onto the presentation duration of
1500 ms) and the order of the symptoms was manipulated to
match the symptom orders used in the experiment. 1000 itera-
tions of the entire simulation were run for each condition7. The

6This carry-over effect was not entirely surprising as the same symptom states
were presented for every patient and our manipulation of serial order was likely
transparent on later trials.
7The parameters used for this simulation were the following. Original HyGene
parameters: L= 0.85,Ac= 0.1, Phi= 4, KMAX= 8. Context-activation model para-
meters: Alpha= 2.0, Beta= 0.2, Lambda= 0.98, Delta= 1. Note, these parameters
were based on values utilized in previous work and were not chosen based on fitting
the model to the current data.
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primary model output of interest was the first hypothesis gener-
ated on each trial. As is demonstrated in Figure 6, the model is
able to capture the qualitative trend in the empirical data quite
well. Although the rate of generation is slightly less for the model,
the model clearly captures the recency trend as observed in the
empirical data. Increased generation of the most likely hypothesis
corresponded to the recency of the diagnostic datum. This effect is
directly attributable to the buffer activation weights being applied
to the generation process. Although Figure 10 will become more
pertinent later, the left hand side of this figure demonstrates the
recency gradient in the data activation weights produced by the
model under these parameter settings. Inspection of the average
weights for the first two data acquired show them to be below the
working memory threshold of 0.2. Therefore, on a large propor-
tion of trials the model relied on only the third and fourth piece of
data (or just the last piece). This explains why the model performs
around chance under the first two data orders and only deviates
under orders three and four. Additionally, it should be noted that
the model could provide a suitable quantitative fit to the empir-
ical data by incorporating an assumption concerning the rate of
guessing in the task or potentially by manipulating the working
memory threshold. Although the aim of the current paper is to
capture the qualitative effects evidenced in the data, future work
may seek more precise quantitative fits.

DISCUSSION
The primary prediction of the experiment was confirmed. The
generation of the most likely hypothesis increased in correspon-
dence with increasing recency of the diagnostic data (i.e., symp-
tom). This finding clearly demonstrates that not all available data
contribute equally to the hypothesis generation process (i.e., some
data are weighted more heavily than others) and that the ser-
ial position of a datum can be an important factor governing the
weight allocated to it in the generation process. Furthermore, these
results are consistent with the notion that the data weightings uti-
lized in the generation process are governed by the amount of
working memory activation possessed by each datum.

There are, however, two alternative explanations for the present
finding to consider that do not necessarily implicate unequal
weightings of data in working memory as governing generation.

FIGURE 6 | Empirical data (solid line) and model data (dashed line) for
Experiment 1 plotting the probability of reporting D1 (Metalytis) as
most likely across order conditions. Error bars represent standard errors
of the mean.

First, it could be the case that all data resident in working memory
at the time of generation were equally weighted, but that the like-
lihood of S1 dropping out of working memory increased with its
distance in time from the generation prompt. Such a discrete uti-
lization (i.e., all that matters is that data are in or out of working
memory regardless of the activation associated with individual
data) would likely result in a more gradual recency effect than
seen in the data. Future investigations measuring working mem-
ory capacity could provide illuminating tests of this account. If
generation is sensitive to only the presence or absence of data in
working memory (as opposed to graded activations of the data
in working memory) it could be expected that participants with
higher capacity would be less biased by serial order (as shown in
Lange et al., 2012) or would demonstrate the bias at a different
serial position relative to those with lower capacity.

A second alternative explanation could be that the participants
engaged in spontaneous rounds of generation following each piece
of data as it was presented. Because the hypothesis generation per-
formance was only assessed after the final piece of data in the
present experiment, such “step-by-step” generation would result
in stronger generation of Metalytis as the diagnostic data is pre-
sented closer to the end of the list. For instance, if spontaneous
generation occurs as each piece of data is being presented, then
when the diagnostic datum is presented first, there remains three
more rounds of generation (based on non-diagnostic data in this
case) that could obscure the generation of the initial round. As the
diagnostic data moves closer to the end of the data stream the like-
lihood that that particular round of generation will be obscured
by forthcoming rounds diminishes. It is likely that the present data
represents a mixture of participants that engaged in such sponta-
neous generation and those that did not engage in generation until
prompted. This is likely the reason for the quantitative discrepancy
between the model and empirical data. Future investigations could
attempt to determine the likelihood that a participant will engage
in such spontaneous generation and the conditions making it more
or less likely.

The probability judgments observed in the present experiments
did not differ across order conditions. Because the probability
judgments were only elicited for the highest ranked hypothesis,
the conditions under which the probability judgments were col-
lected were highly constrained. It should be noted that the focus
of the present experiment was to address generation behavior and
the collection of the judgment data was ancillary. An independent
experiment manipulating serial order in the manner done here
and designed explicitly for the examination of judgment behav-
ior would be useful for examining the influence of specific data
serial positions on probability judgments. This would be interest-
ing as HyGene predicts the judged probability of a hypothesis to
be directly influenced by the relative support for the hypotheses
currently in working memory. In so far as serial order influences
the hypotheses generated into working memory, effects of serial
position on probability judgment are likely to be observed as well.

The goal of Experiment 1 was to determine how relative
data serial position affects the contribution of individual data to
hypothesis generation processes. It was predicted that data pre-
sented later in the sequence would be more active in working
memory and would thereby contribute more to the generation
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process based on the dynamics of the context-activation buffer.
Such an account predicts a recency profile for the generation
of hypotheses from LTM. This effect was obtained and is well-
captured by our model in which such differences in the working
memory activation possessed by individual data govern the gener-
ation process. Despite these positive results, however, the specific
processes underlying this data are not uniquely discernible in the
present experiment as the aforementioned alternative explanations
likely predict similar results. Converging evidence for the notion
that data activation plays a governing role in the generation process
should be sought.

EXPERIMENT 2: DATA MAINTENANCE AND DATA
CONSISTENCY
When acquiring information from the world that we may use as
cues for the generation of hypotheses we acquire these cues in var-
iously sized sets. In some cases we might receive several pieces of
environmental data over a brief period, such as when a patient rat-
tles off a list of symptoms to a physician. At other times, however,
we receive cues in isolation across time and generate hypotheses
based on the first cue and update this set of hypotheses as further
data are acquired, such as when an underlying cause of car fail-
ure reveals itself over a few weeks. Such circumstances are more
complicated as additional processes come into play as further data
are received and previously generated hypotheses are evaluated in
light of the new data. Hogarth and Einhorn (1992) refer to this
task characteristic as the response mode.

In the context of understanding dynamic hypothesis generation
this distinction is of interest as it contrasts hypothesis generation
following the acquisition of a set of data with a situation in which
hypotheses are generated (and updated or discarded) while further
data is acquired and additional hypotheses generated. An exper-
iment manipulating this response mode variable in a hypothesis
generation task was conducted by Sprenger and Dougherty, 2012,
Experiment 3) in which people hypothesized about which psy-
chology courses were being described by various keywords. The
two response modes are step-by-step (SbS), in which a response
is elicited following each piece of incoming data, and end-of-
sequence (EoS), in which a response is made only after all the
data has been acquired as a grouped set. Following the last piece
of data, the SbS conditions exhibited clear recency effects whereas
EoS conditions, on the other hand, did not demonstrate reliable
order effects. A careful reader may notice a discrepancy between
the lack of order effects in their EoS condition and the recency
effect in the present Experiment 1 (which essentially represents
an EoS mode condition). In the Sprenger and Dougherty experi-
ment, the participants received nine cues from which to generate
hypotheses as opposed to the four cues in our Experiment 1. As
the amount of data in their experiment exceeded working mem-
ory capacity (more severely) it is likely that the cue usage strategies
utilized by the participants differed between the two experiments.
Indeed, it is important to gain a deeper understanding of such
cue usage strategies in order to develop a better understanding of
dynamic hypothesis generation.

The present experiment compared response modes to examine
differences between data maintenance prior to generation (EoS
mode) and generation that does not encourage the maintenance

of multiple pieces of data (SbS mode). Considered in another light,
SbS responding can be thought of as encouraging an anchoring
and adjustment process where the set of hypotheses generated in
response to the first piece of data supply the set of beliefs in which
forthcoming data may be interpreted. The EoS condition, on the
other hand, does not engender such belief anchoring as genera-
tion is not prompted until all data have been observed. As such,
the SbS conditions provide investigation of a potential propensity
to discard previously generated hypotheses and/or generate new
hypotheses in the face of inconsistent data.

METHOD
Participants
One hundred fifty-seven participants from the University of
Oklahoma participated in this experiment for course credit.

Design and procedure
As previously mentioned, the first independent variable was the
timing of the generation and judgment promptings provided to
the participant as dictated by the response mode condition. This
factor was manipulated within-subject. The second independent
variable, manipulated between-subjects, was the consistency of
the second symptom (S2) with the hypotheses likely to be enter-
tained by the participant following the first symptom. This con-
sistency or inconsistency was manipulated within the ecologies
learned by the participants as displayed in Table 3. In addition,
this table demonstrates the temporal order in which the symp-
toms were presented in the elicitation phase of this experiment
(i.e., S1→ S2→ S3→ S4). Note that only positive symptom (i.e.,
symptom present) states were presented in the elicitation phase.
The only difference between the ecologies was the conditional
probability of S2 being positive under D1. This probability was
0.9 in the “consistent ecology” and 0.1 in the “inconsistent ecol-
ogy.” Given that S1 should prompt the generation of D1 and D2,
this manipulation of the ecology can be realized to govern the
consistency of S2 with the hypothesis(es) currently under consid-
eration following S1. This can be seen in Table 4 displaying the
Bayesian posterior probabilities for each disease following each
symptom. Seventy-nine participants were in the consistent ecol-
ogy condition and 78 participants were in the inconsistent ecology
condition. Response mode was counter-balanced within ecology
condition.

The procedure was much like that of Experiment 1: exemplar
training to learn the probability distributions, a test to verify learn-
ing (for which a $5.00 gift card could be earned for performance
greater than 60%)8, and a distractor task prior to elicitation. The
experiment was again cast in terms of medical diagnosis where
D1, D2, and D3 represented fictitious disease states and S1–S4
represented various test results (i.e., symptoms).

There were slight differences in each phase of the procedure
however. The exemplars presented in the exemplar training phase
of were simplified and consisted of the disease name and a sin-
gle test result (as opposed to all four). This change was made in
an effort to enhance learning. Exemplars were blocked by disease

8Eighty-eight participants (56%) exceeded this 60% criterion.
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Table 3 | Disease×Symptom ecologies of Experiment 2.

S1 S2 S3 S4

CONSISTENT

D1: Metalytis 0.9 0.9 0.5 0.5

D2: Zymosis 0.7 0.1 0.4 0.4

D3: Gwaronia 0.2 0.8 0.8 0.8

INCONSISTENT

D1: Metalytis 0.9 0.1 0.5 0.5

D2: Zymosis 0.7 0.1 0.4 0.4

D3: Gwaronia 0.2 0.8 0.8 0.8

Values represent the probability of the symptom being positive (i.e., present)

given the disease state. Only the value of S2|D1 differed between ecologies as

indicated by underline and bold.

Table 4 | Bayesian posterior probabilities as further symptoms are

acquired within each ecology of Experiment 2.

Posterior probabilities across elicitations

Post S1 Post S2 Post S3 Post S4

Consistent ecology D1 0.50 0.78 0.72 0.64

D2 0.39 0.07 0.05 0.04

D3 0.11 0.15 0.23 0.32

Inconsistent ecology D1 0.50 0.28 0.22 0.17

D2 0.39 0.22 0.14 0.08

D3 0.11 0.50 0.64 0.75

such that a disease was selected at random without replacement.
For each disease the participant would be presented with 40 exem-
plars selected at random without replacement. Therefore over the
course of these 40 exemplars the entire (and exact) distribution of
symptoms would be presented for that disease. This was then done
for the remaining two diseases and the entire process was repeated
two more times. Therefore the participant observed 120 exem-
plars per disease (inducing equal base rates for each disease) and
observed the entire distribution three times. Each exemplar was
again pseudo-self-paced and displayed on the screen for 1500 ms
per exemplar prior to the participant being able to proceed to the
next exemplar by pressing the first letter of the disease. Patient
cases in the diagnosis test phase presented with only individual
symptoms as well. Each of the eight possible symptom states were
individually presented to the participants and they were asked to
report the most likely disease given that particular symptom. Dis-
eases with a posterior probability greater than or equal to 0.39 were
tallied as correct responses.

In the elicitation phase, the prompts for hypothesis generation
were the same as those used in Experiment 1, but the probability
judgment prompt differed slightly. The judgment prompt used in
the present experiment was as follows: “How likely is it that the
patient has [INSERT HIGHEST RANKED DISEASE]? (Keep in
mind that an answer of 0 means that there is NO CHANCE that the
patient has [INSERT HIGHEST RANKED DISEASE] and that 100
means that you are ABSOLUTELY CERTAIN that the patient has
[INSERT HIGHEST RANKED DISEASE].) Type in your answer

from 1 to 100 and press Enter to continue.” Probability judgments
were taken following each generation sequence in the SbS condi-
tion (i.e., there were four probability judgments taken, one for the
disease ranked highest on each round of generation).

Hypotheses and predictions
The general prediction for the end-of-sequence response mode
was that recency would be demonstrated in both ecologies as the
more recent symptoms should contribute more strongly to the
generation process as seen in Experiment 1. Therefore, greater
generation of D3 relative to the alternatives was expected in both
ecologies. The focal predictions for the SbS conditions concerned
the generation behavior following S2. It was predicted that par-
ticipants in the consistent ecology would generate D1 to a greater
extent than those in the inconsistent ecology who were expected to
purge D1 from their hypothesis set in response to its inconsistency
with S2. It was additionally predicted that those in the inconsis-
tent ecology would generate D3 to a greater extent at this point
than those in the consistent ecology as they would utilize S2 to
repopulate working memory with a viable hypothesis.

RESULTS
As no interactions with trial order were detected, both trials from
each subject were used in the present analyses and no differences in
results were found with differences in learning. The main depen-
dent variable analyzed for this experiment was the hypothesis
generated as most likely on each round of elicitation. All par-
ticipants were included in the analyses regardless of performance
in the diagnosis test phase. In order to test if a recency effect
obtained following the last symptom (S4), comparisons between
the rates of generation of each disease were carried out within
each of the four ecology-by-response mode conditions. Within
the step-by-step conditions the three diseases were generated at
different rates in the consistent ecology according to Cochran’s
Q Test, χ2(2)= 9.14, p < 0.05, but not in the inconsistent ecology
χ2(2)= 1, p= 0.61. In the end-of-sequence conditions, significant
differences in generation rates were revealed in both the consistent
ecology, χ2(2)= 17.04, p < 0.001, and the inconsistent ecology,
χ2(2)= 7.69, p < 0.05.

As D2 was very unlikely in both ecologies the comparison of
interest in all cases is between D1 and D3. This pairwise com-
parison was carried out within each of the ecology-by-response
mode conditions and reached significance only in the EoS mode
in the consistent ecology, χ2(1)= 6.79, p < 0.01, as D1 was gen-
erated to a greater degree than D3 according to Cochran’s Q Test.
These results, displayed in Figure 7, demonstrate the absence of a
recency effect in the present experiment. This difference between
the EoS and SbS ecology is additionally observed by comparing
rates of D1 generation across the entire design demonstrating a
main effect of ecology, χ2(1)= 8.87, p < 0.01, but no effect of
mode, χ2(1)= 0.987, p= 0.32, and no interaction, χ2(1)= 0.554,
p= 0.457.

To test the influence of the inconsistent cue on the maintenance
of D1 (the most likely disease in both ecologies following S1) in the
SbS conditions, elicitation round (post S1 and post S2) was entered
as an independent variable with ecology and tested in a 2× 2 logis-
tic regression. As plotted in Figure 8, this revealed a main effect
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FIGURE 7 | Proportion of generation for each disease by response
mode and ecology conditions. Error bars represent standard errors of the
mean.

FIGURE 8 | Proportion of generation for each disease within the SbS
condition following S1 and S2. Error bars represent standard errors of
the mean.

of elicitation round, χ2(1)= 10.51, p < 0.01, an effect of ecology,
χ2(1)= 6.65, p < 0.05, and a marginal interaction, χ2(1)= 3.785,
p= 0.052. When broken down by ecology it is evident that the
effect of round and the marginal interaction were due to the
decreased generation of D1 following S2 in the inconsistent ecol-
ogy, χ2(1)= 10.51, p < 0.01, as there was no difference between
rounds in the consistent ecology, χ2(1)= 0.41, p= 0.524.

This same analysis was done with D3 to examine potential
differences in its rate of generation over these two rounds of
generation. This test revealed a main effect of elicitation round,
χ2(1)= 12.135, p < 0.001, but no effect of ecology, χ2(1)= 1.953,
p= 0.162, and no interaction, χ2(1)= 1.375, p= 0.241.

SIMULATING EXPERIMENT 2
To model the EoS conditions, the model was presented all four
symptoms in sequence and run in conditions in which the model
was endowed with either the consistent or inconsistent ecology.
This simulation was run for 1000 iterations in each condition.
As is intuitive from the computational results of Experiment 1,
when the model is run with the same parameters utilized in the

FIGURE 9 | Empirical data (bars) from Experiment 2 for the EoS
conditions in both ecologies plotted with model data (diamonds and
circles) at two levels of alpha and beta. Error bars represent standard
errors of the mean.

previous simulation it predicts greater generation for D3 in both
ecologies (i.e., recency) which was not observed in the present
experiment. However, the model is able to capture the data of the
EoS mode quite well by increasing the amount of recurrent activa-
tion that each piece of data recycles onto itself (alpha parameter)
and the amount of lateral inhibition applied to each piece of data
(beta parameter) as it is acquired prior to generation. These results
appear alongside the empirical results in Figure 9. Although the
model is able the capture the qualitative pattern in the data in the
inconsistent ecology reasonably well with either set of parameters,
the model produces divergent results under the two alpha and beta
levels in the consistent ecology. Only when recurrency and inhi-
bition are increased does the model capture the data from both
ecologies.

Examination of how the data activations are influenced by the
increased alpha and beta levels reveals the underlying cause for
this difference in generation. As displayed in Figure 10, there is
a steep recency gradient for the data activations under alpha= 2
and beta= 0.2 (parameters from Experiment 1), but there is a
markedly different pattern of activations under alpha= 3 and
beta= 0.49. Most notably, these higher alpha and beta levels cause
the earlier pieces of data to reach high levels of activation which
then suppress the activation levels of later data. This is due to the
competitive dynamics of the buffer which restrict rise of activation
for later items under high alpha and beta values resulting in a pri-
macy gradient in the activation values as opposed to the recency
gradient observed under the lower values.

To capture the SbS conditions for generation following S1 and
generation following S2, the model was presented with different
amounts of data on different trials. Specifically, the model was
presented with S1 only, capturing the situation in which only the
first piece of data had been received, or the model was presented
with S1 and S2 successively in order to capture the SbS condi-
tion following the second piece of data. This was done for both
ecologies in order to assess the effects of data inconsistency on the

9These parameter values were based on a grid search to examine the neighbor-
hood of values capturing the qualitative patterns in the data and not based on a
quantitative fit to the empirical data.
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FIGURE 10 | Individual data activations under both levels of alpha and
beta.

FIGURE 11 | Empirical data (bars) from Experiment 2 in the SbS
conditions following S1 and S2 plotted with model data (diamonds).
Error bars represent standard errors of the mean.

model’s generation behavior10. As can be seen in Figure 11 the
model is able to capture the empirical data quite well following S1
while providing a decent, although imperfect, account of the post
S2 data as well11. Focally, the model as implemented captures the
influences of S2 on the hypothesis sets generated in response to
S1. Following S2 in the inconsistent ecology D1 decreases substan-
tially capturing its purging from working memory. Additionally,
the increases in the generation of D3 are present in both ecologies.

DISCUSSION
The present experiment has provided a window into two distinct
processing dynamics. The first dynamic under investigation was
how generation differs when based on the acquisition of a set of
data (EoS condition) vs. when each piece of data is acquired in
isolation (SbS condition). The generation behavior between these
conditions was somewhat similar overall, as neither D1 nor D3
dominated generation in three of the four conditions. The EoS

10This is, of course, a simplification of the participant’s task in the SbS condition.
This is addressed in the general discussion.
11This simulation was run with alpha= 3 and beta= 0.4.

consistent ecology condition, however, was clearly dominated by
D1. This result obtained in contrast to the prediction of recency in
the EoS conditions, which would have been evidenced by higher
rankings for D3 (for both ecologies).

The divergence between the recency effect in Experiment 1 and
the absence of recency effect in the EoS conditions of Experiment
2 is surprising. In order for the model to account for the ameliora-
tion of the recency effect an adjustment was made to the alpha and
beta parameters governing how much activation each piece of data
is able to recycle onto itself and the level of competition thereby
eliminating the recency gradient in the activations. Moreover, the
last piece of data did not contribute as often or as strongly to the
cue to LTM under these settings. Therefore, rather than a recency
effect, the model suggests a primacy effect whereby the earlier cues
contributed more to generation than the later cues. As we have not
manipulated serial order in the present experiment, it is difficult
to assert a primacy effect based on the empirical data alone. The
model’s account of the current data, however, certainly suggests
that a primacy gradient is needed to capture the results. Addition-
ally, a recent experiment in a similar paradigm utilizing an EoS
response mode demonstrated a primacy effect in a diagnostic rea-
soning task (Rebitschek et al., 2012) suggesting that primacy may
be somewhat prevalent under EoS data acquisition situations.

As for why the earlier cues may have enjoyed greater activa-
tion in the present experiment relative to Experiment 1 we need to
consider the main difference between these paradigms. The largest
difference was that in the present experiment each piece of data
present in the ecology carried a good amount of informational
value whereas in Experiment 1 80% of the data in the ecology was
entirely non-diagnostic. It is possible that this information rich vs.
information scarce ecological difference unintentionally led to a
change in how the participants allocated their attention over the
course of the data streams between the two experiments. As all of
the data in Experiment 2 was somewhat useful, the participants
may have used this as a cue to utilize as much of the informa-
tion as possible thereby rehearsing/reactivating the data as much
as possible prior to generation. In contrast, being in the informa-
tion scarce ecology of Experiment 1 would not have incentivized
such maximization of the data activations for most of the data.
Future experiments could address how the complexity of the ecol-
ogy might influence dynamic attentional allocation during data
acquisition.

The second dynamic explored was how inconsistent data influ-
ences the hypotheses currently under consideration. In the step-
by-step conditions it was observed that a previously generated
hypothesis was purged from working memory in response to the
inconsistency of a newly received cue. This can be viewed as
consistent with an extension of the consistency checking mech-
anism employed in the original HyGene framework. The present
data suggests that hypotheses currently under consideration are
checked against newly acquired data and are purged in accor-
dance with their degree of (in)consistency. This is different from,
although entirely compatible with, the operation of the original
consistency checking mechanism operating over a single round of
hypothesis generation. The consistency checking operation within
the original version of HyGene checks each hypothesis retrieved
into working memory for its consistency with the data used as a cue
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to its retrieval as the SOCs is populated. The consistency checking
mechanism exposed in the present experiment, however, suggests
that people check the consistency of newly acquired data against
hypotheses generated from previous rounds of generation as well.
If the previously generated hypotheses fall below some threshold
of agreement with the newly acquired data they are purged from
working memory. Recent work by Mehlhorn et al. (2011) also
investigated the influence of consistent and inconsistent cues on
the memory activation of hypotheses. They utilized a clever adap-
tation of the lexical decision task to assess the automatic memory
activation of hypotheses as data were presented and found mem-
ory activation sensitivity to the consistency of the data. As the
present experiment utilized overt report, these findings comple-
ment one another quite well as automatic memory activation can
be understood as a precursor to the generation of hypotheses into
working memory. The present experiment additionally revealed
that S2 was used to re-cue LTM as evidenced by increased gener-
ation of D3 following S2. In contrast to the prediction that this
would occur only in the inconsistent ecology, this recuing was
observed in both ecologies. Lastly, although the model as currently
implemented represents a simplification of the participant’s task
in the SbS conditions, it was able to capture these effects.

GENERAL DISCUSSION
This paper presented a model of dynamic data acquisition and
hypothesis generation which was then used to account for data
from two experiments investigating three consequences of hypoth-
esis generation being extended over time. Experiment 1 varied the
serial position of a diagnostic datum and demonstrated a recency
effect whereby the hypothesis implied by this datum was gen-
erated more often when the datum appeared later in the data
stream. Experiment 2 examined how generation might differ when
it is based on isolated data acquired one at a time (step-by-step
response mode) vs. when generation is based upon the acquisi-
tion of the entire set of data (end-of-sequence response mode).
Secondly, the influence of an inconsistent cue (conflicting with
hypotheses suggested by the first datum) was investigated by
manipulating a single contingency of the data-hypothesis ecol-
ogy in which the participants were trained. It was found that the
different response modes did not influence hypothesis genera-
tion a great deal as the two most likely hypotheses were generated
at roughly the same rates in most cases. The difference that was
observed however was that the most likely hypothesis was favored
in the EoS condition within the consistent ecology. This occurred
in contrast to the prediction of recency for both EoS conditions,
thereby suggesting that the participants weighted the data more
equally than in Experiment 1 or perhaps may have weighted the
earlier cues slightly more heavily. Data from the SbS conditions
following the acquisition of the inconsistent cue revealed that this
cue caused participants to purge a previously generated hypothe-
sis from working memory that was incompatible with the newly
acquired data. Moreover, this newly acquired data was utilized
to re-cue LTM. Interestingly, this re-cueing was demonstrated in
both ecologies and was therefore not contingent on the purging of
hypotheses from working memory.

Given that the EoS conditions of Experiment 2 were procedu-
rally very similar to the procedure used in Experiment 1 it becomes

important to reconcile their contrasting results. As discussed
above, the main factor distinguishing these conditions was the
statistical ecology defining their respective data-hypothesis con-
tingencies. The ecology of the first experiment contained mostly
non-diagnostic data whereas each datum in the ecology utilized
in Experiment 2 carried information as to the relative likelihood
of each hypothesis. It is possible that this difference of relative
information scarcity and information richness influenced the pro-
cessing of the data streams between the two experiments. In order
to capture the data from Experiment 2 with our model, the level
of recurrent activation recycled by each piece of data was adjusted
upwards and lateral inhibition increased thereby giving the early
items a large processing advantage over the later pieces of data.
Although post hoc, this suggests the presence of a primacy bias. It
is then perhaps of additional interest to note that the EoS results
resemble the SbS results following D2 and this is particularly so
within the consistent ecology. This could be taken to suggest that
those in the EoS condition were utilizing the initial cues more
greatly than the later cues. Fisher (1987) suggested that people
tend to use a subset of the pool of provided data and estimated
that people generally use two cues when three are available and
three cues when four are available. Interestingly the model for-
warded in the present paper provides support for this estimate as
it used three of the four available cues in accounting for the EoS
data in Experiment 2. While the utilization of three as opposed to
four data could be understood as resulting from working memory
constraints, the determinants of why people would fail to utilize
three pieces of data when only three data are available is less clear.
Future investigation of the conditions under which people under-
utilize available data in three and four data-hypothesis generation
problems could be illuminating for the working memory dynamics
of these tasks.

It is also important to compare the primacy effect in the EoS
conditions with the results of Sprenger and Dougherty (2012) in
which the SbS conditions revealed recency (Experiments 1 and 3)
and no order effects were revealed in the EoS conditions (only
implemented in Experiment 3). As for why the SbS results of the
present experiment do not demonstrate recency as in their Exper-
iments 1 and 3 is unclear. The ecologies used in these experiments
were quite different, however, and it could be the case that the
ecology implemented in their experiment was better able to cap-
ture this effect. Moreover, they explicitly manipulated data serial
order and it was through this manipulation that the recency effect
was observed. As serial order was not manipulated in the present
experiment we did not have the opportunity to observe recency in
the same fashion and instead relied on relative rates of generation
given one data ordering. Perhaps the manipulation of serial order
within the present ecology would uncover recency as well.

In comparing the present experiment to the procedure of
Sprenger and Dougherty’s Experiment 3 a clearer reason for
diverging results is available. In their experiment, the participants
were presented with a greater pool of data from which to generate
hypotheses, nine pieces in total. Participants in the present exper-
iment, on the other hand, were only provided with four cues. It
is quite possible that people’s strategies for cue usage would differ
between these conditions. Whereas the present experiment pro-
vided enough data to fill working memory to capacity (or barely
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breach it), Sprenger and Dougherty’s experiment provided an
abundance of data thereby providing insight into a situation in
which the data could not be held in working memory at once. It
is possible that the larger pool of data engendered a larger pool
of strategies to be employed than in the present study. Under-
standing the strategies that people employ and the retrieval plans
developed under such conditions (Raaijmakers and Shiffrin, 1981;
Gillund and Shiffrin, 1984; Fisher, 1987) as well as how these
processes contrast with situations in which fewer cues are available
is a crucial aspect of dynamic memory retrieval in need of better
understanding.

The model presented in the present work represents a fusion
of the HyGene model (Thomas et al., 2008) with the activation
dynamics of the context-activation model of memory (Davelaar
et al., 2005). As the context-activation model provides insight
into the working memory dynamics underlying list memory tasks,
it provides a suitable guidepost for understanding some of the
likely working memory dynamics supporting data acquisition and
hypothesis generation over time. The present model acquires data
over time whose activations systematically ebb and flow in concert
with the competitive buffer dynamics borrowed from the context-
activation model. The resulting activation levels possessed by each
piece of data are then used as weights in the retrieval of hypothe-
ses from LTM. In addition to providing an account of the data
from the present experiments this model has demonstrated fur-
ther usefulness by suggesting potentially fruitful areas of future
investigation.

The modeling presented here represents the first step of a work
in progress. As we are working toward a fully dynamical model
of data acquisition, hypothesis generation, maintenance, and use
in decision making tasks, additional facets clearly still await inclu-
sion. Within the current implementation of the model it is only the
environmental data that are subject to the working memory acti-
vation dynamics of the working memory buffer. In future work,
hypotheses generated into working memory (HyGene’s SOCs) will
additionally be sensitive to these dynamics. This will provide us
with the means of fully capturing hypothesis maintenance dynam-
ics (e.g., step-by-step generation) that the present model ignores.
Moreover, by honoring such dynamic maintenance processes we
may be able to address considerations of what information people
utilize at different portions of a hypothesis generation task. For
instance, when data is acquired over long lags (e.g., minutes), it is
unclear what information people use to populate working mem-
ory with hypotheses at different points in the task. If someone is
reminded of the diagnostic problem they are trying to solve, do
they recall the hypotheses directly (e.g., via contextual retrieval)
or do they sometimes recall previous data to be combined with

new data and re-generate the current set of hypotheses? Presum-
ably both strategies are prevalent, but the conditions under which
they are more or less likely to manifest is unclear. It is hoped that
this more fully specified model may provide insight into situations
favoring one over the other.

As pointed out by Sprenger and Dougherty (2012) a fuller
understanding of hypothesis generation dynamics will entail
learning about how working memory resources are dynamically
allocated between data and hypotheses over time. One-way that
this could be achieved in the forthcoming model would be to have
two sets of information available for use at any given time, one of
which would be the set of relevant data (RED) and the other would
be the SOC hypotheses. The competitive dynamics of the buffer
could be brought to bear between these sets of items by allowing
them to inhibit one another, thereby instantiating competition
between the items in these sets for the same limited resource. Set-
ting up the model in this or similar manners would be informative
for addressing dynamic working memory tradeoffs that are struck
between data and hypotheses over time.

In addition, this more fully elaborated model could inform
maintenance dynamics as hypotheses are utilized to render judg-
ments and decisions. The output of the judgment and decision
processes could cohabitate the working memory buffer and its
maintenance and potential influence on other items’ activations
could be gauged across time. Lastly, as the model progresses in
future work it will be important and informative to examine the
model’s behavior more broadly. For the present paper we have
focused on the first hypothesis generated in each round of gen-
eration. The generation behavior of people and the model of
course furnishes more than one hypothesis into working mem-
ory. Further work with this model has the potential to provide
a richer window into hypothesis generation behavior by tak-
ing a greater focus on the full hypothesis sets considered over
time.

Developing an understanding of the temporal dynamics gov-
erning the rise and fall of beliefs over time is a complicated
problem in need of further investigation and theoretical devel-
opment. This paper has presented an initial model of how data
acquisition dynamics influence the generation of hypotheses from
LTM and two experiments considering three distinct processing
dynamics. It was found that the recency of the data, sometimes
but not always, biases the generation of hypotheses. Additionally,
it was found that previously generated hypotheses are purged from
working memory in light of new data with which they are incon-
sistent. Future work will develop a more fully specified model of
dynamic hypothesis generation, maintenance, and use in decision
making tasks.
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In the last years, research on risky choice has moved beyond analyzing choices only. Mod-
els have been suggested that aim to describe the underlying cognitive processes and
some studies have tested process predictions of these models. Prominent approaches are
evidence accumulation models such as decision field theory (DFT), simple serial heuristic
models such as the adaptive toolbox, and connectionist approaches such as the parallel
constraint satisfaction (PCS) model. In two studies involving measures of attention and
pupil dilation, we investigate hypotheses derived from these models in choices between
two gambles with two outcomes each. We show that attention to an outcome of a gamble
increases with its probability and its value and that attention shifts toward the subsequently
favored gamble after about two thirds of the decision process, indicating a gaze-cascade
effect. Information search occurs mostly within-gambles, and the direction of search does
not change over the course of decision making. Pupil dilation, which reflects both cogni-
tive effort and arousal, increases during the decision process and increases with mean
expected value. Overall, the results support aspects of automatic integration models for
risky choice such as DFT and PCS, but in their current specification none of them can
account for the full pattern of results.

Keywords: risky choices, decision field theory, heuristics, parallel constraint satisfaction, eye tracking, arousal,
gaze-cascade effect

INTRODUCTION
In many every day decisions individuals choose between options
with different outcomes, each of which realizes with a certain
probability. Conceptually, such risky choices can be reduced to
decisions between gambles with monetary outcomes. Research in
risky choice has a long tradition, and several models have been
developed to account for the wealth of identified choice anomalies
and data observed on risky choices in the lab and the field. Many of
these models are extensions and refinements of the expected util-
ity (EU) Model (von Neumann and Morgenstern, 1944; Edwards,
1954; Savage, 1954) assuming that some kind of integration of
payoff and probability of outcomes drives individuals’ choice.
Cumulative prospect theory (CPT, Tversky and Kahneman, 1992),
and the transfer-of-attention exchange model (Birnbaum, 2008a)
are two of the most prominent models of this class. One important
limitation of these models, however, is that they predict choices
only and remain largely silent concerning the processes underlying
choice (Luce and Raiffa, 1957; Luce, 2000).

PROCESS MODELS FOR RISKY CHOICE
The importance of investigating the underlying processes in more
depth and of developing process models, however, has been high-
lighted repeatedly (e.g., Payne et al., 1988; Johnson et al., 2008;
Franco-Watkins and Johnson, 2011; Schulte-Mecklenbeck et al.,
2011). Two important classes of existing process models are sim-
plifying heuristic models and automatic integration models. Sim-
plifying heuristic models assume that individuals try to avoid
integrating all pieces of information and apply short-cuts instead.

According to a satisficing heuristics, for example, one could choose
the first gamble that meets the criteria for adequacy on all out-
comes (Simon, 1955, 1956). Alternatively, one might apply a mini-
max heuristic or a maximax heuristic, by choosing the gamble
which is better then all alternatives concerning its worst outcome,
or better in the best outcome,respectively. Persons might also apply
a strategy that tests a sequence of such “reasons” as assumed by the
priority heuristic (PH; Brandstätter et al., 2006). PH assumes that
individuals compare reasons in the order: minimum outcomes
(higher is better), probability of the minimum outcome (lower
is better), and maximum outcome (higher is better). Participants
consider these reasons in turn, make their decision as soon as a
reason discriminates between the gambles, and decide in line with
this reason.

Automatic integration models, in contrast, assume that indi-
viduals rely on powerful cognitive processes that allow integration
of much information very quickly and efficiently (Schneider and
Shiffrin, 1977; Shiffrin and Schneider, 1977). Examples for auto-
matic integration models in the domain of risky choice are evi-
dence accumulation models such as decision field theory (DFT,
Busemeyer and Townsend, 1993; Johnson and Busemeyer, 2005),
and the leaky competing accumulator model (Usher and McClel-
land, 2001, 2004); as well as interactive activation models such
as the parallel constraint satisfaction (PCS) model for risky choice
(Glöckner and Herbold,2011; see also Glöckner and Betsch,2008b;
Betsch and Glöckner, 2010). Further automaticity-based evidence
accumulation models that focus on decision making under cer-
tainty but could eventually also be applied to risky decisions
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are multiattributive DFT (e.g., Diederich, 1997, 2003), and the
attention drift-diffusion model (e.g., Krajbich et al., 2010, 2012;
Milosavljevic et al., 2010; Krajbich and Rangel, 2011).

MODEL COMPARISONS AND TESTS OF PROCESS MODELS
A recent comprehensive model comparison indicates that none
of the available simple heuristics (not even when assuming their
adaptive usage) can predict risky choice in decisions between two-
outcome gambles nearly as well as CPT (Glöckner and Pachur,
2012)1. Despite of some initial support for heuristics and par-
ticularly for the PH (Brandstätter et al., 2006), most later stud-
ies have challenged predictions derived from PH and similar
semi-lexicographic heuristics with regard to choices (Birnbaum,
2008b; Birnbaum and LaCroix, 2008; Hilbig, 2008), decision times
(Glöckner and Betsch, 2008a; Ayal and Hochman, 2009; but see
Brandstätter et al., 2006), and information search (Glöckner and
Betsch, 2008a; Johnson et al., 2008).

One study also used eye-tracking to directly compare predic-
tions of PH and automatic integration models with regard to
the process measures (Glöckner and Herbold, 2011). The results
concerning information search, response time, and choice speak
against the usage of PH as well as similar heuristics. The findings,
however, also rule out that individuals use simple serial implemen-
tation of EU models assuming a stepwise calculation of weighted
sums, which is one possible process implementation of EU sug-
gested in previous research (Payne et al., 1988). Instead, results
support automatic integration models such as DFT and PCS in that
mainly short fixations were found,which indicate lower-level auto-
matic processing instead of deliberate calculation (Horstmann
et al., 2009). Furthermore, the decision time and number of fixa-
tions increased for decisions in which differences between gambles
were small. In line with PCS predictions, there was an increase
in the number of fixations to the favored gamble and particu-
larly to the most attractive outcome of this gamble (defined by a
high product of outcome and probability). Furthermore, and in
line with previous studies using mouselab (Glöckner and Betsch,
2008a; Johnson et al., 2008), information search was conducted
mainly within-gambles. Most simple heuristics assume attribute-
wise comparisons between gambles and therefore cannot account
for the information search behavior.

AIM OF THE CURRENT STUDIES
The current paper elaborates the eye-tracking approach by Glöck-
ner and Herbold for detailed investigations of the dynamics in
risky choice, that is, changes of process variables over the time
course of a decision. Furthermore, we investigate changes in pupil
size as further dependent measure which indexes both process-
ing load (Beatty, 1982) and arousal (Partala and Surakka, 2003;
Bradley et al., 2008) and can be informative for cognitive processes
in decision research as well (cf. Franco-Watkins and Johnson,
2011). Finally, we aimed to go beyond Glöckner and Herbold
(2011) by using more detailed analyses of the factors influenc-
ing attention and by additionally addressing the question whether
individuals react rather homogeneously or heterogeneously on

1For important limitations of CPT particularly in predicting choices between
gambles with more than two outcomes see Birnbaum (2006, 2008a,b).

these influence factors. By putting the decision process under the
microscope, we aim to improve our knowledge concerning the
mechanisms underlying risky decision making.

PREVIOUS FINDINGS CONCERNING DYNAMICS AND AROUSAL IN
DECISION MAKING
Some previous studies have investigated the dynamics of deci-
sion making using eye-tracking in situations under certainty (i.e.,
outcomes are certain in contrast to probabilistic). A gaze-cascade
effects, that is the tendency that over the course of decision mak-
ing attention shifts to the chosen option, has been repeatedly
found in these studies. Gaze-cascade effects, have for example
been demonstrated in attractiveness based decisions between faces
(Shimojo et al., 2003) and other kinds of visual decision task (e.g.,
Glaholt and Reingold, 2009a,b). Similarly, a recent eye-tracking
investigation of food choices testing predictions of the attention
drift-diffusion model showed that the last fixated item was cho-
sen more often than the alternative item (Krajbich et al., 2010).
Additionally, it was shown in this study that decision time and the
number of fixations decrease with the increase in the difference in
valuations of the food items measured in a pre-test.

