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Editorial on the Research Topic

Neurodevelopment: parental influences, in utero exposures, and genetics

The development of the central nervous system is subject to a broad range of disruptions

both environmental and genetic in nature. These disruptions to neurodevelopmental

trajectories can result in significant changes to brain structure, connections, and eventually

alterations of behavioral outcomes in the short and long-term. Neurodevelopmental

disorders and conditions remain a global concern, however, emerging reports indicate that

low and middle-income countries bear a more heavy burden related to these conditions

(Bitta et al., 2018). While rates of prevalence of neurodevelopmental disorders and related

conditions vary between countries, it is reasonable to assume that current estimates are

undercounting actual global prevalence of these conditions based on the most updated

clinical criteria for diagnoses (Francés et al., 2022). Importantly, pharmacological and other

therapeutic interventions have not kept a pace of neurodevelopmental conditions, likely due

to a relative lack of basic biomedical research into these conditions.

Although much work remains to be done in the field of neurodevelopmental disorders,

over the last half-century there is a greater appreciation of the multifactorial etiology of

these conditions. While genetics has long been understood as a critical determinant of

these conditions, the developmental environment has received greater scientific and research

scrutiny. Importantly, the role of both the prenatal and postnatal environment on cellular

and molecular mechanisms affecting neurodevelopment has become a topic of surging

interest. This includes important research interfaces with neurodevelopment including the

role of the gut-brain axis, substance abuse, viral infections, and signal transduction pathway

analysis for diagnostics and therapeutics.

This Research Topic includes nine exciting manuscripts covering important questions

across the field of neurodevelopment and the disorders that can result due to specific

environmental and genetic disruptions to brain development.

In their impactful research study, Perez et al. tackle the problem of

maternal alcohol consumption and its effect on offspring. While a number

of studies have investigated the effect of maternal alcohol consumption
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during the prenatal period, only a handful if any have attempted

to define the potential role of maternal alcohol consumption

during the lactational period in causing developmental brain

deficits in offspring. Using a combination of behavioral, anatomical

and cellular-morphological quantification in a novel lactational

ethanol exposure mouse model, the authors identify the effects

of maternal alcohol consumption during this key postnatal

developmental period.

Along a related theme, Crawford et al. in their research

manuscript address the important and challenging issue of fentanyl

use during pregnancy and neonatal development. Using a rat model

of fentanyl use, the authors assess potential effects of this exposure

using a battery of behavioral tests at late adolescence. This study

lays the groundwork for future preclinical studies on the lasting

consequences of fentanyl on neurodevelopment.

Rodent models of neurodevelopmental disorders with complex

etiologies often capture different aspects of symptomology; hence

it is important to assess potential differences between models

using standardized behavioral tests. Carbajal et al. in their research

manuscript define the amount of impulsivity in two rat models

of attention deficit hyperactivity disorder (ADHD) including

spontaneously hypertensive rats and a transgenic rat model in

which the ADHD-linked gene Lphn3 has been knocked out.

The authors use the delay-discounting task to quantify impulsive

choice in both mouse models with interesting differences between

the models.

Increasingly, the recognition that neurodevelopmental

trajectories can be significantly altered due to infection,

neuroimmune responses, and inflammatory processes has come to

the fore. Three provocative and insightful reviewmanuscripts cover

different angles of the intersection between neurodevelopmental

disorders and infectious disease. In their review, Hall et al. take

an epidemiological view of neurodevelopmental disorders with

an emphasis on maternal immune activation—maternal immune

responses that somehow disrupt fetal neural development.

Helpfully, the authors also survey important factors that are

involved in the onset of neurodevelopmental disorders and

how translatable these factors are from animal models to

human disorders.

In their review, Recaioglu and Kolk focus on viral infections

and how these could potentially alter neurodevelopment. The

authors cover more recent viral infections affecting many countries

particularly many in the global south including Zika, Chikungunya,

and SARS CoV-2. The authors pay special attention to potential

routes of entry of these viruses to the developing fetal brain and

the cellular populations that are particularly vulnerable to virus-

mediated damage.

Zooming in on SARS-CoV-2, Dubey et al. perform a deep

dive on the potential ways by which this pandemic-causing

virus could affect the prenatal brain, especially considering that

early studies indicated that pregnant women were especially

vulnerable to COVID-19. The authors cover a lot of ground,

looking at clinical evidence from published reports and point

to a broad range of cellular, genetic, epigenetic, and brain

pathways that future biomedical studies could follow-up on.

These studies could then shed light on a disease for which the

potential to disrupt neurodevelopmental trajectories appears to be

very significant.

The interaction between the maternal microbiome and the

developing fetus has been increasingly implicated in affecting long-

term neurodevelopmental outcomes of offspring via the maternal-

gut-fetal-brain axis. In their important study, Castillo-Ruiz et al.

determine if the effects of germ-free gestation—fetal brain

development in a maternal environment that is devoid of

microorganisms—are more due to in utero cellular events or

postnatal programming. The authors perform a careful analysis

using cellular-morphological techniques as well as gene sequencing

analysis to answer this question.

Finally, addressing the molecular and mechanistic bases of

neurodevelopmental disorders and conditions we have two review

manuscripts covering different signal transduction pathways, both

of which have important insights in their particular biological

contexts. Ca2+ is a critical second messenger in the cell that

regulates a host of different cellular processes. Klocke et al. in

their manuscript shine a spotlight on available evidence linking

Ca2+ activity and homeostasis to neurodevelopmental disorders

including autism spectrum disorder, ADHD, and schizophrenia.

Neonatal intensive care units (NICUs) have grown significantly

efficient over the past 25 years, so much so that neonatal

mortality rates have drastically reduced (Driscoll and Ely, 2020).

However, certain perinatal complications still cause significant

neonatal morbidity. A major cause of neonatal morbidity across

the globe is Hypoxic-ischemic encephalopathy (HIE), however, few

effective treatment options have been put forward for neonates

affected by HIE. Christidis et al. perform a systematic review

on a particular class of treatment option offered to HIE-affected

neonates—drugs that target the Src kinase signaling pathway.

The authors identify evidence on targeting this pathway in

preclinical animal models with the hope that this would clarify

how effective exactly it is to target the Src kinase pathway

in HIE.

In summary, the collection of manuscripts we have edited

in this Research Topic represents cutting-edge research papers

and reviews across the field of neurodevelopmental disorders and

conditions. It is our hope that this Research Topic would help

answer important research questions and lead to many more

important questions in this field.
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Background: Hypoxic-ischemic encephalopathy (HIE) is a major cause

of neonatal morbidity and mortality worldwide. While the application of

therapeutic hypothermia has improved neurodevelopmental outcomes for

some survivors of HIE, this lone treatment option is only available to a subset

of a�ected neonates. Src kinase, an enzyme central to the apoptotic cascade,

is a potential pharmacologic target to preserve typical brain development after

HIE. Here, we present evidence of the neuroprotective e�ects of targeting Src

kinase in preclinical models of HIE.

Methods: We performed a comprehensive literature search using the National

Library of Medicine’s MEDLINE database to compile studies examining the

impact of Src kinase regulation on neurodevelopment in animal models. Each

eligible study was assessed for bias.

Results: Twenty studies met the inclusion criteria, and most studies had an

intermediate risk for bias. Together, these studies showed that targeting Src

kinase resulted in a neuroprotective e�ect as assessed by neuropathology,

enzymatic activity, and neurobehavioral outcomes.

Conclusion: Src kinase is an e�ective neuroprotective target in the setting

of acute hypoxic injury. Src kinase inhibition triggers multiple signaling

pathways of the sub-membranous focal adhesions and the nucleus, resulting

in modulation of calcium signaling and prevention of cell death. Despite

the significant heterogeneity of the research studies that we examined, the

available evidence can serve as proof-of-concept for further studies on this

promising therapeutic strategy.

KEYWORDS

Src, hypoxic-ischemic encephalopathy (HIE), hypoxia, neonatal brain,

neuroprotection
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Introduction

One in four perinatal deaths is attributed to hypoxic-

ischemic (HI) brain injury, a term that describes acute

interruptions in oxygenated blood flow to the brain (Lawn

et al., 2005; Pauliah et al., 2013). Following the perinatal

asphyxiation insult, HI involves a cascade of biochemical events

that cause cerebral edema, inflammation, neuronal cell injury,

and ultimately, neuronal cell death over a period of hours to days

(Gunn and Thoresen, 2006; Cilio and Ferriero, 2010; Juul and

Ferriero, 2014; Hagberg et al., 2015; Van Bel and Groenendaal,

2016; Delivoria-Papadopoulos et al., 2018). While there have

been improvements in survival rates after neonatal HI, many

of these patients suffer ongoing neurological impairments that

both lessen quality of life and incur burdensome healthcare costs

(Blencowe et al., 2013; Eunson, 2015).

The only evidence-based treatment currently available

for neonatal HI is therapeutic hypothermia (TH). This

approach is targeted at modulating the deleterious cytotoxic

and inflammatory processes that occur during HI by tightly

regulating temperature (Wyatt et al., 2007), blood pressure,

ventilation, and glucose metabolism; for some patients,

application of TH has resulted in improved neurological

outcomes (Filan et al., 2006; Tam et al., 2012; Wong et al., 2013).

While conceptually promising, the application of TH has

several limitations. First, it is mainly available in high-resource

countries. Moreover, the protocol requires that total body

cooling be initiated within 6 h of birth, leaving clinicians with

a narrow window to establish the diagnosis, assess the severity

of HI and implement treatment with TH. This time is further

compressed for centers that do not have the necessary advanced

equipment, staffing, monitoring and experience to provide

neonatal TH, as attempts are made to transfer the patient to a

suitable facility (Olsen et al., 2013). Finally, despite the use of TH,

both the overall mortality rates and the disability rates following

application of TH after neonatal HI in published trials remain

high (Shankaran et al., 2012).

Most strikingly, even when TH is timely applied in an

advanced neonatal intensive care unit, only a subset of neonates

with HI have been shown to benefit (Gunn and Thoresen,

2006). Thus, there is a critical and urgent need to develop

additional therapeutic strategies that address both morbidity

and mortality following neonatal HI. To this end, multiple pre-

clinical in vivo studies have focused primarily on (a) elucidating

the molecular biology underlying HI, (b) identifying potential

molecular targets in pathways integral to cerebral injury, (c)

optimizing cooling strategies, and (d) recognizing adjuvant

therapies that could augment the neuroprotective effects of

TH (Jacobs et al., 2013). These studies implicate potential

targets of the apoptotic cascade that may, when modulated

by pharmacological intervention, offer additional or alternative

therapies for HI, critical in cases where TH is not available,

particularly in low-resource countries (Robertson et al., 2008;

Pauliah et al., 2013; Montaldo et al., 2015), and in treatment of

patients who do not respond or respond insufficiently to TH.

In particular, these studies have shown that Src kinase is

involved in numerous activated intracellular pathways during

HI (Paul et al., 2001; Mishra et al., 2009; Haass and Mandelkow,

2010; Ittner et al., 2010; Delivoria-Papadopoulos et al., 2011; Liu

and Sharp, 2011; Hossain et al., 2012; Angelis and Delivoria-

Papadopoulos, 2017a,b; Kratimenos et al., 2017). However, there

is conflicting evidence regarding its regulatory role, which

may differ depending upon brain maturation. Hossain et al.

demonstrated that Src kinase activation improves neuronal

survival in primary cortical cell cultures (Paul et al., 2001;

Haass and Mandelkow, 2010; Ittner et al., 2010; Liu and Sharp,

2011; Hossain et al., 2012), whereas several other studies have

shown that Src kinase phosphorylation causes neuronal damage

in ischemic stroke, intracerebral hemorrhage, and Alzheimer’s

disease (Haass and Mandelkow, 2010; Ittner et al., 2010; Liu and

Sharp, 2011; Hossain et al., 2012). Porcine experimental models

have been used to examine the deleterious effects of Src kinase in

neonatal HI and have shown that it can induce the production of

free radicals, causing secondary inflammation and excitotoxicity

(Kratimenos et al., 2017, 2018, 2022).

Selective Src inhibitors (Src-i) exhibit effectiveness against

neuronal cell injury in neonatal and developing animal models

and offered neuroprotection as demonstrated by histologic,

biochemical, and neurobehavioral assessments (Mishra et al.,

2009; Delivoria-Papadopoulos et al., 2011; Angelis and

Delivoria-Papadopoulos, 2017a,b; Kratimenos et al., 2017).

Contrary to those results, experiments in adult mice showed

that Src kinase inhibition worsens cerebral injury (Wang et al.,

2004; Guo et al., 2006; Wu et al., 2008; Hu et al., 2009; Tian et al.,

2009). In addition, several studies have highlighted the role of

Src kinase in neuronal survival after ischemia/reperfusion (I/R)

through interactions with the extracellular signal-regulated

kinase (ERK) (Wang et al., 2004; Guo et al., 2006; Wu et al.,

2008; Hu et al., 2009; Tian et al., 2009).

This systematic review aims to examine the current

knowledge regarding the role of Src kinase in neonatal

HI and the potential neuroprotective effects of selective

Src manipulation.

Materials and methods

Protocol

A review of relevant preclinical studies was performed to

summarize the current knowledge regarding the role of Src

kinase inhibition and its potential benefits on the neonatal

hypoxic-ischemic brain. We utilized the CAMARADES

(Collaborative Approach to Meta-Analysis and Review of
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Animal Data from Experimental Studies) guidelines in the

methodology (De Vries et al., 2015).

Literature search

A literature search for the Medline electronic database

for all studies up to July 01, 2022. Below, the search

strategy for the database is presented: (((“hypoxia”[MeSH

Terms] OR “hypoxia”[All Fields]) OR (“ischaemia”[All Fields]

OR “ischemia”[MeSH Terms] OR “ischemia”[All Fields])) OR

((“cerebrum”[MeSH Terms] OR “cerebrum”[All Fields] OR

“cerebral”[All Fields] OR “brain”[MeSH Terms] OR “brain”[All

Fields]) OR (“brain”[MeSH Terms] OR “brain”[All Fields])))

AND Src kinase[tiab]. The reference lists of the retrieved articles

were subsequently manually reviewed to identify any additional

studies that would be considered for inclusion.

Inclusion criteria

Preclinical studies were included. For inclusion,

experimental study protocols were required to involve

animals treated with any kind of Src kinase inhibitor before or

after the induction of HI. The outcome measures of the studies

analyzed were required to include “neuroprotection” defined by

histologic, biochemical, and/or neurobehavioral findings.

The current review defines HI as an acute interruption

of blood flow and oxygen to the brain. In preclinical animal

models, HI is typically induced via ligation or occlusion of the

common carotid artery or by decreasing oxygen concentration

in mechanically ventilated animals. Given the bilaterality of

neonatal HI, we focused on experimental protocols that induced

global brain hypoxia rather than unilateral hypoxia. Global

transient hypoxia could be induced by four-vessel occlusion

(4VO) of both vertebral arteries and common carotid arteries,

by bilateral occlusion of common carotid arteries (2VO), or by

titration of the FiO2 below 0.21 (drop of FiO2 to 0.05–0.006

within 5min, maintained for the 60min period and titrated to

achieve a 40 % reduction in systolic BP from baseline) in a

controlled environment for a period of time (Traystman, 2003).

Exclusion criteria

We excluded all studies that were based on cell lines and

in vitro experiments. Articles written in languages other than

English were also excluded. We also excluded studies that

treated animals with unilateral ligation of one of the carotid

arteries or with occlusion of fewer than four vessels since these

techniques are commonly used in stroke models. Studies that

did not use selective Src kinase inhibitors or studies in which

the intervention did not directly result in Src kinase modulation

were not eligible for inclusion.

Risk of bias assessment

Assessment of risk for bias was based on the Systematic

Review Center for Laboratory Animal Experimentation

(SYRCLE) Risk of Bias (RoB) tool (Hooijmans et al., 2014),

which was derived by the Cochrane Risk of Bias tool.

SYRCLE RoB tool consists of nine questions adjusted for the

specific characteristics of bias contributing to the results of

interventional preclinical studies. Each question was marked as

“Yes,” “No,” or “Unclear.”

Data extraction

From each study, the following data were extracted: authors’

names, year of publication, sample size, type of animal

model and age, type of Src kinase inhibitor and timing of

administration, method for HI induction, Src kinase inhibition

outcomes, role of Src kinases (protective/damaging on neuron’s

survival) and whether reperfusion took place.

Results

Eligible studies

Results from the Medline database were combined by a

citation manager software (Mendeley Desktop, Version 1.19.8),

and duplicate entries were removed. Our search yielded 443

studies that were then screened by title and abstract to meet our

criteria. Eighty-nine studies were found relevant to this review

and required further analysis. Access to full-text articles, despite

repeated efforts, was not possible for six studies, thus these were

excluded. The remaining eighty-three studies were screened

using our pre-defined inclusion and exclusion criteria. Sixty-

three studies did not meet our inclusion criteria. Most studies

(twenty-one) were excluded due to the use of cell cultures. Other

common reasons for exclusion were the lack of an Src kinase

inhibitor in the protocol (16 studies) or of a hypoxic event

(nine studies). Six studies described unilateral brain hypoxia

(mimicking stroke), seven studies were literature reviews and,

finally, four articles were published in a non-English language.

Table 1 summarizes the reasoning used for exclusion of the sixty-

three studies. Ultimately, twenty studies were considered eligible

for this analysis. Due to the variability in experimental methods

and outcomes, it was impossible to perform a meta-analysis

on the effect of Src kinase inhibition on the neonatal brain

after hypoxia, so a qualitative approach was taken instead. An

illustration of our methodology and approach is demonstrated

in Figure 1.
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TABLE 1 Studies not eligible based upon the exclusion criteria.

Exclusion criteria No of studies

No hypoxic-ischemic brain injury 9

No global (unilateral) ischemia 6

No Src kinase inhibitor 16

Other types of cells/cell lines 21

Non-English 4

Review 7

Overall 63

FIGURE 1

Flow diagram of the literature search. Modified from the

preferred reporting items for systematic review and

meta-analysis protocols (PRISMA-P) and modified to accurately

depict the literature research (Moher et al., 2009).

Risk for bias assessment

As previously described, the evaluation of risk for bias was

based on the SYRCLE RoB tool (Hooijmans et al., 2014). The

twenty studies that were included in this review were evaluated

for selection, detection, performance, and attrition bias. All but

six studies (14/20, 70%) were prone to selection bias because

the authors did not adequately describe the methodology used

for assigning the animals to the experimental groups. In all

twenty studies (20/20, 100%), the investigators were not blinded

to the intervention (performance bias), the animals were not

housed randomly (performance bias), or the animals were not

randomized for outcome assessment (attrition bias). Only two

studies (2/20, 10%) had two independent assessors review their

results (neuropathology scores) and only two studies (2/20, 10%)

specifically described the allocation concealment process. All the

studies had animals that were comparable at baseline prior to

group assignment, did not selectively present their outcomes,

and appropriately addressed incomplete data. The results from

the risk for bias analysis are shown in Table 2.

Study characteristics

Four different species of animals were used in the included

studies: Sprangue-Dawley rats (nstudies = 7, 35%), Yorkshire

newborn piglets (nstudies = 10, 50%), Swiss albino mice (nstudies
= 2, 10%), and mice CD1 strain (nstudies = 1, 5%). Twelve

studies (nstudies = 12, 60%) specified the total number of

animals used; the remaining studies (nstudies = 8, 40%) did

not document the number of animals and the size of the

assigned groups.

In all studies, a single dose of Src inhibitor was administered.

In eighteen studies (nstudies = 18, 90%) the investigators

administered a selective Src kinase inhibitor (PP1, PP2, PP3,

or SU6656). The remaining two studies (nstudies = 2, 10%)

included two different non-selective inhibitors of Src kinase, the

neuronal nitric oxide synthase inhibitor (nNOSi) and (RS)-2-

amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl) propanoic acid

(ATPA), which also modulated the activity of the Src kinase

after the hypoxic insult. In addition, one study (nstudies = , 5%)

combined therapeutic hypothermia with Src-i. The Src-i and

their characteristics are presented in Supplementary Table 1.

Different models of HI were used in the included studies,

primarily depending on the animal species involved. Eleven

studies (nstudies = 11, 55%) used FiO2 titration to establish

transient cerebral hypoxia; most of these studies (10/11, 91%)

utilized piglets. In two studies (nstudies = 2, 10%), investigators

performed bilateral carotid occlusion (2VO) in Swiss albino

mice and in seven of them (nstudies = 7, 35%) they used the

method of 4VO in Sprangue-Dawley rats. According to the data

that were extracted, reperfusion ensued after HI in every study.

Analyzed studies, the species and number of animals, method of

HI and type of Src-i used are summarized in Table 3.

Concerning the timing of intervention, the experimental

compound was administered after the onset of the HI

event in only three of the twenty studies (nstudies = 3,

15%), mimicking the actual sequence of events in clinical

practice. In the remaining seventeen studies (nstudies =

17, 85%), the compound was given prior to the induction

of the hypoxic insult. Two studies (nstudies = 2, 10%)

described conditioning which entails several brief repetitive

cycles of ischemia with intermittent reperfusion prior to
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TABLE 3 The included studies and their descriptive statistics.

No Year Authors Type of animals No of animals Interventions Method of HI

1 2004 Wang et al., 2004 Adult Sprangue-Dawley rats - 10 µl PP2 (icv) 4VO

2 2006 Guo et al., 2006 Adult Sprangue-Dawley rats - 5 µg/µl PP2 (icv), 5 µg/µl

PP3 (icv), 5 µg/µl locostatin

(icv)

4VO

3 2007 Zhang et al., 2007 Adult Sprangue-Dawley rats - 1 mg/kg muscimol (ip), 20

mg/kg baclofen (ip), 15 µg

PP2 (ip), 15 µg PP3 (ip), 3

mg/kg MK-801 (ip)

4VO

4 2008 Wu et al., 2008 Adult Sprangue-Dawley rats - 25 µg PP2 (icv) 4VO

5 2008 Xu et al., 2008 Adult Sprangue-Dawley rats - 2 nmol ATPA in 5 µl of 0.9%

NaCl (icv)

4VO

6 2008 Jiang et al., 2008 Newborn mice CD1 strain - 1 µg/mg PP2 (ip), 1 µg/mg

PP3 (ip)

Titration of FiO2

7 2009 Mishra et al., 2009 Newborn Yorkshire piglets 5 0.4 mg/Kg nNOSi (iv) Titration of FiO2

8 2009 Hu et al., 2009 Adult sprangue-Dawley rats - 5µM SU-6656 (icv) 4VO

9 2009 Tian et al., 2009 Adult sprangue-Dawley rats - 100 pmol/animal SU-6656

(icv),

4VO

10 2011 Rehni et al., 2011 Adult swiss albino mice 28 0.1 mg/kg and 0.2 mg/kg

PP1 (ip), 2 mg/kg and 4

mg/kg SU-6656 (ip)

2VO

11 2011 Delivoria-Papadopoulos

et al., 2011

Newborn Yorkshire piglets 5 1 mg/kg PP2 (iv) Titration of FiO2

12 2012 Delivoria-Papadopoulos,

2012

Newborn Yorkshire piglets 5 0.4 mg/kg PP2 (iv) Titration of FiO2

13 2014 Kumar et al., 2014 Adult swiss albino mice 48 0.1 mg/kg and 0.2 mg/kg

PP1 (ip), 2 mg/kg and 4

mg/kg SU-6656 (ip)

2VO

14 2014 Angelis et al., 2014 Newborn Yorkshire piglets 5 1 mg/kg PP2 (iv) Titration of FiO2

15 2015 Angelis et al., 2015 Newborn Yorkshire piglets 4 1 mg/kg PP2 (iv) Titration of FiO2

16 2017 Angelis and

Delivoria-Papadopoulos,

2017a

Newborn Yorkshire piglets 5 1 mg/kg PP2 (iv) Titration of FiO2

17 2017 Angelis and

Delivoria-Papadopoulos,

2017b

Newborn Yorkshire piglets 5 1 mg/kg PP2 (iv) Titration of FiO2

18 2017 Kratimenos et al., 2017 Newborn Yorkshire piglets 5 1 mg/kg PP2 (iv) Titration of FiO2

19 2018 Kratimenos et al., 2018 Newborn Yorkshire piglets 5 PP2 and hypothermia Titration of FiO2

20 2022 Kratimenos et al., 2022 Newborn Yorkshire piglets 5 1 mg/kg PP2 (iv) Titration of FiO2

iv, intravenous; icv, into the cerebral ventricle; ip, intra-peritoneal; mg, milligram; kg, kilogram.

or subsequently to prolonged ischemia (Rehni et al.,

2011; Kumar et al., 2014). Both studies demonstrated the

neuroprotective properties of the Src kinase under HI

conditions. It is worth mentioning that studies (nstudies =

12, 60%) that focused exclusively on biochemical analyses did

not include a sham or control group for direct comparisons

(treated vs. non-treated) of the effectiveness of the therapy

with Src-i.

The inclusion of eligible studies led to the assessment

of histologic, biochemical, and neurobehavioral outcomes.

Histologic analyses included cortical and striatal lesions.

Moreover, biochemical parameters, such as the enzymatic

expression or activity related to neurological damage, and the

cerebral energy status as quantified by ATP and phosphocreatine

(PCr) concentrations, were evaluated. In ten out of twenty

studies (nstudies = 10, 50%) sufficient cerebral hypoxia was
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induced for both the treatment and control groups as confirmed

by energy production levels. Neurobehavioral indicators were

examined with neurobehavioral tests designed to measure

cognitive function (memory) and motor coordination. Two

studies (nstudies = 2, 10%) included both histologic and

neurobehavioral outcomes, eleven studies (nstudies = 11,

55%) only biochemical outcomes and six (nstudies = 6,

30%) reported both biochemical and histologic outcomes.

It is worth mentioning that one study (nstudies = 1,

5%) utilized experimental data to create and validate a

computational model of the critical intracellular signaling

components of HI in neonatal brain (Kratimenos et al.,

2022).

Of the studies included in our analysis, six (nstudies =

6, 30%) demonstrated that Src kinase phosphorylation was

neuroprotective, whereas 14 studies (nstudies = 14, 70%)

provided evidence that the effects of Src kinase can be deleterious

while its inhibition provides neuroprotection. Six out of twenty

studies (nstudies = 6, 30%), where Src kinase activity had a

beneficial impact, were conducted on adult animal models. The

studies in which Src kinase activity led to worse outcomes were

conducted on either newborn animals (nstudies = 9, 45%) or

adult animals (nstudies = 5, 25%). The time of intervention,

type of outcome measures, and the role of Src kinase in selected

studies are presented in Table 4.

Discussion

This paper highlights the current evidence on

neuroprotective effects of Src kinase modulation as

demonstrated by histologic, biochemical, and neurobehavioral

outcomes in twenty eligible studies. Notably, all the included

studies were based on a single dose regimen, but only 15% of

the studies administered Src-i post-HI. This treatment timing is

a key consideration, as in actual clinical practice, treatment with

Src-i would likewise occur post-HI.

Although various animal models were utilized in the studies

included, all inhibitors used were selective for Src kinase. Each

preclinical study that examined models of the neonatal age

group reported neuroprotective effects of treatment with Src-

i, whereas studies in adult rats showed the opposite effect.

This discrepancy may be attributed to the pathophysiologic

differences between neonatal and adult brains as it pertains

to susceptibility to injury, plasticity and cell death pathway

activation (Sands et al., 1979; Clancy et al., 2007; Pressler and

Auvin, 2013).

Methodological quality assessment using the SYRCLE’s RoB

tool yielded an intermediate risk for bias scores for the evaluated

studies in this review. Due to the variability of experimental

methods and outcomes used, it was not possible to perform

a meta-analysis on the effect of Src kinase inhibition on the

neonatal brain after hypoxia.

Pathophysiology of HI in neonatal brain

There are three major mechanisms of neuronal cell

death during global ischemia: generation of free radicals,

excitotoxicity, and inflammation. Each mechanism is mediated

through inflammatory cascades that require phosphorylation of

enzymatic regulatory sites by Src kinases (Mishra et al., 2009;

Delivoria-Papadopoulos et al., 2011; Delivoria-Papadopoulos,

2012; Angelis et al., 2014, 2015; Angelis and Delivoria-

Papadopoulos, 2017a,b; Kratimenos et al., 2017, 2018).

Aligned with these findings, experiments on newborn piglets

demonstrated that inhibition of Src kinase phosphorylation

after HI by a selective antagonist (Src-i) is a novel mechanism of

neuroprotection (Mishra et al., 2009; Delivoria-Papadopoulos

et al., 2011; Delivoria-Papadopoulos, 2012; Angelis et al., 2014,

2015; Angelis and Delivoria-Papadopoulos, 2017a; Kratimenos

et al., 2017, 2018). The proposed mechanism of the apoptosis-

induced cell death in a developing neuron is illustrated in

Figure 2.

The activation of Src kinases in HI is dependent, in part,

upon formation of free radicals, which are known to develop

during HI in the setting of decreased oxidative phosphorylation

given decreased O2. Nitric oxide (NO) free radicals, which are

produced by neuronal nitric oxide synthase (nNOS), react with

superoxide to form peroxynitrate. Peroxynitrate then inactivates

protein tyrosine phosphatases, SH-PTP-1 and SH-PTP-2 via

reduction mechanisms on cysteine residues (Lee et al., 1998;

Barrett et al., 1999; Takakura et al., 1999), facilitating the

activation of Src kinases (Mishra et al., 2009).

In addition to the generation of free radicals as oxidative

phosphorylation fails, this metabolic alteration also induces

excitotoxicity through the depolarization and activation

of voltage-gated Ca2+-channels with a subsequent rise in

intracellular Ca2+ (White et al., 2000). Depolarization of those

channels results in the release of excitatory neurotransmitters

such as glutamate into the synaptic cleft (Fujimoto et al., 2004)

and inability of the glutamate reuptake mechanisms to clear

glutamate from the cleft. This cascade of events leads to the

upregulation of gated NMDARs, further increasing intracellular

Ca2+ and activating calcium-dependent apoptotic pathways

(excitotoxicity) (Arundine and Tymianski, 2004; Delivoria-

Papadopoulos et al., 2011). Additionally, excitotoxicity is

augmented by the concurrent phosphorylation of certain

subunits of NMDAR by Src kinase (Chen et al., 2003; Salter and

Kalia, 2004).

Calcium itself plays a critical role in HI-mediated neuronal

cell injury (Delivoria-Papadopoulos et al., 2007). During

hypoxia, nuclear Ca2+ forms a complex with calmodulin (CaM),

which activates an apoptotic cascade (Delivoria-Papadopoulos

et al., 2011). This cascade involves Ca2+-dependent kinases such

as the CaM kinase-dependent kinase (CaMKK) and CaM kinase

IV (CaMKIV), primarily located in the neuronal cell nucleus.

CaMKK directly activates CaMKIV via phosphorylation of
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TABLE 4 The included studies and their descriptive statistics.

No Year Authors Time of

intervention

Type of outcomes Outcomes with Src kinase inhibition Role of Src

1 2004 Wang et al., 2004 Pre HI Biochemical Reduced ERK5 Protective

2 2006 Guo et al., 2006 Pre HI Biochemical Reduced Ras/Raf-1/ERK Protective

3 2007 Zhang et al., 2007 Pre HI Biochemical Reduced NR2A, PSD-95, Src, increased GABA Deleterious

Histologic Reduced neuronal injury

4 2008 Wu et al., 2008 Pre HI Biochemical Reduced Spry2 Deleterious

5 2008 Xu et al., 2008 Pre HI Biochemical Reduced NR2A, PSD-95, Src Deleterious

Histologic Reduced neuronal injury

6 2008 Jiang et al., 2008 Post HI Biochemical Reduced Src, NR2A, NR2B, unchanged PDS95 Deleterious

Histologic Reduced neuronal injury

7 2009 Mishra et al., 2009 Pre HI Biochemical Increased ATP, PCr deleterious

Reduced Src kinase

8 2009 Hu et al., 2009 Pre HI Biochemical Reduced ERK, Era, CREB Protective

Increased PP2A

9 2009 Tian et al., 2009 Pre HI Biochemical Reduced ERK Protective

Histologic Reduced neuronal injury

10 2011 Rehni et al., 2011 Pre HI Histologic Increased infarct size Protective

Neurobehavioral Impaired memory (elevated plus maze test)

Motor incoordination (rota-rod test)

11 2011 Delivoria-Papadopoulos et al., 2011 Pre HI Biochemical Increased ATP, PCr Deleterious

Reduced CaM, CaM kinase IV, CREB

12 2012 Delivoria-Papadopoulos, 2012 Pre HI Biochemical Increased ATP, PCr Deleterious

Reduced caspase-3/-9

13 2014 Kumar et al., 2014 Pre HI Histologic Increased infarct size Protective

Neurobehavioral Impaired memory (Morris-water-maze test)

Motor incoordination (rota-rod test)

Motor incoordination (inclined beam walking)

Motor incoordination (lateral push test)

14 2014 Angelis et al., 2014 Pre HI Biochemical Increased ATP, PCr Deleterious

Reduced both caspase-1, IL-1β

15 2015 Angelis et al., 2015 Pre HI Biochemical Increased ATP, PCr Deleterious

Reduced caspase-1/-8

16 2017 Angelis and Delivoria-Papadopoulos,

2017a

Pre HI Biochemical Increased ATP, PCr Deleterious

Reduced PTP-1B

17 2017 Angelis and Delivoria-Papadopoulos,

2017b

Pre HI Biochemical Increased ATP, PCr Deleterious

Reduced caspase-2

18 2017 Kratimenos et al., 2018 Post HI Biochemical Increased ATP, PCr Deleterious

CaM kinase IV, additive effect of hypothermia

Histologic Reduced neuronal injury

19 2018 Kratimenos et al., 2017 Pre HI Biochemical Increased ATP, PCr Deleterious

Reduced caspase-3, cytochrome c, smac/diablo,

AIF

Histologic Reduced neuronal injury

20 2022 Kratimenos et al., 2022 Post-HI Biochemical Increased ATP, PCr Deleterious

Increased Ca2+ influx, CaMKK2

Computational model Ca2+ influx and Bax expression are dissociable

Reduced Bax expression by altering NMDAR – Src

kinase interaction
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FIGURE 2

The proposed mechanism of the apoptotic pathway in a developing neuron. During global ischemia, evidence suggests that the three major

mechanisms of neuronal cell death (excitoxicity, generation of free radicals and inflammation) are mediated through the phosphorylation of

regulatory sites by Src kinases. Failure of the oxidative phosphorylation gives rise to intracellular Ca2+ which triggers ecotoxicity and potentiates

calcium-dependent apoptotic pathways. Calcium contributes to the generation of free radicals through NO and nNOS and leads to

transcription of factors that induces leakage of apoptotic proteins from mitochondria. The inflammation and the extrinsic apoptotic pathway are

mediated through TNF and di�erent types of caspases. Created with BioRender.com.

threonine 200 (Thr200) or threonine 196 (Thr196) in a process

that requires Ca2+/CaM and ATP/Mg2+. Activated CaMKIV

mediates DNA transcription by phosphorylating cyclic AMP

response binding protein (CREB) (Mishra et al., 2006; Delivoria-

Papadopoulos et al., 2007, 2011; Hornick et al., 2007). During

HI, Src kinase phosphorylates CaM at tyrosine 99 (Tyr99),

CaMKIV at Thr200 or Thr196 and CREB protein at Ser133,

promoting the expression of pro-apoptotic proteins (Delivoria-

Papadopoulos et al., 2011). As discussed, inhibition of Src kinase

by a potent selective inhibitor has been shown to ameliorate

the impact of HI in the cerebral cortex of newborn piglets

(Delivoria-Papadopoulos et al., 2011).

Programmed cell death occurs through two pathways:

intrinsic and extrinsic. The intrinsic pathway is mediated by

the generation of free radicals (oxidative stress) and caspases,

whereas the extrinsic pathway is mediated by inflammation and

tumor necrosis factor (TNF) (Bleicken et al., 2013; Lukyanova

and Kirova, 2015). The Bcl-2 family protein includes several

anti-apoptotic (Bcl-2, Bcl-xL, and Bcl-w) and pro-apoptotic

(Bax, BAD, Bak, or Bok) proteins, whose transcription is induced

by HI (Bleicken et al., 2013; Lukyanova and Kirova, 2015).

Activation of the CREB protein leads to apoptosis by the

transcription of Bax and suppression of Bcl-2 (Kratimenos

et al., 2017). Porcine animal models have shown that activated

Bax forms pores in the mitochondrial membrane, allowing the

leakage of apoptosis-inducing factor (AIF), Smac/Diablo and

cytochrome c in the cytosol (Kratimenos et al., 2017). The

release of these molecules is further facilitated by the action

of Src kinases that expand the opening of the mitochondrial

permeability transition pore (mPTP) (Kratimenos et al., 2017).

The translocation of apoptotic factors activates caspases −3,

−7, and −9, which results in DNA fragmentation and neuronal

cell death (Kratimenos et al., 2017). These caspases mediate

the activation of the intrinsic apoptotic pathway, whereas the

extrinsic pathway is activated by TNF through the binding of

Fas ligand (CD95L) to the CD95 receptor. This process results
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in the formation of the complex FAS-associated death domain

(FADD) which then activates caspase-8 (Boatright et al., 2003).

Caspase-8 induces apoptosis via caspase-3 activity. Additionally,

in vivo studies have demonstrated the inhibitory effect of Protein

Phosphatase 2 (PP2) on caspase-8, which would in this case

ameliorate the observed apoptosis (Angelis et al., 2015).

Research indicates that activity of both caspase-8 and

caspase-1 acutely increases in the newborn piglet brain

following hypoxia (Angelis et al., 2015). Capsase-1 activation is

directly related to neuro-inflammation and contributes to the

production of IL-1β through the formation of inflammasomes

(Angelis et al., 2015). Furthermore, Src kinase inhibition protects

cortical neurons from the deleterious sequelae of inflammation

caused by HI (Angelis et al., 2015). Additionally, there is

evidence that Src kinase is involved in apoptotic cascade

activation and pro-neuroinflammatory pathways, ultimately

leading to neuronal cell death (Angelis et al., 2015).

