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Editorial on the Research Topic
AI empowered cerebro-cardiovascular health engineering

Introduction

Cerebrovascular and cardiovascular diseases continue to pose significant challenges,
contributing significantly to disabilities and mortality rates worldwide (R.L. Sacco et al.,
2016). In recent years, artificial intelligence (AI) has emerged as a powerful tool in the realm
of cerebrovascular and cardiovascular disease treatment. Its ability to improve decision-
making, diagnosis, and treatment processes by analyzing extensive patient data sets has
revolutionized medical practices in these fields. This transformative impact is made possible
by the rapid advancements in machine learning, deep learning, computational power, and
mathematical algorithms, enabling the swift and efficient analysis of vast datasets. Therefore,
the integration of AI into cerebrovascular and cardiovascular healthcare has attracted
considerable attention among healthcare professionals. Physicians are seeking increasing
support from AI tools which improve disease diagnosis, intervention guidance, and therapy
monitoring.

This Research Topic “AI Empowered Cerebro-Cardiovascular Health Engineering”
focuses on recent advancements in AI techniques for enhancing the diagnosis,
monitoring, and treatment of cerebrovascular and cardiovascular diseases, including but
not limited to noninvasive acquisition methods, accurate diagnosis techniques, personalized
therapy approaches, early prediction models, intelligent screening processes, and
neurological and cardiovascular rehabilitation strategies. In this Editorial Article, we
provide a comprehensive summary of the contributions from the publications within
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this Research Topic, shedding light on the cutting-edge
developments that are shaping the future of cerebrovascular and
cardiovascular healthcare through the power of AI.

Diagnosis of cardiovascular diseases

Screening for cardiovascular disease by the auscultation of
heart sound auscultation is a simple, and effective method.
Signal processing and AI techniques have been widely used in
analyzing heart sounds (Herzig et al., 2014). Li et al. proposed a
new heart sound classification method based on improved mel-
frequency cepstrum coefficient features and deep residual
learning method that achieved an accuracy of 94.4%. This
study contributed a more accurate and effective approach to
analyzing heart sounds, thus aiding the diagnosis of
cardiovascular diseases.

Congenital heart disease (CHD) is one of the leading causes of
death (Meras et al., 2021). TrueVue, TrueVue Light, and TrueVue
Glass are innovative three-dimensional (3D) echocardiographic
techniques that can provide radiation-free visualization of cardiac
anatomical structures (Genovese et al., 2019). Sun et al. explored
their individual advantages and limitations and summarized their
application methods for CHDs. This research demonstrated that the
combined use of TrueVue, TrueVue Light, and TrueVue Glass
improved the accuracy of CHD evaluation and treatment than
the traditional imaging techniques.

Heart failure (HF) results from ventricular filling or ejection
dysfunction (Hao et al., 2019). Ballistocardiography (BCG) has been
utilized for in-home detection of various cardiac diseases recently
(Wen et al., 2019). Feng et al. proposed a machine learning-aided
scheme based on BCG signals for HF detection, enabling
comprehensive exploration of the relationship between the heart
and the lung systems. Experimental results demonstrated that the
proposed scheme could significantly improve the accuracy and
robustness of in-home HF detection.

Early detection of abnormal electrocardiogram (ECG) patterns
is an important method for preventing, identifying, and diagnosing
cardiovascular diseases (Dong and Zhu, 2004). Shan et al. proposed
an ECG anomaly detection framework (ECG-AAE) based on an
adversarial autoencoder and temporal convolutional network. They
also employed the adjournment network to solve the ECG data
imbalance problem. ECG-AAE could effectively improve the
detection rate of abnormal ECG patterns than other popular
outlier detection methods while ensuring accuracy.

Coronary artery segmentation is essential for helping doctors to
identify and segment the regions of interest. However, automatic
segmentation of coronary arteries poses challenges due to issues like
over-segmentation or omission, often stemming from the small size
and poor distribution of contrast medium (Kroft et al., 2007). Wang
et al. proposed a novel automatic method, DR-LCT-UNet, to
improve the performance of coronary artery segmentation by
preserving unobtrusive features through dense residual
connection and focusing on local contextual information. The
dice similarity coefficient, Recall, and Precision of DR-LCT-UNet
outperformed other comparison methods.

The central aortic pressure waveform (CAPW) contains
valuable information about the cardiovascular system, making it

useful for predicting and diagnosing cardiovascular diseases (Flores
Geronimo et al., 2021). Sun et al. proposed a novel method to
approximate the actual flow waveform with a personalized flow
waveform and to examine the feasibility of decomposing the CAPW
for quantifying wave reflection. This study proposed amore accurate
method based on the characteristics of the CAPW to estimate wave
reflection indices than the traditional triangular and lognormal flow
methods.

Diagnosis of cerebrovascular diseases

Intracranial pressure (ICP), defined as the pressure within the
craniospinal compartment, is an important physiological parameter
reflecting the biomechanical status of the brain (Czosnyka and
Pickard, 2004). The photoplethysmography (PPG) technology has
been applied in the daily monitoring of various physiological
parameters. Liu et al. developed a computational model of
intracranial PPG signals for the first time and investigated the
effect of ICP changes on the waveforms of intracranial PPG
signals in different cerebral perfusion territories. This research
demonstrated that ICP values could significantly change the
value-relevant (maximum, minimum, mean, and amplitude)
waveform features of PPG signals measured from different
cerebral perfusion territories.

Treatment of cardiovascular diseases

Functional single ventricle (FSV) is a complex congenital
malformation with only one fully functional ventricle. The
Y-shaped conduit total cavopulmonary connection (YCPC) was a
theoretically efficient procedure for the treatment of FSV. However,
the theoretical effectiveness of TCPC significantly differs from its
postoperative efficacy (Trusty et al., 2016). To bridge this gap, Zhang
et al. applied preoperative computed tomography angiography and
computational fluid dynamics simulation to predict and verify the
efficacy of YCPC. This approach has effectively improved the
applicability of clinical applications of YCPC.

Left atrial appendage occlusion (LAAO) was used as a new
approach for stroke prevention in patients with atrial fibrillation
(AF) (Turagam et al., 2020). 3D Auto LAA is an AI tool designed for
the automatic identification of the LAA and measuring important
parameters related to surgery. Sun et al. were the first to combine
TrueVue Glass and 3D Auto LAA to evaluate AF patients
undergoing LAAO and explore their clinical value and technical
advantages. They found that it provided a more accurate and
efficient assessment of LAA anatomy and physiological
parameters for LAAO, surpassing other commonly used imaging
techniques.

Abdominal aortic aneurysm (AAA) is a degenerative disease
that causes significant health problems in humans (Kugo et al.,
2019). Artemisia annua L. (A. annua) is a traditional herbal remedy
that has been widely used in cardiovascular disease. Molecular
docking, a statistical simulation method, focuses on the
interaction between molecules and predicts their binding mode
and affinity (Wang and Zhu, 2016). Jia et al. systematically
summarized the molecular targets of A. annua in the treatment
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of AAA using network pharmacology combined with molecular
docking technology. The molecular docking results revealed that the
top five active components of A. annua had a good affinity for core
disease targets and played a central role in treating AAA. The results
showed that the low binding energy molecular docking results
provided valuable information for the development of drugs to
treat AAA.

Treatment of neurological diseases

Epilepsy is the most common chronic neurological disease.
Intracranial electroencephalography (EEG) signal provides precise
anatomical information about the selective engagement of
neuronal populations at the millimeter scale and stereo- EEG is
one kind of Intracranial EEG (Parvizi and Kastner, 2018). EEG
phase-amplitude coupling (PAC), the amplitude of high-frequency
oscillations modulated by the phase of low-frequency oscillations
(LFOs), is a useful biomarker to localize epileptogenic tissue
(Guirgis et al., 2015). Li et al. proposed a novel approach for
generating complex-valued PAC with both the coupling strength
and the coupled phase of LFO to identify pathological PAC in
Stereo-EEG from patients with epilepsy. Their proposed method
held promise for identifying more accurate epileptic brain activity
for potential surgical intervention. In a separate contribution, Liu
and Li proposed a novel approach for localizing neuromodulatory
targets, which used intracranial EEG and multi-unit
computational models to simulate the dynamic behavior of
epileptic networks through external stimulation. This study
provided a new tool for localizing patient-specific targets for
neuromodulation therapy.

The innervation zone (IZ) of a muscle is the region where
muscle fibers are innervated by motor axon terminals. IZ
estimation is important for treating patients with neurological
injuries such as stroke and cerebral palsy (Zhang et al., 2021).
Huang et al. investigated methods to reliably and automatically
estimate the IZ from monopolar M-wave recordings and found
that the PCA-based method demonstrated the most consistency
with manual detectionthan other methods. This study has
significant clinical value for the neurological rehabilitation of
patients.

Neurological and cardiovascular
rehabilitation

Even after treatment, both cardiovascular and cerebrovascular
diseases can result in motor or cognitive dysfunction, requiring a
long period of rehabilitation. A rehabilitation process combining
motor and cognitive training has the potential to enhance the chance
of recovery and rebuild the action ability. 3D gaming and virtual
reality have been employed to make the process more immersive
(Nasri et al., 2020). Chen et al. proposed an interactive game
utilizing real-time skeleton-based hand gesture recognition to
assist rehabilitation exercises. This approach improved the hand-
eye coordination of the patients during a game-like experience. A
lightweight residual graph convolutional architecture was proposed
for hand gesture recognition. Most of the participants in this study

showed an improvement in their passing rate of the game during the
test process.

Risk prediction of cerebrovascular and
cardiovascular diseases

Pre-eclampsia (PE) is a type of hypertensive disorder that can
occur during pregnancy (Duhig et al., 2019). Li et al. developed and
validated a predictive model for predicting the risk of PE. The model
was further analyzed in two subgroups: early-onset pre-eclampsia
and late-onset pre-eclampsia at prenatal visits at different gestational
weeks. The overall accuracy of the model reached 86%. This
predictive model for PE is of great significance in giving targeted
clinical predictions and recommendations, ultimately contributing
to the improvement of maternal and infant conditions.

Myocardial infarction (MI) is a prevalent cardiovascular disease
(R. Nasimov et al., 2020). Zhou et al. developed an algorithm using
case data to determine the relationship between the physiological
indicators of MI patients and their prognosis. The patient prognostic
risk prediction model had an impressive accuracy of 92.2%. The
results demonstrated that the prediction model could offer an
effective solution for clinical disease prognostic risk assessment,
leading to improved clinical outcomes.

In summary, this Research Topic presents the most
advancements in AI applications within the fields of
cerebrovascular and cardiovascular healthcare. These studies
represent a significant stride in our understanding of how AI
technology can profoundly improve the diagnosis, treatment, risk
prediction, and rehabilitation of cerebrovascular or cardiovascular
disease. We appreciate the efforts of all authors for their invaluable
contributions, which have immensely enriched this Research Topic.
Furthermore, we express our gratitude to the diligent reviewers and
editors for their tremendous efforts in ensuring the quality of rigor of
the published work. We sincerely hope that readers will find this
Research Topic to be both insightful and valuable, offering a
comprehensive overview of the transformative potential of AI in
revolutionizing cerebrovascular and cardiovascular healthcare.
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Automatic detection and alarm of abnormal electrocardiogram (ECG) events

play an important role in an ECG monitor system; however, popular

classification models based on supervised learning fail to detect abnormal

ECG effectively. Thus, we propose an ECG anomaly detection framework

(ECG-AAE) based on an adversarial autoencoder and temporal convolutional

network (TCN) which consists of three modules (autoencoder, discriminator,

and outlier detector). The ECG-AAE framework is trained only with normal ECG

data. Normal ECG signals could be mapped into latent feature space and then

reconstructed as the original ECG signal back in our model, while abnormal

ECG signals could not. Here, the TCN is employed to extract features of normal

ECG data. Then, our model is evaluated on an MIT-BIH arrhythmia dataset and

CMUHdataset, with an accuracy, precision, recall, F1-score, and AUC of 0.9673,

0.9854, 0.9486, 0.9666, and 0.9672 and of 0.9358, 0.9816, 0.8882, 0.9325, and

0.9358, respectively. The result indicates that the ECG-AAE can detect

abnormal ECG efficiently, with its performance better than other popular

outlier detection methods.

KEYWORDS

outlier detection (OD), autoencoder (AE), generative adversarial network (GANs), ECG,
temporal convolutional network (TCN)

1 Introduction

Cardiovascular diseases (CVDs) are leading causes of human death (R.L. Sacco et al.,

2016), and ECG is an important method of diagnosing CVDs. Earlier detection of

abnormal ECG is the key step in prevention, identification, and diagnosis of CVDs.

Portable ECG could detect sudden abnormal ECG events in the early stage (Dong and

Zhu, 2004) and activate warning; it is expected to reduce the mortality rate. Therefore,

automatic identification of abnormal ECG events is the first important part of an ECG

monitoring system.

Currently, popular artificial intelligence (AI) ECG diagnosis methods, including

machine learning (feature extraction and classifiers) and deep networks, always detect

abnormal ECG events using classification models. In machine learning, self-

organizing map (SOM) (M.R. Risk et al., 1997), C-means clustering (Özbay et al.,
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2011), etc. are some of the successful machine learning

methods for ECG classification. They extract features, such

as wavelet coefficients (P. De Chazal et al., 2000) and

autoregressive coefficients (N. Srinivasan et al., 2002), as

ECG presentation. Other research studies focus on deep

learning for ECG analysis, including convolutional neural

networks (CNNs) (U.R. Acharya et al., 2017) and recurrent

neural networks (RNNs) (H.M. Lynn et al., 2019). Xia used a

deep convolutional neural network (DCNN) (Xia et al., 2018)

for atrial fibrillation detection from short ECG signals (<5s)
without any designed feature extraction procedure. Martin

used long a short-term memory network (LSTM) (H. Martin

et al., 2021) to detect myocardial infarction from a single lead

ECG signal. Onan, 2020 proposed a CNN-LSTM framework

for sentiment analysis of product review on Twitter. Onan and

Tocoglu (2021) proposed a three-layer stacked bidirectional

LSTM architecture to identify sarcastic text documents. Deep

ECG (C. Li et al., 2021) takes ECG images as inputs and

performs arrhythmia classification using the DCNN and

transfer learning. Furthermore, a new method combining a

recurrence plot (RP) and deep learning in two stages (B.M.

Mathunjwa et al., 2021) is proposed to detect arrhythmias.

These aforementioned supervised learning ECG

interpreting methods have achieved sound performance in

previous studies. But these classification frameworks require

the dataset to include all types of heart disease data with

accurate manual annotation by professional doctors. The

clinical ECG data are always imbalanced with fewer

abnormal ECG samples, which makes it difficult to

establish an effective classification model. Moreover, it is

difficult to establish a large dataset including all types of

abnormal ECG for clinical purposes in practice. Therefore,

the sensitivity and specificity of abnormal ECG detection

cannot meet clinical requirements (O. Faust et al., 2018).

An outlier detection method (G. Pang et al., 2021) is more

suitable for abnormal ECG in an early warning system, only

based on normal data in clinical applications.

The outlier detection methods are unsupervised machine

learning methods including clustering and semi-supervision

including deep learning. In unsupervised methods, statistical

methods usually focus on modeling the distribution of

normal categories by learning the parameters of the

probability model, to identify abnormal categories as

outliers with low probability. The distance-based outlier

detection methods assume that the normal categories are

close to each other, while the abnormal samples are far away

from the normal ones. Thus, outliers could be identified by

calculating the distance between the abnormal and normal

samples. Bin Yao and Hutchison (2014) proposed a density-

based local outlier detection method (LOF) for uncertain

data. H. Shibuya and Maeda (2016) developed an anomaly

detection method based on multidimensional time-series

sensor data and using normal state models. Principal

component analysis (Li and Wen, 2014) could be used for

linear models; and the Gaussian mixture model (GMM) (Dai

and Gao, 2013), isolation forest (F.T. Liu et al., 2008), and

one-class support vector machine (OC-SVM) (B. Schölkopf

et al., 2000) are used in actual outlier detection applications.

But these machine learning algorithms often require the

manual design of effective features.

Performance of an outlier detection method based on deep

learning has been proved well, including Auto-Encoder (Zhou

and Paffenroth, 2017), LSTM (P. Malhotra et al., 2015), and

VAE (Wang et al., 2020), and widely used in AI-aided

diagnosis (T. Fernando et al., 2021) such as X-ray film,

MRI, CT, and other medical images, and in the detection

of EEG, ECG, and other timing signals as well. Y. Xia et al.

(2015) eliminated abnormal data from noisy data by reducing

reconstruction errors of the autoencoder, and applying

gradients of the autoencoder to make reconstruction errors

discriminatory to positive samples. By using deep neural

networks (autoencoders) as feature extractors, a deep

hybrid model (DHM) has been applied for outlier detection

to input extracted features into traditional outlier detection

algorithms, such as OC-SVM (Mo, 2016). L. Ruff et al. (2018)

used deep one-class classification for end-to-end outlier

detection, effectively customizing trainable targets for

outlier detection to extract features. K. Li et al. (2012)

proposed a transfer learning framework for detecting

abnormal ECG; however, this method requires manual

coding of features and relies on labeled data for all

different types of abnormalities. Due to diversity of diseases

and different waveforms collected from different abnormal

diseases, such data are not easy to obtain. Time series outlier

detection technology is also used in ECG signal processing;

Lemos and Tierra-Criollo, 2008; Chauhan and Vig, 2015

proposed an outlier detection method based on LSTM. An

abnormal condition is considered when the difference

between the predicted value of LSTM and normal value

exceeds a given threshold. Latif et al. (2018) used a

recurrent neural network (RNN) to detect abnormal

heartbeats in the PCG signal detection of the heart sound,

which needs a large amount of calculation. K. Wang et al.

(2016) used an autoencoder to reconstruct normal ECG data,

determine the threshold according to the reconstruction error,

and finally, to detect the test set.

Recently, a GAN-based framework has been applied to

outlier detection (T. Schlegl et al., 2017). The model generates

new data according to the input; if the input was similar to the

training data (as normal data), the output would be similar to

the input, otherwise, the input would be an outlier. T. Schlegl

et al. (2017) used a GAN-based model (AnoGan) to identify

anomalies in medical images. However, the aforementioned

methods have the problems of overfitting (C. Esteban et al.,

2017) or instability (D. Li et al., 2019) when they deal with

abnormal ECG detection problems.
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An autoencoder is another method of simply “memorizing”

the training data and reproducing them. The parameters of the

intermediate hidden layer would completely fit the training set,

and the content of its memory will be completely output at the

time of the output, resulting in identity mapping of the neural

network and data overfitting. Problems such as instability and

poor controllability occur with the latent model based on the

GAN method.

In this study, we proposed a novel method named ECG-AAE

for detecting abnormal ECG events, based on an adversarial

autoencoder and TCN (L. Sun et al., 2015). It consists of three

parts: 1) an autoencoder, 2) a discriminator, and 3) an outlier

detector. Our method was evaluated on the MIT-BIH and our

CMUH datasets and compared with several other popular outlier

detection methods.

2 Materials

2.1 Electrocardiogram datasets

1) Massachusetts Institute of Technology Arrhythmia

Dataset (MIT-BIH). The dataset consists of 48 double-lead

ECG recordings from 47 subjects; each set lasts 30 min at a

FIGURE 1
Typical sketch of normal and abnormal heartbeats.
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sample rate of 360 Hz, with approximately 110,000 beats. A set

of beat labels is equipped at the peak of R.

2) A CMUH dataset supported by the First Affiliated

Hospital of China Medical University. The dataset contains

12-lead ECG records of inpatients in the First Affiliated

Hospital of China Medical University from January 2013 to

December 2017, with a sampling rate of 560 Hz.

Two or three cardiologists annotated all heartbeats for both

datasets independently. Only lead II ECG signals are used in this

study.

2.2 Data preprocessing

A total of four types of arrhythmia and normal beats are

selected from datasets: right bundle branch block (R), left bundle

branch block (L), atrial premature beat (A), ventricular

premature beat (V), and normal sinus rhythm (N). ECG

signals are split into single heartbeats which are normalized to

a range of [−1, 1] for network training. Five typical heartbeats are

shown in Figure 1.

2.3 MIT-BIH dataset

In this study, 45 lead II signal records are selected from the

MIT-BIH dataset (records 102, 104, and 114 were excluded, as

they do not include the lead II data or the type of heart disease

in our experiments). Wavelet transform is used to reduce

noise and baseline drift (Alfaouri and Daqrouq, 2008). Then,

the ECG data are split into single heartbeats using the marked

R peak location. A total of 250 points (100 points before the R

peak and 150 points after the R peak) are included in a

heartbeat.

2.4 CMUH dataset

ECG data of 44,173 people from the CMUH dataset have

been selected for this study. Data are resampled at 360 Hz to

maintain consistency withMIT-BIH data. The beat segmentation

method is the same as the one mentioned previously.

For each dataset, 10,000 normal ECG data are randomly

selected as the training set, and 5,000 normal ECG data and

5,000 abnormal ECG data are randomly selected as the test set, as

shown in Table 1.

3 Methods

3.1 ECG-AAE framework

The ECG-AAE framework consists of three parts: 1) an

autoencoder, 2) a discriminator, and 3) an outlier detector, as

shown in Figure 2. The autoencoder tries to minimize

reconstruction errors to generate ECG signals similar to input

signals. The discriminator uses reconstructed and original data as

the input, and is trained to distinguish normal data from

reconstructed data. Both the autoencoder and discriminator

update simultaneously to improve the reconstruction

performance of the autoencoder.

Finally, the combination of reconstruction errors and

discriminant scores (probability output of discriminator) is

used to evaluate normal ECG. Test data are mapped back to

TABLE 1 Number of heartbeats involved in each dataset and the division of datasets.

Dataset Type Type of
heartbeats

Number of
heartbeats

Number of
cases

Sample
size

Number
of training set

Number of
test set

MIT-BIH Normal N 74,962 40 15,000 10,000 5,000

Abnormal A 2,545 — 5,000 0 5,000

L 8,068 —

R 7,254 —

V 7,034 —

Total 99,863 47 20,000 10,000 10,000

CMUH Normal N 20,000 20,000 15,000 10,000 5,000

Abnormal A 6,811 6,811 5,000 0 5,000

L 1,247 1,247

R 8,268 8,268

V 7,847 7,847

Total 44,173 44,173 20,000 10,000 10,000
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potential space, and loss between reconstructed test samples

and actual test samples has been applied to calculate the

corresponding reconstruction loss.

A detailed network of the ECG-AAE is shown in Table 2.

The encoder is composed of three TCN blocks, three

MaxPooling1D layers, a flatten layer, and a dense layer.

The decoder is composed of a dense layer, three TCN

blocks, three UpSampling1D layers, and a Conv1D layer.

The discriminator is composed of three TCN blocks, three

MaxPooling1D layers, a flatten layer, and two dense layers.

The activation function for the last dense layer is sigmoid. A

large discriminator can make the data overflow easily, while a

shallow autoencoder cannot generate enough real data to

defeat the discriminator. A small number of hidden units is

chosen as the starting point, and the number of hidden units

has been gradually increased in each successive layer, which is

effective for the training of the model in this study. Also, three

TCN blocks are used in the encoder, decoder, and

discriminator.

In this study, stochastic gradient descent (Adam)

(Kingma and Ba, 2015) is adopted to conduct alternating

update training for each lost component, and parameters of

the network model are obtained through training and

learning.

3.2 Temporal convolutional network

Atemporal convolutional network (TCN) (L. Sun et al., 2015)

could capture long-term dependence in an ECG sequence more

effectively. A TCN block is superimposed by two causal

convolution layers with the same expansion factor, followed

by normalization, ReLU, and dropout layers, as shown in

Figure 3.

The TCN is used to extract features of ECG time series

data. The TCN module has shown competitiveness in many

sequence-related modeling tasks (W. Zhao et al., 2019). It can

capture dependencies in sequences more effectively than

recurrent neural networks (Graves et al., 2013; Z. Huang

et al., 2015; J. Chung et al., 2014). The TCN convolution

kernel is shared in the same layer, with lower requirement

memory.

The TCN is mainly composed of dilated causal convolution.

Figure 4 shows a simple structure of TCNs, where xi represents

the characteristics of the ith moment. Expanded convolution

enables input interval sampling during convolution, and the

sampling rate is controlled by d. The parameter d = 1 in the

bottom layer means that every point is sampled as input, and d =

2 in the middle layer means that every two points are sampled as

input. Generally, the higher the level, the larger will be the value

FIGURE 2
ECG-AAE framework consists of three parts: (1) an autoencoder, (2) a discriminator, and (3) an outlier detector. Here, R score is the
reconstruction error score; D score is the discrimination score; S is the anomaly scores (the sum of R score and D score). T is the threshold of outlier
data.
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of d used, with the size of the effective window of dilated

convolution increasing exponentially with the number of

levels. Convolution networks can obtain a larger receptive

field with fewer layers.

The TCN uses a residual block structure which is similar to

that in ResNet to solve problems such as a deeper network

structure causing gradient disappearance, to make the model

more generic. A residual block superimposes multiple causal

convolutional layers with the same expansion factor, followed by

normalization, ReLU, and dropout. In this study, a residual block

containing two layers of convolution and nonlinear mapping is

constructed, and normalization and dropout to each layer are

added to regularize the network, as shown in Figure 3.

3.3 Autoencoder module

An autoencoder module consists of three parts: an encoder, a

hidden layer, and a decoder. Only normal ECG data are used for

training. First, input data x are compressed and encoded into the

hidden layer data, and then hidden layer data are decoded to obtain

reconstructed ECG data X′ . The loss function during training is the
reconstruction error between input data x and output data X’:

Loss(X,X′) � ����X − X′
����
2

(1)

The encoder and decoder are optimized to minimize

reconstruction errors of normal ECG using training data X.

TABLE 2 Detailed overview of the proposed ECG-AAE model.

Modules Layers Types Activation function Output shapes Kernel size No. of
filters

Encoder 0 Input — 250 × 1 — —

1 TCN block ReLU 250 × 32 9 32

2 MaxPooling1D — 50 × 32 — —

3 TCN block ReLU 50 × 16 9 16

4 MaxPooling1D — 10 × 16 — —

5 TCN block ReLU 10 × 8 9 8

6 MaxPooling1D — 2 × 8 — —

7 Flatten — 16 — —

8 Dense ReLU - 8 — —

Decoder 0 Input — 8 — —

1 Dense ReLU 16 — —

2 Reshape — 2 × 8 — —

3 UpSampling1D — 10 × 8 — —

4 TCN block ReLU 10 × 8 9 8

5 UpSampling1D — 50 × 16 — —

6 TCN block ReLU 50 × 16 9 16

7 UpSampling1D — 250 × 16 — —

8 TCN block ReLU 250 × 32 9 32

9 Conv1D ReLU 250 × 1 9 1

Discriminator 0 Input — 250 × 1 — —

1 TCN block ReLU 250 × 32 9 32

2 MaxPooling1D — 50 × 32 — —

3 TCN block ReLU 50 × 16 9 16

4 MaxPooling1D — 10 × 16 — —

5 TCN block ReLU 10 × 8 9 8

6 MaxPooling1D — 2 × 8 — —

7 Flatten — 16 — —

8 Dense ReLU 8 — —

9 Dense sigmoid 1
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The activation functions of the encoder and decoded neural

networks are shown as follows:

Z � δ(WX + b) (2)
X′ � δ′(W′Z + b′) (3)

where, δ and δ’ are non-linear exciting functions, and W, b, W’,

and b’ are weights and offsets of linear transformations.

Minimizing the loss function to optimize the parameters in

the encoder and decoder is equivalent to a nonlinear

optimization problem:

minδ,w,bLoss(X,X′) �
�����X − δ′(δ(WX + b)) + b′

�����
2

(4)

3.4 Discriminator module

The discriminator (D) is to distinguish reconstructed ECG

data X′ generated by the autoencoder (AE) from real data X

during the training process, and to make reconstructed data

similar to the input data. Thus, the autoencoder tries to

minimize the reconstruction error, while the discriminator

tries to maximize it. During training, the two modules

optimize themselves and improve refactoring and

discrimination. The autoencoder is trained to minimize the

difference between reconstructed and input samples, and the

discriminator is trained to maximize confidence in

discriminating the difference between reconstructed and

real samples. After training, the discriminator assigns

correct labels to real and fake ECG data as sensitively as

possible, while the autoencoder generates real ECG data as

much as possible to deceive the discriminator, and the two

reach a balance (D. Li et al., 2019). The conditional

autoencoder and discriminator are trained following a two-

player minimax game:

minmax
AED V(D,AE) � εx~Pdata(X)[logD(x)] + εx~Pz(Z)[log(1−D(AE))] (5)

3.5 Outlier detection module

The combination of reconstruction errors and discriminant

scores is used to define the abnormal score. Reconstruction loss

R(x) makes a higher score on abnormal ECG data and a lower

score on normal ECG data. The discrimination score D(x)

produces lower scores on abnormal ECG data and higher

scores on normal ECG data.

Therefore, the anomaly score a(x) formula is expressed as

a(x) � (1 − λ)R(x) + λ 1
D(x) (6)

FIGURE 3
Residual block.

FIGURE 4
Stacked convolutional layers in the TCN.
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λ = 0, according to our experience. The threshold is decided

following one standard deviation above the mean. ECG data with

a(x) greater than the threshold are abnormal.

4 Results

4.1 Evaluation indexes

Accuracy (ACC), precision (Pre), recall (Rec), F1-score (F1),

and AUC value (area under the ROC curve) are used to evaluate

the performance of our ECG-AAE and compare it with other

methods. In the confusion matrix, abnormal ECG is defined as

positive, normal ECG is defined as negative, and true positive

(TP), true negative (TN), false positive (FP), and false negative

(FN) are calculated.

ACC � TP + TN
TP + TN + FP + FN

Pre � TP
TP + FP

Rec � TP
TP + FN

F1 � 2 ×
Pre × Rec
Pre + Rec

FIGURE 5
Distribution of anomaly scores of the MIT-BIH training set (T = 0.025).

FIGURE 6
Distribution of anomaly scores of the CMUH training set (T = 0.01).
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In clinical practice, the precision rate represents the

proportion of patients with true ECG abnormalities, while

recall rate represents the proportion of patients with true ECG

abnormalities. The high-precision detection model could

prevent misdiagnosis, while the detection model with a

high recall rate could avoid missed diagnosis. The F1-score

is a weighted harmonic average of the recall rate and accuracy

rate; the F1-score and AUC value are used as the main

indicators to measure the performance of outlier detection

in this study.

The experiment was implemented on a workstation (Dell

T7600, Xeron 2,650 × 2, 256 GB RAM, 1080Ti×2), with Linux

18.04, Python 3.6, Keras 2.3.1, and TensorFlow 2.0.

4.1.1 Experiment 1
Both MIT-BIH and CMUH datasets have been used to

verify the performance of our framework. The threshold value

is selected as one standard deviation above the mean

according to the abnormal score in the training set. T

values of MIT-BIH and CMUH datasets can be obtained as

0.025 and 0.01, respectively. When the training set includes

normal data only, its abnormal scores are within the range of

the threshold T (Figures 5A, 6A), while, in the test dataset

including both normal and abnormal ECG data, the abnormal

scores are less than the threshold T for normal ECG data, but

are greater than the threshold T (Figures 5B, 6B) for abnormal

ECG data.

FIGURE 7
Reconstruction of ECG data: (A) normal and (B) abnormal.

FIGURE 8
Confusion matrix of (A) MIT-BIH dataset and (B) CMUH dataset (1 = normal 0 = abnormal).
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An example of normal and abnormal ECG data

reconstructed by our model is shown in Figure 7. For normal

ECG data, reconstructed data are continuous, and the shape of

the reconstructed waveform is basically the same as the input

one, with an error range of 0.0063 ± 0.0098. For abnormal ECG

data, the shape of the reconstructed waveform differs greatly

from that of the input waveform. Although the reconstructed

data are continuous, the error range reaches 0.0289 ± 0.0264.

The confusion matrixes of detection results are shown in

Figure 8. In the MIT-BIH dataset, 4,930 abnormal ECGs were

detected, and 257 normal ECGs were predicted as abnormal. In

our CMUHdataset, 4,917 abnormal ECG data were detected, and

559 normal ECGs were predicted as abnormal. The accuracy,

recall, F1 score, and AUC of our model are 0.9673, 0.9854,

0.9486, 0.9666, and 0.9672, and 0.9358, 0.9816, 0.8882, 0.9325,

and 0.9358, respectively.

4.1.2 Experiment 2
Our method was compared with 13 popular outlier detection

methods usingMIT datasets, as shown in Table 3. Among the five

TABLE 3 Average classification performance for different methods on the MIT-BIH dataset.

Methods Acc ±SD Pre ±SD Rec ±SD F1-score ± SD AUC ±SD

OURS 0.9673 ± 0.0005 0.9854 ± 0.0003 0.9486 ± 0.0001 0.9666 ± 0.0014 0.9672 ± 0.0015

AnoGAN (Schlegl et al.) 0.9257 ± 0.0101 0.8829 ± 0.0167 0.9876 ± 0.0027 0.9323 ± 0.0085 0.9283 ± 0.0101

AE (K.Wang et al.) 0.9282 ± 0.0180 0.8733 ± 0.2042 0.9902 ± 0.0233 0.9281 ± 0.1490 0.9233 ± 0.0049

VAE (X.Wang et al.) 0.8048 ± 0.0028 0.7196 ± 0.0029 0.9874 ± 0.0002 0.8325 ± 0.0157 0.8013 ± 0.0028

Stack LSTM (Chauhan et al.) 0.8875 ± 0.0017 0.8313 ± 0.0021 0.9740 ± 0.0007 0.8970 ± 0.0019 0.8882 ± 0.0052

GRU (Cowton et al.) 0.8764 ± 0.0040 0.8128 ± 0.0064 0.9746 ± 0.0017 0.8864 ± 0.0031 0.8751 ± 0.0040

RNN (Latif et al.) 0.8568 ± 0.0031 0.7826 ± 0.0040 0.9798 ± 0.0003 0.8702 ± 0.0024 0.8538 ± 0.0031

DEEP-SVDD (Ruff et al.) 0.8039 ± 0.0035 0.7221 ± 0.0037 0.8342 ± 0.0002 0.8342 ± 0.0025 0.8037 ± 0.0033

AE + OCSVM (Mo et al.) 0.8624 ± 0.0036 0.7965 ± 0.0046 0.9788 ± 0.0003 0.8783 ± 0.0029 0.8644 ± 0.0050

DAGMM (Song et al.) 0.7646 ± 0.0007 0.9992 ± 0.0008 0.5304 ± 0.0004 0.6930 ± 0.0019 0.7650 ± 0.0019

GMM (Dai et al.) 0.6462 ± 0.0463 0.9986 ± 0.1603 0.2924 ± 0.0068 0.4524 ± 0.0274 0.6460 ± 0.0042

OCSVM (Schölkopf et al.) 0.8376 ± 0.0009 0.9982 ± 0.0006 0.6760 ± 0.0005 0.8061 ± 0.0018 0.8374 ± 0.0019

iForest (Liu et al.) 0.6521 ± 0.0106 0.9987 ± 0.2119 0.3046 ± 0.3468 0.4668 ± 0.1334 0.6521 ± 0.0106

LOF (Bin Yao et al.) 0.5050 ± 0.0006 0.5027 ± 0.0007 0.9170 ± 0.0025 0.6494 ± 0.0018 0.5050 ± 0.0020

SD, standard deviation.

The bold values mean maximum.

TABLE 4 Average classification performance for different methods on the CMUH dataset.

Methods Acc ± SD Pre ± SD Rec ± SD F1-score ± SD AUC ± SD

OURS 0.9358 ± 0.0004 0.9816 ± 0.0002 0.8882 ± 0.0010 0.9325 ± 0.0008 0.9358 ± 0.00010

AnoGAN (Schlegl et al.) 0.8985 ± 0.0092 0.8396 ± 0.0128 0.9852 ± 0.0018 0.9066 ± 0.0078 0.8985 ± 0.0092

AE (K.Wang et al.) 0.9103 ± 0.0181 0.8504 ± 0.0253 0.9946 ± 0.0012 0.9169 ± 0.0148 0.9098 ± 0.0181

VAE (X.Wang et al.) 0.7744 ± 0.0040 0.6885 ± 0.0039 0.9910 ± 0.0015 0.8125 ± 0.0027 0.7713 ± 0.0041

Stack LSTM (Chauhan et al.) 0.8754 ± 0.0033 0.8097 ± 0.0051 0.9772 ± 0.0019 0.8856 ± 0.0025 0.8738 ± 0.0033

GRU (Cowton et al.) 0.8779 ± 0.0038 0.8156 ± 0.0052 0.9748 ± 0.0019 0.8881 ± 0.0030 0.8772 ± 0.0038

RNN (Latif et al.) 0.8221 ± 0.0037 0.7414 ± 0.0041 0.9860 ± 0.0021 0.8464 ± 0.0026 0.8210 ± 0.0037

DEEP-SVDD (Ruff et al.) 0.7649 ± 0.0050 0.6794 ± 0.0047 0.9908 ± 0.0017 0.8061 ± 0.0032 0.7616 ± 0.0050

AE + OCSVM (Mo et al.) 0.8245 ± 0.0030 0.7436 ± 0.0034 0.9864 ± 0.0022 0.8479 ± 0.0021 0.8231 ± 0.0030

DAGMM (Song et al.) 0.7260 ± 0.0012 0.9991 ± 0.0004 0.4520 ± 0.0024 0.6224 ± 0.0023 0.7258 ± 0.0012

GMM (Dai et al.) 0.6057 ± 0.0037 1.0000 ± 0.0005 0.2148 ± 0.0074 0.3536 ± 0.0101 0.6074 ± 0.0037

OCSVM (Schölkopf et al.) 0.7600 ± 0.0024 0.9985 ± 0.0010 0.5208 ± 0.0048 0.6845 ± 0.0041 0.7600 ± 0.0024

iForest (Liu et al.) 0.6303 ± 0.0043 1.0000 ± 0.0009 0.2606 ± 0.0086 0.4135 ± 0.0107 0.6303 ± 0.0043

LOF (Bin Yao et al.) 0.5767 ± 0.0059 1.0000 ± 0.0010 0.1700 ± 0.0117 0.2906 ± 0.0174 0.5850 ± 0.0059

SD, standard deviation.

The bold values mean maximum.
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evaluation indicators, our model achieves the highest score of

0.9673 in accuracy. DAGMM achieves the highest score of

0.9992 in precision, but its recall is 0.5304. This shows that

DAGMM tries to predict the sample as a positive sample when it

is “more certain,” but misses many unsure positive samples due

to its excessive conservativeness. The AE achieves the highest

recall score of 0.9902, but the precision is 0.8829, indicating that

the AE produces more false positives. The ECG-AAE model

achieves the highest scores of 0.9673, 0.9666, and 0.9672 in

accuracy, F1-score, and AUC value, respectively, better than

other models.

4.1.3 Experiment 3
We further verify the robustness and generalization of the

model with our CMUH dataset, as shown in Table 4.

Our model achieves the highest scores of 0.9358, 0.9325, and

0.9358 in accuracy, F1-score, and AUC, respectively. GMM,

iForest, and LOF models achieve the highest score of 1.000 in

precision, but the recall was lower. The AE achieves the highest

recall of 0.9946, but the F1-score and AUC value are lower.

5 Discussion

To solve problems that the classification model cannot

effectively detect in abnormal ECGs, we propose the ECG-

AAE, a framework for detecting abnormal ECG signals. Its

performance is verified and compared with the AE, AnoGAN,

and other 11 popular outlier detection methods on the MIT-BIH

arrhythmia dataset and our CMUH dataset.

The four kinds of machine learning outlier detection

algorithms with low performance scores were GMM (Dai and

Gao, 2013), OCSVM (B. Schölkopf et al., 2000), iForest (F.T. Liu

et al., 2008), and LOF (S.H. Bin Yao and Hutchison, 2014).

Among them, GMM enjoys the best performance, whose AUC

values are 0.6460 and 0.6074 on the MIT-BIH and CMUH

FIGURE 9
Analysis of the predication error (A,B) noise interference ECG, (C,D) baseline drift ECG.
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datasets respectively; LOF, the worst model, shows AUC values

are 0.5050 and 0.5850, respectively. It suggests that the machine

learning methods might not be the best choice for abnormal ECG

detection; they may not extract abnormal ECG effectively.

Moreover, the subsequent classifiers could not fit the

boundary functions in high-dimension feature space, while,

the deep learning models could make ECG feature extraction

more elastic to fit the nonlinear feature distribution, and finally

improve the detection rate of abnormal ECG while ensuring

accuracy.

Among deep learning models, generative models based on

AE or GAN are better than hybrid models of machine learning

and deep learning (e.g., AE + OCSVM (Mo, 2016) deep-SVDD

(L. Ruff et al., 2018), DAGMM (Q. Song et al., 2018), RNN and its

variants, LSTM, GRU, and other recurrent neural network

models). The autoencoder Cowton et al., (K. Wang et al.,

2016) encodes one-dimensional signal data into a lower

dimension to learn the general distribution of data and then

decodes to a higher dimension to reconstruct data. In this

experiment, the AE performs well on both the MIT-BIH and

CMUH datasets.

The ECG-AAE combines the autoencoder and discriminator,

and it uses the autoencoder to realize reconstruction of the ECG and

the discriminator to improve the generation ability of the

autoencoder. The TCN could obtain ECG features at different

scales with different receptive fields, which helps accurately

reconstruct the normal ECG. In addition, the TCN avoids

problems of gradient disappearance or gradient explosion. We

use the combination of reconstruction errors and discriminant

scores as the anomaly score, which effectively reduces the impact

of the AE overfitting and instability of the GAN model. Compared

with methods dealing with two leads or more, Liu F (2020) provided

an accuracy of 97.3% in ECG anomaly detection; Thill et al. (2021

designed a temporal convolutional network autoencoder (TCN-AE)

based on dilated convolutions for time series data.

Experiments 2 and 3 suggest that the CMUH dataset is about

0.3% lower than the MIT-BIH dataset on each model. The reason is

that all the heartbeats in the MIT-BIH dataset are only from

48 people. These independent heartbeats are obtained through

heartbeat segmentation, with very similar characteristics which are

not enough for generalization, while each heartbeat in our CMUH

dataset comes from a signal person, which ismore in line with reality.

False positive data are largely affected by noise interference,

as shown in Figures 9A,B. At the same time, false negative data in

the experiment have also been analyzed with the finding that a

baseline exists in most cases, as shown in Figures 9C,D. The

ECG-AAE model can tolerate noise and baseline drift of

conventional static ECG, but the form of input data in these

error cases is quite different from that of normal ECG data. This

situation might occur when patients move in a large range.

Although noise filtering and baseline drift are carried out in

the data preprocessing stage, an ideal effect is not achieved on the

ECG data with large variation, which leads to a false positive and

negative output of the model. In clinical practice, false positives

and negatives can be avoided by analyzing several continuous

heartbeats, and when the several continuous heartbeats are

judged to be abnormal ECGs, abnormal ECGs can be diagnosed.

6 Conclusion

Detection and early warning of sudden abnormal ECG is an

important procedure in an ECG monitoring and alarm system.

The ECG-AAE framework proposed in this study could

efficiently detect abnormal ECG signals, and provide better

performance on several indicators in our tests. It also suggests

that outlier detection performs better than the classical

classification framework in clinical practices. As far as we

know, this is the first study to combine the adjournment

network of abnormal ECG detection, which solves all types of

abnormal ECG data and data balance problems and effectively

improves the detection rate of abnormal ECG in the open set

condition while ensuring accuracy.
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Aims: This study explored the advantages and limitations of novel series of

three-dimensional (3D) echocardiographic techniques and summarized their

application methods for congenital heart diseases (CHDs).

Method and result: Two-dimensional (2D), traditional 3D echocardiography,

and TrueVue plus light and/or Glass novel 3D technologies were performed on

62 patients with CHD, and a clinical survey was designed to judge whether the

novel 3D imagesweremore helpful for understanding the cardiac condition and

guide treatment than traditional 3D images. TrueVue increased the visual

resolution and simulated the true texture of cardiac tissue, significantly

improving the display ability of abnormal anatomical structures in CHDs.

TrueVue Glass displayed the blood channel and the internal structure of

cardiac cavity more intuitively, indicating a new observation aspect not

shown by conventional echocardiography. The clinical survey results

showed that the new 3D imaging methods effectively increased the

diagnostic confidence of echocardiographers, enabled surgeons to better

understand the details of lesions, promoted efficient communication, and

improved the confidence of both doctors and patients in treatment.

Conclusion: The combined application of TrueVue, TrueVue Light, and

TrueVue Glass more closely simulated real anatomical features, showed

more comprehensive and subtle blood flow in the lumen, not only

increased the visual effect but also provided more useful diagnostic

information, improved the accuracy of evaluation and treatment of CHD

when compared to traditional imaging techniques, indicating that this

combined application has significant clinical value.
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Introduction

Congenital heart disease (CHD) may be caused by

developmental disorders during the cardiac embryonic period

or unclosed channels after birth and is an important cause of

death for children and adults (Meras et al., 2021). Real-time

three-dimensional echocardiography (3DE) can visually and

stereoscopically display some congenital malformation,

providing supplementary information for the diagnostic

evaluation of various CHDs. However, traditional 3DE is

affected by many factors, such as limited image quality and a

monotonous imaging mode (Cossor et al., 2015; Simpson et al.,

2017). It has been considered that it cannot be used as an

independent diagnostic tool, and reliance on 2D dynamic

scanning remains prevalent (Fabricius et al., 2004; van den

Bosch et al., 2006; Simpson et al., 2017). Recently, the advent

of the TrueVue, TrueVue Light, and TrueVue Glass series of

novel rendering technologies (from Philips company) provides

more comprehensive, advanced 3D diagnostic evidence for

evaluating abnormal cardiac anatomical structures (Genovese

et al., 2019; Kern et al., 2019; Vainrib et al., 2019; Vairo et al.,

2019). Especially for the artificial intelligence (AI) technology-

assisted TrueVue Glass imaging mode, which released globally in

the second half of 2020, there are few applied studies of these

technologies, and they are mainly limited to transesophageal

echocardiography (TEE) (Karagodin et al., 2020); to our

knowledge, there has been no systematic exploration of their

application for CHD. This study is the first to jointly apply the

TrueVue, TrueVue Light, and TrueVue Glass series of advanced

3DE to diagnose and evaluate CHD and explore their application

methods and practical value. In addition, a questionnaire was

employed to evaluate the merit of these novel tools to

echocardiographers, cardiac surgeons, and patients.

Materials and methods

Patients’ data collection

This study included 62 patients, who underwent

echocardiographic evaluation in our hospital for cardiac-

related clinical symptoms or signs and were diagnosed with

CHD from August 2020 to May 2021, including 30 males and

32 females, with a mean age of 15.56 ± 14.71 years (range: 3 days

to 56 years). This study does not establish strict exclusion criteria,

even if the quality of the 2D image is not very satisfactory. For the

original 2D image quality is not ideal, we also try to compare the

imaging effect and the improvement of the diagnostic value after

the conversion to the new 3D imaging mode, in order to

objectively evaluate the actual value of these new imaging

technologies. Therefore, TTE was performed in 41 cases and

TEE was performed in 21 cases. TEE examiners excluded

contraindications. All patients or their legal guardians signed

an informed consent form. This study was approved by the Ethics

Committee of China Medical University. The study protocol

conforms to the ethical guidelines of the 1975 Declaration of

Helsinki as reflected in a priori approval by the institution’s

human research committee.

Novel three-dimensional
echocardiography image acquisition

Imaging was obtained via Philips EPIQ system, CVx

equipment (Philips, Andover, MA), with the appropriate

3D probes, including X5-1 or X7-2 for transthoracic

echocardiography (TTE) or X8-2t for TEE. Each imaging

mode was set to store continuous four cardiac cycles. After

the 2D image was satisfactorily obtained, traditional 3D

acquisition modes were initiated, such as Live 3D, Full

Volume, or 3D Zoom to obtain real-time 3D images (Sun

et al., 2017), and six-sided cutting (Box Crop), free surface

cutting (Plane Crop), frontal cutting (Face Crop), quick

cutting (Quick Crop), or intelligent cutting (iCrop) were

used to highlight the target lesion. TrueVue was then

initiated to obtain a high-definition photorealistic

stereoscopic image. After clicking “Touch”, the 3D image

appears not only on the monitor, but also on the operation

panel at the bottom of the monitor; then, the user can click

directly on the operation panel to add a light source at a

specific location, move the position of the light source, adjust

the depth, and/or touch to adjust the image angle and size to

obtain a more vivid image. Engaging the Glass mode provides

a transparent image of the heart. These 3D image modes can

be optimized for grayscale, brightness, smoothness, contrast,

or transparency according to the target structure

characteristics.

Clinical survey

We randomly selected 10 sonographers (the average age is

35.6 ± 10.73 years) as the echocardiographer group, eight

doctors (40 ± 8.9 years) who specialize in cardiac

intervention or thoracotomy surgery as the cardiac surgeon

group (no limitation on working years, including doctors who

have worked for 1–25 years, the overall average age is 37.6 ±

9.7 years), six cardiologists specializing in CHD interventional
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TABLE 1 Scoring results of each group for three-dimensional echocardiography.

Compared
with
2DE,
the imaging
effects
of the
3DE showed
(N =
62a)

Echocardiographers (n = 10) Surgeons (n = 8) Cardiologists (n = 6) Patients or their parents (n = 20)

Likert score* Likert score* Likert score* Likert score*

Conventional New
series

p Conventional New
series

p Conventional New
series

p Conventional New
series

p

3DE of 3DE value 3DE of 3DE value 3DE of 3DE value 3DE of 3DE value

Display the details of the lesion is more vivid and clearer 3 (2, 3) 4 (3, 5) <0.0001 3 (1, 3) 5 (4, 5) <0.0001 3 (2, 3) 5 (4, 5) <0.0001 NC NC NC

The boundaries of the septal defect are clearly shown, and
the 3D images are very similar to those seen
intraoperativelyb

3 (3, 4) 5 (4, 5) 0.0001 3 (2, 3) 5 (4, 5) <0.0001 2 (2, 3) 5 (4, 5) <0.0001 NC NC NC

After 3D combined with color Doppler, the entire length
and stereoscopic extent of the abnormal shunt passing
through the defect is displayed more clearly and accuratelyb

2 (2, 3) 5 (4, 5) <0.0001 2 (1, 3) 5 (4, 5) <0.0001 2 (1, 3) 4 (4, 5) <0.0001 NC NC NC

The determination of the location, number and extent of
congenital leaflet clefts is more rapid and effectivec

2 (2, 3) 5 (4, 5) <0.0001 2 (1, 3) 5 (4, 5) 0.001 2 (1, 3) 4 (4, 5) <0.0001 NC NC NC

Can provide valuable stereoscopic images of the PV,
including leaflet number and activity statusd

2 (1, 2) 4 (3, 5) 0.003 2 (1, 2) 4 (3, 5) <0.0001 2 (1, 2) 4 (3, 5) 0.001 NC NC NC

The entire pathway of blood flow in the lumen of an
abnormally located vessel can be seen more clearly

2 (1.2, 2) 5 (3.5, 5) <0.0001 2 (1, 3) 4 (4, 5) <0.0001 2 (1.3, 2) 4 (3, 5) 0.002 NC NC NC

The number and connection characteristics of the
abnormal atrioventricular valves can be clearly
demonstratede

2 (2, 3) 4 (4, 5) 0.004 3 (2, 3) 5 (4, 5) <0.0001 3 (2, 3) 4 (4, 5) 0.02 NC NC NC

More helpful in the perception of the level and depth of the
lesion

3 (2, 3) 5 (4, 5) <0.0001 3 (2, 3) 4 (3, 5) <0.0001 2 (1, 2) 4 (3, 5) 0.004 NC NC NC

A quicker diagnosis was made with the aid of 3D imaging 4 (3, 4) 5 (4, 5) 0.04 4 (3, 4) 5 (4, 5) 0.13 3 (2, 4) 5 (4, 5) 0.002 NC NC NC

The pathological pattern of the abnormal anatomy is well
understood and grasped prior to surgery

3 (2, 5) 5 (4, 5) <0.0001 3 (3, 4) 5 (4, 5) 0.04 4 (3, 4) 5 (4, 5) 0.27 2 (2, 3) 4 (4, 5) <0.0001

Communication efficiency is enhanced by showing the
patient or guardians the 3D image of the lesion

4 (3, 4) 5 (4, 5) 0.04 3 (3, 4) 5 (4, 5) <0.0001 2 (1, 3) 4 (3, 5) <0.0001 3 (2, 3) 4 (3, 5) 0.002

Increased my confidence in diagnosis and/or the success of
the operation

3 (3, 4) 5 (4, 5) <0.0001 2 (2, 3) 5 (4, 5) 0.001 2 (2, 3) 4 (4, 5) <0.0001 2 (2, 3) 4 (3.5, 5) <0.0001

Overall Score 2 (2, 3) 5 (3, 5) <0.0001 3 (2, 3) 5 (4, 5) <0.0001 2 (1, 3) 4 (4, 5) <0.0001 2 (2, 3) 4 (4, 5) <0.0001

aEach observer randomly evaluated the images and videos from the database for each case, during the evaluation process, the images were transformed and post-processed with the assistance of “doctors experienced in new 3DE” to achieve near-ideal image

quality.
bThis question applies only to cases of atrial septal defects and ventricular septal defects.
cThis question applies only to patients with mitral valve cleft.
dThis question applies only to patients with pulmonary valve stenosis.
eThis question is only applicable in cases of complete atrioventricular septal defects.

*A 5-point scoring system, 1 indicating strongly disagree and 5 indicating strongly agree. Scores are expressed as median (IQR). p less than 0.05 was considered statistically significant. 2DE, two-dimensional echocardiography; 3D, three-dimensional; NC, no

collection; PV, pulmonary valve.

Bolded values in the p column represent statistically significant results.
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techniques (unlimited years of experience, including worked

for 1–30 years, mean age 32.5 ± 11.3 years), and 20 patients

with CHD (or a parent of a child under 14 years) who

underwent the novel 3D echocardiographic examinations to

fill out a short questionnaire evaluating their experience, they

were all provided score [using Likert score system (Harake

et al., 2020)] the elements after viewing/manipulate the new

series of 3D images/videos by comparing with the traditional

3D for 30 cases randomly selected from the database (Table 1).

None of the participants had prior experience with the

TrueVue series of technologies. The cases selected for

evaluation should be avoided as far as possible to be biased

towards those images that will be improved by new rendering

display. Instead, we chose a collection of various congenital

heart diseases that we encountered randomly during a certain

period of clinical work.

Statistics

Using SPSS 25.0 software (IBM Inc., Armonk, New York,

United States), categorical data are expressed as number of cases

(percentage), for analysis of the Likert responses to the question

design, data were tested for normality using the

Kolmogorov–Smirnov test. Results are reported as mean ±

standard deviation and median [first interquartile range

(IQR), third interquartile range] for normally distributed and

non-normally distributed data, respectively. Continuous

normally-distributed data were compared using Student’s

t-test. Non-Gaussian data were compared using the Mann-

Whitney test. Comparisons among the participant groups

were performed using analysis of variance, the Kruskal-Wallis

test, or the Chi square test as appropriate, and p < 0.05 was

considered statistically significant.

Results

Patient demographics

The advanced novel 3D echocardiography classified the

62 patients as follows: 18 (29.0%) with ventricular septal

defect (VSD); 17 (27.4%) with atrial septal defect (ASD); 9

(14.5%) with patent ductus arteriosus (PDA); 5 (8.1%) with

FIGURE 1
Transthoracic echocardiogram showing ventricular septal defect. (A–D). On long axis section of the left ventricle, the 2D, traditional 3D,
TrueVue Light, and TrueVue Glass images indicate the defects of the peri-membranous part of the interventricular septum (5 mm× 10 mm, arrows),
respectively. (E). In the same patient as A-D, looking down the defect from the right ventricle directly through a single view. (F). In another patient with
a large (22 mm × 14 mm) peri-membranous ventricularseptal defect, the “Dual Volume” imaging mode in TrueVue was used to observe the
defects (arrows) directly from the right and left ventricles simultaneously. (G). It is the same patient as in Figure (F), showing the three-dimensional
shape of the defect displayed by using TrueVue Glass to simulate the “surgical view”(left, arrow), and the comparison of the doctor’s field of vision
during cardiac surgery (right, arrow). In surgery, after lifting the tricuspid valve, the mitral valve can be seen through the septal defect. 2D, two-
dimensional; 3D, three-dimensional; LV, left ventricle; RV, right ventricle.
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aortic valve malformation; 4 (6.5%) with mitral valve cleft; 3

(4.8%) with pulmonary artery stenosis; 2 (3.2%) with complete

atrioventricular septal defect (CAVSD); 2 (3.2%) with double

orifice mitral valve (DOMV); and one case (1.6%) each of

pulmonary artery sling, and ventricular diverticulum. Of the

total patients, 55 (88.7%) underwent cardiac surgery,

including conventional thoracotomy or interventional

cardiac procedures, wherein the results of the ultrasound

diagnosis were confirmed.

Novel three-dimensional
echocardiographic analysis

For patients undergoing innovative 3D imaging, 55 cases

(88.7%) obtained satisfactory TrueVue images, and 59 (95.2%)

obtained satisfactory TrueVue Glass images. For patients who

underwent TTE, the overall satisfaction ratio with 3D images

was 87.8% (36/41). For TEE, the overall satisfaction ratio was

100% (21/21). The standard for satisfactory image quality is to

provide a clear and obvious evidence for diagnosis.

Dissatisfaction with the quality of transthoracic ultrasound

images is mainly due to obesity or excessive lung gas. During

the TrueVue imaging of the patients with VSD, placing the light

source below the defect made the shape and edge of the defect

extremely eye-catching when compared with that of traditional

3D ultrasound, especially for the diagnosis of a small

perimembranous ventricular defect (Figure 1). While in the

patients with an ASD, placing the light source over the defect

displayed the soft edge more clearly and accurately than

traditional 3D imaging. After switching to the TrueVue Glass

mode and appropriately increasing the transparency, the overall

path and spatial range of the shunt through the defects was

observed (Figure 2; Supplementary Movie S1). For the patients

with PDA, TrueVue Glass plus color Doppler technology better

displayed the origin, course, and inner diameter of the shunt of

the whole heart cycle in the pulmonary artery through the

transparent tube wall structure than traditional 3D or

TrueVue imaging modes (Supplementary Movie S2),

especially in the synchronous double-sided view (dual volume

mode) (Supplementary Figure S1). For the patients with

bicuspid aortic valve (BAV) malformation, the valve

displayed by TrueVue more closely simulated the real

anatomical texture features and showed the crest-like raised

FIGURE 2
Transesophageal echocardiography of double atrial-superior and inferior vena cava section to diagnose atrial septal defect. (A–D). The 2D,
traditional 3D, TrueVue Light, and TrueVue Glass show the secondary type of atrial septal defect (25 mm × 23 mm, red arrows) and the upper soft,
thin rim (yellow arrows), respectively. Figure (B–D) is a direct view of the atrial septum from the left atrium perspective. (E). TrueVue Glass shows the
spatial path of the atrial shunt from left to right. 2D, two-dimensional; 3D, three-dimensional; LA, left atrium; RA, right atrium.
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fusion structure between the two valves (Supplementary Figure

S2). Although both 2D and 3D imaging modes can diagnose

BAV, the new imaging mode displays images that are closer to

real anatomy and will make communication with surgeons and

patients easier and more efficient. For complex mitral clefts,

observation of the position, number, shape, and size of the clefts

was significantly improved on the TrueVue Light and Glass

compared with traditional technologies; furthermore, Glass

imaging was more advantageous for irregularly shaped clefts

boundaries (Figure 3). In patients with pulmonary artery

stenosis, 2D, traditional 3DE, and TrueVue showed echo

enhancement, restricted opening of the pulmonary valve, and

the turbulence signal when blood passed through the stenotic

position. However, in the TrueVue Glass mode, the open state of

the flap was clearly displayed according to the light

transmittance, and because of the transparence of the

surrounding tissue, a segment of the right ventricular outflow

tract or the main pulmonary artery was revealed, enabling

identification of the location of the opening margin for the

pulmonary valve more easily and accurately (Supplementary

Figure S3). When CAVSD were suspected on 2DE, TrueVue

Light made it easier to determine the number of annulus, while

TrueVue Glass showed several bridge lobes of the common

atrioventricular valve (Figure 4). For patients with a rare

congenital DOMV, novel 3D images not only illustrated the

two-orifice structure, but also showed the thickness and

arrangement of the chordae and papillary muscles (Figure 5).

Pulmonary artery sling is difficult to be observed on 2D and

traditional 3DE image, and there was little improvement over

traditional 3DE when converting to TrueVue Light, TrueVue

Glass displayed an unprecedented visual perspective of the

abnormal left pulmonary artery (Figure 6). Finally, in the

patient with rare ventricular diverticulum, placing the light

source of TrueVue at the entrance of the diverticulum

significantly improved the clarity of the patient’s finger-

shaped diverticulum through the shadow effect when

compared with the image of traditional 3DE. Meanwhile,

TrueVue Glass shielded the structure around the

diverticulum, so that only the shape of the diverticulum was

directly indicated (Figure 6), with the addition of color Doppler,

FIGURE 3
Transesophageal echocardiography reveals multiple mitral valve clefts. (A). 2D echocardiography four-chamber view showing multiple loss of
echo in the anterior leaflet of mitral valve (MV) (the sizes of the clefts from A1 to A3 area are 3.1, 4.6, and 3.4 mm respectively, red arrows). The yellow
arrow points to the junction between the anterior and posterior leaflets. (B,C). Blood flows into the left ventricle during diastole (red arrows) and
regurgitation jets into left atrium during systole (red arrows) from the clefts. Yellow arrows represent the blood flow signals of the normal MV
orifices. (D–F). From a surgical perspective, traditional 3D, TrueVue Light, and TrueVue Glass show three irregular clefts (the range of the clefts from
A1 to A3 area are 2.5–5.4, 2.5–4.3, and 2.0–3.3 mm, respectively) from the perspective of the left atrium, and all are complete cleft to the annulus. 2D,
two-dimensional; 3D, three-dimensional; AO, Aorta; A1, A1 scallop of MV; A3, A3 scallop of MV.
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the blood flow in and out of the diverticulum with the cardiac

cycle clearly appears (Supplementary Movie S3).

Clinical rating and scoring survey results

Survey Data results showed that the novel 3D imaging

methods effectively increased the diagnostic confidence of

echocardiographers, enabled surgeons and patients to better

understand the details of lesions, promoted the efficiency of

communication, and improved the confidence of both doctors

and patients in treatment (p < 0.0001) (Table 1).

Discussion

TrueVue is a new, high definition 3D rendering mode whose

spatial image gradually transitions from light-pink to orange-red

to represent the surface to deep structures and simulate the real

texture of heart tissue, enabling a hierarchical and realistic view

of a variety of structures (Genovese et al., 2019; Kern et al., 2019;

Vainrib et al., 2019; Vairo et al., 2019; Merino Argos et al., 2020).

On the other hand, the recent novel TrueVue Glass intelligent

hides the myocardium and tissue surrounding the heart that

contains little blood automatically, transforming the image into a

translucent mode to achieve a clear spatial relationship between

the internal structure and the geometry of the heart chamber and

vessels structure, information that has never been provided by

conventional cardiac ultrasonic images after birth (Karagodin

et al., 2020). TrueVue’s raw stereo data acquisition and cutting

methods are similar to those of traditional 3D, no additional

operational steps are added. With TrueVue Light, that is, using a

touch screen to retract and/or rotate the TrueVue or TrueVue

Glass image and adding a movable virtual light source (Genovese

et al., 2019), the area of interest can be illuminated or darkened by

adjusting the observation angle and the position and depth of the

light source to improve the display ability and detail effects,

which enables doctors to have a clearer understanding of the

overall anatomical structure of the heart.

Although traditional 3DE can display some congenital

malformations, there remain shortcomings in the resolution of

small structures and the display of deeper organizational

structures (Ge, 2010; Khoshhal, 2013; Charakida et al., 2014;

Cossor et al., 2015). Therefore, the preoperative evaluation and

FIGURE 4
Transthoracic echocardiography shows complete atrioventricular septal defect. (A). The four-chamber view of a 2D echocardiography shows
only one atrioventricular valve (arrow), combined with a large defect of the lower part of the atrial septum and large ventricular septal defect. (B–D).
Traditional 3D, TrueVue, and TrueVue Glass show a single atrioventricular annulus and a group of atrioventricular valves open from the atrium view in
diastole. (E). TrueVueGlass shows the systolic phase with atrioventricular valve closed as a single annulus and four lobes from the perspective of
the atrium, which are left, right, anterior, and posterior bridge lobes (arrows), confirmed to be a complete atrioventricular septal defect deformity. 2D,
two-dimensional; 3D, three-dimensional. LA, left atrium; RA, right atrium; LV, left ventricle; RV, right ventricle.
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intraoperative guidance of CHD may require other relatively

expensive and time-consuming imaging techniques (Silvestry

et al., 2014; Jone et al., 2016; Isorni et al., 2020). The novel

TrueVue, TrueVue Light, and TrueVue Glass series of 3DE

overcome these deficiencies to some extent, providing more

detailed and accurate information for CHD both in the

preoperative diagnosis and postoperative follow-up.

Although the diagnostic value of traditional 3DE has been

confirmed for relatively common septal defects (Saric et al., 2010;

Charakida et al., 2014; Cossor et al., 2015; Hadeed et al., 2016),

TrueVue plus a light source makes not only the defect boundary

clearer, but also makes the range for the soft rim more visible. In

TrueVue Glass, adjusting the transparency highlights the origin

and extent of an atrial or ventricular shunt. For PDAs, TrueVue

Glass with color allows us to observe the pattern of abnormal

blood flow, especially when using the “dual”mode, where we can

see that the shunt bundle in the deep pulmonary artery may be

more extensive than the surface flow seen in the 2D view. These

images can help us judge the PDA typing and degree, because

even if the opening width is the same, the shunt of the “window-

type” may be much greater than that of the long “tube-type”

(Youssef et al., 2020; Sehgal et al., 2021).

For malformations of the thin cardiac valves, traditional 3D

images are closely dependent on the quality of 2D images;

however, while they are often used to evaluate the relatively

large and morphologically regular mitral valves (Sun et al., 2017;

Kalçık et al., 2021), their diagnostic value for pulmonary valves is

considered to be very limited and thus have not been routinely

used (Anwar et al., 2007; Valente et al., 2014). TrueVue Light

imaging is advantageous for the mitral and aortic valves.

