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Editorial on the Research Topic

Adaptation of halophilic/halotolerant microorganisms and

their applications

In hypersaline soils and waters, microorganisms surviving in these ecosystems must deal

with excess salt in addition to any other factors limiting survival. Halophilic and halotolerant

microorganisms use a variety of strategies to maintain osmotic equilibrium across their cell

membranes and prevent the loss of cytoplasmic water. Among these strategies, modifications

at molecular levels affecting proteins and RNA/DNA, salt-in adaptation, compatible solute

adaptation, and salt-stable cell surface and membranes are included.

Due to their physiological adaptations, halophilic/halotolerant microorganisms have

great potential for diverse applications. The Research Topic “Adaptation of halophilic/

halotolerant microorganisms and their applications” includes review and original research

articles on the uses of halotolerant and halophilic microorganisms in a variety of fields,

including agriculture, medicine, pharmaceuticals, industry, food, and waste treatments such

as the degradation of hydrocarbons, and saline wastewater treatment.

Halotolerant and halophilic microorganisms have developed versatile molecular

mechanisms for coping with saline stress, and many of these molecular adaptations

have potential applications in biotechnology. Within this context, Zhou et al. have

explored the mechanisms of halotolerance in six type strains of Pontixanthobacter and

Allopontixanthobacter by comparative genome analysis. Genes directly connected to

halotolerance include those involved in osmolytes synthesis, membrane permeability

control, ions transport, intracellular signaling, polysaccharide biosynthesis, and SOS

response. Similar gene content has been described previously in other bacteria, thus

reinforcing the idea that these are the main mechanisms explaining halotolerance. The

authors are linking genome-wide co-occurrence, genetic diversity, and physiological

characteristics of these bacteria.
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Metagenomics as a culture-independent tool has also been

employed to harness the biotechnological potential of halophiles.

On similar lines, Jeilu et al. identified novel carbohydrate-

degrading enzymes using functional metagenomic analysis in

samples from Ethiopian Soda Lakes. A total of 378 genes mostly

belonging to multiple Glycoside Hydrolases (GH) were identified.

Most GH genes were of bacterial origin, predominantly of the

Halomonas genus. Biochemical analysis of amylase, cellulase,

and pectinase revealed them to be polyextremophilic with

activity at high temperatures, pH, and salt concentrations. Such

properties are relevant for enzymatic applications, particularly in

lignocellulosic biorefinery.

To explore polysaccharide-hydrolyzing genomic potential

of cultured haloarchaea, Elcheninov et al. reported a

comparative genomic analysis of 155 haloarchaeal bacterial

strains including seven different genera as Natronolimnobius,

Halococcoides, Halosimplex, Natronobiforma, Halomicrobium and

Natrarchaeobius. The authors observed an overpresentation of

cellulase genes (GH9, GH12, and GH5) in the cellulotrophic

haloarchaea genomes compared to cellulotrophic archaea on a per-

genome basis. The research findings also indicated variations in

CAZymes profiles among the groups (neutrophilic and alkaliphilic

haloarchaea), relating to genome size, the number of genes

involved in import mechanisms, and central metabolism of sugars.

The study by Tu et al. used cultivation and high-throughput

sequencing techniques to investigate the microbial community

of Dingyuan Salt Mine, and to study the effects of long-term

brine storage on the microbial community. The dominant bacterial

species in fresh brine were Cyanobium PCC-6307 spp., Aeromonas

spp. and Pseudomonas spp., whereas the dominant archaea were

Natronomonas spp., Halapricum spp., and Halomicrobium spp.

After 3-year storage, the microbial community shifted toward

Salinibacter spp. andAlcanivorax spp. as dominant bacterial species

and Natronomonas spp. and Halorientalis spp. as archaeal species.

Long-term storage of brine resulted in increased biomass but

species diversity declined. This study also led to the isolation of 12

possible new species belonging to 3 genera of halophilic archaea.

Halophiles have also been a great repository for valuable

bioactive compounds of pharmaceutical importance. In this

context, Karthik et al. investigated the potential of mangrove

microbeGlutamicibacter mysorens for antimicrobial and anticancer

properties, and demonstrated anticancer activity of intracellular

metabolites on prostate cancer cells. Low molecular weight

compounds Kinetin-9- ribose and Embinin were identified by

Liquid Chromatography–Mass Spectrometry (LC–MS) study.

Thus, G. mysorens is a promising source for low molecular weight

bioactive molecules with therapeutic potential.

The review of Moopantakath et al. demonstrated the

ecology and diversity of haloarchaeal microorganisms, their

strategies in coping with stress, haloarchaea biotechnological

significance (anticancer compounds, antimicrobial compounds,

antioxidant compounds), hydrolytic enzymes, biodegradable and

biocompatible polymers, and synthesis and application of bioactive

nanoparticles from haloarchaeal microorganisms.

Haloarchaea are a promising group of microorganisms for

biotechnological applications, showing metabolic capabilities of

interest for industrial processes within the circular economy, for

example the biodegradation and use of the two dominant biomass

polysaccharides on the planet, cellulose and chitin. Related to

polysaccharide biodegradation, Sorokin et al. conducted a selective

enrichment on a wide polysaccharide spectrum aiming at the

isolation of novel metabolic and taxonomic groups of haloarchaea

from hypersaline lakes. By using an array of commercially available

homo- and heteropolysaccharides to enrich hydrolytic haloarchaea,

the authors isolated a range of halo- and natronoarchaea, including

previously described taxa and several new genus-level lineages. This

study demonstrates previously unrecognized microbial potential

for utilization of a broad range of natural polysaccharides in

hypersaline habitats.

One is the major compatible solutes produced by halophiles

is ectoine. Using the ectoine-excreting strain Halomonas

elongata KB2.13, Hobmeier et al. demonstrated two methods

of ectoine production, based on Oxaloacetate-enhanced

precursor and on over-expression of transporter [transporter

for ectoine accumulation (Tea ABC)]. Both techniques have

the potential to significantly increase ectoine production and

excretion. This increase was initially attributed to the absence

of phosphoenolpyruvate carboxykinase, which converts the

oxaloacetate (OAA) into Phospoenolpyruvate (PEP), thus

removing feedback inhibition and allowing the unconverted

OAA to enter the TCA cycle for ectoine production. The

excretion rate of ectoine was significantly enhanced three-

fold when both TeaBC subunits, a transporter responsible

for ectoine uptake, were overexpressed in the absence of

the substrate-binding protein TeaA. The main subunit TeaC

showed an extracellular ectoine concentration per dry weight

that was roughly five times higher than TeaBC shortly

after its expression was induced. Since both approaches are

complementary, they are promising solutions for metabolic

engineering challenges.

In deep shale reservoirs, salinity and hydraulic retention

time (HRT) have an impact on Halanaerobium cell membrane

structure, which in turn affects microbial development and

physiology and causes biogeochemical responses. The variations

in the membrane fatty acid chemistry of H. congolense WG10

caused by salt and HRT have been addressed by Ugwuodo

et al.. Notably, H. congolense WG10 increases the amount of

polyunsaturated fatty acids in its membrane under suboptimal

salt concentrations, which appears to increase its fluidity and

thickness. Mean chain length and double bond index are used

as proxies for the fluidity and thickness of the membrane,

respectively. Thus, natural and human-made variables may

alter the chemistry of membrane fatty acids in persistent

microbial taxa that are important to maintain physical and

biogeochemical equilibrium of fractured shale, with implications

for human health.

The review article of Ramasamy and Mahawar offers

novel perspectives on the role of halotolerant (HT) bacteria

linked to crop plants in boosting their resistance to

salinity stress. The paper also identifies several issues with

halotolerant plant growth promoting Rhizobacteria (HT-PGPR)’s

application in the agricultural sector and suggests scientific

ways to solve them to advance sustainable agriculture in

the future.
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Based on research conducted by John et al. the inoculation

of Vigna mungo L., a legume, with halotolerant plant growth

promoting rhizobacteria (HT-PGPR) isolated from Sesuvium

portulacastrum, led to increased shoot length and vigor index,

indicating a potential enhancement in salt tolerance for the

plant. Moreover, the salt tolerant bacterial inoculation led to

enhancements in grain yield, shoot length, chlorophyll content,

and photosynthetic rate, while also reducing the enzymatic activity

of catalase and superoxide dismutase, suggesting improved stress

tolerance. The research findings also suggest that HT-PGPRs can

be a cost-effective and ecologically sustainable approach to enhance

crop productivity in high saline conditions. The use of such

rhizobacteria holds significant promise for sustainable agricultural

practices in salt-affected regions.

In conclusion, most saline ecosystems of our planet are still

unexplored for both basic and applied sciences studies. The

study of the microbiome of these environments by culture-

dependent and -independent techniques will reveal a great deal

of microbial diversity. Furthermore, these halophilic microbes

can be a biotechnologically useful source of robust enzymes

and of pharmaceutical molecules with potential for industry,

agriculture, and environmental bioremediation. Research carried

out on halophiles to date has established that halophiles can serve

as an important tool for biological interventions.
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The application of naturally-derived biomolecules in everyday products,

replacing conventional synthetic manufacturing, is an ever-increasing market.

An example of this is the compatible solute ectoine, which is contained in

a plethora of treatment formulations for medicinal products and cosmetics.

As of today, ectoine is produced in a scale of tons each year by the natural

producer Halomonas elongata. In this work, we explore two complementary

approaches to obtain genetically improved producer strains for ectoine

production. We explore the e�ect of increased precursor supply (oxaloacetate)

on ectoine production, as well as an implementation of increased ectoine

demand through the overexpression of a transporter. Both approaches were

implemented on an already genetically modified ectoine-excreting strain H.

elongata KB2.13 (1teaABC 1doeA) and both led to new strains with higher

ectoine excretion. The supply driven approach led to a 45% increase in ectoine

titers in two di�erent strains. This increase was attributed to the removal of

phosphoenolpyruvate carboxykinase (PEPCK), which allowed the conversion

of 17.9% of the glucose substrate to ectoine. For the demand driven approach,

we investigated the potential of the TeaBC transmembrane proteins from

the ectoine-specific Tripartite ATP-Independent Periplasmic (TRAP) transporter

as export channels to improve ectoine excretion. In the absence of the

substrate-binding protein TeaA, an overexpression of both subunits TeaBC

facilitated a three-fold increased excretion rate of ectoine. Individually, the

large subunit TeaC showed an approximately five times higher extracellular

ectoine concentration per dry weight compared to TeaBC shortly after its

expression was induced. However, the detrimental e�ect on growth and

ectoine titer at the end of the process hints toward a negative impact of TeaC

overexpression on membrane integrity and possibly leads to cell lysis. By using

either strategy, the ectoine synthesis and excretion in H. elongata could be

boosted drastically. The inherent complementary nature of these approaches

point at a coordinated implementation of both as a promising strategy
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for future projects in Metabolic Engineering. Moreover, a wide variation of

intracelllular ectoine levels was observed between the strains, which points at

a major disruption of mechanisms responsible for ectoine regulation in strain

KB2.13.
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1. Introduction

The osmoadaptation strategy used by many bacteria and

methanogenic archaea is the intracellular accumulation of

osmolytes to balance the turgor pressure experienced in

saline environments (Galinski, 1995). These osmoprotective

organic compounds are called “compatible solutes” due to their

compatibility with cell metabolism even at high concentrations

(Brown, 1976). One of the most widespread compatible solutes

is the aspartate-derivative ectoine (1,4,5,6,tetra-2-methyl-4-

pyrimidonecarboxylic acid) (Galinski et al., 1985). Ectoine

is biotechnologically relevant as protectant and stabilizer of

proteins and other biomolecules against a wide range of

adverse environmental factors like salinity but also heat,

desiccation, freezing, thawing, and ionizing radiation. In

addition to its function as a bioprotector, ectoine and its

derivative hydroxyectoine have been proposed as potential

drugs for diseases, such as Alzheimer’s and rhinoconjunctivitis

(Kanapathipillai et al., 2005; Salapatek et al., 2011; Bilstein

et al., 2021). Moreover, its stabilizing effect was also observed

on whole cells against stresses like radiation or cytotoxins

(Lippert and Galinski, 1992; Kempf and Bremer, 1998; Pastor

et al., 2010; Schröter et al., 2017). For these reasons, around

15,000 tons of ectoine are produced every year, and its price

is close to 1,000 USD/Kg (Liu et al., 2021). The moderate

halophilic gammaproteobacterium Halomonas elongata DSM

2581 (Vreeland et al., 1980) is able to grow at elevated salt

concentrations due to the de novo synthesis of ectoine as its

main compatible solute. A variety of strains of H. elongata are

used as cell factories to produce ectoine for pharmaceutical

and cosmetical use (Lentzen and Schwarz, 2006; Kunte et al.,

2014) and a variety of other products (Ye and Chen, 2021).

Additionally, there is an active interest in finding or creating

other bacteria able to produce ectoine (Gießelmann et al., 2019;

Wang et al., 2021).

Bioprocesses must often compete with chemical synthesis

based on cheap petrochemicals, this creates a constant pressure

to keep optimizing the overall process and streamlining

metabolism to maximize the achievable product yield.

Manipulating metabolic fluxes is not trivial due to the abundant

and often unknown mechanisms by which the cell regulates

them to meet its needs. The complexity of metabolic regulation

and the need to address it at a systems level was recognized

long time ago (Savageau, 1971, 1976) and confirmed by the

failure of early attempts to increase metabolic fluxes by directly

overexpressing a few key enzymes (Ruijter et al., 1997). Even

nowadays, regulatory feedback loops are common obstacles

metabolic engineering has to deal with Yu et al. (2021). Early

concepts dealing with metabolism as a system based on supply

and demand blocks (Hofmeyr and Cornish-Bowden, 2000)

highlighted the need to look beyond the pathways, into the

global economy of the cell. In the case of ectoine, its intracellular

concentration is tightly controlled to balance the external salt

concentration (Dötsch et al., 2008; Czech et al., 2018). Since

artificial increases in metabolic fluxes producing ectoine are

very likely to be countered by feedback mechanisms, rational

manipulation of the fluxes is a challenging but feasible approach

to improve ectoine production (Ma et al., 2020). Unlike the

well studied end-product inhibition pattern commonly found

in amino acid synthesis (Savageau, 1975; Alves and Savageau,

2000), whatever mechanism the cell uses for ectoine homeostasis

needs to ensure ectoine concentration to be adjustable across

a broad range to enable adaptation to different salinities

and other environmental conditions. Although the detailed

mechanisms controlling ectoine synthesis have not been

completely elucidated, it is known that H. elongata prioritizes

the uptake of compatible solutes from the medium over de novo

ectoine synthesis and it has been proposed that the export of

ectoine to the periplasmic space and subsequent re-uptake into

the cytoplasm may be part of the regulatory loop (Grammann

et al., 2002; Kunte, 2006). The existence of this traffic of ectoine

between compartments and its nature as an aspartate derivative

places ectoine synthesis within a tightly regulated metabolic

environment.

Since the whole aspartate family of amino acids has

oxaloacetate as a precursor, the de novo synthesis of ectoine

elevates the demand for it and withdraws carbon from the

TCA cycle. The anaplerotic node that is responsible for the

replenishment of TCA cycle intermediates gains a special

position in the H. elongata central metabolism when grown on

glycolytic carbon sources. The anaplerotic role is shared between

the phosphoenolpyruvate carboxylase (Ppc) and the reversible
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membrane-associated Na+-pump oxaloacetate decarboxylase

(Oad). Ppc is thermodynamically more favorable, but Oad

is directly coupled to the sodium driving force, ensuring a

sufficient increase in anaplerotic flux for ectoine synthesis

depending on the sodium gradient with this alternative pathway

(Hobmeier et al., 2020). The remaining enzymes involved in

this part of the metabolic network, to which we will refer from

now on as the PEP-PYR-OAA node, are the PEP carboxykinase

(PckA) and the malic enzymes (MaeA and MaeB). PckA

catalyzes the irreversible decarboxylation of oxaloacetate to

phosphoenol-pyruvate, consuming ATP in the process (Sauer

and Eikmanns, 2005). The PckA-mediated reaction is really

only necessary when the cell grows on gluconeogenetic carbon

sources, but it has been shown to be active in other bacteria

during glycolytic growth as well (Chao and Liao, 1994; Yang

et al., 2003). The futile cycle created by the simultaneous

activity of Ppc and PckA is a sink for ATP and prevents

accumulation of oxaloacetate, making PckA a promising target

for flux optimization. The malic enzymes are normally also

gluconeogenetic enzymes converting malate to pyruvate (Sauer

and Eikmanns, 2005). In H. elongata, there are two isoenzymes

present, namely maeA (HELO_3817), which corresponds to

sfcA in E. coli, and maeB (HELO_3763). They have different

cofactor specificities with maeA being linked to NAD andmaeB

to NADP. For both isoenzymes an oxaloacetate-decarboxylating

activity is described as possible in the literature, meaning not

only malate but also oxaloacetate can be used as a substrate

(Sauer and Eikmanns, 2005). This again constitutes a competing

pathway for ectoine synthesis. However, enzyme assays only

showed in vitro activity for the NADP-dependent isoenzyme

MaeB.

Besides accumulating in the cytoplasm and being diluted

by growth, ectoine has other possible metabolic fates. Ectoine

can be used as a carbon source by H. elongata through an

independent degradation pathway (Schwibbert et al., 2011), or

it can also be exported to the periplasm through a not yet

identified transporter (Vandrich et al., 2020) and then taken

up through the ectoine-specific TRAP transporter encoded in

the teaABC operon. The discovery of this cycle was possible

through the modified “leaky mutant” strain KB2.13 (H. elongata

DSM 2581, 1teaABC 1doeA) which, true to its name, leaks

ectoine into its surroundings (Kunte et al., 2002; Kunte,

2006) due to the deletion of the teaABC operon (Grammann

et al., 2002; Kunte et al., 2014). The additional deletion of

the ectoine hydrolase gene doeA abolishes ectoine degradation

and prevents this strain from consuming ectoine (Schwibbert

et al., 2011). It is noteworthy that the leaky phenotype can

already be observed after solely removing the periplasmic

substrate-binding protein (SBP), TeaA, but leaving the small

and large transmembrane subunits (TeaB and TeaC) intact.

Since the TRAP is a secondary transporter and it is not driven

by ATP hydrolysis, but a by an ion gradient (Kunte et al.,

2002), both transmembrane proteins could potentially facilitate

the bidirectional transport of ectoine in the absence of the

SBP TeaA.

The aim of this work was to explore the potential for

increased ectoine production in the industrial producer strain

H. elongata. To achieve this goal, we used two complementary

strategies that aim at a rational manipulation of the relevant

fluxes: increasing the supply of precursors and boosting the

demand for the end-product.

2. Materials and methods

2.1. H. elongata strains and growth
experiments

The H. elongata strains used in this work are derived

from the modified strain H. elongata KB2.13 (1teaABC 1doeA;

Kunte et al., 2002; Kunte, 2006), and are listed in Table 1.

Further modifications were introduced using homologous

recombination as detailed below. All H. elongata strains were

routinely grown at 30◦C and under shaking at 220 r.p.m. in

liquid media LB (Miller) enriched with 1 M NaCl or MM63

minimal medium [KH2PO4 100mM, (NH4)2SO4 15mM, KOH

75 mM, NaCl variable (from 0.17 to 2 M depending on the

experiment), carbon source (glucose or acetate depending on

the experiment) 27.75 mM, MgSO4 ·7 H2O 1 mM, FeSO4

·7 H2O 0.004 mM] (Larsen et al., 1987). In general, three

biological replicates were always used in each growth experiment

for each strain and condition except for the ectoine secretion

experiments with TeaBC, TeaB, and TeaC. Here, six replicates

were used in the pre-culture steps in order to induce the

heterologous gene expression in three while leaving three others

uninduced as references.

In the first step of the growth experiments, for each

biological replicate a single colony was taken from a solid agar

plate and grown in 3 mL liquid LB medium enriched with 1 M

NaCl. Subsequently, an aliquot of this overnight culture was

taken to inoculate 3 mL MM63 minimal medium with 1 M

NaCl and either glucose or acetate as carbon source in a 1:100

ratio. This culture was then again used to inoculate a subsequent

MM63 culture with an adjusted inoculum volume to achieve

an OD600 of 0.01 in the new culture. This third pre-culture

differs slightly from experiment to experiment since it is used

to adjust the cultures to the respective main culture medium.

In case of the microtiter plate screenings, four 3 mL MM63

minimal medium cultures with each containing a different NaCl

concentration (0.17, 0.5, 1, and 2 M) and the carbon source

used in the previous step were inoculated. For all shake flask

experiments with the general MM63 minimal medium (not

SO4-limited medium) the same medium as in the previous pre-

culture step (1 M NaCl) was used. for the ectoine excretion

experiment with SO4-limited medium, a SO4-limited MM63

minimal medium with 1 M NaCl and glucose was used to
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TABLE 1 Summary of all modified strains characterized in this work based on the parental strain KB2.13 (H. elongata DSM 2581, 1teaABC 1doeA).

Most experiments presented in this work were performed with the in frame null mutations, only the screening in microtitter plate was done with the

marker replacement strains for convenience. No phenotypic di�erences were observed between the marker replacement strains and their

corresponding in-frame full deletion strains.

Strain GenotypeH. elongata

KB2.13

Type of modification Phenotype compared to KB2.13

KH1.1 1pckA In-frame null mutation Reduced growth rate on glucose, no differences growing on

acetate, increased ectoine excretion (compared to KB2.13)

KH1.2 1pckA::SmR Marker replacement of PckA Resistant against streptomycin, reduced growth rate on glucose

especially at low salinities but shorter lag phase than KH1.1, no

differences growing on acetate

KH2.1 1pckA1maeB In-frame null mutation Reduced growth rate on glucose especially at low salinities, no

differences growing on acetate, same ectoine synthesis as KH1.1

KH2.2 1pckA 1maeB::SmR Marker replacement ofmaeB Resistant against streptomycin, reduced growth rate on glucose

especially at low salinities, no differences growing on acetate

KH3.1 1pckA1ppc In-frame null mutation Reduced growth rate on glucose especially at low salinities, no

differences growing on acetate, higher ectoine excretion than

KB2.13

inoculate another 3 mL pre-culture step in MM63 SO4-limited

minimal medium with glucose, until the final inoculation of the

main culture. During the transfers, the cultures were kept in

exponential growth at all times and the final transfer to the main

culture was performed with an adjusted inoculation volume

reaching an initial OD600 of 0.01 in the main culture medium.

The screening experiments were carried out in sterile 96-

well plates (Greiner, Germany) with a filling volume of 0.2 mL

per well and the four NaCl concentrations (0.17, 0.5, 1, and

2 M) already used in the pre-culture for each replicate. As a

blank as well as sterile control, wells with the sterile medium

were measured in parallel. The measurements were performed

in an automated microplate reader (Tecan, Austria) at 30◦C,

which was set to shake briefly and measure the OD600 in regular

intervals every 10 min. The OD600 evolution was followed

for a time frame of ∼16–24 h until the stationary phase was

reached.

Shake flask experiments were routinely performed in 500mL

flasks with 10% working volume incubated in a rotary shaker.

The OD600 was followed using a spectrometer (Eppendorf,

Germany). Ectoine samples were either taken in the late

exponential phase as external concentration in relation to the

biomass (g/gDW) or after complete consumption of the carbon

source as titer (g/L). In the ectoine secretion experiments

specifically, after inoculation the cultures were grown to an

OD600 of 0.1 as an adaptation phase, which lasted ∼7 h.

After reaching OD600 0.01 half of the cultures were induced

with 0.1 mM 3-methylbenzoic acid (3-MB) diluted in ethanol

(EtOH). The same volume of EtOH solvent, which was used

for induction, was added to the remaining uninduced references

without 3-MB. During the overexpression of TeaBC, 1 mL

samples for ectoine detection were taken at three time points

in the late exponential phase. In the experiment overexpressing

TeaB and TeaC individually, the ectoine was measured at one

time point in the late exponential phase as well as the titers.

2.2. Genome modification using
homologous recombination

The genome modifications, marker replacement with a

SmR cassette (aadA) from pSEVA434 (Silva-Rocha et al.,

2013) and in-frame null mutations, were performed using

homologous recombination (Martínez-García and de Lorenzo,

2011). The method established for Pseudomonas putida was

adapted as detailed inHobmeier et al. (2020). First an integration

vector (Supplementary Table 1) specific for the modification

and targeted gene was constructed via Gibson Assembly

using the oligonucleotides specified in Supplementary Table 1.

For the deletion of ppc, the previously constructed plasmid

pSEVA_1ppc described in Hobmeier et al. (2020) was used.

After generating the integration vector, it was transferred into

the H. elongata respective strain by triparental mating. After

successful integration of the vector into the genome a second

conjugal transfer of the expression plasmid pSW-2 for the

homing endonuclease I-SceI was carried out. Subsequently,

the recombination event was triggered by induction of I-

SceI expression, which causes double-strand breaks in the

genome at the specific recognition sites introduced together

with the integration plasmid. The mutant strains were selected

based on the desired phenotype and the correct genotype

was verified using polymerase chain reaction (PCR) and
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sequencing (Eurofins Genomics, Germany). All used enzymes

were purchased from New England Biolabs (USA).

2.3. Construction of the expression
vectors for TeaBC, TeaB, and TeaC

The expression vectors were constructed via Gibson

Assembly using the oligonucleotides specified in

Supplementary Table 1. The oligonucleotides were designed to

regenerate the restriction sites used to linearize the plasmid

pSEVA438 (Silva-Rocha et al., 2013) which was used as

backbone. pSEVA438 already harbors the inducible XylS/Pm

promoter with an empty multiple cloning site. The plasmid was

linearized using the restriction sites SacI and HindIII for the

expression plasmids pSEVA438-teaBC and pSEVA438-teaC. For

pSEVA438-teaB the combination SacI and PstI was used. The

inserts were generated by PCR amplification using the protocol

specified by the manufacturer. Using the oligonucleotides, the

synthetic ribosomal binding site (5’ aggaggcttcat 3’) was inserted

for each construct to facilitate translation. The Gibson Assembly

reaction was carried out as specified in the manufacturer’s

protocol and transformed into TSS-competent E. coli DH5α

λpir cells (Chung et al., 1989) described in detail by Hobmeier

et al. (2020). The correct genotypes were verified using PCR

and sequencing (Eurofins Genomics, Germany). All applied

enzymes were purchased from New England Biolabs (USA).

2.4. Transcriptomic analysis

The collection of RNA for transcriptomic analysis was part

of the experiment described in Hobmeier et al. (2022). In

this work, we add the data for strain KH1.1, which has not

been published before. The parental strain KB2.13 (H. elongata

DSM 2581 1teaABC 1doeA) and derivative KH1.1 (H. elongata

KB2.13 1pckA) were grown in 50 mL scale as described earlier

in MM63 minimal medium with 1 M NaCl and glucose. After

reaching an OD600 of ∼0.5, well within the exponential growth

phase, samples were taken and treated with RNAprotect reagent

(Qiagen, Germany). Subsequently, the RNA was isolated using

the Macherey-Nagel NucleoSpin RNA kit (Macherey-Nagel,

Germany) and sent to GATCBiotech company (Germany). They

generated a strand-specific cDNA library and performed the

RNA-sequencing at the company facilities using the Illumina

NovaSeq 6000 S4 XP. The obtained FASTQ files were comprised

of paired-end reads with lengths of 150 bp. The data was further

processed as described in Hobmeier et al. (2022). The resulting

transcript per million (TPM) were then analyzed regarding

differential expression of genes based on a log2-fold change

(log2-FC) of |1.5| between strains using Python scripts. For

clustering, Principal Component Analysis (PCA) was applied to

the set of TPM counts for all conditions: wild type H. elongata

DSM 2581 (Wt) on glucose and acetate, KB2.13 strain on glucose

and KH1.1 on glucose (three replicates each). In order to cluster

genes by their response to different conditions and not by their

overall level of expression, the first principal component was not

used to compute distances in the clustering process.

2.5. Ectoine detection via RP-HPLC

The quantification of extracellular ectoine was

performed using reverse-phase (RP) high performance liquid

chromatography (HPLC) analysis, which has been described in

detail in Hobmeier et al. (2020). However, since the secreted

ectoine in the medium was measured no extraction was needed.

After sampling, the biomass was separated by centrifugation

for 5 min at 15,000 × g and 25◦C and the supernatant was

carefully transferred into a new tube. The supernatant was then

diluted 1:10 with the mobile phase (acetonitrile/phosphate)

and analyzed using a reverse phase column (Nucleodur 100 5

NH2 RP CC 125/4, Macherey-Nagel). With a UV-detector the

absorption of ectoine at a wavelength of 210 nm was recorded.

Ectoine samples were taken either in the late exponential phase

or after the end of the batch process. Samples taken during the

growth phase were normed using the biomass at the time of

sampling (gram per gram dry weight, g/gDW) by applying the

previously determined OD600 to ash free dry weight correlation

published by Hobmeier et al. (2020). Because the measured

OD600 values after reaching the stationary phase are not reliable

the amount of produced ectoine at the end of the process was

determined as the final ectoine titer (g/L).

3. Results

3.1. Growth and salt tolerance of
modified strains

We screened various H. elongata knockout mutants with

modifications in the PEP-PYR-OAA node in comparison to

KB2.13, from which they are derived. In detail, these strains

are KH1.2 with a marker replacement in phosphoenolpyruvate

carboxykinase (1pckA::SmR), KH2.2 with a null mutation

in pckA and a marker replacement in NADP-dependent

malic enzyme (1pckA1maeB::SmR), and finally KH3.1 with

null mutations in phosphoenolpyruvate carboxykinase and

phosphoenolpyruvate carboxylase (1pckA1ppc). The impact on

physiology and ectoine synthesis due to these modifications are

explored in the following. The determined growth rates are

shown in Figure 1. The reference strain (KB2.13) is illustrated

in gray. The knockout mutants KH1.2, KH2.2, and KH3.1 are

depicted in orange, green, and blue, respectively.
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FIGURE 1

Overview of the growth rates achieved by the modified strains KH1.2 (KB2.13, 1pckA::SmR) (orange), KH2.2 (KB2.13, 1pckA 1maeB::SmR)
(green), and KH3.1 (KB2.13, 1pckA1ppc) (blue) in microtiter plate screenings growing on glucose (top) and acetate (bottom). For each
screening the parental strain, KB2.13 (Halomonas elongata DSM 2581, 1teaABC 1doeA) (gray) is grown in parallel as reference. The deleted
genes pckA, ppc and maeB encode phosphoenolpyruvate carboxykinase, phosphoenolpyruvate carboxylase, and the NADP-dependent malic
enzyme, respectively.

3.1.1. KH1.2—Phosphoenolpyruvate
carboxykinase deletion strain

In the literature, the PckA-mediated reaction is generally

designated as a gluconeogenetic reaction. But the disruption

in H. elongata KB2.13 had an impact on its growth behavior

specifically with glucose as substrate. Across a range of salt

concentrations, spanning from low salinity at 0.17 M NaCl, the

plateau of salt optimum from ∼0.5 to 1 M NaCl, and up to high

salinity at 2 M NaCl, the KH1.2 strain grew significantly slower

than the parental strain KB2.13 in all salt concentrations except

high salt (2 M NaCl). In contrast, with the gluconeogenetic

substrate acetate a significant reduction in growth rate was only

observed at low salt (0.17 M NaCl).

3.1.2. KH2.2—Phosphoenolpyruvate
carboxykinase and NADP-dependent malic
enzyme deletion strain

The main role of the NADP-dependent malic enzyme MaeB

lies in the production of NADPH during growth on acetate

(Wang et al., 2011). The growth rates of the double knockout

strain KH2.2 was very similar to KB2.13. Growing on acetate

no significant differences were found. The biggest impact of

the maeB deletion occurred with glucose as carbon substrate.

Only at low salinity (0.17 M NaCl) a reduced growth rate

was observed.

3.1.3. KH3.1—Phosphoenolpyruvate
carboxykinase and phosphoenolpyruvate
carboxylase deletion strain

Phosphoenolpyruvate carboxylase is one of the two enzymes

carrying the anaplerotic flux in H. elongata. In KH3.1,

both carboxylating and decarboxylating reactions between

phosphoenolpyruvate and oxaloacetate are abolished. Therefore,

glycolytic fluxes necessarily have to pass through the ATP-

forming pyruvate kinase to pyruvate before anaplerosis is

possible. For this strain, no growth with glucose could be

determined up until 18 h after inoculation. However, in the

previous pre-culture steps using the same growth medium

growth on glucose was observed. It has already been shown in

Hobmeier et al. (2020) that the removal of phosphoenolpyruvate

carboxylase leads to a rather unstable phenotype with an

increased lag phase and high variability in growth rates. KH3.1

was often unable to grow on glucose in microtiter plate.

However, it grew well with acetate as carbon source, albeit with

a reduced growth rate at lower salt concentrations of 0.17 and

0.5 M NaCl.
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3.1.4. Growth and ectoine homeostasis in
batch cultures

The growth of the deletion mutants on glycolytic substrate

was further verified in shake flask experiments at the salt

optimum 1 M NaCl. The growth rates for the deletion strains

KH1.1 and KH2.1 (in-frame null mutations) in relation to the

parental strain KB2.13 was determined in four distinct batch

experiments. KB2.13 grew significantly faster with an average

growth rate of 0.467 ± 0.044 h−1. KH1.1 and KH2.1 both

showed the same average growth rate of 0.345 ± 0.051 and

0.348 ± 0.057 h−1, respectively. Therefore, the reduced growth

can be attributed directly to the loss of phosphoenolpyruvate

carboxykinase. Also, for this mutant a longer lag phase was

observed. Even though the additional deletion ofmaeB does not

affect the growth rate, there is a noticeable impact on the lag

phase. The prolonged lag phase observed for KH1.1 is shortened

in KH2.1 and it can commence growth faster after inoculation.

The additional deletion of phosphoenolpyruvate carboxylase

in strain KH3.1, was introduced to shed light on the phenotype

of KH1.1 growing with glucose as carbon substrate. The growth

deficit observed for KH3.1 with glucose was shown to be an

artifact associated to cultivation on microtiter plate. However,

compared to KB2.13 and KH1.1 the growth rate was found to

be considerably reduced at only 0.238 ± 0.010 h−1 on glucose.

Strain KH1.1 grew at a growth rate of 0.303 ± 0.036 h−1, and

the fastest growth rate was as always observed for KB2.13 at

0.450 ± 0.004 h−1. The diminished growth rate after deletion

of Ppc is not surprising since it is thought to carry a major

portion of the anaplerotic flux during glycolytic growth even

though the alternative Oad can take over a portion of the flux

at the applied salt concentration 1 M NaCl (Hobmeier et al.,

2020). In the late exponential phase, an intracellular ectoine

content of 0.018 ± 0.002 g/gDW was determined for KB2.13

and a much higher content of 0.080 ± 0.016 g/gDW for KH1.1.

The deletion of ppc led to a decrease in ectoine content to

0.051 ± 0.009 g/gDW. However, this is still a 2.8-fold increase

compared to KB2.13. These important variations in ectoine

concentration point toward a major disruption of the regulatory

mechanisms that normally keep ectoine homeostasis. Growth

on the gluconeogenetic substrate acetate was not expected to

be affected by Ppc and indeed, all strains exhibited very similar

growth rates on acetate, with growth rates of 0.237± 0.003, 0.227

± 0.004, and 0.222 ± 0.004 h−1 for KB2.13, KH1.1, and KH3.1.

This was also reflected in the intracellular ectoine content with

0.019 ± 0.002, 0.023 ± 0.001, and, again, 0.023 ± 0.001 g/gDW,

respectively.

3.2. Ectoine excretion in KH1.1 (1pckA)
and KH2.1 (1pckA1maeB)

Ectoine analytics in shake flask experiments is challenging

due to the low biomass achieved in such cultures, which leads

FIGURE 2

OD600 evolution in half-logarithmic depiction for the ectoine
synthesis experiment in SO4-limited medium with the strains
KB2.13 (Halomonas elongata DSM 2581, 1teaABC 1doeA)
(gray), KH1.1 (KB2.13, 1pckA) (orange), and KH2.1 (KB2.13,
1pckA 1maeB) (green).

FIGURE 3

Growth rates (striped bars) and ectoine titers (no pattern)
achieved in the SO4-limited medium with the strains KB2.13
(Halomonas elongata DSM 2581, 1teaABC 1doeA) (gray), KH1.1
(KB2.13, 1pckA) (orange), and KH2.1 (KB2.13, 1pckA 1maeB)
(green).

to ectoine accumulation being at the lower end of the HPLC

detection limit during the exponential growth phase. Since the

genetic background of all the strains discussed in this work

includes an impaired ectoine catabolic pathway (1doeA), it

was possible to compare cultures grown into the stagnation

phase. The titers after the end of the process are the maximal

final concentrations achievable from the applied substrate. To

further increase ectoine yields, an experiment in a SO4-limited

medium was carried out. Based on a standard biomass formula

ofCH1.6O0.37N0.26S0.006 (Battley, 1991) the amount of sulfate in

the medium was adjusted to limit the maximum biomass to an

OD600 of 2. As can be seen in Figures 2, 3, the growth of KB2.13,

KH1.1, and KH2.1 compared to each other coincided with the

pattern observed in the regular minimal medium with KB2.13

growing significantly faster at 0.512 ± 0.035 h−1 and both
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FIGURE 4

Fraction of the transcriptome occupied by each COG class in each experiment (upper panel) and log2-fold-change for each case with respect
to the wild type Halomonas elongata DSM 2581 growing on glucose. The strains are KB2.13 (Halomonas elongata DSM 2581, 1teaABC 1doeA)
(gray) and KH1.1 (KB2.13, 1pckA) (orange).

modified strains at similar growth rates of 0.450± 0.024 h−1 for

KH1.1 and 0.466 ± 0.017 h−1 for KH2.1. As mentioned before,

the deletion of maeB in KH2.1 leads to a reduced lag phase,

which is apparent in the growth curves depicted in Figure 3.

Another interesting finding here is that the evolution of OD600

for KB2.13 stops precisely at the theoretically determined limit

of OD600 2, but the modified strains eventually exceeded the

OD600 limit (Figure 2). This hints toward possible changes in

the biomass composition. A tendency of the modified strains to

accumulate PHB would be consistent with these results as well

as previous observations of H. elongata’s behavior under stress

(Hobmeier et al., 2022). The available data on the transcriptome

of KH1.1 do not provide enough evidence to confirm this since

the upregulation of phbC in this strain amounts to a log2-fold-

change of 1.3, which is close but still below the chosen threshold

of 1.5 for differential expression.

After 48 h the final ectoine titers in the medium were

measured for all strains. With 5 g/L glucose KB2.13 produced

0.619 ± 0.002 g/L. The modified strains reached considerably

higher titers of 0.895 ± 0.012 g/L for KH1.1 and 0.894 ±

0.025 g/L for KH2.1. This equates to a 45 % increase in ectoine

titer. The improvement is clearly caused by the disruption of the

PckA futile cycle and the additional removal of NADP-ME has

no impact on ectoine synthesis.

3.3. RNA-Seq analysis of modified strain
KH1.1

During the RNA-Seq experiments described by Hobmeier

et al. (2022), RNA was also collected from KH1.1. Figure 4

shows the distribution of COG classes in the transcriptome of

this strain in relation to those of the previous publication. The

profiles suggest that the changes in transcription levels grouped

by COG class that appear in KB2.13 become more prominent

after the additional deletion of pckA in strain KH1.1.

In general, the transcription profile of KH1.1 changes more

with respect to the parental strain (KB2.13) than that strain

did with respect to the wild type. Genes showing a log2-fold-

change larger than 1.5 between strains, were clustered by their

pattern of transcription as described in materials and methods

(see Supplementary material for details). The two larger clusters

were formed by genes involved in chemotaxis (33 genes) and

flagellar motility (17 genes).

All these genes have been previously found to be already

close or beyond the threshold of down-regulation in KB2.13 and

also severely down-regulated by cells growing on low-salinity.

The down-regulation of these genes in KH1.1 with respect to

its parental strain KB2.13 is even more prominent. The next

few clusters in size include a large number of uncharacterized

or poorly annotated genes. For instance, the third largest cluster
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includes 17 genes which are poorly characterized except, for two

genes involved in the degradation of ectoine: doeB and doeC.

These genes are clearly down-regulated in KB2.13 (in which

doeA is deleted) but seem unaffected by the deletion of pckA in

the KH1.1 strain. The down-regulation in KB2.13 is most likely

a direct consequence of the doeA deletion. The next cluster with

14 genes includes teaD (Schweikhard et al., 2010) which shows

increased transcription in the KB2.13 strain and a series of genes

that are up-regulated exclusively in KH1.1. The up-regulation

of teaD can also be attributed to the introduced modifications in

KB2.13. Due to the deletion of teaABC the adjacent open reading

frame teaD directly underlies the tea operon promoters resulting

in an artificial overexpression. The remaining genes only affected

in KH1.1 include acnA, which encodes for the TCA cycle

enzyme aconitase, the chaperone (clpB), the cold-shock protein

(cspA4), and a APC family transporter (HELO_1536). Smaller

clusters normally involve well annotated genes. Cluster 13 is

formed by consecutive genes putP and putA involved in proline

metabolism, as well as HELO_1459 coding for an OmpW family

protein and HELO_2165A coding for a UspA domain protein.

These genes are up-regulated in KH1.1 and also show a similar

behavior in the wild type growing on acetate or in low salinity.

Cluster 14 contains only two consecutive genes HELO_4326

and HELO_4327 coding for a tryptophan synthase and they

are down-regulated both in strain KH1.1 and again in the wild

type growing on acetate or in low salinity. A similar behavior

is exhibited by the two genes in cluster 12: NAD-dependent

acetaldehyde dehydrogenase HELO_2817 (acoD) and alcohol

dehydrogenase HELO_2818 (adh2) except these two genes are

up-regulated at low salinity. The genes for the multidrug efflux

pump AcrAB (HELO_3739 and HELO_3738) is up-regulated

exclusively in KH1.1. This transporter facilitates the energy-

dependent vertical transport of diverse compounds from the

cytoplasm directly into the extracellular space (Du et al., 2014).

3.4. Ectoine excretion via transmembrane
proteins TeaB and/or TeaC

As a way to avoid potential feedback inhibition by ectoine

on its own synthesis, we explored ways to enhance ectoine

removal from the cytoplasm. This action on demand was

implemented independently from the supply oriented method

shown above, but both approaches are clearly complementary.

The mechanisms that secretes ectoine to the periplasm has

not yet been fully characterized. It has been established that

20% of this flux is carried by the mechanosensitive channels,

but the remaining 80% goes through an as yet unidentified

transporter (Vandrich et al., 2020). Therefore, the removal of

ectoine was implemented using the channel building proteins

of the ectoine specific TRAP transporter: TeaB and TeaC. Since

this channel is a symporter of ectoine with sodium, ectoine

export through this method involves overcoming the sodium

gradient and adding a sodium export flux. The single knockout

of the periplasmic substrate binding protein (SBP) TeaA already

results in the same leaky phenotype as the complete removal

of the tea operon (HELO_4274-6). Without the specific SBP

the re-uptake of ectoine is disrupted and accumulates in the

periplasm over time, leading to a constant loss of ectoine into the

extracellular space.

We tested the induced overexpression of both membrane

proteins in strain KB2.13, in which the tea operon is deleted

and, thus, TeaA is not present. Three different plasmids based

on the pSEVA architecture were assembled with teaBC, teaB,

or teaC under the inducible XylS/Pm promoter. To rule out

any impact of the inducer or solvent, their impact was also

examined in KB2.13 but no significant differences in ectoine

secretion between untreated cultures, cultures treated with

only solvent (EtOH), and cultures treated with the inducer

(0.1 mM 3-methyl-benzoic acid in EtOH) could be detected (see

Supplementary material).

First, the effect of the complete transmembrane complex

TeaBC was investigated. After inoculation, initially the cultures

were left uninduced for a period of ∼7 h in order for the

cultures to adapt. Up to an OD600 of 0.1 all KB2.13 (pSEVA438-

teaBC) replicates grew with the same growth rate of 0.468 ±

0.010 h−1. After induction of half of the cultures with 0.01 mM

inducer at OD600 0.01 this exponential growth continued for

3 h until the late exponential phase was reached after ∼10 h.

From then on, the uninduced cultures showed a growth rate of

0.299 ± 0.011 h−1 and the induced cultures a slightly slower

(16.7%) growth rate of 0.249± 0.006 h−1. Regarding the ectoine

concentration in the medium, the induced teaBC expressing

cultures (green) during the late exponential phase accumulated

ectoine at an increased rate of 0.078 g/L extracellular ectoine per

g/L dry weight, in contrast to the uninduced cultures (black)

with a rate of only 0.027 g/L (Figure 5A). This translates into

an almost 3-fold increase of ectoine secretion caused by the

TeaBC channels.

Cultures of KB2.13 harboring either the pSEVA438-teaB

or pSEVA438-teaC expression plasmid were grown in parallel.

After an initial growth period of ∼7 h for adaptation after

inoculation, half of the cultures for each expression plasmid

were induced (0.01 mM 3-MB in EtOH) upon reaching an

OD600 of 0.1. Up to this point, the growth rates of all cultures

regardless of the plasmid were the same with an average of

0.545 ± 0.040 h−1. Again, the exponential growth continued at

the same growth rate for about 3 h. After 10 h upon reaching

the late exponential growth phase, the growth rates decreased

with uninduced cultures harboring pSEVA438-teaB having a

growth rate at 0.380 ± 0.013 h−1 and the uninduced cultures

harboring pSEVA438-teaC having a growth rate at 0.381 ±

0.013 h−1. Even though the strains have different expression

plasmids, the uninduced growth rates were essentially the same.

This suggests a very tight control of heterologous expression

using the XylS/Pm promoter system in H. elongata with a low

basal expression similar to P. putida, from which this expression
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FIGURE 5

(A) Ectoine accumulation rates for the overexpression of teaBC (green, induced) and the uninduced control (gray) in the late exponential phase.
The rates were calculated for three biological replicates at three time points. (B) Comparison of the accumulated ectoine in the medium in the
late exponential phase after 13 h of process time for the overexpression of the genes encoding the transmembrane proteins: teaBC (green), teaB
(red), and teaC (orange). All genes were introduced using pSEVA438 plasmids under the inducible XylS/Pm promoter (see text for details).

FIGURE 6

Fluxes around the PEP-PYR-OAA node in KH1.1 caused by the
deletion of PEPCK (orange, dashed line). An increase in aspartate
could lead to the inhibition of PEPC. RNA-Seq revealed the
upregulation of ACO in this mutant, which could be linked to an
increased flux through the glyoxylate shunt. The flux toward the
TCA cycle might hinder ME activity due to mass action. Thus,
MAL could be increasingly channeled toward oxaloacetate via

MDH.

system originates (Kessler et al., 1994; Gawin et al., 2017).

Surprisingly, the cultures expressing teaB also grew at a similar,

only slightly reduced rate (0.328 ± 0.021 h−1) compared to the

uninduced cultures. In contrast, the expression of teaC caused a

drastic drop to about half of the growth rate (0.189± 0.047 h−1).

The synthesis of TeaC seems to impose amuch higher burden on

the cell compared to the small subunit TeaB. The concentration

of secreted ectoine per dry weight into the medium after 13 h

was compared for the teaB, teaC, and teaBC expression from

both batch experiments. Therefore, the ectoine concentration

was normed using the uninduced references. As shown in

Figure 5B, TeaC facilitates almost 4–5 times the amount that

is secreted with either TeaB or TeaBC. But it is not entirely

clear how the overexpression of teaC impacts cell viability as the

growth rate is extremely reduced to about 50%. Additionally, the

measured ectoine titers for TeaB and TeaC after 30 h show no

significant difference. The final ectoine titer achieved for TeaB

was 0.259 ± 0.022 g/L and for TeaC 0.278 ± 0.03 g/L. For the

uninduced references lower titers of 0.163 ± 0.003 g/L (TeaB)

and 0.163± 0.005 g/L (TeaC) were determined. It is possible that

the expression of TeaC leads to a loss of membrane integrity.

Cell lysis upon induction could explain the strong increase of

extracellular ectoine after 13 h. However, as teaC-overexpressing

cells produce less cell mass due to lysis, teaB-overexpressing cells

catch up until no differences are found in ectoine titers after 30 h.

4. Conclusions

This work has shown two different approaches to increase

the synthesis and excretion of ectoine in H. elongata. These two

strategies clearly complement each other, but were implemented

separately to assess their viability. Both approaches have clearly

shown to be able to increase the flux toward ectoine and to

be promising steps toward strain improvement. Moreover, the

phenotypes of the strains created provide further insight on the

regulation of intracellular ectoine levels and salt adaptation in

H. elongata. All the strains were created from a parental strain

(KB2.13) that leaks ectoine as a result of a deletion of the TRAP

transporter TeaABC.

The first strategy was to increase the supply of oxaloacetate

as a central precursor for ectoine synthesis. This was

implemented by disrupting the PEP-PYR-OAD node (see

Figure 6) that connects glycolysis and the TCA cycle, which
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has been described as a major switching point for the flux

distribution within carbon metabolism (Sauer and Eikmanns,

2005). H. elongata utilizes various reactions to adequately

split the available carbon flux between feeding the catabolic

section of the TCA cycle and the anaplerotic reactions that

replenish the carbon skeletons lost to anabolic processes. The

deletion of the gene for PEPCK, pckA, resulted in a strain

(KH1.1) that not only secretes ectoine at a higher rate, but

also accumulates it in a higher concentration in the cytoplasm.

The subsequent deletion of NADP-dependent ME (MaeB)

in KH1.1 resulted in a new strain (KH2.1) which grew at

similar rates on glucose and acetate as its parental strain,

but had considerably shorter lag phases. Moreover, strain

KH3.1 (lacking PckA and Ppc) also had intracellular ectoine

concentrations different from the previously mentioned KH1.1

and the parental KB2.13. The fact that intracellular ectoine

levels, normally strictly controlled, are significantly different

between these strains indicates that the mechanisms controlling

ectoine levels in the wild type are no longer functional in all

the strains discussed above, probably including the original

KB2.13. This has important implications since it simplifies

further improvement on ectoine production and supports the

hypothesis that the circulation of ectoine between cytoplasm

and periplasm fulfils a regulatory function. If PHB accumulation

is confirmed in the two strains, a further improvement

could be easily obtained from disrupting the PHB synthesis

pathway.

The second strategy, increasing ectoine export, also proved

able to increase the flux through the pathway and therefore

enhance production. This strategy was implemented through

overexpression of the TeaBC channel. It is noteworthy that, even

though this implementation is not optimal due to the potential

coupling between ectoine export and sodium extrusion, it still

resulted in a clear improvement of ectoine secretion. This

promises high rewards for further work on engineering a more

efficient transporter.
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Brine from Dingyuan Salt Mine (Anhui, China), an athalassohaline hypersaline

environment formed in the early tertiary Oligocene, is used to produce table

salt for hundreds of millions of people. However, halophiles preserved in this

niche during deposition are still unknown. Here, we employed cultivation and

high-throughput sequencing strategies to uncover the microbial community

and its shift after a long-term storage in the brine collected from Dingyuan

Salt Mine. High-throughput sequencing showed (1) in the fresh brine (2021),

Cyanobium_stocktickerPCC-6307 spp. (8.46%), Aeromonas spp. (6.91%) and

Pseudomonas spp. (4.71%) are the dominant species in bacteria while

Natronomonas spp. (18.89%), Halapricum spp. (13.73%), and Halomicrobium

spp. (12.35%) in archaea; (2) after a 3-year-storage, Salinibacter spp. (30.01%)

and Alcanivorax spp. (14.96%) surpassed Cyanobium_stocktickerPCC-6307

spp. (8.46%) becoming the dominant species in bacteria; Natronomonas spp.

are still the dominant species, while Halorientalis spp. (14.80%) outnumbered

Halapricum spp. becoming the dominant species in archaea; (3) Alcanivorax

spp. and Halorientalis spp. two hydrocarbons degrading microorganisms were

enriched in the brine containing hydrocarbons. Cultivation using hypersaline

nutrient medium (20% NaCl) combined with high-throughput 16S rRNA gene

sequencing showed that (1) the biomass significantly increased while the

species diversity sharply declined after a 3-year-storage; (2) Halorubrum spp.

scarcely detected from the environment total stocktickerDNA were flourishing

after cultivation using AS-168 or NOM medium; (3) twelve possible new

species were revealed based on almost full-length 16S rRNA gene sequence

similarity search. This study generally uncovered the microbial community and

the dominant halophiles in this inland athalassohaline salt mine, and provided

a new insight on the shift pattern of dominant halophiles during a long-

term storage, which illustrated the shaping of microorganisms in the unique

environment, and the adaptation of microbe to the specific environment.

KEYWORDS

salt mine, hypersaline environment, halophiles, haloarchaea, microbial community,
archaea

Frontiers in Microbiology 01 frontiersin.org

21

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2022.975271
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2022.975271&domain=pdf&date_stamp=2022-09-02
https://doi.org/10.3389/fmicb.2022.975271
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmicb.2022.975271/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-975271 August 30, 2022 Time: 9:28 # 2

Tu et al. 10.3389/fmicb.2022.975271

Introduction

Hypersaline ecosystems are widespread across the globe,
including a wide variety of habitats such as hypersaline lakes,
solar salterns, soils, and ancient salt deposits (Oren, 2011).
In addition to high salt concentrations, high pH, and low
oxygen concentrations are also characteristics of these extreme
environments (Naghoni et al., 2017). Although the conditions
are harsh, and even high salinity is fatal to most organisms, a
large number of halophilic archaea, halophilic and salt-tolerant
bacteria still exist in these environments (Oren, 2002; Fendrihan
et al., 2006; Naghoni et al., 2017), which play a vital role in global
biogeochemical cycles (Mani et al., 2012).

In recent years, the diversity of microorganisms in various
hypersaline environments has been studied, but these studies
have mainly focused on saline lakes, solar salterns, saline soils
(Ben Abdallah et al., 2018; Gomez-Villegas et al., 2018; Bachran
et al., 2019; Couto-Rodríguez and Montalvo-Rodríguez, 2019;
Nan et al., 2020; Sáenz de Miera et al., 2021). It is worth
noting that salt mine, a unique habitat formed tens of millions
of years ago, is also an important representative of the
hypersaline environment (Chen et al., 2019). For instance,
brine from Dingyuan Salt Mine (Dongxing Town, Dingyuan
County, Anhui Province, China), an athalassohaline hypersaline
environment, is used to produce table salt for hundreds of
millions of people. However, current analysis of microbial
communities in this kind of environment is limited. Actually,
salt mines are rich in microbial resources. For example,
the study of halophilic microorganisms in salt mines can
not only reveal the evolution and adaptation mechanism of
life in extreme environments, but also shows importance in
the breeding, development and utilization of microorganisms
(Chen et al., 2019).

At present, high-throughput sequencing technology has
been applied to investigate microbial communities in different
hypersaline environments (Genderjahn et al., 2018; Perez-
Fernandez et al., 2019; Zhu et al., 2020). Compared to
traditional methods, it has emerged as a reliable tool for
investigating differences in microbial community species
diversity and structure in any given habitat (Boutaiba et al.,
2011), because the culture-independent method of amplicon
sequencing appears to be more efficient than the traditional
culture-dependent methods (Gibtan et al., 2017). However,
culture-dependent method is still a necessary means to acquire
valuable microbial strains with potential for new applications
and to understand their ecophysiological and environmental
functions (Vandamme et al., 1996; Sfanos et al., 2005). For
example, the use of traditional culture techniques and the
development of new media are encouraged to find novel pure
isolates with desired physiological and metabolic characteristics
(Rohban et al., 2009).

Therefore, in this study, high-throughput sequencing,
clone library and traditional culture-dependent approaches

were combined to analyze the microbial diversity of brine
(long-term indoor sealed static storage and freshly collected
brines) from Dingyuan Salt Mine in Anhui Province (China).
The microbial community composition and diversity in
this environment were explored using culture-independent
and culture-dependent methods, and different results for
characterizing microbial communities were compared. In
addition, microbial interactions and keystone taxa in complex
environments were identified and inferred using co-occurrence
network analysis method. The results of this study expand our
knowledge on microbial ecology in hypersaline environments.

Materials and methods

Sampling site description and sample
collection

Brine samples were collected from Dingyuan Salt Mine
located in Dongxing town, Dingyuan county, Anhui Province,
China (117.4956E, 32.5066N) (Supplementary Figures 1a,b).
Geographic location of the sampling site was generated with
ArcGIS 10.2 software1. This sampling site is an athalassohaline
hypersaline environment derived from a long-term evaporation
and sedimentation of inland saline streams and lakes (Chen
et al., 2019). Two brine samples, C4 and C5, were collected
in August 2018, and the other three samples, C1, C2, and C3,
were collected in July 2021. All these five samples were collected
from the same site as shown in Supplementary Figures 1a,b
and Figure 1A. And these brine samples were held using
sterile plastic containers (10 L), and were brought back to the
laboratory within a few hours. In particular, the two samples (C4
and C5) were stored in sealed plastic tanks for approximately
3 years in our laboratory without any manual intervention at
perennial room temperature (20–25◦C). And one-fifth of the
volume of air existed in the upper layer of the tanks.

Physicochemical properties
determination

The pH of these brine samples value was measured by
a Delta 320 pH meter (Mettler-Toledo, Zurich, Switzerland).
Additionally, chemical composition of them was performed
by a commercial analytical laboratory based on standardized
methods (Beijing Zhongkebaice Technology Service Co.,
Ltd., Beijing, China). Nitrate ion (NO3

−) concentration was
measured by ion-chromatography on an ICS-1500 (Dionex,
Sunnyvale, CA, United States). The content of metallic
elements such as magnesium (Mg), iron (Fe), and potassium

1 https://desktop.arcgis.com/en/
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FIGURE 1

Landscape of the sampling site and brine production mode. (A) The surrounding landscape of the sampling site. The fresh water (green pipe)
with high pressure was pumped into the underground salt mine and the industry brine (yellow pipe) with relative low pressure flowed out.
(B) The working principle of rock salt mining is fresh water-in (green, ∼3.0 Mpa) and brine-out (yellow, ∼1.1 Mpa). Green arrows indicate the
direction of fresh water in the internal pipe, and the yellow arrows indicate the direction of industry brine in the external pipe.

(K) were determined by inductively coupled plasma atomic
emission spectrometry (ICP-AES) using an OPTIMA 5300 DV
spectrometer (Perkin Elmer, Norwalk, CT, United States).

Cultivation, isolation, and identification
of halophilic microorganisms

The brine samples were cultured in two different hypersaline
media AS-168 and NOM (pH = 7.5) (Han et al., 2007; Cui
et al., 2012). Besides, solid media were made by adding 15.0 g
agar powder to each liter of liquid medium prior to autoclaving.
Then, 200 µL of above brine samples were pipetted and spread
onto AS-168 and NOM agar plates (three plates for each
sample). Finally, all plates sealed with parafilm were put into
a ziplock bag to keep moisture during a long-term cultivation.
After 3–4 weeks cultivation at 37◦C, numerous halophilic or salt
tolerant microorganisms were obtained.

Colonies, developed from the above operation with different
color, transparency and size, were sorted out. After successive
streaking, pure cultures were subjected to identification.
Polymerase chain reaction (PCR) amplification of the 16S
rRNA gene was performed using universal primers F8/R1462
(Supplementary Table 1; Lizama et al., 2001) and 27F/1492R
(Supplementary Table 1; Lane, 1991) for archaea and
bacterial respectively.

The PCR products were sequenced using the corresponding
PCR primers (Sangon Biotech, Shanghai, China) after agarose

gel electrophoresis. The assembled almost full-length 16S rRNA
gene sequences (>1,300 nt) were used as queries to match
the public database using Basic Local Alignment Search Tool
(BLAST)2. To determine the taxonomic position of these strains,
97% of 16S rRNA gene sequence similarity was taken as
species boundary.

Total DNA extraction, 16S rRNA gene
amplification, and high-throughput
DNA sequencing

To analyze the microbial community of culture-dependent
approach, colonies grown on AS-168 and NOM agar plates were
collected by washing with 20% (w/v) sterilized NaCl solution.
With this approach, cells of C1, C2, and C3 washed from
AS-168 plates were blended into a tube as one sample (C1-3-
AS168). Samples C4-5-AS168 and C4-5-NOM were obtained
by the same method. Total DNA of these three samples was
extracted using TIANamp Bacteria DNA Kit in accordance with
the instruction (TIANGEN, Beijing, China).

To explore the microbial community of culture-
independent approach, several related environmental samples
such as brines, fresh water used to produce brine, ddH2O used to
dissolve DNA, and routine lab air containing microorganisms
were involved in the process of total environmental DNA

2 https://blast.ncbi.nlm.nih.gov/Blast.cgi
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extraction. Each sample (1 L) was filtered through a 0.22 µm
membrane filter (as for lab air sample, an equal filtrating
time with ddH2O was used). Then, the filter membrane of
each sample was cut into small pieces, from which the total
environmental DNA was extracted using the DNeasy PowerSoil
Pro Kit (QIAGEN, Dusseldorf, Germany) according to the
manufacturer’s instructions. Although long-term storage
enables the formation of endospore in bacteria, the DNA
extraction kit used in this study was also able to isolate total
DNA via bead-beating from bacterial endospores (Redweik
et al., 2020). Thus, differences in microbial diversity in different
brine samples can be well characterized. Subsequently, all
the harvested DNA samples were detected using 1% agarose
gel electrophoresis, and the purity and concentration were
determined by a NanoDrop-2000 (Thermo Fisher Scientific,
Waltham, MA, United States).