There is one recent eye-tracking paper comparing risky deci-
sions from description and from experience (Glöckner et al.,2012).
The former are decisions between gambles with stated probabili-
ties and outcomes as the ones used in the current study. In deci-
sions from experience, in contrast, no probabilities are provided
and outcomes have to be sampled sequentially (e.g., Camilleri and
Newell, 2011). In the description condition, arousal measured by
pupil dilation and skin conductance response increased with the
average expected value (EV) of the two gambles and with decreas-
ing difference in EV between gambles. This effect was not found
in the experience condition. Based on this study and other stud-
ies showing differences in choice behavior (e.g., Barron and Erev,
2003; Hertwig et al., 2004; Ungemach et al., 2009), we restrict the
current investigation to decisions from description only. Finally
a recent investigation by Franco-Watkins and Johnson (2011)
shows that the pupil dilation increases over the course of the deci-
sion making and is influenced by the presentation format (basic
eye-tracking vs. decision moving-window). Another eye-tracking
study using a somewhat different card gambling task shows that
in situations in which persons can form expectations pupil dila-
tion signals surprise and not expected reward or uncertainty per se
(Preuschoff et al., 2011).

PROCESS MEASURES AND THEORIES
In the following process analysis, we investigate decision time,
number of fixations, distribution of attention, mean fixation dura-
tion, pupil dilation, and direction of information search as depen-
dent measures. First, we investigate these measures in an overall
perspective aggregated over time for entire decisions (i.e., simi-
lar to most analyses in Glöckner and Herbold, 2011). Second, we
look at developments and changes in these variables over the time
course of making a decision by splitting up the decision process in
several parts (i.e., time bins).

DEPENDENT MEASURES
Decision time was measured as the time from the gamble onset to
individuals choice response. The “number of fixations” refers to
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the average fixation count in this period (per decision of each per-
son). The dependent variable “distribution of attention” refers to
the proportion of fixations to specific parts of the screen contain-
ing probability or outcome information, so-called areas of interest
(AOI). AOIs can thereby also be combinations of smaller areas
such as all areas that contain pieces of information belonging to
the left or the right gamble. The variable “mean fixation duration”
refers to the average duration of single fixations in a decision.
Stated differently, it refers to how long each fixation was on aver-
age. It has been shown that mean fixation durations increase with
level of processing in scene perception in driving (Velichkovsky
et al., 2001). This finding generalizes to decision making in that
deliberate processes of calculating weighted sums go along with
long fixations, whereas more intuitive or superficial information
processing is accompanied by shorter fixations (Horstmann et al.,
2009). The dependent variable “pupil dilation” refers to the differ-
ence in pupil size between periods of task processing (i.e., decision
trials) and periods of rest (i.e., intertrial intervals/baseline) as a
measure of arousal and cognitive load. The measure “direction of
search” is defined as proportion of fixation transitions within one
gamble as compared to the sum of transitions within and between
gambles (details see below).

MODELS
In the investigation we particularly consider the models: DFT, PCS,
PH, minimax, maximax, LEX, and (for completeness) a deliber-
ate application of EU which we will refer to as weighted additive
strategy (WADD). These decision strategies are briefly described
in Table 1.

MANIPULATION AND PREDICTIONS
Not all models allow for straightforwardly deriving predic-
tions concerning all dependent variables. Nevertheless, to foster
improvements and specifications of models based on our data, we
tried to derive as many reasonable predictions as possible (for a
detailed discussion of specification and model development see
Glöckner and Betsch, 2011). In cases in which reasonable predic-
tions could be derived on theoretical grounds, we did so even if the
authors of the original models did not explicitly make these predic-
tions (which is of course explicitly acknowledged). Furthermore,
we report data relatively broadly, so that the reader has additionally
the possibility to check his or her own hypotheses.

DECISION TIME AND INFORMATION SEARCH
There are several possibilities to compare models. In the current
paper, we refrain from complex comparative model fitting but use
the classic method of hypothesis testing. We thereby investigate
predictions concerning general differences in dependent variables
as well as predictions concerning the effect of manipulations.
Specifically, we manipulate the mean EV of gambles (EVmean)
and the difference in EVs between gambles (EVdiff). EVmean is
basically a manipulation of the stakes involved in the task. A high
EVmean should increase motivation since participants can win
more money. EVdiff is a measure how similar the gambles are from
a rational perspective, and according to some models it should be
related to the difficulty of choice. Choices between gambles with
very similar EVs are challenging in terms of finding the option

Table 1 | Models for risky choice.

AUTOMATIC INTEGRATION MODELS

Decision field theory (DFT): Decision making is based on a dynamic,

stochastic process. Each moment in the choice process is akin to mentally

sampling one of these outcomes, producing affective reactions to the

imagined result which are added up until a threshold for deciding for one

or the other gamble is reached. Sampling is assumed to reflect the

probabilities present in the stimuli, therefore outcome probabilities dictate

where attention shifts, but only the outcome values are used in

determining the momentary evaluation

Parallel constraint satisfaction (PCS): Decision making is based on a

dynamic process of constructing coherence under parallel consideration of

all constraints given by outcome-probability relations in a decision task

between gambles. In a process akin to Gestalt-construction in perception,

activation of information supporting the favored gamble is automatically

increased, while activation of information speaking for the alternative is

decreased to form a coherent interpretation. The option with the higher

activation feels more attractive and is more likely to be chosen

SIMPLE HEURISTICS

Priority heuristic (PH): Decision making is based on simple set of rules: (1)

Go through reasons in the order of: minimum gain, probability of minimum

gain, and maximum gain. (2) Stop examination if the minimum gains differs

by 1/10 (or more) of the maximum gain; otherwise, stop examination if

probabilities differ by 1/10 (or more) of the probability scale. (3) Choose the

gamble with the more attractive gain (probability)

Minimax: Decision making is based on a simple rule of choosing the

gamble with highest minimum outcome

Maximax: Decision making is based on a simple rule of choosing the

gamble with the highest outcome

Lexicographic (LEX): Determine the most likely outcome of each gamble

and choose the gamble with the better outcome. If both outcomes are

equal, determine the second most likely outcome of each gamble, and

choose the gamble with the better (second most likely) outcome. Proceed

until a decision is reached

SERIAL EXPECTATION MODEL

Weighted additive strategy (WADD). Multiple outcomes by their probability

and add them up for each gamble. Choose the gamble with the higher

sum.

Heuristics are from Brandstätter et al. (2006) and Payne et al. (1993).

with the higher EV whereas in gamble pairs with a high EVdiff
the better alternative is easier recognizable. The process models
considered make quite distinct predictions concerning whether or
not individuals should be influenced by manipulations of these
factors. According to DFT and PCS, decision time and number
of fixations should increase with higher EVmean since this corre-
sponds to an higher internal decision/coherence threshold within
these models. An increase in decision time and number of fixa-
tions would also be predicted for decisions between-gamble pairs
with low EVdiff, as compared to gamble pairs with high EVdiff,
since according to DFT the drift rate towards the threshold is lower
in these cases and according to PCS it is much harder to create a
coherent interpretation of the task. According to heuristics and
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WADD, measures should not be influenced by either manipula-
tion, because strategies apply rather simple decision rules or a
standardized weighting operation, which are independent of these
factors as long as the number of elementary information processes
(EIPs; see Newell and Simon, 1972; Payne et al., 1988) necessary
to apply the strategy is not influenced by the manipulation.

MEAN FIXATION DURATION AND PUPIL DILATION
Increasing EVmean and decreasing (absolute) EVdiff could both
potentially lead to qualitative changes in information processing
in that more thorough, effortful, and deliberate information pro-
cessing is used. Hence, mean fixation duration might increase.
Similarly, individuals might be more aroused and diligent, which
should be reflected in increasing pupil size. DFT and PCS can both
predict the effects of EVmean on pupil size. According to DFT, a
higher EVmean will induce persons to use higher thresholds that
necessitate a higher accumulation of affective responses2. Accord-
ing to PCS, arousal is dependent on the general level of conflict (or
dissonance) in the network (Betsch and Glöckner, 2010; Glöckner
et al., 2012; see also Hochman et al., 2010; Glöckner and Hochman,
2011), which can be measured by the networks Hopfield energy
(Hopfield, 1982; Read et al., 1997). The level of remaining con-
flict mainly depends on two factors: the general activation of the

2The threshold is assumed to model the importance of a decision (e.g., Johnson
and Busemeyer, 2005, p. 847) and arguably subjective importance increases with
the stakes that are in place in a decision. Johnson and Busemeyer (2005, p. 843)
furthermore state that: “Each moment in the DFT choice process is akin to mentally
sampling one of these numbers [i.e., monetary outcomes of gambles], producing
an affective reaction to the imagined result” (explanation in brackets are added).
Everything else being equal (e.g., drift rate), scaling up stakes of a decision should
therefore increase the amount of affective reactions that has to be sampled and
accumulated. Besides this eventual effect of increased accumulation, the increased
size of outcomes per se should lead to increased affective reaction for each sampled
outcome as well. Given the well established link between the (absolute) strength of
affective responses and pupil dilation (e.g., Janisse, 1974), both effects could cause
larger pupil dilations. It, however, has to be acknowledged that the researchers that
suggested DFT have (to the best of our knowledge) not explicitly derived these
predictions concerning arousal from their theory.

network and the structure of the network defined by its’constraints
(i.e., the structure of inhibitory and excitatory links). Increasing
EVmean influences the first factor and leads to higher activation
and therefore also to higher arousal. In the model this would be
captured by the fact that higher a priori valuations of outcomes
result in stronger links between the general valuation node and the
outcome nodes (see Glöckner and Herbold, 2011, Figure 1). Fur-
thermore, PCS predicts increasing pupil size for decreasing EVdiff,
which influences the second factors namely the structure of the
network and makes it harder to construct a coherent interpretation
(Hochman et al., 2010; Glöckner and Hochman, 2011). Heuristics
predictions are less influenced by either manipulation. Individuals
applying heuristics should not be aware of EV as they ignore parts
of the information which would be needed to calculate it. They
could, however, anyway realize that gambles are concerned with
higher stakes by seeing higher outcomes and therefore at least react
to the manipulation of EVmean (see also text footnote 2, above).

DISTRIBUTION OF ATTENTION
Most process models allow predictions concerning the distribution
of attention over outcomes within a decision. For example, LEX,
minimax, and maximax predict that certain outcomes (i.e., low vs.
high outcomes) should receive particularly large amounts of atten-
tion. For individuals applying WADD, in contrast, all outcomes
and probabilities should receive about equal attention. From DFT,
even more refined predictions can be derived in that attention can
be assumed to be proportional to the probability of an outcome
(Busemeyer and Townsend,1993; Johnson and Busemeyer,2005)3.

3According to DFT, attention weights (often equated with probabilities) are assumed
to determine the stochastic sampling process of outcomes. Therefore, “the outcome
probabilities dictate where attention shifts, but only the outcome values are used in
determining the momentary evaluation.” (Johnson and Busemeyer, 2005, p. 843).
Note, however, that DFT in its original formulation is mainly concerned with men-
tally sampling outcomes. Explicit predictions concerning overt attention are only
found in some implementation of simplified evidence accumulation models (e.g.,
Raab and Johnson, 2007), while other authors have argued that the process is not
directly observable (e.g., Diederich, 2003).

 blank screen              fixation cross    

   individual decision times               

< Choose A or B >

   6000 ms                      500 ms

Lottery A Lottery B

 0.4 
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20%
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FIGURE 1 | Decision tasks between gambles with two outcomes each used in studies 1 and 2. Left outcomes belong to gamble A, right outcomes belong
to gamble B.
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PCS predicts that attention to outcomes should increase with both
their probability and their value. PCS postulates that activation of
the aspects supporting the later on favored option increases over
time. Therefore, in a dynamic perspective, there should be a shift of
attention toward the chosen options (and particularly to the most
attractive outcomes of it) in the course of decision making. If one
accepts the assumption that internal attention is at least correlated
with overt attention in decisions from descriptions (Just and Car-
penter, 1976), these predictions can be directly investigated in our
fixation data.

DIRECTION OF INFORMATION SEARCH
WADD assumes mainly within-gambles information search.
Heuristics, in contrast, mainly assume information search to be
between gambles. DFT assumes a stochastic process of informa-
tion sampling but does not explicitly specify the direction of
information search. PCS also does not make clear predictions
concerning the direction of information search.

MATERIALS AND METHODS
We conducted two eye-tracking studies to investigate the dynam-
ics of risky choice. The first study used variants of the gambles
taken from a previous study (Glöckner and Betsch, 2008a)4. To
rule out the possibility that results might be dependent on the
selection of these specific decisions, we conducted a second study
using randomly generated gambles. To enhance cross-study com-
parisons, we will jointly report methods and results for both stud-
ies, although the studies were originally conducted in a logically
motivated sequence and with a time lag of more than 1 year.

PARTICIPANTS AND DESIGN
Twenty-four residents of Bonn, most of them students (mean
age: 24.6 years; 47% female), took part in the first study. Three
of them had to be excluded from the analysis because their eye-
tracking data was not recorded. In the second study, 37 participants
took part (mean age: 22.53 years; 65% female). One had to be
excluded because of incomplete eye-tracking data. Participants
were recruited from the MPI Decision Lab subject pool using the
database-system ORSEE (Greiner, 2004). In both studies partic-
ipants repeatedly made decisions between two gambles with two
outcomes each. In the first study, for many of the decisions the
compared gambles were almost equal concerning their EV, that is,
their EVdifference was close to zero, but the mean EV was manip-
ulated to be high vs. low (details below). In the second study, mean
EV and EV differences varied randomly between gambles within
a certain pre-specified range.

Both studies lasted about 40 min each including a calibra-
tion phase and a short questionnaire about the decision behavior.
Choices were incentivized. In addition to a fixed show-up fee of 6
C (approx. USD 7.90), participants earned money by playing one
of the chosen lotteries (payoffs ranged from 0 to 49.5 C, M = 6.2C
(approx. USD 8.20) in Study 1 and from 0.1 to 49.8 C, M = 9.6 C
(approx. USD 12.70, in Study 2). No deception was involved, and

4These gambles were also used in further eye-tracking studies by Glöckner and
Herbold (2011) and Franco-Watkins and Johnson (2011) and comparative model
fitting (together with additional gambles) in Glöckner and Pachur (2012).

participants had not experienced deception in previous studies in
our lab.

MATERIAL
Study 1
Participants completed 50 choices between pairs of gambles. The
decision problems used consisted of 40 decision tasks adapted
from Glöckner and Betsch (2008a), and 10 decision tasks taken
from the standard economic test for risk aversion from Holt and
Laury (2002). For the Glöckner-and-Betsch gambles, the mean
EV of both gambles in the decision task was manipulated. For half
of the decisions, the mean EV for both gambles was high (7.50
C≤ EVmean≤ 9.90 C) for the remaining decisions it was low
(2.00C≤ EVmean≤ 3.75C). The compared gambles were thereby
always similar in EV to each other. In the Holt-and-Laury gambles,
in contrast, the absolute difference in EVs between the gambles was
varied gradually [0.32 C≤ EVdiff (abs)≤ 3.7 C]. Specifically, a
safe gamble was compared to a risky gamble with increasing supe-
riority in EV. Mean EV and differences in EVs between the gambles
show a slight negative correlation, r =−0.17, p= 0.23. Decision
tasks are listed in Section “Gambles Study 1” in Appendix.

Study 2
Decision tasks consisted of the 10 Holt-and-Laury gambles, and 40
decision tasks that were randomly generated. They contained pairs
of gambles with varying mean EV (2.04 C≤ EVmean≤ 17.6 C)
and varying the absolute difference in EV between gambles [0.006
C≤ EVdiff (abs)≤ 1.844 C]. Both factors were thereby almost
uncorrelated (r =−0.04). The full list of decision problems can
be found in Section “Gambles Study 2” in Appendix.

PROCEDURE
Both studies essentially used the same procedure. First, partici-
pants were informed about the experimental task, the incentive
scheme, and the presentation format of the gambles. They were
instructed to make good decisions, but to proceed as fast as pos-
sible. Each decision started with a blank screen (6 s), followed by
the fixation cross (0.5 s) to direct attention to the center of the
screen. Then the two gambles were presented simultaneously on
the right and on the left side of the screen. An ellipsoid display
format was used, in which all pieces of information (i.e., outcomes
and probabilities) are present at equal distance from the initial
fixation point (Figure 1). The ellipsoid format has been intro-
duced in previous research, and it has been shown that choices are
not systematically different from other more classic formats (see
Glöckner and Betsch, 2008a; Glöckner and Herbold, 2011). The
left (right) gamble was selected by pressing a key on the left (right)
side of the keyboard (i.e., “y” and “m,” which are the lower left and
right letters, respectively, on German keyboards). Decision tasks
were shown in randomized order. The presentation order of the
gambles (gamble is presented on the left or right side of the screen)
and the order of outcomes within each gamble (i.e., low outcome
first vs. high outcome first) were also chosen according to a fixed
random assignment.

Eye movements and pupil dilations were recorded by using the
eye gaze binocular system (LC Technologies) with remote binocu-
lar sampling rate of 120 Hz and an accuracy of about 0.45˚. Gam-
bles were presented on a monitor (Samsung Synchmaster 740B,
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refresh rate 60 Hz, reaction time 5 ms) with a native resolution of
1280× 1024. Fixations were identified using a 30 pixel tolerance
(i.e., added max-min deviation for x- and y-coordinates) and a
minimum fixation time threshold of 50 ms. For analyses of mean
fixation duration, first and last fixations in each decision trial were
dropped since their length might be contaminated (see Krajbich
et al., 2010; Glöckner and Herbold, 2011), although conclusions
remained the same when including them in the analysis.

Non-overlapping AOI around the presented information on
the screen were defined with the size of 100× 100 pixels. These
AOIs were used to determine which information was searched in
a specific moment.

RESULTS
We first analyze dependent measures aggregated over the entire
time course of decision making. In the second step, we look more
closely at dynamics and systematic changes over time.

AGGREGATED PERSPECTIVE
Choices
First, we were interested in the influence of EVdiff on choices;
therefore we conducted logistic regressions predicting choice for
Gamble A by the difference in EV between Gambles A and B (posi-
tive numbers indicating an advantage of A over B and vice versa for
negative numbers). This and all following regressions use random
effects models to account for the repeated measurement design.
The estimated models include random intercepts and slopes for all
relevant predictors (excluding control factors). Coefficients c are
assumed to vary randomly and independently from each other on
the level of participants around their population mean µC with a
SD of σC following a normal distribution N [µC, σC] (Wooldridge,
2001)5. As a further control factor, we included trial number to
account for order effects. We find coefficients for choosing Gam-
ble A higher than 0, indicating that the probability for choosing
this gamble increases with increasing EV difference in favor of the
gamble (Table 2).

The influence of mean EV and EV difference on information search
and processing
We were first interested in the influence of our manipulations of
EVmean and absolute EVdiff on information search and infor-
mation integration. As dependent measures, we analyzed decision
time, number of fixations, mean fixation duration (excluding first
and last fixations), and pupil dilation. Time was measured from
gamble onset until key-press, so was the number of fixations (i.e.,
count), and the mean fixation duration (i.e., averaged duration
of single fixations over the time-frame). Pupil dilation was calcu-
lated as peak pupil dilation scores, that is, the maximum increase
of pupil size from baseline (measured at blank screen and fixation
cross before each decision) in the same time period. Pupil dilation
is measured as radius in mm. Descriptive statistics for the core
dependent measures are provided in Section “Summary Statistics”
in Appendix.

All dependent measures were regressed on EVmean and
absolute EVdiff using random effects models with random inter-
cepts and random slopes for both predictors and trial as control

5Alternative analyses using fixed effect correction and cluster corrected SE lead to
the same conclusions except where explicitly stated otherwise.

Table 2 | Logistic regression predicting choices for gamble A (pchoiceA).

pchoiceA pchoiceA

Study 1 Study 2

EVdiff(Gamble A−Gamble B)
a 0.332*** (4.49) 0.801*** (12.63)

Constant −0.124 (−0.98) 0.227* (2.13)

Observations 1026 1800

Random effects model with varying intercepts and slopes for EVdiff. Order effects

have been included as control factors in the regression (not reported). Reported

are raw coefficients (z statistics in parentheses); number of participants were

N=21 and 36 in Studies 1 and 2, respectively. *p < 0.05, ***p < 0.001. aValues

are in Euro difference.

factor (Table 3). In the second study, we find that decision time,
number of fixations, mean fixation duration, and pupil dilation
increase with EVmean. Regression coefficients provide quantita-
tive estimates for the influence. An increase in mean EV of 1.00C,
for example, increases decision time by 0.197 s, the number of fix-
ations by 0.701, etc. Except for mean fixation duration, we find
trends in the same directions in Study 1, which do not reach
conventional levels of significance, however. It remains unclear
here whether these non-significant results are caused by the lower
power due to reduced sample size or other factors such as the
more systematic gamble construction and the lower variation of
EVmean in Study 1.

Furthermore, we find that decision time, and number of fix-
ations increase with decreasing EVdiff (abs) between gambles in
both studies. Mean fixation duration also increases with decreas-
ing EVdiff (abs) in both studies but only in the first study the effect
reaches conventional significance levels. An increase in EVdiff of
1 C would here result in an decrease in mean fixation duration of
around 2%6.

To further investigate the effect of the EVmean manipulation on
mean fixation durations, we categorized single fixations as short
(<150 ms), medium (≥150 and <500 ms), and long (≥500 ms)
according to their duration (Velichkovsky, 1999; Horstmann et al.,
2009). In both studies (and in both high and low EVmean
gambles) we find mainly medium and short fixations (Study 1:
M short= 42.09%, M medium= 54.81%; Study 2: M short= 41.91%,
M medium= 55.89%) and only a few long fixations that indicate
more deliberate processing. Mixed effect regressions with propor-
tion of short, medium, and long fixations as dependent variables
and EV mean as predictor indicate that in both studies neither
of the proportions is significantly influenced by EV mean, all
p’s > 0.13.

Influence of probability and outcome on attention
To investigate driving factors for the distribution of attention,
we regressed the amount of fixations toward each outcome on
its probability, its value, and their interaction. As in the regres-
sion reported above, we corrected for the repeated measurement

6We also run all analyses reported in Table 4 including additional interaction effects
of EVmean and EVdiff (abs). As expected, main effects did not change but interac-
tions turned out to be significant and positive for mean fixation duration in Study
1 and for decision time and number of fixations in Study 2.
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Table 3 | Regression models predicting decision time, number of fixations, fixation durations, and pupil dilation by EVmean and EVdiff (abs).

Decision timeb Number of fixations Mean fixation durationc Pupil dilation

Study 1 Study 2 Study 1 Study 2 Study 1 Study 2 Study 1 Study 2

EVmeana 0.0196

(0.29)

0.197***

(5.64)

0.0184

(0.08)

0.701***

(5.62)

−0.0003

(−0.93)

0.0004***

(4.56)

0.0011

(0.88)

0.0016**

(2.81)

EVdiff (abs)a −0.715**

(−2.95)

−0.93***

(−7.09)

−2.363**

(−2.95)

−3.624***

(−7.26)

−0.0042***

(−4.21)

−0.0005

(−0.91)

0.0029

(0.56)

0.0015

(0.53)

Constant 8.891***

(−3.88)

8.871***

(14.92)

33.24***

(9.85)

33.31***

(−7.26)

0.199***

(26.36)

0.197***

(43.69)

0.107***

(5.20)

0.0743***

(7.40)

Observations 1005 1728 1004 1728 1002 1728 995 1682

Random effects model with varying intercepts and slopes for EVmean and EVdiff (abs). Order effects have been included as control factors in the regression (not

reported). Reported are raw coefficients (z statistics in parentheses); number of participants were N=21 and 36 in Studies 1 and 2, respectively. EVdiff (abs) denotes

the absolute (i.e., none-negative) value of the difference between EVs of the gambles. **p < 0.01, ***p < 0.001. aValues are in Euro (difference). bRegression with log

transformed decision times yield the same conclusions. cThe random effect model failed to calculate the SE and as a result did not provide a stable estimate of the

coefficients.Therefore we report for mean fixation duration a fixed effect model with cluster corrected SE (results and interpretation stay the same for both analysis).

Table 4 | Regression models predicting fixations to outcomes by value

and probability.

Number of fixations

Study 1 Study 2

Valuea 0.0741*** (4.97) 0.0913*** (9.78)

Probabilityb 1.533*** (8.21) 1.707*** (8.30)

Value×probability 0.0685+ (2.03) 0.125*** (7.04)

Constant 5.147*** (10.63) 5.428*** (15.37)

Observations 3892 6793

Random effects model with varying intercepts and slopes for value and prob-

ability. Order and position effects have been included as control factors in the

regression (not reported). Reported are raw coefficients (z statistics in paren-

theses); number of participants were N=21 and 36 in Studies 1 and 2, respec-

tively. +p < 0.10, ***p < 0.001. aValues are in Euro (centered). bProbabilities vary

between 0 and 1(centered).

design by using a random effects model with random inter-
cept and random slopes for all three predictors. Furthermore
we corrected for display position (i.e., all four combinations of
right/left× up/down) using three display position dummies as
well as for learning effects over trials by including trial number.
In both studies the amount of fixations spent on an outcome
increases with both its probability and the value of the outcome
(Table 4). The interaction of probability and value is significant
in Study 2 and marginally significant in Study 1. Significant main
effects (but no interactions) are also found in regressions using
fixation time as dependent variable (not reported).

Some heuristics models assume interindividual differences in
that persons use qualitatively different strategies to make risky
choices (Payne et al., 1988, 1992; Gigerenzer and Todd, 1999).
These should be reflected in heterogeneity of attention patterns
between individuals. We conducted regressions per individual to
investigate eventual heterogeneity in the effects of probabilities and
outcomes on fixations. Figures 2 and 3 plot the resulting intercepts
against the slopes from these regressions, each dot indicating one

participant. We were thereby mainly interested in slopes. Interest-
ingly, for both effects of probability and value on the number of
fixations almost all participants showed behavior that was quali-
tatively in line with the overall regression results in that slopes for
probabilities and values were positive. Hence, although slopes and
intercepts differ between persons behavior seems to be relatively
homogeneous.

DYNAMIC PERSPECTIVE
Furthermore, we investigated dynamics over the course of decision
making. Some models predict changes in attention. Heuristics,
such as PH and LEX, predict changes of attention from more
important to less important comparisons over time. Most strate-
gies considered here except for PCS (and also the above mentioned
attention drift-diffusion models), however, predict that attention
should be about equally distributed over the two gambles that are
compared. As introduced above, Glöckner and Herbold (2011)
showed an attention bias toward the option chosen later on in risky
choices and gaze-cascade effects, that is a tendency to increasingly
look at options that are later on chosen, have been demonstrated
repeatedly in decisions under certainty (e.g., Shimojo et al., 2003).
We investigate whether we can replicate the attentional bias and
aim to explore in more detail when the bias starts to occur in the
decision process. We expect to find a gaze-cascade effect in risky
choice, in that the attentional bias is particularly driven by late
fixations.

Attentional bias
To investigate the occurrence of an attentional bias over the course
of decision making, the proportion of fixations to the left gamble
is used as the dependent measure. Figure 4 plots the attention pro-
portion against proportional time bins with each bin containing
10% of the absolute decision time per person and decision.

Descriptively, the attentional bias toward the favored gamble
is replicated. In both studies, a strong separation can be seen in
the last third of the decision process (i.e., starting in the seventh
or eighth bin). In both studies, we also consistently see an initial
attention bias to the left which is driven by reading direction.
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FIGURE 2 | Individual regression coefficients for predicting number of fixations by probability of outcomes (controlling for value). Graphs show
intercepts plotted against slopes with positive slopes indicating that the number of fixation increases with probability.
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FIGURE 3 | Individual regression coefficients for predicting number of fixations by value of outcomes (controlling for probability). Graphs show
intercepts plotted against slopes with positive slopes indicating that the number of fixation increases with value.

To test the results statistically, we regressed the proportion of
fixation to the left gamble on choice (left/right), proportion of time
(i.e., time bins), and their interaction (Table 5). We ran a random
effects regression with random coefficients for intercept and slopes
for all three predictors and included dummies for decision tasks as
control factors. The significant main effect for choice indicates an
overall attention bias in the direction of the chosen option. That
is, if the left gamble was chosen, it was fixated 5–6% more often as

compared to decisions in which the right gamble was chosen. The
significant main effect for proportion of time on fixations to the
left gamble indicates a general shift of fixations from left to right by
22–23% over the time course of decision making, probably driven
by initial left bias due to natural reading order. More importantly,
the significant interaction between choice and proportion of time
indicates a strong gaze-cascade effect and captures the fact that
the attentional bias mainly appears in the last part of the decision
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FIGURE 4 | Proportion of fixations to the left gamble (probabilities and outcomes) over the time course of the decision. Decisions for right vs. left
gamble are depicted by separate lines. Error bars indicate 95% confidence intervals.

Table 5 | Regression model predicting proportion of fixations to the

left gamble.

Proportion of fixations to the

left gamble

Study 1 Study 2

Choice (0= right 1= left) 5.088*** (3.71) 5.950*** (8.10)

Proportion of timea
−22.97*** (−4.79) −22.16*** (−6.11)

Choice×proportion of time 27.24*** (7.56) 22.70*** (9.08)

Constant 47.68*** (15.46) 53.32*** (25.06)

Observations 9564 16944

Random effects model with varying intercepts and slopes for choice, time, and the

interaction. Task effects have been included as control factors in the regression

(not reported). Reported are raw coefficients (z statistics in parentheses); number

of participants were N= 21 and 36 in Studies 1 and 2, respectively. ***p < 0.001.

The range of the variable is between 0 and 1 and we used bins of 0.10 for the

analysis (both variables were centered for the analysis). Results stay essentially

the same when excluding extreme values (i.e., p90, p10) or using fixation time

as dependent measure.

process in which the gamble receives attention which is chosen
later on (independent of whether it is presented left or right)7.

7For food choices, Krajbich et al. (2012) additionally report the effect that partici-
pants tend to choose the unlooked-at item if the last fixation was to a much disliked
item. To investigate whether this effect generalizes to gambles, we rerun the regres-
sions reported in Table 5 additionally including a three-way interaction of EVdiff,
choice, and time (also controlling for the respective main effect for EVdiff and the
remaining two-way interaction; all variables centered). The results indicate that
there is a positive interaction effect in study 2 but not study 1, whereby main effects
and other interaction effects are not significantly changed. This lack of support,
however, might be due to the fact that there were no losses involved in our material.

Pupil dilation
As reported above, on the aggregate level, we found that pupil
dilation increased with EVmean, that is, with the stakes involved
in the decision (note, however, that the effect was significant in
Study 2 only). We were now interested in the development of
pupil dilation over time. The measure of dilation peaks used in
the aggregated analysis above is inappropriate for such an analy-
sis of small time-blocks (bins), since no single peaks per time-bin
can be expected. We therefore calculated for each time-bin aver-
age deviation scores in pupil size from the first time-bin. Figure 5
shows that in both studies we observed an increase in pupil dila-
tion over time. Additionally, there was an unexpected early drop
in the second time-bin, which was observed in both studies and
might eventually be caused by brightness changes due to stimulus
onset.

To analyze pupil size development over time statistically, we
regressed pupil dilation scores (i.e., pupil size minus pupil size
in the first bin) on time, EVmean, absolute EVdiff, and their
interactions with time (Table 6). We thereby again used a ran-
dom effects model with intercept and slopes of all five predictors
as random coefficients and controlling for order effects and the
absolute time that passed within the trial. The analysis confirms
that pupil dilation increases over the decision making process. The
main effect for EVmean in Study 2 reproduces the effects from
the overall analysis which used peak dilation scores (see Table 3,
above).

Both in the aggregated and the dynamic analysis, we do not find
a negative effect of EVdiff (abs) on pupil dilation, which stands
in conflict with the findings reported in the introduction of this
paper and fails to support predictions derived from PCS. Note,
however, that in Study 1, EVdiff (abs) is only manipulated for a
small subset of the gambles (i.e., the Holt–Laury gambles), so that
eventual effects might have been hard to detect.
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FIGURE 5 | Pupil dilation over time course of the decision. Error bars indicate 95% confidence intervals (Note that SEs are estimated assuming
independence within participants since deviation scores are normalized per person and trial).

Table 6 | Regression predicting changes in pupil dilation over the

decision making process.

Pupil dilation

Study 1 Study 2

Proportion of timea 0.0434* (2.00) 0.0179+ (1.82)

EVmeanb 0.000873 (0.80) 0.00105** (3.02)

EVdiff (abs)b 0.00369+ (1.93) 0.0027 (1.27)

Proportion of time×EVmean 0.00674 (1.39) 0.00703 (1.26)

Proportion of time×EVdiff (abs) 0.0140* (2.13) 0.00466(1.41)

Absolute time (in s) 0.00475*** (11.04) 0.0029*** (11.29)

Constant 0.0157 (11.04) −0.00228 (−0.38)

Observations 9953 17427

Random effects model with varying intercepts and slopes for EVmean, EVdif(abs),

time, and the interactions. Order effects have been included as control factors

in the regression (not reported). Reported are raw coefficients (z statistics in

parentheses); number of participants were N=21 and 36 in Studies 1 and 2,

respectively, +p < 0.10, *p < 0.05, **p < 0.01, ***p < 0.001. aThe range of the vari-

able is between 0 and 1 and we used bins of 0.10 for the analysis (and centered

for the analysis). bValues are in Euro (and centered for the analysis).

Attention toward outcomes vs. probabilities
Changes in preferences for value and probability information dur-
ing the decision can be informative for details of the decision
process and were therefore analyzed as well. As mentioned above,
some heuristics such as PH predict such shifts.

We analyzed the overall attention toward probabilities and out-
comes of the gambles, as well as their development over time using
the probability of fixations to probabilities as dependent measure
(i.e., fixations to probability AOIs divided by fixations to all AOIs).
As Figure 6 shows, participants show a preference for probabilities

very early in the decision process and a preference for outcomes
later on. This is in line with one possible interpretation of DFT,
which puts forward that individuals first have to learn probabil-
ities, which are used later on to guide fixations to outcomes (see
text footnote 3, above).

To investigate these effects statistically, we regressed the pro-
portion of fixations dedicated to probabilities on time-bin, again
using a random effects model and controlling for task and order
(Table 7). The constant indicates that there is a general preference
for value information but the significant main effect points to an
even stronger reversal from preferring probabilities to preferring
value information over the course of decision making.

Direction of information search
Finally, we investigated the direction of information search, which
is one classic approach to investigate decision processes (e.g.,
Payne et al., 1988). As discussed above, WADD mainly predicts
information search within-gambles, whereas heuristics mainly
assume comparisons between gambles. We calculated the num-
ber of transitions within and between gambles as the number
of times in which two subsequent fixations focused on differ-
ent AOIs within the same gamble (within-gamble transition),
as opposed to any AOI of the other gamble (between-gamble
transition).

In line with previous findings (Franco-Watkins and Johnson,
2011; Glöckner and Herbold, 2011), we observe only a small pro-
portion of transitions between gambles. Information search is
mainly conducted within-gambles. We observe on average 5.12
(Study 1)/6.35 (Study 2) transitions between gambles and 14.44
(Study 1)/14.11 (Study 2) transitions within one of the gambles
during each decision trial. We analyze changes in the proportion
of transitions over the time course of decision making using a ran-
dom effects model with randomly varying intercept and slope for
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FIGURE 6 | Proportion of fixations to probabilities by time. Error bars indicate 95% confidence intervals.

Table 7 | Regression model predicting proportion of fixation to

probability information over time.

Proportion of fixations to

probability information

Study 1 Study 2

Proportion of time (10%-steps)a −14.69*** (−3.74) −20.26*** (−7.61)

Constant 47.93*** (17.35) 49.62*** (23.90)

Observations 9428 16685

Random effects model with varying intercepts and slopes for time. Order effects

have been included as control factors in the regression (not reported). Reported

are raw coefficients (z statistics in parentheses); number of participants were

N= 21 and 36 in Studies 1 and 2, respectively. ***p < 0.001. aThe range of the

variable is between 0 and 1 and we used bins of 0.10 for the analysis.

the time trend. Findings for both studies indicate that there is no
change in the proportion of fixations by time (both z ’s < 1.16)8.

SUMMARY OF RESULTS AND THEORY PREDICTIONS
A summary of the core results from the two reported eye-tracking
studies with respect to the predictions of the theories that were
considered in the current paper is provided in Table 8.

DISCUSSION
The current paper presents two studies which extend research on
the cognitive mechanisms involved in risky choices with a spe-
cial focus on dynamics, that is, changes in information search

8In this analysis, the application of a fixed effects model leads to different conclusions
in that within gamble transitions increase over time in Study 2 (b= 2.8, z = 3.01,
p < 0.001). Due to the inconsistency in analyses this result has to be interpreted
cautiously. Note also that the finding conflicts with an opposite results by Glöckner
and Herbold (2011).

and processing over the time course of decision making. Eye-
tracking is used to measure different indicators for information
search and integration over time with the aim to test assumptions
and predictions of existing process models for decision making to
inspire further improvements and development within or outside
the frameworks previously suggested.

In line with previous research (e.g., Glöckner and Betsch, 2008a;
Ayal and Hochman, 2009; Glöckner and Herbold, 2011; Hilbig
and Glöckner, 2011), we observed relatively short decision times,
which speaks against the hypothesis that individuals deliberately
integrate probabilities and outcomes according to a calculation of
weighted sums. Note, that particularly in the second study we used
randomly generated gambles that made calculations quite hard.
Take for example the decision between Gamble A, which pays 9.3C
with 20% and 0.4C otherwise vs. Gamble B which pays 3.8C with
88% and 2.2C otherwise. Even for mathematically skilled persons
it seems hard to assume that they can deliberately calculate and
compare the EVs of these Gambles within less than 10 s9. Never-
theless, participants’ choices are still significantly predicted by the
difference in EV between gambles and both outcomes and prob-
abilities influence information search for almost all participants,
which indicates that persons take into account value and probabil-
ities and seem to integrate them to some degree. Additionally, we
find mainly short and medium fixations over the entire time course
of decision making, which supports the notion of individuals at
least partially utilizing automatic processes in risky choice. DFT
and PCS models describe possible process implementation that

9Note, that our manipulation of EVmean was partially confounded with mathe-
matical complexity when assuming deliberate serial calculation of EVs. Specifically,
gamble comparisons with high as compared to low mean EV also involve higher
numbers that could make calculation harder and therefore increase decision time,
number of fixations and arousal. Although we cannot completely rule out this possi-
bility, we argue that given our findings concerning choices, decision time and process
measures deliberate stepwise calculations of EV are not very likely in the first place.
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Table 8 | Summary of the results.

Findings Predicted by

DFT PCS PH Minimax Maximax LEX WADD

Decision time increases with Higher EVmean Yes Yes No No No No No

Lower EVdiff Yes Yes No No No No No

Average number of fixations increases with Higher EVmean Yes Yes No No No No No

Lower EVdiff Yes Yes No No No No No

Mean fixation duration increases with Higher EVmean Results are not conclusive

Lower EVdiff Yes Yes No No No No No

Pupil dilation increases with Higher EVmean Yes Yes No No No No No

Lower EVdiff Results are not conclusive

Attention increases with probability Yes Yes No No No Yes No

Attention increases with value No Yes No No Yes No No

Attention shift toward the chosen option No Yes No No No No No

Mainly within-gambles information search Unsp. Unsp. No No No No Yes

Pupil dilation increases over the time course of the decision Yes No Unsp. Unsp. Unsp. Unsp. Unsp.

Unsp.=unspecified.

approximate weighted integration without relying on the unrea-
sonable assumption that individuals indeed calculate them in a
serial manner.

Quick decision responses could, of course, also be explained
by simple heuristics. Considering that Gigerenzer and Gaissmaier
(2011) start their definition of heuristics as follows: “A heuristic is
a strategy that ignores part of the information. . .,” the high average
proportion of inspected information (i.e., 93%) speaks against this
explanation. Also the interpretation that persons scan all pieces of
information but later on ignore parts of it in their decision process
seems to conflicts with the data since probabilities and values of
outcomes influence attention for almost all participants. Further-
more, individuals show mainly within-gamble information search
and are sensitive to manipulations of EV which also speaks against
the application of simple heuristics.