N-methyl-D-aspartate receptors
(NMDARs) in HI

The balance between neuronal inhibition and excitation

is an essential homeostatic mechanism for typical brain

function and development. HI disrupts this homeostasis by

upregulating excitation, resulting in apoptosis and neuronal

cell death (Seeburg, 1993; Hollmann and Heinemann, 1994).

The excitatory component of this mechanism is mediated

by glutamate and the NMDARs (Kumari and Ticku, 2000).

NMDARs and their associated signaling pathways are located at

the electron-dense matrix beneath the postsynaptic membrane

of excitatory synapses, called postsynaptic density (PSD)

(Kennedy, 1997; Martone et al., 1999). HI-induced activation

of Src kinases upregulates NMDARs, increasing excitation by

phosphorylating tyrosine residues on the NR2A and NR2B

subunits. In addition, transient ischemia causes changes in the

structure and protein composition of the PSD, enhancing their

association with certain proteins (Kennedy, 1997; Martone et al.,

1999).

The interaction betweenNR2A, Src kinase and post-synaptic

density protein 95 (PSD-95) has been implicated in HI-induced

neuronal injury. Liu et al. suggest that this mechanism also

includes the activation proline-rich kinase 2 (Pyk2). After

ischemia-reperfusion (I/R), activated Pyk2 binds to Src kinase,

promoting phosphorylation of NR2A and calcium overload via

PSD-95 (Liu et al., 2005). PP2 can block the NR2A-PSD95-Src

signaling pathway and alleviate neuronal cell injury (Zhang et al.,

2007; Jiang et al., 2008). Other than PP2, MK-801, a selective

antagonist of NMDARs, can reverse Src kinase’s activation

and its effect on NR2A during HI. A novel approach using a

computational model also predicted that Src-i can modulate the

interaction between the NMDARs and Src and can significantly

reduce Bax expression (39).

In the setting of HI-induced excitotoxicity, targeting

gamma-aminobutyric acid (GABA) signaling is a potentially

effective therapeutic strategy. GABA is the primary inhibitory

neurotransmitter in the CNS that balances the excitatory

effects of glutamate (Oja et al., 1990; Rosenbaum et al.,

1990; Johansen and Diemer, 1991; Sivilotti and Nistri, 1991).

Several researchers have proposed that enhancing GABAergic

activity could potentially alleviate the excitotoxic effects of

ischemic brain injury (Oja et al., 1990; Rosenbaum et al.,

1990; Johansen and Diemer, 1991; Sivilotti and Nistri, 1991).

The effects of GABA on ischemia are mediated by the

activation of GABAA, which increases Cl− permeability and

hyperpolarizes cells. Hyperpolarized cells demonstrate reduced

excitability due to decreased glutamate concentrations and

calcium influx (Oja et al., 1990; Rosenbaum et al., 1990;

Johansen and Diemer, 1991; Sivilotti and Nistri, 1991).

Furthermore, Zhang et al. demonstrated that muscimol and

baclofen, both GABA receptor agonists, prevent hippocampal

CA1 neurons’ death during cerebral I/R via suppression of the

phosphorylation of excitatory NMDA receptor subunit NR2A

(Zhang et al., 2007). Interestingly, muscimol’s and baclofen’s

neuroprotective properties are linked to the downregulation

of the phosphorylation of Src kinase and NMDARs. In

addition, administration of (RS)-alpha-amino-3-hydroxy-5-

tert-butyl-4-isoxazolepropionic acid (ATPA), an agonist of

GluR5 (glutamate receptor 5)-containing kainate receptor, also

demonstrated neuroprotective effects (Zhang et al., 2007).

Xu et al. hypothesized that this was secondary to increased

GABA release and inhibition of the NR2A-PSD95-Src signaling

pathway (Xu et al., 2008). However, some researchers have also

reported conflicting results, indicating that increased GABA

signaling after HI may accelerate neuronal cell loss (Rosenbaum

et al., 1990; Stokes et al., 2001).

The dual role of Src kinase following
ischemia-reperfusion (I/R)

Several studies have highlighted Src kinase’s role in neuronal

survival after I/R through interactions with the extracellular

signal-regulated kinase (ERK) (Wang et al., 2004; Guo et al.,

2006; Wen et al., 2008; Wu et al., 2008; Hu et al., 2009; Tian

et al., 2009). Following I/R, Src kinase and NMDARs upregulate

ERK, increasing neuronal survival (Wang et al., 2004; Guo

et al., 2006). HI-induced activation of Src kinase leads to the

phosphorylation of Raf at the Tyr340/341 position. Raf-1, an

upstream molecule of the ERK pathway, subsequently induces

the phosphorylation of estrogen receptor a (ERa) and CREB at

Ser133 position, promoting neuronal cell survival (Wang et al.,

2004; Guo et al., 2006; Wu et al., 2008; Hu et al., 2009). Despite
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some reports of Src kinase-related increases in neuronal survival,

several studies showed that Src kinase inhibition by PP2A was

neuroprotective following I/R. Wu et al. demonstrated that

Src kinase’s induction of neuronal apoptosis following I/R, is

mediated by the phosphorylation of Spry2, a down-regulator

of Raf/ERK pathway (Wu et al., 2008). Administration of PP2

or SU6656 shows an attenuation of Src kinase’s negative effect

on cellular death in rat hippocampi (Wang et al., 2004; Guo

et al., 2006; Hu et al., 2009; Tian et al., 2009). The results

of the aforementioned studies cannot be translated to clinical

neonatology practice because of the use of adult mice and

their differences in pathophysiology, mainly on the mechanism

of injury and recovery when compared to neonatal mice

(Sands et al., 1979; Clancy et al., 2007; Pressler and Auvin,

2013). Moreover, intact Src kinase is correlated with improved

neuronal survival, whereas in conditions of excitotoxicity,

calpain cleavage of Src kinase generates a neurotoxic truncated

Src fragment (Hossain et al., 2015).

Pre-/post-conditioning

As mentioned previously, Src kinase plays a pivotal

role in neuronal health among multiple disease models,

including conditioning. Conditioning involves the intermittent

reperfusion that precedes or follows prolonged ischemia. These

are termed ischemic preconditioning (IPrCo) and ischemic

post-conditioning (IPoCo), respectively (Kumar et al., 2014).

Studies have shown that both IPrCo and IPoCo prevent

cerebral infarct formation by ischemia-reperfusion and prevent

neurobehavioral impairment in Swiss albino mice (Rehni et al.,

2008a, 2011; Kumar et al., 2014). IPrCo’s neuroprotective effect

on the brain is likely attributable to amelioration of the ischemia

and reperfusion sequela through the activation of the Akt/p38-

mitogen/ERK pathway (Bochelen et al., 1999; Rehni et al., 2008b,

2009; Kumar et al., 2014). However, Rehni et al. demonstrated

that the effect of IPrCo is exerted through phosphorylation of Src

kinase, even though the exact activation transduction pathway is

not yet well understood (Rehni et al., 2008a, 2011). Neuronal cell

injury was also ameliorated by IPoCo through the activation of

Src kinase (Kumar et al., 2014). Although the exact mechanism

remains unknown, Kumar et al. suggested that it also involves

the activation of Akt/p38-mitogen/ERK (Kumar et al., 2014).

In a clinical setting, IPrCo is not feasible due to the inability

to predict the onset of ischemia. IPoCo, on the other hand, is

clinically relevant.

Why are findings for Src-i not yet
translatable?

Although Src kinase inhibition exhibits a neuroprotective

effect on neonatal animal models, this has not yet been

confirmed in clinical trials. The variability of experimental

results and animal models used has prevented the introduction

of Src kinase inhibition as a therapeutic approach in clinical

trials. Neurobehavioral experiments could provide additional

data to support the use of Src-i, however they require a

longer follow-up period with highly trained personnel,

as well as validated scoring systems for accuracy and

consistency. In the present analysis, only two studies

provided a complete set of outcomes that were evaluated

with multiple different approaches (Rehni et al., 2011;

Kumar et al., 2014). The use of histologic and biochemical

markers has been proven to be a cost-effective alternative

approach. Further investigations are required to elucidate

the precise mechanism by which Src kinase affect cortical

neurons. Many Src kinase inhibitors like dasatinib are

currently being tested as adjuvant therapies in cancer.

Pharmacokinetic data of such inhibitors including PP2, a

more selective Src kinase inhibitor used in thirteen out of

the 20 included studies, are still lacking. Finally, the potential

addition of therapeutic hypothermia to Src-i has not been

sufficiently explored.

Future directions

To date, Src-i have only been examined in clinical

trials for cancer and neurodegenerative conditions such

as Alzheimer’s and Parkinson’s disease (ClinicalTrials.gov

Identifier: NCT00779389, NCT02167256, and NCT03661125).

We anticipate that further research will involve large animals

and primates. Large animal studies, although expensive, offer

the greatest potential of translation to humans, due to the

similarities in brain size, gray/white matter ratio, developmental

ages and morphology, as well as the localization of injury

after HI (Odden et al., 1989; Thoresen et al., 1996; Haaland

et al., 1997; Björkman et al., 2006). Additionally, larger sample

sizes can help to decrease bias and improve study validity.

Standard reporting methods for preclinical studies focused on

Src-i are also necessary to minimize reporting bias. Future work

needs to focus on HI pathophysiologic mechanisms and Src-i

dosage, timing, route of administration, and potential adverse

events. Moreover, as therapeutic hypothermia is considered

standard of care for HI in neonates, the additive effects

of a combined hypothermia/Src kinase inhibition protocol

should be further investigated (Kratimenos et al., 2018).

Recently, our team validated a computational model with

experimental measurements of critical intracellular signaling

components and captured key molecular trends in this pathway

(Kratimenos et al., 2022). Our computational model indicated

that Src-i disassociates Ca2+ influx from Bax expression

and modulates the interaction between the NMDAR and

Src reducing Bax expression (Kratimenos et al., 2022). This

model could provide a translational platform to design and
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screen drugs in neonatal hypoxic brain (Kratimenos et al.,

2022).

Strengths and limitations of the study

To our knowledge, this is the first attempt to systematically

evaluate the current literature on preclinical evidence

supporting the use of Src kinase inhibitors in models of

HI. Notably, we included ten studies in which large animals,

including Yorkshire newborn piglets, were treated with Src-i

following HI. Yorkshire newborn piglets’ brains share many

characteristics with the human brain (Odden et al., 1989;

Thoresen et al., 1996; Haaland et al., 1997; Björkman et al.,

2006). Human neonates suffer from somatosensory cortical and

basal ganglia damage after perinatal asphyxia, which has many

similarities to findings in term piglets aged 1–5 days after similar

insults (Thoresen et al., 1996).

Although every effort was made for a thorough literature

search, it is possible that some relevant studies were missed.

It was not feasible to perform a quantitative analysis (meta-

analysis) of studies with a focus on Src-i in neonatal HI as

there was a significant variability in experimental animals used,

sample size and reported outcomes (histologic, biochemical,

neurobehavioral). Most of those studies were using inhibitors

of the Src kinase to investigate mechanistic questions rather

than examining its role as a therapeutic target. The lack of

neurobehavioral assessments did not allow for the study of HI-

induced visual, motor, and cognitive impairments. Moreover, we

are unable to examine the clinical safety of Src-i due to the lack

of long term follow-up. Most of the studies were characterized

as intermediate when assessed for risk for bias, which can

be attributed to the insufficient description of experimental

methods, protocols and interventions as evaluated by the

SYRCLE’s RoB tool. Following the ARRIVE (Animal Research:

Reporting of in vivo Experiments) guidelines could have

improved the reporting of results by minimizing publication

bias (Hooijmans et al., 2014). However, these guidelines were

not published prior to June 2010, and many studies that were

included in our review were conducted before that time. Not all

studies explicitly added control groups to compare effectiveness

against the treatment group again likely because the studies

were not designed to examine therapeutic effects. Despite the

moderate quality assigned to the examined studies by the

SYRCLE RoB tool, the evidence presented still indicates the

potential benefits of Src kinase inhibition in neonates suffering

perinatal asphyxia.

Conclusions

This systematic review demonstrates that inhibition of

Src during hypoxia-ischemia results in neuroprotection.

However, these protective properties were assessed based

on varying animal models, study designs, and intervention

characteristics. Further preclinical studies on large animals

and specific experimental models are required to examine the

pharmacokinetics of Src-i and its exact role in programmed

neuronal death. While heterogeneity and risk for bias

were limiting factors, the overall results indicate that Src-i

neuroprotective properties could be a promising therapeutic

strategy to neonates after hypoxic events.
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Pregnant women constitute one of the most vulnerable populations to

be affected by severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) infection, the cause of coronavirus disease 2019. SARS-CoV-2

infection during pregnancy could negatively impact fetal brain development

via multiple mechanisms. Accumulating evidence indicates that mother to

fetus transmission of SARS-CoV-2 does occur, albeit rarely. When it does

occur, there is a potential for neuroinvasion via immune cells, retrograde

axonal transport, and olfactory bulb and lymphatic pathways. In the absence

of maternal to fetal transmission, there is still the potential for negative

neurodevelopmental outcomes as a consequence of disrupted placental

development and function leading to preeclampsia, preterm birth, and

intrauterine growth restriction. In addition, maternal immune activation may

lead to hypomyelination, microglial activation, white matter damage, and

reduced neurogenesis in the developing fetus. Moreover, maternal immune

activation can disrupt the maternal or fetal hypothalamic-pituitary-adrenal

(HPA) axis leading to altered neurodevelopment. Finally, pro-inflammatory

cytokines can potentially alter epigenetic processes within the developing

brain. In this review, we address each of these potential mechanisms. We

propose that SARS-CoV-2 could lead to neurodevelopmental disorders in a

subset of pregnant women and that long-term studies are warranted.

KEYWORDS

SARS-CoV-2, COVID-19, HPA axis, preeclampsia, brain development, inflammation,
pregnancy

Introduction

In December of 2019 a novel virus, severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2), caused a pneumonia outbreak in Wuhan City, Hubei Province in
China. The disease caused by the virus was designated coronavirus disease 19 (COVID-
19). SARS-CoV-2 expanded rapidly across the globe, and on March 11, 2020 the
World Health Organization [WHO] (2022) declared COVID-19 a pandemic and global
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public health emergency. As of November 22, 2022 [WHO
Coronavirus (COVID-19) Dashboard | WHO Coronavirus
(COVID-19) Dashboard with Vaccination Data], 634 million
cases have been detected worldwide. SARS-CoV-2 has already
posed a great threat not only to the health of the people but also
to the economy and healthcare system.

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is an enveloped, positive stranded ribonucleic acid
(RNA) virus of the family of Coronaviridae that causes
respiratory and gastrointestinal infections ranging from mild,
self-limiting conditions to more serious disorders such as
viral pneumonia with systemic impairment (di Mascio et al.,
2020). Unfortunately, pregnant women constitute one of the
most vulnerable groups to be affected by this viral infection,
due to anatomical, reproductive, endocrine, and immune
changes (Zhao et al., 2020). With specific regard to the latter,
immunological changes in pregnancy result in suppressed cell
mediated immunity which would increase susceptibility to
SARS-CoV-2 (Liu et al., 2020). In addition, pregnant women
are more likely to have severe disease and ICU admissions
compared to their non-pregnant counterparts after adjusting
for age, underlying medical conditions, race, and ethnicity
(Ellington et al., 2020; Sutton et al., 2020). As per a systematic
review of over 11,000 pregnant women with suspected or
confirmed COVID-19, the disease commonly manifests as fever
(40%), cough (39%), dyspnea (19%), loss of taste (15%), myalgia
(10%) and diarrhea (7%) (Allotey et al., 2020).

The novel SARS-CoV-2 infection could negatively impact
fetal brain development in both direct and indirect ways
(Figure 1) (Ellul et al., 2020). Regarding the direct route,
an increasing number of case studies provide evidence for
transplacental transmission of SARS-CoV-2, which could invade
the central nervous system and disrupt brain development.
Regarding indirect routes, SARS-CoV-2 could produce placental
dysfunction, preeclampsia, and preterm birth, and trigger
immune responses in the mother, which could, in turn affect the
developing fetus. Interestingly, many of these routes involve the
action of pro-inflammatory cytokines. Preclinical studies have
revealed that inducing inflammation during the perinatal period
produces long-term alterations in brain structure and function
and a wealth of epidemiological studies have documented
associations between infection-induced immune activation and
offspring neuropsychiatric risk. In this review, we address each
of these potential mechanisms and propose that SARS-CoV-
2 could lead to neurodevelopmental disorders in a subset
of pregnant women. We also review emerging empirical
evidence supporting this hypothesis. This manuscript builds
upon prior review articles on this topic such as (Shook
et al., 2022), and (Figueiredo et al., 2021), which focused
primarily on emerging evidence for transplacental transmission
and the role of maternal immune activation (MIA), and
(Kleeman et al., 2022), which focused primarily on epigenetic

mechanisms in MIA. The current manuscript aims to be
both comprehensive and concise. It provides a more detailed
discussion of how altered levels of glucocorticoids in the
context of SARS-CoV-2 could affect fetal neurodevelopment,
and is the first, to our knowledge, to raise the possibility
that SARS-CoV-2 induced hypocortisolism could be a risk
factor for adverse neurodevelopmental outcomes. Finally,
this review includes the most recent empirical studies on
neurodevelopmental consequences of in utero exposure to
SARS-CoV-2 including (Aldrete-Cortez et al., 2022; Hessami
et al., 2022; Shuffrey et al., 2022).

The direct route: Evidence of
maternal transmission of
SARS-CoV-2 infection to
fetuses/neonates

Several viruses are known to be transmitted from
pregnant women to their children and subsequently disrupt
neurodevelopment. These are the TORCH pathogens. TORCH
is an acronym standing for Toxoplasma gondii, Other infections,
Rubella, human Cytomegalovirus (HCMV), and Herpes
simplex viruses 1 and 2 (HSV-1 and HSV-2, respectively).
“Other infections” include human immunodeficiency virus
(HIV), syphilis, parvovirus B19 (fifth disease), varicella
(chickenpox) and Zika (reviewed in Schwartz and Hyg,
2017). HCMV and HSV infections are the most common
causes of neonatal morbidity worldwide (Looker et al.,
2017; Marsico and Kimberlin, 2017) and in recent years
Zika virus remains a threat for pregnant women (reviewed
in Spitz, 2019). These TORCH pathogens can induce
brain calcifications, major brain malformations including
microcephaly, and neurodevelopmental disorders (Chen
et al., 2021; Krenn et al., 2021). Consequently, one of the
first questions we ought to ask when considering the adverse
neurodevelopmental potential of SARS-CoV-2 is whether
there is evidence of maternal transmission to the fetus
or neonate.

Transmission of SARS-CoV-2 from mother to child could
occur transplacentally, during labor and delivery, or in the early
post-partum period. The possibility of vertical transmission
of SARS-CoV-2 from mother to fetus in utero is currently a
topic of widespread debate. The published literature is both
sparse and contradictory, with some reports supporting direct
in utero transmission (Bahadur et al., 2020; Dong et al.,
2020; Patanè et al., 2020), and others suggesting little or
no vertical transmission (Dashraath et al., 2020; Khan et al.,
2020; Xiong et al., 2020; Zhu et al., 2020). The presence
of SARS-CoV-2 either in amniotic fluid, placental samples,
or infant nasopharyngeal swabs collected shortly after birth,
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FIGURE 1

Direct and indirect effect of SARS-CoV-2 infection on fetal/neonatal brain development.

represents compelling evidence for an in utero infection.
Several case studies have been published documenting such
evidence. Sisman et al. (2020) reported a case of congenital
SARS-CoV-2 in an infant born through vaginal delivery to
a COVID-19 positive mother. This report confirmed the
intrauterine transmission of SARS-CoV-2 via presence of SARS-
CoV-2 nucleocapsid protein and viral particles in placental
syncytiotrophoblastic cells and nasopharyngeal samples of
the infant (Sisman et al., 2020). Similarly, Patanè et al.
(2020), demonstrated vertical transmission of SARS-CoV-2
from mother to fetus in utero as evidenced by the presence
of SARS-CoV-2 RNA on the fetal side of placental tissues
(Patanè et al., 2020). Transplacental transmission of SARS-
CoV-2 is also supported by reports of caesarean delivery
where strict neonatal isolation was implemented immediately
after birth without delayed cord clamping or skin to skin
contact. In one such case study, neonatal nasopharyngeal swabs
were positive for SARS-CoV-2 RT-PCR test within 16 h of
birth despite these precautions (Alzamora et al., 2020) and
within 24 h in the other (Kirtsman et al., 2020). Perhaps the
strongest early evidence supporting congenital infection was
reported by Kirtsman et al. (2020). In this case, a woman
with active SARS-CoV-2 delivered via caesarean delivery. The
neonate had no contact with vaginal secretions or maternal skin.
Artificial rupture of membranes was performed at operation,
which was conducted with airborne, droplet, and contact

precautions. The infant was immediately removed from the
operative field, in a sterile fashion, to a resuscitator 2 m away
in the same room. Never-the-less, neonatal nasopharyngeal
swabs were SARS-CoV-2 positive by RT-PCR test on the
day of birth as well as day 2 and day 7. Furthermore,
placental micrographs revealed multiple areas of infiltration
by inflammatory cells and extensive early infarction (Kirtsman
et al., 2020). While, a number of researchers cautioned
against treating early data as conclusive (Kimberlin and
Stagno, 2020), evidence for transplacental transmission has
continued to accumulate, though it appears to be a very
rare event. In a study of 427 pregnant women from the
UK admitted to hospital with SARS-CoV-2 infection, 12 of
265 infants tested positive, a rate of 5%, though only 6
of those did so within the first 12 h after birth (Knight
et al., 2020). A recent systematic review and meta-analysis
including data up to 3 August 2021 and including over
14,000 babies born to mothers with SARS-CoV-2 infection
found about 2% of babies tested positive with 14 confirmed
mother-to-child vertical transmission, seven of which occurred
in utero (Allotey et al., 2022). A slightly smaller systematic
review of 47 studies and over 900 neonates reported that
slightly less than 1% had a confirmed or probable vertical
transmission of infection (Jeganathan and Paul, 2022). Similarly,
a recent “systemic review of systematic reviews” suggested
that mother to child transmission was relatively rare with
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about 70% of cases attributable to environmental exposure
and about 20% related to potential vertical transmission
(Musa et al., 2021). Overall, it appears that transplacental
transmission is possible, but rare.

The direct route: The
neuroinvasive potential of
SARS-CoV-2

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is similar in many ways to SARS-CoV, a virus
identified in 2003, which is known have neuroinvasive potential
(Ding et al., 2004; Xu et al., 2005), as evidenced by its presence
in neural tissue from SARS autopsies (Gu et al., 2005). Studies
indicate that the genomic sequence is similar between SARS-
CoV-2 and SARS-CoV (Lu et al., 2020; Yu et al., 2020). It is
particularly notable that the receptor-binding domain of SARS-
CoV is structurally similar to SARS-CoV-2 (Lu et al., 2020).
Hence, it is possible that SARS-CoV-2 follows the same path
of neuroinvasiveness as SARS-CoV using the ACE2 receptor
for cellular entry into the human brain. Several hypotheses
have been put forth regarding possible mechanisms of SARS-
CoV-2 mediated neural invasion including: (1) Transplacental
transmission could induce viremia which would promote
viral binding to the endothelial ACE2 receptors of the blood
brain barrier (BBB) and subsequently entry into the central
nervous system (CNS). Electron micrography on post-mortem
brain biopsies revealed viral particles in the frontal cortex of
a SARS-CoV-2 infected adult. The presence of particles in
brain capillary endothelium and blebbing of viral-like particles
coming in/out of the endothelial wall strongly suggested
neuroinvasion through the BBB (Paniz-Mondolfi et al., 2020).
(2) Cells of the immune system (macrophages and monocytes),
which may express the ACE2 receptor, could act as a reservoir
for dissemination into the CNS (Desforges et al., 2014).
Further, infected immune cells (monocytes neutrophils and
T cells) may disseminate into brain via various entry points
including meninges, vasculatures, and the choroid plexus
(Iadecola et al., 2020). (3) Neurons in the gut could carry the
virus into the CNS via retrograde axonal transport (Esposito
et al., 2020). (4) The virus could enter the CNS through the
olfactory bulb. This possibility is strengthened by SARS-CoV-
2 induced anosmia being a notable symptom during viral
infection. Studies have shown expression of ACE2 receptors
and other receptors that can facilitate SARS-CoV-2 binding in
the olfactory epithelium (Fodoulian et al., 2020). This could
play a role in neonatal infection during delivery through
contact with vaginal secretions or soon after delivery through
other means (physical or airborne). (5) Finally, the lymphatic
pathway represents another possible route for neuroinvasion
by the SARS-CoV-2 virus. The virus may directly enter the

brain via olfactory/cervical lymphatic vessels (Bostancıklıoğlu,
2020).

One key question when considering the neuroinvasive
potential of SARS-CoV-2 in utero is whether the fetal
brain expresses cellular components that interact with the
spike protein of SARS-CoV-2. Using publicly available RNA
sequencing datasets, Varma et al. (2021) revealed that while
ACE2 mRNA is expressed at relatively low levels in the
fetal brain, other spike protein interactors including FURIN,
ZDHHC5, GOLGA7, and ATP1A1 are highly expressed,
especially in neurons. These proteins may play key roles in
SARS-CoV-2 fetal brain pathogenesis, especially during the 2nd
and 3rd trimesters of pregnancy (Varma et al., 2021).

The indirect route: SARS-CoV-2
effects on the placenta and
ensuing complications

Even in the absence of direct transmission of a pathogen
from mother to child, infections can disrupt neurodevelopment
in indirect ways. For example, the H1N1 influenza virus
is not teratogenic, but severe infections were associated
with elevated risks for adverse infant outcomes, such as
preterm birth, which have neurodevelopmental consequences
[Maternal and Infant Outcomes Among Severely Ill Pregnant
and Postpartum Women with 2009 Pandemic Influenza A
(H1N1) — United States, April 2009–August 2010; Newsome
et al., 2019]. In this section we discuss emerging evidence that
SARS-CoV2 impacts placental functioning and how this could
lead to altered neurodevelopment.

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) binding ACE2 receptors are highly expressed in
placental tissues. SARS-CoV-2 infected pregnant women have
placental inflammatory signs along with systemic maternal
inflammation (Vivanti et al., 2020), which can lead to
placental microvascular dysfunction. This may present clinically
as preeclampsia or preeclampsia-like features, fetal distress,
intrauterine growth restriction, and/or or preterm labor
depending on gestational age at time of SARS-CoV-2 infection
(Mulvey et al., 2020).

To understand the impact of COVID-19 infection on
the placenta, a brief review of the salient aspects of the
renin–angiotensin system (RAS) axis in the formation of
a well perfused placental vascular bed may be helpful.
In the maternal portion of the human placenta, which is
derived from the maternal stromal cells, ACE2 is highly
expressed in the invading and intravascular trophoblast
and in decidual cells. ACE2 is also found in arterial and
venous endothelium and smooth muscle of the umbilical
cord (Valdés et al., 2006). Levels of ACE2 vary temporally
depending on gestational age in both humans and rodents
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(Valdés et al., 2006; Ghadhanfar et al., 2017). The various
components of RAS-Ang II, ACE2, and Ang-(1-7) function
mainly to regulate blood pressure and fetal development.
Ang II stimulates trophoblast invasion in rat and human
cells (Hering et al., 2010). Ang-(1-7) and ACE2 may act as
local autocrine/paracrine regulators in the early (angiogenesis,
apoptosis, and growth) and late (uteroplacental blood flow)
events of pregnancy (Neves et al., 2008). ACE2 hydrolyzes
Ang II into Ang-(1-7), and Ang I into Ang-(1-9), which
is quickly converted to Ang-(1-7), thereby controlling the
blood pressure and hydro-salinity balance of pregnant women
(Pringle et al., 2011).

Preeclampsia is a serious pregnancy complication which
typically begins after the 20th week of gestation and manifests
as high blood pressure and proteinuria. The exact cause of
preeclampsia is not known, but it is generally believed to
arise due to improper functioning of the placenta. Placental
vascular anomalies and inflammation are often observed in
women affected by preeclampsia (Harmon et al., 2016; Ramos
et al., 2017). Brosnihan et al. (2004), reported that pre-
eclamptic women presented with suppressed plasma Ang-(1-
7) levels when compared with normal pregnancy subjects
(Brosnihan et al., 2004). Furthermore, high expression of
Ang II in the placental villus during preeclampsia can
cause decreased blood flow and nutrition supply to the
fetus (Shibata et al., 2006; Anton and Brosnihan, 2008;
Anton et al., 2009). An observational study published early
in the pandemic suggested that prevalence of preeclampsia
is remarkably higher in SARS-CoV-2 infected pregnant
women, with five out of eight infected pregnant women
admitted to the intensive care unit having preeclampsia
like syndrome (Mendoza et al., 2020), which may lead to
higher occurrence of preterm birth (Yan et al., 2020). A case
report by Hosier and colleagues might be an example of
placental infection with SARS-CoV-2 or manifestation of
SARS-CoV-2 induced cytokine release or both presenting
as severe early-onset preeclampsia. The patient, who had a
history of gestational hypertension in a prior pregnancy, but
normal blood pressure during early pregnancy and normal
baseline preeclampsia evaluation, presented acutely at 22-
weeks’ gestation with features mimicking preeclampsia with
Disseminated Intravascular Coagulation (DIC) and fever. SARS-
CoV-2 RNA was positive in a nasopharyngeal swab. Patient’s
thrombocytopenia and hypofibrinogenemia were more severe
than what would have been expected from SARS-CoV-2 alone.
Placental pathology post termination of the pregnancy revealed
SARS-CoV-2 localized to the synciotiotrophoblast layer and the
intervillous invasion of macrophages (intervillositis) (Hosier
et al., 2020). A study by Mulvey et al. (2020), on placenta
(after term delivery) of COVID-19 infected pregnant women
found fetal vascular malperfusion due to focal avascular villi
and thrombi in large fetal vessels (Mulvey et al., 2020).
Vivanti et al. (2020) also reported a case of delivery at

35 weeks through cesarean section following fetal distress
indicated by category 3 fetal heart rate tracing, and RT-PCR
in the placenta was positive for SARS-CoV-2. The mother
who was having an uneventful pregnancy until diagnosis of
COVID-19, without any severe or critical presentation of
the infection, had thrombocytopenia, lymphopenia, elevated
acute phase reactants, and abnormalities in coagulation cascade
on admission. Three days after hospitalization, without any
deterioration of maternal status, a category 3 fetal heart
tracing was observed, representing fetal compromise likely
due to uteroplacental insufficiency for which delivery through
cesarean section was performed (Vivanti et al., 2020). This
strongly indicates that SARS-CoV-2 can cause uteroplacental
dysfunction and can induce a preeclampsia like picture either
due to direct placental invasion or through induction of
excess cytokine release in the mother or both. However,
one must acknowledge that much of the empirical evidence
for this hypothesis comes from case studies, which may
not generalize to all SARS-CoV-2 infected mothers. Case
studies may also be subject to researcher bias and do not
allow the production of quantifiable risk estimates. A recent
systematic review of cardiovascular complications among
pregnant women with COVID-19 found substantial variance
in estimates across studies with some reporting rates of
preeclampsia as high as 69% and others as low as 0.5%
(Yaghoobpoor et al., 2022).

A potential mechanism by which SARS-CoV-2 could induce
placental dysfunction and preeclampsia is illustrated in Figure 2.
The viral spike protein of SARS-CoV-2 facilitates binding
to the ACE2 receptor. When viremia occurs in the mother
during severe SARS-CoV-2 infection, the virus may invade
the placenta. The viral spike protein of SARS-CoV-2 after
binding with ACE2 receptor, enters the placental trophoblast
with the help of protease-mediated cleavage (TMPRSS2 or
cathepsin L) of the S protein subunit- S2. This internalization
of the virus along with the ACE2 receptor into the placental
trophoblast may increase the activity of ADAM17 (a matrix
metalloproteinase) (reviewed in Schreiber et al., 2021; Jackson
et al., 2022), as seen in previous SARS-CoV infection (Haga
et al., 2008). ADAM17 up-regulation leads to proteolytic
cleavage of the ACE2 ectodomain (Lambert et al., 2005; Heurich
et al., 2014), which results in reduced membrane ACE2. The
resulting imbalance in AngII/ACE2 interaction may result
in hypertension of pregnancy, pre-eclampsia, or eclampsia
in susceptible mothers. Of note, systemic inflammation and
oxidative stress induced by SARS-CoV-2 infection may also lead
to increased ADAM17 expression in the placental trophoblasts
promoting the development of preeclampsia in susceptible
women even in the absence of direct placental infection by
SARS-CoV-2 (Gooz, 2010) (Figure 2).

Even in the absence of preeclampsia, SARS-CoV-2 infection
in the early stages of pregnancy can cause fetal growth
restriction (FGR)/intrauterine growth restriction (IUGR)
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FIGURE 2

Mechanism involved in SARS-CoV-2 induced placental dysfunction.

(Allotey et al., 2020), which is itself a risk factor for abnormal
postnatal neurodevelopment in babies (Adams Waldorf and
McAdams, 2013; Dang et al., 2020). IUGR influences the
overall growth of fetus and is accompanied by reduced total
brain volume, which may cause cognitive (Hartkopf et al.,
2018; reviewed in Miller et al., 2016) and motor regulation
deficits (Dubois et al., 2008; Miller et al., 2016; Hartkopf et al.,
2018; reviewed in Miller et al., 2016), and as well as some
neurodevelopmental disorders. More specifically, reduced brain
volumes have been observed in schizophrenia and bipolar
disorder (Wright et al., 2000; McDonald et al., 2004; Arnone
et al., 2009; Ellison-Wright and Bullmore, 2010; Haijma et al.,
2013; Hibar et al., 2016, 2018; van Erp et al., 2016, 2018) and in
ADHD (Boedhoe et al., 2020).

The indirect route: SARS-CoV-2
induced inflammation may disrupt
offspring neurodevelopment

Epidemiological studies indicate a strong correlation
between maternal viral infection and neuropsychiatric disorders
in offspring, especially for ASD and schizophrenia (reviewed

in Estes and McAllister, 2016). For ASD, this includes a
large-scale registry-based study in Denmark which revealed
that severe viral infections (requiring hospitalization) during
the first trimester of pregnancy are associated with increased
risk of ASDs in offspring (Atladóttir et al., 2010) and a
cohort study conducted in Finland which suggested that early
stage increases in gestational CRP due to prenatal infection
increases risk of ASD in children by 43% (Brown et al.,
2014). A meta-analysis of 15 studies, conducted in 2016 and
including over 40,000 ASD cases, reported an OR of 1.13 for
the association between maternal infection during pregnancy
and increased risk of ASD in offspring [95% confidence
interval (CI): 1.03–1.23], with risk being moderated by the
severity of infection, type of infectious agent, time of infectious
exposure, and site of infection. Greater severity of infection
(indexed by hospitalization) was associated with higher risk.
Bacterial infections appeared to confer greater risk than viral
infections and genitourinary and skin infections appeared to
confer higher risk than gastrointestinal or respiratory infections.
With specific regard to infection timing, second trimester
exposures conferred the greatest risk, followed by first trimester
exposures, and third trimester exposures had minimal effects
(Jiang et al., 2016). This differs from a recent meta-analysis
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evaluating the impact of maternal fever on neurodevelopmental
disorders in general (includes ASD, ADHD, Developmental
Delay, and Developmental Coordination Disorder) which
suggested first trimester exposures were most detrimental.
Regarding schizophrenia, since Mednick et al. (1988) published
their seminal, ecological study revealing increased risk of
schizophrenia in pregnant women exposed to the 1957 influenza
A epidemic in Helsinki, evidence linking schizophrenia to
maternal infection has accumulated and includes (Mednick
et al., 1988; Barr et al., 1990; Susser et al., 2000; Brown et al.,
2001, 2004a,b, 2005; Buka et al., 2001; Mortensen et al., 2007).
A recent meta-analysis of seven cohort studies reported that
maternal infection during gestation increased the risk of non-
affective psychosis with a relative risk (RR) of 1.28 (95%
CI:1.05-1.57) (Saatci et al., 2021). Relative risk was even high
for schizophrenia (1.63) with the strongest effects observed
in the second trimester. Several studies have highlighted the
second trimester as the time of greatest risk (Brown et al.,
2000; Nielsen et al., 2013), which may indicate an impact
of infection on gestational neurogenesis, which peaks during
this period (Stiles and Jernigan, 2010). However, another
study reported that the risk of schizophrenia was increased
7-fold for influenza exposure during the first trimester with
no increased risk of schizophrenia for exposure during the
second or third trimester (Brown et al., 2004a). Another study
indicating that first trimester prenatal exposures may increase
risk for schizophrenia in offspring is (Clarke et al., 2009).
Despite these inconsistencies regarding timing of exposure, the
general idea that gestational infection predisposes individuals to
schizophrenia is widely accepted. This is not to say there are no
controversies in the literature. For example, Selten et al. (2010)
published a meta-analysis challenging earlier studies linking the
1957 influenza pandemic to schizophrenia (Selten et al., 2010).
In addition, even large population-based studies can suffer from
methodological problems such as misclassification of exposure
and genetic confounding. Karlsson and Dalman (2020) argue
that infections in general appear to have a much smaller
effect on schizophrenia risk compared to specific exposures
such as Toxoplasma gondii (Karlsson and Dalman, 2020). Of
particular relevance to SARS-CoV-2, research suggests that
second trimester respiratory infections are a risk factor for
schizophrenia spectrum disorders (Brown et al., 2000). There
are also epidemiological studies linking maternal infections to
ADHD (Pineda et al., 2007; Mann and McDermott, 2011; Silva
et al., 2014) and mood disorders (see Simanek and Meier, 2015
for review), but as the evidence is more limited (for the former)
and ambiguous (for the latter), we do not provide additional
details here. Activation of the pregnant mother’s immune system
in response to infection is thought to be the primary mechanism
responsible for these associations, a hypothesis that is supported
by a substantial body of preclinical research (reviewed in Boksa,
2010; Careaga et al., 2017).