Moreover, although the image quality is improved for the

pulmonary valve, the display is still restricted when the

quality of the original 2D image is poor, which is not enough

to provide sonographers with sufficient diagnostic confidence,

especially for infants or for TTE screening. Under these

circumstances, the application of TrueVue Glass may be

helpful, as its display of the location, number, width, and

overall morphology of the mitral valve multiple clefts and

pulmonary stenosis is significantly improved, and it provides

a clear surgical field of view. In endocardial cushion

malformation, it is often difficult to distinguish between

“transitional” or complete “single common annulus” on 2D

ultrasound (Nina et al., 2019). TrueVue Light imaging makes

it quite easy to determine the number of annulus and the

FIGURE 5
Transthoracic echocardiography of the short-axis view of the mitral valve (MV) showing the double orifice MV (arrows). (A). 2D display of
asymmetric orifices; (B,C). Traditional 3D and TrueVue show the spatial shape of the orifices; (D). TrueVue shows the abnormal multiple papillary
muscles and the tendons connected to them from the perspective of the left ventricle; the red dotted arrows represent the additional structure
corresponding to the small orifice, and the yellow dotted arrows represents the additional structure corresponding to the large orifice. TrueVue
Glass (E) plus color Doppler (F) directly visualizes the two orifices of the MV from the left atrium side (surgical view) and the two blood streams
entering the left ventricle during diastole. The red and yellow solid line arrows in (A–C,E,F) indicate two asymmetric orifices of MV, respectively. 2D,
two-dimensional; 3D, three-dimensional.
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morphology of the atrioventricular valve. The shape and outline

of the thin bridge leaflet in CAVSD can be clearly displayed when

TrueVue Glass is also applied. DOMV is often accompanied by

multiple sets of papillary muscle malformations (Karas et al.,

2003; Erkol et al., 2009). Traditional 2D and 3D ultrasound can

exactly diagnose the existence of the double orifice, but it is often

difficult to display the additional structure of the mitral valve

apparatus. The TrueVue Light more clearly illuminates the

structural characteristics connecting the chordae tendineae to

the corresponding papillary muscles.

This is exactly the issue with 3D rendering techniques: they

often “look good” but misrepresent the anatomic details;

especially with thin structures. The new Glass imaging mode

has obvious visual enhancement effects on the ability to display

thin structures, such as the atrial septum and thin valves, to a

certain extent, improving the problem of false echo loss in

traditional ultrasound.

Rare pulmonary artery sling imaging has certain

difficulties in 2D and traditional 3DE, usually need time-

consuming and laborious to confirm the diagnosis through

the 3D reconstruction of enhanced computed tomography

(CT), and the children under examination are not easy to

cooperate well (Sezer et al., 2019; Xu et al., 2020). TrueVue

Glass has an obvious advantage in the diagnosis of pulmonary

artery sling, and it is the first time that an innovative 3D

ultrasound technology has been used to diagnose such rare

cardiovascular malformations. Rare ventricular diverticulum,

with its narrow entrance and long shape, may be easily missed

or misdiagnosed as a paracardiac vessel on 2D ultrasound

(Sozzi et al., 2017; Wang et al., 2021). The TrueVue Light

highlights the interior space features of the diverticulum.

TrueVue Glass further presents the outer contour of the

diverticulum directly. Previously, this contour could only

be seen with 3D reconstruction of enhanced CT.

Because the content and features of the diagnostic concerns

of different diseases are significantly different when applying

ultrasound imaging, we will ask more targeted questions for

different diseases during the questionnaire process, also because

the diagnostic advantages of these new 3D imaging technologies

will be more obvious for certain types of CHD. At the same

time, considering that the patient’s feelings are equally

important in the evaluation and treatment of CHD,

including a full understanding of the characteristics and

extent of their disease and the surgical procedure explained

by the doctor, we ask some of the patients or their guardians to

observe the conventional and new 3D display of the lesion

through the doctor’s explanation of the characteristics of their

disease. However, since they are not professionally trained in

medicine, they will only answer a small part of the questions

related to their medical procedure.

FIGURE 6
Transthoracic echocardiography shows pulmonary artery sling and right ventricular diverticulum. (A–D). Transthoracic echocardiography
showing the pulmonary artery sling on the short-axis section of the great artery. 2D, traditional 3D, TrueVue Light, and TrueVue Glass show abnormal
orientation of the left pulmonary artery, which originate from a lower position, bypassing the rear of the trachea and then reflexed to the left, with
local stenosis showing increased blood flow speed (arrows). (E–H). 2D, traditional 3D, TrueVue Light, and TrueVue Glass show the diverticula
(the end-systolic volume is 15 mm × 9 mm × 9 mm, and the end-diastolic volume is 24 mm × 14 mm × 14 mm, arrows) at the apex of the RV
(arrows). (I). TrueVue Glass with color Doppler shows that blood in the right ventricle enters the diverticulum during diastole (left), and blood flow in
the diverticulum returns to the right ventricle during systole (right). 2D, two-dimensional; 3D, three-dimensional; Ao, aorta; PA, pulmonary artery;
LPA, left pulmonary artery; RPA, right pulmonary artery; RV, right ventricle.

Frontiers in Physiology frontiersin.org09

Sun et al. 10.3389/fphys.2022.1000007

31

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1000007


Although the true resolution of the above-mentioned new series

of 3D images has not been improved digitally, these new imaging

modes plus light and shadow effects have significantly improved the

visual effects and diagnostic efficiency of the characteristics of CHDs.

Although traditional 2D and 3DE can also help us complete most of

the ultrasonic diagnosis of CHD, it is time-consuming and labor-

intensive, especially in some special diseases. The innovative TrueVue

combined with Light and Glass 3D imaging technology provides us

with more reliable reference information. In particular, the layered

sense by the photorealistic light source addition, and the outer

contour imaging of the heart cavity displayed by the application

of Glass (such as the shape of the left atrial appendage (Karagodin

et al., 2020) and the rare cardiac diverticulum, etc.) are new image

forms and diagnostic information that have never been obtained by

traditional postpartum cardiac ultrasound diagnostic technology,

which improve and correct the diagnosis more efficiently.

Limitations

The TrueVue, TrueVue Light, and TrueVue Glass series of 3D

cardiac ultrasound technologies have achieved satisfactory results in

some research fields, but there are some limitations and deficiencies.

This innovative series of 3DE improved the visual clarity of image

details to a certain extent, but in cases where the 2D image was very

dissatisfied displayed, it was still difficult to obtain a satisfying 3D

image, especially in TrueVue mode. Moreover, the application of

TrueVue plus light and Glass have requirements for the operator,

who should have mastery of the overall and partial anatomy of the

heart and be able to apply the tools of the machine for image

processing. It also requires the operator to be an “artist,” able to

flexibly use the visual effects produced by the light source to display

the abnormal anatomical structure. Therefore, a certain learning

curve to obtain optimal rendered images is required, and for doctors

with traditional 3DE operation experience, it is easy to master the

methods and skills of the new series of 3DE operations. Furthermore,

the extensive post-processing increases the possibility of artificial

creation or loss of defects based on variations in both scan quality and

post-processing technique. At present, as the 3DE of the TrueVue

series, especially TrueVue Glass, is a recently launched novel tools,

there are few published reports about them. In addition, although our

research is one with the largest sample size reporting on the

application of the above-mentioned new tools, it discusses limited

types of CHDs. Therefore, further studies are needed to explore their

application value and experience.

Conclusion

This study showed the excellent applicability of TrueVue,

TrueVue Light, and TrueVue Glass as diagnostic tools for

patients with suspected CHD. Compared with 2D and

traditional 3DE, the TrueVue, TrueVue Light, TrueVue Glass

series of novel 3DE technologies’ display of abnormal structures

in patients with CHD more closely simulate real anatomical

features and make the outer contours of the heart chambers, the

thin valves and blood flow in the lumenmore comprehensive and

clearer. These technologies provide us with a wealth of evidence

for the diagnosis and treatment of CHD and are a revolution in

the ultrasonic diagnosis method of CHD.
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SUPPLEMENTARY FIGURE S1
The diagnosis of patent ductus arteriosus by transthoracic
echocardiographic short-axis section of the great artery. . 2D, traditional
3D and TrueVue Light plus color Doppler showing the shunt from the
aorta to the main pulmonary artery (3 mm, arrows). (D). TrueVue Glass
“dual volume” shows the ventral and dorsal flow of the pulmonary artery,

with shunt signals from the ducts more dorsal in space (arrows). 2D,
two-dimensional; 3D, three-dimensional.

SUPPLEMENTARY FIGURE S2
Transesophageal echocardiography showed bicuspid aortic valve
malformation. . 2D, traditional 3D, TrueVue Light, and TrueVue Glass
show the fusion crest by the left coronary and non-coronary leaflet
(arrows) from the left ventricular outflow tract side perspective,
respectively. 2D, two-dimensional; 3D, three-dimensional.

SUPPLEMENTARY FIGURE S3
. 2D transthoracic echocardiographic short-axis view of the great artery
demonstrating a marked acceleration of blood flow (arrow) through the
pulmonary valve. (B). Conventional 3D imaging from the right ventricular
outflow tract demonstrates a trilobed pulmonary valve with thickened fusion
at the valve tip (arrow). (C). TrueVue shows the thickened tip of the
pulmonary valve (arrow), but the thin lobes show pseudo-echogenic loss.
(D). TrueVueGlass shows thin valves and inadequately opening valves (arrow)
during systole. Figures (B-D) are from the perspective of the right ventricular
outflow tract. 2D, two-dimensional; 3D, three-dimensional.

SUPPLEMENTARY MOVIE S1
TrueVue Glass plus color Doppler shows left atrial blood flow through the
atrial septal defect (arrow) into the right atrium on two-atrial section of
transesophageal echocardiography. LA, left atrium; RA, right atrium.

SUPPLEMENTARY MOVIE S2
The TrueVue Glass plus color Doppler shows the flow from the aortic
arch into the pulmonary artery through an open ductal artery (arrow) on
supra sternal fossa section by thoracic echocardiography. AoA, aortic
arch; PA, pulmonary artery.

SUPPLEMENTARY MOVIE S3
The TrueVueGlass plus color Doppler shows blood shuttling between the
right ventricle and diverticulum (arrow) during the systolic and diastolic
phases of the heart. RV, right ventricle.
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Cardiovascular disease is currently one of the most important diseases causing

death in China and the world, and acute myocardial infarction is a major cause

of cardiovascular disease. This study provides an analytical technique for

predicting the prognosis of patients with severe acute myocardial infarction

using a support vector machine (SVM) technique based on information gleaned

from electronic medical records in the Medical Information Marketplace for

Intensive Care (MIMIC)-III database. The MIMIC-III database provided

4785 electronic medical records data for inclusion in the model

development after screening 7070 electronic medical records of patients

admitted to the intensive care unit for treatment of acute myocardial

infarction. Adopting the APS-III score as the criterion for identifying

anticipated risk, the dimensions of data information incorporated into the

mathematical model design were found using correlation coefficient matrix

heatmaps and ordered logistic analysis. An automated prognostic risk-

prediction model was developed using SVM, and the fit was evaluated by 5×

cross-validation. We used a grid search method to further optimize the

parameters and improve the model fit. The excellent generalization ability of

SVM was fully verified by calculating the 95% confidence interval of the area

under the receiver operating characteristic curve (AUC) for six algorithms (linear

discriminant, tree, Kernel Naive Bayes, RUSBoost, KNN, and SVM). Compared to

the remaining fivemodels, its confidence interval was the narrowest with higher

fitting accuracy and better performance. The patient prognostic risk prediction

model constructed using SVM had a relatively impressive accuracy (92.2%) and

AUC value (0.98). In this study, a model was designed for fitting that can

maximize the potential information to be gleaned in the electronic medical

records data. It was demonstrated that SVM models based on electronic

medical records data can offer an effective solution for clinical disease

prognostic risk assessment and improved clinical outcomes and have great

potential for clinical application in the clinical treatment of myocardial

infarction.
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1 Introduction

Cardiovascular disease is currently one of the most critical

diseases causing death and disability worldwide, and it places a

significant burden of disease on the population around the world.

(Vos et al., 2020). Acute myocardial infarction is ischemic

necrosis of myocardial cells and can occur during the natural

course of coronary atherosclerosis as an acute coronary

syndrome (Reed et al., 2017). As one of the most common

cardiovascular diseases, myocardial infarction (MI) is a

condition of widespread myocardial necrosis caused by

interruption of coronary artery blood supply, resulting in

persistent ischemia in the blood supply area, usually

complicated by heart failure, heart rupture, and cardiogenic

shock. In recent years, the incidence of MI has rapidly

increased, and the age composition of MI patients is showing

a younger trend, seriously threatening the life and health of

human beings. (R. Nasimov et al., 2020). It is estimated

that >3 million people suffer an acute ST-segment–elevation

MI (STEMI) and >4 million people suffer a non–ST-

segment–elevation MI each year. (G. A. Roth et al., 2020).

Patients with MI are also at progressively greater risk of re-

infarction after discharge from the hospital, and re-infarction or

multiple infarctions are a major cause of death in patients with

MI (Mal et al., 2019). As a result, it is critical to minimize the

mortality rate of MI patients as well as the rate of re-infarction

after discharge from the hospital (Nordenskjöld et al., 2019). An

accurate evaluation of the prognosis of MI patients may assist

health care professionals in devising more appropriate treatment

and care plans and in providing more reasonable diagnostic and

rehabilitation care in order to enhance the survival rate of MI

patients and their quality of life (Than et al., 2019).

The flourishing development of computer technology has

played a significant role in enhancing modern health care

management, optimizing the allocation of resources,

improving efficiency, and reducing medical costs since the

third industrial revolution and the gradual maturation of the

Internet in the new era. Machine learning algorithms are

constantly evolving and have shown effective in medical

prediction (Johnson et al., 2021). Machine learning–based

predictive models can help less experienced doctors diagnose

diseases and improve survival rates by overcoming the drawbacks

of relying solely on doctors’ personal subjective experience (He

et al., 2022). Prognostic predictive models can also assist health

care professionals in developing more reasonable care plans and

improving survival rates. Furthermore, electronic medical

records (EMRs), which contain medical data, have good

guarantee, especially when it comes to using data mining

techniques to analyze and process pertinent medical records

data (Okamoto et al., 2020). Compared to traditional paper

medical records, EMRs can record more information and are

easier to keep. As a result, more and more hospitals are choosing

to use EMRs to preserve patient-related information. Through

appropriate data mining methods, the large amount of

information contained in EMRs can be extracted more easily

(Ayaad et al., 2019). Machine learning can be used to efficiently

use information from electronic medical records in order to

achieve a more personalized medicine perspective (Latif et al.,

2020).

In this paper, we propose an approach based on a support

vector machine (SVM) technique, which can overcome the

problems of non-linearity, high dimensionality, and local

minima (Hossain et al., 2021) and has a good generalization

ability. The support vector machine approach is based on the VC

dimensional theory of statistical learning theory and the principle

of structural risk minimization, which seeks the best compromise

between model complexity and learning ability based on limited

sample information in order to obtain the best generalization

ability. SVM requires a relatively small number of samples, which

is good at coping with the situation of linear indistinguishability

of sample data, and also can effectively avoid overfitting to a

certain extent. Compared to algorithms such as ordered logstic

regression, which are most commonly used in traditional

prediction methods, SVMs are structured and stable and have

a high generalisation capability. We developed an algorithm that

can be used to find out the relationship between the physiological

indicators of MI patients and their prognosis using case data

screened from the Medical Information Marketplace for

Intensive Care (MIMIC)-III database. The model may be used

to forecast the prognosis of MI patients, and it can be used in

conjunction with the Acute Physiology Score III (APS-III) to

precisely assess the prognosis of MI patients (Huang et al., 2021),

assuring its dependability. The prediction model constructed in

this study can be applied to clinical research. At the same time,

however, it can also provide assistance to doctors during

diagnosis; may improve their work efficiency; and could

alleviate the current situation of medical resources tension in

various hospitals, which is of great significance to the treatment

and prognosis of MI Figure 1.

The paper is structured as follows. Section 2 of this paper

describes the public database required to conduct this experiment

and the application of SVM for predictive model building.

Section 3 focuses on the evaluation of the model effects in

this study. Section 4 of this study synthesizes the current state

of research at home and abroad, and provides an objective

discussion based on the areas for improvement of this

experiment. Section 5 of this study draw a conclusion of the

paper and provides future research directions.
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2 Materials and methods

2.1 Data sources

In this study, data analysis and model construction were

performed based on sample data from the MIMIC-III database

(Wang et al., 2020; Goldberger et al., 2000). In recent years, EMRs

have gradually replaced traditional paper charts for recording

patient information and have many advantages, such as ease of

storage, accuracy of data, and ease of extraction and analysis.

MIMIC-III is a large, freely accessible single-center database

(Johnson et al., 2016). Developed at the Massachusetts

Institute of Technology, it integrates clinical data from

patients admitted to the intensive care unit (ICU) at Beth

Israel Deaconess Medical Center and is widely used by

researchers internationally (Singh and Mayo, 2018; Scherpf

et al., 2019).

To protect the security of private patient data, the MIMIC-III

database is de-identified using structured data cleansing and date

conversion in line with United States Health Insurance

Portability and Accountability Act (HIPAA) requirements. All

identifiable data element fields listed in HIPAA, such as patient

name, phone number, address, and date, are removed

throughout the de-identification process for structured data.

The removal of protected health information, such as

diagnostic reports and medical prescriptions, from strings is

completed using a de-identification system based on extensive

dictionary look-ups and regular expression patterns. The

MIMIC-III database is available as a collection of comma-

separated value files and not only has a large sample size and

variety of samples but also good reliability (Gentimis et al., 2017).

The researchers responsible for data collection in this project

completed a HIPAA-required Protecting Human Research

Participants course, signed a data use agreement, and passed

the PhysioNet accreditation.

2.2 Data acquisition and filtering

To select patients for inclusion, We searched the MIMIC-III

database using the keyword “MIMICiii.d_icd_diagnoses where

long_title like ’%yocardial infarctio%’ in the table diagnoses_icd.”

We obtained information on all patients admitted to the ICU due

to a MI from the MIMIC-III database. We retrieved materialized

views MIMICiii.apsiii to obtain a prognostic evaluation of the

patient in question. We also retrieved tables of admissions, chart

events, laboratory events, microbiology events, and prescriptions

to obtain patient-related monitoring data. A total of

7070 relevant data were gathered.

Patients with a high number of missing indicators or EMR

data that were incomplete, patients who died while receiving in-

hospital care, and patients who suffered a huge number of

problems or for whom an MI was just one of many

conditions were excluded. A total of 4785 relevant data were

finally included.

2.3 Data content

Relevant personal information about the patient included

length of stay, time treated in the ICU, height, weight, type of

health insurance the patient had, and ethnicity. Patient

laboratory tests of interest included glucose, triglycerides,

N-terminal prenatremic peptide, potassium, platelets, total

cholesterol, troponin I, high-density lipoprotein, creatine

kinase, troponin T, low-density lipoprotein, C-reactive protein,

and creatine kinase isoenzyme. We also considered the following

patient pathogenic microbial infections: number of

Staphylococcus aureus flora, number of Escherichia coli flora,

and number of Streptococcus pneumoniae flora.

Finally, we recorded the total dose of different drugs

administered during treatment, including aspirin, heparin,

atorvastatin, mycoplasma, and nitroglycerin. The prognostic

model score for patients was the APS-III score.

2.4 Details of the proprietary software

In this study, the software used to construct the model was

MatLab (R2021a 9.10.0.1602886; The MathWorks, Inc. Natick,

MA, United States). To describe the correlation between features,

a correlation coefficient matrix heatmap was drawn using the R

language (version 4.1.3; The R Foundation for Statistical

Computing, Vienna, Austria).

2.5 Theory/calculation

2.5.1 Prognosis evaluation method
The concept of objective evaluation of critically ill patients’

conditions has become widely accepted by clinical workers alike

as an important tool in their daily work, and various scores were

widely used in clinical applications of this study. In the MIMIC-

III database, in addition to the APS-III scale (Knaus et al., 1991)

there exist such scales as the Oxford Acute Severity of Illness

Score (OASIS) (Holland and Moss, 2017), Sepsis-related Organ

Failure Assessment (SOFA) (Lambden et al., 2019), Logistic

Organ Dysfunction Score (LODS) (Marshall, 2020), Scale for

Assessing Positive Symptoms (SAPS) (Le Gall et al., 1993), and

many other scales used in critical care medicine.

Compared to the above-mentioned scales, the APS-III

scale—as one of the widely used tools for critical illness

assessment—has been shown in many studies to be

significantly associated with patient survival evaluation

(Pathmanathan, 2005). The APS-III scale was designed to

reflect individual differences in acute physiological status, age,
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and chronic disease status (Godinjak, 2016; Sadaka et al., 2017).

Excellent predictive results have been achieved in evaluating the

effectiveness of medical measures, predicting patient prognosis,

making predictions about the risk of death in individuals and

groups, classifying patients according to their condition, and

comparing treatment outcomes (Moreno and Nassar Júnior,

2017).

The APS-III scale has been widely used in the medical

community as an important tool for predicting the risk of

death prediction in ICU patients. In a recent study on

prognosis prediction of ICU patients (Zhang et al., 2022), the

results showed that the independent receiver operating

characteristic curve (ROC) curve results of the APS-III scale

were superior compared to those of the SAPS-II, LODS, OASIS,

and SOFA scales, indicating that the former has a more

promising accuracy in the prognosis prediction of critically ill

patients. Thus, the results of the APS-III scale were used to

evaluate the prognosis of patients in this study Figure 2.

2.5.2 Feature extraction and analysis
Redundant or less relevant variable features often exist in

multidimensional data, which affects the accuracy of machine

learning output (Ho et al., 2019). Feature selection can solve this

drawback, reduce the burden of machine learning, and improve

the generalization performance, prediction performance and

operational efficiency of the algorithm (Chandrashekar and

Sahin, 2014).

Correlation analysis between features and APS-III can select

features that are meaningful for classification prediction results

from all features of sample data, so as to exclude the interference

of chance factors in the data. Therefore, in this paper, the

correlation coefficients between features and APS-III are

calculated and the heat map of the correlation coefficient

matrix is drawn to investigate whether there is a correlation

between features and APS-III, and the direction and magnitude

of the correlation relationship (Haarman et al., 2015).

In this study, first the corrplot package was installed and

imported in R language and a dataset in csv format was loaded,

then the calculation of the matrix of correlation coefficients

between all features was started and two decimal places were

retained, and finally the matrix of correlation coefficients was

plotted using the corrplot package to create a heat map of the

correlation coefficient matrix for all features (as in Figure 3).

In the correlation coefficient matrix heatmap, each number

represents the correlation coefficient between the

corresponding features, and the color shades of the

corresponding squares also symbolize the size of the

correlation coefficient, i.e., the darker the color, the larger

the correlation coefficient, and vice versa. The color of the

squares is related to the direction of correlation, with blue

representing a positive correlation and red representing a

negative correlation. In this study, APS-III was used as a

predictor of patient prognosis evaluation. The correlation

coefficients between “Length of hospital stay”, “Platelets”,

“C-reactive protein”, “Creatine kinase isoenzyme”,

“Creatine kinase”, “Length of stay in ICU”, “Triglycerides”,

“Total dose of atorvastatin “, “total nitroglycerin dose”,

“Streptococcus pneumoniae” and APS-III scores were all

low, all <0.2. These indicators were removed in the later

model construction. Indicators included in the final model

construction were: blood potassium, blood glucose, total

cholesterol, troponin I, troponin T, HDL, LDL, N-terminal

prenatremic peptide, height, weight, E. coli, total aspirin dose,

total mycoplasma dose.

2.5.3 SVM
Based on statistical learning theory and the notion of

structural risk minimization, Vapnik and others at AT&T Bell

Labs introduced SVM for classification and regression

investigations (Vapnik, 2000). SVM classifies data by

determining the optimum hyperplane for successfully

separating a data point class from another (Figure 4). By non-

linearly mapping the input space to the high-dimensional feature

space, the kernel function can make classification more

convenient and effective. The Gaussian radial basis kernel

function SVM classification ability is significantly superior to

other approaches in the face of non-linear classification issues

(Liu et al., 2012), and using SVM on this basis can provide more

scientifically accurate results.

The kernel parameter (γ) is the only variable parameter in

the space mapped by the Radial Basis Function kernel function,

i.e., the value of γ directly influences the distribution of sample

data in the kernel space; hence, the optimal value of γ

substantially affects the model fit accuracy (Padierna et al.,

2018).

The penalty term C is used to limit the model’s complexity

and accuracy, i.e., to adjust the learning machine’s confidence

range to the empirical risk in a specific feature subspace, so that

the learning machine can generalize as well as possible. The

greater the C value, the better the model fits, although this does

not guarantee generalization (Tharwat, 2019). In each subspace,

there is only 1 optimal penalty term for constraining the entire

model; nevertheless, in order to attain high accuracy, this single

element must be examined in isolation.

The basis of SVMs is the structural risk minimization

(SRM) principle (Shawe-Taylor et al., 1998). The core of the

SRM principle is to reduce the complexity of the learning

machine, that is the Vapnik-Chervonenkis dimension (VC

dimension), while maintaining classification accuracy

(experience risks), which allows the expected risk of the

learning machine to be controlled over the entire sample

set (as in Figure 5). Because the SRM principle’s premise is for

a specific subspace in the feature space and the data contain

different divisions in the non-stop subspace, there are

different optimal SVM algorithms in different subspaces;

therefore, the SVM kernel parameters and the penalty term
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C must be optimized at the same time. In this study, we used a

grid search approach to discover the optimum combination

of C and hyperplane, then produced the best-fitting SVM

model.

2.5.4 Algorithm steps
SVM is a new type of machine learning algorithm. The ideal

hyperplane fulfills the following inequality for a given sample set

of variables (xi, yi) i = 1,2,. . .,n. In the case of the input variable

FIGURE 1
The process of acquiring data from a database and constructing a predictive model.

FIGURE 2
APS-III scale scores for patients included in the study.
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xi ∈ Rd and the output variable yi ∈ {−1, 1}, φ(·) is a nonlinear

function, the optimal hyperplane satisfies the following

inequality:

yi[wTφ(xi) + b]≥ 1 − ξi (1)

where wT is a multidimensional vector, b is a constant, and ξi is a

slack variable related to the classification error. To maximize the

distance between the 2 categories, the above inequality can be

rewritten as:

min⎡⎣
1
2
|w|2 + C∑

n

i�1
ξ i⎤⎦ (2)

where C is a penalty term that adjusts the relaxation variable ξi
to determine the classification error and also the

classification interval 1
2|w|2. For non-linear indistinguishable

sample points, a kernel function is introduced to map

the sample points to a higher dimensional

space, thus achieving an effective classification of the

sample points.

The radial basis kernel function is expressed as follows:

K(x, x′) � exp( −
����x − x′

����2

2σ2
) � exp( − γ

����x − x′
����
2
) (3)

where the radial basis function (RBF)kernels of two samples, x

and x′, are represented as eigenvectors in some input space; σ is

the bandwidth of the Gaussian radial basis kernel function; γ is

the parameter of the Gaussian radial basis kernel function; and

exp denotes the exponential function with natural constant e as

the base. Also, γ takes the general values

γ � {2−15, 2−14, . . . , 215}. In this study, by the grid search

method, γ is substituted sequentially into the following

equation:

FIGURE 3
Thermalmatrix diagram of correlation coefficients for each feature. Description of the abbreviations in Figure 3: K (blood potassium), GLU
(blood glucose), TIME (length of hospital stay), PLT (platelets), TC (total cholesterol), TnI (troponin I), TnT (troponin T), LDL (low-density lipoprotein),
Nt. proBNP (N-terminal prenatriuretic peptide), CRP (C-reactive protein), CK. MB (creatine kinase isoenzyme), CK (creatine kinase), ICU (patient’s
time in ICU), HEIGHT (patient’s height), WEIGHT (patient’s weight), HDL (high-density lipoprotein), APC (total aspirin dose), TG (triglycerides),
E.coli (number of Escherichia coli flora), Atorvastatin (total atorvastatin dose), NS (total bacteriocin does), TNG (total nitroglycerin dose), SP
(Streptococcus pneumoniae).
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D(c1 ,c2) � ‖m1 −m2
2‖

� 1
l21
∑
l1

i�1
∑l1

j�1 exp( − γ
����x(1)

i − x(1)
j

����
2
) + 1

l22
∑
l2

i�1
∑l2

j�1 exp(

− γ
����x(2)

i − x(2)
j

����
2
) − 1

l1l2
∑
l1

i�1
∑l2

j�1 exp(

− γ
����x(1)

i − x(2)
j

����
2
)

(4)

The grid search method is an exhaustive search method

that divides all of the parameters γ and C to be searched into

a grid of the same length in a given space, traverses each

grid, and then writes a program to optimize the SVM model

using MatLab to find the best combination of parameters

with the smallest mean square error (Fayed and Atiya, 2019).

Compared to the traditional exhaustive search method, this

method is more accurate and easier to use when looking for

the best combination of parameters. This work involves the

use of cross-validation to evaluate the classification accuracy

of the model created for each parameter combination in

order to improve its fitting effect and acquire a better

generalization capability.

In Formula (4),D(c1 ,c2) is the distance measure obtained from

measure learning. The optimal kernel parameter is that which

corresponds to the largest kernel space mean distance where m1

and m2 are the feature space centroid vectors for the first and

second classes of data, respectively. The formula for the

particular derivative is as follows:

m1 � 1
l1
∑
l1

i�1
Φ(x(1)

i ) (5)

m2 � 1
l2
∑
l2

i�1
Φ(x(2)

i ) (6)

In conclusion, the optimum parameter combination for the

following tests in this study is a box constraint level of 30 and a

kernel scale value of 250. The soft interval size in SVM, which is

stated as the penalty term (C) in RBF, is connected to the box

constraint. The lower the value, the lower the penalty, which

impacts the model fit, and the higher the value, the higher the

penalty, which reduces the model accuracy. It is simple to know

that KernelScale �
�
1
γ

√
because KernelScale � �

2
√

σ (σ is the

bandwidth) and Eq. 3 are combined. As a result, the kernel

parameters dictate the value of the kernel scale, which affects the

model’s accuracy.

3 Results

By plotting the correlation coefficient matrix heatmap of all

features, the researchers removed indicators with low

correlations with APS-III scores. After ensuring the relevance

of the data, validation of the accuracy of the model is equally

essential. The 5× cross-validation method was used to verify the

model accuracy in predicting the prognosis of acute MI disease.

The samples in the dataset were separated into five groups, with

four groups used to train the model and one used to test it. Five

FIGURE 4
SVM schematic.

FIGURE 5
Schematic diagram of the principle of structural risk
minimization.
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rounds of the above experiments were run, and the average value

of the five training results was used to determine the model’s

accuracy.

The Receiver Operating Character curve (ROC curve), with

the false-positive rate (FPR) as the horizontal axis and the true-

positive rate (TPR) as the vertical axis, is a commonly used model

evaluation metric in the medical field. The area under the ROC

curve, or AUC (Area Under ROC Curve), is a visual

representation of the model’s performance. The number of

AUCs is a measure of the model’s overall quality, with a

greater AUC indicating better model performance. To verify

the effectiveness of the model fit in this study, we plotted the

linear discriminant, support Vector Machine (SVM) tree, Kernel

Naive Bayes, random undersampling boost (RUSBoost), and K-

NearestNeighbor (KNN) ROC curves to show the performance

of the currently selected training classifiers. As shown in Figure 6,

in terms of model classification performance, the SVM algorithm

obtained the ROC curve closest to the upper left corner and the

largest AUC with an AUC of 0.97598. Kernel Naive Bayes has the

second highest AUC value of 0.96213, which proves that the

algorithm is also able to meet certain clinical needs in terms of

model fitting. However, the best performing model was still the

prognostic prediction model constructed by SVM.

For data with a large sample content, the AUC approximates a

normal distribution, so the 95% confidence interval (CI) for the AUC

can be calculated as described in the CI of the sampling distribution.

The CI is equal to C ± se − zcrit , where zcrit is the two-tailed

critical value of the standard normal distribution.

se �
�����������������������
q0 + (n1 − 1)q1 + (n2 − 1)q2

n1n2

√

n1 and n2 are the sizes of the 2 samples, respectively.

q0 � AUC(1 − AUC) q1 � AUC

2 − AUC
− AUC2

q2 � 2AUC2

1 + AUC
− AUC2

The DeLong test is a relatively common method of AUC

significance test. The principle is as follows. Taking two different

models as an example, let the two AUCs be A1 and A2

respectively.

1 First calculate the difference between the two AUC values.

θ � A1 − A2

2 Calculate the variances var (A1) and var (A2) of A1 and A2,

and the covariance cov (A1, A2) of the two.

3 Calculate the Z-value

Z � θ

var(A1) + var(A2) − 2cov(A1, A2)

4 Finally, take the Z-value distribution as a normal

distribution, do a significance test, and get the P value.

If the p value is less than 0.05, it means that there is a

significant difference between the two AUCs, which is

statistically significant, otherwise, it is not significant.

FIGURE 6
ROC curves for the models.
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In this study, we had a total sample of 4785 cases and used

5× cross-validation to calculate the values of AUC for linear

discriminant, tree, Kernel Naive Bayes, RUSBoost, KNN, and

SVM, as shown in Figure 7 Using this method, it can be

concluded that the algorithm with the highest value of AUC

and the narrowest CI is the SVM algorithm. As shown in

Table 1, the DeLong test was performed on the ROC of SVM

and the ROC of other algorithms, and the obtained p-values

were all less than 0.05, indicating that there was a significant

difference between the AUC of the SVM algorithm and the

use of other algorithms, which was statistically significant,

further indicating that the model built using the SVM

algorithm has better accuracy. The AUC values for linear

discriminant, tree, Kernel Naive Bayes, RUSBoost, KNN, and

SVM increased sequentially, indicating that the predictive

ability of each model increased sequentially and the CI

decreased sequentially, which implies that there is a

decreasing uncertainty in the prognostic effect of each

model in predicting patients with MI. Therefore, we can

conclude that when using the existing dataset for

prediction model construction, the prediction model

constructed by SVM has a more promising fit than the

remaining five algorithms.

4 Discussion

The scale-based assessment of patient condition is one of

the foundations of our project, but this study has considerable

advantages over scale-based assessment. Compared to the

current predictive model, scales are time-consuming and

difficult to obtain when used alone and can even more

difficult to obtain if a patient has specific conditions, such

as hearing or vision loss or speech impairment, making it

difficult for health care professionals to accurately determine a

patient’s condition in a timely manner (Arnetz et al., 2008). In

this study, using the obtained scales as the basis for the

prognosis of the model can largely reduce the process of

obtaining the patient’s scale scores and can present the

findings in a dynamic manner to obtain more accurate and

rapid predictions, which can reduce the workload of the

clinical staff and help physicians to accurately determine

the progress of the disease, thus assisting them in making

individualized adjustments to the treatment plan. In other

words, the present system will help doctors to make

personalized adjustments to treatment plans.

In this study, the biomarkers of our prognostic prediction

model are widely used clinically. This may ensure the general

applicability of our study results and provides a useful adjunct for

clinical treatment. Due to the combination of machine learning

and medicine, the large, complex, and multidimensional datasets

present in EMRs can be analyzed. For instance, Lee et al. (2021)

developed a deep learning–based method used to screen fundus

FIGURE 7
Visual overview of the AUC and 95% CI values for each model.

TABLE 1 Conclusion of DeLong test of SVM with other five classifiers.

Classifier Z-value p-value

KNN 16.536 <2.2e-16
RUBoost 34.198 <2.2e-16
Naïve Bayes 10.448 <2.2e-16
Tree 9.0918 <2.2e-16
Liner Discriminant 28.143 <2.2e-16
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abnormalities in patients with high specificity and sensitivity. In

addition, Zhao et al., using artificial intelligence–based

algorithms combined with 12-lead electrocardiogram (ECG)

data, developed an accurate early warning system based on

ECG data, and the sensitivity of the model was 99%. They

also proposed a wearable ECG vest, and smartphones and

real-time warning systems coupled with an automatic

diagnosis will greatly improve the diagnosis rate for STEMI

patients and reduce patient delay times (Zhao et al., 2020).

In recent years, in the context of the era of big data in

healthcare, with the development of artificial intelligence

technology, more and more researchers are using machine

learning, such as K-NearestNeighbor (KNN), the Bayes

algorithm, and the decision tree to build predictive models.

The KNN method is a lazy learning method that uses instances

to discover the K training dataset that is the most similar to the

unknown data. Its sample pool size is necessary, which severely

restricts its practical application if the sample set is complex or

if training samples are not available (Zhang and Zhou, 2007).

The Bayesian classification algorithm is a probabilistic

statistics-based classification method that considers all

qualities and theoretically yields the best solution with the

least amount of error. However, the accuracy of its

classification may be affected because Bayes’ theorem

presupposes that the effect of an attribute value on a given

class is independent of the values of other attributes, which is

frequently false (Manino et al., 2019). A decision tree is a tree-

like instance-based inductive classification algorithm that can

classify and predict at the same time. However, due to its

extreme bifurcation, it is prone to overfitting, and the error can

rapidly increase when there are too many categories (Myles

et al., 2004). In contrast, SVM, as a supervised learning

algorithm, has a rigorous mathematical theoretical support,

possesses good interpretability, and does not rely on statistical

methods to some extent. SVM’s final decision function is

determined by only a few vectors, has no significant

correlation with sample space dimensionality, and can

identify support vectors that are critical to the project

(Noble, 2006). SVM has been widely used by the

international medical community in recent years to solve

the classification regression aspects of biological data, such

as in the prognosis prediction of patients with serious diseases

like laryngeal cancer (Chen et al., 2007), prostate cancer (Çınar

et al., 2009), hepatocellular carcinoma (Ali et al., 2021), and

renal cell tumors (Giulietti et al., 2021).

Past studies (Than et al., 2019; Doudesis et al., 2022) used a

single physiological condition as an indicator to assess the

prognosis of patients or their mortality. However, we believe

that the underlying individual circumstances of the patient, as

well as their status in society and ethnicity, also largely influence the

progression of their disease (Khraim and Carey, 2009). In addition,

the different treatment strategies received by different patients

during their in-hospital stay also have a significant impact on

the prognosis (Anderson and Morrow, 2017). Thus, in this study,

we not only included the physical condition of patients in the

screening of characteristics but also their health insurance status,

height, weight, age, ethnicity, and even the length of time they were

treated for in the ICU and the dosage of the injected drugs. The

inclusion of multiple dimensions of the patient’s condition

inevitably allows for a more comprehensive perspective on the

progression of said condition. The collection of these characteristics

largely facilitates the completeness of the model and allows for an

accurate evaluation of the patient frommultiple perspectives, which

in turn leads to more valid predictive conclusions.

In this study, the data used in this study came from

Massachusetts General Hospital in the United States, which

limits the model’s applicability. More localization is needed to

improve the model’s applicability so that it can help health care

professionals make more accurate predictions about the

prognosis of MI patients in the future, assisting in the

development of appropriate treatment and care plans and

improving the prognosis.

5 Conclusion

We retrieved EMRs from the MIMIC-III database and

analyzed them with R to discover that 13 markers, such as

blood potassium, blood glucose, and total cholesterol, have a

strong link with the prognosis of MI patients. A patient

prognostic model was built by comparing plain Bayesian, KNN,

linear discriminant, RUSBoost trees, and SVM algorithms, and the

prognostic model based on the SVM algorithm was found to have

a good fit, with an accuracy rate of 92.2% and an AUC of 0.989,

demonstrating that the model still has a certain (necessarily

higher) accuracy and conviction compared to other algorithms.

SVM feature extraction from EMR data enhances prediction

accuracy, and this technology is universally applicable, allowing

it to be used for prognostic prediction of different diseases.
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Localizing targets for
neuromodulation in
drug-resistant epilepsy using
intracranial EEG and
computational model

Yang Liu and Chunsheng Li*

Department of Biomedical Engineering, School of Electrical Engineering, Shenyang University of
Technology, Shenyang, China

Neuromodulation has emerged as a promising technique for the treatment of

epilepsy. The target for neuromodulation is critical for the effectiveness of

seizure control. About 30% of patients with drug-resistant epilepsy (DRE) fail to

achieve seizure freedom after surgical intervention. It is difficult to find effective

brain targets for neuromodulation in these patients because brain regions are

damaged during surgery. In this study, we propose a novel approach for

localizing neuromodulatory targets, which uses intracranial EEG and multi-

unit computational models to simulate the dynamic behavior of epileptic

networks through external stimulation. First, we validate our method on a

multivariate autoregressive model and compare nine different methods of

constructing brain networks. Our results show that the directed transfer

function with surrogate analysis achieves the best performance. Intracranial

EEGs of 11 DRE patients are further analyzed. These patients all underwent

surgery. In three seizure-free patients, the localized targets are concordant with

the resected regions. For the eight patients without seizure-free outcome, the

localized targets in three of them are outside the resected regions. Finally, we

provide candidate targets for neuromodulation in these patients without

seizure-free outcome based on virtual resected epileptic network. We

demonstrate the ability of our approach to locate optimal targets for

neuromodulation. We hope that our approach can provide a new tool for

localizing patient-specific targets for neuromodulation therapy in DRE.

KEYWORDS

neural computational model, neuromodulation, drug-resistant epilepsy, intracranial
EEG, optimal target

1 Introduction

Epilepsy is a neurological disease caused by disorder of the brain network (Terry et al.,

2012; Lam et al., 2016). It has the characteristics of recurrent seizures, which often bring

irreversible brain damage and affect the normal life of patients with epilepsy (Trinka et al.,

2015). About 70% of patients can be cured by taking antiepileptic drugs, and 30% of them
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will develop drug-resistant epilepsy (DRE) (Kwan and Brodie,

2000; Stephen et al., 2006; Brodie et al., 2012). Patients with DRE

can be treated with surgery (Choi et al., 2008) or

neuromodulation (Schulze-Bonhage, 2017; Davis and Gaitanis,

2020; Sisterson and Kokkinos, 2020), such as transcranial

magnetic stimulation (TMS) (Davis and Gaitanis, 2020),

transcranial focused ultrasound (tFUS) (Lin et al., 2020; Zou

et al., 2020). In neuromodulation therapy, different brain regions

or nerves can be chosen as target, such as the vagus nerve (Stern

et al., 2021), thalamus (Ryvlin and Jehi, 2021), hippocampus

(Abouelleil et al., 2022), or localized epileptogenic zone

(Tsuboyama et al., 2020; Rincon et al., 2021). Neurologists use

intracranial EEG (iEEG), MRI and other methods combined with

clinical experience to define the brain regions responsible for

seizure generation and resect these regions to prevent seizure.

About 30% of patients with DRE failed to achieve seizure

freedom after surgical intervention (Janszky et al., 2005; de

Tisi et al., 2011). Most of them are not suitable for further

surgery because the suspected brain regions have been

damaged. Neuromodulation is a promising technique for these

non-seizure-free patients. However, to our best knowledge, the

reports of localizing neuromodulatory targets for patients who

failed to achieve seizure freedom are few.

EEG is widely used in the diagnosis of epilepsy. Comparing

with scalp EEG, iEEG electrodes need to be embedded in the

patient’s skull. The intracranial electrodes are closer to the

epileptogenic zone (Kovac et al., 2017), which facilitates

subsequent resection of the epileptogenic area. IEEG recording

techniques include subdural grids, strips, and depth electrodes.

For different epilepsy patients, different iEEG techniques need to

be selected (Kovac et al., 2017).

IEEG recordings reflect the characteristics of epileptic

networks and have the function of localizing epileptogenic

tissues in epilepsy patients (van Diessen et al., 2013; Taylor

et al., 2015; Sinha et al., 2017). Network methods can be used

to extract the epileptic network, such as Pearson correlation,

Granger causality (Coben and Mohammad-Rezazadeh, 2015;

Sinha et al., 2017). The coefficients of Pearson correlation

represent the correlation between variables. Sinha et al. (2017)

calculated the coefficients between different EEG channels

and used them as undirected connectivity of the epileptic

model. Granger causality explores direct or indirect

relationships between variables. Directed transfer function

(DTF) computes interactions between input signals in

frequency domain (Franaszczuk et al., 1985). A variety of

network characteristics can be quantified on the extracted

network matrix. One single network feature cannot fully

explain all the properties of the network (van Diessen

et al., 2013). Different features of network were used in

epilepsy studies (Sinha et al., 2017, 2021; Paldino et al.,

2019). Seizure is a dynamic process. It is difficult to explore

dynamical behaviors of the original signals based on the

extracted network matrix. The quantified features of

epileptic networks cannot comprehensively describe the

dynamics of seizure onset and termination.

Neural computational model can be used to better simulate

the dynamical process of seizure (Proix et al., 2018; Saggio et al.,

2020; Sip et al., 2022). Richardson proposed a method of

combining dynamics and connectomics to explain the

abnormal dynamics of epileptic networks (Richardson, 2012).

Lopes da Silva et al. (2003) modeled transition states between

normal and epileptic states for predicting epileptic pathways.

Creaser et al. (2002) modeled the node dynamics and the

coupling relationship between nodes, and obtained the

transient dynamics during epileptic seizures. Numerous

models have been used to explain the physiology of epilepsy

or epileptic activity (Wendling et al., 2016). In computational

models, the state of the system is commonly changed by adjusting

either excitatory or inhibitory parameters, such as Z6 model

(Benjamin et al., 2012) and Epileptor model (Proix et al., 2018).

In the Z6 model, the values of different excitatory parameters

determine whether the system is in normal or epileptic state.

In this paper, we propose a novel approach for localizing

targets for neuromodulation in patients with DRE, especially for

patients without achieving seizure freedom after surgery. The

patient-specific epileptic network is reconstructed using multi-

unit computational model. The most effective node for

neuromodulation in preventing seizure is localized by

introducing external stimulation. The effectiveness of our

proposed approach is validated on a multi-variate

autoregressive (MVAR) model. Then we validate the approach

on a group of DRE patients with iEEG recordings. Finally, the

candidate targets for neuromodulation are provided using the

proposed approach and virtual resected network of those DRE

patients.

2 Methods

2.1 Data and subject description

IEEG recordings from 11 patients were analyzed in this

study. The datasets were obtained from the IEEG public

website (http://www.ieeg.org), and all patients with DRE had

received surgical treatment. Three patients are in seizure-free

group with good outcome, who were scored as international

league against epilepsy (ILAE) 1 (completely seizure-free) or 2

(no seizures, only auras) (Wieser et al., 2001). The other eight

patients are in non-seizure-free group with poor outcome, who

were scored as ILAE 3–6 (non-seizure-free). Interictal iEEG

recordings of 10 min duration are chosen several hours away

from any seizure. The iEEG data are divided into segments of 1 s

duration. Each segment overlaps the previous one by 0.5 s. The

sampling rate of recordings is 500 Hz. We evaluate the

overlapping between the localized target nodes and the

resected regions.
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2.2 Directed transfer function with
surrogate analysis

The directed transfer function (DTF) is a multi-channel

directional measurement method based on Granger causality

and autoregressive models (Franaszczuk et al., 1985). This

method calculates the causal connection matrix between

multi-channel EEG signals and measures the causal

relationship between channels. The multichannel EEG process

in the framework of autoregressive model (AR) can be described

by the following equation (Franaszczuk et al., 1985; Kaminski

and Blinowska, 1991):

∑
p

j�0
Ajx t − j( ) � w t( ), (1)

where x(t) = [x1(t), x2(t), . . ., xN(t)] is the vector of EEG N-channel

process, p is the order of themodel.A0 is identity matrix,A1,A2, . . . ,

Ap are theN ×Nmatrices of model coefficients, w(t) = [w1(t), w2(t),

. . .,wN(t)] is the vector ofmultivariate zeromean uncorrelated white

noise process. We use the order selection criteria of Akaike’s Final

Prediction Error (FPE) criterion implemented in ARFIT toolbox

(Akaike, 1971; Schneider and Neumaier, 2001).

The coefficients Aj can be obtained from (1) by multiplying

its both sides by xT
t−s, where x

T is transposed vector of x. We get

following equation (Kaminski and Blinowska, 1991):

R −s( ) + A1R 1 − s( ) +/ + ApR p − s( ) � 0, (2)

where R(s) � E(x(t), xTt−s) is the covariance matrix with lag s for

the vector x, E means expectation value. Applying the

z-transform to the both sides of Eq. 1 (Franaszczuk et al.,

1985), we have

X z( ) � H z( )W z( ). (3)

whereH(z) is the transfer function. Set z−1 = e−i2πfΔt, where f is the

frequency, Δt is the sampling interval. Then we get H(f), where

Hij(f) is the directed causal relationship from the node j to the

node i.

The directional characteristic of the information flow from

node j to node i is defined as following:

r2ij f( ) � Hij f( )
∣∣∣∣

∣∣∣∣2

∑n
r�1 Hir f( )

∣∣∣∣
∣∣∣∣2
. (4)

Note that the value of r2ij(f) is between 0 and 1.

Surrogate data is a statistical method of analyzing nonlinear

signals that facilitates the analysis of EEG signals (Dolan and

Spano, 2001). We generate surrogate signals by assigning the

phase of the EEG signal randomly in 200 times. The strongest 5%

of the total possible causal connection are kept for further

analysis. The network characteristics in high frequency

gamma band are most closely correlated with improved

postsurgical outcome (Wilke et al., 2011). Our preliminary

study on seizure-free group also showed similar results. In

this study, the network analysis focuses on gamma rhythm

(31–80 Hz).

2.3 Other methods to build brain network

Besides DTF, there are other ways to build brain networks. The

Pearson correlation coefficient (PCC) reflects the linear correlation

between iEEG channels. We divide the iEEG into 1 s data segments.

The PCC calculates the degree of linear correlation between two

variables. It is the ratio of the covariance and standard deviation

between two signals, as shown in the following:

Pa,b � cov a, b( )
σaσb

, (5)

where Pa,b represents the degree of linear correlation between n

dimensional signal a and b.

Partial directed coherence (PDC) analyzes the connectivity

between multi-channel signals, which is also based on Granger

causality. The calculation method of p and Aj is the same as that

of DTF. The transfer function �Hij(f) of PDC is calculated by the

following equation (Baccala and Sameshima, 2001):

�Hij f( ) � I −∑p

j�1Aje
−i2πfΔt, (6)

where I is the identity matrix.

Isolated effective coherence (iCoh) is similar to PDC. This

method computes the interrelationships of directly related nodes,

but zeros out all other indirect causal relationships (Pascual-

Marqui et al., 2014). When we compute the causal relationship

from node j to node i, other nodes except node j and node i are

called irrelevant nodes. Node j is the relevant nodes of node i.

The weighted phase lag index (wPLI) measures the phase

correlation between signals by weighting the cross-spectrum of

the phases of the two signals. First, we need to calculate the phase

lag index (PLI) between the signals (Li et al., 2021):

PLI � |sgn sin Δθ t( )( )( )|, (7)
where sgn represents the sign function, |·| is absolute value, Δθ(t)
represents the instantaneous phase difference between the input

signal s1 and the output signal s2. Then, wPLI is calculated to

quantify the phase agreement between the signals (Li et al., 2021),

wPLI � |A1A2 sin Δθ t( )( )|
A1A2 sin Δθ t( )( )| |, (8)

where A1 and A2 are the corresponding amplitudes of the s1 and

s2, respectively.

Relative entropy is an asymmetric measure (Kullback and

Leibler, 1951), also known as Kullback-Leibler divergence

(KLDIV), quantifies the difference between two signals. x(t) is

divided by 1 s and overlapped by 50%, and then subjected to

short-time Fourier transform to obtain X (n, f). The normalized

spectrogram is shown in Eq. 9.
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Wx n, f( ) � |X n, f( )|2
∑n,f|X n, f( )|2, (9)

Suppose Wy(n, f) is the normalized spectrum of the signal

y(t), the KLDIV from Wx (n, f) to Wy(n, f) is as follows:

DKL Wx,Wy( ) � ∑
n,f

Wx n, f( )log
Wx n, f( )
Wy n, f( )

. (10)

KLDIV is asymmetric. When its value is higher, the

difference between the signals is larger.

2.4 MVAR model

The electrophysiological activity in short duration can be viewed

as aMVAR process. In this study, theMVARmodel is written in the

following differential form (Baccala and Sameshima, 2001),

X1 n( ) � 0.95
	
2

√
X1 n − 1( ) − 0.9025X1 n − 2( ) + w1 n( ),

X2 n( ) � 0.5X1 n − 2( ) + w2 n( ),
X3 n( ) � −0.4X1 n − 3( ) + w3 n( ),
X4 n( ) � −0.5X1 n − 2( ) + 0.25

	
2

√
X4 n − 1( ) + 0.25

	
2

√
X5 n − 1( ) + w4 n( ),

X5 n( ) � −0.25 	
2

√
X4 n − 1( ) + 0.25

	
2

√
X5 n − 1( ) + w5 n( ),

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(11)

where Xi, i = 1, 2, . . . , 5, represents the ith node of the network,

and wi, i = 1, 2, . . . , 5, is the white noise. The coefficients between

nodes represent the causual relationships of different nodes.

In order to find the method with best performance for

constructing epileptic network and validate the effectiveness of

our proposed approach, we use a five-node MVAR model to

simulate the causal relationship between nodes. The time course

of activity assigned on each node is generated by model (11).

Simplified MVAR model could be used to simulate epileptic

sources (Hosseini et al., 2018). There are both unidirectional and

bidirectional connections in model (11). Node X1 is simulated as

epileptic node where seizure starts. Node X2, X3 and X4 are

neighbor nodes., and node X4 has bidirectional connection with

node X5, which represents remote normal tissue.

There are different types of measures to construct the

brain network. We choose several commonly used network

measures based on causality, coherence, or information

theory. We also construct the causal network combining

with surrogate analysis to determine which method

matches the original network best. We compare nine

methods for constructing causal network, including PCC,

DTF, DTF with surrogate analysis (DTF-SA), PDC, PDC

with surrogate analysis (PDC-SA), iCoh, iCoh with

surrogate analysis (iCoh-SA), wPLI and KLDIV. We

compute the correlation coefficients between the extracted

connectivity matrix and the ground truth of the model (11),

which are then normalized by the maximum value. According

to the value of the correlation coefficient, we choose the

method with the best performance to construct brain network.

2.5 Multi-unit computational model

The Z6 model can simulate the dynamic process of the

interaction between nodes due to information transmission

during epileptic seizures, and intuitively describe the state

transition of nodes. This model contains a fixed point and a

limit-cycle. The noise system controls one of two factors in order

to control the trajectory of the system. In the noisy system, the

deterministic part at the drift coefficient can be expressed by the

following single complex equation (Benjamin et al., 2012):

dz
dt

� f z( ) ≡ a|z|4 + b|z|2 + λ − 1 + iω( )z, (12)

where z is a complex parameter, z = x + iy. a and b are real numbers

(a= −1, b = 2),ω controls the oscillation frequency of the system, λ is

the possible attractors of the system. The parameter λ determines the

state of the system, and we choose 0 < λ < 1.We can consider λ to be

the excitability parameter of the system. When λ approaches 1, the

system is more excitable (Benjamin et al., 2012).

The nodes of the brain network have the characteristic of

bidirectional functional connectivity, forming a network of

interconnected nodes. We extend the equation to a network

model with N nodes:

dzi t( )
dt

� f zi( ) + β∑
N

j≠i
KGij zj − zi( ) + αwi t( ), (13)

where Gij is the normalized information connectivity matrix

between nodes, w(t) represents white noise with a mean of

0.0003 and a standard deviation of 0.05 (Sinha et al., 2017), α

is the coefficient of noise. β equals 0.02 here. In order to achieve

the same order of magnitude as the undirected symmetric

information-connected matrix (Benjamin et al., 2012), the

normalized matrix G is then multiplied by K = 1,000. The

connectivity matrix G describes the topology of the epileptic

network, and determines the interaction between each node of

the system.When iEEG dataset is analyzed, the patient’s epileptic

networks are constructed by network measures, which is then

used as the matrix G of the computational model. In this case, the

dynamic behavior of the model is determined by patient’s specific

brain network. The model was solved numerically using a fixed

step Euler-Maruyama solver with a step size of 0.05.

During the numeric simulation, the network is driven by

random noise. The time for a node to change from a stationary

state to an oscillating state is called the escape time (Tes) (Sinha

et al., 2017). Tes is used as an indicator for predicting seizure

(Benjamin et al., 2012). We use the Z6 model to simulate the

epileptic brain as a bi-stability state network (Goodfellow and

Glendinning, 2013; Sinha et al., 2017). The probability of a node

entering epileptic state is inversely proportional to Tes (Petkov

et al., 2014; Sinha et al., 2017). It is also proportional to the

stability of the system, and the value of Tes decreases as the

parameter λ increases (Benjamin et al., 2012). The parameters λ
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of all nodes are set to λ0 or λ1 on non-target or target nodes,

respectively. The optimal λ0 and λ1 are chosen by grid search of

λ0 − λ1 pairs. λ0 is chosen between 0 and 0.5 in step of 0.05, and λ1
is chosen between 0.5 and 1 in step of 0.05. TheΔT is calculated at

each λ0 − λ1 pair. The optimal λ0 and λ1 are found when there is

the largest standard deviation of ΔT for all pairs. First, we set the

λ of all nodes to λ0, and record the Tes as T0. Then, we change the

λ of each target node to λ1, and record the Tes as T1. The

difference between T0 and T1 is the change in escape time

(ΔT), ΔT � |T0 − T1|, represents the effectiveness of the

neuromodulation applied on a given node.

2.6 Localizing targets for
neuromodulation

The procedure of localizing targets for neuromodulation is

shown in Figure 1. First, the segmented iEEG recordings are

FIGURE 1
Procedure of localizing target for neuromodulation in drug-resistant epilepsy. (A) The segmented iEEG recordings. (B) Patient-specific epileptic
network based on iEEG data. (C) Multi-unit neural computational model based on the epileptic network and the Z6 model. (D) Parameter
optimization for λ. (E) Calculating the change of escape time (ΔT) of each node. (F) Localizing optimal target with the largest ΔT value.
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used, as shown in Figure 1A. The data are processed to

construct patient-specific epileptic network (Figure 1B).

The epileptic network is in the form of causal connectivity

matrix. The multi-unit neural computational model is

constructed based on the epileptic network and the

Z6 model (Figure 1C). The number of nodes of the multi-

unit model is same as the number of channels in iEEG the

recordings. The optimal values of λ are determined

(Figure 1D). Using the selected parameters, the ΔT of each

node is then calculated (Figure 1E). The distribution of ΔT is

plotted on patient’s head model, and the node with the largest

value of ΔT is selected as optimal target. The optimal target is

compared with the resected regions of epilepsy patient, as

shown in Figure 1F.

2.7 Validation of neuromodulation

We calculated Tes of epileptic brain networks in all patients

with inhibitory modulation on the localized target nodes and

non-target nodes. The Wilcoxon rank sum test was used

(Wilcoxon, 1945), and p < 0.01 was chosen as significance

threshold. The proposed approach was then performed to

localize candidate targets for neuromodulation in patients

without seizure-free outcome.

3 Result

3.1 Localizing the critical node of MVAR
model

The model (11) is shown in Figure 2A. The node X1 is the

main driven force for the model to enter oscillatory state,

which is simulated as the epileptogenic node. The normalized

correlation coefficients of nine different methods are plotted

in Figure 2B. Based on the extracted causal connectivity by

DTF-SA method, we localize the target for neuromodulation

using our proposed approach. The optimal values of λ1 and λ0
is 0.85 and 0.50, respectively. The result of ΔT is shown in

Figure 2C, and the node X1 is with the highest value. The

effectiveness of external modulation on the node X1 is shown

in Figure 2D. The Tes of the network decreases significantly

while the external excitatory stimuli is applied on node X1.

FIGURE 2
Validating the proposed approach on the five-node model. (A) Five-node causal network. (B) Normalized correlation coefficient between the
constructed network and the ground truth. (C) ΔT for each node. (D) The Tes value of the network with and without external modulation.
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TABLE 1 Patient information, surgical results, optimal parameters, and target location.

Patient Dataset
ID

Surgical
outcome

Target before
resection

Parameter
λ0

Distance
to
resection (mm)

Target after
resection

Distance
to
resection (mm)

P1 Study 038 Seizure free ITS2 0.25 0.0 - -

P2 Study 021 Seizure free RTG15 0.30 0.0 - -

P3 Study 026 Seizure free LFG48 0.30 0.0 - -

P4 Study 028 Not seizure free LPG7 0.30 28.0 LPG7 28.0

P5 Study 004–2 Not seizure free RAT4 0.15 0.0 RG20 14.1

P6 Study 016 Not seizure free RTG24 0.20 0.0 RFG19 45.0

P7 Study 029 Not seizure free AIT4 0.20 0.0 LT12 30.0

P8 Study 020 Not seizure free RAG20 0.15 0.0 RAG6 10.0

P9 Study 019 Not seizure free LT9 0.25 0.0 LF10 48.7

P10 Study 022 Not seizure free TSG7 0.20 20.0 TSG7 20.0

P11 Study 033 Not seizure free LTG7 0.35 19.3 LTG7 19.3

FIGURE 3
The localized targets for neuromodulation of patient P3 and P4. (A) The distribution ofΔT for patient P3. Thewhite circles represent the contacts
of the electrodes. Red and blue indicate themagnitude of the value ofΔT. The red color indicates that the value of ΔT is large. The blue color indicates
that the value of ΔT is small. (B) The optimal value of λ for patient P3. λ0 = 0.30 and λ1 = 1.00. The red color indicates that the value of standard
deviation (S. D.) of ΔT is large. (C) The distribution of ΔT for patient P4. (D) The optimal value of λ for patient P4. λ0 = 0.30 and λ1 = 1.00.

Frontiers in Physiology frontiersin.org07

Liu and Li 10.3389/fphys.2022.1015838

53

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1015838


3.2 Localizing targets for
neuromodulation using patient data

The localized targets for neuromodulation of 11 patients are

listed in Table 1. For patient P1-P3 with seizure-free outcome, the

targets are inside the resected regions. In non-seizure-free group,

localized targets for patients P4, P10, and P11 are outside the

resected regions, and localized targets for patients P5-P9 are

inside the surgical resected regions. The mean error distance is

8.4 mm in non-seizure-free group. The values of parameter λ0 for

11 patients is 0.22 ± 0.08, λ1 is 0.99 ± 0.01 (mean ± SD).

The localized targets for neuromodulation of patient P3 and

P4 are plotted in Figures 3A,C, respectively. Red region indicates

the stimulation is effective to suppress seizure in Figures 3A,C.

Patient P3 belongs to the seizure-free group. The resected region

of this patient was mainly in left lateral frontal cortex. The

electrode LFG48 with the highest ΔT is selected as the target,

and reside in the resected region (red rectangle), as shown in

Figure 3A. Patient P4 belongs to the non-seizure-free group. The

resected region was mainly in left parietal cortex. The electrode

LPG7 with the highest ΔT is selected as the target, which is

28.0 mm away from the resected region (red rectangle), as shown

in Figure 3C. The distribution of ΔT for choosing optimal λ0−λ1
pair is plotted in Figures 3B,D. The λ0 = 0.30 and λ1 = 1.00 for

both patients.

The ΔT distributions for the other 9 patients are plotted in

Figure 4. Among them, patients P1 and P2 belonged to the

seizure-free group. The surgical field in both patients was in the

FIGURE 4
The distribution of ΔT for the other nine patients except P3 and P4. Red region indicates that the effect of modulation is strong.

FIGURE 5
The normalized Tes when external modulation is applied on
the localized target and non-target nodes. The horizontal red bar
represents the median, and the blue box represents the rang from
first to third quartile, respectively. The horizontal black lines
represent the upper and lower limits, and the red plus sign
represents outlier data.
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left temporal lobe. Targets identified by our method that were

effective in eliminating epilepsy were located at the surgical field

of each of the two patients.

3.3 The effectiveness of neuromodulation

The Tes is normalized relative to its minimum and maximum

values of each patient. The horizontal red bar represents the

median in Figure 5. The median of the Tes is 0.21 and 0.06 for

target and non-target nodes, respectively. The values of Tes on the

localized target nodes are significantly longer than the values on

non-target nodes (p < 0.01). The modulation on the localized

target nodes is more effective in suppressing seizure than non-

target ones. Outlier data indicate that modulation on some non-

target nodes is more (or less) efficient than modulation on other

nodes.

We remove the iEEG channels in the resected regions, and

reconstruct virtual resected networks for the non-seizure-free

patients. In the virtual resected network, the iEEG channels in

resected regions are removed. The connectivity matrix G is

calculated using other channels, which results in a smaller

matrix. The value of λ0 is set to 0.22 for the non-target of the

resected network, and λ1 = 1. The localized candidate targets for

neuromodulation are listed in Table 1. The mean distance

between the new targets and the surgical resected regions is

26.9 mm. The localized targets for Patient P4, P10, and P11 are

not changed before and after surgical resection. The mean

distance between the new localized targets and the resected

regions is 29.6 mm for patient P5-P9.

4 Discussion

Localizing the effective targets is the key to

neuromodulation therapy. The proposed approach

identified the node X1 of the MVAR model as optimal

target successfully, which is the designed node to drive the

model to oscillatory state. The network measures based on

correlation, causal effects, phase lag, and information entropy

were compared for reconstructing the network. The DTF-SA

method showed highest similarity between the reconstructed

network and the ground true. Our results could help other

study for choosing network measures. We choose the

Z6 model as the network node because of the relative low

computational cost. Other neural computation models could

also be adopted, such as Epileptor model (Proix et al., 2018).

The parameter λ0 of non-target node is the only parameter

need to be determined for the network except for connectivity

matrix. Our result show that the mean value of λ0 for non-

target nodes is good in most cases when analyzing the iEEG

dataset, and the value λ1 for target node is set to 1, which leads

that our proposed approach is easy to use.

Patient P1, P2, and P3 have undergone surgical resection, and

achieved good outcome. The epileptogenic tissues are assumed

inside the resected regions. Based on the patient-specific epileptic

network, all localized targets for those patients reside in the

resected regions. Those results indicate that our approach find

the target responsible for seizure generation. The localized targets

for patient P5-P9 also reside in the resected regions, which is

consistent with judgement of neurologist. The epilepsy is a brain

network disease. Resection of brain tissue changes the topology of

epileptic network, and seizure may start from other brain

location. Applying the external stimulation on a given node

will result in influence on whole network. In this context, we

believe the neuromodulation measure may lead to better

outcomes for those patients without seizure-free outcome. The

localized targets for patient P4, P10, and P11 are outside the

resected regions based on the epileptic network before surgery,

and the mean distance from the surgical resected regions is

22.4 mm. After removing the resected nodes, our approach

also localizes the targets on the same electrodes. This result

reflects that our proposed network is stable on localizing the

targets even with the virtual resection.

When applying inhibitory stimulation on the localized target

nodes, it can significantly delay the brain network from entering a

state of oscillation relative to the non-target nodes, as shown in

Figure 5. This demonstrates the effectiveness of the proposed

method for preventing epileptic seizures. Neuromodulation is

used as a non-destructive means of brain network regulation,

such as TMS, tFUS, which have different spatial resolutions

(Davis and Gaitanis, 2020; Lin et al., 2020; Zou et al., 2020).

Considering the applicability of our proposed method, the

number of targets selected for neuromodulation is 1. Selecting

2 or more targets for neuromodulation will have a more obvious

modulation effect, but it is not suitable for neuromodulation

methods with low spatial resolution, such as TMS.

Our method induces resting-state brain networks into

epilepsy via stimulation parameters. This approach differs

from current neuromodulation treatments. For example, tFUS

suppresses seizure by reducing the excitability of the nervous

system (Folloni et al., 2019; Lin et al., 2020; Zou et al., 2020).