We manipulated mean EV and EV difference between gambles
of the decision problems to investigate whether individuals’ reac-
tions to these manipulations can be better explained by one of the
models considered. Indicators for information search and process-
ing are influenced by both manipulations. Deciding about gambles
with somewhat higher stakes (i.e., higher mean EV) results in
longer decision times, a more comprehensive information search
(amount of fixations), deeper processing (mean length of a sin-
gle fixation), and signs of increased arousal and/or cognitive load
(greater pupil dilation). However, not only the stakes of a gam-
ble influence the processing, but also the overall similarity of the
two gambles in the choice pair, as indicated by the absolute EV
difference. Deciding between two gambles that are very close to
each other with respect to EV was associated with an increase in
decision times and number of fixations, as well as a larger average
fixation duration. Summing up the evidence, we observe that indi-
viduals make choices in less then 10 s and thereby take into account
almost all pieces of information. Choice behavior is thereby highly
sensitive to manipulations in EVmean and EVdiff, which arguably
requires individuals quickly to develop rough impressions of the
EVs of the gambles considered.

Since individuals seem to integrate many available pieces of
information in a fast automatic response, these results provide evi-
dence in favor of automatic integration models such as PCS and
DFT. Results do not fit with the assumptions of simple heuristics
ignoring parts of the information presented, or the much slower
serial integration of information proposed by WADD.

Since most process models provide predictions about the dis-
tribution of attention, we used the amount of fixations on each
outcome as a dependent measure. We were able to show that the
look-up rate of an outcome depends on the value and the proba-
bility of an outcome and that most individuals show these effects.
This result is challenging not only for heuristics, which often pre-
dict that attention is mainly driven by the value of an outcome
(i.e., minimax and maximax), but also for models like DFT which
assume that the attention to an outcome is only driven by its proba-
bility. Only PCS among the models considered here, which predicts
holistic integration of all presented information, could account for
the influence of both value and probability of an outcome on the
attention devoted to it.

The results from both of our studies as well as evidence from
previous research (Glöckner and Betsch, 2008a; Johnson et al.,
2008; Franco-Watkins and Johnson, 2011; Glöckner and Herbold,
2011), show that within-gamble comparisons were much more
frequent than between-gamble comparisons in these two-outcome
risky choice tasks. This result supports WADD, but speaks against
simple heuristics, which assume mainly attribute-wise compar-
isons between the gambles. DFT and PCS do not predict a specific
direction of information search, and we suggest extending and
specifying them by adding testable models of information search
to increase their empirical content (Glöckner and Betsch, 2011).

DYNAMIC PERSPECTIVE
A more in-depth analysis of attention processes across the time
course of decision making is unique to this study. To pin-point
dynamics in the process, we analyzed changes in the distribution
of attention between outcomes and probabilities, changes in pupil
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dilation, as well as the attention biases toward one of the options
as the decision process unfolded.

Individuals preferred looking at probability information in the
very beginning of a decision. During the middle and later parts
of the decision, however, individuals focused more strongly on
outcome information. This shift in attention toward outcome
information is in line with the assumption of DFT that proba-
bility information informs later on sampling of outcomes. It is
hard to explain with most simple heuristics. PCS does not make
clear predictions concerning this shift.

We also observed an attention bias toward the preferred option
occurring in the later part of decision making showing the gaze-
cascade effect for risky choices. This could be due to fixations
toward the later chosen gamble within the decision making process
or fixations in order to confirm the choice. Furthermore, pupil
dilations increased over time in both studies, which can be inter-
preted as an accumulation of arousal over the information search
process, which could be explained by DFT.

MODELS FOR RISKY CHOICES
The evidence presented in this paper advances our understand-
ing of the time course of risky choice as well as the underlying
processes. Results generally seem to support automatic integration
models. Nevertheless, neither DFT nor PCS can in their current
specifications fully account for all findings. In particular, with
regard to DFT, the assumption of a stochastic sampling and evi-
dence accumulation process directed by probabilities of outcomes
can only be partially supported. The results at hand show that the
probability of an outcome occurring is an important factor for
the distribution of attention as predicted by DFT. However, it is
not the only factor influencing information sampling. The value
of an outcome influences the allocation of attention as well. Some
implementations of DFT also assume that the allocation of atten-
tion between gambles should be constant over the entire decision
process, which is not in line with our finding of an emerging bias
toward the actually chosen option over time (i.e., the gaze-cascade
effect). Other implementations of evidence accumulation models
such as the attention drift-diffusion model (e.g., Krajbich et al.,
2012), however, could account for such effects, at least when they
concern last fixations only.

Concerning PCS the results are somewhat equivocal as well. The
results concerning the attention bias and the gaze-cascade effect in
risky choice strongly support the idea of systematic information
distortions, particularly the accentuation of initial advantages of
one option over time (Thagard, 1989; Holyoak and Simon, 1999;
Simon et al., 2004; Glöckner and Herbold, 2011). Also the find-
ings concerning the effects of EVmean on information search and
arousal are in line with the models predictions and replicate and
extend previous findings. However, it has to be qualified that the
by PCS predicted and previously observed (Glöckner et al., 2012)
effect of EVdiff on arousal was not found in the current studies.
Also the observed increase in arousal over the time course of deci-
sion making is hard to explain with the PCS model. Furthermore,
it has to be criticized that the PCS framework is currently not
sufficiently specified to predict all information search parameters.
Therefore, it seems necessary to extend the model by modeling
information search more explicitly. The current findings, which

provide a closer view of the choice process, can inform such model
developments.

CAVEATS AND FURTHER RESEARCH
As already addressed in the introduction, one concern with regards
to the method used in our experiment and the interpretations
derived from our results could be that data from eye-tracking
potentially provides only a vague proxy for the information search
and processing, because it might neglect internal processes of
attention and information retrieval. This would, for example, be
the case if individuals look-up information only once and retrieve
it from memory at a later stage of the decision making process.
However, two arguments can be made against this objection: First,
the current design (as opposed, for example, to mouselab) enabled
effortless visual retrieval of information, making retrieval from
memory unnecessary. Second, participants did actually constantly
and systematically sample visual information across the entire
decision process. These considerations allow for more faith in the
methods, findings, and conclusions of the current study.

We could not replicate the previously observed effect of EV
differences on arousal (Glöckner et al., 2012). For deeper under-
standing, we therefore strongly encourage further studies of the
link between the decision task difficulty and observed arousal or
cognitive load. Investigating the connection with additional mea-
sures, like skin conductance, could help to clarify the role of arousal
and the driving factors.

Besides investigations of a methodological nature, a next step
in analyzing information search and arousal should be replica-
tions of these findings in different decision making contexts by,
on the one hand, changing the structure of the gamble tasks into
more than two-outcome gambles and, on the other hand, using
less abstract risky choices in order to test whether the result also
holds for affect richer decisions and can therefore be generalized
to risky decisions in the “real world”(see i.e., Goldstein and Weber,
1995, for a discussion of this caveat).

CONCLUSION
Given our results and evidence from previous studies (see Glöck-
ner and Herbold, 2011), simple non-compensatory models such
as the PH, LEX, minimax, or maximax heuristic do not seem to be
appropriate to predict search behavior and processes involved in
risky decisions in general. The same holds for the serial implemen-
tations of EU models in the form of WADD. Instead, the present
results suggest that risky decision making seems to rely mainly
on automatic-intuitive processes and can be partially described
by models such as DFT and PCS. Nevertheless, also these models
cannot account for all our findings in that they are underspecified
in some respects and make no predictions or even make predic-
tions which are clearly not in line with the findings. Since none of
our findings, however, directly challenges core properties of these
models, and also due to a lack of better alternatives, we think that
both kinds of models are promising starting points for further
theory developments concerning process models of risky choice.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at http://www.frontiersin.org/Cognitive_Science/10.3389/fpsyg.
2012.00335/abstract
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APPENDIX
SUMMARY STATISTICS
Table A1 provides the descriptive statistics for the core dependent measures.

Table A1 | Summary statistic for the main dependent variables (SD).

Study 1 Study 2

Pupil size (radius in mm) 2.49 (0.43) 2.26 (0.30)

Pupil dilation (radius in mm) 0.122 (0.133) 0.095 (0.11)

Decision time (in s) 8.98 (6.27) 9.29 (5.99)

Proportion of inspected information (in %)a 93.92 (13.57) 96.01 (9.42)

Mean fixation duration (in s) 0.196 (0.040) 0.194 (0.033)

Number of fixations per decision 33.48 (21.01) 34.99 (21.26)

Number of transitions between information pieces 19.35 (11.56) 20.33 (11.99)

Transitions within-gambles (in %)b 74.15 (13.81) 69.48 (13.75)

Proportion of long fixations (in %)c 3.08 (1.73) 2.20 (1.4)

aProportion of AOIs fixated per trial, eight pieces of information are presented each trial.
bReference class are all direct transitions between AOIs, re-fixations within the same AOI are dropped.
cLong fixations are fixation >500 ms and the reference class are all identified fixations.
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GAMBLES STUDY 1
Table A2 shows the 50 decision tasks used in study 1. Each Choice consists of two gambles A and B with two possible outcomes (and
their probabilities). In the presentation, the positions of gambles and outcomes were varied according to a fixed random design.

Table A2 | Decision tasks used in study 1.

Decision Gamble A Gamble B EVA EVB EVmean EVdiff (abs)

1 0C (0.60)/20C (0.40) 10C (0.40)/6.67C (0.60) 8 8 8 0

2 4C (0.50)/3C (0.50) 0C (0.30)/5C (0.70) 3.5 3.5 3.5 0

3 1C (0.45)/4C (0.55) 4.4C (0.60)/0C (0.40) 2.65 2.64 2.645 0.01

4 10C (0.7)/4C (0.3) 10.25C (0.80)/0C (0.20) 8.2 8.2 8.2 0

5 10.5C (0.50)/0.5C (0.50) 11C (0.75)/0C (0.25) 8.25 8.25 8.25 0

6 0C (0.30)/12C (0.70) 10C (0.60)/6C (0.40) 8.4 8.4 8.4 0

7 7.5C (0.50)/0C (0.50) 2C (0.65)/7C (0.35) 3.75 3.75 3.75 0

8 3.3C (0.40)/2.25C (0.60) 4C (0.67)/0C (0.33) 2.67 2.68 2.675 0.01

9 0C (0.40)/16C (0.60) 22.5C (0.40)/1C (0.60) 9.6 9.6 9.6 0

10 4.5C (0.70)/0C (0.30) 0.3C (0.50)/6C (0.50) 3.15 3.15 3.15 0

11 5C (0.60)/0C (0.40) 0.4C (0.55)/6.2C (0.45) 3 3 3 0

12 11.5C (0.70)/0.6C (0.30) 10.3C (0.80)/0C (0.20) 8.23 8.24 8.235 0.01

13 0C (0.25)/11.35C (0.75) 16.25C (0.50)/0.75C(0.50) 8.51 8.5 8.505 0.01

14 0.4C (0.60)/7.3C (0.40) 0C (0.30)/4.5C (0.70) 3.16 3.15 3.155 0.01

15 0C (0.50)/4C (0.50) 0.39C (0.65)/5C (0.35) 2 2 2 0

16 11.27C (0.67)/0C (0.33) 0.6C (0.60)/18C (0.40) 7.55 7.56 7.555 0.01

17 2C (0.50)/3.4C (0.50) 2.5C (0.60)/3C (0.40) 2.7 2.7 2.7 0

18 2C (0.60)/5.25C (0.40) 3C (0.70)/4C (0.30) 3.3 3.3 3.3 0

19 6.6C (0.55)/11C (0.45) 8.8C (0.60)/8.25C (0.40) 8.58 8.58 8.58 0

20 10C (0.75)/6C (0.25) 10C (0.50)/8C (0.50) 9 9 9 0

21 9C (0.50)/7.5C (0.50) 5C (0.35)/10C (0.65) 8.25 8.25 8.25 0

22 4.4C (0.65)/15.4C (0.35) 5.5C (0.50)/11 C (0.50) 8.25 8.25 8.25 0

23 5.25C (0.40)/2C (0.60) 4C (0.30)/3C (0.70) 3.3 3.3 3.3 0

24 3.45C (0.50)/1C (0.50) 0.5C (0.60)/4.8 C (0.40) 2.22 2.22 2.22 0

25 49.5C (0.10)/5.5C (0.90) 10C (0.99)/0C (0.01) 9.9 9.9 9.9 0

26 0C (0.02)/9.44 C (0.98) 4.7C (0.85)/35 C (0.15) 9.25 9.25 9.25 0

27 1.35C (0.90)/12.5C (0.10) 0C (0.01)/2.5C (0.99) 2.46 2.47 2.47 0.01

28 0C (0.02)/3C (0.98) 13.1C (0.1)/1.8C (0.9) 2.94 2.93 2.94 0.01

29 34C (0.15)/3.5C (0.85) 8.3C (0.98)/0.1C (0.02) 8.07 8.14 8.11 0.07

30 2.25C (0.98)/0.1C (0.02) 9C (0.15)/1C (0.85) 2.21 2.2 2.20 0.01

31 2.5C (0.99)/0.3C (0.01) 12.2C (0.10)/1.4C (0.90) 2.48 2.48 2.48 0

32 9C (0.98)/0C (0.02) 34.3C (0.10)/6C (0.90) 8.82 8.83 8.825 0.01

33 2.9C (0.98)/3.2C (0.02) 1.3C (0.85)/12C (0.15) 2.91 2.91 2.91 0

34 3.8.C (0.85)/34 C (0.15) 8.3C (0.98)/10 C (0.02) 8.33 8.33 8.33 0

35 1.44C (0.85)/12C (0.15) 3C (0.98)/4C (0.02) 3.02 3.02 3.02 0

36 4.58C (0.80)/22C (0.20) 15C (0.01)/8C (0.99) 8.07 8.07 8.07 0

37 17.2C (0.15)/0.5C (0.85) 3.2C (0.01)/3C (0.99) 3 3 3 0

38 31.2C (0.20)/2.8C (0.80) 8.5C (0.99)/7.5C (0.01) 8.48 8.49 8.485 0.1

39 0.9C (0.80)/33.9C (0.20) 8C (0.01)/7.5C (0.99) 7.5 7.5 7.5 0

40 22.5C (0.15)/0.5C (0.85) 2.15C (0.98)/2.3C (0.02) 3.8 2.153 2.98 1.65

41 3.2C (0.90)/4C (0.10) 7.7C (0.10)/0.2C (0.90) 3.28 0.95 2.12 2.33

42 3.2C (0.80)/4C (0.20) 7.7C (0.20)/0.2C (0.80) 3.36 1.7 2.53 1.66

43 3.2C (0.70)/4C (0.30) 7.7C (0.30)/0.2C (0.70) 3.44 2.45 2.95 0.99

44 3.2C (0.60)/4C (0.40) 7.7C (0.40)/0.2C (0.60) 3.52 3.2 3.36 0.32

45 3.2C (0.50)/4C (0.50) 7.7C (0.50)/0.2C (0.50) 3.6 3.95 3.78 0.35

46 3.2C (0.40)/4C (0.60) 7.7C (0.60)/0.2C (0.40) 3.68 4.7 4.19 1.02

47 3.2C (0.30)/4C (0.70) 7.7C (0.70)/0.2C (0.30) 3.76 5.45 4.61 1.69

48 3.2C (0.20)/4C (0.80) 7.7C (0.80)/0.2C (0.20) 3.84 6.2 5.02 2.36

49 3.2C (0.10)/4C (0.90) 7.7C (0.90)/0.2C (0.10) 3.92 6.95 5.44 3.03

50 3.2C (0.00)/4C (0.1) 7.7C (1)/0.2C (0.00) 4 7.7 5.85 3.70

www.frontiersin.org October 2012 | Volume 3 | Article 335 | 197

http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive


Fiedler and Glöckner Dynamics of decision making in risky choice

GAMBLES STUDY 2
Table A3 shows the 50 decision tasks used in study 2. Each Choice consists of two gambles A and B with two possible outcomes (and
their probabilities). In the presentation, the positions of gambles and outcomes were varied according to a fixed random design.

Table A3 | Decision tasks used in study 2.

Decision Gamble A Gamble B EVA EVB EVmean EVdiff (abs)

1 2.4C (0.75)/0.8 C (0.25) 3.4C (0.49)/0.8 C (0.51) 2 2.07 2.04 0.07

2 2.2C (0.82)/2.8C (0.18) 2C (0.16)/2.3C (0.84) 2.31 2.25 3.44 0.06

3 9.5C (0.2)/0.6C (0.8) 2.6C (0.88)/1C (0.12) 2.38 2.41 2.40 0.03

4 1C (0.72)/7.8C (0.28) 2.3C (0.77)/4.6C (0.23) 2.90 2.83 2.87 0.07

5 1.2C (0.76)/5.3C (0.24) 0.9C (0.2)/2.4 C (0.8) 2.18 2.10 2.14 0.08

6 7C (0.23)/1.5C (0.77) 1.9C (0.85)/8.1C (0.15) 2.77 2.83 2.80 0.06

7 1.8C (0.03)/2.4C (0.97) 2.5C (0.69)/2.1C (0.31) 2.38 2.38 2.38 0

8 6.8C (0.18)/1C (0.82) 3.9C (0.14)/1.8C (0.86) 2.04 2.09 2.07 0.05

9 2.7C (0.66)/2.9C (0.34) 1.5C (0.73)/6.3C (0.27) 2.77 2.80 2.79 0.03

10 4C (0.1)/1.9C (0.9) 6.2C (0.16)/1.3C (0.84) 2.11 2.08 2.10 0.03

11 14.4C (0.75)/4.8C (0.25) 20.4C (0.49)/4.8C (0.51) 12 12.44 12.22 0.44

12 13.2C (0.82)/16.8C (0.18) 12C (0.16)/13.8C (0.84) 13.85 13.51 13.68 0.34

13 57C (0.2)/3.6C (0.8) 15.6C (0.88)/6C (0.12) 14.28 14.45 14.37 0.17

14 6C (0.72)/46.8C (0.28) 13.8C (0.77)/27.6C (0.23) 17.42 16.97 17.20 0.45

15 7.2C (0.76)/31.8C (0.24) 5.4C (0.2)/14.4C (0.8) 13.10 12.60 12.85 0.50

16 42C (0.23)/9C (0.77) 11.4C (0.85)/48.6C (0.15) 16.59 16.98 16.79 0.39

17 10.8C (0.03)/14.4C (0.97) 15C (0.69)/12.6C (0.31) 14.29 14.26 14.28 0.04

18 40.8C (0.18)/6C (0.82) 23.4C (0.14)/10.8 C (0.86) 12.26 12.56 12.41 0.30

19 16.2C (0.66)/17.4C (0.34) 9C (0.73)/37.8 C (0.27) 16.61 16.78 16.69 0.17

20 24C (0.1)/11.4C (0.9) 37.2C (0.16)/7.8C (0.84) 12.66 12.50 12.58 0.16

21 2.2C (0.75)/0.6C (0.25) 4.6C (0.49)/2C (0.51) 1.80 3.27 2.54 1.47

22 2C (0.82)/2.6C (0.18) 3.2C (0.16)/3.5C (0.84) 2.11 3.45 2.78 1.34

23 9.3C (0.2)/0.4C (0.8) 3.8C (0.88)/2.2C (0.12) 2.18 3.61 2.90 1.43

24 0.8C (0.72)/7.6C (0.28) 3.5C (0.77)/5.8C (0.23) 2.70 4.03 3.40 1.33

25 1C (0.76)/5.1C (0.24) 2.1C (0.2)/3.6C (0.8) 1.98 3.30 2.64 1.32

26 6.8C (0.23)/1.3C (0.77) 3.1C (0.85)/9.3C (0.15) 2.57 4.03 3.30 1.46

27 1.6C (0.03)/2.2C (0.97) 3.7C (0.69)/3.3C (0.31) 2.18 3.58 2.88 1.40

28 6.6C (0.18)/0.8C (0.82) 5.1C (0.14)/3C (0.86) 1.84 3.29 2.57 1.45

29 2.5C (0.66)/2.7C (0.34) 2.7C (0.73)/7.5C (0.27) 2.57 4 3.28 1.43

30 3.8C (0.1)/1.7C (0.9) 7.4C (0.16)/2.5C (0.84) 1.91 3.28 2.60 1.37

31 14.2C (0.75)/4.6C (0.25) 21.6C (0.49)/6C (0.51) 11.80 13.64 12.72 1.84

32 13C (0.82)/16.6C (0.18) 13.2C (0.16)/15C (0.84) 13.65 14.71 14.18 1.06

33 56.8C (0.2)/3.4C (0.8) 16.8C (0.88)/7.2C (0.12) 14.08 15.65 14.87 1.57

34 5.8C (0.72)/46.6C (0.28) 15C (0.77)/28.8 C (0.23) 17.22 18.17 17.70 0.95

35 7C (0.76)/31.6 C (0.24) 6.6C (0.2)/15.6C (0.8) 12.90 13.80 13.35 0.90

36 41.8C (0.23)/8.8C (0.77) 12.6C (0.85)/49.8 C (0.15) 16.39 18.18 17.30 1.79

37 10.8C (0.03)/14.2C (0.97) 16.2C (0.69)/13.8 C (0.31) 14.09 15.46 14.77 1.36

38 40.6C (0.18)/5.8C (0.82) 24.6C (0.14)/12C (0.86) 12.06 13.76 12.91 1.7

39 16C (0.66)/17.2C (0.34) 10.2C (0.73)/39C (0.27) 16.41 17.98 17.20 1.57

40 23.8C (0.1)/11.2C (0.9) 38.4C (0.16)/9C (0.84) 12.46 13.70 13.08 1.24

41 3.2C (0.90)/4C (0.10) 7.7C (0.10)/0.2C (0.90) 3.28 0.95 2.12 2.33

42 3.2C (0.80)/4C (0.20) 7.7C (0.20)/0.2C (0.80) 3.36 1.70 2.53 1.66

43 3.2C (0.70)/4C (0.30) 7.7C (0.30)/0.2C (0.70) 3.44 2.45 3 0.99

44 3.2C (0.60)/4C (0.40) 7.7C (0.40)/0.2C (0.60) 3.52 3.20 3.36 0.32

45 3.2C (0.50)/4C (0.50) 7.7C (0.50)/0.2C (0.50) 3.60 3.95 3.78 0.35

46 3.2C (0.40)/4C (0.60) 7.7C (0.60)/0.2C (0.40) 3.68 4.70 4.19 1.02

47 3.2C (0.30)/4C (0.70) 7.7C (0.70)/0.2C (0.30) 3.76 5.45 4.61 1.69

48 3.2C (0.20)/4C (0.80) 7.7C (0.80)/0.2C (0.20) 3.84 6.20 5.02 2.36

49 3.2C (0.10)/4C (0.90) 7.7C (0.90)/0.2C (0.10) 3.92 6.95 5.44 3.03

50 3.2C (0.00)/4C (0.1) 7.7C (1)/0.2C (0.00) 4 7.70 5.85 3.70
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How do we make simple purchasing decisions (e.g., whether or not to buy a product at
a given price)? Previous work has shown that the attentional drift-diffusion model (aDDM)
can provide accurate quantitative descriptions of the psychometric data for binary and
trinary value-based choices, and of how the choice process is guided by visual atten-
tion. Here we extend the aDDM to the case of purchasing decisions, and test it using
an eye-tracking experiment. We find that the model also provides a reasonably accurate
quantitative description of the relationship between choice, reaction time, and visual fix-
ations using parameters that are very similar to those that best fit the previous data. The
only critical difference is that the choice biases induced by the fixations are about half as
big in purchasing decisions as in binary choices.This suggests that a similar computational
process is used to make binary choices, trinary choices, and simple purchasing decisions.

Keywords: drift-diffusion, decision-making, neuroeonomics, decision neuroscience, eye-tracking, valuation, choice,

purchasing

INTRODUCTION
A basic goal of decision neuroscience and neuroeconomics is to
characterize the computations carried out by the brain to make
different types of decisions (Busemeyer and Johnson, 2004; Smith
and Ratcliff, 2004; Bogacz, 2007; Gold and Shadlen, 2007; Rangel
et al., 2008; Kable and Glimcher, 2009; Hare and Rangel, 2010;
Rushworth et al., 2011). Over the last decade, a sizable number of
studies have found that standard drift-diffusion-models (DDM;
Ratcliff, 1978, 2002; Busemeyer and Rapoport, 1988; Ratcliff and
McKoon,1997,2008; Ratcliff and Rouder,2000; Ratcliff and Smith,
2004; Leite and Ratcliff, 2010), as well as closely related versions
such as the leaky competing accumulator (LCA) model (Usher and
McClelland, 2001; Smith and Ratcliff, 2004; Tsetsos et al., 2011)
provide quantitative explanations of the psychometrics, chrono-
metrics, and neurometrics of perceptual choices. More recently,
it has been shown that these models also provide good accounts
of value-based choice (Basten et al., 2010; Krajbich et al., 2010;
Milosavljevic et al., 2010; Philiastides et al., 2010; Hare et al., 2011;
Krajbich and Rangel, 2011).

This class of models assumes that decisions are made by accu-
mulating noisy evidence in favor of the different options. The
combined evidence for each option is compared to that for the
other options, and when the relative evidence for any option
exceeds a pre-defined threshold, that option is chosen. One can
think of the relative evidence signals as measures of the individ-
ual’s confidence that each option is the correct choice, and thus
the model implies that choices are made only when the subject
is confident enough. For perceptual discrimination, the source
of the noisy evidence comes from the stimulus itself. For value-
based decision-making, the noisy evidence derives from how item
values are computed and compared. Note, in particular, that the

decision process involves the sequential and repeated sampling of
the attractiveness of each option’s individual attributes or char-
acteristics. This introduces two sources of noise in the process:
noise intrinsic to the sampling of attribute values, and noise due
to random shifts in attention between the options which affect
how the attribute values are sampled (Busemeyer and Townsend,
1993; Diederich, 1997; Roe et al., 2001; Busemeyer and Diederich,
2002; Usher and McClelland, 2004; Johnson and Busemeyer, 2005;
Usher et al., 2008; Tsetsos et al., 2010).

In previous work we have shown that a variant of the DDM,
which we refer to as the attentional drift-diffusion model (aDDM),
provides quantitatively accurate predictions of the relationship
between choices, reaction times, and visual fixations in experi-
ments where subjects make either binary or trinary snack food
choices (Krajbich et al., 2010; Krajbich and Rangel, 2011). A criti-
cal feature of the aDDM is that the evidence accumulation process
depends on where the subject is looking, so that on average a
subject accumulates more evidence for an item when it is being
looked at than when it is not. A fitting of the model to the data
found that subjects only accumulate about a third as much evi-
dence for an item when it is not being looked at. This difference in
the accumulation rate has important implications for the pattern
and quality of decisions: choices are biased by their fixation pat-
terns, i.e., the more time a subject spends looking at an appetitive
item, the more likely he is to choose it. Importantly, in our previ-
ous work we found that a single model with common parameters
was able to account for the data in both binary and trinary food
choices, which suggests that the underlying processes exhibit some
robustness.

This study seeks to advance our understanding of the prop-
erties, advantages, and limitations of the aDDM by investigating
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if it can also provide an accurate description of purchasing deci-
sions, and the extent to which the model’s parameters need to
change to explain this new class of decisions. In the simple pur-
chasing decisions studied here, subjects see a product and a price,
and have to decide whether or not to buy the item at that price.
This type of decision is interesting because the subject needs to
combine information from two very different types of stimuli:
real world or rich pictorial representations (e.g., pictures of snack
food) and symbolic/numerical information (i.e., the price tag). It
is not obvious a priori if the aDDM will be able to account for the
data in simple purchasing decisions, or if changes in the underlying
model parameters will be required. For example, since the price is
presented in numerical form, it is not obvious if the price infor-
mation integrates dynamically and stochastically as in the DDM,
or if in contrast it is incorporated using a more deterministic
algorithm.

We present a computational model of the aDDM applied
to simple purchasing decisions, and data from an eye-tracking
experiment designed to address the following questions. First,
how do subjects allocate fixation time between products and
prices? Second, to what extent, if any, do visual fixations influ-
ence choices? Third, can the aDDM explain purchasing decisions
with reasonable quantitative accuracy?

COMPUTATIONAL MODEL
In previous work we have proposed and tested a model of how
visual fixations interact with the choice process to make choices
between pairs of stimuli (e.g., apple or orange?; Krajbich et al.,
2010). We refer to that model as the aDDM. Here we show that
a simple parameter change in the model is also able to provide a
good quantitative account of simple purchasing decisions.

In a simple purchasing decision, a subject is shown a product
and a price, and has to decide whether or not he wants to purchase
it at that price. Economists typically assume that an individual
knows his value for a good, i.e., the amount that he is willing
to pay for it in dollars. In this case the optimal strategy involves
purchasing the item when its net value is greater than zero, and
not purchasing the item otherwise. Net value is defined as the
difference between the item’s value and its price.

In contrast, the aDDM assumes that every purchasing deci-
sion involves the dynamic computation of a relative decision value
(RDV) variable, which starts at zero at the beginning of each deci-
sion, and evolves over time until a choice is made (see Figure 1A
for a graphical illustration). At any instant t within the decision
process, the RDV variable (denoted by Vt) measures the current
estimate of the relative value of purchasing the item minus the
value of not purchasing it. The RDV evolves as a Markov Gaussian
process until it reaches a barrier located at either +1 or −1. If it
crosses the +1 barrier then the item is purchased, if it crosses the
−1 barrier the item is not purchased.

A critical feature of the aDDM is that the mean rate of change
(drift rate) of the RDV depends on the fixation location at that
instant in time (as illustrated in Figure 1A). In particular, when
the subject is looking at the item, the evolution of the RDV is
given by

Vt = Vt−1 + d
(
v − θp

)+ εt

and when he is looking at the price, it is given by

Vt = Vt−1 − d
(
p − θv

)+ εt

where Vt is the value of the RDV at time t within the decision trial,
v denotes the subject’s value for the product being considered for
purchase, p denotes the price of the purchase, d is a constant con-
trolling the speed of integration (in units of $−1ms−1), θ between
0 and 1 is a parameter reflecting the bias toward the fixated option,
and ε is white Gaussian noise with variance σ2 (randomly sampled
once every ms). Note that at any point in a trial the RDV is evolv-
ing according to one of these two drift rates, depending on where
the subject is looking. When the subject shifts his gaze to the other
option, the RDV continues to evolve from its current value, but
with the other drift rate.

The model assumes that fixations are generated by a stochas-
tic process that is independent of the value of the path that the
RDV takes during the trial. Note that this does not rule out the
possibility that the fixation process could be affected by the latent
value of the product or by the price. In fact, as is described in the
methods section below, all of our analyses assume that fixation
locations and durations are drawn from the observed empirical
distribution, and that the integration process within each fixa-
tion continues until the end of the fixation, in which case another
fixation is drawn, or until a barrier is crossed, in which case the
trial ends. This approach allows us to investigate the comparator
process in detail, while taking the fixation process as exogenously
given.

Several features of the model are worth highlighting. First, the
model has three free parameters: the bias parameter θ, the slope
parameter d, and the noise parameter σ. As discussed below and
in our previous work (Krajbich et al., 2010; Krajbich and Rangel,
2011) changes in the value of these parameters have important
qualitative and quantitative implications for the accuracy and
speed of choice. Second, the variables v and p reflect properties of
the stimuli being considered, and thus are not parameters of the
decision process. In particular, the experimental design described
below allows us to measure v and p for each subject and trial
independently of the actual purchase decisions, and this informa-
tion is used to estimate the free parameters of the aDDM. Third,
the model includes the standard DDM, in which fixations do not
matter, as a special case when θ = 1 (Ratcliff and McKoon, 2008;
Milosavljevic et al., 2010). Fourth, the model is almost identical
to the one that we have previously proposed for binary choice
(Krajbich et al., 2010), except for a slight change in the nature
of the stimuli and responses. In particular, in our previous work
subjects were shown pictures of two food items, one of the left
and one on the right, and they had to choose one of them with a
button press. In contrast, here subjects were shown a more com-
plex screen consisting of a picture of an item and a price, and had
to indicate with a button press whether they wanted to buy the
item at that price. Fifth, when θ< 1 the model predicts that ran-
dom fluctuations in fixations affect choices. In particular, items
are more likely to be purchased when subjects fixate more on the
product relative to the price, and less likely to be bought when
they fixate relatively more on the price. The intuition is simple
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FIGURE 1 | Model and experiment. (A) Model. A relative decision value
(RDV) evolves over time with a slope that depends on what the subject is
looking at. In addition to the average drift, there is also Gaussian noise. When
the RDV reaches one of the two barriers the subject makes the corresponding
choice. The shaded regions indicate what the subject is currently looking at,
blue for the product and yellow for the price. (B) Timeline. (Top) Subjects first
reveal how much they are willing to pay for each of the 50 products, using a

BDM auction. Then subjects make 300 purchasing choices (the 50 products at
six different prices). At the end of the experiment one trial from the combined
tasks is randomly chosen and the subject is paid and/or is shipped the chosen
product. (Bottom) Within a choice trial, subjects must first fixate at the center
of the screen for 2 s. They are then presented with an item and a price and
given unlimited self-paced time to decide whether to buy the item at that
price.

and can be easily seen from the two equations above. During fix-
ations on the item, the RDV evolves with an average rate that
underestimates the size of the price, which entails a temporary
overestimation of the net value, and makes it more likely that the
“purchase barrier” is reached. The opposite is true during price
fixations.

MATERIALS AND METHODS
SUBJECTS
Thirty Caltech students participated in the experiment. Subjects
received $50 for their participation, which they either kept or used
to purchase items using the task described below. Caltech’s Human
Subjects Internal Review Board approved the experiment. Subjects
provided informed consent prior to their participation.

TASK
At the beginning of the experiment subjects were endowed with
$50 that they could use to purchase items in two subsequent

tasks: a bidding task followed by a purchasing task. The subjects
were told that at the end of the experiment one trial from the
whole experiment would be randomly selected and implemented.
Subjects kept whatever funds they did not spend.

Every subject performed two different tasks in the same order.
First, they carried out a bidding task designed to measure the val-
ues (i.e., the v in the model) for each product. Second, they carried
out a purchasing task that provides the data used to test the aDDM.

In the bidding task, subjects placed bids for the right to pur-
chase 50 different consumer goods including mostly consumer
electronics and household items. The task followed the rules of a
Becker–Degroot–Marshak (BDM) auction, which is a tool widely
used in economics to incentivize subjects to reveal their true values
for products (Becker et al., 1964). In brief, a subject is asked to state
their willingness-to-pay (WTP) for each of the products. If one of
these trials is randomly selected to count, then the experimenter
generates a random selling price (from a known uniform distri-
bution from $0 to $50). If the random selling price is less than
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or equal to the subject’s stated WTP, then the subject purchases
the product at the random price and keeps the rest of the $50. If
the selling price is greater than the subject’s WTP, then the sub-
ject does not purchase the product and keeps the entire $50. Note
that the subject cannot influence the price that they pay for the
product. They can only indicate whether they would be willing to
buy at different prices. Thus, their unique best strategy is to state
their true WTP. The order of item presentation was randomized
for each subject. Each trial, subjects had unlimited time to exam-
ine a high-resolution photograph of the item along with a brief
written description of the product on the computer screen and
then submit a WTP from $0 to $50 by typing their bid.

The purchasing task is depicted in Figure 1B. Every trial sub-
jects decided whether to buy the shown item at the stated price, or
to keep their entire $50. On half of the trials the product was dis-
played on the top half of the screen with the price on the bottom
half of the screen, while on the other half of the trials the loca-
tions were switched. Subjects had unlimited time to fixate back
and forth between the product and price before indicating their
choice to purchase (left arrow) or not purchase (right arrow). All
50 items were randomly presented six times, each time coupled
with one of the following six prices: $3, $10, $18, $25, $33, $40.
These prices were selected based on piloting data to span the mean
WTPs for most items.

At the end of the experiment if one of these trials was randomly
selected, then the subject was entitled to receive the product for
that trial, and if purchased, we immediately ordered and mailed
the product to the subject. The remaining money (up to $50) was
immediately paid to the subject in cash.

EYE-TRACKING
Subjects’ eye movements were recorded at 50 Hz using a Tobii
desktop-mounted eye-tracker. Before each choice trial subjects
were required to maintain a fixation at the center of the screen
for 2 s before the stimuli would appear. This ensured that subjects
began every trial fixating on the same location.

The eye-tracking data were preprocessed using the same pro-
cedure as in our previous work (Krajbich et al., 2010; Krajbich
and Rangel, 2011). In particular, square regions of interest (ROI)
were constructed around the product and price. A fixation was
defined as the time from when at least one eye entered the ROI to
the moment when both eyes left the ROI. For all measurements
following the first fixation and preceding the last fixation of the
trial, non-ROI fixations were dealt with according to the following
rules:

(1) If the non-ROI fixations were recorded between fixations on
the same ROI, then those non-ROI fixations were changed
to that ROI. So for example a fixation pattern of “Prod-
uct,” “Blank,” “Product” would become “Product,” “Product,”
“Product.” These non-ROI fixations are typically very short
and are likely due to blinks.

(2) If the blank fixations were recorded between fixations on
different ROIs, then those blank fixations were recorded as
non-decision time and discarded from further analysis. Again,
these non-ROI fixations are typically just one eye-tracker
measurement (20 ms) and due to transitions between ROIs.

DATA CLEANING
Two types of trials were excluded from further analysis. First, for
every subject, we excluded trials with items that received a bid of
exactly $0 in the first task. These trials are problematic because
there are an unusually large number of them (29%) compared to
items with small but positive values ($1, $2, $3, etc.) which sug-
gests that these items are being treated differently by the subjects.
This could be the case, for example, if these are items that they
already own and thus are not seriously considering purchasing. In
this case such items could not be used to study the aDDM since
they do not involve purchasing decisions. Nevertheless, including
these trials does not qualitatively change any of the results.

Second, trials with a net value smaller than −$20, or larger
than $20, were also excluded (an additional 28% of trials). These
choices are extremely easy for the subjects and so not of particu-
lar interest to us. It is only in the −$20 to $20 range that choices
are difficult and the aDDM makes interesting predictions. Beyond
these net values, subjects are close to 100% accurate and the choice
probabilities and reaction times asymptote. Because we were not
interested in modeling these very easy choices, we designed the task
to minimize trials in this range and so the data in these regions
look noisy (due to missing observations) and uninteresting. Addi-
tionally, the bins outside this range are scarcely populated, which
interferes with our ability to estimate the aDDM accurately.

In principle, this issue could have been avoided through exper-
imental design by choosing prices in the purchasing task close to
the values reported in the BDM task. Unfortunately, this is not a
feasible solution, because it invalidates the incentive compatibility
of the BDM procedure: subjects would have an incentive to bid
low amounts in order to ensure low prices in the purchasing task.

MODEL SIMULATIONS AND FITTING
The model was fit to the choice and reaction time data using only
the even numbered trials of the pooled data set from all the sub-
jects. We then tested the quality of the model fit and predictions by
simulating the model using the fitted parameters, and comparing
them with the actual data from the odd trials. Thus, the predictions
of the model are tested quantitatively and out-of-sample.

The model was fit using a maximum likelihood estimation
(MLE) procedure implemented in several steps. First, we ran 3000
simulations for each combination of the model parameters in the
grid described below, the six different prices, and the product
values (sampled in $2 increments from $0 to $50). In the sim-
ulations we randomly sampled fixation times from the empirical
distribution conditional on their fixation type (product or price).
First-fixation price fixations were sampled separately from the rest
of the price fixations because they are statistically shorter than
non-first price fixations. Item fixations were sampled conditional
on their fixation number (1, 2, 3, 4, 5, 6, 7, or later), and binned
on the absolute net value (|v − p|, in $4 increments). We also used
the empirical fact that subjects looked at the item first 53.3% of
the time. We also took account of the latency for the first fixation,
as well as for the transition time between fixations. We did this by
computing the difference between the average reaction time and
the average total fixation time (time spent looking at either the
product or the price), and adding this trial-independent estimate
to the simulated reaction times. This average “non-decision” time
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was 336 ms, consistent with non-decision times in our previous
work (355 ms in Krajbich et al., 2010) and in other DDM studies
of binary choice (365 ms in Milosavljevic et al., 2010 and 338 ms
in Ratcliff, 2002, for example).