Like other viral infections, SARS-CoV-2 can trigger systemic
inflammation during pregnancy in both mother and fetus. ACE2
receptors are expressed widely in the mouth, tongue, respiratory
tract, lung, heart, kidney, gut, endothelium, and in other tissues
like placental tissues (Deverman and Patterson, 2009). Binding
of ACE2 located on the surface of the target cells with the
receptor-binding domain of SARS-CoV-2 results in endocytosis
and translocation of both viruses and ACE2 into the endosomes
located in the cell. Inside the cell, it replicates and induces
cytotoxicity. The damaged host cell undergoes pyroptosis and
releases damage-associated molecular patterns resulting in the
initial inflammatory response.

As noted in the introduction, pregnant women are more
likely to experience severe SARS-CoV-2 infection and ICU
admissions compared to their non-pregnant counterparts, and
COVID-19 can induce a systemic inflammatory disorder.
With increasing severity of the infection, higher levels of
circulating cytokines and other inflammatory biomarkers like
IL6, IL-1β, TNFα, C-reactive protein (CRP) and D-dimer
occurs (Smith et al., 2007; Deverman and Patterson, 2009;
Wu et al., 2017; Zupan et al., 2017). These proteins attract
monocytes, macrophages, and T-cells to the site of infection,
promoting further inflammation and establishing a pro-
inflammatory feedback loop. In addition, non-neutralizing
antibodies produced by B-cells may enhance SARS-CoV-2
infection through antibody-dependent enhancement, further
exacerbating organ damage (Deverman and Patterson, 2009).
The resulting cytokine storm circulates to other organs, leading
to multi-organ damage.

Even in the absence of a cytokine storm, maternal immune
activation during COVID-19 along with proinflammatory
changes in the placental vascular bed could potentially activate
interleukin (IL-6) signaling in the syncitiotrophoblast layer.
Furthermore, increased cytokines and complement factors in
the maternal environment can bleed over into the fetus, altering
neurodevelopment. Pro-inflammatory cytokines including IL-
6, IL-1β, and TNF-α have a molecular mass of about 50kDa
and can easily cross the placental barrier, passing from mother
to fetus (Zaretsky et al., 2004; Aaltonen et al., 2005; Smith
et al., 2007; Deverman and Patterson, 2009; Ratnayake et al.,
2013; Wu et al., 2017; Zupan et al., 2017). All neural and
non-neural cell types within the developing CNS use cytokines
for paracrine and autocrine signaling. Thus, maternal immune
activation secondary to maternal infection can disrupt brain
development in multiple ways, which we review briefly in the
following paragraphs and summarize in Figure 3. Most of
the studies discussed in the ensuing paragraphs used rodent
models of maternal immune infection (MIA). Multiple models
of MIA exist including prenatal administration of immunogenic
liposaccharides (LPS), transmembrane protein toll-like receptor
(TLR) 4, or polyriboinosinic–polyribocytidilic acid [Poly(I:C)].
The specific models used are noted throughout.
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FIGURE 3

Maternal SARS-CoV-2 infection, inflammation, and subsequent fetal/neonatal brain development.

First, maternal immune activation can trigger
periventricular white matter damage. White matter damage
has been observed in the context of many different prenatal
infections in human newborns and in animal models [Yoon
et al., 1997 (rabbit, E. coli infection); Dammann et al.,
1999; reviewed in Malaeb and Dammann, 2009], and in
a newborn baby following transplacental transmission of

SARS-CoV2 infection (Vivanti et al., 2020). These observations
partly reflect associations between prenatal infection and
preterm delivery, which is a well-established risk factor for
intraventricular hemorrhage, neonatal white matter damage,
and subsequent cerebral palsy. However, rodent studies confirm
that white matter injury in offspring can be induced by
intrauterine maternal infection in the absence of preterm birth
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[Wang et al., 2007; Zhan et al., 2021 (LPS)]. Mechanisms of
injury may include both direct effects of pro-inflammatory
cytokines on oligodendrocytes and axons and indirect effects
via activation of microglia (reviewed in Robinson, 2005; Burd
et al., 2012). Microglial cells enter the human brain as early
as 4 weeks of gestation and accumulate in the prospective
white matter of the corona radiata between weeks 19 and 24
(Monier et al., 2007). When activated, microglia cause localized
neuroinflammation and injury [ Monier et al., 2007; reviewed in
Burd et al., 2012]. Once activated, the microglia may continue
to remain activated into infancy or early childhood, resulting in
sustained production of pro-inflammatory cytokines, oxidative
and nitrosative products, and excitotoxic metabolites such
as glutamate and quinolinic acid, all of which can injure
oligodendrocytes. Specific pro-inflammatory cytokines that
have been linked to oligodendrocyte injury include IL-1β which
impairs myelination by reducing the number of developing
oligodendrocytes when injected into the cerebrum of rat pups
(Cai et al., 2004) and TNF-α which induces death of human
oligodendrocyte cells by activation of apoptosis-inducing factor
(Yoon et al., 1997; Saliba and Henrot, 2001), With regard
to axonal development, Makinodan et al. (2008) report that
juvenile mice had reduced axonal diameters in the hippocampus
following maternal immune activation [poly(I:C)], a phenotype
that normalized by adulthood.

Second, maternal immune activation can influence
developmental neurogenesis and neurodifferentiation. In
general, hyperactivation of the immune response is thought
to impair survival and differentiation of neural progenitors
(Borsini et al., 2015; Kim et al., 2016) by attenuating the
production of neurotrophic factors including brain-derived
neurotrophic factor (BDNF), nerve growth factor (NGF),
platelet-derived growth factors (PDGF), and neurotrophins
(NT-3,4). Much of this evidence is based on in vitro models,
which are though to best model human midgestational
neurogenesis. However, in vitro models cannot fully capture
the impact of infection on a pregnant mother. Furthermore,
different cytokines induce different effects in in vitro models –
some positive and some negative. For example, IL-1β and TNF-
α reduce neurogenesis of fetal hippocampal neural progenitor
cells (NPCs) (Johansson et al., 2008; Zunszain et al., 2012; Chen
et al., 2013), while IL-6 was reported to increase neurogenesis
in human hippocampal NPCs (Johansson et al., 2008). Very
few animal studies have directly assessed the impact of MIA
on developmental neurogenesis. One recent study examined
Ki67 + /Nestin + and Tbr2 + neural progenitor cells in the
subventricular zone (SVZ) of neonatal mice following mid-
gestation MIA (LPS) and reported robust increases (Loayza
et al., 2022). In a similar manner, significant increases in
the proportion of Pax6-positive neural progenitor cells and
Pax6/Tbr2 double-positive cells have been observed in mouse
fetal brains 24 h after poly(I:C) injection (Tsukada et al., 2021).
This contrasts with the findings of Canales et al. (2021) who

reported evidence of overall decreased neurogenesis by E17.5,
following poly(I:C) injection at E12.5 (Canales et al., 2021) and
with Tsukada et al. (2015) who reported that mid-gestatational
MI (Poly:I:C) impairs neurogenesis in the cerebellum. There is
a rich body of literature demonstrating that pro-inflammatory
cytokines disrupt neurogenesis in the adult rodent hippocampus
[see (Kim et al., 2016) for review] and several MIA studies
examined adult hippocampal neurogenesis. Mid-gestation MIA
(LPS) suppressed hippocampal neurogenesis in adult rat (Okano
et al., 2022), as did late gestation treatment with Poly(I:C) (Zhao
et al., 2019), while suppression of maternal IL-6 enhanced it
(Mouihate and Kalakh, 2021). Finally, defective neurogenesis
in the subventricular zone (SVZ)-olfactory bulb (OB) pathway
has been reported following early gestational exposure to
Poly:I:C in mouse (Liu et al., 2013). The mechanisms by which
MIA primes dysfunction in the unique hippocampal pool of
neural stem/progenitor cells in adulthood remains to be fully
elucidated (Couch et al., 2021). Furthermore, effects of specific
cytokines on neurogenesis and differentiation may vary based
on brain region, species, and developmental stage.

Finally, pro-inflammatory cytokines can promote
cytoskeletal damage and neural apoptosis. Astrocytes may play a
key role in this process. MIA (Poly:I:C) induces a hypertrophied
morphology and intense GFAP immunoreactivity in astrocytes
in the hippocampus that persist at least until weaning (Patro
et al., 2013), with upregulation of GFAP detectable in adulthood
following LPS (Berkiks et al., 2019). Hypertrophied morphology
and upregulation of GFAP indicate astrocytic activation and
astrocytes produce reactive oxygen species (ROS) including
nitric oxide (NO), which are neurotoxic. Activated microglia
also produce ROS, as discussed previously, which could damage
neurons as well as glia. Increased oxidative stress has been
observed in the hippocampus and cerebral cortex of adult rats
exposed to LPS MIA (Cieślik et al., 2020, 2021). In Cieślik et al.
(2021), oxidative stress did not appear to result from activated
microglia but was accompanied by evidence of mitochondrial
dysfunction (Cieślik et al., 2021), which has also been linked
to oxidative damage in mouse models of autism spectrum
disorder (Yui et al., 2015). Cieślik et al. (2021) also observed
abnormal phosphorylation and dysfunction of MAPT, which
is involved in assembling and stabilizing microtubules, which
make up the cytoskeleton (Cieślik et al., 2021). Increased neural
apoptosis appears to be linked to late-gestational MIA, rather
than mid-gestation MIA (Meyer et al., 2006) [poly(I:C), mice]
and appears to arise due to the interactive effect of multiple
cytokines (Matelski et al., 2021) (in vitro model).

We end this section by noting that animal models of
MIA can also help address questions about how timing of
infection relates to neurodevelopmental sequelae. For example,
Nakamura et al. (2022) recently reported that early gestational
exposure to MIA [poly(I:C)] disrupted working memory and
reduced perseverative behavior in female offspring while late
gestational exposure induced male-specific deficits in working
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memory and reversal learning (Nakamura et al., 2022). Guma
et al. (2022) have reported that early gestational exposure to MIA
[poly(I:C)] induces profound reductions in certain regions of
the embryonic brain, likely through increased apoptosis, while
late gestational exposure induced volume expansions, possibly
due to acute inflammatory responses (Guma et al., 2022). The
same group has also presented timing of exposure specific effects
on neonatal mice brain volumes in regions of the amygdala,
hippocampus, entorhinal cortex, striatum, and periaqueductal
gray matter and reported that neonatal communication abilities,
indexed by ultrasonic vocalizations, are reduced following early,
but not late exposure (Guma et al., 2021b). Early exposure
also appears to produce more profound effects on anxiety-like,
stereotypic, and sensorimotor gating behaviors, measured in
adolescence, than late exposure, changes that are accompanied
by transcriptional alteration in genes linked to inflammation
and autistic behaviors (Guma et al., 2021a).

A key role for IL-6 in abnormal
neurodevelopment following
maternal immune activation

Maternal immune activation (MIA) is accompanied by
increased levels of multiple pro-inflammatory cytokines.
However, IL-6 appears to play an especially important role
in mediating the impact of maternal infection on offspring
neurodevelopment (Smith et al., 2007). This was demonstrated
by Smith et al. (2007) via an elegant series of rodent experiments.
First, they showed that administration of IL-6 during pregnancy
was sufficient to induce prepulse inhibition (PPI) and latent
inhibition (LI) deficits in adult offspring, while administration of
IFNγ was not. Second, they demonstrated that administration of
an IL-6-neutralizing antibody during MIA [poly(I:C)] rescued
deficits in PPI and IL and normalized exploratory and social
behavior. Next, they showed that IL-6 knock-out mice failed to
exhibit deficit in PPI, social interaction, or exploratory behavior
following MIA. Finally, they demonstrated that administration
of an IL-6-neutralizing antibody during MIA also normalized
gene expression differences in the brains of offspring (Smith
et al., 2007). Hence, IL-6 emerged as the main driving factor
through which MIA causes long term behavioral changes in
offspring (Smith et al., 2007).

The importance of IL-6 in human brain development has
been demonstrated via neuroimaging studies of infants and
children. Specifically, Rudolph et al. (2018) reported associations
between maternal IL-6 levels and neonatal functional brain
connectivity, with the salience, dorsal attention, and subcortical
networks being most extensively involved. Furthermore, these
associations may explain associations between maternal IL-6
and offspring working memory performance at 2 years of age
in the same sample (Rudolph et al., 2018). Effects of IL-6 on
the salience network were also reported by Spann et al. (2018).

Also, MRI data of infants (n = 30) shows that higher levels of
IL-6 during pregnancy may lead to disruption in frontolimbic
white matter and cognitive development (Rasmussen et al.,
2019). Furthermore, children born to women (n = 86) with
high IL-6 levels during early pregnancy showed larger right
amygdala volumes and stronger bilateral amygdala connectivity
to other parts of brain including fusiform, somatosensory cortex
and thalamus (for sensory processing and integration), anterior
insula (for salience detection), caudate and parahippocampal
gyrus (for learning and memory) at 24 months age. Moreover,
volume of the right amygdala and stronger left amygdala
connectivity mediated associations between maternal IL-6 and
compromised impulse control in offspring (Graham et al.,
2018). While these studies are relevant to the issue at hand,
it is important to note that the sample sizes are relatively
small. A recent study by Marek et al. (2022), suggests that
rigorous and reproducible associations between brain structure
or function and complex cognitive or behavioral data may
require thousands of individuals (Marek et al., 2022). In
addition to being insufficiently powered, small sample sizes
are vulnerable to sampling variability, inflated effect sizes, high
statistical error rates, and poor reproducibility.

Various mechanisms have been proposed to explain how
IL-6 induces abnormal neurodevelopment (Boulanger-Bertolus
et al., 2018). Many of these mechanisms highlight the placenta
as a key organ in this pathophysiological process. Knockout
of the trophoblastic IL-6 receptor in mice prevents cerebellar
neuropathology and behavioral impairments following MIA
[poly(I:C)] and attenuates immune responses in the fetal brain
(Wu et al., 2017). This suggests that placental IL-6 signaling,
specifically in the trophoblast, is required for MIA-induced
acute immune activation in the fetal brain and subsequent
detrimental effects on offspring neurodevelopment, at least in
rodents. The authors of this study proposed three different ways
placental IL-6 signaling might impact the fetal brain. First, they
proposed that the placenta may initiate a feed-forward cycle of
IL-6 induction in the embryo. Second, they proposed effects of
placental IL-6 signaling on the fetal brain might be mediated
by changes in placental hormones including prolactin and
corticotrophin-releasing factor (CRF). Finally, they suggested
that IL-6 might induce trophoblasts to produce factors that
increase vascular permeability in the placenta, thereby altering
the metabolic and nutritional environment of the fetus. An
earlier study by the same group revealed another placental
hormone system disrupted by poly(I:C) MIA – the growth
hormone-insulin-like growth factor (GH-IGF) axis. Levels of
growth hormone (GH), insulin like growth factor 1 (IGF1),
and insulin like growth factor binding protein 3 (IGFBP3)
levels were all reduced following MIA (Hsiao and Patterson,
2011). More recently, Monteiro et al. (2022) reported that mid-
pregnancy MIA [poly(I:C)] alters expression of placental ATP-
Binding Cassette (ABC) efflux transporters, which transport a
variety of substances including cholesterol, drugs, xenobiotics,
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and cytokines across the placental barrier (Monteiro et al.,
2022). While this data is clearly of interest, it should be
noted that there are substantial differences between the most
frequently used rodent models and human placentas, which
make it difficult to extrapolate directly from mice and rats to
human. Schmidt et al. (2015) and Carter (2020) review several
key differences in anatomy including (1) in human placenta
maternal blood perfuses the intervillous space, while in mice
and rats exchange of material is between fetal and maternal
capillaries, (2) humans do not have an inverted yolk sac placenta
in addition to the chorioallantoic placenta, while mice and rats
do, (3) mice and rats have trichorial placentas while humans
have monochorial placentas, and (4) in humans there is deep
interstitial and endovascular invasion of trophoblast cells into
the inner third of the human myometrium, while in mice the
invasion is restricted to the decidua basalis (Schmidt et al., 2015;
Carter, 2020). The latter difference is particularly problematic
when studying preeclampsia. There are also important species
differences in placental endocrinology, molecular features, and
immune responses. For example, the human placenta can
actively transport protective immunoglobulin IgG antibodies
to the fetus during gestation, while rodents do not transport
IgG as efficiently and mice acquire maternal IgG antibodies via
yolk sac–derived cells and after birth via suckling (reviewed in
Ander et al., 2019). In addition, the human placenta secrets
primate-specific antiviral microRNAs (miRNAs) from a cluster
on chromosome 19 (C19MC) from syncytiotrophoblast layer
that broadly restrict viral infections while mouse placenta uses
interferons to restrict viral infections (Ander et al., 2019). To
overcome this translational challenge, additional studies using
in vitro models and alternative animal models are needed
(Schmidt et al., 2015; Ander et al., 2019; Carter, 2020).

Maternal infection and fetal
hypothalamic-pituitary-adrenal
axis modulation

It is well established that viral infection increases the
production of proinflammatory cytokines which in turn activate
the HPA axis, resulting in increased glucocorticoid production
(reviewed in Silverman et al., 2005; Raony et al., 2020). When
the maternal HPA axis is activated, levels of glucocorticoids
in maternal blood increase. Glucocorticoids can cross the
placental barrier thereby increasing fetal glucocorticoid levels.
Also, maternal cytokines can cross the placenta and activate
the fetal HPA axis and stimulate the release of corticotrophin
releasing hormone (CRH). This subsequently would stimulate
secretion of adrenocorticotrophic hormone (ACTH) from the
fetal anterior pituitary and glucocorticoids from the fetal
adrenals (reviewed in Seckl, 2004; Ratnayake et al., 2013).
Glucocorticoids play a central role in the fetal programming of
HPA function (reviewed in Kapoor et al., 2006). Exposure to

high levels of glucocorticoids in utero can manifest as disrupted
HPA axis reactivity in later life and may underlie cognitive
deficits and addictive behaviors in childhood and adulthood
(reviewed in Waffarn and Davis, 2012; Moisiadis and Matthews,
2014; Granja et al., 2021).

In a recent review article, Granja et al. (2021) proposed
a possible mechanism by which SARS-CoV-2 infection in a
pregnant woman may disrupt fetal brain development via
interference with the HPA axis. They explain that during
a normal pregnancy, levels of 11β-HSD2 (glucocorticoid
inactivating hormone) increase to ensure the appropriate
exposure of glucocorticoids to the fetus. At the same time
progesterone levels are also increasing to counter the cytokine
balance toward an anti-inflammatory profile at the maternal-
fetal interface (Granja et al., 2021). They hypothesize that viral
infection (e.g., SARS-CoV-2 infection) may disrupt placental
11β-HSD2 expression resulting in increased exposure of the
fetus to glucocorticoids (Granja et al., 2021). We are unaware of
any studies directly testing Granja et al’s hypothesis, but there
is a growing body of literature on the immune environment
of the human placenta during COVID-19 infection. Lu-
Culligan et al. (2021) reported robust inflammatory responses
in placenta tissue from third trimester COVID-19 infections
including increased expression of pro-inflammatory genes and
chemokines, revealed by single-cell transcriptomic profiling
(Lu-Culligan et al., 2021). In contrast, Juttukonda et al. (2022)
have reported that while decidual tissue from individuals
with third trimester COVID-19 infections have increased
macrophages, NK cells, and T cells, levels of IL-8 are reduced
compared to controls and levels of IFN-γ, IL-1β, IL-6, IL-10,
and TNF do not differ (Juttukonda et al., 2022). In the same
study, decidual tissue from individuals with second trimester
infections showed a significant decrease in IL-6, IL-8, IL-10,
and TNF-α and no change in abundance for IL-1β or IFN-γ
(Juttukonda et al., 2022). Bordt et al. (2021) reported increased
levels of IFN-α, IFN-γ, and IL-10 in placentas from individuals
with third trimester infections, but only in males (Bordt et al.,
2021). Thus, there is still much to be done in terms of
understanding how maternal COVID-19 impacts inflammatory
profiles of the placenta and a dearth of studies on how this might
impact glucocorticoids.

Maternal glucocorticoids can reach fetal brain and bind
with glucocorticoid receptors (GR) to exert detrimental
effects (reviewed in Miranda and Sousa, 2018). In fact,
disrupted placental 11β-HSD2 expression, may lead to abnormal
glucocorticoid receptor (GR) expression in hippocampus
and amygdala, leading to a hyperreactive HPA axis and
increased anxiety-like behaviors in adult rat offspring (Welberg
et al., 2000). Furthermore, higher glucocorticoid exposure
to the fetus increases inducible nerve growth factor A and
activates transcriptional activity thereby disrupting fetal brain
development (Andrews et al., 2004) (guinea pig). In addition
to these molecular changes, fetal exposure to high levels of
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glucocorticoids also impacts neurogenesis in both rodent and
human in vitro models and changes hippocampal structure
(Gould et al., 1992; Lemaire et al., 2000; Provençal et al.,
2020). Similarly, higher levels of glucocorticoid may alter
microglial function (reviewed in Walker et al., 2013), disrupting
synaptogenesis, neurogenesis, synaptic pruning, axonal growth,
myelination and astrocyte maturation (reviewed in Harry and
Kraft, 2012; Schafer and Stevens, 2015).

It is reasonable to hypothesize that MIA in the context
of SARS-CoV-2 would produce similar effects on the HPA
axis which may increase risk for behavioral problems in
offspring as shown in Figure 4A. Indeed, SARS-CoV-2 infected
patients may experience a ‘cytokine storm’ leading to excessive
glucocorticoids that may have deleterious effects on the host
(Figure 4A) (Silverman et al., 2005; Raony et al., 2020).
On the other hand, there is also evidence to suggest that
SARS-associated coronaviruses can produce hypocortisolism
(Figure 4B) (Leow et al., 2005). In a prospective cohort study
of SARS-CoV survivors, 24 of 61 patients developed HPA
axis dysfunction resulting in reduced blood cortisol levels
during the 3-month follow-up period (Leow et al., 2005).
A published case report suggests that SARS-CoV-2 infection
can also produce hypocortisolism; a 69-year-old Iranian man,
admitted to the ICU with SARS-CoV-2, developed adrenal
insufficiency and reduced serum cortisol level (Heidarpour et al.,
2020). Two mechanisms have been proposed for the association
of SARS-associated coronaviruses with hypocortisolism: (1)
destruction of ACTH due to infection and (2) damage to
the hypothalamus. Regarding the first potential mechanism, in
2004, Wheatland proposed the molecular mimicry theory of
ACTH in SARS. This theory is based on the observation that
SARS-CoV expresses certain amino acid sequences that mimic
the adrenocorticotropic hormone (ACTH). Thus, antibodies
produced by the host in response to SARS-CoV may also
destroy host ACTH thereby reducing the patient’s cortisol level
(Wheatland, 2004). Regarding the second potential mechanism,
the authors of the prospective cohort study of SARS-CoV
survivors discussed above proposed in their discussion that
SARS-CoV-2 infection could damage the hypothalamus and/or
pituitary via the ACE2 receptor or CD209L/L-SIGN, a C-type
lectin surface glycoprotein implicated in viral pathogenesis,
leading to HPA axis dysfunction and hypocortisolism (Leow
et al., 2005). Support for this mechanism has recently been
provided by a French group, who reported that ACE2 and the
transmembrane proteinase, serine 2 (TMPRSS2), which cleaves
the SARS-CoV-2 spike protein, are expressed in the adult human
hypothalamus, with the paraventricular nucleus showing the
highest expression among hypothalamic nuclei. Interestingly, a
KEGG pathway enrichment analysis suggested that both ACE2
and TMPRSS2 play important roles in the “neuroactive ligand-
receptor interaction” pathway supporting an impact of SARS-
CoV-2 on neuroendocrine function, including interactions
between corticotropin releasing hormone and its receptor.

Furthermore, they report that viral markers for SARS-CoV-
2 were abundant in the hypothalamus of a 63-year-old male
patient who died of COVID, but absent from the hypothalamus
of controls (Nampoothiri et al., 2020). Very little work has
been done on the possible neurodevelopmental consequences of
low cortisol levels during pregnancy, but pregnancy is typically
accompanied by substantial increases in cortisol (Mastorakos
and Ilias, 2003; Jensen et al., 2011; Guardino et al., 2016).
Several studies, conducted in sheep, indicate that lowering
maternal cortisol during pregnancy alters placental morphology
and reduces placental and uterine blood flow, which could
result in restricted fetal growth (Jensen et al., 2005, 2007)
and altered neurodevelopment, as previously discussed. Overall,
depending on the timing of SARS-CoV-2 infection, the
developing fetus may be exposed to both abnormally high and
abnormally low levels of cortisol with potential consequences for
neurodevelopment.

Maternal infection and epigenetic
modulation

Accumulating evidence suggests that maternal
infection during gestation may affect intergenerational
and transgenerational offspring neurodevelopmental process
via epigenetic modifications (reviewed in Kleeman et al.,
2022). Epigenetic processes produce long term and heritable
modifications in gene expression without changing the DNA
sequence (reviewed in Bale, 2015). These processes include
DNA methylation, histone modification, and expression of
microRNA (miRNA) (reviewed in Bale, 2015; Szyf, 2015;
Weber-Stadlbauer, 2017). Epigenetic processes play a critical
role in linking early environmental experiences to long-term
changes in brains structure and function and are likely to play a
key role in explaining the impact of maternal infection on brain
development as described in subsequent paragraphs (reviewed
in Bale, 2015; Dubey et al., 2018; Bergdolt and Dunaevsky,
2019).

DNA methylation involves the attachment of a methyl
(CH3) group to cytosines within the DNA sequence, a
reaction that requires both methyltransferases, such as DNA
cytosine-5-methyltransferase 1 (DNMT1), and methyl donors,
which are derived from nutrients such as folate. Methylated
DNA attracts methyl binding proteins, such as methyl CpG
binding protein 2 (MeCP2), that condense the structure of
the nucleosome, thereby preventing transcription. A growing
body of research suggests that infection during pregnancy alters
DNA methylation in the offspring brain in ways that are both
complex and region-specific (Richetto et al., 2017b). Richetto
and colleagues observed that MIA following treatment with
the viral mimetic Poly(I:C) altered DNA methylation in the
medial prefrontal cortex of adult offspring. Adult offspring of
immune activated mothers showed hyper or hypomethylation
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FIGURE 4

The relationship between maternal SARS-CoV-2 infection and Fetal HPA axis modulation, (A) SARS-CoV-2 infection and hypercortisolism,
(B) SARS-CoV-2 infection and hypocortisolism.
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of CpGs at various loci including loci influencing GABAergic
differentiation and signaling (Dlx1, Lhx5, Lhx8), Wnt signaling
(Wnt3, Wnt7b, Wnt8a), neural development (Efnb3, Mid1,
Nlgn1, Nrxn2) (Richetto et al., 2017b), and myelination related
gene α-myelin-associated oligodendrocytic basic protein (mobp)
in prefrontal cortex and nucleus accumbens of adult offspring
(Richetto et al., 2017a), suggesting that epigenetic modification
might mediate the impact of prenatal infections on offspring
behavior (Richetto et al., 2017a,b). Labouesse and colleagues
have also investigated Poly(I:C) induced MIA impacts on
prefrontal cortex in mice and found increased methylation
of promotors for GAD1 and GAD2, key enzymes in GABA
synthesis (Labouesse et al., 2015). Poly(I:C) induced MIA
also induces significant global DNA hypomethylation in the
hippocampus, including in the promotor of Mecp2, but not
in the mice striatum (Basil et al., 2014), as well as increased
expression of DNase I hypersensitivity sites (DHSs) and
MECP2 binding sites genes, namely Abat and Gnas9 in mice
hypothalamus (Basil et al., 2018). In another study, poly(I:C)
induced MIA increased methylation of the promoter region of
tyrosine hydroxylase (Th) gene in the dopaminergic neurons of
ventral midbrain in adult mice (Weber-Stadlbauer et al., 2021).
All the above-mentioned studies used Poly (I:C) induced MIA
model, because it is widely applied to study neurodevelopment
(reviewed in Bao et al., 2022). Further, Poly (I:C) induced MIA
are mainly driven via IL-6 activity (reviewed in Bao et al., 2022).
IL-6 may provide a mechanistic link between infection and
altered DNA methylation as it promotes nuclear translocation
of DNMT1, the major enzyme responsible for maintaining
methylation patterns following DNA replication (Hodge et al.,
2007). Further, alterated or defective DNA replication may
lead to impaired neuronal development (Kalogeropoulou et al.,
2019).

Histone modifications are post translational modifications
of histone protein (Szyf, 2015). There can be hundreds of
modifications on a given histone producing a cumulative
effect on how DNA around that histone is packaged. The
addition or removal of acetyl groups is one biochemical
process known to be important for transcriptional regulation
and is accomplished by two types of enzymes: histone
acetyltransferases (HATs) and histone deacetylases (HDACs).
HATs promote DNA histone acetylation, which loosens the
chromatin and facilitates gene transcription, while HDACs
remove acetyl groups, which condenses the chromatin and
reduces gene transcription (reviewed in Dubey et al., 2018).
LPS-induced inflammation increases expression of HDAC2 and
HDAC5 in the brain, an effect that can be attenuated by
treating with an HDAC inhibitor prior to administering LPS.
Moreover, pre-treatment with an HDAC inhibitor diminished
LPS-induced anhedonia, anorexia, and microglia activation,
supporting histone deacetylation as a key mechanism linking
systemic inflammation to cognitive dysfunction in adult and
juvenile animals (Hsing et al., 2015). Another study in mice

suggests that MIA [Poly(I:C)] regulates hippocampal serotonin
transporter (SERT) levels via modulation of histone acetylation
which results in anhedonic behavior in offspring (Reisinger
et al., 2016). Specific cytokines linked to histone modification
include TNF-alpha, which increases histone acetylation in
human alveolar epithelial cells (Rahman et al., 2002) and IL-
17a, which reduces HDAC2 activity via the PI3K pathway
in human bronchial epithelial cells (Zijlstra et al., 2012).
Whether these cytokines have similar effects in the developing
brain is currently unknown. In one study, MIA [Poly(I:C)]
during pregnancy did not appear to alter histone modification
in cerebral cortex of adult offspring, although activation of
cytokine signaling in primary cultures from fetal forebrain
influenced trimethylated histone H3-lysine 4 (H3K4me3) marks
in a limited set of genes (Connor et al., 2012). In contrast,
Tang et al. (2013), observed that MIA [Poly(I:C)] leads to global
hypoacetylation of histone H3 at H3K9K14 and H4K8 in the
cortex of juvenile mice. This was accompanied by reduced
expression of genes involved in neuronal development, synaptic
transmission, and immune signaling. Specific genes exhibiting
hypoacetylation included Robo1, which is involved in axon
guidance and neuronal precursor cell migration, arhgap18,
and Ntrk3, which is likely involved with cell survival and
differentiation in the nervous system. Hyperacetylation was
also observed at specific loci in the hippocampus of juvenile
mice including Disc1, which is involved in many aspects
of nervous system development, Nr2f1, Ntrk3, which is a
transcriptional regulator, and Gria1 and Gria2, which are both
subunits of AMPA-type ionotropic glutamate receptors (Tang
et al., 2013). Further, glutamate activities may modulate the
early brain developmental process (Tanaka, 2013). Another,
mouse study suggested that prenatal poly (I:C) exposure
at late gestation (embryonic day 17) leads to deficits in
working memory of the adult animal due to altered histone
H3K4me3 methylation in approx. 30 genes, including Disc1
(Connor et al., 2012).

MicroRNA (miRNA) are small endogenous non-coding
RNAs involved in post-transcriptional gene regulation
(Ha and Kim, 2014; Weber-Stadlbauer, 2017). They target
most protein coding transcription and prevent the production
of specific proteins by binding to and destroying messenger
RNA (mRNA). miRNA are highly expressed in brain and
essential for brain development and neuronal function (Petri
et al., 2014). Several recent studies demonstrate an impact
of MIA on miRNA expression in offspring brain. Sunwoo
et al. (2018) have reported that MIA [Poly(I:C)] alters brain
miRNA expression in offspring at 3 weeks of age, a time when
both synaptogenesis and myelination are ongoing. 8 miRNA
were upregulated and 21 were downregulated. Furthermore,
target genes of 18 downregulated and 3 upregulated miRNA
were found to be significantly enriched among differentially
expressed genes, confirming that MIA induced alterations
in miRNA have functional consequences, at least at the level

Frontiers in Neuroscience 14 frontiersin.org

36

https://doi.org/10.3389/fnins.2022.1021721
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1021721 December 13, 2022 Time: 7:4 # 15

Dubey et al. 10.3389/fnins.2022.1021721

of gene expression. Offspring exhibited behavioral changes
typical of MIA including lack of a preference for social novelty
and reduced prepulse inhibition, but the study design did not
address whether miRNA alterations played a causal role in the
behavioral abnormalities (Sunwoo et al., 2018). Berger et al.
examined how MIA [Poly(I:C)] affected 13 specific miRNA
in offspring hippocampus and observed increased levels of
miR-15b-2, miR-98-1, miR-103-2, and miR-124-1. None of
these overlap with the differentially expressed miRNA in
Sunwoo et al., indicating that additional studies are needed
to clarify which miRNA are most robustly associated with
MIA. Interestingly, MIA also influenced MiRNA expression
in F2 generations of offspring, along the paternal line. The
specific miRNA involved differed from observations in the F1
generation. This and the modest magnitude of changes led the
authors to conclude that miRNA did not play a substantial role
in the behavioral impacts of MIA (Berger et al., 2018).

With specific regard to SARS-CoV-2, no studies have
examined miRNA levels in the brains of exposed fetuses.
However, a recently published cohort study indicated that
various miRNAs are upregulated in both plasma and placental
tissues of pregnant mothers infected with SARS-CoV-2 (Saulle
et al., 2021). 35 miRNA were differentially expressed in human
plasma including seven antiviral miRNAs (miR-21, miR-23b,
miR-28, miR-29a, miR-29c, miR-98 and miR-326) and six
immunomodulatory miRNAs (miR-17, miR-92, miR-146, miR-
150, miR-155, miR-223), all upregulated in infected mothers.
In placenta, eight miRNA were upregulated in the context of
maternal infection including ones with direct effects on viral
replication (miR-21b, miR-29c, miR-98) and ones influencing
viral replication by indirect mechanisms (miR-146, miR-155,
miR-190, miR-346, and miR-326) (Saulle et al., 2021). Further,
an in silico study showed that miR-21, miR-16 and miR-146a
have high affinity to the SARS-CoV-2 virus (Jafarinejad-Farsangi
et al., 2020).

Interestingly, several of these miRNAs have also been
implicated in neurodevelopment. miR-146a is one of the
most commonly dysregulated miRNAs in neurodevelopmental
disorders (Fregeac et al., 2016; Nguyen et al., 2016, 2018;
Schepici et al., 2019). In H9 human neural stem cells,
miR-146a overexpression enhances neurite outgrowth and
branching and favors differentiation into neuronal like cells
(Nguyen et al., 2018). In mouse primary cell cultures, miR-
146a overexpression leads to impaired neuronal dendritic
arborization and increased astrocyte glutamate uptake capacities
(Nguyen et al., 2016). miR-146a is highly expressed in mouse
hippocampus, amygdala and entorhinal cortex, areas with
important roles in social cognition, memory, spatial navigation,
and the perception of time, and targets genes with known roles
in neurodevelopment including MAP1B, FMR1, and KCNK2
(Nguyen et al., 2016). Furthermore, miR-146a overexpression
promotes oligodendrocyte differentiation and myelination in
the context of neurological injury (Santra et al., 2014;

Liu et al., 2017; Zhang et al., 2017, 2019), raising the possibility
that it also effects these processes during neurodevelopment. In
addition, downregulation of miRNA-146a expression in mice
leads to impaired neurogenesis, abnormal brain anatomy, along
with deficits in working and spatial memory (Fregeac et al.,
2020). Apart from miR-146a, miR-21, miR-146b, miR-23a, miR-
23b, miR-92(a1-a2) and miR-23a-3p have been reported to
differentiate between controls and individuals with ASD in
peripheral tissues, e.g., lymphoblastoid cell lines and saliva
(Talebizadeh et al., 2008; Sehovic et al., 2020; Frye et al., 2021),
while miR-21-3p is overexpressed in the cortex of post-mortem
ASD patients (Wu et al., 2016). These miRNAs have been
less thoroughly studied than MiR-146a in terms of their roles
in neurodevelopment, but miR-21 expression in the placenta
is associated with fetal growth (Maccani et al., 2011), which
could explain the association of maternal SARS-CoV-2 infection
with intrauterine growth restriction, a known risk factor for
altered neurodevelopment. miR-23 regulates progenitor fate
decisions by inhibiting cyclin D1 mRNA. Inhibition of miR-23
increases cyclin D1 protein in mouse progenitor cells leading to
reduced neuronal differentiation during cortical neurogenesis
(Ghosh et al., 2014). miR-21-3p downregulates multiple genes
in a specific gene co-expression module enriched for ASD
risk genes in post-mortem human brain (Wu et al., 2016).
This module is upregulated in early cortical development
and is enriched for genes implicated in neural development
and synaptic function (Parikshak et al., 2013). In addition,
miR-21-3p over-expression led to a pronounced decrease in
the PCDH19 gene (Wu et al., 2016), which encodes a cell-
adhesion protein primarily expressed in the brain. Mutations
in PCDH19 are associated with both epilepsy and ASD
(Redies et al., 2012).

Overall, maternal immune activation can affect multiple
epigenetic processes in the developing brain leading to long-
lasting behavioral changes in offspring as summarized in
Figure 5. Readers interested in additional details may find the
following reviews of interest: (Woods et al., 2021; Kleeman et al.,
2022). The latter provides a systematic review of MIA-induced
changes in gene expression and epigenetic features. Additional
research is needed to study these relationships in the context of
maternal SARS-CoV-2.