However, in clinical surgery, the traditional method is to find the

epilepsy surgery area by evoking electrical stimulation.

Combined with the clinical surgical process, we select

parameters that can induce the brain network to enter the

epileptic state to determine the target of neuromodulation.

This choice ensures the practicality of our method.

Furthermore, this approach has limitations. The iEEG recording

is an invasive measure mainly for presurgical evaluation of DRE

patient. We have not applied this measure on scalp EEG recording.

The low coverage of the intracranial electrodes on the epileptogenic

zone may result in the inaccurate of constructing epileptic network,

which ultimately leads to poor localization of the targets. Validating

our method in the real application will further advance the

technology. On the one hand, the Z6 model is a noise-driven
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computational model that simulates epileptic seizures (Sinha et al.,

2017). Due to the randomness and uncertainty of noise, multiple

calculations are required to avoid accidental factors. The long

computational time is another limitation of our method. On the

other hand, we chose the Z6 model to simulate the dynamic process

of epileptic seizures. Other neural computational models can also

replace the Z6 model, such as the Epileptor model. Therefore it is

necessary to choose different and more suitable parameters to

simulate the process of neuromodulation.

5 Conclusion

The effective neuromodulation therapy is very important

for DRE patients with bad surgical outcome. The DTF with

surrogate analysis is more suitable for constructing patient’s

epileptic network using iEEG recording. Multi-unit

computational model can be used to simulate the seizure

dynamics, and evaluate the effects of external excitatory

and inhibitory stimulation. By using iEEG and

computational model, our study provided a new approach

to localize the optimal targets for the potential

neuromodulation of these patients.
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Background: Abdominal aortic aneurysm (AAA) is a degenerative disease that

causes health problems in humans. However, there are no effective drugs for

the treatment of AAA. Artemisia annua L. (A. annua) is a traditional herbal that has

been widely used in cardiovascular disease. Based on network pharmacology

and molecular docking technology, this study predicted the practical

components and potential mechanisms of A. annua inhibiting the

occurrence and development of AAA.

Methods: The main active ingredients and targets of A. annua were screened

through the TCMSP database; the GeneCards, OMIM, PharmGkb, and TTD

databases were used to search for the targeted genes of AAA and map them to

the targets of the active ingredients to obtain the active ingredient therapy of A.

annua. The targets of AAA were to construct a protein interaction network

through the STRING platform. R software was used to carry out the enrichment

analysis of GO and KEGG for relevant targets, and Cytoscape was used to

construct the active ingredient-target network prediction model of A. annua.

Finally, AutoDock Vina was used to verify the results of the active ingredients

and critical targets.

Results: The main active ingredients obtained from A. annua for the treatment

of AAA include quercetin, luteolin, kaempferol, isorhamnetin, and artemetin, as
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well as 117 effective targets, including RELA, MAPK14, CCND1, MAPK1, AKT1,

MYC, MAPK8, TP53, ESR1, FOS, and JUN. The 11 targeted genesmight play a key

role in disease treatment. Enriched in 2115 GO biological processes,

159 molecular functions, 56 cellular components, and 156 KEGG pathways,

inferred that its mechanism of action might be related to PI3K-Akt signaling

pathway, fluid shear stress, atherosclerosis, and AGE-RAGE signaling pathway.

Molecular docking results showed that the top five active components of A.

annua had a good affinity for core disease targets and played a central role in

treating AAA. The low binding energy molecular docking results provided

valuable information for the development of drugs to treat AAA.

Conclusion: Therefore, A. annua may have multiple components, multiple

targets, and multiple signaling pathways to play a role in treating AAA. A.

annua may have the potential to treat AAA.

KEYWORDS

abdominal aortic aneurysm, Artemisia annua L., molecular docking, network
pharmacology, therapeutic targets

Introduction

Abdominal aortic aneurysm (AAA) is mainly

characterized by local progressive dilation of the abdominal

aorta, the most high-risk vascular degenerative disease in

vascular surgery (Kugo et al., 2019). Once AAA ruptures,

the mortality rate can reach 80%. After surgical resuscitation,

mortality remains high at around 42% (Karthikesalingam

et al., 2014). AAA is usually diagnosed when the diameter

of the upper abdominal aorta is greater than 30 mm (Moll

et al., 2011). Currently, AAA with greater than 55 mm in

diameter is mainly treated by surgical intervention, and these

surgical interventions are effective ways to prevent abdominal

aortic rupture (Powell, 1998; Lavin et al., 2019). In addition to

surgical treatment, there is currently a lack of effective drug

interventions, especially in the early treatment of AAA (Baxter

et al., 2008; Golledge et al., 2017). Therefore, it is vital to

explore potential effective drugs.

Chinese traditional medicine is a substantial medical

resource. Artemisia annua L. (A. annua) is a kind of

traditional Chinese medicine. With the award of the

2015 Nobel Prize in Physiology or Medicine to a Chinese

scientist, Artemisia has attracted global attention (Abba et al.,

2018). Artemisia and its derivatives are extensively used to treat

oncology and cardiovascular diseases (Bora and Sharma, 2011;

von Hagens et al., 2017; Abba et al., 2018; Saeed et al., 2019; Aktaş

et al., 2020). Several studies have shown that A. annua and its

derivatives have a particular therapeutic effect on inhibiting

atherosclerosis and inflammation (Cao et al., 2020; He et al.,

2020; Jiang et al., 2020). Although A. annua contains a variety of

active ingredients, its therapeutic target and mechanism for AAA

treatment are not fully understood.

Network pharmacology, based on bioinformatics and

computer technology, integrates a large amount of

biological information and data to study the mechanism of

action of multi-target drugs from molecules to cells to the

body (Hopkins, 2008; Berger and Iyengar, 2009). The strength

of network pharmacology lies in analyzing the “drug-

component-target-disease” interaction network,

systematically discovering drug-disease associations, and

revealing the synergistic effects between multi-molecular

drugs (Li et al., 2014). Furthermore, molecular docking is a

statistical simulation method that focuses on the interaction

between molecules and predicts their binding mode and

affinity (Wang and Zhu, 2016). The main function of the

method is to identify the binding pocket and binding affinity

of the drug to the target protein. Therefore, with the help of

network pharmacology and molecular docking methods, this

study analyzed the role and mechanism of A. annua in the

treatment of AAA, aiming to provide new ideas for drug

treatment of AAA and to facilitate new drug development

in the future. The flowchart for this study was shown in

Figure 1.

Materials and methods

Database and software

①Drug component target database: Traditional Chinese

Medicine Systems Pharmacology Database and Analysis

Platform (TCMSP, http://tcmspw.com/tcmsp.php). ②Disease

Target Database: GeneCards (https://www.genecards.org/);

Online Mendelian Inheritance in Man (OMIM, https://omim.

org), Pharmacogenomics Knowledgebase (PharmGKB, https://

www.pharmgkb.org/); Therapeutic Target Database (TTD,

http://db.idrblab.net/ttd/); ③Protein database, UniProt

(https://www.uniprot.org); Protein Data Bank (PDB, http://
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www.rcsb.org/); ④Protein interaction analysis platform, String

(https://String-db.org/); ⑤Network analysis and mapping

software: Cytoscape 3.8.0;R (R4.0.3 for Windows);

⑥Biological information analysis packet: VennDiagram

packet; Bioconductor(https://Bioconduct.org/biolite.r) and its:

org.hs.eg.DB, ⑦Molecular Docking Software: AutoDock Vina

4.1, PyMOL 2.4.

Collection of the active components and
targets of A. annua

All active ingredients in A. annua were obtained from

TCMSP (https://www.tcmspw.com/tcmsp.PHP). The

classification standards were defined based on drug-likeness

(DL) greater than or equal to 0.18 and oral bioavailability

FIGURE 1
The flowchart of this study.
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(OB) greater than or equal to 30% (Xu et al., 2020). Then, the

targets of the selected compounds were obtained from the

TCMSP database, and the targeted name was input into

Uniprot (http://www.uniprot.org/) to obtain the standardized

gene symbol.

Screening of genes related to the
treatment of AAA with A. annua

In the Genecards, OMIM, PHARGKB, and TDD

databases, “abdominal aortic aneurysm” was input as the

keyword for retrieval to obtain related AAA targets. The

Venn diagram packet was then run in R to obtain

compositional targets of A. annua intersected with targets

related to AAA to screen out the targets related to the

treatment of AAA in A. annua.

GO and KEGG pathway enrichment
analysis

The ClusterProfiler software package in R software (version

4.0.3) was used for Gene Ontology (GO) and Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathway enrichment analysis of

the intersection genes (Kanehisa and Goto, 2000; Yu et al., 2012).

When the q value ≤0.05, GO terms and KEGG pathways were

considered to be statistically significant. Then, the top 10 GO

terms and the top 30 KEGG pathways for molecular function

(MF), cellular component (CC), and biological process (BP) were

selected for further analysis.

Construction of the component-target
network

The targets of A. annua for treating AAA were input into

Cytoscape software to construct a “component-target” network

(Shannon, 2003). The active components and targets of the drug

were represented as “nodes”, and the interaction between nodes

was defined as “edges".

PPI network construction and core target
screening

The intersection gene data were imported into the String

database (https://string-db.org/) to obtain the possible

intersection points and establish the relationship between the

targets (Szklarczyk et al., 2019). The generated files were then

imported into Cytoscape software for protein-protein interaction

(PPI) maps to describe the relationship between A. annua and

the intersecting genes of AAA.

Molecular docking

Referring to the previous research literature (Powell, 1998;

Hong et al., 2022; Xu et al., 2022), we selected the top 5 active

ingredients in A. annua as ligands and hub genes from the PPI

network as receptors for molecular docking validation.

According to the molecular docking method, the 3D structure

of the active component was downloaded from PubChem CID,

the protein structure guide of the target was downloaded from

the PDB database, and the hydrodewatering and hydrogenation

of the protein were carried out by using PyMol software (Seeliger

and de Groot, 2010; Lill and Danielson, 2011). The component

and target protein formats were entered into PDBQT format by

AutoDockTools1.5 (Morris et al., 2008). Molecular docking was

performed using AutoDock Vina 4.1 software, and the results -

were further analyzed by PyMol 2.4 (Trott and Olson, 2010).

Results

Screening of active ingredients and targets
of A. annua for the treatment of AAA

After the search, screening was carried out under the

conditions of OB greater than or equal to 30% and DL greater

than or equal to 0.18, and the nontarget components were

removed. The 22 potential effective components were

obtained (Table 1). Furthermore, we found that 510 potential

targets corresponded to 22 potential effective ingredients

(Supplementary Table S1).

Targets of A. annua for AAA

The related targets of AAA were collected from the

GeneCards, OMIM, PharmGkb, and TTD databases. The data

were sorted and merged to obtain a total of 2010 disease targets

(Supplementary Table S2), as shown in Figure 2A. Then, we

intersected the obtained A. annua targets with the genes

associated with AAA and obtained a Venn diagram of the

intersected gene symbols for a total of 117 targets

(Supplementary Table S3), as shown in Figure 2B.

GO enrichment analysis

GO enrichment analysis was performed to analyze 117 genes

of drug-disease intersection by using the ClusterProfiler package

in R software (version 4.0.3). They grouped the functions of the

genes into three components: biological processes (BP), cellular

component (CC), and molecular function (MF), and enriched

2115 GO BPs, 159 MFs, and 56 CCs (Supplementary Table S4).

The top 10 significant items (p-value ≤ 0.05) for each module
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were shown in Figure 3. The horizontal coordinate indicated the

proportion of GO entries, the vertical coordinate representing the

name of the enriched entry, and the size of the scatter points

represented the number of targets involved in each entry. The

higher the significance of the entry, the redder it was. As shown in

Figure 3, in biological processes, A. annua was mainly associated

TABLE 1 The main active ingredients of A. annua.

MOL ID Molecule name OB Dl

MOL002235 Eupatin 50.8 0.41

MOL000354 Isorhamnetin 49.6 0.31

MOL000359 Sitosterol 36.91 0.75

MOL004083 Tamarixetin 32.86 0.31

MOL004112 Patuletin 53.11 0.34

MOL000422 Kaempferol 41.88 0.24

MOL000449 Stigmasterol 43.83 0.76

MOL004609 Areapillin 48.96 0.41

MOL005229 Artemetin 49.55 0.48

MOL000006 Luteolin 36.16 0.25

MOL007274 Skrofulein 30.35 0.3

MOL007389 Artemisitene 54.36 0.31

MOL007400 Vicenin-2_qt 45.84 0.21

MOL007401 Cirsiliol 43.46 0.34

MOL007404 Vitexin_qt 52.18 0.21

MOL007412 DMQT 42.6 0.37

MOL007415 [(2S)-2-[[(2S)-2-(benzoylamino)-3-phenylpropanoyl]amino]-3-phenylpropyl] acetate 58.02 0.52

MOL007423 6,8-di-c-glucosylapigenin_qt 59.85 0.21

MOL007424 Artemisinin 49.88 0.31

MOL007425 Dihydroartemisinin 50.75 0.3

MOL007426 Deoxyartemisinin 54.47 0.26

MOL000098 Quercetin 46.43 0.28

FIGURE 2
(A) The results of the Venn diagram of AAA-related targets in four databases. (B) The results of the Venn diagram of drug genes (green) and
disease genes (pink).
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with oxidative stress, cellular response to chemical stress, and

response to metal ion. Among the cellular components, A.

annua was primarily associated with membrane raft,

membrane microdomain, membrane region, and other

cellular components. A. annua was mainly related to

DNA-binding transcription factor binding, ubiquitin-like

protein ligase binding, signaling receptor activator activity,

and other molecular functions among the molecular

functions.

KEGG enrichment analysis

KEGG enrichment analysis was performed using the

ClusterProfiler package (version 4.0.3) in R software for

117 genes targeted at drug-disease crossover. The results of

KEGG analysis showed that these genes mainly enriched in

156 KEGG pathways (Supplementary Table S5), and the top

30 items were presented in Figure 4. The results suggested

that the active ingredients in A. annua might act together

through multiple pathways, such as the PI3K-Akt signaling

pathway, fluid shear stress, atherosclerosis, and AGE-RAGE

signaling pathway in diabetic complications. The size and

color of the nodes in the bubble map were determined by the

number and p-value of the associated genes. The node size

indicated how many target genes were associated, and the

color from purple to yellow reflected the p-value from high

to low.

Construction of the A. annua component-
target network

A total of 117 targets of A. annua for treating AAA were

input into Cytoscape software to construct a “component-

target” network. The active ingredients and targets were

represented as “nodes”, and the interaction between nodes

was defined as “edges”. The details were presented in

Supplementary Table S6. As shown in Figure 5, yellow

represented the active components of A. annua in

the treatment of AAA, and green represented the potential

targets.

FIGURE 3
GO enrichment analysis of A. annua compound and AAA “intersection target.”
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Construction of the protein-protein
interaction network

The 117 targets of A. annua for the treatment of AAA

were entered into the STRING platform; the parameter was

set to Homo sapiens, with the highest confidence (0.900), and

the rest of the parameters were set to default to build the

target protein interaction network, as shown in Figure 6A. It

was visualized and analysed by Cytoscape. A node in the PPI

network represented each target, and the edges connecting

the nodes represented the interaction between the targets.

Topological analysis of 117 targets using the plug-in

CytoNCA with two median filtering, the first filtering

criterion was: betweenness: 31.368076265, closeness:

0.117252968, degree: 6, eigenvector: 0.0489839665, lac:

2.45, network: 3.3304473305. The second screening

criterion was: betweenness: 8.080020796, closeness:

0.576923077, degree: 9. eigenvector: 0.145350322, lac:

4.5 network: 5.6, 11 hub genes were screened as shown in

Figure 6B. RELA, APK14, CCND1, MAPK1, AKT1, MYC,

MAPK8, TP53, ESR1, FOS, and JUN, with 11 nodes and

45 edges, scored as shown in Table 2. Therefore, we

considered these 11 genes can serve as potential central

genes of A. annua in the treatment of AAA.

Molecular docking verification

According to the “component-target” network,

quercetin, luteolin, kaempferol, isorhamnetin, and

artemetin were the top five active ingredients of A.

annua in the treatment of AAA, 11 centers for

topological analysis of genetic screening for potential A.

annua center for gene therapy AAA. Therefore, we docked

the active ingredients to the hub target genes. We

downloaded the 3D structures of the five active

ingredients from PubChem and the protein structures of

FIGURE 4
KEGG enrichment analysis of A. annua compound and AAA
“intersection target.”

FIGURE 5
“Component-target” network diagram. Yellow represented the active components of A. annua in the treatment of AAA, and green represented
the potential targets.
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FIGURE 6
(A) Construction of the PPI network. (B) Hub genes of (A) annua for the treatment of AAA.
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eleven hub genes from the PDB database. All active

ingredients and hub genes were docked, with binding

free energies calculated by running Vina, and the results

were presented as a thermal diagram in Figure 7. The

binding free energy of less than or equal to −5.0 kcal/

mol was regarded as good binding activity between

molecules, and the binding free energy of less than or

equal to −7 kcal/mol represented a strong binding force

between molecules (Morris et al., 2008). The docking

results showed that all five active ingredients had good

affinity with eleven core disease targets and played a

central role in the action of A. annua in the treatment

of AAA. We showed the top 10 molecular docking maps

with low binding energies in Figure 8. The low binding

energy molecular docking results provided valuable

information for the development of drugs to treat AAA.

Discussion

Since the 2015 Nobel Prize in Physiology or Medicine was

awarded to Chinese scientists, Artemisia has gained global

attention (Efferth et al., 2015). Artemisia and its derivatives

are used to treat malaria and are widely used to treat various

oncological and cardiovascular diseases (Ahmad et al., 2015;

Efferth, 2017; Lang et al., 2019; Feng et al., 2020; Jiang et al., 2020;

Yin et al., 2020; Meng et al., 2021). As the COVID-19 epidemic

rages around the world, some studies have been conducted to

fully elucidate the mechanisms behind A. annua’s treatment of

COVID-19 through network pharmacology and molecular

docking techniques (Tang et al., 2022). More studies have

been performed to explore the potential mechanisms of A.

annua and the treatment of chronic hepatitis B and

hepatocellular carcinoma (He et al., 2021; Zhang et al., 2021).

TABLE 2 Hub genes of degree value in the PPI network.

name Betweenness Closeness Degree Eigenvector LAC Network

RELA 1.507,142,857 0.769,230,769 7 0.25,598,225 4.571,428,571 5.333,333,333

MYC 2.078,571,429 0.909,090,909 9 0.326,317,787 6.444,444,444 8.172,619,048

MAPK8 0.821,428,571 0.769,230,769 7 0.263,347,566 5.142,857,143 6

FOS 2.078,571,429 0.909,090,909 9 0.326,427,132 6.444,444,444 8.172,619,048

TP53 2.192,857,143 0.909,090,909 9 0.326,792,687 6.444,444,444 8.130,952,381

JUN 3.164,285,714 1 10 0.354,707,539 7 10

MAPK14 1.942,857,143 0.833,333,333 8 0.295,108,497 5.5 6.595,238,095

CCND1 1.257,142,857 0.769,230,769 7 0.263,187,557 4.857,142,857 5.666,666,667

ESR1 2.192,857,143 0.909,090,909 9 0.326,792,687 6.444,444,444 8.130,952,381

MAPK1 1.942,857,143 0.833,333,333 8 0.295,108,497 5.5 6.595,238,095

AKT1 0.821,428,571 0.769,230,769 7 0.26,312,241 5.142,857,143 6

FIGURE 7
Thermal diagram of the molecular docking binding energy. The color from white to red indicated that the binding ability was weak to strong.
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With the development of network pharmacology, traditional

medicine based on multi-component, multi-target, and multi-

channel treatment of diseases have been paid more attention

(Yuan et al., 2017).

Our research screened 22 potentially active ingredients of

A. annua, including quercetin, luteolin, kaempferol,

isorhamnetin, artemetin, and artemisinin. Some

ingredients had been proven to affect vascular diseases,

FIGURE 8
Molecular docking diagrams of the top 10 molecular docking maps with low binding energies. The protein active site, binding distance, and
molecular docking model between the protein and the main active ingredient were shown in Figure 8. (A). MAPK8-Luteolin (−9.9 kcal/mol); (B).
MAPK8-Quercetin (−9.7 kcal/mol); (C). MAPK8-Kaempferol (−9.2 kcal/mol); (D). RELA-Luteolin (−9.2 kcal/mol); (E). RELA-Quercetin (−9.2 kcal/
mol); (F). AKT1-Isorhamnetin (−9.1 kcal/mol); (G). MAPK8-Isorhamnetin (−9.1 kcal/mol); (H). AKT1-Quercetin (−8.9 kcal/mol); (I). AKT1-Luteolin
(−8.7 kcal/mol); (J). CCND1-Luteolin (−8.7 kcal/mol).
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such as AAA. Quercetin, a flavonoid with anti-inflammatory

activity, was the most abundant ingredients that could act on

AAA and inhibited the development of AAA in mice (Wang

et al., 2012). Additionally, quercetin attenuated

neovascularization during AAA growth (Wang et al., 2020)

and decreased oxidative stress in AAA mouse models

(WANG et al., 2014). Luteolin inhibited vascular smooth

muscle cells proliferation and migration (Xu et al., 2015; Wu

et al., 2018). Kaempferol inhibited diabetic cardiomyopathy

in rats through a hypoglycemic effect and upregulation of

SIRT1 (Alshehri et al., 2021). Kaempferol attenuated

atherosclerosis via the PI3K/AKT/Nrf2 pathway (Feng

et al., 2021). In addition, some epidemiological studies had

found a positive correlation between the consumption of

foods containing kaempferol and a reduced risk of many

diseases, such as cancer and cardiovascular disease

(Calderón-Montaño et al., 2011). Isorhamnetin inhibited

oxidative stress (Skalski et al., 2019), and prevented

doxorubicin-induced cardiotoxicity (Sun et al., 2013), and

isorhamnetin attenuated atherosclerosis through PI3K/AKT

activation and HO-1-induced inhibition of macrophage

apoptosis (Luo et al., 2015). Artemetin had a certain

inhibitory effect on atherosclerosis (Kim and Shim, 2019)

and also could reduce hypertension proliferation, migration,

and inflammation of VSMCs (de Souza et al., 2011; Cao et al.,

2015). Therefore, the above results also showed that the

effective chemical components in A. annua had a certain

therapeutic effect on treating AAA.

After our filtering, there are 22 active ingredients in

Artemisia annua. The top compound is quercetin with a

degree-value of 89, and the last compound with a

degree-value of 1. The difference between the two values is

too large. We predicted the compounds and targets that play a

major role in A. annua, and the compounds with

high degree-value have higher representativeness while

referring to previous studies(Feng et al., 2022; Hong et al.,

2022; Xu et al., 2022), we selected the top five compounds for

subsequent validation and molecular docking. By screening a

total of 117 intersections of a drug-disease gene, the

topological analysis of 11 hub genes RELA, APK14,

CCND1, MAPK1, AKT1, MYC, MAPK8, TP53, ESR1,

FOS, and JUN were finally performed. The molecular

docking technique predicted the binding strength between

herbal components and targets (Zeng et al., 2019). The results

showed that the top 5 active ingredients had a good affinity

with 11 core disease targets, and the docking results were

less than −5.0 kcal/mol, which further demonstrated that

active ingredients and hub genes were critical targets of A.

annua in the treating of AAA. Among these, MAPK8-

Luteolin (−9.9 kcal/mol) had the best binding ability and

could be used as a potential drug therapeutic target in the

future. More literature had reported that these selected genes

were closely related to AAA (DiMusto et al., 2012; Leeper

et al., 2013; Ijaz et al., 2017; Hao et al., 2018; Zhang et al.,

2018; Zhao et al., 2019; Moran et al., 2020). These genes and

their associated pathways might become potential

therapeutic targets for AAA treatment. Because there is no

reliable high-level clinical evidence of drugs for the treatment

of abdominal aortic aneurysms (Golledge, 2019), we do not

have a positive control set in our molecular docking. As a

result, based on the advantages of A. annua in multigene

targeting, it is more promising to bring good news to AAA

patients.

In addition, KEGG enrichment analysis showed that

several pathways, such as the PI3K-Akt signaling pathway,

fluid shear stress, atherosclerosis, and the AGE-RAGE

signaling pathway, were closely associated with the

treatment of AAA by A. annua.

The relationship between the above pathways and AAA

had been extensively studied. Inhibition of Notch1-mediated

inflammation prevented AAA via the PI3K/Akt signaling

pathway (Ni et al., 2021), and AGE-RAGE stress

was associated with the pathogenesis of aortic aneurysms

(Prasad, 2019). Daidzein attenuated AAA through the NF-κB,
p38-MAPK, and TGF-β1 pathways (Liu et al., 2016). The

MAPK (mitogen-activated protein kinase)/ERK pathway was

an essential regulator of AAA formation during matrix

metalloproteinase (MMP) (Ghosh et al., 2012). Lithium

chloride could inhibit AAA by modulating the NF-κB
signaling pathway (Xu et al., 2021). Therefore, it was

speculated that A. annua might inhibit AAA by acting on

related signaling pathways or targets.

In summary, the study used network pharmacology and

molecular docking technology strategies to predict the

significant active compounds and critical targets of A.

annua in the treatment of AAA and speculated the

potential mechanisms from multiple approaches and

perspectives. Therefore, A. annua might have multiple

components, multiple targets, and multiple signaling

pathways to play a role in treating AAA. Among them,

quercetin corresponds to the most targets and has the

strongest activity, and it will be one of the possible

potential drugs in the future drug treatment of abdominal

aortic aneurysm.

Conclusion

Based on network pharmacology combined with

molecular docking technology, this study systematically

summarized the molecular targets of A. annua in the

treatment of AAA, aiming to promote more comprehensive

development and research of A. annua. The potential

molecular mechanism of the active ingredients of A. annua

in the treatment of AAA could support its subsequent clinical

research and be vital for exploring the pharmacological
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treatment of AAA. At the same time, the current work also has

some shortcomings. This study lacks corresponding

experimental verification, which will be further verified in

future research. In addition, the loss and incompleteness of

some database information will also have a particular impact

on the prediction results.
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Pre-eclampsia (PE) is a type of hypertensive disorder during pregnancy, which is

a serious threat to the life of mother and fetus. It is a placenta-derived disease

that results in placental damage and necrosis due to systemic small vessel

spasms that cause pathological changes such as ischemia and hypoxia and

oxidative stress, which leads to fetal and maternal damage. In this study, four

types of risk factors, namely, clinical epidemiology, hemodynamics, basic

biochemistry, and biomarkers, were used for the initial selection of model

parameters related to PE, and factors that were easily available and clinically

recognized as being associated with a higher risk of PE were selected based on

hospital medical record data. Themodel parameters were then further analyzed

and screened in two subgroups: early-onset pre-eclampsia (EOPE) and late-

onset pre-eclampsia (LOPE). Dynamic gestational week predictionmodel for PE

using decision tree ID3 algorithm in machine learning. Performance of the

model was: macro average (precision = 76%, recall = 73%, F1-score = 75%),

weighted average (precision = 88%, recall = 89%, F1-score = 89%) and overall

accuracy is 86%. In this study, the addition of the dynamic timeline parameter

“gestational week”made themodelmore convenient for clinical application and

achieved effective PE subgroup prediction.

KEYWORDS

hypertensive disorders of pregnancy, pre-eclampsia, decision tree, prediction model,
dynamic

1 Introduction

Hypertensive disorders in pregnancy (HDP) are conditions in which pregnancy and

hypertension coexist, with a prevalence of approximately 5%–12% (Mahendra et al.,

2021). The pathogenesis of HDP is complex and multifactorial, and although some

research has been done, its etiology is still unclear and no effective predictive method has

been established. HDP is a multi-causal disease whose pathogenesis is related to impaired
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placental angiogenesis, placental oxidative stress and abnormal

maternal immune response. It is not only hypertension and

proteinuria, but especially with the involvement of the heart,

lungs, liver and kidneys, the blood, digestive and nervous

systems, but also the placenta and the fetus. The disease

includes five subtypes: hypertension in pregnancy, PE,

eclampsia, chronic hypertension complicated by pre-eclampsia

and chronic hypertension in pregnancy (Duhig et al., 2019). PE is

one of the more severe of the above sub-types in its pathogenesis.

Patients with suspected preeclampsia are diagnosed when any of

the following points are met: new onset of hypertension or

exacerbation of preexisting hypertension, positive urine test

for urine protein, epigastric or right upper abdominal pain,

headache with visual disturbance, fetal growth restriction or

abnormal maternal blood tests (e.g., thrombocytopenia or

liver and kidney dysfunction) (Li et al., 2021). The clinical

management of preeclampsia is a complex task for the

following reasons: (A) Complex pathogenic background:

preeclampsia is a multifactorial-multi-mechanism-multi-

pathway pathogenic syndrome. (B) Complex symptom

presentation: The degree and presentation of hypertensive

symptoms in preeclamptic patients are complex, and the first

symptoms are diverse. In traditional medical diagnosis,

physicians can only rely on the information of the target

patient as well as their own experience and knowledge base to

make judgments, which has some limitations. The machine

learning approach, however, can better assist in diagnosis.

Termination of pregnancy before 34 weeks of gestation due to

pre-eclampsia is de-fined as EOPE, and termination at ≥34 weeks
of gestation is defined as LOPE (Raymond and Peterson, 2011).

Risk factors associated with PE can be divided into various

aspects such as clinical epidemiology, hemodynamics,

underlying biochemical factors, and biomarkers in pregnant

women. If the high-risk risk factors in the development of PE

are clarified and a com-prehensive multifactorial dynamic study

is performed, the impact and significance of preeclampsia

prediction and prevention are very important.

Tan et al. (2020) established a prediction model for severe

maternal outcomes in pregnant women with PE by using a

multivariable logistic regression model. The model has a good

predictive ability by internal validation. Further external

validation is required to clarify the clinical applicability of this

model. Beth et al. (2014) developed the miniPIERS risk

prediction model to provide a simple, evidence-based tool to

identify pregnant women in LMICs at increased risk of death or

major hypertensive-related complications. The miniPIERS

model shows reasonable ability to identify women at increased

risk of adverse maternal outcomes associated with the HDP.

Saleh et al. (2021) propose a simple clinical prediction model

with good discriminative performance to predict the risk of a

composite outcome of PE-related maternal and fetal

complications within 7, 14, and 30 days of testing in women

with suspected or confirmed PE. The clinical pre-diction models

with good identification performance can be used to predict PE-

related complications. Ziad et al. (2020) using births from 2011 to

2012, multivariable logistic regression incorporated established

maternal risk factors to develop and internally vali-date the WS

(Western Sydney) model. The WS model was then externally

validated using births from 2013 to 2014, assessing its

discrimination and calibration. The model achieved modest

performance for prediction of PE in nulliparous women but

did not outperform the NICE approach.

Placental growth factor (PlGF), a member of the vascular

endothelial growth fac-tor family, is a pro-angiogenic factor

serum marker with important functions in regulating placental

trophoblast and endothelial cell function (Duhig et al., 2020).

PlGF levels are usually measured at the first antenatal visit,

11–13 weeks of gestation, 19–24 weeks of gestation, and

30–34 weeks of gestation as a way to assess the risk of

developing preeclampsia. However, the pathogenesis of

preeclampsia has not been elucidated, and there is a lack of

effective clinical means to prevent it. Its multifactorial

predisposition, multiple pathways of pathogenesis and

individual differences all determine that a single index is not

a good predictor of preeclampsia. Researchers have also

combined maternal characteristics and the biomarker PlGF

to make relevant predictions. Knudsen et al. (2012)

demonstrated the potential of the biomarker PlGF as an aid

in the diagnosis of PE: the highest clinical sensitivity was

calculated using a threshold value based on the fifth

percentile of PlGF concentrations in reference pregnancies

within a defined gestational week, and the single biomarker

PlGF had the same diagnostic performance compared to the

ratio of the two biomarkers, simplifying the test results and

reducing costs, with some economic benefits. Black et al. (2020)

used the Fetal Medicine Foundation algorithm to combine

Maternal own condition, mean arterial pressure, mean

uterine artery pulsatility index, and median multiples of

PlGF parameters for combined screening of mid-pregnancy

PE. Stepan et al. (2020) combined information from ultrasound,

mean arterial pressure, clinical features and PlGF to improve

the prediction of PE in early pregnancy. Poon et al. (2009) used

a logistic regression analysis algorithm combining mean arterial

pressure, uterine artery pulsatility index, PAPP-A and PlGF for

the prediction of preeclampsia and its subtypes. Mendoza et al.

(2021) Combined screening for PE and its subtypes in early

pregnancy with physical indicators and biomarkers. Sufriyana

et al. (2020) predicted PE by maternal characteristics, uterine

motility Doppler measurements, sFlt-1 and PlGF in mid and

late pregnancy. sFlt-1 and PlGF in mid- and late-trimester,

using machine learning-related algorithms to predict PE.

The aim of this study was to develop and validate a model for

predicting the risk of PE for uncomplicated pregnancies. The

model can be used at prenatal visits at different gestational weeks

to predict whether a pregnant woman is likely to have PE and if

so whether she has EOPE or LOPE.
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2 Materials and methods

The study data were obtained from clinical epidemiological

data, hemodynamic data, data on underlying biochemical data,

and biomarker data. Radial artery and fingertip volumetric pulse

waveform information collected from 2015 to 2016 at Beijing

Haidian District Maternal and Child Health Hospital and from

2006 to 2008 at Beijing Maternity Hospital for detecting

gestational weeks of 10–40 weeks. The clinical epidemiological

data, hemodynamic data, data on underlying biochemical data,

and biomarker data, and PlGF parameter information were

collected from July 2015 to 2017 at Peking University People’s

Hospital for the detection of gestational weeks 10–40 weeks. And

PlGF testing was mainly focused on about 15–26 weeks. The

study subjects were included in the following conditions:

pregnant women were not on long-term oral medication; The

fetus was free of malformations.

The study population was 80 pregnant women with EOPE

(96 tests), 219 pregnant women with LOPE (371 tests) and

633 pregnant women without HDP (1,351 tests). Pregnant

women with EOPE were included in the EOPE group, those

with LOPE in the LOPE group, and those without HDP in the

control group.

2.1 Model parameter filtering

Risk factors for PE mainly include clinical epidemiological

factors, hemodynamic factors, basic biochemical factors and

biomarker factors. In order to analyze the correlation

dynamics of each model parameter before the construction of

the dynamic gestation prediction model of PE, and according to

whether the factors themselves change with the gestational age,

the risk factors initially screened out are divided into static

parameters that do not change with the gestational age and

dynamic parameters that change with the gestational age. This is

shown in Table 1.

The characteristic parameters of pulse wave were obtained

by detecting the pulse wave of radial artery. Radial artery pulse

wave detection at the Beijing Obstetrics and Gynecology

Hospital was obtained by MP HDP detection instrument

developed by Beijing Yes Medical Devices Co., Ltd. The

eight-channel PowerLab data acquisition system, LabChart

8 software and strain gauge pressure sensor were used to

collect radial artery pulse wave at the Beijing Haidian

Maternal and Child Health Hospital. Biochemical parameters

were obtained by blood routine examination and biochemical

examination. SPSS 23.0 software was used for statistical basic

analysis and decision tree was used to construct the predictive

model of PE in Jupyter Notebook.

2.1.1 Static parameter filtering
For the screening of static parameters that do not change

with the gestational age, the basic information statistics of

qualitative and quantitative parameters are used. In order to

describe the difference between the parameters in the EOPE

group and the LOPE group and the same control group. A chi-

square test was performed on 12 qualitative factors. Odds ratio

(OR) > 1, indicating that the risk of this factor associated with PE

was high, and p < 0.05 was statistically significant. While the

independent sample t test for three quantitative factors was

expressed as mean ± standard deviation, and p < 0.05 was

statistically significant. The specific analysis of static

parameters of pregnant women in the EOPE group, LOPE

group and the same control group that do not change with

gestational age is shown in Tables 2, 3.

The static parameters of 80 cases of EOPE group and

633 control groups that did not change with gestational age

were as follows: multiple pregnancies, history of spontaneous

abortion, and history of hypertensive disease during pregnancy

were qualitative parameters, and the proportion of all in the

EOPE subgroup was higher than that of the control group,

OR>1 and p < 0.05, indicating that these factors were high-

risk and statistically significant; preconception body mass index

TABLE 1 Classification of PE risk factors.

Category Factors

Static parameters Qualitative factors First birth, multiple births, spontaneous miscarriage history, history of hypertension in pregnancy, history of diabetes
mellitus, family history of hypertension, family history of diabetes mellitus, gestational diabetes mellitus, pregestational
diabetes mellitus, pregnancy with immune system diseases, pregnancy with hematologic diseases, pregnancy with thyroid
diseases

Quantitative factors Height, age, preconception body mass index

Dynamic
parameters

Epidemiological factors body mass index during pregnancy

Hemodynamic factors Systolic blood pressure (SBP), diastolic blood pressure (DBP), pulse pressure (PP), mean arterial pressure (MAP), pulse
waveform area parameters(K), cardiac output (CO), cardiac index (CI), total peripheral resistance (TPR)

Basic biochemical factors Hematocrit (HCT), mean platelet volume (MPV), platelet count (PLT), alanine aminotransferase (ALT), aspartate
aminotransferase (AST), creatinine (CRE), uric acid (UA)

Biomarker factors PlGF

Frontiers in Physiology frontiersin.org03

Li et al. 10.3389/fphys.2022.1035726

74

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1035726


was a quantitative parameter, which was significantly higher than

that of the control group in the EOPE subgroup, and p <
0.001 was statistically significant, as shown in Table 2.

Multiple pregnancies, a history of spontaneous miscarriage, a

history of hypertensive disorders during pregnancy, and a history

of preconception body mass index as static parameters in the

EOPE subgroup are consistent with clinical needs and previous

studies.

Static parameter analysis of 219 patients in the LOPE group

and 633 control groups that did not change with gestational age:

multiple pregnancies, natural abortion history, gestational

hypertension disease history, hypertension family history, and

TABLE 2 Analysis of factors that do not change with gestational age in EOPE subgroup and control.

Parameter EOPE subgroup Control group OR

Number 80 633 —

First birth 56 (70.0%) 515 (81.4%) 0.535

Multiple births 7 (8.8%)** 4 (0.6%) 15.079

Spontaneous miscarriage history 39 (48.8%)** 141 (22.3%) 3.319

History of hypertension in pregnancy 2 (2.5%)* 1 (0.2%) 16.205

History of diabetes mellitus 2 (2.5%) 10 (1.6%) 1.597

Family history of hypertension 15 (18.8%) 105 (16.6%) 1.160

Family history of diabetes mellitus 2 (2.5%) 32 (5.1%) 0.482

Gestational diabetes mellitus 2 (2.5%) 37 (5.8%) 0.413

Pregestational diabetes mellitus 0 2 (0.3%) 0.997

Pregnancy with immune system diseases 2 (2.5%) 14 (2.2%) 1.134

Pregnancy with hematologic diseases 2 (2.5%) 20 (3.2%) 0.786

Pregnancy with thyroid diseases 2 (2.5%) 30 (4.7%) 0.515

Age 30.650 ± 4.543 30.220 ± 3.742 —

Height(m) 1.618 ± 0.051 1.624 ± 0.048 —

Preconception body mass index 55.734 ± 8.588** 21.140 ± 3.101 —

Notes: *for p < 0.05, ** for p < 0.001. p < 0.001 has significant difference.

TABLE 3 Analysis of factors that do not change with gestational age in LOPE subgroup and control group.

Parameter LOPE subgroup Control group OR

Number 219 633 —

First birth 172 (78.5%) 515 (81.4%) 0.839

Multiple births 12 (5.5%)** 4 (0.6%) 9.116

Spontaneous miscarriage history 90 (41.1%)** 141 (22.3%) 2.434

History of hypertension in pregnancy 6 (2.7%)** 1 (0.2%) 17.803

History of diabetes mellitus 7 (3.2%) 10 (1.6%) 2.057

Family history of hypertension 51 (23.3%)* 105 (16.6%) 1.527

Family history of diabetes mellitus 24 (11.0%)* 32 (5.1%) 2.312

Gestational diabetes mellitus 12 (5.5%) 37 (5.8%) 0.934

Pregestational diabetes mellitus 1 (0.5%) 2 (0.3%) 1.447

Pregnancy with immune system diseases 9 (4.1%) 14 (2.2%) 1.895

Pregnancy with hematologic diseases 2 (0.9%) 20 (3.2%) 0.282

Pregnancy with thyroid disease 8 (3.7%) 30 (4.7%) 0.762

Age 30.350 ± 4.300 30.220 ± 3.742 —

Height(m) 1.619 ± 0.053 1.624 ± 0.048 —

Preconception body mass index 23.239 ± 3.916** 21.140 ± 3.101 —

Notes: *for p < 0.05, ** for p < 0.001. p < 0.001 has significant difference.
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diabetes family history, the proportion of the LOPE group was

higher than that of the control group. OR >1 and p <
0.05 indicated that the risk of factors was high and statistically

significant; preconception BMI was a quantitative parameter,

which was significantly higher than that of the control group in

the LOPE group, and p < 0.001 was statistically significant, as

shown in Table 3. The inclusion of multiple pregnancies, history

of spontaneous abortion, history of hypertensive disease during

pregnancy, family history of hypertension, family history of

diabetes and preconception body mass index as static

parameters of the LOPE subgroup has certain significance

from the perspective of clinical and related research (Knudsen

et al., 2012; Black et al., 2020; Duhig et al., 2020).

2.1.2 Dynamic parameter filtering
For the screening of dynamic parameters that change with

gestational age, the control variable analysis is mainly carried out.

This study mainly constructs a dynamic gestational age

prediction model, and the selection of dynamic parameters

that change with gestational age takes into account the

improvement of the dynamic model effect, etc., and the

clinical epidemiological factors that change with gestational

age mentioned in Table 1 above: gestational body mass index

and one of the effective biomarkers (PlGF) These two dynamic

parameters, which are relatively small in this study, are directly

included in the model, and are also consistent with clinical needs

and previous studies (Rantakallio et al., 2021). The purpose of

combining hemodynamic factors is that hemodynamic

alterations are important factors in the development and

progression of preeclampsia in patients with preeclampsia due

to various pathophysiological alterations resulting in blood

concentration, decreased blood volume, and increased

peripheral resistance. Blood pressure is the combined result of

the interaction of hemodynamic parameters. SBP and DBP are

obtained from clinical history data, and PP indicates that pulse

pressure difference is related to both SBP and DBP. MAP is the

mean value of arterial blood pressure during a cardiac cycle, CI

mainly reflects cardiac function-related conditions, CO is a very

important blood flow parameter to assess cardiovascular

function, and TPR can measure small vessel spasm.

For a total of 15 parameters of hemodynamic factor(H) and

basal biochemical factor(B) in Table 1 that change with

gestational age, the control variables were analyzed in two

groups, that is, the probability of parameter combination was

calculated by logistic regression to control the parameters of

other classes within a fixed range, and the two types of

parameters were then independently sampled t-tested and

outliers analyzed at different gestational stages.

Finally, the parameters for inclusion in the prediction

model of each dynamic subgroup were finally determined

based on the actual needs of clinical and related studies.

Finally, the parameters for inclusion in the prediction model

of each dynamic subgroup were finally determined based on the

actual needs of clinical and related studies. From the perspective

of clinical and related research, further group analysis of

gestational segments was carried out at 20 weeks and

34 weeks in the first and third trimesters of each group,

namely the second-trimester-E group (ST-EG) and the

second-trimester-L group (ST-LG), as well as the late-

trimester-E group (LT-EG) and the late-trimester-L group

(LT-LG) (Meah et al., 2016). If there are multiple tests in the

group, the data of the later and earlier detection of the second

and late trimesters of pregnancy are taken respectively to focus

on the changes in the parameters of the second half of the late

trimester and the first half of the late trimester affect whether

the final pregnant woman is ill. The sensitivity analysis of the

EOEP subgroup and the LOPE subgroup for the H and B

parameters of each gestational segment is shown in Tables 4,

5, and the values of each parameter represent the mean of the

t test of the independent samples.

The results in Tables 4, 5 showed that the H and B parameters

of each gestational segment met the conditions of sensitive

parameters in the LOPE subgroup, that is, the prediction of

disease outcomes wasmore sensitive, and the platelet count of the

EOPE subgroup did not meet the sensitive parameter conditions,

possibly because the amount of data in the EOPE subgroup was

relatively small and did not reflect significant differences or

abnormalities. However, the two are themselves dynamic

parameters.

In this study, the H and B parameters are put into the

prediction model of each dynamic subgroup. In addition to

the model parameters summarized above, the gestational age

as a timeline parameter is also directly incorporated into the

prediction model to form a dynamic model. Conditions met for

sensitive parameters: independent samples t-test for parameters,

that is, p < 0.05 between groups in the disease and control groups

or parameters outside the range of normal values.

2.1.3 Final parameters
Through the filtering of dynamic and static parameters, the

parameters identified for inclusion in this study are shown in

Table 6.

2.2 Machine learning model

The study used an algorithm from decision trees called the

Iterative Dichotomiser (ID3) algorithm (Quilan, 1986). The

algorithm is a classification prediction algorithm proposed by

J. Ross Quinlan at the University of Sydney in 1975. The

ID3 algorithm calculates the information gain of each label by

selecting the attribute with the highest information gain as the

classification criterion for each division, and repeats the process

until a perfect decision tree can be generated.

Information entropy is a metric to measure the purity of a

sample set. Suppose that the proportion of the class k sample in
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the sample setD is pk(k � 1, 2, 3 . . . |y|) , then the entropy of the

information D is:

Ent(D) � −∑
|y|
k�1

pklog2pk

Assuming that the discrete attribute a has v possible values, if

a is used to divide the data set D, v branch nodes are generated,

wherein the v branch node contains all the samples inD with the

value of av on the property a, denoted as Dv. According to

Equation, the information entropy of Dv is calculated, and the

number of samples contained in different branch nodes is taken

into account, and the branch nodes are given weights |Dv |
|D| , that is,

the greater the influence of branch nodes with more sample

numbers, so the information gain obtained by dividing sampleD

by the a attribute is:

Gain(D, a) � Ent(D) −∑
V

v�1

|Dv|
|D| Ent(D

v)

The process of the algorithm is as follows:

1) Classification training starts from the root node, calculates the

information gain of all possible features, and selects the

feature with the largest information gain as the partition

feature of the node;

2) Child nodes are established from different values for the

feature;

3) Recursive step 1 to step 2 of the child nodes to construct the

decision tree;

4) A final decision tree is obtained until no features can be

selected or the categories are identical.

TABLE 4 Sensitivity analysis of H and B parameters in EOPE subgroup and control group.

Parameter Group ETG ST-EG ST-LG LT -EG LT-LG

SBP EOPE subgroup 114.438 124.286* 120.000* 118.385* 148.963*#

Control group 115.547 112.313 109.252 108.2521 110.013

DBP EOPE subgroup 75.438 77.857* 77.316* 75.538* 96.074*#

Control group 73.795 70.270 68.454 68.034 69.479

PP EOPE subgroup 39.000 46.429 42.684 42.846 52.889*#

Control group 41.752 42.043 40.797 40.218 40.534

MAP EOPE subgroup 91.553 95.680* 93.128* 91.603* 117.952*

Control group 90.336 86.029 83.583 84.195 84.453

K EOPE subgroup 0.414# 0.387 0.373 0.385* 0.415*#

Control group 0.401# 0.380 0.375 0.373 0.403#

CO EOPE subgroup 4.071 5.286 5.181 5.215 5.273*

Control group 4.320 4.795 4.876 4.969 4.302

CI EOPE subgroup 2.573 3.088 3.203 3.174 2.960*

Control group 2.781 3.048 3.006 3.000 2.547

TPR EOPE subgroup 1.494# 1.121# 1.112 1.410*# 1.105

Control group 1.331# 1.136# 1.088 1.079 1.267#

HCT EOPE subgroup 37.321 38.512* 38.329* 35.985 37.654

Control group 37.591 35.246 35.197 36.129 36.175

MPV EOPE subgroup 8.902 9.106 9.692 9.678 10.477*

Control group 8.986 9.277 9.615 9.664 9.203

PLT EOPE subgroup 228.482 241.275 192.046 180.378 180.923

Control group 222.409 221.554 205.166 196.200 199.134

ALT EOPE subgroup 19.669 20.446 21.886 23.333* 23.500

Control group 23.786 21.423 22.692 21.814 22.765

AST EOPE subgroup 21.206 21.964 22.694 23.889* 24.000

Control group 23.710 22.497 23.175 22.735 23.563

CRE EOPE subgroup 47.761 62.517 62.098 76.275* 56.395

Control group 52.227 61.248 65.818 49.743 54.863

UA EOPE subgroup 212.681 231.447 232.684* 335.053* 276.247

Control group 200.542 240.577 246.082 228.289 263.255

Notes: * indicates p < 0.05 between groups, # indicates outside the normal range.
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3 Results

The dataset is shown in Table 7. Using 70%/30% random

training/test data splitting, repeat this process 20 times and

achieve average performance. The model should classify and

predict EOPE, LOPE and healthy people.

Precision, recall, and F1-score are used as evaluation

indicators for this model. For evaluating performance average

across categories, there are two conventional methods, namely

macro average and weighted average. Macro averaged

performance scores are computed by first computing the

scores for the per-category contingency tables and then

averaging these per-category scores to compute the global

means (Yang et al., 1999). When there is a serious class

TABLE 5 Sensitivity analysis of H and B parameters in LOPE subgroup and control group.

Parameter Group ETG ST-EG ST-LG LT-EG LT-LG

SBP LOPE subgroup 114.118 120.226* 120.039* 127.897* 136.083*

Control group 115.575 112.009 109.117 110.067 109.280

DBP LOPE subgroup 73.647 76.547* 74.471* 80.971* 90.861*#

Control group 73.856 70.164 68.400 69.537 68.986

PP LOPE subgroup 40.471 43.679 45.569* 46.926* 45.222*

Control group 41.719 41.845 40.717 40.530 40.294

MAP LOPE subgroup 90.119 92.526* 91.526* 98.891* 108.468*

Control group 90.369 85.847 83.510 84.510 84.928

K LOPE subgroup 0.407# 0.374 0.379 0.383* 0.387

Control group 0.401# 0.380 0.375 0.373 0.397

CO LOPE subgroup 4.313 4.900 5.248 5.424* 5.206*

Control group 4.322 4.796 4.867 4.968 4.458

CI LOPE subgroup 2.774 3.183 3.195 3.201* 2.927*

Control group 2.782 3.055 3.005 3.003 2.627

TPR LOPE subgroup 1.347# 1.149 1.118 1.152 1.339#

Control group 1.331# 1.134 1.090 1.080 1.238#

HCT LOPE subgroup 37.584 36.492* 36.633* 36.976 36.972

Control group 37.588 35.196 35.173 36.079 36.586

MPV LOPE subgroup 8.943 9.710* 9.403 9.791 10.297*

Control group 8.987 9.285 9.600 9.660 9.411

PLT LOPE subgroup 223.983 201.779* 203.542 193.047 179.028

Control group 222.049 220.816 205.503 195.800 194.364

ALT LOPE subgroup 19.394 18.746* 22.673 22.334 23.500

Control group 23.788 21.506 22.769 21.834 22.888

AST LOPE subgroup 20.782 19.882* 22.845 23.326 24.000

Control group 23.708 22.572 23.215 22.754 23.636

CRE LOPE subgroup 48.396 53.677* 65.454 65.037* 61.924*

Control group 52.211 61.427 65.848 49.630 55.067

UA LOPE subgroup 203.576 211.578* 238.838* 304.248* 308.173*

Control group 200.624 240.662 246.135 228.304 265.950

Notes: * indicates p < 0.05 between groups, # indicates outside the normal range.

TABLE 6 Parameters eventually incorporated into the model.

Category Factors

Static parameters Multiple births, spontaneous miscarriage history, history of
hypertension in pregnancy, history of diabetes mellitus,
family history of hypertension, preconception body mass
index

Dynamic
parameters

gestational week, body mass index during pregnancy, SBP,
DBP, PP, MAP, K, CO, CI, TPR, HCT, MPV, PLT, ALT, AST,
CRE, UA, and PlGF

TABLE 7 The dataset of the model.

EOPE LOPE Health Total

Training set 68 255 949 1,272

Test set 28 116 402 546

Total 96 371 1,351 1818
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imbalance in the dataset, the weighted average can be adopted.

The performance of the model is shown in Table 8, Overall

accuracy of the model is 86%.

4 Discussion

This study describes the importance of predicting PE, and

analyzes the status of existing relevant studies comparing risk

factors and prediction methods for PE and other deficiencies, thus

illustrating the need and importance of this study. This study is

mainly based on retrospective analysis and screening of factors that

are effective for the risk of developing EOPE as well as LOPE by

combining four categories of factors: clinical epidemiological

factors, hemodynamic factors, basic biochemical factors and

biomarkers. Based on the model parameters obtained from the

screening of each subgroup, the decision tree (ID3) algorithm was

used to develop dynamic gestational week prediction models for

two types of subgroups, EOPE and LOPE, respectively. The core

idea of the ID3 algorithm is tomeasure the selection of attributes in

terms of information gain and select the attribute with the greatest

information gain after splitting for splitting. The algorithm uses a

top-down search to traverse the space of possible decisions. In

other words, before dividing each non-leaf node of the decision

tree, the information gain of each risk factor incorporated into the

model is calculated, and then the risk factor with the greatest

information gain is selected for division, because the greater the

information gain, the more representative the risk factor is, and the

stronger the algorithm’s ability to identify early-onset pre-

eclampsia. The model structure was optimized and simplified to

enhance the clinical applicability of the model in order to achieve

detailed and effective prediction using a simpler dynamic

periconceptional subgroup model.

There are still many ways to predict PE Carhillon et al. (2005).

Showed that measuring umbilical artery flow parameters such as

peak systolic velocity/end diastolic (S/D), beat index, and resistance

index can predict the occurrence of PE. In urine, there are studies on

the use of urine proteomics for the diagnosis and screening of PE

(Carty et al., 2011). Proteomic analysis of the cerebrospinal fluid can

accurately determine the severity of PE (Norwitz et al., 2011). sFlt-1

is an anti-angiogenic factor serum marker that downregulates and

inhibits the bioactivity of PIGF in promoting placental vascular

growth. sFlt-1/PlGF ratio is a good predictive value and diagnostic

guide for PE when measured jointly by Bian et al. (2019). However,

single prediction is one-sided and unstable, Cnossen et al. (2008)

performed a separate study of uterine artery Doppler and the results

were low for PE-related subtypes The predictive value of PE-related

subtypes was low.

In this study, a multifactorial PE subgroup analysis was

performed by combining four categories of clinical

epidemiological factors, hemodynamic factors, basal biochemical

factors and biomarkers, reclassified according to whether they varied

with gestational week. Among them, the biomarker PlGF was tested

and compared and had a more significant predictive role and value

for the EOPE subgroup. The biomarker is an important dynamic

parameter, and the current testing gestational weeks of PlGF in this

subject are mainly distributed in 15–26 weeks, with less data on

testing samples in the rest of the gestational weeks. In order to

improve the quality and effectiveness of the full gestational week data

model, the clinical data of full gestational week testing of the

biomarker PlGF need to be supplemented in the future. The data

in this study are based on retrospective analysis and have limitations

such as the type of data. To achieve reliable prediction and enhance

clinical application, prospective and multicenter studies are needed

to demonstrate the clinical utility of predictive parameters.

5 Conclusion

In this study, a multifactorial approach was used for the

prediction of dynamic PE-related subgroups, and the model was

further refined and incorporated the dynamic timeline parameter

“gestational week” for overall dynamic gestational week

prediction. It is simpler and more convenient for clinical

application, and the model parameters and structure are

optimized to achieve effective PE subgroup prediction. This

study’s model and method for the prediction of PE integrated

dynamic gestational week subgroups is of great significance in

giving targeted clinical predictions and recommendations for

improving maternal and infant conditions.
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Currently, cardiovascular and cerebrovascular diseases have become serious

global health problems related to their high incidence and fatality rate. Some

patients with cardiovascular cerebro-cardiovascular diseases even may face

motor or cognitive dysfunction after surgery. In recent years, human–computer

interactive systems with artificial intelligence have become an important part of

human well-being because they enable novel forms of rehabilitation therapies.

We propose an interactive game utilizing real-time skeleton-based hand

gesture recognition, which aims to assist rehabilitation exercises by

improving the hand-eye coordination of the patients during a game-like

experience. For this purpose, we propose a lightweight residual graph

convolutional architecture for hand gesture recognition. Furthermore, we

designed the whole system using the proposed gesture recognition module

and some third-party modules. Finally, some participants were invited to test

our system and most of them showed an improvement in their passing rate of

the game during the test process.

KEYWORDS

hand gesture recognition, graph convolutional network, residual mechanism,
rehabilitation, human–computer interaction

1 Introduction

We have previously reported research in the field of tech-assisted rehabilitation

(Liu et al., 2019; Tan et al., 2021; Sun and Wu, 2022). Cardiovascular and

cerebrovascular diseases have become serious global health problems because of

their high incidence and fatality rate. Cardiovascular disease is the leading cause of

death, accounting for about 34% of all deaths worldwide (Anteneh et al., 2021),

followed by stroke, a typical cerebrovascular disease, accounting for 11.6% (Kisa et al.,

2021). Even after treatment, both cardiovascular and cerebrovascular disease may

lead to motor or cognitive dysfunction, which needs a long period of rehabilitation

(Berthier, 2005; Pattanshetty et al., 2015). Aerobic and strength training programs can

improve cognitive performance even during the chronic stroke phase (Oberlin et al.,

2017). For patients, a rehabilitation process combining motor and cognitive training
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has the potential to enhance their chance of recovery and

rebuild their ability to take care of themselves.

In the last few years, an increasing trend in the innovation of

rehabilitation methods using new technology to make

rehabilitation processes more efficient has emerged. A good

rehabilitation method should be user-friendly and interesting,

so that patients may engage in the process and have a good time.

Human–computer interactive systems free the patients from

having to travel to rehabilitation clinics and offer them an

opportunity to do these exercises at home. Because patients

might perform the exercises casually or incorrectly in a home-

based environment, many advances in technology have been

leveraged to make the process more immersive, such as 3D

gaming (Nasri et al., 2020) and virtual reality (VR) (Rincon

et al., 2016).

This article proposes an interactive game controlled by

10 hand gestures for people, who suffer from limitations in

daily life caused by aging or a health condition and thus want

to strengthen their hand–eye coordination or do brain exercises.

Our contributions can be summarized as follows:

• A rehabilitation game that leverages artificial intelligence

(AI) (hand gesture recognition and character recognition).

• A network architecture for real-time skeleton-based hand

gesture recognition.

The article is organized as follows: Section 2 reviews the

state-of-the-art rehabilitation methods with technological

assistance and hand gesture recognition approaches.

Section 3 describes the details of the interactive game. This

section also describes the network architecture and introduces

the whole system we designed to keep the application more

reliable. Section 4 presents more details about the

experimental process and the results obtained. In Section 5,

we report the study conclusions and provide future research

directions.

2 Related work

2.1 Rehabilitation system

Conventional rehabilitation utilizes methods including the

mini-mental state examination (MMSE), neurobehavioral

cognitive status examination, Loewenstein occupation therapy

cognitive assessment, and Wechsler memory scale to train and

evaluate rehabilitation. Some of these use real cards to train the

patients and often ask them to choose the correct card or sort

them in order. These approaches require a long intervention

cycle and are difficult for patients to maintain good exercise

independence for a long time.

With the development of computer technology, the PC has

become an auxiliary tool in cognitive rehabilitation training. In

the beginning, it only used simple interactive logic to guide

patients through rehabilitation (Hofmann et al., 1996a). In

1996, Hofmann’s team introduced computer graphics into

cognitive training (Hofmann et al., 1996b), making the

program more interactive with colored images. The rapid

development of computer graphics and human–computer

interactions has led to more visual and audio usage in

rehabilitation systems. The newest rehabilitation methods

leverage AI and VR technology. A system with AI can

recognize a patient’s behavior, such as hand gestures through

vision or sensor data, which makes human–computer

interactions more natural and convenient. Relatively, a system

with VR allows patients to do rehabilitation exercises in any

location, with an insignificant difference from the real world.

2.2 Hand gesture recognition

According to the type of input, methods of hand gesture

recognition can be classified into two categories: image-based

methods and hand skeleton-based methods. The former adopts

image sequences, whereas the latter uses sequences of hand joints

as input. Compared with image-based methods, hand skeleton-

based methods relieve the difficulty in recognizing a cluttered

background, and requires lower computation cost, thus enabling

real-time hand gesture recognition to be installed on small

devices (Zhang et al., 2020). However, a skeleton-based

approach needs additional tools to extract the hand skeleton

accurately.

According to the method used to extract features, hand

gesture recognition methods can also be classified into two

categories: hand-crafted feature-based methods and end-to-

end-based methods. The former encodes the input data into

handcrafted features, such as joint angle similarities (Ohn-Bar

and Trivedi, 2013) and time sequence similarity (Plouffe and

Cretu, 2016). The former encodes the sequences of joints into

embedding vectors and often feeds them into deep-learning

architecture, like recurrent neural networks (RNNs) or

convolutional neural networks (CNNs), to extract deep

features. Graph convolutional network (GCN) also has an

important role in skeleton-based hand gesture recognition.

Many studies have demonstrated the effectiveness of GCN

using the skeleton as a graph structure (Yan et al., 2018;

Zhang et al., 2020).

3 Methods and materials

3.1 Graph convolutional network
architecture

Because the input data were acquired as a sequence of

21 hand joints, which is a natural graph structure, we chose
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to work with a graph convolutional network. For each hand

with N joints, we defined a skeleton graph G(V, E), where V �
{vi|i � 0, 1, . . . , N − 1} is the set of nodes (vi denotes the j-th

joint) and E � {ei,j|i, j ∈ V} is the set of edges. In our system, we

set N � 21.

The topological relationship of nodes in the hand skeleton

graph is illustrated in Figure 1. The edge-connecting nodes vi and

vj mean node vi and vj have connected joints in the hand

skeleton tree. It also means that nodes vi and vj are adjacent.

The graph convolution propagation rule of the graph G can be

described with the following formula:

F(l+1) � σ(AsW(l)
s F(l)),As � D−1/2

s AsD−1/2
s , (1)

where As is the normalized adjacent matrix of G,W(l)
s of the size

Cout × Cin × 1 × 1 is a weight matrix to be trained (Cout and Cin

are the numbers of input and output channels), F(l) denotes the
output of the l-th layer, σ(·) is the activation function of the

graph convolutional layer, and Ds is the degree matrix of As.

Before sending the data into the model, we preprocessed the

data by setting the origin of the coordinates in the palm

(midpoint between v0 and v9), making the data more evenly

distributed. To prevent overfitting, the input hand data are

randomly rotated as a data augmentation approach. The

rotation angle θ ~ N(0, π/10).
Figure 2 illustrates our proposed neural network architecture

for hand gesture recognition. In this model, we implemented one

graph convolutional layer with 64 channels to transform the

input 3-channel data into a 64-channel vector. This was followed

by two graph convolutional units with the residual mechanism,

which requires making a straight connection between the input

and output of every unit (Figure 2). This is effective at resolving

gradient disappearance. Each unit has two layers of graph

convolution with 64 channels of output. Finally, we fed the

feature vector into a graph convolutional layer with

10 channels to match the number of gesture categories. We

used softmax to calculate the probability of each class. The

architecture described is shown in Figure 2.

3.2 Rehabilitation game experience

We created an interactive game controlled by hand gestures.

This game utilizes a camera to recognize the hand behavior of the

player and motivate the player to do air writing. It provides a

hand–brain combined exercise and facilitates the rehabilitation

process.

At the beginning of the game, two hand gestures were given

by the computer to control an invisible pen to draw in the air (by

generating a line or undoing a line). The player is required to

control the pen correctly to complete a Chinese character. The

system displays the player’s finger movements as they write and

show the recognition result after they finish handwriting

(Figure 3).

3.3 Design of the rehabilitation system

The system obtains visual images from the computer

camera and communicates with users through an interface.

The backend of the system is composed of a hand joint

FIGURE 1
The hand skeleton graph. The nodes denote the hand joints
and the edges denote the connections.

FIGURE 2
Illustration of our graph convolutional network architecture. The input is the coordinates of 21 hand joints. The two side paths that both bypass
two 64-channel GCN, bring residual mechanism to our architecture.
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detection module, a gesture recognition module, a trajectory

processing module, and a character recognition module. The

visual image is first sent to the hand joint detection module

and transformed into 3D coordinates of 21 hand joints. Then,

the gesture recognition module identifies the specific gesture

category. The trajectory processing module controls the

generation of handwriting according to the hand behavior

of the player. After that, it also performs Bezier smoothing and

then passes the image with the completed character to the next

module. Finally, the character recognition module recognizes

the image with the character and delivers them back to the

interactive interface, which will guide the player to interact

further via the camera. The system described is shown in

Figure 4.

4 Experiments and results

In this section, we evaluate the performance of our model for

skeleton-based action recognition. We used the American Sign

Language Digits Dataset (Mavi, 2020) in our experiments. This

consists of 2062 RGB pictures labeled by 10 gesture classes (from

gesture “0” to “9”). These pictures are taken from 218 different

students, making the hand features to be learned more diverse.

We implemented a 5-fold cross-validation technique in our

experiments, and they were conducted via a GeForce GTX

1650 GPU. Some examples of the dataset images are shown in

Figure 5.

We used cross-entropy as a loss function. The models were

learned using a stochastic gradient descent with a learning rate of

FIGURE 3
Illustration of one example of the rehabilitation game experience. (A) shows the process of writing in the air. (B) shows the result of the character
recognition.

FIGURE 4
Designed diagram of the proposed system. Each block denotes a single module in our system. The two modules in the dotted box belong to
a PC.
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0.001. We decayed the learning rate to 0.9 after every 30 epochs.

To restrain extreme weights, we implemented L1 regularization

with a parameter of 5e-3 and a weight decay (L2 regularization)

with a parameter of 1e-4.

Our cross-validation strategy is as follows: in each round, we

used 4 folds of data for training and 1 fold of data for validation. This

process lasts for 5 rounds during each epoch to ensure every fold is

chosen as validation data at least once. In this case, the loss and

accuracy of one epoch are calculated as the average loss and accuracy

of 5 rounds. The model is trained for 500 epochs. During the

training period, both the train loss and validation loss decrease

continuously, indicating the network is trained properly. After about

200 epochs, the loss value becomes stable. The validation accuracy

peaked at 99.03%, with an insignificant difference in training

FIGURE 5
Samples of the dataset. It consists of 2062 RGB pictures labeled by 10 gesture classes (from gesture “0” to “9”).

FIGURE 6
Loss and accuracy graph of the training process. The horizontal axis represents epoch and the vertical axis represents loss and accuracy value.
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accuracy (Figure 6). As shown in the confusionmatrix (Figure 7) we

recorded, the system was reasonably capable of classifying different

hand gestures from “0” to “9.”

An ablation experiment was performed to better show the

effect of the residual mechanism in our architecture (Table 1).