Second, we computed the probability of each observation in the
data, for each set of parameters, as follows. The empirical spread
of reaction times ranged from 495 ms to 47.1 s so in the fitting pro-
cedure we discarded any simulation trials below 400 ms or above
48 s. The rest of the reaction times were separated into bins of
400 ms except for the final bin, which went from 4800 ms to 48 s.
For each net value bin ($4 increments), we split the data into buy
and no-buy trials, then for each group counted the number of data
trials in each reaction time bin, and similarly calculated the prob-
ability of a simulation trial occurring in each reaction time bin.
Note that the first two steps are necessary to compute the likeli-
hood function of the data because there is no known closed-form
solution for the aDDM.

Third, we identified the set of parameters that maximized the
log-likelihood of the data by taking the logarithms of each of these
probabilities and summing them up. The resulting number is used
to assess how well the model fit the data, with larger numbers
(closer to zero) indicating better fits. The search was performed
over a grid of values for d, σ, and θ. The MLE search was carried
out in two steps. First we searched over a coarse grid with d in
(0.00006, 0.000065, 0.00007), σ in (0.0228, 0.0237, 0.0247), and θ

in (0.7, 0.8, 0.9, 0.99). Second, we used the results from the first
search to define a narrower search with d in (0.00006, 0.000065), σ
in (0.0218, 0.0228, 0.0237), and θ in (0.5, 0.6, 0.7, 0.8). The initial
parameters were chosen based on comparisons to our previous
results (Krajbich et al., 2010). The best-fitting parameters at this
stage were d = 0.000065, σ = 0.02275, and θ = 0.7.

The previous procedure assumes that there is no motor latency,
namely that the subject enters his choice instantaneously once the
RDV crosses a barrier. To address this problem, we carried out the
following additional step in the model fitting process. We simu-
lated the model with the best MLE parameters described above,
and then compared the average duration of the final fixations with
those from the actual data. Note that this comparison is impor-
tant because, to the extent that subjects maintain fixation during
the motor latency period, our measured durations for final fixa-
tions include the actual duration of the fixation and the motor
latency. Consistent with this concern, our predicted final fixation
durations were on average 73 ms shorter than actual measured fix-
ations. Taking this value as the mean motor latency, we redid the
model fitting procedure with the added feature that there is a 73 ms
delay after the decision is made. As before, we began with a coarse
grid search, this time with d in (0.00006, 0.000065, 0.00007), σ in
(0.0228, 0.0237, 0.0247), and θ in (0.6, 0.7, 0.8, 0.9). Second, we
used the results from the first search to define a narrower search
with d in (0.000065),σ in (0.0218, 0.0228, 0.0233, 0.0237), and θ in
(0.6, 0.65, 0.7, 0.75, 0.8, 0.9). The reported model fits below include
the motor latency correction, which is also used in all simulations
reported in the paper.

GOODNESS-OF-FIT CALCULATIONS
For Figures 2B,C, and 5 we could not compute χ2 goodness-of-fit
statistics because the dependent variables are not binary. Instead

we devised the following alternative goodness-of-fit statistic: (1)
for each bin of the independent variable we “correct” the depen-
dent variable by subtracting the average simulated value from each
subject’s average value. (2) We then run a weighted least-squares
(WLS) regression with the “corrected” dependent variable. The
weights in the regression are equal to the inverse of the variance.
Note that if the simulations fit the data well, then the “corrected”
data should be a flat line at 0. On the other hand, if the simula-
tion fits poorly, then the WLS coefficients should be non-zero. So,
for goodness-of-fits, we report the p-values for the coefficients of
these WLS regressions. If the p-values are less than 0.05 then we
reject that the model accurately fits the data.

RESULTS
MODEL FIT
We fitted the model to the even numbered trials from the group
data using MLE. The model has three free parameters: the constant
determining the speed of integration d, the discount parameter θ,
and the noise parameterσ. The model was fit under the assumption
that time evolves in 1 ms discrete steps. We selected the parameters
that maximized the probability of the observed choices and reac-
tion times, conditional on the net value of the offer (see Materials
and Methods for details). The best-fitting model had parameters
d = 0.000065 $−1ms−1, σ = 0.0233, and θ = 0.7.

For comparison purposes, in our previous work on binary and
trinary choice we found that the parameters d = 0.0002 ms−1,
σ = 0.02, and θ = 0.3 provided the best fit for the data (Krajbich
et al., 2010; Krajbich and Rangel, 2011). Since these parameters
were fitted using methods very similar to those used here, their
comparison provides some insight about the computational dif-
ferences between binary choices and yes-no purchasing decisions.
Consider some of the most salient relationships. First, we found
that the noise parameter σ was nearly identical in the two cases,
which suggests a similar amount of computational noise in both
problems. Second, we found that the slope parameter d was about
1/3 smaller in the current data set. This difference needs to be
interpreted with caution, however, because the slope depends on
the scale with which values are measured. In particular, multiply-
ing the net values by a constant a results in a new fit that decreases
d by a factor of 1/a, and leaves the fits of the other two parameters
unchanged. The difference is then easily explained by the fact that
values in our previous paper were measured using liking-rating
differences that ranged from −5 to +5, whereas here the value dif-
ferences ranged from −20 to +20. Third, the bias is significantly
smaller than in our previous work: θ = 0.7 vs. θ = 0.3 previously
(recall that θ = 1 is the case of no bias, so that as theta increases
from 0 to 1 the size of the bias goes down). Nevertheless, as we
will see in more detail below, with θ = 0.7 there is still a non-trivial
effect of visual fixations on the choice process.

MODEL SIMULATION
In order to investigate the ability of the model to predict the data
quantitatively, we then simulated the model 10,000 times per value
and price combination (binning values every $2), using the esti-
mated maximum likelihood parameters, and by sampling fixation
lengths from the actual empirical fixation data (see Materials and
Methods for details). Throughout, we assume that fixations always
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FIGURE 2 | Basic psychometrics. (A) Probability of purchasing the
product as a function of the net value (product value – price). (B)

Reaction times as a function of the magnitude of the net value. (C)

The number of fixations in a trial, as a function of the magnitude of

the net value. Black circles indicate data from the odd-numbered
trials of the subject data, and red dashed lines indicate the
simulated data from the aDDM. Bars are standard error bars,
clustered by subject.

alternate between the product and price, and that the location of
the first fixation is chosen probabilistically to match the empirical
data (look at the product first with probability 53.3%). The results
of the simulations are described below.

Note that all comparisons of the model to the data were made
out-of-sample using only on the odd-numbered trials, since the
model was fitted to the even-numbered trials. Also, in all of the
figures below red curves represent the simulations, and black
symbols and curves represent the data.

Unless otherwise noted, throughout the results, goodness-of-fit
p-values are based on two-sided t -tests of the regression para-
meters against zero (see Materials and Methods for goodness-
of-fit details), and p-values for trends in the subject data are
based on two-sided t -tests of the mixed-effects regression parame-
ters against zero. Each mixed-effects regression contains random
effects for the intercept and all other regressors.

BASIC PSYCHOMETRICS
In this section we investigate how well the aDDM predicted the
choice and reaction time data on the half of the data that it was not
fitted to, and additionally estimate the effects of choice difficulty
on average reaction times and number of fixations. Our measure
of choice difficulty is the absolute (unsigned) net value, which tells
us the difference in value between the item and the price. With this
measure, the hardest decision is one where the item value and price
are identical, leading to a net value of $0.

The fitted model accounted for the choice and reaction time
curves well. Choices were a logistic function of net value in both the
data and the simulations (Figure 2A; χ2 goodness-of-fit: p = 0.8).
As expected, subjects were more likely to purchase on trials with
a positive net value and less likely to purchase on trials with a
negative net value.

Reaction times significantly increased with difficulty at an aver-
age rate of 42 ms/$ (p< 10−10 mixed-effects) and the aDDM also
provided a close fit to the data (Figure 2B; goodness-of-fit slope:
p = 0.9, intercept: p = 0.7).

The average number of fixations in a trial exhibits a small but
significant (p< 10−5 mixed-effects) response to increasing diffi-
culty at a rate of 0.016 fixations/$, though the aDDM does not fit as

well here (Figure 2C; goodness-of-fit slope: p = 0.0005, intercept:
p = 10−13). Even after correcting for the difference in scale, the
size of effect is about 1/3 of the one that we previously observed
with choices between food items (Krajbich et al., 2010).

As shown in Figure 2C, the model systematically predicts 0.7
excess fixations. This mismatch has been consistently observed
with the aDDM (Krajbich et al., 2010; Krajbich and Rangel, 2011),
is an unavoidable consequence of the procedures used to carry
out the simulations, and does not reflect an inherent limitation
of the model. In fact, this bias is present even if one simulates a
dataset using the aDDM, and then carries out the model fitting
exercise on the simulated data. More concretely, the problem is
due to the fact that we have to sample fixations from the empirical
distribution of non-final fixations, but many of those fixations are
cut short by a barrier crossing and become final fixations in the
simulations. The longer the fixation, the more likely it is to cross
a barrier, and so the average middle fixation duration is shorter
in the simulations; this means that more fixations are required to
achieve the same reaction times in our simulations as in the actual
data. Nevertheless, the mismatch is larger here than previously
observed and the aDDM also over-estimates the effect of difficulty
on the number of fixations, though the difference is quite small
(0.03 fixations/$).

MODEL PREDICTIONS AND CHOICE BIASES
The model with θ = 0.7 makes several stark predictions about the
relationship between fixations, choices, and reaction times that we
test using the eye-tracking data.

First, the model predicts that the last fixation of the trial is more
likely to be to the product when the subject decides to purchase
it, unless the BDM value of the item is sufficiently smaller than
the price. It also predicts that the last fixation is likely to be to the
price when the subject decides not to purchase the item, unless the
price is sufficiently lower than the value of the product. To see the
intuition for this effect, consider the case in which the last fixa-
tion is to the product. In this case, the RDV tends to climb toward
the purchase barrier, unless the value of the item is smaller than
θ ∗ p. Figure 3A looks at the probability that the last fixation is to
the chosen item (product = purchase or price = no purchase) as a
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FIGURE 3 | Model predictions and results. (A) The probability that the last
fixation of the trial is to the chosen stimulus (product or money) as a function
of the difference in value between the last-seen stimulus and the other
stimulus. (B) The probability of purchasing the item as a function of net value,

contingent on whether the last fixation was to the product or to the price.
Black circles indicate data from the odd-numbered trials of the subject data,
and red dashed lines indicate the simulated data from the aDDM. Bars are
standard error bars, clustered by subject.

function of the difference in value between the last-seen stimulus
and the other stimulus. The figure shows that a small but notice-
able bias of this type is present in both the data and the simulations
(χ2 goodness-of-fit: p = 0.4).

For an additional test of the prediction that there is an overall
bias toward choosing the item that is looked at last, we ran a logit
regression using the entire dataset and variables in Figure 3A to
test whether the intercept was greater than 0. The logit confirmed
that indeed the intercept was greater than 0 (p = 0.03 based on
a one-sided t -test on the entire dataset), indicating that for a net
value of $0, the probability of choosing the item that is looked
at last is significantly greater than 0.5. We also ran an additional
version of this analysis with a different logit regression for each
subject and found that the average intercept was marginally sig-
nificantly greater than zero (p = 0.07 one-sided t -test), providing
further evidence for this effect.

Second, the model predicts that the choice curves should be
different for trials where the last fixation was to the product or
to the price. Specifically, it predicts that subjects should be more
likely to purchase the item if the last fixation was to the product
than if it was to the price. This follows directly from the fact that
with θ< 1, the net value of the trade is overestimated when fixating
on the product, and underestimated when fixating on the price.
This effect is small but noticeable in both the simulations and
the data (Figure 3B; χ2 goodness-of-fit item seen last: p = 0.01,
price seen last: p = 0.3). To test the significance of this effect in
the data, we ran two logistic regressions on the entire dataset and
variables from Figure 3B, one for trials where the product was
seen last and one for trials where the price was seen last. For trials
where the product was seen last the logit intercept was signifi-
cantly greater than zero (p = 0.03 one-sided t -test) while for trials
where the price was seen last the logit intercept was significantly
less than zero (p = 0.05 one-sided t -test). Subject-level analyses
were inconclusive (p = 0.53), likely due to many cases of perfect
separation and small numbers of observations for other subjects
in some of the bins.

Third, the model predicts that more time spent looking at the
product over the course of the trial will bias subjects toward pur-
chasing the good, and that is what we see in the data (Figure 4A;
χ2 goodness-of-fit: p = 0.4). Here the total fixation time advantage
for the item is just the total amount of time spent looking at the
item minus the total amount of time spent looking at the price,
in that trial. One important concern with this result has to do
with the exogeneity of the fixation lengths. In particular, it could
be that the choice bias shown in Figure 4A is due to a positive
relationship between the total fixation time advantage for the item
and the net value. To address this concern we ran a mixed-effects
logit regression including net value and total fixation time advan-
tage for the item as independent variables and purchasing as the
dependent variable. The effect of the total fixation time advan-
tage was highly significant (p< 10−6), ruling out this alternative
explanation. Furthermore, a regression of the total fixation time
advantage for the item on net value shows no significant relation-
ship (5.2 ms/$, p = 0.09 mixed-effects linear regression, two-sided
t -test).

An alternative way to investigate this effect is to split trials based
on whether the subject spent more time looking at the product or
the price. As expected, controlling for net value, subjects were more
likely to purchase the product if they spent more time looking at
it than if they spent more time looking at the price (Figure 4B).
To test for a significant difference between these curves, we ran
two logistic regressions (analogous to the analysis for Figure 3B)
on the entire dataset and variables in Figure 4B, one for trials
where the product was looked at more and one for trials where
the price was looked at more. For trials where the subjects looked
longer at the product, the logit intercept was significantly greater
than zero (p< 0.01 one-sided t -test) while for trials where the
subjects looked longer at the price, the logit intercept was signifi-
cantly less than zero (p = 0.02 one-sided t -test). As a further test,
we ran identical subject-level logits and again found a significant
difference between the intercepts for trials where the product was
looked at more and the intercepts for trials where the price was
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looked at more (p = 0.03, one-sided paired t -test; 10 subjects were
excluded due to perfect separation).

Finally, the model also predicts a precise quantitative rela-
tionship between reaction times and net values, as a func-
tion of the type of decision made. As shown in Figure 5, the
model provides a fairly good description of the associated pat-
terns (Figure 5A goodness-of-fit slope: p = 0.5, intercept: p = 0.8;
Figure 5B goodness-of-fit slope: p = 0.11, intercept: p = 0.12). The
intuition behind these patterns goes as follows. In this experiment,
we can define a mistake as either a trial where the subject purchased
an item with a negative net value or a trial where the subject didn’t
purchase an item with a positive net value. With θ< 1, mistakes
tend to occur when the subject has spent more time looking at the
worse option. Therefore, mistakes take longer than correct choices
because the average drift rate when the subject is looking at the

worse item is always smaller than when the subject is looking at
the better item, and a smaller drift rate requires more time for the
RDV to reach the choice barrier. Furthermore, the bigger the mis-
take, the longer the decision should take, up to a point. There is a
counteracting force, which is that big mistakes shouldn’t happen
and so if the subject takes some time to make his decision then
he won’t make these big mistakes. In other words, given a reason-
able amount of time, the overwhelming average drift rate in favor
of the correct option should overwhelm the noise in the decision
process. Therefore, big mistakes must occur due to large spikes in
the noise, and these spikes must occur early in the trial before there
is overwhelming evidence for the correct choice. Without a formal
model it would be unclear at what point these two counteracting
forces should shift in power, but our model predicts the trend in
the data quite accurately.

FIGURE 4 | Choice biases. (A) The probability of purchasing the item as a
function of the difference in total fixation time (over the whole trial) between
the product and the price. Black circles indicate data from the odd-numbered
trials of the subject data, and the red dashed line indicates the simulated data

from the aDDM. The p-value is from a one-sided t -test. (B) The probability that
the product is chosen as a function of the net value, conditional on whether
more time was spent looking at the product or the price in that trial. Bars are
standard error bars, clustered by subject.

FIGURE 5 | Reaction times conditional on choice. (A) Reaction times as a
function of the net value, conditional on purchasing the product. (B) Reaction
times as a function of the net value, conditional on not purchasing the

product. Black bars indicate data from the odd-numbered trials of the subject
data, and the red dashed lines indicate the simulated data from the aDDM.
Bars are standard error bars, clustered by subject.
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FIXATION PROPERTIES
Finally, we investigate the extent to which the fixation process
resembles the assumptions and predictions of the model. To do so
we look at the first fixations of each trial, as well as the “middle
fixations” which are any fixations that are not the first fixation or
the last fixation of the trial. We treat the last fixations of the trials
separately since in the model these fixations are cut short by the
choice.

Consistent with previous findings on choice between prod-
ucts, we found no significant correlation between product value
and mean fixation duration for either first fixations or mid-
dle fixations. There was a small effect of price and a large
effect of choice difficulty on middle item mean fixation duration
(Figures 6A–C, price: 10 ms/$, p = 0.02, product value: 6.7 ms/$,
p = 0.3, net value: −35 ms/$, p< 10−6, two-sided t -tests based
on a mixed-effects regression with all three factors). However, we
found no such effect for middle price fixations (Figures 6D–F,
price: 0.85 ms/$, p = 0.08; product value: −0.018 ms/$, p = 0.98;
net value: −1.38 ms/$, p = 0.08, two-sided t -tests based on a
mixed-effects regression with all three factors), or for first fixa-
tions to either products (price: 0.089 ms/$, p = 0.9; product value:
0.37 ms/$, p = 0.5; net value: −0.9 ms/$, p = 0.2, two-sided t -
tests based on a mixed-effects regression with all three factors)
or prices (price: 0.11 ms/$, p = 0.8; product value: 0.71 ms/$;
p = 0.2, net value: −0.51 ms/$, p = 0.5, two-sided t -tests based
on a mixed-effects regression with all three factors).

Consistent with the predictions of the model, and with previ-
ous findings (Krajbich et al., 2010; Krajbich and Rangel, 2011), we

also found that first and last fixations were significantly shorter
than middle fixations both for products (first: p = 10−7, last:
p = 0.0001, two-sided paired t -tests) and prices (first: p = 10−5,
last: p = 0.03, two-sided paired t -tests; Figure 7A). Our model
does not predict the first fixation effect, but we have seen it con-
sistently in all of our previous related studies. The model does
predict shorter final fixations, since final fixations are just middle
fixations cut short by the RDV crossing a decision barrier.

Figure 7B compares the distribution of price and product total
fixation times, i.e., summed over the whole trial. The distribution
of total fixation times for items has a larger mean and standard
deviation than that for prices (items: M = 1064 ms, SD = 1266 ms;
prices: M = 471 ms, SD = 390 ms; M : p = 10−8, SD: p = 10−7; sta-
tistics computed first at the individual level, and then compared
across individuals using paired t -tests).

Finally, Figure 7C shows the average number of item fixations
and price fixations per trial. We see that both types of fixations
follow the same trend as seen in the aggregate Figure 2C, but there
are consistently about 0.5 fewer price fixations than item fixations.
However, this result is not surprising, given that item fixations are
longer than price fixations and so are more likely to be the last fix-
ation of the trial. For trials with an even number of fixations there
is always an equal number of fixations to item and price, regardless
of the last fixation location. But for trials with an odd number of
fixations there will always be one more fixation for the last-seen
stimulus. Since the last fixation of the trial is to the item in 79% of
trials, we indeed expect there to be ∼0.4 fewer price fixations than
item fixations.

FIGURE 6 | Fixation properties. (A) The duration of middle item fixations as
a function of the item value, (B) price, and (C) net value. (D) The duration of

middle price fixations as a function of the product value, (E) price, and (F) net
value. Bars are standard error bars, clustered by subject.
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FIGURE 7 | Item vs. price fixations. (A) Fixation duration as a function of
fixation type: first fixation to item, first fixation to price, middle fixation to
item, middle fixation to price, last fixation to item, and last fixation to price.
Note that “first/last fixation” means the first/last fixation of the trial, not the

first/last fixation to each stimulus. (B) Density plot of the total trial time spent
looking at the item (blue) and price (black). (C) The number of item and price
fixations in a trial, as a function of the magnitude of the net value. Bars are
standard error bars, clustered by subject.

DISCUSSION
We have described the results of an eye-tracking experiment of
purchasing decisions designed to investigate if the aDDM is able
to provide a reasonable quantitative description of the relation-
ship between the fixation, choice, and reaction time data in the
case of simple purchasing decisions. The motivation for doing
this is that in previous work we have found that the model pro-
vides a remarkably accurate description of these variables and
their interrelationship in the case of binary and trinary food
choices (Krajbich et al., 2010; Krajbich and Rangel, 2011). Thus,
the research agenda here is to investigate the extent to which the
aDDM also applies to other types of decisions, what changes are
needed to account for new aspects of the task, and more generally
when it breaks down and why.

We find that the model provides a reasonably accurate descrip-
tion of the purchasing decision data, although of significantly
lower accuracy than in our previous work. This shows that pur-
chasing decisions introduce new aspects into the problem that
are not well captured by the simple aDDM and that need to be
investigated in future research (see below for some conjectures).
However, we find that the best-fitting aDDM has parameters sim-
ilar to what we found in our previous work, with the exception
of the parameter controlling the magnitude of the visual fixation
bias in the value integration process. In particular, the bias para-
meter went from θ = 0.3 in our previous work to θ = 0.7 in the
current dataset, which constitutes a sizable reduction in the size
of the fixation-driven choice biases. Nevertheless, many of the key
biases predicted by the model were still present in the purchas-
ing data, albeit of a smaller magnitude than those found in the
previous studies and generally not as big as the model predicted.
Furthermore, once again we found that these effects are not due
to subjects looking longer at products (or less at prices) in trials
with a high net value.

In judging the reduced accuracy of the model it is important
to keep in mind that we are imposing some very strict tests on the
model. First, we are fitting the model on one half of the data and
then predicting on the other half of the data, rather than merely
showing fits to the data. Second, we are fitting the model on only

the choice and reaction time curves (Figures 2A,B). It is quite
likely that we could have achieved nicer results by fitting to the
fixation trends as well (e.g., Figure 4A), but that would detract
from a main feature of the model, which is the ability to predict
fixation trends using only choice and reaction time data.

These results are important for several reasons.
First, they provide additional evidence that the aDDM provides

a reasonably accurate and robust characterization of how the brain
computes value-based choices of different types. An important dif-
ference with our previous paradigms is that here subjects had to
integrate the value of two very different types of stimuli.

Second, the results provide some new insights to the literature
on decision field theory (DFT) by Busemeyer and others (Buse-
meyer and Townsend, 1993; Diederich, 1997, 2003; Roe et al., 2001;
Busemeyer and Diederich, 2002; Johnson and Busemeyer, 2005;
Tsetsos et al., 2010). See also the closely related models of Usher
and McClelland (2004) and Usher et al. (2008). These models have
also investigated the impact that random fluctuations in attention
have on choice accuracy and reaction time. In particular, although
the DFT model has not been previously applied to the type of
simple purchasing decisions studied here, it is easily extended to
this case. Such an extension highlights an important difference
between the two models: DFT assumes that attention (and thus the
drift rate) fluctuates continuously across time according to either a
stationary or Markov process, while we assume that there are only
two states of attention and that the current state is indicated by the
subject’s fixation location. This is an important difference because,
as a result, although it can account for the basic choice and reac-
tion time profiles, DFT cannot account for many of the fixation
patterns described here and in our previous work on multi-option
choice (Krajbich et al., 2010; Krajbich and Rangel, 2011).

Our model is closer in spirit to multiattribute decision field
theory (MDFT; Diederich, 1997, 2003; Busemeyer and Diederich,
2002) but in that model it is assumed that the attributes are
processed in a serial manner, equivalent to the case of θ = 0 in
our model. Again, that model cannot account for the trends in
our data. For purchasing decisions, our aDDM represents some-
thing like a hybrid between DFT and MDFT, with the additional
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specification that gaze location determines the weights on the
attributes. It is also worth noting that analytic solutions have been
derived for those models, under certain assumptions about the
evolution of the attribute weights.

However, we emphasize that our purpose here is not to rule out
these alternative models and explanations, but to argue that the
aDDM provides a simpler explanation of value-based decision-
making that can quantitatively account for the effects of visual
attention on choice in both purchasing and multi-option deci-
sions. Obviously this simplicity comes at a cost: we do not account
for possible shifts of attention to positive or negative attributes
within a fixation. Instead we assume that evidence for an option is
accumulated with an average rate that is proportional to the latent
value (i.e., the BDM value), which should reflect the mixture of
positive and negative attributes. Shifts of attention to different
attributes within a fixation are therefore only taken into account
by the Gaussian random noise that is added to the average evidence
accumulation.

Second, the results show that the basic mechanisms at work
in the aDDM also seem to apply to cases in which one of the
options is numeric or symbolic, instead of a more complex visual
stimulus. This is important because it provides some new hints
about the nature of the processes at work. It has been previously
speculated that the process of value integration and comparison
is noisy because the brain needs to take repeated noisy samples
of the value of the stimuli being evaluated, and that visual atten-
tion matters because it guides the sampling process (Busemeyer
and Townsend, 1993; Krajbich et al., 2010; Glockner and Herbold,
2011; Krajbich and Rangel, 2011). This is a natural interpreta-
tion for stimuli that are visually complex, but it is not obvious
if the same holds true for numerical price representations. The
results here show that this is indeed the case: although fixations to
prices are shorter and less variable, the results suggest that they are
also integrated noisily over time. This suggests that the process of
noisy dynamic integration of value might be a widespread aspect
of the choice process, and not just applicable to complex visual
stimuli.

To lend further support to this claim, we carried out model
fittings of an additional model that allows for different values of
the visual fixation bias parameter θ, depending on whether the
product or the price is being fixated on. We found that adding
this additional parameter did indeed significantly improve the fit
of the model, but that the best fitted θ for the item was still 0.7,
and the best fitted theta for the price θ changed only slightly to
0.6. This provides further support for the finding that the integra-
tion processes for the product and price information have similar
properties.

Third, the difference between the magnitude of the visual biases
raises the following interesting puzzle: why is it the case then that
the visual bias for the products during the purchasing decisions
is much lower than the bias for the foods during binary choice?
After all, the complexity of the pictures used to display the products
here is very similar to that of the food pictures used in our previous
work. One potential but speculative explanation is that there is a
visual difference in the two displays. During binary choice two sim-
ilar food pictures are displayed, while two different types of visual

images – a visually complex food picture and a simple number –
are displayed during purchasing decisions. Looking at one picture
might inhibit working memory for the other picture (including
low-level rehearsal captured by θ) more strongly than looking at
a number, and vice-versa (Baddeley, 2003). The reduced inhibi-
tion in the picture-number paper would be manifested by a higher
value of θ, just as we infer from the data. If this hypothesis is cor-
rect, then when prices are presented in a complex visual display
(e.g., stacks of money and coins) rather than as a simple num-
ber, we might expect a θ lower than what was measured in this
task.

Fourth, the fact that price fixations were shorter and less vari-
able than those for products is consistent with the idea that the
deployment of visual attention is based on the utility of infor-
mation (Gottlieb and Balan, 2010). An important open question
for future work is to develop and test a full optimal model of
visual attention deployment. Note that this imposes more strin-
gent restrictions on the fixation process than just having shorter
fixations on stimuli that are easier to process, or having less
noise associated with them. One place where the aDDM was
noticeably inaccurate was in the prediction of how the num-
ber of fixations varies with choice difficulty, and so clearly we
need a better understanding of how fixations work in purchasing
decisions.

Fifth, the results have obvious implications for marketing and
public policy. In particular, they show that sellers may be able to
use strategic product and price placement, as well as manipulation
of saliency (Milosavljevic et al., 2012), to encourage consumers to
purchase their products. Also, sellers of inferior products may ben-
efit from deliberately putting people under unnaturally high time
pressure (Diederich, 1997). In the aDDM, time pressure creates
a large rate of “mistakes” (choices with a negative net value) that
decreases in longer trials. Indeed, some high-pressure phone and
door-to-door sales tactics could be construed as attempts to bring
a premature halt to a slow DDM process, in order to create large
consumer mistakes that benefit the sellers. The aDDM approach
gives a new way to study this process scientifically and can suggest
policy remedies (e.g., “cooling off periods,” during which buy-
ers can costlessly renege on an agreement to sell; Camerer et al.,
2003).

Of course such manipulations have their limits. Compared to
previous results with multi-option choice, the effects of visual
attention are quite reduced in our purchasing task. Therefore,
if the product under consideration is substantially worse than
its price then the drift rate will always tend toward the “do
not buy” threshold, regardless of what the subject is looking
at. In addition, noticeable attention manipulations such as forc-
ing the subject to look at a product for a long time may alert
the subject and alter the decision-making process. Neverthe-
less, previous research has shown that it is indeed possible to
influence choices by exogenously manipulating fixation times
(Shimojo et al., 2003; Armel et al., 2008), consistent with the
idea that visual fixations are influencing the choices and not
vice-versa.

Finally, the study provides additional evidence of the value of
utilizing eye-tracking data in conjunction with carefully designed
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decision tasks to test process models of decision-making. In
this sense, it builds on the seminal pioneering work of John-
son and colleagues (Johnson et al., 1988, 2002, 2007; Camerer
and Johnson, 2004), as well as more recent applications (Russo
et al., 2006, 2008; Raab and Johnson, 2007; Horstmann et al.,
2009; Glockner and Herbold, 2011; Russo and Yong, 2011; Glock-
ner et al., 2012). For an outstanding recent review, see Russo
(2010).
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APPENDIX
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FIGURE A1 | Histogram of the bids for the various products in the BDM task, using all the data.
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FIGURE A2 | Continued
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FIGURE A2 | Continued
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FIGURE A2 | Replication of all the figures from the text but including the $0 products.

FIGURE A3 | Replication of Figures 2A,B choice and reaction time curves but using all of the data, including the $0 bids and net values beyond +/−$20.
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FIGURE A4 | Replication of Figures 3A,B, and 4A but using both the even and odd-numbered trials.
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The 2N -ary choice tree model accounts for response times and choice probabilities in
multi-alternative preferential choice. It implements pairwise comparison of alternatives
on weighted attributes into an information sampling process which, in turn, results in a
preference process. The model provides expected choice probabilities and response time
distributions in closed form for optional and fixed stopping times. The theoretical back-
ground of the 2N -ary choice tree model is explained in detail with focus on the transition
probabilities that take into account constituents of human preferences such as expecta-
tions, emotions, or socially influenced attention.Then it is shown how the model accounts
for several context-effects observed in human preferential choice like similarity, attraction,
and compromise effects and how long it takes, on average, for the decision. The model is
extended to deal with more than three choice alternatives. A short discussion on how the
2N -ary choice tree model differs from the multi-alternative decision field theory and the
leaky competing accumulator model is provided.

Keywords: 2N -ary choice tree model, preferential choice, multiple choice alternatives, multi-attribute choice
alternatives, response times, choice probabilities, elimination of choice alternatives, computational model

1. INTRODUCTION
Life is full of decisions: Be it the selection of clothing in the morn-
ing or of menu for lunch, the question which car to buy or if taking
cold medication is necessary. This type of decisions is called pref-
erential choice and has been subject of numerous investigations
within the field of decision theory (Koehler and Harvey, 2007,
for a review). Several effects have been observed when the deci-
sion maker has more than two-choice options (multi-alternative
preferential choice). Hick’s Law (Hick, 1952; Hyman, 1953), orig-
inally defined in the context of stimulus detection paradigms,
postulates a dependency of deliberation time on the number of
alternatives. In particular, it states that a linear increase of the
number of equally attractive alternatives to choose from leads to
a logarithmic increase of the time that passes until the decision is
made. Furthermore, a decision maker who is indifferent between
two-choice alternatives from a given choice set may change the
preference for one or the other alternative when the choice set is
enlarged, i.e., the local context may affect the decision and generate
preference reversals. Similarity effects (Tversky, 1972), attraction
effects (Huber et al., 1982), and compromise effects (Simonson,
1989), for instance, depend on a third alternative that is added to
a choice set of two equally attractive but dissimilar alternatives. If
the third alternative is very similar to one of the others, the two
similar alternatives share their choice frequency and are both cho-
sen less often than the dissimilar one (similarity effect). If the third
alternative is similar to one of the others but slightly inferior, it pro-
motes the similar one and increases its choice frequency compared
to the dissimilar one (attraction effect). If the third alternative is a
compromise between the other two, the decision maker will pre-
fer the compromise to the other alternatives (compromise effect).
Besides those preference reversals that emerge from local context,

there might also be influence from background context (Tversky
and Simonson, 1993) like a reference point outside of the choice
set which – together with the loss-aversion principle (Kahneman
and Tversky, 1979) – affects evaluation of the given alternatives.

One challenge for (cognitive) modelers is to think of a model
which predicts decision making behavior for multi-alternative
preferential choice tasks in general but also accounts for all the
aforementioned effects. Another challenge is to formulate the
model such that (expected) response times and choice probabil-
ities can be calculated and the model parameters conveniently
estimated from the observed choice times and choice frequencies.

Decision field theory (DFT, Busemeyer and Townsend, 1992,
1993) and its multi-attribute extension (Diederich, 1997) predict
choice response times and choice probabilities for binary choice
tasks. Both approaches provide closed form solutions to calcu-
late these entities. Since then, several attempts have been made to
extend this kind of models to multi-alternative preferential choice
tasks: multi-alternative DFT (Roe et al., 2001) and the leaky com-
peting accumulator (LCA) model (Usher and McClelland, 2001,
2004) predict choice probabilities for three alternative choice tasks
but cannot account for optional choice times, i.e., the time the deci-
sion maker needs to come to a decision. Both approaches, however,
do account for fixed stopping times, i.e., for an externally deter-
mined time limit. Furthermore, multi-alternative DFT and the
LCA model both account for the similarity, attraction, and com-
promise effects using computer simulations to predict the patterns.
To do so Roe et al. (2001) interpret DFT as a connectionist network
and implement distance-dependent inhibition between the alter-
natives. Usher and McClelland (2001, 2004) add insights from
perceptual choice and neuropsychology to the multi-alternative
DFT and propose for their LCA model direct implementation of
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loss-aversion by means of an asymmetric value function and global
inhibition instead of distance-dependent inhibition.

Our 2N -ary choice tree model builds on the previous
approaches and tries to overcome some of their problems. It is
a general model for choice probabilities and response times in
choice between N alternatives with D attributes. As such, it pro-
vides a way to calculate expected response times, response time
distributions, and choice probabilities in closed form by deter-
mining the time course of an information sampling process via a
random walk on a specific tree. It is able to account for similarity,
attraction, and compromise effects which have been most chal-
lenging for previous models. In contrast to previous approaches,
the 2N -ary choice tree model accounts for these effects without
additional mechanisms like inhibition or loss-aversion and is thus
more parsimonious. However, it is possible to implement these
mechanisms if the situation requires it.

First, we describe the structure of the 2N -ary choice tree
and the implementation of the random walk on it in general,
including a discussion of initial values and stopping rules. Then
we define expected choice probabilities and reaction times and
state that these exist and can be calculated in finite time. The
proof of this statement is given later in the paper. It is not
essential for understanding the theory; we provide it rather as
completing the theoretical derivations. Next, we show how to
derive transition probabilities from the given alternatives in a
specific choice set and therewith define the random walk for
that set. A psychological interpretation of their constituents is
given afterward. Finally, we demonstrate the predictive power
of our model by showing several simulations for choice sit-
uations producing the similarity, attraction, and compromise
effect and calculate expected hitting times and choice probabil-
ities. We conclude with a comparison of the 2N -ary choice tree
with its closest competitors, the multi-alternative DFT and the
LCA model.

2. THE 2N -ARY CHOICE TREE MODEL
Making an informed decision usually implies sampling of infor-
mation about the alternatives under consideration. In Psychol-
ogy, information sampling processes (e.g., Townsend and Ashby,
1983; Luce, 1986, for review, LaBerge, 1962; Laming, 1968; Link
and Heath, 1975; Townsend and Ashby, 1983; Luce, 1986; Rat-
cliff and Smith, 2004) have a long tradition and proven to be
an adequate tool for detailed interpretation of decision making
processes, mostly in perception as they provide insight about
accuracy and time course of these processes. Poisson counter
models (e.g., Pike, 1966; Townsend and Ashby, 1983; LaBerge,
1994; Diederich, 1995; Smith and Van Zandt, 2000; Van Zandt
et al., 2000) are a special class of information sampling models
that assume constant amounts of information being sampled at
Poisson distributed points in time. (Multi-alternative) DFT (Buse-
meyer and Townsend, 1993; Roe et al., 2001) and the LCA model
(Usher and McClelland, 2004) make use of information sampling
principles in modeling preferential choice under uncertainty. Both
models assume one counter per alternative and all of these coun-
ters are updated once per fixed time interval until one of them
reaches a threshold. The amounts to update the counters depend

on comparison of the alternatives and on already sampled infor-
mation. In our 2N -ary choice tree model, only one counter per
fixed time interval is updated with a fixed amount, but the prob-
ability for each counter to be updated depends on comparison of
the alternatives and on already sampled information. With regard
to its constituents it is thus based on the same principles as both
DFT and the LCA model. As only one counter is updated per iter-
ation, the next time for a specific counter to be updated depends
on the given probabilities. Hence the technical component of the
2N -ary choice tree model resembles a counter model.

2.1. 2N -ARY CHOICE TREES
In contrast to the aforementioned models, the 2N -ary choice tree
model assigns two counters to each of N alternatives in a given
choice set. One of them samples positive information, i.e., infor-
mation in favor of the respective alternative, the other one samples
negative information, i.e., information against it. Their difference
describes the actual preference state relating to that alternative. As
an example, consider two alternatives A and B. The four counters
are labeled A+, A−, B+, and B− and yield the preference states
Pref(A)=A+−A− for alternative A and Pref(B)=B+−B− for
alternative B. Beginning at a fixed point in time, the model chooses
one counter and increases its state by one whenever a specific time
interval h (e.g., 1 ms) has passed. The length h of the time inter-
val can be chosen arbitrarily with a shorter time interval leading
to more precision in the calculation of expected choice probabil-
ities and choice response times. Due to limitations of recording
devices, experimental data will be discrete as well and it is thus
not necessary to aim for a continuous model. Note that increasing
only one counter state at a time with a fixed amount of evidence
equal to one is equivalent to increasing all counter states at the
same time with an amount of evidence equal to the probability
with which these counters are chosen and which also sum up to
one (see below). Updating counters at discrete points in time cre-
ates a discrete structure of possible combinations of counter states
which can be interpreted as graph or, more precisely, as (b-ary)
tree1.
Definition 1 (b-ary tree): A b-ary tree is a rooted tree T = (V, E, r)
with vertices V, edges E ⊆V ×V and root r ∈V where all vertices
are directed away from r and each internal vertex has b children.

For N choice alternatives, consider a 2N -ary tree T = (V, E, r).
Figure 1 depicts the 4-ary tree for the two-alternative example. The
topmost vertex is the root r with outgoing edges directing to four
vertices that represent the counters A+, A−, B+, and B−. Each of
these vertices has four outgoing edges and thus four children itself,
and so forth. The information sampling process is mapped to this
tree as a walk, i.e., a sequence of edges and vertices, beginning with
the root r that takes one step, i.e., passes from one vertex through
an edge to another vertex, per time interval h. Whenever the walk
reaches a vertex, the counter with the same label is updated by+ 1.
Figure 2 shows an example for a walk on the 4-ary tree where first
counter B+ (information in favor of choice alternative B), then
counter A− (unfavorable information for choosing alternative A)
and then again counter B+ is updated.

1Definitions of graph-related terms not defined here can be found in Korte and
Vygen (2002).

Frontiers in Psychology | Cognitive Science June 2012 | Volume 3 | Article 189 | 218

http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Cognitive_Science/archive


Wollschläger and Diederich 2N -ary choice tree model

FIGURE 1 | 4-ary tree for choice between two alternatives A and B. The
root r has four outgoing edges directing to four vertices that represent the
counters A+, A−, B+, and B−. Each of these vertices has four outgoing
edges and thus four children itself, and so forth.

FIGURE 2 | 4-ary tree for choice between two alternatives A and B with
highlighted sample path r→B+→A−→B+→ . . .