Emerging evidence linking
gestational SARS-CoV-2 infection
to altered neurodevelopment

The information presented thus far strongly suggests
that gestational SARS-CoV-2 infection could alter fetal
neurodevelopment. Empirical evidence supporting this
hypothesis is currently sparse and somewhat inconsistent, but
intriguing. A preliminary study conducted in 2020 (N = 57)
reported that a substantial proportion of children born to

Frontiers in Neuroscience 15 frontiersin.org

37

https://doi.org/10.3389/fnins.2022.1021721
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1021721 December 13, 2022 Time: 7:4 # 16

Dubey et al. 10.3389/fnins.2022.1021721

FIGURE 5

Potential epigenetic mechanisms linking prenatal SARS-CoV-2 infection to offspring brain development.

mothers infected with SARS-CoV-2 during gestation were
identified as high risk for social and emotional problems at
3 months of age using the Ages and Stages Questionnaire:
Social-Emotional, second edition (ASQ:SE-2) (63.6%) (Wang
et al., 2020). In contrast, the proportion of children identified
as high risk using the Ages and Stages Questionnaires, third
edition (ASQ-3) was lower – 0% for communication and gross
motor skills, 5.8% for fine motor skills and problem solving,
and 9.6% for personal-social skills. No control group was
included for comparison. Interestingly, gross motor, problem
solving, personal–social, and social–emotional were negatively
linked with the amount of time mothers and babies were
separated after birth. More recent studies with larger sample
sizes provide additional insights (Aldrete-Cortez et al., 2022;
Ayed et al., 2022; Edlow et al., 2022). A prospective cohort
study conducted in Kuwait (N = 298) reported developmental
delays in around 10% of infants whose mothers had COVID-19
during pregnancy using the ASQ-3 (Ayed et al., 2022), which is
similar to rates of developmental delay in healthy children in a
similar geographical and cultural setting (Charafeddine et al.,
2019). The ASQ:SE-2 was not included in this study. Risk of
developmental delay was significantly higher in infants born
to mothers infected during the first and second trimester than
mothers infected in the third trimester, suggesting that adverse
neurodevelopmental consequences of SARS-CoV-2 may be

time-specific (Ayed et al., 2022). Key neurodevelopmental
events occurring in the first and second trimesters include
formation of the neural tube and neurogenesis (Stiles and
Jernigan, 2010). A study of 254 infants born in New York City
during the pandemic (114 exposed to COVID-19 in utero and
141 unexposed) and 62 infants born before the pandemic,
revealed that birth during the pandemic was associated with
significantly lower scores on gross motor, fine motor, and
personal-social skills, with no significant differences between
the exposed and unexposed groups (Shuffrey et al., 2022). This
suggests that COVID-19-related stress may have a stronger
impact on neurodevelopment than gestational exposure to
SARS-CoV-2. Relatively few women had confirmed exposures
in early pregnancy, but post hoc analyses suggested exposure
in the first trimester might have adverse neurodevelopmental
consequences, similar to the earlier Ayed study. The above
studies all relied on the ASQ-3, a parent-response instrument
used to screen for developmental delays, as an index of early
neurodevelopment. Aldrete-Cortez et al. took a different
approach using observations of early motor repertoires as
their outcome. They showed that at 3-5 months of age, a
motor optimality score was significantly lower in infants
prenatally exposed to SARS-CoV-2 than unexposed controls,
suggesting they are at higher risk for later neurological
disorders (Aldrete-Cortez et al., 2022). Finally, Edlow et al.

Frontiers in Neuroscience 16 frontiersin.org

38

https://doi.org/10.3389/fnins.2022.1021721
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1021721 December 13, 2022 Time: 7:4 # 17

Dubey et al. 10.3389/fnins.2022.1021721

TABLE 1 Effect of maternal SARS-CoV-2 infection on offspring neurodevelopment.

Transmission of SARS-CoV-2 mother to fetus

SARS-CoV-2 virus infects fetus from direct transmission from infected mother to fetus in uterus Dong et al., 2020; Kirtsman et al., 2020; Patanè et al.,
2020; Sisman et al., 2020

No or very less chances of SARS-CoV-2 to vertical transmission from mother to fetus in uterus Khan et al., 2020; Knight et al., 2020; Xiong et al., 2020;
Zhu et al., 2020; Allotey et al., 2022

Neuroinvasiveness of SARS-CoV to human brain via binding to the endothelial ACE2 receptors of the
blood brain barrier and subsequently entry into the central nervous system

Paniz-Mondolfi et al., 2020

Time dependent inflammatory response during pregnancy against SARS-CoV-2 infection

Robust inflammatory responses in placenta tissue from third trimester COVID-19 infections including
increased expression of pro-inflammatory genes and chemokines

Lu-Culligan et al., 2021

In decidual tissue from individuals with third trimester COVID-19 infections have increased macrophages,
NK cells, and T cells, but reduced IL-8 levels and no variation in IFN-γ, IL-1β, IL-6, IL-10, and TNF levels

Juttukonda et al., 2022

In decidual tissue from individuals with second trimester infections showed a significant decrease in IL-6,
IL-8, IL-10, and TNF-α and no change in abundance for IL-1β or IFN-γ

Juttukonda et al., 2022

Gender based differences, increased levels of IFN-α, IFN-γ, and IL-10 in placentas from individuals with
third trimester infections, but only in males

Bordt et al., 2021

Effect of prenatal infection of SARS-CoV-2 on fetuses and infants

Infants prenatally infected with SARS-CoV-2, diagnosed with neurodevelopmental disorders mainly
related with motor function or speech and language disorders

Edlow et al., 2022

Children born to mothers infected with SARS-CoV-2 during gestation were identified as high risk for
social and emotional problems

Wang et al., 2020

Infant born during the pandemic associated with significantly lower scores on gross motor, fine motor, and
personal-social skills, with no significant differences between the exposed and unexposed groups.

Shuffrey et al., 2022

Infants born during the SARS-CoV-2 pandemic had similar rates of neurodevelopmental issues compared
to those born before the pandemic, regardless of whether they were exposed in utero. Communication
impairments were more common in children born during the pandemic and fine motor deficits were more
common in those with in utero exposure

Hessami et al., 2022

Infants prenatally exposed to SARS-CoV-2 have low motor activity score and higher risk for later
neurological disorders

Aldrete-Cortez et al., 2022

10% of infants whose mothers had COVID-19 during pregnancy exhibited developmental delays, which is
similar to rates of developmental delay in healthy children in a similar geographical and cultural setting

Ayed et al., 2022

used electronic health records and a retrospective cohort design
to test associations between SARS-CoV-2 exposure in utero
and risk for neurodevelopmental disorders in the first year
of offspring life (Edlow et al., 2022). This cohort included
7772 live births of which 222 were to SARS-Cov-2 positive
mothers. Maternal SARS-CoV-2 positivity during pregnancy
was associated with greater rate of neurodevelopmental
diagnoses in both unadjusted models and models adjusted
for race, ethnicity, insurance status, offspring sex, maternal
age, and preterm status. In contrast to studies using the
ASQ-3, third-trimester exposures appeared to confer greater
risk. Finally, a recent meta-analysis suggested that infants
born during the SARS-CoV-2 pandemic had similar rates of
neurodevelopmental issues compared to those born before the
pandemic, regardless of whether they were exposed in utero.
However, communication impairments were more common
in children born during the pandemic and fine motor deficits
were more common in those with in utero exposure (Hessami
et al., 2022). Overall, emerging evidence suggests maternal
SARS-CoV-2 infection may impact neurodevelopment but
is subject to several limitations. Sample sizes are relatively

small, follow-up has been limited to the first year of life, and
most studies have relied on a single parent-report instrument
designed to screen for developmental delays. Thus, there is an
urgent need for long term follow up in infants born during the
pandemic.

Conclusion

Infection of pregnant women with SARS-CoV-2 could
influence fetal brain development, potentially increasing risk
for later cognitive and behavioral problems. SARS-CoV-
2 infection can be transferred transplacentally from an
infected mother to her fetus and the virus does have
neuroinvasive potential. However, this appears to be a
relatively rare event. Consequently, we anticipate that long-
term neurodevelopmental effects, if they occur, are more likely
to reflect indirect mechanisms. Like other viruses, SARS-CoV-
2 infection may trigger maternal immune activation, which
may disrupt fetal neurodevelopmental and lead to long term
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cognitive and motor deficits, behavioral abnormalities, and,
potentially, psychiatric illness in children. SARS-CoV-2 may
also trigger preeclampsia, preterm birth, and/or intrauterine
growth restriction, which are known risk factors for later
neurodevelopmental issues. Key finding related to SARS-CoV-
2 infection are summarized in Table 1. Given the high numbers
of pregnant women that have been, and will be, exposed during
this pandemic, the long-term impact of SARS-CoV-2 on fetal
brain development needs to be investigated.
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Introduction: Impulsivity is a symptom of attention-deficit/hyperactivity disorder

(ADHD) and variants in the Lphn3 (Adgrl3) gene (OMIM 616417) have been linked

to ADHD. This project utilized a delay-discounting (DD) task to examine the impact

of Lphn3 deletion in rats on impulsive choice. “Positive control” measures were also

collected in spontaneously hypertensive rats (SHRs), another animal model of ADHD.

Methods: For Experiment I, rats were given the option to press one lever for a delayed

reward of 3 food pellets or the other lever for an immediate reward of 1 pellet.

Impulsive choice was measured as the tendency to discount the larger, delayed

reward. We hypothesized that impulsive choice would be greater in the SHR and

Lphn3 knockout (KO) rats relative to their control strains - Wistar-Kyoto (WKY) and

Lphn3 wildtype (WT) rats, respectively.

Results: The results did not completely support the hypothesis, as only the SHRs

(but not the Lphn3 KO rats) demonstrated a decrease in the percent choice for the

larger reward. Because subsequent trials did not begin until the end of the delay

period regardless of which lever was selected, rats were required to wait for the

next trial to start even if they picked the immediate lever. Experiment II examined

whether the rate of reinforcement influenced impulsive choice by using a DD task

that incorporated a 1 s inter-trial interval (ITI) immediately after delivery of either the

immediate (1 pellet) or delayed (3 pellet) reinforcer. The results of Experiment II found

no difference in the percent choice for the larger reward between Lphn3 KO and WT

rats, demonstrating reinforcement rate did not influence impulsive choice in Lphn3

KO rats.

Discussion: Overall, there were impulsivity differences among the ADHD models, as

SHRs exhibited deficits in impulsive choice, while the Lphn3 KO rats did not.

KEYWORDS

externalizing behavior, response inhibition, delay-discounting, spontaneously hypertensive
rat (SHR), Adgrl3, Lphn3 KO rat, latrophilin 3, attention-deficit/hyperactivity disorder (ADHD)
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Introduction

Attention-deficit/hyperactivity disorder (ADHD) is a highly
prevalent neurodevelopmental disorder characterized by impulsivity,
inattention, and hyperactivity (American Psychological Association
[APA], 2013). ADHD is a commonly diagnosed in childhood but
can continue into adulthood (Weibel et al., 2020) and is often
comorbid with other externalizing disorders (Faraone et al., 2003;
Palacio et al., 2004; Frick and Nigg, 2012; Hansen et al., 2018). Based
on the 2016 National Parent Survey, about 9.8% of children are
diagnosed with ADHD and 6 in 10 children with ADHD had at least
one other mental, emotional, or behavioral disorder (Bitsko et al.,
2022).

Although many factors in the environment can contribute to the
development of ADHD, the literature has shown that genetics can
help explain ADHD variability (Spencer et al., 2007). Recent data
has shown a linkage of ADHD and other externalizing behaviors
with markers on chromosome 4q13.2 (Arcos-Burgos et al., 2004;
Acosta et al., 2008; Arcos-Burgos and Muenke, 2010). Mapping of this
region has revealed that variants in the Lphn3 (Adgrl3) gene (OMIM
616417) predispose individuals to ADHD (Acosta et al., 2008, 2011,
2016) and predict ADHD severity and response to treatment (Arcos-
Burgos et al., 2010; Acosta et al., 2011; Bruxel et al., 2015). Similar
studies in other populations have also found that Lphn3 gene variants
contribute to ADHD susceptibility (Ribases et al., 2011; Hwang et al.,
2015; Gomez-Sanchez et al., 2016; Martinez et al., 2016; Huang et al.,
2019; Kappel et al., 2019; Puentes-Rozo et al., 2019).

Research in animal models has also provided some corroborating
evidence for the role of Lphn3 in ADHD. For example, zebrafish
that lack lphn3.1 (one of two Lphn3 orthologs) were found to be
hyperactive (Lange et al., 2012, 2018)–an effect that was attenuated
by the ADHD medications methylphenidate and atomoxetine (Lange
et al., 2012). The down-regulation of lphn3.1 in zebrafish caused
a misplacement of dopamine (DA) (but not norepinephrine or
serotonin) neurons (Lange et al., 2012) and decreased locomotor
sensitivity to DA agonists and antagonists (Lange et al., 2018).
Likewise, Lphn3−/− knockout (KO) mice and rats are also
hyperactive (Wallis et al., 2012; Regan et al., 2019), and they have
been shown to be impaired on a facet of impulsivity called impulsive
action (Mortimer et al., 2019; Sable et al., 2021) which is the inability
to inhibit a prepotent motor response (Bari and Robbins, 2013;
MacKillop et al., 2016). The exact mechanism whereby alterations
in Lphn3 gene expression alters catecholamine neurotransmission is
still being investigated. However, in both Lphn3 mutant mice and
rats, the expression levels of the DA transporter (DAT) gene (Slc6a3)
and the protein itself differ from wildtype controls. Adult Lphn3
KO rats have increased DAT expression (Regan et al., 2019) and
increased reuptake of DA (i.e., functional implication for increase
in DAT) (Regan et al., 2020) in the dorsal striatum. Likewise, adult
Lphn3−/− mice demonstrate overexpression of Slc6a3 in whole brain
(Wallis et al., 2012) and in the dorsal striatum (Pramod et al., 2013),
but downregulation of Slc6a3 in the prefrontal cortex (PFC) (Orsini
et al., 2016; Mortimer et al., 2019). DAT expression is associated
with ADHD (see Pramod et al., 2013 for review), including the
site of action for many ADHD medications (Fone and Nutt, 2005;
Gerlach et al., 2013; Faraone, 2018), so these results are particularly
noteworthy.

While previous research has demonstrated Lphn3 contributes to
hyperactivity and deficits in impulsive action, this project examined

the impact of Lphn3 deletion in rats on a different facet of impulsivity.
Using a delay-discounting (DD) task, we assessed impulsive choice,
which is the inability to delay gratification (Reynolds et al., 2002).
We also report “positive control” measures for the same behavioral
assay in spontaneously hypertensive rats (SHRs) which have also
been proposed as an animal model of ADHD (Prediger et al.,
2005; Sagvolden et al., 2005b, 2009; Kantak et al., 2008; Meneses
et al., 2011; Sagvolden and Johansen, 2012; Garcia and Kirkpatrick,
2013; Natsheh and Shiflett, 2018) and have previously exhibited
DD deficits (Fox et al., 2008; Aparicio et al., 2019; Sjoberg et al.,
2021). Compared to their control strain, Wistar-Kyoto (WKY)
rats, SHRs also exhibit hyperactivity and inattention (Russell, 2011;
Sagvolden and Johansen, 2012) as well as deficits in impulsive
action (Sable et al., 2021; González-Barriga and Orduña, 2022).
Here, we expected to observe more impulsive choice in the SHR
and Lphn3 KO rats represented by their tendency to choose
the small, immediate reward more often that the larger, delayed
reward relative to their control strains, WKY and Lphn3 WT rats,
respectively.

Experiment I method

Subjects

Subjects consisted of 24 SHR (12 male, 12 female) and 24 WKY
rats (12 male, 12 female) along with 32 Lphn3 KO rats (16 male, 16
female) and 33 Lphn3 WT rats (16 male, 17 female). The SHRs and
WKYs were shipped in a single cohort from Charles River (Kingston,
NY, USA) at 45 ± 2 days old. The Lphn3−/− rats were generated
at the Cincinnati children’s transgenic animal and genome editing
core by using CRISPR/Cas9 technology (Regan et al., 2019). Once
genotypes were confirmed, the KO rats were shipped in three cohorts
to the University of Memphis, along with their WT controls, at
40± 10 days old.

All rats were housed in same-sex groups of 2–3 per cage in
standard plastic cages with corn cob bedding and ad libitum tap water
in a room with a 12 h reverse light/dark cycle (lights off 7:00 am).
Rats were on free feed (Teklad, 2018) until 60 days old, after which
they were put on a food restriction schedule to maintain 85–90% of
their free-feeding weight so that they would respond for food rewards
during behavioral testing. Body weights at the start of operant testing
are presented in Supplementary Table 1.

Apparatus

Behavioral testing was performed in 10 automated, rat operant
chambers (Med Associates Inc., St. Albans, VT, USA) housed in
sound attenuating wooden boxes equipped with a fan for ventilation.
The test chambers measured 17.5 cm tall with a 24 cm × 20 cm
stainless steel grid floor resting above a tray filled with corn cob
bedding. Dustless grain-based precision pellets (45 mg; Bio-Serv,
Flemington, NJ, USA) were dispensed into a food magazine centered
2.5 cm above the floor. A retractable response lever with a cue light
above was located on both sides of the food magazine and a house
light was located on the opposite wall. White noise was presented
during testing to minimize disruption from outside sounds. Med-
PC V software (Med Associates) was used to conduct the testing
programs and record data.
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Procedure

Autoshaping and fixed ratio training
All rats were first trained to lever press for food using an

autoshaping program, which was followed by a fixed ratio training
program. The former was used to establish the lever press response,
and the latter alternated the response requirement every five trials
to ensure that no rat exhibited a side preference for either lever.
Additional details about the autoshaping and fixed ratio training
programs have been previously published (Sable et al., 2021).

Delay-discounting
During each DD session, the rat was given the choice to press

one lever for one pellet delivered immediately or the other lever for
three pellets delivered after 0, 4, 8, 12, or 16 s. As such, one lever
was always the immediate lever (0 s) and the delay on the other
lever progressively increased every 10 trials using the order of delays
presented above for a total of 50 trials/session. Trial lengths were such
that if the rat pressed the lever leading to the smaller, but immediate,
reward, the next trial did not begin until the delay period on the other
lever had elapsed. This ensured that the overall session length was the
same for all rats. Rats completed 25 sessions.

Design and analyses

The data from the SHR/WKY rats were analyzed separately
from KO/WT data.

Percent choice larger reward
The percent choice for the larger, delayed reward for the 25

sessions was averaged across blocks of 5 days to yield five, 5-day
testing blocks. To simplify the omnibus analyses, only data from the
first testing block (i.e., acquisition phase) and the last testing block
(i.e., maintenance phase) were included. The independent variables
included in the omnibus analysis were strain (SHR vs. WKY) or
genotype (KO vs. WT), sex (male vs. female), delay (0, 4, 8, 12, and
16 s), and phase (acquisition vs. maintenance). Thus, each analysis
was a mixed 2 (strain or genotype) × 2 (sex) × 5 (delay) × 2 (phase)
mixed ANOVA where strain/genotype and sex were between-subjects
factors and delay and phase were repeated-measures factors.

Slope/area under curve
The slope of the discounting curve and area under the curve

(AOC) during the acquisition and maintenance phases were analyzed
separately using a mixed 2 (strain or genotype) × 2 (sex) × 2
(phase) ANOVA where strain/genotype and sex were between-
subjects factors and phase was a repeated-measures factor. The slope
was determined by calculating rise/run based on the shortest (0 s) and
longest delay (16 s) of the discounting curve for each rat. The AOC
was the composite area of the parametric space beneath the percent
choice for the larger reward at each delay. Unlike slope, AOC uses all
delays and therefore accounts for fluctuations choice behavior more
effectively than slope (Myerson et al., 2001).

Experiment I results

If a rat did not demonstrate 60% choice for the larger reward at
the 0 s delay during the final maintenance phase, it was determined

that the rat had not learned to differentiate between the levers
associated with the small versus large reward (i.e., the rat had not
learned the task). Thus, these data were not included in the final
analyses. Specifically, data from 4 SHRs (1 male, 3 female), 3 WKY
rats (3 male, 0 female), 3 Lphn3 KO rats (2 male, 1 female), and 6
Lphn3 WT rats (4 male, 2 female) were not included leaving final n’s of
20 SHRs (11 male, 9 female), 21 WKYs (9 male, 12 female), 29 Lphn3
KOs (14 male, 15 female), and 27 Lphn3 WTs (12 male, 15 female).

If a sphericity violation was found for any within-subjects effect, a
Greenhouse–Geisser correction was used to reduce the risk of a Type
I error because ε < 0.75 in all cases (Maxwell and Delaney, 1999). In
the interest of brevity, only significant genotype- and strain-related
main effects and interactions are reported. There were no significant
strain × sex or genotype × sex interactions for any of the dependent
variables, so the results are presented collapsed across sex.

SHR/WKY

The analysis of the percent choice for the larger reward revealed
a significant main effect of strain [F(1, 37) = 4.269, p = 0.046] and
significant interactions of strain × delay [F(1.671, 61.840) = 3.813,
p = 0.034] and strain × delay × phase [F(2.459, 90.975) = 2.984,
p = 0.045]. As can be seen in Figure 1, during acquisition (top panel)
the SHRs discounted the larger reward significantly more than the
WKY rats during the 12 (p = 0.031) and 16 (p = 0.012) s delays.
During maintenance, this effect was present during the 4 (p = 0.014),
8 (p = 0.018), 12 (p = 0.030), and 16 (p = 0.044) s delays. The greater
discounting by the SHRs was also evident in analyses of slope and
AOC, where a main effect of strain was found in both cases [F(1,
37) = 5.250, p = 0.028 and F(1, 37) = 5.016, p = 0.031, respectively]. As
seen in Figure 2, the slope of the discounting curve was significantly
more negative, and the AOC was significantly smaller for the SHRs
versus the WKY rats.

Lphn3 KO/WT

The analysis of the percent choice for the larger reward
did not reveal a significant main effect of genotype [F(1,
52) = 0.310, p = 0.580], nor significant genotype × delay [F(2.484,
129.150) = 2.334, p = 0.089] or genotype × delay × phase [F(2.614,
135.938) = 0.288, p = 0.807] interactions. For comparison, Figure 3
shows the results for each genotype across the various delays for both
acquisition (top) and maintenance (bottom). As shown in Figure 4,
the main effect of genotype was also not significant for the analysis
of slope (top) or AOC (bottom) [F(1, 52) = 1.693, p = 0.199 and F(1,
52) = 0.199, p = 0.657, respectively].

Experiment I discussion

We hypothesized that impulsive choice would be greater in the
SHR and Lphn3 KO rats relative to their control strains–WKY and
WT rats, respectively. However, the results only partially supported
this hypothesis. While the SHRs demonstrated a decrease in the
percent choice for the larger reward as well as a more negative slope
and decreased area under the curve compared to WKY rats, the
Lphn3 KO and WT rats did not differ on these measures. These results
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FIGURE 1

Percent choice for the larger reward during acquisition (top) and maintenance responding (bottom) for the spontaneously hypertensive rat (SHR) and
WKY rats with equal trial lengths. The SHRs discounted the larger reward significantly more than the WKY rats at the longest two delays of acquisition and
at all delays during maintenance, *p < 0.05.

were surprising as both SHRs and Lphn3 KO rats have been shown
to be impulsive when the task assessed impulsive action (Sable et al.,
2021).

One possibility is that both the SHRs and Lphn3 KO rats exhibit
impulsive choice, but they present the impairment differently. As
previously mentioned, DD deficits have been previously reported
in SHRs (Fox et al., 2008; Sjoberg et al., 2021). These results and
ours indicate that the SHRs have a substantial problem with delay
of gratification. When the delay between response and reward was
too long, the greater magnitude of the delayed reinforcer was not
enough to entice them to choose that lever. Rather, the delivery of the

reinforcer needed to occur soon after lever selection, so they choose
the smaller, but immediate reward. As mentioned by Sjoberg et al. DD
performance by SHRs strongly supports Dynamic Developmental
Behavioral Theory, which argues the salience of a reinforcer decreases
as it is separated in time from the response made to achieve it
(Sagvolden et al., 2005a; Sjoberg et al., 2021).

Notably, in the version of the task conducted above, a subsequent
trial did not begin until the end of the delay period, regardless of
which lever was selected. In other words, because rats were required
to “wait” for the next trial to start even if they picked the immediate
lever, it is possible the Lphn3 KO rats may have opted to pick the
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FIGURE 2

The slope of the discounting curve (top) was significantly more negative for the spontaneously hypertensive rat (SHR) versus WKY rats, while the area
under the discounting curve (bottom) was significantly less for the SHR versus WKY rats, *p < 0.05. The trial lengths were the same regardless of which
lever was selected.

larger magnitude reward. We decided to investigate this possibility
in Experiment II.

Experiment II

Research that has examined whether consistency in trial length
affects choice of the lever associated with the larger delayed reward
has provided mixed results. For SHRs, the length of the inter-
trial interval (ITI) does not appear to influence choice behavior
within trials (Sjoberg et al., 2021). However, among ADHD children,
when a subsequent trial begins as soon as the reinforcer from
the previous trial is delivered/retrieved, this increase in relative

response rate has been shown to shift an even greater percentage
of responding to the immediate lever, thereby minimizing the
impact of reward magnitude (Marco et al., 2009). This finding
has also been shown to occur in research animals, especially
when the post-reward delay was cued (Pearson et al., 2010).
In Experiment II, we incorporated a 1-s ITI immediately after
delivery of either the immediate (1 pellet) or delayed (3 pellet)
reinforcer. Because previous research has already shown the length
of the ITI does not appear to influence choice behavior in SHRs
(Sjoberg et al., 2021), we only tested Lphn3 KO and WT rats in
Experiment II. We predicted that the Lphn3 KO rats would choose
the small, immediate reward more often that the larger, delayed
reward relative to the WT rats, thereby demonstrating an increase
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FIGURE 3

Percent choice for the larger reward during acquisition (top) and maintenance responding (bottom) for the Lphn3−/− (knockout) and Lphn3+/+

(wildtype) rats with equal trial lengths. Genotype had no effect of on delay-discounting (DD) performance.

in impulsive choice associated with an increase in the rate of
reinforcement.

Experiment II method

Subjects

The subjects consisted of an additional 22 Lphn3 KO rats (11
male, 11 female) and 25 Lphn3 WT rats (12 male, 13 female) from
the Cincinnati children’s transgenic animal and genome editing core

that were generated using CRISPR/Cas9 technology as in Experiment
I. They were shipped in three cohorts and housing feeding were
identical to that employed in Experiment I.

Apparatus

Behavioral testing was performed in the same automated, rat
operant chambers (Med Associates Inc., St. Albans, VT, USA) used
in Experiment I. Likewise, white noise was again presented during
testing to minimize disruption from outside sounds and Med-PC V
software was used to conduct the testing programs and record data.
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FIGURE 4

The slope of the discounting curve (top) and area under the discounting curve (bottom) did not differ between the Lphn3−/− (knockout) and Lphn3+/+

(wildtype) rats with equal trial lengths.

Procedure

Autoshaping and fixed ratio training
The autoshaping and fixed ratio training programs were identical

to those used in Experiment I.

Delay-discounting
The DD task used in Experiment II was the same as that used

during Experiment I (delays = 0, 4, 8, 12, or 16 s; 10 trials/delay,
50 trials/session), with the exception that a 1 s ITI occurred after
delivery of the food reinforcer but before the next trial began

regardless of which lever was pressed. Thus, a tendency to respond
on the immediate lever resulted in a shorter session duration. Rats
completed 25 sessions.

Design and analyses

As in Experiment I, the percent choice for the larger, delayed
reward for the 25 sessions was averaged across blocks of 5 days
to yield five, 5-day testing blocks but only data from the first (i.e.,
acquisition phase) and last testing block (i.e., maintenance phase)
were included. The analysis of the percent choice for the larger
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FIGURE 5

Percent choice for the larger reward during acquisition (top) and maintenance responding (bottom) for the Lphn3−/− (knockout) and Lphn3+/+

(wildtype) rats with unequal trial lengths. Genotype had no effect of on delay-discounting (DD) performance.

reward was a 2 (genotype) × 2 (sex) × 2 (phase) × 5 (delay)
mixed ANOVA, while slope and AOC were calculated as was done in
Experiment I and analyzed separately via 2 (genotype) × 2 (sex) × 2
(phase) mixed ANOVAs.

Experiment II results

The inclusion criterion was the same as for Experiment 1. Data
from 2 male Lphn3 KO rats and 3 Lphn3 WT rats (2 male, 1 female)

were not included as they did not demonstrate 60% choice for the
larger reward at the 0 s delay during the final maintenance phase.
Thus, 20 Lphn3 KOs (9 male, 11 female) and 22 Lphn3 WTs (10
male, 12 female) were included in the final analyses. Greenhouse–
Geisser corrections were again used for sphericity violations. Analysis
of the percent choice revealed that discounting was evident, as the
percent choice for the larger reward decreased overall with increasing
delay [F(2.034, 77.301) = 337.275, p < 0.001]. However, analysis of
the percent choice for the larger reward did not reveal a significant
main effect of genotype [F(1, 38) = 1.462, p = 0.234] or sex [F(1,
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FIGURE 6

The slope of the discounting curve (top) and area under the discounting curve (bottom) did not differ between the Lphn3−/− (knockout) and Lphn3+/+

(wildtype) rats when trial lengths were not equal.

38) = 0.007, p = 0.934], nor any significant genotype- or sex-related
interactions (see Figure 5). The analyses of the slope and area under
the discounting curve also did not reveal significant main effects
of genotype [F(1, 38) = 0.162, p = 0.690 and F(1, 38) = 2.070,
p = 0.158, respectively], nor any other significant genotype- or sex-
related differences (see Figure 6).

Experiment II discussion

The results of Experiment II indicated that removing the post-
reward buffer following selection of the lever associated with a

smaller, but immediate reward did not differentially affect DD
behavior for either genotype. Thus, the rate of reinforcement did not
appear to affect impulsive choice in the KO rats. These results are
in line with previous research demonstrating that the length of the
ITI had little influence on impulsive choice in SHRs (Sjoberg et al.,
2021).

Overall conclusion

Overall, SHRs had increased impulsive choice due to their
inability to delay gratification after a response to obtain a reinforcer
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had been elicited. Lphn3 KO rats, on the other hand, did not
appear to exhibit impulsive choice, even when the option to
increase the rate of reinforcer delivery was available. Thus, while
both ADHD models exhibit hyperactivity (Russell, 2011; Sagvolden
and Johansen, 2012; Regan et al., 2019) and impulsive action
deficits (Sable et al., 2021; González-Barriga and Orduña, 2022),
impulsive choice appeared to be differentially affected between
the models. Notably, our previous research found that while
both models exhibited a deficit in impulsive action, the degree
of impairment was much more profound in the SHRs than
in the Lphn3 KO rats (Sable et al., 2021). Thus, the overall
degree of impulsivity appears to be much more substantial in the
SHRs.

Dopamine regulation within the PFC is critically involved in
impulsive behavior (Logue and Gould, 2014), and medications
targeting the dopamine system are routinely prescribed to ADHD
patients in an attempt to reduce impulsive behavior (Arnsten and
Pliszka, 2011; Sharma and Couture, 2014). However, as previously
mentioned impulsivity is a multi-faceted construct and behavioral
deficits on tasks of impulsive choice do not always coincide with
deficits on tasks of impulsive action (or vice-versa) in rats or in
humans (Solanto et al., 2001; Broos et al., 2012; van den Bos et al.,
2014).

Notably, there appears to be some degree of regional specificity
that mediates impulsive action versus impulsive choice. While
this is not yet entirely understood, in human subjects, gray
matter volume in the right frontal pole (RFP) and left middle
frontal gyrus (LMFG) were predictive of DD performance,
while gray matter volume in the right inferior frontal gyrus
(RIFG), supplementary motor area (SMA), and anterior cingulate
cortex (ACC) predicted performance on an impulsive action
task (Wang et al., 2016). Preclinical research also suggests the
RIFG mediates impulsive action along with the ventrolateral
prefrontal cortex (VLPFC), while the dorsal lateral prefrontal
cortex (DLPFC) and is heavily involved in mediating impulsive
choice (see Kim and Lee, 2011; Bari and Robbins, 2013 for
reviews).

Our observed differences among the ADHD animal models has
the potential to promote a better understanding of the underlying
mechanism(s) responsible for the differential behavioral effects
observed. The discrepant results between the SHRs and Lphn3
KO rats presented above suggest more widespread disruption
of frontal cortical regions involved in both impulsive action
and impulsive choice in SHRs, with disruption limited only
to those regions involved in impulsive action in the Lphn3
KO rats. Ongoing research in our lab is currently investigating
this possibility. These findings will be very important as they
will have the potential to inform medication development,
leading to a more targeted approaches to curb the facets of
impulsivity that an ADHD individual may present (i.e., impulsive
actions and/or impulsive choice), while sparing those that are
not affected. This would undoubtedly reduce side effects and
increase compliance.
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Introduction: Because of the steady increase in the use of synthetic opioids in

women of childbearing age, a large number of children are at risk of exposure

to these drugs prenatally or postnatally through breast milk. While there is older

literature looking at the effects of morphine and heroin, there are relatively

few studies looking at the long-term effects of high-potency synthetic opioid

compounds like fentanyl. Thus, in the present study, we assessed whether brief

exposure to fentanyl in male and female rat pups during a period roughly equivalent

to the third trimester of CNS development altered adolescent oral fentanyl self-

administration and opioid-mediated thermal antinociception.

Methods: We treated the rats with fentanyl (0, 10, or 100 µg/kg sc) from postnatal day

(PD) 4 to PD 9. The fentanyl was administered daily in two injections given 6 h apart.

After the last injection on PD 9, the rat pups were left alone until either PD 40 where

they began fentanyl self-administration training or PD 60 where they were tested

for morphine- (0, 1.25, 2.5, 5, or 10 mg/kg) or U50,488- (0, 2.5, 5, 10, or 20 mg/kg)

induced thermal antinociception.

Results: In the self-administration study, we found that female rats had more active

nose pokes than male rats when receiving a fentanyl reward but not sucrose

alone solution. Early neonatal fentanyl exposure did not significantly alter fentanyl

intake or nose-poke response. In contrast, early fentanyl exposure did alter thermal

antinociception in both male and female rats. Specifically, fentanyl (10 µg/kg) pre-

treatment increased baseline paw-lick latencies, and the higher dose of fentanyl

(100 µg/kg) reduced morphine-induced paw-lick latencies. Fentanyl pre-treatment

did not alter U50,488-mediated thermal antinociception.

Conclusions: Although our exposure model is not reflective of typical human

fentanyl use during pregnancy, our study does illustrate that even brief exposure

to fentanyl during early development can have long-lasting effects on mu-

opioid-mediated behavior. Moreover, our data suggest that females may be more

susceptible to fentanyl abuse than males.

KEYWORDS

fentanyl, self-administration, antinociception, opioid, ontogeny

Introduction

Opioid use has reached epidemic levels in the United States. Over a 20-year period
(1999–2011) in the United States, the annual number of opioid painkiller prescriptions
rose precipitously, and in 2009, drug overdose deaths exceeded those from car accidents
(Gardner et al., 2022). There has been a 200% increase in opioid overdose (poisoning) deaths
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since 2000, and 61% of all drug overdose deaths now involve opioids
(Rudd et al., 2016). Drug overdose rates increased the most for
persons aged 25–34 years, but there has been a sharp increase in
the number of opioid overdoses in adolescents and young adults
(15–24 years) in recent years. The synthetic opioid fentanyl has
been particularly problematic with an 88% increase in fentanyl
and fentanyl analog overdose deaths each year from 2013 to 2016
(Spencer et al., 2019; Han et al., 2022; Skolnick, 2022).

An unfortunate consequence of this crisis has been the increase
in opioid use in women of childbearing age (Krans and Patrick,
2016; Hurley et al., 2020). Between 2008 and 2012, insurance records
showed that roughly 30% of women in the childbearing age group
filled a prescription for an opioid and the majority of people seeking
treatment for opioid addiction are women (Yazdy et al., 2015; Krans
and Patrick, 2016). Moreover, a review of over one million Medicaid
enrollees showed that 21.6% of pregnant women had an opioid
prescription filled, and 2.5% received prescriptions for greater than
30 days for chronic pain (Yazdy et al., 2015; Krans and Patrick, 2016).

Clinical studies have demonstrated that perinatal exposure to
opioids can lead to long-lasting consequences such as cognitive
deficits and sensorimotor impairments (Mactier and Hamilton,
2020). Recent imaging studies have also reported low-term changes
in neural functioning after opioid exposure (Radhakrishnan et al.,
2022; Vishnubhotla et al., 2022). These studies, however, were
primarily focused on heroin and methadone and may not represent
the effects of high-potency synthetic opioids like fentanyl. The
available preclinical investigations of prenatal and postnatal exposure
to fentanyl, however, suggest even brief can have seemingly
permanent effects on mu-opioid functioning, affective behavior, and
sensorimotor systems (Thornton and Smith, 1998; Medeiros et al.,
2011; Alipio et al., 2021a,b; Rêgo et al., 2022).

The goal of the current investigation was to extend our
understanding of fentanyl exposure during pregnancy and early
development by assessing the effect of fentanyl administration from
postnatal day (PD) 4 to PD 9 in late adolescent and young adult
rats. Specifically, we examined morphine and U50, 488 thermal
antinociception and oral fentanyl self-administration in both male
and female rats. The fentanyl exposure time frame was chosen as it is
roughly analogous to the last trimester of human pregnancy in terms
of brain development (Schmitt and Barrow, 2022). While the third
trimester only is not the most common exposure period for human
women, it does represent a significant percentage of women who are
prescribed opioids for pain during pregnancy (Cook, 2022).

Materials and methods

Animals

Male and female rats (N = 488) of Sprague–Dawley descent,
born and raised at CSUSB, were used in both experiments. The
day of parturition was considered PD 0, and litters were culled
to a maximum of 10 rat pups at 3 days of age. Pups were kept
with the dam until PD 23, at which time they were weaned and
placed in group cages with same-sex litter mates. Only one rat from
each litter was placed into a particular group. The colony room
was maintained at 22–24◦C and kept under a 12-h light/dark cycle.
This study was approved by the Institutional Animal Care and Use
Committee at California State University, San Bernardino. All studies

were carried out in accordance with the “Guide for the Care and
Use of Mammals in Neuroscience and Behavioral Research” (National
Research Council, 2010).