The V3-V4 regions of bacterial and archaeal 16S rRNA
genes from samples C1∼C5 were amplified using primer pairs
338F/806R (468 nt) for Bacteria, and Arch349F/Arch806R
(457 nt) for Archaea, respectively (Supplementary Table 1;
Derakhshani et al., 2016). Then, the 16S rRNA gene amplicons
were subjected to high-throughput DNA sequencing on the
Illumina Novaseq 6000 platform in Biomarker Biotech Co., Ltd.
(Beijing, China).

Clone library construction

In order to reveal the alteration of haloarchaeal community
after a 3-year indoor storage in the brine sample in species level,
the primer pair F8/R1462 (Supplementary Table 1; Lizama
et al., 2001) was used to amplify the nearly full length of
haloarchaeal 16S rRNA gene. C1-3 was made by blending the
total DNA of C1, C2 and C3 in identical volume; and the C4-
5 was generated in the similar way. One microliter of C1-3 or
C4-5 was used as template in PCR amplification. The 16S rRNA
gene was purified using MonPurTM Gel & PCR Purification
Kit (Monad, Shanghai, China) after DNA electrophoresis. The
purified DNA fragments were inserted into pMD18T vector
(TaKaRa, Tokyo, Japan) for DNA sequencing. Then, the nearly
full-length 16S rRNA gene sequences were used to determine the
taxonomic status via sequence similarity search against public
database using BLAST as well.

Data analysis

For the purpose of obtaining clean reads, Trimmomatic
(version 0.33) (Bolger et al., 2014) software was used to
filter the raw reads, and Cutadapt (version 1.9.1) (Martin,
2011) software was used to identify and remove primer
sequences. Next, clean reads from each sample were spliced and
filtered by using Usearch (version 10) (Edgar, 2010) software.
Finally, effective reads for further analysis were obtained

by removing the chimeras with software UCHIME (version
4.2) (Edgar et al., 2011). Operational taxonomic units (OTUs)
were obtained by clustering effective reads at a similarity
threshold of 97% (Stackebrandt and Goebel, 1994). Using SILVA
as the reference database, the Naive Bayesina classifier was
used to indicate the OTU’s taxonomic status (Quast et al.,
2012). According to the OTU information, QIIME software
was used to generate species abundance tables at different
taxonomic levels (Caporaso et al., 2010). The R language
tool was used to draw the community structure figures of
the samples at each taxonomic level (R Core Team, 2013).
The alpha diversity indexes of the samples were evaluated
by using the QIIME2 software (Hall and Beiko, 2018) and
the rarefaction curve were generated with the R language
tool (R Core Team, 2013). One-way analysis of variance was
performed using SPSS 23.0 (Kirkpatrick, 2015) for counting
DNA concentration and Shannon index of different samples,
and post-hoc Scheffe test was used for pairwise comparisons.
The level of significance was set at 0.05. Independent samples
t-test was performed using SPSS 23.0 (Kirkpatrick, 2015)
for the inorganic ion concentrations of samples C1-3 and
C4-5, the level of significance was set at 0.05. The results
obtained by clone library and culture-dependent methods
were counted, and the bioinformatics analysis images were
drawn using the Origin software (Edwards, 2002). According
to the abundance and changes of each species in each
sample, Spearman’s rank correlation analysis was performed
(Corder and Foreman, 2014). Then, the data with significant
and robust correlations (ρ > 0.7 and P < 0.05) were
screened, and the correlation network diagram was drawn
based on Python.

Results

Physicochemical characteristics of
brine samples

Brine samples were collected from Dingyuan Salt Mine
located in Dongxing Town, Dingyuan County, Anhui Province,
China (Supplementary Figures 1a,b). The physicochemical
properties of these brine samples are shown in Table 1. The pH

TABLE 1 Physicochemical properties of brines.

Item C1a C2a C3a C4b C5b

Mg (mg/L) 7.452 7.610 7.011 7.112 7.031

K (mg/L) 213.5 221.2 211.9 210.8 215.4

Fe (mg/L) 0.222 0.267 0.151 0.236 0.214

NO3
− (mg/L) 9.790 9.716 8.201 9.625 8.096

pH 8.09 8.11 7.99 8.19 8.17

aBrine collected in July, 2021.
bBrine collected in August, 2018.
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of brine samples varies from 7.99 to 8.19, indicating that these
brine samples are slightly alkaline. The concentration of nitrate
ion in these five brine samples ranges from 8.1 to 9.8 mg/L.
In addition, the concentrations of magnesium, potassium, and
iron in samples C1-3 and C4-5 were not significantly different
(p < 0.05).

Total environmental DNA extracted
from different brine samples

Total environmental DNA extracted from different brine
samples is shown in Supplementary Table 2 and Figure 2A.
The results revealed that the environmental DNA extracted
from the samples collected in 2018 (C4-5) was 2–3 times
higher than that from samples collected in 2021 (C1-3),
which indicates that the biomass accumulated greatly after
3 years of indoor static and closed storage. The DNAs in the
ddH2O used in environmental DNA extraction and room air
samples were much lower than those in the brine samples
in order of magnitudes. The DNA concentrations in the

different samples (Figure 2A) were significantly different,
demonstrating that there was a significant difference in DNA
concentrations between the samples C4-5 and samples C1-
3. Similarly, DNA concentrations in samples (C1-5) were all
significantly different from sample freshwater (FW) which was
pumped in to dissolve solid salt mine to produce brine. It
was worth noting that the DNA concentration of the sample
FW was much higher than that of the brine samples (C1-
5). Additionally, the PCR amplification experiments indicated
that no haloarchaeal DNA was detected or the amount of
haloarchaeal DNA was below the limit of PCR detection in the
samples ddH2O, room air and FW (Figure 2B), illustrating a low
experimental contamination.

Species diversity indices

High-throughput sequencing was performed on brine
samples (C1-5), fresh water (FW), and samples collected after
the halophiles in brine were cultured in medium (Cx-168 and
Cx-NOM). Sequences obtained from the quality filtering were

FIGURE 2

Total environmental DNA extraction and 16S RNA amplicon sequencing rarefaction curves. (A) The total DNA was extracted from 1 L of the
corresponding samples except from the air in the lab with suction filtration approach. C1-3, three brine samples (C1, C2, and C3) collected in
July 2021; C4-5, two brine samples (C4 and C5) collected in August 2018; ddH2O, distilled water; Air, time duration of lab air suction filtration
was the same as ddH2O; Fresh water, the natural water source used to dissolve salt mines for brine production. **p < 0.05, significant
difference. (B) These extracted environmental DNA was used as PCR template for amplifying haloarchaeal (upper row) and bacterial (bottom
row) 16S rRNA gene using F8/R1462 and 27F/1492R, respectively. FW, fresh water; DNA ladder was shown on the left. (C) Rarefaction curve of
archaeal 16S RNA amplicon sequencing. (D) Rarefaction curve of bacterial 16S RNA amplicon sequencing. OTU, operational taxonomic unit.

Frontiers in Microbiology 05 frontiersin.org

25

https://doi.org/10.3389/fmicb.2022.975271
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-975271 August 30, 2022 Time: 9:28 # 6

Tu et al. 10.3389/fmicb.2022.975271

trimmed, after which the high-quality ones were obtained for
further analysis. In the culture-independent approach, 398,634
and 399,340 high-quality reads were obtained with archaeal
and bacterial 16S rRNA gene primer sets, respectively. For
samples collected from culture-dependent of brine, 366,127
high-quality reads were obtained with archaeal 16S rRNA gene
primer set. Interestingly, the number of OTUs of archaea in
samples C1-3 and C4-5 was not significantly different, but the
number of OTUs of bacteria in samples C1-3, C4-5 and FW
was significantly different (p< 0.05) (Supplementary Figure 2).
OTUs were grouped at the 97% similarity cut off, and diversity
indices and richness estimates were calculated for each sample
(Supplementary Table 3).

The coverage values of all samples exceeded 0.99
(Supplementary Table 3), indicating that the sequencing results
can adequately reflect the diversity and structure of microbial
community. Similarly, the rarefaction curves for all samples
including freshwater samples (FW) were approaching saturation
as the sequencing deepens, suggesting sequencing depth was
adequate (Figures 2C,D and Supplementary Figures 3a,b).
The Chao1, ACE, Simpson and Shannon indices for bacterial
communities in samples C1-3 were higher than those in
samples C4-5, especially the Shannon index was significantly
different (p < 0.05) (Supplementary Table 3 and Figure 3A).
However, C4 exhibited higher Chao1, ACE and Shannon indices
compared to other brine samples when using archaeal primers.

For culture-dependent approach (Cx-168 and Cx-
NOM), there was no significant difference in the species
diversity (p < 0.05) (Supplementary Table 3 and Figure 3B).

Interestingly, the bacterial diversity of samples C1-3 was higher
than that of Archaea, while it was opposite in samples C4-5.

Microbial community structure
revealed by culture-independent
approach

Community structure of bacteria and archaea
at the phylum, family, and genus level

According to the classification based on the 16S rRNA gene
sequence similarity (V3 + V4), a total of 28 bacterial phyla,
218 bacterial families and 345 bacterial genera were identified.
The top 10 bacterial classes in different brine samples are vividly
exhibited in Figures 4A–C. As shown in Figure 4A, the bacterial
community in C1-3 was dominated by phyla Proteobacteria
(53.61%), Bacteroidetes (20.85%) and Cyanobacteria (12.04%),
followed by Firmicutes (5.90%) and Actinobacteria (2.21%).
Coincidentally, the dominant phyla in C4-5 were also
Proteobacteria and Bacteroidetes, accounting for 32.22% and
51.99%, respectively. On the other hand, the dominant
phyla in freshwater samples (FW) were also Proteobacteria
(42.99%), Actinobacteria (27.88%) and Bacteroidetes (12.41%)
(Supplementary Figure 4). It’s obvious that although samples
C1-3, C4-5 and FW shared the similar dominant phyla, the
proportion of them was quite different. For instance, the
proportions of phyla Proteobacteria, Cyanobacteria, Firmicutes
and Actinobacteria in C4-5 were lower than in C1-3, indicating
that their abundance decreased during a long-term indoor

FIGURE 3

Species diversity of different brine samples revealed by Shannon index. The species diversity was shown using 16S rRNA-based high-throughput
sequencing technology under culture-independent (A) and culture-dependent approaches (B). *p > 0.05, **p < 0.05. Archaea, archaeal 16S
rRNA gene primers were used; Bacteria, bacterial 16S rRNA gene primers were used; AS-168 medium, colonies grown on the AS-168 medium
were collected for the archaeal 16S rRNA-based high-throughput sequencing; NOM medium, colonies grown on the NOM medium were
collected for the archaeal 16S rRNA-based high-throughput sequencing; C1-3, three samples collected in July 2021; C4-5, two samples
collected in August 2018.
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FIGURE 4

Microbial community of brine samples revealed by 16S rRNA gene sequencing under culture-independent strategy. The community
composition of bacteria in brine samples was shown at the phylum (A), family (B), and genus (C) levels; while composition of archaea in the
brine samples was also shown at the phylum (D), family (E), and genus (F) levels; C1-3, three brine samples collected in July 2021; C4-5, two
brine samples collected in August 2018.

static and closed storage. Conversely, the proportion of
Bacteroidetes in C4-5 community increased significantly. At the
family level, families E6aC02, Cyanobiaceae, Rhodobacteraceae,
Aeromonadaceae, and Burkholderiaceae were the top five
dominant taxa in C1-3, but only constituted 38.56% of the
total taxa. However, Rhodothermaceae (30.01%) was dominant
in C4-5 at the family level, followed by families Alcanivoracaceae
(14.96%) and E6aC02 (9.10%). Detailed analysis of the bacterial

community composition at the genus level revealed that some
genera were dominant in C1-3 with a higher proportion,
while presenting a much lower proportion in C4-5 or even
below detection limit. For example, genera Cyanobium_PCC-
6307 (8.46%), Aeromonas (6.91%), and Pseudomonas (4.71%)
were the dominant genera in C1-3, but almost undetectable
in C4-5. Genus Salinibacter (30.01%) was the most common
in C4-5, followed by genus Alcanivorax (14.96%). Apparently,
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during a long-term indoor storage, genera Salinibacter,
Alcanivorax and Desulfovermiculus were flourishing, while
genera Cyanobium_PCC-6307, Aeromonas and Pseudomonas
were experiencing a recession or even extinction.

Archaeal taxa at the phylum level and family level are
shown in Figures 4D,E, respectively. The representative
archaeal phyla in C1-3 and C4-5 were Euryarchaeota and
Nanoarchaeaeota, accounting for 96.90% and 94.24% of the
total OTUs, respectively. At the family level, Halomicrobiaceae
(63.81%) and Nanohaloarchaeaceae (9.45%) were the top
dominant families in C1-3. The most abundant family in
C4-5 was Halomicrobiaceae (43.43%), followed by the family
Nanohaloarchaeaceae (23.89%). Furthermore, it showed that
families Haloferacaceae and Halobacteriaceae were more
abundant in C4-5 than C1-3, while families Halomicrobiaceae
and Nanohaloarchaeaceae were the opposite. To better explain
the structure of the archaeal community in different brines, the
relative abundance and classification of OTUs were analyzed at
the genus level (Figure 4F). Genera Natronomonas (18.89%),
Halapricum (13.73%) and Halomicrobium (12.35%) were
the dominant genera in C1-3. In C4-5, the top dominant
taxa were genera Natronomonas (16.18%), Halorientalis
(14.80%), Halobacterium (7.82%), Haloplanus (6.46%) and
Halomicrobium (2.67%). It was found that the abundance of
genera Halapricum and Halomicrobium decreased sharply
after a long-term indoor storage, while genera Halorientalis,
Halobacterium, and Haloplanus became dominant.

Community composition of haloarchaea at the
genus level revealed by limited clone
sequencing

The limited clone library strategy sequenced 185 clones
selected randomly from samples C1, C2, C3, C4, and C5.
These 185 sequenced 16S rRNA gene sequences belonged
to 25 genera (Figure 5). Among them, genera Halorientalis
(29.83%), Salinirussus (16.66%), Natronomonas (14.16%) and
Halomicrobium (9.24%) were the dominant groups with a
relative higher proportion in C1-3. In C4-5, genus Halovenus
(28.75%) accounted for the highest proportion, followed
by genera Halorientalis (21.79%), Natronomonas (21.07%),
and Haloplanus (8.39%). Intriguingly, genus Halomicrobium
accounting for 9.24% in C1-3 was not detected in C4-5.
However, genus Haloplanus accounting for 8.39% in C4-5 was
not detected in C1-3. Thus, the patterns of change for genera
Halomicrobium and Haloplanus were the opposite.

Sequence similarity search of these cloned 16S rRNA gene
sequences against public database using Basic Local Alignment
Search Tool (BLAST; see text footnote 2) revealed that the
majority of these cloned sequences showed a relatively lower
sequence identity (<95%). It supposed that there were a large
number of potential new species or genera in hypersaline
environments. Meanwhile, these results also indicated that
high through-put sequencing and cloning library were both

culture-independent methods showing a significant difference
in revealing microbial community structure.

Microbial community structure
uncovered by culture-dependent
methods

Halophilic microbes in different brine samples were
cultivated by using AS-168 and NOM media, respectively. On
AS-168 agar plates, it was evident that the number and species of
halophilic microorganisms from C4-5 exceeded those from C1-
3 (Figure 6A). The chocolate-colored with white surrounding
colonies cultivated from C1-3 belonged to the genus Salicola,
which were completely absent in C4-5 on AS-168 agar plates.

To gain more information, colonies grown on AS-168 and
NOM agar plates were washed with 20% (w/v) sterilized NaCl
solution and then collected for high-throughput sequencing
using archaeal 16S rRNA gene primers. The top 10 archaeal
genera detected in different medium are shown in Figure 6B.
Genera Halorubrum (47.23%), Natronomonas (24.78%) and
Halopenitus (10.73%) were the dominant Haloarchaea in C1-
3-AS168. Similarly, genus Halorubrum (88.69%) was also
determined to be the most dominant group in C4-5-AS168,
followed by genera Halobellus (4.56%) and Halopenitus (4.25%).
Although genus Halorubrum showed the highest richness in
both C1-3-AS168 and C4-5-AS168, the proportion varied
from different sample sets. Genera Natronomonas (24.37%),
Halorubrum (17.91%) and Haloarcula (12.81%) were the
dominant genera in C4-5-NOM. Among them, Natronomonas
and Haloarcula were more abundant in C4-5-NOM than C4-
5-AS168, indicating that NOM medium was more suitable
for their growth. Compared to NOM medium, AS-168
was a eutrophic environment. It reflected that as a typical
chemoheterotrophic halophilic archaeon, Halorubrum spp.
may prefer a eutrophic environment. Generally, oligotrophic
environments were more suitable for the isolation of more
different halophilic archaea (Figure 6B).

Through cultivation and a series of streaking, 62 halophilic
microorganisms including 12 possible new species (sequence
identity < 97.5%, see “Data availability statement”) were isolated
from different brine samples by using AS-168 and NOM media.
Next, they were classified into 10 genera such as Halorubrum,
Halorientalis, Natronomonas, and Halovibrio based on the 16S
rRNA gene sequence similarity search (Figure 6C).

Microbial co-occurrence network
analyses

The bacterial genera and archaea genera with a relative
abundance more than 0.1% were selected as study objects,
and the potential interactions of these taxa were analyzed.
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FIGURE 5

Haloarchaeal composition in brine samples revealed by clone library at the genus level under culture-independent approach. Almost complete
length of the 16S rRNA gene was obtained by using F8 and R1462 primer pair. C1-3, three brine samples collected in July 2021; C4-5, two brine
samples collected in August 2018.

Co-occurrence network taxa were highly significant network
hubs (ρ > 0.7, p < 0.05; Figures 7A,B). The bacterial network
consisted of 52 nodes and 100 edges, and the average degree
and the clustering coefficient were 3.85 and 1.29, respectively.
In the bacterial network, most of the correlations were positive
(positive correlation ratio: 91%, Figure 7A). The nodes in
the bacterial network were divided into 10 bacterial phyla.
Among them, Proteobacteria accounted for 53.85% of all
nodes, showing a strong intra-phylum correlation. However,
members of Actinobacteria and Bacteroidetes showed more
positive correlations with other bacterial genera, especially with
Proteobacteria. The top nine keystone genera with the highest
number of connections in the bacterial network were Ralstonia,
Rhodobaculum, uncultured_bacterium_f_Rhodobacteraceae,
Salinarimonas, Paracoccus, Cyanobacterium_PCC-10605,
uncultured_bacterium_f_Balneolaceae, Algoriphagus, and
Cyanobium_PCC-6307.

The archaeal network was composed of 26 nodes and
100 edges, and the average degree and clustering coefficient
were 7.69 and 0.61, respectively (Figure 7B). Among the

only three Archaeal phyla, the Euryarchaeota was the most
dominant, accounting for 80.76% of all nodes. The next was
Nanoarchaeaeota (15.38%), which had the highest number of
associations with Euryarchaeota. The top five genera with the
most connections in the archaeal network were Haloplanus,
uncultured_bacterium_f_Halofracaceae, Halobacterium,
Halapricum, and Halorientalis.

Discussion

The Dingyuan Salt Mine in Anhui Province, located in
central China, is endowed with the characteristics of continental
basin deposits, whose salt-bearing layer was formed in the
Early Tertiary Oligocene and is dominated by river-lake facies
deposition (Supplementary Figures 1a,b; Chen et al., 2019).
At present, water dissolution (fresh water-in and brine-out) is
the main method for salt mining (Figures 1A,B). In detail, the
mining process involves injecting fresh water (solvent) into the
deposit to dissolve salt minerals in situ into a flowing solution
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FIGURE 6

Halophilic archaea and halotolerant bacteria isolated from brine samples. Cultivation of halophilic microbes from brine samples using the
AS-168 agar plates (A). Cultures grown on the AS-168 and NOM agar plates were collected by washing with 20% (w/v) sterilized NaCl solution
for archaeal 16S rRNA gene (V3 + V4) high-throughput sequencing (B). Microbial composition of randomly isolated strains identified by
sequencing the almost complete 16S rRNA gene combined with sequence similarity search (C). C1-3, three brine samples including C1, C2, and
C3 collected in July 2021; C4-5, two brine samples including C4 and C5 collected in August 2018.

(brine), and then the brine coming out (Wang, 1999). In this
study, the composition of microbial communities in brines
after long-term indoor static and closed storage (C4-5) and in
freshly collected brines (C1-3) was preliminarily compared by
a combination of culture-independent and culture-dependent
methods. Environmental conditions such as high salinity,
hypoxia, and slightly alkaline pH are driving factors shaping
microbial community structure and forming corresponding
adaptability after long-term indoor sealed storage in this study.

It is widely acknowledged that salinity is an important
factor affecting the richness and diversity of bacteria and
archaea (Kalwasinska et al., 2017; Banda et al., 2021). The
DNA concentration of freshwater samples (FW) used to
dissolve the rock salt buried underground in this study
is significantly higher than that of brine samples (C1-
5) (p < 0.05; Supplementary Table 2 and Figure 2A),
illustrating that microorganisms in freshwater declined steeply
or even disappeared after entering a hypersaline environment.
Besides, it also means that environmental filtering prevents the
efficient colonization and persistence of non-tolerant species
in hypersaline environments (Triado-Margarit et al., 2019). It
is worth noting that the bacterial diversity of samples C1-3 is
higher than that of archaea, which is in the opposite manner
for samples C4-5 (Supplementary Table 3 and Figure 3A).

And the diversity of bacterial community in samples C1-3
is significantly higher than that in samples C4-5 (p < 0.05;
Supplementary Table 3 and Figure 3A). It is worth noting
that some of the error bars in Figures 2A, 3A,B vary greatly,
which may be caused by the small sample size. However, the
tendency reflected by the differences between these samples
(C1-3 and C4-5) are still obvious and persuasive. The result
showed that the diversity of bacterial communities in the
brine samples decreased significantly after long-term indoor
sealed storage. At the phylum level, long-term indoor sealed
storage profoundly altered bacterial community structure, i.e.,
the relative abundance of some bacterial communities varied
much more than archaeal communities (Figures 4A,D). At
the same time, studies have shown that archaea can withstand
environmental stress better than bacteria, and obtain a stable
community structure within a certain time-frame (de León-
Lorenzana et al., 2017; Mani et al., 2020). Therefore, we believe
that archaea in brine samples are more adaptive than bacteria in
the hypersaline environment under a long-term indoor sealed
storage condition.

In this paper, bacterial and archaeal communities in
different brine samples were analyzed by Illumina high-
throughput sequencing technology. Overall, the bacterial
communities in the brine samples are mainly composed
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FIGURE 7

Co-occurrence networks of microbial communities in different brine samples based on correlation analysis. The nodes in network are colored
by phylum. Co-occurrence networks of bacterial communities (A) and archaea communities (B); The connections indicate strong spearman’s
(ρ > 0.7) and significant (p < 0.05) correlations. The size of each node is proportional to the relative abundance of specific genus.

of Proteobacteria and Bacteroidetes (Figure 4A), which
is consistent with other researches (Boujelben et al.,
2012; Kalwasinska et al., 2018; Mazière et al., 2021).
In fact, Proteobacteria and Bacteroidetes are also the
dominant phyla in other saline waters (Boujelben et al.,
2012; Kalwasinska et al., 2018; Cardoso et al., 2019),
playing an important role in carbon and nitrogen cycling
(Bernhard et al., 2012; Wong et al., 2015). The result also
shows that these brine samples have the characteristics

of dominant bacterial taxa commonly found in other
hypersaline environments.

Further analysis reveals that although samples C1-3 and
C4-5 shared the same dominant bacterial phyla, their relative
abundances are quite different (Figure 4A). As it shows in the
result that the abundance of Proteobacteria may decrease greatly
after long-term indoor sealed storage, whereas the abundance
of Bacteroidetes is the opposite. Similarly, genera Salinibacter
and Alcanivorax are dominant in C4-5, but less abundant
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in C1-3 (Figure 4C). Cyanobium_PCC-6307, Aeromonas and
Pseudomonas are the dominant genera in C1-3, but are barely
detectable in C4-5 (Figure 4C). Among them, genus Salinibacter
is an extreme halophilic genus with archaeal properties in
Bacteroidetes, also an important part of bacterial communities
in various high-salt environments (Bachran et al., 2019;
Perez-Fernandez et al., 2019; Cycil et al., 2020). Salinibacter
spp. generally, requires light-driven pumps for growth and
maintenance of ion gradients across the cell membrane (Doğan
and Kocabaş, 2021). The low levels of genus Salinibacter in C1-
3 may be attributed to relatively lower levels of solar radiation
and lower temperatures (Kalwasinska et al., 2018). Meanwhile,
the enrichment of genus Salinibacter is also one of the reasons
for the largest proportion of Bacteroidetes in C4-5.

Compared with bacterial taxa, fewer Archaeal phyla can be
found in these samples, with most of the sequences belonging
to Euryarchaeota, followed by Nanoarchaeaeota (Figure 4D).
And the relative abundance difference of the dominant phyla
in samples C1-3 and C4-5 is small (Figure 4D). However, the
opposite is true at the genus level. The relative abundance
of genera Halapricum and Halomicrobium in samples C1-
3 is much higher than those in samples C4-5, while the
relative abundance of genera Halorientalis, Halobacterium and
Haloplanus in samples C4-5 is much higher than those in
samples C1-3 (Figure 4F). Interestingly, genus Natronomonas
dominates in all samples (Figure 4F). As observed elsewhere,
genus Natronomonas is one of the most successful ecological
taxa able to survive in hypersaline environments (Chen et al.,
2020; Banda et al., 2021; Satari et al., 2021; Zhu et al., 2021).

It should not be ignored that species in genera Alcanivorax
and Halorientalis were blooming in hypersaline environment
in long-term indoor storage, becoming the dominant genera
(Figures 4C,F). Genus Alcanivorax is a ubiquitous marine
hydrocarbonoclastic genus, which dominates in many oil-
contaminated environments (Scoma and Boon, 2016). Known
for its preference for metabolizing hydrocarbons and crude oil
derivatives (Zadjelovic et al., 2020). And the members of genus
Halorientalis were also reported to be capable of degrading
hydrocarbons (Khalid et al., 2021). It is worth noting that
the formation process of rock salt and petroleum is always
closely related. Petroleum consisting of hydrocarbons with
different carbon chain length is covered by a thick stratum of
salt. Hydrocarbons with a relatively low density can leak into
the upper salt stratum through cracks created by geological
movements (Sonnenfeld and Perthuisot, 1984). Additionally,
previous studies have shown that the Hefei Basin (Anhui
province, China), where the Dingyuan Salt Mine is located,
exhibits ideal geological conditions for petroleum formation
(Jia et al., 2001; Dai et al., 2011). The brine sample smelled
of petrol. Therefore, the brine samples are likely to contain
petroleum and hydrocarbons, and such favorable environmental
conditions may lead to the enrichment of genera Alcanivorax
and Halorientalis. Hydrocarbons degrading microorganisms

were enriched in the presence of favorable substrates during a
relative long period of storage.

Clone library technology has been widely used to study
microbial communities in different habitats (Jones et al., 2009;
Xiao et al., 2013; Wang et al., 2018; Chen et al., 2020),
which is also applied in this study. It can be found that the
dominant genus with the highest proportion in C1-3 is genus
Halorientalis, while in C4-5 it is genus Halovenus (Figure 5),
which is inconsistent with the high-throughput sequencing
results. Previous studies have also shown that the diversity of
microbial communities can fluctuate severely along with the size
of the clone library (Li et al., 2017). Therefore, it is normal to get
different results between the two methods.

With the development of molecular methods, culture-
independent methods are considered more effective than
culture-dependent methods (Dakal and Arora, 2012), because
the latter can only detect 1–5% of all microorganisms in
the sample (Ma et al., 2015). Nevertheless, the methods
of culture-dependent are still an indispensable technique to
acquire microbial species with tremendous application potential
and to understand their ecophysiological and environmental
functions (Vandamme et al., 1996; Sfanos et al., 2005). In
this study, genera Halorubrum, Halobellus, and Halopenitus are
the dominant taxa in C4-5-AS168, but genera Natronomonas,
Halorubrum, and Haloarcula have a higher proportion in C4-
5-NOM (Figure 6B). Among them, the relative abundance of
genusHalorubrum in C4-5-AS168 is nearly five times that in C4-
5-NOM, indicating that the eutrophic environment of AS-168
may make it more competitive.

Furthermore, a large proportion of microbial species
are uncultured, which tends to make some opportunistic
species predominant in isolates. Therefore, culture-dependent
approaches introduce numerous biases, and generally do not
select the most abundant taxa in the environment. Rather,
they select the microorganisms that grow best under the
culture conditions used. The results often differ from the actual
distribution of microbial taxa in the environment (Henriet et al.,
2014; Naghoni et al., 2017). In this study, a total of 62 halophilic
microorganisms including 12 possible new species (sequence
identity < 97.5%) isolated from the two media belong to 10
genera (Figure 6C). Notably, their sequence similarity search
based on 16S rRNA gene sequences all show relatively higher
sequence identity (>95%). However, most of the 16S rRNA
gene sequences obtained by clone library approach exhibit a
lower sequence identity (<95%). The unpredictable alteration
of template may happen in different cycles during the PCR
amplification in clone library construction, which tends to form
a larger number of chimeras. Therefore, clone library approach
based on PCR amplification of total environmental DNA may
severely overestimate the species diversity (Stevens et al., 2013).

Co-occurrence networks can reveal interactions
between different taxa in microbial communities, which
can be competitive or cooperative (Faust and Raes, 2012;
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He et al., 2019). In this study, the positive correlation
among bacterial networks is 91% (Figure 7A), while that
among archaeal networks is only 64% (Figure 7B). This
suggests that bacterial communities in brine samples are
more likely than archaeal communities to survive in harsh
environments through synergies. In addition, genera Ralstonia,
Rhodobaculum, uncultured_bacterium_f_Rhodobacteraceae,
Salinarimonas, Paracoccus, Cyanobacterium_PCC-10605,
uncultured_bacterium_f_Balneolaceae, Algoriphagus and
Cyanobium_PCC-6307 are found to be highly associated
taxa in the bacterial network. Similarly, genera Haloplanus,
uncultured_bacterium_f_Halofracaceae, Halobacterium,
Halapricum and Halorientalis are more connected in the
archaeal network. These microbial taxa are considered as
keystone taxa due to their highly connected nodes (Hu et al.,
2018; Guo et al., 2019). Compared with other taxa in the
network, these taxa may play a vital part in maintaining the
stability of ecological network structure and function (Faust and
Raes, 2012; Shi et al., 2019).

Interestingly, the average relative abundances of keystone
taxa (except genus Cyanobium_PCC-6307) in the bacterial
network were fairly low (0.81%∼2.51%). The results indicated
the significance of low-abundance genera in bacterial
communities. Although the abundance of such genera may not
be high, more attention should be paid to them being the key
nodes in bacterial communities (Guo et al., 2019). However,
the average relative abundances of keystone genera (except
uncultured_bacterium_f_Halofracaceae) in archaeal network
ranged from 2.71% to 10.95%. The result of archaea is different
from Bacteria in network. The dominant archaea are also key
nodes in archaeal network. These differences may be attributed
to the different adaptation mechanisms of bacteria and
archaea, which are beneficial to their survival and development
of their respective taxa. On the other hand, members of
the genera Salinarimonas and Paracoccus were previously
isolated in oil-contaminated environments, indicating their
role in hydrocarbon bioremediation (Zhang et al., 2020;
Procópio, 2021). And bacteria belonging to Algoriphagus were
also confirmed as an oil-degrading bacterium (Wang et al.,
2014). Meanwhile, members of the genera Halobacterium
and Halorientalis were reported to be capable of degrading
hydrocarbons (Kumar et al., 2020). Therefore, these keystone
taxa may play important roles in ecological processes, especially
in the remediation of oil-polluted hypersaline environments.

Conclusion

In this work, the microorganisms in the brine of salt
mine were studied in details for the first time by combining
culture-independent and culture-dependent methods. Our
conclusions are:

(1) After long-term indoor airtight storage, the species
diversity of bacterial communities in brine samples decreased
significantly (p < 0.05), while that of archaeal communities
did not change significantly. The composition of the dominant
bacterial and archaeal phyla in different samples was similar, but
their relative abundances of dominant phyla are significantly
different. Among them, halotolerant genera Salinibacter
and Natronomonas were the predominant inhabitants in
brine samples, suggesting that they play a crucial role in
this environment.

(2) A total number of 62 halophilic microorganisms
including 12 possible new species (sequence identity < 97.5%)
belong to 10 genera were isolated from brine of inland
salt mine through culture-dependent method before these
inhibiting species went extinct with salt mining. Extremophiles
from hypersaline environment are of great significance in
special biotechnological applications, and in understanding
their ecophysiological and environmental functions.

(3) Network analysis showed that the bacteria in brine
samples were more likely than the archaea to survive in harsh
environments through synergies. Keystone taxa with highly
connected nodes (such as genera Ralstonia, Rhodobaculum,
Haloplanus, etc.) play an important role in maintaining the
stability of ecological network structure and function.

(4) The brine samples are likely to contain petroleum and
hydrocarbons, and such favorable environmental conditions
led to the enrichment of specific genera Alcanivorax and
Halorientalis, which are capable of degrading hydrocarbons. In
addition, the genera Salinarimonas, Paracoccus, Algoriphagus
and Halobacterium in keystone taxa also have this ability.
The interesting phenomenon reflects that these taxa may
have significant contributions in the bioremediation of oil-
contaminated hypersaline environments.

Overall, the results of this study will expand the
understanding of microbial diversity in extreme environments.
On the other hand, it is conducive to explore the functional roles
or environmental niches inhabited by various microorganisms
in extreme environments.
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Doğan, S. Ş, and Kocabaş, A. (2021). Metagenomic assessment of prokaryotic
diversity within hypersaline Tuz Lake, Turkey. Microbiology 90, 647–655.

Edgar, R. C. (2010). Search and clustering orders of magnitude faster than
BLAST. Bioinformatics 26, 2460–2461.

Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., and Knight, R. (2011).
UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27,
2194–2200. doi: 10.1093/bioinformatics/btr381

Edwards, P. M. (2002). Origin 7.0: Scientific graphing and data analysis software.
J. Chem. Inf. Comput. Sci. 42, 1270–1271.

Faust, K., and Raes, J. (2012). Microbial interactions: From networks to models.
Nat. Rev. Microbiol. 10, 538–550.

Fendrihan, S., Legat, A., Pfaffenhuemer, M., Gruber, C., Weidler, G., Gerbl, F.,
et al. (2006). Extremely halophilic archaea and the issue of long-term microbial
survival. Rev. Environ. Sci. Biotechnol. 5, 203–218. doi: 10.1007/s11157-006-0
007-y

Genderjahn, S., Alawi, M., Mangelsdorf, K., Horn, F., and Wagner, D. (2018).
Desiccation- and saline-tolerant bacteria and archaea in kalahari pan sediments.
Front. Microbiol. 9:2082. doi: 10.3389/fmicb.2018.02082

Gibtan, A., Park, K., Woo, M., Shin, J. K., Lee, D. W., Sohn, J. H., et al.
(2017). Diversity of extremely halophilic archaeal and bacterial communities from
commercial salts. Front. Microbiol. 8:799. doi: 10.3389/fmicb.2017.00799

Gomez-Villegas, P., Vigara, J., and Leon, R. (2018). Characterization of the
microbial population inhabiting a solar saltern pond of the odiel marshlands (SW
Spain). Mar. Drugs 16:332. doi: 10.3390/md16090332

Guo, X. P., Yang, Y., Niu, Z. S., Lu, D. P., Zhu, C. H., Feng, J. N., et al. (2019).
Characteristics of microbial community indicate anthropogenic impact on the
sediments along the Yangtze Estuary and its coastal area, China. Sci. Total Environ.
648, 306–314. doi: 10.1016/j.scitotenv.2018.08.162

Hall, M., and Beiko, R. G. (2018). “16S rRNA gene analysis with QIIME2,” in
Microbiome Analysis, eds R. Beiko, W. Hsiao, and J. Parkinson (Berlin: Springer),
113–129.

Han, J., Lu, Q., Zhou, L., Zhou, J., and Xiang, H. (2007). Molecular
characterization of the phaEC Hm genes, required for biosynthesis of poly (3-
hydroxybutyrate) in the extremely halophilic archaeon Haloarcula marismortui.
Appl. Environ. Microbiol. 73, 6058–6065. doi: 10.1128/AEM.00953-07

He, H., Fu, L., Liu, Q., Fu, L., Bi, N., Yang, Z., et al. (2019). Community structure,
abundance and potential functions of bacteria and archaea in the sansha yongle
blue hole, xisha, south china sea. Front. Microbiol. 10:2404. doi: 10.3389/fmicb.
2019.02404

Henriet, O., Fourmentin, J., Delince, B., and Mahillon, J. (2014). Exploring the
diversity of extremely halophilic archaea in food-grade salts. Int. J. Food Microbiol.
191, 36–44. doi: 10.1016/j.ijfoodmicro.2014.08.019

Hu, Y., Bai, C., Cai, J., Dai, J., Shao, K., Tang, X., et al. (2018). Co-occurrence
network reveals the higher fragmentation of the bacterial community in Kaidu
River than its tributaries in Northwestern China. Microbes Environ. 33, 127–134.
doi: 10.1264/jsme2.ME17170

Jia, H., Liu, G., Zhang, Y., and Zhang, R. (2001). The formation mechanism
of the Hefei basin and its oil and gas exploration prospect. Geol. Anhui 11,
9–18.

Jones, R. T., Robeson, M. S., Lauber, C. L., Hamady, M., Knight, R., and
Fierer, N. (2009). A comprehensive survey of soil acidobacterial diversity using
pyrosequencing and clone library analyses. ISME J. 3, 442–453. doi: 10.1038/ismej.
2008.127

Kalwasinska, A., Deja-Sikora, E., Burkowska-But, A., Szabo, A., Felfoldi, T.,
Kosobucki, P., et al. (2018). Changes in bacterial and archaeal communities during
the concentration of brine at the graduation towers in Ciechocinek spa (Poland).
Extremophiles 22, 233–246. doi: 10.1007/s00792-017-0992-5

Kalwasinska, A., Felfoldi, T., Szabo, A., Deja-Sikora, E., Kosobucki, P., and
Walczak, M. (2017). Microbial communities associated with the anthropogenic,
highly alkaline environment of a saline soda lime, Poland. Antonie Van
Leeuwenhoek 110, 945–962. doi: 10.1007/s10482-017-0866-y

Khalid, F. E., Lim, Z. S., Sabri, S., Gomez-Fuentes, C., Zulkharnain, A., and
Ahmad, S. A. (2021). Bioremediation of diesel contaminated marine water by
bacteria: A review and bibliometric analysis. J. Mar. Sci. Eng. 9:155.

Kirkpatrick, L. A. (2015). A Simple Guide to IBM SPSS Statistics-Version 23.0.
Boston, MA: Cengage Learning.

Kumar, S., Zhou, J., Li, M., Xiang, H., and Zhao, D. (2020). Insights into
the metabolism pathway and functional genes of long-chain aliphatic alkane
degradation in haloarchaea. Extremophiles 24, 475–483. doi: 10.1007/s00792-020-
01167-z

Lane, D. (1991). “16S/23S rRNA sequencing,” in Nucleic Acid Techniques In
Bacterial Systematics, eds E. Stackebrandt and M. Goodfellow (New York, N: John
Wiley and Sons), 115–175.

Li, Q., Zhang, B., Wang, L., and Ge, Q. (2017). Distribution and diversity
of bacteria and fungi colonizing ancient Buddhist statues analyzed by high-
throughput sequencing. Int. Biodeterior. Biodegrad. 117, 245–254. doi: 10.1371/
journal.pone.0163287

Lizama, C., Monteoliva-Sánchez, M., Prado, B., Ramos-Cormenzana, A.,
Weckesser, J., and Campos, V. (2001). Taxonomic study of extreme halophilic
archaea isolated from the “Salar de Atacama”, Chile. Syst. Appl. Microbiol. 24,
464–474. doi: 10.1078/0723-2020-00053

Ma, Y., Zhang, H., Du, Y., Tian, T., Xiang, T., Liu, X., et al. (2015). The
community distribution of bacteria and fungi on ancient wall paintings of the
Mogao Grottoes. Sci. Rep. 5, 1–9. doi: 10.1038/srep07752

Mani, K., Salgaonkar, B. B., Das, D., and Bragança, J. M. (2012). Community
solar salt production in Goa, India. Aquat. Biosyst. 8, 1–8.

Mani, K., Taib, N., Hugoni, M., Bronner, G., Bragança, J. M., and Debroas,
D. (2020). Transient dynamics of archaea and bacteria in sediments and brine
across a salinity gradient in a solar saltern of Goa, India. Front. Microbiol. 11:1891.
doi: 10.3389/fmicb.2020.01891

Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput
sequencing reads. EMBnet J. 17, 10–12. doi: 10.1089/cmb.2017.0096

Mazière, C., Agogué, H., Cravo-Laureau, C., Cagnon, C., Lanneluc, I., Sablé, S.,
et al. (2021). New insights in bacterial and eukaryotic diversity of microbial mats
inhabiting exploited and abandoned salterns at the Ré Island (France). Microbiol.
Res. 252:126854. doi: 10.1016/j.micres.2021.126854

Naghoni, A., Emtiazi, G., Amoozegar, M. A., Cretoiu, M. S., Stal, L. J.,
Etemadifar, Z., et al. (2017). Microbial diversity in the hypersaline Lake Meyghan,
Iran. Sci. Rep. 7:11522. doi: 10.1038/s41598-017-11585-3

Nan, L., Guo, Q., and Cao, S. (2020). Archaeal community diversity in different
types of saline-alkali soil in arid regions of Northwest China. J. Biosci. Bioeng. 130,
382–389. doi: 10.1016/j.jbiosc.2020.06.001

Oren, A. (2002). Diversity of halophilic microorganisms: Environments,
phylogeny, physiology, and applications. J. Ind. Microbiol. Biotechnol. 28, 56–63.
doi: 10.1038/sj/jim/7000176

Oren, A. (2011). Thermodynamic limits to microbial life at high salt
concentrations. Environ. Microbiol. 13, 1908–1923.

Perez-Fernandez, C. A., Iriarte, M., Rivera-Perez, J., Tremblay, R. L., and
Toranzos, G. A. (2019). Microbiota dispersion in the Uyuni salt flat (Bolivia) as
determined by community structure analyses. Int. Microbiol. 22, 325–336. doi:
10.1007/s10123-018-00052-2

Procópio, L. (2021). The oil spill and the use of chemical surfactant reduce
microbial corrosion on API 5L steel buried in saline soil. Environ. Sci. Pollut. Res.
28, 26975–26989. doi: 10.1007/s11356-021-12544-2

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. (2012).
The SILVA ribosomal RNA gene database project: Improved data processing
and web-based tools. Nucleic Acids Res. 41, D590–D596. doi: 10.1093/nar/gks
1219

Frontiers in Microbiology 15 frontiersin.org

35

https://doi.org/10.3389/fmicb.2022.975271
https://doi.org/10.3390/genes10060422
https://doi.org/10.1016/j.syapm.2011.08.001
https://doi.org/10.3389/fmicb.2020.01567
https://doi.org/10.3389/fmicb.2017.00466
https://doi.org/10.1002/jobm.201500420
https://doi.org/10.1002/jobm.201500420
https://doi.org/10.1093/bioinformatics/btr381
https://doi.org/10.1007/s11157-006-0007-y
https://doi.org/10.1007/s11157-006-0007-y
https://doi.org/10.3389/fmicb.2018.02082
https://doi.org/10.3389/fmicb.2017.00799
https://doi.org/10.3390/md16090332
https://doi.org/10.1016/j.scitotenv.2018.08.162
https://doi.org/10.1128/AEM.00953-07
https://doi.org/10.3389/fmicb.2019.02404
https://doi.org/10.3389/fmicb.2019.02404
https://doi.org/10.1016/j.ijfoodmicro.2014.08.019
https://doi.org/10.1264/jsme2.ME17170
https://doi.org/10.1038/ismej.2008.127
https://doi.org/10.1038/ismej.2008.127
https://doi.org/10.1007/s00792-017-0992-5
https://doi.org/10.1007/s10482-017-0866-y
https://doi.org/10.1007/s00792-020-01167-z
https://doi.org/10.1007/s00792-020-01167-z
https://doi.org/10.1371/journal.pone.0163287
https://doi.org/10.1371/journal.pone.0163287
https://doi.org/10.1078/0723-2020-00053
https://doi.org/10.1038/srep07752
https://doi.org/10.3389/fmicb.2020.01891
https://doi.org/10.1089/cmb.2017.0096
https://doi.org/10.1016/j.micres.2021.126854
https://doi.org/10.1038/s41598-017-11585-3
https://doi.org/10.1016/j.jbiosc.2020.06.001
https://doi.org/10.1038/sj/jim/7000176
https://doi.org/10.1007/s10123-018-00052-2
https://doi.org/10.1007/s10123-018-00052-2
https://doi.org/10.1007/s11356-021-12544-2
https://doi.org/10.1093/nar/gks1219
https://doi.org/10.1093/nar/gks1219
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-975271 August 30, 2022 Time: 9:28 # 16

Tu et al. 10.3389/fmicb.2022.975271

R Core Team (2013).R: A Language And Environment For Statistical Computing.
Vienna: R Foundation for Statistical Computing.

Redweik, G. A., Kogut, M. H., Arsenault, R. J., and Mellata, M. (2020). Oral
treatment with ileal spores triggers immunometabolic shifts in chicken gut. Front.
Vet. Sci. 7:629. doi: 10.3389/fvets.2020.00629

Rohban, R., Amoozegar, M. A., and Ventosa, A. (2009). Screening and isolation
of halophilic bacteria producing extracellular hydrolyses from Howz Soltan Lake,
Iran. J. Ind. Microbiol. Biotechnol. 36, 333–340. doi: 10.1007/s10295-008-0500-0

Sáenz de Miera, L. E., Gutiérrez-González, J. J., Arroyo, P., Falagán, J., and
Ansola, G. (2021). Prokaryotic community diversity in the sediments of saline
lagoons and its resistance to seasonal disturbances by water level cycles. J. Soils
Sediments 21, 3169–3184.

Satari, L., Guillen, A., Latorre-Perez, A., and Porcar, M. (2021). Beyond Archaea:
The Table Salt Bacteriome. Front. Microbiol. 12:714110. doi: 10.3389/fmicb.2021.
714110

Scoma, A., and Boon, N. (2016). Osmotic stress confers enhanced cell integrity
to hydrostatic pressure but impairs growth in Alcanivorax borkumensis SK2.
Front. Microbiol. 7:729. doi: 10.3389/fmicb.2016.00729

Sfanos, K., Harmody, D., Dang, P., Ledger, A., Pomponi, S., McCarthy, P.,
et al. (2005). A molecular systematic survey of cultured microbial associates of
deep-water marine invertebrates. Syst. Appl. Microbiol. 28, 242–264. doi: 10.1016/
j.syapm.2004.12.002

Shi, Y., Fan, K., Li, Y., Yang, T., He, J. S., and Chu, H. (2019). Archaea enhance
the robustness of microbial co-occurrence networks in Tibetan Plateau soils. Soil
Sci. Soc. Am. J. 83, 1093–1099.

Sonnenfeld, P., and Perthuisot, J.-P. (1984). Brines And Evaporites. Hoboken,
NJ: Wiley.

Stackebrandt, E., and Goebel, B. M. (1994). Taxonomic note: A place for
DNA-DNA reassociation and 16S rRNA sequence analysis in the present species
definition in bacteriology. Int. J. Syst. Bacteriol. 44, 846–849.

Stevens, J. L., Jackson, R. L., and Olson, J. B. (2013). Slowing PCR ramp speed
reduces chimera formation from environmental samples. J. Microbiol. Methods 93,
203–205. doi: 10.1016/j.mimet.2013.03.013

Triado-Margarit, X., Capitan, J. A., Menendez-Serra, M., Ortiz-Alvarez, R.,
Ontiveros, V. J., Casamayor, E. O., et al. (2019). A Randomized Trait Community

Clustering approach to unveil consistent environmental thresholds in community
assembly. ISME J. 13, 2681–2689. doi: 10.1038/s41396-019-0454-4

Vandamme, P., Pot, B., Gillis, M., De Vos, P., Kersters, K., and Swings, J. (1996).
Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol.
Rev. 60, 407–438.

Wang, H., Gilbert, J. A., Zhu, Y., and Yang, X. (2018). Salinity is a key
factor driving the nitrogen cycling in the mangrove sediment. Sci. Total Environ.
631-632, 1342–1349.

Wang, Q. (1999). Development of water-soluble-mining technology in China’s
salt industry. China-Min. Mag. 5, 36–41.

Wang, W., Zhong, R., Shan, D., and Shao, Z. (2014). Indigenous oil-degrading
bacteria in crude oil-contaminated seawater of the Yellow sea, China. Appl.
Microbiol. Biotechnol. 98, 7253–7269. doi: 10.1007/s00253-014-5817-1

Wong, H. L., Smith, D. L., Visscher, P. T., and Burns, B. P. (2015). Niche
differentiation of bacterial communities at a millimeter scale in Shark Bay
microbial mats. Sci. Rep. 5, 1–17. doi: 10.1038/srep15607

Xiao, W., Wang, Z. G., Wang, Y. X., Schneegurt, M. A., Li, Z. Y., Lai, Y. H.,
et al. (2013). Comparative molecular analysis of the prokaryotic diversity of two
salt mine soils in southwest China. J. Basic Microbiol. 53, 942–952. doi: 10.1002/
jobm.201200200

Zadjelovic, V., Chhun, A., Quareshy, M., Silvano, E., Hernandez-Fernaud,
J. R., Aguilo-Ferretjans, M. M., et al. (2020). Beyond oil degradation: Enzymatic
potential of Alcanivorax to degrade natural and synthetic polyesters. Environ.
Microbiol. 22, 1356–1369. doi: 10.1111/1462-2920.14947

Zhang, Y. X., Li, X., Li, F. L., Ma, S. C., Zheng, G. D., Chen, W. F., et al. (2020).
Paracoccus alkanivorans sp. nov., isolated from a deep well with oil reservoir
water. Int. J. Syst. Evol. Microbiol. 70, 2312–2317. doi: 10.1099/ijsem.0.004036

Zhu, D., Han, R., Long, Q., Gao, X., Xing, J., Shen, G., et al. (2020). An evaluation
of the core bacterial communities associated with hypersaline environments in the
Qaidam Basin, China. Arch. Microbiol. 202, 2093–2103. doi: 10.1007/s00203-020-
01927-7

Zhu, D., Shen, G., Wang, Z., Han, R., Long, Q., Gao, X., et al. (2021). Distinctive
distributions of halophilic Archaea across hypersaline environments within the
Qaidam Basin of China. Arch. Microbiol. 203, 2029–2042. doi: 10.1007/s00203-
020-02181-7

Frontiers in Microbiology 16 frontiersin.org

36

https://doi.org/10.3389/fmicb.2022.975271
https://doi.org/10.3389/fvets.2020.00629
https://doi.org/10.1007/s10295-008-0500-0
https://doi.org/10.3389/fmicb.2021.714110
https://doi.org/10.3389/fmicb.2021.714110
https://doi.org/10.3389/fmicb.2016.00729
https://doi.org/10.1016/j.syapm.2004.12.002
https://doi.org/10.1016/j.syapm.2004.12.002
https://doi.org/10.1016/j.mimet.2013.03.013
https://doi.org/10.1038/s41396-019-0454-4
https://doi.org/10.1007/s00253-014-5817-1
https://doi.org/10.1038/srep15607
https://doi.org/10.1002/jobm.201200200
https://doi.org/10.1002/jobm.201200200
https://doi.org/10.1111/1462-2920.14947
https://doi.org/10.1099/ijsem.0.004036
https://doi.org/10.1007/s00203-020-01927-7
https://doi.org/10.1007/s00203-020-01927-7
https://doi.org/10.1007/s00203-020-02181-7
https://doi.org/10.1007/s00203-020-02181-7
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


Frontiers in Microbiology 01 frontiersin.org

Salinity and hydraulic retention 
time induce membrane 
phospholipid acyl chain 
remodeling in Halanaerobium 
congolense WG10 and mixed 
cultures from hydraulically 
fractured shale wells
Chika Jude Ugwuodo 1,2, Fabrizio Colosimo 3, Jishnu Adhikari 4, 
Yuxiang Shen 5, Appala Raju Badireddy 5 and Paula J. Mouser 2*
1 Natural Resources and Earth Systems Science, University of New Hampshire, Durham, NH, United 
States, 2 Department of Civil and Environmental Engineering, University of New Hampshire, 
Durham, NH, United States, 3 New England Biolabs, Ipswich, MA, United States, 4 Sanborn, Head and 
Associates, Inc., Concord, NH, United States, 5 Department of Civil and Environmental Engineering, 
University of Vermont, Burlington, VT, United States

Bacteria remodel their plasma membrane lipidome to maintain key biophysical 

attributes in response to ecological disturbances. For Halanaerobium and 

other anaerobic halotolerant taxa that persist in hydraulically fractured deep 

subsurface shale reservoirs, salinity, and hydraulic retention time (HRT) are 

important perturbants of cell membrane structure, yet their effects remain 

poorly understood. Membrane-linked activities underlie in situ microbial 

growth kinetics and physiologies which drive biogeochemical reactions in 

engineered subsurface systems. Hence, we used gas chromatography–mass 

spectrometry (GC–MS) to investigate the effects of salinity and HRT on the 

phospholipid fatty acid composition of H. congolense WG10 and mixed 

enrichment cultures from hydraulically fractured shale wells. We also coupled 

acyl chain remodeling to membrane mechanics by measuring bilayer elasticity 

using atomic force microscopy (AFM). For these experiments, cultures were 

grown in a chemostat vessel operated in continuous flow mode under strict 

anoxia and constant stirring. Our findings show that salinity and HRT induce 

significant changes in membrane fatty acid chemistry of H. congolense 

WG10  in distinct and complementary ways. Notably, under nonoptimal salt 

concentrations (7% and 20% NaCl), H. congolense WG10 elevates the portion 

of polyunsaturated fatty acids (PUFAs) in its membrane, and this results in an 

apparent increase in fluidity (homeoviscous adaptation principle) and thickness. 

Double bond index (DBI) and mean chain length (MCL) were used as proxies 

for membrane fluidity and thickness, respectively. These results provide new 

insight into our understanding of how environmental and engineered factors 

might disrupt the physical and biogeochemical equilibria of fractured shale by 

inducing physiologically relevant changes in the membrane fatty acid chemistry 

of persistent microbial taxa.

TYPE Original Research
PUBLISHED 10 November 2022
DOI 10.3389/fmicb.2022.1023575

OPEN ACCESS

EDITED BY

Sudhir K. Upadhyay,  
Veer Bahadur Singh Purvanchal University, 
India

REVIEWED BY

Jamie Hinks,  
Nanyang Technological University,  
Singapore
Ali Asger Bhojiya,  
U.S. Ostwal Science,  
Arts & Commerce College, India

*CORRESPONDENCE

Paula J. Mouser  
paula.Mouser@unh.edu

SPECIALTY SECTION

This article was submitted to  
Extreme Microbiology,  
a section of the journal  
Frontiers in Microbiology

RECEIVED 19 August 2022
ACCEPTED 17 October 2022
PUBLISHED 10 November 2022

CITATION

Ugwuodo CJ, Colosimo F, Adhikari J, 
Shen Y, Badireddy AR and Mouser PJ (2022) 
Salinity and hydraulic retention time induce 
membrane phospholipid acyl chain 
remodeling in Halanaerobium congolense 
WG10 and mixed cultures from 
hydraulically fractured shale wells.
Front. Microbiol. 13:1023575.
doi: 10.3389/fmicb.2022.1023575

COPYRIGHT

© 2022 Ugwuodo, Colosimo, Adhikari, 
Shen, Badireddy and Mouser. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that 
the original publication in this journal is 
cited, in accordance with accepted 
academic practice. No use, distribution or 
reproduction is permitted which does not 
comply with these terms.

37

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2022.1023575&domain=pdf&date_stamp=2022-11-10
https://www.frontiersin.org/articles/10.3389/fmicb.2022.1023575/full
https://www.frontiersin.org/articles/10.3389/fmicb.2022.1023575/full
https://www.frontiersin.org/articles/10.3389/fmicb.2022.1023575/full
https://www.frontiersin.org/articles/10.3389/fmicb.2022.1023575/full
https://www.frontiersin.org/articles/10.3389/fmicb.2022.1023575/full
https://www.frontiersin.org/articles/10.3389/fmicb.2022.1023575/full
https://www.frontiersin.org/articles/10.3389/fmicb.2022.1023575/full
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2022.1023575
mailto:paula.Mouser@unh.edu
https://doi.org/10.3389/fmicb.2022.1023575
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Ugwuodo et al. 10.3389/fmicb.2022.1023575

Frontiers in Microbiology 02 frontiersin.org

KEYWORDS

membrane adaptation, Halanaerobium, fractured shale, lipids, salinity, hydraulic 
retention time, fatty acid methyl ester

Introduction

Deep subsurface shale is increasingly being engineered in the 
United States (US EIA, 2020) and globally using horizontal drilling 
and hydraulic fracturing, to meet rising demands for energy. Shale 
reservoirs accounted for 79% of total dry natural gas production 
in the US in 2020 and are projected to continue to supply most of 
the dry natural gas through 2050 (US EIA, 2021). During 
hydraulic fracturing, a water-based “fracking” fluid is injected 
downhole to extend fracture networks on low-permeability 
subterranean formations (Stemple et al., 2021). Communities of 
microbes are introduced into engineered shale with prefracturing 
fluid, drilling mud, and impoundment water (Gaspar et al., 2014) 
where they colonize the reservoir (Cluff et al., 2014; Daly et al., 
2016). Over time, they become major drivers of subsurface 
biogeochemistry, with negative consequences for efficient energy 
recovery and ecosystem health, including biofouling (Booker 
et al., 2017) and pore clogging (Jones et al., 2021). Fractured shale 
is a hostile and highly dynamic environment, characterized by a 
myriad of stressors including brine-level salinities. In addition, 
well flow rates vary, due to natural deterioration as well as seasonal 
controls. These unstable environmental and engineered conditions 

perturb the microbiome, necessitating adaptive changes including 
adjustments in plasma membrane features. Microbial activities in 
subsurface energy systems hamper natural gas production, which 
is a cleaner alternative to other fossil fuels such as coal (Hayhoe 
et al., 2002; Jaramillo et al., 2007; Burney, 2020). Therefore, to meet 
the United Nation’s Sustainable Development Goal 7 – affordable 
and clean energy (Racioppi et  al., 2020) – it is imperative to 
advance our understanding of how persistent taxa in underground 
hydrocarbon systems respond to ecosystem changes.

Hydraulic fracturing fluids have relatively low salt 
concentrations, typically <5,000 ppm total dissolved solids (Zeng 
et al., 2020). However, the salinity of flowback and produced 
water, which is co-collected with natural gas, ranges from 40,000 
to 70,000 mg/L (Zolfaghari et  al., 2016), and could be  much 
higher depending on the geochemistry of the formation (Stewart 
et al., 2015). The high salinity of produced water derives from 
several geo-physicochemical mechanisms including mixing of 
fracturing fluids with formation brine (Rowan et al., 2015), and 
dissolution of salts and minerals on fractured surfaces (Ghanbari 
et al., 2013; Ghanbari and Dehghanpour, 2015). Members of 
halotolerant and thermotolerant bacterial and archaeal taxa 
including Halanaerobium, Marinobacter, Methanohalophilus, 
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Salinity significantly alters membrane bilayer fluidity and thickness in Halanaerobium congolense WG10.
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Methanolobus, Halomonadaceae and Halobacteroidaceae, adapt 
to these subsurface conditions and dominate the fractured shale 
ecosystem (Daly et  al., 2016). The genus Halanaerobium has 
been identified and recovered from several geographically and 
geologically distinct subsurface hydrocarbon reservoirs (Jones 
et al., 2021), indicating it is an important representative taxon in 
these systems for understanding microbial growth kinetics, roles 
in subsurface biogeochemistries and responses to physicochemical  
fluctuations.