Three features of the model are of specific interest: (a) when
and how the walk starts after presentation of choice alternatives
(in an experimental trial), (b) how the walk chooses the next edge
to pass through in each step, and (c) when and how the walk
stops. Without an a priori bias toward any of the choice alter-
natives, we assume that all counter states are set to zero at the
outset of the information sampling process and hence, the process
starts with presentation of the choice alternatives. Biases toward
one or several of the alternatives can be implemented by either
defining initial values unequal to zero for these alternatives or
by independently sampling information for the alternatives from
predefined distributions for some time before the actual informa-
tion sampling process starts (cf. Diederich and Busemeyer, 2006;
Diederich, 2008). For simplicity, we assume no biases here, i.e.,
initial values are set to zero for all alternatives. Note that for the
2N -ary choice tree, initial values are counter states at the root
r. Then the walk moves away from there step by step, choosing
the next edge to pass through by means of so-called transition
probabilities pe, e ∈ E. The transition probabilities are built up of

FIGURE 3 |Transition probabilities for the two-alternative choice
problem with no counter-dependent and random component. p(A+),
p(B)+, p(A)+, and p(B−) sum up to one and are the same for the outgoing
edges of each vertex v ∈V.

the comparison of the alternatives the decision maker considers
and supplemented with a counter-dependent component and a
random component. For each vertex, the transition probabilities
for all outgoing edges sum up to one, so that the walk does not
stay still at any vertex it reaches throughout the information sam-
pling process. We show the structure of the model first; a detailed
description of the transition probabilities is presented in the next
section. For simplicity consider a choice situation with two alterna-
tives A and B; the counter-dependent component and the random
component are set to zero. As shown in Figure 3, transition prob-
abilities are the same for the outgoing edges of each vertex v ∈V,
i.e., p(v ,v(A+)) = p(A+) for each edge (v,v(A+))∈ E leading to a
vertex with label A+, p(v ,v(B+)) = p(B+) for each edge leading to a
vertex with label B+ and so on for the other counters A− and B−.
The probability for walking along a specific path is the product
of transition probabilities of all edges on that path. In our exam-
ple, the probability p for making the first three steps as shown in
Figure 2 is p= p(B+)·p(A−)·p(B+).

The third topic addresses the stopping rule, that is, when the
decision maker stops sampling information and chooses a choice
alternative. A specific stopping rule depends on the preference
states associated with the alternatives, i.e., the differences of their
respective two counters which are compared to certain thresholds
θ. The thresholds can be defined in several ways, their suitabil-
ity depending on the definition of transition probabilities and
initial values. They are (1) one single positive threshold θ+> 0
for all alternatives, (2) one positive and one negative threshold
θ+> 0 and θ−< 0 for all alternatives, (3) a positive threshold θ+i
for each alternative i ∈ {1, . . ., N }, and (4) a positive and a negative
threshold θ+i and θ−i for each alternative i ∈ {1, . . ., N }.

Obviously, the simplest setup is a single positive threshold
θ+> 0 for all alternatives, which is hit as soon as the information
sampled in favor of any/one of the alternatives exceeds the infor-
mation against it by θ+ for the first time, i.e., when Pref(i)= θ+

for one alternative i ∈ {1, . . ., N }. Sometimes, however, the proba-
bility for collecting negative information may be greater than the
probability for sampling information in favor of these alternatives
and reaching a positive threshold θ+ is very unlikely. For those
situations it is useful to introduce a second, negative threshold,
θ−< 0, which is hit when negative information of one alternative
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exceeds the positive information of this alternative by −θ−, i.e.,
Pref(i)= θ−. In this case the respective alternative is not chosen
but withdrawn from the choice set and the sampling process con-
tinues with one alternative less as described in the next paragraph.
Note, that in both cases the thresholds are global in the sense that
the same thresholds apply for all choice alternatives. Finally, θ+

(and θ−) may vary from alternative to alternative, yielding one (or
two) thresholds θ+i (and θ−i ) for each of N alternatives, i ∈ {1, . . .,
N }. Here the thresholds are local in the sense that each alternative
has its own threshold(s). This is an alternative way to implement
biases when the initial values are zero. That is, biases do not affect
transition probabilities through the counter-dependent compo-
nent and can thus be interpreted as the decision maker’s stable
opinion about the presented alternatives.

Withdrawal of alternatives from a choice set traces back to the
model of elimination by aspects (EBA model, Tversky, 1972).
But whereas elimination is the only means to come to a deci-
sion in the EBA model, the 2N -ary choice tree model like the
multi-alternative DFT (Roe et al., 2001) provides several ways to
reach a decision. An alternative i is chosen either if its preference
state exceeds θ+i or if all other alternatives have been withdrawn
from the choice set or a combination of these two. Figure 4 shows
three examples of walks that lead to the choice of alternative B
from a set of three alternatives A, B, and C with global thresholds
θ+= 2 and θ−=−2. The leftmost walk represents direct choice
of alternative B, the rightmost withdrawal of alternative C and
subsequent choice of option B and the middle walk illustrates
withdrawal of alternative A first and then of option C. Note that
after withdrawal of one alternative, there are two-outgoing edges
less from the respective vertex downward. Transition probabili-
ties change accordingly, i.e., the withdrawn alternative is removed
from the comparison procedure and its counter states no longer
contribute to the counter-dependent component (cf. next section).
This corresponds to an anew started information sampling process
between the remaining alternatives and their previous counter
states as initial values.

For a choice set with N alternatives and given thresholds θ±i this
defines the structure of the 2N -ary choice tree. For each alternative
i ∈ {1, 2, . . ., N } we can thus completely identify the set Vi⊆V of
vertices where alternative i is chosen. Defining Pv:= P{r, v} to be the
unique path from the root r to a vertex v ∈V and given transition
probabilities pe for all edges e ∈ E we can identify the probability
for walking along a path Pv as the product pv = Πe∈Pv pe and
therewith define:
Definition 2 (expected choice probability): The expected proba-
bility for choosing alternative i ∈ {1, 2, . . ., N } is the probability
for reaching the set Vi:

pi =
∑
v∈Vi

∏
e∈Pv

pe . (1)

The length |Pv| of the path Pv from r to v ∈V indicates the
number of steps that the random walk has to take to reach v. Mul-
tiplied by the length h of the time interval, this yields the time it
takes to cover the distance from r to v. Thus Tv= h·|Pv|.
Definition 3 (expected hitting time): The expected time for choos-
ing alternative i ∈ {1, 2, . . ., N } is the sum of expected hitting

FIGURE 4 | 6-Ary tree for choice between three alternatives A, B, and C
with decision thresholds θ+ =2 and θ− =2 and three-different sample
paths that lead to choice of alternative B.

times for each vertex v ∈Vi weighted by the probability for
reaching v :

E[Ti] = h ·
∑
v∈Vi

|Pv | · pv = h ·
∑
v∈Vi

|Pv | ·
∏
e∈Pv

pe . (2)

The expected choice probabilities and hitting times can be
approximated up to absolute accuracy in finite time. See below
for the formal statement and proof of this property.

2.2. TRANSITION PROBABILITIES
Having defined the skeletal structure of our theory, we can now
proceed to its heart, the transition probabilities. The main com-
ponents are (a) weighted comparison of alternatives, (b) mutual
or global inhibition, (c) decay of already sampled information
over time, and (d) a random part. The transition probabilities
control the information sampling process and thus describe the
development of human preferences in specific choice situations.
Throughout this section we will consider such situations with N
choice alternatives that are evaluated with respect to the same D
attributes. For each alternative, the decision maker is provided
with one non-negative value per attribute, representing an objec-
tive evaluation of that alternative with respect to the attributes.
The N ·D values in total can be stored in a N ×D-matrix L= (lij)
with i= 1, . . ., N and j = 1, . . ., D.

The definition of transition probabilities is based on weighted
integration of results of an attribute-wise comparison of alterna-
tives. To ensure equally significant impact of the weight parame-
ters, preprocessing of the values of the alternatives with respect
to the attributes is necessary and we do so by separately nor-
malizing them to one for each attribute. This yields a new
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matrix M = (mij) = (lij/
∑N

k=1 lkj) with i= 1, . . ., N and

j = 1, . . ., D and thus column sum
∑N

i=1 mij = 1 for all
j ∈ {1, . . ., D}.

2.2.1. Comparison of alternatives
At first we focus on one attribute j only. The easiest way to
define transition probabilities is simply to use the entries from the
respective column j of M and assign them to the edges that affil-
iate with the counters for positive information. The counters for
negative information get transition probabilities zero. This cor-
responds to a framework where the alternatives are compared
to an inferior external reference point (e.g., cars A, B, and C
are compared to not having a car at all). Because the values for
each attribute sum up to one already, no further normalization is
needed.

We differentiate between external reference points that are not
part of the choice set and internal reference points that are part of
the choice set and available for the decision maker. For instance,
if someone moves to a new city and has to choose between sev-
eral available apartments, she will probably compare them to her
old apartment which is no longer available in the new city and
thus an example for an external reference point. Or consider
a choice of dessert in a restaurant when the decision maker is
told that the chocolate cake she ordered is no longer available
because someone just had the last piece. An internal reference
point, however, is part of the choice set, actually several or even
all available alternatives can be used as internal reference points at
the same time, possibly in combination with an external reference
point.

Having decided which reference points to use, the alternatives
i ∈ {1, . . ., N } are compared to them. For each alternative i, favor-
able and unfavorable comparisons are handled separately and the
absolute values of their differences are summed up to obtain mea-
sures of evidence for and against alternative i, respectively. This
yields two non-negative values per alternative and thus 2N val-
ues in total that are then normalized to one in order to obtain
probabilities. In the car example where three cars are compared
to not having a car at all, probabilities associated with negative
counters are set to zero as each car is better than, presumably, no
car. Actually, whenever one single reference point is used, at least
half of the probabilities are zero because each alternative is either
favored over the reference point or not and hence there cannot be
evidence for and against one alternative at the same time. How-
ever, our main focus is on situations where each of at least three
alternatives in the choice set is used as internal reference point for
all the other alternatives and thus there are at least two-reference
points.

In this case we obtain a vector

Pj =



p1j
...

pNj

p(N+1)j
...

p(2N )j


=



p+1j
...

p+Nj

p−1j
...

p−Nj


/

N∑
i=1

(
p+ij + p−ij

)

with

p+ij =
∑
k 6=i

(
mij −mkj

)
· I
(
mij > mkj

)
,

p−ij =
∑
k 6=i

(
mkj −mij

)
· I
(
mij < mkj

)
for k = 1, . . .N and

I(x) =

{
1, if x is true

0, else.

Especially with an external reference point at hand, the actual
choice may lead to a loss of some kind. For instance, in the apart-
ment example above a loss could be a further way to the workplace
or a smaller bathroom. People usually try to avoid losses more
than they seek gains while overrating small losses and gains com-
pared to larger ones (Kahneman and Tversky, 1991; Tversky and
Simonson, 1993). The 2N -ary choice tree model can account for
the loss-aversion principle (Kahneman and Tversky, 1979) with
an asymmetric value function (Kahneman and Tversky, 1979;
Tversky and Simonson, 1993) by increasing probabilities for sam-
pling negative information compared to probabilities for gathering
positive information.

In their LCA model, Usher and McClelland (2004) use an
asymmetric value function

V (x) =

{
log(1+ x), for x > 0

−
[
log (1+ |x|)+ log (1+ |x|)2

]
, for x < 0

and apply it to the relative advantages (x > 0) and disadvantages
(x < 0) of alternatives compared to each other on one dimension.
V (x) is steeper for losses than for gains but flattens for both advan-
tages and disadvantages when they become bigger. This favors
similar pairs of alternatives over dissimilar ones and allows the
LCA model to account for attraction and compromise effects.

Adopting it to our 2N -ary choice tree model this yields an
asymmetric value function

A(x) =


log(1+ x), for favorable comparisons

log(1+ x)

+ log (1+ x)2, for unfavorable comparisons,

which can be applied to the absolute differences from the
comparison process before normalizing them to one:

p+ij =
∑
k 6=i

A
(
mij −mkj

)
· I
(
mij > mkj

)
,

p−ij =
∑
k 6=i

A
(
mkj −mij

)
· I
(
mij < mkj

)
.

The asymmetric value function A(x) is not necessary for expla-
nation of similarity, attraction, or compromise effects in the
2N -ary choice tree model but moderates the strength of the com-
promise effect (see below). In cases where θ+ and θ− have the same
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order of magnitude, application of A(x) leads to faster withdrawal
of alternatives and hence, more decisions are based on withdrawal
of all but one alternative.

In summary, the comparison of alternatives provides us with a
set of 2N transition probabilities for each attribute j ∈ {1, . . ., D}
that form a vector P j. Each of these vectors can be used to model
an information sampling process based on a single attribute. As
the probabilities are derived from comparison of alternatives only,
they remain constant during the whole process.

2.2.2. Weighting of attributes
So far we have only focused on one attribute but choice alter-
natives in real life are most often described by several attributes
and thus require more elaboration. In the following, we consider
choice sets with N alternatives characterized by D≥ 2 attrib-
utes. Especially situations with three alternatives where similarity,
attraction or compromise effects have been observed, require at
least two attributes to distinguish the different alternatives from
each other. Note that it is difficult to construct a choice set with
two equally attractive but different alternatives due to the decision
maker’s individual salience. Diederich (1997) accounts for subjec-
tive salience by defining a Markov process on the attributes giving
probabilities for switching attention from one attribute to the
other. This process can be directly implemented into the transition
probabilities by using a stationary distribution on the attributes.
Each attribute j ∈ {1, . . ., D} is assigned a weight wj that corre-
sponds to the probability for considering this attribute during the
information sampling process. For each alternative i ∈ {1, . . ., N }
weighted positive and negative evidence is added up and normal-
ized to obtain a proper probability distribution (the probabilities
add up to one), that is

P =



p1
...

pN

p(N+1)

...
p(2N )


=



p+1
...

p+N
p−1

...
p−N


/

N∑
i=1

(
p+i + p−i

)

with p+i =
∑D

j=1(p+ij · wj) and p−i =
∑D

j=1(p−ij · wj) for i ∈

{1, . . ., N }.
The weights account for subjective salience that in turn may

be influenced by several internal and external factors such as per-
sonal preferences, social influences, characteristics of the choice
set, or the experimenter’s instructions. Personal preferences like,
for instance, the preference of time over money or of tastiness to
healthiness may be learned from friends, family, or other people in
our surrounding. They are generally independent from the choice
situation and hence, their impact on the information sampling is
indirect. On the contrary, the choice set itself has a direct influ-
ence on the subjective saliences. For example, the decision maker
may primarily focus on those attributes where alternatives are
very similar to each other, because this information may be crucial
for the choice. Or she concentrates on attributes with somehow
outstanding values. It is therefore important to normalize the val-
ues for each attribute as described before because this guarantees

representation of these effects by the attention weights. People that
are present during the deliberation process like sales people or
immediately prior to it like the experimenter in a laboratory con-
text can also have a direct influence on the saliences by drawing the
decision maker’s attention to a specific attribute. This can be used
to verify influence of attention weights by instructing decision
makers to focus on certain attributes while choosing between dif-
ferent cars, salad dressings, chocolate bars or shoes. Corresponding
experiments are under way.

2.2.3. Noise
In order to account for random fluctuations in the decision
maker’s attention (cf. Busemeyer and Townsend, 1993) which are
independent of the characteristics of the choice alternatives, we
add a constant to each transition probability. This makes every
outgoing edge of a vertex v ∈V available for the next (random)
step because it guarantees non-zero transition probabilities for
all of them. Let N be a vector of length 2N with all entries
equal to 1/2N. Weighting the transition probabilities P from the
weighted comparison of alternatives by (1− ξ) with 0≤ ξ≤ 1
and adding the product ξ · N yields noisy transition probabil-
ities where ξ moderates the strength of the uniformly distributed
noise:

PN = (1− ξ) · P + ξ ·N .

The vector PN of noisy transition probabilities integrates com-
parison of alternatives on all present attributes. Related to the
2N -ary choice tree, this information is global as it is independent
of the local counter states and thus the transition probabilities are
the same for the edges emanating from each vertex.

2.2.4. Leakage
During their development of DFT (Busemeyer and Townsend,
1993) introduce a factor s for serial positioning effects, called
“growth-decay rate.” It produces recency effects for 0 < s < 1 and
primacy effects for s < 0. In their multi-alternative version of
DFT (Roe et al., 2001) the reverse (1− s) of this factor reap-
pears as “self-feedback loop” and accounts for the memory of
previous preference states. (1− s)= 1 denotes perfect memory of
the previous state (1− s)= 0 no memory at all. For their sim-
ulations (Roe et al., 2001) use (1− s)= 0.94 or (1− s)= 0.95.
Usher and McClelland (2001, 2004) adopted the idea of the self-
feedback loop, but call it “leakage” λ and – based on findings from
neuroscience – interpret it as “neural decay.”

In order to account for decay of already sampled information
over time, we implement leakage L into our transition probabil-
ities. Leakage obviously depends on already sampled information
and thus we normalize the current states of our 2N counters to
1−λ and for each alternative i ∈ {1, . . ., N } add the result for the
positive (negative) counter of alternative i to the transition proba-
bility associated with the negative (positive) counter for alternative
i weighted by λ. Like this, the overall sum of the transition prob-
abilities remains 1 and only 100·λ% of the sampled information
is actually memorized. The greater λ, the longer it takes until the
process reaches a threshold. Overall, this yields

PN L = (1− λ) · [(1− ξ) · P + ξ ·N ]+ λ ·L .
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2.2.5. Inhibition
To account for the similarity, attraction, and compromise effect,
DFT (Roe et al., 2001) and the LCA model (Usher and McClelland,
2004) both rely on inhibition. Whereas distance-dependent inhi-
bition enables DFT to account for the attraction and compromise
effect, global inhibition produces the similarity effect in the LCA
model. We can implement both types of inhibition into the 2N -ary
choice tree model to explore their impact on the aforementioned
effects. We define weights for all pairs of alternatives by either using
the same weight for all pairs like Usher and McClelland (2004) do
with their “global inhibition” parameter β or different weights like
Roe et al. (2001) do with their distance-dependent weights (i.e.,
higher weights for more similar alternatives). Those weights can be
stored in a symmetric N ×N -matrix with zeros on the diagonal.

Taking into account the basic concept of inhibition, we assume
that the state of the positive counter for each alternative i ∈ {1,
. . ., N } reduces sampling of positive information for all other
alternatives j ∈ {1, . . ., N }− {i}. Because this is equivalent to
increasing sampling of negative information for these alternatives
and vice versa for states of negative counters, we implement inhi-
bition I into our model as follows: Multiplying the symmetric
N ×N -matrix with both the vector of states of positive counters
and negative counters yields two vectors with weighted sums of
counter states. We concatenate them in inverted order and nor-
malize the resulting vector of length 2N to µ before adding it to
the vector of transition probabilities now weighted by (1−λ−µ).
This completes the final definition of transition probabilities

PN L I = (1− λ−µ) · [(1− ξ) · P + ξ ·N ]+ λ ·L +µ ·I .

In a nutshell, the transition probabilities consist of a global part
that is independent from the current counter states of the random
walk and a local part that depends on already sampled informa-
tion. The global parts are weighted sums of comparative values P
and noise N that remain constant during the whole process. They
are complemented with leakage L and inhibition I which may
change from step to step and hence, are local in the terminology
of the 2N -ary choice tree model.

3. PREDICTIONS OF THE 2N -ARY CHOICE TREE MODEL
To show the predictions of the 2N -ary choice tree model and how
it accounts for similarity, attraction, and compromise effects in
choice settings with three alternatives characterized by two attrib-
utes, we run several simulations. An extension to more alternatives
is straightforward. We will define values lij that range between 0
and 10. As values of choice alternatives are normalized to one on
each dimension before comparison, only the relative amount of
these values is of importance. Unless stated otherwise, we run 1000
trials per simulation with threshold θ= 20, noise factor ξ= 0.01
and leakage factor λ= 0.05, but without inhibition (i.e., µ= 0).

In order to meet the assumptions of the similarity, attraction,
and compromise effect, we constructed two equally attractive but
dissimilar alternatives A= (9, 1) and B= (1, 9) that are both
evaluated with respect to two attributes. The choice probabili-
ties were 0.52, 0.51, and 0.47 for alternative A and 0.48, 0.49, and
0.53 for option B in three simulations with the above mentioned
parameters and attribute weight 0.5 for both attributes.

To reproduce the similarity effect (Simonson, 1989) we add a
third alternative to the choice set that is equal or similar to either
option A or B, i.e., C = (1, 9), C2= (0.9, 9.1), or C3= (1.1, 8.9). To
prevent a combination of the similarity effect with a slight com-
promise effect (cf. Usher and McClelland, 2004), we will use only
C for demonstration, but the results for options C2 and C3 are
very similar to the ones presented here. The alternatives are put
together in a 3× 2-matrix L, whose columns are normalized to
one, resulting in matrix M :

L =

 9 1
1 9
1 9

 and M =

 0.818 0.053
0.091 0.474
0.091 0.474

 .

M already shows smaller values for alternatives B and C on
the second dimension than for alternative A on dimension one
which characterizes the similarity effect. In the next step, the val-
ues on each dimension are compared to each other, resulting in a

6× 2-matrix that is then multiplied by W =

(
0.4
0.6

)
before being

normalized to one again:

P ′ =


1.4545 0

0 0.4211
0 0.4211
0 0.8421

0.7273 0
0.7273 0

 ·
(

0.4
0.6

)
=


0.5818
0.2526
0.2526
0.5053
0.2909
0.2909

.

and

P =


0.5818
0.2526
0.2526
0.5053
0.2909
0.2909

 /2.1742 =


0.2676
0.1162
0.1162
0.2324
0.1338
0.1338


Finally noise is added to this constant part of the transition

probabilities. In contrast to leakage that depends on the respective
counter states and has to be computed anew for every step, PN

remains constant over time. The only occasion where it changes is
after withdrawal of one alternative from the choice set.

The most interesting parameters in this attempt to model a sim-
ilarity effect are the attribute weights as they control the strength
of the effect. Figure 5 demonstrates this by means of choice prob-
abilities from simulations with different sets of attribute weights

but otherwise unchanged parameters. It starts with W =

(
0.6
0.4

)
and W =

(
0.55
0.45

)
on the left side and gradually changes by 0.05 to

W =

(
0.25
0.75

)
on the right side. The relative frequency of choices

for alternatives A, B, and C including the mean number of steps
leading to these choices can be found in Table 1.

The same mechanisms account for the attraction effect (Huber
et al., 1982) that occurs during choice between two equally attrac-
tive but dissimilar alternatives A and B and a third alternative C
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FIGURE 5 | Choice probabilities for choice between three alternatives
A= (9, 1), B= (1, 9), and C= (1, 9) and different attention weights w 1

and w 2 for the two attributes. The abscissa is labeled with increasing
values of w 2 corresponding to decreasing values of w 1. For w 2 < 0.625 a
similarity effect can be observed.

Table 1 | Relative number of choices and mean response times

(arbitrary unit, in parentheses) for alternatives A= (9, 1), B = (1, 9), and

C = (1, 9) from 1000 simulations with θ=20, ξ=0.01, λ=0.05, µ=0,

and w 2=1−w 1 ranging from 0.4 to 0.75 as indicated in the first row.

w2 0.4 0.45 0.5 0.55

A 1 (92.4) 1 (116.4) 0.984 (163.0) 0.841 (205.5)

B 0 (–) 0 (–) 0.009 (596.4) 0.081 (555.6)

C 0 (–) 0 (–) 0.007 (475.4) 0.078 (524.6)

w2 0.6 0.61 0.62 0.63

A 0.591 (316.5) 0.516 (358.3) 0.394 (401.0) 0.29 (383.7)

B 0.208 (554.7) 0.237 (622.1) 0.292 (602.8) 0.363 (666.6)

C 0.201 (568.9) 0.247 (590.1) 0.314 (634.0) 0.347 (666.9)

w2 0.64 0.65 0.7 0.75

A 0.180 (418.9) 0.111 (430.7) 0.001 (124.0) 0 (–)

B 0.404 (685.3) 0.450 (679.4) 0.510 (631.8) 0.494 (658.5)

C 0.416 (689.4) 0.439 (678.6) 0.489 (664.2) 0.506 (666.1)

that is similar to one of these but slightly less attractive. For A= (9,
1), B= (1, 9), and C = (1, 8.5) this yields

L =

 9 1
1 9
1 8.5

 and M =

 0.818 0.054
0.091 0.487
0.091 0.459

 .

As shown in Figure 6, the attraction effect occurs between

W =

(
0.39
0.61

)
and W =

(
0.35
0.65

)
Note that the deviation from

weights w1=w2= 0.5 is due to a higher salience of attribute two
because the values on this attribute differentiate between the alter-
natives. The relative frequency of choices for alternatives A, B, and
C including the mean number of steps leading to these choices can
be found in Table 2.

For the compromise effect (Simonson, 1989), two equally
attractive but dissimilar alternatives A= (9, 1) and B= (1, 9)

FIGURE 6 | Choice probabilities for choice between three alternatives
A= (9, 1), B = (1, 9), and C = (1, 8.5) and different attention weights w 1

and w 2 for the two attributes. The abscissa is labeled with increasing
values of w 2 corresponding to decreasing values of w 1. For
0.61≤w 2 < 0.65 an attraction effect can be observed.

Table 2 | Relative number of choices and mean response times

(arbitrary unit, in parentheses) for alternatives A= (9, 1), B = (1, 9), and

C = (1, 8.5) from 1000 simulations with θ=20, ξ=0.01, λ=0.05, µ=0,

and w 2=1−w 1 ranging from 0.4 to 0.75 as indicated in the first row.

w2 0.4 0.45 0.5 0.55

A 1 (93.5) 1 (118.4) 0.987 (168.7) 0.81 (204.7)

B 0 (–) 0 (–) 0.012 (593.3) 0.146 (523.4)

C 0 (–) 0 (–) 0.001 (499.0) 0.044 (601.7)

w2 0.6 0.61 0.62 0.63

A 0.557 (313.1) 0.461 (343.6) 0.384 (391.2) 0.248 (396.5)

B 0.357 (466.2) 0.447 (476.1) 0.513 (473.6) 0.655 (487.3)

C 0.086 (558.7) 0.092 (568.1) 0.103 (569.2) 0.097 (605.3)

w2 0.64 0.65 0.7 0.75

A 0.196 (395.5) 0.101 (342.5) 0.002 (155.5) 0 (–)

B 0.699 (448.9) 0.810 (414.6) 0.932 (237.2) 0.953 (159.5)

C 0.105 (483.7) 0.089 (459.0) 0.066 (243.7) 0.047 (174.6)

compete against a compromise option C = (5, 5). Note that the
defined values for each alternative sum up to ten and thus all
three alternatives objectively are equally attractive provided the
attributes are equally weighted. We get

L =

 9 1
1 9
5 5

 and M =

 0.6 0.067
0.067 0.6
0.333 0.333

 ,

and restricting w1=w2= 0.5 to be equal, this yields

P =


0.4
0.4

0.2667
0.4
0.4

0.2667

 .
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So far, these transition probabilities do not seem to induce any
compromise effect but as the probabilities for sampling negative
information are comparatively high, withdrawal of one alternative
from the choice set frequently occurs in that setting. After with-
drawal of one alternative, comparison of the remaining alternatives
is renewed. In the cases where alternative A or B are withdrawn, the
new probabilities clearly favor the compromise option C, yielding
an overall preference for that alternative:

M−A/−B =

(
0.643 0.167
0.357 0.833

)
, P−A/−B =


0.15
0.35
0.35
0.15

 .

In 1000 trials with decision threshold θ= 20, noise factor
ξ= 0.01, leakage factor λ= 0.05, and no inhibition, alternatives
A and B were chosen 247 (24.7%) and 250 (25%) times, respec-
tively, and option C won 503 (50.3%) decisions. Decreasing θ

to 10 yields choice frequencies of 243 (24.3%) for alternative A,
267 (26.7%) for option B, and 490 (49%) for alternative C. θ= 5
leads to 253 (36.9%) choices with an average step number of 36.9
for alternative A, 269 (26.9%) choices with 38.3 steps on aver-
age for option B, and 478 (47.8%) choices with 43.8 steps on
average for alternative C. Figure 7 shows the response time distri-
bution for alternative A for θ= 5, ξ= 0.01, λ= 0.05, and µ= 0.
The expected response time, i.e., the mean of the distribution is
36.6. The magnitude of the compromise effect can be influenced
by application of an asymmetric value function after comparison
of alternatives.

4. COMPARISON WITH OTHER MODELS
Multi-alternative DFT (Roe et al., 2001) and the LCA model
(Usher and McClelland, 2004) both account for similarity, attrac-
tion, and compromise effects in three-alternative preferential
choice and thus build the theoretical background for the 2N -ary
choice tree model. Nevertheless there are some important dif-
ferences and the first one to set the new model apart from the
previous approaches is the attribute-wise normalization of the

FIGURE 7 | Response time distribution for alternative A= (9, 1) in the
compromise setup with θ=5, ξ= 0.01, λ=0.05, and µ=0. The expected
response time, i.e., the mean of the distribution is 36.6.

initially provided evaluations of alternatives. This preprocessing
of input values makes them comparable over attributes. Effects
that originate from differing orders of magnitude of the input val-
ues can thus be controlled by influencing the attention weights for
the attributes. The comparison of alternatives on single attributes
is basically the same in all three models but only the LCA model
and the 2N -ary choice tree model allow for external reference
points that are not present in the choice set to influence the result-
ing values. Application of an asymmetric value function allows
the LCA model to implement the loss-aversion principle (Kah-
neman and Tversky, 1979) and addition of a positive constant
avoids negative activations and thus negated inhibition which was
crucial for some of the results of multi-alternative DFT. Both con-
cepts (asymmetric value function and positive constant) can be
implemented into the 2N -ary choice tree model as well but do not
affect its ability to account for the aforementioned effects (except
for the magnitude of the compromise effect). Whereas all three
models use leakage to account for decay of already sampled infor-
mation over time and have a random part that implements noise
in human decision making, inhibition is another crucial difference
between them. In multi-alternative DFT, local inhibition explains
the attraction and compromise effect, the LCA model uses global
inhibition to account for the similarity effect. Both types of inhi-
bition can be implemented in the 2N -ary choice tree model but
are not necessary for explanation of the three effects.

Beside some similarities and dissimilarities between the mod-
els, in particular with respect to some underlying psychological
concepts the 2N -ary choice tree model is the first to provide
expected choice probabilities and response times in closed form
and thus allows for convenient estimation of the model parameters
from the observed choice times and frequencies in experimental
settings. Furthermore, it can be extended to more than three-
choice alternatives in a straightforward way to account for choice
behavior in more complex, and possibly more realistic choice
situations.

5. CONCLUDING REMARKS
The 2N -ary choice tree model provides alternative explanations
for the similarity, attraction, and compromise effect that can be
experimentally tested as suggested before. Especially the manipu-
lation of attention weights is of interest, because it differentiates
the model on hand from former approaches and should allow
to experimentally produce similarity and attraction effects which
has been proven to be difficult in the past. One problem, however,
we are currently encountering is limited machine accuracy which
leads to accumulation of rounding errors during calculation of
expected choice probabilities and response times.

6. FORMAL STATEMENT AND PROOF
We can approximate the expected choice probabilities and hitting
times up to absolute accuracy in finite time. This follows from
Theorem 1:
Theorem 1: Each random walk Yn on the above defined tree
T = (V, E, r) with transition probabilities pe, ends in finite time
with probability one.
Corollary 1: With probability one only finitely many addends in
equations (1) and (2) are unequal zero.
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Considering expected values, i.e., limits of infinite sums, it is
helpful to make use of a concept that allows for propositions about
asymptotic behavior. For each alternative, the difference of the
two counters that are associated with this alternative resemble a
birth-death chain:
Definition 4 (birth-death chain): A sequence of random variables
X 1, X 2, . . . with values in a countable state space S ≡ {0, 1, 2,
. . .}⊆N is called Markov chain, if it satisfies the Markov property

P [Xn+1 = x|X1 = x1, X2 = x2, . . . , Xn = xn]

= P [Xn+1 = x|Xn = xn] .

A Markov chain is called time homogeneous, if P[Xn+ 1= x |
Xn= y]= p(x, y) for all n, i.e., the probability for going from x to y
is independent from n. A birth-death chain is a time homogeneous
Markov chain that does not skip any state. Its transition probabil-
ities p(x, y) are equal to zero for all x, y ∈S with |y − x | > 1. A
non-homogeneous birth-death chain is a birth-death chain that is
not time homogeneous.

Durrett (2010) proves the following theorem for (non-
homogeneous) birth-death chains as special case of Markov
chains:
Theorem 2: Let Xn be a Markov chain and suppose

P
[
∪
∞
m=n+1 {Xm ∈ Bm} |Xn

]
≥ δ > 0 on {Xn ∈ An} .

Then P[{Xn ∈An infinitely often}− {Xn ∈Bn infinitely
often}]= 0.

For each alternative i ∈ {1, 2, . . ., N }, the above mentioned dif-
ference of its two counters can be interpreted as non-homogeneous
birth-death chain Xn with absorbing states θ−i and θ+i and state
space S = {θ−i , (θ−i + 1), (θ−i + 2), . . . , (θ+i − 2), (θ+i − 1), θ+i }.
Its transition probabilities are

pn(x , x + 1) = pn
x= pn

i (x),
pn(x , x − 1) = qn

x= pn
N+i(x),

pn(x , x) = rn
x= 1− pn

x − qn
x ,

 for x ∈ S −
{
θ−i , θ+i

}

and

pn
x = qn

x = 0,

rn
x = 1,

}
for x ∈

{
θ−i , θ+i

}
.

Due to the noise in the transition probabilities, pn
x > 0 and

qn
x > 0 for all x ∈ S − {θ−i , θ+i }. It follows that the probability

for walking the direct way from x ∈ S − {θ−i , θ+i } to either θ−i
or θ+i is

δx :=

 x∏
y=θ−i +1

q
n+x−y
i (y) +

θ+i −1∏
z=x

pn+z−x
i (z)

 > 0

and thus

δ := min
θ−i <x<θ+i

δx > 0.

Define Tθ−i
= inf {n : Xn = θ−i }, Tθ+i

= inf {n : Xn =

θ+i }, Ti = Tθ−i
∧ Tθ+i

, An=S , and Bn = {θ
−

i , θ+i }. Then

{Xm ∈Bm} is equivalent to Ti≤m and

P
[
∪
∞
m=n+1 {Xm ∈ Bm} |Xn

]
= 1 > δ

for Xn ∈Bn. The probability for walking from any x ∈S to either
θ−i or θ+i on every possible way is

P
[
∪
∞
m=n+1 {Xm ∈ Bm} |Xn

]
≥ δ > 0

and thus fulfills the assumptions of Theorem 2. It follows that

P
[{

Xn ∈ An infinitely often
}
−
{

Xn ∈ Bn infinitely often
}]
= 0

which is equivalent to

P
[{

Xn ∈ An − Bn finitely often
}]
= P [Ti <∞] = 1

and as this is true for every alternative i ∈ {1, 2, . . ., N },P[T,∞]= 1
holds for T :=minT 1, T 2, . . ., TN. This proves Theorem 1.
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People can often outperform statistical methods and machine learning algorithms in situ-
ations that involve making inferences about the relationship between causes and effects.
While people are remarkably good at causal reasoning in many situations, there are several
instances where they deviate from expected responses. This paper examines three situa-
tions where judgments related to causal inference problems produce unexpected results
and describes a quantum inference model based on the axiomatic principles of quantum
probability theory that can explain these effects. Two of the three phenomena arise from
the comparison of predictive judgments (i.e., the conditional probability of an effect given
a cause) with diagnostic judgments (i.e., the conditional probability of a cause given an
effect).The third phenomenon is a new finding examining order effects in predictive causal
judgments. The quantum inference model uses the notion of incompatibility among differ-
ent causes to account for all three phenomena. Psychologically, the model assumes that
individuals adopt different points of view when thinking about different causes.The model
provides good fits to the data and offers a coherent account for all three causal reasoning
effects thus proving to be a viable new candidate for modeling human judgment.

Keywords: causal reasoning, quantum theory, order effects

1. INTRODUCTION
People can perform remarkably well at causal reasoning tasks that
prove to be extremely difficult for statistical methods and machine
learning algorithms. For example, Gopnik et al. (2001) demon-
strated that individuals can infer causal relationships even when
sample sizes are too small for statistical tests. Further, people can
infer hidden causal structures that are difficult for computer scien-
tists or statisticians to uncover (Kushnir et al., 2003). Even though
people can infer rich causal representations of the world based
on limited data, human causal reasoning is not infallible. Like
many other types of subjective probability judgments, judgments
about causal events often deviate from the normative rules of clas-
sic probability theory. This paper describes a quantum inference
model previously developed in Trueblood and Busemeyer (2011)
and demonstrates how it can account for judgment phenomena
in causal reasoning problems.

The quantum inference model provides a general framework
for updating probabilities about a hypothesis given a sequence
of information, and it was first developed to account for order
effects. One of the oldest and most reliable findings regarding
human inference is that the order in which evidence is presented
affects the final inference (Hogarth and Einhorn, 1992). For exam-
ple, a juror’s belief that a criminal suspect is guilty might depend
on the order of presentation of the prosecution and defense.
More generally, an order effect occurs when a judgment about
the probability of a hypothesis given a sequence of information A
followed by B, does not equal the probability of the same hypoth-
esis when the given information is reversed, B followed by A.
Because of the commutative nature of events in classical prob-
ability, order effects are difficult to explain using Bayesian models.

Classical probability theory requires p(A ∩ B | H ) = p(B ∩ A | H )
which according to Bayes rule implies p(H | A ∩ B) = p(H | B ∩ A)
(Trueblood and Busemeyer, 2011).

The quantum inference model is based on the axiomatic prin-
ciples of quantum probability theory. This theory is a general-
ized approach to probability that relaxes some of the axioms or
assumptions of standard probability theory in order to account
for violations of the latter. Quantum probability theory is one
of many generalized approaches to probability. Specifically, quan-
tum probability theory is a geometric approach using subspaces
and projections. Other generalized probability theories include
Dempster-Shafer belief function theory (Fagin and Halpern, 1991)
and intuitionist probability theory (Narens, 2003).

Models constructed from quantum probability theory do not
make assumptions about biological substrates. Rather, quantum
probability models provide an alternative mathematical approach
for generating theories of how an observer processes information.
The quantum approach has been used to account for a number
of phenomena in cognitive science including violations of ratio-
nal decision-making principles (Pothos and Busemeyer, 2009),
conjunction and disjunction fallacies (Busemeyer et al., 2011),
paradoxes of conceptual combination (Aerts, 2009), bistable per-
ception (Atmanspacher et al., 2004), and interference effects in
perception (Conte et al., 2009).

There are at least four reasons for considering a quantum
approach to human judgments: (1) human judgment is not a
simple read out from a pre-existing or recorded state, instead
it is constructed from the current context and question. Quan-
tum probability theory postulates that an individual’s belief state
is undetermined before measurement, and it is the process of

www.frontiersin.org May 2012 | Volume 3 | Article 138 | 228

http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/about
http://www.frontiersin.org/Cognitive_Science/10.3389/fpsyg.2012.00138/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=JenniferTrueblood&UID=41685
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=JeromeBusemeyer&UID=48899
mailto:jstruebl@indiana.edu
http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive


Trueblood and Busemeyer Quantum causal reasoning

imposing measurements that forces a resolution of the indetermi-
nacy. (2) Before measurement, cognition behaves more like a wave
than a particle allowing for individuals to feel a sense of ambiguity
about different belief states simultaneously. According to quantum
probability theory, beliefs remain in a superimposed state until a
final decision must be reached, which resolves the uncertainty and
produces a collapse of the wave to a specific position like a particle.
(3) Changes in context produced by one judgment can affect later
judgments. Quantum probability theory captures this phenome-
non though the notion of incompatibility allowing for one event
to disturb and generate uncertainty about another. (4) Cognitive
logic does not necessarily obey the rules of classic logic such as
the commutative and distributive axioms. Quantum logic is more
generalized than classic logic and can model human judgments
that do not obey Boolean logic.