Drugs

Fentanyl citrate salt, morphine sulfate salt, and (±)-trans-
U50-488 methanesulfonate salt were purchased from Sigma-Aldrich.
Fentanyl used for the neonatal pre-exposure was mixed in saline,
given at a volume of 2.5 ml/kg, and injected subcutaneously
(sc). Oral fentanyl was dissolved in distilled water or a sucrose
solution. Morphine and U50-488 were mixed in saline and injected
subcutaneously (sc) at a volume of 1 ml/kg. Drug doses were
expressed in the forms listed above.

In vivo drug treatment and group
assignment

On postnatal day (PD) 2, rats were sexed and assigned to fentanyl
pre-treatment groups. In all cases, an equal number of male and
female rat pups were allocated to each pre-treatment group. Drug
assignments were coded, so experimenters were unaware of the drug
dose administered. Starting at PD 4, male and female rats were
weighed and injected with fentanyl (0, 10, or 100 µg/kg, sc). Fentanyl
was given in two injections 6 h apart for 6 consecutive days.

Hot plate test

On PD 60, rats were habituated to the hot plate apparatus (Model
38D, Hot plate analgesia meter, IITC Inc., Woodland Hills, CA, USA).
Habituation consisted of placing the rat on the unheated hot plate
for 2 min. On the next day, rats were placed on the heated hot plate
(54.0◦C, ± 0.1◦C), and latency to lick a hind paw or attempt to jump
out of the chamber was measured. This procedure was repeated three
times, with a 20-min interval between each trial. After these baseline
trials, rats were injected with morphine (0, 2.5, 5, or 10 mg/kg, sc) or
U50, 488 (0, 5, 10, and 20 mg/kg, sc) and returned to their home cage
for 20 min. Rats were then tested three additional times with a 20-
min interval between each trial. If no response was made, rats were
removed from the hotplate for 30 s to avoid tissue damage.

Oral sucrose and fentanyl administration

Nose-poke training
Starting on PD 40, rats were pre-exposed to a 2% sucrose solution

for 2 h in their home cage. Rats were then water deprived for
16 h. On the following day (i.e., PD 38), rats were placed in a self-
administration chamber. Rats were allowed to nose poke for access to
a 1% sucrose (w/v) solution on an FR1 schedule for 60 min each day
until a criterion of >10 reinforces for 2 consecutive days was met.
Nose-poke responses in the active hole resulted in the simultaneous
presentation of a stimulus light and a sound cue (500 Hz, 10 dB
above background) followed by a 30 s presentation of a liquid dropper
that delivered 0.1 ml of the sucrose solution for 30 s. On nose-poke
training days, water availability was restricted to 2 h day to accelerate
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FIGURE 1

Mean (±SEM) body weight of male and female rats (n = 8–9/sex)
treated with saline or fentanyl (10 or 100 µg/kg) from PD 4 to PD 9.
*Significant difference between vehicle- and 100 µg/kg
fentanyl-treated rats of the same sex.

the acquisition of operant responding. Rats returned to an ad-lib
water schedule once the nose-poke criterion was met. Rats that fail
to meet the training criteria were excluded from the study.

Self-administration
Once the criterion was met, fentanyl fade in and sucrose fade

out began. Each nose-poke response in the active hole resulted in
the simultaneous presentation of a stimulus light and a sound cue
(500 Hz, 10 dB above background) and a 30 s presentation of a liquid
dropper that delivered 0.1 ml of liquid solution. After each liquid
dropper presentation, the active nose-poke hole became inactive for
20 s, which was indicated by the absence of the house light. Sessions
1–3 presented liquid solutions on a fixed ratio one (FR1) schedule
where access to the liquid dropper occurred after every nose poke
and sessions 4–5 presented liquid solutions on an FR2 schedule (i.e.,
two nose pokes were required before the presentation of the liquid
dropper). Session 1 served as a baseline, where 1% sucrose solution
was presented alone. In session 2, fentanyl (1 mg/L) was introduced
into the sucrose solution. This dose of fentanyl is lower than that has
been used in past studies (Shaham et al., 1993; Thornton et al., 2000)
but was chosen to determine whether our early fentanyl exposure
would increase the reinforcing value of fentanyl in adolescence. In
session 3, sucrose fade out began with 0.5% sucrose presented in the
liquid solution. In session 4, 0.25% sucrose was presented in the liquid
solution. In session 5, no sucrose was present in the liquid solution.
Sessions 1–4 were repeated until the criterion of >10 reinforces for 2
consecutive days is met. Session 5 was repeated for 7 days.

Statistical analysis

Body weight during the pre-treatment period was analyzed
by 2 × 3 × 6 (sex × pre-treatment condition × pre-treatment

day) repeated measures ANOVA. Adult weight was analyzed by
2 × 3 (sex × pre-treatment condition) ANOVA. The three baseline
paw-lick trials were averaged and analyzed by 2 × 3 (sex × pre-
treatment condition) ANOVAs. Data from the postdrug paw-lick
assessment were also averaged over the three test trials but were
analyzed by Kruskal–Wallis and Mann–Whitney tests because these
data did not meet the normality of distribution or homogeneity of
variance assumptions. The total nose pokes and days to criterion
were analyzed for sucrose training using 2 × 3 (sex × pre-
treatment condition) ANOVAs. Total nose pokes and days to
criterion for acquisition training phases 1–4 were analyzed using
2 × 3 × 4 (sex × pre-treatment condition × training phase)
repeated measures ANOVAs. Total nose pokes for the seven-phase
5 testing days (fentanyl-only sessions) were analyzed using 2 × 3 × 7
(sex × pre-treatment condition × day) repeated measures ANOVAs.
Significant higher-order interactions were analyzed using lower-
order ANOVAs. Post hoc analysis of data was made using Tukey’s
tests (p < 0.05). Effect sizes were reported as partial eta squared
(ηp

2) and categorized based on the following scale: ηp
2
≤ 0.03 (small

effect), ηp
2 > 0.03 and ≤0.10 (medium effect), and ηp

2 > 0.10
(large effect) (Labots et al., 2016).

Results

Body weight

During the injection period (i.e., PD 4–9), male rat pups
were slightly larger than female rat pups (Figure 1) [sex main
effect, F(1,407) = 8.828, p = 0.003, ηp

2 = 0.021]. Weight increased
progressively for all pups on the injection days, and pre-treatment
with fentanyl (100 µg/kg) decreased weight in comparison with
saline controls for both males and females on the last pre-
treatment day (PD 9) [day main effect, F(2,1713) = 10,486.243,
p < 0.001, ηp

2 = 0.963; day × pre-treatment condition interaction,
F(4,1713) = 6.99, p< 0.001, ηp

2 = 0.064]. Weight for males and females
did not differ from controls at the time of testing (data not shown).

Morphine- and U50-488-induced thermal
antinociception

Early neonatal treatment with fentanyl (10 µg/kg) altered the
baseline responses on the hotplate for both male and female rats on
PD 60 (Figure 2) [fentanyl pre-treatment main effect, F(2,256) = 3.388,
p < 0.035; ηp

2 = 0.026; Tukey’s test, p < 0.05]. As expected,
treatment with morphine (2.5, 5.0, and 10 mg/kg) increased paw-
lick latencies regardless of the pre-treatment group (Figure 3)
[morphine post-treatment, H(4) = 96.156, p < 0.001; ηp

2 = 0.368;
pairwise comparison with Bonferroni correction, p < 0.05]. The
antinociceptive effects of morphine were altered by the early fentanyl
treatment (Figure 3). Specifically, rats pre-treated with fentanyl
(10 µg/kg) and tested with 5 mg/kg of morphine had greater paw-
lick latencies than saline-treated rats, [5 mg/kg morphine × fentanyl
groups, H(2) = 8.583, p < 0.014, ηp

2 = 0.170, Mann–Whitney U,
p = 0.033]. In addition, rats treated with 100 µg fentanyl and tested
with 10 mg/kg morphine had shorter paw-lick latencies than saline
controls [10 mg/kg morphine × fentanyl groups, H(2) = 6.372,
p < 0.041, ηp

2 = 0.132; Mann–Whitney U, p = 0.0235]. Sex did
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FIGURE 2

Mean (+SE) baseline paw-lick latencies of PD 60 male and female rats (n = 8–9/sex). Rats were pre-treated with fentanyl (10 or 100 µg/kg) or saline from
PD 4 to PD 9. *Significantly different from rats in the saline-pre-treatment group.

not alter morphine-induced thermal antinociception. U50-488 (5, 10,
and 20 mg/kg) also increased paw-lick latencies (Figure 4) [U50,
488 post-treatment, H(3) = 48.371, p < 0.001; ηp

2 = 0.281; pairwise
comparison with Bonferroni correction, p < 0.05], but the effect
of the kappa agonist was not altered by fentanyl pre-treatment
(Figure 4).

Oral-fentanyl self-administration

Sucrose training
Active nose pokes, inactive nose pokes, sucrose solution

consumed, or days to criterion were not altered by early fentanyl
treatment. Only three rats failed to reach our criterion on the
sucrose training procedure. Male rats, however, did have greater
numbers of active and inactive lever presses [sex main effect
F(1,54) = 5.779, p = 0.02, ηp

2 = 0.097; F(1,54) = 4.343, p = 0.042,
ηp

2 = 0.074, respectively].

Acquisition of oral-fentanyl
self-administration—Training phase

Pre-treatment with fentanyl did not alter active nose pokes,
inactive nose pokes, or days to criterion (data not shown). However,
female rats had a slightly greater number of active nose pokes during
the stimulus presentation as compared to male rats (Figure 5) [sex
main effects F(1,39) = 5.072, p = 0.030, ηp

2 = 0.079]. Days to criterion
were not affected by sex. In total, 11 rats (seven male rats and four
female rats) failed to complete the training protocol.

Acquisition of oral-fentanyl
self-administration—Test phase

Similar to the training phase, fentanyl pre-treatment did not alter
active or inactive nose pokes during the 7-day test days (see Figure 6).

Female rats, however, did have a greater number of active nose pokes,
active nose pokes during the stimulus presentation, and inactive
nose pokes [sex main effect F(1,40) = 4.295, p = 045, ηp

2 = 0.202;
F(1,40) = 6.253, p = 0.017, ηp

2 = 0.266; F(1,40) = 5.746, p = 0.021,
ηp

2 = 0.226, respectively].

Discussion

In the present study, brief neonatal fentanyl exposure had long-
term effects on opioid-mediated behavior in adolescent and young
adult rats. Specifically, we found that fentanyl administered from
PD 4 to PD 9 caused long-term changes in morphine-induced
thermal antinociception of young adult rats. While we failed to
find other studies that used the same injection period as in our
study, the change in morphine thermal antinociception we reported
is consistent with another study that did fentanyl infusions from
PD 14 to PD 17 (Thornton and Smith, 1998). Moreover, these
results are in agreement with prenatal opioid exposure investigations
showing both an increase and decrease in response to morphine
in adult offspring depending on injection interval (O’Callaghan
and Holtzman, 1976, 1977; Kirby et al., 1982). Curiously, early
fentanyl exposure did not alter nose-poke response to oral fentanyl
in late adolescence.

The changes we found in morphine thermal antinociception
were dose-dependent because exposure to a low dose (10 µg/kg)
resulted in an augmented response to 5 mg/kg of morphine while
pre-treatment with (100 µg/kg) caused an attenuated response
to 10 mg/kg morphine. Decreased morphine sensitivity has been
previously reported after early postnatal fentanyl exposure (Thornton
and Smith, 1998) and is often found after prenatal or early postnatal
exposure to other mu-opioids (O’Callaghan and Holtzman, 1976;
Timár et al., 2010). In these studies, the decrease in morphine
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FIGURE 3

Mean (+SE) paw-lick latencies of PD 60 male and female rats (n = 8–9/sex). Rats were pre-treated with fentanyl (10 or 100 µg/kg) or saline from PD 4 to
PD 9 and injected with morphine (0, 1.25, 2.5, 5.0, or 10 mg/kg, sc) on PD 60. *Significantly different from 0 mg/kg morphine. #Significantly different
from saline-pre-treated rats in the same morphine drug condition.

sensitivity is seen after an early opioid exposure protocol that induces
opioid dependence (Thornton and Smith, 1998); while the current
study did not directly assess fentanyl dependence, our drug protocol

(two 50 µg/kg injections; 6 h apart for 6 days) is similar to other
protocols that have induced tolerance in young rats (Laferrière et al.,
2005). The decrease in responsivity to morphine is likely due to
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FIGURE 4

Mean (+SE) baseline paw-lick latencies of PD 60 male and female rats (n = 7–8/sex). Rats were pre-treated with fentanyl (10 or 100 µg/kg) or saline from
PD 4 to PD 9 and injected with U50,488 (0, 5.0, 10, or 20 mg/kg, sc) on PD 60. *Significantly different from 0 mg/kg morphine.

long-lasting changes in mu-opioid receptors (i.e., receptor density,
affinity, or G-protein coupling) as prior studies have demonstrated
that morphine pharmacokinetics are not changed after early opioid
exposure (O’Callaghan and Holtzman, 1976). Moreover, the current
study showed that kappa receptors were unchanged as U50, 488
thermal antinociception was not affected by fentanyl pre-treatment.

The increased analgesic response to morphine after pre-exposure
to the low dose of fentanyl was not anticipated based on most of
the literature on early life exposure to mu-opioid agonists because
these studies showed a decreased response to later opiate exposure
or no change (O’Callaghan and Holtzman, 1976; Thornton and
Smith, 1998; Timár et al., 2010). There was one published report
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FIGURE 5

Mean (±SEM) active nose pokes, active nose pokes during the
stimulus presentation, and inactive nose pokes in late adolescent male
and female rats (n = 23–27/sex) during sucrose training and
acquisition training for sucrose/fentanyl-rewarded nose pokes. Rats
were pre-treated with fentanyl (10 or 100 µg/kg) or saline from PD 4
to PD 9 and started sucrose training on PD 40. Rats first were trained
to nose poke for a sucrose solution and then underwent a four-phase
sucrose fade out/fentanyl fade in procedure. ST, sucrose training.

where the morphine had a greater antinociceptive response after
early fentanyl treatment, but that report used a protocol that should
have induced tolerance and the nociceptive task (tail flick) measured
spinal mediated thermal antinociception (Kirby et al., 1982). While
again we did not assess the development of physical dependence
on fentanyl, our protocol (two 5 µg/kg injections; 6 h apart for
6 days) was probably not sufficient based on other published reports.
It is possible that instead of causing long-term desensitization of mu
receptors, the low-dose fentanyl treatment upregulated or increased
receptor sensitivity. This is of course speculative but not improbable

and may be reflective of changes to mu receptor/G-protein coupling
or intrinsic activity (Windh et al., 1995; Thornton et al., 1998).

Based on the thermal antinociception study, we expected that our
fentanyl pre-treatment would alter oral fentanyl self-administration.
However, we found almost no effect of early postnatal fentanyl pre-
treatment on fentanyl-reinforced nose pokes. The one exception
to this was a slight increase in inactive nose pokes in female rats
treated with the low dose of fentanyl (10 µg/kg/day). Our failure
to find enhanced fentanyl reward, however was consistent with
another early fentanyl pre-treatment study that found that rat pups
made dependent on fentanyl did not respond differently than saline-
treated rats for oral fentanyl (Thornton et al., 2000) and a prenatal
morphine paper where morphine- and saline-exposed rats did not
differ on morphine-conditioned place preference task or morphine
self-administration [Riley and Vathy, 2006; but see Timár et al.
(2010)]. It is not known why morphine thermal antinociception was
altered but fentanyl-rewarded responding was not, but it is possible
that the difference is a result of morphine being a less efficacious
agonist as compared to fentanyl (Grecksch et al., 2011; Cornelissen
et al., 2018). It is possible that the desensitization caused by fentanyl
was sufficient to blunt the morphine response but not the response
to fentanyl. Alternatively, it is possible that the subset of receptors
responsible for the antinociceptive effects was affected more by the
early fentanyl treatment than the receptors necessary for reward. This
explanation would agree with a study showing that early morphine
treatment had opposite effects on morphine thermal antinociception
and morphine-conditioned place preference (Timár et al., 2010).
Finally, it is also possible that our procedure was not optimal for
assessing differences in the rewarding properties of fentanyl. For
example, we used a dose of fentanyl that was below the concentration
typically used for self-administration, and it is conceivable that a
higher concentration may have resulted in a more marked difference
in response (Shaham et al., 1993; Thornton et al., 2000). In addition,
while oral operant self-administration has proven to be effective at
predicting the reinforcing value of a drug [see Wilson et al. (1997)], a
two-bottle choice procedure may have given a better measure of drug
preference.

Unlike the fentanyl pre-treatment, sex did alter nose-poke
behavior on the oral fentanyl self-administration task because female
rats consistently responded at higher rates for fentanyl. This finding
is in agreement with other preclinical studies showing that female
rats had a greater intake of intravenous fentanyl (Malone et al., 2021;
Towers et al., 2022), heroin (George et al., 2021), and oral oxycodone
(Fulenwider et al., 2020). Clinically, the role of sex in fentanyl and
other opioid use is more complicated. Men have higher rates of
opioid use disorder and opioid-related deaths as compared to women,
but women show a stronger craving for drug cues, develop opioid
use disorder faster than males, and are more likely to be prescribed
opioid analgesics for pain management than men (Back et al., 2011;
Wightman et al., 2021; Martin et al., 2022; Romanescu et al., 2022).

In summary, we found that exposure to fentanyl during the
early neonatal period has long-lasting consequences on morphine
thermal antinociception but did not enhance the rewarding effects
of fentanyl in late adolescence. While our exposure period modeling
third-trimester exposure only is not typical of human exposure, it
does show even brief exposure to fentanyl can have a major impact
on later functioning. Importantly, our findings also indicate that
adolescent females are more vulnerable to fentanyl use than males.
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FIGURE 6

Mean (±SEM) active nose pokes, active nose pokes during the stimulus presentation, and inactive nose pokes in late adolescent male and female rats
(n = 6–8/sex) during the seven fentanyl-only acquisition test days. Rats were pre-treated with fentanyl (10 or 100 µg/kg) or saline from PD 4 to PD 9 and
started sucrose training on PD 40. After reaching the criterion for sucrose-rewarded nose pokes, rats underwent a four-phase sucrose fade out/fentanyl
fade in procedure and then were assessed for 7 days for fentanyl-only reinforcement.
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Insights into the role of
intracellular calcium signaling in
the neurobiology of
neurodevelopmental disorders
Benjamin Klocke, Kylie Krone, Jason Tornes, Carter Moore,
Hayden Ott and Pothitos M. Pitychoutis*

Department of Biology, University of Dayton, Dayton, OH, United States

Calcium (Ca2+) comprises a critical ionic second messenger in the central nervous

system that is under the control of a wide array of regulatory mechanisms,

including organellar Ca2+ stores, membrane channels and pumps, and intracellular

Ca2+-binding proteins. Not surprisingly, disturbances in Ca2+ homeostasis have

been linked to neurodegenerative disorders, such as Alzheimer’s and Parkinson’s

diseases. However, aberrations in Ca2+ homeostasis have also been implicated in

neuropsychiatric disorders with a strong neurodevelopmental component including

autism spectrum disorder (ASD) attention-deficit hyperactivity disorder (ADHD) and

schizophrenia (SCZ). While plasma membrane Ca2+ channels and synaptic Ca2+-

binding proteins have been extensively studied, increasing evidence suggests a

prominent role for intracellular Ca2+ stores, such as the endoplasmic reticulum (ER),

in aberrant neurodevelopment. In the context of the current mini-review, we discuss

recent findings implicating critical intracellular Ca2+-handling regulators such as the

sarco-ER Ca2+ ATPase 2 (SERCA2), ryanodine receptors (RyRs), inositol triphosphate

receptors (IP3Rs), and parvalbumin (PVALB), in the emergence of ASD, SCZ, and

ADHD.

KEYWORDS

autism, SERCA2, ryanodine receptors, calcium, schizophrenia, attention-deficit hyperactivity
disorder (ADHD), inositol triphosphate receptor (IP3)

1. Introduction

Neurodevelopmental disorders (e.g., autism spectrum disorder; ASD, and attention-deficit
hyperactivity disorder; ADHD) and schizophrenia (SCZ), a neuropsychiatric disorder with
a strong neurodevelopmental component (Birnbaum and Weinberger, 2017; Seidman and
Mirsky, 2017; Rund, 2018), comprise debilitating diseases that are highly variable in their
symptomatology and etiology (McGrath et al., 2008; Christensen et al., 2016; Hansen et al.,
2018; Sayal et al., 2018). These disorders arise due to the complex interplay between genetic risk
factors and early life environmental stressors, including prenatal complications, malnutrition,
hormone imbalance, and exposure to environmental toxins (e.g., neurotoxic metals) (Wetmore
and Garner, 2010; Lord et al., 2018; Li et al., 2019; Ijomone et al., 2020). Recent research
efforts have sought to identify common disrupted molecular mechanisms that may lead to
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abnormal neurodevelopment. One such candidate which has
garnered interest is the disruption of intracellular calcium (Ca2+)
homeostasis.

Intracellular Ca2+ concentration is critical for orchestrating
numerous cellular processes, including signal transduction and
gene expression (Bootman et al., 2001; Naranjo and Mellström,
2012; Bononi et al., 2013; Brini et al., 2014; Britzolaki et al.,
2018). Consequently, Ca2+ mishandling is implicated in the
pathophysiology of neurodegenerative disorders (e.g., Alzheimer’s
and Parkinson’s diseases) (Pchitskaya et al., 2018), while recent
evidence suggests that aberrations in intracellular Ca2+ signaling
may also underlie abnormal neurodevelopment (Pourtavakoli and
Ghafouri-Fard, 2022). Of the major neuronal Ca2+-handling players,
plasma membrane voltage-gated Ca2+ channels (e.g., Cacna1) are
well-reviewed with regards to their role in neurodevelopment
(Breitenkamp et al., 2015; Cupertino et al., 2016; Pourtavakoli
and Ghafouri-Fard, 2022). Readers are referred to recent excellent
reviews discussing the implication of critical plasma membrane
Ca2+ players (e.g., CACNA1) and Ca2+-binding proteins involved
in synaptic release (e.g., Synaptotagmin) in the pathophysiology of
brain disorders (Breitenkamp et al., 2015; Cupertino et al., 2016;
Pourtavakoli and Ghafouri-Fard, 2022). Interestingly, dysfunction of
endoplasmic reticulum (ER) Ca2+ regulators such as the sarco-ER
Ca2+ ATPase 2 (SERCA2), which sequesters cytosolic Ca2+ into the
ER, and the Ca2+-releasing channels inositol triphosphate receptors
(IP3Rs) and ryanodine receptors (RyRs) have recently garnered
interest in the pathophysiology of brain disorders (Britzolaki
et al., 2018, 2020). In the context of the current mini-review, we
discuss recent findings implicating aberrant ER-dependent Ca2+

homeostasis as a convergent pathophysiological mechanism in brain
disorders with a strong neurodevelopmental component.

2. Autism spectrum disorders (ASD)

2.1. Ryanodine receptors (RyRs) and the
fragile X messenger ribonucleoprotein 1
(FMR1)

Autism spectrum disorders is a neurodevelopmental disorder
which comprises a wide array of behavioral symptoms including
impaired sociability and communication skills, repetitive behaviors,
and intellectual disability (Christensen et al., 2016; Lord et al., 2018).
Although no single genetic factor is responsible for ASD, RyRs have
been identified as a potential contributor to ASD pathology. RyRs are
homotetrameric Ca2+-releasing channels expressed on the neuronal
ER membrane; upon opening, the RyRs allow for the flux of Ca2+

ions from the ER stores into the cytosol (Figure 1; Abu-Omar
et al., 2018). Notably, clinical studies suggest that mutations in genes
coding for the different RyRs isoforms could possibly contribute to
the pathophysiology of ASD. A copy number variation study has
revealed a likely pathogenic duplication at 1q43, which encompasses
the RYR2 gene, thus identifying RYR2 as a potential ASD risk gene
(Soueid et al., 2016; Keil et al., 2019). Despite the fact that Ryr3
has been shown to contribute to synaptic plasticity and cognitive
flexibility in mice (Balschun et al., 1999), an earlier clinical study
did not report an association between RYR3 and ASD in a Japanese
patient cohort (Tochigi et al., 2008). However, a more recent targeted
sequencing and integrative analysis study of 3,195 Chinese patients

with neurodevelopmental disorders exposed RYR3 as one of the six
novel candidate genes to preferentially contribute to ASD (Wang T.
et al., 2021).

Preclinical studies have provided intriguing mechanistic
insights into how RyR dysfunction could affect intracellular Ca2+

homeostasis and ASD-relevant phenotypes and endophenotypes in
animal models. Interestingly, mutations in the RYR1 and the fragile
X messenger ribonucleoprotein 1 (FMR1) genes have both been
associated with impaired Ca2+ signaling. Specifically, preclinical
evidence suggests that the human T4826I-RYR1 gain-of-function
mutation and the human CGG-repeat expansion in the FMR1
gene (i.e., FMR1 premutation), are both associated with elevated
intracellular Ca2+ signaling; indeed, the T4826I-RYR1 gain-of-
function mutation has been shown to result in increased intracellular
Ca2+ concentrations in muscle cells (Barrientos et al., 2012), while
murine cortical astrocytes with the FMR1 premutation displayed
enhanced asynchronous Ca2+ oscillations (Chen et al., 2010;
Cao et al., 2013; Robin et al., 2017). Notably, Ca2+ signaling is
critical for ensuring proper dendritic morphology and synaptic
connectivity. Keil et al. (2019) assessed ASD-relevant behavioral and
neurobiological correlates (i.e., dendritic morphology and social
behavior) in adolescent mice with the humanized T4826I-RYR1
gain-of-function mutation and with the FMR1 premutation, as well
as in double mutant (DM) mice (Keil et al., 2019). Interestingly, social
deficits in T4826I male and DM female mice were both accompanied
by abnormal dendritic morphology (Keil et al., 2019). Based on the
authors, the observed changes in dendritic morphology in these mice
could be attributed to altered intracellular Ca2+ dynamics, even
though additional studies are needed to yield more conclusive results
(Keil et al., 2019).

Sethi et al. (2021) conducted a follow-up study to understand the
interaction of Ryr1 and Fmr1 and polychlorinated-biphenyls (PCBs)
exposure in ASD-like behaviors (Sethi et al., 2021). PCBs comprise
environmental contaminants with established neurodevelopmental
consequences that exert their neurotoxic effects by binding to
the RyRs (Pessah et al., 2010). In that study, dams were orally
administered a PCB mixture from 2-weeks prior to mating until
pup weaning (P21). Ultrasonic vocalizations at P7 were diminished
in all three mutant pup genotypes while both male and female
T4826I and DM pups exhibited high spontaneous grooming behavior
(Sethi et al., 2021). Further, studies from the same group found that
PCBs promote synaptogenesis in cultured hippocampal neurons, as
evidenced by increased dendritic spines and miniature excitatory
postsynaptic currents (Lesiak et al., 2014). Importantly, these effects
were found to be RyR-dependent, as treatment with either the RyR
inhibitor FLA365 or RyR siRNA both rescued these effects. Taken
together, these preclinical studies suggest that mutations in Ryr1 and
Fmr1, two genes shown to be involved in neuronal Ca2+ handling,
exert ASD-like behavioral and neuroarchitecture consequences
in mice. Overall, these studies indicate that both genetic and
environmental perturbation of neuronal Ca2+ homeostasis may
contribute to aberrant synaptogenesis, dendritic arborization, and
ultimately ASD-like behaviors.

2.2. Parvalbumin (PVALB)

Parvalbumin (PVALB) is a Ca2+-buffering protein primarily
expressed in the γ-aminobutyric acid (GABA) positive interneurons
of the brain that exhibit rapid burst-firing activity and are heavily
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FIGURE 1

A summary of the proteins discussed herein and their primary role in regulating intracellular Ca2+ homeostasis. Proteins mediating ER Ca2+ efflux
include ryanodine receptors (RyRs) and inositol triphosphate receptors (IP3Rs), while cytosolic Ca2+ is handled by the sarco-endoplasmic reticulum Ca2+

ATPase 2 (SERCA2), which is negatively regulated by neuronatin (Nnat). Parvalbumin (Pvalb) regulates cytosolic Ca2+ buffering via directly binding Ca2+

ions. Polychlorinated biphenyls (PCBs) target RyRs to exert their effects on Ca2+ homeostasis. IP3Rs associate with mitochondrial voltage-dependent
anion channels (VDAC) in the mitochondrial-associated membranes (MAMs), and are regulated in part by disrupted in schizophrenia 1 protein (DISC-1).

dependent on intracellular Ca2+-handling (Ruden et al., 2021).
While dysfunction of PVALB+ neurons is well-known to contribute
to aberrant neurodevelopmental processes and ASD, the role of
PVALB in maintaining the integrity of intracellular Ca2+ signaling
pathways and its potential contribution to ASD has received less
attention (Ruden et al., 2021). Interestingly, Pvalb−/− mice are
known to exhibit an ASD-like behavioral phenotype (Wöhr et al.,
2015). Recently, Janickova et al. (2020) explored the role of PVALB
in regulating neuron morphology and dendritic arborization by
utilizing a Pvalb−/− mouse strain in which EGFP expression was
under the control of the Pvalb driver that allowed for visualization
of PVALB+ neurons even in the absence of functional Pvalb
expression (Janickova and Schwaller, 2020; Janickova et al., 2020).
Interestingly, loss of PVALB function resulted in increased cell soma
and mitochondrial size primarily in regions rich in PVALB+ neurons,
such as the thalamic reticular nucleus (TRN), the molecular layer
interneurons (MLI) of the cerebellum, the prefrontal cortex, and
the striatum (Janickova and Schwaller, 2020; Janickova et al., 2020).
Furthermore, loss of PVALB function was associated with dendritic
hypertrophy in the dentate gyrus, the striatum, and the MLI, as well as
by a shift of mitochondria from the central compartment of the cell to
the subplasmalemmal region (Janickova and Schwaller, 2020). Taken
together, these studies suggest that the impaired Ca2+ buffering
brought about by the absence of PVALB may result in a compensatory
proliferation and subplasmalemmal relocation of mitochondria to
maintain the rapid Ca2+ dynamics these neurons rely on (Janickova
and Schwaller, 2020; Ruden et al., 2021). Ultimately, this may result
in enhanced dendritic arborization and oxidative stress. Although
further studies are imperative, these data provide valuable insights
into how PVALB-mediated Ca2+ dysfunction may induce ASD-
relevant neurobiological correlates.

2.3. Inositol triphosphate receptors (IP3R)

G protein-coupled receptor (GPCR)-mediated IP3R Ca+2

signaling pathways comprise critical components of the intracellular
Ca+2 handling machinery with potential implications in ASD
(Berridge, 2009; Taylor and Tovey, 2010). For instance, the IP3R2
has been shown to affected by de novo copy number variants in
ASD patient cohorts, while recently Ip3R2−/− mutant mice and
astrocyte-specific Ip3R2 conditional knockout mice display ASD-like
behaviors (Gilman et al., 2011; Wang Q. et al., 2021). Interestingly,
ex vivo studies in human fibroblasts derived from patients with rare,
monogenic forms of ASD (i.e., fragile X syndrome; FXS and tuberous
sclerosis; TS) showed that ATP-evoked GPCR-mediated Ca2+ release
from the IP3Rs was diminished in ASD fibroblasts (Schmunk et al.,
2015). In a follow-up study, Schmunk et al. (2017) extended their
findings by using fibroblasts from patients with sporadic ASD, as
well as two additional monogenic forms of ASD (i.e., Prader–Willi
syndrome and Rett syndrome), and observed a similar impaired
IP3R-mediated Ca2+ signaling. Taken together, these studies suggest
that depressed Ca2+ release through IP3R signaling may disrupt
neurodevelopment. To our knowledge these studies have not been
replicated in neural cells or in vivo models, but provide mechanistic
insights into the putative implication of IP3Rs in the neurobiology of
ASD.

2.4. Neuronatin (NNAT) and other genes

Neuronatin (NNAT) is a developmentally regulated ER resident
protein and negative regulator of SERCA that is expressed in
the brain’s PVALB + GABAergic neurons; NNAT has also been
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implicated in abnormal neurodevelopment, including ASD and
Angelman Syndrome (AS) (Pitale et al., 2017; Vatsa et al., 2019).
The miR-708, an NNAT downregulator, has been involved in the
atypical Ca2+ signaling processes observed in the maternal-ubiquitin
protein ligase E3A (Ube3a) deficient mouse model for AS (Vatsa et al.,
2019). UBE3A plays a role in the proteasome-mediated degradation
of proteins in neurons, and has thus been implicated in ASD and
AS (Glessner et al., 2009; Williams et al., 2010; Yi et al., 2015;
Xu et al., 2018; Lopez et al., 2019). Recently, Vatsa et al. (2019)
identified miR-708 to be significantly downregulated in the cortex
of maternal-Ube3a-deficient AS mice and showed that miR-708
regulates intracellular Ca2+ homeostasis by targeting NNAT (Vatsa
et al., 2019). Taken together, these findings suggest that NNAT/miR-
708-mediated aberrations in intracellular Ca2+ signaling may be
involved in ASD/AS pathogenesis.

Interestingly, targeted sequencing and integrative analysis of
3,195 Chinese probands with several neurodevelopmental disorders
exposed novel candidate genes involved in ASD, including three
with relevance to Ca2+ homeostasis, namely: RYR3 [discussed in the
Section “2.1. Ryanodine receptors (RyRs) and the fragile X messenger
ribonucleoprotein 1 (FMR1)”], ubiquitin protein ligase E3 (UBR3),
and filamin A (FLNA) (Wang T. et al., 2021). UBR3 inhibits the
function of alpha 1C subunit of L-type voltage-dependent Ca2+

channel (Cav1.2) via the ubiquitin-proteasome protein degradation
pathway and has been identified as a modulator of Ca2+ -induced
Ca2+ release (CIRC) (Ma et al., 2020). FLNA is an actin-binding
protein which regulates cytoskeletal remodeling and is regulated by
Ca2+ and calmodulin, and has been shown to interact with FMR1
in long term memory processes in Drosophila (Nakamura et al.,
2005; Bolduc et al., 2010; Rosa et al., 2019). Overall, these findings
further support a role for intracellular Ca2+ homeostasis in ASD
pathogenesis, although further research is considered imperative to
confirm the contribution of these genes in neurodevelopment.

2.5. Ca2+ signaling in astrocytes

It is well established that Ca2+ signaling is also prevalent
in astrocytes; while astrocytic dysfunction has been implicated in
the pathophysiology of ASD, the precise mechanisms by which
astrocytes contribute to disease progression and symptomatology
remain elusive (Blanco-Suárez et al., 2017). The onset of ASD
pathology is typically concurrent with neurodevelopmental astrocyte
proliferation (Berger et al., 2013; Sigaard et al., 2016). Allen et al.
(2022) sought to investigate the putative role of astrocytes in
ASD pathologyClick or tap here to enter text. Upon harvesting
astrocytes from organoids created by induced pluripotent stem
cells (iPSCs) from ASD patients (Allen et al., 2022). Proteomic
analysis revealed that “Ca2+ binding” processes were highly
enriched in the altered protein networks observed in these ASD
astrocytes. Follow-up two-photon live-cell imaging confirmed an
exaggerated ATP-induced Ca2+ response in these ASD astrocytes.
To investigate putative behavioral effects of Ca2+ disruption in
ASD astrocytes, human-derived ASD astrocytes were implanted
into mice at P1-3, thus generating ASD astrocyte chimeric mice.
Engrafted human ASD astrocytes were found to exhibit aberrant
Ca2+ fluctuations, as well as to result in ASD-relevant behaviors
(i.e., enhanced repetitive behaviors in the marble burying test
and impaired fear learning). Given the exaggerated Ca2+ response

observed in ASD astrocytes, it was predicted that inhibition
of IP3Rs would possibly restore Ca2+ signaling and function.
Intriguingly, IP3R-knockdown in ASD astrocytes rescued the
exaggerated Ca2+ response, hippocampal neuron network firing,
and deficits in fear memory observed in chimeric mice (Allen
et al., 2022). Overall, these data provide deep insights into the
contribution of astrocytic Ca2+ dysregulation in the pathophysiology
of ASD.

3. Schizophrenia (SCZ)

Schizophrenia is a brain disorder characterized by a constellation
of symptoms including hallucinations, negative affect, and cognitive
deficits (McCutcheon et al., 2020). The Disrupted in Schizophrenia–
1 (DISC-1) protein is involved in numerous neuronal processes,
including the regulation of dendrite morphology and neuronal
migration during development (Balu and Coyle, 2011). Recent
studies have suggested that DISC-1 is involved in Ca2+ regulation
via the mitochondria-associated membranes (MAMs) which
comprise physical connections formed between the ER IP3Rs
and mitochondrial voltage-dependent anion channels (VDAC)
that are involved in the transfer of Ca2+ and molecular stress
signals between these two organelles (Park et al., 2017, 2015;
van Vliet and Agostinis, 2018; Barazzuol et al., 2021; Means
and Katz, 2021). Recent findings suggest that DISC-1 localizes
to the MAM in mouse neurons, and specifically binds IP3R1
to reduce ligand-binding and subsequent Ca2+ transfer to the
mitochondria in primary cortical neurons (Park et al., 2017).
Upon DISC-1 dysfunction, IP3R1-mediated Ca2+ release into
the MAM is disinhibited, causing a buildup of mitochondrial
Ca2+ that leads to oxidative stress that ultimately impairs
mitochondrial function (Park et al., 2017). Interestingly, neuronal
oxidative stress has been implicated in the pathogenesis of SCZ
(Emiliani et al., 2014). Taken together, this experimental evidence
suggests that DISC-1 is involved in the dysregulation of Ca2+

handling in the MAMs, causing downstream mitochondrial
Ca2+ hyper-accumulation and oxidative stress, shining a light
on a novel mechanism by which DISC-1 may contribute to SCZ
pathogenesis.