Salinity is a topic of global interest (Upadhyay and Chauhan, 
2022), transcending engineered subsurface hydrocarbon systems. 
Notably, salinity affects the productivity of agricultural soils 
(Singh et al., 2022), thus, threatens food security, which is a critical 
United Nation’s Sustainable Development Goal (Upadhyay and 
Chauhan, 2022). Natural causes of soil salinization include 
mineral weathering, dissolution of fossil salts, rain deposition, and 
upwards migration of saline groundwater by capillary action (Das 
et  al., 2020). Moreover, anthropogenic management practices 
especially irrigation, represent a significant source of inorganic 
salts to soils (Yu et al., 2021). Salinity levels beyond their tolerance 
thresholds challenge the viability and physiologies of plants and 
microorganisms, which dominate the biota of the soil matrix. 
Several studies have linked high salinity to reduced microbial 
diversity in forest, desert and agro-based systems (Rath et al., 
2019; Zhang et  al., 2019; Yu et  al., 2021). In addition, the 
availability of micronutrients such as iron (Fe) to plants is impeded 
by high salt levels (Abbas et al., 2015; Singh et al., 2022). Therefore, 
salt tolerance is a highly desirable trait in microorganisms and 
plants in the face of increasing salinization and aridification of 
global soils. Halotolerant and halophilic species are able to sustain 
microbial functions and help plants acquire micronutrients whose 
availabilities are limited in salinity degraded soils (Abbas et al., 
2015; Singh et al., 2022; Upadhyay et al., 2022).

The microbial plasma membrane protects the cell from 
external stressors and mediates critical physiologies, including 
transport, metabolism, signaling, aggregation and cell-surface 
interactions (Hurdle et al., 2011). In most microbes, it makes up 
the cell envelope alongside a peptidoglycan-based cell wall and in 
a few taxa, other structural layers such as the capsule. In Gram 
negative bacteria, a second membrane, regarded as the outer 
membrane (OM) which is rich in lipopolysaccharides, lies outside 
the thin sheet of peptidoglycan. Most archaea have a single 
membrane and are covered by a paracrystalline protein layer 
(Konings et  al., 2002; Albers and Meyer, 2011). The plasma 
membrane is composed of lipids, proteins, and occasionally 
sugars. A unit membrane is basically a fluid matrix of lipids to 
which proteins are either attached loosely or enmeshed – the so 
called “fluid mosaic model” proposed by Singer and Nicolson 
(1972). The main constituents of the bacterial membrane lipidome 
are glycerophospholipids which comprise a hydrophilic polar 
head group covalently linked to hydrophobic fatty acid tails. 
Phospholipid fatty acids (PLFAs) differ in chain length, saturation, 
structural configuration, and functional groups. Membrane 

functions are associated with the activities of peripheral and 
integral proteins, which in turn depend on biophysical properties 
such as phase behavior, bilayer symmetry, viscosity, curvature, 
thickness and elasticity (Chwastek et al., 2020). To a large extent, 
these properties are collectively dictated by the bilayer lipidome 
(Klose et al., 2013).

Microorganisms remodel their membrane lipidome to 
maintain key biophysical properties (Klose et al., 2013; Levental 
et al., 2017; Chwastek et al., 2020) in response to external stressors. 
This involves reconfiguration and reorganization of head groups 
and/or hydrophobic tails. Both fluidity and phase behavior, are 
important for biological membrane function (Winnikoff et al., 
2021). Fluidity affects permeability (Lande et al., 1995) and plays 
an important role in cellular respiration (Budin et al., 2018), while 
phase controls lipid raft (floating microdomain) formation 
(Simons and Vaz, 2004), as well as membrane fusion and budding 
(Siegel and Epand, 1997). Homeoviscous adaptation, the 
biochemical mechanism to maintain cell membrane viscosity, 
mainly depends on the nature of phospholipid fatty acids 
(Winnikoff et al., 2021). Induced changes in membrane fatty acid 
composition are common in microorganisms (Fan and Evans, 
2015; Chwastek et al., 2020; Winnikoff et al., 2021), including 
subsurface-dwelling bacteria (Grossi et al., 2010; Fichtel et al., 
2015; Roumagnac et al., 2020).

The membrane lipids of moderately and extremely halophilic 
bacteria are acutely sensitive to salinity (Kates, 1986). However, 
the effects of salt stress on biological membranes have not been 
studied as extensively as the effects of temperature and pressure. 
In halophilic phototrophic bacteria including Ectothiorhodospira 
sp., Chromatium purpuratum, Rhodobacter adriaticus and 
Rhodopseudomonas marina, salt-induced trends in membrane 
fatty acid composition were dependent on the optimum growth 
salinity (Imhoff and Thiemann, 1991). Suboptimal salt 
concentrations led to acyl chain shortening and increase in 
unsaturation (Imhoff and Thiemann, 1991). In other halotolerant 
bacteria, Vibrio sp. (Hanna et al., 1984) and Planococcus sp. (Miller 
and Leschine, 2005), proportions of branched chain fatty acids 
(BCFAs) and cyclic fatty acids increased with salt concentration. 
These adaptive strategies fluidize the membrane and depress its gel 
point (Kates, 1986; Winnikoff et al., 2021).

In addition to changes in salinity as the shale well develops, the 
flow rate of natural gas and produced water is subject to 
considerable temporal fluctuations. Naturally, constant production 
leads to an exponential decline in natural gas recovery. In addition, 
well flow rates are intentionally adjusted according to energy 
demands from consumers (Sherven et al., 2013). For instance, due 
to lower demands during warmer months, production of natural 
gas and co-eluting fluids are typically reduced by “turning back” 
the well. There is a relationship between well flow rate and fluid 
residence time in hydraulically fractured shale reservoirs, termed 
hydraulic retention time (HRT): HRT is increased by lower flows 
and vice versa. Fluid residence time, in the context of fractured 
subsurface systems and continuous culture reactors, can affect 
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microbial specific growth rate (Rodrigues et al., 2012) and biomass 
yields. However, the effects of HRT on biological membranes, 
especially in high salinity environments, remain largely unexplored.

For Halanaerobium and other persistent microbial taxa of 
fractured shale, salinity, and hydraulic retention time (HRT) are 
important perturbants of cell membrane structure. Hence, 
we investigated the effects of salinity and HRT on membrane fatty 
acid composition and elasticity of Halanaerobium congolense 
WG10 and mixed enrichment cultures from hydraulically 
fractured wells in West Virginia, United States. This study provides 
new insight into our growing understanding of how environmental 
and engineered factors might disrupt the physical and 
biogeochemical equilibria of fractured shale by inducing 
physiologically relevant changes in the membrane fatty acid 
chemistry of persistent microbial taxa.

Materials and methods

Growth experiments

Cultures of Halanaerobium congolense WG10 (NCBI 
Assembly accession number: GCA_900102605.1), previously 
isolated from a Utica-Point Pleasant natural gas well (Booker 
et al., 2017), were grown in triplicate using chemostat bioreactors 
(Sartorius Biostat® Q-plus, Germany) at 40°C under three 
salinities (7%, 13%, and 20%) and three hydraulic retention times 
(HRTs; 19.2, 24, and 48 h). Produced fluid samples were obtained 
from the gas-water separator of hydraulically fractured natural gas 
wells in the Appalachian Basin (Marcellus Shale Energy and 
Environmental Laboratory – MSEEL, Morgantown, WV). The 
fluids were filtered on site using 0.45 μm PES filters (EMD 
Millipore, Burlington, MA, United States) and stored in 1 L sterile 
amber glass containers. Samples were preserved at 4°C until 
analysis. Produced fluid enrichment (mixed) cultures were 
cultivated in triplicate at 40°C under two HRTs (24 h and 48 h). 
For both culture types: eight (8) days after steady state was 
attained, cells were pelleted via centrifugation at 4,000g for 30 min; 
excess supernatant was removed before storage at −80°C. Tubes 
containing frozen cells were recovered and left to thaw at room 
temperature in a laminar flow hood. Then the culture pellets were 
aseptically transferred to a 15 ml muffled glass tube.

Lipid extraction and fatty acid 
methylation

Samples were sequentially extracted ultrasonically according 
to a modified Bligh and Dyer procedure (Bligh and Dyer, 1959) 
using three solvent mixtures – dichloromethane (DCM): methanol 
(MeOH): phosphate buffer, 1:2:0.8 (v/v/v); DCM: MeOH: 
trichloroacetic acid (TCAA) buffer, 1:2:0.8 (v/v/v); and DCM: 
MeOH, 5:1 (v/v; Cequier-Sánchez et al., 2008). Phosphate buffer 
(0.05 M) was prepared by adding 4.35 g of dibasic potassium 

phosphate (K2HPO4) with 500 ml of HPLC-grade water and 
neutralizing to pH 7.4 with 1 N hydrochloric acid. Trichloroacetic 
acid buffer (0.05 M) was prepared by adding 0.8169 g of TCAA 
with 100 ml of HPLC-grade water and neutralized with 10 N 
sodium hydroxide (NaOH) solution to pH of 2.0. Both buffers 
were washed with DCM (5% of buffer volume) by shaking the 
mixture vigorously and storing for 5-h at room temperature to 
allow for complete phase separation.

Exactly 4 ml of DCM: MeOH: phosphate buffer was added to 
the 15 ml tubes containing culture pellets. To this mixture, 50 μl of 
50 pmol per μl of internal standard 1,2-dinonadecanoyl-sn-glycero-
3-phosphocholine (Avanti Polar Lipids) was added. The tube was 
shaken, vortexed for 15 s and sonicated in an ultrasonicator bath 
for 10 min. It was centrifuged for 10 min at 3000 rpm and the 
supernatant was transferred into a muffled 250 ml glass separatory 
funnel. This procedure was repeated once with DCM: MeOH: 
phosphate buffer, and the resulting supernatant was added to the 
same collecting funnel. The samples were then extracted twice each 
with DCM: MeOH: TCAA buffer and DCM: MeOH, following the 
same protocol. The separatory funnel containing the mixture of 
supernatants was shaken vigorously for 15 s and let to rest 
overnight to split phase. The organic phase was collected into 
another muffled separatory funnel, and the aqueous phase was 
re-extracted with DCM. The pool of organic phases was washed 
with HPLC-grade water and evaporated to near dryness with a 
high-purity nitrogen blowdown evaporator at 37°C. The resulting 
total lipid extract (TLE) was reconstituted with 1 ml of hexane and 
stored at −20°C until further use.

Total lipid extracts were sequentially fractionated on an 
activated silicic acid column into fractions of different polarities 
using hexane, chloroform, acetone, and methanol. The methanol 
fraction containing phospholipids was evaporated to dryness 
using a N2 gas blowdown evaporator, then resuspended with 
500 μl of methanol and 1 ml of methanolic potassium hydroxide. 
The mixture was vortexed for 30 s and incubated at 60°C for 
30 min. After cooling, 2 ml of hexane was added prior to 
neutralization with 200 μl of 1 N acetic acid. Then, 2 ml of Milli-
Q® nanopure distilled water was added to break phase. The 
samples were vortexed for 30 s and centrifuged for 5 min at 
2,000 rpm to separate the phases. The upper (organic) phase was 
transferred to a muffled volatile organic carbon (VOC) vial and 
the lower phase was re-extracted with 2 ml of hexane. The solution 
containing fatty acid methyl ester (FAME) extracts was evaporated 
to dryness using a N2 gas blowdown evaporator and redissolved 
in 300 μl of hexane. The hexane containing FAMEs was transferred 
to a GC vial and preserved at −20°C until analysis.

GC–MS analysis, lipid identification, and 
quantification

Aliquots (1 μl) of hexane containing FAMEs were analyzed 
using a Thermo Scientific Trace 1300 gas chromatograph (GC) 
coupled to a Thermo Scientific ISQ 7000 single quadrupole 
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mass spectrometer (MS). The chromatograph was equipped 
with a cyanopropylphenyl-based phase column (TRACE™ 
TR-FAME 30 m, 0.25 mm I.D. × 0.25 μm film thickness), 
specifically designed for the separation of FAMEs. The GC was 
programmed to run at 60°C for 2 min, then the temperature was 
increased at a rate of 10°C per min to 150°C; this was followed 
by a second ramp to 312°C, at 3°C per min. The final operating 
temperatures of the injector and detector were 230°C and 
300°C, respectively.

FAMEs were identified and quantified using the following 
external standards (Matreya LLC, State College, Pennsylvania, 
United States): Bacterial Acid Methyl Ester CP Mixture (BacFAME 
[1114]), Polyunsaturated FAME Mixture 2 (PUFA-2 [1081]) and 
Polyunsaturated FAME Mixture 3 (PUFA-3 [1177]). These 
standards contained FAMEs ranging from 11 to 22 carbons in 
length and had representative saturates, monounsaturates and 
polyunsaturates. Identities of FAMEs were initially checked 
against the NIST17 mass spectral library and confirmed using 
matching external standards. To quantify FAMEs, each peak was 
integrated, and its area was compared to the external standard. For 
FAMEs without matching external standards, the response factor 
(RF) from the most structurally related FAME standard was used 
for quantitation (Lewe et al., 2021).

Calculation of double bond index and 
mean acyl chain length

Double bond index (DBI) reflects the degree of membrane 
phospholipid unsaturation and was calculated using the formula 
(Vornanen et al., 1999):

 

∑( )× ( )( )
∑

number of double bonds in fatty acid abundance mol%

aabundance mol of all fatty acids in the culture sample%( )

Mean chain length (MCL) was calculated as (Vornanen 
et al., 1999):

 

∑( )× ( )(hydrocarbon chain length of fatty acid abundance mol% ))
∑ ( )abundance mol of all fatty acids in the culture sample%

Atomic force microscopy

To determine membrane elasticity, cultures of H. congolense 
WG10 were fixed onto 0.2 μm polycarbonate membranes 
(Sterlitech, Kent, WA) by vacuum filtration at 40 psi. Force 
measurements were performed with MFP-3D-BIOTM Atomic 
Force Microscope in contact or tapping mode, with polystyrene 
particle (25 μm) probes with a spring constant of 165.00 pN/nm 
(Novascan, Boone, IA). A scan rate of 0.15 Hz and a force distance 

of 1.00 μm were applied. Force map was set at a scan size of 
40.00 μm, a scan time of 3.705 min, over a region of four points by 
four points. Measurements were performed in triplicates, and the 
pixels related to bacteria were selected empirically based on the 
range of the elasticity.

Statistical analyses

Peak intensities were converted to molar concentrations using 
standard calibration curves, then normalized to percent 
abundance, sample-wise. All statistical analyses and graphing were 
done in the R environment version 4.1.2. Normality in data 
distribution was evaluated using Shapiro–Wilk test. To statistically 
compare two treatment groups, a two-tailed unpaired Student’s 
t-test was performed. One-way analysis of variance (ANOVA) was 
applied to comparisons of multiple groups using a Tukey’s honest 
significance test (HSD) post-hoc analysis. Variations were 
considered statistically significant at p ≤ 0.05.

Results

Composition of fatty acid methyl esters

We determined relative molar abundances of individual fatty 
acid methyl esters (FAMEs) that underpin the structural effects of 
salinity and HRT on the membranes of these dominant shale taxa. 
Figure  1 shows that in pure cultures of H. congolense WG10 
cultivated at 40°C under three salinities (7%, 13%, and 20%) and 
HRTs (19.2, 24, and 48 h), a total of 39 FAMEs were detected. 
Meanwhile, only 26 FAMEs were found in the produced fluid 
mixed culture samples enriched at the same temperature (40°C) 
under similar HRT gradients (24 and 48 h; Supplementary Table).

Among the 39 fatty acids found in H. congolense WG10 across 
treatment conditions, C14:0 had the highest overall mean 
abundance (~30%). Of the five fatty acid classes identified, 
saturated fatty acid (SFA) was the most abundant (~51%), followed 
by polyunsaturated fatty acid (PUFA; ~26%). For the mixed 
cultures, C13:0 had the highest overall mean abundance (~28%), 
and similar to H. congolense WG10, SFA was the dominant PLFA 
class (~68%).

Only nine (9) out of the 39 fatty acids in H. congolense 
WG10 varied significantly with salinity at constant temperature 
(40°C) and HRT (24 h). Their trends are shown in Figure 2. 
Among these, three monounsaturated FAMEs [C14:1ω5 
(p = 0.018), C15:1ω5c (p = 0.025) and C16:1ω9c (p = 0.023)] 
significantly increased with salinity (Figures  2A–C). Two 
others, C17:0 (p = 0.011) and C20:4ω6 (p = 0.047), significantly 
progressively decreased as salinity increased (Figures 2D,H). 
The rest of the fatty acids that varied (C18:0, C18:1ω7c, 
C18:2ω4 and C22:4ω6c) showed a non-linear pattern of change 
with salinity – an increase in abundance with increase in 
salinity from 7% to 13% NaCl, followed by a decline as salinity 
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was further increased to 20% (Figures 2E–G,I). These results 
imply that unsaturated species are the centerpiece of salinity-
induced adjustments to membrane fatty acid chemistry in 
H. congolense WG10. They also indicate complex metabolic 
exchanges among fatty acids, such as the probable oxidation 
and desaturation of C17:0 fatty acid to form shorter-chained 
monounsaturated moieties under increasing salinities.

None of the 39 fatty acids in H. congolense WG10 varied 
significantly with HRT at constant temperature (40°C) and salinity 
(13% NaCl). Moreover, only one fatty acid, C17:0, showed a 
significant variation with HRT in H. congolense WG10 grown at 
40°C and 7% salinity (data not shown). None of the 26 fatty acids 
found in the mixed cultures varied significantly with HRT (data 
not shown). This suggests that HRT, which controls cellular 
growth rate and extent of exposure to toxic metabolic by-products 
in the reactor, co-ordinately rather than discretely modulates or 

very minimally influences the plasma membrane fatty acid 
composition of shale taxa.

Membrane unsaturation and thickness 
are increased in Halanaerobium 
congolense WG10 under nonoptimal 
salinities, but are variably affected by 
HRT

Figure 3 shows the effects of salinity and HRT on the mean 
chain length (MCL) and double bond index (DBI) of membrane 
phospholipids in H. congolense WG10. Both parameters varied 
significantly with salinity at constant growth temperature (40°C) 
and HRT (24 h; Figure 3A). As salinity increased from 7% to 13% 
NaCl, there was a significant decrease in both mean chain length 

FIGURE 1

Heatmap distribution of individual phospholipid fatty acids in Halanaerobium congolense WG10 and fluid enrichment (mixed) cultures grown at 
40°C under different salinities and HRTs. Fatty acids are sorted by class, then chain length and number of double bonds.
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(p = 0.0003) and DBI (p = 0.009). However, a further increase in 
salt concentration from 13% to 20% produced the opposite effect, 
where both mean chain length and DBI increased. There was no 
significant difference in chain length or DBI between the two 
nonoptimal salinity conditions (7% and 20%). Halanaerobium 
congolense WG10 also adjusted the mean chain length and DBI of 
its membrane phospholipids in response to HRT at constant 
temperature (40°C) and salinity (7% or 13%). At 7%, MCL and 
DBI significantly decreased with HRT (Figure 3B), while at 13% 
salinity, H. congolense WG10 significantly increased the MCL and 
DBI of its membrane as HRT increased (Figure 3C). There was no 
significant variation in either MCL or DBI with HRT (24 versus 
48 h) in the mixed cultures (Supplementary Figure S1).

SFAs and MUFAs in the plasma 
membrane of Halanaerobium 
congolense WG10 are exchanged for 
PUFAs under nonoptimal salinities

We examined the effects of salinity and HRT on the relative 
molar abundances of each of five major fatty acid classes: 
saturated, monounsaturated, polyunsaturated, branched chain 
and cyclic. As shown in Figure 4, a significant increase in the 
membrane saturated fatty acid (SFA; p = 0.03) content of 
H. congolense WG10 was observed when salinity was increased 
from 7% to 13% NaCl. This was accompanied by a more significant 
decline (p = 0.006) in the polyunsaturated fatty acid (PUFA) 

A B C

D E F

G H I

FIGURE 2

Membrane-derived fatty acids that significantly varied with salinity in H. congolense WG10. (A) 14:1ω5; (B) 15:1ω5c; (C) 16:1ω9c; (D) 17:0; (E) 18:0; 
(F) 18:1ω7c; (G) 18:2ω4; (H) 20:4ω6; (I) 22:4ω6c. Fatty acids are arranged by chain length then by number of double bonds. p-Values are obtained 
from one-way ANOVA of independent groups. Variation is considered significant at α ≤ 0.05.
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fraction. With a further increase in salinity from 13% to 20%, SFA 
significantly dropped (p = 0.046) while PUFA increased (p = 0.017). 
The membrane monounsaturated fatty acid (MUFA) composition 
of H. congolense WG10 varied similarly as the SFA fraction, except 
that its decline as salinity increased from 13% to 20% was not 
statistically significant. There was no significant variation in all 
three PLFA classes between 7% and 20% salinities. Changes in the 
molar abundances of branched chain fatty acids (BCFAs) and 
cyclic fatty acids, with salinity, were not statistically significant.

Membrane SFA and MUFA compositions of H. congolense 
WG10 grown at constant temperature (40°C) and salinity (7%), 
increased significantly as HRT was increased from 24 to 48 h. This 
was accompanied by a significant decline (p = 0.016) in the PUFA 
content (Figure 5A). Relative molar abundances of both BCFA 
and cyclic FA did not significantly vary with HRT (data not 

shown). In contrast, when grown at the same temperature and 
13% NaCl, none of the membrane fatty acid classes in H. congolense 
WG10 varied significantly with HRT, except for PUFA whose 
abundance significantly increased as HRT was increased from 24 
to 48 h (Figure 5B). For the mixed cultures, HRT did not produce 
significant variations in the molar abundances of any of the fatty 
acid classes (Supplementary Figure S2).

Membrane elasticity in Halanaerobium 
congolense WG10 does not significantly 
vary with salinity and HRT

To couple changes in fatty acid composition to a 
physiologically-relevant aspect of membrane mechanics, 
we measured the bilayer elasticity of H. congolense WG10 grown 
at 40°C under varying salnities (7%, 13%, and 20% NaCl) and 
hydraulic retention times (19.2, 24, and 48 h), using atomic force 
microscopy (data not shown). ANOVA revealed that neither 
salinity nor HRT induced significant changes in membrane 
elasticity. However, mean Young’s Modulus (a measure of stiffness) 
at 13% salinity was considerably lower than at 7% and 20%, a 
similar pattern of variation with membrane polyunsaturated fatty 
acid composition, suggesting that PUFA modulates membrane 
elasitcity in H. congolense WG10.

Discussion

Salinity and hydraulic retention time 
influence membrane fatty acid chemistry 
in Halanaerobium congolense WG10

Our findings show that Halanaerobium congolense WG10 
remodels its membrane fatty acid composition in response to 
variations in salinity and hydraulic retention time (HRT). To 
curtail the confounding effect of changes in the microbial lipidome 
due to growth phase progression (Berezhnoy et al., 2022) rather 
than induced by bioreactor growth conditions, we  used a 
chemostat system for culture cultivation and harvested cells after 
they had attained steady state at which point, the specific growth 
rate is constant and equal to the dilution rate. Being a continuous 
culture system, cultures were sustained in a prolonged exponential 
growth phase until harvested at steady state. In general, salinity 
had a more pronounced and consistent impact than HRT. We used 
mean chain length (MCL) and double bond index (DBI; Figure 3) 
as proxies to quantify the effects of both perturbants on critical 
aspects of cell membrane structure and properties, in lieu of 
biophysical experimentation. DBI is a measure of degree of 
unsaturation and by implication bilayer viscosity/fluidity 
(Berezhnoy et  al., 2022). Chain length, on the other hand, 
estimates membrane thickness. Fluidity and thickness affect the 
biological functions of the membrane. Salinity and HRT induced 
significant changes in membrane fatty acid composition of 

A B

C D

E F

FIGURE 3

Mean chain length (MCL) and double bond index (DBI) of 
membrane phospholipids in H. congolense WG10 responded 
distinctly to salinity (A,B) and hydraulic retention time (HRT). The 
effect of HRT was evaluated at two discrete salinities – 7% (C,D) 
and 13% (E,F). p-Values are obtained from one-way ANOVA of 
multiple independent groups or Student’s t-test of two 
independent groups. Variation is considered statistically 
significant at α ≤ 0.05.
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H. congolense WG10 which reflected on mean chain length and 
DBI. Accordingly, the membrane appeared to be thicker and more 
fluid under low (7% NaCl) and high salt stresses (20% NaCl), 
compared to optimal salinity (13% NaCl). Also, at optimal salinity, 
membrane thickness and fluidity increased with HRT. The specific 
growth rate of cultures in a chemostat is lower at higher 
HRT. Therefore, our fluidity trend observation contrasts in 
principle with the findings of a prior study which reported that 
saturated fatty acid (SFA)/double bond equivalent (DBE) ratio 
increased as the growth rates of two E. coli strains plateaued into 
the stationary phase (Berezhnoy et al., 2022). This indicates that, 
in the current study, because growth rate variations were 
domiciled within the prolonged log phase, membrane lipidome 
changes is due to other growth-related metabolic distresses rather 
than stationarity. Taken together, our findings imply that a thicker 
and fluidized membrane is essential to effective adaptation of 
H. congolense WG10 to osmotic and metabolic stresses. In 
contrast, membrane fatty acid composition of the mixed cultures 

of persistent shale taxa was not significantly altered by HRT 
(Supplementary Figures). It is rational to think that in general, 
shale microbial communities are better able to resist the impacts 
of ecological disturbances (external stressors) than isolated 
species, hence the minimal adaptive changes in membrane  
chemistry.

Thirty-nine (39) phospholipid fatty acids were found at variable 
abundances in H. congolense WG10 grown at 40°C under different 
salinities (7%, 13%, and 20%) and hydraulic retention times (19.2, 24, 
and 48 h; Figure 1). These fatty acids belong to five classes – saturated 
fatty acid (SFA), monounsaturated fatty acid (MUFA), 
polyunsaturated fatty acid (PUFA), branched chain fatty acid (BCFA) 
and cyclic fatty acid (CFA). The relatively low amounts of BCFAs and 
CFAs could be due to the maintenance of cultures in a prolonged 
exponential growth phase in the chemostats. Cyclopropanation has 
been reported to increase with growth progression in E. coli such that 
the lipidome is dominated by lipids with CFA chains during the late 
stationary phase (Berezhnoy et al., 2022). Only 26 of these 39 fatty 

A

D E

B C

FIGURE 4

Variations in molar abundances of membrane phospholipid fatty acid classes in H. congolense WG10 with salinity at constant temperature (40°C) 
and HRT (24 h). p-Values are obtained from one-way ANOVA of independent groups. Variation is considered significant at α ≤ 0.05. SFA, Saturated 
fatty acid; MUFA, Monounsaturated fatty acid; PUFA, Polyunsaturated fatty acid; BCFA, Branched chain fatty acid; CyclicFA, Cyclic fatty acid.
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acids were found in the mixed culture samples grown at 40°C under 
varying HRTs (24 and 48 h; Figure 1). We believe that the fatty acid 
compositional trends observed in these shale taxa are mainly driven 
by lipid metabolism as opposed to “diet.” Metabolic pathways for fatty 
acid biosynthesis and post-synthetic modifications exist in bacteria 
and begin with the conversion of acetyl-CoA to malonyl-CoA 
(Cronan and Thomas, 2009). After malonyl-CoA condenses with an 
acyl carrier protein (ACP), the central pathway devolves into several 
branches that lead to the synthesis of major fatty acids. Fatty acid 
metabolism in all organisms is globally regulated at various genetic 
and metabolic levels (Fujita et  al., 2007). Faced with changing 
subsurface conditions, H. congolense WG10 and other persistent shale 
taxa potentially deploy these regulatory mechanisms to modulate 
fatty acid composition, to maintain functionally-relevant biophysical 
properties of the plasma membrane.

Membrane polyunsaturated fatty acid (PUFA) composition 
did not correlate with salinity in H. congolense WG10 grown 
at 40°C and 24 h HRT. Bilayer PUFA abundance during growth 
at 13% NaCl was significantly lower than at 7% and 20% 
(Figure 4). Considering that 13% is the optimal growth salinity, 
this trend indicates that H. congolense WG10 adapts to low 
(7%) and high (20%) salt stress by increasing its membrane 
PUFA composition. Similarly, a halotolerant bacterium, 
Rhodococcus erythropolis, had significantly higher amounts of 
membrane derived PUFAs when grown under low (1%) and 
high (7.5%) osmotic stress, compared to growth at optimal 
salinity (2.5%; de Carvalho et al., 2014). The observation that 
none of the individual PUFAs which varied significantly with 
salinity in H. congolense WG10 (C18:2ω4, C20:4ω6, and 
C22:4ω6c) followed this trend (Figure 2) suggests that they 

A B C

D E F

FIGURE 5

Variations in abundances of membrane PLFA classes in H. congolense WG10 with hydraulic retention time at constant temperature (40°C), 
evaluated at two different salinities – 7% (A–C) and 13% (D–F). p-Values are obtained from student’s t-test of independent groups. Variation is 
considered significant at α ≤ 0.05. SFA, Saturated fatty acid; MUFA, Monounsaturated fatty acid; PUFA, Polyunsaturated fatty acid.
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might be functionally interchangeable and regulated as a group 
rather than as discrete entities (Winnikoff et al., 2021).

Previously thought incapable (Okuyama et al., 2007), bacteria 
(especially halophiles and psychrophiles) are now well known to 
incorporate polyunsaturated fatty acids (PUFAs) into their membrane 
lipidome (Russel and Nichols, 1999; Nichols and McMeekin, 2002; 
Jadhav et  al., 2010; de Carvalho et  al., 2014; Moi et  al., 2018). 
Accordingly, we found 14 PUFAs in H. congolense WG10 and 10 in 
the mixed cultures. Their chain lengths ranged from 18 to 22 and 
number of double bonds varied from 2 to 6. We believe functional 
metabolic pathways for de novo synthesis of PUFAs exist in these 
persistent shale taxa. Generally, there are two pathways for PUFA 
synthesis in bacteria – aerobic and anaerobic. The aerobic mechanism 
begins with a saturated fatty acid and involves repeating steps of 
desaturation and elongation (Zhu et al., 2006). On the other hand, the 
anaerobic pathway involves the actions of polyketide synthase (PKS)-
related enzymes, also called PUFA synthases (Zhang et al., 2021). A 
combination of genetic and biochemical approaches is required to 
confirm the existence and operation of one or both pathways in 
H. congolense WG10. Meanwhile, an NCBI nucleotide search 
confirmed the presence of a regulator of polyketide synthase 
expression gene (GenBank: PUU90574.1) in a metagenome-
assembled genome (MAG) belonging to Halanaerobium sp. isolated 
from a hydraulically fractured shale well, suggesting this pathway may 
exist in this genus.

Shale microbes may also possibly acquire exogenous 
polyunsaturated fatty acids (PUFAs) from their surroundings. 
This scavenging behavior is not unthinkable among microbes and 
have been reported in several bacterial species including 
halotolerant Vibrio (Smith et al., 2021), as well as Pseudomonas, 
Acinetobacter, Escherichia and Klebsiella (Eder et  al., 2017; 
Moravec et  al., 2017; Baker et  al., 2018; Hobby et  al., 2019; 
Herndon et  al., 2020; Zang et  al., 2021). In this hypothetical 
scenario, exogenous PUFAs would likely come from the oil and 
gas reservoirs. Organisms of the candidate phyla radiation (CPR) 
and DPANN radiation residing within the deep continental 
subsurface have been suggested to scavenge, use and modify 
molecular lipids from external sources (Probst et al., 2020).

The effects of HRT (24 and 48 h) on membrane PUFA 
composition of H. congolense WG10 is discriminated by salinity 
(Figure  5). When growing at 7% NaCl, total PUFA abundance 
declines significantly with HRT whereas at 13%, it increases with 
HRT. Hydraulic retention time (HRT) – the inverse of dilution rate 
– is a critical microbial growth parameter in continuous culture 
systems. At abnormally high HRT (in this case 48 h), the dilution rate 
likely falls below the bacterium’s maximum specific growth rate, 
upsetting the exponential phase dynamics. Despite being a self-
adjusting system, with longer medium residence time in the 
chemostat, there is substrate depletion and possibly accumulation of 
toxic metabolic by-products (Foustoukos and Pérez-Rodríguez, 
2015). These conditions exert physiological stress on H. congolense 
WG10, prompting membrane acyl chain remodeling to achieve 
desired biophysical attributes of the bilayer. This translates to 
increasing membrane PUFA composition when growing at optimal 

salinity (13% NaCl), but the opposite when subjected to hypoosmotic 
stress (7% NaCl; Figure  5). We  are not exactly sure why this 
discrepancy exists.

Like PUFA, membrane saturated fatty acid (SFA) and 
monounsaturated fatty acid (MUFA) compositions of H. congolense 
WG10 did not correlate with salinity at constant temperature (40°C) 
and HRT (24 h). However, unlike PUFA, molar abundances of SFA 
and MUFA at 13% NaCl were significantly higher than at 7% and 
20% (Figure 4). This inverse relationship between PUFA and SFA/
MUFA implies that when confronting low (7%) or high (20%) salt 
stress, H. congolense WG10 exchanges significant amounts of SFAs 
and MUFAs in its membrane lipidome with PUFAs. This exact same 
response was reported in the halotolerant bacteria, Rhodococcus 
erythropolis (de Carvalho et al., 2014). Similarly, in H. congolense 
WG10 growing at optimal salinity (13%), membrane PUFA 
composition was significantly increased under high HRT, even 
though concomitant reductions in the abundances of SFAs and 
MUFAs were not statistically significant (Figure 5B).

It is our hypothesis that, just like other bacteria (de Carvalho 
et al., 2014), H. congolense WG10 constitutively expresses desaturases 
and elongases, which are quickly activated when needed to convert 
saturated and monounsaturated fatty acids to polyunsaturated fatty 
acids. We believe that stearoyl-CoA desaturase plays a key role in 
membrane PUFA biosynthesis in H. congolense WG10 growing under 
salt-stressed conditions, based on the observation that out of the 7 
SFAs and MUFAs that varied significantly with salinity (Figure 2), 
only C18 fatty acids – C18:0 and C18:1ω7c – were downregulated at 
7% and 20% salinity compared to 13%. (Figure 2). Stearoyl-CoA 
desaturase introduces double bonds into C18 fatty acyl chains. Many 
marine bacteria express elongases and desaturases, including the 
soluble stearoyl-CoA desaturase and membrane-bound acyl-CoA 
desaturases (Moi et al., 2018; Berezhnoy et al., 2022).

Rationalizing membrane acyl chain 
remodeling in Halanaerobium 
congolense WG10

Now, we turn to common hypotheses of membrane lipidome 
remodeling to attempt a rationalization of the responses of 
H. congolense WG10 to changes in salinity and hydraulic retention 
time (HRT). Both factors are relevant for hydraulic fracturing of deep 
subsurface shale and appeared to exert selective forces on membrane 
fatty acid composition of H. congolense WG10. First, our findings 
seem to align with the homeoviscous principle, which argues that 
membrane lipidome remodeling is driven by the need to maintain 
fluidity within a narrow range (Sinensky, 1974; Ernst et al., 2016). 
We quantitatively estimated degree of unsaturation as double bond 
index (DBI). Higher DBI connotes higher unsaturation and by 
implication lower viscosity/higher fluidity (Berezhnoy et al., 2022). 
Due to kinks in their hydrocarbon chains caused by the presence of 
double bonds, unsaturated fatty acids pack at relatively low densities, 
hence, promote membrane transition to the disordered liquid-
crystalline phase. As shown in Figure 3, H. congolense WG10 adapted 
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to low and high salt stress by further desaturating its membrane 
lipidome thereby increasing the fluidity of the bilayer matrix. This was 
also the response when the cells were challenged by an abnormally 
high hydraulic retention time (HRT) when growing at optimal 
temperature and salinity (Figure 3B). Fluidity determines ease of 
lateral diffusion of macromolecules in the bilayer matrix (Ballweg 
et al., 2020), and hence affects the spatial orientation, folding and 
functions of membrane proteins. Perhaps, H. congolense WG10 
increases bilayer fluidity to spatially reorient thus functionalize or 
inhibit a cohort of membrane proteins such as sensors, kinases, 
channels, and transporters. Moreover, under high salinity stress, an 
increase in membrane fluidity might be necessary to counteract the 
gelation effect of monovalent cations (Russell, 1989; Seddon, 1990; 
Imhoff and Thiemann, 1991). However, the homeoviscous principle 
does not explain why H. congolense WG10 opted to increase 
membrane fluidity with polyunsaturated fatty acids (PUFAs) and not 
monounsaturated fatty acids. In fact, monounsaturation is sufficient 
for a bacterium to achieve its desired level of bilayer fluidity as 
introducing more than one double bond into a membrane fatty acid 
moiety exerts no additive effect on liquid-crystalline to gel transition 
(Russel and Nichols, 1999).

This gap in logic can be filled by the second hypothesis of 
membrane lipidome remodeling – the homeophasic principle. 
This principle holds that lipidome readjustment is geared toward 
controlling phase behavior (Linden et al., 1973). Membrane lipids 
can self-assemble into other supramolecular structures besides the 
bilayer, including micelles, cubic and hexagonal phases (Ernst 
et  al., 2016). Predominance of non-bilayer phases negatively 
affects the biophysical properties and functions of the membrane 
(Russel and Nichols, 1999). While monounsaturated 
phospholipids favor the formation of non-bilayer phases, PUFAs 
allow just enough molecular motion to provide fluidity while 
preventing deleterious transition to inverted phases (Russel and 
Nichols, 1999). Therefore, it is apparent that H. congolense WG10 
achieves sufficient fluidity while maintaining its bilayer structure 
under stress by increasing membrane PUFA composition.

Beyond regulating fluidity and phase behavior, PUFAs are 
known to alter other mechanical and biophysical properties of the 
membrane, including elasticity, thickness and curvature (Bruno 
et al., 2007). Membrane elasticity of H. congolense WG10, which 
we  experimentally measured using atomic force microscopy 
(AFM), did not significantly vary with either HRT or salinity. On 
the other hand, we used mean phospholipid chain length as a 
quantitative estimate of bilayer thickness and found it to 
be significantly variant and positively correlated with membrane 
PUFA composition across gradients of salinity and hydraulic 
retention time (Figures 3–5). Hydrophobic thickness of bilayer 
membranes affects bending rigidity (Bermúdez et  al., 2004), 
permeability (Discher et al., 1999) and elasticity (Bermudez et al., 
2002). These properties, in turn, modulate the configuration and 
functions of membrane proteins including transporters and 
channels (Bruno et al., 2007). Hence, through several possible 
mechanistic and chemical processes, polyunsaturated fatty acids 
stabilize the bilayer membrane of H. congolense WG10 and endow 

it with biophysical attributes needed for adaptation to salinity-and 
HRT-induced perturbations. Differential gene expression analysis, 
proteomics and/or lipidomics investigations would shed more 
light on these underlying mechanisms.

Conclusion

For H. congolense WG10 which persists in hydraulically 
fractured shale wells, salinity and hydraulic retention time (HRT) 
significantly influence membrane fatty acid composition and 
mechanics, and therefore, alter bilayer biophysics. Under 
non-optimal salinities, H. congolense WG10 increases the fluidity 
and thickness of the plasma membrane by elevating its PUFA 
composition. On the other hand, the effects of HRT on membrane 
fatty acid chemistry in H. congolense is less pronounced and 
discriminated by salinity level. The functions of the membrane, 
which include transport, metabolism, respiration, and cell-surface 
interactions, rely on the maintenance of optimal biophysical states. 
This study has demonstrated, under a simulated laboratory 
setting, how salinity and well flow rates affect the plasma 
membrane fatty acid chemistry of persistent shale taxa. This 
fundamental mechanistic insight will underlie efforts toward 
advancing our understanding of how environmental and 
engineered factors influence the physical and biogeochemical 
equilibria of subsurface hydrocarbon systems by inducing 
physiologically relevant changes in membrane features of 
resident taxa.
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Extremely halophilic archaea (haloarchaea) of the class Halobacteria is

a dominant group of aerobic heterotrophic prokaryotic communities in

salt-saturated habitats, such as salt lakes and solar salterns. Most of the

pure cultures of haloarchaea were enriched, isolated, and cultivated on

rich soluble substrates such as amino acids, peptides or simple sugars.

So far, the evidences on the capability of haloarchaea to use different

polysaccharides as growth substrates remained scarce. However, it is

becoming increasingly obvious that these archaea can also actively participate

in mineralization of complex biopolymers, in particular cellulose and chitin–

two dominant biomass polysaccharides on the planet. Here we used an

array of commercially available homo- and heteropolysaccharides to enrich

hydrolytic haloarchaea from hypersaline salt lakes with neutral pH and from

alkaline soda lakes. This resulted in isolation of a range of halo- and natrono-

archaea, respectively, belonging to already described taxa as well as several

new genus-level lineages. In some cases, the isolates enriched with different

polysaccharides happened to be closely related, thus representing generalistic

ecotype, while the others were narrow specialists. In general, soda lakes

yielded a broader range of polysaccharide-utilizing specialists in comparison

to neutral salt lakes. The results demonstrated a significant diversity of

halo(natrono)archaea with a previously unrecognized potential for utilization

of a broad range of natural polysaccharides in hypersaline habitats.
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Introduction

Hypersaline lakes and solar salterns at its final evaporation
stage represent unique salt-saturated habitats dominated by
extremely halophilic microbial communities among which the
extremely halophilic archaea of the class Halobacteria is the
particularly successful group (Cui and Dyall-Smith, 2021).
These archaea (at least those known in culture) are mostly
aerobic organoheterotrophs, utilizing simple soluble organic
compounds, such as amino acids and sugars (Andrei et al.,
2012; Oren, 2013, 2015; Grant and Jones, 2016). Haloarchaea
typically have very high cell density that gives the characteristic
reddish color to hypersaline brines in intracontinental athalassic
lakes and thalassic endeavaporite pools of the marine solar
salt concentrators. Only handful of cultivated haloarchaeal
species can grow with polymeric substances, such as starch,
proteins or olive oil (Bhatnagar et al., 2005; Enache and
Kamekura, 2010; Moshfegh et al., 2013; Selim et al., 2014;
Amoozegar et al., 2017). Recently, this spectrum has been
expanded by recalcitrant insoluble polysaccharides, such as
cellulose and chitin as well as some other partially soluble
polysaccharides, such as galactomannan and xylan. Utilization
of native insoluble forms of cellulose has recently been shown
for the neutrophilic genera Halococcoides, Halomicrobium, and
Halosimplex (Sorokin et al., 2015, 2019a, 2020a) and for two
genera of natronoarchaea from soda lakes–Natronolimnobius
and Natronobiforma (Sorokin et al., 2015, 2018, 2019b). The
ability to use chitin as the growth substrate has been proven for
the neutrophilic genera Halomicrobium and Salinarchaeum and
for the natronoarchael genus Natrarchaeobius (Sorokin et al.,
2015, 2019c, 2020b; Minegishi et al., 2017). Finally, growth
with locust bean galacto-beta-1,4-mannan was shown for the
neutrophilic genera Natronoarchaeum and Haloarcula (Shimane
et al., 2010; Enomoto et al., 2020).

The potential of haloarchaea to utilize various recalcitrant
polysaccharides produced mostly by plants and algae is of
significant interest both for fundamental understanding of their
functional importance for the organic matter mineralization
in hypersaline environments and also by regarding them as a
source of extremely halo(alkali)stable extracellular hydrolases
which have important application potential in production of
biofuel from lignocellulosic wastes because this process often
starts with a decrystallization pretreatment step, performed
either with alkali or ionic liquids (Kaar and Holtzapple, 2000;
Zavrel et al., 2010; Begemann et al., 2011).

In this work, the search for polysaccharide-utilizing
haloarchaea was extended beyond the most abundant cellulose
and chitin. For this, a range of commercially available
polysaccharides of plant and microbial origin was used for
selective enrichment and further isolation in pure cultures
of halo(natrono)archaea able to utilize these polymers as
growth substrate. The de novo sequenced genomes of these
strains allowed to establish their phylogenies as well as

to detect the genes, encoding enzymes responsible for
their polysacharidolytic capacities. The results demonstrated
significant diversity of polysaccharide-specialized haloarchaea
belonging to already described genera and species (mostly
for salt lakes) and several new genera (mostly among
natronoarchaea), all of which have enzymatic repertoire
sufficient for decomposition of the respective polysaccharides.

Experimental procedures

Samples

Sediment (top 3 cm) and brine samples were obtained
from five hypersaline chloride-sulfate lakes with neutral pH in
Kulunda Steppe (Altai, Russia) and from hypersaline alkaline
(soda) lakes in Kulunda Steppe (three lakes), northeastern
Mongolia (two lakes) and North America (California, two lakes)
(Sorokin et al., 2015). Two “master mixes,” one for each type
of lakes, were created by mixing equal parts of sediments
and brines from each lake and used at 5% (v/v) for primary
enrichments.

Enrichment and growth conditions

The neutrophilic haloarchaea originated from salt lakes
were enriched, purified and further cultivated in a neutral base
medium 1 with the following composition (g l−1): 230 NaCl,
5 KCl, 0.2 NH4Cl, 2.5 K2HPO4, pH 6.8. After sterilization,
the base was supplemented with vitamin and trace metal
mix (Pfennig and Lippert, 1966) (1 ml l−1 each) and 2 mM
MgSO4. For the soda lake enrichments and further cultivation
of alkaliphilic natronoarchaea, a sodium carbonate/bicarbonate-
based medium 2 containing 4 M total Na+ [(g l−1): 190
Na2CO3, 30 NaHCO3, 16 NaCl, 5 KCl and 1 K2HPO4, final
pH 10 after sterilization] was supplemented with the same
additions as for the medium 1, except that the amount
of Mg was two times lower and that 4 mM NH4Cl was
added after sterilization. This alkaline medium was mixed
1:3 with the neutral medium 1, resulting in the final pH of
9.6.

Polysaccharides (Sigma-Aldrich and Megazyme;
Supplementary Table 1) were either added from suspensions in
sterile distilled water (when heat sterilization was not possible)
or from 5% heat-sterilized (110◦C for 20 min) stocks to a final
concentration of 0.5 g l−1. At the stage of initial enrichments
and further 1:100 transfers, a mixture of streptomycin and
kanamycin (final concentration 100 mg l−1) was added to
suppress bacterial development. Cultivation was performed
in 30 ml bottles sealed with gray-rubber septa (to prevent
evaporation) containing 10 ml medium at 35◦C on a rotary
shaker at 150 rpm. Solid media were prepared by 3:2 (v:v)
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mixing of the fully prepared liquid media with 4% washed
agar at 50◦C. Solid NaCl was added to the portions of liquid
media before heating to bring the salinity back to 4 M of
total Na+ after agar addition. For isolation of pure cultures,
the initial positive enrichments were passed 2 times into new
media containing target polysaccharides at 1:100 dilution
to obtain sediment-free cultures, followed with dilution to
extinction series and finally plating the maximal positive
dilutions onto solid media with the same composition. The
dominant colony types or those showed visible signs of polymer
degradation (where possible) were picked up with sterile
Pasteur capillary with pooled tips under control of binocular
and placed into liquid media. Only those cultures which showed
vigorous growth in liquid media were further purified by
repeating the colony formation procedure. The purity of isolates
were confirmed by microscopy, 16S-rRNA gene sequencing
(Sanger and amplicon profiling) and in several cases by full
genome sequencing.

Polysaccharide utilization activity

The main indication of polysaccharide utilization was
consistent microbial growth in liquid culture whereby the
polysaccharide in question served as the sole carbon and energy
source. In addition, whenever it was possible, the hydrolytic
activities of spot-colonies were also visualized on agar plates,
either by formation of clearance zones (amorphous cellulose,
beta-mannan) or reagent-developed hydrolysis zone: Lugol
solution for starch, pullulan and pectin and Congo Red/1 M
NaCl for xylan, xyloglucan, arabonoxylan, and glucomannan.

Genomic sequencing and phylogenetic
analysis

Genomic DNA isolation, DNA library preparation,
sequencing as well as genome assembly were performed as
described earlier (Sorokin et al., 2022a).

Phylogenomic analysis based on the “ar122” set of conserved
single copy archaeal proteins (Rinke et al., 2021) was performed
as follows: the protein sequences were identified and aligned
in in silico proteomes of the type species of all genera
within Halobacteria class (non-type species were taken for
Halalkalicoccus and Natronoarchaeum genera because the
genomes of the type species were not available) using the GTDB-
tk v.1.7.0 with reference data v.202 (Chaumeil et al., 2019).
The maximum likelihood tree was inferred using the RAxML
v.8.2.12 (Stamatakis, 2014) with the PROTGAMMAILG model
of amino acid substitution; support values were calculated from
the 1000 rapid bootstrap replications. The phylogenetic tree was
polished using iTOL v.6.5.8 (Letunic and Bork, 2019).

Genome analysis

The genomes were annotated with NCBI Prokaryotic
Genome Annotation Pipeline (Tatusova et al., 2016).
Carbohydrate-active enzymes (CAZymes) including
glycosidases, polysaccharide lyases, carbohydrate esterases,
glycosyl transferases, and carbohydrate oxidases genes were
predicted using dbCAN2 script v2.0.11 (Zhang et al., 2018)
with HMMER v3.3 (Mistry et al., 2013) with default thresholds.
The most probable activities of identified CAZymes (excluding
glycosyl transferases, for which the manual verification of the
predictions was not performed) were predicted using BLAST
search against Swiss-Prot database (Boutet et al., 2016).

Genbank accession numbers

The 16S rRNA gene sequences generated in this study
were deposited in the GenBank under accession numbers
ON787970-ON788000. The whole genome sequence are
available in GenBank under the following accession numbers:
JAOPJY000000000, JAOPJZ000000000, JAOPKA000000000,
JAOPKB000000000, JAOPKC000000000, JAOPKD000000000,
and JAOPKE000000000.

Results

Polysaccharide-utilizing haloarchaea
from hypersaline lakes with neutral pH

Positive enrichment cultures from salt lakes were obtained
with 13 out of 18 polysaccharide compounds tested. The
fastest development (maximal growth yield was achieved after
1 week) was observed with starch-like compounds (amylopectin,
pullulan, and glycogen), while the slowest (up to a month)–
with insoluble beta-linked polysaccharides (beta-mannan and
curdlan). Other positive cultures showed growth in between
2 and 3 weeks. All positive primary enrichments were
transferred into a sediment-free stage after 2–3 consecutive
1:100 (v:v) transfers on the same synthetic medium and
acquired pink coloration with a domination of polymorphic
flat cells characteristic of haloarchaea accompanied by visible
degradation of substrates in case of insoluble polysaccharides.
Further dilutions to extinction were performed without
antibiotics and were generally positive up to 10−8–10−9. Final
purification was achieved by isolation of individual colonies
on solid media. Pure cultures of polysacharidolytic haloarchaea
were obtained from those colony morphotype(s) (not always
dominant ones) which consistently grew back in liquid medium
with the target polysaccharide used in the enrichment. The list
of isolates is given in Table 1.
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All isolates selected on alpha-bonded polysaccharides
belonged to the well-characterized genera of haloarchaea, for
some of which utilization of starch is known. However, to our
knowledge, the capacity to utilize arabinan and arabinoxylan
has never been shown/tested for any cultivated species of
haloarchaea. This is also true for Halorhabdus tiamateia,
a broadly-specialized polysaccharidolytic haloarchaeon,
according to our current results (Table 1) and previous studies
(Wainø and Ingvorsen, 2003; Werner et al., 2014). However,
its ability to grow on levan (beta-fructan) was not known
before. Isolates belonging to the genus Natronoarchaeum
were second after Halorhabdus by the number of isolated
strains and were selected with four polysaccharides, including
pullulan, beta-galactan, galactomannan, and curdlan. While
utilization of galactomannan has already been reported for

N. mannanilyticum (Shimane et al., 2010), growth with beta-
1,4-galactan and beta-1,3-glucans, such as curdlan, have never
been observed in any pure cultures of haloarchaea. Same is
true for other two beta-1,4-bonded polysaccharides, including
xyloglucan and beta-mannan. Looking from the taxonomical
perspective, only two insoluble polysaccharides, mannan
(consisted of beta-1,4-linked mannose) and curdlan (consisted
of beta-1,3-linked glucose) (Table 1) resulted in selection of new
genus-level isolates from the neutral salt lakes.

The cross-specificity for various polysaccharides supporting
growth of the neutrophilic haloarchaea selected with a single
polymer is shown in Figure 1. All five species enriched on
alpha-glucans utilized soluble starch and five out of the six
alpha-glucan specialists also grew with arabinoxylan which
has alpha-bonded arabinose residues in the side chains. In

TABLE 1 Polysaccharide-utilizing neutrophilic haloarchaea enriched and isolated from hypersaline salt lakes with neutral pH.

Polysaccharide Isolates Identification by 16S rRNA
gene sequence

Spectrum of utilized polysaccharides

Closest cultured
relative

%
identity

Stable growth in liquid
culture

Colony activity (zone of
hydrolysis, mm/2–3 weeks)

Alpha-glucans

Amylopectin HArc-St Natrinema salaciae 99 Amp/Sst/Glc/Arx nd/41/nd

Pullulan HArc-pul1 Haloferax alexandrinus 100 Pul/Sst/Arx 30/20/nd

HArc-pul2 Natronoarchaeum rubrum 99 Pul/Sst/Arx/Gtm/Glt/Crd 45/50/nd

Glycogen HArc-glc1 Halorubrum alkalophilum 99 Glc/Sst nd/22

HArc-glc2 “Halobacterium hubeiense” 99 Glc/Sst/Arx nd/15

Arabinan HArc-arb1-5 “Halobacterium hubeiense” 99 Arb/Arx/Xyl nd/40/20

Dextran No isolates; not utilized by any isolates

Beta-fructans

Levan HArc-lev Halorhabdus tiamatea 99 Lev/Sst/Arx/Pul/Xyl nd/23

Inulin No isolates; not utilized by any isolates

Beta-bonded polysaccharides

Pectic galactan HArc-glct1 Natronoarchaeum rubrum 99 Glt/Pul/Sst/Arx/Pul/Xyl 20/30/10/20/20/30

Beta-mannan HArc-m1* Halovarius/Haloterrigena 94–95 Man/Gcm/Arx/Xyl/Xgl/Ac 20/20/30/30/nd/32/15

Glucomannan HArc-gm1/3/4 Halorhabdus tiamatea 99 Pul/Sst/Arx/Xyl 30/40/30/30

HArc-gm2 Halomicrobium zhouii 99 Gcm/Man/Arx/Xyl/Ac/Lam/Bgl 20/8/40/30/7/nd/nd

Galactomannan HArc-glctm2 Haloarcula hispanica 97.3 Gtm/Glt/Pul/Sst nd/nd/18/12

HArc-glctm4 Natronoarchaeum rubrum 99

Xylan HArc-x1/2 Halorubrum tebenquichense 100 Xyl/Arx 30/22

Xyloglucan HArc-xlg1 Halorhabdus tiamatea 99.8 Xgl/Arx/Xyl nd/25/10

Arabinoxylan HArc-ax1/3 Halorhabdus tiamatea 99.7 Pul/Sst/Arx/Xyl 27/34/25/32

Curdlan HArc-curdl1 Haloferax sulfurifontis 97.6 Crd/Pch/Lam/Pul(w) nd

HArc-curdl4 Natronoarchaeum rubrum 99 Crd/Pch/Lam/Pul(w) nd/nd/nd/16

HArc-curdl5-1 Halapricum salinarum 95 Crd/Pch/Lam/Sst(w)/Inl/Glc nd

Arabinogalactan No isolates; not utilized by any isolates

Alginate

Pectin

Polysaccharides: Sst, soluble starch; Glc, glycogen; Pul, pullulan; Lev, levan; Inl, inulin; Amp, amylopectin; Arb, arabinan; Arx, arabinoxylan; Gcm, glucomannan; Gtm, galactomannan;
Glt, galactan; Xyl, xylan; Xlg, xyloglucan; Ac, amorphous cellulose; Lam, laminarin; Crd, curdlan; Pch, pachyman; Blg, Barley glucan; nd, test is not possible; potential new genera are in
bold. *This isolate was similar to AArc-m2/3/4 isolated on mannan from soda lakes (see Table 2).
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FIGURE 1

Schematic representation of selective enrichments of haloarchaea from hypersaline salt lakes on (A) alpha-bonded and (B) beta-bonded
polysaccharides. Assignment to the novel genus was based on protein sequence-based phylogenomic analysis and 16S rRNA gene sequence
identity values.

turn, a single case of cross-specificity was also observed in
Halobacterium strains which were selected with both glycogen
(HArc-glc2) and arabinan (HArc-arb1-5) (Figure 1A).

Among the haloarchaeal strains selected with various beta-
bonded polysaccharides the most common cross-substrates
were xylan and arabinoxylan, while alpha-glucans (starch and
pullulan) were only utilized by a few beta-glucan specialists
(Figure 1B). Two out of the three isolates enriched with either
mannan (HArc-m1) or glucomannan (HArc-gm2) were able to
grow with amorphous cellulose indicating related selectivity of

these beta-1,4 backbone polysaccharides. The Halomicrobium
strain HArc-gm2 selected with glucomannan was identical in
its 16S rRNA gene sequence to Halomicrobium sp. HArcel3–
the cellulose-enriched haloarchaeon most closely related to
H. zhouii (Sorokin et al., 2015). We tested the type strain
H. zhouii JCM 17095 and it appeared to be able to grow with
amorphous cellulose as well.

Strain HArc-m1 was identical (according to the 16S
rRNA gene sequence analysis) to several natronoarchaeal
isolates enriched from soda lakes with beta-1,4 mannan
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backbone polysaccharides (see below) confirming a link between
the cellulose and the beta-mannan selectivity. This pattern
has already been observed in cellulotrophic Natronobiforma
cellulositropha which was enriched on cellulose but can also
grow with beta-mannan (Sorokin et al., 2018). Furthermore,
HArc-m1 is the only strain enriched from the neutral salt lakes
being closely related to isolates from soda lakes representing
quite a rare example in our long-term work with hypersaline
lakes. It is also worth to notice that, in this particular case, the
substrate selectivity (mannan) overruled the dominant selective
factor – the nature of sodium salt (chloride vs. carbonate)
and, therefore, the considerable difference in the pH-osmotic
pressure combination. Growth experiments confirmed that
strain HArc-m1 can indeed grow both at neutral pH and up to
pH 9.5, thus being a facultative alkaliphile.

Polysaccharide-utilizing
natronoarchaea from hypersaline soda
lakes

Positive stable enrichment cultures from soda lakes were
obtained with 14 out of 16 polysaccharides tested (pullulan and
arabinogalactan were not tested). Similar for salt lakes, alginate
and pectin enrichments were negative. Another similarity was
the fastest growth (1 week) of the starch-like alpha-glucans
(amylopectin and glycogen) and the slowest growth (up to
a month) of the insoluble beta-linked-glycans (beta-mannan
and curdlan) and α-1,6-glucan dextran (which was negative
in case of salt lake samples) utilizing enrichment cultures.
However, in contrast to salt lakes further dilution to extinction
from the soda lake enrichments had still to be done in the
presence of antibiotics since in their absence the cultures were
rapidly overrun by bacteria. It was even necessary to add
antibiotics to the solid media at the final stage of pure culture
isolation. The contaminating bacteria mostly belonged to the
genus Halomonas which were unable to grow on the target
polysaccharide but most probably scavenged the hydrolysis
products. The Halomonas colonies were easily distinguished
from the pink-orange colonies of natronoarchaea which helped
to purify the latter, although, in most cases only 1-2 types of
such colonies grew back in the liquid medium with the target
polysaccharide. The list of isolated polysaccharide-utilizing
natronoarchaea is given in Table 2.

Four different alpha-bonded glucans and fructans resulted
in selection of seven isolates, of which, all except two belonged
to know genera. Two isolates enriched and isolated either
on amylopectin or inulin were identical in their 16S rRNA
gene sequences and represented a novel genus and species
Natronocalculus amylovorans (Sorokin et al., 2022a). The other
three amylopectin-utilizing isolates were closely related to each
other and to a facultively anaerobic sulfur-respiring amylolytic
Natranaeroarchaeum sulfidigenes (Sorokin et al., 2022b).

Together with the isolate AArc-lev selected with beta-
fructan–levan (Table 2) those four strains have recently been
described as a new species Natranaeroarchaeum aerophilus
(Sorokin et al., 2022b). So, there seems to be a connection in
starch-like alpha-glucans and beta-fructans selectivity among
natronoarchaea.

Interestingly, although glycogen is structurally similar
to amylopectin (both are branched alpha-glucans), the two
glycogen-selected natronoarchaeal isolates from the genera
Natronococcus and Natronorubrum were not related to above-
mentioned new taxa. But all four were able to grow with
soluble starch and pullulan, similar to the members of the genus
Natronococcus which are well-known for their ability to utilize
starch and to produce alkalistable amylases (Kobayashi et al.,
1992; Kanal et al., 1995).

To our knowledge, dextrans have never been shown or
even suspected to support growth of any known Halobacteria
species, while it was mentioned among positive substrates
in anaerobic hyperthermophilic archaea Desulfurcococcus
fermentas (Perevalova et al., 2005), D. kamchatkensis (Kublanov
et al., 2009), Thermoccoccus sibiricus (Mardanov et al.,
2009), and Thermococcus sp. strain 2319 × 1 (Gavrilov
et al., 2016). While starch-like polysaccharides can have
side branches with alpha-bonded glucose other than α-
1,4, none but dextrans have the α-1,6 backbone, which
probably makes them difficult substrates for hydrolytic
archaea. From two forms of the cyanobacterial dextran
tested in this work (19.5 and 200 kDa), only the low
molecular weight variety resulted in a positive enrichment
and isolation of a single natronoarchaeal strain AArc-dxtr1
representing a distant novel species in the genus Saliphagus
(Table 2).