The difference between the Naive model and Residual model was

whether there was a forward path from the input to the output of

each graph convolution unit. The FPS indicates how many

frames can be processed per second. According to the results,

the residual module improved the recognition accuracy by 1%

while maintaining a fast processing speed and a small size. The

architecture is relatively lightweight because the prediction cost

of each gesture is about 6 ms and the size of the model is only

72.5 KB. This enables the game to support many small devices,

which usually do not have enough memory, and to calculate the

performance required to support an AI application.

FIGURE 7
Chaotic matrix of all the samples in the test experiment. The diagonal values of the matrix are the rates of correct classifications, while the non-
diagonal values are the rates of wrong classifications.

TABLE 1 Ablation study.

Methods Acc (%) FPS (/s) Size (KB)

Naive model 98.03 178.51 72.50

+ Residual 99.03 178.32 72.50

TABLE 2 Comparisons with state-of-the-art models.

Model Acc (%) Size

CNN (Mavi, 2020) 98.00 17.2 MB

MobileNetV2 (Dayal et al., 2021) 98.50 8.5 MB

CNN (Dayal et al., 2021) 99.10 4 MB

Ours 99.03 72.5 KB
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Comparisons have been made between our model and other

state-of-the-art models (Table 2). The first CNN (Mavi, 2020) is a

convolution network with more convolution layers than MVGG-5

and less than MVGG-9 architecture. MobileNetV2 (Dayal et al.,

2021) is a state-of-the-art lightweight CNN. The second CNN (Dayal

et al., 2021) is a memory-efficient convolution network based on a

bottleneckmodule, specifically designed for edge computing systems.

According to Table 2, using the same dataset, the accuracy of our

model is comparable to state-of-the-art models, although our model

has a significant advantage in model size.

The system has been tested by four participants. All

subjects were given instructions before playing and were

allowed to play several rounds to become familiar with the

rules. The participants were required to write 12 characters

correctly in each round of the test by using their hand

behavior in front of the system camera. They needed to

write the indicated character as clearly as possible to ensure

it could be recognized by the word recognition module. There

were several minutes of rest between every two rounds. Their

passing rates in each round and their opinions on the game

experience are recorded in Table 3. According to the results,

most of the subjects showed an improvement in the passing

rate during five rounds of testing. However, it seems to be hard

to reach a passing rate of 100% because of difficulty in writing

in the air and some problems in the third-party word

recognition module, which can be substituted and

improved. Despite this, all the subjects agreed that the

game experience was smooth and interesting.

5 Conclusion

This work proposes an interactive game and a

human–computer interaction system for rehabilitation usage. We

also propose a new residual graph convolution structure for

skeleton-based gesture recognition. The model was trained for

the recognition of 10 static hand gestures and was evaluated after

the experiments. The system achieved 99.03% validation accuracy

and maintained a relatively small size of 72.5 KB. The experimental

results demonstrated that our model was sufficiently accurate as a

gesture recognition system and that the game has the potential to be

extended for rehabilitation usage. Four participants were invited to

test this interactive game, and most subjects showed an

improvement and interest during the test.

We should consider more motivational rewards and better

hand gesture recognition models for the rehabilitation game.

Additionally, the interactive process should be enhanced to be

more smooth and interesting.
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Real-time 3D echocardiographic
transilluminated imaging
combined with artificially
intelligent left atrial appendage
measurement for atrial
fibrillation interventional
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Aims: This study investigated the feasibility and accuracy of real-time three-

dimensional (3D) echocardiographic transilluminated imaging (TrueVue Glass)

in left atrial appendage (LAA) anatomical morphology and artificial intelligence

(AI)-assisted 3D automated LAA measurement (3D Auto LAA) software in the

preoperative evaluation of LAA occlusion (LAAO) in patients with atrial

fibrillation (AF).

Method and results: Thirty-seven patients with AF were selected. Two-

dimensional (2D) and real-time 3D transesophageal echocardiography

(RT3D-TEE) were performed preoperatively, using conventional 3D, the new

3D TrueVue Glass mode, and cardiac computed tomography angiography

(CCTA) to assess and type the morphology of LAA. Physiological parameters

were measured using traditional 2D and 3D manual (3D Manual LAA), 3D Auto

LAA, and CCTA. TrueVue Glass for LAA outer contour display was compared

with CCTA. Comparisons were based on correlation and consistency in

measuring the maximum diameter (LZ max), minimum diameter (LZ min),

area (LZ area), and circumference (LZ cir) of LAA landing zone (LZ). Times

and variabilities were compared. The concordance rate for external shape of

LAAwas 97.14% between TrueVueGlass and CCTA. 3D Auto LAA and 3DManual

LAA have a stronger correlation and higher consistency in all parameters. 3D

Auto LAA showed higher intra- and interobserver reproducibility and allowed
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quicker analysis (p < 0.05). LAAO was performed in 35 patients (94.59%), and

none of which had serious adverse events.

Conclusion: TrueVue Glass is the first non-invasive and radiation-free

visualization of the overall external contour of LAA and its adjacent

structures. 3D Auto LAA simplifies the measurement, making the

preoperative assessment more efficient and convenient while ensuring the

accuracy and reproducibility. A combination of the two is feasible for accurate

and rapid assessment of LAA anatomy and physiology in AF patients and has

practical application in LAAO.

KEYWORDS

3D Auto LAA, artificial intelligence-AI, left atrial appendage occlusion, real-time three-
dimensional, transesophageal echocardiography, TrueVue Glass

1 Introduction

Left atrial appendage occlusion (LAAO) has gained

widespread acceptance and use as a new tool for stroke

prevention in patients with atrial fibrillation (AF) (Holmes

et al., 2019; Turagam et al., 2020). The 2020 European Society

of Cardiology and European Association for Cardiothoracic

Surgery guidelines for the diagnosis and management of AF

give LAAO a class II b recommendation and a level of evidence of

B (Hindricks et al., 2021). The anatomical structure of the LAA

varies significantly among individuals, and thus the successful

performance of LAAO depends on the accurate preoperative

assessment of the morphology, size, and physiological status of

the LAA (Korsholm et al., 2020). Currently, transesophageal

echocardiography (TEE) and cardiac computed tomography

angiography (CCTA) are the main methods for preoperative

evaluation of the LAA. The main advantages of conventional

two-dimensional (2D) and real-time three-dimensional (RT3D)

TEE are that the spatial resolutions are significantly higher than

that of transthoracic echocardiography, enabling TEE to clearly

and dynamically display the internal structure of the LAA,

identify the thrombus and comb muscles, and provide more

accurate measurements. However, the assessment of the overall

morphology can only be made based on lateral-view LAA cross-

sectional images. In contrast, CCTA often must be combined

with contrast-enhanced imaging; its main application value is in

displaying the external contour of the LAA (Glikson et al., 2020;

Korsholm et al., 2020). However, 3D image reconstruction is

required to obtain LAA shape images, and LAA morphology

changes cannot be shown with the cardiac cycle in real time,

making this method time-consuming, laborious, and requiring

high human interference. Previously, some researchers

considered 2D-TEE as the gold standard for the preoperative

measurement of relevant morphological parameters in LAAO,

but with the rapid development of three-dimensional ultrasound,

an increasing number of studies have shown that the results of

RT3D-TEE are more accurate and reliable and correlate better

with the implanted occluder, making it more suitable as a key

reference for the selection of occluder models for LAAO patients

(Morcos et al., 2018; Streb et al., 2019). However, in addition to

its inability to directly display the overall external contour of the

LAA, conventional RT3D-TEE still has several limitations such

as cumbersome and time-consuming operation procedures when

measuring the anatomical and physiological parameters of the

LAA (Morais et al., 2022). Recently introduced advanced 3D

echocardiographic imaging and measurement technologies,

referred to as TrueVue Glass and 3D automated LAA (3D

Auto LAA) measurement, are expected to solve the

aforementioned problems. TrueVue Glass is a new 3D

rendering mode that can intelligently render the contours of

the heart chambers and vascular chambers containing blood flow

and the heart valve structure, automatically shield substantial

structures around the heart, and provide a new perspective for

the ultrasonic diagnosis and evaluation of heart diseases

(Karagodin et al., 2020). In contrast, 3D Auto LAA is an

artificial intelligence (AI)-assisted automatic measurement

technology that can automatically identify the ostium of the

LAA after cutting and measure important parameters related to

surgery such as the maximum diameter, minimum diameter,

area, and circumference. To the best of our knowledge, their

combined application in LAAO has not been systematically

explored. In this study, for the first time, 3D Auto LAA was

performed in association with TrueVue Glass for the

examination and evaluation of AF patients undergoing LAAO

and compared with other commonly used imaging techniques to

explore the clinical value and technical advantages of these new

methods.

2 Materials and methods

2.1 Study population

Thirty-seven patients with AF who were proposed to

undergo LAAO from July 2020 to May 2022 at the Cardiology

Center of China Medical University were included in this study,
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and all patients underwent 2D-TEE, RT3D-TEE, and CCTA

preoperatively. The inclusion criteria are as follows: AF

thrombotic risk score (CHA2DS2-VASc score) ≥ 2, while

meeting one of the following conditions unsuitable for or

unwilling to be subjected to long-term standardized

anticoagulation; stroke or embolism occurring based on long-

term standardized anticoagulation; bleeding risk score (HAS-

BLED score) ≥ 3; and need for combined antiplatelet drug

therapy. The exclusion criteria are 1) contraindication to TEE;

2) suspicious or definite thrombus in the LAA on preoperative

TEE or CCTA; 3) presence of severe cardiac structural

abnormalities or valvular disease requiring surgical treatment;

4) New York Heart Association cardiac function class IV; and 5)

presence of recent active bleeding. This study was approved by

our Institutional Ethics Committee and was conducted in

accordance with the ethical principles for medical research

involving human subjects established by the Declaration of

Helsinki, protecting the privacy of all participants and the

confidentiality of personal information.

2.2 Transesophageal echocardiography
image acquisition and preoperative
evaluation of left atrial appendage

In this study, a Philips CVx 3D ultrasound system (Philips

Medical Systems, Andover, MA, United States) equipped with

X7-2t and X8-2t transesophageal ultrasound probes was used

for the 2D and 3D TEE examinations. All patients underwent

TEE examinations and data acquisition after pharyngeal

anesthesia, and 3–5 cardiac cycles were applied to store the

images.

2.2.1 2D-transesophageal echocardiography
and RT3D-transesophageal echocardiography
image acquisition

2D-TEE was used to observe the morphology of the LAA,

particularly the internal commissural muscle and blind end lobes

in multiple angles and views, and to clarify the presence of

thrombus and its relationship with surrounding adjacent

structures. And 2D data acquisition was performed at 0°, 45°,

90°, and 135°. The 2D image depth, gain, and other parameters

are adjusted to produce the best display output from the LAA

display, and 3D Zoommode is selected for 3D data acquisition of

the complete structure of the LAA. The acquired LAA 3D data set

is entered into TrueVue Glass mode via the instrument touch

panel (first “TrueVue” is clicked upon, and then “Glass” is clicked

upon to enter TrueVue Glass mode), and parameters, such as

transparency, smoothness, contrast, and gain, are adjusted

appropriately. The external contours of the LAA are clearly

displayed using a suitable image cutting method (cutting tools

as before (Sun et al., 2022)) (Figure 1).

2.2.2 Preoperative evaluation of left atrial
appendage occlusion related parameters for 2D-
Transesophageal echocardiography and RT3D-
Transesophageal echocardiography

The inner diameter of the LAA landing zone (LZ) was

measured at 0°, 45°, 90°, and 135° at the end of the left

ventricular systole (starting from the left circumflex coronary

artery to 1–2 cm below the contralateral left superior pulmonary

vein crest). The maximum value of the inner diameter in the four

angles was labeled LZ max, and the minimum value was labeled

LZ min of 2D-TEE (Figure 2A). LAA anatomical parameter data

measure of RT3D-TEE was performed online, including in the

FIGURE 1
Schematic of process of the conversion of conventional real-time 3D transesophageal echocardiography to TrueVue Glass. (A). From left to
right, conventional 3D, TrueVue and TrueVue Glass imagingmodes of the LAA at the entrance of the left atrium are shown. The TrueVue Glass (right)
shows the three lobular structures at the blind end of the LAA (arrows) (B). From left to right, conventional 3D, TrueVue and TrueVue Glass imaging of
the LAA in lateral view are shown. 3D, three-dimensional; LA, left atrium; LAA, left atrium appendage.
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traditional 3D manual measurement method (3D Manual LAA)

and intelligent measurement method (3D Auto LAA). 3D

Manual LAA measurement method: The appropriate LAA 3D

Zoom image was selected, and MultiVue mode was entered. The

end-systolic phase of left ventricle was selected, and the blue line

(LAA LZ cross-sectional positioning line) in the sagittal and

coronal planes of LAA, thus enabling the LAA LZ ostium to be

obtained. In this plane, the LAA LZ maximum diameter (LZ

max), minimum diameter (LZ min), area (LZ area), and

circumference (LZ cir) are manually measured (Figure 2B).

3D Auto LAA measurement method: 3D Auto LAA can

automatically identify the endocardium, after adjusting the

LAA LZ in MultiVue mode as shown in 3D Manual LAA, the

above anatomical and physiological parameters of the LAA LZ

can be automatically obtained with a single click on “3D Auto

LAA” (Figure 2C). Manual adjustment to identify unsatisfactory

loci when needed is allowed.

2.3 Cardiac computed tomography
angiography image acquisition and
measurements

An IQon-Spectral CT instrument from Philips was used for

cardiac enhancement imaging and to display the external

morphology of the LAA via 3D reconstruction. In the LAA

measurement method, which is similar to conventional RT3D-

TEE, the LAA LZ is manually adjusted from three mutually

perpendicular planes, and the LZ max, LZ min, LZ area, and LZ

cir parameters are measured separately (Figure 2D).

2.4 Comparison of time

The time taken to measure the LAA by each of the

aforementioned methods (specifically, the time period from

FIGURE 2
Flow chart of LAA parametermeasurements before percutaneous left atrial appendage occlusion. (A). For 2D TEEmethod, the LAA LZ diameters
(LZ is defined as the point from the left circumflex artery to 1–2 cmbelow the contralateral left superior pulmonary vein crest) aremeasured at 0°, 45°,
90°, and 135 at end-systole, respectively. (B). When applying 3D Manual LAAmethod, enter MultiVue mode on the basis of LAA 3D Zoom image, and
at the end of systole, adjust the LZ positioning line (blue line) in the LAA sagittal plane (upper left), coronal plane (upper right), obtain the LAA LZ
cross-section (lower left), and manually measure the LAA LZ maximum diameter (the first Dist value obtained), minimum diameter (the second Dist
value), area and circumference (Circ). The lower right figure shows 3D downward view of the LAA LZ and the measurement results. (C). After
positioning the LAA LZ in the same way as 3D Manual LAA, the above parameters are automatically obtained by clicking “3D Auto LAA” (lower right).
(D). When using CCTA, measurement method is similar to 3D Manual LAA by adjusting the LZ positioning lines (yellow lines) in the sagittal plane
(upper left) and coronal plane (upper right) of the LAA, obtaining the LAA LZ cross-section (lower left) and then manually measuring the above
parameters in sequence (lower right). 3D Auto LAA, three-dimensional automated left atrial appendage; 3D Manual LAA, three-dimensional manual
left atrial appendage; CCTA, cardiac computed tomographic angiography; LAA, left atrium appendage; LZ, landing zone.
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loading and displaying data on the workstation to extraction for

all clinical indicators) is recorded.

2.5 left atrial appendage morphological
determination

The international anatomical morphology classification

of LAA into four types is as follows (Wang et al., 2010): 1)

chicken-wing type: LAA has the main leaf with a clear bend

at its proximal or middle part and may have secondary lobes;

2) windsock type: LAA has no clear bend, has a sufficiently

long main leaf, and can vary according to the position and

number of secondary and tertiary leaves issued; 3) cactus

type: LAA has no clear bend and is characterized by a

dominant primary leaf, with secondary leaves extending

upward or downward, and 2–3 secondary leaves at the tip

of one primary leaf; and 4) cauliflower type: LAA without

obvious curvature and with limited overall length, lack of

primary leaves, more complex internal structure, and

irregular shape of LAA mouth.

2.6 Procedural strategy for left atrial
appendage occlusion

The patient is delivered with a sheath and guidewire via the

femoral vein under general anesthesia, followed by penetration of

the guidewire through the interatrial septum under X-ray

fluoroscopy, TEE, or intracardiac echocardiography guidance

and delivery to the LAA for contrast observation. The choice

of the occluder model is recommended to be 4–6 mm larger than

the maximum LZ diameter measured by intraoperative

fluoroscopy or TEE. After the initial implantation is

completed, it is judged that the occluder is appropriately

positioned: there is no residual shunt or shunt bundle

width <5 mm around it, pull test is stable, compression ratio

is appropriate, and release principle is satisfied before it is fully

deployed (Vainrib et al., 2018), while observations are made

based on whether adverse events such as pericardial effusion and

compression of surrounding tissue structures have occurred. The

procedure is ended after it is determined that there are no

abnormalities.

2.7 Reproducibility verification and
follow-up

To determine the reproducibility of the different methods

of preoperatively measuring the parameters of LAA,

measurements were repeated one month later in

10 randomly selected patients by the same observer and by

a different observer. During the repeat analysis, the observers

were unaware of all previous measurements and clinical

details. TEE follow-up was applied approximately 45 days,

3 months and 6 months after surgery to observe the

morphology and position of the occluder and the

occurrence of adverse events such as residual shunts and

device-related thrombosis around the blocker.

2.8 Statistics

Statistical analysis was performed using SPSS Statistics

version 26.0 (IBM Inc., Armonk, New York). The normal

distribution of continuous quantitative variables was assessed

via the Kolmogorov–Smirnov test. Continuous variables are

presented as mean ± standard deviation or median (first

interquartile range [IQR], third interquartile range) for

skewed variables, and categorical variables are presented as

counts and percentages. A comparison of the results obtained

by the different methods of measuring the preoperative

anatomical parameters of LAA was performed via paired-

sample Wilcoxon signed-rank test and using the Pearson

correlation and intraclass correlation coefficient (ICC). The

ICC was used to determine the intra- and interobserver

variability, and 95% confidence intervals (CI) were calculated.

It is generally accepted that an ICC below 0.4 indicates poor

agreement (reliability) and above 0.75 indicates high agreement

(reliability). One-way analysis of variance was then used to

compare the differences in the times taken to measure LAA

using the different measurement methods, where p < 0.05 was

considered statistically significant.

TABLE 1 Baseline clinical characteristics of study population (n = 35).

Parameter Value

Men, n (%) 19 (54.29%)

Age, years 61.20 ± 9.98

Medical history

Paroxysmal AF, n (%) 23 (65.71%)

Nonparoxysmal AF, n (%) 12 (34.29%)

Hypertension, n (%) 25 (71.43%)

Diabetes mellitus, n (%) 12 (34.29%)

Coronary Heart Disease, n (%) 5 (14.29%)

Prior stroke/TIA, n (%) 4 (11.43%)

CHA2DS2-VASc score 3.20 ± 1.32

HAS-BLED score 2.17 ± 0.92

All data are presented as number (%) or mean ± SD. AF, atrial fibrillation; TIA, transient

ischemic attack. CHA2DS2-VASc score is a scoring for stroke risk assessment in patients

with atrial fibrillation (C: 1 point for Congestive heart failure; H: 1 point for

Hypertension; A2: 2 points for Age ≥75 years; D: 1 point for Diabetes; S2: 2 points for

thromboembolism, Stroke, or transient ischemic attack; V: 1 point for Vascular disease;

A: 1 point for Age of 65–74 years; S: sex category, 1 point for female). HAS-BLED score

is a scoring scale for bleeding risk in patients with atrial fibrillation (For the presence of

Hypertension, Abnormal renal/liver function, Stroke, Bleeding history, Labile INRs,

Elderly (>65 years), or Drugs/alcohol, 1 point was recorded).
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3 Results

Patient demographics: Of the 37 AF patients, 35 (94.59%)

had successful final LAAO surgery, whereas two had their

procedures terminated because of intra-LAA thrombosis on

preoperative TEE. The basic patient characteristics are

presented in Table 1.

3.1 Comparison of left atrial appendage
morphology by TrueVue Glass and cardiac
computed tomography angiography

From all patients, stereo morphological information of the

LAA was obtained using TrueVue Glass and CCTA images.

Additionally, systolic and diastolic changes in the LAA with

cardiac pulsation can be observed in real time using TrueVue

Glass (Supplementary Movie S1). TrueVue Glass revealed 11/

35 (31.43%) cases of cactus type, 10/35 (28.57%) cases of

windsock type, 9/35 (25.71%) cases of chicken-wing type, and

5/35 (14.29%) cases of cauliflower type. For comparison,

CCTA revealed 12/35 (34.29%) cases of cactus type, 9/35

(25.71%) cases of windsock type, 9/35 (25.71%) cases of

chicken-wing type, and 5/35 (14.29%) cases of cauliflower

type. One case was determined by TrueVue Glass to be

windsock type and CCTA to be cactus type; the compliance

rate was 34/35 (97.14%) (Figure 3). In addition, some patients

with AF showed spontaneous echo contrast because of the

enlarged left atrium and LAA; the flowing cloudy

stereomorphic features could be observed using TrueVue

Glass (Supplementary Movie S2).

3.2 Comparison of 3D auto LAA with 2D-
Transesophageal echocardiography, 3D
manual left atrial appendage, and cardiac
computed tomography angiography

3D Auto LAA was feasible for all patients, although

19 patients (54.29%) required fine-tuning of the recognition

position by hand at the time of analysis.

The variability, correlation, and agreement between 3D Auto

LAA and other measurement methods are presented in Table 2.

There were no significant differences in LZ max and LZ min

between 3D Auto LAA and 2D-TEE (p > 0.05), whereas there

were significant differences in LZ max and LZ min between 3D

Auto LAA and 3D Manual LAA (p < 0.05). In contrast, there

were no significant differences in LZ area and LZ cir between 3D

Auto LAA and 3DManual LAA (p > 0.05). There were significant

differences in LZ max, LZ min, LZ area, and LZ cir between 3D

Auto LAA and CCTA (p < 0.05). 3D Auto LAA and 3D Manual

LAA have a stronger correlation and higher consistency in all

parameters, particularly for LZ area and LZ cir.

3.3 Analysis time

Figure 4 shows the times taken tomeasure the LAApreoperative

parameters for the different operating mode approaches that were

evaluated. The time taken to measure LAA using 2D-TEE, 3D

Manual LAA, 3D Auto LAA, and CCTA was 240.95 ± 0.20 s,

143.64 ± 0.31 s, 85.96 ± 0.42 s, and 246.33 ± 0.57 s, respectively.

Except for 2D-TEE and CCTA, there were significant differences in

operation time between the measurement modes (p < 0.05).

FIGURE 3
Comparison of TrueVue Glass and CCTA for displaying different morphologies of LAA. (A). From left to right, TrueVue Glass shows cactus,
windsock, chicken-wing, and cauliflower type of LAA (B). From left to right, CCTA display of the abovemorphological types of LAA are shown. CCTA,
cardiac computed tomographic angiography; LA, left atrium; LAA, left atrium appendage.
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3.4 Reproducibility verification and
follow-up

Table 3 summarizes the intra- and interobserver variability of

the different methods for preoperatively measuring the

parameters of LAA. The results showed that 3D Auto LAA

achieved higher interobserver and intraobserver

TABLE 2 Comparison of 2D-TEE, 3D Manual LAA, 3D Auto LAA and CCTA for preoperative measurements of parameters related to left atrial
appendage occlusion.

LZ max (mm) LZ min (mm) LZ area (mm2) LZ cir (mm)

2D-TEE 21.35 (18.65, 22.88) 17.70 (14.75, 19.60) NA NA

3D Manual LAA 22.85 (19.83, 25.28)a 17.70 (15.03, 20.80)a 341.00 (206.25, 405.00) 67.05 (54.38, 74.05)

3D Auto LAA 21.50 (18.75, 24.00) 17.00 (13.50, 20.00) 332.50 (184.75, 375.00) 68.00 (56.00, 73.50)

CCTA 25.20 (21.03, 27.13)a 19.65 (17.78, 21.23)a 394.50 (302.75, 486.50)a 74.35 (65.20, 82.43)a

SCC (p-value)b 0.82 (<0.001) 0.73 (<0.01) NA NA

ICC (p-value)b 0.78 (<0.001) 0.66 (<0.01) NA NA

SCC (p-value)c 0.94 (<0.001) 0.95 (<0.001) 0.96 (<0.001) 0.96 (<0.001)
ICC (p-value)c 0.91 (<0.001) 0.89 (<0.001) 0.96 (<0.001) 0.96 (<0.001)
SCC (p-value)d 0.62 (0.02) 0.25 (0.40) 0.71 (0.01) 0.67 (0.01)

ICC (p-value)d 0.51 (0.01) 0.17 (0.20) 0.55 (<0.01) 0.55 (<0.01)

LZ max, LZ min, LZ area, and LZ cir are expressed as median (25th percentile, 75th percentile). 2D-TEE, two-dimensional transesophageal echocardiography; 3D Auto LAA, three-

dimensional automated left atrial appendage; 3D Manual LAA, three-dimensional manual left atrial appendage; CCTA, cardiac computed tomographic angiography; ICC, intraclass

correlation coefficient; LZ area, landing zone area; LZ cir, landing zone circumference; LZ max, landing zone maximum diameters; LZ min, landing zone minimum diameters; SCC,

spearman correlation coefficient.
ap < 0.05 vs. 3D Auto LAA in difference.
bcomparison results between 3D Auto LAA and 2D-TEE.
ccomparison results between 3D Auto LAA and 3D Manual LAA.
dcomparison results between 3D Auto LAA and CCTA.

FIGURE 4
Times consumption of different methods for measuring
morphological parameters of left atrium appendage. 2D-TEE, two-
dimensional transesophageal echocardiography; 3D Auto LAA, three-
dimensional automated left atrial appendage; 3D Manual LAA,
three-dimensional manual left atrial appendage; CCTA, cardiac
computed tomographic angiography; * p-value < 0.05.

TABLE 3 Intra- and interobserver variability of 2D-TEE, 3D Manual
LAA, 3D Auto LAA and CCTA.

Intraobserver,
ICC (95% CI)

Interobserver,
ICC (95% CI)

2D-TEE

LZ max 0.78 (0.36–0.94) 0.64 (0.03–0.90)

LZ min 0.67 (0.16–0.91) 0.15 (-0.36–0.66)

3D
Manual LAA

LZ max 0.72 (0.25–0.92) 0.64 (0.09–0.90)

LZ min 0.78 (0.35–0.94) 0.58 (-0.07–0.88)

LZ area 0.82 (0.42–0.95) 0.81 (0.44–0.95)

LZ cir 0.82 (0.42–0.95) 0.82 (0.47–0.95)

3D Auto LAA

LZ max 0.81 (0.44–0.95) 0.72 (0.25–0.92)

LZ min 0.84 (0.51–0.96) 0.76 (0.33–0.93)

LZ area 0.87 (0.56–0.97) 0.86 (0.54–0.96)

LZ cir 0.87 (0.55–0.97) 0.83 (0.47–0.95)

CCTA

LZ max 0.75 (-0.04–0.94) 0.50 (-0.19–0.85)

LZ min 0.50 (-0.14–0.85) 0.43 (-0.30–0.82)

LZ area 0.59 (0.04–0.88) 0.62 (-0.01–0.89)

LZ cir 0.59 (0.04–0.88) 0.49 (-0.21–0.85)

2D-TEE, two-dimensional transesophageal echocardiography; 3D Auto LAA, three-

dimensional automated left atrial appendage; 3D Manual LAA, three-dimensional

manual left atrial appendage; CCTA, cardiac computed tomographic angiography; ICC,

intraclass correlation coefficient; LZ area, landing zone area; LZ cir, landing zone

circumference; LZ max, landing zone maximum diameters; LZ min, landing zone

minimum diameters.
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reproducibility compared with those of 2D-TEE, 3D Manual

LAA, and CCTA. At 45 days postoperatively, thirty-five patients

were followed up with TEE (Figure 5A), and residual shunts

around the occluder were found in six cases (17.14%), none of

which exceeded 5 mm (considered to be ineffective shunts), and

none of which had serious adverse events such as pericardial

tamponade and device dislodgement. The application of

conventional 2D, 3D-TEE, and TrueVue Glass all enable the

diagnosis of residual shunts with no difference in diagnostic

rates, but TrueVue Glass imaging allows the observation of the

overall path of the shunt, including the overall spatial situation of

the origin and travel of abnormal blood flow, through increased

transparency (Figure 5B). At the 3-month postoperative follow-

up, the residual shunts around the occluder disappeared in the six

patients mentioned above. Thirty-four patients (97.14%)

completed the 6-month postoperative follow-up and none of

which had serious adverse events.

4 Discussion

The main findings of this study include 1) TrueVue Glass is

feasible for the stereoscopic display for the overall external

contour of the LAA and adjacent structures, and has a high

consistency with CCTA; 2) TrueVue Glass can also be used in the

postoperative follow-up of LAAO patients to achieve a visual and

integrated visualization of the residual shunt in and around the

occluder; 3) AI-assisted automated LAA measurements are

feasible, more efficient and reproducible than other previously

used techniques. 3D Auto LAA results showed higher correlation

with 3D Manual LAA method, which is generally considered to

be more accurate, and there is no statistical difference between

them in terms of important anatomical and physiological

parameters of the LAA.

TrueVue Glass imaging is a new 3D cardiac ultrasound

rendering mode that has been introduced in recent years

(Karagodin et al., 2020; Sun et al., 2021). It automatically

hides surrounding cardiac tissues through a one-click

operation and presents the heart chambers and small and

large vessel chambers containing blood flow in a crystal-clear

visualization. It breaks through the limitations of conventional

echocardiographic display, providing a new perspective not

previously offered by 3D cardiac ultrasound, particularly for

the overall external contour of the LAA, which is comparable

to that of enhanced CT, and is a non-invasive, real-time dynamic

imaging method.

The significant differences in LAA morphology pose several

challenges for LAAO to proceed, especially the chicken-wing-

type LAA, which is a particular challenge for LAAO (Freixa et al.,

2013; Korsholm et al., 2018). Combined with recent studies

(Hahn et al., 2022), the preoperative application of TrueVue

Glass for LAAO can provide new information to support the

assessment of the anatomical morphology of the LAA, i.e., the

overall contour of the LAA and its adjacent structures from the

outside. Karagodin et al. applied this technique to observe an

LAA and confirmed that it could clearly show the LAA boundary

contour and lobing, but the morphology of the LAA was

displayed only from the lateral view, without further 3D

display of the overall shape. This outcome was similar to the

traditional 3D observation view and was not compared with CT

results (Karagodin et al., 2020). In our study, the display rate of

the overall contour morphology of the LAA by TrueVue Glass

was 100%, and the results were basically consistent with the

CCTA display results. Additionally, the spatial position

FIGURE 5
Three-dimensional transesophageal echocardiography plus color Doppler for outcome assessment after left atrial appendage occlusion. (A).
From left to right, conventional 3D, TrueVue and TrueVue Glass direct views of the left atrium appendage occluder (yellow arrows) are displayed. (B).
From left to right, conventional 3D, TrueVue and TrueVue Glass with color Doppler showing the residual shunt (red arrows) around the occluder
(yellow arrows), among them, TrueVue Glass showing the origin and path of the shunt more entirely. LA, left atrium; MV, mitral valve.

Frontiers in Physiology frontiersin.org08

Sun et al. 10.3389/fphys.2022.1043551

96

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1043551


relationship and hemodynamics of the surrounding structures,

such as the left atrium, mitral valve, and aortic valve, could be

displayed. To demonstrate, the anatomical features of the beating

heart were displayed in a physiological state in real time

(Supplementary Movie S1).

In the TrueVue Glass mode, a color doppler can be added,

and after effective adjustment of transparency, the complete

origin and path of the blood flow bundle can be observed

through transparent tissue, thus locating more

comprehensively and precisely any leaks around the LAAO

postoperative occluder. Thus, the display of color blood flow

is more comprehensive and clearer. In a past study, Tamborini

et al. used TrueVue Glass in patients undergoing mitral valve

repair and clearly observed the advantages of this method vs.

conventional RT3D-TEE imaging in depicting the preoperative

regurgitant orifice boundary and identifying the residual shunt

after surgery, confirming the value of this technology in

interventional procedures for various cardiac diseases

(Tamborini et al., 2021). In our study, this advanced 3D

cardiac ultrasound technology was systematically applied to

the preoperative and postoperative real-time imaging

evaluation of LAAO in patients with various forms of LAA, to

observe whether the morphology and position of the occluder are

normal and to qualify, locate, and quantify any residual leakages

around the occluder, providing a basis for individualized

treatment planning after surgery. Although the application of

TrueVue Glass in this study did not differ from conventional

RT3D-TEE in terms of the diagnostic rate of residual shunts,

TrueVue Glass revealed a more realistic, comprehensive, and

clearer overall path for residual shunts, improving diagnostic

efficacy and communication with clinicians.

The advantages of TrueVue Glass over CCTA are three-fold.

First, it is based on simple post-processing of conventional

RT3D-TEE data and does not require additional examination

of the patient. Second, it avoids damage to the patient caused by

radiation or contrast allergy and avoids contraindications to

CCTA imaging. Finally, it facilitates real-time dynamic

imaging and provides timely diagnosis and evaluation of the

patient at the bedside. This, with the gradual improvement of

TrueVue Glass resolution and other parameters, is expected to

replace the need for CT examination for LAAO surgery, to

achieve a single ultrasound examination that completes the

collection of information on various aspects of LAA

anatomical morphology and physiological function and

parameter measurement.

In our study, the LAA morphological classification of one

patient was inconsistent with the CCTA results. The reason for

this was inferred to be the poor quality of the original ultrasound

image acquisition and the limitations of TrueVue Glass in

resolving minute details, which resulted in the poor display of

small LAA fractions located in the far field of the image. These

inadequacies may have led to the difference in the identification

of the overall morphological classification. Meanwhile, the LAA

fractions of most patients were matched with the CT results

commonly used in current clinical practice, and thus we

considered the effect of the difference for this one patient to

be minor.

To the best of our knowledge, this is the first study to explore

the clinical application of 3D Auto LAA. This technique is a new

three-dimensional fully automated LAA parameter measurement

method based on TEE images, which can automatically track the

endothelial border according to the shape of the LAA LZ of the

patient andmeasure all important surgical reference indicators of

the LAA LZ. If necessary, the examiner can make overall or local

adjustments to the endothelial border to make the measurement

results more accurate. The results of this study show that 3D

Auto LAA reduces the number of manual tracing steps during

traditional 3D measurements, resulting in a more convenient

process, a significant reduction in analysis time (including when

manual adjustments are required), and satisfactory

reproducibility. Similar to other studies, the application of

automated measurement techniques combined with manual

fine-tuning allows for accurate measurements with higher

repeatability (Queirós et al., 2018; Morais et al., 2022).

In this study, the measurements of the LZ max, LZ min, LZ

area, and LZ cir of LAA by 3D Auto LAA correlated more

strongly and agreed better with 3D Manual LAA than with 2D-

TEE and CCTA, probably because both were usually measured

based on the same raw 3D data. However, the differences

between the two on LZ max and LZ min measurements of the

LAA were significant. In contrast, there were no significant

differences between the two on LZ area and LZ cir

measurements, probably because of the diversity of LAA

orifice morphology such as the oval, teardrop, and foot shape

(Glikson et al., 2020). Moreover, the human eye is more prone to

bias when measuring the maximum and minimum diameters,

whereas it has little influence on the measurement after the LZ

area and LZ cir are traced via manual or automatic methods. In

addition, the parameters of LZ area and LZ cir may be more

accurate for the selection of the occluder model compared to LZ

max and LZ min. In a past study, Al-Kassou et al. (2017) showed

that using the diameter derived from the LZ area and LZ cir as a

reference indicator for the occluder model is more relevant to the

final choice of the occluder model. Kong et al. also showed (Kong

et al., 2020) that the diameter derived from the LAA

circumference is more suitable as a reference indicator for the

occluder model because it is more stable compared to other

indicators.

In addition, although there were no significant differences

between 3D Auto LAA and 2D-TEE in terms of the measured

LZ max after multi-angle measurements in this study, numerically,

the 3D Auto LAA measurements were still greater than 2D-TEE.

This difference is probably because of the inherent display

limitations of 2D-TEE, which sometimes does not take the

maximum value from only four angles (Wunderlich et al., 2015;

Song et al., 2016; Zhang et al., 2019). These limitations in 2D-TEE
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may lead to small device selection, resulting in excessive residual

shunts and even dislodgment of the occluder, prolonging surgical

time and negatively affecting the surgical outcome. The 3D Auto

LAA avoids the above situation by measuring the LAA as a three-

dimensional aspect, making the measurement results closer to the

real anatomical parameters. X-ray is also observed and measured in

a 2D plane and therefore faces limitations similar to those of 2D-

TEE. Saw’s study showed that X-ray angiography consistently gave

the lowest LAA diameters compared to CCTA and TEE and

believed that X-ray angiographic measurements should have been

omitted (Saw et al., 2016). It has been shown that the correlation

between X-ray measurements and the final implanted occluder size

of LAAO is the lowest, second to the 2D-TEE reference index, and

the best correlation is with the 3D-TEE (Al-Kassou et al., 2017). In a

recent expert consensus on LAAO released by EHRA and EAPCI in

2020, it was stated that CCTA measurements were the highest and

the most accurate predictor of occluder size when comparing the

results of the three imaging techniques (including TEE, CCTA and

X-ray angiography) (Glikson et al., 2020). Therefore, a more

appropriate radiological index-CCTA than X-ray angiography

was chosen for reference in our study. Compared with TEE,

which was the previously accepted gold standard for preoperative

LAAO examination, CCTA has higher spatial resolution (Bai et al.,

2017; Glikson et al., 2020) and in recent years has been suggested to

become the new gold standard for the preoperative planning of

LAAO (Korsholm et al., 2020). Meanwhile, researchers still believe

that the measurement results of conventional 3D-TEE are more

informative for the selection of LAAO occluder models (Morcos

et al., 2018). Although CCTA alsomeasures the LAA at the 3D level,

the results of this study showed that the discrepancy and agreement

between its measurements and 3D Auto LAA were poor compared

to those of other methods, and the measurements were generally

higher than those of TEE, which is consistent with the results of

previous studies (Bai et al., 2017; Gilhofer and Saw, 2020; Glikson

et al., 2020). This may be because of inherent differences in the

imaging principles of the techniques or the fact that the application

of CCTA requires the use of contrast agents, which inevitably

infiltrate the local myocardium in the contrast-filled space,

resulting in a large discrepancy in the measured values.

Therefore, combined with joint 2D and 3D-TEE to observe the

presence of thrombus in the LAA from the inside, to observe the

distribution and number of lobes of the commissural muscle at the

blind end, and to measure the size and functional assessment of the

LAA, we can achieve a comprehensive dynamic and accurate

evaluation of the physiological structure and function of the

LAA. This assessment is more conducive to designing an

individualized occluder implantation plan in advance,

anticipating possible risks that may be encountered during the

implantation process and improving the efficiency and success

rate of LAAO. Most of the patients in this study achieved

complete closure of LAA, although six patients had residual

shunts after surgery, but all of them were ineffective, which

further proved the advantages of applying the combined technique.

4.1 Limitations

There are several limitations of our study. First, the sample size

of this study was small and the follow-up period is relatively short,

and although it initially confirmed the superior role of TrueVue

Glass and 3D Auto LAA in LAAO, further validation using a larger

sample size and longer follow-up is necessary. Second, although the

visualization of the LAA by TEE has basically fulfilled clinical

requirements, 3D Auto LAA is still dependent on the quality of

the original 2D ultrasound image. When the image quality is poor,

or when there are obvious spontaneous echo contrasts within the

LAA, it may interfere with the accurate identification of the

endothelium by 3D Auto LAA. This interference may result in

small measurement values, which require minor manual

adjustments of the tracking position by the sonographer. Third,

at present, TrueVue Glass and 3D Auto LAA are available only for

specific commercial models of ultrasound diagnostic machines and

are not universal and comparable with other models of machines,

pending further development and expansion.

5 Conclusion

TrueVue Glass, a new advanced 3D ultrasound imaging

technology, provides the first real-time dynamic and

radiation-free visualization of the entire external stereoscopic

profile of the LAA and adjacent structures with a high degree of

consistency with CCTA display and a more complete

visualization of the occluder surrounding residual shunts

during postoperative follow-up. AI-assisted 3D Auto LAA

software streamlines the LAA measurement process, making

preoperative LAAO evaluation more efficient and convenient

while ensuring accurate and reproducible results. The

combination of TrueVue Glass and 3D Auto LAA allows for a

more accurate and efficient preoperative assessment of LAA

anatomy and physiological parameters for LAAO.
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SUPPLEMENTARY MOVIE S1
TrueVue Glass shows morphological changes of left atrium appendage
with cardiac cycle. LA, left atrium; LAA, left atrium appendage.

SUPPLEMENTARY MOVIE S2
TrueVue Glass shows the autonomic echogenic reflection in left atrium
and left atrium appendage of patient with atrial fibrillation (arrows). LA,
left atrium; LAA, left atrium appendage; LV, left ventricle.
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Objective: This study applied preoperative computed tomography angiography

(CTA) and computational fluid dynamics (CFD) simulation to predicte and verify

the outcome of Y-shaped extracardiac conduits Fontan for functional single

ventricle.

Methods: Based on the preoperative CTA data of functional single ventricle

(FSV), 4 types of spatial structures of extracardiac conduits were designed for

4 experimental groups: Group A, a traditional TCPC group (20 mm); Group B, a

diameter-preserving Y-shaped TCPC (YCPC) group (branch 10mm); Group C,

YCPC group (branch 12 mm); and Group D, an area-preserving YCPC group

(branch14 mm). Four indicators including flow velocity, pressure gradient (PG),

energy efficiency and inferior vena cava (IVC) blood flow distribution were

compared. The optimal procedure was applied. The radionuclide lung

perfusion, CTA, echocardiography, cardiovascular angiography and

catheterization were performed postoperatively.

Results: There were the lowest PG, the lowest flow velocity of branches, the

highest energy efficiency, and a relatively balanced and stable distribution of IVC

flow for group D. Subsequently, the group D, a handcrafted Y-shaped conduit

(14 mm) was used for the YCPC procedure. There was no postoperative PG

between the conduit and pulmonary artery with normal pressure and

resistance. IVC flow was distributed uniformly.

Conclusion: CTA-based CFD provided more guidance for the clinical

application of TCPC. A comprehensive surgical design could bring good

postoperative outcome. Area-preserving YCPC has more advantages than

TCPC and the diameter-preserving YCPC. The study effectively improved

the feasibility of clinical applications of YCPC.
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1 Introduction

Functional single ventricle (FSV) is a type of complex

congenital malformations with only one fully functional

ventricle. Due to the unique anatomical structure of

ventricles, it is not clinically possible to fully reconstruct the

two-ventricle series circulation through surgical operations.

Only a single-ventricle series circulation can be realized by

using the Fontan procedure, which completely separates the

parallel systemic and pulmonary circulations to improve the

clinical symptoms of hypoxia and eliminates single ventricular

volume overload (Piran et al., 2002). However, the Fontan

circulation is limited by its single ventricular physiology and

can only rely on increasing central venous pressure to maintain

pulmonary circulation, which in turn causes increased vascular

resistance of multiple organs and decreased blood perfusion. In

addition, the uneven distribution of blood flow of the inferior

vena cava (IVC) in bilateral lungs leads to a significant increase

in the incidence of pulmonary arteriovenous fistula in patients

undergoing Fontan procedure (de Zelicourt et al., 2011). Long-

term Fontan circulation after surgery often leads to multiple

complications such as recurrent pleural effusion, protein-losing

enteropathy, liver cirrhosis, and cardiac insufficiency (Dabal

et al., 2014). Therefore, the efficiency of single-ventricle

circulation and the uniform distribution of IVC flow after

Fontan procedure directly affect the life span and quality of

life of patients with FSV. Furthermore, studies have shown that

different spatial structures connecting the vena cava to the

pulmonary artery affect a variety of hydrodynamic parameters

and directly affect the efficiency of the Fontan circulation and

the uniform distribution of blood flow of the IVC (Soerensen

et al., 2007; Kanter et al., 2012; Trusty et al., 2016).

Therefore, how to reduce hemodynamic energy consumption

after a Fontan procedure is a problem that needs to be solved

urgently in Fontan procedures. Since de Leval (Marsden et al.,

2009) proposed total cavopulmonary connection (TCPC) that

can produce more linear blood flow in blood vessels and lower

the energy consumption in 1988, more andmore research centers

have carried out relevant studies (de Leval et al., 1988;

Sundareswaran et al., 2012; Tang et al., 2013).

Later, a theoretically more efficient procedure that Y-shaped

conduit total cavopulmonary connection (YCPC) was proposed.

However, Trusty et al. Trusty et al. (2016) found that there were

higher resistance and less balanced hepatic flow for commercially

available YCPC than TCPC, while Martin et al. Martin et al.

(2015) also found handcrafted YCPC might bring unbalanced

hepatic flow.

There was still a big gap between the theoretical efficacy of

TCPC and its postoperative efficacy. It is our major objective to

minimize this gap. We use the computed tomography

angiography (CTA) imaging data and computational fluid

dynamics (CFD) simulation for surgical patients to obtain

preliminary experimental data.

Artificial intelligence (AI) has been applicated in medical

image analysis and deep learning for a long time. We try to

quantify and score the simulation indicators to select the optimal

procedure, which is convenient for machine learning. Based on

this experimental basis, we hope to obtain an objective and

standardized surgical design with the help of AI in the future.

Therefore, this study was designed to predict and verify the

outcome of Y-shaped extracardiac conduits Fontan for FSV

based on preoperative CTA and CFD.

2 Methods

This study was approved by our institutional ethics

committee (IRP approval number: 2020015, 16 April 2020)

and patients’ guardians have given their consent statement for

the publication of this study.

2.1 Image acquisition and geometric
model construction

A 17-year-old boy was diagnosed preoperatively with SLL-

type congenitally corrected transposition of the great arteries

with right ventricular dysplasia and ventricular septal defect.

Preoperative cardiovascular computed tomography angiography

(CTA) was performed. Subsequently, a TCPC with extracardiac

conduits was planned for the patient, and the patient’s

personalized CTA data (standard Dicom format) was

imported into a medical image processing software (Mimics

Research, 20.0). First, the images were filtered and denoised to

complete image optimization. Then, the nonrelevant images of

the heart, spine and aorta were removed. The data for SVC and

IVC, pulmonary artery and their branches were preserved to

reconstruct three-dimensional images. The branches of

pulmonary artery were extended to 50 mm to provide stability.

2.2 CTA-based surgical design

According to the experimental design, 4 types TCPC were

designed to connect the extracardiac conduit and the pulmonary

artery:

Group A (20 mmT), a conventional TCPC group: The IVC

was anastomosed with the pulmonary artery via an extracardiac
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conduit with a diameter of 20 mm using the conventional

method, and the anastomosis was close to the left hilum.

The superior vena cava (SVC) was anastomosed with the

pulmonary artery, and the anastomosis was close to the right

hilum. This design of anastomosis can reduce the competition

between blood flows in the SVC and IVC and thus reduce

energy consumption.

Group B (20 mmY), a commercially available YCPC group

(diameter-preserving 20 mm-10 mm-10 mm): The IVC was

connected to the pulmonary artery via a Y-graft (extracardiac

conduit), and the sum of the diameters (10 mm) of the two

branches of the Y-graft was equal to the diameter of the trunk

(20 mm); the two branches were anastomosed to the pulmonary

artery close to the left hilum and right hilum, respectively, and

the SVC was anastomosed to the pulmonary artery between the

two branches to avoid energy consumption caused by

competition between blood flows.

Group C (12 mmY), an intermediate YCPC group (20 mm-

12 mm-12 mm): The trunk diameter of the extracardiac conduit

remains unchanged, and the branch diameter (12 mm) was larger

than one half the trunk diameter. The anastomosis method was

same as that of group B.

Group D (14 mmY), a handcrafted YCPC group (area-

preserving 20 mm-14 mm-14 mm): The square of the trunk

radius (10 mm) of the extracardiac conduit is approximately

equal to the sum of the squares of the radii (7 mm) of two

branches, and the anastomosis method was same as that of

group B.

2.3 Numerical simulation method and
boundary condition settings

Based on the completion of the construction of the three-

dimensional geometric model, the geometric models of the four

preoperative plans were meshed. Meshing software Hypermesh

was used to mesh the computational domains. Hexahedral and

tetrahedral meshes were used to test the mesh sensitivity, and the

adaptive mesh technology was used for local mesh refinement. (It

is recommended to add the results of sensitivity analysis to

confirm whether tetrahedral or hexahedral mesh should be

used, the number of meshes, and the graph of the

computational domain mesh changes before and after mesh

adaptation.)

Using the CFD analysis software Fluent and the in-house

developed three-component coupling program, the team used

the Lagrangian-Euler method to carry out numerical simulation

of multiple working conditions and multiple schemes.

Due to its low flow velocity and laminar flow, blood was

regarded as an incompressible Newtonian fluid, and the

influence of gravity on it was neglected. The walls of

artificial blood vessels and pulmonary arteries were assumed

to be rigid walls, and no-slip boundary conditions were used. x,

y, and z represent the components in the three directions of the

rectangular coordinate system. The blood flow satisfies the

Navier-Stokes (N-S) equation and the continuity equation:
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In the equations, ρ represents the density of blood; ]x, ]y , ]z
are the components of blood flow velocity; μ is the dynamic

viscosity; and P is pressure. The density is 1,060 kg/m3, and the

dynamic viscosity is 0.0035pas.

The flow velocity of the SVC and IVC were extracted from

the previous TCPC patient’s echocardiography and recorded

during a respiratory cycle, and the measured images of the

SVC and IVC flows were extracted into a flow curve that

changes with the respiratory cycle. The computing cycle was

2.54s, the time step was 0.001 s. The results obtained by the

average of 2,540 time steps.

The flow velocity curve was applied to the inlets of the SVC

and IVC. The conditions at light, moderate, and heavy exercise

were simulated by setting the IVC flow velocity at 2, 3, and

4 times the IVC flow velocity at rest, respectively, and reducing

the resistance by 5%, 10%, and 15%, respectively. In addition, the

SVC flow velocity for heavy exercise was set 50% higher than the

SVC flow velocity at rest, and the SVC flow velocity for light and

moderate exercise were set the same as the SVC flow velocity at

rest (Marsden et al., 2009).

2.4 Computation of energy efficiency

Based on the energy efficiency formula, the energy efficiency

of the flow from inlet to outlet was computed for different levels

of exercise. Because of the same SVC and IVC configurations at

all inlets and the identical pulmonary artery configurations at all

outlets, the difference in energy efficiency was mainly due to the

different configurations of the extracardiac conduits. The energy

efficiency satisfies the following equation:

Ediss � −∑
Nin

i�1
ʃAi(p +

1
2
ρu2)u · dA

−∑
Nout

i�1
ʃAi(p +

1
2
ρu2)u · dA,

(5)

where u is the flow velocity, p is the pressure, ρ is the density, Nin

and Nout are the number of inlets and outlets of the model,

respectively, and Ai is the area of the i-th inlet or outlet. Energy
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efficiency is the ratio of the second term to the first term in the

above equation.

2.5 Particle tracking

This method was used to count the left pulmonary artery

(LPA) and right pulmonary artery (RPA) flow of the IVC during

a whole respiratory cycle. Assuming that the particles have no

mass, and the diffusion effect is ignored, in a single breathing

cycle, about 400 particles are released every 0.001 s. The total

amount of released particles in the whole cycle is 1016000, and

the total amount of captured particles is 936000. The uncapped

particles are particles still flowing in the fluid domain at the end

of breathing, and the captured particle mass at the LPA and RPA

outlets can be counted to obtain the left and right blood diversion

ratio.

2.6 Postoperative data collection

The patient had been followed up for 3 years, the

radionuclide lung perfusion, CTA, cardiovascular angiography

and catheterization were performed 12 months after operation,

echocardiography was performed every year.

Radionuclide lung perfusion with technetium-99 m

(99 mTc, Atomic High Technology Co., Ltd., Beijing,

China)-labeled macroaggregated albumin (MAA, Jiangsu

Institute of Nuclear Medicine) was performed to determine

the distribution of the patient’s IVC flow. The tracer, 99 mTc-

labeled MAA, was administered through the dorsal vein of the

foot. The distribution of IVC flow to the left and right lungs was

compared.

2.6.1 Imaging method
After a slow intravenous injection of 99 mTc-labeledMAA in

the supine position, the patient was scanned at eight views,

including anteroposterior, left anterior oblique, left lateral, left

posterior oblique, posteroanterior, right posterior oblique, right

lateral and right anterior oblique views.

2.6.2 Quantitative analysis
The posteroanterior image was used to measure the

radionuclide counts in the left and right lungs.

3 Results

We obtained the preoperative CTA data of the patient and

then created a model. Different spatial structures were used to

connect the extracardiac conduit and pulmonary artery. These

spatial structures were divided into 4 groups. The experimental

results are described as follows:

3.1 Pressure gradient

The PG was calculated by subtracting the sum of pressures at

the left and right pulmonary hilum by the sum of pressure of SVC

and IVC, and then divided by 2.

The PG of each group is lower than 1 mmHg at rest, but with

the increase of exercise, the PG gradually increases, and in group

A, PG can reach 7.07 mmHg under heavy exercise. For Y-shaped

conduit, the highest PG is 7.67 mmHg in group B (10 mmY). The

increase of branch diameter can effectively reduce the PG under

different levels of exercise. The PG in Group D was lowest and

the increase rate was the slowest under rest and different levels of

exercise (Figure 1). Therefore, if the branch diameter of Y-shaped

conduit is not enough, the PG would be higher.

We look for the main source of the PG by the pressure

distribution nephogram (Figure 2). In group A, the main source

of PG was located between the intersection of SVC and the right

hilum. For Y-shaped conduit, PG mainly comes from the

bifurcation of conduit. However, the PG gradually decreases

with the increase of bifurcation diameter, and the PG almost

cannot be found in group D (14 mmY).

3.2 Flow velocity

The flow velocity was calculated at bifurcation of conduit in

group B, C and D, and at the same section of T-shaped conduit

trunk in group A.

At the inlet of the SVC and IVC in each group were same. At

rest and different levels of exercise, group B had a significantly

faster flow velocity in the Y-graft branches than other groups. As

the branch diameter increased, the branch flow velocity gradually

decreased (Group C). The branch flow velocity in Group D was

basically same as that of the trunk of the conduit (Figure 3).

Therefore, a smaller branch diameter might be the main

reason of the faster flow for Y-shaped conduit.

3.3 Distribution of IVC flow

The distribution of the IVC flow to the LPA and RPA is a

main determinant for prognosis of Fontan circulation. We were

able to determine those different spatial configurations which

significantly changed the distribution of the IVC flow to the LPA

and RPA by the particle tracking. We assumed that the ratio of

LPA and RPA distribution was 45 to 55 (LPA/RPA) (Marsden

et al., 2009).

The conventional surgical method (Group A) alleviated the

competition between the SVC and IVC flows, but the

misalignment of the anastomosis caused more blood in the

IVC flow to the LPA (60%) (Figure 4). However, the

distribution percentage of IVC blood in LPA and RPA

changed dramatically (LPA, 46.4%-60%) from rest to exercise.
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FIGURE 1
Pressure gradient in the four groups of different spatial configurations.

FIGURE 2
Nephogram of pressure distribution.
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FIGURE 3
The velocity at corresponding section of each group.

FIGURE 4
Distribution of the inferior vena cava blood flow.
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The IVC flow distribution was more balanced for the group B,

while that in group D was the most stable during different levels

of exercise (Table 1).

3.4 Energy efficiency

The energy efficiency of each geometric configuration was

computed according to the energy efficiency equation (Figure 5).

In all models, group B (10 mmY type) was associated with the

lowest energy efficiency (93% at rest, 81.5% for heavy exercise),

and the energy efficiency was 11.5% lower during heavy exercise

than at rest. Compared with the conventional group A

(20 mmT), the Y-graft branches (10 mmY) of group B did not

significantly improve the energy efficiency of the surgical

method. However, the diameter of the Y-graft branches

directly affected the overall energy efficiency. As the branch

diameter increased, the energy efficiency gradually improved.

Group D (14 mmY) was associated with the highest energy

efficiency (96.4% at rest, 92.4% for heavy exercise), and the

energy efficiency was only 4% during heavy exercise than at

rest. The energy efficiency in all groups was significantly lower

during exercise than at rest. Therefore, a large diameter of the

Y-graft branches can significantly improve the energy efficiency

of YCPC, while a smaller branch diameter increases the energy

consumption (Figure 5).

3.5 Application of a handcrafted Y-shaped
conduit

To facilitate AI learning in the future, we try to quantify the

simulation indicators to select the optimal procedure. According

to the best to the worst indicators, we score each indicator of 4, 3,

2 and 1 respectively (Table 2).

In the operation design stage, based on Table 2, the group D

(14 mm Y) had following advantages: the lowest PG, the lower

velocity at bifurcation of Y-shaped conduit, the highest energy

efficiency, and a relatively balanced (not the most balanced, but

the most stable) IVC flow distribution.

In the application stage, the right branch of the Y-shaped

conduit was moved to a position close to the midline because the

right superior pulmonary artery could not obtain IVC blood flow.

Subsequently, a handcrafted Y-shaped conduit (20 mm-14mm-

14 mm) was used for the YCPC procedure under mild

hypothermic cardiopulmonary bypass, because the

commercially available Y-grafts was diameter-preserving

(20 mm-10 mm-10 mm). The procedure went well and

postoperative recovery was good (Figure 6).

3.6 Verification

In the postoperative stage, tracheal extubation was

conducted on the 7th day after surgery. The patient was

discharged from hospital on the 15th day after surgery. The

patient had been followed up for 3 years with a good recovery.

During the follow-up, the echocardiography, cardiovascular

CTA, pulmonary blood perfusion scan, cardiovascular

angiography and catheterization were perfomed to

verification the outcome (Figure 6).

TABLE 1 Distribution of the inferior vena cava blood flow under different levels of exercise.

Percentage (%) A (20 mm T) B (10 mm Y) C (12 mm Y) D (14 mm Y)

L R L R L R L R

Rest 60 40 43.4 56.6 42 58 40 60

Light exercise 48.2 51.8 42.4 57.6 42.3 57.7 40.3 59.7

Moderate exercise 46.4 53.6 42.8 57.2 41.1 58.9 40.8 59.2

Heavy exercise 47 53 40.7 59.3 40.7 59.3 40.6 59.4

FIGURE 5
Energy efficiency of different spatial configurations.
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3.6.1 Morphology and velocity
The CTA showed that the conduit was in good shape, and

there was no stenosis at each anastomosis; And cardiovascular

angiography showed that the Y-graft extracardiac conduit made

the IVC blood evenly distribute to the LPA and RPA, which

brought good blood perfusion in pulmonary (Supplementary

Video S1).

The echocardiography was performed every year regularly

after the operation, and the velocity of each anastomosis were

specifically detected. We recorded them during the follow-up

period. Echocardiography showed that the flow velocity at the

anastomotic site between the IVC and RPA was 0.35 m/s; The

velocity of the anastomosis between the conduit and IVC, LPA

and RPA was 0.3 m/s, 0.48 m/s and 0.45 m/s respectively, which

was basically consistent with the velocity before operation

(0.24–0.41 m/s).

3.6.2 PG
Catheterization showed there is no PG in the conduit and

pulmonary, the pressure of vena cava and pulmonary both are

24/16 mmHg, while the pulmonary vascular resistance was

1.18 woods.

3.6.3 Distribution of the IVC
We used the distribution ratio of IVC flow in both lungs to

represent the distribution of hepatic blood flow, and achieved

good results. Pulmonary blood perfusion scan was used to

detect the distribution of the IVC flow to LPA and RPA. The

TABLE 2 The scores of each indicator for 4 groups.

Score PG Velocity Energy efficiency Balanced IVC
flow

Total

A (20 mm T) 2 4 2 1 9

B (10 mm Y) 1 1 1 4 7

C (12 mm Y) 3 2 3 3 11

D (14 mm Y) 4 3 4 2 13

PG, Pressure gradient; IVC, inferior vena cava.

FIGURE 6
Preoperative design based on computational fluid dynamics simulation (A), then a handcrafted Y-shaped conduit (B) was applicated for
functional single ventricle (C), postoperative catheter angiography (D), CT angiography (E) and pulmonary perfusion scan (F) showed normal
pulmonary pressure and resistance, while IVC flow was distributed uniformly.
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99 mTc was injected through the dorsal vein of the foot to

show the distribution of the IVC flow to LAP and RPA. The

results showed that the IVC flow was distributed uniformly to

LPA and RPA (46.71 vs. 53.29) and was uniformly distributed

to the upper, middle and lower parts of the lung. The result

was similar as the preoperative simulation data (Table 3). In

addition, the hepatic function (transaminase and bilirubin)

was normal at the early stage and during the follow-up period.

4 Discussion

After nearly 50 years of development and improvement of the

series of Fontan procedure, its clinical efficacy has continuously

improved. In 1988, de Leval de Leval et al. (1988) found that

conventional Fontan procedures could easily cause intra-atrial

vortexes to increase energy consumption and thus lead to

resistance to forward blood flow. Computer simulations has

proven the importance of linear blood flow in blood vessels.

Thus, TCPC was designed to provide linear flow in blood vessels

to improve the conventional Fontan procedures.

With the continuous innovation of technology, data

modeling and CFD research based on CT and MR imaging

revealed that TCPC is still problematic in high energy

consumption and uneven IVC flow split (Sundareswaran

et al., 2012; Tang et al., 2013). Some researchers have

applied CT-based vascular geometric models in individual

patients. From the perspective of fluid mechanics, they proved

that the use of a Y-graft extracardiac tube to connect the SVC

to the pulmonary arteries and another Y-graft extracardiac

tube to connect the pulmonary arteries to the IVC can form a

diamond-shaped spatial configuration to optimize the

conventional TCPC (Soerensen et al., 2007). Although this

design is theoretically feasible and can make blood flow

distribution more evenly, it cannot be effectively

implemented from a surgical perspective. Moreover, we

believe that if the competition between the SVC and IVC

flows cannot be avoided, energy consumption can easily be

high. Subsequent studies show that split of the blood flow in

the IVC into two flows can make the blood evenly distributed

and thus increase fluid efficiency and reduce vortex and

conduit wall shear force (Kanter et al., 2012; Martin et al.,

2015). In theory, YCPC brings two major advantages,

decreases in energy consumption and even IVC flow split.

Therefore, YCPC may gradually replace conventional TCPC

in clinical applications.

The clinical effect of Fontan series surgery is improving, but

the two desired theoretical advantages of YCPC design have not

been fully realized in clinical application in view of the current

studies. There might be higher resistance and less balanced

hepatic flow for YCPC than lateral tunnel or extracardiac

conduit (Martin et al., 2015; Trusty et al., 2016).

Our center had conducted a long-term and in-depth clinical

study on a series of Fontan procedures since 1980. We reported

the first group of traditional modified Fontan operation and

TCPC of China in 1984 and 1992, respectively (Wang et al.,

1984; Wang et al., 1992). The subsequent follow-up studies on

pulmonary vascular perfusion and activity tolerance were

carried out (Yin et al., 2006; Yin et al., 2009; Yin et al.,

2012), and the longest follow-up period was 32 years (Zhang

et al., 2020). In 2015, we reported the first group of YCPC of

China with good follow-up result of hemodynamics (Wang

et al., 2015). We found that the individualized differences of

patients significantly affected the postoperative efficacy.

Therefore, a good clinical operation design and effect

prediction is urgently needed.

In previous studies (Soerensen et al., 2007; Sundareswaran

et al., 2009), CFD technology were applied for simulation of

the hemodynamics of TCPC, but they were not used for the

optimization of spatial structures and prediction of efficacy.

Moreover, there were huge defects in their applications, such

as incomplete image information of pulmonary arteries.

Although many studies have been done, it is impossible to

simulate blood flow realistically, and it is impossible to predict

the impact of the main branches of the pulmonary artery on

blood flow energy consumption, resulting in a significantly

poorer clinical prognosis than expected.

Because commercial Y-grafts currently used are diameter-

preserving, in order to make the extracardiac conduits more

efficient, some international centers (Marsden et al., 2009; Yang

et al., 2015) began to use hand-sewn Y-grafts (extracardiac

conduits) to ensure the sum of the area of the two branches

close to the area of the trunk. In their studies, they found that

the efficiency of the diameter-preserving Y-grafts was 88.5%,

while the efficiency of area-preserving Y-grafts could reach

90.3%. In the case of exercise, the difference between the

efficiencies of diameter-preserving Y-grafts and area-

preserving Y-grafts is more obvious. Therefore, we used

different Y-graft designs in our study to analyze their

differences.

Our study has shown that when compared with TCPC, the

YCPC can achieve more evenly distribution of the SVC and

IVC flows to the left and right lungs, resulting in a balanced

distribution of the IVC flow and promotes the haptic factors to

flow into the left and right lungs, and reducing the incidence of

TABLE 3 Percentage of inferior vena cava flow by radionuclide lung
perfusion.

Percentage (%) Left Right

Upper 8.1 9.66

Middle 21.79 25.97

Lower 16.82 17.66

Total 46.71 53.29
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postoperative pulmonary arteriovenous fistula (de Zelicourt

et al., 2011). In the application of the Y-grafts, the branch

diameter directly affects the branch flow velocity. The

diameters of Y-grafts in the diameter-preserving group

were 20-10-10 mm. The branch flow velocity increased

significantly in the beginning. This in turn leads to an

increase in energy consumption. As the branch diameter

increases, the rate in the beginning of the branch also

decreases, thus reducing the energy consumption of the

conduits. In the area-preserving group (20-14-14 mm), the

sum of the cross-sectional area of the two branches were

approximately equal to the cross-sectional area of the

trunk, the flow velocity in the beginning of the branch was

gradually reduced to close to that of the trunk. The branch

diameter of the Y-graft directly affected the pressure at the

inlet of the IVC, and compared with the conventional TCPC

group, the pressure at the IVC inlet in the diameter-preserving

group (20-10-10 mm) was significantly higher. With increase

of the branch diameter, the pressure at the IVC inlet gradually

decreased. The pressure at the IVC inlet in the area-preserving

group (20-14-14 mm) was close to that in the conventional

TCPC group. Overall, compared with the conventional spatial

configuration of TCPC, the area-preserving spatial

configuration of the YCPC were not significantly different

in the pressure at the SVC and IVC inlets and the overall flow

velocity but resulted a more even distribution of the IVC flow

to the left and right lungs without increasing energy

consumption.

We found that smaller branch diameter may be the main

reason for the PG in Y-shaped conduit which will bring more

energy consumption. Sufficient cross-sectional area of branch

brought a higher energy efficiency. This theory might explain

why the resistance for commercially available YCPC was higher

(Trusty et al., 2016).

4.1 Study limitations

This study is only a preliminary study, providing a possibility

for future AI learning.We needmore cases and studies to provide

objective data for machine learning.