Darier’s disease is a skin condition characterized by persistent
wart-like skin patches, which is due to a mutation in the SERCA2
gene that subsequently leads to Ca2+ dysfunction (Cooper and Burge,
2003). Interestingly, Darier’s disease patients have a significantly
increased risk for SCZ, providing a causative link between SERCA2
and neurodevelopmental processes (Tang et al., 2010). Recently,
Nakajima et al. (2021) generated a brain-specific heterozygous
Serca2 loss-of-function mouse model (i.e., hetero cKO) to investigate
how developmental hypofunction of Serca2 may affect SCZ-
relevant behavioral and neurobiological processes (Nakajima et al.,
2021). As expected, both primary hippocampal neurons and ER
membranes isolated from the brain of hetero cKO mice exhibited
impaired Ca2+ uptake (Nakajima et al., 2021). Hetero cKO mice
exhibited impaired fear memory and enhanced exploratory behavior;
moreover, microdialysis studies suggested that Serca2 hypofunction
induces a hyperdopaminergic state in the nucleus accumbens (NAC)
(Nakajima et al., 2021), echoing the neurochemical dopaminergic
hallmarks of SCZ (McCutcheon et al., 2020). Taken together, these
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TABLE 1 Studies focusing on notable genes implicated in the pathophysiology of neurodevelopmental disorders and summarized findings on intracellular
Ca2+ signaling, neuronal function, and behavior.

Gene Study Gene
manipulation

Disorder
indication

Effect on Ca2+ Effect on neuronal
function

Effect on behavior

Ryr1 Keil et al., 2019 Humanized GoF Ryr1
T4826I mutation

ASD N/A ↑ Dendritic complexity ↓ Sociability

Fmr1 Keil et al., 2019 CGG-repeat GoF Fmr1 ASD N/A ↑ Dendritic complexity N/A

Pvalb Janickova et al.,
2020

Pvalb KO mouse ASD N/A ↑ Soma and dendrite size N/A

Nnat Vatsa et al., 2019 miR-207 ASD/AS ↓ Intracellular Ca2+

↓ CaMKIIα phosphorylation
N/A Maternal-Ube3a deficient

mouse model for AS

DISC-1 Park et al., 2015,
2017

DISC-1 KD SCZ ↓MAM Ca2+ transfer N/A N/A

Serca2 Nakajima et al.,
2021

Brain-specific
heterozygous knockout

↓ER Ca2+ uptake ↑ NAc DA ↑ Exploratory behavior
↓ Fear memory

Gnb5 Xie et al., 2012 GNB5 KO mouse ADHD N/A N/A ↑Hyperactivity

GNB5 Kang et al., 2018 GNB5 overexpression in
HEK293T cells

ADHD ↑ SOCE N/A N/A

GoF, gain of function; KD, knock-down; KO, knock-out.

findings support the notion that developmental hypofunction of the
Serca2 and subsequent aberrant intracellular Ca2+ handling induces
SCZ-relevant behavioral and neurochemical effects.

Interestingly, recent evidence suggests an association between
RyRs and SCZ. An exome sequencing study of childhood-onset SCZ
patients, identified de novo variants of RYR2, which the authors
highlight as a strong candidate gene given the role of RyRs in
neurodevelopmental processes (Ambalavanan et al., 2016), further
underscoring the putative role of RyRs in the neurobiology of
neurodevelopmental disorders.

4. Attention-deficit hyperactivity
disorder (ADHD)

Attention-deficit hyperactivity disorder is a neurodevelopmental
disorder that is characterized by impaired attention, locomotor
hyperactivity, and impulsive behaviors (Sharma and Couture,
2014). Preclinical evidence suggests that ADHD is associated with
impaired intracellular Ca2+ handling; for instance, the spontaneously
hypertensive rat (SHR) model of ADHD has been shown to exhibit
impaired brain plasma membrane Ca2+ uptake (Horn et al., 1995;
Lehohla et al., 2001). Further preclinical evidence has shown that
knockout of the G-protein subunit Gβ5 (encoded by the gene Gnb5)
elicits a pronounced ADHD-like hyperactive phenotype in mice
(Xie et al., 2012). Moreover, a GNB5 mutation (i.e., GNB5 S81L)
associated with impaired termination of DA2 receptor signaling
was reported in a Saudi family presenting speech impairments
and a variable ADHD diagnosis, providing initial clinical evidence
for the putative role of GNB5 in the neurobiology of ADHD
(Shamseldin et al., 2016). Interestingly, a recent study highlighted
the role of GNB5 in store-operated Ca2+ entry (SOCE) (Kang
et al., 2018). Upon depletion of ER Ca2+ stores, stromal interaction
molecule 1 (STIM1), an ER Ca2+ sensor, forms a complex with
the plasma membrane calcium release-activated calcium channel

protein 1 (ORAI1) to initiate extracellular Ca2+ entry (Srikanth
and Gwack, 2012). Kang et al. (2018) found that GNB5 expression
enhances SOCE in vitro. Notably, the ability of GNB5 to enhance
SOCE was found to depend on STIM1 function suggesting that
GNB5 may interact with the ER Ca2+-sensing machinery to
regulate Ca2+ homeostasis, although further studies are needed
to determine the precise mechanisms that may underlie this
process.

5. Conclusion

In the context of this mini-review, we have highlighted
recent advances supporting the implication of prominent ER and
cytosolic Ca2+ regulators (i.e., SERCA2, IP3Rs, RyRs, PVALB,
NNAT) in the neurobiology of brain disorders with a strong
neurodevelopmental component (Figure 1 and Table 1). Disease
progression of monogenic brain disorders (e.g., AS, FXS) may
be dependent on specific gene interactions with intracellular
Ca2+ signaling mechanisms, whereas sporadic cases of SCZ, ASD,
and ADHD may arise from polygenic variations that ultimately
converge to the disruption of intracellular Ca2+ homeostasis and
concomitant impairment of neuronal function. Further preclinical
and clinical investigation is considered imperative to confirm
and/or expand upon these intriguing discoveries in order to gain
deep insights into the cellular and molecular Ca2+-dependent
neurodevelopmental processes that are compromised in these
debilitating brain diseases.
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It is well documented that prenatal ethanol exposure via maternal consumption

of alcohol during pregnancy alters brain and behavioral development in offspring.

Thus, the Centers for Disease Control (CDC) advises against maternal alcohol

consumption during pregnancy. However, little emphasis has been placed on

educating new parents about alcohol consumption while breastfeeding. This is

partly due to a paucity of research on lactational ethanol exposure (LEE) effects

in children; although, it has been shown that infants exposed to ethanol via

breast milk frequently present with reduced body mass, low verbal IQ scores,

and altered sleeping patterns. As approximately 36% of breastfeeding mothers in

the US consume alcohol, continued research in this area is critical. Our study

employed a novel murine LEE model, where offspring were exposed to ethanol

via nursing from postnatal day (P) 6 through P20, a period correlated with infancy

in humans. Compared to controls, LEE mice had reduced body weights and

neocortical lengths at P20 and P30. Brain weights were also reduced in both ages

in males, and at P20 for females, however, female brain weights recovered to

control levels by P30. We investigated neocortical features and found that frontal

cortex thickness was reduced in LEE males compared to controls. Analyses of

dendritic spines in the prelimbic subdivision of medial prefrontal cortex revealed

a trend of reduced densities in LEE mice. Results of behavioral tests suggest that

LEE mice engage in higher risk-taking behavior, show abnormal stress regulation,

and exhibit increased hyperactivity. In summary, our data describe potential

adverse brain and behavioral developmental outcomes due to LEE. Thus, women

should be advised to refrain from consuming alcohol during breastfeeding until

additional research can better guide recommendations of safe maternal practices

in early infancy.

KEYWORDS

alcohol, behavior, neocortex, lactation, anatomy, brain development, postnatal
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Introduction

Alcohol is known as a developmental teratogen in mammalian systems. However,
research in this area has primarily focused on exposures during the prenatal period.
Maternal consumption of alcohol during pregnancy can result in Fetal Alcohol Spectrum
Disorders (FASD) in offspring and children with FASD may exhibit physical, cognitive,
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emotional, and behavioral phenotypes related to the exposure
(May et al., 2009, 2014; Hoyme et al., 2016). Thus, Centers
for Disease Control (CDC) have released a statement that no
amount of alcohol is safe to consume during pregnancy (Centers
for Disease Control and Prevention, 2022a). Generally, these
recommendations are followed, as demonstrated by a reduction
in alcohol consumption during pregnancy. However, consumption
levels approach preconception levels shortly after birth in some
populations (Little et al., 1990; Giglia and Binns, 2006). The
prevalence of breastfeeding mothers consuming alcohol is high,
ranging from 20% in Canada (Popova et al., 2013), 36% in the
United States (May et al., 2016), and 60% in Australia (Tay et al.,
2017). For a specific example, in Seattle, Washington, 80% of
women consumed alcohol during the month before conception,
40% consumed alcohol during the last trimester of pregnancy, and
70% were drinking 3 months postpartum. Notably, this study also
reported that 10% of breastfeeding mothers reported drinking more
than once a day (>15 g alcohol) (Little et al., 1990).

Given the prevalence of maternal alcohol consumption during
breastfeeding, it is important to understand how this can represent
a teratogenic exposure for infants. Studies have shown that the
levels of alcohol in the breast milk mirror the amount of alcohol
in the blood (Lawton, 1985; Chien et al., 2005). These levels
peak at 30–60 min after ethanol consumption and continue to be
detected 2–3 h after consumption (Chien et al., 2005; Centers for
Disease Control and Prevention, 2019). Although these levels are
lower than the percentage in alcoholic beverages, they are non-
zero values. In infants, exposure to breast milk containing alcohol
may result in reduced body mass and verbal IQ scores (May et al.,
2016). Congruently, exposure to alcohol via breast milk may result
in a dose-dependent reduction of cognitive functions as seen when
testing exposed children aged 6–7 years (Gibson and Porter, 2018)
and dose-dependent reductions in children’s academic abilities
up to grade 5 (Gibson and Porter, 2020). Additionally, deficits
in abstract reasoning skills are observed at age 7 in lactational-
exposed children (Oei, 2019). Changes in sociability can also occur
as exposed infants scored below, or within the monitoring zone,
on the scale of the personal-social interactions at 12 months of
age (Tay et al., 2017). Despite these potential negative effects of
alcohol compromised breast milk on offspring development, there
is a disconnect between conclusions drawn from scientific literature
and behaviors in many new mothers.

In humans, there is variability in maternal behavior in terms of
infant feeding preferences. In the US from 2012 to 2019, around
80% of mothers breastfed their infants, with just over half of them
breastfeeding exclusively [from the National Immunization Survey
(Centers for Disease Control and Prevention, 2019)]. Additionally,
there is variability among women in their ability to metabolize
alcohol and to respond to stressors, which can moderate infant
exposure. Indeed, higher tolerance and stress may result in the
increase of the consumption of alcohol, for certain populations
(Guinle and Sinha, 2020). Women who consume alcohol during
pregnancy are also more likely to drink while breastfeeding (May
et al., 2016), suggesting certain populations may be considered
high-risk for breast milk contamination. Additionally, unplanned,
and drastic lifestyle changes may influence alcohol consumption
levels. For example, the COVID-19 pandemic and subsequent
“stay-at-home” orders, rapidly emerged as a public and/or personal
health concern for many. In response to this novel stressor, women

in the United States showed an increase in their Alcohol Use
Disorders Identification Test scores during the COVID-19 “stay-
at-home” order (Boschuetz et al., 2020). These results translate
to an increase in frequency and quantity of alcohol ingested
in those who already used alcohol; congruently, factors such as
having children at home and a history of substance abuse were
positively associated with an increase in alcohol use during the
pandemic (Boschuetz et al., 2020). Similar results were observed
in Australia (Bramness et al., 2021), Norway (Rossow et al., 2021),
and Belgium (Vanderbruggen et al., 2020), and thus, the pandemic
and “stay-at home” orders may have unintentionally increased
infant alcohol exposure via increased maternal consumption.
These studies show an increase in alcohol consumption in certain
child rearing populations, elucidating the deleterious effects of
postnatal ethanol exposure via breast milk, and bolster the
importance of alcohol abstinence during breastfeeding. However,
published postnatal alcohol exposure paradigms (via breast milk)
tend to be uncontrolled, unstandardized, and often limited to
humans. Much of the existing data leave questions of dosing,
timing, and how the developing nervous system is affected by
lactational ethanol exposure (LEE). Data from animal models
are not always consistent, most likely due to the variability in
postnatal ethanol exposure methods, ranging from direct ethanol
exposure to combined prenatal and postnatal exposure. In one
study, researchers exposed rat pups to ethanol via intragastric
intubation from postnatal (P) day 4 to 8 and reported increased
male body weights but no increases in cerebral cortex weight
(Light et al., 1989). Another direct exposure study reported a
reduction of stem cell progenitor cells in the hippocampus and
reduced adult neurogenesis after a singular subcutaneous injection
of alcohol at P7 (Ieraci and Herrera, 2007). A study from Vilaró
et al. (1987) exposed rat pups to alcohol via an alcohol-treated
mother and reported a reduction in weight of rat pups at age
P15 compared to controls; however, this study exposed rats to
ethanol during gestation as well as postnatally. These studies
provide much-needed evidence toward the damaging effects of
postnatal ethanol exposure; however, they do not target a particular
time window in mammalian brain development. Hence, many
of their results are contradictory. To combat this, an analogous
age range for exposure must be established between mice and
humans. To begin, the brain growth spurt (BGS) is a time window
where the mammalian brain undergoes rapid growth (Dobbing
and Sands, 1979). In humans this period ranges from the third
trimester of pregnancy to about the first 2 years of life, peaking
at the birth (Dobbing and Sands, 1979). In murine models, this
period ranges from the first week postnatal to the third week,
peaking around P7 (Dobbing and Sands, 1979). A study has shown
that exposure to alcohol during the BGS induces deficits such as
a reduction in long-term cerebellar growth and altered rotarod
performance in a rat model (Goodlett et al., 1991). However, this
study used artificial-rearing procedures to directly expose pups to
ethanol during the P4–P9 time window and was a binge model
(Goodlett et al., 1991). Furthermore, ethanol exposure has been
shown to cause alterations in synaptic pruning (Kyzar et al., 2016).
In mice, synaptic pruning reaches its peak 2–3 weeks postnatal
(Lewis, 2011), this is within the BGS, providing further evidence
of sensitivity toward perturbations early in postnatal development.
Clearly, additional research is needed to illuminate the specific
details of risk including dose-dependencies and the interaction
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of developmental time and exposure. Here, we are specifically
interested in how maternal drinking while breastfeeding impacts
brain and behavioral development of offspring. The exposure
period we targeted is within the BGS but begins on a postnatal day
roughly equivalent to the day of human birth, to better mimic the
time when breastfeeding would begin in humans.

In the current study, we targeted early LEE in our mouse
model by estimating typical human birth in murine time. When
making cross-species comparisons for developmental stage, the first
postnatal week in mice relates to the third trimester in humans
(Clancy et al., 2007). As our study did not aim to model human
prenatal alcohol exposure, or FASD, we began our maternal dosing
of ethanol at the end of the first week of murine life (evening of
postnatal day 6). This way, offspring will have consumed alcohol
via breast milk by P7. Estimates of human day of birth (full term)
is between 245 and 265 days post conception with the mouse
equivalent between 7 and 9 days postnatal (Clancy et al., 2007;
Jukic et al., 2013). Specifically, we exposed CD-1 pups to breast
milk contaminated with ethanol, via maternal consumption, at the
end of the postnatal week until weaning. By mimicking human
postpartum drinking behavior, our results revealed potential effects
of LEE on offspring outcomes. We measured maternal blood
ethanol content to assure exposure validity and blood osmolality
to assess hydration. We analyzed several outcome measures in
offspring to determine to what degree ethanol exposure via
lactation altered key features of neuroanatomical development and
whether these phenotypes were read out in behavior. As predicted,
LEE resulted in abnormal brain and behavioral development.

Materials and methods

Animal care

All breeding and experimental studies were conducted in
accordance with protocol guidelines approved by the Institutional
Animal Care and Use Committee (IACUC) at the University of
California, Riverside (UCR). CD-1 mice, initially purchased from
Charles River Laboratories (Wilmington, MA, USA), were used for
breeding. We chose to use the outbred CD-1 mouse strain in this
lactational model because these mice show superior maternal care
compared to inbred strains and because we had validated them as
a model for prenatal ethanol exposure (PrEE) in our prior work (El
Shawa et al., 2013). Mice were housed in animal facilities located
at UCR that were kept at approximately 22◦C on a 12-h light/dark
cycle. Mouse chow and water (for controls), or mouse chow and
a 25% ethanol solution in water, were provided ad libitum to the
dams according to the dosing schedule.

Breeding and lactational ethanol
exposure paradigm

Adult female and male mice, aged P90-150, were paired just
before the start of the dark cycle. Once a vaginal plug was detected,
the male was removed from the cage. Throughout pregnancy,
mouse chow and water were provided ad libitum to all dams. Dams
were undisturbed through pregnancy and birth until the pups were

6 days old, when litter sizes were recorded (Figure 1). During
this time, we pseudo-randomly assigned each dam to the control
or experimental group (Lactational Ethanol Exposed, LEE group).
LEE dams had their water replaced with a 25% v/v ethanol in water
solution throughout the exposure period from the evening of P6 to
P20, while control dams remained on water. The liquid bottle tip
was placed high in the cage so that developing pups could not reach
it, thus, their only liquid intake was via dam breast. There were no
alterations to the dam’s food supply through the exposure period
for any experimental condition. Measurements were taken daily
for maternal liquid and food consumption during the exposure
period for both conditions. At wean (P20), litter size was assessed,
control and LEE pups were weighed and divided into two subsets.
Subsets A and B had different sacrificial end dates of P20 and P30,
respectively. Subset B control and LEE pups were weighed and
subjected to no more than two behavioral assays. The division of the
litters into subsets allowed us to evaluate the short and long-term
effects of LEE with an array of techniques. To avoid litter effects, we
distributed pups from multiple litters for each assay tested.

Dam and pup blood ethanol
concentration and plasma osmolality
measurements

To measure dam and pup blood ethanol concentration (BEC)
and blood plasma osmolality (pOsm), a measure of hydration,
animals from control and LEE groups were subjected to a whole
blood collection protocol. Whole blood was collected at the time of
weaning for dams and pups via cardiac puncture. After collection,
blood was placed in an untreated 1.5 ml centrifuge tube and allowed
to clot for 30 min at room temperature. The entire sample was
then centrifuged at 4,000 × g for 15 min at 4◦C to separate serum
from whole blood. To determine BEC in control and LEE groups,
an alcohol dehydrogenase (ADH) based enzymatic assay (Pointe
Scientific, Canton, MI, USA) was employed. In brief, ethanol,
and nicotinamide adenine dinucleotide (NAD+) become catalyzed
by ADH and this interaction causes the oxidation of ethanol
to acetaldehyde and reduces NAD+ to NADH. The modified
sample was read on a Nanodrop 2000 Spectrophotometer (Thermo
Fisher Scientific) at 340 nm. To determine pOsm, freshly extracted
serum from control and LEE groups were subjected to testing
using an osmometer.

Brain tissue preparation and collection

Pups from all conditions were randomly assigned for gross
anatomical studies. Mice were weighed then sacrificed using a
lethal dose of sodium pentobarbital (100 mg/kg) administered
via intraperitoneal injection. Mice were transcardially perfused
with 0.9% saline followed by 4% paraformaldehyde in PBS (PFA,
pH: 7.4) for fixation. The skulls were post-fixed in a 4% PFA
solution overnight, then the brains were extracted, weighed, and
imaged. Dorsal views of whole brains were imaged using a
Zeiss (Oberkochen, Germany) Axio high-resolution (HRm) camera
attached to a dissecting microscope. Extracted brains were stored in
4% PFA for later use.
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FIGURE 1

Experimental paradigm. Mice were designated as control or LEE at P6. LEE dams received 25% EtOH when pups were P6-P20. At P20 pups were
weaned, divided into two subsets, and no longer exposed to EtOH. Subset A was subjected to a variety of measurements at P20. Subset B was
subjected to measurements as well as behavioral tests at P30.

Anatomical measurements

Brain and body weights were assessed at P20 and P30 for both
sexes and conditions. They were compared using statistical analyses
and a brain/body weight ratio was computed to determine if any
changes in brain or body weight were independent of one another.
Typically, in normal development, brain and body size/weight are
related. Larger animals within the same species tend to have larger
brains. We calculated the ratio able to differentiate whether the
exposure was causing a decrease in brain size alone, or whether
decreases in brain size from our perturbation could be related to
overall decrease in body size. Next, to measure cortical length of
all brains, we used a digital micrometer in ImageJ (NIH, Bethesda,
MD, USA), using the dorsal whole-brain images. To examine
anatomical cortical areas, perfused brain tissues were hemisected
and cryoprotected using a 30% sucrose (w:v) in PBS solution. Tissue
was then sectioned using a Leica cryostat at 40 µm thick in the
coronal plane, mounted on subbed slides, and stained for Nissl
bodies using a 0.1% Cresyl Violet solution staining protocol then
imaged using a Zeiss Axio Upright Imager microscope equipped
with a Zeiss Axio HRm camera. To control for comparisons
between groups, the Allen Mouse Brain Atlas (Allen Institute for
Brain Science, 2004)1 and the Paxinos Developing Mouse Brain
Atlas (Paxinos et al., 2007) were used to determine matching
planes of section between groups (anatomical landmarks used:
corpus callosum, hippocampus, and subcortical structures). Once
images were selected, regions of interest (ROIs) were measured
using the ImageJ (NIH) electronic micrometer function by trained
researchers blind to treatment conditions, as previously reported
in Abbott et al. (2016). In brief, cortical thickness was measured
with respect to the cortical sheet, by drawing perpendicular
lines from the most superficial region of layer I to the deepest
region of layer VI. Cortical regions measured include the frontal

1 brain-map.org

cortex (the boundary of layer 2/3 of the secondary motor area
to boundary of layer 2/3 of the orbital area), prelimbic cortex,
primary somatosensory cortex (S1), primary auditory cortex (A1),
and primary visual cortex (V1).

Dendritic spine density measurements

P20 and P30 brains were hemisected and placed into a modified
Golgi-Cox solution (Bayram-Weston et al., 2016; Zaqout and
Kaindl, 2016) for 14 days in the dark at room temperature. Brains
were then removed from the solution and placed in 30% sucrose
in PBS for 2 days. Brains were then embedded in 5% agarose and
sliced on a vibratome at 100 µm and mounted on subbed slides.
Slides were allowed to dry for 2–3 days before developing. Slides
were dipped in distilled water for 10 min, then 20% ammonia for
10 min, then distilled water for 10 min, then 70, 95, and 100%
ethanol (EtOH) for 5 min each, and xylenes for 40 min. Slides were
then immediately coverslipped with permount solution. Images of
dendritic spines, of pyramidal cells in layer IV/V of the Prelimbic
and Frontal cortices, were then imaged using a 630X oil immersion
objective on a Leica Dmi8 bright field stereoscope using an attached
Leica DFC 450C camera. Dendritic spine density was calculated for
the entire length of the dendrites using ImageJ by an experimenter
blind to condition. Counted spines were then divided by the length
of the dendrite measured, then an average of dendritic spines was
taken for each mouse as multiple neurons were sampled from each
individual subject. In depth dendritic spine staining methodology
has been previously described elsewhere (Bottom et al., 2022).

Behavioral assays

Due to higher than zero BEC levels in LEE pups at wean,
behavioral assays were only performed at P30. Therefore the

Frontiers in Neuroscience 04 frontiersin.org79

https://doi.org/10.3389/fnins.2023.1147274
https://brain-map.org
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1147274 March 7, 2023 Time: 13:35 # 5

Perez et al. 10.3389/fnins.2023.1147274

10-day post wean period was considered a “wash out” period
in the paradigm. Mice were subjected to a maximum of two
behavioral tests during the testing period with the forced swim
test (FST) always being last due to the high-stress nature of the
test. All behavioral analyses and scoring were performed and
analyzed by trained researchers blind to experimental conditions.
All apparatuses were cleaned using Virkon before and after each
testing session.

Elevated plus maze
The elevated plus maze (EPM) has been historically employed

to measure anxiety-like behaviors in rodents (Handley and Mithani,
1984; Rodgers and Dalvi, 1997). Notably, young CD-1 mice are
known to contradict this measure of anxiety-like behaviors and they
typically interact with the lower anxiety-associated metrics of this
assay at higher portions; therefore, this behavior is thought to be
considered risk-taking behavior (Macrì et al., 2002). This test has
been used in our laboratory’s PrEE mouse model (Bottom et al.,
2022). In a dimly lit room, we employed the use of a plus “+”
shaped apparatus that is designed to provide test mice with two
different arm environments (arm specifications; 54 cm wide and
30 cm long). The first arm type (closed arms) shields the mouse
from the testing room using 15 cm high non-transparent panels
that laterally enclose the mouse, with an opening on top of the
apparatus. This provides the mouse with a shaded semi-enclosed
space. The second arm type (open arms) exposes the mouse to
the testing room through omission of the non-transparent panels.
These arm types are arranged adjacently to one another on the
apparatus, such that each environment is flanked by the opposing
environment. Additionally, the apparatus is lifted 50 cm above the
ground using stilts. In sum, mice were subjected to a single 5-min
trial on the EPM where the mouse was placed in the center of the
apparatus and could move freely for the entire testing period. The
amount of time spent in each arm, as well as entries and total time
was recorded. Video recordings were made of each testing session.
A longer time spent in the open arms may indicate increased
risk-taking behavior or active exploratory behavior.

Forced swim test
Designed to assess the effects of antidepressant drugs in the late

1970s (Porsolt et al., 1978), the FST was originally used to measure
depressive-like behaviors (Lucki et al., 2001). More recently, studies
have re-evaluated the interpretation of the test. Mouse performance
in the water (either actively swimming/attempting to climb or
floating immobile) has been viewed as a response to the stressful
environment; the mice could respond with a passive coping style
(immobility) or an active stress-coping style (swimming/climbing).
The active stress coping has also been hypothesized to be related to
hyperactivity (Commons et al., 2017; Conner et al., 2020; Armario,
2021). This technique has been used in our laboratory previously
in our PrEE mice (Abbott et al., 2018; Conner et al., 2020; Bottom
et al., 2022). Mice were placed in an acrylic glass cylinder (30 cm
in height and 12 cm in diameter) filled to two-thirds total volume
with room temperature (27◦C) water for 6 min. The initial 2 min
were an acclimation period and the remaining 4 min (240 s) were
video-recorded and the time in which the animal was immobile in
the water was recorded. Mice had light placed directly above them
throughout the testing period and no more than two experimenters

were allowed to be present during the testing period. Percentage of
time spent immobile was calculated for each mouse.

Accelerated rotarod
The accelerated rotarod (AR) test was used to examine motor

ability, learning, grip strength, and coordination (Rustay et al.,
2003; Buitrago et al., 2004). This test has been used in our
laboratory’s PrEE mouse model (Abbott et al., 2018; Bottom et al.,
2022). Briefly, the mice were subjected to four, 5-min trials on the
rotarod apparatus with each trial separated by a 10-min interval.
The AR (Ugo Basile; Germonio, Italy) consists of a rod (diameter
28.5 mm) that rotates and gradually increases speed from 4 to
40 rpm. Mice are scored for the amount of time they are able to
stay balanced on the AR. If they are able to maintain balance for the
entire trial length, they are given a perfect score of 300 s.

Statistical analyses

All statistical analyses were completed using R (v4.1.2; R
Core Team, 2021). Between-subjects tests were carried out using
ANOVA with Type III sums of squares (via the car package, v3.0.12;
Fox and Weisberg, 2019). Repeated measures tests were performed
using multilevel models via the lme4 R package (v1.1.27.1; Bates
et al., 2015). Planned comparisons and simple effect tests were
carried out using the emmeans R package (v1.7.2; Lenth, 2022).

Results

Model verification: Blood ethanol
concentration and blood plasma
osmolality in dams and pups

To ensure adequate maternal intake of ethanol, we measured
BEC at wean. As expected, at wean, LEE dams had significantly
greater BEC when compared to control dams, t(4) = 33.30,
p < 0.001 (Figure 2). Additionally, to assess maternal hydration
during the ethanol self-administration period, we measured dam
blood plasma osmolality (pOsm). No significant differences in
pOsm were found between LEE and control dams at wean,
t(7.95) = 1.66, p = 0.1366, suggesting similar levels of hydration in
dams across conditions. Ethanol treated dams showed lower caloric
consumption and body weights when compared to control dams.
From P6 through P20, LEE dams consumed fewer calories from
food and ethanol combined (M = 75.1, SD = 9.6, 95% CI [68.3,
82.0]) than control dams (from food alone; M = 98.5, SD = 11.6,
95% CI [87.8, 109.2]), t(11.37) = 4.39, p = 0.001. At wean, LEE
dams (M = 37.9 g, SD = 4.4 g, 95% CI [35.5, 40.7]) weighed less
than control dams (M = 46.0 g, SD = 4.7 g, 95% CI [42.7, 49.2]),
t(12.53) = 3.59, p = 0.003. In the case of the ethanol treated dams
in the current study, they engaged in higher rates of infanticide and
cannibalism [from P6 through P20, more of the LEE dams’ pups
died (M = 5.2, SD = 3.3, 95% CI [3.0, 7.4]) than control dams’
(M = 1.3, SD = 1.4, 95% CI [0.2, 2.4]), t(14.08) = 3.49, p = 0.004],
which would reduce their requirements to produce milk, and, to
some degree, compensate for lower food intake.
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FIGURE 2

Blood ethanol concentration and pOsm measurements. (A) BEC measurements in Control and LEE dams at wean after a 14 day exposure to water
(control) or 25% EtOH. LEE mice exposed to 25% EtOH had an average BEC of 119.8 mg/dL compared to controls which had a BEC of 0 mg/dL
(N = 10). (B) BEC measurements in Control and LEE pups at wean after dams were exposed to water or 25% EtOH for 15 days. LEE pups had greater
BECs (68.9 mg/dL on average) compared to controls at 0.0 mg/dL (N = 14). (C) No significant differences observed between control
(M = 324.8 mOsm/kg, SD = 8.8 mOsm/kg) and LEE (M = 337.7 mOsm/kg, SD = 16.3 mOsm/kg) dam plasma osmolality (pOsm) at wean (N = 11).
(D) No significant differences in pup pOsm at wean between control (M = 287.1 mOsm/kg, SD = 20.0 mOsm/kg) and LEE (M = 280.6 mOsm/kg)
offspring (N = 16; *p < 0.05, ***p < 0.001). (A,B) Triangles represent individual data points taken for each experimental condition. Data expressed as
mean ± SEM.

Lactational ethanol exposure pups at wean, as anticipated, had
greater BEC than control pups, t(6) = 3.41, p < 0.014, although
considerable variation was observed between individual measures.
We endeavored to account for this variation by examining the
relationship between both litter size and pups’ sex on LEE pups’
BEC at wean. Neither litter size [t(6) = 0.34, p = 0.742] nor sex
[t(6) = 0.49, p = 0.642], however, was a significant predictor of BEC.
Nevertheless, additional possible explanations for the increased
variability are discussed in the section on study limitations and
future directions.

There were no significant differences in blood plasma
osmolality (pOsm) found between LEE and control pups at wean,
t(8.38) = 0.40, p = 0.700, also suggesting similar levels of hydration
in pups across conditions. These results confirm that non-zero
levels of EtOH intoxication occur in LEE dams and pups at wean.
Furthermore, these results indicate no disparity in dam or pup
pOsm due to the exposure paradigm.

P20 and P30 pup gross measurements

To examine the ability of our exposure paradigm to produce
gross alterations in pup central nervous system (CNS), and overall
development, we evaluated body and brain weights, body-brain

weight ratio (Figure 3), and cortical length measurements
(Figure 5) at P20/P30 and by sex.

A three-way, condition (Control vs. LEE) × age (P20 vs.
P30) × sex (male vs. female) ANOVA (Type III SS) identified
a three-way condition × age × sex interaction on pups’ weight,
F(1,302) = 4.22, p = 0.0409 (Figure 3). In light of this three-
way interaction, lower order interactions and main effects should
be considered with caution. Nevertheless a two-way age × sex
interaction was also present, F(1,302) = 31.02, p < 0.001, as
was a main effect of condition, F(1,302) = 58.45, p < 0.0001,
and age F(1,302) = 434.23, p < 0.0001. To examine the three-
way interaction, the two-way condition × age interactions were
examined separately for male and females. For males, the two-
way interaction was significant, F(1,302) = 12.36, p = 0.005,
indicating that the effect of condition was greater at P30 than
at P20. For females, the two-way interaction failed to reach
significance, F(1,302) = 0.22, p = 0.637. Sidak corrected planned
comparisons were carried out to examine the difference between
the weight of the control and LEE pups at each combination
of age and sex. These indicated that control pups weighed
more in all four combinations: P20 male, t(302) = 7.343,
p < 0.0001, P30 male, t(302) = 10.602, p < 0.0001, P20
female, t(302) = 7.646, p < 0.0001, P30 female, t(302) = 6.296,
p < 0.0001.
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FIGURE 3

Offspring measures: Gross development. (A) A significant (p < 0.001) reduction in body weight for LEE pups was observed in every age and sex
group, when compared to controls (N = 310). (B) Significant reductions in brain weights were observed for LEE males at P20 (p = 0.003) and P30
(p = 0.0332) developmental time points. However, significant reductions were only observed in P20 LEE females (p = 0.0085) and no significance is
observed in P30 LEE females (p = 0.1184) compared to controls (N = 70). (C) Significant increases to the brain/body ratio are observed in LEE males
at both developmental time points. Significant increases to the brain/body ratio were only observed in P20 LEE females and not P30 females as
compared to controls (N = 70). Data expressed as mean ± SEM.

Next, a three-way, condition (Control vs. LEE) × age (P20
vs. P30) × sex (male vs. female) ANOVA (Type III SS) identified
main effects of condition, F(1,62) = 10.26, p = 0.002, and age
F(1,62) = 9.12, p = 0.004 on the weight of pups’ brains. As described
previously, Sidak corrected planned comparisons were carried out
to examine differences between control and LEE pups weights at
each combination of age and sex. Results indicated that control
pups’ brains weighed more in three of the four combinations: P20
male, t(62) = 4.24, p = 0.0003, P30 male, t(62) = 2.72, p = 0.0332,

and P20 female, t(62) = 3.20, p = 0.0085, but not P30 female,
t(62) = 2.207, p = 0.1184.

Lastly, to consider the relationship between body and brain
weight, we examined the ratio of pups’ brain to body weight via
a three-way, condition (Control vs. LEE) × age (P20 vs. P30) × sex
(male vs. female) ANOVA (Type III SS). This analysis identified
main effects of condition, F(1,62) = 128.75, p < 0.001, and age
F(1,62) = 243.95, p < 0.0011 on the on the ratio of pups’ brain to
body weight. These main effects, however, should be considered in
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FIGURE 4

Dorsal views. Representative images of perfused and extracted
brains of male (A1–A4) and female (B1–B4) pups at P20
(A1,A2,B1,B2) and P30 (A3,A4,B3,B4) after dams were exposed to
water (A1,B1,A3,B3) or EtOH (A2,B2,A4,B4) for 14 days. Images
oriented rostral (R) to the left and caudal (C) to the right. Scale bar,
1 cm.

FIGURE 5

Cortical lengths. No significant differences in cortical length were
observed between control and LEE pups at P20 or P30 (N = 70).
Data expressed as mean ± SEM.

light of interactions between age and condition, F(1,62) = 61.82,
p < 0.001, and sex and condition, F(1,62) = 8.47, p = 0.005. The
age × condition interaction provided evidence that the effect of
exposure to EtOH diminished between P20 (M = 0.022, 95% CI
[0.018, 0.023]) and P30 (M = 0.004, 95% CI [0.002, 0.007]), and
the sex × condition interaction provided evidence that the effect
of exposure to EtOH was greater for male (M = 0.016, 95% CI
[0.014, 0.019]) than female (M = 0.009, 95% CI [0.007, 0.012])

pups. As described previously, we carried out Sidak corrected
planned comparisons to examine the difference between the ratio
of pups’ brain to body weight in the control and LEE pups at each
combination of age and sex. These indicated that LEE pups’ brain-
body weight ratio was greater in three of the four combinations: P20
male, t(62) = 15.88, p < 0.001, P30 male, t(62) = 5.03, p < 0.001,
and P20 female, t(62) = 11.35, p < 0.001, but not P30 female,
t(62) = 0.49, p = 0.981.

To examine cortical length (Figures 4, 5), we performed a
three-way, condition (Control vs. LEE) × age (P20 vs. P30) × sex
(male vs. female) ANOVA (Type III SS) that identified main effects
of condition, F(1,68) = 5.52, p = 0.022, and age F(1,68) = 12.69,
p = 0.001 on the length of pups’ brains. As described previously,
Sidak corrected planned comparisons were carried out to examine
the difference between the weight of the control and LEE pups
at each combination of age and sex. None of these comparisons
indicated a significant difference between the lengths of control and
LEE pups’ brains: P20 male, t(68) = 1.00, p = 0.7860, P30 male,
t(68) = 2.27, p = 0.1015, P20 female, t(68) = 2.35, p = 0.0843, and
P30 female, t(68) = 1.37, p = 0.5370.

Altogether, these results suggest that our exposure paradigm
produces long-lasting gross alterations in CNS and general
development in the LEE pups.