Finally, an alpha-1,5-arabinan enrichment from soda lakes
yielded a stable binary culture impossible to separate by
serial dilutions. Plating showed two distinctive types of
colonies: a dominant type with small red colonies and less
abundant larger and nearly colorless colonies. Both grew
back in liquid pure cultures with arabinan. Interestingly,
the arabinan utilization in the liquid culture inoculated with
the colorless colonies resulted in a formation of soluble
yellow-brownish product, while the red colonies culture
supernatant remained colorless. The isolate AArc-arb3/5 with
colorless colonies was identified as a novel Natrialba species
(with the highest 16S rRNA sequence identity of 97% to
“N. wudunaoensis”), while the second isolate AArc-arb1/2/6
with red colonies was closely related to the known species
Natronolimnobius baerhuensis.

The natronoarchaea selected from soda lakes on various
beta-bonded polysaccharides can be divided into two major
groups: preferably xylanolytic and cellulo-/mannanolytic
(Table 2). The xylanolytics selected on either xylan,
arabinoxylan and galactan belonged to the known genus
Natronolimnobius. Xyloglucan, galactomannan, and mannan
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TABLE 2 Polysaccharide-utilizing natronoarchaea enriched and isolated from hypersaline soda lakes.

Polysaccharide Isolates Identification by 16S rRNA
gene sequence

Spectrum of utilized polysaccharides

Closest cultured
relative

%
identity

Stable growth in liquid
culture

Colony activity (zone of
hydrolysis, mm/2–3 weeks)

Alpha-glucans

Amylopectin AArc-St1-1
AArc-St1-2
AArc-St1-3
AArc-St2

“Natranaeroarchaeum
sulfidigenes”

“Natronocalculus
amylolyticus”

99.4
98.5
99.1
100

Amp/Sst/Pul/Cdx/Lev
Amp/Sst/Pul/Cdx/Inl

nd/35/23/nd/nd
nd/19/15/nd/nd

Pullulan Was not tested since AArc-St isolates were able to utilize pullulan

Glycogen AArc-glc1/2/4 Natronococcus
amylolyticus

99 Glc/Sst/Arx/Xyl/Gcm nd/23/25/15/20

AArc-glc3 Natronorubrum tibetense 100 Glc/Sst nd/25

Dextran AArc-dxtr1 Saliphagus infecundisoli 96.8 Dxt/Arx/Sst(w)/Inl/Gcm(w) nd/30/12/nd/8

Arabinan AArc-arb1/2/6 Natronolimnobius
baerhuensis

99 Arb/Arx/Arg/Xyl/Gcm(w) nd/30/nd/9/11/5

AArc-arb3/5 Natrialba magadii 96.4 Arb/Arx/Xyl nd/15/25

Beta-fructans

Levan AArc-lev1 = AArc-St1-1 99 Lev/Sst nd/20

Inulin AArc-in1 = AArc-dxtr1 99.8 Inl/Sst/Dxt (weak) nd/20/nd

AArc-in2 =AArc-St2 Inl/Sst//Pul nd/15/20

Beta-bonded polysaccharides

Pectic galactan AArc-glct1 Natronolimnobius
baerhuensis

100 Glt/Arx/Xyl/Gcm/Arg Nd/30/25/10/nd

Beta-mannan AArc-m1 Natronococcus
amylolyticus

99 Man/Arx/Xgl/Gcm 18/20/20/25

AArc-m2/3/4* Halovarius/Haloterrigena 94–95 Man/Gcm/Arx/Xyl/Xgl/Ac 20/20/30/30/20/20

AArc-m6 Natronobiforma
cellulositropha

100 Man/Arx/Xyl/Gcm/Ac 12/12/10/12/32

Glucomannan AArc-gm3/4/5-2 =AArc-m2/3/4 100 Gcm/Man/Arx/Xyl/Cel 15/10/22/18/22

AArc-gm6 Natronobiforma
cellulositropha

100

Galactomannan AArc-glctm3/4/8 Natronococcus
amylolyticum

99 Gtm/Gcm/Sst/Inl nd/18/20/nd

AArc-glctm5 =AArc-m2/3/4 100

Xyloglucan AArc-xg1-1 =AArc-m2/3/4 100 Xgl/Xyl/Arx/Ac/Man 15/7/22/12/8

Xylan arabinoxylan AArc-x1/2/3/4 Natronolimnobius
baerhuensis

99 Xyl/Arx/Ac/Sst 35/18/12/18

AArc-ax1/2/3 99 Arx/Xyl/Arg 30/20/nd

Curdlan AArc-curdl1 Halostagnicola
alkaliphila

95 Crd/Pch/Lam/Gtm/Sst nd/nd/nd/nd/15

Arabinogalactan Was not tested since several other AArc isolates were able to utilize it

Alginate No isolates; not utilized by any isolates

Pectin There was some growth in primary enrichment but it was not reproduced further in sediment-free transfers

See Table 1. w, weak growth; *This isolate was similar to HArc-m1 isolated on mannan from salt lakes (see Table 1). Bold values indicate potentially new genera.

enrichments were all dominated by a novel genus-level
lineage to which a facultatively alkaliphilic strain HArc-
m1 (see above; Table 2) also belonged. Furthermore, a less
abundant component in the galactomannan enrichment was
identified as a member of the genus Natronococcus. A dominant
organism in a glucomannan enrichment was identical to the

cellulose/mannan-specialized Natronobiforma cellulositropha
(Sorokin et al., 2018). This is similar to the selectivity of
glucomannan in salt lakes resulted in isolation of a cellulolytic
haloarchaeon HArc-gm2 closely related to cellulotrophic
Halomicrobium HArcel3 dominating in cellulose enrichments
from hypersaline lakes (Sorokin et al., 2015).
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Curdlan, a beta-1,3-glucan homopolysacharide, selected a
single natronoarchael strain representing a new genus lineage
of the polysaccharide-utilizing archaea. The enrichment culture
was very slow in development resulting in degradation of
antibiotics and massive development of bacteria belonging to
Halomonas. Several repeated attempts with sequential addition
of antibiotics resulted in the sufficient enrichment of the
archaeal component appropriate for further purification on
a solid medium. Despite its general chemical similarity to
cellulose, curdlan molecules have a different physical structure
(helical in contrast to flat ribbon cellulose fibrils) (Deslandes
et al., 1980). Altogether, its structural characteristics, both
primary and secondary, as well as low occurrence in nature
makes it highly selective substrate in comparison with the more
common beta-1,4 glucans. We did not manage to find any
published data on curdlan utilization in haloarchaea. On the
other hand, two out of ten CAZymes families (GH81 and GH16)
including members with the endo-β-1,3-glucanase activities
(EC 3.2.1.39) have archaeal representatives. While archaeal
representatives of the GH81 family are known exclusively
by the presence of the respective genes in their genomes,
a single archaeal GH16 glycosidase from Pyrococcus furiosus
(Gueguen et al., 1997) was characterized as a laminarinase able
to hydrolyze laminarin, lichenan, and barley β-glucan. However,
no information of its capability to hydrolyze curdlan was
provided. It should be noted that the halo- and natronoarchaea
enriched and isolated on curdlan in the course of this work were
capable to grow on laminarin, a soluble beta-1,3/1,6 glucan.

The growth cross-specificity for various polysaccharides
among the natronoarchaeal isolates is shown in Figure 2.
From the strains isolated on alpha-bonded polysaccharides,
the amylolytics were most restricted in their polymer-utilizing
profiles with only beta-fructans as the alternative substrates.
The only exception was Natronococcus AArc-glc1/2/4, isolated
on glycogen and able to grow with a few beta-1,4 bonded
polysaccharides. On the other hand, strains selected with other
alpha-bonded polysaccharides, such as dextran and arabinan,
were all able to utilize xylan and arabinoxylan and one of them
also grew with arabinogalactan (Figure 2A).

Among the strains selected with beta-bonded
polysaccharides, the most narrowly specialized was strain
AArc-curdl1 isolated on curdlan: it only grew with two
other polysaccharides with the beta-1,3-backbone (pachyman
and laminarin) and on starch (Figure 2B). In contrast,
the natronoarchaea enriched with various beta-1,4-bonded
polysaccharides had a broader substrate range with xylan and
arabonoxylan being the most common cross-substrates among
them. Similar to the salt lake isolates, the soda lake strains
selected with beta-1,4 mannan and glucomannan were also
capable of growth on native celluloses. On the other hand,
in contrast to salt lakes, the same taxa were also selected
on galactomannan. This difference is significant, taking into

account importance of cellulose for natural habitats but the
reason for this is not clear yet.

Phylogenomic and functional genomic
analysis

Genomes of seven stains were de novo sequenced and
assembled. Quality check of the assemblies revealed high
completeness (99–100%) and low contamination (0-1.87%)
levels what makes them suitable for both phylogenomic and
functional analyses (Supplementary Table 2). Genome sizes
varied from 2.81 to 5.59 Mbp while the G + C contents for
different genomes were 59.2–66%.

Phylogenomic analysis showed that the novel
polysaccharidolytic strains are uniformly dispersed within
the Halobacteria tree (Figure 3). Strain AArc-St1-1 belonged
to the genus Natranaeroarchaeum and is recently described
as a new species N. aerophilus (Sorokin et al., 2022b), while
strain AArc-St2 is described as a novel genus and species
Natronocalculus amylovorans (Sorokin et al., 2022a). Strain
HArc-gm2 was most closely related to the members of the genus
Halosiccatus. The neutrophilic curdlan-utilizing haloarchaea
strains HArc-curdl5-1 and HArc-curdl7 are most closely related
to the genus Halapricum. The nearest relatives of AArc-dxtr1
are among the Halostagnicola species, while AArc-xg1-1,
AArc-m2/3/4 and AArc-cudrl1 are related to the cellulolytic
Natronobiforma. Establishing the exact taxonomic rank (novel
species or genus) of these novel haloa(natrono)archaea will
need a more in-depth phenotypic and chemotaxonomical
characterization.

Polysaccharide-utilizing haloarchaea must have a set of
carbohydrate active enzymes (CAZymes), as a prerequisite for
successful decomposition of insoluble and soluble poly- and
oligosaccharides. Indeed, the sequenced genomes encoded all
types of the CAZymes: glycosidases (GH), polysaccharide lyases
(PL), glycosyl transferases (GT), carbohydrate esterases (CE),
carbohydrate oxidases (AA) as well as carbohydrate-binding
modules (CBM). The detailed analysis was focused on GHs and
PLs (Figure 4; Supplementary Table 3) due to their major role
in polysaccharide depolymerization.

Closely related neutrophilic strains HArc-curld5-1 and
HArc-curdl7 enriched on curdlan had identical CAZyme
repertoires. Their capability to degrade curdlan as well as
pachyman and laminarin is due to the action of endo-
beta-1,3(4)-glucanase (GH81), beta-1,3-glucan phosphorylase
(GH161) and beta-glucosidase (GH3). Both strains also grew
on starch by means of fourteen alpha-amylases (GH13), three
oligo-1,6-glucosidases (GH13), two glucoamylases (GH15), and
a 4-alphaglucanotransferase encoded in their genomes. The
genome of alkaliphilic strain AArc-curld1 also isolated on
curdlan had a smaller set of genes for respective enzymes
yet it included an essential endo-beta-1,3(4)-glucanase (GH81)
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FIGURE 2

Schematic representation of selective enrichments of natronoarchaea from hypersaline soda lakes on (A) alpha-bonded and (B) beta-bonded
polysaccharides. Assignment to the novel genus was based on protein sequence-based phylogenomic analysis and 16S rRNA gene sequence
identity values (for strain AArc-arb3/5 only 16S rRNA gene sequence identity values were used).

and a beta-glucosidase (GH3). A neopullulanase (GH13), three
alpha-amylases (GH13), a 4-alphaglucanotransferase (GH77),
and two glucoamylases (GH15) apparently allowed the strain to
utilize soluble starch.

The neutrophilic strain HArcl-gm2 isolated on
glucomannan has a machinery for its decomposition including
endo-beta-1,4-mannosidase (GH5), several endoglucanases
(four from the GH5 and one from the GH9 families), two
beta-mannosidases (GH2) and a beta-glucosidase (GH3). The

strain also can utilize laminarin and beta-glucan due to the
presence of the endo-beta-1,3(4)-glucanase (GH81); xylan and
arabinoxylan by means of endoxylanases (seven enzymes from
GH10 and three from GH11), beta-xylosidases (GH3), and
arabinosidases (GH43 and GH51) responsible for hydrolysis of
side chains of arabinoxylan.

Comparative genomic analysis of closely related
natronarchaeal strains AArc-xg1-1 (isolated on xyloglucan)
and AArc-m2/3/4 (isolated on beta-1,4-mannan) showed
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FIGURE 3

Maximum likelihood phylogenomic tree showing position of polysaccharide-utilizing halo(natrono)archaea enriched from hypersaline lakes
within the class Halobacteria. Sequences of 122 conserved archaeal proteins were used to infer the tree.
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FIGURE 4

Sets of GH and PL genes found in the genomes of novel polysaccharidolytic haloarchaea. Size of bubbles indicate number of enzymes; the color
of bubbles indicate the prevailing type of glycosidic bonds hydrolyzed by the enzymes (alpha-bonds—green, beta-bonds—blue, both—gray).
Color of background indicates these CAZymes families contains the characterized enzyme(s) capable of depolymerization of respective
polysaccharides. No color means the activities, characteristic to these families are not directly linked to the substrates used in this work.

a nearly identical and the largest CAZyme sets among
the studied haloarchaea. In particular, the genes encoding
several endo-beta-1,4-mannosidases (five enzymes from GH5
family and one from GH26), two beta-mannosidases (GH2),

endoglucanases (10 proteins from GH5 and one enzyme from
GH9), three beta-glucosidases (GH3 family), endo-beta-1,4-
xylanases (5 enzymes from GH10 and two enzymes from
GH11), beta-xylosidase (GH3) were found. Moreover, the
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genes of enzymes known to degrade galacturonate-containing
polymers (polygalacturonate, pectin, rhamnogalacturonan)
were also detected: three polygalacturonases (GH28), putative
pectate lyases (four proteins from PL1 family and four from
PL22), two rhamnogalacturonan lyases (PL11, PL26) as
well as arabinan-hydrolyzing enzymes (six proteins from
GH43, three GH51 enzymes and one enzyme from GH93).
However, none of these isolates grew with either pectins,
polygalacturonate, rhamnogalacturonan, or arabinan. This
example clearly demonstrates that functional conclusions
based solely on the genomic evidence should be considered
only as preliminary.

The genome of the natronarchaeal amylolytic strain
AArc-St1-1 (Natranaeroarcheum aerophilus, Sorokin et al.,
2022a) contains a large number of genes coding for alpha-
bond degrading glycosidases, including ten alpha-amylases
(GH13 family), two oligo-1,6-glucosidases (GH13), 4-alpha-
glucanotransferase (GH77), glucoamylase (GH15), and
trehalase (GH37). Finally, two beta-fructosidases (GH32 and
GH68) were also found, apparently allowing the strain to grow
on levan. Also, two beta-1,3(4)-glucanases (GH16, GH81), beta-
glucosidase/beta-xylosidase (GH3), beta-mannosidase (GH2),
alpha-xylosidase (GH31), and several beta-galactosidases (GH2
and GH42 families) genes were present. Another amylolytic
strain AArc-St2 (Natronocalculus amylovorans) possessed
similar CAZymes set (alpha-glucan-specific enzymes from
GH13, GH15 and GH77 families as well beta-fructosidases)
but the number of alpha-amylases and oligo-1,6-glucosidases
was significantly lower (Sorokin et al., 2020a). Despite the
presence of genes for putative GH16 beta-glucanase and
PL1 pectate lyase, no growth was observed on their specific
substrates including beta-glucan, lichenan, curdlan, pachyman,
or pectin.

Only three GH genes and no PL genes were found
in the genome of dextran-utilizing natronoarchaeon AArc-
dxtr1: trehalase (GH15), endoglucanase (GH5), and beta-1,3(4)-
glucanase (GH81). The typical dextran-degrading enzymes from
GH13, GH49, GH66, or GH70 families a were not encoded
and it might be only speculated that dextran is hydrolyzed as
a result of side activity of a GH15 enzyme since this family is
known to contain glucodextranases (Mizuno et al., 2004). An
endoglucanase and a beta-1,3(4)-glucanase could be responsible
for hydrolysis of glucomannan and arabinoxylan which this
organism can also utilize.

Altogether, the repertoire of CAZymes within the in silico
proteomes of the nine polysacharidolytic halo/natronoarchaea
analyzed in this work (summarized on Figure 4) was mostly
consistent with their polysaccharide untilization spectrum. In
total, the number of CAZyme genes found in the studied
HArcel/AArcel strains greatly varied from 30 (strain AArc-St2)
to 160 (strain AArc-m2/3/4). Closely related strains isolated
with the same (HArc-curld5-1 and HArc-curdl7) or different
(AArc-xg1-1 and AArc-m2/3/4) substrates may have identical

or similar CAZymes gene sets indicating that a selection
substrate will not necessarily lead to isolation of a distinctive
phylogenetic lineage. At the same time, despite that the
phylogenetically distant strains enriched and isolated with the
same polysaccharide have different CAZymes sets, they all
had similar patterns of particular CAZymes responsible for
the hydrolysis of selective substrate. Surprisingly, the genomes
of several isolates including AArc-xg1-1, AArc-m2/3/4, AArc-
St2, and HArc-gm2 also contained polysaccharide lyases genes
which are nearly unknown within the Archaeal kingdom.
However, the growth experiments revealed that none of
those strains can grow on alginate, pectin, polygalacturonate
or rhamnogalacturonan indicating that these enzymes might
have an unknown activity in halophilic archaea. This is also
substantiated by the fact that all our attempts to enrich
pectin- or alginate-utilizing haloarchaea failed so far. Among
the possible reasons might be that these uronic acids-based
polysaccharides are hardly present in hypersaline habitats or
that hypersalinity changes the chemical properties and enzyme
accessibility of the polymers. On the other hand, the high
diversity of hydrolytic haloarchaea with the potential to utilize
various polysacchirides with different types of glycosidic bonds
indicate that such substrates might be available in hypersaline
habitats. One of the most probable source of these polymers
are external terrestrial plants growing in the area surrounding
hypersaline lakes.

Conclusion

The obtained results allow to significantly extend the
knowledge on polysaccharide-utilizing capabilities of
haloarchaea and archaea in general. Selective enrichment
approach leaded to recover the so called “best-fit” organisms
specialized on a narrow-specialized conversion of a particular
substrate. In case of polysaccharides, however, most of
the haloarchaeal isolates enriched with a certain substrate
were still able to utilize several other polymers. It was also
found that polymers with the alpha-1,4 or beta-1,4 linkage
backbones more often resulted in positive enrichments than
with other types of linkage, such as the alpha-1,6- or beta-1,3
bonding. Finally, no haloarchaea, growing on uronic acid-based
polysaccharides (pectin and alginate), commonly utilized by
bacteria, were isolated.

In the course of this work, the first haloarchaea able
to grow on such recalcitrant polysaccharides as dextran,
curdlan, xyloglucan, and beta-mannan were isolated. The
enlarged variety of polysaccharidolytic halo(natrono)archaea
recovered from hypersaline lakes with novel substrate utilization
specificities is offering a good opportunity for further studies
of their extremely halo(alkali)stable hydrolases, both in
fundamental enzymology research and prospective application.
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Extremophiles provide a one-of-a-kind source of enzymes with properties 

that allow them to endure the rigorous industrial conversion of lignocellulose 

biomass into fermentable sugars. However, the fact that most of these 

organisms fail to grow under typical culture conditions limits the accessibility 

to these enzymes. In this study, we  employed a functional metagenomics 

approach to identify carbohydrate-degrading enzymes from Ethiopian soda 

lakes, which are extreme environments harboring a high microbial diversity. 

Out of 21,000 clones screened for the five carbohydrate hydrolyzing 

enzymes, 408 clones were found positive. Cellulase and amylase, gave high 

hit ratio of 1:75 and 1:280, respectively. A total of 378 genes involved in the 

degradation of complex carbohydrates were identified by combining high-

throughput sequencing of 22 selected clones and bioinformatics analysis 

using a customized workflow. Around 41% of the annotated genes belonged 

to the Glycoside Hydrolases (GH). Multiple GHs were identified, indicating the 

potential to discover novel CAZymes useful for the enzymatic degradation of 

lignocellulose biomass from the Ethiopian soda Lakes. More than 73% of the 

annotated GH genes were linked to bacterial origins, with Halomonas as the 

most likely source. Biochemical characterization of the three enzymes from 

the selected clones (amylase, cellulase, and pectinase) showed that they are 

active in elevated temperatures, high pH, and high salt concentrations. These 

properties strongly indicate that the evaluated enzymes have the potential 

to be  used for applications in various industrial processes, particularly in 

biorefinery for lignocellulose biomass conversion.

KEYWORDS

extremophiles, glycoside hydrolases, lignocellulose biomass, halophiles, soda lakes, 
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Introduction

The most abundant bioresource on Earth, lignocellulosic 
biomass, has an annual global yield of up to 1.3 billion tons (Baruah 
et al., 2018; Zoghlami and Paës, 2019). Lignocellulosic biomass is 
mainly composed of polysaccharides (cellulose and hemicelluloses) 
and lignin (an aromatic polymer). Hydrolysis of the polysaccharide 
component of lignocellulosic biomass releases fermentable sugars 
(Anwar et al., 2014), which can produce renewable energy and 
chemicals (Abdel-Hamid et al., 2013). Such production can reduce 
dependence on fossil fuels, decrease greenhouse gas emissions, and 
mitigate climate change (Kabeyi and Olanrewaju, 2022).

Hydrolysis of lignocellulosic biomass can be done through 
acid or enzymatic hydrolysis. The acid hydrolysis effectively breaks 
down the polysaccharides into their monomeric sugars. However, 
it leads to the generation of inhibitors in subsequent fermentation 
(Oriez et al., 2019) and contributes to environmental pollution 
(Jönsson and Martín, 2016). Therefore, enzymatic hydrolysis, 
often carried out under relatively mild reaction conditions, offers 
an eco-friendly and efficient method for the hydrolysis of 
lignocellulosic biomass (Ellilä et  al., 2019). In practice, the 
complete breakdown of lignocellulosic polysaccharides to their 
monomeric components requires the synergistic action of multiple 
enzymes, known as Carbohydrate-Active enZymes (CAZymes)  
(Bredon et al., 2018; Liew et al., 2022).

Industrial processes for lignocellulosic biomass degradation 
has to operate at high temperatures to increase substrate 
accessibility. In addition, alkali pretreatment is used to enhance 
the internal surface area of hemicelluloses while removing acetyl 
groups and uronic acids (Baruah et al., 2018; Lu et al., 2021; Sun 
et al., 2021; Verma, 2021). Therefore, enzymes that have activity 
and stability in an alkaline pH range and/or at high temperatures 
have a potential for hydrolysis of lignocellulosic biomass 
(Ariaeenejad et al., 2020; Mamo, 2020). However, most known 
cellulases and hemicellulases are obtained from mesophilic 
organisms and have their optimum activity and stability around 
ambient temperature and in a neutral pH range (Collins et al., 
2005; Ben Hmad and Gargouri, 2017). To date, relatively few 
alkaline active and thermostable cellulases and hemicellulases 
have been reported (Shuddhodana et  al., 2018; Verma, 2021). 
Furthermore, a significant hurdle to the large-scale conversion of 
lignocellulose to biofuels is the scarcity of low-cost enzymes 
capable of effectively depolymerizing biomass (Kern et al., 2013). 
Thus, there is a high need to search for novel enzymes not only to 
enhance bioconversion but also to in order to make the process 
more environmentally friendly and cost-effective (Fongaro et al., 
2020; Verma and Satyanarayana, 2020; Verma, 2021). One of the 
best strategies to obtain such enzymes is to search for lignocellulose 
polysaccharide degrading enzymes from extreme environments 
such as soda lakes (Berini et al., 2017a; Cabrera and Blamey, 2018).

Soda lakes are unique poly-extreme environments, mainly 
characterized by high alkalinity and salinity (Schagerl, 2016) and 
harbor unique and diverse microbial communities (Lanzén et al., 
2013; Sorokin et al., 2015; Grant and Jones, 2016). These microbial 

communities from soda lakes provide a one-of-a-kind source of 
enzymes (Antony et al., 2013) with properties that allow them to 
endure the rigorous industrial conversion of lignocellulose 
biomass into fermentable sugars. Cellulases, hemicellulases, and 
other carbohydrate polymer degrading enzymes produced by 
microorganisms from these habitats are expected to be active and 
stable under extreme conditions prevalent in the soda lakes.

Although most of the known industrial enzymes are obtained 
from microorganisms through pure culture isolation and screening 
(Martin and Vandenbol, 2016), recent estimates show that more than 
99% of microorganisms in the environment are uncultivable through 
conventional microbiological methods (Berini et al., 2017a). Thus, 
in recent years the advent of metagenomics has provided a powerful 
tool to access the genetic and metabolic diversity of microorganisms 
in any environment, bypassing the limitations of the current culture-
dependent approaches (Berini et al., 2017a; Ngara and Zhang, 2018; 
Pabbathi et al., 2021). Functional metagenomics is a method that 
clones the environmental DNA into a suitable vector to create a 
library and which is then transformed into a host, such as E. coli. This 
library is then screened for various enzymatic activities (Simon and 
Daniel, 2011; Coughlan et al., 2015; Lam et al., 2015; Sysoev et al., 
2021). Through functional metagenomics, novel biocatalysts, 
including lipases (Privé et al., 2015), cellulases (Voget et al., 2006), 
amylases (Vester et al., 2015), and chitinases (Berini et al., 2017b) 
have been discovered.

Whereas CAZymes from ruminants (Wang et al., 2013, 2019; 
Shen et al., 2020), lignocellulosic biomass wastes (Montella et al., 
2017), and soil (López-Mondéjar et al., 2020), have already been 
thoroughly explored, investigations of CAZymes produced by 
microbial communities of soda lakes remain scarce. Thus, the 
main objective of this study was to search for CAZymes from the 
Ethiopian Rift Valley soda lakes using functional metagenomics.

Materials and methods

Sampling site and sample collection

Water and sediment samples were collected from three soda 
lakes in the East African Rift Valley: Lakes Abijata (7°37′0″N, 
38°36′0″E), Chitu (7°24′14″N, 38°25′15″E), and Shala (7°25′29″N, 
38°36′57″E), using sterile Niskin bottles (Ocean Scientific 
International Ltd., Hampshire, United Kingdom) and polyethylene 
bags, respectively. The water samples were filtered within 24 h of 
sample collection, using a polycarbonate filter membrane (0.22 μm 
pore size, 47 mm diameter; GE, IL, United States) to harvest the 
biomass for metagenomic DNA extraction.

Isolation of high molecular weight DNA

Metagenomic DNA was extracted from water and sediment 
samples according to Øvreås et  al. (2003) and Verma and 
Satyanarayana (2011), respectively, with some modifications 
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described below. Briefly, about 250 μl solution of 1 mg/ml 
Lysozyme and 0.5 mg/ml RNase (Thermo Scientific, 
Massachusetts, United  States) was added to the microbial 
biomass on the polycarbonate filter membrane and incubated 
for 15 min at 37°C. The filter was then treated with 10 μl of 
1 mg/ml Proteinase K (Thermo Scientific, Massachusetts, 
United States) and incubated for 15 min at 37°C. Afterwards, 
250 μl of pre-heated 10% sodium dodecyl sulfate (SDS; w/v) was 
added and incubated for 15 min at 55°C. About 80 μl of 5 M 
NaCl and 100 μl of 1% cetyltrimethylammonium bromide 
(CTAB; w/v) were added and incubated for 10 min at 65°C; 
followed by the addition of 750 μl chloroform/isoamyl alcohol 
(24:1). The mixture was centrifuged at 12,000 × g for 15 min, and 
then a 0.6 volume of isopropanol was added to precipitate the 
aqueous layer. Finally, the mixture was centrifuged at 12000 g 
for 15 min, and the pellet was washed with 70% (v/v) ethanol, 
dried at room temperature, and dissolved in 10 mM TE buffer 
(pH 8.0). To extract DNA from sediment samples, about 10 g of 
sediment was suspended in 13.5 ml of extraction buffer 
(1%CTAB, w/v), 100 mM Tris (pH 8.0), 100 mM NaH2PO4 (pH 
8.00), 100 mM EDTA, 1.5 M NaCl). Then, 50 μl of 10 mg/ml 
proteinase K (Thermo Scientific, Massachusetts, United States) 
was added, and the mixture was incubated at 37°C for 30 min. 
After that, 1.5 ml of 20% SDS was added and incubated for 2 h 
at 65°C. The samples were centrifuged at 4,000 × g for 20 min at 
room temperature to separate the sediment remnants from the 
cell lysates. The cell lysates were mixed with an equal proportion 
of phenol, chloroform, and isoamyl alcohol (25:24:1) and were 
centrifuged at 16,000 × g for 5 min. Then, the DNA in the 
aqueous layer was precipitated by adding 0.6 volumes of 
isopropanol and recovered by centrifuging at 16,000 × g for 
10 min. Finally, the pellet was washed with 70% (v/v) ethanol, 
dried by air, and dissolved in 10 mM TE buffer (pH 8.0). The 
quantification and quality control of extracted DNA were 
performed using a Nanodrop (Thermo Scientific, Massachusetts, 
United States) and gel electrophoresis with 0.8% agarose gel 
(Thermo Scientific, Massachusetts, United States).

Construction of the metagenomic library

The metagenomic libraries were constructed by the 
CopyControl™ Fosmid Library Production Kit (Epicentre, 
Madison, United States) according to the manufacturer’s protocol. 
Briefly, the high molecular weight metagenomic DNA was sheared 
to the appropriate size by passing it through a 200-μl small-bore 
pipette tip a few times and then end-repaired using the 
CopyControl blunt-end repair kit (Epicentre, Madison, 
United  States). The end-repaired DNA was loaded onto a 1% 
low-melting-point agarose gel for 16–20 h at 35 voltage in 1× TAE 
buffer. The DNA fragments that were run parallel to the 40 kb 
Fosmid control DNA were excised from the gel without UV light. 
The DNA from the excised gel was recovered using the GELase 
protocol (Epicentre, Madison, United  States), followed by a 

conventional phenol:chloroform:isoamyl alcohol (24:24:1) 
extraction to remove the enzymes, and the DNA was precipitated 
using isopropanol. The resultant DNA pellet was resuspended in 
10 mM TE (pH 8.0), and the yield and size of the DNA were 
validated by running an aliquot down the gel. The end-repaired 
DNA was ligated to the CopyControl pCC1FOS (Epicentre, 
Madison, United States) vector at a 10:1 vector-to-insert DNA 
ratio. The ligated DNA was then packaged into the MaxPlax 
lambda phage heads (Epicentre, Madison, United  States). The 
lambda phage packaged DNA was then infected into E. coli cells 
(EPI100-T1R Plating Strain, Epicentre, Madison, United States), 
mixed 2–3 times by inverting the tubes and incubated for 30 min 
at room temperature. The infected cells were then plated on 
prewarmed Luria-Bertani (LB) agar plates (supplemented with 
12.5 μg/ml Chloramphenicol) and incubated at 37°C for 16–20 h. 
After the quality control, single colonies were manually transferred 
to individual wells on a 384-well microtiter plate (Thermofisher, 
Madison, United States) with 60 μl LB medium supplemented with 
12.5 μg/ml chloramphenicol and 20% glycerol. The library was 
duplicated from each master plate and kept at –80°C for 
further screening.

Functional screening of specific genes in 
the fosmid library

The library was replicated to LB agar plates supplemented 
with soluble starch (1%; Sigma-Aldrich, Missouri, United States), 
carboxyl methylcellulose (1%; CMC, Sigma-Aldrich, Missouri, 
United  States), pectin (1%; Sigma-Aldrich, Missouri, 
United  States), and xylan (1%; Sigma-Aldrich, Missouri, 
United States), to detect amylase, cellulase, pectinase, and xylanase 
activities, respectively. Whereas to detect β-glucosidase activity, 
LB agar plates were supplemented with esculin hydrate (0.1%; 
Sigma-Aldrich, Missouri, United States) and ferric ammonium 
citrate (0.25%; Sigma-Aldrich, Missouri, United  States). In 
addition, LB agar plates were supplemented with chloramphenicol 
(12.5 μg/ml) and Autoinduction solution (0.2%; Epicentre, 
Madison, United States). Then, the plates were incubated at 37°C 
for 2–7 days. For the identification of cellulase and xylanase-
positive clones, the method proposed by Teather and Wood (1982) 
was used, where the colonies were washed off the agar plates with 
ddH2O to permit a homogeneous penetration of the staining dye 
into the medium. Thereafter, the agar plates were stained with 
0.2% Congo red solution for 30 min. After the solution was poured 
off, the agar plates were de-stained up to 3 times for 30 min with 
1 M NaCl. Positive clones were detected by forming a yellow halo 
against a red background. The β-glucosidase activity was detected 
according to Eberhart et  al. (1964) method, where clones 
exhibiting a black halo around their colonies were selected as 
positive for β-glucosidase activities. Amylase activity was detected 
by staining the plates with KI/I2 solution. A colorless halo 
surrounded positive colonies on a dark purple background 
(Sharma et al., 2010).
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Fosmid DNA extraction and sequencing

A total of 22 fosmid clones with positive enzyme activities were 
selected, cultured and induced to a high copy number using the 
500 × Copy Control Fosmid Autoinduction Solution (Epicentre, 
Madison, United States) at 37°C overnight (16–20 h) with 12.5 μg/ml 
chloramphenicol and vigorous shaking (225–250 rpm). Fosmid 
DNA was extracted using a GenElute Plasmid Miniprep Kit (Sigma-
Aldrich, Missouri, United States) according to the manufacturer’s 
protocol. The quality of extracted DNA was checked using a 
Nanodrop and sent to BGI Genomics for whole-genome sequencing. 
The E. coli whole genome resequencing was performed using the 
paired-end 150 bp method using the DNBSEQ™ platform.

Bioinformatics analysis

De-novo assembly
An in-house workflow was developed to analyze the whole 

genome sequences of the fosmids.1 Briefly, whole genome 
sequencing (WGS) raw reads Quality Check (QC) was performed 
with the FastQC tool (Andrews, 2010), and multiple samples 
were processed with MultiQC (Ewels et al., 2016). All reads from 
independent 22 fosmid clones were mapped to the E. coli 
reference genome (EPI100-T1R Plating Strain, Epicenter 
Biotechnologies) using Bowtie2 (Langmead and Salzberg, 2013) 
and reads were sorted with SAMtools (Danecek et  al., 2021). 
Reads that did not map to the E. coli genome were further used 
for de-novo assembly with SPAdes v3.15.3 and metaplasmidspades 
(Bankevich et al., 2012). Further, the CopyControl pCC1FOS 
(Epicenter Biotechnologies) vector backbone sequences were 
removed from the assembled contigs. NCBI-Blast-v2.9.0+ and 
Bedtools-v2.27.1 were used for processing assemblies.

Gene prediction, taxonomy, and functional 
annotation

Functional annotation of the assembled fosmid contigs were 
performed using RASTtk (Brettin et al., 2015) webserver, and 
cross-validation of predicted coding DNA sequence (CDS) using 
TransDecoder-v5.5.0.2 Then, carbohydrate-active enzymes 
(Cantarel et al., 2009) annotation was conducted using hmmscan 
(Version 3.3 b2) against CAZy database (version 2021). Kraken2 
(version 2.0.8) (Wood et al., 2019) was applied for taxonomic 
sequence classification using the Minikraken2_v1_8GB database. 
Finally, KronaTools v2.7.1 (Ondov et  al., 2011) was used to 
visualize taxonomies.

Preparation of cell culture for enzymatic assay
Among the enzymes screened, amylase, cellulase, and 

pectinase were selected based on their potential application in 

1 https://github.com/gvarmaslu/WGS-fosmid-project

2 http://transdecoder.github.io

complex carbohydrate degradation and their enzymatic activity 
studied. These positive clones were preliminarily assessed based 
on their clearing zone diameter, and the top four clones in each 
enzyme were chosen for further characterization. Positive clones 
(pectinase, cellulase, and amylase) were inoculated in LB media 
(50 ml) containing chloramphenicol (12.5 μg/ml) and 
Autoinduction solution (0.2%), supplemented with 1% of their 
respective substrates (Pectin/carboxyl methylcellulose/soluble 
starch). Then, the inoculated media were incubated at 37°C, 
200 rpm for 3–5 days, and after incubation, centrifuged at 5,000 × g 
and 4°C for 30 min. The supernatant (crude cell-free extract) was 
used as a crude enzyme cti fraction for further analysis.

Enzyme assays

Enzyme activity was measured following the dinitrosalicylic 
acid (DNS) method (Miller, 1959). The standard assay mixture 
contains 100 μl of the enzyme or crude cell-free extract and 
250 μl of the substrate (1% in a final volume of 0.5 ml), and 
150 μl McIlvaine buffer. Carboxymethyl cellulose (CMC), 
pectin, and soluble starch were used as substrates for cellulase, 
pectinase, and amylase, respectively. The mixture was incubated 
at 37°C for 15 min, then 750 μl DNS reagent was added, and the 
samples were boiled at 100°C for 15 min. After cooling down on 
the ice, the samples were centrifuged at 16,000 × g for 2 min to 
precipitate falling proteins. The samples were transferred to 
cuvettes, and absorbance was measured at 540 nm (Thermo 
Scientific). The pH range of the enzyme was determined by 
measuring standard assay activity between pH 7.0 and 10.5 
using 50 mM of appropriate buffers. The temperature range of 
the enzyme activity was determined by assaying at temperatures 
between 30 and 75°C. The effect of salt on enzyme activities was 
investigated by incorporating 0-3M of NaCl into the 
reaction mixture.

Results

Construction and functional screening of 
metagenomic libraries

Metagenomic libraries with more than 21,000 clones were 
generated from three Ethiopian soda lakes (Table 1). At the time 
of sampling, the salinity of the lakes ranged from 3% (Lake 
Shala) to 15% (Lake Abijata) and pH from 9.3 (Lake Shala) to 
10.0 (Lake Chitu). The number of clones picked from each 
sample site ranges from 1,440 (Lake Abijata) to 10,368 (Lake 
Shala; Table 1).

Among all the clones screened (> 21,000) for the five 
hydrolytic enzymes, a total of 408 clones were positive for at least 
one of the hydrolytic enzymes tested (Figure 1). A relatively high 
number of clones (281 clones, 1.33% hit ratio) were positive for 
cellulase, followed by amylase (75 clones, 0.36% hit ratio), 
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β-glucosidase (20 clones, 0.1% hit ratio), pectinase (15 clones, 
0.07% hit ratio) and 12 positives for xylanase (12 clones, 0.06% hit 
ratio; Table 2).

Analysis of fosmid insert sequences and 
detection of carbohydrate-active 
enzymes

A total of 22 clones that were positive for the enzymes 
mentioned above were selected and subjected to sequencing. After 
bioinformatics sequence analysis and assembly, the insert sizes 
were between 30,230 and 44,461 base pairs. Each library contained 
clones with average size inserts of approximately 35 kb, yielding 

approximately 0.74 GB of the total cloned genomic DNA per 
library. A total of 1,233 open reading frames (ORFs) were 
predicted from the fosmid clones (Table  3). Then, the 
carbohydrate-active enzyme (CAZy) database was used to 
annotate the predicted ORFs, resulting in 378 encoding genes 
with potential functions predicted (Supplementary Table 1). All 
the detected genes coding for CAZymes were further assigned to 
six functional classes: 10 Auxiliary Activities (AAs), 61 
Carbohydrate-Binding Modules (CBMs), 24 Carbohydrate 
Esterases (CEs), 156 Glycoside Hydrolases (GHs), 118 Glycosyl 
transferases (GTs), and 9 Polysaccharide Lysases (PLs; Table 3).

Glycoside hydrolase enzymes

GHs were the most abundant class, representing 40% of the 
identified carbohydrate-degrading enzymes (Table  4; 
Supplementary Table 1). These GHs were categorized into 38 GH 
families. The most abundant GH families were GH2, GH3, GH5, 
GH12, GH13, and GH28. About 10% of the GH families belonged 
to the GH3 family, which encodes β-glucosidase (EC 3.2.1.21), 
and N-acetyl-β-D-glucosaminidases (EC 3.2.1.30). The GH5 
family representing Cellulase (EC 3.2.1.4) were the second most 
abundant GH family, representing 8% of the total families. About 
5% of the GH families were found to belong to the GH28, a family 

TABLE 1 Physical parameters of the studied soda lakes of Ethiopia 
with the number of metagenomics libraries constructed.

Sample site pH Salinity (%) Number of 
clones

Abijata 9.5 15 1,440

Chitu 10 6 9,216

Shala 9.3 3 10,368

Total 21,024

A B

D E

C

FIGURE 1

Functional screening of the metagenomics library constructed from Ethiopian soda lakes showing positive for (A) Amylase, (B) β-glucosidase, 
(C) Cellulase,  (D) Pectinase,  (E) Xylanase.
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that contains pectinase polygalacturonase enzymes. Starch 
degrading enzymes such as alpha-amylases (GH13) were also 
abundant (4%; Figure 2).

Tracking the microbial sources of the 
annotated GH genes

The microbial source of the annotated GH genes were 
predicted, and more than 73% of the genes aligned to bacterial 
sources. However, there were no organism hits for about 27% of 
the annotated GH genes. Most of the bacterial genes at the class 
level belonged to the Gammaproteobacterial and at the genera 
level to Halomonas (Supplementary Figure 1).

Expression and characterization of 
selected enzymes

Cellulase
Further studies on the effect of pH, temperature, and salt 

concentration on the cellulase activities of the selected clones (F8, 
F9, F17, and F22) showed that the clone F8 had its optimum 
cellulase activity at pH 9.5, whereas clones F17 and F9 showed the 
optimum activity at pH 8.5 (Figure 3A). All clones showed their 
optimum cellulase activity at 37°C (Figure 3B). The optimum 
cellulase activities for all clones were at 0M NaCl, while the clone 
F17 maintained 75% of the cellulase activity up to 3 M salt 
concentration (Figure 3C).

Amylase
Studies on the effect of pH, temperature and salinity on the 

amylase activity of four screened fosmid clones (F13, F15, F17, 
and F22) showed that all four clones, except for F22, had the 
maximum amylase activity at pH 8.5 (Figure 4A), and that the 
clones F17, F13, and F15 showed the optimum amylase activity at 
55, 50, and 45°C, respectively (Figure 4B). Furthermore, these 
amylase-positive clones showed increasing relative amylase 
activity with increased salinity (Figure 4C).

TABLE 2 Hit ratios of the screened hydrolytic enzymes.

Enzyme Hit ratio

Amylase 1:280

B-glucosidase 1:1051

Cellulase 1: 75

Pectinase 1:1402

Xylanase 1: 1752

TABLE 3 The DNA Insert size of each fosmid in base pairs, the number of ORFs, and detected CAZyme classes.

Fosmid 
clones

Contig 
size (bp) GC (%) ORFs AAs CBMs CEs GHs GTs PL Total 

CAZYmes

F1 39,939 59.81 77 0 0 5 5 0 0 10

F2 33,919 44.52 34 0 0 0 10 17 0 28

F3 30,230 53.28 34 0 1 0 0 0 0 1

F4 43,585 63.87 75 0 1 1 2 5 0 9

F6 31,316 52.00 36 2 15 4 27 11 1 60

F8 36,493 47.93 39 0 3 1 11 9 1 25

F9 36,313 57.36 67 1 2 1 7 4 2 17

F10 44,461 64.38 79 0 1 1 5 2 0 10

F11 31,461 64.19 72 0 0 0 1 0 0 1

F13 37,445 65.37 83 0 2 1 6 4 0 13

F14 36,784 60.12 68 0 1 2 5 6 0 14

F15 42,189 65.68 87 1 2 0 4 6 3 16

F16 33,691 49.63 39 0 1 1 4 1 0 7

F17 35,026 58.60 58 0 5 2 7 4 0 18

F18 35,903 56.98 68 0 3 0 8 4 1 16

F19 35,357 51.12 44 0 0 1 9 7 0 17

F20 31,419 65.25 72 0 3 0 3 7 0 13

F21 33,565 49.65 39 0 1 1 4 7 0 13

F22 35,225 52.03 40 1 3 4 14 6 0 28

F23 36,297 47.81 28 1 15 1 18 6 1 42

F24 38,076 53.27 40 0 0 0 3 9 0 16

F25 30,893 52.05 54 0 0 1 2 2 0 5

Total 1,233 10 61 27 156 117 9 378

ORFs, open reading frames; AAs, auxiliary activities; CBMs, carbohydrate-binding modules; CEs, carbohydrate esterases; GHs, glycoside hydrolases; GTs, Glycosyl transferases; PLs, 
polysaccharide lyases
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Pectinase
Studies on the pectinase activity of four fosmid clones (F2, 

F6, F18, and F23) showed that the clones F18 and F23 had their 
optimum pectinase activity at pH 9.5 (Figure 5A) and that all four 
clones had optimum pectinase activity at 65°C (Figure  5B). 
When different salt concentrations were added, clone F18 showed 
enhanced pectinase activity, while others retained more than 75% 
of the pectinase activity up to 3M salt concentrations (Figure 5C).

Discussion

Despite the potential of soda lakes as sources of unique 
extremozymes, only a few enzymes have so far been identified 

from these ecosystems. Previously, carbohydrate-degrading 
enzymes, i.e., xylanase (Gessesse and Mamo, 1998), amylases 
(Martins et al., 2001), and cellulase (Minig et al., 2009), have been 
discovered from Ethiopian soda lakes. However, these studies have 
been based on conventional culture-dependent approaches, in 
which most microorganisms are unable to grow, thereby limiting 
the identification of novel enzymes (Culligan et al., 2014). In this 
study of the Ethiopian soda lakes, we  used a functional 
metagenomics approach to discover carbohydrate-degrading 
enzymes (CAZymes) to circumvent this limitation.

The DNA extracted from the Ethiopian soda lakes was used 
to construct metagenomic libraries, which generated clones that 
produced carbohydrate-degrading enzymes. The hit ratios 
obtained for the hydrolytic enzymes, especially cellulase and 
amylase, were high (1:75 and 1:280, respectively) compared to 
many previous reports in other environments (Ferrer et al., 2012; 
Nguyen et  al., 2012; Liu et  al., 2015; Wang et  al., 2015; 
Maruthamuthu et al., 2016). The functional screening approach 
has previously been reported to be  superior in finding genes 
producing functional products, which increases the potential to 
uncover entirely new classes of enzymes that lack homologies to 
previously identified sequences (Culligan et al., 2014; Berini et al., 
2017a). The high hit ratios of this study might largely be attributed 
to the source of the metagenome, i.e., the abundance and diversity 
of microorganisms producing the different carbohydrate-
degrading enzymes in the Ethiopian soda lakes. The Ethiopian 
soda lakes are characterized by high primary production due to 
the presence of a dense population of haloalkaliphilic 
cyanobacteria (Wood et  al., 1984; Grant and Sorokin, 2011), 
which in turn support a diverse group of heterotrophic 
prokaryotes (Lanzén et al., 2013; Grant and Jones, 2016). Since 
some of the heterotrophic microorganisms are involved in 
nutrient recycling released by dead cells, many of them are 
expected to produce different hydrolytic enzymes, including those 
involved in the hydrolysis of complex carbohydrates, such as 
cellulose, hemicellulose, pectin and starch (Jones and Grant, 1999; 
Sorokin and Kuenen, 2005; Sorokin et al., 2014). The presence of 
a diverse group of heterotrophs producing the above enzymes 
might, in turn, lead to an observed high hit ratio.

The complete breakdown of lignocellulosic polymers requires 
the synergistic action of multiple CAZymes (Bredon et al., 2018; 
Liew et  al., 2022), i.e., mainly consisting of the Glycoside 
Hydrolases (GHs) families such as cellulase, xylanase, 
hemicellulase, and pectinase (Rastogi and Shrivastava, 2020; 
Shrivastava, 2020). About 41% of the CAZymes database 
annotated genes obtained from the Ethiopian soda lakes have been 
shown to belong to GHs. GHs are the best-described families of 
carbohydrate-degrading enzymes due to their high prevalence and 
broad distribution across genomes (Berlemont and Martiny, 2015; 
Stewart et al., 2018; Wang et al., 2019). Microorganisms in soda 
lakes degrade complex polysaccharides, releasing short 
metabolizable oligosaccharides into the lake environment. 
Detecting multiple GH enzymes, including GH5, GH3, GH13, 
GH43, and GH28, indicates the relevance of these enzymes to the 
ecosystems of the soda lakes and their carbon cycle. The short 

TABLE 4 Carbohydrate degrading enzymes detected in the fosmid 
clones (the complete list in Supplementary Table).

GH 
family Fosmid Hit 

accession
Identity 

(%)
Predicted 
enzyme

GH3 F17 ATH78710.1 96.8 β-glucosidase

GH103 F24 AVI63997.1 86.4 Peptidoglycan lytic 

transglycosylaseF11 AXY42412.1 85.5

GH13 F15 AHO18837.1 69.0 α-amylase

GH73 F19 AZU02762.1 51.9 Lysozyme

GH47 F13 CBX90714.1 47.8 α-mannosidase

GH2 F15 ACR62057.1 47.5 β-galactosidase

GH3 F9 SQK97389.1 46.3 β-glucosidase

GH13 F13 QTJ41571.1 46.0 α-amylase

GH78 4F4 ACT97502.1 43.0 α-L-rhamnosidase

GH43 F14 BBI53471.1 42.0 β-xylosidase

GH3 F22 SQK97389.1 40.7 β-glucosidase

F6 SQK97389.1 40.5

GH5 F8 QXC62151.1 40.4 Cellulase

GH38 F1 QJS43890.1 40.1 α-mannosidase

GH140 F22 QJW98933.1 39.6 β-1,2-apiosidase

F6

GH53

GH53

F22 QKX57828.1 39.5 Endo-β-1,4-

galactanaseF6

GH55 F25 ATI54262.1 39.4 Exo-β-1,3-glucanase

GH5 F25 QXC62151.1 39.4 Cellulase

GH103 F20 BCX45957.1 38.1 Peptidoglycan lytic 

transglycosylase

GH92 F17 AGB27560.1 38.1 α-1,2-mannosidase

GH51 F17 QKX56076.1 37.9 Endoglucanase

GH5 F10 QXC62151.1 37.6 Cellulase

GH51 F19 QKX56076.1 37.4 Endoglucanase

GH55 F14 AOW25396.1 36.7 Exo-β-1,3-glucanase

GH5 F23 QXC62151.1 36.0 Cellulase

GH99 F13 CAZ29389.1 36.0 α-1,2-mannosidase

GH3 F10 SQK97389.1 35.8 β-glucosidase

GH37 F19 AWO98658.1 35.4 α-trehalase

GH5 F9 QXC62151.1 35.4 Cellulase

GH23 F9 APT58734.1 35.4 Lysozyme

GH51 F8 QKX56076.1 35.0 Endoglucanase

EC, Enzyme commission number.
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metabolizable oligosaccharides produced are fed into the core 
carbohydrate metabolic pathways, providing energy and precursor 
metabolites for other pathways (Salam, 2018).

Among the components of lignocellulosic biomass, cellulose 
is the most prevalent biopolymer on the planet (Lakhundi et al., 
2015). In nature, microorganisms involved in nutrient recycling 
in the ecosystem, including soda lakes, enzymatically hydrolyze 
cellulose to its monomeric unit and use it as a nutrient for growth. 
Different cellulase enzymes are required to achieve complete 
hydrolysis of cellulose, the main ones being endoglucanases and 
β-glucosidases (Tiwari et al., 2016). In this study, about 10 and 8% 
of the GHs families belonged to GH3 and GH5, respectively. The 
GH3 and GH5 families possess β-glucosidase (EC 3.2.1.21) and 
endo-1,4-glucanase (EC 3.2.1.4) activities, respectively. The GH5 
enzymes are involved in the hydrolysis of cellulose into cellobiose 

(Wang et al., 2019), while GH3 enzymes break down cellobiose 
into glucose (Agirre et  al., 2016). Members of the GH5 
superfamily are extensively dispersed across archaea, bacteria, 
and eukaryotes, and various enzyme functions related to biomass 
conversion have been discovered in this superfamily 
(Mohammadi et  al., 2022). In cellulose biomass degradation, 
β-glucosidase (GH3) activity is regarded as the rate-limiting 
factor, reducing cellobiose inhibition on endoglucanases and 
permitting more effective cellulolytic enzyme action (Tiwari et al., 
2017; Zhang et al., 2017).

Among the hemicellulase enzymes, GH43 was the most 
abundant family in the present study. Previous studies have 
reported the enzyme activities of GH43 to be β-xylosidase (EC 
3.2.1.37), xylanase (EC 3.2.1.8) and exo-β-1,3-galactanase (EC 
3.2.1.145; (Shrivastava, 2020), which are enzymes contributing to 

FIGURE 2

Classification of the annotated GH families from the metagenomics libraries of Ethiopian soda lakes.
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the degradation of xylan (the main component of hemicellulose) 
to xylose monomers (Houfani et al., 2021). One major challenge 
in producing biofuels from lignocellulosic biomass by enzymatic 

hydrolysis is that hemicellulose and lignin create a protective 
barrier surrounding the cellulose. Furthermore, the crystalline 
form of cellulose renders it insoluble and resistant to enzyme 

A B

C

FIGURE 3

Cellulase Activity characterization of the clones for (A) pH, (B) Temperature, and (C) Salt concentration.

A B

C

FIGURE 4

Amylase Activity characterization of the clones for (A) pH, (B) Temperature, and (C) Salt concentration.
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degradation (Zoghlami and Paës, 2019; Reichart et  al., 2021). 
Thus, the removal of hemicellulose may result in increased access 
of cellulase to cellulose (Peng et al., 2015). Previous studies have 
shown that for hemicellulose degradation, the numerous GHs 
enzymes operating at various levels of the hemicellulolytic matrix 
are needed (Horn et al., 2012; Andlar et al., 2018). In this context, 
the breakdown of hemicelluloses by a monofunctional 
hemicellulase enzyme is uneconomical. However, the 
multifunctional hemicellulase activity of GH43 (primarily in the 
xylan component) can minimize enzyme costs and is essential for 
the complete hydrolysis of lignocellulosic biomass (Limsakul 
et al., 2021).

About 5% of GHs belonged to the family of GH28. The GH28 
families have been shown to encode polygalacturonase, which acts 
on the 1,4-glycosidic bond, and plays a crucial part in pectin 
digestion (Zhao et al., 2014). The architectural characteristics of 
cell walls, which have been represented as a cellulose-hemicellulose 
network embedded in a pectin matrix, imply that pectins may 
hide cellulose and/or hemicellulose, preventing degradative 
enzymes from attacking them (Xiao and Anderson, 2013). Thus, 
pectin degradation is needed for the complete degradation of 
lignocellulose biomass. A recent study has shown that some 
haloalkaliphile Bacteroidota and Clostridia from soda lakes utilize 
pectin as a substrate (Sorokin et al., 2014).

Furthermore, approximately 4% of the GHs in this 
investigation belonged to GH13, which encodes amylases. The 
Ethiopian soda lakes are known to have one of the highest primary 

productivity of any natural habitat due to the thick biomass of 
cyanobacteria (Faris, 2017), which frequently accumulate starch 
(10–50%) as part of their biomass (Möllers et al., 2014). Therefore, 
these heterotrophic microorganisms are known to produce 
abundant hydrolytic enzymes, such as amylases, to allow the 
breakdown of starch (Sorokin et al., 2014).

Soda lakes are a unique source of microorganisms that thrive 
in high alkalinity and salinity (Sorokin et  al., 2014). These 
microorganisms produce either haloalkaliphilic or haloalkali-
tolerant hydrolytic enzymes. The haloalkaliphilic enzymes usually 
show optimal activity in high alkaline and saline ranges. On the 
other hand, the haloalkali-tolerant enzymes may work best at a 
neutral pH and without salt. Still, these enzymes are active and 
stable in the high alkalinity and salinity range (DasSarma and 
DasSarma, 2015). The cellulases obtained in this study were active 
and stable in alkaline conditions, high temperatures and salt 
concentrations, indicating these enzymes are haloalkali-tolerant. 
This is contrary to the majority of reported cellulases, which 
demonstrated limited activity in these multi-extreme 
circumstances, such as in the presence of alkaline and salinity, and 
just a few alkalophilic and halotolerant cellulases have been 
identified (Zhao et al., 2012; Garg et al., 2016). The conversion of 
lignocellulosic biomass usually occurs at high temperatures in the 
presence of alkaline conditions (Zhu et al., 2020). The production 
of salts arises from the neutralization of these alkalines. These salts 
must be eliminated, which consumes tons of water and energy, for 
subsequent processes to continue. However, these extreme 

A B

C

FIGURE 5

Pectinase Activity characterization of the clones for (A) pH, (B) Temperature, and (C) Salt concentration.
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conditions affect the activity, and the stability of most known 
enzymes could be  seriously affected (Sweeney and Xu, 2012). 
Therefore, enzymes that are stable in these extreme reaction 
conditions and in the presence of salts or tolerant to them are in 
great demand during downstream processes. Thus, the halo- and 
alkali-stable cellulases and hemicellulases identified in this study 
have the potential to hydrolyze lignocellulosic biomass for 
different industrial applications efficiently. In addition, the 
halotolerant nature of these enzymes offers an additional 
advantage because of their resistance to inactivation by salt 
residues that may result from pretreatment procedures (Zhang 
et al., 2011).

Furthermore, the biochemical characterization of the studied 
pectinase also showed high performance under alkaline, 
thermophilic, and halophilic conditions. There are several reports 
on alkaline and thermostable pectinase enzymes from various 
geographic locations and sources, particularly from agro- and 
industrial-wastes (Khatri et al., 2015; Oumer and Abate, 2017; Yu 
et al., 2017; Thakur et al., 2021). Regarding soda lakes, only two 
occurrences of pectin breakdown have thus far been described, 
both of which describe unique species of the phylum Bacteroidota 
belonging to the genera Alkaliflexus and Natronoflexus (Sorokin 
et al., 2014). At the same time, these microorganisms are low-salt 
tolerant saccharolytic fermentative alkaliphiles capable of 
hydrolyzing pectin. Thus, the poly-extreme nature of the 
pectinases in this study would make them ideal candidates for 
various industrial applications, particularly biomass degradation, 
retting and degumming of plant fibers, coffee and tea fermentation, 
and bio-scouring of cotton, all of which require extremes of 
temperature, pH, and ionic strength.

Halotolerant α-amylases have received considerably less 
consideration. However, most are thermostable and generate 
oligosaccharides in low-water or nonaqueous solvents, where 
hydrolytic processes are blocked (Masasa et  al., 2022). This 
study’s amylases had optimum activity in the alkalinity range and 
at high temperatures. In addition, salinity enhanced the amylase 
activity of some clones, suggesting that these amylases are poly-
extremophilic. Previously, haloalkaliphilic amylases were 
reported from various environments (Chakraborty et al., 2011; 
Moshfegh et al., 2013), including soda lakes in Ethiopia (Martins 
et al., 2001); however, the vast majority of these studies were 
from bacterial origins. Polyextremophilic α-amylase are 
extremely useful for the textile, food, brewing, and distilling 
industries, as has been argued in previous publications (Patel and 
Saraf, 2015).

In this study, most of the GH genes identified were found to 
likely originate from bacteria belonging to the genus of 
Halomonas, which corresponds to Halomonas as one of the most 
abundant genera in our previous work on the microbial diversity 
of Ethiopian lakes using amplicon metagenomics (Jeilu et  al., 
2022). Halomonas have, in previous investigations, been reported 
to be  one of the most abundant prokaryotes in soda lakes 
(Humayoun et al., 2003; Dimitriu et al., 2008; Asao et al., 2011; 

Lanzén et  al., 2013; Sorokin et  al., 2014), responsible for the 
biogeochemical cycling and the immediate degradation of organic 
matter produced by autotrophic bacteria like cyanobacteria (Jones 
and Grant, 1999; Sorokin et al., 2014). Thus, we anticipate that 
Halomonas would generate a variety of hydrolytic enzymes, such 
as those necessary for the hydrolysis of complex polysaccharides, 
including cellulose, hemicellulose, pectin, and starch, which has 
also been indicated in a previous study (Tahrioui et al., 2013).

This study identified novel halo-alkaline and thermostable 
carbohydrate-degrading enzymes with potential applications in 
lignocellulosic biomass degradation. In order to use these enzymes 
in biofuel industrial applications, additional extensive molecular 
cloning, purification, and characterization studies are needed.