In addition, it has great limitations when addressing clinical

application. There are many factors can bring decreased energy

efficiency such as wall shear stress, vortex, etc. The mechanism of

higher energy efficiency did not be study and discuss in this

research. Furthermore, Blood vessels were assumed to be rigid

structures, but they are elastic structures that can be deformed.

FSI (Fluid Structure Interaction) can simulate the interaction

between fluid and solid, so as to simulate dynamic blood vessels,

which is closer to the real clinical application. These will be

discussed in future studies.

5 Conclusion

By combining the advantages of clinical medicine,

radiodiagnostics, and fluid mechanics, we analyzed the

optimal spatial configuration of the extracardiac conduit

suitable for TCPC. We found that the smaller bifurcation

diameter may be the main reason for the higher PG and

faster velocity in Y-shaped conduit. A good preoperative

design on individual basis based on CFD could bright more

balance IVC distribution and higher energy efficiency. This

study also provides a theoretical basis for clinical applications

of YCPC.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material, further

inquiries can be directed to the corresponding author.

Ethics statement

The studies involving human participants were reviewed and

approved by General Hospital of Northern Theater Command.

Written informed consent to participate in this study was

provided by the participants’ legal guardian/next of kin.

Written informed consent was obtained from the minor(s)’

legal guardian/next of kin for the publication of any

potentially identifiable images or data included in this article.

Author contributions

Drafting article and computational fluid dynamics: YZ;

Critical revision of article and approval of article: HW;

Surgical design and guidance: ZW; Clinical application: MF

and CZ; Perioperative data collection: YL, CZ, and ZW.

Funding

Natural Science Foundation of Liaoning Province (2022-

YGJC-12).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Frontiers in Physiology frontiersin.org10

Zhang et al. 10.3389/fphys.2022.1078140

110

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1078140


Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fphys.

2022.1078140/full#supplementary-material

SUPPLEMENTARY VIDEO S1
Preoperative design based on computational fluid dynamics simulation
and postoperative catheter cardiovascular angiography of Y-shaped
conduit total cavopulmonary connection.

References

Dabal, R. J., Kirklin, J. K., Kukreja, M., Brown, R. N., Cleveland, D. C., Eddins, M.
C., et al. (2014). The modern fontan operation shows no increase in mortality out to
20 years: A new paradigm. J. Thorac. Cardiovasc. Surg. 148 (6), 2517–2523. doi:10.
1016/j.jtcvs.2014.07.075

de Leval, M. R., Kilner, P., Gewillig, M., Bull, C., and McGoon, D. C. (1988). Total
cavopulmonary connection: A logical alternative to atriopulmonary connection for
complex fontan operations. J. Thorac. Cardiovasc. Surg. 96 (05), 682–695. doi:10.
1016/s0022-5223(19)35174-8

de Zelicourt, D. A., Haggerty, C. M., Sundareswaran, K. S., Whited, B. S.,
Rossignac, J. R., Kanter, K. R., et al. (2011). Individualized computer-based
surgical planning to address pulmonary arteriovenous malformations in patients
with a single ventricle with an interrupted inferior vena cava and azygous
continuation. J. Thorac. Cardiovasc. Surg. 141, 1170–1177. doi:10.1016/j.jtcvs.
2010.11.032

Kanter, K. R., Haggerty, M. M., Restrepo, M., de Zelicourt, D. A., Rossignac, J.,
Parks, W. J., et al. (2012). Preliminary clinical experience with a bifurcated Y-graft
Fontan procedure--a feasibility study. J. Thorac. Cardiovasc. Surg. 144 (2), 383–389.
doi:10.1016/j.jtcvs.2012.05.015

Marsden, A. L., Bernstein, A. J., Reddy, V. M., Shadden, S. C., Spilker, R. L., Chan,
F. P., et al. (2009). Evaluation of a novel Y-shaped extracardiac Fontan baffle using
computational fluid dynamics. J. Thorac. Cardiovasc. Surg. 137 (2), 394–403. doi:10.
1016/j.jtcvs.2008.06.043

Martin, M. H., Feinstein, J. A., Chan, F. P., Marsden, A. L., Yang, W., and Reddy,
V. M. (2015). Technical feasibility and intermediate outcomes of using a
handcrafted, area-preserving, bifurcated Y-graft modification of the Fontan
procedure. J. Thorac. Cardiovasc. Surg. 149 (1), 239–245. doi:10.1016/j.jtcvs.
2014.08.058

Piran, S., Veldtman, G., Siu, S., Webb, G. D., and Liu, P. P. (2002). Heart failure
and ventricular dysfunction in patients with single or systemic right ventricles.
Circulation 105 (10), 1189–1194. doi:10.1161/hc1002.105182

Soerensen, D. D., Pekkan, K., de Zelicourt, D., Sharma, S., Kanter, K., Fogel,
M., et al. (2007). Introduction of a new optimized total cavopulmonary
connection. Ann. Thorac. Surg. 83 (6), 2182–2190. doi:10.1016/j.athoracsur.
2006.12.079

Sundareswaran, K. S., Frakes, D. H., Fogel, M. A., Soerensen, D. D., Oshinski,
J. N., and Yoganathan, A. P. (2009). Optimum fuzzy filters for phase-contrast
magnetic resonance imaging segmentation. J. Magn. Reson. Imaging 29 (1),
155–165. doi:10.1002/jmri.21579

Sundareswaran, K. S., Haggerty, C. M., de Zelicourt, D., Dasi, L. P., Pekkan, K.,
Frakes, D. H., et al. (2012). Visualization of flow structures in Fontan patients using
3-dimensional phase contrast magnetic resonance imaging. J. Thorac. Cardiovasc.
Surg. 143 (5), 1108–1116. doi:10.1016/j.jtcvs.2011.09.067

Tang, E., Haggerty, C. M., Khiabani, R. H., de Zelicourt, D., Kanter, J.,
Sotiropoulos, F., et al. (2013). Numerical and experimental investigation of
pulsatile hemodynamics in the total cavopulmonary connection. J. Biomech. 46
(2), 373–382. doi:10.1016/j.jbiomech.2012.11.003

Trusty, P. M., Restrepo, M., Kanter, K. R., Yoganathan, A. P., Fogel, M. A., and
Slesnick, T. C. (2016). A pulsatile hemodynamic evaluation of the commercially
available bifurcated Y-graft Fontan modification and comparison with the lateral
tunnel and extracardiac conduits. J. Thorac. Cardiovasc. Surg. 151, 1529–1536.
doi:10.1016/j.jtcvs.2016.03.019

Wang, H., Wang, Z., and Fang, M., (2015). Analysis of postoperative hemodynamic
results of Y type extracardiac conduit fontan operation. Chin. J. Thorac. Cardiovasc Surg.
031 (009), 553–555. doi:10.3760/cma.j.issn.1001-4497.2015.09.011

Wang, Z., Fei, C., and Zhang, R., (1984). Modified Fontan operation for a
univentricular heart. Zhonghua Wai Ke Za Zhi 22 (6), 365–367, 384.

Wang, Z., Fei, C., and Zhu, H., (1992). Total cavopulmonary connection
operation. Chin. J. Thorac. Cardiovasc Surg. 3, 142–144.

Yang, W., Chan, F. P., Reddy, V. M., Marsden, A. L., and Feinstein, J. A. (2015).
Flow simulations and validation for the first cohort of patients undergoing the
Y-graft Fontan procedure. J. Thorac. Cardiovasc. Surg. 149 (1), 247–255. doi:10.
1016/j.jtcvs.2014.08.069

Yin, Z., Wang, C., Zhu, H., Zhang, R., Wang, H., and Li, X. (2009). Exercise
tolerance in extracardiac total cavopulmonary connection. Asian cardiovasc.
Thorac. Ann. 17 (1), 39–44. doi:10.1177/0218492309102531

Yin, Z., Wang, H., Wang, Z., Zhu, H., Zhang, R., Hou, M., et al. (2012).
Radionuclide and angiographic assessment of pulmonary perfusion after fontan
procedure: Comparative interim outcomes. Ann. Thorac. Surg. 93 (2), 620–625.
doi:10.1016/j.athoracsur.2011.10.001

Yin, Z., Wang, Z., Zhu, H., Zhang, R., Wang, H., and Li, X. (2006). Experimental
study of effect of Fontan circuit on pulmonary microcirculation. Asian cardiovasc.
Thorac. Ann. 14 (3), 183–188. doi:10.1177/021849230601400303

Zhang, Y., Fang, M., Wang, Z., andWang, H. (2020). Traditional atriopulmonary
connection fontan with excellent outcome for 32 years. Thorac. Cardiovasc. Surg.
Rep. 9 (1), e18–e20. doi:10.1055/s-0040-1708528

Frontiers in Physiology frontiersin.org11

Zhang et al. 10.3389/fphys.2022.1078140

111

https://www.frontiersin.org/articles/10.3389/fphys.2022.1078140/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphys.2022.1078140/full#supplementary-material
https://doi.org/10.1016/j.jtcvs.2014.07.075
https://doi.org/10.1016/j.jtcvs.2014.07.075
https://doi.org/10.1016/s0022-5223(19)35174-8
https://doi.org/10.1016/s0022-5223(19)35174-8
https://doi.org/10.1016/j.jtcvs.2010.11.032
https://doi.org/10.1016/j.jtcvs.2010.11.032
https://doi.org/10.1016/j.jtcvs.2012.05.015
https://doi.org/10.1016/j.jtcvs.2008.06.043
https://doi.org/10.1016/j.jtcvs.2008.06.043
https://doi.org/10.1016/j.jtcvs.2014.08.058
https://doi.org/10.1016/j.jtcvs.2014.08.058
https://doi.org/10.1161/hc1002.105182
https://doi.org/10.1016/j.athoracsur.2006.12.079
https://doi.org/10.1016/j.athoracsur.2006.12.079
https://doi.org/10.1002/jmri.21579
https://doi.org/10.1016/j.jtcvs.2011.09.067
https://doi.org/10.1016/j.jbiomech.2012.11.003
https://doi.org/10.1016/j.jtcvs.2016.03.019
https://doi.org/10.3760/cma.j.issn.1001-4497.2015.09.011
https://doi.org/10.1016/j.jtcvs.2014.08.069
https://doi.org/10.1016/j.jtcvs.2014.08.069
https://doi.org/10.1177/0218492309102531
https://doi.org/10.1016/j.athoracsur.2011.10.001
https://doi.org/10.1177/021849230601400303
https://doi.org/10.1055/s-0040-1708528
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1078140
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Heart sound classification plays a critical role in the early diagnosis of

cardiovascular diseases. Although there have been many advances in heart

sound classification in the last few years, most of them are still based on

conventional segmented features and shallow structure-based classifiers.

Therefore, we propose a new heart sound classification method based on

improved mel-frequency cepstrum coefficient features and deep residual

learning. Firstly, the heart sound signal is preprocessed, and its improved

features are computed. Then, these features are used as input features of

the neural network. The pathological information in the heart sound signal is

further extracted by the deep residual network. Finally, the heart sound signal is

classified into different categories according to the features learned by the

neural network. This paper presents comprehensive analyses of different

network parameters and network connection strategies. The proposed

method achieves an accuracy of 94.43% on the dataset in this paper.

KEYWORDS

heart sound classification, cardiovascular, MFCC, deep learning, Resnet

1 Introduction

Cardiovascular disease is a term used to describe a group of diseases, including

coronary heart disease, cerebrovascular disease, and rheumatic heart disease. A patient’s

blood pressure, blood sugar, and lipid levels can be raised by fried foods, fast foods,

alcohol, and tobacco, as well as weight gain and obesity, leading to premature death.

Prevention of sudden death from cardiovascular disease can be achieved by finding

groups at risk for cardiovascular disease and ensuring they receive the proper treatment. It

is possible to reduce the risk of sudden death from cardiovascular disease by reducing

alcohol consumption, reducing salt intake, eating more fruits and vegetables, and

exercising more.

Heart sounds are produced by the heart through rhythmic contraction and diastole.

The heart is the powerhouse of the body and it is the most critical organ in the body,

responsible for delivering blood to other organs to provide oxygen and other nutrients

and to carry away the end products of metabolism so that cells can maintain a normal
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physiological state. Hearts have four chambers: Left atrium, left

ventricle, right atrium, and right ventricle, the details of heart

structure are shown in Figure 1. Atrioventricular valves prevent

blood from flowing backward between the atria and ventricles Li

S. et al. (2020).

A cardiac cycle occurs when one heartbeat precedes the next,

producing four heart sounds, which are the first, second, third,

and fourth heart sounds. Screening for cardiovascular disease by

auscultatory heart sound auscultation is a simple, necessary, and

effective method that has been used for over 180 years Liu et al.

(2016). The first heart sound marks the beginning of ventricular

systole and is characterized by long duration, high intensity, and

loud sound. The second heart sound marks the beginning of

ventricular diastole and has the characteristics of shorter

duration, less intensity, and less sound. After the second heart

sound, the third heart sound occurs. It lasts between 0.04 and

0.05 s and has a longer wavelength. About half of young adults

and most children hear it, and it does not necessarily indicate

abnormality. In the fourth heart sound, a long wave sound

precedes the first heart sound and lasts for about 0.04 s. It is

mechanical wave caused by the contraction of the atria and the

rapid filling of the ventricles with blood flow, also known as an

atrial sound. Most healthy adults can record a tiny fourth heart

sound on an electrocardiogram, which is difficult to detect on

general auscultation. Based on the patient’s clinical condition, the

physician records the four basic heart sounds and analyzes their

differences from the normal situation. It is typically tricky for

physicians to determine a patient’s condition by heart sound

auscultation in clinical practice Jiang and Choi (2006).

Industrialization has made sophisticated machines standard

medical tools, and electrocardiograms (PCG) are recorded

using acoustic instruments to diagnose and treat patients.

With the continuous application of PCG, the use of signal

processing and artificial intelligence techniques to extract

physiological and pathological information from PCG data

has gradually become a popular trend Herzig et al. (2014).

Benefit from the development of deep learning field in recent

years Hinton and Salakhutdinov (2006); Yu et al. (2013); Ranzato

et al. (2006); Bengio. (2009); Hinton and Salakhutdinov (2012);

Vincent et al. (2010); Silver et al. (2016); Nair and Hinton (2010),

a new horizon has been opened for heart sound classification

Zhang and Han (2017). CNN is now a mature deep learning

framework since it was first proposed in 2006. It has become a

widely used approach in computer vision due to its convolutional

layer that learns local patterns of images. CNN is also gradually

applied to biomedical signal classification and speech semantic

FIGURE 1
The Structure of the human heart.

FIGURE 2
Waveform representation of S1, S2, S3, and S4 sounds in systole and diastole intervals, as of Varghees and Ramachandran (2014).
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recognition through corresponding audio processing methods,

such as transforming human physiological signals into speech

spectrograms. Recurrent neural networks (RNN) are a class of

neural networks that specialize in processing sequential data.

Gated recurrent units (GRU) and long short-term memory

(LSTM) are improved versions of RNN, and they provide

state-of-the-art performance in many applications, including

machine translation, speech recognition, and image captioning

Abduh et al. (2019). Heart sound signals are sequential data with

strong temporal correlation, so heart sound classification can be

efficiently processed by RNN Nogueira et al. (2019); Ismail et al.

(2022); Sakib et al. (2019). Figure 2 describes the Waveform

representation of S1, S2, S3, and S4 sounds in systole and diastole

intervals.

In addition, since some noise in the environment is inevitably

collected during the acquisition of heart sounds, this can greatly

affect the accuracy of the model classification. Therefore, it is

crucial to process the original heart sound signal through feature

engineering before feeding it into the neural network for training.

There are several commonly used feature extraction methods in

heart sound classification tasks, including discrete wavelet

transform coefficients (DWT) Mei et al. (2021), and Mel

frequency cepstral coefficients (MFCC) Yang and Hsieh

(2016). In this paper, the MFCC-based first and second-order

difference coefficients are used as the input tensor of the neural

network. This feature extraction method reduces the effect of

noise on the results and allows the neural network to extract the

physiological and pathological features in the heart sound signal,

resulting in higher classification accuracy. Compared to

traditional heart sound classification algorithms, deep learning

techniques avoid the problems of manual intervention, complex

processes, and poor generalization. Kui et al. (2021) combined

MFSC and CNN for classification of heart sounds. Li et al. (2021)

used Short Time Fourier Transform (SFTF) based features as

input to CNN. Tschannen et al. (2016) used Wavelet-based

features and CNN. Li F. et al. (2020) extracted 497 features

from time series as input to the CNN. Er (2021) proposed Local

Binary Pattern (LBP) and Local Ternary (LTP) pattern

features as input to the CNN. Wu et al. (2019) used

MFCC as input to the CNN. Lack of large authoritative

open heart sound datasets restricts the performance of the

model. To address this concern, this paper incorporates three

of the most widely used heart sound datasets. It helps to

radically improve the performance of the deep learning

model. Although the performance of the above methods

has been greatly improved compared to traditional

machine learning methods, most of these are shallow

structures and the features used are insufficient to fully

express the information of heart sounds. In this study, we

select improved MFCC as input features to more

comprehensively represent the static and dynamic

characteristics of the heart sound signal. Additionally, we

use a residual neural network which alleviates gradient

disappearance and degradation during training. Figure 3

summarizes the motivation of our study.

The rest of the paper is structured as follows: Section 2

discusses recent research trends and essential methods related to

heart sound classification. Section 3 describes in detail the

preprocessing and feature engineering of heart sound audio

and introduces the deep residual neural network structure

used in this paper and analyzes in detail the more critical

convolution and residual principles. In Section 4, we describe

the three datasets used in this paper in detail. We split 20% of the

dataset as the testing set. All metrics are the results of the testing

set. Additionally, we make a comparison between MFCC,

nMFCC, n2MFCC, and improved MFCC to further explain

what the improvements are for a better understanding of the

superiority of the methods in this paper, RNNs and CNNs are

used for comparison and we show models’ loss and accuracy

during training. We also list references with other methods used

for comparison. Section 5 summarizes our study, and our

proposed method is feasible for the heart sound

classification task.

2 Related work

At present, heart sound auscultation technology is one of the

leading clinical diagnostic tools for treating cardiovascular

diseases, with the characteristics of non-invasive, efficient,

convenient, and can obtain physiological and pathological

information about the heart, but due to the complex clinical

diagnostic conditions, there is a lot of noise pollution, a lack of

experience in physicians are often disturbed by the noise of the

environment, resulting in an inaccurate diagnoses of the

condition. In 1929, the German doctor Werner used a

catheter to deliver drugs to the heart, opening the door to the

use of physical models to study cardiovascular disease; in the

1970s, Dr. Marcus in the United States used angiography to

observe the causes of cardiovascular disease, overturning long-

held misconceptions about heart disease; in the 1980s, the earliest

cardiac defibrillators came into clinical use at Johns Hopkins

University, and the earliest telemetry systems were developed so

that Doctors coule observe the vital signs of heart disease patients

from a distance; in recent years, with the development of

technology, devices similar to comprehensive ECG heart

sound analyzers and intelligent electronic stethoscopes have

been put into clinical use, but due to the inevitable factors in

the use process, the collected heart sound signals will contain

various types of noise to varying degrees, affecting the final

diagnostic results. At present, digital filters, wavelet

decomposition and empirical modal decomposition are widely

used for digital denoising of heart sound signals. In recent years,

with the rise of artificial intelligence, big data, and other

technologies, more accurate and effective heart sound

detection methods are expected to be realized.
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The dataset is one of the fundamental issues affecting the

results, and heart sound classification is no exception. In general,

the larger the data set, the more specialized the distribution, and

the more extensive the heart sound data, the more overfitting of

the model can be avoided, and the generalizability of the model

can be increased. According to a surveyMilani et al. (2022), using

deep learning techniques for heart sound classification tasks

remains challenging due to the lack of a large authoritative

open heart sound dataset. In this paper, the Physio heart

sound dataset Liu et al. (2016), Pascal heart sound dataset

Gomes et al. (2013) and Yaseen heart sound dataset Son and

Kwon (2018) were used to construct more extensive, less noisy,

and more reliable heart sound dataset. Positive and negative

sample imbalances can affect the performance of the model. It is

assumed that the distribution of positive and negative samples in

the feature space is unbalanced. When the neural network tries to

learn the mapping relationship model. It predicts that more

samples will bring less loss in most feature space regions.

Eventually, this causes the model to fail, and the predicted

values are always concentrated near the labels with more

samples. That is, the model has very high accuracy on the

training set, but a low accuracy on the validation and test sets.

It significantly reduces the generalizability of the model. To solve

such problems, researchers usually sample the heart sound data

and perform slicing operations Baghel et al. (2020); Baydoun

et al. (2020) to ensure the balance between the different labels of

the samples. Wang et al. (2021) used a weighted improvement of

the classifier to reduce the impact of the unbalanced dataset on

training. In this paper, the pre-processing of heart sound audio is

used to perform cuts and enhance a smaller number of samples to

avoid the problem of sample imbalance.

In general, binary classification, multiple classification and

regression are often used in classification problems, and how the

classification task is chosen can also affect the classification

results to some extent. For sequence data with considerable

background noise such as heart sounds, the impact of the

acquisition process on the real heart sounds must be

considered according to the actual situation of the data set. In

the current studies of heart sound classification, most of the tasks

are dichotomous, normal heart sounds and abnormal heart

sounds. Few experiments have classified specific situations

such as aortic stenosis and mitral valve insufficiency based on

medical knowledge. Demir et al. (2019) used deep convolution

neural networks to perform a four classification task on a Kaggle

dataset, as well as Oh et al. (2020) performed a quintuple

classification task on a heart sound dataset. In this paper,

heart sound datasets from three different platforms are

considered, considering the inevitable noise generated during

the acquisition process due to hardware limitations. Since some

cannot identify the heart sound signals, three classification tasks

are performed for heart sounds, namely normal, abnormal and

noisy, and this selection of classification tasks is closer to the

actual situation. It also helps to further improve the accuracy and

practical application of heart sound classification.

Many researcher have used deep learning techniques to solve

heart sound classification problems. Kui et al. (2021) investigated

the effect of discrete cosine transform (DCT) on classification

results during MFCC signal extraction. MFSC is an intermediate

state in the MFCC extraction process, which omits the step of

DCT. CNN is essentially a non-linear transformation of the data,

and since DCT is essentially a linear transformation, this

operation results in the absence of pathological information in

FIGURE 3
Motivation of the proposed method.
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the heart sound signal, so MFSC is feasible for heart sound

classification using deep learning techniques. Krishnan et al.

(2020) obtained an accuracy of 85.74% by directly using the

unsegmented PCG signal as the input to the CNN. Zeinali and

Niaki (2022) used a heart sound audio signal processing

algorithm to convert one-dimensional temporal features into

two-dimensional spectral features. This proposed method

achieved 87.0% accuracy in a heart sound triple classification

task. Tian et al. (2022) directly trained the neural network using

raw data without using feature engineering from the PhysioNet

dataset to perform a binary classification task on PCG to

distinguish between normal and abnormal heart sounds.

Wang et al. (2021) extracted five classes of features by

segmenting the PCG signal. and used a recursive feature

elimination method to obtain suitable input features, and

proposed an XGBoost-based and LSTM combination for heart

sound classification, and obtained an accuracy of 90.0% on the

test set. Li et al. (2021) segmented the original heart sound signal

and then calculated its frequency domain features by short-time

Fourier transform. For training, they proposed 2D-CNN and

achieved an accuracy of 85.70%. Er (2021) extracted the local

binary pattern (LBP) of heart sounds using local three-valued

pattern (LTP) and trained it with 1D-CNN with an accuracy of

90% on the PhysioNet dataset. Ren et al. (2022) used the

attention mechanism to explore the interpretable heart sound

classification algorithm for heart sound triple classification task

on PhysioNet dataset and obtained an unweighted average recall

of 51.2%. Iqtidar et al. (2021) obtained 98.3% accuracy on heart

sound double classification problem using MFCC based 1D

adaptive local ternary model and support vector machine.

Lahmiri and Bekiros (2022) used discrete wavelet transform

with support vector machine optimized through bayesian

optimization obtained 89.26% accuracy. In the heart-tone

classification task mentioned above, neural networks with

MFCC-based features perform better. To further enhance the

advantages of MFCC features in expressing heart sound signals,

this paper calculates first-order and second-order difference

coefficients for expressing the dynamic properties of heart

sound signals.

3 Proposed methodology

This section describes the heart sound classification

algorithm proposed in this paper in three parts. The first step

is data set fusion, which filters, downsamples, and cuts the

original heart sounds. The second step is feature engineering,

extracting standard MFCC, first-order MFCC, and second-order

MFCC, and fusing them into input feature vectors. In the third

step, a deep residual neural network is constructed, and feature

vectors are input for training. Finally, the test samples are

predicted using the trained model, and the accuracy is

counted. Figure 4 shows the workflow of this paper. The

innovation of the methodology as threefold: 1) Using the

authoritative heart sound datasets from three different

sources, which helps to radically improve the performance of

the deep learning model. 2) Selecting improved MFCC as input

features to more comprehensively represent the static and

dynamic characteristics of the heart sound signal. 3) Using a

residual neural network, which alleviates gradient disappearance

and degradation during training.

3.1 Dataset fusion

The label classification standards of the datasets selected in

this paper are different. Before entering the data into the neural

network, the labels must be unified, and data pre-processing is

performed on all files. making full use of heart sound datasets

from different sources helps to improve the generalization of the

model further. According to the characteristics of the label types

of the dataset, this paper divides the labels of the fused heart

sound data into three categories: normal, abnormal, and noise.

3.1.1 Digital filtering
In collecting heart sound audio, due to hardware limitations

and the influence of the background environment, many noises

will inevitably be collected in the audio. To reduce the impact of

noise on neural network training, this paper filtered the heart

sound audio. To preserve the low frequency components of heart

sounds that contains important physiological information, this

paper sends the heart sound audio into the fifth-order 400 hz

Butterworth low-pass filter to filter out the high-frequency

murmurs in the heart sound signal.

3.1.2 Down sampling
To reduce the computational complexity of the model and

ensure that the heart sound data from different sources can

generate the same size feature map in the subsequent feature

engineering, all audio signals are down-sampled to 2000 hz.

3.1.3 Audio cutting
Considering the significant difference in length between

heart sound audios, this paper cuts the audio in units of 2 s to

use the existing heart sound audio and unified audio length as

much as possible. On the other hand, considering the solid

temporal correlation of pathological features in heart sound

audio, heart sound audio with too short duration is difficult

to express the pathological features of heart sound, so this paper

discarded heart sound audio with less than 2 s.

3.2 Feature engineering

In most cases, deep learning models cannot learn from

completely arbitrary data, so it is essential to extract heart
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sound features by hard coding through feature engineering. To

obtain an effective pathological feature representation of

cardiovascular disease, this paper used an improved feature

extraction algorithm based on MFCC Deng et al. (2020). The

human ear’s perception of frequency is logarithmic. It is sensitive

to changes in low-frequency bands and insensitive to changes in

high-frequency bands. The use of linearly distributed

spectrograms in feature engineering affected the model’s

performance. MFCC reflects the non-linear relationship

between the human ear and the sound frequency, which can

effectively extract the pathological features in the heart sound

audio. The calculation formula of the MFCC is shown as follows

Mel f( ) � 2595lg 1 + f/700( ) (1)

where lg is defined as the base 10 logarithm.

3.2.1 Signal pre-emphasis
In processing the heart sound signals, the high-frequency signal

generated during cardiovascular exercise is inadequate, and the low-

frequency signal is adequeate. The reason for this phenomenon can

explain from the physical level. In the process of sound energy

propagation in the medium, the higher the frequency, the more it

is easy to be lost, and pre-emphasis makes up for the loss of high

frequency and protects the original heart sound signal. In this paper,

the heart sound signal. is passed through a high-pass filter to narrow

the intensity gap between the high and low-frequency components of

the signal. The specific operation of the signal x[n] is shown as follows

y n[ ] � x n[ ] − αx n − 1[ ] (2)

where α usually takes a value close to 1.

3.2.2 Framing windowing
To obtain the distribution of each element of frequency in the

heart sound audio, it is necessary to performFourier transformon the

audio signal, and the Fourier transform requires that the input signal

must be stable, so the audio signal needs to be framed and windowed

first. Framing is to divide the original signal into several small blocks

according to time, and one block is called a frame. In framing process,

the original signal will have a spectrum leakage phenomenon. The

spectrum corresponding to the original signal and the signal after

framing are very different. The Hamming window can effectively

overcome the leakage phenomenon Astuti et al. (2012). The

Hamming window function W(n) is shown as follows

W n( ) � 1 − α( ) − α cos 2πn/ N − 1( )( ), 0≤ n≤N − 1 (3)

where the α value is 0.46 by suggested in Trang et al. (2014).

3.2.3 Get power spectrum
After framing and windowing, this paper used discrete

Fourier transform (DFT) on the data to transform the time-

domain signal into a frequency-domain signal to obtain the

spectrum X(k) is shown as follows

X k( ) � ∑
N−1

n�0
x n( )e−j2πnk/N, 0≤ n, k≤N − 1 (4)

The power spectrum P(k) is equal to the signal spectrum X(k) as

the square of its modulus, as shown in Eq. 5. The power spectrum

expresses the energy characteristics of the heart sound signal

more accurately, retains some amplitude elements in the heart

sound spectrum, and discards the phase characteristics of the

heart sound spectrum is described as follows

P k( ) � 1
N
|X k( )|2 (5)

3.2.4 Mel filter bank
A normal human ear is able to hear sounds with frequencies

from 20 Hz to 20,000 Hz. The range of 20 Hz to 20,000 Hz is

FIGURE 4
Flow chart of the proposed method.
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called the audible frequency range. The sounds we hear comprise

of various frequencies. The Mel filter bank is represented as a

group of triangular filters on the image. Usually a set contains

20 to 40 ascending triangular filters, and the starting position of

each triangular filter is at the midpoint of the previous triangular

filter, and because it has a linear frequency in the Mel scale, it is

called a Mel filter bank. At each frequency, calculate the product

of P(k) and filter Hm(k). Defining a triangular filter bank with

Mel filters, the frequency response Hm(k) of the triangular filter

is calculated as follows

Hm k( ) �

0, k<f m − 1( )
k − f m − 1( )

f m( ) − f m − 1( ), f m − 1( )≤ k≤f m( )

f m + 1( ) − k

f m + 1( ) − f m( ), f m( )≤ k≤f m + 1( )

0, k>f m + 1( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

where m represents the serial number of the filter, and f (m-1),

f(m), and f (m+1) correspond to the starting point, middle point,

and end point of the filter, respectively. In calculations, the values

of m take 1, 2, . . . , 13. For a Mel triangular filter, f(m) represents

the center frequency of theMel trangular filter, f (m-1) represents

the start of the Mel trangular filter, and f (m+1) represents the

end of the Mel trangular filter. Summing the whole of Hm(k), we

can obtain Eq. 7, and the value of M is 13.

∑
M−1

m�0
Hm k( ) � 1 (7)

3.2.5 Log spectrum
The logarithmic energy spectrum S(m) at each frame is

obtained by using the logarithmic operation is shown as follows

S m( ) � ln ∑
N−1

k�0
P k( )Hm k( )⎡⎣ ⎤⎦, 0≤m≤M (8)

where lg is defined as the base e logarithm.

3.2.6 Discrete cosine transform
The discrete cosine transform (DCT) is performed on the

above log spectrum to obtain the Mel cepstral coefficient C(n),

which is the MFCC feature, The corresponding equation is

described as follows.

C n( ) � ∑
N−1

m�0
S m( )cos πn m − 0.5( )/M( ), n � 1, 2, . . . , L (9)

3.2.7 Dynamic feature extraction
MFCC reflects the static information of the heart sound

signal, and the dynamic information of the heart sound signal

also contains rich pathological features, which can be used to

improve the classification accuracy further. To reflect the

dynamic information of the heart sound signal, this paper

extracts the first-order difference coefficient D(n) and the

second-order difference coefficient D2(n) based on MFCC.

The calculation formulas are described as follows

D n( ) � 1������
∑i�k

i�−ki2
√ ∑

i�k

i�−k
i · C n + i( ) (10)

D2 n( ) � 1�������
2∑i�k

i�−ki2
√ ∑

i�k

i�−k
i ·D n + i( ) (11)

where the value of k is taken as 2, and C (n + i) is a frame of

MFCC coefficient. Figure 5 shows 2D visualization of them,

whereMFCC is the result of Eq. 9,nMFCC is the result of Eq. 10,

and n2MFCC is the result of Eq. 11. The size of them are all

(199,13), we use them to construct a (199,39) feature as the input

of neural network.

3.3 Resnet

The network structure in this paper is shown in Figure 6.

Convolutional neural network (CNN) can learn valuable

features in large-scale heart sound spectrograms developed

from traditional artificial neural networks, CNN not only have

the traditional fully connected neural network characteristics, but

also have many differences and improvements based on them.

Convolutional neural networks work on the basic principle of

converting the original data into a two-dimensional matrix

format, which is superior to traditional artificial neural

networks in terms of the performance of extracting image

feature values. In CNN, the initial convolutional layer

functions similarly to an edge detector and can be used to

identify low-level features. Although the network near the

convolutional layer is more complex or abstract, because of

the CNN weight sharing property, its network requires fewer

parameters to train than the fully connected to the feature space.

It shows that when the network layers, each layer output at the

same time, the number of dimensions required for the stage CNN

to process the same data is much lower than the whole connected

to the feature space fully. Compared with other feature extraction

methods, CNN has a simple structure, fitting ability and

trainability. The principle of convolution calculation in CNN

is shown in Figure 7.

Batch Normalization (BN) was originally designed to solve

Internal Covariate Shift (ICS), which is a phenomenon where the

internal node data distribution changes due to parameter

changes in the network. ICS has a greater negative impact on

deeper neural networks. Data distribution change times increase

with the number of neural network layers. It makes the network

harder to train and more sensitive to overfitting. BN layer adjusts

their distribution by normalizing each batch of data, the principle

of which is shown in Figure 8. Using the BN layer not only
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reduces the training time, but also make the model converge

faster, and better control the problems of gradient disappearance

and gradient explosion at the same time Ioffe and Szegedy (2015).

The BN is calculated as follows

x̂l � xi − μB�����
σ2B + ϵ

√ (12)

where μB is the mean of each batch of data, σ2B is the variance of

each batch of data, and ϵ is called the smoothing term, which

ensures numerical stability in the operation by stopping the

division by zero values.

The residual neural network was proposed initially by He

et al. (2016). The degeneration phenomenon refers to the

substantial decrease in model accuracy that occurs without

warning as the depth of the network continues to increase.

The degeneracy phenomenon makes us reflect on non-linear

transformation, which significantly improves data classification.

However, as the depth of the network continues to increase, we

have gone too far in the non-linear transformation to achieve

linear transformation surprisingly. Bottlenecks can quickly occur

when training the data using CNN, and this paper introduces a

residual module to address this phenomenon. It is no

FIGURE 5
2D visualization of the features. (A) Normal heart sound. (B) Abnormal heart sound. (C) Noise
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exaggeration to say that half of the neural networks used in

computer vision today are based on Resnet and his variants.

The principle of the residual structure constructed in this

paper is shown in Figure 9. A layer of the network can usually be

viewed as y = H(x), and a residual block of the residual network

is: H(x) = F(x) + x, then F(x) = H(x)—x, and y = x is the observed

value and H(x) is the predicted value, so H(x)—x is the residual,

that is, F(x) is the residual, so it is called the residual network.

FIGURE 6
Structure of Resnet.

FIGURE 7
Principle of convolution.

FIGURE 8
Principle of batch normalization.
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When the deep network propagates forward, the information

obtained by the network decreases layer by layer as the network

deepens. In contrast, ResNet deals with this problem by identity

mapping. The next layer includes not only the information x of

that layer, but also the new information F(x) after the non-linear

transformation of that layer. This treatment makes the

information instead show an increasing trend layer by layer.

This is so useful that you cannot worry about lossing data.

Intuitively, the residual block protects the integrity of the

information by directly passing the input information around

to the output, and the whole network only needs that part of the

input and output difference, simplifying the experimental goal

and difficulty.

4 Experimental evaluation

4.1 Dataset

This paper uses heart sound datasets published on three

different platforms, the PhysioNetChallenge 2016 heart sound

database, the heart sound dataset from the kaggle platform,

and the Yaseen heart sound dataset. In 2016, Physionet hosted

the PhysioNet/Computing in Cardiology (CinC) Challenge

2016 and released the dataset Liu et al. (2016). Physionet is a

resource platform for complex physiological signal research

managed by the MIT Computational Physiology Laboratory.

The dataset was collected by different research groups in

clinical and non-clinical conditions. These heart sound data

were sampled at the same frequency, with a large amount of

data and low noise. The label classification of the dataset is

relatively simple and is divided into two categories: normal

and abnormal. There was a wide range of audio lengths,

ranging from 5 s to 120 s. In this paper, the audio was cut

before the classification task. The details of this dataset are

shown in Table 1.

Kaggle is currently one of the largest data science platforms in

the world, with many high-quality datasets. These datasets are

often sponsored by large companies for data science

competitions in 2016, Kaggle held a heart sound classification

competition with a dataset that referenced the Pascal heart sound

dataset Jiang and Choi. (2006) and attached several description

files without any modifications to the audio files. For labeling

purposes, the dataset used in this paper is the one published by

Kaggle. The audio lengths in this dataset range from 1s to 30 s,

and the details are shown in Table 2.

The third dataset was open-sourced by Herzig et al. (2014) on

the GitHub platform, and the authors preprocessed the dataset.

The audio was sampled at the same frequency, with the same

FIGURE 9
Residual structure.

TABLE 1 PhysioNet/CinC Challenge dataset.

File name Normal Abnormal

Training-a 292 117

Training-b 104 386

Training-c 24 7

Training-d 28 27

Training-e 183 1958

Training-f 34 80

Total 665 2575

TABLE 2 Pascal dataset.

File name Normal Murmur Extrahs Artifact

Set-a 31 34 19 40

Set-b 320 95 None None

Total 351 133 19 40
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length and less murmur. The data were labeled with five

categories: normal, aortic stenosis, mitral valve insufficiency,

mitral stenosis, and murmur, the latter four being abnormal

heart sound signals in patients with cardiovascular disease, with

the specific information shown in Table 3.

4.2 Experimental setup

In this study, we use Accuracy, Sensitivity, Specificity, and

Precision to evaluate the proposed method. All of them are

defined as follows

Accuracy � TP + TN

TP + TN + FP + FN
(13)

Sensitivity � TP

TP + FN
(14)

Specificity � TN

TN + FP
(15)

Precision � TP

TP + FP
(16)

To further illustrate the classification performance, we

tested the proposed algorithm on two different deep learning

network architectures by adding LSTM and GRU, whose

structures are shown in Table 4. LSTM(x) represents an

LSTM layer, and x is the dimension of the output space.

GRU(x) represents a GRU layer, and x is the dimension of

the output space. Drop(x) represents a Dropout layer, x is the

possibility of dropping neurons. FC(x) represents a fully

connected layer with x neurons. Conv [x, (y, z)] represents

a convolution layer, x is the number of filters, y and z are the

width and height of 2D filter window. BN represents a Batch

Normalization layer Ioffe and Szegedy (2015). SeparableConv

[x, (y, z)] is a deeply separable convolutional layer.

MaxPooling (x, y) is a max pooling layer, and x and y are

the pooling sizes. Residual (x) is a residual connectivity

module, it is not a specific layer, it marks the position of

the output layer. Add represents a residual connection layer,

which takes the output of a previous layer as the input of a

later one. GlobalAveragePooling() represents the global

average pooling layer.

TABLE 3 Yaseen dataset.

File name Normal Aortic stenosis Mitral stenosis Mitral regurgitation

N 200 None None None

AS None 200 None None

MS None None 200 None

MR None None None 200

MVP None None None None

TABLE 4 The parameters of deep learning architecture.

Model Structure details Params Training time s)

LSTM LSTM (64)-Drop (0.5)-FC(64)-FC (3) 30,979 75

GRU GRU (64)-Drop (0.5)-FC(64)-FC (3) 24,515 55

CNNa Conv [16, (3,3)]-MaxPooling (3,3)-Conv [32, (3,3)]-MaxPooling (3,3)-
Conv [64, (3,3)]- MaxPooling (3,3)-Conv [128, (3,3)]-MaxPooling (3,3)-
Drop (0.5)-GlobalAveragePooling ()-Dense (3)

97,539 55

CNNb Conv [16, (3,3)]-MaxPooling (3,3)-Conv [32, (3,3)]-MaxPooling (3,3)-
Conv [64, (3,3)]- MaxPooling (3,3)-Conv [128, (3,3)]-MaxPooling (3,3)-
Drop (0.5)-GlobalAveragePooling ()-Dense (3)

40,979 200

Resnet Conv [8, (3,3)]-BN-Conv [8, (3,3)]-residual {Conv [16, (1,1)]-BN}-
SeparableConv [16, (3,3)]-BN-MaxPooling (3,3)-add-residual {Conv
[32, (1,1)]-BN}-SeparableConv [32, (3,3)]-BN-SeparableConv [32,
(3,3)]-BN-MaxPooling (3,3)-add-residual {Conv [64, (1,1)]-BN}-
SeparableConv [64, (3,3)]-BN-SeparableConv [64, (3,3)]-BN-
MaxPooling (3,3)-add- residual {Conv [128, (1,1)]-BN}-SeparableConv
[128, (3,3)]-BN-MaxPooling (3,3)-add-Conv [3, (3,3)]-
GlobalAveragePooling ()

52,339 320
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4.3 Experimental results

To test the validation of the improved MFCC, we do

comparison using the single features. MFCC, nMFCC,

n2MFCC, and improved MFCC are trained on neural

network separately, and the best epoch is taken as the result

for comparison. The results of this experiment are shown in

Figure 10. ImprovedMFCC’s sensitivity, specificity, and accuracy

are higher than other features, the precision is lower than MFCC.

In medical signal recognition, higher sensitivity and specificity is

a valid result. Especially for sensitivity, identifying more patients

is a crucial thing.

Figure 11 shows the experimental results. It can be observed

that the single Resnet, although the accuracy is higher, overfitting

occurs very fast and overfitting occurs in the 10th round.

Although LSTM can avoid overfitting better, has not yet

reached the accuracy of Resnet in the 10th round, or even in

the 30th round. This should be due to feature engineering,

because the first-and second-order MFCC features are more

reflective of relationships on time series, a property that is

good for LSTM and GRU, but not friendly for networks like

Resnet that extract locally relevant features. In addition, it can be

seen that the accuracy of GRU is much lower than LSTM, but the

average training time per round is 55 s for GRU and 75 s for

LSTM. On the whole, Resnet can get better results.

Figure 12 shows the results of the comparison. CNNa has a

shallow structure. In terms of performance, it is the least effective.

The CNNb structure eliminates the residual connection of the

Resnet. In comparison to CNNa, it performs better. In addition,

it can be seen that the accuracy of GRU is lower than LSTM. The

highest score is achieved by Resnet. As a result, it was determined

that deep structure and residual connections are useful for

classification of heart sounds. The results shows the training

process of RNNs, CNNs and Resnet. It can be observed that the

CNNs and Resnet, although the accuracy is higher, overfitting

occurs very fast in the 10th round. Although LSTM can avoid

overfitting better, has not yet reached the accuracy of CNNb and

Resnet in the 10th round, or even in the 30th round. Overfitting

exists in all machine learning problems. Obtaining more

authoritative heart sound data is the best solution. Adjusting

the capacity of the model is another solution. For a deep learning

model, the number of parameters it can learn is called the

capacity. If the model has a very large capacity, then the

model can even achieve a dictionary-style mapping of the

data, but this mapping does not have any recognition of new

data, which is a serious overfitting. So this is when we need to

improve the generalization ability of the model by decreasing the

capacity of the model and compelling the model to learn the most

important patterns. To reduce the influence of data partitioning

on the experimental results, we use 5-fold cross-validation. The

first step divides 20% on the whole dataset as the test set. The

second step selects 80% of the remaining as the training set and

20% of the remaining as the validation set. It will reapeat the

second step 5 times to allow the validation set to iterate, each time

training a new neural network separately. Finally, taking the

average of the accuracy of the five models on the test set as the

study result.

Table 5 shows the comparison with the results of other

studies. The essential difference between CNN and Resnet is

that Resnet introduces a residual structure, which effectively

mitigates the effect of degeneracy on the training of deep

neural networks. Thus, it can be more applicable to the heart

sound classification problem. In addition to the residual

structure, the features are also essential. MFCC is inspired by

FIGURE 10
Comparison of heart sound features based on the proposed method.
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FIGURE 11
Comparison of three different networks between accuracy and loss. (A) LSTM (B) GRU (C) CNNa (D) CNNb (E) Proposed method.
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biology and simulates the non-linear changes of the human ear to

sound, thus, extracting the physiological and pathological

information in heart sounds, which can fully reflect the

disease of the heart. Considering MFCC only reflects the static

information of the heart sound signal, but the dynamic

information of the heart sound signal also contains rich

pathological features, which can be used to improve the

classification accuracy further. We merge the extracted

dynamic features with static features to more fully represent

the physiological and pathological information in the heart

sounds.

5 Conclusion

In this paper, we fused datasets from three different

platforms for the lack of reliable heart sound datasets,

which provided a solid foundation for neural network

training. In addition, we used an enhanced feature

extraction algorithm based on MFCC, and experiments

show that using such features as input to the neural

network can improve the model’s performance well. The

proposed method makes the neural network training faster

and the model generalization enhanced, which effectively

mitigates the negative effects of gradient disappearance and

degradation phenomena on medical signal recognition and

achieves an accuracy rate of 94.43% on the constructed

dataset, which is higher than the state-of-the-art methods.

Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and

FIGURE 12
Comparison of RNNs and CNNs.

TABLE 5 Comparison of experimental results of different algorithms.

References Algorithms Sensitivity (%) Specificity Precision Accuracy (%)

Li et al. (2021) SFTF and CNN 88.70 86.40% — 86.00

Wu et al. (2019) MFCC and CNN 91.73 87.90% — 89.81

Tschannen et al. (2016) Wavelet and CNN 88.12 76.30% — 82.12

Li F. et al. (2020) 497-features and CNN 87.00 72.10% — 86.80

Er. (2021) LBF and LTF 91.24 — 90.36% 91.66

Ours Improved MFCC and Resnet 92.32 95.47% 90.55% 94.43
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EEG phase-amplitude coupling (PAC), the amplitude of high-frequency oscillations
modulated by the phase of low-frequency oscillations (LFOs), is a useful biomarker to
localize epileptogenic tissue. It is commonly represented in a comodulogram of
coupling strength but without coupled phase information. The phase-amplitude
coupling is also found in the normal brain, and it is difficult to discriminate
pathological phase-amplitude couplings from normal ones. This study proposes a
novel approach based on complex-valued phase-amplitude coupling (CV-PAC) for
classifying epileptic phase-amplitude coupling. The CV-PAC combines both the
coupling strengths and the coupled phases of low-frequency oscillations. The
complex-valued convolutional neural network (CV-CNN) is then used to classify
epileptic CV-PAC. Stereo-electroencephalography (SEEG) recordings from nine
intractable epilepsy patients were analyzed. The leave-one-out cross-validation is
performed, and the area-under-curve (AUC) value is used as the indicator of the
performance of different measures. Our result shows that the area-under-curve
value is .92 for classifying epileptic CV-PAC using CV-CNN. The area-under-curve
value decreases to .89, .80, and .88 while using traditional convolutional neural
networks, support vector machine, and random forest, respectively. The phases of
delta (1–4 Hz) and alpha (8–10 Hz) bands are different between epileptic and normal
CV-PAC. The phase information of CV-PAC is important for improving classification
performance. The proposed approach of CV-PAC/CV-CNN promises to identify
more accurate epileptic brain activities for potential surgical intervention.

KEYWORDS

epilepsy, SEEG, complex-valued phase-amplitude coupling, complex-valued convolutional
neural network, epileptogenic zone

1 Introduction

Epilepsy is the most common chronic disease in neurology. About 70% of patients with
epilepsy can be cured by taking antiepileptic drugs, and other patients may develop drug-
resistance epilepsy (DRE) (Kwan and Brodie, 2000). The epileptogenic zone (EZ) is the brain
region responsible for seizure generation (Rosenow and Luders., 2001). Some patients with DRE
can be treated by surgical intervention on EZ (Engel, 2019). Scalp electroencephalography
(EEG) is one of these techniques which is fundamental for defining the EZ, frequently as a
precursor to invasive recordings. Intracranial EEG (iEEG) signal provides anatomically precise
information about the selective engagement of neuronal populations at the millimeter scale and
about the temporal dynamics of their engagement at the millisecond scale (Parvizi and Kastner,
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2018). Stereo-electroencephalography (SEEG) is one kind of iEEG and
is widely used to study the spatiotemporal oscillatory dynamics of
brain networks engaged in epileptogenic processes (Bartolomei et al.,
2017). Some EEG features provide promise biomarkers for EZ, such as
phase-amplitude coupling (PAC) (Weiss et al., 2015; Amiri et al., 2016;
Jiang et al., 2019; Liu et al., 2021), and high-frequency oscillations
(Worrell and Gotman, 2011). Currently, there is still a gap between
those studies and their applications in the clinical setting. Machine
learning can be used to close the gap in supporting clinical
applications.

EEG PAC, where the amplitude of high-frequency oscillations
(HFOs) is modulated by the phase of low-frequency oscillations
(LFOs), is a useful biomarker to identify the activities of
epileptogenic tissue (Guirgis et al., 2015). Cross-frequency push-
pull dynamics contributed to the secondary generalization of focal
seizures and potentially reflected impaired excitation-inhibition
interactions of the epileptic network (Jiang et al., 2019). PAC
feature of ictal EEG is used to determine the region of interest in
epilepsy (Guirgis et al., 2015). The coupling phase was suggested as an
interictal marker of the seizure-onset zone (SOZ) (Amiri et al., 2016).
The PAC in the inter- and pre-seizure periods was weak and
paroxysmal, and strong PAC channels were confined more to the
SOZ and resection region (Ma et al., 2021). The theta—gamma PAC
within the electrodes in the seizure region increased during the ictal
period (Liu et al., 2021). In Parkinson’s disease, the HFO (100–300 Hz)
was found modulated by beta (13–30 Hz), and beta and gamma
amplitudes were further modulated by their low-frequency
components (Jin et al., 2022). Some studies have shown that
cross-frequency coupling (CFC) plays a functional role in
physiological functions, such as memory, and task performing
(Lisman and Idiart, 1995; Canolty and Knight, 2010). It is
difficult to apply those coupling patterns for identifying
pathological brain tissues. To identify pathological PAC is critical
for further applications in the clinical setting (von Ellenrieder et al.,
2016). A multistage classifier based on the random forest was applied
to classify CFC features and it successfully predicted seizures (Jacobs
et al., 2018). Different kinds of algorithms have been applied in
investigating epileptic EEG, such as principal component analysis
(PCA) (Villar et al., 2017), Wavelet analysis (Wang et al., 2018),
support vector machines (SVM), fuzzy logic systems (Jiang et al.,
2016), and connectivity (Qin et al., 2020).

Convolutional neural networks (CNN) becomes more popular in
neuroscience research after its success in some other fields, such as
image recognition (Krizhevsky et al., 2012) and EEG analysis (Pan
et al., 2022). CNN achieves automatic extraction of local features
through its key component convolutional kernel and obtains high-
level abstract features after a series of hierarchical processing. It may
also avoid the problems of manual optimizing of traditional signal
processing algorithms. In our preliminary study, a three-layer CNN
was trained to identify pathological PAC in SEEG recordings (Wang
and Li, 2020). The result showed that the area-under-curve (AUC)
value reached .88 for classifying pathological PACs from normal ones
(Wang and Li, 2020). However, the representation and operation of
CNN in real values limit their applications in the field of complex-
valued datasets. Complex-valued CNN (CV-CNN) has been
developed and applied to various fields (Hirose, 2013; Tygert et al.,
2016). Some studies have demonstrated that CV-CNN outperforms
real-valued CNN after making full use of phase information in
complex-valued data, such as magnetic resonance imaging (MRI)
(Cole et al., 2021), steady-state visually evoked potentials (SSVEP)
(Ravi et al., 2020).

In this study, we propose a novel approach for identifying
pathological PAC in SEEG from patients with epilepsy. We first
provide a method for generating complex-valued PAC (CV-PAC)
with both the coupling strength and the coupled phase of LFO. The
CV-CNN is then trained to discriminate the pathological PACs from
normal ones. SEEG recordings from nine intractable epilepsy patients
were further analyzed to validate our proposed approach.

2 Materials and methods

2.1 Data and subject description

SEEG data of 23 seizures from nine patients were used in this
study. All patients had undergone surgery and achieved seizure-free
outcomes (General hospital of northern theater command). The
regions of surgical resection were used as the epileptogenic zone in
this study. Informed consent was obtained from each patient, and the
ethics committee of the hospital approved the study. The clinical
information of each patient is outlined in Table 1. A neurologist
marked the SEEG onset and termination of all seizures. To eliminate

TABLE 1 Clinical information of patients studied in this work.

Patients Age/Sex Duration (years) Seizure (s) MRI Findings Pathology Surgery

P1 16M 10 66, 61, 48 Left hippocampal abnormality FCD/HS Left: T

P2 37M 17 74, 76, 77 Normal FCD Left: T

P3 36M 23 75, 84 Normal Gliosis Right: T

P4 31M 30 42, 64, 120 Multiple region abnormality Gliosis Right: T

P5 25F 17 65, 97, 67 Normal HS Right: T

P6 38M 32 71 Left occipital abnormality — Left: O*

P7 11M 7 44, 54, 55 Left parietal and right occipital abnormality Gliosis/FCD Right: O

P8 54M 32 59, 60, 82 Right temporal abnormality FCD Right: FT

P9 22M 3 76, 80 both hippocampal abnormality HS Left: T

F, frontal; T, temporal; O, occipital; *, radio-frequency thermo-coagulation; —, unknown; FCD, focal cortical dysplasia; HS, hippocampal sclerosis.
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the reference effect, we transform the SEEG recordings into a bipolar
montage. Channels with obvious artifacts are removed based on visual
inspection. EEG is a non-linear and non-stationary signal. It could be
treated as a stable state within a short duration. A 10 s window was
suggested for computing PAC (Guirgis et al., 2015; Shi et al., 2019).We
used a 10 s sliding window on seizure with a step size of 2 s. The

duration of each seizure is listed in Table 1. There are 38,751 CV-PACs
generated. Each CV-PAC is represented as a complex-valued image.
The CV-PAC is labeled as a pathological pattern if the corresponding
SEEG channel resides in the surgical resection. Otherwise, the CV-
PAC is labeled as normal. There are 10,289 CV-PACs marked as
pathological, and the other 28,462 CV-PACs are marked as normal.

FIGURE 1
The ictal SEEG segment and theCV-PACpatterns frompatient P1. (A) 10 s SEEG segment with selected channels 16 s after seizure onset. The labels of the
SEEG channel in surgical resection are marked in red color. (B) The coupling strength of CV-PAC of channel A4-A3 in surgical resection. Red and blue colors
indicate strong andweak coupling strengths, respectively. The value is between 0 and 1. (C) The coupled phase of CV-PACof channel A4-A3 corresponding to
(B). The range of phase is between −π and π rad. (D) The coupling strength of CV-PAC of channel D4-D3 in the normal brain region. Red and blue colors
indicate strong and weak coupling strengths, respectively. (E) The coupled phase of CV-PAC of channel D4-D3 corresponding to (D). The range of phase is
between −π and π rad.
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2.2 Complex-valued phase-amplitude
coupling

The CV-PAC is generated based on the PAC measure (Guirgis et al.,
2015). In this study, the low-frequency range is chosen as 1–10 Hz, and
the high-frequency range is chosen as 30–160 Hz. Both low- and high-
frequency ranges are further divided into 10 intervals equally in log space.
We denote the selected low- and high-frequency signals as xfP(t) and
xfA(t) (i.e.,AfA(t)) and the instantaneous phase ofxfP(t) (i.e.,ΦfP(t)) is
extracted by using continuous wavelet transformation (CWT) in
MATLAB (MathWorks, Natick, USA). The phases ΦfP(t) are binned
and the mean of AfA over each phase bin is calculated, which denotes as
<AfA > ΦfP

(j). Themean amplitude is then normalized by the sum of all
mean amplitudes in each phase bin j, as follows

P j( ) � <AfA > ΦfP
j( )

∑
N

k�1
<AfA > ΦfP

k( )
, (1)

where N = 18, and j is chosen from 1 to 18. The Kullback-Leibler (KL)
distance between amplitude distribution p and uniform distribution U
(U(j) = 1/N for all bins j) is measured by following equation (Tort et al.,
2010):

DKL P, U( ) � ∑N

j�1P j( )*log
P j( )
U j( )

[ ]. (2)

The strength of CV-PAC at low- and high-frequency pair is
calculated as follows

SPAC � DKL P, U( )
log N( ) . (3)

The phase bin at the peak of P(j) is extracted as the coupling phase
of the corresponding high and low frequency pair

ψPAC � argmax
j

P j( )*
π

9
. (4)

The SPAC is also called modulation index (MI) (Tort et al., 2010).
The strength SPAC and phase ψPAC are then used as the module and
phase angle of complex-valued vector

CPAC � SPAC* cos ψPAC( ) + i*SPAC* sin ψPAC( ) (5)
where i is the imaginary number. CPAC forms one pixel in CV-PAC
image.

The surrogate-tested CV-PAC (ST-CV-PAC) is also generated.
The phases in each low frequency are shuffled 100 times. If the
coupling strength of CPAC in ST-CV-PAC is lower than the
maximum 5% of the corresponding shuffled values, the CPAC will
be set to 0. The CV-PAC and CV-PAC-SA in 10 × 10 resolution are
used in this study since our preliminary study shows that it is a good
balance between performance and computational load (Wang and Li,
2020).

A 10 s SEEG segment during seizure is shown in Figure 1A. The
coupling strengths and coupled phases of CV-PACs for pathological
and normal activities are shown in Figures 1B–E, respectively. To
compare the performance of CV-CNN with traditional CNN, SVM,
and random forest, the real part of CV-PAC and the imaginary part of
CV-PAC are used as two-layer images when using CNN to classify
PAC patterns. The PAC with only coupling strength is also used to
train traditional CNN for comparison.

2.3 Complex-valued convolutional neural
network

In this study, we use CV-CNN to classify CV-PAC patterns.
The structure of CV-CNN is shown in Figure 2. The activation
function of CV-CNN is implemented using the rectified linear
function (ReLU) in our study. The ReLU is applied on the real and
the imaginary feature maps separately. In each complex-valued
convolutional layer, the weights of the convolution kernel are
complex values, and complex multiplication between weights
and feature maps is implemented. To speed up the training
convergence of the model and reduce the impact of the
variation of the input, we define a complex batch normalization
(BN) layer. The maximum number of iterations epoch set for
training is 800, the batch size is 128, and the learning rate is
.0025. In addition, the learning rate decays by a factor of .5 when
the epoch is an integer multiple of 250. A dropout with a value of

FIGURE 2
Complex-valued convolutional neural network (CV-CNN) with complex-valued phase-amplitude coupling (CV-PAC). There are three complex-valued
convolutional layers and four complex-valued fully connected layers.
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.2 is used in the first layer of the fully connected layer, and the
weights of all the complex convolution layers are regularized using
L2 with λ = .004. The cross-entropy loss function is used to quantify
the loss, and the stochastic gradient descent (SGD) algorithm is
chosen as the optimization function. The training and testing of
dataset are implemented using the PyTorch package.

3 Result

3.1 Identifying channel with pathological
CV-PAC

We use the AUC value to evaluate the performance of
classification. To classify one channel as pathological or normal

is based on all CV-PAC generated from the channel. In the receiver
operating characteristic (ROC) curve, if the percentage of
pathological CV-PAC from one channel is higher than the
optimal threshold, the channel will be classified as pathological.
The leave-one-out cross-validation is performed. CV-PACs of
eight patients are used as the training set to train the CNN
model, and the remaining patient is used as a test. A total of
nine rounds of training and verification are performed. By
comparing with the ground truth of each CV-PAC, the ROC
curve is obtained, as shown in Figure 3A. The AUC values of all
patients are listed in the first column of Table 2. The average AUC
value is .92 when applying CV-CNN on the CV-PAC dataset. The
sensitivity and specificity are .82 and .83, respectively.

To further investigate the effects of each low-frequency band,
the PAC is divided into four regions, as shown in Figure 3F. The

FIGURE 3
ROC curves of CV-CNNonCV-PAC dataset. (A)CV-PACwith full low-frequency band. (B)CV-PACwithout slow delta. (C)CV-PACwithout fast delta. (D)
CV-PAC without theta (E) CV-PAC without alpha. (F) PAC regions are divided into four low-frequency bands. (G)CV-PAC with LFO-gamma. (H)CV-PACwith
LFO-HFO. (I) PAC is divided into LFO-gamma and LFO-HFO regions.
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low-frequency bands include slow delta (1—2 Hz), fast delta
(2—4 Hz), theta (4—8 Hz), and alpha (8—10 Hz). Each time we
replace one of the CV-PAC regions with random values with the
same mean and variance. The ROC curves are drawn in Figures
3B–E. The AUC values decrease to .882, .895, .890, and .898 for the
slow delta, delta, theta, and alpha region replaced, respectively. The

high-frequency band is then divided into gamma (30–80 Hz) and
HFO (80—160 Hz), as shown in Figure 3I. The result shows that the
AUC values decrease to .80 and .84 for using LFO-gamma and
LFO-HFO regions (Figures 3G, H; Table 2), respectively. It is also
interesting to notice that the test on original CV-PACs achieves the
best performance on patient P4 only.

TABLE 2 AUC values using CV-CNN on CV-PAC.

Patients CV-
PAC

CV-PAC without
slow delta

CV-PAC without
fast delta

CV-PAC without
theta

CV-PAC without
alpha

CV-PAC with
LFO-gamma

CV-PAC with
LFO-HFO

P1 .93182 .90125 .94886 .93845 .91667 .87879 .89015

P2 .97083 .96667 .98333 .94167 .99167 .86667 .82292

P3 .93143 .93782 .90480 .95197 .90523 .79674 .88250

P4 .96591 .90584 .94805 .90260 .93506 .83117 .91234

P5 .93088 .92059 .93309 .86544 .90882 .76397 .81544

P6 .93529 .89706 .88824 .95441 .90735 .76324 .81912

P7 .98701 .99351 .96753 .98701 .98701 .84091 .95455

P8 .91277 .88830 .92766 .91915 .92128 .91915 .91915

P9 .82394 .76169 .82119 .84730 .81174 .73345 .73345

Average .92236 .88277 .89524 .89041 .89823 .79801 .84375

Optimal values at each row are shown in bold.

FIGURE 4
Phase distribution of low-frequency bands. (A) The quivermap of averaged strength and phase of CV-PACs in non-resected regions. Note that the length
and angle of each gray arrow represent the coupling strength and coupled phase at each high- and low-frequency pair, respectively. (B) The quiver map of
averaged strength and phase of CV-PACs in resected regions. The length and angle of each arrow represent the coupling strength and coupled phase,
respectively. (C) The coupling with phases in slow-delta (1–2 Hz). The blue and red arrows indicate the coupling in the non-resected and resected
regions, respectively. (D) The coupling with phases in delta (2–4 Hz). (E) The coupling with phases in theta (4–8 Hz). (F) The coupling with phases in alpha
(8–10 Hz).
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The CV-PACs from non-resected regions and resected regions are
averaged separately. The coupling strengths and coupled phases of
pathological and normal CV-PAC are plotted in Figures 4A, B,
respectively. The two patterns are different. The coupled phases in
low-frequency bands are plotted in Figures 4C–F. The coupled phases
in non-resected and resected regions are separable for slow delta, fast
delta, and alpha bands. The phases in the non-resected and resected
regions are overlapped for theta band, but the coupling strengths in the
resected regions are stronger than the ones in non-resected regions.
These features contribute to the capability of identifying pathological
CV-PAC in the resected regions.

3.2 Comparison with CNN, SVM, and RF

We use traditional CNN, SVM, and random forest (RF) to train
the model. The leave-one-out cross-validation is also performed. The
real part and imaginary part of CV-PAC are extracted to form images
with two layers. The obtained three-dimensional vectors are used as
the features of the RF classifier. The number of trees searched is from
50 to 300. Since the performance does not improve after 100 trees, the
number of trees is set to 100 in the remaining tests. The features used
for SVM are the same as the RF. The SEEG of patient P1 is first trained
and tested using the SVMmethod. A grid search over the parameters C
(22, 26, . . ., 220) and γ(2–10, 2–8, . . ., 210) is performed to find optimal
values. The parameter C is set to 218, and the parameter γ is set to 22.
Those values of parameter C and γ are used for further analysis. The
ROC curves are plotted in Figures 5A–C, and the AUC values are .890,
.795, and .880 for traditional CNN, SVM, and RF, respectively. The
performances of the above methods are lower than CV-CNN, as
shown in Table 3. The PACs (without the coupled phases) are used to
train the traditional CNN. The ROC curves are plotted in Figure 5D,
and the AUC value is .88 (Table 3). We use the ST-CV-PAC to train
the CV-CNN model with leave-one-out cross validation. The ROC
curves are plotted in Figure 5E, and the averaged AUC value is .83
(Table 3).

4 Discussion

The PAC is commonly used to localize the epileptic tissue (Weiss
et al., 2015; Liu et al., 2021), but the coupled phase of LFO in PAC is
seldom used due to the complexity of the pattern. The proposed CV-
PAC contains both the coupling strengths and the coupled phases.

FIGURE 5
ROC curves of classification using CNN, SVM, random forest, and CV-CNN. (A) ROC curves using CNN. (B) ROC curves using SVM. (C) ROC curves using
random forest. (D) ROC curves using CNN and PAC. (E) ROC curves using CV-CNN and ST-CV-PAC.

TABLE 3 Comparisons of AUC values by using CNN, SVM, RF, CNN(PAC), and CV-
CNN(ST).

Patient CNN SVM RF CNN(PAC) CV-CNN(ST)

P1 .94318 .95833 .91667 .95833 .90152

P2 .93750 .74583 .92500 .98333 .95833

P3 .94082 .94082 .92024 .86664 .86440

P4 .95779 .78247 .89610 .9513 .92857

P5 .90000 .68162 .91250 .87059 .86618

P6 .92647 .69265 .87059 .86618 .96296

P7 .97204 .97727 .98052 .99026 .99320

P8 .91915 .73617 .85745 .86809 .91136

P9 .78953 .75379 .83182 .79751 .79112

Average .89081 .79543 .88006 .88082 .83454

Optimal values at each row are shown in bold.
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Our result shows that the CV-PAC/CV-CNN approach outperforms
PAC/CNN approach. The AUC values of the two approaches are
.92 and .88, respectively (Tables 2, 3). When the real part and
imaginary part of CV-PAC are extracted as two-layer input feature
maps for traditional CNN, the AUC value decreases to .88. The
performance will not improve if we just feed the CNN with real-
value features. It implies that the coupling strengths and the coupled
phases are correlated, and the complex-value operation in CV-CNN
extracts the correlated information for identifying pathological PAC.