P20 and P30 pup cortical
neuroanatomical measurements

To assess the effects of the exposure paradigm on cortical
thickness development, we measured from five distinct regions
(frontal, prelimbic, somatosensory, auditory, and visual cortices)
in Nissl-stained coronal sections in both LEE and control pups
at both milestone dates (Figures 6, 7). We carried out three-way
condition (Control vs. LEE) × age (P20 vs. P30) × sex (male vs.
female) ANOVAs (Type III SS) on the cortical thicknesses of pups’
brains in each region. In these analyses, none of the main effects
or interactions were significant although the main effect of age
in the visual cortex trended toward greater thickness at age P30
(M = 0.664 ± 0.0173) than at age P20 (M = 0.590 ± 0.0171),
F(1,33) = 3.22, p = 0.0820. The corresponding Sidak-corrected
planned comparisons we carried out to examine the difference
between the cortical thickness in the control and LEE pups at
each combination of age and sex also failed to show significant
differences with the exception of the frontal cortex in the P20 male
pups, t(34) = 2.94, p = 0.0235 (Figure 6A5).

These results suggest that there were only modest alterations to
frontal cortical thickness in the development of the LEE mice.

Dendritic spine measurements

An analysis on dendritic spine density (spines/um) was
employed to explore the impact of our exposure paradigm on
spine density at both milestone dates via Golgi-Cox-stained
coronal sections (Figures 8, 9). Because we measured spinal
density on multiple dendrites from individual mice, the data
were analyzed using a multilevel model in which condition
(Control vs. LEE) × age (P20 vs. P30) × sex (male vs. female)
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FIGURE 6

Cortical thickness measurements – males. High magnification coronal sections of Nissl-stained hemisections. Measurements include frontal cortex
(A1–A5; N = 21), prelimbic cortex (B1–B5; N = 16), somatosensory cortex (C1–C5; N = 22), auditory cortex (D1–D5; N = 19), and visual cortex
(E1–E5; N = 28). No significant differences between control and LEE males, except in the frontal cortex at P20 (A5, p = 0.0235). Data expressed as
mean ± SEM. Images oriented dorsal (D) up and lateral (L) to the right. *Indicates p < 0.05. Scale bar, 1 mm.

were fixed factors and mouse was included as a random factor.
In prelimbic cortex, this analysis indicated a main effect of
sex on spinal density (male, M = 0.662 spines/µm ± 0.0305;
female, M = 0.719 spines/µm ± 0.0304), t(26.24) = 2.26,
p = 0.0326. There was also a trend toward an effect of
condition (control, M = 0.708 spines/µm ± 0.0307; LEE,
M = 0.673 spines/µm ± 0.0302), t(23.73) = 2.05, p = 0.0517,
and an interaction between sex and condition (male LEE –
control, M = 0.0308 spines/µm ± 0.0610; female LEE – control,
M = −0.1011 spines/µm ± 0.0607), t(24.97) = 1.73, p = 0.0954.
Sidak-corrected planned comparisons failed to show significant
differences between the spinal densities of neurons in the prelimbic
cortex of control and LEE pups for either male or female pups
at either age. In frontal cortex, this analysis did not indicate any
significant effects or interactions, nor did any of the planned
comparisons show significant differences at any combination of sex
and age. Overall, these results suggest a possible modest difference
between the experimental group and controls moderated by sex

in prelimbic cortex, but provided no evidence of differences in
dendritic spine density in frontal cortex.

P30 behavioral analyses

To assess the impact of the exposure paradigm on behavioral
development, we employed a number of behavioral tests to
investigate potential differences. The included tests were:
EPM, FST, and AR.

The EPM provides a measure of anxiety-like and risk-taking
behaviors. We investigated the risk-taking behaviors by recording
the percent of time mice spent in the open arms of the maze
(Figure 10). A two-way, condition (Control vs. LEE) × sex (male
vs. female) ANOVA (Type III SS) failed to identify a significant
effect of condition or sex on the time pups spent in the open
arms of the maze. There was, however, a trend toward LEE pups
(23.0 ± 1.63%) spending more time in open arms than control pups
(17.2 ± 1.59%), F(1,37) = 3.40, p = 0.0733 (Figure 10A). Sidak
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FIGURE 7

Cortical thickness measurements – females. High magnification coronal sections of Nissl-stained hemisections. Measurements include frontal
cortex (A1–A5; N = 19), prelimbic cortex (B1–B5; N = 11), somatosensory cortex (C1–C5; N = 26), auditory cortex (D1–D5; N = 20), and visual cortex
(E1–E5; N = 20). No significant differences between control and LEE pups. Data expressed as mean ± SEM. Images oriented dorsal (D) up and lateral
(L) to the right. Scale bar, 1 mm.

corrected planned comparisons were carried out to examine the
difference between the percent of time the control and LEE pups
spent in open arms for male and female pups separately. These
comparisons similarly failed to indicate significant differences
(Figure 10B). The results suggest that LEE mice may spend
more time on the uncovered arms of the apparatus compared to
controls, regardless of sex (Figure 10A) suggesting the possibility
of increased risk-taking behavior.

In the FST, immobility may be understood as a measure
of passive coping behavior. A two-way, condition (Control vs.
LEE) × sex (male vs. female) ANOVA (Type III SS) failed to identify
a significant effect of condition or sex on the percent of time each
mouse was immobile. Sidak corrected planned comparisons were
carried out to examine the difference between the percent of time
the control and LEE pups spent immobile for male and female
pups separately. Here, it was found that male LEE pups spent less
time immobile than male control pups, t(30) = 3.31, p = 0.0049

(Figure 11A). For female pups, however, the difference between
the time spent immobile in the two groups was not significant,
t(30) = 1.31, p = 0.3588.

The AR test measures motor ability, balance, coordination, and
learning through repeated measures. Because the AR task extends
across four trials for each mouse, the data were analyzed using
a multilevel model in which condition (Control vs. LEE) × sex
(male vs. female) × trial (1–4) were fixed factors, and mouse
was included as a random factor. The analysis indicated a main
effect of trial, χ2(3) = 104.67, p < 0.001. Planned polynomial
contrasts showed significant linear [t(114) = 3.54, p = 0.0006]
and quadratic [t(114) = 2.15, p = 0.0338] effects of trial as
well as a three-way interaction between condition, sex, and the
quadratic trial contrast [t(114) = 2.07, p = 0.0405]. This interaction
can be understood by considering the pattern of the effect of
condition across trials for males (trial 1 M = 75.76, 95% CI [−4.29,
155.81]; trial 2 M = −74.39, 95% CI [−154.44, 5.66]; trial 3
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FIGURE 8

Dendritic spine density – males. Representative images of
secondary dendrites of pyramidal cells in layers 4/5 of the frontal
and prelimbic cortices of male control (A1,B1,A3,B3) and LEE
(A2,B2,A4,B4) pups at P20 and P30. Comparison of dendritic spine
density of males indicated no significant differences in frontal
(A5; N = 14) and prelimbic (B5; N = 16) cortices. Data expressed as
mean ± SEM. Scale bar, 250 µm.

M = −31.77, 95% CI [−111.82, 48.28]; trial 4 M = −29.40, 95%
CI [−109.45, 50.65]), and for females (trial 1 M = 12.576, 95% CI
[−71.04, 96.17]; trial 2 M = 3.48, 95% CI [−80.13, 87.09]; trial 3
M = 35.05, 95% CI [−48.56, 118.66]; trial 4 M = −3.58, 95% CI
[−87.19, 80.03]). Other main effects and interactions did not reach
significance (Figures 11B, C). Additional Sidak corrected planned
comparisons between adjacent trials within each combination of
sex and condition yielded significant differences between trials 1

FIGURE 9

Dendritic spine density – females. Representative images of
secondary dendrites of pyramidal cells in layers 4/5 of the frontal
and prelimbic cortices of female control (A1,B1,A3,B3) and LEE
(A2,B2,A4,B4) pups at P20 and P30. Comparison of dendritic spine
density of males indicated no significant differences in frontal
(A5; N = 16) and prelimbic (B5; N = 16) cortices. Data expressed as
mean ± SEM. Scale bar, 250 µm.

and 2 for Control, t(114) = 2.68, p = 0.0417, and LEE, t(114) = 2.97,
p = 0.0191, females (Figure 11C) and for LEE males, t(114) = 6.61,
p < 0.0001 (Figure 11B).

Overall, these data suggest that our exposure paradigm
generates behavioral aberrations at P30 including increased risk-
taking behaviors in LEE mice regardless of sex as well as abnormal
stress regulation, active stress-coping styles and/or hyperactivity
in male LEE mice.
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FIGURE 10

Behavioral assays at P30: EPM. (A) No significant differences in time
spent in the open arms of the EPM when evaluated by sex and a
marginal effect of condition (p = 0.07). (B) No effects observed in
planned comparisons for male and female pups (N = 41). Data
expressed as mean ± SEM.

Discussion

Fifty years ago, several physicians at the University of
Washington Medical School studied a small group of children
who exhibited a particular set of developmental delays. The
commonality among the children was that they were all born to
alcoholic mothers. This was the first of many studies that aimed
to identify and understand the condition that would be later
known as Fetal Alcohol Syndrome (FAS) (Jones et al., 1973). Our
laboratory has studied the effects of PrEE for over 10 years now and
although we have gained insight on FAS, or its spectrum disorder,
FASD, our work was limited to prenatal exposures. Unfortunately,
maternal alcohol consumption may continue during pregnancy,
or if the mother abstained from drinking while pregnant, it may
begin in the early postnatal period. Many new mothers report
that after 9 months of abstinence, they begin to drink again after
the baby is born (Jagodzinski and Fleming, 2007). The advice
by physicians for drinking alcohol while breastfeeding is quite
variable, and this presents a possible health issue for infants of
drinking mothers. In fact, the CDC warn against heavy drinking

FIGURE 11

Behavioral assays at P30: FST and AR. (A) Male LEE pups
(p = 0.0049) spent less time immobile than male controls in the FST.
No significant differences in time spent immobile for females
(p = 0.3588) on the FST (N = 34). No significant differences in
performance on the AR for males (B) or females (C) (N = 42). Data
expressed as mean ± SEM.

during breastfeeding but suggest that “moderate consumption of
alcohol” is not harmful to offspring (Centers for Disease Control
and Prevention, 2022b). Compared to research on prenatal alcohol
exposure, studies examining the effects of maternal drinking
during lactation are mostly limited to epidemiological reports
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with a paucity of papers in animal models where changes in the
developing nervous system are investigated. Thus, we developed
a novel postnatal alcohol exposure model in breastfeeding mice,
using the murine strain utilized in our PrEE studies. In this LEE
model, we demonstrate that maternal consumption of alcohol
while breastfeeding can induce gross developmental deficits in
LEE pups including decreased body weights, brain weights, and
cortical lengths. Additionally, we discovered some sex-specific,
LEE-related phenotypes in the neuroanatomy of the frontal lobe
and prelimbic cortex, as well as behavioral deficits in stress-coping
styles and risk-taking behaviors in LEE offspring. Our findings that
postnatal, indirect ethanol exposure (as modeled by our lactational
experimental paradigm) can negatively impact various aspects of
development represents an important advancement in solidifying
the significance of conscientious, informed parental care.

A novel murine lactational ethanol
exposure model: Impact of LEE on gross
anatomical changes in offspring

Our results suggest that ethanol exposure via lactation is
correlated with reduced body weights in both males and females
at P20 and 30. These findings are consistent with human studies
where children exposed to ethanol through contaminated breast
milk can have consistently lower body weights and growth
trajectories (May et al., 2016). Although there is a paucity of rodent
data on offspring outcomes after ethanol exposure via lactation,
a study from Vilaró et al. (1987) reported a reduction in body
weight of ethanol-exposed rats after a period of maternal ethanol
consumption while nursing her pups. In terms of brain size and
morphology, we find some sex-specific effects of LEE in our model.
Specifically, while LEE males show sustained low brain weights
compared to controls at P20 and P30, LEE females only show
deficits in brain weights at P20, with recovery to control weights
by P30. Thus, LEE females show a faster rate of recovery when
compared to males.

Few rodent models have examined brain weight changes in
LEE mice; however, one study reported a decrease in weights of
the forebrain, cerebellum, and brainstem in alcohol treated pups
(Chen et al., 1998). When examining PrEE paradigms, sustained
reductions in body weight and brain weights are observed from P0
to P50 in mice, consistent with findings in LEE offspring (Abbott
et al., 2016; 2018). This suggests that LEE and PrEE may impact
brain and body growth through similar mechanisms.

Considering the sustained growth retardation in PrEE and
LEE mice, the reduction of body and brain weights might be
due to the gut’s inability to efficiently extract nutrients when
alcohol is ingested. Acute and chronic ethanol administration
results in a reduction of protein synthesis in the small intestine
(Rajendram and Preedy, 2005) and can block absorption of
micro- and macronutrients (Seitz and Homann, 2001; Seitz and
Suter, 2002). Additionally, nutrient deficiency has the potential
to manifest in epigenetic changes, as seen in the populations
affected by the Dutch Hunger Winter (Dutch Famine) (Heijmans
et al., 2008). We found that, in our PrEE model, epigenetic
modifications occurred via changes in DNA methylation, which led
to epigenetic and heritable phenotypes spanning three generations

of mice (Abbott et al., 2018). It is possible that examination of
epigenetic markers in LEE mice could provide further insight into
mechanisms underlying LEE-induced phenotypes.

Impact of LEE on cortical length

In mammals, much of our sophisticated behavior, including
language, sociability, decision making, and even fine motor skills
and coordination, originates with complex functions of cells within
the neocortex. In FASD or other alcohol-induced conditions, the
abnormal phenotypes in humans are often related to presumed
dysfunction within the neocortex (El Shawa et al., 2013). Thus, we
chose to focus our study of the novel LEE model on development of
the neocortex and the behaviors that are mediated, to some extent,
by its function. To begin, we measured cortical length at both
P20 and P30 ages in male and female LEE and control mice. We
found that while the cortex expanded in length significantly from
P20 to P30 in all mice, LEE cortices remained consistently smaller,
regardless of sex. Few rodent models have examined the impact of
LEE on cortical development, and, to our knowledge, there are no
studies that specifically measure cortical length after LEE. Similarly,
studies from our laboratory demonstrated a reduction in cortical
length in PrEE mice (El Shawa et al., 2013; Abbott et al., 2018). As
the cortex continues to grow and develop from birth to puberty in
mice, we posit here that alcohol exposure via lactation may lead
to apoptosis, increased oxidative stress, and interference with the
activity of growth factors as is suggested for prenatal exposures
(Goodlett and Horn, 2001).

Neocortical thickness

In mice, neocortical lamination is present by around P5, when
barrels become apparent in later IV of somatosensory cortex.
According to a comprehensive set of papers from our laboratory,
the areal patterning period ends around this time, P5–6, when
cortical areas have adult-like connections and lamination. Beyond
P6, cortical thickness continues to increase, although the changes
are minimal (Dye et al., 2011a,b). Here, we measured cortical
thickness across several neocortical sensory and motor regions at
P20 and P30 in LEE and control mice. Given that the frontal
cortex develops later than other cortical regions, and that the time
of exposure is after the areal patterning period closes, it is not
surprising that the only LEE-related phenotype we found was a
reduction in cortical thickness in the frontal cortex of P20 LEE
males. This phenotype was recovered by P30 in the LEE male mice.
Subsequent measurements in prelimbic, somatosensory, auditory,
and visual cortices, at both milestone dates, produced no observable
differences. Few rodent models have examined the effects of LEE on
neocortex, and to our knowledge there are no studies that examine
cortical thickness changes after LEE. There are, however, reports of
alcohol-induced changes in cortical thickness measures after PrEE.
Our laboratory demonstrated changes spanning from birth to P50
in cortical thickness measures in the brains of PrEE mice (Abbott
et al., 2016). PrEE models impact cortical thickness at a higher
extent due to exposure during gestation, as this is the primary time
when the cortex develops layer-specific organization of cell types
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and matures from a simply organized, single layer to a complex 6-
layered structure. As the lactational exposure occurs after cortical
areas subdivision and lamination, the exposure timing may be too
late in development to induce significant changes in neocortical
thickness.

LEE and dendritic spine densities in
frontal cortex

Through Golgi-Cox staining we aimed to evaluate the impact
of LEE on dendritic spine densities, as ethanol exposure has
the potential to alter synaptogenesis (Adams et al., 2022) and
synaptic pruning (Kyzar and Pandey, 2015; Kyzar et al., 2016). In
typically developing mice, cortex wide synaptic pruning has been
reported to reach its peak 14–21 days postnatal (Lewis, 2011). In
early alcohol exposure models, acute exposures led to increased
dendritic pruning in the prefrontal cortex, resulting in significant
synapse loss (Socodato et al., 2020). Also, acute ethanol exposure
during synaptogenesis (from P5 to P7) led to drastically decreased
spine densities in the caudate/putamen, however, these densities
recovered to normal levels by around P30 (Clabough et al., 2022).

Here, we exposed mice to ethanol via lactation within this
postnatal sensitive period and conducted intensive spine counts in
frontal lobe ROIs in male and female mice, aged P20 and P30. While
we did not find any significant changes in our measured frontal
cortex spine densities, we did find a trend toward significance
for prelimbic cortex (a subregion of the medial prefrontal cortex)
between LEE and control mice. There were no age- or sex-
dependent effects observed, but the overall reduction in spine
densities observed in the prelimbic cortex of LEE mice could
impact later development, and this could be possibly caused by
ethanol-induced impairment to synaptogenesis or to increased
synaptic pruning as the insult take places during a sensitive
period for both. Of note, whether spine densities in the prelimbic
cortex decrease or increase is age dependent (Galaj et al., 2020);
however, alterations due to alcohol exposure have been associated
with altered behavior regardless of the direction of change (Fox
et al., 2020). This is not surprising given that the prelimbic
cortex is a region shown to play a role in alcohol-drinking
reinforcement (Engleman et al., 2020). These data are consistent
with other brain areas (basal ganglia) where reductions in spine
densities observed immediately after exposure seemed to reverse
by 1 month of age (Clabough et al., 2022). It is possible that
alterations occurred in synaptogenesis and/or pruning earlier in the
exposure period and recovered by weaning when the first measures
were taken.

Impact of LEE on behavioral
development

While it is important to uncover changes in the developing
nervous system that are associated with ethanol exposure through
lactation, understanding the potential behavioral effects of the
postnatal exposure is critical. In our current study we implemented
a battery of behavioral assays to examine LEE’s effect on behavioral
development. The EPM is a classic way to measure anxiety

in rodents (Walf and Frye, 2007). However, researchers have
also looked beyond the initial interpretation of the EPM and
created alternative hypotheses about how time spent in open
arms versus closed arms can be interpreted. Most importantly,
if an animal spends more time in the open arm, it may
indicate increased risk taking or increased exploratory behavior
(Macrì et al., 2002, Kozanian et al., 2018). Also, as alcohol
exposure impacts fear memory learning, affecting an animal’s
ability to learn a natural fear response, increased time in open
arms could be from inhibited fear learning, as was observed
in our PrEE model (Kozanian et al., 2018). Here, we found
that, overall, LEE mice spent a significantly longer time in
open arms when compared to control mice, without sex-specific
effects. This suggests that exposure to ethanol via lactation may
increase risk taking or exploratory behavior. This is consistent
with exposure to ethanol via lactation in humans, as May
et al. (2016) found that LEE children exhibited phenotypic
variability consistent with FASD, with increased risk taking
and cognitive deficits often present in children with FASD
(Fast and Conry, 2009).

A hallmark of FASD and alcoholism is depression (Pei et al.,
2011; Kuria et al., 2012) and the FST is a classic test used to detect
depressive-like behaviors in animal models (Lucki et al., 2001).
Like the EPM, behavioral results associated with the FST have been
interpreted differently over time in the literature. Specifically, the
FST test has been a successful method used to test for the effects
of antidepressant drugs in that they increase the animal’s activity
in the swim well (Porsolt et al., 1978). Researchers who use the
test for other model systems have identified that time immobile
may represent a more complex measure than simple depressive
behaviors. How the animal responds to being in the swim well, with
floating (immobility) or active swimming/climbing can be viewed
as different adaptive reactions to the stressful environment. For
example, Armario (2021) determined that mice react according
to their coping style, either passively or actively, and that the
FST may be a more accurate measure of coping style rather than
behavioral despair. This may also be correlated with hyperactivity
or possibly response to fearful stimuli. Here, we found that LEE
males demonstrated reduced time immobile when compared to
control males in this task, with the effect not observed in female
LEE mice. This indicates that LEE may cause abnormal stress
regulation and hyperactivity in males, consistent with findings in
humans with FASD (Hellemans et al., 2008). For example, alcohol
compromised breast milk has been found to have an activating
effect in humans, as behavioral states of infants showed increased
variability, such as spending less time in quiet sleep and increased
crying (Schuetze et al., 2002). It is also possible that increased time
spent immobile during the FST for male LEE mice could indicate
alteration in fear responsivity, as we showed abnormal fear learning
in our FASD model mice (Kozanian et al., 2018). This behavioral
phenotype may be related to reduced frontal lobe thickness in
males (Figure 6), as the frontal cortex is likely to be involved in
depression (Zhang et al., 2018) and fear responsivity (Gilmartin
et al., 2014).

The AR test measures motor ability, balance, coordination and
learning through repeated measures. Previously, we found that
rotarod performance was altered in PrEE mice; specifically, first
generation PrEE mice showed deficits in performance in the first
two trials compared to controls at both P20 and P30 (Abbott et al.,
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2018; Bottom et al., 2022). Additionally, postnatal alcohol exposure
in rats can impact AR performance (Goodlett et al., 1991; Cebolla
et al., 2009). In our LEE model, male LEE mice showed increased
variability in performance in trials 1–2. Specifically, the change in
performance was appreciably different from controls: the male LEE
mice performed worse on trial 1 but showed a significantly greater
degree of improvement between trials 1 and 2. After training, LEE
mice performed similar to controls on the AR. In summary, male
LEE mice show a greater deficit in trial 1 and showed an abrupt
learning profile that differs significantly from both controls and
female LEE mice.

Collectively, our results from our behavioral studies suggest
LEE may impact offspring in ways similar to prenatal exposures,
with increased risk-taking, hyperactivity, active stress-coping
responses to environmental stressors, and transient deficits in
motor coordination. Additionally, some of these LEE-induced
deficits may be sex-specific.

Critical periods, pubescence, and
plasticity

Developmental critical periods are described as times when
systems are “plastic” or open to change from environmental
experience, such as with learning, or insult, such as with early
alcohol exposure. For brain development, these are precise time
points where neuronal plasticity is heightened and cortical circuits
are particularly susceptible to regulation by specific sensory
modalities (Jeanmonod et al., 1981). Initial explorational work in
somatosensory cortical reorganization found that the removal of
mouse vibrissae at birth resulted in an absence of the associated
barrels (Van der Loos and Woolsey, 1973). Since then, studies
have refined these events and have assigned a critical period range
(first week of life in mice) for proper barrel formation (Lo et al.,
2017). Additionally, the critical period for the visual system has
been extensively studied. A literature review from Hooks and Chen
(2007), places the critical period prior to eye opening in mice, at
P0–P10. Perturbations in this period may alter cortical retinotopic
maps (Hooks and Chen, 2007) along with gene expression and
intra neocortical connections (Dye et al., 2012). How perturbations,
insults, or changes in input impact a developing animal depends on
the critical period for development in the relevant system. If events
occur after closure of a critical period, the animal may be protected
from detrimental harm. Unfortunately, if these events occur outside
the critical period, the ability of the brain to repair itself with
plasticity mechanisms may also be reduced. Understanding critical
periods when comparing the impact of prenatal versus postnatal
alcohol exposure, on the developing nervous system, is critical.

Compared to the effects of prenatal alcohol exposure in our
mouse model of FASD, LEE has more mild phenotypes associated
with the exposure, although the changes we observed in our LEE
mice could have debilitating consequences if mimicked in human
systems. The difference in severity of outcomes between PrEE and
LEE is possibly related to critical periods for development. As
described previously, much of cortical development (lamination,
arealization) in the mouse reaches an adult-like state by the first
postnatal week, whereas during the prenatal period and the first few
days of life, the developing brain is very susceptible to change. Thus,

LEE animals may be somewhat protected, when compared to PrEE,
from the more severe effects of the alcohol exposure because the key
elements of cortical development, particularly those regulated by
gene expression, such as the development of the intricate neuronal
circuitry, are near complete.

Interestingly, there are sex differences revealed in our data.
Specifically, we found that LEE females recovered brain and
body weights more quickly when compared to LEE males, and
that frontal cortex phenotypes and atypical behavior on the
FST were observed only in LEE males. Also, LEE male rotarod
performance demonstrated an abrupt learning pattern that was
markedly different from controls and LEE females. One hypothesis
as to why LEE females fare better, when compared to LEE males,
related to differences in puberty onset compared to the timing of
exposure and dependent measures. Typical onset of puberty for
wild-type mice begins around P28 in males, and P25 for females
(Ismail et al., 2011; Molenhuis et al., 2014). Alcohol exposure prior
to this period may impact the milieu of hormones that regulate
onset of puberty. For example, a gradual increase of Gonadotropin
Releasing Hormone (GnRH) is responsible for the typical onset of
puberty; its expression is diminished in the presence of alcohol,
resulting in a pubertal onset delay (Srivastava et al., 2014; Dees et al.,
2017). Therefore, our model can potentially delay puberty onset in
LEE mice. Considering that female mice go through puberty earlier
than males, it is not surprising that LEE has a greater impact on
male behavior at P30.

Study limitation and future directions

With this study, we attempted to model offspring exposure to
ethanol, naturally, via maternal consumption during lactation and
active breastfeeding in an outbred mouse strain. With this comes
limitations. For example, outbred mice have inherent variability,
unlike inbred strains where genetics are controlled. However,
inbred mice, such as C57BL/6 are less hardy than CD-1 mice
and tend to provide inferior maternal care to their offspring.
Additionally, the self-administration design of this experiment
leads to variation in maternal ethanol consumption as well
as milk production and composition. These factors could play
influential roles in offspring outcome in addition to the impact that
ethanol provides.

Another limitation is the variability in pup BEC we observed
in our data. Although the variability in dam BEC was small, we
believe there were several factors besides maternal ethanol levels
that influenced pup BEC. The LEE pups were small at P20 and
obtaining blood samples in a great enough volume for the assays
was difficult. This resulted in a lower sample size. Also, by P20,
some pups had begun eating chow in addition to nursing, possibly
reducing ethanol intake and time from the last nursing event was
variable from pups selected for analysis. Mice metabolize ethanol
quickly, so increased variability in measured BEC is expected when
time since the last dose is unknown. Additionally, competition for
breast milk access can result in variability among pups. Also, timing
of maternal alcohol consumption relative to the period of nursing
that preceded the pup sampling could also introduce variability.
Despite the observed variability in pup BEC, the BECs were
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non-zero in all LEE pups and the level was significantly higher than
controls in all LEE cases.

Future studies could include shorter time periods of exposure,
as human mothers sometimes breastfeed for abbreviated periods
of time post-partum. Also, additional studies of gene expression
analyses in the frontal cortex as well as intraneocortical connectivity
would be warranted and behavior tests of fear conditioning and
learning as we observed phenotypes in these domains in our
PrEE models. Finally, additional behavioral assays including tests
to better assess hyperactivity, such as open field and assays
that can detect cognitive deficits such as Morris water maze or
radial arm maze.

Conclusion

A preponderance of evidence from researchers studying
prenatal alcohol exposure and FASD led the CDC to correct its
stance on drinking in pregnancy. They now clearly state “There
is no known safe amount of alcohol use during pregnancy or
while trying to get pregnant” (Centers for Disease Control and
Prevention, 2022a). To date, the CDC has not made a similar
statement regarding drinking while breastfeeding, despite research
demonstrating high frequency of maternal alcohol consumption
while nursing (Backstrand et al., 2004; Parackal et al., 2007; Giglia
et al., 2008; Giglia, 2010; Lange et al., 2016). In their review, May
et al. (2016) make a compelling argument that alcohol consumption
during pregnancy can result in poor childhood outcomes.

Our data from our novel LEE model supports this notion, as our
LEE model demonstrates similar phenotypes as our PrEE model;
therefore, abstaining from alcohol consumption during BOTH
the prenatal period and while breastfeeding is the safest option.
Although the effects of LEE are mild compared to PrEE, most likely
due to exposure outside critical periods for typical development,
offspring exposure to ethanol via breast milk can have deleterious
effects on developing brain and behavior and should be avoided.
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Epidemiological evidence suggests that one’s risk of being diagnosed with a 
neurodevelopmental disorder (NDD)—such as autism, ADHD, or schizophrenia—
increases significantly if their mother had a viral or bacterial infection during 
the first or second trimester of pregnancy. Despite this well-known data, little 
is known about how developing neural systems are perturbed by events such as 
early-life immune activation. One theory is that the maternal immune response 
disrupts neural processes important for typical fetal and postnatal development, 
which can subsequently result in specific and overlapping behavioral phenotypes 
in offspring, characteristic of NDDs. As such, rodent models of maternal immune 
activation (MIA) have been useful in elucidating neural mechanisms that may 
become dysregulated by MIA. This review will start with an up-to-date and in-
depth, critical summary of epidemiological data in humans, examining the 
association between different types of MIA and NDD outcomes in offspring. 
Thereafter, we will summarize common rodent models of MIA and discuss their 
relevance to the human epidemiological data. Finally, we  will highlight other 
factors that may interact with or impact MIA and its associated risk for NDDs, 
and emphasize the importance for researchers to consider these when designing 
future human and rodent studies. These points to consider include: the sex of the 
offspring, the developmental timing of the immune challenge, and other factors 
that may contribute to individual variability in neural and behavioral responses 
to MIA, such as genetics, parental age, the gut microbiome, prenatal stress, and 
placental buffering.
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1. Introduction

According to the Centers for Disease Control and Prevention, the 
prevalence of neurodevelopmental disorders (NDDs) in the 
United States is 13.87% and yet the etiology of these disorders is not 
well understood. This rate has increased by about 9.5% in the last 
decade (Zablotsky et al., 2019), likely because our understanding of 
and ability to effectively diagnose various NDDs has improved over 
time. NDDs are similarly prevalent across most countries throughout 
the world, although the rates may vary due to socioeconomic factors, 
awareness, and diagnostic methods within each country (Chiarotti 
and Venerosi, 2020). Common epidemiological trends associated with 
NDDs include: the general age of onset within each disorder, symptom 
manifestation within each disorder, sex bias in the prevalence of 
certain NDDs, as well as the possible risk factors associated with 
many NDDs.

Epidemiological data suggest that genetic risk provides a 
foundation upon which other factors may precipitate or enhance the 
risk for many NDDs (Zawadzka et al., 2021). One of those other risk 
factors is prenatal infection associated with maternal immune 
activation, which slightly but significantly increases the risk of 
various NDDs. Maternal immune activation (MIA) is a term used in 
epidemiological studies that typically refers to maternal exposure to, 
or infection with, various immunogens (i.e., viral, bacterial, parasitic) 
during pregnancy. Some human studies have also considered 
increased levels of immune-related molecules (i.e., cytokines, 
chemokines) to serve as indicators of MIA. Animal studies are also 
commonly used to model MIA either via direct infection (i.e., of a 
virus, bacteria, or parasite) or via stimulation of the immune system 
(in the absence of infection) by utilizing a viral or bacterial mimetic, 
immune-related molecules, or other environmental stressors that are 
known to activate the immune system. Rodent models of MIA have 
been used extensively to model and better understand how activation 
of the immune system during gestation may affect the development 
of neurobiological systems underlying NDDs. Neuroscientists have 
only just begun to understand how the maturation of certain 
structures in the brain allows for the emergence of particular 
behaviors at specific ages (see Albani et al., 2014 for review). As such, 
it is still not well-understood how developing neural circuits or 
systems are disrupted by events such as immune activation that, in 
turn, increase the risk of NDDs or explain the underlying etiology of 
their symptoms.

In this review, we will (1) summarize epidemiological evidence 
that supports the role of MIA in the risk for NDDs, with a critical 
eye towards new emerging trends in the data, (2) introduce 
commonly used rodent models of MIA and their relevance for 
studying human NDDs, and (3) assess additional factors that should 
be considered when studying NDDs in rodents, including timing 
and severity of infection, sex differences in vulnerability for and 
symptomatology of NDDs, and individual differences associated 
with the maternal immune response. Thus, the overall goal of this 
review paper is to evaluate the epidemiological link between MIA 
and NDDs in order to identify factors that should be considered 
when designing future human and rodent studies. By considering 
additional dimensional criteria in their experimental design, 
researchers may begin to better address the immunological and 
neurobiological causes of NDDs and effectively identify possible 
treatments or therapies.

2. What are neurodevelopmental 
disorders?

The term “neurodevelopmental disorders” (NDDs) was first 
introduced as a diagnostic category in the DSM-5, to replace the more 
general term “developmental disorders” that was introduced in the 
DSM-III (Morris-Rosendahl and Crocq, 2020). These disorders affect 
one or several areas of development, including language, motor, social, 
and learning skills. More specifically, NDDs are a group of conditions 
that produce impairments of functioning during development and are 
associated with a known early-life medical, environmental, or genetic 
risk factor (Morris-Rosendahl and Crocq, 2020). Examples of NDDs 
defined in the DSM-5 include, but are not limited to, autism spectrum 
disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), 
intellectual disability (ID), and communication disorders. In 2019 and 
2020 in the United States, the prevalence of ADHD was ~8.5%, ASD 
was ~2.9%, intellectual disability (ID) was ~1.4%, and various learning 
disabilities (LD) was ~6.4% (Yang et  al., 2022). Notably, a higher 
prevalence of ADHD, ASD, ID, and LD have all been observed in boys 
relative to girls aged 3–17 (Yang et al., 2022). Schizophrenia is also 
considered by many researchers and clinicians to fall under the 
category of NDDs even though it is not defined as such in the DSM-5. 
This is because while the positive symptoms of schizophrenia 
(hallucinations, disorganized speech, etc.) typically manifest first 
during late adolescence, the etiology of these symptoms likely result 
from events that occur during perinatal or early postnatal development 
(Brašić and Holland, 2007; Fatemi and Folsom, 2009; Rapoport et al., 
2012; Heyer and Meredith, 2017).

Interestingly, there are often overlapping symptoms experienced 
by people diagnosed with various NDDs. These include cognitive and 
learning disabilities (Pope and Kern, 2006; Gold et al., 2008; Cicero 
et al., 2014; Wang et al., 2017; Banker et al., 2021), decreased social 
behaviors (Nijmeijer et al., 2008; Hooley, 2010; Uekermann et al., 
2010; Savla et al., 2013; Staikova et al., 2013; Supekar et al., 2013; 
Perepa, 2014; Cotter et al., 2018; Porcelli et al., 2019), altered sleep 
patterns or disrupted circadian rhythms (Williams et al., 2004; Cohrs, 
2008; Konofal et al., 2010; Stein et al., 2012; Hvolby, 2014; Myles et al., 
2016; Kaskie et  al., 2017; Shelton and Malow, 2021), as well as 
metabolic or gastrointestinal disturbances (Richardson and Ross, 
2000; Singh et al., 2020; Oyarzábal et al., 2021). It is important to note 
that symptoms shared across different NDDs can manifest differently 
based on the specific disorder and the individual person. For 
example, people diagnosed with ADHD, ASD, or schizophrenia may 
experience dysregulated sleep or circadian rhythm cycles, which can 
range from having delayed onset of sleep and melatonin peak to 
having decreased efficiency and total amount of sleep (Williams et al., 
2004; Cohrs, 2008; Konofal et al., 2010; Stein et al., 2012; Shelton and 
Malow, 2021). People diagnosed with ADHD or schizophrenia may 
also experience sleep apnea or obstructed breathing during sleep 
(Konofal et al., 2010; Hvolby, 2014; Myles et al., 2016; Kaskie et al., 
2017). Furthermore, particular modes of learning are differentially 
affected across NDDs. Schizophrenia is associated with difficulties in 
verbal learning, learning that requires self-correction, learning that 
happens on a rapid timescale, and reward or reinforcement learning 
(Pope and Kern, 2006; Gold et al., 2008; Cicero et al., 2014), whereas 
ASD is associated with impairments in spatial working memory, 
spatial navigation and reasoning, and memory retrieval tasks (Wang 
et al., 2017; Banker et al., 2021). Thus, the phenotype of a “shared” 
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NDD symptom may manifest differently depending on the distinct 
NDD of that individual.

It is currently unknown whether the neurobiology contributing to 
the overarching “shared” NDD symptoms is similarly impacted in 
humans across different disorders (see De Lacy and King, 2013 for 
review of neurobiological studies underlying ASD and schizophrenia). 
On one hand, it is possible that across different NDDs, a shared symptom 
may be caused by a disturbance in a shared neurobiological process. One 
hypothesis is that dysfunction across NDDs may be driven by alterations 
in the excitatory/inhibitory balance in the brain (Pearce, 2001; Foss-Feig 
et al., 2017). Additionally, Nair et al. (2020) theorize that reduced social 
behaviors in adolescents with ASD or psychosis are linked to disruptions 
in the default mode network. On the other hand, it is possible that for 
different NDDs, a shared symptom could be caused by a disturbance in 
distinct neurobiological processes. For instance, evidence suggests that 
different patterns of underconnectivity of long-range axons between 
multiple brain regions and of overconnectivity of short-range axons 
within a brain region are implicated in the pathogenesis of ASD, ADHD, 
and schizophrenia (see De Lacy and King, 2013 and Kern et al., 2015 for 
information about the underlying mechanisms and implications of these 
altered connectivity patterns). Specifically, underconnectivity between 
frontal cortex and posterior brain areas is associated with ASD whereas 
underconnectivity between parietal cortex and the cerebellum is 
associated with ADHD (Kern et al., 2015). In this case, even though a 
similar mechanism of dysfunction may be similar across disorders, the 
specific characteristics (and likely the etiology) of the disruption are 
distinct for each disorder. Finally, dysregulation of the immune system 
following MIA may contribute to the etiology of many NDDs, in that it 
elicits a core set of symptoms that are similar to sickness behavior and 
are consistent across different NDDs, including cognitive or learning 
deficits, decreased social behavior, metabolic or gastrointestinal 
disturbances, and dysregulated sleep.