Conclusion

Enzymes from halophiles and alkaliphiles are the most 
promising for biofuel generation and other industrial processes 
due to their inherent salt tolerance and thermal and alkaline 
stability. Soda lakes, in this aspect, are a one-of-a-kind source of 
extremophiles capable of harboring enzymes (extremozymes) that 
are active at both high pH and salinity. However, there is a scare 
of reports on searching CAZymes using culture-independent 
approaches from soda lakes. The present study has revealed the 
potential of functional metagenomics for exploiting the abundant 
genetic resources in uncultured microorganisms from extreme 
environments. Moreover, this study identified multiple families of 
GHs, indicating that the Ethiopian soda lakes constitute a unique 
biological niche for identifying novel CAZymes for applications 
in complete lignocellulose biomass degradations. Furthermore, 
many reported GH enzymes originated from mesophilic 
microorganisms where optimal activity and stability were around 
neutral pH and in the absence of salt. However, the biochemical 
characterization of the amylase, pectinase, and cellulase enzymes 
in this work shows that these enzymes are halo-alkaline and 
thermally stable. These properties strongly indicate the enzymes’ 
potential for use in various industrial processes, particularly 
biorefinery for lignocellulose biomass conversion.
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Coping with salt stress-interaction
of halotolerant bacteria in crop
plants: A mini review
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Salinity is one of the major environmental abiotic stress factors that limit the growth
and yield of crop plants worldwide. It is crucial to understand the importance of
several adaptive mechanisms in plants toward salt stress so as to increase agricultural
productivity. Plant resilience toward salinity stress is improved by cohabiting with
diverse microorganisms, especially bacteria. In the last few decades, increasing
attention of researchers has focused on bacterial communities for promoting plant
growth and fitness. The biotechnological applications of salt-tolerant plant growth-
promoting rhizobacteria (PGPR) gained widespread interest for their numerous
metabolites. This review provides novel insights into the importance of halotolerant
(HT) bacteria associated with crop plants in enhancing plant tolerance toward salinity
stress. Furthermore, the present review highlights several challenges of using HT-
PGPR in the agricultural field and possible solutions to overcome those challenges
for sustainable agriculture development in the future.

KEYWORDS

salinity, halotolerant bacteria, crop plants, biotechnological applications, plant-microbe

interaction

1. Introduction

Plants, due to their sessile nature, experience several environmental (abiotic and biotic)

stresses during different developmental stages of their life cycle. The major abiotic stresses

are drought, heavy metals, salinity, temperature, and ultraviolet (UV) light. Salinity is one

of the extremely critical threats in the agricultural field, impacting one-fourth to one-third

of crop production worldwide (Kumar et al., 2022). According to the Food and Agricultural

Organization (FAO) report, over 424 million hectares (Mha) of topsoil (0–30 cm) (85% saline,

10% sodic, and 5% saline sodic) and 833 million hectares of subsoil (30–100 cm) (62% saline,

24% sodic, and 14% saline sodic) among 85% of the global land area are affected by salinity stress

(Food Agriculture Organizations of the United Nations, 2022).

Soil salinity occurs mainly due to poor agricultural practices (high salt content water used

for irrigation and fertilization) and the flow of saline water from the sea, rivers, etc., specifically

in arid and semiarid regions (Zhang et al., 2021). Moreover, scarcity of rainfall and an increase

in sea level due to climate change often cause the soil to become saline (Kumar et al., 2022).

As a result, it produces hyperionic and hyperosmotic stresses in plant cells that impact the

plant’s growth (Kalaji et al., 2011) (Figure 1). Due to high osmotic stress, the uptake and

transport of essential nutrients to a plant are affected highly (Farooq et al., 2015). Salinity

stress affects the physiological development of plants (causes stomatal closure and premature

senescence, reduces the rate of photosynthesis, and increases oxidative damage) (Mahawar and

Shekhawat, 2019) and soil microbiota adversely, thus critically affecting complete soil health

(Dubey et al., 2022) (Figure 1). However, plants must overcome salinity stress by modulating

various morphophysiological and molecular responses (Zhao et al., 2020), such as improving

the synthesis of phytohormones and osmoprotectants, upregulating antioxidant activities, and

maintaining sodium ion (Na+) homeostasis and compartmentalization (Arif et al., 2020).
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Another strategy to overcome salinity stress in plants is to

cohabit with diverse halotolerant (HT) microorganisms that enhance

growth, stress tolerance, and nutrient uptake in plants, thus

restoring the crop yield (Etesami and Beattie, 2018; Etesami and

Glick, 2020; Orhan, 2021). Halotolerant (HT) microorganisms that

interact with plants are (1) rhizosphere, (2) epiphytes, and (3)

endophytes (Andrews and Harris, 2000; Hardoim et al., 2015).

The rhizosphere region in plants serves as natural hotspots

(reservoirs) for various microorganisms, especially bacteria (Ling

et al., 2022). One among such bacteria pertains to plant growth-

promoting rhizobacteria (PGPR) that colonize the rhizosphere of

the plant species. Many studies have proven that salt-tolerant

plant growth-promoting rhizobacteria (PGPR) are supplied by

various mechanisms to plants (Mishra et al., 2021). The important

function of PGPR is to boost key physiological processes in

plants, including photosynthesis, source–sink relationships, mineral

and water uptake (Ilangumaran and Smith, 2017), fixation of

atmospheric nitrogen, prevention of phytopathogens, improvement

in the production of metabolites and phytohormones, such as

indole-3-acetic acid (IAA), gibberellic acid (GA3), and cytokinin,

solubilization of phosphate, and production of siderophores (Kumar

and Verma, 2018). However, numerous studies demonstrated that

different plant species colonize their own microbial communities

(Kuske et al., 2002). Isolation and identification of the specific

plant-based microorganism using microbiological and molecular

methods would promote research on the plant–microbe interactions.

In recent decades, the use of “omics” technologies, such as

transcriptomics, proteomics, and metabolomics, to study the

regulatory networks of halotolerant plant–bacteria interaction

has increased.

The present review focuses on recent advances in plant–bacteria

interactions and the underlying mechanisms of rhizosphere-residing

bacterial species in a plant’s response under salinity stress at the

physiological and molecular levels. Moreover, the application and

FIGURE 1

An underlying mechanism of halotolerant plant growth-promoting rhizobacteria (HT-PGPR) in alleviating salinity stress in crop plants. Licensed from
biorender.

biotechnological potential of salt-tolerant PGPR in saline conditions

have been explored. The present review also aimed to explore the

major challenges of using PGPR in the agricultural field and their

possible scientific solutions.

2. Plant growth-promoting
rhizobacteria in crop’s adaptation
toward salinity stress

Plants adopted three main strategies to overcome sodium

chloride (NaCl) stress and survive in the saline environment–osmotic

stress tolerance, Na+/Cl− exclusion, and tolerance to accumulate

Na+/Cl−. Osmotic stress tolerance is mediated by a decrease

in stomatal conductance, while the salinity stress-induced ionic

response activates signal perception and transduction that limits

the uptake, translocation, and accumulation of Na+ in the cell

(Rahman et al., 2021). The plant adaptation toward salinity stress

is improved by cohabiting with diverse saline soil microbes known

as halotolerant plant growth-promoting rhizobacteria (HT-PGPR)

that not only allow plants to persist in salt habitat but also

improve their growth and soil-related properties (Hidri et al.,

2022). In recent years, the importance of halotolerant plant growth-

promoting rhizobacteria (HT-PGPR) in alleviating salinity stress

in crop plants has increased. HT-PGPR improve the productivity

of the saline-agroecosystem, either directly by producing several

beneficial metabolites, such as exopolysaccharides, siderophores,

volatile organic compounds (VOCs), compatible osmolytes, and

phytohormones (Bhat et al., 2020), or indirectly by regulating the

expression of stress-related genes and inhibiting the phytopathogen

effects (Prasad et al., 2019) (Figure 1). Several halotolerant bacteria,

including Rhizobium, Arthrobacter, Flavobacterium, Alcaligenes,

Pseudomonas, and Azospirillum, were found to improve crop salinity

tolerance (Saghafi et al., 2019a; Kumar Arora et al., 2020).
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Halotolerant bacteria form biofilms and tend to produce

extracellular polymeric substances/exopolysaccharides (EPSs) in a

stressful environment (Haque et al., 2022). EPS production by

HT-PGPR differs with the bacterial growth phase and external

environment, such as nutrient medium composition, type of stress

stimuli, pH, and temperature (Kumar Arora et al., 2020). Under

a saline environment, EPS forms ∼40–90% of the bacterial weight

(Sunita et al., 2020). EPS forms a nutrient-rich sheath around the

plant’s roots called the rhizosheath (which also serves as a carbon

source), which improves the availability and uptake of nutrients and

water from the rhizosphere and acts as a physical barrier against

ionic salts and phytopathogens (Mishra and Arora, 2018; Kumar

Arora et al., 2020). Previously, Mahmood et al. (2016) studied the

role of EPS-producing halotolerant Enterobacter cloacae and Bacillus

drentensis in improving the growth of salt-stressed mung bean by

increasing the water uptake and nutrient availability in crop plants.

EPS is also associated with soil aggregation, humification, water

retention, nodulation, quorum sensing, and the establishment of

microbial diversity that protects plant cells from desiccation in

a saline environment (Kumar Arora et al., 2020). Furthermore,

EPS possesses antioxidant properties that confer tolerance against

salinity-induced oxidative damage (Sunita et al., 2020). Inoculation

of Pantoea alhagi NX-11, an EPS-producing endophyte, alleviates

salt stress damage and improves the growth of Oryza sativa by

stimulating antioxidant activity (Sun et al., 2020). In another

study, the combined effect of silicon dioxide (SiO2) nanoparticles

and exopolysaccharide (EPS)-producing bacterial inoculum on the

upregulation of antioxidant activities in Solanum lycopersicum under

salinity stress has been reported (Isfahani et al., 2019). Moreover,

HT-PGPR in a stress environment produce low-molecular-weight,

lipophilic metabolites known as volatile organic compounds (VOCs)

(Sunita et al., 2020). The VOCs promote the growth and adaptability

of stressed plants by stimulating the synthesis of siderophores,

osmoprotectants, and phytohormones, triggering the expression

of HKT1/K+ transporters and regulating virulence factors and

bacterial motility in the plant–microbe interaction (Bhat et al.,

2020). The upregulation of HKT antiporters by VOC-producing HT-

PGPR strains, such as Dietzia natronolimnaea (Bharti et al., 2016),

Arthrobacter nitroguajacolicus (Safdarian et al., 2019) in Triticum

aestivum, and Bacillus amyloliquefaciens SQR9 (Chen et al., 2016)

in Zea mays, has been studied under salinity stress. Another major

challenge for salinity-stressed crops is the low availability of soluble

ferrous ions (Fe2+) (iron form uptake by plants), which is determined

primarily by the soil pH (available at acidic pH 6). Saline soils have

alkaline pH (pH > 6.5) that causes the oxidation of ferrous ion

(Fe2+) to ferric ion (Fe3+) and reduces the availability of iron to

plants (Mahawar et al., 2022). The production of siderophores by

HT-PGPR chelates Fe3+ and compensates the iron (Fe) requirement

in salt-stressed crops (Kumar Arora et al., 2020). In this context,

Mukherjee et al. (2019) studied the role of siderophores produced by

the HT-PGPR strain, Halomonas sp., in promoting the growth and

productivity of Oryza sativa growing in a saline environment.

Synthesis and accumulation of osmolytes/osmoprotectants are

one of the earliest responses of plants to combat osmotic and

oxidative damage imposed by salinity stress (Jogawat, 2019). HT-

PGPR help plants to accumulate compatible osmolytes (amino

acids, soluble sugars, and polyols) in a saline environment to

minimize osmotic stress, maintain high turgor pressure, and sustain

ion equilibrium in the cytoplasm. Moreover, HT-PGPR have been

reported to upregulate osmolyte biosynthesis genes (mainly proline)

and control stomatal conductance and transpiration rate (Saghafi

et al., 2019b) to mitigate water stress in plants (Sunita et al.,

2020). Bioinoculation of a halotolerant PGPR, Bacillus fortis SSB21,

in capsicum, improved proline synthesis and expression of stress-

related genes, namely, the pepper pathogen-induced protein gene

(CAPIP2), a putative ketoacyl-ACP reductase (CaKR1), pepper

osmotin-like protein 1 (CaOSM1), and pepper class II basic chitinase

(CAChi2) during salinity stress (Yasin et al., 2018). Similarly, the

inoculation of Paenibacillus yonginensis DCY84T into Panax ginseng

seeds subjected to salinity stress increases polyamine, total soluble

sugar, chlorophyll and proline content, abscisic acid (ABA) synthesis,

and the upregulation of stress-responsive genes in stressed plants

(Sukweenadhi et al., 2018).

The modulation of phytohormone synthesis against stress

environment is another important characteristic of HT-PGPR

to confer symbiotic association and promote the growth and

productivity of stressed plants (Kumar Arora et al., 2020). Recent

studies reported that, under saline condition, phytohormone

synthesis genes, mainly IAA, are upregulated in salt-tolerant PGPR

that compensate for growth hormones’ requirement in plants, alter

plant root’s morphology, and exclude excess ionic salts (Bhat et al.,

2020). Several in vitro studies revealed that the improved IAA

production by HT-PGPR in plants reduces tap root growth, promotes

the elongation of root hairs, and increases the number and length

of lateral roots. Thus, it improves crop growth by increasing the

availability and uptake of water and nutrients (Nawaz et al., 2020;

Grover et al., 2021; Sarker et al., 2022). Inoculation of Pseudomonas

putida, Pseudomonas stutzeri, and Stenotrophomonas maltophilia

in Coleus forskohlii enhanced the production of IAA, gibberellic

acid, and cytokinin in plants (Patel and Saraf, 2017). Similarly,

Pseudomonas sp. enhanced the production of gibberellins in Glycine

max (Kang et al., 2014) and cytokinin in Zea mays (Sandhya

et al., 2010) growing under sodium chloride (NaCl) stress. Apart

from growth hormones, PGPR are capable of synthesizing and

modulating the gene expression of stress hormones (abscisic acid

(ABA) and ethylene) (Bhat et al., 2020). A study conducted by

Bharti et al. (2016) demonstrated the role of halotolerant strain

Dietzia natronolimnaea STR1 in upregulating the expression of

ABA signaling cascade genes, such as ABA response elements

(TaABARE) and 12-oxophytodienoate reductase 1 (TaOPR1), which

stimulates the expression of the salt stress-induced gene, TaST, in

Triticum aestivum. Ethylene, another stress hormone, promotes plant

tolerance toward salinity stress but constrains their growth and

productivity. HT-PGPR secrete 1-aminocyclopropane-1-carboxylase

(ACC) deaminase that metabolizes ACC (ethylene precursor) into α-

ketoglutarate and ammonia, thus hampering ethylene synthesis in

plants (Bhat et al., 2020). Panwar et al. (2016) studied that ACC

deaminase-producing strains of Enterobacter spp. and Pseudomonas

fluorescens increased the growth and yield of Zea mays in a

saline environment.

In addition to producing plant-beneficial metabolites, HT-PGPRs

constrict the influx of Na+ by regulating the Na+/K+ homeostasis

and modulating the expression of different salt-tolerant genes, such

as salt overly sensitive (SOS), high-affinity K+ transporters (HKT),
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FIGURE 2

The major challenges of using halotolerant plant growth-promoting rhizobacteria (HT-PGPR) in the agricultural field and possible solutions to overcome
them. The square box represents the steps involved in the commercial production of PGPR under controlled condition, while the (left) and (right) sides of
the square explain the various problems involved in employing PGPR in the field and probable solutions to conquer them. Licensed from biorender.

Na+/H+ antiporter (NHX), aquaporins (AQPs), and antioxidants,

thereby conferring plants resistance toward salinity stress. The

treatment of HT-PGPR Bacillus subtilis (GB03) reduces Na+ uptake

in the halophyte grass Puccinellia tenuiflora by the upregulation of

PtHKT1;5 and PtSOS1 and the downregulation of the PtHKT2;1

gene (Niu et al., 2016). A similar mechanism of Bacillus subtilis

(GB03) was studied in Triticum aestivum growing under a saline

environment (Zhang et al., 2014). Long-term exposure to a saline

environment causes water deficiency in crops. Inoculation of

HT-PGPR Bacillus megaterium upregulates the expression of the

aquaporin genes ZmPIP1-1 and PIP2 in Zea mays that increase

the water uptake in salt-stressed plants (Marulanda et al., 2010).

Additionally, HT-PGPR augment salt tolerance in host plants by

modulating the expression and activity of antioxidants (Kumar

Arora et al., 2020). The priming of Panax ginseng seeds with salt-

tolerant Paenibacillus yonginensis DCY84T improved the expression

of PgAPX and PgCAT genes in salt-stressed plants (Sukweenadhi

et al., 2018). In another study, HT-PGPR Bradyrhizobium and

Pseudomonas graminis during a saline environment triggered the

accumulation of ascorbate and glutathione in Vigna unguiculata

(Santos et al., 2018). Similarly, inoculation of B. megaterium UPMR2

and Enterobacter sp. UPMR18 in Abelmoschus esculentus upregulates

the expression of stress-related genes such as superoxide dismutase

(SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione

reductase (GR), and dehydroascorbate reductase (DHAR) under

NaCl stress (Habib et al., 2016). Supplementary Table 1 shows the list

of bacterial species and their mechanisms in plant hosts to alleviate

salinity stress.

3. The major challenges of HT-PGPRs in
field conditions and their probable
scientific solutions

The HT-PGPR is commercially used in agriculture due to its

several advantages over synthetic agrochemicals in stimulating the

growth and yield of economically important crops in both normal

and stress conditions. Several PGPR-based bioformulations and

products are available on the market and many of them are still

in the development process. PGPR production from laboratory to

field is a complex process that is completely based on laboratory

screening assays and field trials (Figure 2) (Backer et al., 2018).
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However, the commercial PGPR inoculants did not show similar

promising effects in promoting crop growth in agricultural fields as

those under controlled laboratory conditions. The major challenge in

reducing the PGPR performance in field conditions is climate change.

Considerable climate change not only impacts plant physiology but

also affects the diversity, abundance, colonization, and activities

of plant-associated microbial communities (Tabassum et al., 2017).

Moreover, the climate in different ecological zones also affects the

PGPR efficiency, as there is no potent commercial inoculant that

has a similar response in all ecological zones (Liu et al., 2022). For

an effective PGPR inoculum, the inoculated strains must colonize

the plant roots and propagate into the rhizosphere. Certain bacterial

strains fail to colonize the roots and are thus incompetent to

promote plant growth in the field, as that under controlled conditions

(Figure 2). Crop variety and PGPR strain are other important aspects

that must be considered while using bioinoculants. The impact

of specific PGPR strains or consortia on crop growth and yield

varies with the crop cultivars (Figure 2). Furthermore, inoculation

of defined microbial strain depends on crop necessity (pathogen

resistance, stress tolerance, yield stimulation, etc.) (Tabassum et al.,

2017). The carrier selection also plays a crucial role in PGPR

performance. An inappropriate carrier reduces the survival and

efficiency of bacteria in the rhizosphere. Moreover, the PGPR

performance in a carrier material differs from strain to strain (Sohaib

et al., 2020). The compatibility of microbes in consortia is another

factor. Many bacterial species have antagonistic interactions with

other strains, reducing PGPR efficiency in the field (Tabassum et al.,

2017). Environmental safety associated with PGPR strain is an

additional concern that cannot be neglected. Microbial inoculation

triggers substantial changes at the level of native non-targeted

microbial communities. Consortia/PGPR inoculants compete with

the indigenous soil microbial population (for nutrients, habitat,

trading metabolites, etc.) that results in changes to the community

structure, loss of native diversity, and a rise in alien host diversity

(Figure 2) (Thakur et al., 2019). Thus, all these aforementioned

factors reshape the functionality of resident soil communities by

provoking secondary succession (Liu et al., 2022).

The PGPR efficiency is dependent directly on soil properties,

plant signaling molecules, and the surrounding environment.

A careful selection of multipotent environment-friendly PGPR

strains that can withstand a wide range of environments is the

key to deploying a sustainable approach in crop improvement

to the changing environment. In-depth studies on laboratory

screening procedures are required for selecting suitable eco-friendly

bioinoculants that favor the growth of crops under saline conditions

(Figure 2). Recent advancements in “rhizosphere engineering” could

mitigate salt stress by engineering the rhizosphere microbiome.

For example, genome editing technology, such as Clustered

Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-

associated protein 9 (Cas9), is a fast, eco-friendly, and effective way

to understand the plant–PGPR interactions, in particular, to target

pathways involved in various metabolites (Prabhukarthikeyan et al.,

2020). Another approach is to unravel the “blackbox” of PGPRs using

next-generation sequencing (NGS) to explore microbial diversity

under salinity stress. In recent years, the culture-independent

approach has been increased to configure the bacteriobiome complex

associated with various plant species. Recently, Poncheewin et al.

(2022) studied the plant-associated lifestyle of Pseudomonas strains

using genome properties (GPs) of common biological pathways’

annotation system and the machine learning (ML) approach to

differentiate functional features. However, the 16S ribosomal RNA

(16S rRNA) profiling of bacterial communities has a few limitations

(such as the primer design, coverage, sequencing errors, and

pipeline analysis from different sequencing platforms). To resolve

these challenges in a culture-independent approach, the following

strategies need to be included: (1) optimization of primer pairs, (2)

sequencing depth and coverage, and (3) curated reference database.

In addition, there is a need to develop a database to expand

the knowledge of HT-PGPR—plant interaction for sustainable

agriculture. In recent years, the increase in whole genome sequencing

of PGPR and data availability has facilitated comparative genomics

between host plants and endophytes. Moreover, the genome insights

provide novel information about salinity-tolerant genes associated

with specific interactions between host plants and PGPR. Seed

priming with PGPR’s secreted secondary metabolites is the other

indirect approach to enhance crop productivity under salinity

stress. The priming of seeds not only stimulates crop growth

and yield in changing environments but also protects native soil

microbial communities from direct exposure to PGPR. Moreover,

the utilization of a nanoemulsion-based delivery system can improve

PGPR performance. Nanoemulsion carriers can make PGPR more

efficient in the agricultural field, due to their increase in solubility,

stability, targeted delivery, controlled release, and cost-effectiveness

(Ravichandran et al., 2022) (Figure 2).

4. Conclusion

Halotolerant plant growth-promoting rhizobacteria (HT-PGPR)

are an excellent green alternative that facilitates crop plants to

cope with increasing salinity stress. In recent years, the beneficial

impact of PGPR on agriculture to yield economically important

crops has increased. HT-PGPR promote crop production by

several mechanisms (physiological and molecular level) in a saline

environment. However, many molecular functions and signaling

pathways of HT-PGPR used for promoting crop growth during

the plant–microbe interaction are still unknown and need to

be characterized. In addition, maintaining a similar efficiency of

HT-PGPR in an agricultural field as that under controlled laboratory

conditions is the other major field that needs to be focused on to

accomplish sustainable agriculture. Isolation and genome sequencing

of many unexplored novel PGPR strains could expand our

knowledge by acquiring a better understanding of the PGPR-plant

interaction with halophytes and for selecting specific multipotent

broad ranges of strains or consortia. Moreover, biotechnological

tools, such as rhizosphere engineering, next-generation sequencing,

and a culture-independent approach, can be used to explore

unidentified microbes in the complex bacteriobiome associated with

plant species.
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Halophytic plants can tolerate a high level of salinity through several morphological 
and physiological adaptations along with the presence of salt tolerant rhizo-
microbiome. These microbes release phytohormones which aid in alleviating salinity 
stress and improve nutrient availability. The isolation and identification of such 
halophilic PGPRs can be useful in developing bio-inoculants for improving the salt 
tolerance and productivity of non-halophytic plants under saline conditions. In this 
study, salt-tolerant bacteria with multiple plant growth promoting characteristics were 
isolated from the rhizosphere of a predominant halophyte, Sesuvium portulacastrum 
grown in the coastal and paper mill effluent irrigated soils. Among the isolates, nine 
halotolerant rhizobacterial strains that were able to grow profusely at a salinity level 
of 5% NaCl were screened. These isolates were found to have multiple plant growth 
promoting (PGP) traits, especially 1-aminocyclopropane-1-carboxylic acid deaminase 
activity (0.32–1.18  μM of α-ketobutyrate released mg−1 of protein h−1) and indole 
acetic acid (9.4–22.8  μg mL−1). The halotolerant PGPR inoculation had the potential 
to improve salt tolerance in Vigna mungo L. which was reflected in significantly 
(p < 0.05) higher germination percentage (89%) compared to un-inoculated seeds 
(65%) under 2% NaCl. Similarly, shoot length (8.9–14.6 cm) and vigor index (792–
1785) were also higher in inoculated seeds. The strains compatible with each other 
were used for the preparation of two bioformulations and these microbial consortia 
were tested for their efficacy in salt stress alleviation of Vigna mungo L. under pot 
study. The inoculation improved the photosynthetic rate (12%), chlorophyll content 
(22%), shoot length (5.7%) and grain yield (33%) in Vigna mungo L. The enzymatic 
activity of catalase and superoxide dismutase were found to be lower (7.0 and 1.5%, 
respectively) in inoculated plants. These results revealed that halotolerant PGPR 
isolated from S. portulacastrum can be a cost-effective and ecologically sustainable 
method to improve crop productivity under high saline conditions.
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1. Introduction

Agricultural productivity is very important to ensure food security 
in future with the ensuing population rise. As per the Global 
Agricultural Productivity (GAP) Index, the current growth rate of 
agricultural production is not enough to meet the projected food 
demand of 10 billion people in 2050 (Zeigler and Steensland, 2022). 
In addition to this, plants are confronted with various kinds of stresses 
such as drought, flooding, salinity, heat, cold, nutrient deficiency and 
exposure to heavy metals, phytopathogen, pest attack, etc. Among 
various environmental stressors, excessive presence of salts in soil (soil 
salinity) is one of the major problems responsible for the reduction of 
crop growth and productivity across the globe. It is reported that more 
than 1,000 million hectares of land are affected by salinity throughout 
the world (Negacz et al., 2022). Globally, about 10% of agricultural 
soils are under the threat of salinization due to continuous usage of 
fertilizer and poor-quality water for irrigation (Borsato et al., 2020; 
Kumar and Sharma, 2020). Salinity adversely affects crop productivity 
in arid and semi-arid areas around the world where it causes an 
annual loss of 1–2% of arable land (Shrivastava and Kumar, 2015). Soil 
salinity also induces biochemical changes in the salt sensitive crop 
owing to disturbance in osmotic potential, imbalance in ion 
concentration, and increased Reactive Oxygen Species (ROS) 
production (Singh et al., 2022). This leads to the break in electron 
transport chain and cleavage of hydrogen bond between the amino 
acids in the genetic material which has deleterious effect on crop 
(Ermakova et al., 2019). Furthermore, high concentration of salts in 
the plant cells were reported to induce oxidative stress and enhanced 
production of stress ethylene, which in turn affects the physiological 
processes like respiration, photosynthesis, nitrogen fixation, etc. 
(Gupta and Huang, 2014; Paul and Lade, 2014; Acosta-Motos 
et al., 2017).

Removal of salt from saline soil is an intensive process which is time 
consuming and requires financial investment (Qadir et  al., 2014). 
However, for a long time, the reclamation of saline soils was carried out 
mainly by physical and chemical processes. In physical process, soluble 
salts in the root zone are removed by scraping, flushing and leaching 
methods, while the use of gypsum and lime as neutralizing agents in 
saline soils is employed in chemical method (Ayyam et al., 2019). But 
these methods are not sustainable when the salt concentration is too 
high in soils continuously irrigated with saline water. Unless these salts 
are leached from the soil, they accumulate to levels that are inhibitory 
to plant growth and may lead to soil salinity. In the long run, salinity 
causes the degradation of soil structure affecting water and root 
penetration along with other problems (Gul et al., 2014). In these cases, 
phytoremediation comes as a viable alternative to ensure soil 
productivity, preferably halophytes that have evolved to grow in saline 
soils and uptake salt (Flowers and Colmer, 2015). With considerable 
progress in understanding physiological and molecular mechanisms in 
salt tolerance of halophytes, some have been found to possess genes 
suitable for improving salt tolerance and phytoremediation potential 
(Shabala, 2013; Gul et al., 2014; Diray-Arce et al., 2015). Besides this, 
microbes associated with rhizosphere are known to promote the desired 
effect like, growth regulation, remediation potential, biotic and abiotic 
stress tolerance, etc. (Upadhyay et al., 2022a). Microbes found in the 
rhizosphere (rhizobacteria) or within plant tissues including roots 
(endophytes) have the potential to contribute significantly to the ability 
of plants to adapt to adverse conditions (Numan et al., 2018; Chauhan 
et al., 2022). However, the potential contribution of microorganisms 

associated with these plants in the soil, on plant surfaces, or within plant 
tissues is underutilized.

Exogenous compounds produced by microorganisms in the 
rhizosphere region promote nutrient uptake, control pathogens, and 
lessen the effects of salinity and sodicity (Damodaran et al., 2013). These 
include Indole Acetic Acid (IAA) production (Ahemad and Kibret, 
2014), Hydrogen Cyanide (HCN) production, siderophore production, 
1-Aminocyclopropane-1-carboxylate (ACC) deaminase production, 
nutrient solubilization and suppression of soil borne pathogens (Dimkpa 
et al., 2009). Furthermore, certain microorganisms promote the activity 
of plant anti-oxidants and osmolytes production (Etesami and Beattie, 
2018). The direct and indirect mechanisms, metabolism and chemotaxis 
in promotion of growth in plants are interceded by gene cluster that 
activates host–PGPR interactions. In Bacillus subtilis-GB03, out of 38 
genes, 30 genes responded to the change in the root structure of the host 
(Arabidopsis sp.) in addition to growth promotion (Ryu et al., 2003). The 
upsurge in nutrient availability and production of plant growth 
regulators (IAA, ACC deaminase, ethylene and gibberellic acid) are 
direct mechanisms through which microbes improve crop growth 
(Upadhyay et  al., 2022b). The siderophore production is known to 
promote iron availability that has direct impact on crop growth. 
Siderophores also exert antimicrobial activity by limiting iron availability 
to the pathogens. The EPS, HCN and hydrolytic enzyme production has 
various indirect benefits to the crop such as antipathogenic potential, 
disease resistance and abiotic stress tolerance (Upadhyay et al., 2011, 
2022b). Microbial isolates with PGP characteristics from rhizosphere 
regions of halophytes like A. nummularia (Da Silva et al., 2016) and 
Salicornia sp. (Mapelli et al., 2013) could provide an alternative option 
for chemical amendments. Characterizing these bacteria from saline 
environments may lead to the identification of beneficial microorganisms 
for use as inoculants to stimulate the growth of non-host plants under 
saline conditions.

In an earlier study with the halophyte Sesuvium portulacastrum 
collected from the coastal soils of Tamil Nadu, India, it was observed 
that S. portulacastrum had the potential to mitigate salination of soil 
irrigated with paper and pulp mill effluent containing high salt (John 
et al., 2022). This experiment was conducted in paper and pulp mill 
effluent irrigated area near Tamil Nadu Newsprint and Papers Limited 
(TNPL), Karur, Tamil Nadu, India and it is known as the Treated 
Effluent Water Lift Irrigation System area (TEWLIS). The current 
practice for managing saline soils among the farming community is 
flooding and leaching of salts with good quality water. However, the lack 
of good quality water, expertise in soil drainage and high-cost 
requirements discourage them from practicing it especially, where 
wastewater is the only source for irrigation. In this case, microbial 
assisted agriculture could improve the crop growth and yield which 
requires minimum skill and cost. Halophytes harbor salt tolerant 
microorganisms as endophytes and epiphytes which are also capable of 
growing in saline environment. These microorganisms have been 
reported to enhance biotic (Masum et  al., 2018) and abiotic stress 
(Upadhyay et al., 2011) tolerance in many crops. However, endophytes 
of Sesuvium portulacastrum have not been reported yet. Due to its ability 
to grow in higher concentration of salt, it is felt that the culturable endo 
and epiphytic bacteria of Sesuvium portulacastrum could tolerate salinity 
and also trigger induced systemic tolerance against salinity stress in 
plant. Keeping this in view, the current study was conceived to isolate 
epiphytic and endophytic plant growth promoting bacterial flora from 
halophyte, S. portulacastrum grown in salt affected ecosystem. Further 
investigation was done to validate the potential of halotolerant plant 
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growth promoting bacterial effects on salt sensitive crop (Vigna mungo 
L.) grown in saline condition. A total of 31 isolates were obtained from 
rhizosphere of S. portulacastrum of which nine strains were found to 
be  halotolerant. These isolates were evaluated for their PGP 
characteristics, tested under in vitro for their growth promotion in Vigna 
mungo L. at 2% NaCl and were identified through 16 s RNA sequencing. 
All the nine isolates had at least one PGP capability, hence two consortia 
with three strains in each were formulated based on the compatibility 
between the isolates. Microbial consortium I (MC I) had Metabacillus 
indicus, Neobacillus niacini and Serratia marcescens; while MC II 
(Microbial consortium II) was formulated with Bacillus velezensis, 
Kocuria rhizophila, and Kosakonia radicincitans. Consequently, their 
potential in growth promotion of salt sensitive glycophyte, Vigno mungo 
L. in paper and pulp mill effluent irrigated soil under pot culture 
experiment was confirmed.

2. Materials and methods

2.1. Collection of samples

The soil and plant samples were initially collected from the coastal 
area of Parangipettai, Tamil Nadu, India. The S. portulacastrum was 
mostly found on the sandy shores of the backwaters (Figure 1). The 
collected halophyte was successfully established in the soil salinized by 
paper and pulp mill effluent irrigation at Karur, Tamil Nadu, India. The 
rhizospheric soil from two soil series, Thulukanur and Vannapatti soil 
series in the paper mill effluent irrigated area was collected. The samples 
were collected in sterile plastic bags and transferred to laboratory for 
further analysis. The organic matter was analyzed by the Walkley-Black 

method while Electrical Conductivity (EC) and pH were analyzed by 
the saturated paste extract method (Murtaza et al., 2017). The physico 
chemical properties are tabulated in Supplementary Table S3. Soil 
samples required for the study were collected from the soils of long-term 
treated paper and pulp mill effluent irrigated area located at 11° 01′24.9″ 
N and 77° 59′59″ E. Adequate amount of soil was shade dried, large 
debris was removed and subsequently 10 kg of soil was transferred to 
perforated pots for secondary evaluation. The pH and EC of the 
experimental soil were found to be 8.18 and 2.62 dS m−1, respectively 
(Supplementary Table S3). The Exchangeable Sodium Percentage (ESP) 
of the soil was 13.54 per cent with an organic carbon content of 0.63 
per cent.

2.2. Isolation and characterization of the 
halotolerant bacteria

To isolate rhizospheric bacteria, plant roots were gently shaken to 
remove the clumps of loosely adhering soil to the roots, leaving behind 
the root-firmly adhering soil particles (rhizospheric soil), which were 
then suspended and vortexed in 100 mL of sterile 1% NaCl solution. 
Thereafter, 10 folded serial dilutions (10×, 20×, 30×, 40×, and 50×) were 
prepared and 1 ml from each diluent was plated on nutrient agar (NA) 
medium (Supplementary Table S1) supplemented with 2% NaCl. The 
plates were incubated at 28°C and monitored for colony formation for 
up to 1 week (Fisher et  al., 2007). For the isolation of endophytic 
bacteria, the roots of the collected samples were washed carefully under 
running tap water for 10 min to remove adhering soil particles. The 
roots were disinfected with 70% ethanol for 1 min, then rinsed three 
times with sterile distilled water. The roots were then surface sterilized 
with 3% sodium hypochlorite solution containing a few drops of Tween 
20 R (Sigma-Aldrich, Steinheim, Germany) for 10 min followed by six 
rinses with sterile distilled water. To confirm root surface sterilization 
efficiency, an aliquot (100 mL) from the sixth wash solution was spread 
on NA medium and incubated at 28°C for 5 days. Thereafter, 1 g of the 
surface sterilized root tissue was macerated with a sterilized mortar and 
pestle in 10 mL distilled water and 1 mL from the tissue extracts and the 
serial diluents (10×, 20×, and 30×) were spread on NA medium 
supplemented with 2% NaCl. The plates were incubated at 28°C and 
monitored for up to 1 week for bacterial colony formation (Ramadoss 
et al., 2013).

The colonies of rhizospheric and endophytic bacterial isolates were 
examined morphologically for their shape, size, margin, elevation, 
appearance, texture, and pigmentation. In addition, cellular morphology, 
shape, Gram staining and biochemical characters were also examined 
(Sandhya and Ali, 2018; Supplementary Table S2). Colonies with distinct 
morphological characteristics were selected and purified by subculturing 
three times on NA media supplemented with 3% NaCl, before their 
storage in a 40% glycerol solution at −20°C till further use. Each sample 
was labeled representing the plant source (Sesuvium portulacastrum: SP) 
followed by the abbreviation of collection site (P: Parangipettai coastal 
soil; TV: TEWLIS area Vannapatti series and TT: TEWLIS area 
Thulukanur series), E in case of Endophytic, and the isolate number.

2.3. Halotolerant assay

Initially, all bacterial isolates were screened for halotolerance using 
NA media supplemented with 2 and 3% NaCl (14.7 and 21.6 dS m−1, 

FIGURE 1

Collection of Sesuvium portulacastrum from the shores of backwaters 
at Parangipettai, Tamil Nadu, India.
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respectively). The cultures that were found to grow in 3% were selected 
for further evaluation with growth curve experiment. The 48 h old 
cultures of the isolates from the broth were transferred with an equal 
quantity of inoculum (Optical density of 660 nm = 0.10) to 100 mL NA 
broth supplemented with 3, 5 and 7% NaCl (21.6 dS m−1, 32.3 dS m−1 
and 41.1 dS m−1, respectively). The OD 660 nm values were measured 
once in 4 h for all the isolates until the stationary phase is achieved. The 
OD 660 values were plotted against the time to obtain the growth curve 
under each level of NaCl.

2.4. Plant growth promotion assessment

Plant growth promoting traits of bacterial isolates were assessed for 
ammonia production, inorganic phosphate solubilization, siderophore 
production, IAA production and ACC deaminase activity. All assays 
were carried out in triplicates and the activity was assessed.

2.4.1. Ammonia production
The production of ammonia by rhizobacteria was tested in 10 mL of 

peptone water. After 48 h of incubation at 30°C, Nessler’s reagent 
(0.5 mL) was added to each tube (Bhavani and Kumari, 2019). The 
development of brown to yellow color was quantified using 
spectrophotometer against standard graph (425 nm).

2.4.2. Phosphate solubilization assay
The ability of inorganic phosphate solubilization was conducted by 

spot inoculation of bacterial isolates on modified Pikovskayas agar plates 
using tricalcium phosphate as a substrate (Goswami et al., 2014). The 
formation of transparent halo zones around the bacterial colonies after 
7 days of incubation at 28°C was considered an indication of phosphate 
solubilizing activity. The solubilization index was calculated by 
Equation 1.

 
Solubilization index

Colony diameter Halo zone diameter

C
=

+( )
oolony diameter  

(1)

2.4.3. Siderophores production assay
The siderophore production was assayed by spot inoculation of 

selected bacterial isolates on Chrome Azurol S (CAS) blue agar plates as 
described by Schwyn and Neilands (1987). The cultures were incubated 
for 7 days at 28°C on CAS blue agar plates. The formation of orange 
zones around the growing colonies was monitored and bacterial isolates 
scored as siderophore producers.

 

Siderophore production index

Colony diameter Orange zone d

=
+ iiameter

Colony diameter

( )
 

(2)

2.4.4. Indole acetic acid production assay
Bacterial isolates were inoculated into 5 mL Luria-Bertani (LB) 

broth containing 0.2% L-tryptophan, pH 7.0 and incubated at 28°C with 
shaking at 125 rpm for 7 days. The cultures were centrifuged at 
11,000 rpm for 15 min. One milliliter of the supernatant was mixed with 
2 mL of Salkowski reagent and the appearance of a pink color indicated 

IAA production. OD was read at 530 nm using spectrophotometer. The 
level of IAA produced was estimated against a standard IAA (Shahzad 
et al., 2017).

2.4.5. ACC deaminase assay
The isolates were grown in 5 mL of LB broth at 28°C until they 

reached the stationary phase. To induce ACC deaminase activity, the 
cells were collected by centrifugation and washed twice with 0.1 M Tris–
HCl (pH 7.5). Then the cells were suspended in 2 mL of modified DF 
minimal medium supplemented with 3 mM final concentration of ACC 
and incubated at 28°C with shaking for another 36–72 h. ACC 
deaminase activity was determined by measuring the cleavage of ACC 
into α-ketobutyrate and ammonia. The induced bacterial cells were 
harvested by centrifugation at 7,500 rpm for 5 min, washed twice with 
0.1 M Tris–HCl (pH 7.5), and resuspended in 200 μL of 0.1 M Tris–HCl 
(pH 8.5). The cells were labialized by adding 5% toluene (v/v) and then 
vortexed at the highest speed for 30 s. 50 μL of labialized cell suspension 
was incubated with 5 μL of 0.3 M ACC in an Eppendorf tube at 28°C for 
30 min. The negative control for this assay included 50 μL of labialized 
cell suspension without ACC, while the blank included 50 μL of 0.1 M 
Tris–HCl (pH 8.5) with 5 μL of 0.3 M ACC. The samples were then 
mixed thoroughly with 500 μL of 0.56 N HCl by vortexing and the cell 
debris was removed by centrifugation at 12,000 rpm for 5 min. A 500 μL 
aliquot of the supernatant was transferred to a glass test tube and mixed 
with 400 μL of 0.56 N HCl and 150 μL of DNF solution (0.1 g of 
2,4-dinitrophenylhydrazine in 100 mL of 2 N HCl) and the mixture was 
incubated at 28°C for 30 min. One milliliter of 2 N NaOH was added to 
the sample before the absorbance at 540 nm was measured. The 
concentration of α-ketobutyrate in each sample was determined by 
comparison with a standard curve generated as follows: 500 μL 
α-ketobutyrate solutions of 0, 0.01, 0.05, 0.1, 0.2, 0.5, 0.75, and 1 mM 
were mixed, respectively, with 400 μL of 0.56 N HCl and 150 μL DNF 
solution. One milliliter of 2 N NaOH was added and the absorbance at 
540 nm was determined as described above. The values for absorbance 
versus α-ketobutyrate concentration (mM) were used to construct a 
standard curve (Glick, 2014; Del Carmen Orozco-Mosqueda 
et al., 2019).

2.5. Identification through 16S rRNA 
sequencing

The bacterial isolates were confirmed by molecular analysis of the 
16S rRNA gene for bacteria. DNA isolation from microbial samples was 
done using the EXpure Microbial DNA isolation kit developed by Bogar 
Bio Bee stores Pvt. Ltd. DNA concentrations were measured by Qubit 
fluorometer 3.0. The PCR amplification was done by adding 5 μL of 
isolated DNA in 25 μL of PCR reaction solution (1.5 μL of Forward 
Primer and Reverse Primer, 5 μL of deionized water, and 12 μL of Taq 
Master Mix). The DNA template is heated to 95°C for 2.5 min and 
cooled at 55°C for 30 s. Then it is heated to 72°C, the optimal 
temperature for DNA polymerization. The unincorporated primers and 
dNTPs from PCR products were removed by using Montage PCR Clean 
up kit (Millipore). Then the DNA sequencing was performed using an 
ABI PRISM® Big Dye™ Terminator Cycle Sequencing Kit with 
AmpliTaq® DNA polymerase (FS enzyme) (Applied Biosystems). 
Single-pass sequencing was performed using below 16 s rRNA universal 
primers. The samples were resuspended in distilled water and subjected 
to electrophoresis in an ABI 3730xl sequencer (Applied Biosystems). 
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The 16 s rRNA sequence was blasted using NCBI blast similarity search 
tool. The phylogeny analysis with the closely related sequence of blast 
results was performed by multiple sequence alignment. The MUSCLE 
3.7 was used for multiple alignments of sequences (Edgar, 2004). Poorly 
aligned positions and divergent regions were cured using the program 
G blocks 0.91b (Talavera and Castresana, 2007). Finally, the program 
PhyML 3.0 aLRT was used for phylogeny analysis and HKY85 as 
substitution model. The program Tree Dyn 198.3 was used for tree 
rendering (Dereeper et al., 2008).

2.6. In vivo evaluation of the selected 
isolates on Vigna mungo L. under salinity

The salt tolerant isolates were evaluated for their effect on 
germination and growth attributes of Vigna mungo L. under salinity (2% 
NaCl). An initial standardization experiment was carried out to fix the 
level of initial tolerance of Vigna mungo L. Accordingly, germination and 
growth of Vigna mungo L. under three different salinity was evaluated 
(0.5, 1, 1.5, 2, 3% NaCl). As per ISTA (International Seed Testing 
Association), the NaCl concentration at which the germination 
percentage falls below 65% should be selected to observe the impact of 
microbial inoculation. Hence 2% NaCl concentration was selected for 
the in vivo evaluation of isolates. The Vigna mungo L. seeds were surface 
sterilized in 0.1% sodium hypochlorite for 3 min and repeatedly washed 
with distilled water. After this, the 28 h old inoculum of all the isolates 
was individually used for seed priming. The NA broth without isolate 
was used as a control. The microbial inoculum with an OD of 1 at 
660 nm was used for seed priming. After which the seeds were grown in 
germination sheets placed in 2% NaCl solution. The germination 
percentage, root length, shoot length and total dry weight were 
measured after 20 days. The growth vigor was calculated using 
Equation 3.

 ( )Vigor index Germination percentage x Seedling length mm=  
(3)

2.7. Compatibility evaluation among the 
isolates for developing consortium

The culture compatibility among the bacterial isolates was assessed 
by cross streaking method using NA medium. The bacterial strain was 
streaked at one end of the plate followed by streaking the other bacterial 
strains perpendicular to it and incubated at 30°C for 24–48 h. The 
inhibition in growth between the cultures was noted and the compatible 
microbes were selected for further confirmation. The selected 
compatible strains were streaked in a triangular pattern so that all the 
streaks overlap each other as a confirmation test. Any two perpendicular 
steaks that showed inhibition were incompatible and the absence of 
inhibition proved that the cultures were compatible (Thomloudi 
et al., 2019).

The elite compatible microbial isolates were mass multiplied as pure 
cultures in the NA media for further formulation of the microbial 
consortium. The mass culturing was carried out in 250 mL Erlenmeyer 
flask, which serves as seed culture for further multiplication. The culture 
broth was autoclaved in 15 lbs for 20 min and after cooling the microbial 
isolates were inoculated as loopful cultures in their respective broths 
prepared. The inoculated flasks were maintained as shake flask cultures 

by incubating them at room temperature at 120 rpm for 2 days for mass 
production. The 48 h old cultures were serially diluted and plated to 
count the population in the broth. To attain a uniform population in the 
consortium, 5 mL inoculum was centrifuged at 10,000 rpm for 15 min at 
10°C and resuspended in 10 mL of deionized water to obtain 4 × 109 CFU 
(Jain and Srivastava, 2012). The OD 660 nm value was also recorded for 
the resuspended water used for consortium development. Talc was used 
as carrier material for the consortium due to its local availability and 
high Magnesium and Calcium content. Talc is a fine, light-weight 
powder that is easily soluble in water and has been shown to retain 
viable bio-inoculant propagules (Tripathi et al., 2015). A 100 g of talc 
was taken in autoclavable plastic bags and autoclaved. A 10 mL of the 
resuspended solution of each selected isolate was mixed to obtain the 
consortium. A total volume of 30 mL of the bacterial isolates was added 
to the carrier material and left for drying in shade (1 day), after which it 
was evaluated as a soil inoculant.

2.8. Evaluation of microbial consortium 
application on growth and yield of Vigna 
mungo L.

The potential of microbial consortium dosage on alleviation of salt 
stress in Vigna mungo L. was assessed through a pot culture experiment 
and the details of treatment are given in Table 1. The treated effluent 
with EC of 2.5 dS m−1 was used for irrigation. The pots were irrigated at 
an interval of 5–7 days based on the field capacity of the soil (22.5 per 
cent) which was estimated using pressure plate apparatus (Obi, 1974). 
After the application of amendments and microbial consortium, five 
seeds were sown in each 3 kg pot and irrigated with treated effluent. 
Thinning was carried out after 15 days to maintain a uniform population 
of 3 plants per pot. The morphological, physiological and biochemical 
parameters were recorded at three growth stages viz., vegetative (25th 
day), flowering (45th day) and harvest stage. The height of the plant 
from the ground level to the tip of the main stem was measured and 
expressed in centimeters. The physiological and biochemical parameters 
including chlorophyll content, leaf free proline content and catalase were 
carried out using standard procedures.

2.8.1. Morphological and physiological 
characterization of plant samples

The morphological and physiological characteristics of the plant 
were measured during the flowering stage of the crop (45 days after 
sowing). The Chlorophyll Content Meter (CCM-200+, United States) 
was used to assess chlorophyll content in the leaves. These measurements 

TABLE 1 Details of treatment for assessing the salinity stress alleviation by 
microbial consortium.

Factor 1: Microbial consortium

I1 - Control

I2 - Microbial consortium I (M. indicus + N. 

niacini + S. marcescens)

I3 - Microbial consortium II (B. velezensis + K. 

radicincitans + K. rhizophila)

Factor 2: Dosage

D1 - 2 kg ha−1 as soil application

D2 - 4 kg ha−1 as soil application
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were taken at three different points of young fully expanded leaves of 
each treatment during bright sunshine (Dhevagi et al., 2022). Similarly, 
photosynthetic rate and stomatal conductance were measured using a 
portable photosynthesis system (ADC BioScientific LCpro-SD System, 
United Kingdom) (Dhevagi et al., 2022).

2.8.2. Osmoregulatory metabolite and antioxidant 
enzymes analysis

The biochemical parameters like proline, catalase, and superoxide 
dismutase (SOD) were assessed during the flowering stage of the crop 
(45 days after sowing). For estimation of proline, 0.5 g of fresh leaf was 
homogenized in chilled 10 mL of 3% sulfosalicylic acid in precooled 
pestle and mortar. The homogenate was centrifuged at 12,000 rpm for 
5 min at 4°C and 2 mL supernatant was transferred to test tube. Then 
2 mL acid ninhydrin and 2 mL of glacial acetic acid were added and 
incubated in water bath (100°C) for 1 h. Then the test tubes were placed 
in ice bath to stop the reaction. Four mL of toluene was added and the 
tube was vortexed for 1 min. The extract was transferred to a cuvette to 
record the absorbance at 520 nm and plotted against standard graph of 
proline to express as μmol g−1 fresh weight (Bates et al., 1973). The 
catalase activity was estimated by following the methodology of 
Gopalachari (1963). Fresh plant tissue of 5 g was homogenized with 
ice-cold phosphate buffer (PB) 5 ml and centrifuged at 12,000 rpm for 
10 min at 4°C to obtain the supernatant. One mL of supernatant was 
mixed with 1 mL of PB and 1 mL of 30 mM hydrogen peroxide and the 
absorbance of the supernatant was read at 240 nm. The decrease in 
absorbance was recorded every 30 s for 5 min. The absorbance was 
plotted against the standard graph of hydrogen peroxide to assess the 
catalase activity as the rate of oxidation of hydrogen peroxide per minute 
per gram. For SOD, one gram of fresh leaf was macerated in 10 ml of 
chilled 50 mM phosphate buffer in a prechilled mortar and pestle. The 
mixture was centrifuged at 12,000 rpm for 10 min at 4°C to collect the 
supernatant. A reaction mixture of 1.3 mL of sodium carbonate buffer, 
500 μL of Nitroblue tetrazolium (NBT) and 100 μL EDTA was prepared. 
After which 100 μL of hydroxylamine hydrochloride was added and 
incubated for 2 min at room temperature to initiate the reaction. 100 μL 
of supernatant was added and the absorbance at 560 nm was recorded 
every 30 s for 1–2 min. The absorbance was plotted against the standard 
graph of NBT at 560 nm to obtain the superoxide dismutase activity per 
gram of sample (Dhindsa et al., 1981).

2.8.3. Assessing the quantity and quality of yield
The mature pods in Vigna mungo L. were harvested after the 

65th day and expressed in g pot−1. The harvest index used as a 
measure of reproductive efficiency was worked out by using 
Equation 4. The protein content in the seeds was assessed through 
Folin phenol reagent method (Lowry et al., 1951). About 250 mg of 
Vigna mungo L. pod sample was taken and macerated with 10 mL of 
phosphate buffer solution. Centrifuged the contents at 3,000 rpm for 
10 min and the supernatant was collected and made up the volume 
to 25 mL with distilled water. To 1 mL of the supernatant taken in a 
test tube, 5 mL of Lowry reagent and 0.5 mL of Folin reagent were 
added and incubated for 30 min. The color development was 
measured at 660 nm in a UV–vis spectrophotometer and bovine 
serum albumin was used as standard.

 

Economic yieldHarvest index
Biological yield

=
 

(4)

2.9. Statistical analysis

The data on various characteristics studied during the investigation 
were statistically analyzed by the method given by Gomez and Gomez 
(1984) using SPSS Version 16.0. The critical difference was worked out 
at 5 per cent (0.05) probability levels.

3. Results and discussion

3.1. Isolation of halotolerant bacteria from 
rhizosphere and root endosphere of 
Sesuvium portulacastrum

A total of eight morphologically different bacterial strains were 
isolated from rhizospheric soil samples of Sesuvium portulacastrum 
collected from coastal areas of Parangipettai. Bacterial isolates were labeled 
as SPP 1 to SPP 8. The rhizosphere soil samples from paper and pulp mill 
effluent irrigated soil (TEWLIS area) were collected and 16 strains with 
varying morphology were isolated. Out of 16 isolates, 9 were from 
Thulukanur soil series (SPTT 1 – SPTT 9) and 7 were from Vannapatti soil 
series (SPTV 1 – SPTV 7). Similarly, eight endophytic bacterial isolates 
were obtained from roots of profusely grown S. portulacastrum cultivated 
in two soil series of paper and pulp mill effluent irrigated areas. Two 
strains from Thulukanur soil series were named SPTTE 1 and SPTTE 2. 
Similarly, five strains from Vannapatti soil series were isolated and named 
SPTVE 1 to SPTVE 5. The isolates were screened for salt tolerance in NA 
media supplemented with 3% NaCl, since identifying halotolerant PGPR 
with high tolerance potential is essential. The inoculated plates were 
observed for colony growth after 48 h of incubation. Among 31 bacterial 
isolates, profuse growth was observed in 9 isolates (SPP 2, SPP 5, SPP 6, 
SPTT 3, SPTT 7, SPPTT 8, SPTV 3, SPTVE 3, and SPTVE 4), whereas 
other strains failed to grow in NA media supplemented with 3% NaCl. 
Among the isolates, two (SPTVE 3 and SPTVE 4) were endophytes.

3.2. Morphological and biochemical 
characteristics of bacterial isolates

The selected 9 strains were characterized for cell morphology, 
Gram behavior, pigment production and motility 
(Supplementary Table S2). Out of 9 isolates, 6 tested positive in Gram 
test and the remaining were Gram negative. The isolate SPTT 8 was 
coccoid in shape and all others were rod shaped. The isolates SPP 2 and 
SPTT 8 exhibited orange and light green colonies, respectively, whereas 
no distinguishable colors were noticed in the other isolates. The orange 
or red pigmentation, due to carotenoids might help the bacteria against 
damaging UV radiation (Khaneja et al., 2010). Strains SPTT 3, SPTT 7, 
SPTVE 3, and SPTVE 4 were motile which has diffused zone of growth 
extended out from the line of inoculation. Both flagellar motility and 
citrate utilization are thought to be  important in bacterial root 
colonization and maintenance (Weisskopf et al., 2011). Biochemical 
characters such as casein, starch hydrolysis, citrate, amylase, protease, 
urease, catalase and oxidase activities, indole production, nitrate 
reduction and Methyl Red test – Voges Proskauer (MR-VP) are given 
in Supplementary Table S2. Among these traits, protease, catalase and 
amylase were positive for all the isolates. MR-VP test was positive for 
all isolates except SPP 2, SPP 5 and SPTVE 3. Isolates SPP 6, SPTT 8 
and SPTVE 3 tested positive for urease activity. The strains SPP 5, SPTT 
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3, SPTT 7 and SPTVE 3 had the ability to reduce nitrate to nitrite. All 
the isolates tested positive for catalase test which indicates all are 
aerobic bacteria and would neutralize hydrogen peroxide by producing 
catalase enzyme (Facklam and Elliott, 1995). Protease test was positive 
for all the isolates which indicates their ability to breakdown protein 
into amino acids.

3.3. Identification of PGPR isolates by 16S 
rRNA sequence analysis

The nine selected bacterial isolates were identified by 16S rRNA 
sequencing and blasting in the NCBI database. The isolate SPP 2 has a 
similarity (99.9%) with that of Metabacillus indicus and SPP 5 was 99.7% 
similar to Neobacillus niacini. The SPP  6 was 100% similar to 
Staphylococcus warneri and SPTT 3 was 99.8% similar to Bacillus 
velezensis. Similarly, SPTT 7, SPTT 8 and SPTV 3 were similar to Bacillus 
circulans, Kocuria rhizophila and Bacillus oleronius, respectively. The 
isolate SPTVE 3 had 99.9% similarity with Serratia marcescens and 

SPTVE 4 was 99.8% similar to Kosakonia radicincitanas. The phylogenetic 
tree of isolates used in microbial consortium II was obtained by the 
Neighbor Joining method with a boot strap value of 1,000 and depicted 
in Figure 2. The derived nucleotide sequence was submitted to NCBI 
database and the GenBank accession numbers are given in Table 2.

3.4. Assay for in vitro plant growth 
promotion activity

3.4.1. Indole-3-acetic acid (IAA) production
The bacterial isolates were screened for their ability to produce 

auxin (IAA). IAA is a phytohormone that functions as a natural 
auxin in plants (Carmen and Roberto, 2011). By using L-tryptophan 
found in root exudates, several bacteria can produce IAA as a 
secondary metabolite. IAA-producing bacteria help plants maintain 
their growth under salt conditions by increasing root length. Except 
for S. warneri, all other isolates produced red color after the addition 
of Salkowski’s reagent in the culture supernatant since IAA 
production was found very common in PGPR, as shown by similar 
studies (Galkovskyi et  al., 2012; Zahid et  al., 2015; Islam et  al., 
2016). However, the intensity of red color developed was very low 
without tryptophan in the isolates N. niacini and B. olerenius. With 
the addition of tryptophan in the broth, IAA production was 
enhanced. The isolate SPTVE 3 had the highest IAA production of 
23.60 μg mL−1 followed by SPP 2 (22.80 μg mL−1). The lowest IAA 
production was recorded in isolate B. olerenius (9.41 μg mL−1) in 
tryptophan supplemented medium (Table  3). Devi et  al. (2016) 
reported that Serratia marcescens AL2-16 isolated from Achyranthes 
aspera L. produced 83.2 μg mL−1 of IAA in the presence of 1% 
L-tryptophan after 24 h incubation. Similarly, S. marcescens isolated 
in this study also produced the highest IAA (23.60 μg mL−1 in 0.2% 
L-tryptophan) among other isolates.

3.4.2. Phosphate solubilization
The presence of P-solubilizers in soils may be seen as positive signs 

of using microorganisms as biofertilizers to enhance crop yield and 
promote sustainable agriculture development. The production of 

TABLE 2 16S rRNA identification of the halotolerant plant growth 
promoting bacterial isolates.

Strain Best match Accession 
number

Match 
index

SPP 2 Metabacillus indicus OP836561.1 99.6%

SPP 5 Neobacillus niacini OP836562.1 99.7%

SPP 6 Staphylococcus 

warneri

OP836563.1 100%

SPTT 3 Bacillus velezensis OP836557.1 99.8%

SPTT 7 Bacillus circulans OP836560.1 100%

SPTT 8 Kocuria rhizophila OP836556.1 100%

SPTV 3 Bacillus acidicola OP836559.1 99.2%

SPTVE 3 Serratia marcescens OP836558.1 99.9%

SPTVE 4 Kosakonia 

radicincitans

OP836555.1 99.8%

FIGURE 2

Phylogenetic tree of halotolerant isolates used for developing microbial consortium – II (Bacillus velezensis; Kocuria rhizophila and Kosakonia 
radicincitans). The 16S rRNA gene sequences of closely related species were retrieved from NCBI GenBank databases. The Neighbor joining phylogenetic 
tree was inferred using MEGA-7 software; evolutionary distance was computed using Maximum Composite Likelihood method at bootstrap value of 1,000.
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microbial metabolites such as organic acids, which lower the pH of the 
media, is primarily responsible for phosphate solubilization (Shahid 
et al., 2012). Phosphate solubilization by the isolates was visualized by 
the development of clear zones (Halo-zone) around the bacterial 
colonies after 3 days of incubation in Pikovskayas medium 
(Supplementary Figure S1). Out of 9, seven isolates were phosphate 
solubilizers indicated by the clear zones. The highest index was observed 
in the isolate K. radicincitans (2.63), followed by K. rhizophila at 2.50 
(Table 3). The isolates N. niacini and B. circulans tested negative to 
solubilize phosphate. Shahid et al. (2015) stated that the most commonly 
exploited phosphate solubilizers are bacteria belonging to Pseudomonas 
sp., Bacillus sp., Rhizobium sp. and Enterobacter sp. Though N. niacini 
and B. circulans isolated in this study, belong to the bacillus genera they 
lack the ability to solubilize phosphate. K. radicincitans of 
Enterobacteriaceae family had the highest phosphate solubilization 
index (2.63) than the other isolates. Afridi et  al. (2019) observed 
16–17 mm halo zone around the colony of Kocuria rhizophila, whereas 
in the present study, 12 mm halo zone was formed in 48 h. Phosphate 
solubilizing bacteria have the ability to enhance phosphorus availability 
in the soil thereby promoting crop growth. In some cases, phosphate 
solubilization bacteria can promote plant growth both indirectly and 
directly by reducing phytopathogen growth and synthesizing 
phytohormones (Bhattacharjee, 2012).