The coupled phases of LFOs are important in localizing the
epileptogenic tissues (Amiri et al., 2016; Li et al., 2016). In our
study, the delta band is divided into slow delta and fast delta
(Amiri et al., 2016). Our result showed that the coupled phases of
both slow delta and fast delta are different in pathological and normal
PACs, as shown in Figures 4C, D. If the coupling in slow delta region
was replaced by random values, the performance of classification
dropped the most, as shown in Table 2. Our result also showed that the
coupling in alpha region also contributes to the improvement of
performance (Table 2; Figure 4F). The coupled phases in theta
band are overlapped in pathological and normal PAC (Figure 4E).
The coupling strengths of pathological PACs in delta band are
stronger than the coupling strengths of normal PACs (Figures 4A,
B). We infer that it is the main reason why the traditional PAC or MI
can help us discriminate pathological brain tissues.

Some studies focused on the PAC in either LFO-gamma
(30–80 Hz) or LFO-HFO (> �80) (Amiri et al., 2016; Liu et al.,
2021). Our result shows that the AUC values scored only .80 and
.84 when using CV-PAC of LFO-gamma (30–80 Hz) and LFO-HFO
(80–160 Hz), respectively. Our result suggests that the CV-PAC of
LFO-HFO (80–160 Hz) is more important than the CV-PAC of LFO-
gamma (30–80 Hz) in classifying pathological patterns.

In our study, the PAC in the form of two-layer feature maps was
used to train the SVM and RF. The performance of RF is comparable
to PAC/CNN approach (Table 3). The AUC value of CV-PAC/CV-
CNN approach is higher than all other methods, as listed in Table 3,
which emphasizes the importance of the correlation between the
coupling strength and coupled phase. The coupled phase is
important, and it is more meaningful when combined with
coupling strength. Since there are difficulties in analyzing the phase
patterns of PAC, our proposed approach provides a tool for the
classification of pathological PAC and normal PAC by introducing
a complex-value image classification measure. Surrogate testing can be
used to remove the spurious coupling in EEG signals (Shi et al., 2019;
Li et al., 2021). In our study, the averaged AUC value using ST-CV-
PAC is lower than the value using CV-PAC. Here, we adopt the image
recognition measure by using CNN and CV-CNN. The ST-CV-PAC
may become more complex and discontinuous due to removing some
non-significant values. We think that is the main reason why the
performance on ST-CV-PAC is lower than CV-PAC.

There are some limitations in this study. The ictal dataset is
analyzed, and it still needs more study to extend it to inter-and pre-
seizure data. Since the subdural is another widely used measure for
recording brain electrical activity, it is necessary to include those types of
data. In our study, most patients had temporal lobe epilepsy, and the
location of SEEG implemented varied from patient to patient. It should
be cautious to apply our method to all candidates for epilepsy surgery.
Some studies have shown that PAC can be used to identify channels in
SOZ, which is often much smaller than the area surgically removed.
Comparing our results with traditional SOZ classification results still

needs to be further explored. The non-linear decomposition methods
for generating PAC may potentially improve the classification
performance, which will be addressed in our future work.

5 Conclusion

The PAC pattern is a useful biomarker for identifying SEEG
channels with pathological brain activities, and it is critical for
presurgical evaluation of DRE patients. The proposed CV-PAC
represents richer pathological patterns than PAC, which can be
further analyzed by using image recognition measure. The CV-CNN
achieves better performance than traditionalmachine learningmeasures
in classification of pathological and normal PAC patterns. This study
provides a new approach for localizing epileptogenic brain tissues.
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Machine learning-aided detection
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using ballistocardiography and
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Purpose: Under the influence of COVID-19 and the in-hospital cost, the in-home
detection of cardiovascular disease with smart sensing devices is becoming more
popular recently. In the presence of the qualified signals, ballistocardiography
(BCG) can not only reflect the cardiac mechanical movements, but also detect
the HF in a non-contact manner. However, for the potential HF patients, the
additional quality assessment with ECG-aided requiresmore procedures and brings
the inconvenience to their in-home HF diagnosis. To enable the HF detection in
many real applications, we proposed a machine learning-aided scheme for the HF
detection in this paper, where the BCG signals recorded from the force sensor
were employed without the heartbeat location, and the respiratory effort signals
separated from force sensors provided more HF features due to the connection
between the heart and the lung systems. Finally, the effectiveness of the proposed
HF detection scheme was verified in comparative experiments.
Methods: First, a piezoelectric sensor was used to record a signal sequences of
the two-dimensional vital sign, which includes the BCG and the respiratory effort.
Then, the linear and the non-linear features w.r.t. BCG and respiratory effort signals
were extracted to serve the HF detection. Finally, the improved HF detection
performance was verified through the LOO and the LOSO cross-validation settings
with different machine learning classifiers.
Results: The proposed machine learning-aided scheme achieved the robust
performance in the HF detection by using 4 different classifiers, and yielded
an accuracy of 94.97% and 87.00% in the LOO and the LOSO experiments,
respectively. In addition, experimental results demonstrated that the designed
respiratory and cardiopulmonary features are beneficial to the HF detection (LVEF
≤49%).
Conclusion: This study proposed a machine learning-aided HF diagnostic scheme.
Experimental results demonstrated that the proposed scheme can fully exploit the
relationship between the heart and the lung systems to potentially improve the in-
home HF detection performance by using both the BCG, the respiratory and the
cardiopulmonary-related features.
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1 Introduction

Heart failure (HF) is a kind of clinical syndrome caused by the
abnormal cardiac structure or function, which leads to ventricular
filling or ejection dysfunction. As the send-stage manifestation of all
cardiovascular diseases, chronic HF brings serious burdens including
the poor prognosis and the high mortality to many patients’ families
and our society (Hao et al., 2019). Also, as reporting in a global survey
over 40 countries (Savarese et al., 2022), the reduced left ventricular
ejection fraction (LVEF≤49%) resulted by theHF can bring significant
mortality rate.Therefore, early detection ofHF is essentially important
recently, especially for elderly patients with HF (LVEF ≤49%).

To better detect the body situation, some patients with
hypertension and myocardial infarction and other heart diseases are
suggested to perform regular medical checkups and early detection of
HF in hospitals. For the dynamic management of chronic HF, regular
review in hospitals to prevent the decompensation event is necessary
(Society of Cardiology, 2018). Specifically, in the clinical diagnosis for
theHF, echocardiography is regarded as one of the gold standards, and
usually used to assess the systolic and diastolic capacity of the heart. In
addition to the echocardiography, many techniques including X-rays,
electrocardiogram (ECG) and brain natriuretic peptides (BNP) can
be utilized as clinical key indicators to aid the HF diagnosis. However,
the in-hospital HF diagnosis is challenging recently. On the one hand,
under the influence of COVID-19, it may be inconvenient to the in-
hospital routine check-ups related to the HF. On the other hand, many
elderly patients are limited in the mobility, and unable to afford the
high diagnostic cost for the inpatient check-ups.Therefore, it is worthy
to develop the off-hospital/in-home HF detection scheme currently
(Dickinson et al., 2018).

For the off-hospital/in-home HF detection, considering the
benefits that the ballistocardiography (BCG) signals can conveniently
monitor the body vibration caused by cardiac contraction and blood
circulation, BCG iswidely utilized for the in-homedetection of various
cardiac diseases recently (Wen et al., 2019). Specifically, Starr et al.
first notified the clinical significance of BCG signals recorded by a
mechanical bed, where the mathematical relationship between BCG
and cardiac output (CO) was revealed (Starr et al., 1939), and the
morphology difference between patients suffering from different types
of cardio vascular (CV) diseases was analyzed (Starr and Schroeder,
1940), respectively. Also, the BCG signals were used to evaluate
the cardiac contractility by the combined features with the ECG
signals (Inan et al., 2009; Mozziyar et al., 2011; Ashouri et al., 2016).
Since the correlation between the cardiac contractility and the heart
functions, both the BCG and the ECG signals were applied to detect
the HF decompensation (Giovangrandi et al., 2012; Etemadi et al.,
2014; Aydemir et al., 2019). Similarly, Chang et al. calculated the
waveform fluctuation metric at rest (WFMR) through the beat-to-
beat features of the BCG signals to improve the quantitative analysis
of the HF diseases (Chang et al., 2020). Generally, it was strongly
demonstrated that the BCG per beat features can be effectively used
for the HF detection in the above studies. However, considering
the facts that many HF patients usually suffer from the weakened
ventricular contractility, themitral regurgitation and other symptoms,
the resulted rhythm irregularity and the corresponding morphology
diversity across different subjects bring a great challenge in the quality
assessment of the BCG signals.Moreover, the respiratory effort signals,
defined as the signals representing the energy consuming activity

of the respiratory muscles (de Vries et al., 2018), and also is one
of the important reference indicators for the clinical HF diagnosis
(Siniorakis et al., 2018; Hamazaki et al., 2019), are rarely studied and
developed in many existing works.

To overcome those above shortcomings, we proposed a non-
contact sensing aided scheme for the in-home HF detection without
quality assessment of BCG signals in this paper. Specifically, the
piezoelectric sensing was used to acquire cardiopulmonary signs
of various HF patients, where the signs contain the BCG and the
respiratory effort information. Unlike the existingworks, the proposed
scheme performed the feature extractions from the BCG and the
respiratory effort signals without the heartbeat location, where the
extracted features finally identified the symptoms of the HF by
using several typical classifiers. To validate the performance of the
proposed HF detection scheme, the control experiments in terms
of the leave-one-out (LOO) and the leave-one-subject-out (LOSO)
rules were investigated. Experimental results demonstrated that the
proposed scheme, in comparison with the existing studies, shows
robust to HF (LVEF ≤ 49%) with low absolute global longitudinal
strain (absolute GLS < 20%). Furthermore, the statistical analysis
revealed that the respiratory and the cardiopulmonary features have
the great diagnostic significance for the HF diseases.

2 Materials and methods

2.1 Experimental devices and protocol

Theoverall experimental procedure is shown in Figure 1, the non-
contact sensing device consists of a vital sign acquisitionmodule and a
signal processingmodule.The vital sign acquisitionmodule wasmade
by a piezoelectric sensor with a sampling rate of fs = 1kHz, and used to
collect the vital signs under the head and neck. The aim of the signal
processing module is to convert the collected signals as 12-bit analog-
to-digital data. Furthermore, the echocardiography was recorded by
EPIQ 7C (Philips).

Specifically, each subject was first asked to supine on an
instrumented bed and keep soldier sleeping position for the
5 min baseline restoration and followed by vital sign signal

FIGURE 1
Heart failure detection by using non-contact recorded vital signs.
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TABLE 1 A description of the subjects. BMI: bodymass index. LVEF: left ventricular ejection fraction. GLS: global longitudinal strain. Value performance bymean ±
standard deviation.

Gender

Number (male Age Height Weight BMI LVEF GLS Doppler

/female) (year) (cm) (kg) (kg/m2) (%) (%) ultrasonography

HF 30 20/10 61.80 ± 13.63 156.29 ± 8.24 61.63 ± 12.38 23.62 ± 4.02 38.99 ± 4.02 11.41 ± 3.76 Low, medium, and
large volumes of

regurgitation in 15, 6
and 9 cases,
respectively

non-HF 24 19/5 45.79 ± 14.03 166.58 ± 8.65 67.29 ± 11.86 24.25 ± 3.29 69.21 ± 3.71 21.16 ± 2.40 No abnormal, small
and moderate

regurgitation in 9, 13
and 2 cases,
respectively

acquisition. Before and during the 10 min period of the vital signs
collection, all subjects did not have any exercise and kept the fixed
positions. The recorded data are involved the non-contact sensing
device and the echocardiography, where the collected vial signs
contain the information of both the BCG and the respiratory effort
from the head andnecks of the subjects (Liu et al., 2021). After the data
acquisition, some professional cardiologists made the HF diagnosis by
the echocardiography signals, and other recorded data was selected
by the above results. For a simpler interpretation, GLS was taken as
absolute value in this study. Finally, the selected data from the non-
contact sensing device was used in the following procedures of the
proposed scheme.

2.2 Inclusion and exclusion criteria

To reduce the influence of other extraneous factors, the enrolled
standards for the HF group are as follows.

• TheHF diagnosis guidelines (Society of Cardiology, 2018).
• LVEF ≤49% and GLS <20% (Park et al., 2018).
• The diagnosed HF patients with complications of many
heart diseases including the coronary artery disease, and the
structural heart abnormalities resulted by the heart attack or the
hypertension (all subjects received medications, and some of
them has the coronary PCI or pacemakers.).

As a control group, the standards for the healthy group are as
follows.

• Normal blood glucose, lipids, blood pressure, blood routine, liver
function, and kidney function.
• Normal ECG (note: occasional atrial premature can be included
as appropriate).
• No history of the medication affecting the cardiovascular system.
• No structural heart disease and normal cardiac function on
the echocardiography (LVEF >50%), mild or less valvular
regurgitation can be included. The criteria using the HFA-PEFF
score is applied to classify the subjects with preserved LVEF
(HFpEF) from all potential healthy candidates with LVEF >50%
(Pieske et al., 2019).

FIGURE 2
Overall diagram.

2.3 Study population

A total of 54 subjects in the age range of 23–92 years participated
in the study, i.e., 24 healthy subjects and 30 HF (LVEF ≤49%) patients.
The details of the subjects are listed in Table 1. All subjects who
participated in this study were recruited by the Second Affiliated
Hospital of Guangzhou University of Chinese Medicine (Guangdong
Hospital of Chinese Medicine) in Guangzhou, China, including the
volunteers, the routine physical examiners, and the HF patients.
The study protocol has been reviewed and approved by the Ethics
Committee of Guangdong Provincial Hospital of Traditional Chinese
Medicine (ZE 2022–123). All subjects obtained the informed consent
before their participation in this study. The flowchart diagram of the
proposed non-contact HF diagnosis method is shown in Figure 2.
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2.4 Pre-processing

The key purpose of performing the pre-processing is to process
and divide the collected data into several data sets for theHFdetection,
where the first step is associated with the signal separation, and the
second one is related to the sample grouping.

For the first step, similar to (Jingxian et al., 2020), the peak-to-
mean ratio detection of the 1s time-scale signals was performed to
remove the artifact interference and separate the BCG signals and the
respirator effort contributions from the collected data. Specifically, the
morphological and the low-pass filters were sequentially exploited to
obtain the respiratory effort signals. Then we removed the separated
respiratory effort signals from the collected signals and obtained the
new vital sign sequences. Given such new sequences, a 4th-order
Butterworth filter (2 Hz ∼8.5 Hz) was applied to get the improved
BCG signals.The results of the above signal separation can be found in
Figure 3, where Figure 3A shows the 30s sign signals acquired via the
piezoelectric sensing, and Figures 3B, C are the de-noised BCG and
the respiratory effort signals, respectively.

Similar to (Chang et al., 2020), the BCG and the respiratory
effort signals were first divided into multiple consecutive epochs
of 30s in a non-overlapped manner. As a result, the total number
of the recordings was 577, where each recording included the 30s
synchronously BCG and the respiratory effort epoch. In details,
290 recordings were associated with the HF patients while others
are related to the non-HF subjects. Among them, recordings were
evenly distributed from each subject to ensure no bias in the data
and furthermore the universality of the experimental results. In the
traditional studies, the HF diseases can be easy detected by the typical
waveforms of the BCG signals (Carlson et al., 2020; Liu et al., 2021).

However, the corresponding BCG signals are usually irregular in
rhythm and morphology due to disordered cardiac movement (HF
patients with LVEF ≤49% and GLS <20%) (Siniorakis et al., 2018;
Hamazaki et al., 2019;McDonagh et al., 2021).The irregular heartbeat
waveforms of the BCG signals bring challenges for heartbeat location
in the HF detection. By (Aydemir et al., 2019; Mai et al., 2022), we
use signal-to-noise ratio (SNR) to access the signal quality of each
BCG epoch. When SNR≪ 4 dB, the whole (or part of) epoch of BCG
signals are almost unable to identify. Figures 3B, C, E–H depicts the
recorded BCG and the respiratory signals in terms of healthy subjects,
HF patients with the heartbeat in BCG signals easily or difficult to
be identified. It is noted that the heartbeat in BCG of 13 out of 30
HF patients was difficult to recognize due to the heart abnormality,
as shown in Figure 3D, where the related existing methods are
difficult to be applied (Aydemir et al., 2019; Chang et al., 2020).
Therefore, to illustrate the robustness of our HF diagnostic method,
we divided all 577 recordings into two groups in this experiment,
i.e., Datasets 1 consists of 176 HF recordings (recognizable heartbeat
in BCG) and 287 non-HF recordings, and Datasets 2 includes 114
HF recordings (unrecognizable heartbeat in BCG) and 287 non-HF
recordings.

2.5 Feature extraction

2.5.1 BCG features
Unlike the existing HF detection methods depended on the

heartbeat location of the BCG signals in (Etemadi et al., 2014;
Aydemir et al., 2019; Chang et al., 2020), our proposed scheme
focused on the large scale features of the BCG signals, i.e., the

FIGURE 3
Non-contact vital sign signal processing and analysis. (A) Example of a non-contact vital sign signal collected. (B, C) Example of BCG and respiratory signals
isolated from a healthy subject, GLS = 21.30%, LVEF = 76%. (D) Distribution of the J-peaks of the BCG for those who are difficult located (red circles) and
those who are easier located (blue circles) in terms of LVEF, GLS. (E, F) Example of BCG and respiratory signals from a patient with HF with BCG can be
located, GLS = 9.62%, LVEF = 30%. (G, H) Example of BCG and respiratory signals from a patient with HF with heartbeat are very difficult to locate, GLS =
16.07%, LVEF = 46%. Res: respiratory signal.
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30 s epoch, where the hearbeat location was no longer needed. The
corresponding features in the experiments were extracted in both
linear and non-linear domains, as shown in Table 2.

2.5.1.1 Linear features
2.5.1.1.1 Amplitude

The amplitude coefficient of the given signal x(n) can be expressed
as

F (x (n)) =
rms (x (n))

max (x (n)) −min (x (n))
(1)

where rms (⋅) is the root mean square function, max(⋅) indicates the
maximum value function, and min(⋅) denotes the minimum value
function. According to Eq. 1, we obtained the amplitude features of
each BCG epoch by F(BCG(n)) in the experiments, where the notation
BCG(n) was the separated BCG signals obtained from the above pre-
progressing, and the amplitudes of the HF patient group were lower
than that of the health subject group. This case is usually caused by
that the HF patients suffer from the low myocardial contractility.

2.5.1.1.2 Power
Inspired by themorphological difference betweenHF patients and

healthy subjects (Chang et al., 2020), the volatility and the irregularity
of the BCG singals can be measured and analyzed in the power-
domain. To eliminate individualized differences, in our experiments,
the signal was normalized using Z-score before the power calculation
(Shi et al., 2022). As (Li et al., 2020), the signals x(n) was first divided
into L segments x′ by the sliding window as

x′L = {x
′
1 (i) ,x

′
2 (i) ,…,x

′
L (i) , i = 1,2,…,w∗ fs} (2)

where L = fix(N−w∗ fs+t∗ fs
t∗ fs
) represents the number of segments.N and

w are the length of x(n) and the sliding window (the segment length),
respectively. t indicates the time moving factor of the sliding window,
fs denotes the sampling rate, and fix (⋅) is the rounding function. The
power of each segment was computed as

PowerL (x
′) = {power(x′1 (i)) ,power(x

′
2 (i)) ,…,power(x

′
L (i)) ,

i = 1,2,…,w∗ fs} (3)

where power (⋅) is the power function. As a result, the statistics
PowerL (BCG(n)) were used to characterize the volatility of the BCG
signals.

2.5.1.2 Non-linear features
2.5.1.2.1 Chaos

Chaos is defined as an uncertain or unpredictable random
phenomenon presented by a deterministic system under many certain
conditions, which can evaluate the level of the time-series signal
disorder (Gupta et al., 2019). As a result, the chaotic features of the
BCG time series, including fuzzy entropy (FE), largest Lyapunov
exponent (LLE) and correlation dimension (CD), can be extracted to
evaluate the disorder degree in BCG.

Firstly, FE (Chen et al., 2007) not only reflects the similarity
between two vectors in the phase space, but also represents the
complexity of the chaos system, defined as

FE (x (n)) = −ln
Cm+1 (r)
Cm (r)

(4)

where m is the embedding dimension, r indicates the similarity
tolerance limit threshold, Cm(r) denotes the average of all fuzzy
affiliations except itself. The FE of a BCG epoch was obtained by
FE (BCG(n)) in this study with the setting m = 2, and r = 0.15. In
addition, similar to the calculation for the power volatility, the FE
of each BCG segment, i.e., FEL (BCG(n)), was computed by using
Eqs. 2, 4, which characterize the volatility of the FE series.

Next, we used two features including the LLE and the CD to better
analyze the BCG signals (Procacia et al., 1983; Rosenstein et al., 1993),
where LLE is the exponential rate of the convergence between two
adjacent trajectories, and CD indicates the correlation between two
phase points in the phase space. Their definition can be respectively
expressed as

LLE (x (n)) = 1
Δt
< lndj (i) > (5)

CD (x (n)) = lim
r→0

lnC (r)
ln (r)

(6)

where < ⋅ > denotes the mean value, Δt is the sampling interval, and
dj(i) indicates the distance of the j-th pair of nearest neighbors after

TABLE 2 BCG features without localization assistance. sd: standard deviation. IQR: interquartile range.

Feature Category Name Description

T1
Linear

F(BCG(n)) BCG amplitude coefficient

T2-T5 PowerL(BCG(n)))
mean, sd, IQR,median

Power volatility of BCG on a fixed time scale

T6

Non-linear

FE(BCG(n)) BCG fuzzy entropy

T7-T10 FEL(BCG(n))
mean, sd, IQR,median

Fuzzy entropy volatility of BCG on fixed time scale

T11 LLE(BCG(n)) BCG largest liapunov exponent

T12 CD(BCG(n)) BCG correlation dimension

T13-T16 MICL−1(BCG(n))
mean, sd, IQR,median

MIC volatility of BCG on a fixed time scale

T17 Skewness(BCG(n)) BCG skewness

T18 Kurtosis(BCG(n)) BCG kurtosis
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i discrete time steps. In the phase space, the function C(r) is the
proportion between the number of the point pairs locating within
the given radius r of the hyper-sphere and the number of all point
pairs. Therefore, according to Eqs. 5, 6, we computed the LLE and the
CD by the maximum value of the parameter embedding dimension
m = 12 and the maximum value of the time delay factor τ = 40 ms as
LLE (BCG(n)) and CD (BCG(n)), respectively.

2.5.1.2.2 Maximum information coefficient
Themaximum information coefficient (MIC) (Reshef et al., 2011)

is a generalization of mutual information. In order words, the
MIC can describe the association degree between two series (0: no
correlation, 1: strong correlation) by a maximum information-based
non-parametric exploration. The MIC between two random variables
x1 and x2 can be expressed as

MIC (x1,x2) = max
pq<B(s)
{M(D)p,q} (7)

where B(s) = s0.6 is a function of the sample number. M(D) is the
mutual information on the grids p*q. Using Eqs. 2, 7, theMIC values of
the two adjacent segments can be calculated to form an L− 1 sequence,
i.e.,MICL−1 (x(n)). As a result, we computed theMIC parameter of the
BCG signals asMICL−1(BCG(n)).

In the presence of the 4s sliding window and the 3s/2s/1s time
moving factors, we calculated the mean, the standard deviation, and
the interquartile range (IQR), and the median statistics for the above
features, i.e., PowerL(BCG(n), FEL (BCG(n)), and MICL−1(BCG(n))),
to serve the following experiments and analysis.

2.5.1.2.3 Higher order statistics
Similar to (Bruser et al., 2012), the skewness and the kurtosis of

the given signals x(n) can be respectively calculated as

Skewness (x (n)) =
m3 (x (n))

m2(x (n))
3/2

(8)

Kurtosis (x (n)) =
m4 (x (n))
m2(x (n))

2 (9)

where mk (x(n)) denotes the kth sample moment around the mean of
the signals x(n).

2.5.2 Respiratory and cardiopulmonary features
Considering the facts that HF patients often suffer from the

Respiratory aggravation symptoms, such as the chest tightness, the
wheezing, the breath shortness, and the dyspnea due to the cardiac
insufficiency (McDonagh et al., 2021), there are many connections
between the respiration/cardiopulmonary-related features and the HF
diseases. However, these features obtained from wearable devices
lack attention recently and are rare to be applied into the HF
detection. Motivated by this fact, in this study, we proposed to
use these respiration-related features to improve the performance
of the HF detection. These associated features can be found in
Table 3. Similar to the above BCG-related features, many details of the
respiration/cardiopulmonary-related feature calculation/extraction
are presented as follows.

2.5.2.1 Respiratory features
Considering that the breath shortness in HF patients leads to the

enhanced respiratory effort, we chooosed the amplitude coefficient of
the respiratory signals, i.e., F(Res(n)), to characterize the respiratory
strength in the proposed scheme, The corresponding feature details
can be found in Eq. 1.

Similarly, the FE of the respiratory-related epochs, FE(Res(n)), was
calculated by Eqs. 2, 4 to characterize the volatility of the respiratory-
related signals. Specifically, the corresponding window length and the
timemoving factor were set at 6s and 1s, respectively. Asmentioned in
the BCG-related feature extractions, many typical statistics including
the skewness and the kurtosis related to the respiratory FE were
calculated for the classifiers.

2.5.2.2 Cardiopulmonary features
Similar to the respiratory effort, the connection between the heart

and the lung systems can support that using the cardiopulmonary
analysis to improve the heart detection performance. However, unlike
the above feature extractions only relying on the BCG/respiratory
signals, the cardiopulmonary features are associated with both the
heart and the lung systems. As a result, the cardiopulmonary
joint analysis can not only provide more benefits of reducing the
effect caused by the occasional interference/noise in the BCG or
the respiratory signals, but also eliminate the potential errors due
to individual difference. The cardiopulmonary features, specifically,

TABLE 3 Respiratory and cardiopulmonary features. sd: standard deviation. IQR: interquartile range.

Feature Category Name Description

T19

Respiratory

F(Res(n)) Respiratory effort amplitude coefficient

T20 FE(Res(n)) Respiratory effort fuzzy entropy

T21-T24 FEL(Res(n))
mean, sd, IQR,median

Fuzzy entropy volatility of respiratory signals on fixed time scales

T25 Skewness(Res(n)) Respiratory effort skewness

T26 Kurtosis(Res(n)) Respiratory effort kurtosis

T27

Cardiopulmonary

Fratio(Res(n),BCG(n)) Ratio of respiratory to BCG amplitude coefficient

T28 Powerratio(Res(n),BCG(n)) Ratio of respiratory to BCG signal power

T29-T32 PowerratioL (Res(n),BCG(n)) Volatility of respiration to BCG power ratio on a fixed time scale

mean, sd, IQR,median

T33 FEsum(Res(n),BCG(n)) Sum of respiratory and BCG signal fuzzy entropy
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include the relative amplitude and power of respiratory effort and
BCG, and quantify the overall complexity of these two kinds of signals.

According to the above considerations, the amplitude coefficient
is defined as the ratio of the amplitude coefficients related to the
respiratory and the BCG signals as

Fratio (Res (n) ,BCG (n)) =
F (Res (n))
F (BCG (n))

=

rms (Res (n))
max (Res (n)) −min (Res (n))

rms (BCG (n))
max (BCG (n)) −min (BCG (n))

(10)

Similarly, the corresponding power features and the
corresponding chaos features was respectively calculated as

Powerratio (Res (n) ,BCG (n)) =
∑N

n=1
(Res (n))2/N

∑N
n=1
(BCG (n))2/N

(11)

FEsum (Res (n) ,BCG (n)) = FE (Res (n)) + FE (BCG (n)) (12)

Usually, HF patients have shortness of breath and a
reduced volume per beat, which results in the larger values of
Fratio (Res(n),BCG(n)) and Powerratio (Res(n),BCG(n)) than that of the
healthy candidates. Consequently, it is thus expected that the above
cardiopulmonary features (10)–(12) can complement the individual
differences possibly induced by single-channel features of BCG or
respiratory signals. Also, we calculated the relative power volatility of
respiration and BCG using Eqs. 2, 11, the recommended window
and time moving factor are recommended to be adjusted as 2s.
The statistics of PowerratioL (Res(n),BCG(n)) were calculated for the
following classifiers in the experiments.

2.6 Classifiers

Based on the above extracted features related to the
BCG/respiratory/cardiopulmonary signals, we applied four
supervised classifiers to evaluate the performance of the HF detection.
The classifiers include the K-Nearest Neighbor (KNN), the Support
Vector Machine (SVM), the Random Forest (RF) and the eXtreme
Gradient Boosting (XGBoost), where the features require to be
normalizedwithin [0,1] before performing the classification (Shi et al.,
2022).

Among these four classifiers, theKNN(Ertuğrul andTağluk, 2017)
algorithm is the fastest algorithm, where the principle is to classify the
new data points by those nearest K classified data points. However,
the KNN has the limited performance in the complex classification
boundary. To achieve better classification in the complex data space,
SVM (Palaniappan et al., 2014) utilizes the sparsity between classified
data points, i.e., only a few of points play important role to the
classification boundary. Unlike the iterative processing of the SVM
may cost much system resources, the RF (Sun et al., 2020) algorithm
is based on the multiple decision tress without iterations. By the
gradient boosting in the optimization theory, the XGBoost (Chen and
Guestrin, 2016) classifier is a distributed enhancement with many
benefits including the low complexity and the high flexibility.

2.7 Performance metrics

Similar to (Magrelli et al., 2021), the performance metrics include
accuracy (Acc), sensitivity (Sen), specificity (Spe), F1 score (F1) and
area under the curve (AUC), defined as

Acc = TP+TN
TP+TN+ FP+ FN

(13)

Sen = TP
TP+ FN

(14)

Spe = TN
TN+ FP

(15)

F1 = 2TP
2TP+ FP+ FN

(16)

where TP represents the number of correctly predicted positive
samples, TN indicates the number of correctly predicted negative
samples, FP is the number of negative samples predicted to be positive,
and FN denotes the number of positive samples predicted to be
negative. AUC is the area of receiver operating characteristic curve
(ROC).

For the fairness in the evaluation, the LOO and the LOSO
methodswere used for the training and the testing phases, respectively.
During the model training and testing phases, we also optimized each
classifier by using the grid search method and obtained their highest
classification accuracy.

3 Results

3.1 Performance of HF detection with
different classifiers

Firstly, we examined the performance of the proposed HF
detection scheme in the presence of 4 different classifiers by the BCG,
the respiratory and the cardiopulmonary-related features. Specifically,
the performance metrics including the accuracy, the sensitivity, the
specificity, the F1 score, and the AUC, are presented in Table 4 and
Figure 4. These results showed that all 4 classifiers could provide the
accuracy of over 91.16% under the LOO setting. Among them, the
best performance was brought by the XGBoost classifier at 94.97%
accuracy. In order to verify the stability of the performance, the LOSO
cross-validation results were also given in Table 4 to provide person
independent classification results. Under the LOSO setting showing
the generalization ability of the proposed scheme, the best accuracy
results of the proposed HF detection scheme were provided by the
XGBoost. In addition, for all 4 classifiers, the performance brought by
the BCG and respiration-related (respiratory and cardiopulmonary)
features outperformed that of the BCG features under both the
LOO and the LOSO setting. The above results indicated that the
proposed scheme, which is based on the BCG, the respiratory and
the cardiopulmonary features, significantly improved the detection
performance of the HF diseases.

Comparing with that one of the main limitations in the
existing BCG-based HF detection algorithm is the additional quality
assessment, our proposed detection scheme can avoid this limitation
by using more linear and non-linear features of both the heart
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TABLE 4 LOO and LOSO classification results for HF diagnostics based on BCG and respiratory-related features using 4 classifiers. Resp: Respiratory and
cardiopulmonary features.

Classifiers Features LOO LOSO

Acc(%) Sen(%) Spe (%) F1 (%) AUC(%) Acc(%) Sen(%) Spe (%) F1 (%) AUC(%)

KNN BCG 87.88 88.62 87.11 88.01 92.84 74.18 78.97 69.34 75.45 79.14

BCG & Resp 92.20 92.07 92.33 92.23 97.78 81.63 82.76 80.49 81.91 90.25

SVM BCG 87.88 88.97 86.76 88.05 94.20 75.56 80.00 71.08 76.69 83.33

BCG & Resp 91.16 92.07 90.24 91.28 96.89 83.36 82.76 83.97 83.33 91.06

RF BCG 85.10 87.59 82.58 85.52 93.19 74.18 76.55 71.78 74.87 81.94

BCG & Resp 93.93 94.83 93.03 94.02 98.64 85.44 86.55 84.32 85.67 93.98

XGBoost BCG 89.43 90.00 88.85 89.54 94.94 74.18 74.48 73.86 74.35 82.94

BCG & Resp 94.97 96.55 93.38 95.08 99.05 87.00 86.21 87.80 86.96 94.37

FIGURE 4
ROCs of HF diagnostics based on BCG and respiratory-related features using 4 classifiers in all datasets. (A) ROCs using BCG features in LOO setting. (B)
ROCs using BCG and respiratory-related features in LOO setting. (C) ROCs using BCG features in LOSO setting. (D) ROCs using BCG and
respiratory-related features in LOSO setting.
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TABLE 5 LOO and LOSO classification results for HF diagnostics over 2 datasets using 4 classifiers. Datasets 1: HF patients of BCG easily localized and healthy
subjects samples. Datasets 2: HF patients of BCG not easily localized and healthy subjects samples.

Classifiers Datasets LOO LOSO

Acc(%) Sen(%) Spe(%) F1(%) AUC(%) Acc(%) Sen(%) Spe(%) F1(%) AUC(%)

KNN Datasets1 91.79 85.23 95.82 88.75 97.82 77.32 62.50 86.41 67.69 85.89

Datasets2 95.76 93.86 96.52 92.64 99.21 91.02 81.58 94.77 83.78 96.65

SVM Datasets1 88.55 81.82 92.68 84.46 94.77 79.05 71.02 83.97 72.05 86.33

Datasets2 96.51 94.74 97.21 93.91 99.44 92.27 84.21 95.47 86.10 96.45

RF Datasets1 90.71 86.36 93.38 87.61 98.12 82.94 72.16 89.55 76.28 91.70

Datasets2 96.76 90.35 99.30 94.06 99.74 92.77 85.09 95.82 87.00 97.71

XGBoost Datasets1 95.15 94.32 95.82 93.79 98.89 83.37 77.84 86.76 78.06 91.72

Datasets2 99.00 99.12 98.95 98.26 99.73 94.01 86.84 96.86 89.19 98.59

FIGURE 5
ROCs of LOO and LOSO for HF diagnostics over 2 datasets using 4 classifiers. (A) ROCs through LOO in Datasets 1. (B) ROCs through LOO in Datasets 2. (C)
ROCs through LOSO in Datasets 1. (D) ROCs through LOSO in Datasets 2.
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FIGURE 6
The importance ranking of all features in the XGBoost model under LOO and LOSO. The together top 10 important features contribute 71.00% and 65.88%
to the classification, respectively. (A) The importance ranking of classifier features in LOO settings. (B) The importance ranking of classifier features in LOSO
settings.

and the lung systems. To verify the corresponding effectiveness,
two types of dataset, i.e., the Datasets 1 (recognizable heartbeat
in BCG) and the Datasets 2 (unrecognizable heartbeat in BCG)
were used in performing our proposed HF detection method. The
detailed experiment results are shown in Table 5 and Figure 5,
which demonstrated that the Datasets 2 provided better classification
performance than the Datasets 1 in all 4 classifiers under both the
LOO and the LOSO settings. Among them, the best performance
was brought by the XGBoost classifier at 99.00% and 94.01% under
the LOO and the LOSO settings, respectively. All the above results
showed that our proposed scheme addressed the limitation related
to the heartbeat location in the existing BCG-based HF detection
algorithms.

3.2 Feature importance of LOO and LOSO
experiments

In the following experiments, we mainly focused on analyzing
the features’ contributions to the classification/detection of the HF
diseases, where the XGBoost weights were used to evaluate the
features’ contributions.Thedetails of the feature importance are shown
in Figure 6 under the LOO and the LOSO settings, respectively.
Specifically, the importance scores of all features were firstly obtained
from the XGBoost classifier after the training phase, and then the
mean value of each feature’s importance was computed. Similar
to (Aydemir et al., 2019), the common top 10 features in the two
experimental settings were analyzed. Among them, there are 5 features
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FIGURE 7
Value distribution of each feature over the HF and non-HF classes. (A–E) are BCG features; (F, G) are respiratory signal features; (H–J) are cardiopulmonary
features. Non-parametric tests were used between groups.

about respiratory effort (there were 2 respiratory signal independent
features and 3 cardiopulmonary features). Considering the facts that
there are mostly non-linear features, implying that assessing the
complexity, fluctuation of BCG and respiratory effort is key to assist
in the detection of HF. More importantly, Powerratio (Res(n),BCG(n))
features appear to be significantly more informative than the others,
reflecting that a comprehensive assessment of individual relative
power between respiratory effort and BCG signals is an important
reference for the detection of HF.

4 Discussion

This study proposed a non-contact piezoelectric sensing-based
HF detection scheme, which can provide the robust performance
for HF (LVEF ≤ 49%) detection without the quality assessment
of BCG signals. Considering that the HF is the end-stage of all
cardiovascular diseases, many HF patients usually have mitral and
tricuspid regurgitation and suffer from low vascular compliance
(Cruickshank, 2007). These kinds of heart diseases may cause
the irregularity in the beat-to-beat BCG morphology, and bring
challenge in the HF detection (Aydemir et al., 2019; Chang et al.,
2020). To reduce the above challenge, we proposed a HF detection
method, which is available to the BCG signals with different complex
morphologies by using many linear and non-linear features. From
the viewpoint of the BCG feature extraction, it is considered that
HF patients may have the reduced amplitude, the reduced power,
the significant morphology diversity and the poor regularity due to
the reduced ventricular systolic function and the unstable myocardial
motor performance. To better exploit the signal morphology, we also
extracted the non-linear BCG features including the FE, the LLE
and the CD of the chaos, and the high order statistic kurtosis. As
shown inFigures 7A–E, both of the fourChaos features (FE (BCG(n)),
CD (BCG(n)), LLE (BCG(n)), FEL (BCG(n))mean) had the low p-
values (p <0.0001) between the HF and the healthy cohorts, and the
high order feature Kurtosis (BCG(n)) showed the p-values as p < 0.05.

Therefore, by using more non-linear and high order statistic features,
our proposed HF detection method is robust to the BCG signals.

On the other hand, HF patients with the lower CO usually result
in the reduced gas exchange capacity of the lungs, that the human
body compensates by accelerating the respiratory rate and amplitude
to the regulate hypoxia. Consequently, the presence or the absence
of the breath shortness is considered an important reference in the
clinical diagnosis of the HF (McDonagh et al., 2021). However, there
is a lack of analysis and usage of the respiratory characteristics in
the existing HF detection studies related to the wearable devices.
Motivated by that and considering that the HF patients are easy
to show the breath shortness and the enhanced respiratory effort
in the supine posture, the proposed HF detection algorithm was
designed for the acquisition of sign data in the supine (soldier sleeping
position) posture (Liu et al., 2015). Figures 7F, G shows that due
to the HF patients have enhanced respiratory effort, respiratory
signal complexity features (FEL (Res(n)))mean, FEL (Res(n)))median)
were lower than the healthy group (p <0.0001). According to the
relationship between the heart and the lung systems, the used
features are not only associated with the BCG signals, but also related
to the respiratory effort signals including many cardiopulmonary
features (the relative power Powerratio (Res(n),BCG(n)), the relative
amplitude Fratio (Res(n),BCG(n)) and the overall complexity
FEsum (Res(n),BCG(n)))). The detailed results are shown in
Figures 7H–J, where the HF and the healthy cohorts had significant
difference in statistic with the low p-values (p <0.0001). They
also demonstrated that the respiratory-related (respiratory and
cardiopulmonary) features provide the key contribution and should
be analyzed in the HF detection.

Compared with the existing studies of wearable sensor-aided HF
detection, the proposed scheme has the advantage of automatic HF
classification in a non-contact manner, and also performs feasible to
the detection of HF patients with potential irregular heart rhythm
(whose recorded BCG are unable to identify). It is thus expected that
the proposed scheme has the potential for people with limitedmobility
carrying out in-home HF detection.

Frontiers in Physics 11 frontiersin.org147

https://doi.org/10.3389/fphys.2022.1068824
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Feng et al. 10.3389/fphys.2022.1068824

5 Conclusion

In this paper, a machine learning-based scheme was proposed
for the HF detection by using the BCG, the respiratory and the
cardiopulmonary features. Comparing with existing studies focusing
on the BCG signals, our proposed scheme fully exploit the relationship
between the heart and the lung systems. The experiment results
verified that these above features can significantly improve the
accuracy performance and the robustness of the HF detection. In
the further step of our study, quantitative analysis for possible
classification between HF patients with LVEF ≤ 40% and LVEF > 40%
will be considered.
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Pulse wave reflections reflect cardiac afterload and perfusion, which yield valid
indicators for monitoring cardiovascular status. Accurate quantification of
pressure wave reflections requires the measurement of aortic flow wave.
However, direct flow measurement involves extra equipment and well-trained
operator. In this study, the personalized aortic flow waveform was estimated from
the individual central aortic pressure waveform (CAPW) based on pressure-flow
relations. The separated forward and backward pressure waves were used to
calculate wave reflection indices such as reflection index (RI) and reflection
magnitude (RM), as well as the central aortic pulse transit time (PTT). The
effectiveness and feasibility of the method were validated by a set of clinical
data (13 participants) and the Nektar1D Pulse Wave Database (4,374 subjects). The
performance of the proposed personalized flow waveform method was
compared with the traditional triangular flow waveform method and the
recently proposed lognormal flow waveform method by statistical analyses.
Results show that the root mean square error calculated by the personalized
flow waveform approach is smaller than that of the typical triangular and
lognormal flow methods, and the correlation coefficient with the measured
flow waveform is higher. The estimated personalized flow waveform based on
the characteristics of the CAPW can estimate wave reflection indices more
accurately than the other two methods. The proposed personalized flow
waveform method can be potentially used as a convenient alternative for the
measurement of aortic flow waveform.
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wave reflection, wave separation analysis, personalized flow waveform, triangular flow
waveform, arterial stiffness
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1 Introduction

The central aortic pressure waveform (CAPW) contains
information on the cardiovascular system and thus can be used
to evaluate the cardiovascular system status and to predict and
diagnose cardiovascular diseases (CVDs) (Suleman et al., 2017;
Vallée et al., 2018; Sequi-Dominguez et al., 2020; Flores
Geronimo et al., 2021). Central aortic pressure, unlike peripheral
arterial pressure, is the blood pressure at the root of the ascending
aorta, which is directly connected with the left ventricle (Pini et al.,
2008). Hence, CAPW can more directly reflect the load on the left
ventricle, coronary arteries, and cerebral vessels and more accurately
predict the occurrence of cardiovascular events and damage of target
organs in comparison with the peripheral arterial pressure
waveform (Roman et al., 2007; McEniery et al., 2008; Zócalo and
Bia, 2022). The separation analysis of CAPW can be used to predict
cardiovascular events such as all-cause mortality and left ventricular
failure (Manisty et al., 2010), which is more clinically significant.

When the heart pumps blood, the aortic valve opens, and the
pressure in the aorta rises rapidly, resulting in pressure and flow
waves called forward waves. Forward waves will undergo wave
reflections at sites of impedance mismatch (vessel diameter
reduction, vessel bifurcation or change in wall stiffness) during
the propagation from the aorta to the distal segments, generating
backward waves, and propagating back to the proximal segment
(Westerhof et al., 1972; Yao et al., 2022). When the left ventricle
contracts, blood flows through the aortic valve into the aorta. After
the aortic valve closes, the ventricle enters diastole, when blood
perfuses the heart through the coronary arteries. A small amount of
diastolic blood occasionally flows backwards into the left ventricle
(Thubrikar et al., 1979). The pressure and flow waveforms are
formed by the superposition of backward and forward
components. Pulse wave propagation and reflection are related to
arteriosclerosis and also affect the hemodynamic characteristics of
the cardiovascular system (Sofogianni and Tziomalos, 2019). In
pulse wave analysis, pulse wave reflection indices can be derived
from the decomposition of CAPW to quantify the degree of pulse
wave reflections (Townsend et al., 2015). Based on the pressure-
flow relations, the CAPW can be decomposed into backward (Pb)
and forward (Pf) waves (Westerhof et al., 1972). The amplitude
characteristics and time delay of Pf and Pb can effectively reflect
the reflection and propagation time of the pulse wave from the
aorta to the distal segments and branches, and the magnitude of
the CAPW reflections affects cardiac afterload and perfusion
(Davis et al., 2009; Laurent and Boutouyrie, 2020). More
accurate wave reflection measurements can be obtained from Pf
and Pb, mainly including the aortic pulse transit time (PTT),
reflection index (RI), and reflection magnitude (RM). PTT can be
calculated from the time delay between Pf and Pb, a valuable
indicator for assessing arterial stiffness (Qasem and Avolio, 2008).
RM, the ratio of Pb and Pf amplitudes, is an independent predictor
of risk and can predict heart failure (Westerhof et al., 2006;
Zamani et al., 2014). RI and RM contain physiological
information about CAPW and are important indices that
quantify pulse wave reflection. These metrics are not affected
by timing of wave reflection and usually be used to access left
ventricle afterload, which has clear physiological significance
(Wang et al., 2010; Zamani et al., 2016).

Flow waveforms are essential for the decomposition and analysis
of pulse waves. Clinically, the aortic flow velocity can usually be
obtained directly and non-invasively by ultrasonic detection or
magnetic resonance imaging (MRI). Combined with the cross-
sectional area of blood vessels, the blood flow waveform can
finally be calculated (Rivera et al., 2020; Stortz et al., 2020).
Although this method is feasible and accurate, the operation is
considered inconvenient because it requires specific types of
equipment and skilled operators. Consequently, some proposed
approaches use the CAPW morphology to generate an aortic
flow waveform with an assumed triangular shape (Westerhof
et al., 2006; Butlin and Qasem, 2016). In these methods, the
wave separation analysis matches the start, peak, and end points
of the triangular flowwaveformwith the foot, inflection, and dicrotic
notch points of the CAPW using the time and amplitude
characteristics of the CAPW. The triangular flow wave was first
proposed in a proof-of-principle study to quantify aortic wave
reflections from pressure alone by Westerhof et al. (Westerhof
et al., 2006). This straightforward technique was utilized by the
SphygmoCor MM3/CvMS system (AtCor Medical, Sydney,
Australia) for the non-invasive acquisition of aortic flow (Ding
et al., 2013; Carlsen et al., 2016; Yu et al., 2018). Later, they
made improvements in the waveform decomposition of the
CAPW by utilizing the triangular flow waveform as a novel way
for determining the aortic pulse wave velocity (Qasem and Avolio,
2008). Although triangular flow waveform has been applied in
several commercially available systems, this method poorly
approximates the measured flow waveform, resulting in some
errors in the decomposition of the CAPW.

Kip et al. demonstrated that in the participants of the Asklepios
population study, the results for RM and aortic PTT based on the
triangular flow waveform approximation method differed
significantly from the values obtained from measured pressure
and flow information (Verbeke et al., 2005; Rietzschel et al.,
2007; Kips et al., 2009). In the Asklepios population study
(Rietzschel et al., 2007), the measured flow waveforms were
averaged and normalized to obtain more physiological aortic flow
waveforms. The experimental results have demonstrated that the
average flow method can evaluate RM better than triangular flow.
However, there is still a significant deviation between the
approximate and the actual values. This physiological flow
method has been used to assess wave reflection indices in the
multi-ethnic study of atherosclerosis (Zamani et al., 2015;
Zamani et al., 2016). In this research, the pressure measured
non-invasively by applanation tonometry at the common carotid
artery was used as a substitute for central aortic pressure.
Consequently, the difference persists and influences the
experimental results.

Recently, Shenouda et al. proposed a new personalized
physiological flow waveform method based on the CAPW
morphology (Shenouda et al., 2021). The physiological flow
waveform is more accurate than the triangle flow waveform for
determining RM and Pb in the elderly. However, they did not
examine children, healthy middle-aged individuals, or clinical
populations such as cardiac disease patients. The sample set
included only 49 young (18–42 years) and 29 older (51–77 years)
adults. More recently, a novel lognormal flow wave method for
separating the CAPW was proposed by Hao et al. (Hao et al., 2022).
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This study demonstrated that the lognormal flow wave improves
CAPW separation analysis results both in time and frequency
domains. Nevertheless, the lognormal flow waveform method
must be compared in different populations and not limited to
healthy and young participants. For the data set validated in this
paper, there is still a gap between the estimated and the measured
flow waveforms. In addition, the definition of variance σ of the
lognormal function needs to be clarified, and how to determine the
specific value is not well described. When accurate flow is
inconvenient to measure, better non-invasive estimation of aortic
flow is still needed to improve the results of pulse wave separation of
the CAPW.

This research aims to propose a novel method to approximate
the actual flow waveform with a personalized flow waveform and to
examine the feasibility to decompose the CAPW and quantify wave
reflection. We use the relationship between pressure and flow to
separate and analyze the CAPW with triangular, lognormal, and
personalized flow waveform methods, respectively, to explore the
accuracy of the three methods in wave reflections. Based on the
simulated pulse wave dataset and clinical data, the accuracy of the
personalized flow wave method is further compared with the other
two methods in deducing the reflection indices of RI, RM, and PTT.

2 Materials and methods

2.1 Data collection

In this study, we used two datasets to verify the feasibility and
validity of the proposed method.

2.1.1 Nektar1D PWDB
The first dataset is the publicly accessible database (Nektar1D

Pulse Wave Database, Nektar1D-PWDB), published by Alastruey
et al. at King’s College London, United Kingdom, based on the
Nektar1D model. This model used the Nektar1D non-linear one-
dimensional flow model, which has been fully clinically validated
and used in several studies to simulate the hemodynamic
characteristics of the human arterial tree, to ensure the validity of
hemodynamic parameters of the 1D model and the generated data
(Matthys et al., 2007; Alastruey et al., 2011; Xiao et al., 2014;
Willemet et al., 2015). For more detailed information on this
database, see the study by Charlton et al. (Charlton et al., 2019).

The database contains the arterial pulse waves from 4,374 virtual
subjects, ranging from 25 to 75 years, at a sampling frequency of

500 Hz. A total of 537 out of the 4,374 subjects exhibited blood
pressures outside of healthy norms (virtual subjects with abnormal
blood pressure; without CVD), and 3,837 subjects are
physiologically plausible. Table 1 contains basic population and
hemodynamic statistics. SBP and DBP of the radial artery and
central aortic are 95 mmHg–168 mmHg and
48 mmHg–87 mmHg, as shown in Figure 1.

2.1.2 Clinical data
In this section, we used clinical data to further validate the

performance of personalized flow waves. There were 13 healthy
participants in the study, seven male and six female, aged from 24 to
33 years old. The basic information of participants is summarized in
Table 1. The Research Ethics Committee approved this study of
Northeastern University (NO. NEU-EC-2021B022S), China, and all
participants gave informed consent.

Each participant sat quietly and relaxed for 10 min in a quiet
room before measuring their brachial systolic (SBP) and diastolic
(DBP) blood pressures with the Yuwell Mercury
sphygmomanometer (measurement accuracy of 2 mmHg). The
pressure waveforms of the radial artery were measured non-
invasively with the SphygmoCor device at a sampling rate of
128 Hz. In the SphygmoCor device, the corresponding CAPW
was reconstructed using a generalized radial-to-aortic transfer
function. The generalized transfer function (GTF) is the most
widely used method to estimate the CAPW (Sharman et al.,
2006), which is obtained by simultaneous measurement of aortic
and peripheral pressure (Karamanoglu et al., 1993) to obtain the
corresponding function between peripheral arterial pressure and
central arterial pressure, then collecting new test samples, and
validating the peripheral arterial pressure waveform signal by the
trained transfer function to estimate the corresponding
CAPW(Cameron et al., 1998; Payne et al., 2007). The
corresponding CAPW is estimated by verifying the signal of the
peripheral arterial pressure waveform with the trained transfer
function. The flow velocity and diameter waveforms of the aortic
root were concurrently captured and smoothed by a GE Vivid
E95 US system. Flow waveforms were calculated by multiplying
flow velocity waveforms with the aorta’s cross-sectional area (π ×
(diameter/2)2). In the study of Zhou et al., the specifics of data
collection are presented (Zhou et al., 2022).

2.2 Wave separation analysis and wave
reflection

In the time domain, features can be calculated from the
timing and amplitude of several fiducial points. The starting
point of the pulse wave indicates the beginning of a pulse cycle
and the end of the previous one. The time of the inflection point
marks the arrival of the Pb (O’Rourke and Yaginuma, 1984). The
notch is caused by aortic valve closure and blood reflux,
representing the transition between the systolic and diastolic
phases (Hartmann et al., 2019). The pulse wave systolic period
is the duration between the starting point and the dicrotic
notch point of the pulse wave, followed by the pulse wave
diastolic period. Usually, the local maxima of the second
derivative of the pulse waveforms are utilized to extract

TABLE 1 The hemodynamic characteristics of the Nektar1D-PWDB and clinical
data for all subjects. Shown as mean ± standard deviation (Mean ± SD).

Variables Nektar1D-PWDB Clinical data

No. Of subjects 4,374 13

Age (years) 25–75 24–33

Aortic SBP (mmHg) 109.04 ± 11.58 103.52 ± 5.86

Aortic DBP (mmHg) 75.62 ± 6.74 80.24 ± 5.72

Aortic MAP (mmHg) 86.76 ± 5.98 86.66 ± 5.93
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inflection points and dicrotic notch points (as in Figure 2
(Vlachopoulos et al., 2011)).

For some participants (e.g., those with severe atherosclerosis),
the inflection point of the aortic pulse wave is difficult or even
impossible to extract. In order to make this pulse wave
decomposition method more practical, it has been proposed to
use 30% of the systolic time as the location of the inflection

point (Miyashita et al., 1994; Westerhof et al., 2006). In this
paper, for pulse wave with inconspicuous inflection point, 30% of
ejection time (ET) is used as the location of the inflection point to
calculate the relevant features of pulse wave decomposition. The
beginning of the pulse wave systole indicates the time of aortic valve
opening and the start of ejection, and the notch time of the pulse
wave is the time of aortic valve closure and the end of ejection. ET

FIGURE 1
Distribution of blood pressure values for the Nektar1D-PWDB (A) SBP of at the radial artery (rSBP); (B) DBP of at the radial artery (rDBP); (C) SBP of at
the aortic root (aSBP); (D) DBP of at the aortic root (aDBP).

FIGURE 2
The CAPW feature points extraction. The red point represents the inflection point of the pulse wave (the moment when the Pb is generated), while
the black point represents the dicrotic notch point (the end of the systolic phase or the beginning of the diastolic phase).
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represents the systolic time of the pulse wave, which is determined
by subtracting the beginning time from the end time of aortic flow
(as in Figure 3).

In the arterial system, both aortic pressure and flow waveforms
consist of forward waves (Pf, Qf) and backward waves (Pb, Qb). The
CAPW mainly comprises forward and lower limb reflection waves
(Westerhof et al., 1972). As shown in Figure 4, CAPW equals the
sum of the Pf and Pb; and the flow wave equals the difference
between the Qf and Qb, (as shown in Eq. 1, 2).

P � Pf + Pb (1)
Q � Qf +Qb (2)

The basic principle of pulse wave decomposition is as follows
(Westerhof et al., 1972):

Pf � P + Zc × Q
2

(3)

Pb � P − Zc × Q
2

(4)

where, Q = U*A represents aortic flow; U is the flow velocity; A is
blood vessels cross-sectional area; Zc is the characteristic impedance.

Since the pulse waveform is not affected by the Pb in the early
systolic phase, Zc equals the ratio of blood pressure to flow (Li, 1986;
Khir et al., 2001), and Zc can also be calculated by high-frequency
input impedance (Murgo et al., 1981; Miyashita et al., 1994). The
input impedance (Zin) is defined as follows:

Zin w( ) � P w( )/Q w( ) (5)
where P(w) and Q(w) are pressure and flow frequency components.

FIGURE 3
To facilitate wave separation analysis, the 30% ET is used as the location of the inflection point of the pulse wave.

FIGURE 4
(A) CAPW and (B) flow waveform. The CAPW is decomposed into Pf and Pb, from which RM and RI can be calculated.
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RI is the amplitude ratio of Pb to the sum of Pb and Pf, and the
amplitude ratio of Pb to Pf is RM (Hametner et al., 2013). RM and RI
are defined as follows:

RM � Pb| |
Pf| | (6)

RI � Pb| |
Pb| | + Pf| | (7)

PTT can be determined by pulse wave decomposition, an
important index to assess arterial stiffness in the young and old
(Qasem and Avolio, 2008). PTT can be calculated as half the time
difference between Pf and Pb (Tfb), as in Eq. 8.

PTT � Tfb/2 (8)
Qasem and Avolio calculated the cross-correlation coefficient of

Pf and Pb to determine Tfb (Qasem and Avolio, 2008). The time of
maximum cross-correlation coefficient is the Tfb between Pf and Pb
(as in Figure 5).

2.2.1 Triangular and lognormal flow waveform
By measuring aortic flow velocities with Doppler ultrasound or

magnetic resonance imaging (MRI) and combining them with the
cross-sectional area of the aortic valves, the aortic flow can be
calculated (Wang et al., 2010; Zamani et al., 2016). However, this
requires specific medical equipment and skilled operators.

The triangular flow method is used in the SphygmoCor MM3/
CVMS device, which is well clinically validated and certified by the
Food and Drug Administration (FDA) and is frequently used as a
non-invasive testing standard to validate other devices (Zuo et al.,
2010; Ott et al., 2012; Laugesen et al., 2014). SphygmoCor MM3/
CVMS system uses triangles to approximate the central aortic flow
waveforms (Rivera et al., 2020). Specifically, as shown in Figure 6A,
the systolic flow is approximated as a triangle, and the base of the
triangle represents the total systolic ET. The peak of the triangle
corresponds to the inflection point (timing and amplitude) of the
CAPW. Furthermore, the beginning and ending points of the
triangular flow waveform coincide with the CAPW foot and

dicrotic notch points, respectively. Westerhof et al. have shown
that it is feasible to construct the aortic flow waveform by a
triangular wave (Westerhof et al., 2006).

As with the triangular flow waveform, there is a specific
relationship between the characteristic points of the lognormal
flow waveform and the characteristic points of CAPW. As shown
in Figure 6B, the start, peak, and end points of the lognormal flow
waveform correspond to the foot, the inflection point, and the
dicrotic notch point of the CAPW, respectively (Plamondon
et al., 2013; Hao et al., 2022).

2.2.2 Personalized flow waveform construction
The waveform of aortic flow can be estimated using a triangular

wave. However, the Pf and Pb obtained directly using the triangular
wave instead of the flow wave are not smooth and sometimes
produce large Pb before the reflection point. The triangular flow
waveform would also underestimate the degree of concavity of the
flow waveforms. The lognormal approximate flow waveform has the
same result, especially in early systole (as in Figure 8). Based on the
above facts, we attempted to construct a flow waveform based on the
characteristics of CAPW and explore the method’s generalizability.

In early systole (before the inflection point), the CAPW is linear
with flow waveform because wave reflections are almost unaffected
by the Pb (Hughes et al., 2020). The Pf propagates from the proximal
to the distal end, and at the end of the contraction, the pressure-flow
waves encounter a high impedance location for continuous decay.
At the end of systole, it is proposed to use the Hermite interpolation
function to fit the flow waveforms during this period.

The Hermite interpolation function is a standard method for
solving predictive problems in mathematical modeling, which can
effectively solve the problem such as insufficient waveform data of
aortic flow (Lorentz, 2000). Three points are required to satisfy the
Hermitian interpolation function condition. Using segmented
Hermite interpolation to obtain a smooth and continuous curve
on the interval [a, b]. On node
a≤ x0 < x1 </< xn ≤ b, hi � xi − xi−1(i � 1, 2,/, n), the function
value and derivative value of the given node are as follows:

FIGURE 5
Calculation of Tfb: cross-correlation between Pf and Pb.
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yi � f xi( ), y′i � f ′ xi( ), i � 0, 1,/, n (9)
A piecewise cubic interpolation polynomial H3(x) is constructed

on [a, b], which satisfies the following interpolation conditions:

H3 xi( ) � yi,H3
′ xi( ) � y′i , i � 0, 1,/, n (10)

H3(x) on the interval [xi−1, xi] is the cubic Hermite interpolation
polynomial of f(x) with xi−1, xi as nodes.

H3 x( ) � 1

h2
i

[ 1 + 2
x − xi−1

hi
( ) x − xi( )2yi−1 + 1 − 2

x − xi
hi

( )

x − xi−1( )2yi
+ x − xi−1( ) x − xi( )2yi−1′ + x − xi−1( )2 x − xi( )y′i]

(11)

where x ∈ [xi−1, xi] (i � 1, 2,/, n).
The process of constructing the personalized flow waveform

based on CAPW features is divided into three steps.

1) The first part is the same as the CAPW before the inflection
point.

2) We used the piecewise cubic Hermitian interpolation function at
the end-systole to obtain the second part of the estimated flow
waveform. Two points, a and b (see Figure 7), can be readily
obtained, but a third point is still needed to perform the Hermite
function operation. The third point was identified as c, because
the magnitude of MAP and the time of SBP in CAPW are
between a and b (Li et al., 2021; Parittotokkaporn et al., 2021),
respectively. We combine the magnitudes of MAP and SBP and
the time of SBP to obtain c for participating in the Hermitian
interpolation calculation. The average value of arterial blood
pressure during a cardiac cycle is called mean arterial pressure
(MAP). MAP can be calculated by Eq. 12 (Papaioannou et al.,
2016).

MAP � ∫
T
CAPW t( ) dt

T
(12)

Where T represents a cardiac cycle. SBP and DBP are systolic and
diastolic blood pressure, respectively. In the arterial system, the

maximum peak and foot amplitudes of CAPW are SBP and DBP (as
in Figure 7 (Avolio et al., 2009)), respectively.

3) The rest of the flow waveform is set to 0.

The waveforms of personalized flow, measured flow, triangular
flow, and lognormal flow approximation are shown in Figure 8. The
comparison of different flow waveforms reveals a prominent peak in
the triangular estimated flow waveform, which has a considerable
discrepancy with the measured flow waveform. In contrast, the
estimated personalized flow waveform is closer in shape to the
measured flow waveform. Additionally, there are also some
variations between the lognormal flow waveform and the
measured flow waveform, particularly in the initial part.

To further verify the viability of the proposed personalized flow
wave, the three wave reflection indices RM, RI, and PTT of wave
separation analysis are quantitatively compared based on triangular
flow waveform, lognormal flow wave approximation, and
personalized flow waveform, respectively (Table 2). We
investigated the correlation and consistency of calculated RM, RI,
and PTT on the Nektar1D PWDB dataset and clinical data using
linear regression analysis (r-values) and Bland-Altman analysis (see
Figures 10–15), respectively.

2.3 Evaluation and statistical analysis

In the experiment, we employed the root mean square error
(RMSE) to quantitatively evaluate the deviation between measured
and estimated flow waveform signals. Differences between wave
reflection indices of the estimated and measured aortic flow
waveforms were analyzed by two-tailed paired t tests (IBM SPSS
Statistics, version-26) and reported as mean ± standard deviation
(Mean ± SD) or 95% CI where appropriate. Linear regression and
Pearson correlation coefficients were used to analyze the
correlations between estimated and measured and aortic flow
waveforms. Bland-Altman plots were constructed to assess the
agreement between estimated and measured aortic flow

FIGURE 6
(A) The start, peak, and end of the triangle flowwaveform correspond in time and amplitude to the foot, inflection point, and dicrotic notch point of
the CAPW, respectively (B) Lognormal function approximation flow waveform.
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waveforms. A p-value of 0.01 or less is regarded as statistically
significant.

3 Results

3.1 Waveform analysis of Pf and Pb

In order to analyze the performance of the flow waveform
estimation using the personalized flow method, the results are
compared with the typical triangular flow method and lognormal
flow wave approximation. Figure 9 shows an example of the Pf and
Pb decomposed by four flow waves for CAPW, respectively. The
results of CAPW separation show that both Pf and Pb have different
degrees of triangular wave traces when separated by the triangular
flow waveform. As shown in Figure 9C, the Pb decomposed by the
triangular flow waveform appears as a sharp peak at its foot, like the

triangular flow wave’s triangular apex. However, this does not occur
using personalized and lognormal flow waves, as shown in
Figure 9B,D. Neither Pf nor Pb calculated by the measured flow
wave in a practical situation exhibit traces of a triangle (Figure 9A).
And there are no triangular features at the feet of Pf and Pb.
Therefore, the decomposition of CAPW using a personalized
flow wave is better than the triangular flow wave analysis. The
personalized flow wave performs well in estimating the morphology
of Pf and Pb, which is closer to the reference flow wave (Figure 9B).

3.2 Performance evaluation of wave
reflection indices

The corresponding correlation graphs and Bland-Altman plots
for comparing measured and estimated flow CAPW reflection
indices using three flow wave methods as shown in Figures 10–15.

FIGURE 7
Personalized flow waveform constructed based on the feature points of CAPW.

FIGURE 8
Comparison and contrast of flow waveforms obtained by Hermite interpolation function estimation, measurement, triangular estimation, and
lognormal approximation.
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The equation of the linear regression obtained between the
measured and estimated RM using the personalized flow method
based on Nektar1D PWDB is y = 0.99x + 0.06 (r = 0.97, p < 0.001)
as shown in Figure 10A; The corresponding equations obtained
using the triangular flow approach and lognormal flow
approximation (see Figure 10B,C) are y = 0.34x + 0.39 (r = 0.79,
p < 0.001) and y = 0.28x +0.46 (r = 0.73, p < 0.001), respectively. A
comparison (mean ± SD, 0.05 ± 0.03) between the measured and
estimated RM using the personalized flow method based on
Nektar1D PWDB is shown in Figure 10D. The same comparison
using the triangular flow approach and lognormal flow
approximation (mean ± SD, −0.08 ± 0.07 and −0.05 ± 0.07) is
shown in Figure 10E,F, respectively. The linear regression and
Bland-Altman plots of RM calculated by three flow waveforms
(Clinical data, 13 participants) are shown in Figure 11. The
regression equations (panels A, B and C) are y = 0.90x+0.08

(r = 0.85, p < 0.001), for the personalized flow wave method;
y = 0.81x+0.11 (r = 0.32, p = 0.28) for the triangular flow wave
approach; and y = 1.09x-0.08 (r = 0.79, p = 0.0013) for the lognormal
flow wave approximation algorithm. The corresponding Bland-
Altman plots (panels D, E and F) and their mean differences
( ± SD) for the personalized flow wave, triangular flow wave and
lognormal flow wave methods respectively are (− 0.01 ± 0.15),
(−0.05 ± 0.61) and (−0.01 ± 0.26).