1.1. QUANTUM INFERENCE MODEL
The quantum inference model was first developed to account for
order effects in a number of different problems including medical
diagnostic tasks and jury decision-making problems. The follow-
ing example of a medical inference task (Bergus et al., 1998) is one
of the problems accounted for by the model. Physicians (N = 315)
were initially informed about a particular woman’s health com-
plaint, and they were asked to estimate the likelihood that she
had an infection on the basis of (a) her medical history and find-
ings of the physical exam and (b) laboratory test results, presented
in different orders. For one order, the physicians’ initial estimate
started out at 0.67; after they had seen the patient’s history and
findings of the physical exam, the estimate increased to 0.78; and
then after they had also seen the lab test results, it decreased to
0.51. For the other order, the initial estimate again started at 0.67;
after they had seen the lab test results, the estimate decreased to
0.44; and then after they also had seen the history and findings of
the physical exam, it increased to 0.59. Because the final judgments
were significantly different (0.51 versus 0.59, p = 0.03), an order
effect is said to have occurred. Specifically, this type of order effect
is called a recency effect, because the same evidence had a larger
effect when it appeared at the end as opposed to the beginning of
the sequence.

The quantum inference model uses the concept of incompat-
ibility to account for order effects. The concept of compatibility
is one of the most important new ideas introduced to cognitive
science by quantum probability theory. Specifically, the model
assumes that different pieces of information can be incompat-
ible in the following sense: The set of feature patterns used to
evaluate one piece of information is not shared by the set used
to think of another so that no common set of features can be
used to evaluate both pieces of information. For example, a physi-
cian needs to use knowledge about one set of features concerning
a patient’s history and physical exam, and the physician needs
to use knowledge about another set of features concerning lab-
oratory tests, but knowledge about all of the combinations from
these two sets is not accessible to the physician. Psychologically,
this corresponds to adopting different perspectives when evaluat-
ing different pieces of information. For example, in the medical
inference task, we assume a physician has different representations
for beliefs depending on three different points of view: a point of

view determined by the woman’s initial health complaint, a point
of view determined by the medical history and findings of the
physical exam, and a point of view determined by the laboratory
test results.

The quantum model is able to account for the medical infer-
ence data (Bergus et al., 1998) and also a similar type of data from
the domain of jury decision-making (Trueblood and Busemeyer,
2011). In these experiments, subjects read fictitious criminal cases
and made a sequence of three judgments for each case: one before
the presentation of any evidence, and two more judgments after
presentations of evidence by a prosecutor and a defense. For a
random half of the cases, the prosecution was presented before
the defense, and for the other half, the defense was presented first.

In one version of the experiment (N = 291) the strength of the
prosecution and defense was also manipulated. For example, sub-
jects might be asked to judge the probability that a defendant was
guilty based on a weak prosecution and a strong defense. Combin-
ing the order manipulation with two levels of strength (strong and
weak) allowed for eight different order conditions, and as far as
we know, this is the largest existing study of order effects on infer-
ence. Because of the many different conditions, this experiment
provided a rich testing ground for the quantum inference model.
Specifically, we compared the quantum inference model to two
previously proposed models of order effects from the judgment
and decision-making literature. All of the models had the same
number of parameters, and the quantum model provided the best
fits.

Because the quantum model provides a general way to calcu-
late probabilities in inference problems, it is natural to apply it
to situations involving causal reasoning. We begin by describing
two recently discovered phenomena in causal reasoning, and illus-
trate how the model can account for them. Then, we introduce an
a priori prediction about order effects which we test and confirm
through a new experimental study.

1.2. PREDICTIVE AND DIAGNOSTIC CAUSAL JUDGMENTS
There are two possible ways to frame a causal reasoning prob-
lem. As formalized by Fernbach et al. (2011), a predictive prob-
ability judgment is represented by the conditional probabil-
ity p(Effect | Cause) and a diagnostic probability judgment is
represented by the conditional probability p(Cause | Effect).

Fernbach et al. (2011) illustrate these two different framings
through an example about the transmission of a drug-addiction
between a mother and a child. More specifically, a predictive
causal reasoning problem could be formulated as “A mother has a
drug-addiction. How likely is it that her newborn baby has a drug-
addiction?” and a diagnostic causal reasoning problem could be
formulated as “A newborn baby has a drug-addiction. How likely
is it that the baby’s mother has a drug-addiction?”

One recently discovered finding arises from the comparison
of predictive and diagnostic judgments when there are strong and
weak alternative causes (Fernbach et al., 2011). The drug-addiction
scenario described above is an example of a weak alternative causes
scenario because there are few alternatives to a child being drug
addicted when the mother is not. On the other hand, a strong alter-
native causes scenario might be one involving the transmission of
dark skin from a mother to a child (Fernbach et al., 2011). In such
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a scenario, a father with dark skin provides a strong alternative to
a child having dark skin when the mother does not. The results
of experiment 1 by Fernbach et al. (2011) show that subjects are
sensitive to the strength of alternative causes when making proba-
bility judgments about diagnostic problems but not when making
probability judgments about predictive problems. As expected, the
probability judgments for diagnostic problems with strong alter-
native causes (e.g. “A newborn baby has dark skin. How likely is
it that the baby’s mother has dark skin?”) are significantly lower
than the probability judgments for diagnostic problems with weak
alternative causes (e.g. “A newborn baby has a drug-addiction.
How likely is it that the baby’s mother has a drug-addiction?”).
One might expect that predictive problems with strong alternative
causes should produce higher probability judgments than pre-
dictive problems with weak alternative causes because alternative
causes increase the likelihood that the effect was brought about by
different mechanisms (Fernbach et al., 2011). However, the exper-
imental data shows no significant difference between probability
judgments for the two types of predictive problems.

A second finding arises from the comparison of predictive and
diagnostic judgments in cases where there are full conditionals
and no-alternative conditionals (Fernbach et al., 2010). The term
full conditional is used to describe situations in which alternative
causes are implicit. For example, the following predictive question
is a full conditional used in experiment 1 of Fernbach et al. (2010):
“Ms. Y has depression. What is the likelihood she presents with
lethargy?” The term no-alternative conditional is used to describe
situations in which subjects are told that there are no-alternative
causes. For example, a no-alternative conditional for the same
depression problem might be “Ms. Y has depression. She has not
been diagnosed with any other medical or psychiatric disorder
that would cause lethargy. What is the likelihood she presents with
lethargy?” One might expect that the following two inequalities
should hold

p (Effect | Cause) > p (Effect | Cause, No Alternative Causes)
(1)

p (Cause | Effect) < p (Cause | Effect, No Alternative Causes) .
(2)

The first inequality is expected because alternative causes should
increase the likelihood of an effect. Even though alternative causes
are not specifically mentioned in a full conditional, the alterna-
tive causes are still present. Thus, the full conditional should be
judged as more likely than the no-alternative conditional in pre-
dictive problems. On the other hand, the second inequality is
expected because alternative causes compete to explain an effect.
Thus, the full conditional should be judged as less likely than
the no-alternative conditional in diagnostic problems. Experimen-
tal results from (Fernbach et al., 2010) show that the probability
judgments of subjects obey the second inequality relating to diag-
nostic reasoning problems but do not obey the first inequality
relating to predictive reasoning problems. In the predictive rea-
soning scenarios, subjects show no significant difference between
their probability judgments in full conditional and no-alternative
conditional problems.

The two judgment phenomena described here can both be
explained by the quantum inference model. Next, we describe the
model in the framework of causal reasoning and demonstrate how
it can account for the two findings.

2. THE QUANTUM INFERENCE MODEL OF CAUSAL
REASONING

The quantum inference model has been adopted for causal rea-
soning problems because it provides a general way for updating
probabilities about a hypothesis (e.g., the presence of an effect)
given a set of information (e.g., different causes for the effect).
The quantum model is not at odds with the causal model view set
forth by Fernbach et al. (2011) which posits that individuals adopt
a representation that approximates the structure of a system and
probability judgments arise from this representation. Fernbach
et al. (2011) formalize this idea using a causal Bayes net. While the
quantum model provides a new way for calculating probabilities,
quantum causal graphs can be constructed in a similar manner
to causal Bayes nets and could potentially be used as a way to
formalize the specific representation used by individuals.

For all of the applications discussed in this paper, the model
assumes there is a single effect which can exist (e) or not exist (e)
and one or more causes which are either present (p) or absent
(a). Based on this assumption there are four possible elementary
events that could occur when considering a single effect and a
single cause: the effect exists and the cause is present, the effect
exists and the cause is absent, the effect does not exist and the
cause is present, and the effect does not exist and the cause is
absent. In quantum probability theory, the sample space used in
classical probability theory is replaced by a Hilbert space (i.e., a
complex number vector space). In our framework, the four ele-
mentary events are used to define an orthonormal basis for a four
dimensional vector space V :

V = span
{ ∣∣e ∧ p

〉
, |e ∧ a 〉 ,

∣∣ē ∧ p
〉
, |ē ∧ a 〉} . (3)

Quantum probability postulates the existence of a unit length
state vector |ψ〉∈V representing an individual’s state of belief1.
The belief state |ψ 〉 can be expressed as a linear combination or
superposition of the four basis states:

|ψ〉 = ωe,p · |e ∧ p
〉+ωe,a · |e ∧ a〉+ωē,p · |ē ∧ p

〉+ωē,a · |ē ∧ a〉 .

(4)

The weights such as ωe,p are called probability amplitudes and
determine the belief about a particular elementary event such
as e∧p. The belief state vector can be represented by the four
amplitudes when the basis for V is treated as the standard basis

1The use of Dirac, or Bra-ket, notation is in keeping with the standard notation
used in quantum mechanics. For the purposes of this paper, |ψ〉 corresponds to a
column vector whereas 〈ψ | corresponds to a row vector. Following the convention
in physics, we use ψ to denote amplitudes which are basis dependent and |ψ〉 to
denote an abstract vector which is coordinate free.
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for C4:

ψ =

⎡
⎢⎢⎣
ωe,p

ωe,a

ωe,p

ωe,a

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

amplitude for effect exists and cause is present
amplitude for effect exists and cause is absent

amplitude for effect does not exist and cause is present
amplitude for effect does not exist and cause is absent

⎤
⎥⎥⎦ .

(5)

Quantum events are defined geometrically as subspaces (e.g., a line
or a plane) within this four dimensional space. For example, the
event corresponding to the “effect exists” is defined as the subspace
Le = span{|e ∧ p〉,|e ∧ a〉}. Quantum probabilities are computed
by projecting |ψ〉 onto subspaces representing events. Projectors
for general events are defined in terms of the projectors for ele-
mentary events. For example, the projectors for the elementary
events e∧p and e∧a are

P
(
e, p
) =

⎡
⎢⎢⎣

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , P (e, a) =

⎡
⎢⎢⎣

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , (6)

and the projector for the event the “effect exists” corresponds to
the sum of the two projectors: P(e) = P(e,p) + P(e,a). To calculate
the probability of this event, the state vector |ψ〉 is projected onto
Le by the projector Pe:

P (e) ψ =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣
ωe,p

ωe,a

ωe,p

ωe,a

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
ωe,p

ωe,a

0
0

⎤
⎥⎥⎦ . (7)

The probability of the event Le is equal to the squared length of
this projection:

p (Le) = ‖P (e) ψ‖2 = ∥∥ωe,p
∥∥2 + ∥∥ωe,a

∥∥2
. (8)

One of the important differences between quantum probabil-
ity theory and classical probability theory occurs when multiple
events are considered. When multiple events are involved, quan-
tum theory allows for these events to be incompatible. Intuitively,
compatibility means that two events X and Y can be accessed
simultaneously without interfering with each other. On the other
hand, if X and Y are incompatible, they cannot be accessed simul-
taneously. From a cognitive standpoint, this implies that the two
events are processed serially and one interferes with the other.
Mathematically, at set of incompatible elementary events are rep-
resented by different bases for the same vector subspace. In the case
of more general events, consider the event X represented by the
subspace Lx with basis |x1〉, . . ., |xn〉 and the event Y represented
by the subspace Ly with basis |y1〉, . . ., |yn〉. If the two events are
incompatible, then the |xi〉 basis is a unitary transformation of
the |yi〉 basis. If X and Y are compatible, then there is one basis

representation for both events. In this case, quantum probability
theory reduces to classic probability theory.

For the purposes of this paper, we assume that the effect is com-
patible with the causes and multiple causes are incompatible with
each other. To formalize this notion, consider a single effect and a
single cause (for clarity, call this cause“cause 1”). The basis defined
in equation 3 can be used to represent beliefs about the effect and
“cause 1.” Now, suppose the same effect is considered in terms of
a different cause (call this cause “cause 2”). Because “cause 1” and
“cause 2” are incompatible, the four basis elements defined above
for “cause 1” cannot be used to describe the relationship between
the effect and “cause 2.” This is because incompatible events are
represented mathematically by different bases for the same vector
space. Thus, a unitary transformation U is applied to the “cause
1” basis to “rotate” it to the “cause 2” basis. The transformation
must be unitary to preserve the orthonormal nature of the basis
elements. The result of the unitary transformation is a new set of
basis elements for V that represents an individual’s point of view
associated with “cause 2”:

V = span
{

U |e ∧ p
〉
, U |e ∧ a〉 , U |ē ∧ p

〉
, U |ē ∧ a〉} . (9)

As a point of comparison, a classical probability model for a sin-
gle effect and two causes would use an eight dimensional sample
space because there are two outcomes (e or ē) for the effect and
two outcomes (p or a) for each cause. By allowing the causes to be
incompatible, the eight dimensional space needed for the classi-
cal model is reduced to a four dimensional space in the quantum
model. This reduction in dimension becomes even more dramatic
when a single effect and n different causes are considered. In this
case, the dimension of the sample space for the classical model
would be 2n+1 whereas the quantum model with n incompatible
causes continues to use only four dimensions. The vector space
V of the quantum model remains four dimensional because the
n different causes are accounted for by n different bases for V
rather than an increase in the dimension of V 2. Psychologically,
the n different bases correspond to different points of view used
when thinking about the existence of an effect and the presence or
absence of a cause. Formally, there exists a set of unitary operators
used to transform one set of basis vectors to another. This is anal-
ogous to rotating the axes in multidimensional scaling (Shepard,
1962; Carroll and Chang, 1970) or multivariate signal detection
theory (Rotello et al., 2004; Lu and Dosher, 2008).

In the model, unitary transformations correspond to an indi-
vidual’s shifts in perspective and relate one point of view (i.e.,
basis) to another. So far, incompatible events have been described
as defining different basis for V. An equivalent way of viewing
incompatible events is to fix a basis for V such as the basis given
in equation 3 and to transform the state vector |ψ〉 by a unitary
operator whenever an incompatible event is being considered. In

2It should be noted, that the quantum inference model is not restricted to assuming
that all causes are incompatible. If there are n causes for an effect, then it is possible
to allow some of the causes to be compatible and others to be incompatible. In this
case, the dimension of the vector space V would be between four and 2n+1. Further,
if there were multiple effects, the model could be extended to allow for incompat-
ibility among effects. Because the current paper only considers a single effect and
two possible causes, these modifications were not necessary.
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other words, one can either “rotate” the vector space and leave the
state vector fixed or one can “rotate” the state vector and leave the
space fixed. In the applications below, the belief state is “rotated”
and the basis is fixed.

2.1. CONSTRUCTION OF UNITARY MATRICES
Any unitary matrix can be constructed from the matrix expo-
nential function U = e−iφH where H is a Hermitian matrix. (A
Hermitian matrix is equal to its own conjugate transpose.) Thus, to
construct the unitary operators for the quantum inference model,
a Hermitian matrix H first needs to be defined. Following True-
blood and Busemeyer (2011), it is assumed that H is constructed
from two components, H = H 1 + H 2.

We begin by describing the construction of a Hermitian matrix
for a simple two dimensional problem and extend this to define
H 1. Suppose that we have a vector space spanned by two basis
vectors |e∧p〉 and |e∧a〉. In our original vector space, this is the
subspace corresponding to the event the “effect exists.” Also, we
assume that this new space can be viewed from different perspec-
tives and define the unitary matrix Uj to transform one perspec-
tive into another. This unitary matrix is constructed from a two
dimensional Hermitian matrix W.

Any two dimensional Hermitian matrix can be described as a
linear combination of the Pauli matrices:

σx =
[

0 1
1 0

]
; σy =

[
0 −i
i 0

]
; σz =

[
1 0
0 −1

]
. (10)

We let W be defined as

W = αx · σx + αy · σy + αz · σz . (11)

Now, we can write the corresponding unitary matrix as

Uj = e−iφj W = e−iφj(αx ·σx +αy ·σy +αz ·σz). (12)

where we assume that (α2
x + α2

y + α2
z )

1
2 = 1. By applying Euler’s

formula we can rewrite the unitary matrix as

Uj = cos
(
φj
) · I − isin

(
φj
) · (αx · σx + αy · σy + αz · σz

)
(13)

where I is the 2 × 2 identity matrix. (Euler’s formula states that
eiφ= cos(φ) + isin(φ).) Equation 13 can be written as the matrix

Uj =
[

cos
(
φj
)− i · αz · sin

(
φj
) − (i · αx + αy

) · sin
(
φj
)

− (i · αx − αy
) · sin

(
φj
)

cos
(
φj
)+ i · αz · sin

(
φj
)] .

(14)

From equation 14, the unitary matrix Uj produces a rotation of
degree φj around the unit length vector (αx,αy,αz,). (Please see
Sakurai, 1994 for more details.) The Hermitian matrix W is said
to be a generator for Uj because for small values of φj, the unitary
matrix is approximately equal to 1 − iφjW. (Please see Nielsen and
Chuang, 2000, Chapter 4 for more details.)

After applying the matrix Uj, the probability that e ∧ p is true
is periodic in the variable φj. If we want to ensure that p is favored

throughout the presentation of the cause, then we must maintain
a probability greater than 0.5 for p over a. In the model, the proba-
bility for p over a is maximized whenever αy = 0 and αx =αz> 0.
By setting αy = 0, we avoid reversing the preference for p across
time. The condition that αx =αz> 0 restricts probabilities for p
to oscillate back and forth from 0.5 to 1.0 across time. Because the
vector (αx, αy, αz) has unit length, we must set αx = αz = 1√

2
.

Now, define W as

W = 1√
2

[
1 1
1 −1

]
(15)

and the 2 × 2 unitary matrix as

Uj = exp

{
−iφj

1√
2

[
1 1
1 −1

]}
. (16)

In the full four dimensional model, we specify the matrix H 1 in
terms of the matrix W. Specifically, we assume that H 1 is the tensor
product given by

H1 =
[

1 0
0 1

]
⊗ W =

[
1 0
0 1

]
⊗ 1√

2

[
1 1
1 −1

]

= 1√
2

⎡
⎢⎢⎣

1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

⎤
⎥⎥⎦ . (17)

A unitary matrix with H 1 as a generator transforms the ampli-
tudes toward the presence of causes by rotating the probability
amplitudes to favor events involving the “cause is present.” In
other words, the corresponding unitary matrix strengthens the
amplitudes corresponding to p and weakens the amplitudes cor-
responding to a. Further, the unitary matrix corresponding to H 1

strengthens and weakens the amplitudes for causes to the greatest
extent possible. This results from the fact that the matrix W was
designed to maximize the probability of one type of information
over another.

Next, we turn to the construction of the H 2 component of the
Hermitian matrix H. As with H 1, we begin by defining a Her-
mitian matrix for a two dimensional space and then extend this
to the four dimensional case. Consider the vector space spanned
by the basis vectors |e∧p〉 and |ē ∧ p〉. This is the subspace of the
full four dimensional vector space corresponding to the presence
of a cause. We proceed exactly as before and define a Hermitian
matrix V as a linear combination of Pauli matrices. Because we
wish to maintain an overall probability greater than 0.5 for the
existence or non-existence of an effect across time, we set αy = 0

and αx = αz = 1√
2

. Thus, we have V = W.

In order to easily write H 2 in terms of V, we rearrange the
coordinate vector given in equation 5 so that

ψ =

⎡
⎢⎢⎣
ωe,p

ωe,p

ωe,a

ωe,a

⎤
⎥⎥⎦ . (18)
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Now we have

H2 =
[

1 0
0 1

]
⊗ V =

[
1 0
0 1

]
⊗ 1√

2

[
1 1
1 −1

]

= 1√
2

⎡
⎢⎢⎣

1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

⎤
⎥⎥⎦ . (19)

Because we want to combine H 1 and H 2, we will need to use the
same arrangement of coordinates for both matrices. To define H 2

in terms of the coordinates given in equation 5, we first switch row
two with row three and column two with column three. Next, we
switch row two with row four and column two with column four.
The resulting matrix is

H2 = 1√
2

⎡
⎢⎢⎣

1 0 1 0
0 −1 0 1
1 0 −1 0
0 1 0 1

⎤
⎥⎥⎦ . (20)

The Hermitian matrix H 2 evolves an individual’s beliefs about an
effect and the presence or absence of a cause. Specifically, it results
in transforming amplitudes toward the event the “effect exists and
cause is present” and toward the event the “effect does not exist
and cause is absent.” As in the case of H 1, the unitary matrix cor-
responding to H 2 evolves the amplitudes to the greatest extent
possible.

Now, we define the Hermitian matrix H as

H = 1√
2

⎛
⎜⎜⎝
⎡
⎢⎢⎣

1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

1 0 1 0
0 −1 0 1
1 0 −1 0
0 1 0 1

⎤
⎥⎥⎦
⎞
⎟⎟⎠

= 1√
2

⎡
⎢⎢⎣

2 1 1 0
1 −2 0 1
1 0 0 1
0 1 1 0

⎤
⎥⎥⎦ . (21)

In the sum H 1 + H 2, the H 2 matrix affects the relation between
causes and effects and the H 1 matrix biases the amplitudes toward
the presence of causes. Both matrices are necessary components
of H. The Hermitian matrix, H, was previously developed for psy-
chological applications involving four dimensional vector spaces
(Pothos and Busemeyer, 2009) and is identical to the one used in
Trueblood and Busemeyer (2011). The parameter φ determines
the degree of rotation and is used as a free parameter in the model.
A different parameter value of φ is used for different causes. For
more details about the derivation of the unitary operators, please
see Pothos and Busemeyer (2009) and Trueblood and Busemeyer
(2011).

3. MODELING THE PREDICTIVE AND DIAGNOSTIC
PHENOMENA

Now that we have introduced the model, we illustrate how it can
be applied to the two findings by Fernbach et al. (2010, 2011)
concerning predictive and diagnostic judgments.

3.1. PREDICTIVE AND DIAGNOSTIC JUDGMENTS WITH STRONG AND
WEAK ALTERNATIVE CAUSES

In experiment 1 conducted by Fernbach et al. (2011), 180 subjects
provided probability judgments for predictive and diagnostic rea-
soning problems with strong and weak alternatives causes. In the
experiment, twenty different question categories were used. These
categories ranged from mothers and newborn babies to oxygen
tanks and scuba divers. For each question category, there were
two types of causes – one with strong alternatives and one with
weak alternatives. In analyzing the data, Fernbach et al. (2011)
averaged over the different categories. Because a large number
of categories were used, any differences in the events themselves
should average out.

To model data from this experiment, the quantum inference
model assumes that equal weight is initially placed on the four
elementary events defining the belief state in a manner similar to
setting a uniform prior in a Bayesian model:

ψ0 =

⎡
⎢⎢⎣
ωe,p

ωe,a

ωe,p

ωe,a

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

√
.25√
.25√
.25√
.25

⎤
⎥⎥⎦ . (22)

The original version of the quantum inference model (Trueblood
and Busemeyer, 2011) was applied to inference problems involving
a single hypothesis and two pieces of evidence. In this setting, it
was assumed an individual adopted three different points of view
throughout the inference problem: a point of view determined by
the initial description of the problem, a point of view determined
by the first piece of evidence, and a point of view determined
by the second piece of evidence. A “rotation” of the belief state
occurred whenever there was a shift in perspective. In an analo-
gous manner, we assume here that there is a change in perspective
(i.e.,“rotation”) between the initial point of view, the point of view
associated with one of the causes, and the point of view associated
with the other cause.

For predictive problems, the initial belief state is revised after an
individual learns about the presence of a cause. Psychologically, the
new information about the cause results in the individual shifting
his or her perspective of the four elementary events. Mathemati-
cally, the initial belief state |ψ0〉 changes to a new state by using a
unitary operator to “rotate” the initial belief state: U |ψ0〉. Because
the individual learns the cause is present, the new state is then
projected onto the “cause is present” subspace and is normalized
to ensure that the length of the new belief state equals one:

|ψ1 〉 =
(
P
(
e, p
)+ P

(
ē, p
))

U |ψ0
〉∥∥ (P (e, p

)+ P
(
ē, p
))

U |ψ0
〉 ∥∥ . (23)

The predictive probability is calculated by projecting the revised
belief state onto the“effect exists”subspace and finding the squared
length of the projection:

p (Effect | Cause) = ‖ P (e) |ψ1〉 ‖2. (24)

For diagnostic problems, the initial belief state is revised after an
individual learns the effect exists. In this case, the initial belief
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state |ψ0〉 does not need to be transformed by a unitary operator
before it is projected onto the “effect exists” subspace. Because
we are concerned with only a single effect, there is no need to
change perspective between the initial belief state and the belief
state associated with the knowledge that the effect is present3. In
other words, the initial basis was chosen to describe a single effect
being considered in the problem. Thus, the initial state is projected
directly onto this subspace and is normalized resulting in a new
belief state:

ψ1 =

⎡
⎢⎢⎣
ωe,p

ωe,a

ωe,p

ωe,a

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

√
.5√
.5

0
0

⎤
⎥⎥⎦ . (25)

The diagnostic probability is calculated by projecting the revised
belief state onto the “cause is present” subspace and finding the
squared length of the projection. However, before projection, |ψ1〉
is transformed by a unitary operator to account for the assumed
incompatibility between the individual’s current point of view and
the point of view associated with the cause:

p (Cause | Effect) = ‖ P (c)U |ψ1〉 ‖2. (26)

Because different causes are used in the weak and strong alternative
causes problems (e.g. “A mother has a drug-addiction” versus “A
mother has dark skin”), different parameter values of φ are used.
Specifically, one value of φ is used to account for causes where the
alternatives are weak and another value of φ is used to account
for causes where the alternatives are strong. Equivalently, differ-
ent causes are incompatible and thus different unitary operators
are needed to “rotate” the state vector. All of the calculations pre-
sented here and for the other effects discussed below are also given
in appendix B.

The important difference between predictive and diagnos-
tic calculations is the ordering of projections and rotations. In
the predictive case, the initial belief state is first rotated by the
U matrix and then projected onto the “cause is present” sub-
space. In the diagnostic case, the initial state is first projected
onto the “effect exists” subspace and then rotated by the U
matrix. The model predicts that strong and weak alternative
causes do not affect predictive judgments because the differ-
ences between these two situations, which are incorporated in the
rotations, are wiped out by subsequent projections. This is not
the case for diagnostic judgments because rotations occur after
projections.

The model was fit to the mean judgments for the following
four situations: predictive with weak alternative causes, predictive
with strong alternative causes, diagnostic with weak alternative
causes, and diagnostic with strong alternative causes. The model
used two free parameters associated with the two different types of
alternative causes (i.e., strong and weak) to model the four judg-
ments. The model was fit by minimizing the sum of the squared

3If there was more than one effect under consideration, then it might be neces-
sary to consider the effects as incompatible. In this case, there would be changes of
perspective (i.e., “rotations”) between the different effects and the initial belief state.

error (SSE) between the experimental data and model predictions.
The best fit parameters were φ1 = − 3.74 for strong alternative
causes andφ2 = 0.48 for the weak alternative causes. Table 1 shows
the experimental results and the best fitting model predictions.
The mean squared error (MSE) for the model fit was less than
0.0005.

Next we show that the same quantum principles also account
for the differences between predictive and diagnostic judgments
in the more complex paradigm involving the no-alternative
conditions.

3.2. PREDICTIVE AND DIAGNOSTIC JUDGMENTS WITH FULL AND
NO-ALTERNATIVE CONDITIONALS

In experiment 1 conducted by Fernbach et al. (2010), 265 mental
health practitioners provided probability judgments for predictive
and diagnostic reasoning problems with full and no-alternative
conditionals related to a scenario about a woman experiencing
lethargy given she was diagnosed with depression.

To model this data, many of the same steps described above
are used. Specifically, the probabilities for predictive and diag-
nostic reasoning problems with full conditionals are calculated
in the exact same manner as above in equations 24 and 26
respectively.

To calculate the probabilities for predictive and diagnostic rea-
soning problems with no-alternative conditionals, it is assumed
that an individual considers two causes when producing judg-
ments. The first cause is the one explicitly given in the problem
(i.e., the woman has been diagnosed with depression). The second
cause is implicitly defined in the problem through the statement
that there are no-alternative causes (i.e., the woman has not been
diagnosed with any other medical or psychiatric disorders that
cause lethargy). In keeping with the assumption that all causes are
incompatible, these two causes are treated as such. Thus, two dif-
ferent unitary operators, U 1 and U 2 associated with the explicit
present cause and the implicit absent cause respectively, are used
when revising the belief state.

For predictive problems with the no-alternative conditional,
the initial belief state given in equation 22 is first revised after an
individual processes information about the presence of the explicit
cause. The explicit cause is assumed to be processed first because it
is more readily available. The initial state vector is updated accord-
ing to equation 23 where U is defined as U 1. Next, the new state
vector |ψ1〉 is revised after the individual processes the informa-
tion about the absence of the implicit cause. Because the two causes
are incompatible, the current belief state |ψ1〉 is changed to a new

Table 1 | Model fits for predictive and diagnostic judgments with

strong and weak alternative causes.

Judgment type Alternative strength

Weak Strong

Data Model Data Model

Diagnostic 0.817 0.803 0.585 0.561

Predictive 0.696 0.723 0.753 0.773
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state by the unitary operator U 2. The new state is then projected
onto the “cause is absent” subspace and normalized:

|ψ2 〉 = (P (e, a)+ P (ē, a))U2 |ψ1〉
‖ (P (e, a)+ P (ē, a))U2 |ψ1〉 ‖ . (27)

The predictive probability is then calculated by projecting the
revised belief state onto to the “effect exists” subspace and finding
the squared length of the projection:

p (Effect | Cause, No Alternative Causes) = ‖ P (e) |ψ2〉 ‖2. (28)

For diagnostic problems with the no-alternative conditional, the
initial belief state given in equation 22 is revised to the state
given in equation 25 after an individual learns the effect exists.
Next, the state undergoes revision when the individual considers
information about the implicit cause being absent:

|ψ2 〉 = (P (e, a)+ P (ē, a)) U2|ψ1〉
‖ (P (e, a)+ P (ē, a)) U2|ψ1〉 ‖ . (29)

The diagnostic probability is calculated by projecting the belief
state |ψ2〉 onto to the “cause is present” subspace and finding
the squared length of the projection. However, before projection,
|ψ2〉 is transformed by the unitary operator U 1 to account for the
assumed incompatibility between the individual’s current point of
view and the point of view associated with the explicit cause:

p (Cause | Effect, No Alternative Causes) = ‖P (c) U1|ψ2〉‖2.

(30)

The model was fit to the mean judgments for the following
four situations: predictive with full conditional, predictive with
no-alternative conditional, diagnostic with full conditional, and
diagnostic with no-alternative conditional. The model used two
free parameters associated with the two unitary operators used
for the two different types of causes (i.e., explicit and implicit).
The model was fit by minimizing the sum of the squared error
(SSE) between the experimental data and model predictions. The
best fit parameters were φ1 = − 2.35 for the explicit cause and
φ2 = − 3.81 for the implicit cause. Table 2 shows the experimen-
tal results and the best fitting model predictions. The MSE for the
model fit was less than 0.0003.

In summary, the quantum model uses the same principles
to provide accurate fits to the results from both experiments.

Table 2 | Model fits for predictive and diagnostic judgments with full

and no-alternative conditionals.

Judgment type Conditional type

Full No-alternative

Data Model Data Model

Diagnostic 0.59 0.58 0.67 0.65

Predictive 0.69 0.67 0.68 0.69

However, two parameters were used to fit four data points in each
study. Obviously a stronger test of the assumptions underlying
the quantum model is required before this account becomes very
convincing.

4. ORDER EFFECTS IN CAUSAL REASONING
So far, the quantum inference model has been based on
the assumption that causes are incompatible. This is the key
assumption required to account for the findings. The current study
was designed to gather experimental support for this assump-
tion. If all events are compatible, then quantum probability theory
reduces to classic probability theory. In particular, the events obey
the commutative property of Boolean algebra. In a simple Bayesian
inference model, the commutative nature of events implies order
effects do not occur (Trueblood and Busemeyer, 2011). However,
incompatible events do not have to obey the commutative prop-
erty and can produce order effects. Thus, the quantum inference
model with incompatible causes makes an a priori prediction that
order effects exist in causal reasoning. The present study tests this
prediction.

Subjects in the study were 113 undergraduate students at Indi-
ana University who received experimental credit for introductory
psychology courses. Each of the subjects completed a computer-
controlled experiment where they read ten different randomized
scenarios involving an effect and two causes with one the causes
being present and the other cause being absent. For example,
subjects might be asked about the likelihood that a high school
cafeteria will serve healthier food next month (the effect) given
the food budget remains the same (the absent cause) and a
group of parents working to fight childhood obesity contacted
the school about including healthier menu options (the present
cause). All ten scenarios used in the experiment are given in
appendix A.

The participants reported the likelihood of the effect on a 0–100
scale before reading either cause, after reading one of the causes,
and again after reading the remaining cause. For a random half of
the scenarios, subjects judged the present cause before the absent
cause. For the remaining half of the scenarios, the subjects judged
the absent cause before the present cause. The data was analyzed
by collapsing across all ten scenarios. Figure 1 shows the aver-
age probability judgments collapsed across the scenarios for the
different orderings of the causes. A two sample t-test showed a
significant recency effect (t = 9.6408, df = 1128, p< 0.0001). This
implies that the second cause influenced subjects’ beliefs more
than the first cause. One might think that order effects are due
to memory recall failures; however, memory recall is uncorre-
lated with order effects in sequential judgments (Hastie and Park,
1986).

The quantum model accounts for the order effect data in a
manner similar to its account of predictive judgments with no-
alternative conditionals. Specifically, there are two incompatible
causes with one being present and the other being absent. Two
different unitary operators, U 1 and U 2, are associated with the
two causes respectively.

To start, the initial belief state is based on the probability judg-
ments provided by subjects before either cause was presented. The
mean probability of the effect given no causal information was
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FIGURE 1 | Average probability judgments collapsed across 10

scenarios for two orderings of present and absent causes. The
judgments exhibit a significant recency effect as illustrated by the crossing
of the two curves on the graph. Error bars show the 95% confidence
interval.

0.403. Thus, the initial state is defined as

ψ0 =

⎡
⎢⎢⎣
ωe,p

ωe,a

ωe,p

ωe,a

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

√
0.403

2√
0.403

2√
0.597

2√
0.597

2

⎤
⎥⎥⎥⎥⎥⎥⎦

. (31)

When modeling judgments for the present cause followed by judg-
ments for the absent cause, the initial belief state is first revised to
accommodate the information about the present cause. Specifi-
cally, the initial state vector is updated according to equation 23
where U is defined as U 1. The probability of the effect given the
present cause is calculated as in equation 24. Next, the new state
vector |ψ1〉 is revised after the individual processes the informa-
tion about the absent cause. This updating occurs according to
equation 27. The final probability of the effect given the present
cause followed by the absent cause is calculated as in equation 28.
To model the judgments for the reverse order of causes, absent
cause followed by present cause, a similar set of steps are followed
except that the roles of U 1 and U 2 were reversed (U 2 was applied
first and U 1 second). It should be noted that the quantum model
can produce both primacy and recency effects, and that these two
effects oscillate across different values for the phi parameters.

The model was fit to the following four data points: p(Effect |
Present Cause), p(Effect | Present Cause, Absent Cause), p(Effect |

Absent Cause), p(Effect | Absent Cause, Present Cause). The model
used two free parameters associated with the two unitary opera-
tors used for the two different types of causes (i.e., present and
absent). The model was fit by minimizing the sum of the squared
error (SSE) between the experimental data and model predictions.
The best fit parameters were φ1 = 3.67 for the present cause and
φ2 = − 1.57 for the absent cause. Table 3 shows the experimental
results and the best fitting model predictions. The MSE for the
model fit was less than 0.0002.

The existence of order effects provides support for the quan-
tum inference model with incompatible causes. More importantly,
the model has introduced a new direction for empirical study not
considered before in causal reasoning.

5. ALTERNATIVE MODELS
Two other models of inference are worth mentioning. The first
model is a causal Bayes net discussed in Fernbach et al. (2011).
This model assumes that the relationship between causes and
effects can be represented by a directed graph and probabilities
are calculated from this structure. The second model is the belief-
adjustment model developed by Hogarth and Einhorn (1992).
This is an arithmetic model which assumes that beliefs are deter-
mined through an anchoring and adjustment process. While both
models provide insights into the process of updating beliefs, nei-
ther model can provide an adequate account for all three causal
reasoning phenomena.

5.1. CAUSAL BAYES NET
Fernbach et al. (2011) present a causal Bayes net as a possible
account of predictive and diagnostic judgments with strong and
weak alternative causes. In this model, the predictive probability
of an effect given a cause is calculated using the noisy-or equation:

p (Effect | Cause) = Wc + Wa − Wc Wa (32)

where Wc = p(Effect | Cause, No-Alternative Causes) is the causal
power for the cause and Wa = p(Effect | No Causes) is the strength
of alternative causes. The diagnostic probability of a cause given
an effect is calculated by considering the complement:

p (Cause | Effect) = 1 − p (No Cause|Effect) (33)

By applying Bayes’ rule to the complement defined in equation 33,
the diagnostic probability is given by

p (Cause | Effect) = 1 − (1 − Pc )
Wa

Pc Wc + Wa − Pc Wc Wa
(34)

where Pc = p(Cause).

Table 3 | Model fits for order effects in predictive judgments.

Judgment order After 1st judgment After 2nd judgment

Data Model Data Model

Present, absent 0.631 0.655 0.472 0.477

Absent, present 0.318 0.318 0.602 0.591
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Fernbach et al. (2011) successfully applied this model to their
data on predictive and diagnostic judgments with strong and
weak alternative causes from experiment 1. However, they ulti-
mately reject the model based on later experiments. Also, the
model has not formally been applied to their findings with full and
no-alternative conditionals (Fernbach et al., 2010). As such, it is
unknown whether the model can provide a mathematical account
of these data. Further, it is doubtful the model can account for
order effects. Most Bayesian models have difficulty accounting for
order effects due to the commutativity of events (Trueblood and
Busemeyer, 2011). To model order effects, the model would need
to introduce presentation order as another piece of information.
In most experimental studies of order effects, order of presenta-
tion is randomly determined. Thus, order information is often
irrelevant.

5.2. BELIEF-ADJUSTMENT MODEL
The second model worth noting is the belief-adjustment model
originally developed to account for order effects (Hogarth and Ein-
horn, 1992). This model assumes that individuals update beliefs
through a series of anchoring and adjustment steps. In the model,
the degree of belief for an event Bk is a combination of the previous
belief about the event and a weighting of the current information:

Bk = Bk−1 + wk · (s (xk)− R) . (35)

In the above equation, s(xk) is the strength of the current informa-
tion, R is a reference point, and 0<wk< 1 is an adjustment weight.
By making assumptions about the encoding of information, the
model can be reformulated as either an adding or averaging model
(Hogarth and Einhorn, 1992). For the purposes of this paper, we
will focus on the adding version of the model because we pre-
viously demonstrated that the adding model is superior to the
averaging model in accounting for order effects (Trueblood and
Busemeyer, 2011).

According to Hogarth and Einhorn (1992), the adding model
arises when information is encoded in an absolute manner. It is
assumed that R = 0 and − 1 ≤ s(xk) ≤ 1. Further,Hogarth and Ein-
horn (1992) made the assumption that the adjustment weight wk

depends on the state of the current belief and the sign of the dif-
ference s(xk) − R. Specifically, if s(xk) ≤ R then wk = Bk−1, and if
s(xk)>R then wk = 1 − Bk−1. Using these constraints, the adding
model is given by

Bk =
{

Bk−1 + Bk−1 · s (xk) , if s (xk) ≤ 0
Bk−1 + (

1 − Bk−1
) · s (xk) , if s (xk) > 0

(36)

Order effects arise from the model through the combination of the
strength parameters and adjustment weights. The model requires
as many strength parameters as pieces of information in the task.
For example, the model would require two free parameters to fit the
data from the order effects experiment discussed above. This is the
same number of parameters used by the quantum inference model.