3.4.3. Siderophore production
Siderophores are chemical compounds with iron-specific ligands 

that have low molecular weight (<10,000 Da). Various microorganisms 
synthesize it as an iron scavenging agent to maintain minimal iron 
stress. They are infinitesimal iron chelating compounds with a strong 
affinity for transporting ions across cell membranes and disease control 
(Pandey et al., 2017). Several studies have shown that the rhizosphere 
micro flora produces siderophores, which improve plant iron uptake 
(Kotasthane et al., 2017; Priyanka et al., 2020). Siderophore activity was 
absent in strain M. indicus, while all other isolates had production index 
in the range between 2.88 and 1.19 (Table 3). Bacillus velezensis NRRL 
B-41580 and Bacillus siamensis KCTC 13613 isolated from the 
rhizosphere of rice, respectively produced 69 and 55 per cent 
siderophore, according to Masum et al. (2018). Navarro-Torre et al. 
(2016) observed in their study that S. warneri isolated from the 

halophyte, Arthrocnemum macrostachyum had shown no siderophore 
activity. Contrastingly, in our study, the isolate S. warneri had a 
siderophore production index of 1.70. Pantoea dispersa isolated from 
mung bean rhizosphere had a 6–9 mm halo zone on Pikovskaya’s agar 
medium indicating their ability to produce siderophore (Panwar et al., 
2016; Supplementary Figure S2). The environmental conditions 
influence the production of bacterial siderophores and their efficacy in 
transferring iron (Singh et al., 2022). The siderophore increases the rate 
of phytoextraction of metals from rhizosphere. The production and 
transport of siderophore vary between Gram positive and Gram negative 
bacteria, since the outer membrane transporters are broadly absent in 
Gram positive bacteria. These transporters play a vital role in the 
transport of Fe-siderophore. RS-I (Reduction strategy) and CS-II 
(Chelation strategy) are two types of mechanism for Fe transport into 
the plant system. While, RS-I strategy is predominantly found in iron 
deficit soils, CS-II strategy is found in alkaline soil where bacteria are 
important agents for improving iron availability. This strategy (CS-II) is 
based on biosynthesis of siderophore that chelates Fe and transport it 
through TOM1 (Translocase of Outer Membrane) to the root (Dai 
et al., 2018).

3.4.4. Ammonia production
Ammonia production plays an important role in increasing plant 

growth by accumulating nitrogen, as well as assisting in root, shoot and 
biomass development (Dutta and Thakur, 2017). It also plays a vital role 
in remediation of polluted environment (Raklami et al., 2021), carbon 
sequestration (John and Lakshmanan, 2018) and various ecosystem 
services (Razzaghi Komaresofla et  al., 2019). The highest value of 
5.19 μg mL−1 was recorded by isolate K. radicincitans, followed by 
B. velezensis (4.28 μg mL−1). Ammonia production was absent in the 
isolates N. niacini, S. warneri, and B. olernius. Ammonia production in 
K. rhizophila isolated from Oxalis corniculata was reported to 
be 36 μg mL−1 by Afridi et al. (2019), whereas in this study it was only 
2.60 μg mL−1 which is the lowest ammonia production among other 
isolates. The isolate K. radicincitans produced the highest ammonia 
(5.79 μg mL−1), followed by B. velezensis (4.8 μg mL−1) (Table 3). The 
accumulation of ammonia in soil disrupts the microbial community’s 
homeostasis and prevents the germination of many fungal spores 
thereby adding many beneficial attributes (Gupta and Pandey, 2019).

TABLE 3 Plant growth promotion capabilities of the bacterial isolates from the rhizosphere and endosphere of S. portulacastrum.

Strains Consortium Phosphate 
solubilization 

index

Siderophore 
production 

index

IAA production (μg mL−1) Ammonia 
production 

(μg mL−1)

ACC deaminase 
activity (μM of 
α-ketobutyrate 
released mg−1 

protein h−1)

2 mg 
tryptophan g−1 

broth

No 
tryptophan

M. indicus MC-I 2.44 – 22.81 4.20 3.86 0.603

N. niacini – 2.88 10.40 1.70 – –

S. marcescens 2.25 2.13 20.52 3.70 2.83 0.751

B. velezensis MC-II 2.29 1.89 14.43 2.15 4.28 1.180

K. 

radicincitans

2.63 2.50 23.60 5.35 5.19 0.395

K. rhizophila 2.50 2.22 11.23 2.25 3.40 0.983

S. warneri Non-compatible 2.00 1.70 – – – –

B. acidicola 2.22 1.19 9.41 1.60 – –

B. circulans – 2.29 12.69 2.60 2.60 0.324
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3.4.5. ACC deaminase activity
Ethylene is produced in plant systems under stress conditions 

which have detrimental effects on crop growth. ACC deaminase 
produced by the bacterial isolates degrades ACC, a precursor of 
ethylene into α-ketobutyrate. Hence, they help plants to assuage the 
ethylene-induced effect on growth and development, particularly under 
salt stress (Arora, 2020). The highest activity was recorded in the isolate 
B. velezensis (1.180 μM mg−1 protein h−1) and followed the order of 
K. rhizophila > S. marcescens > M. indicus > K. radicincitans > B. circulans 
(Table 3). The ACC deaminase activity was not recorded in the isolates 
N. niacini, S. warneri and B. oleronius. The breakdown products of 
ACC, notably α-ketobutyrate and ammonia, provide nitrogen and 
energy to the microorganisms that are involved in the degradation. The 
ACC deaminase activity of 853–2,107 nmol ketobutyrate mg 
protein−1 h−1 was observed in PGPR strains belonging to Pseudomonas 
sp. and Bacillus sp. isolated from halophyte Atriplex sp. (Leontidou 
et  al., 2020). They also suggested that plants thriving in extreme 
conditions like saline or drought stress environment might be  the 
primary selectors of bacterial ACC deaminase activity.

3.5. Salinity tolerance of selected bacterial 
isolates under different salinity levels (0, 5 
and 7% NaCl)

The salinity levels had a profound influence on the growth of 
isolates tested for tolerance (Figure  3). All the isolates had shown 
profound growth in control. The highest growth rate was observed in 
isolate SPTT 7. Including control, this isolate had grown well at both 
concentrations of NaCl (5 and 7%). In 7% NaCl, the stationary phase 
was attained at 52 h after inoculating. The isolates SPP 5 and SPTT 8 
were unable to grow at 7% NaCl concentration and the growth rate 
slackened at 5% NaCl. M. indicus and B. oleronius had very slow 
growth rate at both the NaCl concentrations (5 and 7%) than the 
control. But the growth rate declined after 64 h in 5 and 7% NaCl. At 
5% NaCl, S. marcescens had a slow and steady growth rate, while at 7% 
no growth was observed. In control, the lowest OD 660 nm value of 
0.35 was recorded in the isolate B. velezensis at 60 h. The growth rate 
declined after 64 h at both NaCl concentrations (5 and 7%). The isolate 
S. warneri attained stationary phase after 40 and 60 h in control and 
5% NaCl, respectively. High concentration of NaCl (7%) restricted the 
growth of the isolate. Isolates S. warneri, K. rhizophila and S. marcescens 
failed to grow at 7% NaCl, while they had a steady growth rate at 5%. 
Singh and Jha (2016b) also reported that S. marcescens grew well up to 
6% NaCl. Similarly, K. rhizophila isolates had been reported to grow 
substantially in 5% salt medium, however, when salt concentration 
increased, the isolates showed a decreasing trend (Shi et al., 2021). 
B. circulans and B. oleronius had a shorter lag phase of 8 h than the 
other isolates, which indicated the potential of the microbe to grow 
under saline conditions (Finkel and Kolter, 1999). All the Bacillus 
genera (B. oleronius, B. circulans, N. niacini, and M. indicus) had long 
stationary phase that could be due to the synthesis of protective factors 
and adaptation of current environmental conditions at higher NaCl 
concentrations. In a study conducted by Duc et al. (2006), B. indicus 
tolerated higher levels of NaCl (8%), similarly Metabacillus indicus 
isolated in this study also tolerated 7% NaCl. Identifying halotolerant 
PGPR that could tolerate high levels of salinity is imperative for 
improving crop productivity under severe stress.

3.6. The modulation of metabolites and 
enzymes in plants under saline stress

High salt concentration in the rhizospheric zone leads to osmotic 
stress and disrupts cell ion homeostasis due to the accumulation of Na+ 
and Cl− ions (Paranychianakis and Chartzoulakis, 2005). This interferes 
with the uptake of essential nutrients and water thereby inhibiting plant 
growth. It affects shoot growth as well as xylem and root architecture. 
The root architecture in sense, the biomass, root network length and 
root length density are significantly altered, amplifying the impacts of 
salinity in the plants (Machado and Serralheiro, 2017). Plants cope with 
this by secretion of metabolites like proline and upregulation of 
potassium uptake that regulate homeostasis. The proline is synthesized 
from L-glutamate which requires ATP and NADH. Additionally, 
oxidative stress due to generation of ROS alters various biochemical 
pathways by inhibiting the binding of enzymes with substrate (Singh 
et al., 2022). Both osmotic stress and ionic stress result in oxidative 
damage to membrane components and cell organelles especially, 
chloroplasts. Owing to this the chlorophyll content in the plants under 
saline stress is reduced (Fatma et al., 2021). This inhibits photosynthetic 
activity and protein production, followed by inactivation of critical 
enzymes in the ATP synthesis (Singh et al., 2022). Nucleic acids, the 
structural component of proteins and DNA are impaired, leading to 
seizure of replication or transcription process (Hasanuzzaman et al., 
2021). The chlorophyll degradation due to salinity is very high with the 
prolongation of stress (Hossain et al., 2017). In general, about 80% of the 
growth reduction at high salinity could be attributed to ethylene build 
up, resulting in reduction of leaf area, loss of chlorophyll content and 
decline in photosynthesis. The remaining 20% could be likely explained 
by a decrease in stomatal conductance and nutrient non-availability 
(Isayenkov and Maathuis, 2019). Ethylene is a plant hormone that 
regulates root hair, root growth, fruit ripening, leaf abscission, seed 
germination and ROS in the plant system (Fatma et  al., 2021). 
Consequently, these changes in the plant’s metabolism could reduce the 
growth and yield of crops. Hence, the alleviation of above impacts with 
the aid of microbiome could help the crop to tolerate the salinity and 
increase yield even under high saline environments.

3.7. Effect of isolated saline tolerant PGP 
bacterial strains on germination of Vigna 
mungo L. seeds under in vitro conditions 
(with 2% NaCl)

The results of in vitro experiment also revealed that when 
inoculated with the microbial isolates, the test plant’s growth 
improved significantly even under salt stress (Table 4). Significant 
difference in germination percentage, root length, shoot length and 
vigor index of Vigna mungo L. seeds was noted. Each isolate showed 
varying degrees of enhancement in crop growth attributes. Among 
the treatments, the highest germination percentage (88.5%) of Vigna 
mungo L. seeds was reported in S. marcescens inoculated treatment 
(T10) and the lowest was in (T2) uninoculated control (2% NaCl) with 
65.3%. Treatments inoculated with N. niacini (T4) and B. velezensis 
(T6) recorded 83.4 and 85.2% germination, respectively. Though 
germination percentage was high when inoculated with S. marcescens 
(T10), root length was observed to be high (6.8 cm) when inoculated 
with B. velezensis (T6). The highest vigor index of 1819 was recorded 
with B. velezensis (T6), followed by N. niacini (T4) inoculation (1785). 
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The uninoculated control (2% NaCl) had the lowest vigor index of 780 
followed by S. warneri (T5) inoculation (792). In an experiment 
conducted by Singh and Jha (2016b), S. marcescens (T10) inoculation 
improved wheat plant growth under salinity stress (150–200 mM) and 
effectively reduced the suppression of plant growth due to salt stresses. 
Under salt stress (2% NaCl), the lengths of shoots and roots in 
uninoculated plants were severely reduced, whereas their lengths 
increased significantly in the presence of PGPR. The availability of 
higher auxin concentrations as IAA by these inoculants is likely to 
be the cause of plants’ increased root length (Rajkumar et al., 2005; 
Chakraborty et  al., 2006). Shukla et  al. (2012) also revealed that 
inoculation of halotolerant PGPR strains isolated from Salicornia 
brachiata improved the groundnut crop growth in hydroponics 
experiment with 100 mM NaCl than the control. The shoot length 
(14.6 cm) was observed to be higher in S. marcescens and B. velezensis 
inoculated plants, than in the uninoculated control (8.2 cm). Similarly, 
tomato seeds coated with B. velezensis strain had higher plant height 
and stem diameter at 100 mmol L−1 NaCl than the control (Medeiros 
and Bettiol, 2021). In this study, K. radicincitans inoculated treatment 
recorded high shoot and root growth of 62.2 and 79%, respectively, 
than the uninoculated control. Similarly, Berger et al. (2013) also 
reported 80 and 50% increase in root and shoot growth of 5 weeks old 
tomato plants, emphasizing K. radicincitans significance as a strong 
PGPR for variety of crops.

3.8. Compatibility and antagonistic activity 
among the bacterial strains

The bacterial isolate in the microbial consortium must be able to 
proliferate in the presence of each other without hindering the growth 
and development of other microorganisms. The phytohormone develops 
a signaling network which mutually regulates several metabolic systems 
between the microorganisms (Patel et al., 2016). When isolates in a 
consortium have antagonistic relationships with each other, it makes the 
consortium unstable, and the intended function is not attained (Sarkar 
and Chourasia, 2017). Compatibility analysis of different PGPR cultures 
with each other in line streak assay revealed the isolates antagonistic 
activity against each other. The absence of an inhibition zone indicated 
that the isolates were compatible with each other. A zone of inhibition 
was observed when isolates B. circulans and B. oleronius were streaked 
indicating their high antagonistic activity. Isolates M. indicus, N. niacini, 
and S. marcescens were compatible with each other, since there was no 
inhibition zone observed between these three isolates. Similarly, 
B. velezensis, K. rhizophila, B. oleronius, and K. radicincitans had 
compatibility with each other. In secondary confirmation study, 
B. oleronius had shown inhibition zone with B. velezensis and 
K. radicincitans. In this study, B. circulans had antagonistic effect with 
all the other isolates. Abada et al. (2014) noted the presence of Permetin 
A, an antibiotic chemical in B. circulans culture filtrate that had activity 

A B C

D E F

G H I

FIGURE 3

Salinity tolerance of the bacterial isolates under different levels of NaCl (0% -control, 5%, 7%) A: SPP 2 - M. indicus, B: SPP 5 - N. niacini, C: SPP 6 - S. warneri, D: 
SPTT 3 - B. velezensis, E: SPTT 7 - B. circulans, F: SPTT 8 - K. rhizophila, G: SPTV 3 - B. oleronius, H: SPTVE 3 - S. marcescens and I: SPTVE 4 - K. radicincitans.
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against Gram negative bacteria. Hence, this could be the reason for 
incompatibility with other isolates. M. indicus, N. niacin and 
S. marcescens had synergism between them and were combined as 
Microbial consortium I. Similarly, Microbial consortium II was formed 
with B. velezensis, K. rhizophila, and K. radicincitans. These isolates were 
tested again for their compatibility by streaking them in triangular shape 

and no inhibition zone was observed between the isolates in both the 
consortia (Figure 4).

3.9. Effect of inoculation of microbial 
consortium on Vigna mungo L. under saline 
conditions

3.9.1. Inoculation of halotolerant microbial 
consortium on osmolytes and antioxidant enzymes 
in Vigna mungo L. leaves

The osmolyte, proline and stress enzymes such as catalase and SOD 
were lower in the microbial consortia inoculated treatments than the 
control. The lowest proline content of 10.45 μmol g−1 FW (I3D1) was 
recorded in the treatments inoculated with microbial consortium II 
(B. velezensis, K. radicincitans and K. rhizophila) at 2 kg ha−1 (Table 5). 
Concurrently, the control I1D1 followed by I1D2 had the highest proline 
contents with 13.86 and 12.87 μmol g−1 FW, respectively. The highest 
proline accumulation was observed in the uninoculated Vigna mungo 
L. seedlings, which was negated in treatments inoculated with the 
microbial consortium. The mean values ranged from 10.55 (I3) to 
13.36 μmol g−1 FW (I1) which indicates a significant reduction in stress 
in crops inoculated with microbial consortium. Microbial consortia and 
dosage level were found to have a significant impact on the proline 
content of Vigna mungo L. Especially, the inoculation of MC-II at 
2 kg ha−1 (24.6%) had the highest reduction in proline content than the 
MC-II at 4 kg ha−1 (17.2%). Plants generally accumulate osmoprotectants 
such as proline in response to salt stress, which aids in osmotic 
adjustment and prevents cellular oxidative damage (Shukla et al., 2012; 
Ilangumaran and Smith, 2017). The disruption in homeostasis under 
saline conditions could be caused by accumulation of sodium ions in 
large quantities. The siderophore producing potential of the MC-II is 
slightly higher than MC-I, which could have sequestered the sodium 
ions in the root surfaces similar to metals. In addition to that B. velezensis 
in MC-II was noted with high tendency to form mats of growth in the 
laboratory assays. This could have adsorbed the sodium ions there by 
reducing their availability around the root zone.

The control (I1D1) had higher catalase activity with 0.28 mM H2O2 
oxidized min−1 g−1 followed by I1D2 at 0.27 mM H2O2 oxidized min−1 g−1, 
compared to that of the other treatments (Table 5). This increase in the 
antioxidant enzymes could be due to the oxidative damage caused by 
ROS (Kang et al., 2014). The lower catalase activity of 0.25 mM H2O2 
oxidized min−1  g−1 was recorded in I3D1 and I3D2 (inoculated with 
MC-II). There was no statistically significant difference in catalase 
activity due to the dosage of the microbial consortium. Remarkably, 
there is significant difference in the accumulation of SOD between 

TABLE 4 In vivo evaluation of isolates for salinity stress alleviation in Vigna 
mungo L. under 2% NaCl.

Treatments Germination 
percentage 

(%)

Shoot 
length 
(cm)

Root 
length 
(cm)

Vigor 
index

T1 – Absolute 

control

98.3 a* 14.80 a* 7.90 a* 2,270 a*

T2 – (2% NaCl) 65.3 j* 8.20 h* 3.80 f* 780 h*

T3 – (M. 

indicus + 2% NaCl)

70.1 g* 12.60 e* 7.40 a* 1,225 e*

T4 – (N. 

niacini + 2% NaCl)

83.4 d* 14.10 b* 4.90 e* 1785 c*

T5 – (S. 

warneri + 2% 

NaCl)

66.0 i* 8.50 g* 3.50 g* 792 h*

T6 – (B. 

velezensis + 2% 

NaCl)

85.2 c* 14.60 a* 6.80 b* 1819 b*

T7 – (B. 

circulans + 2% 

NaCl)

78.0 e* 13.80 c* 3.20 h* 1,537 d*

T8 – (K. 

rhizophila + 2% 

NaCl)

71.6 f* 11.08 f* 5.10 d* 1,158 f*

T9 – (B. 

acidicola + 2% 

NaCl)

68.0 h* 8.90 g* 5.90 c* 823 g*

T10 – (S. 

marcescens + 2% 

NaCl)

88.5 b* 14.60 a* 5.30 d* 1751 c*

T11 – (K. 

radicincitans + 2% 

NaCl)

75.1 e* 13.30 d* 6.80 b* 1,508 d*

Mean 77.2 12.23 5.51 1,404

Values that do not share similar letters denote statistical significance; * denote significance at 
p < 0.05.

TABLE 5 Effect of halotolerant microbial consortia dosage on stress alleviation in Vigna mungo L. under salinity.

Treatments Proline (μmol g−1 FW) Catalase (mM H2O2 oxidized 
min−1 g−1)

Superoxide dismutase (U g−1 
FW)

D1 D2 Mean D1 D2 Mean D1 D2 Mean

I1 (Control) 13.86 d* 12.87 d* 13.36 0.28 c* 0.27 c* 0.28 3.24 b* 3.25 b* 3.25

I2 (MC-I) 12.48 c* 12.16 b* 12.32 0.26 b* 0.26 b* 0.26 3.22 b* 3.19 a* 3.21

I3 (MC-II) 10.45 a* 10.65 a* 10.55 0.25 a* 0.25 a* 0.25 3.20 a* 3.17 a* 3.19

Mean 12.26 11.89 12.08 0.26 0.26 0.26 3.22 3.20 3.21

I1 – Control; I2 – Microbial consortium I; I3 – Microbial consortium II and D1−2 kg of bioformulation per ha; D2−4 kg bioformulation per ha (Values that do not share similar letters denote 
statistical significance; * denote significance at p < 0.05).
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inoculated and uninoculated treatments. The lowest SOD content of 
3.17 U g−1 FW was recorded in crops inoculated with MC-II (I3D2). The 
control I1D2 followed by I1D1 had higher SOD content with 3.25 and 
3.24 U g−1 FW, respectively. Similar investigation by Chanratana et al. 
(2019) on salt stress alleviation in tomato using Methylobacterium 
oryzae recorded higher catalase and SOD activity in untreated plants 
than the inoculated. These antioxidants are either up-regulated or down-
regulated to reduce abiotic stress depending on the plant and bacteria 
species. ROS (O2

−, 1O2, OH− and H2O2) production was reported to 
be generated in plants under different types of environmental stresses, 
such as high or low temperature, salinity, drought, nutritional 
inadequacy, and pathogen attack (Singh et  al., 2019). The ethylene 
signaling modulates salinity responses largely via regulation of 
ROS-generation in plant system (Zhang et  al., 2016). The ACC 
deaminase activity by the microbial consortia reduces the percussor of 
ethylene leading to less ROS production. Owing to this the antioxidant 
enzymes, catalase and SOD activity have been reduced in crops 

inoculated with microbial consortia. Due to high ACC deaminase 
activity potential of MC-II (Table 2), the reduction of antioxidants in 
crops inoculated with MC-II is significantly lower than MC-I inoculated.

3.9.2. Effect on growth attributes of Vigna mungo 
L. due to inoculation of halotolerant microbial 
consortium under saline condition

Legume crops are sensitive to soil salinity, as the external NaCl 
salinity rises, their ability to prevent Na from entering the 
photosynthetically active leaves decreases rapidly (Arora et al., 2020). 
In the present study, all the growth traits increased significantly in the 
microbial consortium applied treatments than the control. The root 
biomass and shoot biomass of Vigna mungo L. were found to be the 
highest in the treatment I3D2 with the values of 9.09 and 23.39 g pot−1, 
respectively (Figure  5). The least values for both the root (8.14 g 
pot−1) and shoot biomass (20.92 g pot−1) were recorded in I1D1. The 
presence of NaCl leads to specific ion toxicity that reduces the fresh 
and dry weight of control plants and is linked to reduced 
photosynthetic rate (Ambede et al., 2012). The plant height (29.10 cm) 
and dry matter production (7.80 g pot−1) were the highest in I2D2 and 
I3D2, respectively. The mean values of the plant height in the 
treatments I1, I2, and I3 were noted as 27.1, 28.9, and 28.4 cm, 
respectively. Growth attributes were significantly increased by the 
inoculation of microbial consortia. This increased shoot and root 
growth of inoculated plants could be attributed to phytohormone 
synthesis and bacterial N2 fixation, which led to increased water and 
nutrient uptake (Shukla et al., 2012). The promotion of shoot length, 
root length and germination percentage under salinity were evident 
in the in vivo studies, where, B. velezensis, S. marcescens, 
K. radicincitans, B. niacini, M. indicus, and K. rhizophila had 
significantly higher potential compared to other strains. Owing to 
this, the microbial consortia with these strains could have resulted in 
better growth attributes than uninoculated control. Similarly, 
halotolerant PGPR consortia with Pseudomonas fluorescens and 
Acinetobacter sp. exhibited a substantial increase in plant height by 
15.98 and 26.82 per cent, respectively, than uninoculated control 
(Yasin et al., 2018). The MC-II (B. velezensis, K. radicincitans and 

FIGURE 4

Compatibility assay between the bacterial isolates in the halotolerant microbial consortia. The lack of inhibition zone between two streaks indicate 
compatibility.

FIGURE 5

Effect of halotolerant microbial consortia dosage on growth of Vigna 
mungo L. under salinity. I1 – Control; I2 – Microbial consortium I; I3 – 
Microbial consortium II and D1-2 kg of bioformulation per ha; D2-4 kg 
bioformulation per ha. Bars that do not share similar letters denote 
statistical significance. (*denote significance at p < 0.05).
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K. rhizophila) inoculated at high dosage (4 kg ha−1) had significantly 
higher dry matter production (11.3%) and mean plant height (4%) 
than the control (Figure 5). The high ammonia and IAA synthesis by 
MC-II have resulted in increment of the growth rate of Vigna mungo 
L. even under saline conditions. Significant reduction in shoot 
biomass of control plants due to retardation of plant growth in 
uninoculated treatments was also observed in earlier studies 
(Rahman et al., 2017; Borlu et al., 2018; Hassan et al., 2018). The 
ability of B. velezensis and K. rhizophila with high ACC deaminase 
activity may have supported root growth by lowering the ethylene 
level in plants under saline conditions.

3.9.3. Physiological parameters of Vigna mungo L.
The physiological parameters such as chlorophyll content, 

photosynthetic rate and stomatal conductance were found to 
be significantly higher in the MC inoculated treatments than the control 
(Figure  6). Treatment I3D2 followed by I3D1 had higher chlorophyll 
content of 26.95 and 26.10%, respectively compared to that of the 
control (I1D1 and I1D2). Subsequently, the lowest chlorophyll content of 
19.88% was recorded in I1D2. Our findings are consistent with studies of 
Vimal and Singh (2019), who reported that PGPR inoculation increased 
chlorophyll content even under salinity stress. The prevention of nucleic 
acid damage in the chloroplast through reduction in ROS production 
by the inoculation of microbial consortium has led to increase in 
chlorophyll content in the active leaves. This in turn reflected in higher 
photosynthetic rate, since the amount of chlorophyll in a plant is directly 
proportional to its photosynthetic activity (Sapre et al., 2022). Treatment 
I3D1 followed by I3D2 had higher photosynthetic rate of 15.69 and 
15.45 μmol CO2 m−2 s−1, respectively, compared to that of the control 
(I1D1 and I1D2). The least photosynthetic rate of 10.51 μmol CO2 m−2 s−1 
was recorded in I1D2. PGPR isolates with ACC deaminase activity 
(M. indicus, S. marcescens, B. velezensis, K. radicincitans, and 
K. rhizophila) has been found to prevent reduction in chlorophyll 
content, and there by maintaining the photosynthetic rate of plants 
under saline stress (Habib et al., 2016). However, treatment I3D1 followed 
by I3D2 had higher stomatal conductance with 0.85 and 0.74 μmol H2O 
m−2 s−1, respectively, compared to that of the control (I1D1 and I1D2). The 
higher stomatal conductance in active leaves is an adaptive mechanism 
of plants to overcome the salt stress. This could be made possible by 
maintaining the turgor pressure in the guard cells. The siderophore 
production by the halotolerant PGPR increases the iron and potassium 
availability which are key nutrients in photosynthetic activity (Chauhan 
et al., 2022). Owing to this the sodium and potassium balance is attained 
in the plants. The inoculation of MC- II at 2 kg ha−1 (B. velezensis, 
K. radicincitans, and K. rhizophila) increased photosynthetic rate and 
stomatal conductance by 0.3 and 1.3 times, respectively, as compared to 
the control. This was supported by the research conducted by Bayuelo-
Jimenez et al. (2012), who found that neither stomatal conductance nor 
photosynthetic activity was affected by salt stress due to high IAA 
production when inoculated with salt tolerant PGPRs.

3.9.4. Yield attributes of Vigna mungo L.
The negative effects of salinity due to EC in soil (2.62 dS m−1) and 

irrigation water (2.5 dS m−1) have resulted in reduction of yield and 
protein quality in Vigna mungo L. The plant yield (3.87 g pot−1) and 
pods per plant (11.55) were highest in I3D2 and I3D1, respectively. The 
treatments applied with MC-II had a significantly higher number of 
pods per plant (25.5%) and grain yield (45%) than the control 
(Figure  7). Similar results were obtained by Saravanakumar and 

Samiyappan (2007), where pods count and protein content in peanut 
crop was increased upon inoculation with Pseudomonas fluorescens 
under saline stress. The mean values of the yield in the treatments I1, I2, 
and I3 were 2.60, 3.11, and 3.77 g pot−1, respectively. This indicates a 
significant improvement in crop yield due to microbial consortium 
inoculation that alters the nutritional environment through production 
of plant growth regulators (Patel et al., 2021). Among the treatments 
inoculated with microbial consortium, MC-II inoculated (B. velezensis, 

FIGURE 6

Effect of halotolerant microbial consortia dosage on physiological 
attributes of Vigna mungo L. under salinity. I1 – Control; I2 – Microbial 
consortium I; I3 – Microbial consortium II and D1-2 kg of bioformulation 
per ha; D2-4 kg bioformulation per ha. Bars that do not share similar 
letters denote statistical significance. (* and ** denote significance at 
p < 0.05 and p < 0.01, respectively).
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K. radicincitans, and K. rhizophila) had higher yield than MC-I 
(M. indicus, S. marcescens, and N. Niacini) inoculated. This is a direct 
indicator of high PGP potential of MC-II in comparison to MC-I.

Similarly, high protein content was recorded in I3D1 and I3D2 (MC-II 
inoculated treatments) with the corresponding values of 20.20 and 
19.99%, respectively. Protein content in the seeds was significantly 
higher when inoculated with MC-II. The presence of more growth-
promoting biochemicals in PGPR aids in the reduction of impacts 
caused by salt stress (Nadeem et al., 2016). Kavita and Alka (2010) stated 
that saline stress reduces N partitioning and fixation leading to lower 
protein accumulation in the seeds of legume plants. In line with this, 
seeds from the control treatment had low protein than microbial 
consortium inoculated treatments. The microbial consortia application 
improves nitrogen use efficiency, which in turn favored the accumulation 
of protein in seeds. Similarly, compared to the un-inoculated control, 
co-inoculation of Bacillus sp. and Arthrobacter sp. significantly increased 
protein content in the maize even under salt stress (100 mM NaCl; 
Hassan and Bano, 2015). The inoculation of PGPR with ACC deaminase 
activity on maize showed 3.3 folds increase in root length at EC 9 dS m−1 
and shoot lengths increased by 2.3 folds over uninoculated control 
(Kausar and Shahzad, 2006). Inoculation of maize with salt tolerant 
PGPR and addition of organic amendments like poultry manure, cow 
dung and spent mushroom substrate has improved crop growth and 
fertility status of the soil in saline ecosystem. Further, the inoculation 
also reduced the sodium uptake by the crop thereby reducing the effect 
of salinity (Upadhyay and Chauhan, 2022).

3.10. Mechanism behind the improvement in 
crop growth through halotolerant PGPR 
inoculation and way forward

Several reports have shown that halotolerant PGPRs effectively 
improve the growth of various agricultural crops under salinity 
stress conditions (Qin et al., 2016; Singh and Jha, 2016a; Etesami 
and Noori, 2019; Orhan and Demirci, 2020). Mechanisms by which 
they impact growth are (i) triggering plant antioxidant defense by 
upregulating vital enzymes that scavenge excess ROS, (ii) alleviating 
nutrient deficiency by fixing atmospheric nitrogen and producing 
ammonia, solubilizing P, producing siderophores for Fe, Zn and Ln 
uptake, (iii) increasing the uptake of selected ions for maintaining 
a high K+/Na+ ratio (John and Lakshmanan, 2018), (iv) decreasing 
plant Na+ accumulation by excreting exopolysaccharide to bind 
cations (especially Na+) in roots and prevent their translocation to 
leaves, and (v) reduction in ROS production by counteracting 
ethylene synthesis (Figure 8). Probably, different mechanisms are 
involved in each interaction that leads to plant growth stimulation 
under saline conditions. The prevention of nucleic acid and 
chlorophyll damage by quenching the ROS plays a major role in 
improving the salt tolerance in the crops. Nevertheless, the 
variation in chloroplast structure and SOD activity among the 
different plants interferes with the PGPR ability in stress alleviation. 
Hence, a bacterial strain that stimulates the growth of a particular 
plant species in the presence of salt may not cause similar effect in 

FIGURE 7

Effect of halotolerant microbial consortia dosage on yield quantity and quality of Vigna mungo L. under salinity. I1 – Control; I2 – Microbial consortium I; I3 
– Microbial consortium II and D1-2 kg of bioformulation per ha; D2-4 kg bioformulation per ha. Bars that do not share similar letters denote statistical 
significance. (* and ** denote significance at p < 0.05 and p < 0.01, respectively).
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other plants. Furthermore, many intricate mechanisms are involved 
when endophytes come into the picture (Santoyo et al., 2016; Khan 
et al., 2017). The endophyte, Burkholderia phytofirmans enhanced 
the growth of six switchgrass cultivars out of the eight that were 
tested (Khan et al., 2017). Inoculation with this strain was found to 
induce wide-spread changes in gene expression in the host plant, 
including transcription factors that are known to regulate the 
expression of some plant stress factor genes (Lara-Chavez et al., 
2015). It is likely that changes in plant gene expression could also 
be induced by the halotolerant consortium used in this study to 
inoculate Vigna mungo L. Hence further investigation of the 
genomic interaction with the plants is in process. This would have 
a significant influence in identifying microbial inoculums that 
guarantees the successful cultivation of crops under variety of 
stressful environments.

4. Conclusion

The current study revealed the plant growth-promoting 
attributes of halotolerant PGPR on Vigna mungo L., grown under 
saline conditions. Among the nine isolates, S. marcescens, 
B. velezensis, K. rhizophila, and K. radicincitans improved 
germination percentage, vigor index, shoot and root length of Vigna 
mungo L. In the pot study, Vigna mungo L. inoculated with microbial 
consortia (K. rhizophila, B. velezensis, and K. radicincitanas – 
MC-II) @ 4 kg ha−1 exhibited higher concentration of chlorophyll, 
photosynthetic rate and stomatal conductance. The poor leaf 
osmolyte (proline) content and antioxidant enzymes (catalase and 
superoxide dismutase) activities indicated lesser salt stress in 
inoculated plants over uninoculated control. Consequently, 
significant increase in growth and yield of Vigna mungo L. in soils 

salinized by long term irrigation of paper and pulp mill effluent was 
observed. Therefore, halotolerant microbial consortia, MC-II 
having the potential to induce salt stress tolerance can enhance crop 
growth. However, further research must be  oriented towards 
improving the host plant-microbial compatibility to increase the salt 
tolerance and productivity of wide variety of crops. Utilization of 
biostimulants, nano-particles and bio-amendments along with 
PGPR is another emerging area of research which has the potential 
to improve the crop microbe association under saline conditions.
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The Glutamicibacter group of microbes is known for antibiotic and enzyme 
production. Antibiotics and enzymes produced by them are important in the 
control, protection, and treatment of chronic human diseases. In this study, the 
Glutamicibacter mysorens (G. mysorens) strain MW647910.1 was isolated from 
mangrove soil in the Mangalore region of India. After optimization of growth 
conditions for G. mysorens on starch casein agar media, the micromorphology of 
G. mysorens was found to be spirally coiled spore chain, each spore visualized as an 
elongated cylindrical hairy appearance with curved edges visualized through Field 
Emission Scanning Electron Microscopy (FESEM) analysis. The culture phenotype 
with filamentous mycelia, brown pigmentation, and ash–colored spore production 
was observed. The intracellular extract of G. mysorens characterized through GCMS 
analysis detected bioactive compounds reported for pharmacological applications. 
The majority of bioactive compounds identified in intracellular extract when 
compared to the NIST library revealed molecular weight ranging below 1kgmole−1. 
The Sephadex G-10 could result in 10.66 fold purification and eluted peak protein 
fraction showed significant anticancer activity on the prostate cancer cell line. 
Liquid Chromatography–Mass Spectrometry (LC–MS) analysis revealed Kinetin-9-
ribose and Embinin with a molecular weight below 1 kDa. This study showed small 
molecular weight bioactive compounds produced from microbial origin possess dual 
roles, acting as antimicrobial peptides (AMPs) and anticancer peptides (ACPs). Hence, 
the bioactive compounds produced from microbial origin are a promising source of 
future therapeutics.

KEYWORDS

anticancer, chromatography, FESEM, Glutamicibacter mysorens, mangrove soil, microbial 
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Introduction

The environmental conditions in a particular ecosystem play an 
important role in determining biodiversity composition. High tides, 
hypersaline water, significant temperature fluctuations, and optimal 
flora and fauna diversity are just a few of the distinctive environmental 
characteristics of the mangrove ecosystem (Karthik et  al., 2020). 
Microbes can better adapt to any extreme environment in these 
vulnerable situations. The isolation of bioactive chemicals will be greatly 
aided by this habitat (Alongi, 2015).

Actinomyces word derived from the words “atkis” which means “a 
ray” and “mykes” which means “fungi” are filamentous, Gram–positive 
bacteria distinguished by different coloration and spore production at 
maturity (Chater, 2006). Actinomyces share the characteristics of bacteria 
and fungi. The Actinomyces group’s genetic and environmental flexibility 
facilitates the development of worthwhile bioactive substances. 
Actinomyces contribute more in enzyme production to pharmacological 
industries for the treatment, and prevention of various ailments 
(Chater, 2013).

The pharmaceutical industry is constantly looking for drugs with 
innovative structures and new modes of action as a result of the rise 
in antibiotic resistance. There are still many environmental niches to 
investigate as potential sources of antibiotics (Karthik and Kalyani, 
2021, 2022). One such Actinomyces group Glutamicibacter genus is 
broadly utilized in the control, treatment, and prevention of diseases 
through the production of bioactive compounds, widely used as 
antibiotics (Phuong and Diep, 2020), anti-tumor, anti-tubercular 
(Khusro et al., 2020), anti-helminthic, anti-diabetic, anti-oxidant from 
an exo-polysaccharide (Xiong et al., 2020; Fukuda and Kono, 2021; 
Hidri et al., 2022), anti-angiogenic, growth hormones (Qin et al., 2018; 
Hidri et al., 2022), immuno-suppressors, neuritogenic (Tang et al., 
2021), anti-inflammatory (Hui et al., 2021), anti-algal (Agamennone 
et al., 2018), anti-fungal with enzymatic source (Mihooliya et al., 2017; 
Asif et al., 2020), anti-proliferative (Baig et al., 2021), anti-parasitic, 
anti-malarial, anti-viral, anti-bacterial and many more biological 
applications (Nishioka and Katayama, 1978; Renner et  al., 1999; 
Fernebro, 2011; Janardhan et  al., 2014; Desouky et  al., 2015; 
Abd-Elnaby et al., 2016).

The various species of genus Glutamicibacter shown huge biological 
importance as detailed above. Whereas G. creatinolyticus shown 
resistance to antibiotics as well as heavy metals (copper, arsenic, 
cadmium, cobalt, zinc, and chromium; Santos et  al., 2020). The 
G. arilaitensis produced pink colored pigment and coprophorphyrin 
binds zinc and regulates in cheese rinds (Cleary et al., 2018). Another 
Gluamicibacter sps. Possessing genes that regulates the growth of plant 
under saline conditions, cold adaptation, efficient degradation and 
chitinase enzyme producing genes which help in control the growth of 
pathogenic bacteria (Borker et  al., 2021; Fu et  al., 2021). While 
G. nicotianae involved in heavy metals degradation (Wang et al., 2021). 
The G. mishrai and halophytocola isolated from Andaman sea sample. 
Genes involved in cell wall biogenesis, replication, recombination, repair 
mechanism and amino acid metabolism along possess important role in 
physiology and behavior of insects (Qin et al., 2018; Das et al., 2020; 
Wang W, et al., 2022).

Antimicrobial peptides (AMPs) are peptides with antimicrobial 
properties. In multicellular organisms, these positively charged host 
defense molecules, or AMPs, serve as the initial line of protection. 
Many AMP’s from both prokaryotes and eukaryotes have been 
categorized (Brandenburg et al., 2012; Desriac et al., 2013). Several 

genera of AMP’s -producing microorganisms have been discovered, 
including bacteriocins produced by Leuconostoc gelidum, Enterococcus 
faecium, and other species (Juturu and Wu, 2018; Khodaei and Sh, 
2018). Microcins A and B, antimicrobial bacteriocins derived from 
Streptomyces pluripotens, have been shown to be  effective against 
Escherichia coli, Salmonella typhimurium, Staphylococcus aureus, and 
Listeria monocytogenes (Collin and Maxwell, 2019; Kurnianto et al., 
2021).These AMPs have been found to be effective in the treatment of 
a broad range of ailments (Sugrue et al., 2019; Karthik et al., 2020; 
Khadayat et al., 2020; Zhang et al., 2020). AMP’s are peptides derived 
from microbes that exhibit antimicrobial activity. AMPs have been 
shown to target cell walls or cell membranes, permitting them to 
penetrate cells and affect vital components while inhibiting growth 
(Desriac et al., 2013; Wang et al., 2020). As a result of their target-
specific activity against resistant microbial species, AMPs are thought 
to be anti–microbial compounds.

Peptides with selective action and non-selective activity, i.e., those 
that have activity against bacteria, cancer cells, and healthy cells, can 
be  categorized as having antitumor activity in Hoskin and 
Ramamoorthy’s investigations (Hoskin and Ramamoorthy, 2008).The 
peptides have antibacterial and anticancer properties, but not against 
normal cells. Cecropins, buforins, and magainins, among other peptides, 
have demonstrated anticancer effects without harming normal 
eukaryotic cells (Cruciani et al., 1991; Cho et al., 2009). These studies go 
into great detail and provide a compelling case for the fact that many 
peptides have biological activity in a variety of dimensions and 
properties and can possess dual activity as AMPs and ACPs. Therefore, 
we are searching for mangrove soil Actinomyces in the Mangalore region 
to isolate and characterize bioactive peptides that can function as both 
AMPs and ACPs.

In our previous study, we reported the detailed procedures for 
isolation, microscopic and macroscopic characters, identified as 
Glutamicibacter mysorens with GenBank accession number 
MW647910.1, the intracellular protein; extraction, estimation, along 
with their potential antimicrobial activity was observed against test 
pathogens Salmonella typhimurium (ATCC23564), Staphylococcus 
aureus (ATCC6538P),Bacillus cereus (ATCC10876), Proteus vulgaris 
(ATCC13315), and Pseudomonas aeruginosa (ATCC9027) cultures. 
The protein was characterized through LCMS and SDS PAGE 
techniques and small peptides were detected (Karthik and 
Kalyani, 2021).

In this study, the optimization of suitable growth media for 
G. mysorens and its micromorphology were analyzed using FESEM. The 
isolation of intracellular extract of G. mysorens was characterized 
through GCMS and LCMS. These GCMS studies revealed a large 
number of small bioactive compounds that possess significant biological 
activities are discussed. Whereas the LCMS studies resulted in the 
detection of low molecular weight Kinetin-9-ribose and Embinin 
showed significant anti-tumor potential against PC3 cell line in 
comparison to standard cisplatin drug.

Materials and methods

Mangrove soil collection

Soil samples were collected from Mangroves soil in Mangalore, 
Dakshina Kannada. Jeppinamogaru (JPMU) is located at 12°50′31.4”N 
74°51′36.4″E. At the collecting site, the soil was brown with a powdery 
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texture, and environmental parameters; the temperature of 21°C and pH 
of 7.2 was recorded. The collected samples were shifted to the Molecular 
Research Laboratory (MRL), Department of Microbiology, Jnana 
Kaveri, Mangalore University, India, in aseptic containers. To prevent 
fungal and bacterial growth, the soil sample was pre-heated for 2 h at 
60°C prior to serial dilution and isolation (Mohan et al., 2013; Sridevi 
et al., 2015; Sapkota et al., 2020).

Cultural characteristics

The isolated G. mysorens strain was subjected to FESEM analysis at 
different objectives distances; spore structure (1 and 2 μm) mycelial 
structure (10 and 20 μm) to visualize the complete micromorphological 
structures. The sequencing and identification of G. mysorens are 
reported by Karthik and Kalyani (2021).

Intracellular extract

The G. mysorens strain was grown in SCN broth for 7 days at 
30 ± 2°C with continuous shaking at 100 rpm. Centrifugation at 
7000 rpm for 8 min separated the cultured biomass cells, which 
were then washed twice using phosphate-buffered saline devoid of 
Mg2+ and Ca2+ and centrifuged again. The cells were then 
re-suspended in 10 ml of chilled acetone for 5 min before being 
centrifuged at 7,000 rpm for 8 min. The intracellular extract was 
incubated for 2 min with 1.0 ml of 1% SDS after the traces of 
acetone was removed with a nitrogen stream (Bhaduri and 
Demchick, 1983). This intracellular extract was characterized using 
spectrometric (LCMS, GCMS) tools along with a comparison to the 
NIST library.

Gas chromatography-mass spectroscopic 
analysis

The following equipment was assessed for the GC–MS studies of 
G. mysorens intracellular extract: a PerkinElmer Clarus 680 Gas 
Chromatograph and a PerkinElmer Clarus SQ 8C Mass Spectrometer. 
A PerkinElmer Elite-5MS standard column with dimensions of 30 m 
long x 0.250 mm inner diameter x 1 micron (60–350°C) is utilized in the 
equipment. With an equivalence ratio of 10:1, the injected volume of 2 μl 
was completely run for 26.6 min. Helium is used as the carrier gas, with 
a flow rate of 2 ml/min. The source temperature was set to 230 degrees 
Celsius, and the inlet temperature was set to 250 degrees Celsius. The 
oven temperature was initially set to 80°C with a hold time of 2.0 min; 
ramp1 was set to 10.0 /min to 150°C with a hold time of 1.0 min; and 
ramp2 was set to 15.0 /min to 250°C with a hold time of 10.0 min. The 
components were identified by comparing them to those contained in 
the NIST computer library, which was linked to the GC–MS apparatus, 
and the results were published.

Gel filtration

The microbial proteins were purified using SephadexG-10. For 5 h, 
the Sephadex G-10 was allowed to swell in excess of dH2O in a boiling 
water bath. After decanting the gel to remove fines, it was equilibrated 

with 0.05 M sodium phosphate buffer, pH 7.0. Under gravity, the gel was 
packed into a 1.0 cm × 110.0 cm column. At a flow rate of 10 ml/h, the 
column was standardized with two-bed volumes of phosphate buffer of 
concentration 0.05 M, pH 7.0. The 20 mg of isolate protein sample was 
loaded onto the gel, eluted with 0.05 M sodium phosphate buffer, pH 7.0, 
and 2.0 ml fractions were collected and further analyzed (Bharadwaj 
et al., 2018).

Liquid chromatography-mass 
spectrophotometer

The Sephadex G-10 peak fraction was analyzed using LC–MS, 
model Synapt G2, an analytical chemistry technique that combines the 
physical separation capabilities of liquid chromatography with mobile 
phases A: 0.1% Formic acid in Water and mobile phase B: 0.1% Formic 
acid in Acetonitrile with the mass analysis capabilities of mass 
spectrometry (MS) an Agilent 1100 LC system with a vacuum degasser, 
A BEH C18, 50 mm × 1.0 mm, 1.7 μm C18 column (Waters, 
United  States) was used to achieve chromatographic separation in 
comparison to the NIST computer library.

MTT assay

Prostate cancer cells (PC3) procured from NCCS Pune; were 
harvested in T-25 flasks for the in vitro studies. PC3 cells were 
trypsinized and aspirated into a 5 ml centrifuge tube. After centrifugation 
at 300 rpm for 10 min, the cell pellet was separated. The cell count was 
adjusted using DMEM HG medium so that 200  μl of suspension 
contained approximately 10,000 cells. In an ESCO model CLM170B-
8-UV CO2 incubator, a 200 μl cell suspension was added to each well of 
the 96-well microtiter plate, and the plate was incubated for 24 h at 37°C 
and 5% CO2 atmosphere. After 24 h, the spent medium was aspirated. 
In each well, 200 μl of various test drug concentrations and the standard 
drug cisplatin were added. After that, the plates were incubated for 24 h 
at 37°C and 5% CO2. The drug-containing media was aspirated after the 
plate was removed from the incubator. The plate was then incubated for 
3 h at 37\u00B0C and 5% CO2 atmosphere with 200  μl of medium 
containing 10% MTT reagent in each well to achieve a final 
concentration of 0.5 mg/ml. The culture medium was completely 
removed without disturbing the formed crystals. To solubilize the 
formed formazan, the plate was gently shaken in a gyrator shaker with 
100 μl of solubilization solution (DMSO). The absorbance was read at 
570 and 630 nm using the microplate reader of a Multiskan sky 
ELISA spectrophotometer.

Results and discussion

The Mangrove region in Jeppinamogaru located at Mangalore, 
India, served as a suitable source for isolating G. mysorens strain. The 
G. mysorens strain received a GenBank accession number MW647910.1 
and was isolated and their biological activities were reported by Karthik 
and Kalyani (2021). In continuation to previous work; initially, the 
G. mysorens strain was observed for morphological characteristics after 
performing FESEM analysis. Also, biologically important chemical 
components present in the intracellular extract of the G. mysorens strain 
were characterized using GCMS and a partially purified protein sample 
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was characterized using LCMS and have a shown significant number of 
bioactive compounds.

The cultural characteristics of mangrove adapted G. mysorens 
strain upon growth on starch casein nitrate agar medium exhibited as 
white colored filamentous mycelia and at maturity showed 
ash-colored spores. Production of brown pigmentation on SCNA 
media was observed. Further microscopic analysis showed Gram 
staining positive. The isolate when further subjected to FESEM 
microscopic studies revealed mycelial morphological characteristics 
of the genus Glutamicibacter. Further, the culture showed filamentous 
mycelia possessing spirally coiled spore chains. Each spore is 
visualized as an elongated cylindrical hairy appearance with curved 
edges as shown in Figure 1. The G. mysorens when grown on different 
Actinomyces-specific media have shown distinctive phenotypic 

characteristics as listed in Table 1. Excellent growth was achieved on 
starch casein nitrate agar, whereas good growth was seen on, glucose 
leucine agar, yeast extract agar, and nutrient agar media. Moderate 
growth was seen on sucrose peptone agar, and malt extract agar.
Whereas in another study, lysogeny agar was chosen as the best 
growth media for G. mysorens according to Wang Y. et al. (2022) and 
Deb et al. (2020).

In our previous report, the G. mysorens strain when subjected to 
simple and rapid disruption followed according to the method of 
Bhaduri yielded significant intracellular extraction in buffer (Bhaduri 
and Demchick, 1983). A 20 mg of protein was loaded on top of the 
column and 2 ml fractions were collected and about 2.5 times (216 ml) 
bed volumes of protein elutions were collected. The absorbance of 
protein fractions was checked at 280 nm and graphs were plotted. The 

A

C

E F

G H

D

B

FIGURE 1

Cultural characteristics of Glutamicibacter mysorens. (A) Front view of isolate. (B) Rear view of isolate. (C) Mycelia observations under FESEM. (D) Phase  
contrast microscopic analysis. (E,F) Mycelia along with spore analysis under FESEM. (G,H) Spore structure analysis using FESEM.
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X-axis indicates fraction numbers and absorbance plotted on Y-axis 
for each fraction collected from Sephadex G-10 column 
chromatography as showed in Figure  2. This column separation 
chromatography purifies 10.66 folds as detailed in Table 2. The GCMS 
studies depicted the presence of 155 bioactive molecules present in 
the intracellular extract of G. mysorens and the obtained elution 
profile is as shown in Figure 3. Whereas GCMS analysis depicted the 
highest probable compounds such as Cyclopentane undecanoic acid, 
methyl ester 22.7% and Glutaric acid, 2,2-dichloroethyl 
3-fluorophenyl ester 34% probability as shown in Figure 4. All the 
compounds detected through GCMS showed low molecular weight 
below 1Kgmol−1with various pharmacological applications. The 
majority of bioactive compounds have shown antimicrobial, enzyme 
inhibitors, activators, antioxidants, anti-inflammatory, anticancer, 
agrochemical, insecticide, anti-obese, and many other applications as 
listed in Table 3. The intracellular extract of G. mysorens had shown 
potent antimicrobial activity to a broad spectrum of test pathogens 
such as Salmonella typhimurium (ATCC23564), Staphylococcus aureus 

(ATCC6538P), Pseudomonas aeruginosa (ATCC9027), Proteus 
vulgaris (ATCC13315), and Bacillus cereus (ATCC10876) cultures. In 
order to focus further on prominent bioactive compounds the 
intracellular extract was partially purified using a Sephadex G-10 
column. The eluted peak fraction upon spectrophotometry and 
electrophoretic analysis revealed the presence of peptide and is 
reported in our previous article (Karthik and Kalyani, 2021). A 
similar study was illustrated on 41 different Actinomyces species and 
majority isolates shown antagonist activity against Staphylococcus 
aureus, Escherichia coli and Klebsiella pneumoniae (Sapkota 
et al., 2020).

One of the previous study; extracellular protein of Actinomyces are 
actively producers for enzyme ligno cellulase (Clark Mason et al., 1988). 
The eluted peak fraction for proteins of G. mysorens has shown 
significant activity for different concentrations 50 μg of protein fraction 
showed 24% antiproliferative activity against prostate cancer PC3 cell 
line, for 100 μg 35% antiproliferative activity was observed, for 150 μg 
47% antiproliferative activity was observed and for 200 μg 56% 
antiproliferative activity was observed in comparison with standard 
drug cisplatin at 5 μg showed 47% antiproliferative activity as showed in 
Figure 5.

Similar studies reported that other bioactive compounds 
isolated from the genus Glutamicibacter have been characterized for 
antimicrobial activity (Phuong and Diep, 2020; Xiong et al., 2020). 
In another study reported that plant-growth promoting bioactive 

TABLE 1 Phenotypic characteristics of Glutamicibacter mysorens on 
different media.

Media Growth Front 
view

Rear 
view

Pigment Spores

Sucrose 

peptone 

agar

Moderate Cream Creamish 

white

− No

Glucose 

luecine 

agar

Good Cream White − Black

Nutrient 

agar

Good Creamish Creamish − −

Malt 

extract 

agar

Moderate Creamish 

white

Creamish 

white

− No

Yeast 

extract 

agar

Good Cream Cream − White

Starch 

casein 

nitrate 

agar

Excellent White ash Brown + Grey

FIGURE 2

Elution profile of Glutamicibacter mysorens by using Sephadex G-10 
column chromatography.

TABLE 2 Purification chart of Glutamicibacter mysorens intracellular 
protein.

Sample Protein 
(mg/ml)

Fold purification % yield

Crude protein 2.0 1 100

Gel filtration 

(Sephadex G-10)

0.1875 10.66 9.38

FIGURE 3

Elution profile of GCMS analysis for Glutamicibacter mysorens 
intracellular extract.
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compounds was produced by Glutamicibacter halophytocola coastal 
region of China (Qin et al., 2018). Whereas another study describes 
the anti-fungal efficiency of the Glutamicibacter genus with chitin 
hydrolyzing activity (Asif et  al., 2020). The intracellular protein 
extraction already reported in our previous studies characterized for 
an antimicrobial activity that can be considered as antimicrobial 
peptides (AMPs) from the microbial origin (Karthik and Kalyani, 
2021). In the present work the G. mysorens protein fraction is also 
exhibiting antiproliferative activity against cancerous cells acting 
also as anticancer peptides (ACP’s) and the protein molecules 
detected and characterized by LC–MS analysis. We  are also 
reporting GCMS analysis and detected bioactive compounds from 
G. mysorens.

As discussed above the Sephadex G-10 eluted peak protein 
fraction was further subjected to LCMS analysis. The LCMS analysis 
and elution profile as shown in Figure 6, revealed the detection of 
pharmacologically applicable bioactive peptide compounds. With 
respect to elution peak from LCMS analysis and detection through 
the NIST, the computer library resulted in the identification of 

Kinetin-9-riboside and Embinin. The detected Kinetin-9-riboside 
with 347 Da molecular weight structure and mass confirmation are 
shown in Figure 7. The mass confirmation and structure of Embinin 
with a molecular weight of 606 Da showed in Figure  8. These 
bioactive molecules are well-known for their effective activity in 
various biological applications.

In a previous study, the therapeutic and biological studies of 
Kinetin-9-riboside as an immuno-stimulant; immuno-stimulatory 
activities, and their uses as an adjuvant were reported. Because 
mutations in induced putative kinase 1 (PINK1) induce severe 
Parkinson’s disease, there’s a lot of interest in finding small 
molecules that boost PINK1’s kinase activity. Several studies on the 
design, synthesis, serum stability and hydrolysis of four kinetin 
riboside ProTides have been published. These ProTides, in 
combination with kinetin riboside, activated PINK1 in cells that had 
not been depolarized by mitochondria. This demonstrates the 
therapeutic potential of modified nucleosides and their phosphate 
prodrugs for Parkinson’s disease, the second most common 
neurodegenerative disease (Osgerby et al., 2017).

A

B

FIGURE 4

GCMS depicted highest probable compounds. (A) Cyclopentaneundecanoic acid, methyl ester 22.7%. (B) Glutaric acid, 2,2-dichloroethyl 3-fluorophenyl 
ester 34% probability.
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Another study found that the epithelial-mesenchymal transition 
(EMT) is a molecular phenomenon associated with increased 
vimentin expression and raised activity of transcriptional factors 
(Snail, Twist) that inhibit E-cadherin. EMT has been linked to 
prostate cancer metastatic potential, therapy resistance, and poor 
outcomes. Kinetin riboside (KR) is a naturally occurring cytokinin 
with effective anticancer activity against several human cancer cell 
lines. mRNA and protein levels of AR, E-, N-cadherins, Vimentin, 
Snail, Twist, and MMPs were measured using Western Blot and 
RT-PCR or RQ-PCR techniques to determine the effect of KR on 
human prostate cell lines.KR inhibited the growth of human prostate 
cancer cells and, to a lesser extent, normal cells. The cell type and 
androgen sensitivity determined this effect. KR also decreased the 

level of p-Akt, which is involved in androgen signaling modulation. 
When cancer cell lines are exposed to KR, the anti-apoptotic Bcl-2 
protein is down-regulated, whereas the Bax protein is up-regulated. 
KR was involved in E-cadherin re-expression as well as pivotal 
changes in cell migration. Taken together, the findings suggest that, 
for the first time, KR can be anticipated as a factor for signaling 
pathway regulation that involves the inhibition of the development 
of aggressive forms of prostate cancer, potentially leading to future 
therapeutic interventions. As a result, research indicates that KR is 
an effective inhibitor of EMT in human prostate cells (Thakor et al., 
2016; Dulińska-Litewka et al., 2020).

Whereas Embinin is a C-Glycosyl flavone and has a wide 
therapeutic applications in cardiovascular diseases (Ivkin et  al., 

A B

C

FIGURE 5

Anticancer activity of Glutamicibacter mysorens strain protein. MTT assay performed by using prostate cancer PC3 cell line. (A) Untreated cells of PC3 cell 
line, (B) Standard cisplatin at 5 μg/ml, (C) 56% Anticancer activity of Glutamicibacter mysorens protein at 200 μg/ml.
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TABLE 3 List of GC–MS analysis of bioactive compounds from Glutamicibacter mysorens intracellular extract.

Sl. 
No.