The equation of the linear regression obtained between the
measured and estimated RI using the personalized flow method
based on Nektar1D PWDB is y = 0.95x + 0.04 (r = 0.97, p < 0.001)
as shown in Figure 12A; The corresponding equations obtained
using the triangular flowmethod and lognormal flow approximation
(see Figure 12B,C) are y = 0.37x + 0.24 (r = 0.80, p < 0.001) and y =
0.29x + 0.28 (r = 0.74, p < 0.001), respectively. A comparison
(mean ± SD, 0.02 ± 0.01) between the measured and estimated

TABLE 2 Wave reflection indices (Mean ± SD) and biases statistics (RMSE: Root Mean Square Error).

Database Variable Wave reflection indices and biases (RMSE)

Measured
flow

Personalized flow and |
Measured-Personalized|

Lognormal flow and |
Measured-Lognormal|

Triangular flow and |
Measured-Triangular|

Nektar1D PWDB
(n = 4,374)

Q (mL/s) 2.83 ± 5.62 3.04 ± 4.98 3.12 ± 5.20 4.22 ± 6.28

— 0.89 0.92 2.33

Pf amplitude
(mmHg)

21.95 ± 8.49 22.58 ± 7.99 22.85 ± 9.47 20.8 ± 9.41

— 1.39 2.01 2.38

Pb amplitude
(mmHg)

15.8 ± 6.81 15.02 ± 5.94 14.99 ± 5.98 16.06 ± 7.07

— 0.39 1.19 1.24

RM (%) 71.49 ± 9.55 73.84 ± 4.14 66.15 ± 3.66 63.88 ± 9.73

— 5.88 9.06 10.17

RI (%) 41.5 ± 3.4 42.27 ± 1.57 39.78 ± 1.34 38.94 ± 3.33

— 1.95 3.09 3.47

PTT (ms) 34.9 ± 13.1 37.9 ± 14.3 28.1 ± 15.9 23.7 ± 21.4

— 1.21 1.23 1.52

Clinical data
(n = 13)

Q (mL/s) 5.52 ± 8.07 5.41 ± 8.12 5.10 ± 8.00 4.43 ± 6.92

— 2.15 3.20 2.84

Pf amplitude
(mmHg)

20.36 ± 5.16 21.39 ± 5.7 23.91 ± 7.41 35.14 ± 14.9

— 3.29 4.16 7.35

Pb amplitude
(mmHg)

9.93 ± 2.9 10.19 ± 2.8 10.89 ± 2.9 11.79 ± 3.4

— 1.37 1.59 2.15

RM (%) 88.41 ± 2.62 87.69 ± 2.76 87.61 ± 3.6 83.34 ± 6.66

— 1.62 2.25 3.76

RI (%) 48.04 ± 1.16 48.03 ± 1.55 48.07 ± 1.47 46.46 ± 1.94

— 0.70 0.93 2.26

PTT (ms) 75.4 ± 15.9 79.5 ± 15 80.8 ± 18.7 80.4 ± 15.8

— 0.97 1.13 1.86

The bold values in Table 2 are the wave reflection indices results of the personalized flow wave, which have the smallest biases with the measured flow wave.
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FIGURE 9
Comparison of Pf and Pb decomposed from different flow waves: (A) results of waveform separation based on measured flow wave; (B) results of
waveform separation based on personalized flow wave; (C) results of waveform separation based on triangular flow wave; and (D) results of waveform
separation based on lognormal flow wave approximation.

FIGURE 10
Correlation graphs and Bland-Altman plots of RM calculated by three flow waveforms (A) and (D) Results of the personalized flow wave (Nektar1D
PWDB, 4,374 subjects); (B) and (E) Results of the triangular flow wave (Nektar1D PWDB, 4,374 subjects); (C) and (F) Results of the lognormal flow wave
(Nektar1D PWDB, 4,374 subjects). RMm and RMe are measured and estimated RM, respectively. Difference: RMe - RMm; Average: (RMe + RMm)/2.
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FIGURE 11
Correlation graphs and Bland-Altman plots of RM calculated by three flow waveforms (A) and (D) Results of the personalized flow wave (Clinical
data, 13 participants); (B) and (E) Results of the triangular flow wave (Clinical data, 13 participants); (C) and (F) Results of the lognormal flowwave (Clinical
data, 13 participants). RMm and RMe are measured and estimated RM, respectively. Difference: RMe - RMm; Average: (RMe + RMm)/2.

FIGURE 12
Correlation graphs and Bland-Altman plots of RI calculated by three flow waveforms. (A) and (D) Results of the personalized flow wave (Nektar1D
PWDB, 4,374 subjects); (B) and (E) Results of the triangular flow wave (Nektar1D PWDB, 4,374 subjects); (C) and (F) Results of the lognormal flow wave
(Nektar1D PWDB, 4,374 subjects). RIm and RIe are measured and estimated RI, respectively. Difference: RIe - RIm; Average: (RIe + RIm)/2.
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FIGURE 13
Correlation graphs and Bland-Altman plots of RI calculated by three flowwaveforms. (A) and (D) Results of the personalized flowwave (Clinical data,
13 participants); (B) and (E) Results of the triangular flow wave (Clinical data, 13 participants); (C) and (F) Results of the lognormal flow wave (Clinical data,
13 participants). RIm and RIe are measured and estimated RI, respectively. Difference: RIe - RIm; Average: (RIe + RIm)/2.

FIGURE 14
Correlation graphs and Bland-Altman plots of PTT calculated by three flow waveforms (A) and (D) Results of the personalized flow wave (Nektar1D
PWDB, 4,374 subjects); (B) and (E) Results of the triangular flow wave (Nektar1D PWDB, 4,374 subjects); (C) and (F) Results of the lognormal flow wave
(Nektar1D PWDB, 4,374 subjects). PTTm and PTTe are measured and estimated PTT, respectively. Difference: PTTe - PTTm; Average: (PTTe + PTTm)/2.
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RI using the personalized flowmethod based on Nektar1D PWDB is
shown in Figure 12D. The same comparison using the triangular
flow method and lognormal flow approximation (mean ±
SD, −0.03 ± 0.03 and −0.02 ± 0.03) is shown in Figure 12E,F,
respectively. The linear regression and Bland-Altman plots of RI
calculated by three flow waveforms (Clinical data, 13 participants)
are shown in Figure 13. The regression equations (panels A, B and
C) are y = 1.20x-0.09 (r = 0.90, p < 0.001), for the personalized flow
wave method; y = 0.84x+0.06 (r = 0.50, p = 0.08) for the triangular
flow wave approach; and y = 0.95x+0.02 (r = 0.75, p = 0.0029) for the
lognormal flow wave approximation algorithm. The corresponding
Bland-Altman plots (panels D, E and F) and their mean differences
( ± SD) for the personalized flow wave, triangular flow wave and
lognormal flow wave methods respectively are (0 ± 0.01), (−0.02 ±
0.02) and (0 ± 0.01).

The equation of the linear regression obtained between the
measured and estimated PTT using the personalized flow method
based on Nektar1D PWDB is y = 1.03x - 0.01 (r = 0.94, p < 0.001) as
shown in Figure 14A; The corresponding equations obtained using
the triangular flow method and lognormal flow approximation (see
Figure 14B,C) are y = 1.19x (r = 0.73, p < 0.001) and y = 0.93x (r =
0.77, p < 0.001), respectively. A comparison (mean ± SD, -0.01 ±
0.01 s) between the measured and estimated PTT using the
personalized flow method based on Nektar1D PWDB is shown
in Figure 14D. The same comparison using the triangular flow
method and lognormal flow approximation (mean ± SD, 0 ± 0.02 s
and −0.01 ± 0.01 s) is shown in Figure 14E,F, respectively. The linear
regression and Bland-Altman plots of PTT calculated by three flow
waveforms (Clinical data, 13 participants) are shown in Figure 15.
The regression equations (panels A, B and C) are y = 0.78x+0.02 (r =

0.83, p < 0.001), for the personalized flow wave method; y =
0.31x+0.06 (r = 0.31, p = 0.3) for the triangular flow wave
approach; and y = 0.98x+0.01 (r = 0.83, p < 0.001) for the
lognormal flow wave approximation algorithm. The
corresponding Bland-Altman plots (panels D, E and F) and their
mean differences ( ± SD) for the personalized flow wave, triangular
flow wave and lognormal flow wave methods respectively are (0 ±
0.01 s), (0.01 ± 0.02 s) and (0.01 ± 0.01 s).

The coefficient of determination between the measured and
estimated RM using the personalized flow method based on two
datasets are 0.94 and 0.72, and the results of using the triangular
flow method are 0.62 and 0.10. The results of using the
lognormal flow wave approximation are 0.53 and 0.62. The
coefficient of determination between the measured and
estimated RI using the personalized flow method based on
two datasets are 0.94 and 0.81, and the results of using the
triangular flow method are 0.64 and 0.25. The results of using
the lognormal flow wave approximation are 0.55 and 0.56. The
coefficient of determination between the measured and
estimated PTT using the personalized flow method based on
two datasets are 0.88 and 0.69, and the results of using the
triangular flow method are 0.53 and 0.09. The results of using
the lognormal flow wave approximation are 0.59 and 0.69.
Therefore, the correlation of the reflection indices calculated
by the personalized flow method is more robust than that of the
triangular flow method and lognormal flow wave approximation
(Figures 10–15). The results of personalized flow waveform
method are the closest to one compared to the other
methods, thus indicating a very good one to one
correspondence. The personalized flow approximates the

FIGURE 15
Correlation graphs and Bland-Altman plots of PTT calculated by three flow waveforms (A) and (D) Results of the personalized flow wave (Clinical
data, 13 participants); (B) and (E) Results of the triangular flow wave (Clinical data, 13 participants); (C) and (F) Results of the lognormal flowwave (Clinical
data, 13 participants). PTTm and PTTe are measured and estimated PTT, respectively. Difference: PTTe - PTTm; Average: (PTTe + PTTm)/2.
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measured flow and gives better estimates of RM, RI, and PTT.
The quantitative and objective comparison of the three flow
wave methods is summarized in Table 2. To further strengthen
the validity of the proposed method in obtaining the flow
waveform from CAPW, we also calculated the RMSE between
the actual known flow and the approximated flow using three
methods (i.e., personalized flow, lognormal flow, and triangular
flow). The proposed personalized flow method gave the smallest
values (as shown in Table 2). The small errors indicate that the
personalized flow wave shape is a good approximation for
applying waveform analysis and improves wave separation
analysis results compared to the other two methods.

4 Discussion

In this study, we applied a personalized wave to estimate the
aortic flow waveform in two data sets (Nektar1D PWDB and
Clinical data) to investigate the feasibility of CAPW separation.
Moreover, the CAPW reflection indices calculated using the
personalized estimated flow waveform were compared with the
results derived from the traditional triangular flow wave and the
recently proposed lognormal flow wave approximation method. The
CAPW was decomposed into Pf and Pb using pressure-flow
relations, and wave reflections were quantitatively and
qualitatively analyzed. By experimental analysis, the correlation
and consistency of the wave reflection indices calculated based
on the personalized and measured flow waves are higher than
the other two methods (Figures 10–15). From the perspective of
RI, RM, and PTT, the RMSE between the personalized flow
waveform and measured flow waveform are smaller than the
difference between the other two methods (Table 2). Moreover,
the shape of the personalized estimation flow wave is better than that
of the triangle and lognormal flow waves (see Figure 8).

Also, the Pf and Pb of the CAPW decomposition by
personalized flow waveforms are closer to the actual results.
The errors of the amplitudes of Pf and Pb decomposed by the
personalized estimated flow wave and CAPW are smaller
(Table 2). The waveform of personalized flow is more
consistent with the actual flow waveform compared with the
lognormal and triangular flow waveform (Figure 8). Moreover,
the biases between wave reflection indices calculated by
decomposing CAPW with the measured and personalized
flow are smaller. Furthermore, the Pf and Pb of the CAPW
decomposition by personalized flow waveform are closer to the
actual results in amplitude and waveform morphology than the
other two methods (Nektar1D PWDB; RMSEs = 1.39 and 0.39,
Table 2 and Clinical data; RMSEs = 3.29 and 1.37; Table 2).
Using a triangle to estimate the flow waveform will lead to
spikes, and also Pf and Pb calculated by triangle flow waves will
also appear as spikes (see Figure 8). This will not happen in the
measured flow, and the personalized flow is more reliable.

Through linear regression equation and Bland-Altman diagram
analysis, RM, RI, and PTT obtained from personalized flow
waveform are highly correlated with RM, RI, and PTT obtained
from the measured flow (Figures 10–15). These show that the wave
reflection indices can be calculated by the personalized estimated
flow wave when the real flow wave is not convenient to measure. As

shown in Figures 10–15, Bland–Altman plots generally revealed
smaller biases and narrower 95% LOA (Limits of agreement) for the
personalized flow waveform, compared with the triangular and
lognormal flow waveform approximation. Wave reflection indices
derived using the truly measured flow waveform and estimated flow
waveforms using three methods are reported in Table 2. Based on
the comparison of the results between the Nektar1D PWDB and
clinical data, the Pearson correlation coefficients between the
personalized flow wave, lognormal flow, triangular flow wave,
and the measured flow wave indicate that the accuracy of the
personalized flow wave is higher. It was notable that over the
pulse wave reflection indices, the biases of RM, RI, and PTT
were lower for the personalized flow waveform than the
triangular and lognormal flow waveform in most cases, thus
confirming the superior performance of the personalized flow
method. In addition, compared with the triangle flow wave, the
personalized flow wave is more consistent with the measured flow
wave in terms of RI, RM, and PTT. Besides, the personalized flow
wave method does not require complex statistical calculations like
the lognormal approximation, nor does it need to establish a
variance value in advance.

The clinical data used for validation in this paper are limited
to young, healthy participants only, which is one of the
limitations of this study. There was no vascular or cardiac
disease model included in the 1-D model when generating the
virtual subjects. The 1-D database also only represents healthy
subjects to the limitation. The proposed method should be
validated in different populations (i.e., patients with heart
disease) further to investigate the generalizability of the
personalized flow waveform method. In addition, it is feasible
that PTT is estimated only by calculating the time delay of Pf and
Pb, but there is no comparison and correlation analysis with the
measured carotid-femoral PTT and aortic pulse wave velocity. In
order to better evaluate arterial stiffness, a comparison is
necessary. The reliability of using the 30% ET as a surrogate
of inflection point has not been rigorously proven, but it has just
been used as a rule of thumb in previous studies. Typically, some
degree of flow regurgitation occurs when the aortic valve closes,
i.e., the actual aortic flow is negative at end-systole (shown in
Figure 8). As with the triangular and the lognormal flow waves,
the proposed personalized flow wave ignores this by setting the
diastolic flow to 0 (Westerhof et al., 2006; Hao et al., 2022).
Although the personalized flow wave improves the results of
wave reflection and wave separation analysis compared to the
other two methods, it is still necessary to further strengthen this
research to implement this typical feature of aortic flow
waveform. Furthermore, in early-systole, the flow peak
obtained by the proposed personalized flow method is closer
to the measured flow peak than the other methods, and occurs
later in time compared to the measured waveform. Also, during
the late-systolic part of the personalized flow waveform, the
waveform overestimates the measured waveform (see
Figure 8). There are still errors between the approximate
personalized flow waveform and the measured flow waveform.
Future research should focus on the three feature points (a, b, and
c) involved in the Hermite interpolation operation in order to
construct a flow wave that is more consistent with the
measurement.
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5 Conclusion

In this paper, a novel method of approximate estimation of flow
waves based on the characteristics of the CAPW is proposed, and the
feasibility of personalized flow separation in CAPW is evaluated. The
results indicate that the personalized flow wave method generates more
accurate aortic flow waveform. Experiments on Nektar1D PWDB and
clinical data verify the feasibility of the proposedmethod. The personalized
flow wave estimated by our proposed method is more consistent with the
measured flow wave when used to calculate RM, RI, and PTT, compared
to the triangle estimation and lognormal approximation. Pf and Pb
decomposed from CAPW using personalized flow wave method have
more accurate shapes and amplitudes than the other two methods. The
personalized flow wave method improves CAPW separation results both
in accuracy and reliability.
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This study examined methods for estimating the innervation zone (IZ) of a muscle
using recorded monopolar high density M waves. Two IZ estimation methods
based on principal component analysis (PCA) and Radon transform (RT) were
examined. Experimental M waves, acquired from the biceps brachii muscles of
nine healthy subjects were used as testing data sets. The performance of the two
methods was evaluated by comparing their IZ estimations with manual IZ
detection by experienced human operators. Compared with manual detection,
the agreement rate of the estimated IZs was 83% and 63% for PCA and RT based
methods, respectively, both using monopolar high density M waves. In contrast,
the agreement rate was 56% for cross correlation analysis using bipolar high
density M waves. The mean difference in estimated IZ location between manual
detection and the tested method was 0.12 ± 0.28 inter-electrode-distance (IED)
for PCA, 0.33 ± 0.41 IED for RT and 0.39 ± 0.74 IED for cross correlation-based
methods. The results indicate that the PCA based method was able to
automatically detect muscle IZs from monopolar M waves. Thus, PCA provides
an alternative approach to estimate IZ location of voluntary or electrically-evoked
muscle contractions, and may have particular value for IZ detection in patients
with impaired voluntary muscle activation.

KEYWORDS

innervation zone, monopolar, M wave, electrode array, principal component analysis,
radon transform

1 Introduction

The innervation zone (IZ) of a muscle is the region where muscle fibers are innervated by
motor axon terminals. The architecture of the IZ can influence electromyographic (EMG)
signal characteristics recorded from the muscle surface (Nishihara et al., 2010; Rantalainen
et al., 2012; Gallina et al., 2013; Ye et al., 2015; Smith et al., 2017; de Souza et al., 2022). The
ability to detect the location of the IZ using EMG techniques has implications for
understanding muscle function in health and disease. Thus, monitoring changes in IZ
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location may provide valuable information about the processes of
motor unit remodeling associated with aging, disease, and injury
(Jahanmiri-Nezhad et al., 2015; Rasool et al., 2017; Dias et al., 2018;
Li et al., 2021). In addition, the ability to detect the IZ has important
clinical value. For example, one clinical application of IZ estimation
is to guide botulinum toxin (BTX) injection more precisely for
treating spasticity in patients with neurological injuries such as
stroke and cerebral palsy (Van Campenhout and Molenaers, 2011;
Guzmán-Venegas et al., 2014; Zhang et al., 2019; Chen et al., 2020;
Zhang et al., 2021). The effectiveness of BTX treatment has been
reported to depend on the distance between the injection site and the
IZ (Shaari and Ira Sanders, 1993; Lapatki et al., 2011; Kaymak et al.,
2018).

The IZ can be identified through EMG signals recorded by a
linear electrode array or a matrix of electrodes placed over the
muscle (Drost et al., 2006; Barbero et al., 2012; Piccoli et al., 2014;
Campanini et al., 2022). Most investigators have estimated the
location of the IZ based on surface EMG recordings of voluntary
muscle contractions and processing the signals in a single
differential or bipolar configuration (Ostlund et al., 2007; Mesin
et al., 2009; Enck et al., 2010; Barbero et al., 2011; Beck et al., 2012;
Ullah et al., 2014; Marateb et al., 2016; Liu et al., 2019; Mancebo
et al., 2019; Liu et al., 2020; Zhang et al., 2020), whereas few have
processed monopolar signals for IZ estimation (Rodriguez-Falces,
2017). When EMG signals are processed in a differential
configuration the IZ location may correspond to either a reversal
in EMG signal polarity between two adjacent channels along the
muscle fibers, or the smallest amplitude in a single channel.

Although voluntary contractions are convenient for estimating
the IZ, theymay not be feasible in patients with significant paralysis or
poor motor control. An alternative method for IZ location is to record
compound muscle action potentials (or M waves) evoked by electrical
stimulation of the motor nerve, but few have used this approach
(Zhang et al., 2017). In two reports, the IZ location was found to be
similar when based on M waves and voluntary EMG (Guzmán-
Venegas et al., 2016) (Huang et al., 2019). When recording M waves
using electrode arrays, a monopolar electrode configuration is often
used because bipolar configuration may considerably attenuate M
wave content (Tucker and Türker, 2005; Hadoush et al., 2009;
Rodriguez-Falces and Place, 2018). There is a need to further
develop appropriate methods to automatically estimate the IZ from
M wave signals recorded in a monopolar configuration.

In this study we investigated two methods to estimate the IZ from
monopolar M-wave recordings. One method was based on principal
component analysis (PCA); specifically, the second principal
component coefficients derived from PCA, which are related to
time delays of different EMG channels. The method is suitable for
analysis of monopolar signals and has been evaluated using high
density voluntary surface EMG signals (Huang et al., 2022), but not on
electrically-evoked signals. The other method is based on Radon
transform (RT), which can be used to detect linear patterns in a
two-dimensional signal and has been proved useful for IZ estimation
(Cescon, 2006). Although IZ estimation based on RT was mainly
applied to bipolar voluntary surface EMG signals (Li et al., 2021),
(Cescon, 2006), (Li et al., 2022), theoretically, the RT method can also
be applied on monopolar signals for estimation of IZ location.

The usefulness of PCA and RT methods for automated
estimation of IZ location was explored in the current study using

monopolar M waves recorded with surface electrode arrays from the
biceps brachii (BB) muscles. The performance of automatic IZ
detection was compared with manual detection based on visual
inspection of the M waves. The objective was to provide an
alternative approach to voluntary contraction for reliable and
automatic estimation of muscle IZ.

2 Methods

2.1 Experiment

2.1.1 Participants and consent
Nine healthy male subjects (mean ± SD, 28.9 ± 4.8 years)

without a history of neuromuscular or musculoskeletal disorders
participated in the study. They were well informed of the
experimental procedures, including possible risks and
discomforts. All subjects gave written informed consent approved
by the ethics committee of Guangdong Work Injury Rehabilitation
Center (Guangzhou, China).

2.1.2 Experiment protocols
Two high density channel arrays (ELSCH064NM2,

Bioelettronica, Torino, Italy) were placed parallel to the muscle
fiber direction over the lateral side (Array 1) and the medial side
(Array 2) of the BB after skin preparation and fixed with elastic
straps (Figure 1A). Each channel matrix consists of 64 channels with
an 8 mm inter electrode distance (IED) arranged in a grid of
5 columns by 13 rows (one column contained only 12 channels).
A ground electrode was placed at the elbow. A constant-current
stimulator (DS7A, Digitimer, Herthfordshire, UK) and standard bar
electrode (3 cm inter-electrode spacing) were used to evoke BB
M-waves. The bar electrode was placed over the musculocutaneous
nerve at the proximal medial side of the BB (Figure 1B). Single pulses
of 1 ms duration were applied every 5 s as the current intensity was
increased until the maximal M-wave was recorded. The M waves
were recorded by a signal amplifier (100x) in monopolar
configuration (EMG-USB2, sampling frequency of 2048 Hz, 12-
bit A/D converter, Bioelettronica, Torino, Italy).

2.2 Detection of muscle IZ from monopolar
M waves

2.2.1 Muscle IZ estimation based on PCA
The rationale for using the 2nd principal component coefficients

derived from PCA for IZ estimation was explained in detail (Huang
et al., 2022). Briefly, PCA performs the eigen decomposition on the
covariance matrix Σ of the standardized (zero mean, and unit
variance) electrode array EMG signals X (M-by-N matrix, N
samples and M channels), which is a M × M matrix where each
element represents the covariance between two channels. The
elements of each eigenvector are the coefficients of each principal
component. It has been proven that the 2nd principal component
coefficients are related with the time delays of different channels due
to signal propagation from the IZ to the two ends of a muscle
(Huang et al., 2022) (Laguna et al., 2018). As illustrated in Figure 1C,
the channels located near the IZ are expected to have minimum time
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FIGURE 1
(A): Schematic representation of the two adhesive 2D matrices for recording experimental signals. (B): High-density electrode array recording with
columns positioned parallel to the muscle fiber direction. (C): An example of monopolar M waves of 13 channels in one of the columns from a
representative subject. The IZ is located close to row 6. Delay: time interval of the waveforms travelling distally from the IZ.

FIGURE 2
An example of muscle IZ estimation from experimental high density M waves where different methods reached the same results. (A): A column of M
waves of a tested subject. (B): PCA based IZ estimation: the minimum coefficient was located at row 7 and the coefficients gradually increased along the
fiber direction. (C): RT based IZ estimation: the distribution of RT results across all the rows, and between rows. (D): Cross correlation based IZ estimation:
the distribution of the correlation coefficients between adjacent bipolar signals.

Frontiers in Physiology frontiersin.org03

Huang et al. 10.3389/fphys.2023.1137146

169

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1137146


delay. Therefore, analysis of the 2nd principal component
coefficients can provide useful information pertaining to IZ location.

2.2.2 Muscle IZ estimation based on RT
The procedures of the RT based IZ identification have been

described in detail (Cescon, 2006). For a column of signals, starting
from the first row, the RT was implemented to search for the optimal
propagation lines from signals at either side of a row i (i = 1,2,3 . . .

13), or between row j and row j + 1 (j = 1,2,3 . . . 12). A total of 25 RT
results were obtained. As illustrated in Figure 1C, the potentials in
the spatiotemporal surface EMG signal appear along inclined lines
as they travel from the IZ to the tendon regions at a certain velocity.
Therefore, the IZ location can be estimated by the maximum RT
result.

2.3 Performance evaluation

The M-waves of the two most lateral and most two medial side
columns were excluded from IZ identification as they were close to
margin of the muscle. This left 6 columns for IZ estimation for each
subject (Figure 1A). For each M wave, stimulation artifact was
identified and suppressed as described previously (Liu et al.,
2014). The signal duration was 0.2 s. For the PCA-based method,
the signals were standardized (zero mean and unit variance). The
spline interpolation was applied to the 2nd component coefficients

along the rows to determine the IZ location for each column. For the
RT based method, the signals were rectified. The output of the IZ
detection was the channel number if the IZ was located on a specific
channel or the average of neighboring channels if the IZ was located
between two channels. In addition, the IZ was estimated from a
conventional cross correlation method applied on bipolar M wave
signals constructed frommonopolar signals. The identified IZs from
each of the methods were compared with those estimated manually
based on visual inspection of the M waves by at least two
experienced investigators. These investigators reached an
agreement on IZ location prior to automated processing. The IZ
location from manual inspection was used as the reference for
quantifying the performance of the automated methods.

3 Results

Figure 2A shows one column ofMwaves in bothmonopolar and
bipolar configurations for a single subject. Visually, the IZ was
located near the channel at row 7. Figure 2B shows spatial
distribution of the 2nd component coefficients. Notice that the
position of the smallest coefficients was at row 7. The RT
method also identified the IZ at row 7 (Figure 2C). The
minimum correlation coefficient was between bipolar pair
row6—row7 and row 7—row8 (Figure 2D), which also indicated
that the IZ was located at row 7 based on the monopolar

FIGURE 3
An example ofmuscle IZ estimation from experimental high density Mwaves where differentmethods produced different results. (A): A column ofM
waves of a single subject. (B): PCA based IZ estimation; (C): RT based IZ estimation; (D): Cross correlation based IZ estimation; (E): Enlarged view of the
monopolar M waves from rows 3, 4, and 5. See text for details.
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configuration. These results reveal that IZ location was similar
across the three methods.

There were also examples where the different methods produced
different IZ locations (Figure 3). Figure 3A shows a column of M
waves in both monopolar and bipolar configurations from a different
subject. The IZ was located between row 5 and row 6 according to the
2nd principal component coefficients (Figure 3B) and at row
6 according to the maximum RT (Figure 3C). In contrast, the IZ
was located at row 4 (between bipolar pair row 3—row 4, and row
4—row 5) according to the minimum correlation coefficient
(Figure 3D). To explore possible reasons for the different
estimates, the associated M waves were visually examined. As
shown in Figure 3E, at the second phase of the M wave from row
4, there was a very short segment of saturation, which caused an
artificial phase reversal between the bipolar pair row3—row4, and
row4—row5, leading to misidentification of the IZ. Visual inspection
of the M waves revealed that the IZ was located between row 5 and
row 6. This was also confirmed from the differential signals as the
amplitude between row 5 and row 6 was close to 0.

In total, 54 columns of experimental signals were processed for IZ
estimation. Among them, 45 IZs (83%) estimated from the PCA,
34 IZs (63%) from the RT, and 30 IZs (56%) from the cross correlation
were the same as estimations based on visual inspection. Compared
with the visual estimations (reference IZs), the mean difference in
estimated IZ location was 0.12 ± 0.28 IED for PCA, 0.33 ± 0.41 IED for
RT, and 0.39 ± 0.74 IED for cross correlation.

4 Discussion

The ability to estimate muscle IZ through high density surface
EMG signals using linear or 2-dimensional electrode arrays may be
important clinically. A typical application is to guide BTX injection as
close as possible to the IZ for spasticity treatment (Lapatki et al., 2011),
(Kaymak et al., 2018). Voluntary contraction and electrical
stimulation of the motor nerve are two common ways to generate
surface EMG signals. The advantage of using electrical stimulation for
IZ estimation is that it can be applied in patients who are paralyzed or
lack the necessary voluntary control.Mwaves are commonly recorded
in a monopolar mode, which provides informative content of action
potential generation, propagation, and extinction (Rodriguez-Falces
and Place, 2018). Compared with a differential configuration,
monopolar recording can capture EMG signals from a larger
muscle volume. The loss of M wave signal due to phase
cancellation was more pronounced in bipolar than monopolar
recording (Tucker and Türker, 2005). Although M waves provide
a valuable signal source, its application for muscle IZ estimation has
been rarely explored in the literature.

The current study examined two methods of estimating IZ
location (PCA and RT) from monopolar M waves of the BB
muscles. The BB was chosen as it is often affected by spasticity
in patients with neurological disorders and is thus often a target
muscle for treatment. Compared with manual IZ detection by an
experienced investigator, the PCA based method achieved more
consistent performance than one based on RT. PCA and RT use
different computational approaches for IZ estimation. In PCA, a
simplified time misaligned data model shows that the 2nd principal
component coefficients are linearly related with the time delay of

different channels (Laguna et al., 2018). Therefore, the 2nd principal
component can be used for IZ estimation. The rationale of RT is that
it can be used to measure the projections of the line-scan image at a
range of angles and determine the propagation of waveforms. When
the RT is applied for IZ estimation, it is assumed that waveforms
propagate at a constant velocity on both sides of the IZ (Cescon,
2006). However, this is not always the case experimentally, as
illustrated from examples of the 2nd principal component
coefficients distributions (Figures 2, 3). This might be one reason
that the performance of RT is not as consistent as PCA.

The IZ was also estimated from cross correlation analysis
applied to bipolar M waves constructed from the monopolar
signals, and its performance was the least consistent relative to
the visual inspected IZ. In the correlation coefficient method, if one
monopolar channel is of poor signal quality, the constructed bipolar
configuration may be affected leading to errors in IZ location
(Figure 3). This was also demonstrated in our previous study
(Huang et al., 2022).

The experimental data sets used for evaluating IZ estimation
performance were limited to the BB of healthy subjects. Recordings
from other muscles in the future is desirable. It would be clinically
relevant to test patients with neurological disorders such as stroke.
The IED of the electrode array used in this study was 8 mm. This
limited the spatial resolution for IZ detection, but can be increased
by using a smaller IED. In addition, this study only considered a
single IZ in amuscle. The effects of possible multiple IZs on recorded
M waves needs further investigation, as they may compromise
accuracy of the estimated IZ (Piccoli et al., 2014), (Huang et al.,
2021) (Lateva et al., 2010).

In summary, the current study explored the feasibility of
estimating IZ using monopolar high density BB M waves. The
PCA based method was able to automatically detect muscle IZs
from monopolar M waves, demonstrating a performance most
consistent with manual detection by human operators. The
findings provide an alternative approach to voluntary
contractions for estimating the IZ, which has practical clinical
value for patients with compromised ability to voluntarily
activate their skeletal musculature.
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Effect of intracranial pressure on
photoplethysmographic
waveform in different cerebral
perfusion territories: A
computational study

Haipeng Liu1, Fan Pan2, Xinyue Lei2, Jiyuan Hui3, Ru Gong3,
Junfeng Feng3* and Dingchang Zheng1*
1Research Centre for Intelligent Healthcare, Coventry University, Coventry, United Kingdom, 2College of
Electronics and Information Engineering, Sichuan University, Chengdu, China, 3Brain Injury Center, Renji
Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

Background: Intracranial photoplethysmography (PPG) signals can be measured
from extracranial sites using wearable sensors and may enable long-term non-
invasivemonitoring of intracranial pressure (ICP). However, it is still unknown if ICP
changes can lead to waveform changes in intracranial PPG signals.

Aim: To investigate the effect of ICP changes on the waveform of intracranial PPG
signals of different cerebral perfusion territories.

Methods: Based on lump-parameter Windkessel models, we developed a
computational model consisting three interactive parts: cardiocerebral artery
network, ICP model, and PPG model. We simulated ICP and PPG signals of
three perfusion territories [anterior, middle, and posterior cerebral arteries
(ACA, MCA, and PCA), all left side] in three ages (20, 40, and 60 years) and four
intracranial capacitance conditions (normal, 20% decrease, 50% decrease, and
75% decrease). We calculated following PPG waveform features: maximum,
minimum, mean, amplitude, min-to-max time, pulsatility index (PI), resistive
index (RI), and max-to-mean ratio (MMR).

Results: The simulated mean ICPs in normal condition were in the normal range
(8.87–11.35 mmHg), with larger PPG fluctuations in older subject and ACA/PCA
territories. When intracranial capacitance decreased, the mean ICP increased
above normal threshold (>20mmHg), with significant decreases in maximum,
minimum, and mean; a minor decrease in amplitude; and no consistent change in
min-to-max time, PI, RI, or MMR (maximal relative difference less than 2%) for PPG
signals of all perfusion territories. Therewere significant effects of age and territory
on all waveform features except age on mean.

Conclusion: ICP values could significantly change the value-relevant (maximum,
minimum, and amplitude) waveform features of PPG signals measured from
different cerebral perfusion territories, with negligible effect on shape-relevant
features (min-to-max time, PI, RI, andMMR). Age andmeasurement site could also
significantly influence intracranial PPG waveform.

KEYWORDS

intracranial pressure (ICP), photoplethysmography (PPG), windkessel effect,
computational simulation, artery network, cerebral microcirculation
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1 Introduction

Intracranial pressure (ICP), defined as the pressure within the
craniospinal compartment, is an important physiological parameter
that reflects the biomechanical status of the brain. ICP is derived
from cerebral blood and cerebrospinal fluid (CSF) circulatory
dynamics. ICP can be significantly changed in many neurological
diseases (Czosnyka and Pickard, 2004). For decades, ICPmonitoring
has been a cornerstone of traumatic brain injury (TBI) management
(Stocchetti et al., 2014). Currently, external ventricular drain (EVD)
is considered as the gold standard of ICP monitoring due to its
accuracy with additional function of CSF drainage (Harary et al.,
2018). In EVDmeasurement, the ICP is transmitted into an external
saline-filled tube through a strain-gauge transducer for pressure
measurement. The insertion of the tube is invasive with a 5%–7%
risk of hemorrhage, and is difficult to perform in some patients with
inherently small ventricles size (Harary et al., 2018). To ease the
postoperative ICP monitoring especially in TBI patients, it is
essential to develop non-invasive methods of ICP monitoring.

The photoplethysmography (PPG) technology has been
applied in the daily monitoring of many physiological
parameters and may enable non-invasive long-term ICP
monitoring. The cyclic fluctuations of a PPG signal reflect
volumetric changes in the microcirculation, which is regulated
by many physiological factors, e.g., respiratory pattern, arterial
stiffness, and the mechanical properties of surrounding tissues.
Therefore, PPG signals derived from the distal area of intracranial
arteries might reflect ICP-related changes in cerebral
microcirculation. The infra-red PPG signals measured from
extracranial skin surface could reflect the intracranial
microcirculation in different cerebral perfusion territories (Viola
et al., 2013). A recent pilot study showed that the PPG signal
recorded non-invasively from forehead can detect apnea-induced
cerebral blood flow oscillations (Alex et al., 2019). In a pilot study
on 14 subjects, Morgan et al. (2021) estimated ICP using retinal
vein PPG signal and achieved clinically acceptable accuracy
(−0.35 ± 3.6 mmHg). These studies indicated that intracranial
PPG signals measured from extracranial areas might be a
promising tool for non-invasive ICP monitoring. However, it is
uncertain if ICP changes could generate waveform changes of
intracranial PPG signals, with a lack of theoretical basis and in-
depth analysis from a physiological perspective.

Computational modelling and simulation based on
biomechanical and hemodynamic theories have been widely
applied in the investigation of intracranial blood flow and ICP
(Liu et al., 2020b). Especially, the Windkessel model is a highly
simplified one where the resistance and compliance in the
circulatory system are simulated as resistors and capacitors in a
circuit (Alastruey et al., 2007). The unidirectional flow in the CSF
circulation can be simulated using diode elements (Ursino and Di
Giammarco, 1991). Recently, data-driven algorithms were proposed
to improve the accuracy of ICP simulation. It was suggested that ICP
can be computationally estimated from the cerebral blood flow and
blood pressure (Kashif et al., 2012). However, the biomechanical
properties of arteries are non-linear and age-dependent, which was
not fully considered in existing models of ICP simulation. Moreover,
the hemodynamic data in existing models were from invasive
measurement. The relationship between non-invasively measured

intracranial PPG and ICP has not been comprehensively
investigated using computational modelling.

To fill this research gap, we aim to develop a computational
model of intracranial PPG signals and investigate if the changes in
ICP could lead to the changes in intracranial PPG signals of different
cerebral perfusion territories (Figure 1).

2 Methods

2.1 Overview of the computational model

As shown in Figure 1A, we hypothesize that the changes in ICP
can lead to waveform changes in intracranial PPG signals. To verify
this hypothesis, we developed a computational model to simulate the
PPG signals of different cerebral perfusion territories in different
ICP conditions. The computational model consists of three parts: A
cardiocerebral artery network, an ICP model, and a PPG model
(Figure 1B). The cardiocerebral artery network simulated the blood
flow of intracranial arteries and the local blood pressure, which were
transmitted to the ICP and PPG models as model input. The ICP
signal derived from the ICP model was transmitted back to the
cardiocerebral artery networks to generate the boundary conditions.
At the same time, the ICP model generates the input of the PPG
model at microcirculatory level. In summary, the three parts are
interactive. All the components of the three parts are based on lump-
parameter Windkessel models. The computational models are

FIGURE 1
(A) Scientific hypothesis of this paper: changes in ICP values can
lead to PPG waveform changes which can be computationally
simulated. (B) Structure of the computational model. The arrows show
the data flows. ICP: intracranial pressure; PPG:
photoplethysmography.
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detailed in the following subsections. The parameters in the models
are listed in Table 1.

2.2 Cardiocerebral artery network

The cardiocerebral arterial network was based on the classic
brain circulation model proposed by Alastruey et al. (2007), with
outlet boundary conditions of intracranial arteries modified to

include the effect of ICP on cerebral microcirculation. The
cardiac output flow (i.e., the inflow of the aorta) was used as the
inlet boundary condition. The structure of the artery network starts
from the aorta and includes the major branches of intracranial
arteries (Figure 2). The intermediate (i.e., connecting other artery
segments without any inlet or outlet) branches included: ascending
aorta, aortic arch (in two segments), brachiocephalic artery,
common carotid arteries (left and right), subclavian arteries (left
and right), vertebral arteries (left and right), internal carotid arteries

TABLE 1 Data sources of the parameters in the computational models.

Models Data sources and references of the parameters

Cardiocerebral artery network Anatomic parameters of arteries: Table 1 of (Alastruey et al., 2007); Calculation of parameters of Windkessel elements: Eqs 1–3
and Table 1 of (Zhang et al., 2014)

Age-dependent non-linear arterial capacitance Parameters in age-dependent capacitance of aorta: Table 1 and Eq. 5 of (Wesseling et al., 1993); Parameters of age-dependent
capacitance of CCA: basic function from Table 1 and Eq. 1 of (Kopustinskas et al., 2010), References pressure (mean pressure of
healthy adults) from the subsection “Theoretical Background” and Eq. 1 of (Giudici et al., 2022), age-dependent capacitance
changes from Figure 2 of (Vriz et al., 2017)

ICP model Parameters of circuit elements in the ICP model: Table 1 of (Lee et al., 2015); Piecewise ICP function: References ICP value
(5 mmHg) from (Ryding, 2017) and (Alperin et al., 2000); parameter in the inverse proportional function from the subsection
“Assignment of Parameter Basal Values” of (Ursino and Lodi, 1997) and Figure 8 of (Ursino and Di Giammarco, 1991)

PPG model Values of distal resistance and capacitance: same as those in cardiocerebral artery network; Ratios between different
components: Table 1 of (Tanaka, 2022)

CCA, common carotid artery; ICP, intracranial pressure; PPG, photoplethysmography.

FIGURE 2
The structure of cardiocerebral artery network and the boundary conditions. The illustration of artery structure is adapted from Figure 2 of (Kang
et al., 2021).
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(left and right, both in two segments), basilar artery, as well as the
connecting arteries in the Circle of Willis, i.e., posterior
communicating arteries (left and right), anterior communicating
artery, and the first segments of anterior and posterior cerebral
arteries (left and right, for both). Each intermediate artery was
simulated using a three-element Windkessel model which consisted
of a resistor, a capacitor, and an inductor that reflected the
resistance, capacitance, and inductance of an elastic artery wall,
respectively (Figure 2). The anatomic properties of the arteries and
the methods of calculating the values of circuit elements can be
found in Alastruey et al. (2007) and Zhang et al. (2014) (Table 1).

Regarding the outlets, the extracranial ones included thoracic
aorta, brachial arteries (left and right), and external carotid arteries
(left and right). These arteries were connected to a 3-element
Windkessel model (Figure 2). The resistance included peripheral
and distal ones which denoted the flow resistances in the artery and
microcirculation, respectively. The outlet pressure was the venous
pressure (5 mmHg) which was simulated by a voltage source. For the
intracranial arteries (anterior, middle, and posterior cerebral
arteries, left and right for all), the outlet pressure at
microvascular level (i.e., prearteriole pressure) was derived from
the ICP value generated by the ICP model.

2.3 Age-dependent non-linear arterial
capacitance

To simulate the artery blood flow in different age groups, we
used age-dependent parameters in the Windkessel models of aorta
and common carotid arteries.

In the aorta model, we used the pressure-dependent Windkessel
capacitance element proposed by Wesseling et al. (1993). The
capacitance value depends non-linearly on the pressure:

CA P( ) � Amax · L
πP1 1 + P−P0

P1
( )

2
[ ]

(1)

where Amax is the maximal cross-sectional area, approximated as
5.8 cm2 for male adults, L is the length of aorta, P denotes the local
blood pressure, whilst parameter P0 and P1 are age-dependent
reference pressure values.

P0 � 76 − 0.98*age( )mmHg age ∈ 20, 70[ ] (2)
P1 � 57 − 0.44*age( )mmHg age ∈ 20, 70[ ] (3)

The biomechanical relationship between the capacitance of
common carotid artery and local blood pressure is described by a
non-linear exponential function:

CCCA P( ) � a · e−b·P t( ) (4)

where a � 3.14ml*mmHg−1, b � 0.018mmHg−1, and P(t) denotes
transient value of blood pressure in common carotid artery which is
a major source of the capacitance effect on intracranial blood flow
(Kopustinskas et al., 2010).

CCCA P( ) � CCCA Pref( ) · e−b· P t( )−Pref[ ]
· 1.3 − 0.012* age − 20( )[ ] age ∈ 20, 70[ ] (5)

where Pref � 100mmHg is an established value for mean pressure
of healthy adults and has been used in computational simulation
studies (Giudici et al., 2022). The age-dependent function is based
on a large-scale physiological measurement of common carotid
artery stiffness in 900 healthy subjects (Vriz et al., 2017).

2.4 ICP model

The computational model for continuous ICP simulation was
based on the classic model proposed by Ursino and Di Giammarco
(1991) which has been widely used in ICP estimation (Lee et al.,
2015). The model includes resistors and capacitors to simulate the
overall resistance and capacitance of intracranial arteries,
microcirculation, and veins, respectively (Figure 3). Two diodes
were used to simulate the unidirectional flow in the CSF circulation.

The intracranial capacitance is a piecewise function of ICP,
which is a constant when ICP< 5mmHg (venous pressure) and
depends non-linearly on ICP when ICP≥ 5mmHg:

C �
7.502*10−9*RatioCD ICP ∈[0, 666.5)

5*10−6

ICP
*RatioCD ICP ∈ [ 666.5,+∞)

⎧⎪⎪⎨
⎪⎪⎩

(6)

where the unit of ICP and intracranial capacitance are Pa and
m3/Pa, respectively. RatioCD denotes the ratio of intracranial
capacitance decrease, which is used to simulate the pathological
conditions due to the brain injury with acute increase of brain tissue
volume where ICP increases. The connection point of the two
subintervals (5 mmHg) was modified from the reference pressure
of 6 mmHg in (Ryding, 2017) to match the reference venous
pressure. The reference ICP value of 5 mmHg is also in
accordance with the clinical observation after the withdrawal of
CSF (Alperin et al., 2000). Both normal and pathological situations
were simulated, therefore, the parameter in the inverse proportional
function (5*10−6 m3, or 5 ml) was set marginally below the normal
range (6.66–20 ml) derive from (Ursino and Lodi, 1997) and within
the range used in the simulation of pathological situations
(1.92–6.41 ml) (Ursino and Di Giammarco, 1991).

2.5 PPG model

The PPG model was based on a cerebral microcirculation model
including arteriole, capillary, and venule components (Figure 4)
(Tanaka, 2022). The ratios of element values among the different
components were from physiological measurement results of human
cerebral circulation (Mandeville et al., 1999). The inputs of the
model include prearteriole pressure and ICP generated by the
cardiocerebral artery network and ICP model, respectively. The
PPG signals were generated from distal perfusion territories of
anterior, middle, and posterior cerebral arteries (ACA, MCA, and
PCA) on the left side. For the territory of a cerebral artery (e.g.,
MCA), the arteriovenous anastomoses in brain tissues were
simulated by a resistance between the middle points of arteriole
and venule components (RAVA-MCA in Figure 4). The PPG signal
was simulated as the voltage along the capacitance elements in the
Windkessel model (Figure 4). Therefore, the simulation result
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(“simulated PPG”) reflects the pressure drop on microvascular level
induced by the volumetric changes from which the PPG signal
originates, whereas the unit is in Pa instead of V or mV.

2.6 PPG waveform features

To quantitatively investigate the ICP-induced changes of PPG
waveform, we used five waveform features, as shown in Figure 5.
Besides the maximum and minimum (i.e., baseline) values, we
calculated the mean value as the integration of the PPG signal in

a cardiac cycle divided by the length of a cardiac cycle (T):
∫

T

0
PPG(t)dt
T ,

where PPG(t) is the transient value of simulated PPG signal, and
T � 0.8s. The amplitude was defined as the difference between the
maximum and the minimum: Amplitude � PPGmax − PPGmin.
The min-to-max period was defined as the length of the period
from minimum to maximum, which was named as rising time in
existing studies on finger PPG signals where the systolic period was
clearly observable (Khalid et al., 2020).

Based on the directly measured basic waveform features, we

calculated three secondary waveform features which have been

applied in hemodynamic research: pulsatility index (PI):

PI � PPGmax−PPGmin
PPGmean

; resistive index (RI): RI � PPGmax−PPGmin
PPGmax

,

and the ratio between maximum and mean values of PPG

signal, i.e., max-to-mean ratio (MMR): MMR � PPGmax
PPGmean

. The

definitions of PI and RI were in accordance with those in 4D

flow magnetic resonance imaging (MRI) observation of cerebral

microcirculation based on flow velocity (Rivera-Rivera et al.,

2015).

2.7 Simulation and evaluation

The simulation was performed on MATLAB-Simulink
(Version: r2021a, MathWorks, Natick, MA, United States).
We simulated the ICP and PPG signals in male subjects of
three ages: 20, 40, and 60 years old. The simulation was repeated
in four pathophysiological conditions of intracranial

FIGURE 3
ICP model. (A) Electric analog of the human intracranial hydrodynamics for ICP simulation. R1-1, R1-2, and Ci-1: hydraulic resistance and
compliance of the proximal arterial cerebrovascular bed (basal brain arteries and large pial arteries), respectively; R2-1, R2-2, and Ci-2: hydraulic
resistance and compliance of the distal arterial cerebrovascular bed (medium and small pial arteries), respectively; Cic: intracranial tissue compliance; Cvi:
intracranial venous compliance; Rpv: hydraulic resistance of the proximal venous cerebrovascular bed; Rdv: hydraulic resistance of the distal venous
cerebrovascular bed (lateral lacunae and bridge veins); Rf: CSF formation resistance; Ro: CSF outflow resistance; Rve and Cue: hydraulic resistance and
compliance of the extracranial venous pathways; Pcv: central venous pressure. (B) The piecewise function between ICP and intracranial capacitance.
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capacitance decrease: 0 (i.e., normal status), 25%, 50%, and 75%.
To verify the model, the ICP values simulated at normal
condition were compared with the results of existing
physiological measurement. Each simulation lasted 30 s. To
avoid any initial effect, the features were measured in the first
cardiac cycle after 10 s when the signal was stable. The PPG
waveform features derived were quantitatively compared
between different intracranial capacitance conditions to
investigate if ICP changes could lead to the waveform changes
of intracranial PPG signals.

3 Results

3.1 Model validation: ICP and PPG
waveforms in different ages

As shown in Figure 6, the simulated ICP signals of 20, 40, and
60 years old subjects with normal intracranial capacitance have
minor differences in waveform but are similar in range:
9.31–11.12, 9.13–11.35, and 8.87–11.68 mmHg, with nearly
identical mean values of 11.12, 11.35, and 11.68 mmHg
(Figure 7). These mean ICP values were within the normal range
of healthy adults: 10–15 mmHg (Rangel-Castillo et al., 2008).

As to the PPG waveform, it can be observed that PPG signals of
ACA, MCA, and PCA territories are similar in amplitude and baseline,
but different in waveform (Figure 6). There is no sharp fluctuations in
the PPG waveform, which is in accordance with the fact that high-
frequency components (i.e., sharp fluctuations) are absorbed by the
capacitance of large arteries before arriving arterioles. The results of
simulated PPGwaveform features in Table 2 are in accordance with the
4DMRI flow observations that PI is large in PCA comparedwithMCA,
and in older subjects (Rivera-Rivera et al., 2015).

As a more general case of all the simulations, Figure 7 shows the
simulated waveforms of arterial blood pressure, PPG, and ICP of a
40 years old subject with 25% decrease of intracranial capacitance. It
can be observed that the dicrotic notch and secondary peak are
blurred with a flat systolic peak in the arterial blood pressure of
intracranial arteries, which reflects the buffering effect of
intracranial capacitance on the pulse wave (i.e., neutralization of
backward wave) and is basically in accordance with existing
modelling studies (Blanco et al., 2017; Schollenberger et al., 2021).

FIGURE 4
The structure of microcirculatory model to generate the PPG signal in MCA territory. RA1-MCA and RA2-MCA: equally divided arteriole resistances.
RC-MCA: capillary resistance. RV2-MCA and RV1-MCA: equally divided venule resistances. CC-MCA: capillary capacitance. CV1-MCA and CV2-MCA:
equally divided venular capacitances.

FIGURE 5
Basic waveform features of a simulated PPG signal in a cardiac
cycle.
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Therefore, the model can reliably simulate the ICP values in
subjects with different ages, and reflect the waveform features of
human cerebral microcirculation in different perfusion
territories.

3.2 ICP values in different intracranial
capacitance conditions

As shown in Figure 8, ICP increases when intracranial
capacitance decreases. Between different ages, the differences in
maximum and minimum of ICP are very limited, while the
difference in mean ICP is even negligible. With 50% decrease of
intracranial capacitance, the mean values of ICP in all three ages are
above 15 mmHg (16–16.1 mmHg), which is beyond the normal
range (7–15 mmHg). With 75% decrease of intracranial capacitance,
the mean values of ICP in all three ages are marginally beyond
20 mmHg (20.2–20.3 mmHg) where clinical intervention is
recommended (Rangel-Castillo et al., 2008).

3.3 PPG waveform features in different
intracranial capacitance conditions

Figure 9 and Figure 10 illustrate the effects of age and
intracranial capacitance condition on the basic and secondary
PPG features in different cerebral perfusion territories.

In Figure 9, the maximum, minimum, and mean values
significantly decrease with intracranial capacitance, while the ICP
increases from <11.5 mmHg to hypertensive condition (>20 mmHg).
Meanwhile, there is a minor decrease in amplitude. In contrast, there is
no consistent changes in min-to-max time or any secondary waveform
feature (Figure 10) where themaximal relative difference is less than 2%
among all intracranial capacitance conditions.

On the other hand, we observed significant effects of age and
cerebral perfusion territory on all the waveform features. When age
increases, maximum, amplitude, PI, RI, andMMR are higher, while the
minimum and min-to-max time are lower, with negligible changes of
themean. Compared with PCA andACA territories,MCA territory has
lower maximum, minimum, amplitude, PI, RI, and MMR, with lower
age-relevant differences in min-to-max time (Figure 9 and Figure 10).

4 Discussion

4.1 Summary of results

In this study, based on lump-parameterWindkessel models with
age-dependent non-linear elements, we simulated the effect of ICP
increase due to intracranial capacitance decrease on the waveform
features of PPG signals of different cerebral perfusion territories in
subjects of different ages. The simulation results showed that ICP
changes could significantly influence the maximum, minimum,
and amplitude of PPG signals, with limited effect on min-to-max

FIGURE 6
Simulated ICP and PPG waveforms during five cardiac cycles (10–14s) in 20, 40, and 60 years old healthy male subjects with normal intracranial
capacitance.
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FIGURE 7
Arterial blood pressure, PPG, and ICP waveforms in a 40-years old subject with 20% decrease of intracranial capacitance. The illustration of artery
structure is adapted from (Kang et al., 2021).

TABLE 2 Simulated PPG waveform features in normal intracranial capacitance.

ACA MCA PCA

Age (years) 20 40 60 20 40 60 20 40 60

PI 0.134 0.178 0.222 0.114 0.147 0.182 0.137 0.181 0.226

RI 0.127 0.165 0.201 0.108 0.138 0.167 0.130 0.167 0.205

MMR 1.052 1.081 1.104 1.047 1.069 1.085 1.050 1.079 1.104

PI, pulsatility index; RI, resistive index; MMR, max-to-mean ratio.

FIGURE 8
The maximum, minimum, and mean values of ICP in a cardiac cycle in different intracranial capacitance conditions.
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time, PI, RI, and MMR. As far as we know, this is the first study that
quantitatively investigates the effect of ICP on the waveform features
of intracranial PPG signals using computational simulation.

4.2 Clinical need on non-invasive ICP
monitoring: A wearable pathway via PPG?

Recent years have witnessed the development of non-invasive
ICP monitoring technologies, including transcranial Doppler

measurement of cerebral blood flow, near-infrared spectroscopy
(NIRS), tympanic membrane displacement (TMD) (Lee et al., 2020),
ophthalmodynamometry (Nag et al., 2019), optic nerve sheath
diameter (ONSD) analysis based on ultrasound (i.e., transcranial
Doppler) or radiological [e.g., computed tomography (CT), MRI,
and optical coherence tomography (OCT)] data, and other imaging-
based methods (e.g., analysis of CT-derived ratio of CSF volume to
the total intracranial volume) (Harary et al., 2018; Nag et al., 2019).
These techniques enable the non-invasive measurement of ICP in
clinical practice. However, these methods depend on expensive

FIGURE 9
The basic waveform features of the simulated PPG signals in different intracranial capacitance conditions.
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devices or clinical imaging data, which require professional skills of
operation and data processing. Considering the risk of infection and
limited medical resources, the postoperative ICP monitoring was
often performed for a couple of days or a week for invasive and non-
invasive methods, respectively, despite its clinical significance
(Chang et al., 2019; Chang et al., 2021). To achieve better
postoperative management of TBI patients, there is a high
clinical need for easy-to-perform and low-cost techniques of
non-invasive long-term ICP monitoring.

Compared with existing techniques, PPG signals can be detected
from different body sites using low-cost wearable sensors without
any need for expertise or training. PPG technology has been widely
used in healthcare monitoring and early detection of cardiovascular
diseases (Allen, 2007; Liu et al., 2019). Transcranial Doppler
ultrasonography (TCD) and servo-controlled finger PPG have
been applied in continuous bedside monitoring of cerebral blood
flow and blood pressure, as well as the evaluation of cerebral
autoregulation (Aries et al., 2010). Some pilot studies showed
that PPG waveform features may indicate pathological
hemodynamic changes in cerebral circulation on which ICP has
a strong influence. The amplitude of PPG signals measured from
bilateral index fingers is associated with cerebral artery stenosis
(Kang et al., 2018). The TCD-derived PI and PPG waveform are

associated with cerebrovascular hemodynamic changes in the
patients with the disorder of consciousness (Liu et al., 2016).
Morgan et al. (2014) developed a modified PPG system using
video recordings taken through an ophthalmodynamometer and
timed to the cardiac cycle to investigate the phase lag between retinal
venous and arterial pulses. Based on this modified PPG system,
Abdul-Rahman et al. (2020) recently estimated ICP value from
retinal vascular pulse wave attenuation. Abnormal morphological
and biomechanical properties of retinal veins have been proven to be
biomarkers to guide diagnosis and management of elevated ICP
(Moss, 2021). In accordance with existing studies, our results
provided new evidence that waveform features (i.e., maximum,
minimum, mean, and amplitude) of intracranial PPG signals
could reflect the changes in ICP. Therefore, PPG technology may
enable the non-invasive long-term ICP monitoring.

Meanwhile, the majority of existing studies on PPG-assisted
ICP monitoring are based on the PPG signals of fingers, retina, or
other extracranial sites. The transcranial brain PPG technology
was developed to study the venules of cerebral cortex (Viola et al.,
2013) but has not been applied in ICP monitoring. Our results
provide new reference on ICP estimation based on intracranial
PPG signals which directly reflect the status of cerebral
microcirculation.

FIGURE 10
The secondary waveform features of the simulated PPG signals in different intracranial capacitance conditions.
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4.3 ICP-relevant PPG waveform features

We observed that ICP significantly influenced the value-related
waveform features (i.e., maximum, minimum, mean, and
amplitude), with negligible effect on shape-related ones
(i.e., min-to-max time, PI, RI, and MMR). Especially, the ICP
changes did not generate any consistent differences in PI, which is
in accordance with Fernando et al.‘s observation in a recent
systematic review that PI derived from TCD signal (TCD-PI)
has poor accuracy in estimating ICP (range of area under the
receiver operating characteristic curve: .550–.718) (Fernando et al.,
2019). Here we try to provide an initial explanation on this
phenomenon from a physiological perspective based on our
computational model. The changes in intracranial capacitance
influence the ICP, thus the boundary conditions of intracranial
arteries in the cardiocerebral artery network. However, the
fluctuations of ICP signals in a cardiac cycle are limited
(amplitude<5 mmHg, Figure 6 and Figure 8). Thus, the increase
of ICP changes the value of outlet pressure in the model, without
generating much pulsatility at the outlets. On the other hand, ICP
is much lower in value than the blood pressure, which does not
change the biomechanical properties of the vessel wall on both
macro- and microvascular levels. Therefore, ICP can significantly
change the value-related PPG waveform features of ICP with
minor effect on the shape-related ones.

4.4 Role of other physiological factors in
ICP-induced PPG waveform changes

We observed strong effects of age and measurement site
(i.e., cerebral perfusion territory) on intracranial PPG
waveform features. The PPG waveform depends on many
physiological features including age, measurement site, blood
pressure, respiratory pattern, and neural activities (Liu et al.,
2020a). The biomechanical properties of the cardiovascular
system (e.g., arterial stiffness) depends on the age. In Figure 9,
age-related changes in PPG waveform features are more
significant than ICP-related ones. Age-adjusted analysis can be
considered in PPG-based ICP estimation. However, the effect of
age on the mean is negligible, which indicates that the normal
intensity of cerebral microcirculation is unaffected by age (Cidis
Meltzer et al., 2000).

PPG waveform also strongly depends on the blood pressure
value and can be used for blood pressure estimation (Allen, 2007).
The combination of TCD and blood pressure showed much higher
accuracy than the TCD-PI method in estimating ICP (Fernando
et al., 2019). Ruesch et al. (2020) investigated the estimation of ICP
based on cerebral blood flow measured by diffuse correlation
spectroscopy, and found an obvious improvement in accuracy
when mean arterial blood pressure was included (R-squared
values: .82 and .92). Furthermore, the ICP-induced dysfunction
of cardiorespiratory system and cerebral autoregulation can lead
to complex changes in cerebral microcirculation and resultant PPG
waveform (Winklewski et al., 2019). Therefore, other physiological
factors and their interactions deserve further consideration in
investigating the relationship between ICP and PPG waveform
features.

4.5 Towards better accuracy:
Individualization of arterial parameters and
venous model

The proposedmodel consists of 33 artery segments from aorta to
the Circle of Willis. To generate reliable simulation results for
clinical application, the biomechanical properties of the arteries
need to be evaluated individually in different subjects. In this model,
the biomechanical and anatomic properties of the arteries were
derived from some earlier physiological measurement results
(Stergiopulos et al., 1992; Fahrig et al., 1999; Moore et al., 2006)
where the properties distributed in wide ranges. We noted that the
parameters of vascular anatomy in Alastruey et al. (2007) and Zhang
et al. (2014) models were not exactly the same. All the values fell in
the normal ranges, whilst the differences in anatomic parameters
provided a chance to observe the effect of individual vascular
anatomy on the simulated ICP and PPG signals. Figure 11 shows
the simulation results of a 40-year old male subject with 25%
decrease in intracranial capacitance based on Alastruey et al.
(2007) and Zhang et al. (2014) arterial models (scenarios 1 and
2, respectively), with the parameters of other parts identical. The
ICPs of both scenarios are similar in range but different in
waveform. The PPG signals of both scenarios are different in
range and waveform, whereas, similar trends can be observed,
i.e., the PPG of MCA territory is lower in amplitude, maximum,
and minimum compared with those of ACA and PCA territories.
Therefore, this model initially indicated the possibility of PPG-based
ICP estimation, while there is a long way to explore towards
individualization of the model where patient-specific anatomic
data are essential.

In addition, the simulated ICP has one or two peaks, while in
vivo ICP often has three peaks in a cardiac cycle: P1 (percussion
wave), P2 (tidal wave), and P3 (dicrotic wave) (Harary et al., 2018).
This might partly due to the simplification of venous circulation and
its interaction with ICP. Although the precise origin of ICP peaks is
not fully understood yet, P2 and P3 are often thought relevant to the
retrograde venous pulse of the jugular against the cortical veins
(Rodríguez-Boto et al., 2015). In the classic ICP model which we
adopted, the cerebral venous system was simplified as a unilateral
flow dependent on ICP (Ursino and Di Giammarco, 1991; Lee et al.,
2015). Some advanced mathematical models have been proposed to
describe the non-linear hemodynamic properties of cerebral veins
(Toro, 2016). However, these models have not been fully validated
on patients with different ICP levels. Considering the complexity
and individual difference of cerebral venous system, patient-specific
hemodynamic data (e.g., MRI-derived flow) are essential in the
individualization of the cerebral circulation model measurement
(Müller and Toro, 2014). A computationally efficient model that
reflects the interaction between ICP and intracranial venous system
is essential for improving the accuracy of ICP waveform estimation.

4.6 Limitations and future directions

There are some limitations in this pilot study. First, as
aforementioned, the model was an idealized one where the values
of elements and boundary conditions were derived from literature.
Considering the individual difference in waveform which may

Frontiers in Physiology frontiersin.org11

Liu et al. 10.3389/fphys.2023.1085871

184

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1085871


involve other confounders, we did not include the analysis of focal
waveform features, e.g., the location of maximal/minimal first or
second derivatives. These features may reflect important
physiological information including neural activities (Khalid
et al., 2022) and cardiovascular pathophysiological changes
(Elgendi et al., 2018). Second, the Windkessel models were highly
simplified where the local hemodynamic changes within an arterial
segment or a perfusion territory could not be reflected. For
simplification, the aging effect was only considered in aorta and
big arteries. The aging effects on cerebral vasculature (Oudegeest-
Sander et al., 2014; Graff et al., 2021) and veins (Fulop et al., 2019;
Huang et al., 2021) were not included in the proposed model due to
the lack of comprehensive measurement results among subjects with
different ages and ICP levels. Cerebral autoregulation and
respiration can also significantly influence the dynamics of ICP
(Budohoski et al., 2012; Vinje et al., 2019). In addition, the ICP
model was simplified as a unidirectional flow system where the
interactions between cerebral ventricles were not included. The PPG
signals was also highly simplified as the pressure drop due to
volumetric changes. The optical and electronic components were
not included. In real-world scenarios, the PPG signals are sensitive
to many physiological and technical factors, e.g., motion artefact,
contact pressure, etc., which can significantly deform the PPG

signals (Fine et al., 2021). It needs further validation whether the
ICP-related changes can be reliably detected from the real-world
noisy PPG signals. Most importantly, the ICP values were generated
by setting different intracranial capacitance decrease levels, while an
elevated ICP could be generated by different pathological
mechanisms where multiple physiological factors are involved.

In future studies, by introducing patient-specific
biomechanical parameters and hemodynamic parameters as
boundary conditions, using more advanced biomechanical
models (e.g., venous valves, starling resistors) especially in
cerebral venous system (Toro et al., 2022), adding optical
sensing components, and including more physiological factors
(e.g., respiratory regulation), the relationship between ICP and
the waveform features of intracranial PPG signal could be further
investigated in different pathological conditions.

5 Conclusion

ICP values could significantly change the value-relevant
(maximum, minimum, mean, and amplitude) waveform features
of PPG signals measured from different cerebral perfusion territories,
with negligible effect on shape-relevant features (min-to-max time, PI, RI,

FIGURE 11
The ICP and PPG signals simulated in two scenarios with different values of the elements in cardiocerebral artery network.
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andMMR). In addition, age andmeasurement site significantly influence
all PPG waveform features except the mean.
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Coronary artery segmentation is an essential procedure in the computer-aided
diagnosis of coronary artery disease. It aims to identify and segment the regions of
interest in the coronary circulation for further processing and diagnosis. Currently,
automatic segmentation of coronary arteries is often unreliable because of their
small size and poor distribution of contrast medium, as well as the problems that
lead to over-segmentation or omission. To improve the performance of
convolutional-neural-network (CNN) based coronary artery segmentation, we
propose a novel automatic method, DR-LCT-UNet, with two innovative
components: the Dense Residual (DR) module and the Local Contextual
Transformer (LCT) module. The DR module aims to preserve unobtrusive
features through dense residual connections, while the LCT module is an
improved Transformer that focuses on local contextual information, so that
coronary artery-related information can be better exploited. The LCT and DR
modules are effectively integrated into the skip connections and encoder-
decoder of the 3D segmentation network, respectively. Experiments on our
CorArtTS2020 dataset show that the dice similarity coefficient (DSC), Recall,
and Precision of the proposed method reached 85.8%, 86.3% and 85.8%,
respectively, outperforming 3D-UNet (taken as the reference among the
6 other chosen comparison methods), by 2.1%, 1.9%, and 2.1%.