In previous work examining order effects (Trueblood and Buse-
meyer, 2011), the quantum model provided better fits to experi-
mental data than the adding model. We also showed the quantum
model more readily generalized across different response scales

and populations through cross-validation. Further, the quantum
model, unlike the adding model, made correct a priori predic-
tions about probability judgments in jury decision-making tasks
involving irrefutable evidence.

While the adding model can produce order effects, the model
cannot provide an adequate account for predictive and diagnostic
judgments with strong and weak alternative causes. According to
the model, a predictive judgment is given by

p (Effect | Cause) = BE = B0 + (1 − B0) · s (Cause) . (37)

where it is assumed s(Cause) >0 and B0 is the prior belief in
the effect. In order to account for the lack of a significant dif-
ference between predictive judgments involving strong and weak
alternative causes, the model requires the strength of causes with
strong alternatives to be equal to the strength of causes with weak
alternatives. When considering causes such as “A mother has a
drug-addiction” and “A mother has dark skin,” this assumption
seems unlikely.

Now consider the findings with full and no-alternative con-
ditionals. According to the model, a predictive judgment with a
no-alternative conditional is given by

p (Effect | Cause, No Alternative Causes)

= BE + BE · s (Alternative Causes) (38)

where BE is given in equation 37 and s(Alternative Causes) is
assumed to be negative because the alternative causes are absent.
Thus to account for the experimental finding that predictive judg-
ments with full and no-alternative conditionals are the same, the
model requires

BE = BE + BE · s (Alternative Causes) (39)

implying that s(Alternative Causes) = 0. It seems unlikely that
information such as “[a patient] has not been diagnosed with any
other medical or psychiatric disorder that would cause lethargy”
would have a strength rating of zero. Thus, the adding model also
fails to provide an adequate account of predictive judgments with
full and no-alternative conditionals.

6. DISCUSSION
This paper illustrates that the quantum inference model can
account for data from three different causal reasoning experi-
ments. The quantum model is the first model that has been able
to provide a unified account for all three effects. Previous models
such as the causal Bayes net discussed in Fernbach et al. (2011)
and the belief-adjustment model developed by Hogarth and Ein-
horn (1992) can only account for a subset of the findings. Further,
the quantum model has previously been used to account for order
effect data in a number of different inference tasks (Trueblood and
Busemeyer, 2011) illustrating the generalizability of the model to
a large range of phenomena.

The quantum inference model uses the concept of incompati-
bility to account for both the three causal reasoning phenomena
presented in this paper and the order effect phenomena discussed
in Trueblood and Busemeyer (2011). It might be the case that
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humans can adopt either compatible or incompatible represen-
tations and are not constrained to use one or the other. In the
case where individuals use a compatible representation, judgments
should agree with the laws of classical probability theory. For
common situations where circumstances are clear, it seems rea-
sonable that individuals would adopt a compatible representation.
For example, consider an electric kettle that only operates when
it is plugged in (cause 1) and when it is switched on (cause 2).
Because people have a great deal of experience with plugging in
and switching on electronic appliances, they can form a compatible
representation of these two causes.

However, for situations involving deeply uncertain events that
have never before been experienced, perhaps incompatible repre-
sentations are used. In this way, an incompatible representation is
only adopted for causes that do not have the advantage of a wealth
of past experience. For example, in the order effects experiment
discussed in the previous section, it is doubtful that the subjects
had prior experience considering a high school’s food budget and
an activist group fighting childhood obesity. Thus, these two causes

are represented as incompatible because they cannot be accessed
simultaneously without interfering with each other. In general,
incompatibility offers an efficient and practical way for a cognitive
system to deal with a large variety of information.

While the present paper does not want to conclude that the
quantum inference model is true, the evidence presented here
makes a convincing case for considering the quantum model to
be a viable new candidate for modeling human causal reasoning.
Using the same underlying principles, the model provided accu-
rate fits to the data from experiments by Fernbach et al. (2010,
2011). More importantly, the model made an a priori predic-
tion that order effects would occur in causal reasoning problems.
The existence of order effects is a strong indicator that events
should be treated as incompatible. As the key assumption of the
model is the incompatibility of causes, the empirical finding of
order effects is quite noteworthy. Future work will test the model
with larger data sets, examine model complexity, and explore
the model’s predictions regarding the occurrence of primacy and
recency effects.
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APPENDIX
STIMULI FOR ORDER EFFECTS EXPERIMENT
Scenario 1
• Initial Description: Mary is an average 33-year old American

woman.
• Effect: How likely is it that Mary will weigh less in 1 month?
• Absent cause: Mary does not make any changes to her diet over

the course of the month.
• Present cause: Mary recently began an exercise program where

she works out for 4 h every week.

Scenario 2
• Initial Description: The Central High School football team won

less than half of their games last season.
• Effect: How likely is it that the Central High School football

team will have a winning season next year?
• Absent Cause: The football team uses the same plays this coming

seasoning as they have in the past.
• Present Cause: The football team increases their weekly practice

time.

Scenario 3
• Initial Description: Sara is a 40-year old American woman who

has a generalized anxiety disorder.
• Effect: How likely is it that Sara will be less anxious within

3-months?
• Absent cause: Sara does not change her level of exercise over the

3-month period.
• Present cause: Sara meets with a psychologist every week.

Scenario 4
• Initial Description: Jane has two exams 1 week from today, one

in her advanced physics course and one in her statistics course.
• Effect: How likely is it that Jane will do well on both exams next

week?
• Absent cause: Jane does not make any changes to the amount of

time she studies at home over the coming week.
• Present cause: Jane has been going to office hours for both classes

for the last 3 weeks.

Scenario 5
• Initial Description: A soda company owns a popular caffeine

free drink.
• Effect: How likely is it that sales of the caffeine free drink will

increase next year?
• Absent cause: The advertising budget for the caffeine free drink

for the coming year is the same as last year.
• Present cause: The soda company lowers the price of the caffeine

free drink.

Scenario 6
• Initial Description: Paul is an average high school junior.
• Effect: How likely is it that Paul will be accepted into a top 50

college in 1 year?
• Absent cause: Paul does not make any changes to his extracur-

ricular activities over the course of the year.
• Present cause: Paul improves his grades in all of his academic

classes.

Scenario 7
• Initial Description: H. G. Industries is a manufacturing com-

pany.
• Effect: How likely is it that the output of H. G. Industries will

increase over the course of a year?
• Absent Cause: H. G. Industries does not make any changes to

their production line technology.
• Present Cause: H. G. Industries increases the number of

employes working for the company.

Scenario 8
• Initial description: Liz is a 20-year old college sophomore who

has a 3.0 GPA.
• Effect: How likely is it that Liz will earn an A in social psychology

this semester?
• Absent Cause: Liz does not make any changes to her study habits

this semester.
• Present Cause: Liz hopes to study social work in graduate school.

Scenario 9
• Initial description: L.Z. Inc. has a manufacturing plant that has

been dumping waste in nearby Lake Lime for several years.
• Effect: How likely is it that L.Z. Inc. will start an initiative to

clean up Lake Lime this year?
• Absent cause: L.Z. Inc. is using the same manufacturing process

this year that it has in the past.
• Present cause: L.Z. Inc. has met with several environmental

groups recently.

Scenario 10
• Initial description: A high school cafeteria serves lunch to stu-

dents, and sets its upcoming menus at the beginning of each
month.

• Effect: How likely is it that the cafeteria will serve healthier foods
next month?

• Absent cause: The food budget for the coming month is the
same as last month.

• Present cause: A group of parents are working to fight childhood
obesity and have spoken to the school about including healthier
options on their menus.

CALCULATIONS FOR THE QUANTUM MODEL
For all of the calculations, it is assumed that there is an initial belief
state |ψ0〉. To calculate probabilities for predictive judgments with
a single present cause, the initial belief state is revised according to

|ψ1〉 =
(
P(e, p)+ P(ē, p)

)
U |ψ0〉∥∥ (P (e, p

)+ P
(
ē, p
))

U |ψ0〉
∥∥ .

This new state is then projected onto the “effect exists” subspace:

p (Effect|Cause) = ‖ P (e) |ψ1〉 ‖2.

If there is an additional absent cause, the |ψ1〉 belief state is updated
according to

|ψ2 〉 = (P (e, a)+ P (ē, a))U2 |ψ1 〉
‖(P (e, a)+ P (ē, a))U2 |ψ1 〉‖
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The probability is calculated by projecting this new state onto the
“effect exists” space:

p (Effect | Cause, No Alternative Causes) = ‖ P (e) | ψ2〉 ‖2.

For diagnostic judgments, the initial state is first revised by pro-
jecting it onto the “effect exists” subspace so that |ψ1〉 = P(e)|ψ0〉.
To calculate the probability of a present cause given the effect, the
new belief state is revised and projected onto the “cause is present”
subspace:

p (Cause | Effect) = ‖ P (c)U |ψ1〉 ‖2.

If there is an additional absent cause, the |ψ1〉 belief state is updated
according to

|ψ2 〉 = (P (e, a)+ P (ē, a))U2 |ψ1 〉
‖ (P (e, a)+ P (ē, a))U2 |ψ1 〉 ‖ .

The probability is calculated by revising this new state and
projecting onto the “cause is present” subspace:

p(Cause | Effect, No Alternative Causes) = ‖ P (c)U1 |ψ2 〉 ‖2.
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Decision-making behavior is studied in many very different fields, from medicine and eco-
nomics to psychology and neuroscience, with major contributions from mathematics and
statistics, computer science, AI, and other technical disciplines. However the conceptual-
ization of what decision-making is and methods for studying it vary greatly and this has
resulted in fragmentation of the field. A theory that can accommodate various perspectives
may facilitate interdisciplinary working.We present such a theory in which decision-making
is articulated as a set of canonical functions that are sufficiently general to accommodate
diverse viewpoints, yet sufficiently precise that they can be instantiated in different ways for
specific theoretical or practical purposes.The canons cover the whole decision cycle, from
the framing of a decision based on the goals, beliefs, and background knowledge of the
decision-maker to the formulation of decision options, establishing preferences over them,
and making commitments. Commitments can lead to the initiation of new decisions and
any step in the cycle can incorporate reasoning about previous decisions and the rationales
for them, and lead to revising or abandoning existing commitments. The theory situates
decision-making with respect to other high-level cognitive capabilities like problem solving,
planning, and collaborative decision-making. The canonical approach is assessed in three
domains: cognitive and neuropsychology, artificial intelligence, and decision engineering.
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INTRODUCTION
The ability to respond flexibly to changing circumstances is funda-
mental to adaptive behavior in humans and other animals, and to
artificial systems such as autonomous software agents and robots.
Decision-making is a major source of theoretical questions (e.g.,
in economics, cognitive and social psychology, computer science,
and AI) and practical challenges (e.g., in business, politics and
conflict management, investments and insurance, voter and con-
sumer behavior, law, and medicine). This vast range of interests
has unfortunately led to great divergence of research methodolo-
gies (e.g., empirical observation, mathematical analysis, compu-
tational modeling, philosophical discourse) and fragmentation
of decision research. There have of course been major attempts
to develop domain independent perspectives, such as normative
frameworks (e.g., Bayesian and expected utility models; game
theory), behavioral decision models (e.g., heuristics and biases
and prospect theory), and information processing approaches
(e.g., neural networks and cognitive architectures). However, these
attempts tend to take place from the viewpoint of one community
and opportunities for sharing insights and theoretical unification
are missed.

We offer a unified view of decision-making which addresses the
following questions.

1. How can we understand the dynamic lifecycle of decision-
making: from the situations and events that make a decision

necessary to the influence of prior knowledge, beliefs, and goals
which determine how a decision will be framed, preferences
arrived at, and commitments to actions made (Fox and Das,
2000)?

2. What are the general functions that underpin and constrain
the processes that implement such a lifecycle for any kind of
cognitive agent, whether the agent is natural or artificial?

3. How does decision-making, conceived in this very general way,
fit within cognitive science’s strategic objective of a unified
theory of cognition that can cut across psychology, computer
science, AI, and neuroscience (e.g., Newell, 1990; Anderson,
2007; Shallice and Cooper, 2011)?

4. How can we apply this understanding to decision engineering,
drawing on insights into how decisions are and/or ought to
be made to inform the design of autonomous cognitive agents
and decision support systems (e.g., Fox et al., 2003; Fox et al.,
2010)?

The goal of a unified theory is ambitious, some will say hubris-
tically so. However despite the long-term objective of unification
the objective of this paper is more modest: to establish a frame-
work and a language which can facilitate discussion between
decision researchers in different communities, from theorists with
distinct but complementary perspectives to practitioners such
as doctors, engineers, and managers who wish to improve their
decision-making.
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We begin with a brief overview of classical approaches to deci-
sion theory, which we contrast with theories of dynamic decision-
making (DDM). We then introduce some perspectives on DDM
which we believe have been neglected. This paves the way for the
introduction of the canonical framework, in which we seek to
understand DDM in terms of a number of key capabilities which,
we assert, a cognitive agent must have. These canons are abstracted
from field-specific details; we acknowledge there are countless pos-
sible implementations and interpretations of the canons. In the
final section we assess the canonical theory in three restricted set-
tings: cognitive neuropsychology; artificial intelligence; and the
design of practical decision support systems.

TRADITIONAL METHODOLOGIES AND THEORIES IN THE
DECISION SCIENCES
Decision-making may be defined in very general terms as a process
or set of processes that results in the selection of one item from
a number of possible alternatives. Within this general definition,
processes might be natural and conscious, as in deliberate choice
amongst alternatives, but also unconscious (as in selecting the grip
to use when grasping an object) or artificial (as in an expert system
offering decision support). Moreover, decisions can be about what
to do (action), but also about what to believe (opinion). We will
later extend this definition to cover DDM, but for now it is suffi-
cient to summarize three classical perspectives that are common
in decision research.

PRESCRIPTIVE THEORIES OF RATIONAL CHOICE
Prescriptive decision theories have emerged from mathematics
and mathematical economics where rational choice is taken to
be central to understanding economic behavior and managing
economic systems efficiently. The methodology focuses on estab-
lishing rational axioms for making decisions under uncertainty
and consequences for systems of trade and commerce against
defined valuations. The axioms typically express mathematical
constraints which, if violated, can lead a decision-maker into sub-
optimal choices. Such prescriptive theories tend to be agnostic
about the processes or algorithms that might implement or oper-
ationalize the mathematical constraints. Despite their theoretical
importance the application of classical prescriptive decision mod-
els suffers from the practical problem that it is often difficult
to estimate the quantitative parameters that they require (e.g.,
probabilities, utilities). Although they have informed research on
human decision processes they provide limited insight into them
and ignore key theoretical problems in DDM.

DESCRIPTIVE THEORIES OF NATURAL DECISION-MAKING
The goals of psychology are to explain human behavior and pre-
dict performance, irrespective of how performance compares with
rational norms. Early psychological models of decision-making
were influenced by rationalist theories as sources of theoreti-
cal concepts and normative standards against which to assess
human decision-making, but there has been a trend away from
this in recent decades. For example Simon’s (1957) concept of
“bounded rationality” emphasized human limited information
processing capacity and strategies for accommodating this (e.g.,
satisficing). Kahneman and Tversky’s heuristics and biases pro-
gram also sought a more realistic account of cognitive processes

in decision-making (Tversky and Kahneman, 1974) and Kahne-
man and Tversky (1979) developed a better description of how
people evaluate potential losses and gains compared to mathemati-
cally prescribed norms. More recently Gigerenzer and Todd (2000)
argue for the practical importance of simple heuristic strategies for
fast decision-making.

DESIGN FRAMEWORKS FOR DECISION ENGINEERING
In contrast to the above perspectives, designers of decision sup-
port systems and other decision-making software view decision
processes and applications in a way that is analogous to designing
objects like bridges and buildings. Decision engineers therefore
tend to be interdisciplinary in their approach, exploiting math-
ematical and normative theories, or being inspired by human
decision-making as inartificial neural networks and “expert sys-
tems,” or adopting a pragmatic mix of both. Decision engineers’
primary concerns are with achieving specific objectives and they
may adopt any methods that are effective in achieving this goal.
Despite considerable practical success decision engineering risks
use of ad hoc rather than principled design theories and, as a
consequence, there can be considerable uncertainty about the
performance of decision systems in practice.

DYNAMIC DECISION-MAKING
In all the above perspectives decision-making is typically viewed as
a choice between a set of predefined options. This is unsatisfactory
because a decision typically arises within a wider context, in which
it is necessary to recognize when a situation or event requires a
decision, determine the set of options, establish criteria for deter-
mining preferences, resolve conflicts, and so on. This is the focus
of DDM.

Edwards (1962) characterized DDM in terms of the following
features: (1) a series of decisions is required to achieve a goal; (2)
decisions are not independent (decisions are constrained by earlier
decisions); (3) the state of the problem changes,with changes in the
environment, or as a consequence of the decision-maker’s actions,
and (4) decisions are made in real time. DDM is fundamental in
practical domains, such as fire fighting, factory production, clinical
decision-making, air traffic control, military command, and con-
trol, emergency management. In this section we briefly overview
a few attempts to address the complexity of DDM.

NATURALISTIC DECISION MODELS
Writing for practitioners Drummond (1991) provides a “synoptic
model” of a full decision cycle as follows:

1. Identify problem
2. Clarify and prioritize goals
3. Generate options
4. Evaluate options
5. Compare predicted consequences of each option with goals
6. Choose option with consequences most closely matching goals

She also identifies features of practical decision-making that are
not so much to do with the dynamics of choice but are significant
for a general account of decision-making, including Individual
differences; collaboration, and joint decision-making; multiple
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criteria and conflicting goals, and “problems within problems”
(any step in a decision process can unexpectedly turn into a new
problem as complex as the original one).

Klein’s (2008) Naturalistic Decision-Making program seeks to
understand how people make decisions in the real world and how
they perform tasks in demanding situations. Important real world
challenges include vagueness of goals, high stakes, significant lev-
els of uncertainty about what is the case or what the consequences
of actions might be, time pressure, team and organizational con-
straints, changing circumstances,and limited knowledge and expe-
rience. From extensive studies of experts such as fire fighters, he
concluded that “by 1989, it was fairly clear how people didn’t make
decisions. They didn’t generate alternative options and compare
them on the same set of evaluation dimensions. They did not
generate probability and utility estimates for different courses of
action” (2008, p. 456). Klein wants to go beyond the simple choice
paradigm of classical decision theory to ask how people main-
tain situational awareness, make sense of events, formulate goals,
and construct plans to achieve them.

Brehmer (1992) also advocates a naturalistic approach, adopt-
ing computer simulations of real world situations such as fighting
a forest fire as a research platform. Here it is possible to investigate
features of human performance like the development and use of
decision strategies, the importance of feedback, and how people
learn to control complex and evolving situations, which find lit-
tle place in classical decision theory or laboratory experiments.
Since the contingencies of the simulation are under complete pro-
gram control even complex decision-making can be studied in a
systematic way.

In a well known discussion of human expertise Shanteau (1987)
observed that expert decision-makers have many capabilities that
cannot be accounted for with traditional theories. They know what
to attend to in busy environments, what is relevant to decisions,
and when to make exceptions to general rules, adapt to changing
task conditions, and find novel solutions to problems. They also
know a lot about what they know and can articulate the rationale
for their decisions in terms of the relevant evidence and facts that
support different options.

A general theory of DDM must address such capabilities,
whether the focus is rational choice, human cognition, or engi-
neering.

COGNITIVE ARCHITECTURES
As early as the 1950s Newell and Simon were exploring the value of
computational concepts in understanding human cognition (e.g.,
Newell et al., 1958) which evolved into rule-based models (Newell
and Simon, 1972) and finally the Soar project (Laird et al., 1987).
Soar is relevant here because it was developed as a model of general
intelligence that subsumed decision-making as a key component,
and was seen as offering a unifying view of human and artificial
intelligence1.

1Soar was the first computationally well-specified cognitive architecture (see Newell,
1990). While Soar continues to be developed (e.g., Laird, 2012), discussions of cogni-
tive architecture are now generally dominated by Anderson’s (2007) ACT-R theory.
Our focus on Soar is based on Soar’s decision process and what Newell (1990)
referred to as the Problem Space Computational Model (cf. Figure 2). This provides

FIGURE 1 |The Soar information processing architecture.

The Soar architecture (Figure 1) showed how a relatively sim-
ple information processing mechanism could carry out a wide
range of cognitive tasks. It extended Newell and Simon’s estab-
lished production rule approach by introducing some capabilities
that a general theory of DDM needs to address, including dynamic
generation of task goals, selection, and application of knowledge
(rules) from long-term memory, and executing general prob-
lem solving strategies when no specific rules are available. In the
latter case Soar “chunks” a new rule from the problem solving
trace and adds it to long-term memory for use in future similar
circumstances (Laird et al., 1987; Newell, 1990).

A central mechanism of the Soar architecture is a cyclical deci-
sion procedure (Figure 2). This reacts to and interprets new data
(“elaboration”) and makes a decision by comparing alternative
cognitive operations based on the interpretation, selecting one and
then applying it, resulting in a change in the state of short-term
memory. This leads to a new cycle of processing.

Soar has been extensively used for modeling human perfor-
mance on complex tasks and for designing and implementing
expert systems, and is the foundation of Newell’s (1990).

Our own work has also focused on computational architectures
for modeling DDM (Fox, 1980; Cooper et al., 2003) and high-level
cognition using systematic methods and tools (Cooper and Fox,
1998; Cooper et al., 2002). We have compared several cognitive
processing models, including: rule-based models; Bayesian infer-
ence and connectionist classifiers and heuristic architectures. The
models were successful in that we were able to simulate behav-
ior on complex decision tasks in some detail but firm theoretical
conclusions have proved elusive, because:

1. Seemingly distinct theoretical accounts have comparable abil-
ities to simulate observed behavior at similar levels of detail
because, we believe, many competing theories have compa-
rable descriptive and explanatory power. They may in fact
be indistinguishable in principle. Debating which particular
class of theory best describes human decision-making may be
unproductive.

an intermediate level at which behavior may be described. This level of analysis is
not considered within ACT-R.

www.frontiersin.org April 2013 | Volume 4 | Article 150 | 243

http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive


Fox et al. A canonical theory of dynamic decision-making

FIGURE 2 |The Soar dynamic decision cycle.

2. There was frequently more variance in individual subjects’
behavior than between the models. Even if there is a fixed
decision-making mechanism (a la Soar) a decision-maker’s
knowledge and what is learned on task are at least as impor-
tant in explaining performance data. What a decision-maker
“knows” will often have a greater impact on performance than
any hypothetical rule-based, connectionist, Bayesian or other
mechanism (cf. Newell, 1981).

ARTIFICIAL INTELLIGENCE AND AUTONOMOUS AGENTS
AI researchers have sought to design mechanisms for control-
ling robots and other automata in many DDM tasks, including
situation monitoring and assessment, problem solving, schedul-
ing, and planning through to cognitive vision and natural lan-
guage understanding systems. Since the late 1980s there has been
particular interest in the concept of autonomous agents, and in
multi-agent systems in which agents cooperate to achieve shared
goals.

In AI an autonomous agent is an entity (usually software)
that inhabits some sort of environment and can react to situ-
ations and events and behave purposefully to achieve its goals.
The environment may be physical (e.g., the agent is a robot or
autonomous vehicle) or virtual (e.g., a simulation or the world
wide web). Table 1 summarizes the main capabilities that agent
theorists have sought to automate, under three headings: inter-
action with the environment, cognitive capabilities, and cognitive
control.

A few features of this table deserve comment. First, decision-
making is an important cognitive function, but it is only one
of a network of interrelated capabilities; reasoning; and prob-
lem solving can contribute to decision-making (in formulating
decision options for example) while decision-making can con-
tribute to problem solving and planning by assessing and selecting
alternative problem solving strategies, plans, etc. Learning, in con-
trast, cuts across these capabilities in that any solution to a prob-
lem, plan or decision-making strategy that successfully achieves
a goal may be worth remembering for future reuse. Second,
autonomous decision-making can have multiple control regimes.
Problem solving, planning, and even decision-making itself can be
viewed as deliberative in that an agent reflects on its circumstances
and goals to assemble one or more possible solutions to achieving
its goals. On the other hand if the agent has learned from previous
cases then it can operate reactively by retrieving candidate solu-
tions from its knowledge base and making a decision by comparing
the relative merits of the options.

A prominent computational theory of autonomous agent con-
trol and behavior draws on ideas from philosophy, psychology, and
computer science in formalizing the concept of an agent. Following

Table 1 | Capabilities that are typical of agent systems described in the

AI literature (Fox et al., 2003).

INTERACTIONS WITH ENVIRONMENT

Perception Observing and monitoring situations and events in

the environment

Action Executing actions that change or control the

environment

Communication Employing perception and action to interact with

other agents

COGNITIVE CAPABILITIES

Reasoning Making inferences on the basis of environmental

data, beliefs, goals, knowledge, etc.

Problem solving Searching for explanations of observations, plans

which will achieve goals etc.

Decision-making Choosing between alternative hypotheses or

actions

Scheduling Sequencing actions and plans flexibly in response

to circumstances

Planning Constructing a set or sequence of actions to

achieve a goal

Learning Remembering solutions to newly encountered

problems for future reuse

CONTROL CAPABILITIES

Reactive behavior Responding to situations and events in real time

Deliberative behavior The application of cognitive capabilities in a

purposive, coordinated way

Autonomy Making plans, taking decisions, etc. without

external programing or supervision

Bratman (1987) an agent is said to have mental states such as beliefs,
desires, and intentions (Table 2). Such “BDI agents” have proved
to be a practical basis for designing software agents (e.g., Rao and
Georgeff, 1995). There are now many examples of agents which
monitor their environments and maintain beliefs about them; gen-
erate goals (desires) with respect to the environment state, and if
these are not consistent with their beliefs adopt plans (intentions)
which will bring the environment into line with these goals.

Knowledge, beliefs, desires, and intentions are often held to be
mere “folk psychology,” of little scientific interest (e.g., Church-
land, 1981). The fact that it has been possible to develop a formal
interpretation of these and other cognitive states (e.g., Cohen
and Levesque, 1990) and that they can be used to ground the
design of practical software agents, suggests that such notions may
have more theoretical power for understanding cognitive systems
than is sometimes claimed. In the next section we discuss how
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Table 2 | Some of the mental/cognitive states that have been studied

in AI.

COGNITIVE STATES

Beliefs Specific information which an agent holds to be true at a

particular moment in time

Desires Specific goals which are currently influencing an agent’s

behavior

Intentions Specific commitments to actions or plans which an agent

has decided to carry out

Knowledge General theories, rules, functions etc as distinct from

situation-specific beliefs, desires, and intentions

they theories of mental states can illuminate our understanding
of DDM.

MENTAL STATES AND DYNAMIC DECISION-MAKING
Like Klein, Shanteau, Brehmer, and others our wish to understand
high-level cognition has taken us out of the laboratory and into a
world where decision-making is complex and indeed so difficult
that even experienced practitioners, clinicians, make significant,
and perhaps frequent errors2. We have studied decision-making in
many routine medical settings including risk assessment; selection
of tests and investigations; diagnosing the causes of a complaint;
choosing treatments and prescribing drugs; implementing treat-
ment plans; and team-based decision-making. This has led to
a general framework for understanding clinical expertise and
designing decision support tools that draws on some of the ideas
discussed above. The “domino” model in Figure 3 is a computa-
tional architecture in which cognitive states provide an expressive
and productive basis for describing cognitive processes throughout
the decision cycle.

Each node of the domino represents a cognitive state of a par-
ticular type and each arrow represents a process for updating these
states: beliefs can lead to new goals; goals to options for decision-
making, and options can lead to commitments (about what to
believe or what to do) with an associated rationale. We first explain
the model by means of a simple medical scenario and then outline
how the processes that generate the states can be computationally
realized.

“Joan Smith has been rapidly losing weight, and there is no
obvious reason for this.” In a clinical setting this scenario
would typically lead to intentions to decide the cause of
the weight loss and, if necessary, decide on the best action.
There are several possible physical or psychological causes,
and hence multiple hypotheses for explaining the patient’s
complaint. Once the diagnostic options have been identified
a decision-maker can determine what additional information
to obtain (by asking questions, ordering investigations, etc.),
and construct arguments for and against competing hypothe-
ses based on the results. In due course the decision-maker can

2The Institute of Medicine’s famous report To err is human (Kohn et al., 2000) put
patient safety at the top of the international health care agenda in 1999 and its
ramifications are still being felt.

FIGURE 3 |The domino agent framework, an enhanced BDI agent
model.

commit to a belief about the most convincing cause of the
clinical problem.

Suppose the decision-maker accepts a diagnosis of gas-
tric ulcer. This leads to a new goal: decide the best treatment
for the ulcer. Knowledge of gastrointestinal disease suggests
a range of treatment options, and arguments can be con-
structed for and against the alternatives based on efficacy,
side-effects, costs, drug interactions, and so on. A decision
about the most preferred treatment plan is based on an assess-
ment of all the arguments. The preferred treatment may be
simple, like prescribing a drug, or a complex care plan of
many steps. Plan steps may lead to new observations, leading
in turn to new goals and changes to the plan, and sometimes
reversal of earlier decisions.

MODELING WHAT A DECISION-MAKER KNOWS
Work in AI and cognitive modeling shows that an important chal-
lenge for decision theory concerns the representation and use of
knowledge. Newell (1981) proposed that cognitive systems must
be characterized at what he termed the knowledge level as well as the
information processing level. This must describe the organization
and semantics of knowledge, which enable and constrain cogni-
tive processing. Since Newell’s paper there has been a great deal
of work on modeling knowledge as frames and other knowledge
representation techniques developed in AI, the roots of which are
in the semantic networks and memory models developed in cog-
nitive psychology, and more recently formalized as ontologies. We
now give a brief overview of how ontological concepts are being
used in computer science and AI to represent knowledge; this is
informal and simplified presentation of technical work in this area
but is a necessary foundation for the rest of the paper.

An ontology can be thought of as a hierarchy of knowledge
structures, in which each level of the hierarchy introduces a spe-
cific type of semantic information (Figure 4). For example the
string “SCTID397825006” is a code for the medical term “gastric
ulcer” in the SNOMED CT clinical coding system (Stearns et al.,
2001). The code itself does not have any meaning; it is just a string
of characters. A first level of meaning can be provided by an onto-
logical assignment, linking the term “gastric ulcer” to a node in a
concept network (as in “gastric ulcer” is a kind of “peptic ulcer”).
This links the concept to more general categories through fur-
ther assignments: “peptic ulcer” is a kind of “disease,”“disease” is a
kind of “abnormal state,” and so on. The class structure facilitates
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FIGURE 4 |The “ontological ladder,” which formalizes knowledge as a
hierarchy of increasingly complex and semantically rich conceptual
structures.

an important form of reasoning called inheritance; the concept
“gastric ulcer” can inherit properties from its super-class “peptic
ulcer” and from the even more general class “disease” (e.g., every
disease class and disease instance such as Joan Smith’s gastric ulcer
inherits the property has_symptoms). Concepts are indicated here
using quotes, and properties and relationships using italics.

Concepts can participate in other relations as well as is a kind
of relations, such as causal relations (e.g., “gastric ulcer” causes
“hematemesis”). If a patient has a gastric ulcer we may look
for symptoms which are specifically caused by this disease (e.g.,
“hematemesis”) and, by inheritance, symptoms caused by more
general kinds of peptic ulcer (e.g., “pain after meals”).

The concept “disease” is also semantically linked to other broad
concepts, such as “treatments” which may be linked to diseases
through relations like controls, eradicates, and so forth. Treatments
also have subclasses in the ontology (such as “drugs,” “surgical
treatments”) which have class-specific properties (e.g., side-effects,
method of administration) as well as properties inherited from the
general class (e.g., effective for, cost of).

Descriptions can be combined (e.g., “indigestion” is “present”
and “patient” is “elderly”) and can participate in more complex
structures like rules, as in

“indigestion” is “present” implies “possible diagnosis” is “pep-
tic ulcer” “indigestion” is “present” and “patient” is “elderly”
implies “possible diagnosis” is “gastric ulcer”

Finally descriptions and rules can be condensed into models.
Two important kinds of model that are common in medicine are
the Scenario and the Task which are the foci of much clinical
discussion and decision-making. For example:

Scenario: “middle aged, overweight, male with hypertension
not controlled by first-line therapy” Task: “eradicate tumor
with surgery followed by 3 courses of adjuvant chemotherapy
and annual follow-up for 3 yrs”

Models can participate in further ontological elaboration, forming
elements of descriptions, rules, and higher-order models.

Ontologies are a major topic of research in knowledge rep-
resentation, and currently offer the most sophisticated theoret-
ical framework for understanding and applying knowledge in
decision-making and other cognitive tasks.

A CANONICAL THEORY OF DYNAMIC DECISION PROCESSES
The domino model was devised as an integrated theory of rea-
soning, decision-making, planning, and other capabilities that an
autonomous agent may possess. In previous work we have inter-
preted each arrow in the model formally, as a specialized logic with
a distinct set of non-classical axioms and inference rules (Das et al.,
1997; Fox and Das, 2000). Although the model has been success-
fully used in many clinical applications it is clear that the functions
modeled by the domino scheme could be understood in many
other ways, and that different research communities would likely
adopt different interpretations. Our aim here is to re-describe the
framework in a more general way in which the arrows are viewed
as canonical functions that can be instantiated in different ways
to suit the purposes of different disciplines and traditions. Each
function is first summarized informally, and then presented using
a notational device called a signature. Signatures are commonly
used to describe properties of computer programs in terms of their
input-output constraints without specifying the internal details of
how the function is to be implemented (e.g., Spivey, 1989)3. The
level of abstraction provided by such signatures corresponds to a
first approximation to a formal characterization of Marr’s com-
putational level (Marr, 1982), specifying what is computed by the
underlying process without specifying how it is computed (i.e.,
without specifying the algorithm that achieves the computation
or the representations over which the algorithm operates).

CANON 1: BELIEF MAINTENANCE
Any agent (natural or artificial) should maintain a consistent set of
beliefs and expectations with respect to its current circumstances,
updating these as its environment is observed to change.

Belief maintenance is fundamental to practical decision-
making and is fundamental to all the decision models discussed
here4. Beliefs need to be revised in the light of new observations,

3We make two important caveats. First, we have adopted a particular vocabulary
of cognitive states, such as “belief,” “goal,” “argument,” “plan” etc. These terms are
common parlance, but are often also used with a technical interpretation that differs
from community to community. It would in fact be preferable to avoid these over-
loaded terms (perhaps calling the different types of state “beta,” “gamma” “alpha,”
“pi,” or some such) but we will persist with this more familiar terminology to make
the presentation easier to understand. Readers should, however, be wary of inter-
preting the terms colloquially and keep the canonical meaning in mind. Second, we
have adopted a language which distinguishes between different types of information
(beliefs, ontologies, goals, etc.) in order to specify the canonical functions that we
believe a decision-maker of the sophistication of a human agent needs to implement,
but this does not imply that the internal implementation of the function must be
symbolic or propositional. Moreover, use of a notation for cognitive states should
not be taken to imply that we are speaking exclusively about agents that have explicit
mental states. The use of signatures is agnostic about any underlying implementa-
tion provided that implementation is consistent with the constraints defined by the
signatures.
4At the informal end of our field of interest are the humanities, subsuming phi-
losophy and literature, social commentary and political theory, and so on. Even
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new beliefs, or new knowledge. There are countless propos-
als for how belief maintenance can/should be implemented;
well known ones include probabilistic updating; fuzzy infer-
ence; classical deduction (propositional and predicate calculus),
and non-classical logics (e.g., modal, abductive, inductive, and
non-monotonic logics).

Equation S1 is a general signature subsuming many kinds of
belief maintenance. It expresses the idea that an agent arrives at and
maintains its beliefs by applying general background knowledge
(an ontology) to specific situation data.

Observation × Ontology

Belief BM

Belief × Ontology

Belief BM
(S1)

Signatures are read as follows: a cognitive state of the type below
the line (here a Belief) is functionally dependent on the cognitive
state above the line under some set of axioms or algorithms BM.
The× operator may be understood declaratively (“together with”)
or procedurally (“applied to”) whichever is more intuitive. Note
that the second variant of the signature is recursive, so beliefs can
propagate forward if the ontology warrants this.

CANON 2: RAISING GOALS
An agent needs to ensure continuity of its intentions and actions
over time, mediated by the concept of a goal state.

A goal is a cognitive state that serves to coordinate an agent’s
behavior even though circumstances may change and its decisions
and plans need to be updated. Cognate concepts of goal include
“desire” (as in intentional philosophy and in BDI theory); “drive”
and “motivation” from classical psychology; “utility” from deci-
sion theory,“criteria” in multi-criteria decision models, and so on.
The relationships between these terms are linguistically trouble-
some, but the concept has led to countless technical proposals in
AI for representing and interpreting goal states in robots, plan-
ners, and other systems. The following signatures summarize the
canon.

Belief × Ontology

Goal G

Goal × Ontology

Goal G
(S2)

As before a cognitive state of the type below the line (here a
Goal) is dependent on the agent’s knowledge and current cogni-
tive state. In the first of the two signatures the state that leads to a
goal may be a specific scenario such as patient presents with severe
and chronic pain leading to two goals: decide the most plausible
cause and decide the most preferred treatment. The second signa-
ture covers a case common in AI planning: goals lead to sub-goals.
The goal put out the fire may entail sub-goals to decide how to

here some notion of belief maintenance is needed, though these areas are primarily
served only by everyday language rather than technical frameworks. In fact natural
languages are of course hugely expressive tools, and articulate many distinctions and
subtle nuances around the idea of belief such as possibility, plausibility, conviction,
assumption, expectation, suspicion, and doubt. It can be argued that such concepts
also deserve a place in any discussion of decision-making (e.g., Fox, 2011) and deal
fundamentally with the concept of belief maintenance as well. Such attitudes are
frequently treated as merely part of our folk psychology and theoretically uninter-
esting. In our view they capture real distinctions which are important in all practical
thinking and social interaction.

get to the fire, the strategy of attack, the equipment needed and so
forth, any of which may lead to further sub-goals.

The next four canons are core capabilities in goal-based
decision-making.

CANON 3: GENERATE OPTIONS
An agent should apply specific knowledge of previously effective
solutions when it can and use general knowledge to solve problems
when specific knowledge is not available.

An agent may be able to identify multiple possible solutions so
we refer to these as “candidates” in subsequent signatures, using
the term to subsume other common terms like “decision option,”
“problem solution,” etc.

Goal × Belief × Ontology

Candidate C
(S3)

Signature Eq. S3 abstracts across “strong” problem solving
methods, which draw on specific domain knowledge, and domain-
general but “weak” methods like means-ends analysis and con-
straint solving (Laird et al., 1987). It also includes intermediate
methods, such as heuristic classification, which maps between
ontologies, as in symptom→ diseases and diseases→ treatments
(Clancey, 1985) and explanation-based decision-making that
depends upon building causal models for choosing between
actions (Pennington and Hastie, 1993).

CANON 4: CONSTRUCT REASONS
An agent should consider as many relevant lines of reasoning as is
practical when establishing preferences over competing decision
options.

There may be an indefinite number of reasons for accepting
a hypothesis or selecting an action to achieve a goal. Reasons
to believe in or to doubt hypotheses can be based on statistical
evidence or logical justifications; reasons for choosing between
alternative actions can be based on qualitative preferences or
quantitative values. The following signature subsumes a range of
strategies for constructing reasons for alternative options.

Candidate × Goal × Belief × Ontology

Candidate × Reason R
(S4)

As Shanteau (1987) observed decision-making expertise is not
only characterized by making good choices but also by meta-
cognitive abilities like the ability to articulate the rationale for
decisions. The signature provides for this meta-cognitive capa-
bility by making explicit the reasons for and against competing
candidates.

CANON 5: AGGREGATE REASONS
When problem solving yields multiple candidate solutions an
agent must establish an overall preference, taking account of all
the reasons for each of the options.

Probabilistic updating is widely held to be the normatively cor-
rect way of establishing confidence in competing hypotheses, as
is the expected utility extension for deciding about preferences
over candidate actions. In many settings, however, it is impracti-
cal to estimate prior and conditional probabilities objectively, or
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to model costs and benefits on a single dimension. Simpler func-
tions for determining overall preferences are helpful here, such
as the Bentham rule (add up the reasons pro and reasons con and
take the difference)5, or the equations of diffusion models (Ratcliff
and McKoon, 2008). However there are many other aggregation
functions which will deliver a preference ordering over the set of
decision candidates. The signature below subsumes many specific
functions that can establish the overall “merit” of a candidate.