R.T 
(min)

Compound name Activity/
Applications

Molecular 
formula

Molecular 
weight  
(g/mol)

Area 
percentage

References

1 4.5 2-Pentanone, 4-hydroxy-4-methyl- Photolysis C6H12O2 116 0.9 Qiu et al. (2019)

2 Tert-Butyl Hydroperoxide Oxidant C4H10O2 90 Gad (2014)

3 1,3-Dioxolane-2-methanol, 

2,4-dimethyl-

Chlorinating agent C6H12O3 132 Simon and Losada (2008), 

Fuentes et al. (2016)

4 2-Propanol, 2-nitroso-, acetate Cosmetics C5H9NO3 131 Lemieux and Nagabhushan 

(1968)

5 2-Hexanone, 4-methyl- Paints C7H14O 114 Rebbert and Ausloos (1962)

6 2-Acetoxyisobutyryl chloride Epoxides synthesis C6H9ClO3 164 Zibuck (2001)

7 6.0 Octanoic acid, methyl ester Oxidation C9H18O2 158 8.6 Schwabe et al. (1964)

8 Undecanoic acid, 2-methyl- Antifungal C12H24O2 200 Rossi et al. (2021)

9 Methyl 6-methyl heptanoate Biomolecule 

synthesis

C9H18O2 158 Kroumova and Wagner 

(2003)

10 Decanoic acid, methyl ester Antibacterial C11H22O2 186 Damiano et al. (2020)

11 6.8 Dodecanoic acid, 3-hydroxy- Cytotoxic C12H24O3 216 5.3 Viegas et al. (1989)

12 Oleic Acid Anti-tumor C18H34O2 282 Carrillo Perez et al. (2012)

13 12-Methyl-E,E-2,13-octadecadien-1-

ol

Antioxidant C19H36O 280 Salem et al. (2016)

14 Z-8-Methyl-9-tetradecenoic acid Antibacterial C15H28O2 240 Jawad et al. (2016)

15 Z-(13,14-Epoxy)tetradec-11-en-1-ol 

acetate

Anti-inflammatory C16H28O3 268 Abdul et al. (2020)

16 trans-13-Octadecenoic acid/ cis-

Vaccenic acid

Anti-protozoal/ 

Protects from 

Heart failure

C18H34O2 282 Carballeira et al. (2009), 

Djoussé et al. (2014)

17 7-Hexadecenoic acid, methyl ester, 

(Z)-

Antioxidant C17H32O2 268 Reza et al. (2021)

18 1-Octanol, 2,7-dimethyl- Antioxidant, 

hepatoprotective 

and anti-

inflammatory

C10H22O 158 Bentley et al. (2002)

19 Carbonic acid, prop-1-en-2-yl 

undecyl ester

Beverages 

production

C15H28O3 256 Millero et al. (2006)

20 1-Decanol, 2-ethyl- Surfactant C12H26O 186 Achimon et al., 2022

21 1-Decanol, 2-methyl- Lubricants, 

Plasticizers

C11H24O 172 Halling et al. (1998)

22 Trichloroacetic acid, decyl ester Disinfectant C12H21Cl3O2 302 Anand et al. (2014)

23 1-Heptanol, 2-propyl- Pheromone C10H22O 158 Francke and Schulz (1999)

24 1-Octanol, 2-butyl- Antioxidant C12H26O 186 Abdillah et al. (2015)

25 Carbonic acid, decyl prop-1-en-2-yl 

ester

Beverages 

production

C14H26O3 242 Millero et al. (2006)

26 7.2 1,7-Octanediol, 3,7-dimethyl- Polymer C10H22O2 174 8.6 Reddy and Ananthaprasad 

(2021)

27 Octanoic acid, 7-oxo−/ Methyl 

6-oxoheptanoate

Antibacterial C8H14O3 158 Schwabe et al. (1964)

28 1,8-Nonanediol, 8-methyl- Agrochemicals C10H22O2 174 Kula et al. (2001)

29 7-Octen-2-ol, 2,6-dimethyl- Cosmetics C10H20O 156 Ham and Raymond Wells 

(2009)

30 3-Heptanol, 4-methyl- Therapeutics C8H18O 130 Ley and Madin (1991)

(Continued)
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TABLE 3 (Continued)

Sl. 
No.

R.T 
(min)

Compound name Activity/
Applications

Molecular 
formula

Molecular 
weight  
(g/mol)

Area 
percentage

References

31 4-Heptanone, 2,3:5,6-diepoxy-2,6-

dimethyl-

Oxidant C9H14O3 170 Ley and Madin (1991)

32 3-Tridecanol Lubricant C13H28O 200 Chagnes et al. (2010)

33 2-Dodecanone Insecticide C12H24O 184 Wang et al. (2019)

34 7.7 3-(Prop-2-enoyloxy)dodecane Antibiotics C15H28O2 240 5.3 Fadhil et al. (2018)

35 3-(Prop-2-enoyloxy)tetradecane Phyto-constituent C17H32O2 268 Ezekwe et al. (2020)

36 2-Propenoic acid, 1-methylundecyl 

ester

Antibacterial C15H28O2 240 Deryabin and Tolmacheva 

(2015)

37 5-(Prop-2-enoyloxy)pentadecane Antimicrobial C18H34O2 282 Xue et al. (2017), Gadhi 

et al. (2019)

38 3-Cyclopropylcarbonyloxydodecane Reducing Agent C16H30O2 254 Bolade et al. (2018)

39 9-Methyl-Z-10-pentadecen-1-ol Antioxidant C16H32O 240 Soleha et al. (2020)

40 Octadecane, 1-(ethenyloxy)- Anti-corrosion C20H40O 296 Zeitoun et al. (2021)

41 Dodecyl acrylate Polyemerization C15H28O2 240 Buback and Kowollik 

(1999)

42 Octanoic acid, 2-propenyl ester Antioxidant C11H20O2 184 Windey et al. (2012)

43 8.7 Octadecane, 6-methyl- Enzymatic C19H40 268 4.1 Holman et al. (1966)

44 Hydroxylamine, O-decyl- Reducing agent C10H23NO 173 (Gad, 2014)

45 Tetradecane, 2,6,10-trimethyl- Hydrocarbon C17H36 240 McCarthy and Calvin 

(1967)

46 Silane, trichlorodocosyl- Surfactant C22H45Cl3Si 442 Janneck et al. (2018)

47 Nonadecane Binding material C19H40 268 Li et al. (2010)

48 Oxirane, [(hexadecyloxy)methyl]- Antibacterial C19H38O2 298 Es (2014)

49 Decane, 1,1′-oxybis- Antimicrobial C20H42O 298 Fauzi et al. (2017)

50 1-Hexadecanol, 2-methyl- Antioxidant C17H36O 256 Hussein et al. (2015)

51 4-Hydroxy-4-methylhex-5-enoic acid, 

tert.-butyl ester

Hydrocarbon C11H20O3 200 Ming Miao and Zhi (2018)

52 Z,Z-2,5-Pentadecadien-1-ol Pharmacological C15H28O 224 Millero et al. (2006)

53 l-Gala-l-ido-octose Neuritogenic, 

Anti-hyper 

cholesteromia

C8H16O8 240 Jahan et al. (2020)

54 2-Cyclopropylcarbonyloxytridecane aphrodisiac, anti-

inflammatory, 

antihypertensive

C17H32O2 268 Sridhar et al. (2016)

55 Imidazole, 2-amino-5-[(2-carboxy)

vinyl]-

Therapeutic C6H7N3O2 153 Shalini et al. (2010)

56 9.5 4-Ethylacridine/3H-indole, 2-methyl-

3-phenyl-

Antioxidant C15H13N 207 4.2   Hosseini Hashemi et al. 

(2015)), Britten and Smith 

(1972)
57

58 4-Pyridinol 3,5-dichloro-2-ethyl-6-

methyl-

Herbicide C8H9Cl2NO 205 Ransom et al. (2012)

59 5-Methyl-2-phenylindolizine/3-

Methyl-2-phenylindole/2-Methyl-7-

phenylindole

Antimicrobial, 

Antioxidant

C15H13N 207 Onocha et al. (2011)

60 Pyridine, 2,4-dichloro-5-thiocyanato- Antimicrobial C6H2Cl2N2S 204 Al-Salahi et al. (2010)
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61 Dichloroacetic acid, phenyl ester/ 

Benzoic acid, 2,5-dichloro-, methyl 

ester

Therapeutic C8H6Cl2O2 204 Babar et al. (2008)

62 3,5-Dichloro-2,4-dimethyl-1-

methoxybenzene

Anticancer C9H10Cl2O 204 Dhakal et al. (2020)

63 1-Chloroundecane Precursor for fatty 

acid synthesis

C11H23Cl 190 Gensler and Thomas (1952)

64 Dodecane, 1-chloro- Hydrocarbon C12H25Cl 204 Moldoveanu (2019)

65 Tetradecane, 1-chloro- Chlorination C14H29Cl 232 Assassi et al. (2005)

66 Nonane, 1-chloro- Hydrocarbon C9H19Cl 162 Moldoveanu (2019)

67 10.0 Benzene, 1,4-bis(trifluoromethyl)- Flurochrome C8H4F6 214 Skhirtladze et al. (2022)

68 Pyrimidine, 4,5-diamino-6-chloro-2-

(trifluoromethyl)-

Transcriptional 

activator

C5H4ClF3N4 212 Palanki et al. (2000)

69 1H-Imidazole, 

1-(2,2,3,3,3-pentafluoro-1-

oxopropyl)-

Anticancer C6H3F5N2O 214 Zhang et al. (2014)

70 Sulfaguanidine Enzyme inhibitor C7H10N4O2S 214 Akocak et al. (2021)

71 Anthracene, 2-chloro- Antibacterial C14H9Cl 212 de Bony et al. (1984)

72 Ethyl iodoacetate Enzyme activator C4H7IO2 214 Tanaka and Hayashi (2008)

73 8-Methyl-4-(1-pyrrolidinyl)

pyrido[3,2-c]pyridazine

Cancer therapies C12H14N4 214 Jubete et al. (2019)

74 [1,1’-Biphenyl]-4-carboxylic acid, 

4′-hydroxy-

Precursor for 

synthesis of 

bioactive molecules

C13H10O3 214 Patel et al. (2004)

75 Benzoic acid, 2-(1,2,4-triazol-3-yl-

aminocarbonyl)-

Breast and prostate 

cancer therapy

C10H8N4O3 232 Jamieson et al. (2012)

76 Succinic acid, 2-methylpent-3-yl 

pentafluorobenzyl ester

Antioxidant C17H19F5O4 382 Cullere et al. (2004)

77 1,1’-Biphenyl, 2-iodo- Substrate C12H9I 280 Fang et al. (2017)

78 Benzamide, N-(1,4,6-trimethyl-1H-

pyrazolo[3,4-b]pyridin-3-yl)-

Substrate C16H16N4O 280 Jachak et al. (2006)

79 4-[N′-(4-Methoxy-benzoyl)-

hydrazino]-4-oxo-butyric acid methyl 

ester

Antibacterial C13H16N2O5 280 EL-Hashash et al. (2014)

80 Dibenzo[a,c]phenazine Flurochrome C20H12N2 280 Xie et al. (2019)

81 Benzofuro[3,2-d]pyrimidine, 

4-(2-pyridylthio)-

Therapeutic C15H9N3OS 279 Campos et al. (2022)

82 (9E)-Styrylanthracene Luminophore C22H16 280 Zhang et al. (2017)

83 1H-Purine-2,6-dione,3,7-dihydro-3-

methyl-7-carboxymethyl-8-n-butyl

Anti-inflammatory C12H16N4O4 280 Abou-Ghadir et al. (2014)

84 Methyl 2-phenyl-2,3-epoxyindan-1-

one-3-carboxylate

Catalyst C17H12O4 280 Godwin et al. (2012)

85 Propyl N-(heptafluorobutyryl)

pyroglutamate

Metabolite C12H12F7NO4 367 Hušek et al. (2016)
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86 10.4 3-Trifluoroacetoxypentadecane Antimicrobial C17H31F3O2 324 1.3 Hussein et al. (2015)

87 3-Cyclopropylcarbonyloxytetradecane Antioxidant, 

Cytotoxic and 

Antibacterial

C18H34O2 282 Upgade and Bhaskar (2013)

88 10-Undecenoic acid, octyl ester Antimicrobial C19H36O2 296 Van der Steen and Stevens 

(2009)

89 3-(Prop-2-enoyloxy)tetradecane Antioxidant C17H32O2 268 Ezekwe et al. (2020)

90 Z-10-Tetradecen-1-ol acetate Pharmaceutical C16H30O2 254 Bolade et al. (2018)

91 5-Amino-2-methoxy-4-(1H-1,2,3,4-

tetrazol-5-yl)phenol

Antimicrobial C8H9N5O2 207 Arulmurugan and Kavitha 

(2010)

92 4H-Pyrido[1,2-a]pyrimidine-3-

carboxamide, 6,7,8,9-tetrahydro-6-

methyl-4-oxo-

Antimicrobial and 

antitumor

C10H13N3O2 207 Al-Taisan et al. (2010)

93 1-Adamantanecarboxamide, N,N-

dimethyl−/ Pent-3-yn-2-ol, 

2-cyclopropyl-5-(1-piperidyl)

Anticancer C13H21NO 207 Su et al. (2012)

94 trans-4-Ethoxy-β-methyl-β-

nitrostyrene/ Carbamic acid, 

4-methoxyphenyl-, allyl ester

Cardiovascular 

therapy

C11H13NO3 207 Alves-Santos et al. (2019)

95 Thiophen-2-methylamine, N-(2-

fluorophenyl)-

Catalytic activity C11H10FNS 207 Tanak et al. (2020)

96 2-(1-Piperidino)-3-nitropyridine Antimicrobial C10H13N3O2 207 Sivaprakash et al. (2019)

97 Benzoic acid, 4-amino-, pentyl ester Cytotoxicity C12H17NO2 207 Kratky et al. (2019)

98 10.5 Cyclopentaneundecanoic acid, methyl 

ester

Antioxidant and 

Antibacterial

C17H32O2 268 1.3 Daniels and Temikotan 

(2021)

99 Undecanoic acid, 10-methyl-, methyl 

ester

Antioxidant C13H26O2 214 Narra et al. (2017)

100 Methyl 8-methyl-nonanoate Antimicrobial and 

Anti-inflammatory

C11H22O2 186 Kaur et al. (2022)

101 Tetradecanoic acid, 12-methyl-, 

methyl ester

Larvicidial C16H32O2 256 Xu et al. (2008)

102 Cyclopentanetridecanoic acid, methyl 

ester

Cytotoxic C19H36O2 296 Joshi et al. (2020)

103 10.7 Glutaric acid, 2,2-dichloroethyl 

3-fluorophenyl ester

Anti-angiogenic C13H13Cl2FO4 322 1.0 Amaral et al. (2021)

104 Triethylgermanium bromide Oxidant C6H15BrGe 240 Satgé et al. (1973)

105 2,5-Cyclohexadien-1-one, 

2,6-dichloro-4-(chloroimino)−/ 

benzene, 1,3,5-trichloro-2-nitroso-

Surfactant C6H2Cl3NO 209 Yamamoto (2002)

106 Pyridine, 3,4,5-trichloro-2,6-dimethyl- Antimicrobial C7H6Cl3N 209 Khidre et al. (2011)

107 Ethaneselenoamide, N-(4-methylphenyl)- Anticancer C9H11NSe 213 Watanabe et al. (1997)

108 Stannane, chlorotriethyl- Polymerization C6H15ClSn 242 Qiu et al. (2013)

109 1-(2,4,5-Trichlorophenyl)ethanol Cytotoxic C8H7Cl3O 224 Shawky et al. (2021)

110 1,3-Dioxolane, 2-(5,5,5-trichloro-3-

penten-1-yl)-, (E)-

Flavoring agent C8H11Cl3O2 244 Ivankin (2017)

111 benzene, 1,1′-[oxybis(methyleneoxy)]

bis[2,4,6-trichloro-

Toxic agent C14H8Cl6O3 434 Holman et al. (1966)
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112 11.5 Undecanoic acid Antifungal C11H22O2 186 0.9 Rossi et al. (2021)

113 n-Decanoic acid Beverage production C10H20O2 172 Viegas et al. (1989)

114 n-Hexadecanoic acid Anti-inflammatory C16H32O2 256 Aparna et al. (2012)

115 4-(Benzoylmethyl)-6-methyl-2H-1,4-

benzoxazin-3-one

Antimicrobial C17H15NO3 281 Ozden et al. (2000)

116 Adenine, N4-pentafluoropropionyl- Oxidization C8H4F5N5O 281 Tsunoda et al. (2011)

117 2-Furancarboxylic acid, N′-[(8-

hydroxy-5-quinolinyl)methylidene]

hydrazide

Antioxidant C15H11N3O3 281 Gülerman et al. (2000)

118 1-Phenyl-4-(trifluoromethyl)-

1H,4H,5H,6H,7H-pyrazolo[3,4-b]

pyridin-6-one

Antiproliferative C13H10F3N3O 281 Martín-Acosta et al. (2021)

119 Acetamide, 2-(2,4-difluorophenoxy)-

N-(4-fluorophenyl)-

Inhibitor C14H10F3NO2 281 Williams et al. (2015)

120 Succinic acid, 3,5-dinitrobenzyl 

2-methylhex-3-yl ester

Enzyme activator C18H24N2O8 396 Martinez et al. (2008)

121 Oxalic acid, monoamide, N-(2-

fluorophenyl)-, heptyl ester

Antioxidant C15H20FNO3 281 Ganyam et al. (2019)

122 Propanamide, 2,2,3,3,3-pentafluoro-

N-(2,4,6-trimethylphenyl)-

Inhibitor C12H12F5NO 281 Talley et al. (2000)

123 12.3 3-Trifluoroacetoxydodecane Antioxidant C14H25F3O2 282 Zagulyaeva et al. (2010)

124 12.5 Cyclopropanepentanoic acid, 

2-undecyl-, methyl ester, trans-

Anti-mycobacterial C20H38O2 310 1.5 Carballeira et al. (2007)

125 13,16-Octadecadiynoic acid, methyl 

ester

Antioxidant C19H30O2 290 Hamalainen et al. (2001)

126 13-Tetradecynoic acid, methyl ester Anti-inflammatory C15H26O2 238 James and Martin (1956)

127 Oxiraneundecanoic acid, 3-pentyl-, 

methyl ester, cis-

Antimicrobial C19H36O3 312 Al-Marzoqi et al. (2016)

128 9-Octadecenoic acid (Z)-, methyl 

ester/11-Octadecenoic acid, methyl ester

Food and 

Pharmacological

C19H36O2 296 Jiang and Jia (2015)

129 13-Docosenoic acid, methyl ester Food industires C23H44O2 352 Beare-Rogers (1977)

130 13.2 Z-(13,14-Epoxy)tetradec-11-en-1-ol 

acetate

Anti-inflammatory C16H28O3 268 2.0 Abdul et al. (2020)

131 12-Methyl-E,E-2,13-octadecadien-1-

ol/2-Methyl-Z,Z-3,13-octadecadienol

Therapeutic C19H36O 280 Adeyemi (2017)

132 Z-8-Methyl-9-tetradecenoic acid Antimicrobial C15H28O2 240 Jawad et al. (2016)

133 Oxiraneoctanoic acid, 3-octyl-, cis- Antimicrobial C18H34O3 298 Hussein et al., 2016

134 Pentadecanoic acid Oxidation C15H30O2 242 Jenkins et al. (2015)

135 Heptadecanoic acid, heptadecyl ester Antimicrobial C34H68O2 508 Gautam et al. (2016)

136 2-Myristynoyl pantetheine Antimicrobial C25H44N2O5S 484 Srivastava et al. (2015)

137 9-Octadecenoic acid, (E)- Inhibitor C18H34O2 282 Carrillo Perez et al. (2012)

138 9-Hexadecenoic acid/1,2-15,16-

Diepoxyhexadecane

Cosmetics C16H30O2 254 Takigawa et al. (2005)

139 cis-13-Eicosenoic acid Anti-obesity C20H38O2 310 Senarath et al. (2018)

140 3-Heptafluorobutyroxytetradecane Polymerization C18H29F7O2 410 MacKenzie and Tenaschuk 

(1979)

141 n-Nonadecanol-1 Antifeedant C19H40O 284 Aznar-Fernandez et al. (2019)
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142 14.7 Hexanedioic acid, mono(2-ethylhexyl)

ester

Antibacterial C14H26O4 258 0.4 Choi and Jiang (2014)

143 Hexanedioic acid, dioctyl ester Inhibitor C22H42O4 370 Chaler et al. (2004)

144 Cyclohexanecarboxylic acid, octyl ester C15H28O2 240 Andersson et al. (1965)

145 1-Dodecanol, 3,7,11-trimethyl- Cytotoxic C15H32O 228 Fahem et al. (2020)

146 Cyclohexanecarboxylic acid, decyl 

ester/2-Propenoic acid, tetradecyl 

ester

Antioxidant C17H32O2 268 Matthew et al. (2022)

147 Hexanedioic acid, bis(2-ethylhexyl) 

ester

Biomarker C22H42O4 370 Silva et al. (2013)

148 15.3 10-Octadecenal/4-Octadecenal Adjuvant/ 

pheromones

C18H34O 266 0.4 Gil et al. (1995)

149 Cyclopropanetetradecanoic acid, 

2-octyl-, methyl ester

Pharmacological C26H50O2 394 Srivastava et al. (2015)

150 9-Methyl-Z-10-pentadecen-1-ol Antioxidant C16H32O 240 Soleha et al. (2020)

151 Hexadecane, 1,1-bis(dodecyloxy)- C40H82O2 594 Ser et al. (2015)

152 3-Chloropropionic acid, heptadecyl ester Antibiotic C20H39ClO2 346 Ikhsanov et al. (2018)

153 2-Tridecenoic acid, (E)- Antimicrobial C13H24O2 212 Chowdhury et al. (2021)

154 trans-2-undecenoic acid Larvicidal C11H20O2 184 Saxena and Stotzky (2001)

155 Ethanol, 2-(octadecyloxy)- Antimicrobial C20H42O2 314 Jaffar et al. (2015)

*R.T (min): Retention Time.

FIGURE 6

Elution profile of intracellular protein extract from Glutamicibacter mysorens by LCMS.
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2018). Another study reports the production of Embinin frompetals 
of Iris germanica Linnaeus and Iris lactea Leaves (Kawase and 
Yagishita, 1968; Chen et  al., 2018). Our study elucidates the 
cytotoxicity activity of G. mysorens bioactive peptide as 
characterized by LCMS/MS revealed the presence of Kinetin-9-
Riboside and Embininin the peptide fraction showing its 
antiproliferative effect on the prostate cancer cell line. Thus 
microbial-originated intracellular peptides have potential 
antimicrobial (AMPs) and anticancer (ACPs) have been 
significantly substantiated in our studies.

Conclusion

The present study is illustrative for exploring untapped mangrove 
habitat in the Mangalore region of Karnataka. In our study, we could 
demonstrate that mangrove G. mysorens is an efficient microbe to 

produce bioactive compounds and enzymes responsible for both 
antimicrobial and anticancer activity. The antimicrobial potentiality was 
detailed in our previous article. In this present study; anticancer activity 
on prostate cancer cell lines and to treat various other related ailments. 
Peptides from reliable sources such as Actinomyces could 
be demonstrated as having dual roles as AMPs as well as ACPs. Hence, 
this study supports and proves that the genus Glutamicibacter is an 
effective microbial group for the isolation of peptides to treat multidrug-
resistant pathogens.

Data availability statement

The datasets presented in this study can be  found in 
online repositories. The names of the repository/ 
repositories and accession number(s) can be  found at: NCBI  -  
MW647910.

A

B C

FIGURE 7

(A) Mass confirmation and analysis record. (B) 2D structure of kinetin-9-ribose, (C) 3D structure of kinetin-9-ribose molecule.
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FIGURE 8

(A) Mass confirmation of Embinin, (B) 2D structure of Embinin, (C) 3D structure of Embinin.
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Halotolerant microorganisms have developed versatile mechanisms for coping 
with saline stress. With the increasing number of isolated halotolerant strains 
and their genomes being sequenced, comparative genome analysis would help 
understand the mechanisms of salt tolerance. Six type strains of Pontixanthobacter 
and Allopontixanthobacter, two phylogenetically close genera, were isolated 
from diverse salty environments and showed different NaCl tolerances, from 3 to 
10% (w/v). Based on the co-occurrence greater than 0.8 between halotolerance 
and open reading frame (ORF) among the six strains, possible explanations for 
halotolerance were discussed regarding osmolyte, membrane permeability, 
transportation, intracellular signaling, polysaccharide biosynthesis, and SOS 
response, which provided hypotheses for further investigations. The strategy 
of analyzing genome-wide co-occurrence between genetic diversity and 
physiological characteristics sheds light on how microorganisms adapt to the 
environment.

KEYWORDS

halotolerance, co-occurrence, comparative genomics, Erythrobacteraceae, adaptation

Introduction

Halotolerance is a relative term that refers to the ability to tolerate salt concentrations higher 
than those necessary for growth, and microorganisms are considered halotolerant if they survive 
at high salt concentrations but do not require these conditions for growth (Anton, 2014). With 
advances in technology, halotolerance mechanisms have been investigated using omics 
approaches. For instance, comparative transcriptomic and physiological analysis revealed that 
the halotolerant bacterium Egicoccus halophilus EGI 80432T increased inorganic ions uptake and 
accumulated trehalose and glutamate in response to moderate salinity condition, while the high 
salt condition led to up-regulated transcription of genes required for the synthesis of compatible 
solutes, such as glutamate, histidine, threonine, proline, and ectoine (Chen et al., 2021). The role 
of glutamate as a key compatible solute for halotolerance was also reported in a halotolerant 
strain of Staphylococcus saprophyticus based on transcriptome comparison of cells cultivated in 
media containing different concentrations of NaCl (0, 10, and 20%; Jo et al., 2022). In the 
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exoproteome of the halotolerant bacterium Tistlia consotensis grown 
at high salinity, proteins associated with osmosensing, exclusion of 
Na+ and transport of compatible solutes, such as glycine betaine or 
proline are abundant (Rubiano-Labrador et al., 2015). Similarly, the 
proteomic analysis of halotolerant nodule endophytes, Rahnella 
aquatilis strain Ra4 and Serratia plymuthica strain Sp2 identified that 
different trans-membrane ABC transporters (ATP-binding cassettes) 
were the most represented among the up-regulated proteins in 
response to salt stress (Novello et al., 2022). Moreover, the proteome 
comparison of halotolerant bacterium Staphylococcus aureus under 
different osmotic stress conditions revealed the differentially expressed 
proteins (DEPs) involved in fatty acid synthesis, proline/glycine 
betaine biosynthesis and transportation, stress tolerance, cell wall 
biosynthesis, and the TCA cycle, which may contribute to the osmotic 
stress tolerance of S. aureus (Ming et al., 2019). These findings shed 
light on halotolerance mechanisms. However, halotolerance-related 
genes may be ignored in transcriptomic and proteomic comparison if 
there is no significant change in their expression under the 
experimental conditions.

Genomic comparisons

Genomic comparisons of closely related halotolerant 
microorganisms can identify genes conserved among species as well 
as genes that may give an organism its unique characteristics, which 
helps to understand the mechanisms of salt tolerance. For example, 
through comparative genome analysis it was uncovered that the 
members of Acidihalobacter genus contained similar genes for the 
synthesis and transport of ectoine, as well as genes encoding low 
affinity potassium pumps. Variations were observed in genes encoding 
high affinity potassium pumps and proteins involved in the synthesis 
and/or transport of periplasmic glucans, sucrose, proline, taurine, and 
glycine betaine (Khaleque et al., 2019). To elucidate salt adaptation 
strategies in Nitriliruptoria, the genomes of five members from group 
Nitriliruptoria were analyzed. The results showed that Nitriliruptoria 
harbor similar synthesis systems of solutes, such as trehalose, 
glutamine, glutamate, and proline, and on the other hand each 
member of Nitriliruptoria species possesses specific mechanisms, K+ 
influx and efflux, betaine and ectoine synthesis, and compatible solutes 
transport (Chen et  al., 2020). Using whole-genome analysis, the 
halotolerant strains of Martelella soudanensis, NC18T and NC20, were 
predicted to harbor various halotolerant-associated genes, including 
K+ uptake protein, K+ transport system, ectoine transport system, 
glycine betaine transport system, and glycine betaine uptake protein, 
indicating that strains NC18T and NC20 might tolerate high salinity 
through the accumulation of potassium ions, ectoine, glycine betaine 
(Lee and Kim, 2022). Although these findings help to understand the 
versatile mechanisms of halotolerance existing in halotolerant 
microbes, genomic comparisons are usually based on genome-wide 
searches for homologs of known halotolerance-related genes, such as 
those involved in K+ and Na+ influx and efflux and the synthesis and 
transport of compatible solutes.

The aim of this perspective is to provide new insights into the 
development of novel hypotheses and promote further studies  
on the halotolerance mechanisms. Therefore, co-occurrence analysis 
between halotolerance and open reading frames (ORFs) was 
performed to provide intuitive information on halotolerance.

Strains used for analysis

Microorganisms develop abilities that enable them to deal with 
evolutionary pressure from the environment, such as salinity, 
temperature, and the power of hydrogen (pH). The phylogenetically 
closely related strains, which showed similar growth temperature and 
pH range but different halotolerance, would simplify the analysis. 
Furthermore, considering the ionic strength of different media may 
affect the cell growth, the tolerance to NaCl used for co-occurrence 
analysis should be determined by using same medium. Herein six type 
strains from two phylogenetically close genera, Pontixanthobacter and 
Allopontixanthobacter, were chosen for this study. Because of their 
close phylogenetic relationship, Allopontixanthobacter sediminis and 
Allopontixanthobacter confluentis have been previously classified as 
Pontixanthobacter species (Xu et al., 2020; Liu et al., 2021b), and later 
were reclassified as Allopontixanthobacter species (Xu et al., 2020; Liu 
et  al., 2021a,b). Notably, all the type strains belonging to the two 
genera were isolated from the Yellow Sea and surrounding areas, but 
from diverse salty environments, such as Pontixanthobacter aestiaquae 
KCTC 42006T and Pontixanthobacter rizhaonensis KCTC 62828T from 
seawater (Jung et  al., 2014; Liu et  al., 2021b), Pontixanthobacter 
gangjinensis JCM 17802T and Pontixanthobacter luteolus KCTC 12311T 
from tidal flat (Yoon et al., 2005; Jeong et al., 2013), Pontixanthobacter 
aquaemixtae KCTC 52763T from the junction between ocean and 
fresh spring (Park et al., 2017), A. sediminis KCTC 42453T from lagoon 
sediments (Kim et al., 2016), and A. confluentis KCTC 52259T from 
water of estuary environment (Park et al., 2017). These strains showed 
similar optimum NaCl concentrations for growth (1–3%, w/v), but 
displayed different halotolerances, from 3 to 10% (w/v; Table  1), 
indicating that these strains adapt to their diverse habitats, including 
lagoon, junction between ocean and fresh spring, tidal flat, and 
seawater. The availability of their genomes provides remarkable 
opportunity to understand their different halotolerances by 
comparative genome analysis. Here, co-occurrence between 
halotolerance and the open reading frames (ORFs) was calculated 
among six strains of Pontixanthobacter and Allopontixanthobacter, and 
the ORFs showing high co-occurrence were discussed for possible 
contribution to halotolerance.

Clusters highly co-occurred with 
halotolerance

Open reading frames in the six genomes were predicted and 
clustered based on similarity using R package micropan (Snipen and 
Liland, 2015). Analysis of co-occurrence between ORFs and the 
maximum NaCl concentration tolerated among the six strains was 
conducted, and 113 clusters of ORFs were identified with co-occurrence 
greater than 0.8 (Table 2). The co-occurrence for the remaining clusters 
is listed in Supplementary material, as well as ORFs predicted in the six 
genomes and the index for clusters and ORFs. ORFs were annotated by 
searching standard database using protein–protein BLAST.1

1 https://blast.ncbi.nlm.nih.gov
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Osmolyte

The ORFs of Cluster_111 (co-occurrence of 0.97, Table 2) were 
annotated as TauD/TfdA family dioxygenase. TauD is involved in the 
utilization of taurine (VanderPloeg et al., 1996), an organic osmolyte 
involved in cell volume regulation (Harris and Wen, 2012). Taurine is 
used as an osmoprotectant, such as in Escherichia coli at high 
osmolarity (McLaggan and Epstein, 1991) and in microbial 
communities from biofilms in metal-rich environment (Mosier et al., 
2013). The ORFs of Cluster_111 only exist in three halotolerant 
strains, suggesting that taurine may be  accumulated as an 
osmoprotectant. Interestingly, halotolerant strains harbor genes 
involved in various pathways related to glutamate generation. For 
instance, according to annotation, ORFs of Cluster_113 
(co-occurrence of 0.81, Table  2) belong to the hydantoinase B/
oxoprolinase family, which includes 5-oxoprolinase, catalyzing the 
formation of L-glutamate from 5-oxo-L-proline (Niehaus et al., 2017). 
Besides, ORFs of Cluster_1328 (co-occurrence of 0.81, Table  2) 
possess similarity to p-aminobenzoyl-glutamate (PABA-GLU) 
hydrolase subunit from Altererythrobacter insulae (GenBank 
Accession Number: RGP41665.1). PABA-GLU is a folate catabolite 
found in bacteria, and the enzyme PABA-GLU hydrolase breaks down 
PABA-GLU by cleaving glutamate (Larimer et al., 2014). Additionally, 
ORFs of Cluster_1747 (co-occurrence of 0.81 Table  2) showed 
similarity to asparagine synthase from Salinigranum halophilum 
(GenBank Accession Number: WP_136601134.1). Asparagine 
synthetase catalyzes an ATP-dependent amidotransferase reaction 
between aspartate and glutamine, which produces asparagine and 
glutamate (Richards and Kilberg, 2006).

Permeability

To ensure a physiologically acceptable level of cellular hydration 
and turgor at high osmolarity, many bacteria accumulate compatible 
solutes as osmoprotectants (Ziegler et al., 2010). ORFs of Cluster_875 
(co-occurrence of 0.81, Table 2) were annotated as proteins of Betaine/
Carnitine/Choline Transporter (BCCT) family. The BCCT family 
includes transporters for carnitine, choline and glycine betaine, and 
some of which exhibit osmosensory and osmoregulatory properties 
(Ziegler et  al., 2010). Furthermore, the ORFs of Cluster_1740, 
annotated as ABC transporter ATP-binding proteins, were present 

only in these three halotolerant strains. The salt-induced ABC 
transporter Ota from Methanosarcina mazei Gö1 acts as a glycine 
betaine transporter (Schmidt et al., 2007). Another ABC transporter 
in Listeria, OpuC, is shown to be necessary for glycine betaine and 
choline chloride uptake (Verheul et al., 1997). Compared to the wild 
type of S. aureus, mutating OpuC did reduce their ability to grow 
under osmotic stress (10% NaCl; Kiran et al., 2009). The function of 
ORFs of Cluster_1740 and their contribution to halotolerance can 
be further characterized. Additionally, previous studies have shown 
that water permeability is clearly affected by the number of double 
bonds in the fatty acid conjugates of lipids, the higher the degree of 
unsaturation, the greater the water permeability (Graziani and Livne, 
1972), and sterol type is one of the determining factors in the 
permeability of membranes to small solutes (Frallicciardi et al., 2022). 
The genomes of three halotolerant strains contain ORFs of 
Cluster_1548, annotated as sterol desaturase family proteins, 
indicating that sterols might be used to change permeability.

Cell signaling

Cluster_1549 also consists of three ORFs present in the three 
halotolerant strains, which showed similarity to the domain 
superfamily found in a large number of proteins including magnesium 
dependent endonucleases and phosphatases involved in intracellular 
signaling (Dlakic, 2000). Its role in the regulation of gene expression, 
such as triggering the salt-stress response, is worth of further study.

Polysaccharide

It has been reported that extracellular polysaccharides (EPS) may 
influence the salt tolerance of certain rhizobial strains (Samir and 
Kanak, 1997) and the lipopolysaccharide pattern could alter according 
to different salinities in a salt-tolerant strain of Mesorhizobium cicero 
(Soussi et  al., 2001). All three halotolerant strains harbor ORFs 
annotated with polysaccharide/lipopolysaccharide biosynthesis 
(Cluster_2062, 2065, 2067, 2069, 2071, 2074, and 2076 in Table 2), 
such as 3-deoxy-d-manno-octulosonate cytidylyltransferase, a key 
enzyme in the biosynthesis of lipopolysaccharide (LPS) in Gram-
negative organisms (Yi et  al., 2011). Furthermore, ORFs of 
Cluster_2473 (co-occurrence as 0.81 Table  2) were annotated to 

TABLE 1 Strains used for analysis in this study.

Species Strain Maximum 
NaCl (%, 
w/v)

Optimum 
NaCl (%, 
w/v)

Habitat GenBank accession 
number

Pontixanthobacter aestiaquae KCTC 42006 10 2–3 Seawater GCF_009827455.1_ASM982745v1

Pontixanthobacter gangjinensis JCM 17802 9 2 Tidal flat GCF_009827545.1_ASM982754v1

Pontixanthobacter luteolus KCTC 12311 9 2 Tidal flat GCF_009828095.1_ASM982809v1

Pontixanthobacter aquaemixtae KCTC 52763 5 2 Junction between ocean and fresh 

spring

GCF_009827395.1_ASM982739v1

Allopontixanthobacter sediminis KCTC 42453 4 1 Lagoon sediments GCF_009828115.1_ASM982811v1

Allopontixanthobacter confluentis KCTC 52259 3 1–2 Water of estuary environment GCF_009827615.1_ASM982761v1

The tolerance of NaCl for all the six strains were investigated based on marine broth (MB). The strain Pontixanthobacter rizhaonensis KCTC 62828T was excluded from this study, because it is 
tested on different medium (Liu et al., 2020, 2021b).
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TABLE 2 Clusters highly co-occurred with halotolerance.

Cluster Co-occurrence Annotation

Cluster_111 0.97 TauD/TfdA family dioxygenase

Cluster_229 0.97 Hypothetical protein

Cluster_593 0.97 Metal-dependent hydrolase

Cluster_762 0.97 TonB-dependent receptor

Cluster_1374 0.97 Carbon-nitrogen hydrolase family protein

Cluster_1548 0.97 Sterol desaturase family protein

Cluster_1549 0.97 Endonuclease/exonuclease/phosphatase family protein

Cluster_1706 0.97 Hypothetical protein

Cluster_1740 0.97 ABC transporter ATP-binding protein

Cluster_1899 0.97 VirB4 family type IV secretion/conjugal transfer ATPase

Cluster_2062 0.97 Polysaccharide pyruvyl transferase family protein

Cluster_2063 0.97 Hypothetical protein

Cluster_2065 0.97 EpsG family protein

Cluster_2067 0.97 Glycosyltransferase

Cluster_2069 0.97 Polysaccharide biosynthesis C-terminal domain-containing protein

Cluster_2071 0.97 KpsF/GutQ family sugar-phosphate isomerase

Cluster_2074 0.97 3-Deoxy-manno-octulosonate cytidylyltransferase

Cluster_2076 0.97 3-Deoxy-8-phosphooctulonate synthase

Cluster_2401 0.97 Hypothetical protein

Cluster_2536 0.97 Histone deacetylase

Cluster_2670 0.97 Hypothetical protein

Cluster_2677 0.97 SOS response-associated peptidase family protein

Cluster_614 0.87 Putative quinol monooxygenase

Cluster_1440 0.86 Tail fiber protein

Cluster_1633 0.84 2OG-Fe(II) oxygenase

Cluster_11 0.81 Hypothetical protein

Cluster_12 0.81 DUF885 domain-containing protein

Cluster_59 0.81 PspA/IM30 family protein

Cluster_113 0.81 Hydantoinase B/oxoprolinase family protein

Cluster_115 0.81 DUF969 domain-containing protein

Cluster_116 0.81 DUF979 domain-containing protein

Cluster_117 0.81 DUF2891 domain-containing protein

Cluster_151 0.81 Aldolase/citrate lyase family protein

Cluster_155 0.81 Methyltransferase domain-containing protein

Cluster_166 0.81 Hypothetical protein

Cluster_208 0.81 Trigger factor

Cluster_294 0.81 Enoyl-CoA hydratase-related protein

Cluster_336 0.81 Aspartyl/asparaginyl beta-hydroxylase domain-containing protein

Cluster_395 0.81 Hypothetical protein

Cluster_551 0.81 Hypothetical protein

Cluster_595 0.81 DUF4167 domain-containing protein

Cluster_687 0.81 Amidohydrolase family protein

Cluster_712 0.81 TonB-dependent receptor

Cluster_729 0.81 OmpH family outer membrane protein

Cluster_752 0.81 PilZ domain-containing protein

(Continued)
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TABLE 2 (Continued)

Cluster Co-occurrence Annotation

Cluster_875 0.81 BCCT family transporter

Cluster_879 0.81 Cell division protein ZapA

Cluster_895 0.81 Hypothetical protein

Cluster_983 0.81 GNAT family N-acetyltransferase

Cluster_1081 0.81 DUF805 domain-containing protein

Cluster_1089 0.81 Aminotransferase class IV

Cluster_1090 0.81 Sulfotransferase

Cluster_1132 0.81 Pilus assembly protein TadG-related protein

Cluster_1282 0.81 Hypothetical protein

Cluster_1289 0.81 SDR family oxidoreductase

Cluster_1315 0.81 CinA family protein

Cluster_1328 0.81 Amidohydrolase

Cluster_1340 0.81 Glutathione S-transferase family protein

Cluster_1364 0.81 M2 family metallopeptidase

Cluster_1465 0.81 Hypothetical protein

Cluster_1491 0.81 Hypothetical protein

Cluster_1495 0.81 Serine hydrolase

Cluster_1499 0.81 MarR family transcriptional regulator

Cluster_1565 0.81 Thioesterase family protein

Cluster_1575 0.81 LysR family transcriptional regulator

Cluster_1578 0.81 NAD(P)H-dependent oxidoreductase

Cluster_1663 0.81 Prolyl oligopeptidase family serine peptidase

Cluster_1738 0.81 Lasso peptide biosynthesis B2 protein

Cluster_1739 0.81 Nucleotidyltransferase family protein

Cluster_1741 0.81 Sulfotransferase

Cluster_1742 0.81 Aspartyl beta-hydroxylase

Cluster_1743 0.81 Hypothetical protein

Cluster_1744 0.81 Sulfotransferase domain-containing protein

Cluster_1746 0.81 PqqD family protein

Cluster_1747 0.81 Asparagine synthase-related protein

Cluster_1748 0.81 Glycosyltransferase

Cluster_1838 0.81 DUF3142 domain-containing protein

Cluster_1839 0.81 Hypothetical protein

Cluster_1862 0.81 Hypothetical protein

Cluster_1883 0.81 Isopropylmalate isomerase

Cluster_1896 0.81 Conjugal transfer protein TrbI

Cluster_1901 0.81 VirB3 family type IV secretion system protein

Cluster_1954 0.81 TrbG/VirB9 family P-type conjugative transfer protein

Cluster_1955 0.81 VirB8/TrbF family protein

Cluster_1956 0.81 Type IV secretion system protein

Cluster_2019 0.81 Dipeptidase

Cluster_2022 0.81 Glycerophosphodiester phosphodiesterase family protein

Cluster_2052 0.81 Hypothetical protein

Cluster_2059 0.81 O-antigen ligase family protein

(Continued)
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encode proteins of the GtrA family, whose members are often involved 
in the synthesis of cell surface polysaccharides (Kolly et al., 2015).

DNA repair

Open reading frames of Cluster_2677 are annotated encoding 
SOS response-associated peptidase family protein. The bacterial SOS 
response induced under stress conditions is recruited to DNA repair 
and adaptive mutagenesis (Shinagawa, 1996; Aravind et al., 2013). 
Hence, ORFs of Cluster_2677 could be further investigated for its 
importance to halotolerance.

Discussion

Salinity is one of the most important environmental factors for 
aquatic microorganisms and varies among habitats. Therefore, 
halotolerant microorganisms have developed versatile strategies to 
cope with saline stress. Based on the findings of co-occurrence 
analysis, possible explanations for mechanisms resulting in different 
salt tolerances among six strains are discussed above, which provided 
hypotheses for further investigations. Moreover, among the highly 
co-occurred clusters, there are several uncharacterized or hypothetical 

proteins (Table 2), which may contribute to halotolerance. It should 
be noted that the genes related to resistance to salts other than sodium 
chloride could also be discovered by co-occurrence analysis, since 
various salts co-exist in high ionic environments. For instance, ORFs 
of Cluster_2171 (co-occurrence as 0.81, Table 2) were annotated as 
divalent-cation tolerance protein CutA, which is required for copper 
tolerance in E. coli and affects tolerance levels to zinc, nickel, cobalt, 
and cadmium salts (Fong et al., 1995). This study sheds light on the 
mechanisms through which microorganisms cope with environmental 
stress. With the increasing number of isolated halotolerant strains 
and their genomes being sequenced, analyzing genome-wide 
co-occurrence between genetic diversity and physiological 
characteristics would expand the knowledge of the salinity adaptation 
strategies and provide comprehensive information on how 
microorganisms adapt to the environment, together with findings at 
the transcriptomic and proteomic levels.

Data availability statement

Publicly available datasets were analyzed in this study.  
This data can be found here: https://www.ncbi.nlm.nih.gov. Accession 
Numbers are as follows: GCF_009827455.1_ASM982745v1, 
GCF_009827545.1_ASM982754v1, GCF_009828095.1_ASM982809v1, 

TABLE 2 (Continued)

Cluster Co-occurrence Annotation

Cluster_2105 0.81 GNAT family N-acetyltransferase

Cluster_2171 0.81 Divalent-cation tolerance protein CutA

Cluster_2209 0.81 DUF2183 domain-containing protein

Cluster_2241 0.81 FKBP-type peptidyl-prolyl cis-trans isomerase

Cluster_2302 0.81 Carbohydrate porin

Cluster_2329 0.81 N-acetyltransferase

Cluster_2345 0.81 NADH:flavin oxidoreductase/NADH oxidase family protein

Cluster_2374 0.81 AI-2E family transporter

Cluster_2384 0.81 Endonuclease III

Cluster_2402 0.81 RNA polymerase sigma factor

Cluster_2408 0.81 GntP family permease

Cluster_2420 0.81 Hypothetical protein

Cluster_2425 0.81 Hypothetical protein

Cluster_2473 0.81 GtrA family protein

Cluster_2474 0.81 Ferritin-like domain-containing protein

Cluster_2475 0.81 Peroxide stress protein YaaA

Cluster_2520 0.81 DsrE family protein

Cluster_2544 0.81 Hypothetical protein

Cluster_2545 0.81 DNA-binding domain-containing protein

Cluster_2546 0.81 Alpha/beta hydrolase

Cluster_2562 0.81 LytTR family DNA-binding domain-containing protein

Cluster_2573 0.81 DUF2306 domain-containing protein

Cluster_2644 0.81 DUF6356 family protein

Cluster_2671 0.81 DUF1295 domain-containing protein
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GCF_009827395.1_ASM982739v1, GCF_009828115.1_ASM982811v1, 
and GCF_009827615.1_ASM982761v1.
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Marine environments and salty inland ecosystems encompass various

environmental conditions, such as extremes of temperature, salinity, pH,

pressure, altitude, dry conditions, and nutrient scarcity. The extremely halophilic

archaea (also called haloarchaea) are a group of microorganisms requiring

high salt concentrations (2–6 M NaCl) for optimal growth. Haloarchaea

have different metabolic adaptations to withstand these extreme conditions.

Among the adaptations, several vesicles, granules, primary and secondary

metabolites are produced that are highly significant in biotechnology, such

as carotenoids, halocins, enzymes, and granules of polyhydroxyalkanoates

(PHAs). Among halophilic enzymes, reductases play a significant role in the

textile industry and the degradation of hydrocarbon compounds. Enzymes

like dehydrogenases, glycosyl hydrolases, lipases, esterases, and proteases

can also be used in several industrial procedures. More recently, several

studies stated that carotenoids, gas vacuoles, and liposomes produced by

haloarchaea have specific applications in medicine and pharmacy. Additionally,

the production of biodegradable and biocompatible polymers by haloarchaea

to store carbon makes them potent candidates to be used as cell factories in

the industrial production of bioplastics. Furthermore, some haloarchaeal species

can synthesize nanoparticles during heavy metal detoxification, thus shedding

light on a new approach to producing nanoparticles on a large scale. Recent

studies also highlight that exopolysaccharides from haloarchaea can bind the

SARS-CoV-2 spike protein. This review explores the potential of haloarchaea in

the industry and biotechnology as cellular factories to upscale the production of

diverse bioactive compounds.

KEYWORDS

haloarchaea, nanoparticles, antimicrobial compound, anticancer, antioxidants,
carotenoids, halocins
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1. Introduction: Haloarchaeal
diversity and ecology

Microorganisms possess several mechanisms to acclimatize
to stress conditions that influence growth and survival in saline
environments. Halophiles are microbes that can survive such
saline conditions from low to high saturation points. There
are different stress proteins and strategies that halophiles adapt
to counteract stressful factors such as ions, temperature, pH,
and UV radiation. Prokaryotic halophiles have attracted the
attention of researchers worldwide because of their distinctive
features, ease of manipulation, lesser space requirements for
cultivation, and the production of diverse metabolites compared
to plants or eukaryotic algae (Torregrosa-Crespo et al., 2017;
Dutta and Bandopadhyay, 2022). A significant group of
halophilic archaea, represented under the halobacteria class,
are tolerant to extreme saline environments. These environments
include salt lakes, estuaries, rivers, mangrove swamps, open
seawater, coastal waters, salt lakes, estuaries, and salt deserts.
Halobacterial class constitutes a wide range of genera (Figure 1) –
Salarchaeum, Halobiforma, Natronolimnobius, Halopelagius,
Halogranum, Halonotius, Haladaptatus, Natronococcus, Haloferax,
Halococcus, Haloalcalophilium, Halorubrum, Halorhabdus,
Halorussus, Halopiger, Halomarina, Natronoarchaeum,
Halobellus, Natrialba Halobaculum, Haloplanus, Halostagnicola,
Halorientalis, Natronomonas, Natrialba, Natronobacterium,
Natronorubrum, Haloarcula, Halobacterium, Haloterrigena,
Natrinema, Halogeometricum, Halalkalicoccus, Haloquadratum,
Halogeometricum, Natronorubrum, Halomicrobium,
Halolamina, Halovivax, Halarchaeum, and Halosimplex
(Cui and Dyall-Smith, 2021).

Considering the difficulties found by researchers to obtain pure
cultures of extremophilic microorganisms (including halophilic
archaea) from environmental samples, and consequently to know
the microbial biodiversity in those samples, recent advances in
omic-based approaches have contributed to a better understanding
of haloarchaeal biodiversity. Particularly, metagenomic analysis
has been used to overcome this limitation. Metagenomic analysis
of environmental samples from the Dead Sea, RedSea, Gulf of
Cambay, Mediterranean Sea, Sundarbans mangrove forest, Karak
Salt Mine, and Pannonian Steppe, revealed the predominance
of haloarchaeal genera in the natural environment, including
Haloarcula, Halorubrum, and Halorhabdus (Oh et al., 2010;
Rhodes et al., 2012; Somboonna et al., 2012; Fernández et al.,
2014; Bhattacharyya et al., 2015; Keshri et al., 2015; Behzad
et al., 2016; Szabó et al., 2017; Haldar and Nazareth, 2018;
Osman et al., 2019; Cecil et al., 2020). Similarly, a global
metagenomic meta-analysis revealed the dominance of Haloarcula
and Haloquandratum sp., in the seacoast (Moopantakath et al.,
2021). The biogeography of haloarchaea also varies based on
the biosystems. For instance, the Haloferax genus is highly
dominant in seashores and island samples and estuaries, while
the Natrialba genus is predominant in rivers, mangroves, and
lakes (Hegazy et al., 2020; Moopantakath et al., 2020; Cho
et al., 2021). Thus, the prevalence of halophilic microorganisms
in general, and particularly of haloarchaea, is highly dependent
on the environment, geography, and physicochemical parameters
like salinity, pH, oxygen availability and sun radiation, among
other factors (Ventosa, 2006; Mani et al., 2020). As an example,

recent whole genome sequencing studies revealed that autotrophic
haloarchaea are highly abundant in coastal environments, probably
due to salinity and direct sunlight exposure (Moopantakath
et al., 2021). These environments display unique features and salt
deposition phenomena that contribute to the increase of some
haloarchaeal populations requiring extremely high concentrations
for optimal growth.

Environmental degradation, such as the release of industrial
chemicals into the coastal environment, is also a major factor
in pollution and shoreline contamination (Lu et al., 2018) and
in microbial biodiversity. Nonetheless, the microbial community
plays a significant role in the polluted site, and the unique metabolic
features of haloarchaea contribute to the homeostasis of these
environments. Halorhabdus and Natrinema sp., have been reported
to degrade xylan and produce halocin (antimicrobial peptide),
respectively (Begemann et al., 2011; Besse et al., 2017). Similarly,
recent advances in the metagenomic analysis have revealed that
haloarchaea, such as Haloferax, Haladaptatus, Natrialba, etc.,
participate in maintaining the biogeochemical processes in coastal
ecosystems (Osman et al., 2019). Some haloarchaea can carry out
interesting metabolic processes from an industrial point of view;
examples: sulfur reduction by Natranaeroarchaeum sulfidigenes
(Sorokin et al., 2022), nitrification by Haloarcula, Halolamina,
and Halobacterium (Wei et al., 2022), phosphorus solubilization
by Haloarcula, Halobacterium, Halococcus, and Haloferax (Yadav
et al., 2015) or denitrification by Haloarcula or Haloferax (Miralles-
Robledillo et al., 2021).

In summary, haloarchaea exhibit diverse metabolic pathways
and biological activities of interest for biotechnological purposes.
They constitute predominant microbial communities in salty
ecosystems, which are widespread worldwide. For example,
Haloarcula, Haloferax, and Halogeometricum sp., can be isolated
from saline sediments across the world, such as from Spanish
coastal and inland salted ponds (Martínez et al., 2022), Algerian
salt lakes, Indian salt pans, Verkhnekamsk deposit etc., and exhibit
several biological activities, including the production of carotenoid
pigments (Das et al., 2019; Sahli et al., 2022). Besides, many
more ecosystems characterized by their high salt concentrations
are far from known from a microbiological point of view
(i.e., saline mines in Senegal). This review aims to summarize
new advances in the knowledge of biological applications of
halophilic archaea and the synthesis of secondary metabolites thus
contributing to the design of new biotech processes low cost and
environmentally friendly based on the use of haloarchaea as cellular
factories.

1.1. Haloarchaeal strategies to cope with
stress

Haloarchaea can survive in stress conditions such as salinity,
ultraviolet (UV), high concentration of ions, high temperature,
and extreme pH values. In addition, continuous heavy rain or
change in temperature can lead to a dramatic shift in the salinity,
causing significant pressure on haloarchaea and promoting the
switching on of molecular machinery to be better adapted to these
environmental changes (Griffiths and Philippot, 2013; Thombre
et al., 2016). Halophiles inhabiting saline environments can exist
at different salt concentrations, mainly above 1 M. Based on
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FIGURE 1

Haloarchaeal 16s RNA gene diversity. Phylogenetic tree constructed using the maximum likelihood methods suggests two separate clades, and most
of the organisms are represented under a single clade.

the optimum salinity requirements, halophiles can be classified
into slight halophiles (0.34 to 0.85 M), moderate halophiles (0.85
to 3.4 M), and extreme halophiles (3.4 M to saturation point)
(Abaramak et al., 2020). Haloarchaea requires∼10 to 35% w/v (1.71

to 6 M) of salt concentration for optimum growth. Interestingly,
haloarchaea are the dominant class of microbes when the salt
concentration increases above 16% w/v (2.74 M) (Oren, 2002b;
Andrei et al., 2012).
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Haloarchaea evolved with several metabolic adaptations to
survive different stresses among which salt stress is one of the
most significant affecting the protein structures and therefore,
their biological activities (Britton et al., 2006). Thus, most of
their proteins are salt dependent for optimal enzymatic activity
and stability. The unique feature of these proteins is due to the
presence of acidic amino acids on the surface (Esclapez et al., 2007).
The negatively charged acidic amino acids on the surface develop
into a cluster form and interact with networks of hydrated ions.
Consequently, this feature avoids the precipitation of haloarchaeal
proteins under high KCl/NaCl concentrations. Also, proteins
exhibit less hydrophobic interactions owing to the limited content
of hydrophilic amino acids such as lysine. Hence, a lack of optimum
salt concentration may cause the unfolding of proteins owing to the
presence of negatively charged amino acids (Kennedy et al., 2001;
Oren, 2002a; Zafrilla et al., 2010; Andrei et al., 2012).

Some haloarchaea are called polyextremophiles owing to their
ability to respond to multiple extreme conditions (Das and Dash,
2018). They can adjust to osmotic stress and survive at low water
activity and desiccation. The presence of high salt concentrations
may reduce water activity from 1 to 0.75. Further, salt-in and
low-salt-in are the two methods adopted by haloarchaea to resist
osmotic stress. In the salt-in method, K+ is accumulated inside cells
with the help of protein transport and ion pumps (Schäfer et al.,
1996; Oren, 2013). Halobacterium sp., NRC-1 utilizes the salt-in
strategy with the help of potassium transporters and sodium efflux
pumps (Ng et al., 2000).

In the low-salt-in method, some organisms produce compatible
and low molecular-weight solutes to adapt to osmotic stress
(Grant et al., 2004). The compatible solutes such as amino acids,
ectoines, thetines, polyols, betaines, derivatives of sugar, and
glutamine amide are accumulated in low concentration in the
cytoplasm to tolerate osmotic stress (Matarredona et al., 2020).
For instance, solutes like 2-sulphotrehalose, and glycine produced
by Natronobacterium and Natronococcus, respectively, help in the
low-salt process (Grant et al., 2004; Matarredona et al., 2020).
The square-shaped haloarchaea, Haloquadratum walsbyi, carries
a unique protein, halomucin, which helps to survive desiccation.
The protein is glycosylated and sulfated to develop as a water-rich
capsule around the archaea. The water-rich cloud formed around
the cell protects it from surrounding desiccation or the presence
of low water activity (Bolhuis et al., 2006; Dyall-Smith et al., 2011;
Zenke et al., 2015).

Regarding stress due to temperature changes, haloarchaea can
tolerate different temperature variations in saline environments
thanks to the presence of heat shock proteins (e.g., chaperones and
chaperonins). The molecular chaperones are involved in the folding
or unfolding of proteins at extreme temperatures (Fenderson, 2006;
Shukla, 2006; Coker et al., 2007). The most common heat shock
proteins observed in haloarchaea are Hsp60 and 70 (Macario et al.,
1999). The expression and synthesis of cold shock proteins, polar
lipids, and gas vesicles in cold temperatures help to maintain
homeostasis (Coker et al., 2007). Some haloarchaea, for example,
Haloferax, produce thermoprotectans, such as glycoside hydrolases,
to withstand high temperatures by promoting protein stabilization
(Amin et al., 2021).

The ecosystems inhabited by haloarchaea are exposed to
high sun radiation doses that cause UV irradiation and the
formation of photoproducts and pyrimidine dimers in DNA.

The photoreactivation process can remove these lesions with the
help of photolyase expressed by haloarchaea. Haloarchaea has
unique compounds that include rhodopsin which has a phototaxis
mechanism. On the other hand, gas vesicles play a crucial role in
light regulation and responses to oxygen availability changes (Jones
and Baxter, 2017; Miralles-Robledillo et al., 2021). Response to UV
irradiation also includes the downregulation of genes involved in
the gas vesicle production to sink the cells below the water surface
(Kottemann et al., 2005). Some haloarchaea, such as Halorubrum
lacusprofundi and Haloferax volcanii, can withstand a wide range of
pH. They can exist in both low-pH environments like acidic lakes
and alkaline lakes (Mormile et al., 2009). In the case of Halorubrum
lacusprofundi, Haloferax volcanii, and Halobacterium sp., residing
in alkaline pH conditions, it has been described that several stress
genes such as hsp20 family, universal stress protein uspA, or groEL
chaperone are upregulated. In contrast, H. lacusprofundi exhibited
upregulation of hlac3059 and hlac3556 gene expression in acidic
pH. Besides, they display dormancy-specific responses at acidic pH
to survive in the environment (Moran-Reyna and Coker, 2014).

2. Biotechnological significance of
haloarchaea

Several biotechnological-based processes can be benefited from
the use of haloarchaea. Thus, the use of whole cells in wastewater
treatments and bioremediation of brines and salty soils has been
recently revealed as a promising tool. Hypersaline wastewater is a
common byproduct of industrial processes. Hence, cost-effective
treatment of hypersaline wastewater is necessary for sustainable
development. Biological wastewater treatment has been considered
a more economical approach, but mesophilic microorganisms
used so far for this purpose can not be used in the biological
treatment of polluted brines of wastewater containing high salt
concentration. In this context, recent research findings revealed
the role of haloarchaea in the treatment of salty wastewater
and brine generated as final residues in water desalination
plants (Li et al., 2021; Martínez et al., 2022). Haloarchaea can
also degrade hydrocarbons; however, their degradation is more
efficient for low molecular-weight hydrocarbons. The degradation
of naphthalene, phenol, p-hydroxybenzoic acid, and 3-phenyl
propionic acid, and oxychlorides like perchlorate or chlorate by
haloarchaea also make it an attractive choice for wastewater
treatment (Martínez-Espinosa et al., 2015; Mukherji et al., 2020; Li
et al., 2021). Another interesting approach related to wastewater
treatments is the removal of nitrogen to avoid eutrophication
in the receiving water bodies and heavy metals to avoid global
toxicity. Haloarchaea, such as Haloferax mediterranei, can use
NO3

− and NO2
− as nitrogen sources for growth or as final electron

acceptors instead of oxygen in an anaerobic respiratory process
(denitrification). For example, Haloferax mediterranei encodes
nitrate reductase (nas) and nitrite reductase (nir) that can perform
assimilatory nitrate/nitrite reduction (Martínez-Espinosa et al.,
2007), whilst Nar, NirK, Nor, and Nos encodes key enzymes in
catalyzing the reactions involved in the process of denitrification
(Bernabeu et al., 2021). Regarding heavy metals, several recent
studies have demonstrated that some haloarchaeal species can
grow in the presence of heavy metals at concentrations that are
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toxic for most living beings. In some cases, because of cellular
growth, heavy metals are accumulated, modified or bioassimilated.
Molecular machinery for the potential removal of cooper and
cadmium has also been identified from many haloarchaeal
species (Vera-Bernal and Martínez-Espinosa, 2021; Llorca and
Martínez-Espinosa, 2022). In other cases, haloarchaea growing in
the presence of heavy metals can also synthesize nanoparticles
(NPs) from wastewater polluted with cadmium, arsenic, and
zinc (Taran et al., 2017; Li et al., 2021; Gaonkar and Furtado,
2022). Haloarchaea have various mechanisms to tolerate the
arsenate metals using minichromosomes/megaplasmids (arsADRC
gene cluster) in the Halobacterium species (Wang et al., 2004;
Voica et al., 2016). The zinc tolerance mechanism was found
due to the presence of physical bioabsorption, ion exchange and
intracellular accumulation which can be used for the various
biological process inside the cell (Popescu and Dumitru, 2009;
Williams et al., 2013; Salgaonkar et al., 2016). Similarly, cadmium
also plays a crucial aid in intracellular metabolic functions
so cadmium can be tolerated inside the cell without stress
(Vera-Bernal and Martínez-Espinosa, 2021).