KEYWORDS

coronary artery segmentation, 3D-Unet, local contextual transformer, dense residual
connection, convolutional neural network

1 Introduction

Cardiovascular disease is a major cause of death worldwide and its most common
manifestation is coronary artery disease (CAD) (Jayaraj et al., 2019). Early diagnosis of CAD,
especially coronary artery stenosis and atherosclerosis, is essential for subsequent treatment.
As a non-invasive screening method, Computed Tomography Angiography (CTA) has been
widely used for this purpose (Raff, 2007). However, coronary CTA (CCTA) images have the
typical shortcomings of medical images, such as unbalanced foreground-background
distribution, small targets, and unstable image quality (Kroft et al., 2007). This instability
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results from differences in scanning equipment and variations in
patient motion during scanning, which affect the consistency of
image quality. Radiologists can manually assess the site of stenosis
and plaque in coronary arteries, but this is not only time-consuming
but also prone to misdiagnosis and omission (Ghekiere et al., 2017).
Furthermore, clinical workforce resources are limited, so there is a
drive to employ computers to help physicians analyze coronary
artery images. Segmentation of coronary arteries in these images is a
prerequisite for automating the diagnosis and analysis these tissues.
(Mihalef et al., 2011; Tesche et al., 2018). Given the current
difficulties in automated diagnosis of CCTA images, there is a
need to develop more effective methods for segmenting the
coronary arteries contained therein.

In previous research, traditional methods have achieved some
notable success in the field of vessel segmentation. These methods
include techniques based on image processing, morphological
operations, and traditional machine learning algorithms. More
than 10 years ago, Lesage et al. (2009) provided further insights
into vessel segmentation approaches, which do not involve deep
learning. These include the use of region-based methods, edge
detection, and active contour models, among others. Orujov et al.
(2020) proposed a contour detection algorithm for retinal blood
vessels using Mamdani (Type-2) fuzzy rules; the method enhanced
contrast with contrast-limited adaptive histogram equalization,
removed noise using a median filter, calculated image gradients,
and classified pixels as edges based on fuzzy rules considering
gradient magnitude and direction, ultimately obtaining
segmentation of the blood vessels. Yang et al. (2020) proposed an
improved multi-scale enhancement method based on Frangi
filtering to enhance the contrast between vessels and other
objects in the image, and used an improved level set model to
segment vessels from both the enhanced and original grayscale
images. Cheng et al. (2015) applied thresholding and
morphological operations to preprocessed images, obtaining an
initial outline of blood vessels, which were then segmented using
an active contour framework based on a B-snake model with a
constraint force to prevent leakage into adjacent structures. Kerkeni
et al. (2016) proposed a multiscale region growing (MSRG)
technique for segmenting coronary arteries in 2D X-ray
angiography images, beginning with image enhancement using a
multi-scale vascularity filter and a contrast enhancement technique,
followed by identifying initial seed points by thresholding and
manually selecting points with a high density of vascularity, and
finally employing an iterative region growing approach to obtain the
segmentation. Although these methods have to some extent helped
address vessel segmentation tasks, they still have shortcomings, such
as sensitivity to noise, dependency on manual intervention, and
difficulty in handling complex vessel structures or poor contrast
images.

Recently, deep learning methods have performed extremely well
in the segmentation of medical images and have been shown to
significantly outperform traditional methods in accuracy. Artificial
intelligence has also found extensive applications in cardiothoracic
fields, particularly in diagnostic imaging (Sharma et al., 2020). UNet
(Ronneberger et al., 2015) is a classical network in the field of
biomedical image segmentation and has become a benchmark in this
domain (Liu et al., 2020). The network has a U-shaped structure
consisting of an encoder, a decoder, and skip connections, which

allow it to acquire both spatial and semantic information
simultaneously. 3D-UNet (Çiçek et al., 2016), as an extension of
UNet, is used for 3D image segmentation. The input is a volume
instead of a slice so that interslice information can be exploited, and
the convolution operation is changed from 2D to 3D accordingly. A
typical 3D-UNet consists of four stages for both the encoder and the
decoder. VNet (Milletari et al., 2016), which has also been proposed
for processing 3D medical images, is similar to 3D-UNet in terms of
network structure. The differences are that it uses convolution
operations instead of pooling operations for upsampling and
downsampling, and it also introduces residual connections in
both the encoder and decoder.

Due to its excellent performance, many studies have employed
3D-UNet as a baseline network and improved upon it. As to the
encoding and decoding path, some variants of 3D-UNet add residual
connections to the convolution and deconvolution operations in the
encoding and decoding stages (Lee et al., 2017; Qamar et al., 2020).
Furthermore, some variants of 3D-UNet introduce dense
connections between the fine and coarse feature maps to improve
the transfer of feature information (Li et al., 2018; Bui et al., 2019;
Zhang Y et al., 2020; Pan et al., 2021). Song et al. (2022) incorporated
dense blocks into the encoder for effective feature extraction and
applied residual blocks to the decoder for feature rectification.
Several works have introduced attention mechanisms into UNet
(Islam et al., 2020; Jin et al., 2020; Li et al., 2021). For example,
channel attention (Li et al., 2021) and spatial attention (Islam et al.,
2020) have been added to the decoder. Spatial attention focuses
more on the target region, while channel attention estimates the
importance of individual features. However, accurate segmentation
of medical images requires rich contextual information to resolve
ambiguities, and these methods do not make effective use of such
information.

The Transformer model (Vaswani et al., 2017) proposed in the
Natural Language Processing field has fundamentally changed the
way that machines work with text data. Inspired by this, many recent
studies have adapted the Transformer model for computer vision
applications. For instance, Vision Transformer (Dosovitskiy et al.,
2021) divides images into fixed-size patches, and these patches are
regarded as words and fed into the Transformer for image
recognition. Related works that utilize the Transformer for
medical image segmentation have also performed well. VT-UNet
(Peiris et al., 2022) uses window-based Transformers as encoders
and decoders to construct a U-shaped network for 3D Tumor
Segmentation. UNETR (Hatamizadeh et al., 2022) applies the
original Transformers as encoders in a U-shaped network to
learn the input representation and capture global multi-scale
information, while the decoders remain as traditional
convolutional modules. UCTransNet (Wang et al., 2022a)
introduces the channel Transformer to replace the skip
connection of U-Net for more effective encoder-decoder feature
connection and hence more accurate segmentation of medical
images. AFTer-UNet (Yan et al., 2022) replaces the convolution
with a Transformer in the last layer of the UNet. MT-UNet (Wang
et al., 2022b) proposes a mixed Transformer and embeds it into the
deeper layers of UNet. The mixed Transformer first calculates self-
affinities using an efficient local-global self-attention mechanism
and then exploits the relations between data samples with an
external attention.
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Besides the improvements in UNet and the introduction of the
attention mechanism, several other network architectures have been
employed for coronary artery segmentation. Lei Y et al. (2020)
introduced an improved 3D attention into a fully convolution
network (FCN) to automatically segment the coronary arteries in
CCTA images. Tian et al. (2021) used VNet for initial segmentation
and then used region growing to further segment the image, thus
obtaining complete and smooth-edged coronary arteries. Gao et al.
(2021) conducted coronary centerline extraction and lumen
segmentation jointly on CCTA images to address the breakage
issue, employing a Graph Convolutional Network (GCN) for the
segmentation of the coronary lumen. Some studies use specific
features of coronary vessels for segmentation. For instance, Kong
et al. (2020) focused more on the anatomical structure of coronary
arteries and proposed incorporating a tree-structured convolutional
gated recurrent unit into the fully convolutional neural network. Ma
et al. (2020) are more concerned with the continuity of the vessels
and used a novel region growing method to segment coronary
arteries, which considers a variable sector search area within each
region. Wolterink et al. (2019) focused more on tubular surfaces and
employed graph convolutional networks to forecast the spatial
coordinates of vertices within a tubular surface mesh, thus
segmenting the lumen of the coronary artery. Other studies have
adopted a two-stage framework to achieve coronary artery
segmentation in CCTA images. For instance, in the first stage,
cardiac segmentation is performed, followed by slicing the
cardiac region and segmenting the coronary arteries within the
local sliced region. This procedure can alleviate the foreground-
background imbalance problem (Dong et al., 2022). Wang et al.
(2022c) adopted a similar approach in which the first stage involves a
rough segmentation of the 3D image and in the second, the
segmentation network is fed with the original 2D images and the
2D images resulting from slicing the 3D segmentation.

However, these existing methods still have shortcomings and we
aim at tackling some of them in this work. First, as a proportion of
the coronary arteries are of small diameter and thus appear as very
thin lines in images, simply increasing the number of convolutional
layers in the encoding or decoding blocks of UNet would not
improve the segmentation accuracy, because the information in
the shallow-layer features, which is necessary for segmenting details,
may be lost when the convolution operation goes deeper. Although
the traditional residual module (He et al., 2016) can complement the
shallow-layer information, it is not sufficient for coronary artery
segmentation (as demonstrated in Table 4 in the results and
discussion section). Existing research has explored the idea of
combining residual learning and dense connections to enhance
feature extraction and fusion capabilities in 2D image recognition
tasks (Zhang Z et al., 2020; Zhang et al., 2021). However, these
approaches are tailored for specific tasks and datasets, and directly
applying them to 3D-UNet could result in a large network due to its
dense concatenation. Therefore, there is a need to adapt this concept
and we have consequently proposed a module specifically designed
for 3D coronary artery image segmentation. Second, with similar
Hounsfield Unit (HU) values, the feature representations of
coronary arteries in the inner layers of a CNN network are likely
to be similar to those of other blood vessels such as veins and the
ascending aorta. To deal with this, the attention mechanism can be
used to enhance the weighting of the coronary regions. However,

traditional self-attention computes an attention matrix based on
isolated query-key pairs, which may focus more on segmenting the
main part of coronary artery and ignore the ends and regions with
low concentrations of contrast medium. There has been research on
transformers that focus on local context information (Li et al., 2022),
and this has been used for 2D image recognition. However, this
approach does not simultaneously extract local context information
for Q and V, which may limit its feature representation ability. There
is a need for a module suitable for 3D-UNet networks for
segmentation tasks and to improve the attention mechanism to
better capture the local context information of Q and V. This will
enhance the feature representation ability of the network.

Therefore, we aim to extract and fuse a greater number of deep
and shallow features than the residual module. To this end, we
propose the Dense Residual (DR) module, which is continuously
supplemented with preceding convolution features during the
convolution process, thus improving the encoding and decoding
block of UNet. Then, aiming to concentrate more on the local
characteristics of the coronary arteries and reduce the noise
information from other organs, we propose the Local Contextual
Transformer (LCT) module, which focuses more on the local
contextual information by obtaining an attention matrix based
on query and contextual-information-enhanced key pairs. In
particular, we apply the LCT module after each encoding block
to provide more informative features to the decoding block, instead
of simply using the skip connection, so that the decoding procedure
can focus more on the region’s neighboring the coronary arteries.
Using these modules, we have conducted extensive experiments on
our CorArtTS2020 dataset and compared the results to the most
widely used image segmentation method 3D-UNet and six other
segmentation networks commonly used in coronary artery
segmentation studies. The code of the proposed method is
available at https://github.com/qianjinmingliang/Coronary-Artery-
segmentation-with-LCTUnet.

2 Materials and methods

2.1 Dataset

The dataset used for the experiment (CorArtTS 2020) was
provided by the General Hospital of the Northern Theater
Command in China. It is a modified version of the one used in
our previous work (Song A. et al.) and was acquired using a Philips
iCT 256 Scanner, running a 120 kVp protocol. Each slice had a width
and height of 512 pixels, and the interval between adjacent slices was
0.45 mm. Each case consisted of between 310 and 390 slices. As
shown in Table 1, the CorArtTS2020 dataset consists of 81 cases, of
which the numbers of normal subjects and patients were 40 and 41,
respectively. The data were randomly divided into training,
validation, and test sets in the ratio of 6:1:3, respectively.

TABLE 1 The CorArtTS2020 dataset.

Training set Validation set Testing set

Normal subjects 24 cases 4 cases 12 cases

Patients 25 cases 4 cases 12 cases
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The annotation process, summarized in Figure 1, was performed
by three experienced radiologists from the same hospital. Initially,
data were acquired from the radiology department of the hospital,
and the radiologists underwent training to familiarize themselves
with the anatomical features and distribution of coronary arteries in
CCTA images (Data Acquisition and Preparation). Utilizing
specialized medical image processing software, Mimics
(Materialise), they carefully annotated the visible contours and
branches of the right coronary artery, the left coronary artery,
and their branches using the coronal, sagittal, and axial planes
(Data Annotation). Upon completion of the annotation process,
another experienced cardiovascular imaging radiologist from the
same hospital reviewed the annotations (Review). If inaccuracies
were found, they were corrected under the guidance of the reviewing
radiologist (Correction of Annotations). This iterative and
collaborative review process helped to ensure the accuracy of the
final labels. Finally, a last check was made to confirm the correctness
of all annotations (Final Verification).

Figure 2A provides an example of the annotation process
conducted on the Mimics medical image processing software
interface, with the annotated regions of the coronary arteries
highlighted in yellow. Correspondingly, Figure 2B displays the
original CCTA images prior to the annotation process.

The CCTA data require pre-processing before being fed into the
segmentation network, because different tissues have different
radio-densities, giving rise to a wide range of HU values.
Highlighting the coronary arteries can improve the segmentation
result. However, there is no clear definition of the exact range of HU
values for coronary arteries (Marquering et al., 2005; Liu et al., 2013).
For our dataset, we therefore conservatively limit the range of HU
values in the CCTA data to be within the interval [−260,760] HU,
under the guidance of the physicians, and we note that it may not be
generalizable to other medical imaging modalities. The result of the

data pre-processing is shown in Figure 3. It is notable that the pre-
processing effectively removes irrelevant tissues and some noise, as
shown in the green box, while making the coronary arteries (red
arrows) more distinct. To ensure fair comparison we also used the
pre-processed data for all the other comparison methods (Milletari
et al., 2016; Çiçek et al., 2016; Lee et al., 2017; Li et al., 2018; Islam
et al., 2020; Wang et al., 2022a; Hatamizadeh et al., 2022).

2.2 Structure of the DR-lct-unet

The proposed network structure for coronary artery segmentation
is based on the 3D-UNet, to which we have made three modifications.
Firstly, the LCT module, which is a novel Transformer-style attention
module, is developed to bridge the gap between the features of the
encoding and decoding stages before combining them. Secondly, the
DR module, which is a mix of residual and dense connections of
convolutions, is developed to extract multi-level features for both the
encoding and decoding stages. Thirdly, deep supervision is exploited to
facilitate the training process of the network. The architecture of the
proposed DR-LCT-UNet is shown schematically in Figure 4.

Specifically, in the encoding process, the pre-processed image is
fed into the network, and its size is 1 × 16 × 512 × 512, where 1 is the
channel size, 16 is the thickness (i.e., the number of slices) of the
input volume, and the height and width are 512. There are four
layers in the encoding stage, in each of the first three layers, the
features are first extracted and then downsampled, while the fourth
layer only performs feature extraction. In order to extract rich
feature representations for the coronary arteries, the DR module
is used in the encoding path, as it is able to extract deeper features
while retaining more detailed ones than traditional convolution.

For the decoding process, as the decoding features are quite
different from the encoding features after several sampling and

FIGURE 1
Outline of the annotation process.

FIGURE 2
Illustration of the annotation process (A) and original CCTA images (B).
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convolution operations, the LCT module is used before performing
decoding to fill the semantic gap between the features from the
encoding and decoding stages of the same resolution level.
Consequently, the input to each decoding layer consists of three
parts, i.e., the features from the LCT module of the same level, the
features from the encoding layers and the features from the previous
decoding layers. These features are first concatenated and then
decoded by the proposed DR module in each decoding layer.

Finally, we use a deep supervision strategy (Lee et al., 2015) in
the training process to prevent the gradient from disappearing in the
early stage of training. To be specific, the SoftMax function is applied
at the end of each decoding layer to obtain the feature map used for
deep supervision. To compute the segmentation loss for deep
supervision, each feature map is upsampled to the same size as
the input and then the Dice loss is calculated based on the similarity
between the feature map and the ground truth.

FIGURE 3
Comparison of a CCTA image before (A) and after pre-processing (B).

FIGURE 4
Schematic of the architecture of the proposed DR-LCT-UNet network.
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2.3 Structure of the LCT module

In CCTA images, as coronary arteries are smaller compared with
nearby structures, and the appearance of coronary arteries and
coronary veins is similar, it is necessary to exploit more local
contextual information for accurate coronary artery segmentation.

Self-attention (Vaswani et al., 2017) computes an attention
matrix based on isolated query-key pairs, as is shown in
Figure 5A. Q, K, and V are obtained by 1 × 1 convolution, which
only uses the information of each individual location without
considering any neighbourhood information. Such operation limits
the visual feature representation ability of the resulting embeddings.
To deal with this, we propose a local contextual Transformer (LCT)
module, the structure of which is shown in Figure 5B).

Specifically, for an input X of sizeH ×W ×D × C (H,W,D and C
are respectively the height, width, thickness and the number of
channels), it is first transformed into queries (Q), keys (K), and
values (V) using embedding matricesWq,Wk, andWv, respectively.
This transformation is represented by Q = XWq, K = XWk, and
V = XWv. Instead of using 1 × 1 × 1 convolution to encode each key
and value as in traditional self-attention, the LCT module uses
k × k × k group convolution over all the neighbouring keys and
values within a k × k × k grid to take advantage of local contextual
information. That is, the matrices Wk andWv are set to k × k × k in
size, while the matrix Wq is maintained at 1 × 1 × 1 to retain the
information of each location in Q.

Then, the contextualized keys K are concatenated with the
queries Q. This combined information is then fed into a 1 × 1 ×
1 convolution with the ReLU activation function to obtain the
attention matrix Rg1∈RH✕W✕D✕C, thereby learning a feature that
integrates local context information with global information.

After that, in a manner similar to traditional self-attention, the
values of V, which contains the local context information, are
multiplied element-by-element with the attention matrix Rg1 to
obtain Rg2∈RH✕W✕D✕C:

Rg2 � Rg1 ⊗ V (1)
Finally, a softmax function is applied to Rg2 to yield the output of

the LCT module.
In general, the proposed LCT makes use of the local contextual

information to enhance the effectiveness of the self-attention
calculation, and it can thus adaptively put emphasis on the more
relevant regions of the coronary arteries for segmentation. In our
implementation, k is set to 3 and the optimality of this setting was
experimentally validated (see Table 7).

2.4 Structure of the DR module

Traditional residual connection is proposed to solve the
degradation problem of deep neural networks. Its structure is
shown in Figure 6A, and consists of two consecutive convolution
operations and a residual connection. The residual connection is
implemented by adding up the features before and after the
convolutions. The mathematical description of the original
residual connection is

Y � X +Η2 X( ) (2)
where X is the input feature, H(X) denotes the convolution
operation on X followed by a ReLU operation, and accordingly,
Hk(X) denotes k successive convolution operations on X, each
followed by the ReLU operation. Although the residual

FIGURE 5
(A) Schematic of the architecture of the traditional self-attention model; (B) Schematic of the proposed LCT module.

FIGURE 6
(A) Schematic of the architecture of the traditional Residual Module; (B) Description of the architecture of the proposed Dense Residual Module.
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connection has the effect of preserving the original features, some
coronary artery regions in the images are not clear and the
corresponding features are not obvious due to the prevalence of
narrow areas, such as their distal ends, stenotic regions, and areas
with uneven distribution of contrast. Such information may easily
get lost during the convolution operation. Therefore, we need to
preserve more of the information which might subsequently be lost
during the convolution process. To this end, we propose a dense
residual (DR) module, as shown in Figure 6B).

Specifically, the DR module has two residual connections which
work synergistically to fuse the multi-level features from successive
convolution operations. The first residual connection adds the input
features to the features obtained after the second convolution
operation. After that, one more convolution operation is used to
extract additional deeper features. The second residual connection
then sums all the previous feature maps, i.e., the input features and
the feature maps generated by each of the convolution operations.
Thus, the DR module is able to retain features at different
convolution levels and extract rich features without information
loss. In this way, the features extracted by the DR module can more
completely represent the characteristics of coronary arteries. The DR
module is defined by the equation:

Y � H X +H2 X( )[ ] +X +H X( ) +H2 X( ) (3)
With the DR module, features in regions with narrow vessels

and along low contrast boundaries are enhanced, making more
accurate coronary artery segmentation possible.

2.5 Loss function

As coronary arteries are of small diameter in comparison with
nearby tissues such as the heart, ascending aorta, and the pulmonary
artery, the coronary artery segmentation task suffers greatly from the
foreground-background imbalance problem. Dice Loss was
proposed in 2017 to deal with the imbalance problem in
segmentation (Ghekiere et al., 2017). It is well suited to the
demands of this study, and has therefore been employed to train
our network. The computation of Dice loss is based on the Dice
similarity coefficient (DSC), which measures the overlap between
two samples, producing results in the range [0,1], i.e., a higher DSC
value indicates a higher degree of overlap. The DSC is defined by Eq.
8, and Dice Loss is computed as.

Dice Loss � 1 − DSC (4)

2.6 Deep supervision

For deep supervision, a separate loss is calculated for each
decoding layer, which also plays the role of regularization. This
strategy, known as deep supervision, leverages the intermediate
outputs of the decoding process to guide the training, helping to
mitigate the vanishing gradient problem and leading to more
discriminative features being learned at all levels. These
intermediate losses provide additional guidance to the learning
process, which often results in faster convergence.

The loss function used for deep supervision is defined in Eq. 5,
where Lk denotes the loss at the decoding layer of depth k, and the
Dice Loss is defined by Eq. 4. As the output of the first decoding layer
has the greatest effect on the performance of the network, we set
smaller weights for the losses of the other decoding layers, i.e., α < 1.
The weight α for deep supervision is also gradually decreased during
the training process so that at the end of the training the loss reflects
the segmentation quality of the last decoding layer.

L � L1 + α L2 + L3 + L4( ) (5)

3 Experiments and results

3.1 Experimental settings

All the experiments were carried out on a GeForce RTX
3090 GPU. The experimental environment was Pytorch 1.7 and
the same training process was used for the proposed network and the
other compared methods. The input was a volume of size 16 × 512 ×
512. The Adam optimizer which uses adaptive moment estimation
to speed up convergence was employed to update the network
parameters. Due to GPU memory limitations, we chose a batch
size of 3 to avoid out-of-memory errors. The parameter settings for
the training process are shown in Table 2.

3.2 Evaluation metrics

We applied five commonly used evaluation metrics, i.e., the Dice
similarity coefficient (DSC), Recall, Precision, Average Symmetric
Surface Distance (ASSD), and Hausdorff Distance (HD), to evaluate
the effectiveness of the different methods (Kirişli et al., 2013). DSC
describes the similarity between two samples. Recall is the ratio of
the number of correctly predicted positive voxels to the actual
number of positive voxels. Precision is the proportion of
correctly predicted positive voxels to all the voxels predicted to

TABLE 2 Parameter settings for the training process.

Parameters Values

Batch size 3

Epochs 180

Learning rate (0< epochs< 100) 10–5

Learning rate (100≤ epochs< 160) 10–6

Learning rate (160≤ epochs≤ 180) 10–7

weight decay factor 5 × 10−4

α (0< epochs< 40) 1

α (40≤ epochs< 80) 0.8

α (80≤ epochs< 120) 0.82

α (120≤ epochs< 160) 0.83

α (160≤ epochs≤ 180) 0.84
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be positive. ASSD describes the average surface distance between
two samples. HD describes the maximum distance from a point in
the label to a nearest point in the predicted image. The five
evaluation metrics were computed according to the following
expressions:

Recall � TP

TP + FN
(6)

Precision � TP

TP + FP
(7)

DSC � 2TP
2TP + FN + FP

(8)

ASSD �
∑

S TP+FP( )
d S TP + FP( ), S TP + FN( )[ ] + ∑

S TP+FN( )
d S TP + FN( ), S TP + FP( )[ ]

S TP + FP( )| | + S TP + FN( )| |
(9)

HD � max max
a∈S TP+FP( )

min
b∈S TP+FN( )

a − b‖ ‖{ }, max
b∈S TP+FN( )

min
a∈S TP+FP( )

b − a‖ ‖{ }( )

(10)
where TP (True Positives) represents samples correctly identified as
coronary arteries; FN (False Negatives) denotes samples predicted to
be background, but which actually belong to coronary arteries; FP
(False Positives) indicates samples predicted to be coronary arteries,
but which actually belong to the background. S (TP + FN) is the set
of actual surface voxels of the coronary arteries, and S (TP + FP) is
the set of predicted surface voxels of the coronary arteries. d

[sample1, sample2] refers to the shortest distance from sample1 to
sample2. The values of DSC, Recall, and Precision are all in the range
of [0,1], and larger values indicate better performance; while for
ASSD and HD, smaller values are better.

3.3 Experimental results and discussion

3.3.1 Comparison of the different segmentation
networks

To assess the quality of the proposed network structure, we have
reproduced and retrained some classical and state-of-art methods
commonly used for medical image segmentation from scratch. It is
noteworthy that our model’s final scores on the test set are not
dependent on a single run. Instead, they are computed as the average
results from multiple runs, thus enhancing the robustness and
stability of our model and preventing the results from being
influenced by a specific initialization of the model.

A comparison of the proposed DR-LCT-UNet with the other
networks is shown in Tables 3, 4. The proposed network achieves
better results than the baseline 3D-UNet in terms of all five
evaluation metrics. Specifically, compared with the 3D-UNet,
DR-LCT-UNet improves DSC by 2.1%, Recall by 1.9%, Precision
by 2.1%, reduces ASSD by 0.188, and reduces HD by 1.861. DR-
LCT-UNet also outperforms other networks in terms of DSC, Recall,

TABLE 3 Comparison of segmentation results between various methods (Optimal value for each evaluation metric is shown in bold. In the top row of this and
subsequent tables, up arrows indicate that an increase in the evaluation metric implies better performance, the reverse being the case for the down arrows).

Method DSC↑ Recall↑ Precision↑ ASSD↓ HD↓

3D-UNet (Çiçek et al., 2016) 0.837 0.844 0.837 0.613 30.076

VNet (Milletari et al., 2016) 0.837 0.810 0.872 0.538 33.519

ResUNet (Lee et al., 2017) 0.841 0.832 0.882 0.533 29.054

DenseUNet (Li et al., 2018) 0.839 0.826 0.859 0.514 37.413

AttUNet (Islam et al., 2020) 0.843 0.835 0.857 0.506 32.642

UNETR (Hatamizadeh et al., 2022) 0.827 0.784 0.884 0.551 44.071

UCTransNet (Wang et al., 2022a) 0.818 0.821 0.813 1.205 59.128

DR-LCT-UNet (Ours) 0.858 0.863 0.858 0.425 28.215

TABLE 4 Comparison of the number of parameters and inference time for the different methods.

Method Parameters (M) Inference Time (s/case)

3D-UNet (Çiçek et al., 2016) 8.61 17.21

VNet (Milletari et al., 2016) 16.80 18.65

ResUNet (Lee et al., 2017) 9.50 18.50

DenseUNet (Li et al., 2018) 18.10 16.35

AttUNet (Islam et al., 2020) 8.65 17.23

UNETR (Hatamizadeh et al., 2022) 92.58 20.65

UCTransNet (Wang et al., 2022a) 65.60 19.55

DR-LCT-UNet (Ours) 10.70 18.60
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ASSD, and HD. These results can be seen in Figure 8 which shows
the final 3D reconstruction of the segmented coronary arterial tree.

The improvements in the various evaluation metrics achieved by
the proposed DR-LCT-UNet indicate its superiority in the task of
coronary artery segmentation. The improvement of Recall indicates
that more coronary arteries are correctly segmented, the
improvement of ASSD indicates that the segmentation result
differs less from the ground truth, and the improvement of DSC
indicates that the overall segmentation is better and closer to the
ground truth label. Although the Precision of the networks ResNet,
VNet and UNETR, is higher than that achieved by the network
proposed here, indicating that they have fewer background voxels
mistakenly segmented as coronary arteries, their Recall and DSC
scores are much lower than the proposed network, meaning that
their segmentation results miss more coronary artery voxels.

3.3.2 Ablation experiments
First, to demonstrate the performance improvement associated

with each proposed module of our DR-LCT-UNet, we carried out an
ablation study, the results of which are shown in Table 5. It can be seen
that, compared with UNet, both the proposed LCT and DR modules
consistently improve the five evaluation metrics. Specifically, the LCT
module markedly improves the Precision (3.2%), while the DR
module substantially improves the Recall (1.9%).

The ablation study results demonstrate the effectiveness of the
individual LCT and DR modules in enhancing the segmentation
performance. The LCT module contributes to a marked
improvement in Precision, while the DR module has a
considerable impact on Recall. By combining the advantages of

both the LCT and DR modules, the DR-LCT-UNet achieves
superior performance in terms of DSC, Recall, ASSD, and HD,
highlighting the complementary benefits of the two modules.

Second, we have compared the number of parameters and the
average inference time for the different modules. As shown in
Table 6, the LCT and DR modules only slightly increase the
number of parameters and the inference time compared with the
SA and Residual modules.

This result demonstrates that, despite the minor increase in the
number of parameters and inference time, the LCT and DR
modules achieve much better segmentation accuracy compared
to the SA and Residual modules. This demonstrates the
effectiveness of the proposed LCT and DR modules in
improving segmentation performance without significantly
impacting computational complexity.

Third, to support our claim that setting the convolutional kernel
Wk and Wv to the same size, i.e., k × k × k, in the LCT module is
optimal, we investigated three different strategies for setting the
kernel size, the results of which are shown in Table 7. We see that
although every kernel size setting strategy improves the
segmentation performance compared to that of using the self-
attention module (i.e., SA-UNet in Table 5), the first option led
to the best performance, i.e., using convolution kernels of the same
size forK andV. In addition, Table 7 shows that using k = 3 produces
the best segmentation accuracy.

This result demonstrates that the sizes of local regions for spatial
context extraction of K and V should be matched. This shows that,
contrary to our intuition, obtaining the contextual information from
a larger neighbourhood, which will accordingly increase the number
of parameters of the LCT module, does not necessarily result in a
better segmentation accuracy. It is likely that this is because a larger
neighbourhood may introduce more irrelevant information into the
segmentation process and thus degrade the segmentation accuracy.

3.3.3 Deep supervision
We used deep supervision to prevent gradient disappearance

and explosion. As can be seen from Figure 7, with an increase in the
number of training epochs, the training is clearly accelerated at the
beginning of the process and the DSC value of the validation set also
improves. Table 8 confirms this and also shows that deep
supervision leads to a slight improvement of the other
segmentation metrics.

The results obtained from incorporating deep supervision
demonstrate its benefits in both the network training and the

TABLE 5 Results of the ablation experiments (Optimal value for each evaluation metric is in bold). Legend: SA: self-attention module; LCT: local contextual
Transformer; DR: Dense Residual module; R: Residual block. The ticks indicate which modules are included in each model.

Method SA LCT DR R DSC↑ Recall↑ Precision↑ ASSD↓ HD↓

3D-UNet 0.837 0.844 0.837 0.613 30.076

SA-UNet ✓ 0.843 0.835 0.857 0.506 32.642

LCT-UNet ✓ 0.852 0.846 0.869 0.480 29.057

R-UNet ✓ 0.841 0.832 0.882 0.533 29.054

DR-UNet ✓ 0.852 0.863 0.847 0.494 29.821

DR-LCT-UNet ✓ ✓ 0.858 0.863 0.858 0.425 28.215

TABLE 6 Comparison of the number of parameters and inference time for the
different modules.

Baseline Module Parameters (M) Inference Time (s/
case)

3D-UNet — 8.61 17.21

SA 8.65 17.23

LCT 8.80 17.23

R 9.50 18.50

DR 10.28 18.55

LCT + DR 10.70 18.60
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prediction accuracy of the coronary artery segmentation task. By
accelerating the training process and enhancing the DSC value of the
validation, deep supervision proves to be a valuable technique in
optimizing the proposed segmentation network.

3.3.4 Effect of data pre-processing
To show the effectiveness of data pre-processing on the

segmentation results, we used the data with and without pre-
processing, to train and test the UNet and our DR-LCT-UNet.
As shown in Table 9, the segmentation metrics DSC, Recall,
Precision ASSD and HD are all clearly improved.

The improvements in the segmentation metrics can be
attributed to the fact that truncating the range of HU values can
increase the contrast along the boundaries of the coronary arteries,

remove some irrelevant tissues from the images and eliminate some
noise as well, thus making the network learning and inference more
effective.

4 Visual illustration of the segmentation
results

Figure 8 shows 3D reconstructions of the segmentation results
using UNet, UNETR, and the proposed DR-LCT-UNet. Four cases
were randomly chosen from the test set, with the first two from
normal subjects and the latter two belonging to patients with
cardiovascular disease. The segmentation results of our proposed
method are better than those of the other two methods, resulting in

TABLE 7 Different structural designs of LCT modules (Optimal values shown in bold).

Q K V DSC↑ Recall↑ Precision↑ ASSD↓ HD↓

1 × 1 × 1 1 × 1 × 1 1 × 1 ×1 0.847 0.842 0.850 0.511 30.015

3 × 3 ×3 1 × 1 × 1 0.851 0.846 0.867 0.491 29.381

3 × 3 × 3 3 × 3 × 3 0.852 0.846 0.869 0.480 29.057

1 × 1 × 1 3 × 3 × 3 0.849 0.844 0.853 0.509 29.108

5 × 5 × 5 1 × 1 × 1 0.845 0.840 0.855 0.513 29.277

5 × 5 × 5 5 × 5 × 5 0.845 0.841 0.854 0.515 29.351

1 × 1 × 1 5 × 5 × 5 0.844 0.842 0.852 0.520 29.330

7 × 7 × 7 1 × 1 × 1 0.844 0.843 0.851 0.522 30.164

7 × 7 × 7 7 × 7 × 7 0.844 0.842 0.849 0.522 30.097

1 × 1 × 1 7 × 7 × 7 0.843 0.841 0.847 0.525 30.172

FIGURE 7
Comparison of the training process of the proposed network with and without Deep Supervision. Legend: w/o: without.

TABLE 8 Results comparison of the proposed method without and with Deep Supervision.

Method DSC↑ Recall↑ Precision↑ ASSD↓ HD↓

DR-LCT-UNet_w/o_ Deep_Supervision 0.856 0.861 0.855 0.438 28.220

DR-LCT-UNet_ Deep_Supervision 0.858 0.863 0.858 0.425 28.215
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fewer discontinuities andmore complete segmentation at the ends of
the coronary arteries.

This performance improvement can be attributed to the Dense
Residual (DR) and Local Contextual Transformer (LCT) modules in
our model. Specifically, the DR module, through its feature
preservation capability at various convolution levels, is key to this
enhancement. This module supplements shallow information layers,
such as spatial structures and gray-scale features, thereby improving
the network’s sensitivity. This enhanced sensitivity facilitates the
segmentation of a greater number of coronary arteries. Furthermore,
the DR module excels in extracting deeper-level features without
compromising the retention of these shallow features, contributing
to a more comprehensive feature map for segmentation tasks. On
the other hand, the LCTmodule, serving as an attentionmechanism,
focuses predominantly on the vicinity of the coronary arteries. It

effectively distinguishes these arteries from other vessels with similar
CT intensities. When implemented post the encoding block, the
LCT module enhances the skip connections, thereby improving the
model’s feature representation ability. This enhancement leads to
the provision of richer, more diversified features for the decoder,
optimizing the feature extraction and representation in our deep
learning model. Consequently, the combined operation of the DR
and LCT modules results in fewer discontinuities and a more
complete and precise segmentation at the ends of the coronary
arteries.

While our method does produce fewer false positives compared
to the UNet, it has shown a tendency for occasional over-
segmentation compared to the UNETR, as demonstrated in case
1 (specifically, the area within the green box). In-depth analysis
reveals that this is due to the sensitivity of the Dense Residual (DR)

TABLE 9 The impact of data pre-processing on the network.

Method DSC↑ Recall↑ Precision↑ ASSD↓ HD↓

UNet_w/o_Data_preprocess 0.820 0.826 0.820 1.195 60.412

UNet_Data_preprocess 0.837 0.844 0.837 0.613 30.076

DR-LCT-UNet_w/o_Data_preprocess 0.841 0.848 0.840 0.597 29.024

DR-LCT-UNet_Data_preprocess 0.858 0.863 0.858 0.425 28.215

FIGURE 8
Visualization of the segmentation results from the different methods. Legend: Green boxes: locations where over-segmentation occurs for at least
one of the compared methods; blue boxes: locations with under-segmentation.
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module to shallow information, which occasionally results in the
misidentification of structures similar to the coronary arteries, such
as veins. This over-sensitivity and the resulting over-segmentation
suggest areas of improvement. We acknowledge this limitation and
plan to refine our model in follow-up studies, to better distinguish
between similar structures.

5 Conclusion

The proposed method for coronary artery segmentation, DR-LCT-
UNet, alleviates the omission and over-segmentation problems of
previous methods for several reasons. Firstly, the data preprocessing
enhances the contrast at the boundaries of the coronary arteries and
reduces some of the noise in the image, hence improving the
segmentation to some extent. Secondly, the proposed Transformer-
style LCT module can pay more attention to local contextual
information, reducing the semantic gap between the encoding and
decoding features, significantly improving the segmentation Precision.
Furthermore, the proposed DR module for the encoding stage can
preserve multi-level features, reducing the loss of shallow-layer
information due to the convolution process. As a result, this
improves the Recall of the segmentation. Finally, introducing Deep
Supervision to the network improves the efficiency of the training
process and also has the effect of regularizing feature extraction for the
different decoding layers. The final DSC, Recall, and Precision of the
proposed method are 85.8%, 86.3%, and 85.8%, respectively, which are
2.1%, 1.9%, and 2.1% better than the corresponding values for 3D-
UNet, the most widely used image segmentation method and the
baseline based on which our approach has been developed.
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Background: Hemodynamics plays a crucial role in the initiation, enlargement,
and rupture of intracranial aneurysms (IAs). This bibliometric analysis aimed tomap
the knowledge network of IA hemodynamic research.

Methods: Studies on hemodynamics in IAs published from 1999 to 2022 were
retrieved from theWeb of Science Core Collection (WoSCC). The contributions of
countries, institutions, authors, and journals were identified using VOSviewer,
Scimago Graphica, and Microsoft Excel. Tendencies, frontier topics, and
knowledge networks were analyzed and visualized using VOSviewer and
CiteSpace.

Results: We identified 2,319 publications on hemodynamics in IAs. The annual
number of publications exhibited an overall increasing trend. Among these, the
United States, Japan, and China were the three major contributing countries.
Capital Medical University, State University of New York (SUNY) Buffalo University,
and GeorgeMason University were the threemost productive institutions. Meng H
ranked first among authors regarding the number of articles and citations, while
Cebral JR was first among co-cited authors. The American Journal of
Neuroradiology was the top journal in terms of the number of publications,
citations, and co-citations. In addition, the research topics can be divided into
three clusters: hemodynamics itself, the relationship of hemodynamics with IA
rupture, and the relationship of hemodynamics with IA treatment. The frontier
directions included flow diverters, complications, morphology, prediction,
recanalization, and four-dimensional flow magnetic resonance imaging (4D
flow MRI).
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Conclusion: This study drew a knowledge map of the top countries, institutions,
authors, publications, and journals on IA hemodynamics over the past 2 decades.
The current and future hotspots of IA hemodynamics mainly include
hemodynamics itself (4D flow MRI), its relationship with IA rupture (morphology
and prediction), and its relationship with IA treatment (flowdiverters, complications,
and recanalization).
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1 Introduction

Intracranial aneurysm (IA) is a pathologically saccular or
fusiform dilatation of the cerebral arteries that occurs in
approximately 2%–5% of the population and can be life-
threatening upon rupture (Brown and Broderick, 2014; Zhu
et al., 2022). Because of the inevitable impingement of blood flow
to the arterial wall, IA is closely related to hemodynamics. Once
hemodynamic damage exceeds the structural strength of the arterial
wall, the arterial wall is injured, and IA may occur. Hemodynamics
interacts with other complex biological factors that contribute to IA
initiation, development, growth, and potential stability or rupture
(Frösen et al., 2012; Morel et al., 2021). However, in the early years,
technical limitations made the measurement of hemodynamic
parameters in humans difficult. The advent of computational and
radiographic modeling has allowed for hemodynamic research on
IAs. Studies have found that blood flow pulsation affects both the
arterial wall surface (such as the wall shear stress and oscillatory
shear index) (Soldozy et al., 2019) and inner structures (such as the
medial gap and intimal pad) (Kataoka et al., 2020; Chen et al.,
2022a), which can contribute to IA initiation, enlargement, and
rupture. Hemodynamics also affects the biological signals of the
arterial wall and can serve as a tool to understand the molecular
pathogenesis of IAs (Levitt et al., 2019; Chen et al., 2022b; Chen
et al., 2023). In addition, computational fluid dynamics (CFD) can
be used to predict IA rupture (Tang et al., 2021), inform stent design
(Suzuki et al., 2017; Bisighini et al., 2023), and allow surgical
improvement (Bao et al., 2021). Overall, hemodynamic research
in IAs is rich, diverse, and valuable. Clarifying the current status and
hot topics may benefit new researchers in this field and permit better
research.

Bibliometrics is a widely accepted method for reviewing
numerous articles in a specific field through quantitative
analysis (Donthu et al., 2021). Through bibliometrics, we can
identify crucial contributors (e.g., authors, institutions, and
countries), collaborative networks, and frontier research topics
(Zhang et al., 2022). Several bibliometric studies on IAs have been
conducted. Chen et al. (2022) investigated the research trends
and hotspots of stent application in acutely ruptured IAs. Lu et al.
(2021) described a research shift of unruptured IAs, especially in
terms of endovascular treatment. Zhang et al. (2022) explored the
application of animal models in IA research and found that mice
were the optimal model (Chen et al., 2022). However, no
bibliometric analyses of hemodynamic research in IAs have
been reported to date. Accordingly, based on the Web of
Science Core Collection (WoSCC) from 1999 to 2022, this
study applied bibliometric tools (VOSviewer, CiteSpace, and

Scimago Graphica) to uncover publication trends, influential
contributors, top collaborators, and emerging frontier topics
in the field of hemodynamic research in IAs.

2 Materials and methods

2.1 Data source and search strategy

The literature search was performed on the WoSCC website
(https://www.webofscience.com/wos/woscc/advanced-search) to
identify publications indexed between 1 January 1999, and
31 December 2022. The specific search formula was as follows:
Topic (TS) = (“intracranial aneurysm*” OR “cerebral aneurysm*”
OR “brain aneurysm*” OR “intracerebral aneurysm*” OR
“cranial aneurysm*”) AND TS = (“hemodynamic*” OR
“haemodynamic*” OR “computational fluid dynamic*” OR
“CFD” OR “4D-Flow MRI” OR “optical imaging modalities”
OR “particle image velocimetry” OR “PIV” OR “particle
tracking velocimetry” OR “PTV” OR “shear stress” OR “flow
velocity” OR “flow rate”). To avoid bias, two independent
investigators (B Chen and LY Zhang) performed the
literature search and filtering and a senior researcher (CT Li)
resolved any discrepancies in findings between these
investigators.

2.2 Inclusion and exclusion criteria

This analysis included original review articles on the
hemodynamics of IAs indexed in the WoSCC database between
1 January 1999, and 31 December 2022. The exclusion criteria were
1) unpublished papers, 2) articles requiring manual research, and 3)
articles written in languages other than English. Of the
2,815 publications initially identified, 496 were excluded, and
2,319 were finally included in the analyses.

2.3 Data extraction and bibliometric analysis

The extracted bibliometric parameters included journal names,
publication times, titles, countries/regions, institutions, authors,
keywords, references, and citations. Journal impact factors (IFs)
were collected from the most recent Journal Citation Reports (2022).
In addition, VOSviewer (version 1.6.18), CiteSpace (version 6.1 R6),
Scimago Graphica (version 1.0.26), and Microsoft Excel 2019 were
used to perform the bibliometric analysis and visualization.
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Microsoft Excel was used for the time and contribution analyses.
Scimago Graphica was used for the country collaboration analysis.
VOSviewer was used to visualize the institutional cooperation map,

author cooperation map, author co-citation network, and keyword
co-occurrence network. CiteSpace was used to visualize the keyword
and reference burst figures and reference co-citation network.

FIGURE 1
Flow chart of data collection, screening, and bibliometric analysis.

FIGURE 2
Trends of publications and citations on intracranial aneurysm (IA) hemodynamics. (A) Numbers of publications and mean total citations (TCs). (B)
Annual publications of the top five countries/regions.
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3 Results

3.1 Overall characteristics

A total of 2,319 publications on the hemodynamics of IAs
indexed between 1 January 1999, and 31 December 2022, were
finally identified, including 2,142 (92.4%) original articles and
177 (7.6%) reviews (Figure 1). Although there were some slight
fluctuations, the number of published articles showed an
overall upward trend from 31 in 1999 to 151 in 2022,
peaking at 186 in 2021. Additionally, the timing of the mean
total citations (TC) per year could be divided into three
periods: Phase I, 1999–2003 (remaining stable); Phase II,
2003–2013 (showing dramatic fluctuations); and Phase III,
2013–2022 (declining) (Figure 2A). Figure 2B shows the
annual publications from the top five countries in this field.
Among these, the US contributed the most publications. China
began publishing articles in 2006, relatively late but has
developed rapidly, surpassing the US in the number of
published articles in 2021.

3.2 Countries/regions

More than 60 countries/regions have contributed to this field,
the top ten of which are listed in Figure 3. Among these, the US
was first, with 807 publications, followed by Japan
(379 publications) and China (379 publications). Regarding
TC, the US again ranked first (31,785 TC), followed by Japan
(9520 TC) and England (4716 TC). The US also ranked first in
citations per paper (C/P) (39.4 C/P), followed by England
(39.3 C/P) and the Netherlands (35.2 C/P) (Figure 3A). An
international collaboration map drawn using VOSviewer with
the minimum number of publications set at 40 included
15 countries/regions that met the criteria. Of these, the US,
Japan, and China appeared as center nodes, with the closest
cooperations between the US and Japan (link strength, LS = 69)
and the US and China (LS = 52) (Figure 3B).

3.3 Institutions

In total, 861 institutions participated in the publication of
articles on hemodynamics in IAs. Among the top ten productive
institutions, five were located in the US, two in China, and one each
in Canada, Germany, and Japan. Capital Medical University
contributed the most publications (105 publications), followed by
the State University of New York (SUNY) Buffalo (88 publications)
and George Mason University (88 publications). Regarding TC and
C/P, the top three institutions were SUNY Buffalo University (TC =
5,911, C/p = 67.2), George Mason University (TC = 5,364, C/p = 61),
and Inova Fairfax Hospital (TC = 3,798, C/p = 99.9) (Figure 4A).
Figure 4B illustrates the cooperation among the 54 institutions
with >15 publications. Of these, George Mason University had
the widest cooperation (total link strength, TLS = 108), followed
by Capital Medical University (TLS = 60) and Tohoku University
(TLS = 60) (Figure 4B).

3.4 Authors and co-authors

Table 1 shows the top ten prolific authors and the most co-cited
authors, most of whom were from the US. Author co-citation was
defined as ≥2 authors meanwhile cited in ≥1 publication. Among the
authors, Meng, H published the most articles (69 articles,
4,326 citations), followed by Yang, Xj (50 articles, 929 citations)
and Cebral, Jr (38 articles, 1,047 citations). The top three co-cited
authors were Cebral, Jr (1902 co-citations), Meng, H (743 co-
citations), and Xiang, Jp (532 co-citations). The visualized map
analysis revealed that widely cooperating authors, including Meng,
H (TLS = 173) and Yang Xj (TLS = 192), were active in the relatively
early phase (average publication years 2013–2016), while recently
active authors, such as Ishibashi, T and Berg, P (average publication
year 2019) had relatively narrow cooperation networks (TLS

Ishibashi = 70, TLS Berg = 30) (Figure 5A). The map of the top
34 co-cited authors with >200 co-citations showed the highest
number of co-citations between Torii, R and Tezduyar, Te (LS =
2,443) (Figure 5B).

FIGURE 3
Top 10 most productive countries and international collaborations on IA hemodynamics. (A) Numbers of publications, TCs, and citations per paper
(C/P). (B) International collaboration map. Node size, number of produced articles; color, clusters.
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3.5 Journals, co-cited journals, and impact
factors

Altogether, 461 journals published articles on hemodynamics
research in IAs. The top ten active journals and co-cited journals are
listed in Table 2. Journal co-citation was defined as ≥2 journals being
cited simultaneously in ≥1 publications. In terms of publication
quantity, the American Journal of Neuroradiology was first, with
155 publications, followed by Neurosurgery (94 publications) and
World Neurosurgery (92 publications). Regarding citations and co-
citations, the American Journal of Neuroradiology ranked first
(7,906 citations, 8,108 co-citations), followed by Stroke
4,722 citations, 7,166 co-citations) and Journal of Neurosurgery
(4,030 citations, 5,499 co-citations). In addition, among these ten
journals and co-cited journals, the highest and lowest IFs were 8.3
(Stroke) and 1.7 (Interventional Neuroradiology and J Biomech Eng-
T Asme), respectively.

3.6 Keywords

Figure 6A illustrates a visualization of keywords that co-
occurred at least 50 times in hemodynamics research in IAs. A
total of 66 keywords were identified and grouped into three clusters.
Cluster #1 (red) indicates research on hemodynamics itself, with
keywords including “computational fluid dynamics,” “wall shear
stress,” and “fluid-structure interaction”. Cluster #2 (blue)
represents research on aneurysm rupture, with keywords
including “arachnoid hemorrhage,” “rupture risk,” and
“prediction”. Cluster 3 (green) indicates research on aneurysm
treatment, with keywords including “endovascular treatment,”
“stent pipeline,” and “coil embolization”. In addition, the
keywords in Figure 6B are colored based on the average
publication years. The concepts of “saccular aneurysms,” “carotid
artery,” and “subarachnoid hemorrhage” appeared early (blue),
while frontier topics including “inflammation” and “flow

FIGURE 4
Top 10 most prolific institutions and inter-institution cooperations on IA hemodynamics. (A) Numbers of publications, TCs, and C/P. (B) Inter-
institution cooperation network. Node size, number of produced articles; line thickness, cooperated strength; color, clusters.

TABLE 1 Top 10 prolific authors and co-cited authors on hemodynamics research in IAs.

Rank Author Publications Citations Country Co-cited author Co-citations Country

1 Meng, H 69 4,326 United States Cebral, Jr 1,902 United States

2 Yang, Xj 50 929 China Meng, H 743 United States

3 Cebral, Jr 38 1,047 United States Xiang, Jp 532 China

4 Siddiqui, Ah 36 2,020 United States Shojima, M 489 Japan

5 Xiang, Jp 34 1,332 China Wiebers, D 455 United States

6 Zhang, Y 33 703 China Aoki, T 453 Japan

7 Liu, J 32 491 China Jou, Ld 417 United States

8 Berg, P 29 394 Germany Ujiie, H 380 Japan

9 Mut, F 28 602 United States Steinman, Da 368 Canada

10 Malek, Am 28 801 United States Castro, Ma 358 United States
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diverter,” appeared recently (yellow). Next, the CiteSpace burst
module was applied to identify the research tendencies and shifts
in central topics. Bursts refer to sudden increases over time. The
25 keywords with the strongest citation bursts are shown in
Figure 6C. Among them, the topics gradually shifted from
“saccular aneurysm,” “Guglielmi detachable coil,” and “internal
carotid artery” to “angiography, complex hemodynamics, fluid-
structure interaction” and “morphology, prediction, diversion,
complication, recanalization, and four-dimensional flow magnetic
resonance imaging (4D flow MRI)”.

3.7 Top cited articles and co-cited
references

Table 3 lists the top 10 most-cited papers in hemodynamics
research on IAs, with the number of citations ranging from 351 to

566. Among these, nine were original articles and one was a review
article. Four studies were published in Stroke and two in the American
Journal of Neuroradiology. An article by Shojima et al. (2004) had the
highest number of citations (566), followed by articles fromHelgadottir
et al. (2008) (550 citations) and Cebral et al. (2005) (514 citations). In
addition, we performed a burst analysis of the reference co-citations.
Reference co-citations are defined as two ormore references cited in one
or more papers simultaneously. Figure 7A shows the reference co-
citation map colored by publication year from 1999 to 2022, in which
the burst co-cited references were mainly concentrated in the middle
period. Figure 7B displays the 20 references with the strongest citation
bursts. Of them, “Meng et al., 2014, AM J NEURORADIOL, V35,
P1254” had the highest burst strength (54.42), followed by “Cebral et al.,
2005, AM J NEURORADIOL, V26, P2550” (strength = 45.15) and
“Shojima et al., 2004, STROKE, V35, P2500” (strength = 42.86). The
citation burst of “Cebral et al., 2017, AM J NEURORADIOL, V38,
P119” ended in 2022, indicating high attention in recent years.

FIGURE 5
Author collaboration and co-cited author networks on IA hemodynamics. (A) Collaborated map of productive authors from 2014 to 2019. (B) Co-
cited author map. Node size, number of produced articles; line thickness, cooperated strength; color, (A) average publication year, (B) clusters.

TABLE 2 Top 10 prolific journals and co-cited journals on hemodynamics research in IAs.

Rank Journal Publications Citations IF Co-cited journal Co-citations IF

1 Am J Neuroradiol 155 7,906 3.5 Am J Neuroradiol 8,108 3.5

2 Neurosurgery 94 3,877 4.8 Stroke 7,166 8.3

3 World Neurosurg 92 992 2.0 J Neurosurg 5,499 4.1

4 J Neurosurg 86 4,030 4.1 Neurosurgery 5,138 4.8

5 J Neurointerv Surg 83 1,519 4.8 J Biomech 2,341 2.4

6 J Biomech 78 1,975 2.4 Ann Biomed Ang 1,993 3.8

7 Interv Neuroradiol 53 254 1.7 J Neurointerv Surg 1,700 4.8

8 Stroke 47 4,722 8.3 J Biomech Eng-T Asme 1,539 1.7

9 Ann Biomed Eng 46 2,265 3.8 Neuroradiology 1,275 2.8

10 Int J Numer Method Biomed Eng 44 843 2.1 Acta Neurochir 1,174 2.4

IF, impact factor.
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4 Discussion

Hemodynamics is widely involved in IA formation,
enlargement, and rupture (Soldozy et al., 2019; Liu et al.,
2023). Hemodynamics can also be used to predict the
prognosis and improve therapeutic approaches for patients
with IA (Suzuki et al., 2017; Bao et al., 2021; Tang et al.,
2021). In the current study, we performed a bibliometric
analysis of publications on hemodynamics in IAs. This
analysis identified publication trends, influential contributors
(e.g., authors, journals, institutions, and countries),
corresponding cooperation networks, and emerging frontier
topics. Importantly, the results of this study may help new
researchers to quickly learn about this field and perform better
research in the future.

4.1 Overall trends and major contributing
countries

The number of published articles reflects the interest of
researchers in the field (Durieux and Gevenois, 2010; Huang
et al., 2023). Overall, the number of publications on
hemodynamics in IA displayed an upward tendency from
1999 to 2022, indicating the increasing interest of researchers in
this field. Of these, the US was the most productive country, while
China was an emerging country, with a steeper increase in the
number of publications. Several factors may explain the increase in
IA hemodynamics in China. First, China has a large population and
a high prevalence of unruptured IA (7% among Chinese adults aged
35–75 years) (Li et al., 2013). Second, the number of neurosurgeons
and the level of IA detection have grown strikingly in recent years.

FIGURE 6
Analysis of keywords on IA hemodynamics. (A) Keyword co-occurrence network colored by clusters. (B) Keyword co-occurrence network colored
by average publication years. Node size, keyword frequency. (C) Top 25 keywords with the strongest citation bursts. Red segment, burst duration.
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According to the reports of the World Federation of Neurosurgical
Societies (WFNS), China has possessed the most neurosurgeons
(around 11,000) worldwide since 2016 (Yu et al., 2019). Third, the
Chinese government has recently expanded its funding in the field of
basic research. However, an increased number of publications does
not necessarily represent highly influential affiliations, authors, and
articles. For example, China accounted for only two of the top ten
productive institutions, one of the top prolific co-cited authors, and
none of the top ten most cited articles.

The number of citations represents the performance of a
publication (Durieux and Gevenois, 2010; Liang et al., 2023). In
our study, the timing of the mean TCs on hemodynamics in IAs
could be divided into three periods. Phase II (2003–2013) had a
dramatically higher number of citations than the other two periods,
reflecting better publication performance. During this Phase II,
some representative keywords with high research value showed
bursts, including “parent vessel,” “angiography,” and “fluid-
structure interaction”. In addition, the top ten cited publications
emerged during this Phase. Therefore, we conclude that Phase II was
a crucial stage for research on hemodynamics in IAs, which laid the

major foundation for current research. In addition, one reason for the
declining citation phase of Phase III (2013–2022) might be the non-
standardized acquisition of relevant hemodynamic parameters.
Excessive assumptions, simplifications, and imprecise pre- and post-
simulation steps may lead to incorrect findings in this field (Berg et al.,
2019a) and could partially explain why hemodynamics have not yet
beenwidely implemented for the investigation of IAs in clinical practice.

4.2 Active institutions, authors, journals, and
co-cited journals

Identifying influential authors and institutions may help researchers
choose their collaborating partners. Meng H (SUNY Buffalo University)
was the most productive and cited author of hemodynamic research on
IAs. She and her team performed CFD histology mapping on a dog IA
model and found that high wall shear stress (WSS) and a high WSS
gradient (WSSG) were dangerous hemodynamic conditions for IA
initiation (Meng et al., 2007). Later, based on clinical imaging data,
she built a combined model of hemodynamics and morphology to

TABLE 3 Top 10 most cited publications related to hemodynamics research in intracranial aneurysms.

Rank Title Journal Document
type

Corresponding
author

Affiliation Year Citations

1 Magnitude and role of wall shear stress on
cerebral aneurysm: computational fluid

dynamic study of 20 middle cerebral artery
aneurysms

Stroke Article Kirino, T University of Tokyo 2004 566

2 The same sequence variant on 9p21 associates
with myocardial infarction, abdominal aortic

aneurysm and intracranial aneurysm

Nat Genet Article Stefansson, K deCODE Genet 2008 550

3 Characterization of cerebral aneurysms for
assessing risk of rupture by using patient-
specific computational hemodynamics

models

AJNR Am J
Neuroradiol

Article Putman, CM Inova Fairfax Hospital 2005 514

4 Hemodynamic-morphologic discriminants
for intracranial aneurysm rupture

Stroke Article Meng, H State University of
New York (SUNY_

Buffalo

2011 481

5 High WSS or lowWSS? Complex interactions
of hemodynamics with intracranial aneurysm
initiation, growth, and rupture: toward a

unifying hypothesis

AJNR Am J
Neuroradiol

Review Siddiqui, A SUNY Buffalo 2014 465

6 Efficient pipeline for image-based patient-
specific analysis of cerebral aneurysm

hemodynamics: technique and sensitivity

IEEE Trans Med
Imaging

Article Frangi, AF George Mason
University

2005 434

7 Complex hemodynamics at the apex of an
arterial bifurcation induces vascular

remodeling resembling cerebral aneurysm
initiation

Stroke Article Kolega, J SUNY Buffalo 2007 408

8 Prospective evaluation of surgical
microscope-integrated intraoperative near-
infrared indocyanine green video angiography

during aneurysm surgery

J Neurosurg Article Spetzler, RF Barrow Neurological
Institute

2005 384

9 Aneurysm Growth Occurs at Region of Low
Wall Shear stress patient-specific correlation

of hemodynamics and growth in a
longitudinal study

Stroke Article Saloner, D Vet Adm Med Ctr 2008 366

10 Morphology parameters for intracranial
aneurysm rupture risk assessment

Neurosurgery Article Kassell, NF SUNY Buffalo 2008 351
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predict IA rupture (Xiang et al., 2011). These studies were the most cited
publications and references with the strongest citation bursts, laying the
foundation for subsequent research. Regarding prolific affiliations,
Capital Medical University in China ranked first but ranked low in
citations per paper. Several reasons may account for the contradiction
between quantity and quality in China. First, the number of publications
in China will surpass that in the US for the first time in 2021, indicating
that Chinese publications might need more time to be cited. Second,
compared to the US, a lower percentage of Chinese studies are published
in high-IF journals such as Stroke (IF = 8.3).

Journal productivity represents the interest of a journal in a specific
field; thus, the top co-cited journals can be regarded as authoritative
journals. In research on hemodynamics in IA, the American Journal of
Neuroradiology, Neurosurgery, and World Neurosurgery are the most
productive journals, while the American Journal of Neuroradiology,
Stroke, and Journal of Neurosurgery were the most frequently cited
journals. If Chinese researchers want to improve their influence on
IA hemodynamics, they should deepen their studies and select more
influential target journals.

4.3 Research hotspots and frontier trends

Quick learning in a field can be obtained through keyword co-
occurrence analysis (Ai et al., 2023). In our study, the major

keywords could be divided into three clusters representing
different topics and frontier trends.

Cluster 1 (red): Research on hemodynamics itself.
Hemodynamic analyses in IA are mainly performed through
approaches including CFD, 4D-Flow MRI, and optical imaging.
CFD calculates the blood flow by solving the governing equations of
fluid mechanics; therefore, the flow field in CFD is slightly virtual.
4D-Flow MRI measures blood flow in vivo and in vitro; thus, the
flow field is more real (Kamada et al., 2022). Previous studies have
reported a strong correlation between 4D flowMRI and CFD for the
inflow hemodynamics of IA (Misaki et al., 2021). Despite beingmore
consistent with the real hemodynamics in the human body, 4D flow
MRI also has shortcomings, including relatively low spatiotemporal
resolutions and limited accuracy due to imaging noise (Wu et al.,
2022). Moreover, optical imaging techniques are commonly utilized
for the in vitro hemodynamic validation of CFD and 4D flow MRI,
as they offer well-controlled and high-resolution flow fields and do
not require the use of ionizing radiation (Wu et al., 2022). The
common optical imaging techniques research on hemodynamics in
IA include particle image velocimetry (PIV), particle tracking
velocimetry (PTV), and others (Liou et al., 2007; Medero et al.,
2020). Some international studies on IA hemodynamics have
reported that the accuracy of hemodynamic calculation is
affected by model segmentation, boundary conditions,
hemodynamic parameters, solver algorithms, and others

FIGURE 7
Analysis of co-cited reference on IA hemodynamics. (A) Reference co-citation network visualized using CiteSpace. Node size, citation number; red
nodes, burst references. (B) Top 20 references with the strongest citation bursts. Red segment, burst duration.
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(Steinman et al., 2013; Berg et al., 2015; Berg et al., 2018; Valen-
Sendstad et al., 2018; Berg et al., 2019b; Voß et al., 2019). Researchers
should combine actual clinical situations to evaluate IA
hemodynamics and use optical imaging techniques to validate the
results. Furthermore, to enhance the reliability of research on
hemodynamics in IA, Berg et al. (2019a) proposed flow analysis
standardization in comparison studies, as well as numerical
investigations in uncertainty quantification and validation studies.

Cluster 2 (blue): Research on the relationship between
hemodynamics and IA rupture. IA rupture comprises 80%–85% of
non-traumatic subarachnoid hemorrhages and can lead to high
mortality (Brown and Broderick, 2014). Considering the long-term
impingement of blood flow on the arterial wall, IA rupture is closely
related to hemodynamics such as WSS, WSSG, oscillatory shear index
(OSI), flow patterns, and others (Soldozy et al., 2019). Onemeta-analysis
identified average WSS as a protective hemodynamic parameter,
whereas OSI and low shear index% (LSA%) were harmful
hemodynamic parameters of IA rupture (Han et al., 2021). However,
hemodynamics are complex and the role of WSS in IA rupture remains
controversial. Zhang et al. (2018) found that an excessively highWSS in
the parent artery could predict rupture of anterior communicating artery
aneurysms. Accordingly, regarding the “high-versus-low WSS”
controversy, Meng et al. (2014) proposed a widely accepted unifying
hypothesis that low WSS and high OSI contributed to the rupture of
large and atherosclerotic IA phenotypes, while high WSS and positive
WSSG facilitated the rupture of small or secondary bleb IA phenotype.
In addition, compared to unruptured IAs, ruptured IAs have more
complex and unstable flow patterns (Byrne et al., 2014) such as a higher
number of vortices (Xiang et al., 2011) and more complex inflow jet
patterns (Futami et al., 2017). Some retrospective cohort studies have
shown that hemodynamics can be integrated with geometric and
clinically relevant information, such as IA site and focal wall
enhancement, to predict IA rupture (Janiga et al., 2015a; Berg et al.,
2019b; Larsen et al., 2020). The area under the curve (AUC) value for
predicting IA rupture accuracy can reach 0.820–0.910 (Chen et al., 2020;
Shi et al., 2021). However, prospective, large-sample, multicenter cohort
studies are needed to compare hemodynamics and IA rupture.

Cluster 3 (green): Research on the relationship between
hemodynamics and IA treatment. Over the past 30 years,
multiple therapeutic approaches have been developed for IA,
including clipping and endovascular treatment (coils, stents, and
flow diverters). These treatments commonly change the
hemodynamic status. Both coil embolization and flow diverters
decrease intra-aneurysmal blood flow velocity and WSS, which
explains their protection against rupture (Goubergrits et al., 2014;
Jing et al., 2016). When treatments fail, the high WSS at the neck
remnant could require recanalization, while a lack of decreased flow
velocity and undiminished high-WSS areas might lead to
postoperative rupture (Goubergrits et al., 2014; Chen et al.,
2021). Moreover, hemodynamic research may be an effective tool
to improve IA treatment. Janiga et al. (2015b) used CFD to identify
an optimal flow-diverting stent for patient-specific IAs. Chen et al.
(2021) employed CFD to propose the proximal densification of flow
diverters to reduce IA rupture risk. The combination of CFD and
structural analysis can optimize flow diverter design, including the
weave angle and wire thickness (Suzuki et al., 2017). Notably, in our
study, the keyword “diversion” appeared in the average time of 2017,
indicating that the flow diverter received more attention in IA

treatments. However, flow diverters still have limitations and
complications such as in-stent stenosis (John et al., 2016),
thromboembolic complications (Leung et al., 2012), and others.
Future hemodynamic research on IA treatment should focus on
these topics.

5 Limitations

This study had several limitations. First, we only collected
literature from the WoSCC, which provided the most suitable
data format for CiteSpace and VOSviewer. Other databases such
as Scopus and PubMed were also used to confirm our findings.
Second, our study only included publications written in English and
excluded non-English publications, which may have caused a
selection bias. Third, record updates in the WoSCC may have led
to retrieval disparities.

6 Conclusion

In conclusion, this study drew a knowledge map of the top
countries, institutions, authors, publications, and journals on IA
hemodynamics over the past 2 decades. The current and future
hotspots of IA hemodynamics mainly include hemodynamics itself
(4D flow MRI), its relationship with IA rupture (morphology and
prediction), and its relationship with IA treatment (flow diverters,
complications, and recanalization).
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