Goal × Candidate × Reason

Candidate × Merit Agg
(S5)

One might assume that Merit must be a quantity, and aggre-
gation a numerical algorithm. This is not necessarily the case.
For example, we can describe preferences based on purely ordi-
nal relations (A is preferred to B) and the preference determined
on entirely logical grounds. Suppose, for example, that we have a
reason R1 for preferring A, and a reason R2 for preferring B, but
we also have some reason R3 which brings the veracity of R1 into
doubt. All other things being equal we would prefer B to A. Infor-
mal preference rules, expected utility functions, argumentation
systems and multi-criteria decision models are subsumed under
this general signature.

CANON 6: COMMITMENT
If an agent can determine that its most preferred option will
not change with further information then it should commit to
that option. If there is missing information that, if known, would
change the preference but the cost of acquiring that information
is greater than the cost of taking the wrong decision then the agent
can still be certain that its preference order will not change and a
commitment can be made.

This canon of decision-making can be summarized by the fol-
lowing two variant signatures, covering the cases of accepting a
belief (committing to one of a number of competing hypotheses)
and adopting a plan.

Candidate × Merit × Ontology

Belief Accept

Goal × Candidate × Merit × Ontology

Goal × Plan Adopt
(S6)

Whether a belief is acceptable or not is independent of the
agent’s goals but the commitment to a plan is intimately bound
up with the agent’s (prior) goals. The Goal is also retained below
the line to indicate that the commitment only holds as long as the
goal is extant.

The remaining set of signatures cover capabilities which may
form part of a wider theory of cognitive systems, but are less rel-
evant to the decision-making focus of the discussion and so are
dealt with more briefly.

CANON 7: PLAN ENACTMENT
If an agent is committed to a plan that is necessary to achieve
one or more of its goals, then enactment of the plan should be
optimized with respect to the agent’s priorities and preferences.

5technically a linear function with equal weights

Enacting a plan can be a simple sequential execution of the
plan’s component steps, or involve flexible scheduling of the
steps to accommodate changing circumstances. Enactment can
be recursive, as execution of a step in the plan leads to new goals,
which may require the current plan to be repaired, radically recon-
structed, or abandoned. In all cases the effect of enactment is to
update the current plan.

Goal × Belief × Plan × Ontology

Goal × Plan Enact
(S7)

CANON 8: ACTION
An action is defined as a plan step that cannot be decomposed
into smaller elements. If the preconditions of a planned action are
satisfied then it may be executed without further decision-making.

Plan × Precondition

Action Execute
(S8)

Preconditions include logical preconditions (e.g., a situation
holds) and material preconditions (e.g., a physical resource is
available).

CANON 9: MONITORING
An agent should monitor the environment for important changes
that may impact its goals and commitments and update its beliefs
when necessary.

Goal × Observation × Ontology

Belief Mon
(S9)

This can be viewed as a variant of the basic belief maintenance
signature Eq. S1. If monitoring reveals that the preconditions of an
intended action have ceased to hold (due to independent environ-
mental changes or the effects of the agent’s actions for example)
these actions should be postponed or discarded. If the new sit-
uation invalidates a past decision the agent should reconsider its
options.

CANON 10: LEARNING
An agent should update its knowledge as a result of experience.

There are many learning mechanisms, including associationist
and statistical models in machine learning and cognitive neuro-
science; case-based learning and rule induction in AI; reinforce-
ment learning and “chunking” in cognitive psychology. Equa-
tion S10 represents learning as a generic process that updates its
ontology by acquiring new scenario and task models.

Belief × Ontology

Scenario CL

Goal × Belief × Ontology

Task IL
(S10)

These signatures are only a starting point for describing learn-
ing in decision-making tasks; learning is a neglected topic in
normative theory and behavioral studies of decision-making and
we see this as a major challenge for general theories of DDM.

The 10 canons are offered as a first draft of a general frame-
work for describing and discussing cognitive agents that can take
decisions in the presence of uncertainty in dynamically changing
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situations. We do not claim that the set is complete (we are sure it
isn’t) or that individual signatures cannot be improved (we know
they can). At this point, however, we offer them as a basis for estab-
lishing an intuitive lingua franca for interdisciplinary discussions
of decision-making theories, systems, and applications.

ASSESSING THE CANONICAL THEORY
In this section we consider the adequacy of the framework in three
representative applications: (1) understanding the gross structure
of the human cognitive architecture; (2) collaborative decision-
making by autonomous agents, and (3) designing decision support
systems.

ASSESSMENT 1: DYNAMIC DECISION-MAKING AND THE HUMAN
COGNITIVE ARCHITECTURE
The canons discussed above are too general to make specific pre-
dictions about the detailed cognitive processes involved in human
decision-making. They cannot therefore be seen as a theory of
human decision-making as the lack of detail means they are not fal-
sifiable in the Popperian sense (but see Lakatos, 1970; Cooper et al.,
1996; Cooper, 2007). Our aims here are to show that the canons
are nevertheless consistent with at least one large scale theory of
the organization of cognitive processes, and that the framework
provides a workable and useful approach to interpreting findings
from cognitive neuropsychology and neuroscience.

The Soar cognitive architecture discussed in Section “Dynamic
Decision Making” is one of several theories of the large scale orga-
nization of the human cognitive system that have been proposed
and refined over the last half century (see also ACT-R: Ander-
son, 2007). These theories typically propose a set of functional
components of the putative cognitive system, together with inter-
faces or mechanisms for interaction between those components,
with the aim being to specify a system that is capable of support-
ing all aspects of human cognitive processing. The scope of these
theories is therefore much broader than that of many theories in
cognitive psychology, which typically focus on a single domain
such as memory, attention, language comprehension, or choice.

While aspects of the canonical framework map on to processes
or mechanisms within Soar, there is also a promising mapping
onto the functional components of another cognitive architecture,
namely the Contention Scheduling/Supervisory System (CS/SS)
model of Norman and Shallice, 1986; see also Shallice and Burgess,
1996). The CS/SS model (Figure 5) has not been as well developed
computationally as other cognitive architectures such as Soar or
ACT-R. However, Glasspool (2005) proposed a mapping of the
components of the CS/SS model to the domino architecture of
Figure 3, and many of the model’s components can be understood
as performing functions that correspond to the canons.

The CS/SS model draws a basic distinction between routine
behavior (held to be controlled by learned schemas within the CS

FIGURE 5 |The Contention Scheduling/Supervisory System model of Norman and Shallice (1986), as elaborated by Shallice and Burgess (1996).
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system) and non-routine behavior (held to be controlled through
the construction and maintenance of temporary schemas by the
SS). CS operationalizes canons 7 and 8: at the lowest level it maps
plans to individual actions subject to their preconditions (Eq. S8),
but CS is hierarchical, and at higher levels (even with routine
behavior) it may map plans to sub-plans (Eq. S7).

In the initial version of the CS/SS model described by Norman
and Shallice (1986) the output of the SS – temporary schemas for
the control of behavior via CS – was specified but few details were
given of the mechanisms by which such schemas might be gen-
erated. In response to concerns that it was homuncular, Shallice
and Burgess (1996) elaborated the SS (see Figure 5), specifying
eight processes, several of which were held to operate in different
phases. Comparison of these processes with the canonical frame-
work reveals many parallels, as well as possible limitations of both
approaches.

Consider first belief maintenance (canon 1). The SS model
does not explicitly include processes related to perceptual input or
maintenance of declarative knowledge. There is thus nothing akin
to canon 1, but an elaboration of the SS would clearly require such
processes. Indeed, a more recent description of the SS model (see
Shallice and Cooper, 2011, figure 12.27) includes such processes
within Method 2 of the construction of temporary new schemas
(cf. Figure 5).

Raising goals and problem solving are addressed explicitly
within the SS model. Canon 2 is implemented via the Problem
Orientation Phase, and specifically by process 6 (Goal Setting).
Canon 3, by contrast, subsumes three routes within the SS model,
corresponding to the three methods by which temporary schemas
are generated. Temporary schemas can be related to “options” in
the domino model but in this case the CS/SS model provides an
account of decision-making that elaborates upon the canonical
framework. This should not be surprising given that the canon-
ical framework is intended as an abstraction over theories of
decision-making.

Canons 4 and 5 (constructing and aggregating reasons) are
incorporated in processes 4 and 5. In particular the Solution
Checking Phase of the SS must evaluate candidate solutions and
reject them if they have insufficient merit. However, the SS model
lacks a detailed description of how this evaluation might occur.
Canons 4 and 5 provide an abstract specification of the necessary
processes.

The output of stage 1 and input to stage 2 is a commitment to
a plan (canon 6).

Monitoring, as described by canon 9, corresponds directly to
process 2 of stage 3 of the SS model. However, within the SS model
the product of monitoring is not any belief, but a specific belief,
namely that the current schema is not achieving the intended
goal. This signals rejection of the current schema (process 3 of
Figure 5), a meta-cognitive process that triggers another round of
processing.

At least two forms of learning are supported by the CS/SS
model: accretion of episodic memories, and proceduralization of
frequently generated temporary schemas. The two variants of sig-
nature Eq. S10 are applicable, on the assumption that episodic
memories are equated with scenarios and proceduralized schemas
are equated with tasks. These assumptions are consistent with

FIGURE 6 |The Wisconsin Card SortingTest. The four target cards are
shown across the top row and four piles for sorted cards in the second row,
the third of which is currently empty. The card to-be-sorted is at bottom. If
the subject is sorting according to color or form, this card should be placed
under the third target card, but if he/she is sorting according to number
then it should be placed under the first target card.

the usage of these terms and brings to the fore the potential
value of describing a cognitive architecture within the canoni-
cal framework: it forces us to be explicit about cognitive con-
structs (schemas, episodic memories, etc.) and the relationships
between them.

EXAMPLE: THE WISCONSIN CARD SORTING TEST
We now consider the CS/SS model and assess whether details of
dynamic cognitive processing on a laboratory task might be con-
sistent with the canonical theory as well as the static cognitive
architecture. In the Wisconsin Card Sorting Test (WCST) sub-
jects sort a series of colored cards using feedback provided by the
experimenter to deduce the appropriate sorting criterion. Each
card shows one to four shapes (triangles, stars, crosses, or cir-
cles) printed in red, green, yellow, or blue. Four “target” cards
are positioned at the top of the work surface (see Figure 6). A
series of cards is then presented and the subject is required to
place each one under one of the targets, after which the exper-
imenter indicates whether the choice was correct. For example,
the experimenter might first select color as the sorting criterion,
giving positive feedback if the subject’s choice matches the color
feature, but negative feedback otherwise. A complication is that
after a series of correct choices the experimenter changes the sort-
ing criterion without warning. The subject must therefore adapt
his/her strategy throughout the task.

The WCST is not normally described as a decision-making task,
though each trial requires a decision about where to place each suc-
cessive card and the task as a whole has many features of DDM. In
the standard presentation of the task, the cards to-be-sorted are in
an ordered sequence and the first card shows one green triangle.
Behavior on the task may be described as follows6:

6This decomposition of WCST processes is based closely on a computational model
of WCST performance described by Glasspool and Cooper (2002).

Frontiers in Psychology | Cognitive Science April 2013 | Volume 4 | Article 150 | 250

http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science/archive


Fox et al. A canonical theory of dynamic decision-making

Out the outset presenting a card to the subject places the sub-
ject in a situation for which no routine behavior exists. The SS is
therefore invoked, raising the goal of sorting the card (Process 6
in Figure 5, or signatures Eqs S1 and S2 in the canonical theory).
Problem solving (Eq. S3) can take at least two forms, depending
on the subject’s strategy.

1. The first strategy simply yields four decision options corre-
sponding to the locations under the four target cards. Suppose
the to-be-sorted card shows one green diamond. A choice can
be made on three lines of reasoning: (1) place the to-be-sorted
card under target 1 because the shapes match; (2) place it under
target 1 because the numbers match; (3) place it under target
2 because colors match. Aggregating the reasons (Eq. S5) there
are now two arguments for placing the card under target 1 and
one for placing under target 2, yielding a preference for target
1 so the subject places it under card 1 (Eq. S6).

2. A more sophisticated application of Eq. S3 yields an alterna-
tive strategy. Here the different sorting rules (sort by shape,
sort by number, sort by color) can themselves be considered as
decision options, with Eq. S4 being instantiated by arguments
for/against each rule. Initially there will be no specific argu-
ments for or against any rule so adoption of a specific rule (Eq.
S5) would be random. Once a sorting rule has been selected,
a further processing cycle of processing would be required to
apply the selected sorting rule to the current card.

Are there any principled grounds for choosing between the sim-
plistic and the sophisticated approach? Within the CS/SS model
this will depend on the aspiration setting : if a specific solution is
required (as may occur on trial 1) then the simplistic approach will
suffice, but if a general solution is required (as subsequent trials
demand) then the more sophisticated approach will be necessary.

After the subject adopts a plan to place the card (Eq. S7) and exe-
cutes the placement (Eq. S8) the experimenter provides feedback.
This feedback may trigger another round of processing. Effective
use of feedback is a substantial source of individual variability on
the task. More able, “attentive” or “energized” subjects may detect
a learning opportunity (Eq. S1) and raise a goal to translate the
feedback into another strategy (Eq. S2), with the options being
the three sorting rules (Eq. S3: shape, number, or color); cycling
through Eqs S4–S6 will yield beliefs relating to the veracity of
each of these rules. In this way the canonical framework is able
to describe meta-cognition in processing feedback as well as basic
decision-making.

Processing is slightly different on the second trial because the
arguments for placing a card under a particular target will have
different merit. If feedback on the previous trial was positive (and
is correctly assimilated) arguments for sorting by the rule(s) that
matched on that trial will be stronger, while arguments for sorting
by the rule(s) that did not match will be weaker. This potentially
allows the cognitive system to be more discriminating about the
options and select the correct target card, though additional trials
and feedback cycles may be necessary to eliminate all but one
sorting rule. However, once the subject has narrowed down the
possible sorting rules to one it is possible to anticipate positive

feedback. That is, in applying Eqs S7 and S8, the subject also estab-
lishes a belief that subsequent feedback from the experimenter will
be positive. This makes monitoring (Eq. S9) a computationally
simple process: if the observed feedback differs from the expected
feedback then the subject may infer that the sorting rule applied
on the current trial is incorrect. This will count as an argument
against that sorting rule on the following trial. Failure to set up
this expectation or to take account of violations of the expectation
will result in the subject continuing to sort cards by a previously
appropriate rule in the face of continued negative feedback (i.e.,
so-called perseverative errors).

Once the correct sorting rule has been determined it is nec-
essary to maintain a record of this rule (presumably in working
memory) across trials so that it may be used to support the argu-
ment for placing each to-be-sorted card under the matching target
card. This is an instance of belief maintenance (Eq. S1), which as
discussed above is not explicitly included within the CS/SS model
of Shallice and Burgess (1996).

THE CONTENTION SCHEDULING/SUPERVISORY SYSTEM MODEL AS AN
INSTANCE OF THE CANONICAL THEORY
The CS/SS model of the human cognitive architecture is not as
well developed as some theoretical accounts of the human cog-
nitive architecture, but it is unique within cognitive psychology
in being grounded in a domain-general view of cognitive func-
tion and being supported by findings from neuropsychological
studies7. For example, with respect to the WCST, subjects occa-
sionally make “set loss” errors, where their behavior suggests that,
after correctly inferring the sorting rule (as evidenced by a run
of correctly sorted cards), they spontaneously forget the rule.
Such errors are particularly common in neurological patients with
lesions affecting the inferior medial prefrontal cortex (Stuss et al.,
2000), a region Shallice et al. (2008) associate with “attentiveness.”
Within the canonical framework, the subject’s difficulty here may
be understood as concerning a particular aspect of belief main-
tenance (Eq. S1), but one that relates to retaining existing beliefs,
rather than to deriving new beliefs, e.g., interpreting observations.

Perseverative errors, in which subjects fail to switch sorting
rules in the presence of sustained negative feedback, are com-
mon in the behavior of patients with prefrontal lesions. Stuss et al.
(2000) suggest that the perseverative errors of patients with lesions
in right dorsolateral prefrontal cortex are due to monitoring fail-
ure. However avoiding perseverative errors also involves switching
away from a previously reinforced rule, a process discussed in the
psychological literature under the rubric of “set shifting” or “task
setting“ which is frequently held to involve left dorsolateral pre-
frontal cortex. This process implements a form of Eq. S7 but the
perseverative errors of different patient groups suggests there may
be multiple underlying causes (Stuss et al., 2000), and as noted
above, failures in monitoring (Eq. S9) may also result in such
errors.

7Other cognitive architectures such as Soar (Newell, 1990) or ACT-R (Anderson,
2007) are grounded in specific areas of cognition (e.g., problem solving or asso-
ciative memory) and view cognitive processing as equivalent to the operation of a
production system.
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The functional components of the CS/SS model are supported
by a great deal of evidence from cognitive psychology, cognitive
neuropsychology, and cognitive neuroscience. Shallice (2006), for
example, reviews a number of neuropsychological studies in which
patient behavior may be interpreted as a specific impairment in
“the production of one or more procedures for attaining a goal”
(i.e., Eq. S3, the generation of candidate options). Other studies,
also reviewed by Shallice (2006), imply that processes related to
checking that on-going processing or behavior is working toward
ones current goals may also be selectively impaired (see also Shal-
lice and Cooper, 2011). Table 3 summarizes some of this evidence
relating the processes of the CS/SS model to each of the signa-
tures, drawing on further widely accepted views of the human
cognitive architecture and its function in problem solving and
decision-making.

ASSESSMENT 2: JOINT DECISION-MAKING BY AUTONOMOUS AGENTS
Understanding the foundations of autonomous operation of intel-
ligent systems in complex, unpredictable environments is at the
heart of AI. As discussed above it is a major focus of current
research on software agents (e.g., Wooldridge, 2000; Fox et al.,
2003; Poole and Mackworth, 2010). A major subfield of agent
research is on multi-agent systems, in which autonomous agents
interact to achieve common goals (Wooldridge, 2009). This field
looks at models of how tasks can be shared between collaborat-
ing but individually autonomous agents, what forms of com-
munication need to take place to achieve common objectives
(such as informing, requesting, negotiating, persuading, and joint
decision-making), and other cognitive functions.

We have carried out an initial assessment of the canonical the-
ory by means of a computer simulation of a multi-agent decision-
making task. The model has been built using the COGENT mod-
eling tool, which is used to visualize the cognitive architectures of
individual agents using an extended box-and-arrow notation, and
implemented using rule-based and logic programing techniques.
Figure 7 shows two views of an agent network in which three
agents interact with each other in order to make a simple medical
decision. They share information about a hypothetical patient with
chest pain and two of them jointly arrive at a treatment decision.
In this diagram ellipses represent various kinds of data repository
and rectangles are “compound” modules that can contain lower-
level information processing components (see Cooper and Fox,
1998; Cooper et al., 2002 for more detail). Arrows indicate flow of
information between modules.

The left panel shows a network of agents in which the three
outer rectangles represent agents which communicate with each
other through a “switchboard.” A “patient records” agent provides
information about patients with a specific medical problem (chest
pain in this simulation). Agents C and S are the main actors in
decision-making; agent C has cardiology knowledge and leads
decision-making about the treatment of each patient, and agent S
has specialist knowledge about safe drug use and can advise where
there might be doubt.

The right panel shows the internal structure of agent C, which
implements decision-making based on a version of the domino
model extended with specialized stores for data and knowledge and
processing modules which implement inter-agent communication

and learning. Agent C, for example, has a set of data repositories
which can be accessed by all processing modules: a working mem-
ory containing current cognitive states (beliefs, goals, plans etc); a
knowledge base of domain facts, rules, and functions that are com-
mon to all agents (e.g., decision schemas, communication conven-
tions), and specialist knowledge that is unique to each agent. Lastly,
there is a knowledge base which contains a record of past cases and
learned knowledge that can inform future decision-making. When
this model is in operation working memory is constantly mon-
itored by all the processing modules to determine whether any
rules are applicable and, if so, the relevant cognitive state data are
updated. These updates may lead to the conditions of other rules
becoming instantiated, either within the same module (e.g., a new
belief state propagates to further belief states) or another module
(e.g., an updated belief state leads to an updated goal state).

EXAMPLE
This illustration8 has been selected purely to illustrate the oper-
ation of the decision model and is not intended to be medically
realistic. Some operational detail is omitted for clarity.

Phase 1
Agent C receives information from the patient records agent saying
that Mrs. Smith is an elderly patient who has complained of chest
pain. From its knowledge about such problems agent C infers
the possibility of a heart attack and from this the more specific
possibility of a myocardial infarction (MI). Agent C’s knowledge
indicates the need to “manage” the MI and a goal to achieve this
is raised. Managing MI has in fact a number of aspects, including
preventing blood clotting and pain and these are raised as sub-
goals. Agent C consults its knowledge base and finds two drugs
that might satisfy these goals: clopidogrel and aspirin. Both are
effective for analgesia and prevention of blood clotting and easily
available, and aspirin is also modestly priced. These arguments are
weighed up leading to a simple conclusion that aspirin is preferred.
However MI is a dangerous condition so the decision to prescribe
aspirin is qualified as provisional, meaning that the agent will not
act on the basis of this preference but will carry out further inves-
tigation and, depending on the results of this investigation, it may
abandon the tentative decision in favor of an alternative.

Phase 2
The presence of a provisional decision triggers a rule in the goal
processing module of agent C to raise a goal to consult another
agent, S, that has specialist knowledge about the safety of drugs.
C’s problem solver then retrieves a suitable interaction plan from
its knowledge base. Communications are modeled using standard
interaction “performatives” such as “inform,” “explain,” “query,”
“request,” “instruct,” etc. Figure 8 summarizes the dialog that
follows.

Agent C first sends a request to agent S to enter into an inform
dialog, meaning that the two agents should follow a particular pro-
tocol for providing information. The request is accepted by S, so
C sends a request for confirmation that aspirin is appropriate for

8The illustration is based on an example developed by Sanjay Mogul.
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Table 3 | Some relationships between the canonical functions and selected evidence from cognitive psychology and cognitive neuroscience.

Signature Summary

S1 (belief

maintenance)

Beliefs may be supported by the environment (i.e., inferred from perceptual input) or inferred from long-term knowledge and other

beliefs. Both must be actively maintained in working memory (e.g., by rehearsal)

S2 (raising

goals)

Much behavior, with the possible exception of habitual behavior, can be understood as being purposive or goal-directed. In experimental

psychology, high-level task goals are set by the experimenter, with subjects deriving lower-level goals for individual trials. Findings from

experimental psychology and more generally indicate that goals provide local coherence of behavior

S3 (problem

solving)

A variety of problem solving strategies or heuristics may be recruited to generate solutions for a given goal. This includes so-called

“weak” methods which are general, knowledge-lean, heuristics such as hill-climbing and means-ends analysis, as well as

knowledge-rich, task-specific strategies, acquired through experience

S4 (reasons for

decisions)

Evolutionary arguments (e.g., Mercier and Sperber, 2011) suggest that argumentation is central to human decision-making. According to

this view, generating arguments for or against propositions is an essential step in persuading others

S5

(aggregation)

One neuropsychological hypothesis is that aggregation of the merit of arguments is based on somatic markers – emotionally biased

valences associated with decision options acquired through positive and negative experience (Damasio, 1994). Damasio relates the

association of somatic markers with candidates to the amygdala and ventromedial prefrontal cortex

S6

(commitment)

Commitment to a single decision candidate is required by theories such as Damasio’s somatic marker hypothesis. In the specific context

of selecting one word from a set, commitment has been related to the inferior frontal gyrus (Shallice and Cooper, 2011, Section 9.13)

S7 (plan

enactment)

Plan enactment is most closely related to the function of task setting, held by many to be a function of left lateral prefrontal cortex (e.g.,

Shallice et al., 2008)

S8 (action) The contention scheduling system provides an account of how intentions are mapped to actions, subject to available resources

S9

(monitoring)

A substantial body of evidence suggests that many cognitive processes create expectations that under normal operation are

continuously monitored. Perceptual processes may also monitor the external environment for deviations from expected perceptual

input. Shallice et al. (2008) relate monitoring to right dorsolateral prefrontal cortex, though an alternative view is that anterior cingulate

cortex compares expectations with observations, generating an error signal when there is a mismatch

S10 (learning) There are many forms of learning. One is learning to associate consequences with cognitive and motor actions. These consequences

then become expectations which are used by monitoring. A second critical form is reinforcement learning, where positive or negative

reward can increase or decrease the merit of a candidate in the context of a goal

FIGURE 7 | Multi-agent network for cooperative decision-making (left), and information processing architecture for an autonomous agent (right).
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FIGURE 8 | Sequence diagram for some of the interactions between
agent C and agent S during the joint decision-making simulation.

Mrs. Smith. S then goes through its own decision process: raising
a goal to decide on the best prevention of pain and clotting and
generating a set of treatment options for Mrs. Smith. Its special-
ist knowledge of treatments for MI indicates aspirin, clopidogrel,
and a further option: proton-pump inhibitors. S now proceeds
to construct arguments for and against all three options. During
this process it applies an argument schema that “If a treatment is
proposed and is known to exacerbate a condition, and the patient
has that condition, then this constitutes an argument against the
proposed treatment.” Agent S has domain knowledge that aspirin
exacerbates gastritis, and (after a request for information from the
patient record agent) it finds that Mrs. Smith has gastritis so this
yields an argument against prescribing aspirin. S informs C that
clopidogrel is therefore preferred.

Phase 3
Agent C raises a goal to understand the rationale for the Agent A’s
advice. One way of doing this is to “challenge” the advice in order
to elicit the reasons for the recommendation. Agent S reflects on
its rationale and provides an explanation as a set of arguments in
an inform message. This leads to Agent C adding another argu-
ment against aspirin to working memory and clopidogrel is now
the preferred option for Agent C as well.

Phase 4
As a final part of this experiment we implemented a simple learn-
ing mechanism for acquiring new knowledge which can be used
in future decisions based on a record of the whole episode. An
episodic record of the decision includes the goal that was active
and the set of beliefs that held when a decision was committed.
Another learning mode was also demonstrated by recording how
frequently particular decisions are taken in particular contexts,
which can be used to weight options in future decisions.

THE AGENT ARCHITECTURE AS AN INSTANCE OF THE CANONICAL
THEORY
The agent architecture owes much to the domino framework so
there is naturally a good mapping between this implementation
and the canonical framework (Table 4). Phase 1 traverses Eqs
S1–S6, and phase 2 traverses Eqs S2–S8. Communication is mod-
eled by means of goal-based dialogs represented as plans (Eq. S6),
and individual communication acts are instances of the action
signature Eq. S8.

The signatures specify general constraints on the inputs and
outputs of each information processing component of the agent
architecture. At this abstract level each component is a black box
and may be implemented in any number of ways: as a conventional
algorithm, a set of production rules, a logic program, in hardware,
or in some other way. In the COGENT implementation the signa-
tures are translated into eight sets of specialized production rules,
one set associated with each component.

ASSESSMENT 3: DESIGNING DECISION SYSTEMS
Our research was originally motivated by a wish to understand cog-
nitive processes that underpin human judgment and to apply this
understanding by developing a technology for designing decision-
making systems for use in dynamic, complex, and safety critical
settings (Fox and Das, 2000). Taking medicine as a concrete focus
we established three engineering requirements.

SCOPE
The technology should be able to model any type of decision,
represented by the corpus of decisions common in clinical prac-
tice (e.g., hazard detection, risk assessment, test selection, referral,
diagnosis and treatment decisions, and many others). The frame-
work should also cover the full lifecycle of decision-making from
the point where the need for a decision is established to the point
where a choice can be made. A general symbolic decision procedure9

was developed for this purpose (Fox et al., 1990; Fox and Krause,
1991; Huang et al., 1993) which later evolved into the domino
model.

REALISM
Applications must cope with the constant change and high-levels
of uncertainty typical of real world environments, where quantita-
tive decision models are impractical (e.g., due to lack of data) and
which naturalistic decision models seek to address. A key proposal
was a preference and choice model based on logical argumentation
(Fox et al., 1993; Krause et al., 1995) which has features in com-
mon with reason-based choice in cognitive psychology (e.g., Shafir
et al., 1993), formal argumentation for decision-making in AI (e.g.,
Amgoud and Prade, 2009) and theories of argumentation in social
and evolutionary psychology (e.g., Mercier and Sperber, 2011).

9“A symbolic decision procedure can be characterized as an explicit representation
of the knowledge required to define, organize and make a decision, and . . . a logi-
cal abstraction from the qualitative and quantitative knowledge that is required for
any specific application. A SDP may include a specification of when and how the
procedure is to be executed” (Fox and Krause, 1991, p. 106).
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Table 4 |The relation between the canon signatures and functions which are implemented in the multi-agent decision-making scenario.

Signature Summary

S1 (belief

maintenance)

Any rule in the agent model can make inferences by applying knowledge to the current working memory state and add, delete or

replace information in the working memory. Every item of data in working memory is tagged with the grounds for believing it (e.g., the

goal and assumptions which justify it). It uses this to maintain a consistent overall belief state

S2 (raising

goals)

Goals are a form of belief which are used to determine which knowledge and rules are potentially in play at any moment

S3 (problem

solving)

Any kind of problem solving technique can be implemented in the COGENT programing system, with the solution then added to

working memory

S4 (reasons for

decisions)

A form of argumentation based on defeasible logic is used to generate and maintain arguments for competing solutions as the working

memory belief state changes

S5

(aggregation)

In the multi-agent decision-making scenario a simple improper linear aggregation function is implemented (adding up pros and cons)

though other aggregation functions can be implemented

S6

(commitment)

The multi-agent scenario includes two kinds of commitment, provisional (reversible), and firm (irreversible)

S7 (plan

enactment)

Dialog plans are simple lists of communication actions that are executed in sequence but can be interrupted if a communication is

received from another agent

S8 (action) The main kinds of actions that are included in this demonstration are standard communication performatives from speech act theory and

agent communication languages

S9

(monitoring)

The whole domino system is a kind of “monitor” in that every computational component can respond to any update to the working

memory state at any time

S10 (learning) Two simple learning mechanisms have been implemented. These monitor the working memory and when a decision process terminates

these mechanisms (1) add rules to the agent’s episodic knowledge and (2) update frequency counters which can be used to update the

agent’s confidence in competing decision options

IMPLEMENTABILITY
The practical development of decision support services requires
an expressive implementation language for modeling and imple-
menting decisions and other tasks. The symbolic decision proce-
dure and argumentation model proved to be an effective foun-
dation for a practical decision modeling language (Das et al.,
1997; Fox and Das, 2000), the most developed version of which
is a published standard (Sutton and Fox, 2003). PROforma10

has proved to be capable of modeling a wide range of decision
processes in a way that clinicians find natural to understand and
use. It has been used to deploy many clinical applications which are
in routine use (e.g., the NHS Direct triaging service in the UK11;
support for decision-making by multidisciplinary teams, Patkar
et al., 2012).

PROforma reifies the logical processes of the domino into a task
model. It is a knowledge representation language (for modeling
expertise) and a programing language (for implementing decision
support systems and autonomous agents). A typical PROforma
model is a network of decisions, plans and other tasks which can be
enacted in a predefined sequence, or concurrently, or in response
to circumstances. Two simple example networks are shown in
Figure 9.

The first example starts with an “enquiry” (any data acquisi-
tion process, shown as a diamond). This may acquire data from

10A contraction of process and formalization.
11http://www.nhsdirect.nhs.uk/CheckSymptoms.aspx

many sources (e.g., database, a sensor or other device or querying
a human user or another agent). The decision (circle) that follows
the enquiry can be taken only when the enquiry has completed,
which is specified by the connecting arrow. The decision applies
relevant knowledge to interpret the data that has been acquired
up to this point by constructing and assessing arguments for and
against the various decision options. One option here is a simple
action (e.g., send the patient home) while the other is a plan (e.g.,
a course of treatment).

The second example captures a decision-making pattern called
SOAP (for “Subjective”; “Objective”; “Assessment”; “Plan”) which
is a mnemonic familiar to clinicians that refers to the routine
process of taking a patient history, deciding what to do, and
then doing it. There are two enquiries in this example; one
acquires information about the patient’s subjective complaint and
experience while the other captures objective data such as the
patient’s height, weight, and blood pressure. It does not matter
in what order the data are acquired but the Assess decision may
not be taken until both enquiry tasks have been done.

PROforma AS AN INSTANCE OF THE CANONICAL THEORY
As shown in Table 5 the PROforma language instantiates signa-
tures Eqs S1–S8 in the canonical framework, though different
interpreters for the language implement some details differently.

SUMMARY AND DISCUSSION
We have briefly examined traditional perspectives on decision-
making, including decision theory (prescriptive models grounded
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FIGURE 9 | Simple PROforma task networks (TheTallis decision support development software can be downloaded from www.cossac.org/tallis for
research use).

Table 5 |The relation between the canon signatures and task representations in the PROforma modeling language.

Signature Summary

S1 (belief

maintenance)

Beliefs in PROforma are data derived from the external environment (e.g., “age=54”) or indirectly by inference or decision-making

(“diagnosis=ulcer”) and also “meta-data” (e.g., “diagnosis= completed”). If the data change then beliefs can be automatically

updated, e.g., order of preference over a set of options in a decision that is currently in progress

S2 (raising

goals)

A PROforma goal is a logical combination (and/or/not) of situation descriptions which do not currently hold. A goal can be raised by any

kind of task; the task will be terminated if the goal descriptions become true

S3 (problem

solving)

Current PROforma interpreters are limited to retrieving a set of options from a knowledge base

S4 (reasons for

decisions)

Reasons in PROforma are logical arguments that represent evidential arguments in deciding between hypotheses and preference

arguments when deciding between actions

S5

(aggregation)

A decision assesses all the argument for and against each option to determine their net overall force, and establish an order of

preference over the options. The prior confidence and strength of arguments can be taken into account in the aggregation process

S6

(commitment)

Each option in a PROforma decision may include a rule which defines the conditions in which the option can be “recommended” when

the application is supporting a third party decision, or automatically “committed” if the system is configured to operate autonomously

S7 (plan

enactment)

A PROforma plan is a network of tasks, in which the scheduling of decisions and other tasks can be predefined or determined

dynamically

S8 (action) When a PROforma action is scheduled for execution it first checks any preconditions (such as beliefs or goals being true, resources

being available)

S9

(monitoring)

There is no specific support for monitoring. However continuous monitoring can be implemented using general language features

S10 (learning) The PROforma language standard does not currently support learning

in rational axioms); decision science (descriptive, empirically
grounded theories of decision-making), and decision engineering
(techniques for supporting human decision-makers and devel-
oping autonomous decision agents). The central motivation for
developing a canonical theory is to provide a lingua franca for dis-
cussions between researchers, and with practitioners, based on a
common set of intuitive but well-defined concepts and processes.
This project will be successful if members of community A find the
framework sufficiently versatile and clear for describing their view
of decision-making to members of community B and vice versa,
and if productive conversations ensue.

The canonical framework developed here does not fit squarely
into any one of the traditional paradigms. The canons are neither
normative nor descriptive; we have used the term “requisite”

elsewhere (Fox, 1981)12. The canons say that any general decision
procedure must address certain functional requirements in some
way (maintaining beliefs, raising goals, making commitments, and
so forth). However we are not imposing any particular way in
which the canons must be implemented. That is, the canons are
framed at the highest of Marr’s levels (Marr, 1982): they specify
what function should be computed but make no commitment to
the algorithms involved or the representation of information over

12The term derives from Ashby’s Law of Requisite Variety (Ashby, 1958), which con-
cerns the regulation of the behavior of a system, R. The law states that“R’s capacity as
a regulator cannot exceed its capacity as a channel for variety” (Ashby, 1958, p. 86).
The law is “requisite” in the sense that it states a requirement on the variety possible
within the system R.
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which they operate. This is in contrast with a normative theory like
expected utility theory that commits the implementer to update
belief in a way that is constrained by the probability axioms and
measures of value must satisfy “rational” axioms like transitivity
and so forth. Our only claim is that any proposal for a specific
theory of DDM must implement some or all of the canons in
some way.

A clear limitation of our program, consequently, is that the
canonical theory does not address the particular concerns of each
decision research community in detail. Psychological mechanisms
are insufficiently specified in the canonical signatures to make
predictions about how human decision-makers actually behave or
how human performance differs from prescriptive norms. Nor can
the canons be claimed to be axioms of rational inference, such as
those offered by statistical decision theory or mathematical logic.
Lastly the canonical form does not offer tools for designing prac-
tical applications. Nevertheless a canonical framework may have
benefits for specialist researchers in all three traditions in that the
general canons can be instantiated for particular purposes by spe-
cific procedures or mechanisms. We close with a short discussion
of some of the benefits that the framework may offer to theorists,
scientists, and engineers.

CONTRIBUTIONS TO DECISION THEORY
1. General canons of cognition help to promote discussion

between communities with different theoretical commitments.
The belief maintenance canon Eq. S1 for example can be instan-
tiated by probabilistic inference, fuzzy logic, default reasoning,
and so on. These are often seen as competitors but in our view it
would be more helpful to see them as alternative ways of model-
ing uncertain reasoning to address different requirements and
constraints.

2. The canons offer a broader context within which to investi-
gate formal theories of decision-making than is usual. Classical
expected utility theory, for example, “can give no scientific
advice” about when a decision is needed or what is rele-
vant to framing it (Lindley, 1985). This seriously limits the
scope of current theory and the canonical framework sug-
gests a number of ways in which normative models could be
extended.

CONTRIBUTIONS TO DECISION SCIENCE
1. Canonical forms can be used to provide functional explana-

tions of behavioral, clinical, or neurological data obtained in
decision-making tasks and to map between neuro-anatomical
organization and cognitive-level functions (Shallice and
Cooper, 2011).

2. The theory bridges “folk” psychology, common sense reason-
ing, agent theories in AI and philosophical theories of mind,
and potentially engages with the vocabulary of the humanities
and everyday discourse.

3. The canonical theory provides a framework that may help to
resolve debates which arise from different assumptions about
methodology. A current dispute in cognitive science, for exam-
ple, concerns whether psychological theories are constrained

by neuroscience data and vice versa. Coltheart (2006) has
argued that a true psychological theory exists at such a level of
abstraction that data about the neurological implementation of
cognition cannot in principle confirm or refute the theory. The
abstract cognitive theory that Coltheart seeks is at the canon-
ical level – it can inform psychological theory at a functional
level but need not confront implementation details which are
particular to human cognition.

CONTRIBUTIONS TO DECISION ENGINEERING
1. The abstract signatures are insufficiently specified to be directly

computable but there are clearly many specific algorithms that
will take, as input, data of the types specified “above the line”
and generate, as output, data of the types specified “below the
line”13. Rather than just making the theory too vague to be
useful this has the practical implication that we could design
and implement decision-making systems by assembling them
out of standard components which comply with the signatures
without knowledge of internal mechanisms.

2. Responsibility for practical decision-making is often distrib-
uted across professional teams and in the future such teams
will be increasingly supported by automated services. In an
emergency management system for example distinct sub-
systems will be responsible for capturing data while others
will be required to integrate data from multiple sources and
“judge its sense, meaning, relevance, and reliability; decide
what the options for action are and make effective decisions”
(Carver and Turoff, 2007, p. 34). Faced with this complexity
designers will wish to engineer systems using standard modules
for decision-making, planning, communication etc. and a
canonical model offers a way of specifying and linking such
modules.

CONCLUSION
In this paper we have considered the whole cycle of DDM:
recognizing and framing a problem in light of current beliefs;
clarifying and prioritizing goals; generating options that would
achieve current goals; evaluating preferences over the options; and
aggregating preferences to select the best. We have not sought
to develop any new theory related to the specifics of any one of
these capabilities. Rather, our approach has been to develop an
over-arching framework that subsumes specific theories of these
individual subprocesses and understand how they are related to
each other.

In our view theoretical understanding of the processes involved
in human DDM is advancing, but in a somewhat chaotic way in
which many competing research traditions, theoretical concepts,
and engineering techniques vie for pre-eminence. We hope that
our discussion has demonstrated that there is potential for estab-
lishing a cross-disciplinary framework that promotes constructive
discussion between communities, leading to collaboration, and
even synergy rather than competition.

13Each signature can be thought of as a pair of colored sockets into which standard
cognitive components can be plugged if and only if colors of the plugs match colors
of the sockets.
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