Another interesting biotechnological application is related to
the enzymes from haloarchaea. They exhibit increased tolerance,
not only to salinity but also to pH, pressure, temperature, etc.
Haloenzymes have several advantages, such as minimum steps in
purification, sterilization, and cost-effectiveness (Amoozegar et al.,
2017). Haloenzymes such as lipase and alcohol dehydrogenase
from Haloferax volcanii and Haloarcula sp., G41, respectively,
have been immobilized successfully for increased activity (Alsafadi
and Paradisi, 2014; Li and Yu, 2014). Saline-tolerant lipases
and esterases like those described from Haloarcula marismortui
and Natronococcus sp., TC6 are essential enzymes in several
biotechnological applications such as biofuel, detergent, textile, etc
(Camacho et al., 2009; Del Campo et al., 2015).

The haloarchaeal membrane protein bacteriorhodopsin,
initially discovered from Halobacterium salinarum, is highly
stable to thermal and photochemical stress. Bacteriorhodopsin
can sense light and convert it into electrical signals (Singh and
Singh, 2017). Bacteriorhodopsin from haloarchaea has also
found applications in biosensors and artificial retinas (Figure 2;
Amoozegar et al., 2017). The gas vesicles mentioned in section
“1. Introduction: haloarchaeal diversity and ecology” have
applications in drug delivery systems and vaccine development
(Cánovas et al., 2021). Meanwhile, poly-β-hydroxy-alkanoates
(PHAs) produced by haloarchaea, such as Haloferax mediterranei,
are considered an alternative to plastics produced from petroleum
and in medical applications owing to their biocompatibility
(Salgaonkar et al., 2013; Li et al., 2021). Thus, PHA can be
synthesized using these microorganisms as biofactories thanks to
cheaper procedures in which the biomass downstream process
as well as the purification process of the biopolymer can be done
with single steps (Simó-Cabrera et al., 2021). PHA produced
by various materials such as residues from food and agriculture
products can be synthesized into PHA with a help of haloarchaea
(Quillaguamán et al., 2010). Genomic insights of halophiles such
as Halonotius terrestris sp., nov. and Halonotius roseus sp., nov.
have been recently delineated and found to encode the complete
biosynthetic genes for the biosynthesis of cobalamin (vitamin B12)
(Durán-Viseras et al., 2019).

Halophiles produce saline-tolerant proteins and metabolites,
such as carotenoids, which assist in tolerance toward salinity.
Haloarchaeal carotenoids have industrial interest due to their
antioxidant, anticancer, antimicrobial, anti-inflammatory, food
colorant, and several other biomedical applications (Verma et al.,
2020). Bacterioruberin is also commonly used in cosmetics and
drug encapsulation (Serrano et al., 2022). Haloarchaea have been
extensively explored for bioactive metabolites with anticancer,
antimicrobial, and antioxidant activities (Table 1). Among the
several haloarchaeal secondary metabolites, carotenoids gained
attention due to their multi-faced applications in cosmetics, food,
and biomedical sectors (Serrano et al., 2022). Carotenoids have
multiple roles in bacteria, plants, and archaea. Carotenoid helps
photosynthetic plants and microbes to increase light absorption in
the blue-green region through the singlet-singlet energy transfer
(Hashimoto et al., 2015). It also has photoprotective effects against
excessive light and reactive oxygen species through the triplet
energy transfer of chlorophylls to carotenoids (Maoka, 2020).
They are crucial in structural stabilization and render tolerance to
hypersalinity.

Due to the advancements in culture-based methods and
metagenomics, the identification and discovery of novel species
of haloarchaea become a continuous process. Recently, 12
haloarchaeal isolates were isolated from Tamil Nadu (India), out
of which nine isolates were novel. Interestingly, all of the isolates
produced carotenoids (Verma et al., 2020). Haloarchaea has an
inherent molecule known as bacterioruberin, which is found in
most haloarchaea (Nagar et al., 2022). Similarly, novel species
under the genus Halorubrum, isolated from South Korea, produced
C50 carotenoid (bacterioruberin), having a strong antioxidant
activity (Hwang et al., 2022). Likewise, carotenoids from novel
Haloarcula sp., and Halorubrum sp., strains were isolated from the
Atacama Desert (Lizama et al., 2021). Large-scale whole genome
(n = 68) analysis suggested that haloarchaea has a wide diversity of
carotenoid biosynthetic genes (Serrano et al., 2022), suggesting that
haloarchaeal species could be a reservoir of carotenoid derivatives.

2.1. Anticancer compounds

Haloarchaea and their metabolic products are getting more
attention for the treatment of several cancers. Carotenoid
pigment from Halobacterium halobium, isolated from a saltern
in Tunisia, exhibited anticancer activity against the HepG2 cell
line (Abbes et al., 2013). In addition, the carotenoid pigment of
Halogeometricum limi, at a concentration of 720 µg/l, exhibited
∼23% anticancer activity against HepG2 cells (Hou and Cui, 2018).
Similarly, high carotenoid-producing (0.98 g/l) haloarchaea i.e.,
Natrialba sp., M6, which thrives at 25% NaCl and a pH of 10.0,
exhibited 50% anticancer activity against MCF-7, HepG2, and HeLa
cells at low concentrations (<39 µg/ml) (Hegazy et al., 2020).

Compared to β-carotene, bacterioruberin has a superior
antihemolytic and cytotoxic effect against HepG2 cells (Hou and
Cui, 2018). Natrialba sp., M6, under the phylum Euryarchaeota,
isolated from Egypt, produced C50 carotenoid as the predominant
compound (Hegazy et al., 2020). The pigment had a higher
selectivity toward cancer cells than the standard chemotherapeutic
agent 5-fluorouracil. It is active against breast, liver, and colon
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FIGURE 2

The application of haloarchaea and its metabolites. Recent exploration of haloarchaea and its metabolites has shed light on their potential
applications in wastewater treatment, biomedical, food, and industrial sectors. Haloarchaea is a preferred source of haloenzymes since the growth
and purification of enzymes involve minimal steps and are prone to less contamination.

cancer cells. On the other hand, C50 carotenoid bacterioruberin
with dexamethasone reduced the release of TNF-α and IL-8,
reversed the inflammation-induced morphological changes of
macrophage, and had a potential role as an intestinal barrier
repairing agent (Higa et al., 2020).

2.2. Antimicrobial compounds

Microorganisms causing infectious diseases evolve and
acquire antimicrobial resistance continuously. Thus, alternative
antimicrobials are required to meet emerging health challenges.
Haloarchaeal carotenoids as antimicrobials have been explored
less compared to other carotenoids. However, the potential of
haloarchaeal carotenoids as antimicrobials was demonstrated
against several pathogens (Gómez-Villegas et al., 2020). Recent
reports have shown that carotenoids from Halogeometricum
sp., ME3, Haloarcula sp., BT9 and Haloferax sp., ME16 have
antimicrobial activity against Vibrio anguillarum, Pseudomonas

aeruginosa, and Pseudomonas anguilliseptica, respectively
(Sahli et al., 2022).

Haloarchaea produce halocins with potent antimicrobial
activity. Halocin from the supernatant of Haloferax larsenii
HA1 exhibits potent antimicrobial activity (Kumar and Tiwari,
2017). Previous works on halocines from haloarchaea suggested
that the antimicrobial action of halocins could be related to
processes of competition between different species for niche,
food, or space. For instance, Halobacterium salinarum ETD5,
isolated from the solar saltern of Sfax, Tunisia, exhibited
antagonistic activity against haloarchaea of similar niches
such as Halorubrum sp (strain ETD1, ETD2, ETD6, ETR7),
Halorubrum chaoviator sp (strains ETD3, ETR14, and SS1R17),
and Halobacterium salinarum ETD19 (Ghanmi et al., 2016).
Furthermore, the C50 carotenoid pigment from Natrialba sp.,
M6 also exhibited promising potential in the elimination of
hepatitis C virus (HCV) and hepatitis B virus (HBV) from human
blood mononuclear cells suggesting its strong antiviral activity
(Hegazy et al., 2020).
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TABLE 1 Overview of the biological application of haloarchaea and their compounds: anticancer, antioxidant and antimicrobial activities of the
metabolites derived from haloarchaea.

Haloarchaea Compounds Complementary information References

Anticancer activity

Halobacterium halobium Carotenoid Antiproliferative activities (>0.5 µm) Abbes et al., 2013

Halogeometricum. limi Carotenoid HepG2 cells, 23% at a high concentration of 720 µg/L (∼1 µm) Hou and Cui, 2018

Halobiforma sp., Superparamagnetic iron
oxide nanoparticles

Localized hyperthermia cancer therapy Salem et al., 2020

Haloferax mediterranei Carotenoid HER2-positive or triple-negative breast cancer (TNBC) Giani and
Martínez-Espinosa, 2020

Natrialba sp., M6 Carotenoid Normal human lung fibroblast cells (Wi-38) 50 and 100% cell
viability.

Hegazy et al., 2020

50% cell death for Caco-2 (colon cancer line),

MCF7 (breast cancer cell line)

HepG2 (liver cancer line)

HeLa (cervical cancer cell line)

Antioxidant activities

Haloferax Carotenoid DPPH:IC50 = 56.69 µg/ml, Sahli et al., 2022

ABTS:IC50 = 39.66 µg/ml

Halogeometricum Carotenoid DPPH:IC50 = 170.4 µg/ml,

ABTS:IC50 = 136.43 µg/ml

Genetically modified Haloferax volcanii strain
(HVLON3)

Bacterioruberin EC50 yielded 4.5× 10−5 mol/l Zalazar et al., 2019

H. Hispanica hm1 Carotenoid ABTS (88%; IC50 = 3.89 µg/ml), FRP assay (82%;
EC50 = 3.12 µg/ml)

Gómez-Villegas et al., 2020

Hfx. Volcanic, Hgn. rubrum, and Hpl. coordinates Carotenoid DPPH radical scavenging activity > 80% at 10 ug/ml Hou and Cui, 2018

Haloferax mediterranei Carotenoid Oxidative stress Giani et al., 2021

Haloferax mediterranei Carotenoid Antioxidant, antiglycemic, and antilipidemic activities Giani et al., 2022

Antimicrobial activities

Halogeometricum sp., ME3, Haloarcula sp., BT9,
Haloferax sp., ME16

Carotenoid Vibrio anguillarum, Pseudomonas aeruginosa, Pseudomonas
anguilliseptica

Sahli et al., 2022

Haloferax alexandrinus AgNPS Pseudomonas aeruginosa ATCC 9027, Bordetellabronchiseptica
ATCC 4617, Staphylococcusaureus ATCC 6538P

Patil et al., 2014

Haloferax alexandrinus and Haloferax lucentense AgCl-NPS Pseudomonas aeruginosa and Bacillus sp Moopantakath et al., 2022

2.3. Antioxidant compounds

The human body produces free radicals during metabolic
processes, which create oxidative stress and contribute to
inflammation and lifestyle diseases. At present, haloarchaeal
compounds have received significant attention due to their
free radical scavenging properties at lower concentrations
which are considerably more effective than the standard
reference compounds like ascorbic acids. Bacterioruberin has
a conjugated structure containing 13 C-C units and has a
high free radical scavenging activity. The carotenoid from
Haloferax sp., exhibited high antioxidative activity, confirmed with
DPPH (2,2-diphenylpicrylhydrazyl) and ABTS (2,2’-azino-bis(3-
ethylbenzothiazoline-6-sulfonic acid) assay. The IC50 values for the
carotenoid compound were 56.69 and 39.66 µg/ml in DPPH and
ABTS assay, respectively (Sahli et al., 2022). In contrast, carotenoid
pigments isolated from the Halogeometricum sp., exhibited

antioxidative activity with an IC50?170.4 µg/ml (DPPH assay)
(Sahli et al., 2022). Similarly, acetone extracts from the H. hispanica
HM1 showed 88% (ABTS) and 82% (Ferric ion reducing power)
activity (Gómez-Villegas et al., 2020). Similarly, carotenoids from
H. volcanii, Hgn. rubrum, and Hpl. Inordinatehave highlighted
higher (80%) free radical scavenging properties at a concentration
of 10 µg/ml (Hou and Cui, 2018). Zalazar et al. (2019) reported
a genetically modified Haloferax volcanii strain (HVLON3) with
high antioxidative activities (EC50 = 4.5 × 10−5 mol/l). Thus,
haloarchaeal compounds can serve as a prominent source of
antioxidant molecules in the future.

Bacterioruberin and β-carotene are the most desirable
carotenoids for biological applications. Bacterioruberin, as an
antioxidant molecule, can capture reactive oxygen species. Its
exhibits antioxidant activity higher than the standard ascorbic
acid (Sahli et al., 2022). Bacterioruberin has superior antioxidant
properties compared to the β-carotene (Zalazar et al., 2019).
Oxidative stress in the form of H2O2 increases the bacterioruberin
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production in Haloferax mediterranei strain R-4 up to 78% (Giani
and Martínez-Espinosa, 2020). Furthermore, the antioxidant
activity of haloarchaea varies between species. For instance,
carotenoids from Haloferax sp., ME16 have a higher antioxidant
activity than Halogeometricum and Haloarcula (Sahli et al., 2022).

3. Hydrolytic enzymes from
haloarchaea

The wide range of enzymes produced by halophiles plays a
vital role in biotechnology, including biosynthesis, food processing
industries, and bioremediation methods. As the enzymes produced
by haloarchaea are stable at high salt concentrations they can
be utilized in several processes related to food or leather
tanning. The most important hydrolytic enzymes produced by
haloarchaea are proteases and lipases (Modern et al., 2000). The
first hydrolase enzyme, a serine protease, was purified and studied
from Halobacterium salinarum. This enzyme was active only at a
high concentration of NaCl (more than 2 M), being an enzyme rich
in negatively charged amino acids (Ventosa et al., 2005). Starch-
degrading alpha-amylases are synthesized by halophiles such
as Halobacterium salinarum, Haloferax mediterranei, Halomonas
meridiana, and Natronococcus amylolyticus (Kumar et al., 2016).
Besides amylases, pullulanase is produced by different archaea,
such as Halorubrum sp., Ha25, which is already used in
the starch industry (Siroosi et al., 2014). Cellulase-degrading
cellulases and glycoside hydrolase gene homologs are present
in Halorhabdus utahensis (Zhang et al., 2011), Haloarcula sp.,
(Ogan et al., 2012), Halorubrum lacusprofundi (Karan et al., 2013),
Haloarcula vallismortis (Nercessian et al., 2015), Natronobiforma
cellulositropha (Sorokin et al., 2018), Halalkalicoccus jeotgali
(Anderson et al., 2011), and Haloferax sulfurifontis (Malik
and Furtado, 2019). Table 2 displays different intracellular or
extracellular hydrolytic enzymes produced by haloarchaea.

Amylase, one of the important industrial enzymes, was
reported to synthesize by a new haloarchaeal strain isolated from
salterns. High amylase activity was exhibited by the new strain
Haloarcula sp., HS and found to be poly extremotolerant. The
optimum enzyme yield was obtained at high salt concentrations
(25%), 60◦C, and was calcium-dependent. Amylases were found
to be synthesized in extracellular and intracellular fractions and
observed as 3 different types of enzymes. The extracted enzymes
were tested on bakery waste. It was found that amylases degraded
bakery waste efficiently at high salt concentrations (Gómez-
Villegas et al., 2021). Interestingly, extracellular hydrolytic enzymes
were produced by haloarchaeal strains obtained from hypersaline
lakes. The two most abundant archaeal species, Natrinema and
Halorubrum, produced cellulase, pectinase, amylase, lipase, and
xylanase but not protease (Karray et al., 2018). In the study,
alpha-amylase obtained from H. salinarum was immobilized in
calcium alginate to enhance its stability (Patel et al., 1996). In
another study, the tolerance of alcohol dehydrogenase enzyme,
obtained from Haloferax volcanii, to organic solvents was reported
to improve upon immobilization with sepabeads (Alsafadi and
Paradisi, 2014). Immobilized lipase enzyme on anionic resin
obtained from Haloarcula sp., was used to produce biodiesel
(Li and Yu, 2014). Halobacterium salinarum NRC-1, Haloarcula

japonica, H. salinarum CECT 395, and H. mediterranei can grow
on chitin thanks to chitinases (García-Fraga et al., 2014; Hou et al.,
2014). Haloarchaea degrades lignin through laccase and peroxidase
enzymes. Some haloarchaea produces enzymes like esterases and
lipases to degrade ester, ether, and glycosidic linkages. Menasria
et al. (2018) have reported extensive bioprospecting of salt-stable
and active hydrolytic enzymes from haloarchaea of arid and semi-
arid wetlands. The major haloarchaea identified were from the class
halobacteria such as Haloarcula, Halogeometricum, Halococcus,
Haloterrigena, etc. Among the 68 isolates screened, 89.7% of
isolates produced 2 halophilic enzymes, whereas 52.9% produced
3 hydrolytic enzymes. These isolates produced gelatinase, cellulase,
esterase, and inulinase. Secondly, some isolates were profound
in producing xylanase, pectinase, and nuclease. The study also
reported that the high cellulase activity (35%) makes it a potential
candidate in the food and textile industries (Menasria et al., 2018).
Likewise, out of 300 isolates from a salt lake, 293 haloarchaea
isolates were selected and studied for active hydrophilic hydrolytic
enzymes.

The cellulase, xylanase, amylase, DNase, lipase, protease,
pullulanase, chitinase, and inulinase were observed in 9 potential
isolates. The most abundant enzymes produced by haloarchaeal
isolates (Halorubrum and Haloarcula) were lipase, DNase, and
amylase (Makhdoumi Kakhki et al., 2011).

4. Biodegradable and biocompatible
polymers by haloarchaea

Search for eco-friendly biopolymers is one of the important
research objectives worldwide to reduce global plastic pollution
and in the production of biomedical devices (Simó-Cabrera
et al., 2021). Regarding biomedicine, the desirable properties
of biodegradable polymers vary based on their application,
such as the high degradative potential for surgical mesh and low
degradative potential for bioengineered skin. For such applications,
biopolymers can be synthetically prepared, such as polylactic acid
(PLA) and polyglycolic acid (PGA) (Han et al., 2015). Yet such
synthetically prepared biopolymers are associated with setbacks
such as biocompatibility and inflammation. Among natural
biopolymers with interesting physicochemical properties to be
used as bioplastic for packaging or biomedical applications,
polyhydroxyalkanoates (PHAs) from haloarchaea are of research
interest. The advantages of PHAs include their ease of mechanical
customization, biodegradability, and biocompatibility (Han et al.,
2015). Hence, PHAs have been under extensive research for
application in medical implants, drug delivery, tissue replacement,
etc. PHAs, composed of hydroxyalkanoate monomers, are stored
as a source of carbon and energy under stress conditions in archaea
and bacteria. The type of hydroxyalkanoate monomers determines
the physical properties (rigid or elastic) of the PHAs. Among
the PHAs, the most common ones are poly-3-hydroxybutyrate
(PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
(PHBHV). PHBHV comprises PHB and 3-hydroxyvalerate (3HV)
monomer. PHBHV, upon degradation in the body, does not
release toxic byproducts, has more outstanding biocompatibility
and biodegradation, and helps in the growth of fibroblasts,
mesenchymal stem cells, etc (Ahmed et al., 2010).
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TABLE 2 Hydrolytic enzymes produced by haloarchaea and their biosynthesis mode.

Haloarchaea Hydrolytic enzymes Location References

Haloterrigenaturkmenica α-amylase Extracellular Santorelli et al., 2016

Haloferax mediterranei Monomeric α-amylase Extracellular Pérez-Pomares et al., 2003

Haloarcula sp., strain S-1 Organic solvent tolerant α-amylase Extracellular Fukushima et al., 2005

Haloarculahispanica Highly stable α-amylase Extracellular Hutcheon et al., 2005

Haloarcula sp., HS Poly-extremotolerant α-amylase Intracellular and extracellular Gómez-Villegas et al., 2021

Haloarcula sp., LLSG7 Organic solvent-tolerant cellulase Extracellular Li and Yu, 2013

Halorhabdus utahensis Heat and ionic liquid-tolerant cellulase Extracellular Zhang et al., 2011

Halomicrobium and Salinarchaeum Chitinase Extracellular Sorokin et al., 2015

Haloterrigena Chitinase Intracellular Sorokin et al., 2015

Halobacterium salinarum NRC-1 Chitinase Extracellular Yatsunami et al., 2010

Haloferax mediterranei S1 Lipase Extracellular Akmoussi-Toumi et al., 2018

Haloarcula sp., G41 Organic solvent tolerant lipase Extracellular Li and Yu, 2014

Natrialba asiatica 172 P1 Protease Extracellular De Castro et al., 2006

Halobacterium salinarum I and IM Protease Extracellular De Castro et al., 2006

Natronococcus sp., TC6 Esterase Extracellular Martin del Campo et al., 2015

H. marismortui Esterase and lipase Intracellular Camacho et al., 2009

Haloferax volcanii Laccase Extracellular Uthandi et al., 2010

TABLE 3 Different types of nanoparticles synthesized using haloarchaea and their biological activities.

Haloarchaea Nanoparticles Applications References

H. salifodinae BK3 and BK6 Intracellular silver Antibacterial activity (gram-positive and negative) Tiquia-Arashiro and Rodrigues, 2016

Haloferax sp Intracellular silver Antibacterial activity against pathogenic bacteria Abdollahnia et al., 2020

Halogeometricum sp Intracellular selenium Antibacterial activity against pathogenic bacteria Abdollahnia et al., 2020

Haloferax alexandrinus RK_AK2 and
Haloferax lucentense RK_MY6

Silver chloride Anti-inflammatory, antioxidant, and antibacterial
activity

Moopantakath et al., 2022

Haloferax sp., NRS1 Intracellular silver Non-hemolytic (non-toxic) activity Tag et al., 2021

Halobacterium sp., NRC-1 Self-adjuvant gas vesicle
nanoparticles

Antigen delivery and development of salmonella
vaccines

DasSarma et al., 2015

Halomonas elongata IBRCM Zinc oxide Antibacterial activity (E. coli and methicillin-resistant
S. aureus)

Taran et al., 2018

Halococcussalifodinae BK3 Needle shape tellurium NPs Antibacterial activity (gram-positive and negative) Srivastava et al., 2015

Halobiforma sp., N1 Superparamagnetic iron oxide NPs Hyperthermia treatment of cancer Salem et al., 2020

Archaea are considered promising cell factories and more
cost-effective than bacteria for PHBHV production. For instance,
Haloferax mediterranei produces PHBHV with a lower melting
point than Hydrogenophaga pseudoflava (Koller et al., 2007).
PHBHV produced by Halogranum amylolyticum has a higher
hemocompatibility than Ralstonia eutropha (Zhao Y. et al., 2015).
Furthermore, the entire process of biosynthesis is within the
cell. PHAs are water-insoluble, degradable without oxygen, and
increase their solubility in chlorinated solvents (Simó-Cabrera
et al., 2021). Based on the monomers, PHAs are classified as
homopolymers consisting of the same type of monomers (P4HB,
P3HP, P3H4P, etc.), random copolymers consisting of multiple
monomer types distributed random, and block copolymers
where the distinct polymers are distributed in discrete blocks
(Simó-Cabrera et al., 2021). Haloferax mediterranei can also

produce varying types of PHBHV based on the concentration
of valerate being fed (Han et al., 2015). These variations are of
two main types, higher-order copolymers (O-PHBHV) composed
of PHB and PHV with random PHBHV segments. R-PHBHV
comprises random copolymers 3HB and 3HV (Han et al.,
2015). PHAs are also produced by Halogranum amylolyticum
TNN58 with poly (3-hydroxybutyrate-co-3-hydroxyvalerate)
(PHBV) and 3-hydroxyvalerate (3HV) fraction when the
carbon source is glucose (Zhao Y. X. et al., 2015). Genetic
engineering, such as CRISPR-Cas technology, can enhance
gene expression for PHAs production. A recent study showed a
∼165% increase in the output of PHA when citZ and gltA genes
were downregulated by CRISPRi (Lin et al., 2021). Recently,
robust methods have been developed for monitoring PHA
granules in Haloferax mediterranei, such as through confocal
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fluorescence microscopy stained with Nile red and SYBR Green
(Cánovas et al., 2021).

5. Synthesis and application of
bioactive nanoparticles from
haloarchaea

Nanobiotechnology is a boon to the field of medicine, which
deals with the synthesis and application of a wide range of NPs
for the treatment of diseases and targeted delivery of drugs (Patra
et al., 2018; Dash et al., 2020). Synthesis of NPs using biological
entities is always important due to their ease of production,
eco-friendly approach, and bioavailability. The green approach
in nanotechnology involves producing stable NPs capped with
metabolites employed by organisms or plants (Singh et al., 2018).
Several works have demonstrated that some haloarchaea can
synthesize nanoparticles. However, the synthesis of NPs using
haloarchaea needs to be better explored.

Recently, haloarchaea has been explored due to its ability
to produce several NPs by detoxifying heavy metals. These
organisms survive in the presence of heavy metals by employing
enzymatic reduction of metals and sequestration methods to
detoxify them (Voica et al., 2016). Table 3 shows different
NPs synthesized using haloarchaea as well as their potential
biological applications (Table 3). Additional factors such as salt,
pH, temperature, and size affect the stability and efficiency of NPs
(Dutta and Bandopadhyay, 2022).

Abdollahnia et al. (2020) studied the synthesis of silver
and selenium nanoparticles by haloarchaea isolated from solar
salterns. Intracellular production of silver and selenium NPs were
reported by Haloferax sp., and Halogeometricum sp., respectively
(Abdollahnia et al., 2020; Nagar et al., 2022). The biosynthesized
nanoparticles exhibited antibacterial activity against S. aureus,
E. coli, B. subtilis, and P. aeruginosa (Abdollahnia et al., 2020).
A haloarchaea, Haloferax sp., NRS1 screened from solar saltern
found in Saudi Arabia showed promising potential in synthesizing
silver NPs. The biogenic silver NPs showed non-hemolytic activity
below 12.5 µg/ml concentration suggesting their thrombolysis
property. The non-toxic/hemolytic property of synthesized NPs
potentiates their application as nano drug carriers (Tag et al., 2021).

Similarly, silver NPs synthesized by another group exhibited
broad antimicrobial activity. The archaea Halococcus salifodinae
BK6, mediated synthesis of silver NPs, employs NADH-dependent
nitro reductases to reduce metal to nanoparticles. They showed
promising antibacterial activity against S. aureus and M. luteus
(Gram-positive) and E. coli and P. aeruginosa (Gram-negative)
(Srivastava et al., 2014b).

Srivastava et al. (2014a) discussed the synthesis of selenium
NPs using H. salifodinae BK18. Similar to their previous work,
nitro reductases reduced sodium selenite to NPs. The intracellular
synthesized NPs exhibited antiproliferative properties against
HeLa cancer cell lines. Also, the NPs were found to be non-
toxic against normal cells suggesting their application as an
anticancer agent (Srivastava et al., 2014a). Bioactive gold and
silver NPs were synthesized using Haloferax volcanii. Significant
antibacterial activities were observed with synthesized silver
NPs against E. coli and P. putida (Costa et al., 2020). In

addition, haloarchaeal nanoparticles hold promising antibacterial
properties. Haloferax alexandrinus was used to synthesize silver
nanoparticles with an average size of 18 nm and with an amide
carbonyl group on the surface. This synthesized nanoparticle
has shown antimicrobial activity against P. aeruginosa, Bordetella
bronchiseptica, and S. aureus at 5 µg concentrations (Patil et al.,
2014). Another study also highlights the synthesis of spherical-
shaped silver chloride nanoparticles (MY6-NP and AK2-NPs) with
a size of 30–50 nm using Haloferax Alexandrinus and Haloferax
lucentense at high salt-saturated conditions. According to a study
by Salem et al. (2020), hyperthermia therapy can be employed
with the help of superparamagnetic iron oxide nanoparticles
synthesized using Halobiforma sp., N1. The nanoparticles were
monodispersed and presented growth inhibition activity against
P. aeruginosa PAO1 and Bacillus sp., at 200 µg/ml concentration
(Moopantakath et al., 2022).

6. Conclusion

Haloarchaea, or extremely halophilic archaea, are a group
of microbes with genuine metabolic features. They inhabit
and even predominate in various extreme geographical and
ecological/environmental conditions, The number of new
haloarchaeon discovered through culturable and non-culturable
methods and techniques is increasing during the last decades.
Metabolites synthesized by several haloarchaeal species are of high
interest due to their potential applications in biotechnology Thus,
carotenoids are highly efficient as antimicrobials, antioxidants, and
food colorants. They have been reported to have diverse biological
activities, including anticancer and antimicrobial activities. Among
carotenoids, bacterioruberin, carotenoids almost produce by
haloarchaea show higher antioxidant activity than most of the
referenced carotenoids from plants, yeast or algae. Haloarchaea are
also implemented in hypersaline wastewater treatment to degrade
hydrocarbons, nitrogen removal, and heavy metal bioremediation
and nanoparticle (NP) biosynthesis. On the other hand, enzymes
from haloarchaea like amylase, chitinase, lipase, protease, and
esterase show high activity at extreme conditions (in terms of pH,
temperature etc.) which are of interest for industrial processes. The
biosynthesis of nanoparticles by haloarchaea has also described
being many of those nanoparticles effective against drug-resistant
microbes. The haloarchaea, haloenzymes, and pigments are also
widely used in the fermentation of salty foods, cosmetics, food,
biomedical sectors, biocompatible bioplastics, and biosensors.
Despite such an array of applications, their roles within the
cells in natural environments as well as in industrial processes
remain unexplored consequently, the research on the metabolites
synthesized by these microorganisms must continue through more
specialized approaches using high-tech equipments.
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Dimitry Y. Sorokin 1,2†
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Extremely halophilic archaea are one of the principal microbial community 
components in hypersaline environments. The majority of cultivated haloarchaea 
are aerobic heterotrophs using peptides or simple sugars as carbon and energy 
sources. At the same time, a number of novel metabolic capacities of these 
extremophiles were discovered recently among which is a capability of growing 
on insoluble polysaccharides such as cellulose and chitin. Still, polysaccharidolytic 
strains are in minority among cultivated haloarchaea and their capacities of 
hydrolyzing recalcitrant polysaccharides are hardly investigated. This includes 
the mechanisms and enzymes involved in cellulose degradation, which are well 
studied for bacterial species, while almost unexplored in archaea and haloarchaea 
in particular. To fill this gap, a comparative genomic analysis of 155 cultivated 
representatives of halo(natrono)archaea, including seven cellulotrophic strains 
belonging to the genera Natronobiforma, Natronolimnobius, Natrarchaeobius, 
Halosimplex, Halomicrobium and Halococcoides was performed. The analysis 
revealed a number of cellulases, encoded in the genomes of cellulotrophic 
strains but also in several haloarchaea, for which the capacity to grow on 
cellulose was not shown. Surprisingly, the cellulases genes, especially of GH5, 
GH9 and GH12 families, were significantly overrepresented in the cellulotrophic 
haloarchaea genomes in comparison with other cellulotrophic archaea and 
even cellulotrophic bacteria. Besides cellulases, the genes for GH10 and GH51 
families were also abundant in the genomes of cellulotrophic haloarchaea. 
These results allowed to propose the genomic patterns, determining the 
capability of haloarchaea to grow on cellulose. The patterns helped to predict 
cellulotrophic capacity for several halo(natrono)archaea, and for three of them 
it was experimentally confirmed. Further genomic search revealed that glucose 
and cellooligosaccharides import occurred by means of porters and ABC 
(ATP-binding cassette) transporters. Intracellular glucose oxidation occurred 
through glycolysis or the semi-phosphorylative Entner-Dudoroff pathway which 
occurrence was strain-specific. Comparative analysis of CAZymes toolbox and 
available cultivation-based information allowed proposing two possible strategies 
used by haloarchaea capable of growing on cellulose: so-called specialists are 
more effective in degradation of cellulose while generalists are more flexible in 
nutrient spectra. Besides CAZymes profiles the groups differed in genome sizes, 
as well as in variability of mechanisms of import and central metabolism of sugars.
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haloarchaea, cellulotrophic, genomics, CAZymes, cellulose, polysaccharides 
degradation
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Introduction

Extremely halophilic archaea, belonging to the class Halobacteria 
(Euryarchaeota phylum), are abundant in natural terrestrial and 
deep-see hypersaline lakes, men-made solar salterns, rock salt deposits 
and saline soils. The well-studied majority of cultivated haloarchaea 
are growing aerobically on rich media containing peptides or simple 
sugars. Recently, however, a number of novel metabolic capacities of 
haloarchaea were discovered, including capability to grow 
anaerobically by sulfur respiration (Sorokin et al., 2016, 2017, 2021) 
or to grow aerobically with insoluble polysaccharides as the sole 
substrate (Sorokin et al., 2015, 2018, 2019a,b). Still, the haloarchaea 
bearing novel metabolic features are in total minority among 
cultivated representatives of this class with their unique metabolic 
machinery practically unexplored on biochemical or genomic level. 
Another question is whether the numerous haloarchaea growing on 
simple substrates may have any of the mentioned above properties, 
more specifically would the saccharolytic haloarchaea be capable of 
growth on insoluble polysaccharides.

Polysaccharides are degraded under the action of different types 
of enzymes, belonging to so-called carbohydrate-active enzymes 
(CAZymes, Drula et  al., 2022). CAZymes included glycosidases 
(GHs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), 
glycosyl transferases (GTs, mostly involved in carbohydrate 
biosynthesis) as well as auxiliary proteins (AAs) and proteins with 
carbohydrate binding domains (CBMs). Hydrolysis of exogenous 
insoluble polysaccharides demand extracellular CAZymes (in total 
majority – GHs), responsible for initial degradation steps occurred 
outside the cell. Currently, four model of CAZymes export and the 
consequent mechanisms of polysaccharides degradation in bacteria 
are suggested (Gardner and Schreier, 2021): (a) CAZymes are exported 
via outer-membrane vesicles (Elhenawy et al., 2014), (b) CAZymes are 
exported from periplasm via type II secretion system (Gardner and 
Keating, 2010), (c) cellulosome – CAZymes and specific carbohydrate-
binding proteins are attached to the scaffoldins anchored to the 
cytoplasmic membrane (Artzi et al., 2017), and (d) S-layer-bound 
CAZymes and tapirins (specific binding protein) are attached to 
S-layer glycoproteins and pili (Conway et al., 2016; Lee et al., 2019). In 
turn, the mechanisms and enzymes, involved in polysaccharides 
hydrolysis in archaea and specifically in halophilic archaea are almost 
unknown. In particular, this is true for one of the most abundant 
polysaccharide on Earth – cellulose. Cellulose is a recalcitrant 
structural homopolysaccharide consisted of beta-1,4-linked D-glucose 
residues. Despite no variation in primary structure, different forms of 
celluloses distinguished from each other by degree of crystallinity and 
ratio and layout of crystalline and amorphous domain – so-called 
allomorphs (Uusi-Tarkka et al., 2021) which defines the variability of 
the enzymes involved in cellulose hydrolysis.

Extracellular cellulose hydrolysis resulted in formation of 
cellooligosaccharides (maximal – C6, Zhong et al., 2020), cellobiose 
and glucose. The last is less preferable since it is more accessible for 
competitors and accounts for the preference of cellulotrophic 
microorganisms to carry out the final steps of cellooligosaccharides 
hydrolysis intracellularly. Although, a few studies on 
cellooligosaccharides and cellobiose import in hyperthermophilic 
archaea Pyrococcus furiosus (Koning et  al., 2001) and Sulfolobus 
solfataricus (Elferink et  al., 2001) revealed that high-affinity 
ATP-binding cassette (ABC) transporters to be  involved in this 

process, but nothing is known about haloarchaea. The mechanisms of 
glucose import into the cells as well as proteins involved in this process 
also are very poorly studied in haloarchaea. It seems the ABC 
transporters play a key role (Williams et al., 2019) in glucose import 
in halophilic archaea. Glucose is a single final product of cellulose 
hydrolysis, and its oxidation in haloarchaea occurred by means of (a) 
semi-phosphorylative Entner-Doudoroff pathway (Johnsen et  al., 
2001; Pickl et  al., 2014), (b) modified glycolysis involving 
ketohexokinase and 1-phosphofructokinase (Altekar and 
Rangaswamy, 1991; Pickl et al., 2012) or (c) canonical glycolysis with 
ADP-dependent phosphofructokinase.

Recent developments in sequence technologies as well as the 
overall interest to haloarchaea resulted in a high number of available 
haloarchaeal genome sequences, both cultivated and uncultured 
(metagenome assembled genomes  - MAGs). This is a good 
background for a comprehensive comparative genomic study to reveal 
the mechanisms of cellulose utilization in haloarchaea. The aim of this 
work was to use comparative genomics for comprehensive annotation 
of haloarchaeal CAZymes, involved in cellulose hydrolysis to reveal 
their cellulolytic machinery in the strains capable of growing on 
cellulose and to be able predicting this possibility for strains, for which 
it was not verified experimentally. Finally, basing on the sets of GHs 
and other CAZymes and auxiliary proteins we attempted to predict 
haloarchaea’s strategies of polysaccharides decomposing in 
hypersaline environments.

Materials and methods

Genome sequencing

Genomic DNA isolation, Illumina sequencing as well as genome 
assembly were performed as described earlier (Sorokin et al., 2018).

For strain AArcel5 additional sequencing using nanopore 
techonology (Oxford Nanopore Technology) was done. Genomic 
DNA of the strain was isolated using phenol-chloroform extraction 
(Gavrilov et al., 2016) and futher repurified using MagAttract HMW 
DNA Kit (Qiagen) according to manufacturer protocol. The DNA 
library was prepared with Rapid Barcoding Kit (SQK-RBK004, Oxford 
Nanopore Technologies). Sequencing was performed with FLO-MIN-
106D flow cell (R9.4.1) and MinION device. Basecalling was 
performed using Guppy basecaller v.2.3.5 with flipflop model. In total 
of 94,910 reads were obtained by ONT sequencing (~152 Mbp). 
Assembly was performed as follows: Canu v.1.8 (Koren et al., 2017) 
was used to obtain de novo assembly using long ONT reads followed 
by Nanopolish v.0.11 (Loman et al., 2015) polishing with raw fast5 
reads as well as several rounds of Pilon v.1.23 (Walker et al., 2014) 
polishing with Illumina reads.

Genome and phylogenetic analyses

High quality genomes of cultivated haloarchaea were downloaded 
from IMG/M system (Chen et al., 2019); genomes, which were de novo 
sequenced during this work, were also previously annotated using 
IMG/M system. To exclude almost identical genomes AAI matrix was 
constructed using aai_matrix.sh (Rodriguez-R and Konstantinidis, 
2016). Completeness levels of assemblies with >95% AAI with each 
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other were estimated with CheckM v.1.1.5 (Parks et al., 2015): one 
assembly with better quality from each group will be selected for the 
further analysis.

For phylogenomic analysis based on the “ar122” set of conserved 
archaeal proteins, the sequences were identified and aligned in in silico 
proteomes of strains from AArcel and HArcel groups as well as 
described species within Halobacteria using the GTDB-tk v.1.2.0 with 
reference data v.89 (Chaumeil et al., 2019). The phylogenomic tree was 
constructed using RAxML v.8.2.12 (Stamatakis, 2014) with the 
PROTGAMMAILG model of amino acid substitution; local support 
values were 1,000 rapid bootstrap replications. Phylogenetic tree was 
visualized using iTOL v.6.5.2 (Letunic and Bork, 2019).

CAZymes genes were identified in the genomes using dbCAN 
v.2.0.11 (Zhang et al., 2018). Comparative analysis was performed 
with the complete set of revealed in each genome CAZymes as well as 
with families containing the enzymes with targeted (eg. 
endoglucanases) activities. Enzymes localization was predicted using 
SignalP v.6.0 (Teufel et al., 2022). Isoelectric points were estimated 
with IPC 2.0 (Kozlowski, 2021).

Putative carbohydrate-specific transporters as well as enzymes 
involved in central catabolism pathways were detected using blastp 
with characterized reference proteins, obtained from SwissProt 
(Boutet et al., 2016) and TCDB (Saier et al., 2014) databases, as queries 
and haloarchaeal genomes as subjects (e-value <10−5). Positive hits 
were manually checked with blast against SwissProt database. For 
ABC transporters only the gene clusters encoding at least substrate-
binding protein and permease subunits were taken into account 
(ATPase was not since it is relatively nonspecific component).

Clusters of Orthologous Groups (COGs) were identified with 
IMG Pipeline (Chen et al., 2019). NMDS ordination was performed 
with vegan package.1

Experimental support

Neutrophilic and alkaliphilic haloarchaea were cultivated on the 
medium prepared according to Sorokin et  al. (2015). For the 
haloarchaea from salt lakes, a mineral base medium contained the 
following (g l−1): 240 NaCl, 5 KCl, 0.25 NH4Cl, 2.5  K2HPO4, pH 
6.8. The medium was heat sterilized at 120°C  for 30 min and after 
cooling supplemented with vitamin and trace metal mix (Pfennig and 
Lippert, 1966) (1 mL l−1 each) and 2 mM MgSO4. For alkaliphilic 
natronoarchaea from soda lakes, a sodium carbonate/bicarbonate 
buffered mineral base medium containing 4 M total Na+ included 
(g l−1): 190 Na2CO3, 30 NaHCO3, 16 NaCl, 5 KCl and 1 K2HPO4 with 
a final pH 10 after heat sterilization was supplemented with the same 
additions as the neutral base medium, except that the amount of Mg 
was two times lower and that 4 mM NH4Cl was added after 
sterilization. Finally, the ready to use alkaline base medium was mixed 
1:3 with the neutral medium, resulting in the final pH of 9.6. Various 
forms of insoluble celluloses with different degrees of crystallinity 
were used as growth substrates at the final concentration of 1–2 g l−1.

1 https://CRAN.R-project.org/package=vegan

Results and discussion

General genome properties and 
phylogenetic analysis

Genome properties of two cellulotrophic haloarchaeal groups, 
AArcel (alkaliphilic haloarchaea from soda lakes) and HArcel 
(neutrophilic haloarchaea from neutral salt lakes), were compared 
(Table  1). Two genome assemblies were obtained earlier 
[Natronobiforma cellulositropha AArcel2 (Sorokin et al., 2018) and 
Halococcoides cellulosivorans HArcel1 (Sorokin et al., 2019a)], one 
genome was resequenced and reassembled in the course of this work 
(Natronobiforma cellulositropha AArcel5T, see Material and Methods 
section) and the others (Natronolimnobius sp. AArcel1, 
Natrarchaeobius sp. AArcel7, Halosimplex sp. HArcel2 and 
Halomicrobium sp. HArcel3) were sequenced de novo in the course of 
this work. The G + C content of all the genome assemblies laid within 
rather narrow boundaries: 58.85–68.31%. In turn the genome sizes 
greatly varied from 2.72 Mbp (HArcel1) to 5.12 Mbp (AArcel7) 
leading to fairly broad range of a number of a protein-coding genes: 
2641–4,769.

Currently all haloarchaea are affiliated with the class Halobacteria 
within the Euryarchaeaota phylum. Phylogenomic analysis of 
cellulotrophic strains based on “ar122” set of conserved proteins 
showed that natronoarchaeal AArcel strains belong to the order 
Natrialbales, while neutrophilic HArcel strains – to the order 
Halobacteriales (Figure 1) thus confirming the results of 16S rRNA 
gene and RpoB protein sequence-based phylogenetic analyses 
(Sorokin et al., 2018, 2019a). The seven cellulotrophic haloarchaea 
were relatively equally distributed on the haloarchaeal tree indicating 
polyphyletic origin of cellulotrophy in this class. To estimate occurence 
of this capability among haloarchaea 155 genomes of cultivated 
representatives of Halobacteria class, including 7 cellulotrophic strains 
were analyzed in respect to the presence of cellulose-active CAZymes.

Cellulolytic capabilities of AArcel/HArcel 
strains compared with other haloarchaea

Currently there are 26 known CAZymes families (22 glycoside 
hydrolases and 4 polysaccharide monooxygenases) harboring the 
enzymes with confirmed cellulolytic activities sensu lato (including 
hydrolysis of cellooligosaccharides, e.g., beta-glucosidase or cellobiose 
phosphorylase, http://www.cazy.org; Supplementary Table S1): beta-
glucosidase (GH1, GH2, GH3, GH30, GH39, GH116), endoglucanase 
(GH5, GH6, GH7, GH8, GH9, GH10, GH12, GH44, GH45, GH48, 
GH51, GH74, GH124, GH131, GH148), cellobiose/cellodextrin 
phosphorylase (GH94) and lytic cellulose monooxygenase (AA9, 
AA10, AA15, AA16). Among them, 13 families contain archaeal 
sequences and only 6 families contained biochemically characterized 
cellulases and related enzymes found in archaea (GH1, GH2, GH3, 
GH5, GH12 and GH116). Besides cellulases there is a number of 
auxiliary proteins responsible for binding and transportation of 
oligomers and glucose inside the cell.

To reveal the distribution of the cellulases sensu lato among the 
haloarchaeal genomes, the genes encoding selected GHs and AAs 
families members were searched in 155 high-quality genomes of 
representatives of Halobacteria class including 7 genomes of AArcel/
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HArcel strains, playing a role of positive controls as they are known to 
be  cellulose-utilizing organisms (Sorokin et  al., 2015; 
Supplementary Figure S1). The search showed that 117 of 155 
genomes possess at least one gene encoding protein from the 
abovementioned families (11 families were found).

The cellulases genes were unequally distributed within these 117 
genomes and the AArcel/HArcel strains with the confirmed ability to 
utilize native insoluble forms of cellulose (Sorokin et al., 2015) were 
among the top in the number of such genes per genome. Among other 
haloarchaea for which this capacity is yet unknown there were 
examples with high number of cellulase genes per genome as well as 
genomes encoded single or few cellulases and the transition from the 

first to the latter variaty was seamless. With such distribution, it 
appeared impossible to distinguish genuine cellulotrophic 
representatives using this cellulases sensu lato dataset which is, most 
probably, related to the fact that besides cellulases these GH families 
contain enzymes which only indirectly involved in cellulose 
decomposition. In this regard, a set of query CAZymes was limited to 
CAZymes families containing endoglucanases – enzymes, playing 
crucial role in cellulose depolymerization (Mandeep et al., 2021) and 
which can be  considered as signature enzymes for cellulotrophic 
organisms. The search with the endoglucanases set (Figure 2) resulted 
in selection of a much narrower group of haloarchaeal genomes with 
a high probability to be capable of degrading cellulose, not only its 

TABLE 1 General properties of genomes of haloarchaeal AArcel/HArcel strains.

Strain IMG Genome ID Genome size, 
bp

Gene count Scaffold count G + C, % Reference

AArcel1 2,681,813,540 4,560,092 4,555 18 58.85 de novo sequencing

AArcel2 2,642,422,534 3,732,973 3,776 42 65.43 Sorokin et al., 2018

AArcel5 2,868,148,463 3,829,432 3,854 5 65.42 resequencing

AArcel7 2,808,606,451 5,121,137 4,820 22 62.82 de novo sequencing

HArcel1 2,681,813,541 2,723,120 2,757 1 65.74 Sorokin et al., 2019a

HArcel2 2,808,606,450 4,572,180 4,633 68 68.31 de novo sequencing

HArcel3 2,867,963,358 4,205,126 4,230 19 66.23 de novo sequencing

FIGURE 1

Maximum-likelihood phylogenetic tree of Halobacteria class based on 122 concatenated sequences of conservative archaeal proteins. Strains from 
AArcel/HArcel groups were marked by black arrows. The branch lengths correspond to the number of substitutions per site according to the 
corrections associated with the PROTGAMMAILG model in RAxML. The black circles at nodes indicate that the percentage of corresponding support 
values (1,000 rapid bootstrap replications) was above 50. Methanothermobacter thermautotrophicus DeltaH was used as an outgroup.
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smaller and soluble derivatives as cellobiose, cellooligosacharides or 
heteropolysaccharides, containing beta-1,4-glucose linkages in their 
backbone or side chains. In total, 13 strains were found capable of 
degrading cellulose including all AArcel/HArcel strains, for which an 
ability to grow on native celluloses was experimentally approved 
(Sorokin et al., 2015). Besides AArcel and HArcel strains, the following 
haloarchaea were predicted to be  cellulotrophic: Halosimplex 
carlsbadense 2–9-1, Halorhabdus tiamatea SARL4B, Halorhabdus 
utahensis AX-2, Halomicrobium zhouii CGMCC 1.10457, 
Natronolimnobius baerhuensis JCM 12253 and Natrinema salaciae 
DSM 25055. Three of them, N. baerhuensis JCM 12253, H. carlsbadense 
2–9-1 (JCM 11222) and H. zhouii CGMCC 1.10457 (JCM 17095), 
were acquired from the Japan Collection of Microorganisms (JCM, 
https://jcm.brc.riken.jp/en/) and their ability to grow on amorphous 
cellulose was confirmed in our laboratory, while the other three still 
need to be tested.

While inspecting the reference endoglucanase sets of these 
cellulotrophic strains, including both AArcel/HArcel with the 
confirmed growth on cellulose and de novo predicted cellulotrophs it 
became apparent that the true cellulotrophic archaea must possess 
multiple and variable GH5 and GH10 families glycosidases, as well as 
at least several representatives from the GH9 family [excluding 
Natrinema salaciae DSM 25055 (2639762573)]. It should be noted that 
characterized proteins from GH5 and GH9 are mainly endoglucanases, 
while the majority of GH10 glycosidases are endoxylanases (despite 

several endoglucanases are also known (Xue et al., 2015; Zhao et al., 
2019) being the reason to include this family into the “endoglucanases” 
set). It is possible that the latter are indeed cellulases in haloarchaea or 
involved in hemicelluloses decomposition, which might contribute to 
a better availability of cellulose for cellulases.

All putative endoglucanases encoded in the genomes of 
cellulotrophic haloarchaea were highly acidic having isoelectric point 
(pI) values from 3.86 to 4.56 (Figure 3; Supplementary Figure S2) 
which is linked with high salinity of their environments. Several 
alkaliphilic strains (AArcel1, AArcel2 and AArcel5) possessed slightly 
lower median pI values compared with neutrophilic haloarchaea, 
while AArcel7 and Natronolimnobius baerhuensis JCM 12253 had 
median pI values similar to neutrophiles indicating that environmental 
pH is not influencing the ratio of charged amino acids in 
these enzymes.

The genes encoding GH5 family glycosidases were the most 
numerous GH-encoding genes found in the genomes of 13 proven and 
predicted cellulotrophic haloarchaea. The number of GH5-encoding 
genes varied from 5 to 25 per genome. According to PFAM the length of 
a single GH5 catalytic domain is around 406 amino acids, while the 
lengths of the GH5-containing proteins in 13 cellulotrophic haloarchaea 
varied from 326 to 2,101 amino acids (Supplementary Figure S3). The 
data indicated that many of these proteins contained additional substrate-
binding or other yet undetectable domains which can provide novel 
functionalities (Supplementary Table S2).

FIGURE 2

Relative abundance (gene number per1 Mbp) of putative endoglucanase genes found in 53 genomes of haloarchaea.
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Ecological strategies of cellulose-utilizing 
haloarchaea

In our previous work on polysaccharidolytic haloarchaea (Sorokin 
et al., 2015) we proposed to divide all strains growing on cellulose into 
two groups: cellulotrophic and cellulolytic. The first are highly effective 
cellulose degraders, while the second are opportunists with broader 
substrate specificities, devouring many different oligo- and 
polysaccharides including the cellooligosaccharides released due to 

the action of the first group. In this respect, for 13 haloarchaea which 
either authoritatively or with high degree of probability being 
cellulotrophic an attempt has been made to reveal their lifestyle 
through the comparison of their CAZymes repertoire. Genome 
clustering of 13 genomes of cellulotrophic haloarchaea with NMDS 
ordinations was performed based on (i) a complete set of COGs found 
in the genomes and (ii) a set of CAZymes (excluding glycosyl 
transferases). Genome clusterization based on COGs gave no results 
since a relatively similar metabolism in terms of COGs functional 
categories was observed in all strains. Different results were obtained 
when CAZymes distribution among the genomes were used for 
clustering: two clearly separated groups comprised of (i) a compact 
cluster containing three strains (HArcel1, AArcel2 and AArcel5) and 
(ii) a larger and more diffused cluster comprising of other ten strains 
(Figure  4) were observed. We  propose that the cellulose-utilizing 
microorganisms from the first group can be assigned to “specialists” 
while the second one contained “generalists.” Remarkably, the 
genomes of cellulotrophic specialists are smaller than the generalists: 
2.7–3.8 Mb and 4.2–5.1, respectively (Table  1) supporting our 
assumptions on their behavior.

Moreover, these two groups can be clearly distinguished not only 
by CAZymes repertoires and genome sizes but also by direct 
observation of ability to degrade cellulose. When growing on 
amorphous cellulose specialists form much larger hydrolysis zones in 
comparison with generalists (Figure 5).

Because of the action of numerous CAZymes cellulose is 
depolymerized to a single monomer, glucose. The question arose 
whether the central carbohydrate metabolism of cellulotrophic strains 
is uniform or the opposite is true. In silico reconstruction of the 
glucose/cellobiose/cellooligosaccharides import and glucose oxidation 
pathways in AArcel/HArcel strains with confirmed capability to grow 
on cellulose showed that glucose was transported into the cells by two 

FIGURE 3

Characteristics of putative endoglucanases found in 13 genomes of cellulotrophic haloarchaea. Colors of the dots – genome assignment, shapes of 
the dots – assignment to neurtrophiles or alkaliphiles (based on literature data), ellipse color – enzyme family.

FIGURE 4

NMDS ordination plot (Bray, k = 2, stress value = 0.1263) of 13 
haloarchaeal cellulolytic genomes based on CAZymes sets (with 
exception of GTs).
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different transport systems: (a) porters (superfamily 2.A according to 
TCDB) and ATP-binding cassette (ABC) transporters (superfamily 
3.A.1 according to TCDB). Genes of phosphotransferase transport 
system (PTS) were absent in all genomes. In turn, cellooligosaccharides 
could be transported into the cells via ABC transporters as it was 
described for hyperthermophilic archaea (Koning et al., 2001). The 
number of genes encoding presumable carbohydrate transport 
systems components varied greatly between the genomes (Figure 6; 
Supplementary Table S3): HArcel1 possessed only 4 transporters (2 
porters and 2 ABC transporters), while in the genome of AArcel7 35 
transporters-encoding genes (9 porters and 26 ABC transporters) 
were found. A general observation is that the strains affiliated to 
specialists have less number of transporters than the generalists.

Genome analysis (Figure 7) revealed that glucose is metabolized 
via canonical-like glycolysis with ADP-phosphofructokinase (strains 
AArcel1 and AArcel7), haloarchaeal type of glycolysis (strains 
HArcel1 and HArcel3) or semi-phosphorylative Entner-Doudoroff 
pathway (all strains with exception of strain HArcel1).

Strain AArcel1 oxidizes glucose via glycolysis with 
ADP-phosphofructokinase as well as by complete semi-
phosphorylative Entner-Doudoroff (KDPG) pathway. In the genomes 
of two closely related strains, AArcel5 and AArcel2, the genes 
encoding ADP-phosphofructokinase or 1-phosphofructokinase were 
absent indicating both glycolysis variants cannot be functional in this 
microorganism. Still, the genes of all KDPG pathway enzymes were 
found in the genomes of these haloarchaea. The glycolysis with 
ADP-phosphofructokinase as well as semi-phosphorylative KDPG 
pathway were predicted for AArcel7. Strain HArcel1 probably 
catabolized glucose only via glycolysis with phosphoglucomutase 
(performed the conversion of fructose-6-phosphate to fructose-1-
phosphate, Lowry and Passonneau, 1969) and 1-phosphofructokinase 
and lacked KDPG pathway because KDPG aldolase gene was not 
found in the genome. Strain HArcel2 did not possess any variant of 
glycolysis due to the absence of the ADP-phosphofructokinase and 

1-phosphofructokinase genes. Glucose was oxidized via KDPG-
pathway in this microorganism. The genes encoding 
1-phosphofructokinase and phosphoglucomutase were found in the 
genome of strain HArcel3 and thus it can utilize glucose via glycolysis 
like strain HArcel1. Complete semi-phosphorylative KDPG pathway 
was also predicted for this strain. Enzymes catalyzed common 
reactions for both the glycolysis and the KDPG pathway were present 
while glyceraldehyde-3-phosphate ferredoxin oxidoreductase 
(GAPOR), which often found in hyperthermophilic archaea, was 
absent in all studied strains. A gene of nonphosphorylating 
glyceraldehyde-3-phosphate dehydrogenase (GAPN) was found only 
in the AArcel7.

Summarizing the distribution of glucose oxidation pathways 
among the studied cellulotrophic haloarchaea it appears that 
specialists possessed only one glucose oxidation pathway, either 

FIGURE 5

Amorphous cellulose hydrolysis by the colonies of strain AArcel5 
(specialist), AArcel1 (generalist) and N. baerhuensis JCM 12253 
(generalist). The bar scale is 1 cm.

FIGURE 7

Glucose import and catabolism pathways found in AArcel/HArcel 
strains.

FIGURE 6

Number of putative transport system involved in carbohydrate 
transport AArcel/HArcel strains. Specialists are in bold.
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glycolysis (HArcel1) or KDPG (AArcel2 and AArcel5). Generalists, in 
turn, possess two pathways (AArcel1, AArcel7 and HArcel3) with the 
only exception – HArcel2, oxidizing glucose via KDPG pathway. This 
seems to be associated with narrower metabolism of specialists. These 
results are in accordance with other findings, distinguished these two 
groups: specialists characterized by a narrow specialization on 
cellulose degradation, smaller genomes, larger repertoire of genes 
encoding putative endoglucanases and lower number and variety in 
sugar transporters. Generalists include less specialized strains with a 
much broader substrate spectrum, larger genomes encoding lower 
number of cellulases but higher number and variability of 
sugar transporters.

Conclusion

The capacity of halophilic archaea to degrade various recalcitrant 
polysaccharides is of considerable interest for the understanding of 
their role in the mineralization of organic compounds in hypersaline 
environments and for search of extremely halo(alkali)stable 
extracellular CAZymes, attractive for the production of biofuel from 
lignocellulosic wastes since the pre-treatment step of this process is 
accomplished either with alkali or ionic liquids (Zavrel et al., 2009).

Large-scale analysis of all known CAZymes families containing 
cellulases encoded in the high-quality genomes of cultivated 
haloarchaea allowed to predict putative cellulotrophic strains. Since 
the dataset included the genomes of haloarchaea for which growth 
on and degradation of cellulose were experimentally confirmed and 
which therefore can be used as positive markers, these predictions 
allowed to propose a set of CAZymes-encoding genes indicative of 
the potential cellulotrophic lifestyle with a high degree of probability. 
Experimental validation of three out of seven cellulotrophic strains 
for which this property was not shown before confirmed their ability 
to grow on cellulose. The CAZymes patterns characteristic to 
cellulotrophic haloarchaea can serve as a tool for the comparative 
genomics-based identifying other haloarchaea carrying this trait.

Finally, genomic analysis followed by experimental verification of 
cellulase activity allowed dividing the cellulotrophic haloarchaea into 
two groups differed in strategies of cellulose utilization - specialists 
and generalists. The groups differed in efficiency of cellulose 
hydrolysis, CAZyme profiles, genome sizes, as well as in variability of 
mechanisms of import and central metabolism of sugars. Both groups 
are capable of growth on cellulose but specialists are more effective in 
cellulose degradation while generalists are more flexible to 
environmental changes, particularly to the changes in nutrient sources.
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