In summary, age of onset, cause, severity, etiology, and manifestation 
of symptoms can be different amongst individuals, even within one type 
of NDD (e.g., ASD). This variability is not specific to any one NDD or to 
the class of NDDs in general, rather it applies to many mental health and 
psychiatric disorders where the diagnostic criteria reflect a collection of 
symptoms that often overlap. This variability and overlap in 
symptomatology across various disorders led the National Institutes of 
Mental Health (NIMH) to create the Research Domain Criteria (RDoC) 
framework, which focuses on a dimensional rather than categorical 
approach to preclinical research. The RDoC encourages researchers to 
study specific criteria (i.e., dimensions) related to a disorder (e.g., risk 
factors such as MIA or symptoms such as specific types of learning 
deficits), rather than attempting to model the entirety of a disorder. By 
focusing experimental designs -- of both epidemiological studies and 
rodent models -- on studying specific criteria related to an NDD, we may 
gain a better understanding of the underlying circuits and mechanisms 
pertaining to multiple NDDs that exhibit that criterion as a symptom or 
risk factor. This framework also highlights the need for researchers to 
consider individual differences in the expression of specific symptoms (or 
RDoC dimensions) when investigating risk factors for NDDs, which may 
ultimately provide us with a better understanding of how the symptoms, 
ontogeny, and severity of NDDs can be so distinct between one case to 
the next. There are many types of environmental factors and stressors 
that commonly and strongly predict the risk of NDDs, including genetic 
factors (Carter, 2009; McCarroll and Hyman, 2013), sex (Bargiela et al., 
2016; Lai, et al., 2017), parental age, stress, diet, as well as prenatal and 

birth complications (summarized in Carlsson et al., 2021). That said, 
we will discuss the epidemiological evidence supporting that MIA is a 
well-known risk factor for many NDDs.

3. Maternal immune activation is an 
epidemiological risk factor for 
neurodevelopmental disorders

The developing brain is uniquely vulnerable to environmental 
insults and infections that can adversely impact the 
neurodevelopmental trajectory and ontogeny of behavior later in life 
(Bale, 2009; Deverman and Patterson, 2009; Schwarz and Bilbo, 
2011b). Interestingly, the immune system has an important role in the 
various processes of typical neural development (Schwarz and Bilbo, 
2011b; Tanabe and Yamashita, 2018; Zengeler and Lukens, 2021). 
Epidemiological data support that MIA increases the risk for NDDs 
in offspring. It is important to note that in both human and animal 
studies, MIA typically refers to any immune challenge that occurs 
during pregnancy. However, animal studies modeling gestational 
development can also encompass the perinatal period more broadly—
occuring during gestation or around the time of birth—because the 
first 2 weeks of neonatal development in rodent pups is roughly 
equivalent to the third trimester of fetal development in humans 
(Guma et  al., 2019). More specifically, third trimester 
neurodevelopmental processes such as immunogenesis, apoptosis, 
and synaptogenesis, occur during gestation in humans but continue 
post-birth in rodents (Estes and McAllister, 2016).

In humans, cohort and case–control studies are common 
experimental designs used to examine the relationship between MIA 
and NDD diagnosis (Song and Chung, 2010). Cohort studies first 
identify people that were exposed to an infectious agent during a 
specific time, and then either prospectively or retrospectively examine 
the likelihood that they are diagnosed with the disorder being studied. 
On the other hand, case–control studies first identify people diagnosed 
with the disorder of interest, and then retrospectively determine if 
they experienced an associated exposure or risk factor. Incidences of 
infection are typically confirmed via self-report, old medical records, 
or serological confirmation of infection. One limitation of these 
human studies is the necessity of an observational design, which 
prevents us from fully understanding the causal relationship between 
MIA and symptoms of NDDs. This highlights the importance of basic 
biomedical research and animal models to decipher the specific link 
between MIA and the ontogeny of NDDs, with the additional goal of 
identifying the underlying molecular, cellular, or neural circuit 
mechanisms or disruptions. Nevertheless, epidemiological studies of 
maternal exposure to various pathogens and environmental triggers—
particularly viral and bacterial infections—during gestation provide 
some of the strongest data linking MIA and the risk of NDDs (see Han 
et al., 2021 for a more comprehensive review).

3.1. The epidemiological evidence with a 
focus on infection type, severity, febrile 
response, and medications

General infections during pregnancy have been associated with 
increased risk for ASD and schizophrenia in offspring (Nielsen et al., 
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2013; Jiang et al., 2016; Zhou et al., 2021). More specifically, viral and 
bacterial infections during gestation are well-associated with later 
NDD diagnosis. Various viral infections during pregnancy are linked 
with ASD diagnosis (e.g., rubella, congenital cytomegalovirus, 
influenza) and schizophrenia diagnosis (e.g., influenza, rubella, 
Herpes simplex virus type 2 diagnosis) in offspring (see review 
articles: Boksa, 2008; Brown, 2012; Ornoy et al., 2015; Shuid et al., 
2021; Cheslack-Postava and Brown, 2022; Massarali et  al., 2022). 
Certain bacterial infections during gestation are also associated with 
ASD (e.g., urinary tract infection, genital infections) and schizophrenia 
(e.g., respiratory infections, pyelonephritis, and genital/reproductive 
infections) diagnoses in offspring (see review articles: Boksa, 2008; 
Brown, 2012; Cheslack-Postava and Brown, 2022; Massarali et al., 
2022). Parasitic infections during pregnancy, particularly 
Toxoplasmosis gondii (T. gondii), have also been linked to 
schizophrenia in offspring (Khandaker et al., 2013; Cheslack-Postava 
and Brown, 2022). Some case–control studies have shown that 
individuals with schizophrenia were more likely to have IgG 
antibodies against T. gondii (Hamidinejat et al., 2010), be exposed to 
maternal Toxoplasma IgG antibodies during gestation (titer ≥1: 128) 
(Brown et al., 2005), or have increased levels of IgG antibodies against 
T. gondii as infants (Mortensen et al., 2007). The next subsections will 
discuss specific types of infections and factors most notably associated 
with the risk of NDDs, with an emphasis on ASD and schizophrenia.

3.1.1. Rubella
During the 1960s there was a rubella epidemic in the United States 

that resulted in various pregnancy and birth complications as well as 
physical and cognitive birth defects in the affected infants (Lindquist 
et al., 1965; Chess et al., 1979; Berger et al., 2011). While many cases 
of rubella infection have since been prevented by vaccination, rubella 
is estimated to still affect around 5% of pregnant persons worldwide 
(Berger et al., 2011; Hutton, 2016). Early links between rubella and 
ASD were identified from a New York cohort study of children in the 
United States that were part of the Rubella Birth Defect Evaluation 
Project (RBDEP). This study identified a significant correlation 
between congenital rubella syndrome (CRS) and autism diagnosis 
during childhood (Chess et al., 1979). Of particular note, CRS and 
ASD seem to overlap in their manifestation and symptomatology 
(Desmond et  al., 1969; Swisher and Swisher, 1975; Hutton, 2016; 
Mawson and Croft, 2019). One mechanism thought to underlie the 
link between maternal rubella infection, particularly during the first 
trimester, and ASD risk in offspring is via liver dysfunction resulting 
in fetal exposure to high levels of vitamin A, which can be toxic to 
brain and other tissues of the developing fetus (Mawson and 
Croft, 2019).

Another cohort study of the RBDEP found that prenatal rubella 
exposure was associated with risk for nonaffective psychosis in young 
adulthood, regardless of hearing loss (Brown et  al., 2000a). This 
association held true during a follow-up study with an updated 
assessment that allowed for a diagnosis of schizophrenia (Brown et al., 
2001), which provided evidence that prenatal rubella is linked with an 
increased risk for schizophrenia in young adulthood. CRS and 
schizophrenia also overlap in brain dysmorphology, with both groups 
having reduced cortical gray matter volume and enlarged lateral 
ventricle volume, when adjusted for age and head size (Lim et al., 
1995). In all, additional research still needs to be  conducted to 
determine the underlying characteristics of prenatal rubella infection 

that may contribute to symptoms of ASD and schizophrenia, teased 
apart from other symptoms more specific to CRS.

3.1.2. Bacterial infections
In a Swedish cohort study, bacterial infection, not associated with 

a particular trimester of pregnancy, was linked with ASD without 
comorbid intellectual disability, ID (Lee et al., 2015). A significant 
association between ASD diagnosis and general bacterial infection 
during the third trimester was also reported in a Taiwanese case–
control study (Fang et al., 2015). A meta-analysis similarly found that 
bacterial infection, particularly during the second or third trimester, 
was associated with ASD in offspring (Jiang et al., 2016). Moreover, 
bacterial infections requiring hospitalization during the second 
trimester (most commonly including urinary tract infection and 
genital infection) were linked to ASD diagnosis in a Danish cohort 
study (Atladóttir et al., 2010). Similarly, in a California case–control 
study in the United States, bacterial infections (such as urinary tract 
infection, amniotic infection at delivery, and major puerperal 
infection) diagnosed during a hospital stay, particularly during the 
third trimester of pregnancy, were significantly associated with risk for 
ASD in offspring (Zerbo et al., 2015). Additionally, in a Danish cohort 
study, genitourinary infections during weeks 33–36 of the third 
trimester were significantly linked with increased risk for ADHD in 
offspring (Werenberg Dreier et al., 2016).

Furthermore, a meta-analysis found increased risk of psychosis in 
offspring linked to general bacterial infections during pregnancy 
(Zhou et al., 2021). In a Danish cohort study, exposure to bacterial 
infection (including sinusitis, tonsillitis, pneumonia, cystitis, 
pyelonephritis, and bacterial venereal infection) during the first 
trimester of pregnancy was associated with an elevated risk for 
schizophrenia in offspring (Sørensen et  al., 2009). Exposure to 
maternal genital/reproductive (G/R) infections during the 
periconceptual period (such as endometritis, cervicitis, pelvic 
inflammatory disease, vaginitis, syphilis, condylomata, “venereal 
disease,” and gonorrhea) was also linked with increased risk for 
schizophrenia in offspring (Babulas et  al., 2006). Further, 
pyelonephritis infection (kidney infection) that required 
hospitalization was associated with schizophrenia in offspring, but 
notably, only when there was a family history of psychosis (Clarke 
et al., 2009). Similarly, in a Swedish population-based cohort study, 
maternal infection during pregnancy was associated with later 
psychosis in offspring, only when there was also parental history of a 
psychiatric disorder (Blomström et  al., 2016). While much of the 
above evidence supports that maternal bacterial infection increases 
the risk of NDDs, these last two studies, in particular, suggest that 
there may alternatively be an underlying susceptibility to perinatal 
infection in families with a history of NDDs, a concept that we will 
discuss in greater detail below.

3.1.3. Influenza
Influenza during pregnancy has been linked to an increased risk 

of schizophrenia in affected offspring (Khandaker et al., 2013). Two 
cohort studies reported an increased risk of schizophrenia associated 
with serologically confirmed maternal influenza infection, although 
this increased risk was ultimately not statistically significant (Brown 
et al., 2004; Ellman et al., 2009). In a prediction model, the number of 
influenza deaths in the general population of England was significantly 
associated with risk of schizophrenia in offspring that were in their 6th 
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or 7th month of gestation at the time (Sham et al., 1992). Similarly, the 
number of influenza infections in the general population of Denmark 
were linked with schizophrenia risk in offspring that were in their 6th 
month of gestation at that time (Barr et al., 1990; Takei et al., 1996). 
Moreover, using data from influenza epidemics in France between 
1949 and 1981, Limosin et al. (2003) also reported that adults with 
schizophrenia were more likely to have been exposed to influenza 
during the 5th month of gestation as compared to controls.

Often, a major limitation of these studies is the lack of direct link 
between prenatal influenza exposure and schizophrenia outcomes 
within the same subjects, although a few studies have established this 
link. In a study examining outcomes of the 1957 influenza epidemic 
in Finland, admissions into psychiatric hospitals for schizophrenia in 
offspring was associated with a second-trimester gestational age at the 
time of the epidemic (Mednick et al., 1988). Prenatal infections were 
later confirmed via medical records, supporting that influenza 
exposure during the second trimester was associated with an increased 
risk for schizophrenia as compared to infection during the first or 
third trimesters (Mednick et al., 1994). Further, a Californian cohort 
study in the United States found that respiratory infections during the 
second trimester of pregnancy were significantly associated with 
schizophrenia spectrum disorder diagnosis in offspring (Brown 
et al., 2000b).

There is perhaps more limited evidence supporting an association 
between influenza infection during gestation, not specifically linked 
to a specific trimester, and increased risk for ASD (Atladóttir et al., 
2012). In a United States study using a large patient dataset within 
Kaiser Permanente healthcare network in Northern California (Zerbo 
et al., 2017), and in a Norwegian cohort study (Mahic et al., 2017), 
there were no significant associations found between influenza 
infection during pregnancy and ASD diagnosis. On the other hand, 
influenza infection during the second trimester was significantly 
associated with risk for ASD in a Boston cohort study in the 
United States (Holingue et al., 2020). Interestingly, this association was 
only true when antibiotics were not taken at any point during 
pregnancy, and not necessarily that they were only avoided at the 
specific time of infection (Holingue et al., 2020). In all, there is limited 
and conflicting evidence for the link between prenatal influenza and 
NDDs, particularly schizophrenia and ASD, which suggests that the 
association may be more complex than initially reported.

3.1.4. Fever during pregnancy
Even though ASD and developmental delays were not associated 

with general influenza exposure in the Northern California cohort, 
the incidence of ASD and NDDs in offspring were significantly 
associated with fever during pregnancy in an earlier study (Zerbo 
et  al., 2013). As expected, this fever-associated risk for ASD was 
attenuated in people that reported taking antipyretics to reduce their 
fever during pregnancy (Zerbo et al., 2013). Supporting these data, a 
meta-analysis examining the relationship between prenatal immune 
activation and ASD diagnosis found a significant association between 
maternal fever and ASD diagnosis in offspring; this association was 
not significant for prenatal infections without fever (Tioleco et al., 
2021). A United States case–control study also found that there was a 
significant association between ASD risk and having a fever during 
the second trimester, even though there was no association between 
general prenatal infection and ASD risk (Croen et al., 2019). Thus, it 
is possible that links between maternal influenza during pregnancy 

and ASD risk may be obscured by unmeasured febrile response and 
unreported medication use (either antibiotics or antipyretics) in 
retrospective epidemiological studies, or through the lack of inclusion 
of such criteria in the original study design or analysis.

Furthermore, there is some evidence that maternal febrile 
response to influenza infection during pregnancy may be an important 
factor associated with increased risk for schizophrenia in offspring 
(Edwards, 2007). A Finnish cohort study found an increased odds 
ratio for schizophrenia in offspring that was associated with maternal 
fever during pregnancy, however the data were not statistically 
significant (Jones et al., 1998). Moreover, a Danish cohort study found 
that exposure to infections or maternal fever during gestation was 
associated with offspring having one psychosis-like experience by 
11-years of age (Dreier et al., 2018). On another note, a Danish cohort 
study identified an association between maternal fever during weeks 
9–12 of the first trimester and ADHD risk in offspring (Werenberg 
Dreier et  al., 2016). Overall, it seems that the febrile response to 
infection during pregnancy or during parturition is linked with risk 
for NDDs in offspring and may serve as a potential mechanism to 
disrupt neurobiological development in the fetus and/or child.

3.1.5. Severity of infection
An additional nuance to the data presented thus far is the severity 

and duration of an infection or febrile response during pregnancy. A 
Danish cohort study reported that febrile episodes lasting more than 
1 week, and that occurred prior to 32 weeks of gestation (roughly 
mid-third trimester), were associated with a threefold increase in risk 
for ASD in offspring (Atladóttir et al., 2012). Supporting this evidence, 
a study using data from the Norwegian Mother and Child Cohort 
Study (Magnus, et  al., 2006) and Autism Birth Cohort Study 
(Stoltenberg, et al., 2010) found that maternal fever during the second 
trimester was associated with increased risk for ASD, and this risk was 
augmented with increased number of febrile episodes (Hornig 
et al., 2018).

Furthermore, a Swedish cohort study found an increased risk of 
ASD diagnosis associated with exposure to severe types of perinatal 
infections (such as sepsis, pneumonia, pyelonephritis, meningitis or 
encephalitis, influenza, and chorioamnionitis) versus a non-severe 
urinary tract infection (Al-Haddad et al., 2019). Having two or more 
infections during pregnancy, particularly during the third trimester, 
was also associated with increased risk for ASD (Zerbo et al., 2015). 
Along these lines, a Danish cohort study found that hospital 
admissions for viral infection during the first trimester (including 
influenza, gastroenteritis, rubella, etc.) and for bacterial infection 
(including urinary tract and genital infections) during the second 
trimester were significantly associated with an increased risk for ASD 
diagnosis (Atladóttir et al., 2010). Similarly, a meta-analysis showed 
that infection during pregnancy that required hospitalization was 
associated with increased risk for ASD, particularly during the first or 
second trimester of pregnancy (Jiang et al., 2016).

Psychosis risk in offspring has also been linked to hospital 
treatment for maternal infection during pregnancy (Zhou et al., 2021). 
Interestingly, schizophrenia in offspring has also been associated with 
both maternal and paternal infections that specifically required a visit 
to the hospital, regardless of whether the visit occurred before, during, 
or after pregnancy (Nielsen et al., 2013). This suggests that familial 
history of prior illness or general infection may also be an important 
factor to consider in the risk for NDDs, which we will discuss more 
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later in this review. Overall, these data indicate that, during gestation, 
the magnitude of the febrile response and the severity of infection may 
be specific factors important for consideration in the risk of ASD and 
schizophrenia diagnoses.

3.1.6. Cytokine and chemokine expression during 
pregnancy

As originally proposed by Dr. Paul Patterson and confirmed by 
many colleagues since, one mechanism by which influenza (or other 
infections) increases the risk of NDDs in offspring may be via the 
maternal immune response and its associated circulating cytokines, 
rather than via a direct infection of the fetus itself (Shi et al., 2005; 
Mahic et al., 2017). In the past few decades, human epidemiological 
studies have provided further evidence of this idea. A Californian 
case–control study in the United States found that elevated levels of 
interferon (IFN)-γ, interleukin (IL)-4, and IL-5 in maternal serum 
mid-pregnancy were associated with increased ASD risk in 
offspring relative to the general population (Goines et al., 2011). 
Importantly, cytokine levels were adjusted for covariates during 
analysis, including gestational age at the time of specimen collection 
and maternal weight, age, ethnicity and country of birth. Similarly, 
a Danish case–control study found increased levels of tumor 
necrosis factor (TNF)-α and TNF-β in amniotic fluid (collected 
during screening or diagnostic amniocentesis procedures) of 
individuals later diagnosed with ASD (Abdallah et al., 2013). The 
researchers also found an association between ASD and elevated 
levels of IL-4, IL-10, and monocyte chemoattractant protein 
(MCP)-1 in the amniotic fluid of individuals born after 1993, which 
is when an updated diagnostic code for autism was introduced 
(Abdallah et al., 2012, 2013).

Moreover, a Philadelphia case–control study in the United States 
analyzed maternal serum samples that were collected during various 
prenatal visits or at birth and found that elevated levels of 
pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 were associated 
with the diagnosis of a psychiatric disorder (i.e., schizophrenia, 
schizoaffective disorder, and major depression or bipolar disorder 
with psychosis) decades later in adult offspring (Allswede et al., 2020). 
This association was particularly true for samples collected during the 
first half of pregnancy but was not significant for those collected 
during the second half of pregnancy. Similarly, a Rhode Island study 
in the United States found increased levels of TNF-α and IL-8  in 
serum collected at parturition that were linked with reports of 
maternal infection during the third trimester (Buka et al., 2001). The 
elevation in TNF-α was specifically associated with increased risk for 
psychosis in offspring.

Overall, these studies support that activation of the immune 
system (via infection) induces a concert of cytokines and chemokines 
that circulate throughout the body to fight the invading pathogen. In 
doing so, these pleiotropic immune molecules have powerful effects 
on the body; they can pass through the placental barrier and enter the 
fetal compartment, or they can trigger cytokine production in the 
placenta itself, which can produce similarly powerful effects on the 
developing fetus (Hsiao and Patterson, 2012). This inflammatory 
response can thus drive alterations in the fetal brain by disrupting 
processes important for typical neural development, which may 
underlie later vulnerability to NDDs and their symptoms.

As mentioned previously, the immune system is highly involved 
in regulating numerous processes important for neural development. 

Microglia, the innate immune cells of the brain, are involved in the 
pruning and maturation of appropriate synapses during development 
via phagocytosis of axonal terminals and dendritic spines (Schafer 
et al., 2012). Exposure to early-life immune activation (e.g., MIA) 
compromises these functions, and can subsequently affect the number 
and function of microglia, disrupt synaptic maturation and pruning, 
and result in neural circuit remodeling and deficits in neural function 
and behavior (Paolicelli et al., 2011; Zhan et al., 2014; Tay et al., 2017). 
The consequences of this dysregulation may also extend beyond fetal 
development and affect neurodevelopmental processes during the 
postnatal period (Matcovitch-Natan et  al., 2016; de Cossío et  al., 
2017), such as disrupting synapse/neural circuit formation important 
for the ontogeny of specific behavioral phenotypes (e.g., language 
acquisition, social behaviors, learning, etc.). Thus, rodent models of 
MIA and NDDs are especially important to help elucidate the neural 
and molecular processes that can become disrupted by immune 
activation during sensitive periods of development. In particular, 
many rodent models have focused on measuring or manipulating the 
specific cytokines produced during a maternal infection or immune 
challenge, in order to examine their effects on offspring brain and 
behavior throughout the lifespan. (For a more detailed review of 
neurobiological processes associated with NDDs that can become 
disrupted by MIA, see: Knuesel et al., 2014; Estes and McAllister, 2016; 
Bergdolt and Dunaevsky, 2019).

3.2. Considerations for future 
epidemiological studies

There is significant overall evidence suggesting that maternal 
infection with viruses or bacteria significantly increases the risk of 
various NDDs. ASD seems to be associated with exposure to viral 
infections during the first/second trimesters and bacterial infections 
or fever during the second/third trimesters of pregnancy. On the other 
hand, schizophrenia seems to be  associated with viral infections 
during the second/third trimesters and bacterial infections during the 
first trimester of pregnancy. However, many epidemiological studies 
are unable to account for the trimester of infection in their findings, 
either due to limitations of the data collected or not having enough 
statistical power. Therefore, one cannot exclude the possibility that 
infections or febrile episodes during other phases of gestation are not 
also risk factors for these NDDs and their behavioral symptoms.

The characteristics, timing, and severity of the maternal immune 
response to infection seem to matter greatly and can vary depending 
on the type of infectious agent and whether a robust febrile response 
occurs. In turn, medications that attenuate febrile response or cytokine 
production (such as antipyretics or antibiotics) may lessen the risk of 
NDDs associated with prenatal infection and may also be  strong 
determinants in the outcomes of fetal neurodevelopment that 
determine NDD risk. Intriguingly, prenatal acetaminophen use has 
been linked to increased risk for ADHD (Avella-Garcia et al., 2016; 
Liew et  al., 2016), and another study linked to ASD diagnosis in 
children that also had hyperkinetic symptoms (Liew et al., 2014). 
Additional data is needed to examine how these specific aspects of an 
infection may be a driving factor for how the fetal immune system or 
neural development is altered or compromised. For instance, is a 
febrile response the driving factor? What is the contribution of the 
maternal peripheral immune response, or the placental immune 
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response, or the fetal brain cytokine response to infection? In future 
human studies, serum or amniotic fluid samples should be collected 
and analyzed to better characterize the severity of the maternal or fetal 
immune and cytokine response, as originally proposed by Gilmore 
and Jarskog (1997). This may allow us to determine whether the 
immune response itself moderates the relationship between perinatal 
infection and the risk of NDDs in affected offspring. Moreover, the 
need for easily accessible serological and cell samples throughout 
gestation, in women with and without overt infection, will ultimately 
contribute to our better understanding of how the maternal immune 
reaction may be linked to NDDs.

Limited data from biological tissues and postmortem samples 
(Lintas et al., 2010) in humans has made it difficult to identify the 
biomarkers of disease that may be  linked to MIA or perinatal 
infection. Human neuroimaging studies have begun to elucidate the 
association between elevated maternal cytokines during gestation 
and changes in brain structural and functional connectivity in 
offspring, which may or may not be associated with a particular NDD 
(see Guma et  al., 2019 for data). The combined use of human 
neuroimaging and biological samples collected during gestation or 
from individuals with NDDs, may elucidate how long-term 
dysregulation of the immune system disrupts the development of 
important functional and/or structural brain regions and neural 
circuits in offspring. However, these methodologies cannot determine 
much about the cellular or molecular contributions toward NDDs, 
which are likely the first systems to be disrupted by an environmental 
or biological risk factor.

Furthermore, biological sex or possibly gender are likely critical 
factors that must be considered when examining the etiology of NDDs 
and their symptoms. Males are, on average, twice as likely than females 
to be  diagnosed with developmental disorders, including ADHD, 
ASD, schizophrenia, and general learning disabilities (Polyak et al., 
2015; Pinares-Garcia et al., 2018). Many of the epidemiological studies 
that are reviewed above did not include sex or gender as a factor in the 
study design nor statistical analysis. Although there are a few studies 
reviewed by Ardalan et  al. (2019) that describe sex differences in 
cytokine expression of individuals diagnosed with ASD, their findings 
are not specifically related to MIA. For instance, males had a 
significantly higher risk for ASD in a Lebanese case–control study 
(Guisso et al., 2018) and for schizophrenia in a Finnish cohort study 
(Jones et al., 1998), independent of prenatal exposure to infection. 
There is one Boston case–control study in the United  States that 
examined the association between cytokine levels in maternal serum 
collected throughout pregnancy and risk for schizophrenia in 
offspring (Goldstein et al., 2014). The researchers found a significant 
interaction between sex and subject group, such that females with 
schizophrenia were more likely to have decreased levels of maternal 
TNF-α as compared to males with schizophrenia and females in the 
control group. Overall, there is a need for future epidemiological 
studies to account for sex in their experimental design in order to 
better understand potential interactions between sex and specific risk 
factors associated with NDDs. It is also important to note here that a 
proper experimental design including sex as a variable requires sex to 
be statistically included in the analysis (i.e., testing for an interaction 
between sex and another factor of interest; if there is no significant sex 
effect then the analysis can be  collapsed across sex). Researchers 
should also indicate in their publications whether sex was statistically 
analyzed, regardless of a significant effect.

Finally, many epidemiological studies identify links between 
exposure to infection with a general diagnosis of ASD or 
schizophrenia. Other studies have instead examined the link between 
MIA and specific symptoms of NDDs, like in the hyperkinetic 
symptom of ASD study mentioned above (Liew et al., 2014). In an 
Australian cohort study of children with ASD, symptoms of severe 
social impairment were associated with reports of the mother having 
a history of chronic immune activation such as asthma or allergies 
(Patel et al., 2018). Similarly, a Finnish cohort study found significant 
associations between maternal fever during the second trimester and 
several behavioral outcomes in children that are characteristic of 
NDDs, including distress to novel situations, difficulties with task 
persistence and orientation, and increased social inhibition 
(Dombrowski et al., 2003). These studies provide excellent examples 
of how we can tailor future human studies and animal models of MIA 
to the RDoC and examine specific behaviors that are implicated in 
many NDDs. The findings of these epidemiological studies can help 
to advance the field of neuroscience by providing the opportunity to 
bring rodent model research into better alignment with our current 
understanding of human NDDs and the associated presentation of 
their symptoms.

In all, the epidemiological studies are unable to show strong causal 
associations between any one particular infection type and a specific 
NDD outcome. The only possible exception being rubella, which 
produces its own congenital syndrome that mirrors or includes many 
of the symptoms of other NDDs. Furthermore, the epidemiological 
data do not always provide the most consistent results regarding the 
association between MIA and NDDs. It is possible that the relationship 
between prenatal infection and NDDs in studies with null findings 
may be clouded by other factors related to the infection or sickness 
response—such as fever, severity of infection, gestational timing, 
medication or treatment, genetic predisposition, individual immune 
response, fetal sex, lifestyle, etc.—that aren’t always measured or 
accounted for in epidemiological studies. These factors may have a 
significant moderating effect in whether overt MIA results in the onset 
of NDDs later in life (Flinkkilä et al., 2016). That said, the majority of 
epidemiological evidence does support the hypothesis that MIA 
during gestation, in and of itself, is a risk factor for various NDDs, 
rather than being due to the unique biological characteristics of any 
one pathogen or immunogen.

4. The maternal immune system 
during pregnancy: Cytokines in the 
absence of infection

The immune system functions under very tight regulation, such 
that immune activation cannot be  too robust but must also 
be sufficient to fight off infection, otherwise it can result in death. That 
said, there are genetic variations in the immune system and certain 
disorders that alter how the immune system functions across 
individuals. A recent example is individual differences in response to 
infection with the severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), also known as the COVID-19 virus. For some 
individuals, COVID-19 produces a robust immune response with 
strong cytokine production that may increase the risk of acute 
respiratory distress (Cummings et al., 2020), whereas others may not 
experience any symptoms of infection. As another example, males and 
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females have different immune responses (Klein and Flanagan, 2016) 
and as a result, females are more likely to suffer from autoimmune 
disorders where the immune system is overactive and causes elevated 
cytokine levels and T-cell responses (Klein and Schwarz, 2018). The 
various factors that affect individual immune function can become the 
backdrop upon which pregnancy, and then subsequent infection, 
result in various outcomes in the developing fetus associated with risk 
for NDDs.

Many researchers in the field of developmental neuroimmunology, 
with a focus on MIA and NDDs, do not always account for the fact 
that the immune system is altered dramatically by pregnancy itself. 
The pregnant body goes through a process of immunosuppression in 
order to protect the non-self fetus from being attacked and rejected by 
the maternal immune system. As such, even a slight imbalance in this 
pregnancy-induced immunosuppression can result in early 
termination of the pregnancy. These changes in maternal immune 
function during pregnancy can allow for more severe infections to 
occur, particularly during late gestation, but can also temporarily 
alleviate autoimmune diseases for many women (Robinson and Klein, 
2012; Sherer et  al., 2017; Klein and Schwarz, 2018). Evidence for 
gestational immunosuppression has also been demonstrated in rat 
models. Within the 96 h before and 24 h after parturition, pregnant 
rats have a decreased febrile response following a very low dose of 
lipopolysaccharide (LPS; 25 μg/kg), as compared to unbred or 
lactating female rats. Moreover, within the 24-h period before 
expected time of parturition, no pregnant rat developed a fever and 
the majority became hypothermic; an effect that resulted in death in 
80% of pregnant dams within 3–15 h (Martin et al., 1995). This shift 
in immune function is so robust that administering LPS (100 μg/kg) 
to a pregnant rat at embryonic day (E)11 (mid-gestation) attenuates 
IL-1β expression in the maternal spleen to 12%, IL-6 expression to 
20%, and IFN-γ expression to 30% of the levels measured in a 
non-pregnant female administered the same dose of LPS (Sherer et al., 
2017). By E22, the day prior to birth, the same dose of LPS produces 
virtually no significant cytokine production in the maternal spleen, 
highlighting just how dramatic the immunosuppression of pregnancy 
can be (Sherer et al., 2017). In the placenta and the fetal brain at E11, 
there is an upregulation of IL-1β and IL-6 that is modest (4-5-fold) 
following MIA with LPS, but then non-existent at E22, just prior to 
birth (Sherer et  al., 2017). In conclusion, pregnancy significantly 
attenuates the function of the immune system, an effect that is 
necessary for a successful pregnancy.

In a typical healthy pregnancy, the developing fetus is exposed 
to very low levels of immune molecules, but there may be instances 
where cytokine production could become dysregulated even in the 
absence of infection. Fetal exposure to elevated levels of cytokines 
may increase the risk of NDDs and their symptoms. Supporting 
this theory, the human data summarized above shows that 
increased cytokine expression in maternal serum and/or the 
amniotic fluid is associated with NDDs in offspring, even in the 
absence of apparent, current infection. In these cases, it is possible 
that an underlying inflammatory condition, variations in immune 
function, stress-induced immune activation, or perhaps a slight 
shift in the typical immunosuppression associated with pregnancy 
may increase cytokine production and the associated risk of 
NDDs. This should be considered in future epidemiological and 
basic research.

5. Rodent models of immune 
activation to study 
neurodevelopmental disorders

As mentioned above, human studies are limited in their ability to 
establish a causal relationship between risk factors and NDD 
outcomes. Furthermore, it is difficult for researchers to determine the 
underlying neurobiology that may contribute to the disorder, as 
postmortem studies are limited by the number of donations and our 
current neuroimaging technology does not allow us to examine 
structural and functional neural changes at the cellular or molecular 
level. Therefore, animal models are necessary to understand the role 
of the immune system and immune activation in the perturbation 
of neurodevelopment.

In animal research, there are investigators that attempt to 
generate a model of a specific disorder (often via manipulation of a 
known genetic risk factor) and describe their research as using a 
rodent model of a specific NDD. However, these NDD-specific 
models often fail to capture the full range of symptoms and 
individual nuance of the disorder (Vigli et al., 2020). In recent years, 
researchers have begun to develop animal models that examine 
phenotype(s) shared across multiple disorders, rather than 
producing an animal model of a specific disorder. This practice is 
in line with the RDoC initiative from the NIMH, as described 
previously in Section 2. The reason for this is that symptoms of 
NDDs and other disorders are often overlapping, suggesting a 
potential for commonality in the neurobiological origins of the 
disorders (Conradt et al., 2021; Auerbach, 2022). MIA is often used 
as a solitary manipulation in animal models to examine how 
perturbations of the developing immune system (a risk factor for 
NDDs) may contribute to specific symptoms of NDDs, such as 
disturbances in learning, social, and sleep behaviors. Rodent models 
are especially important for our understanding of the neural 
processes that can become disrupted by MIA (particularly the 
inflammatory response in the maternal body and fetal 
compartments) and lead to NDD-associated outcomes in offspring.

However, we also know that the etiology of NDDs likely stems 
from a combination of genetic and environmental factors. Therefore, 
researchers have begun to utilize “two-hit” and “multi-hit” models 
of neurodevelopment whereby multiple inflammatory stressors 
(such as genetic mutations, immune challenges, diet manipulations, 
social stressors, etc.) are combined to examine specific phenotypes 
of NDDs. Utilizing genetic models of “specific disorders” that also 
examine other risk factors for NDDs may help us to better 
understand the interaction between biology and environment in the 
etiology of that specific disorder, rather than examining one factor 
by itself. Harvey and Boksa (2012) theorized that (1) the same risk 
factor can result in different NDDs and the characteristics of that 
risk factor (i.e., the dose, timing, immunogenic target, etc.) 
ultimately contribute to the distinct NDD phenotypes, OR (2) the 
same risk factor can cause different NDDs because it interacts with 
other vulnerability factors to contribute to the distinct NDD 
phenotypes. This theory should be kept in mind when considering 
basic biomedical research models for MIA and their associated 
outcomes. Next, we will discuss the various models of MIA that are 
commonly used by researchers in studying NDDs and evaluate their 
relevance to the human epidemiological data.

101

https://doi.org/10.3389/fnins.2023.1135559
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Hall et al. 10.3389/fnins.2023.1135559

Frontiers in Neuroscience 09 frontiersin.org

5.1. Rodent models of maternal immune 
activation

A range of different immunogens (any pathogens or molecules 
that can activate the immune system) are used in rat and mouse 
models to explore the underlying neurobiology implicated in the 
association between MIA and psychiatric phenotypes. For example, 
prenatal exposure to influenza in rodents produces altered expression 
of serotonergic and glutamatergic receptors, reduced exploration of 
the open arm of an elevated-plus maze (anxiety-like behavior), and 
deficits in prepulse inhibition (reduced sensorimotor gating; Shi et al., 
2003; Moreno et al., 2011; Spini et al., 2021). Furthermore, exposure 
to T. gondii antigens during gestation in mice causes increased anxiety 
behaviors later in life (Webster et al., 2013; Spini et al., 2021). Exposure 
to diesel exhaust particles, which can also activate the immune system, 
during gestation and neonatal development produces learning and 
memory deficits in an elevated-plus and a Morris water maze, reduced 
social interactions, and alterations in ultrasonic vocalizations 
(communication deficits; Bolton et  al., 2013; Chang et  al., 2018; 
Ehsanifar et al., 2019). Further, prenatal infection with E. coli in rats 
impacts neonatal sensorimotor learning and adult spatial learning 
(Wallace et  al., 2010). Perhaps some of the most commonly used 
rodent models of MIA include administration of 
polyinosinic:polycytidylic acid (Poly I:C) or lipopolysaccharides 
(LPS), which are mimetics for viral and bacterial infection, 
respectively.

5.1.1. Poly I:C
Poly I:C is a synthetic double-stranded RNA that is used to 

stimulate an innate immune response through the Toll-like receptor 
3 (TLR3) pathway (Reisinger et al., 2015). As described by Bao et al. 
(2022), Poly I:C is recognized and internalized by TLR3, which 
causes downstream activation of nuclear factor-κB (NF-κB), 
activator protein 1 (AP-1), and interferon regulatory factor 3 
(IRF3). This, in turn, induces the expression of inflammatory 
cytokines and type 1 interferon (IFN) genes which are produced 
and released by the immune system in order to, respectively, 
stimulate an innate immune response and inhibit replication of the 
viral Poly I:C RNA.

Mouse and rat models of MIA report using a range of doses of 
Poly I:C, from 250 μg/kg to over 20 mg/kg, with doses of 4 mg/kg and 
20 mg/kg being the most commonly used (Boksa, 2010; Solek et al., 
2018). The gestational timing of Poly I:C administration also varies 
widely from embryonic days (E)9 to E19, with administration most 
commonly reported on E12.5 and E15. Some labs also report using 
multiple exposures Poly I:C, such as across two consecutive days of 
gestation or on two different days such as E9 and E17 (Boksa, 2010; 
Solek et al., 2018).

5.1.2. Lipopolysaccharide
LPS is a cell-wall component of gram-negative bacteria (like 

Escherichia coli) that can also be used to stimulate an innate immune 
response via the TLR4 pathway (Reisinger et al., 2015). With the help 
of cluster of differentiation 14 (CD14), LPS binds to proteins on TLR4 
which, similarly to Poly I:C, causes downstream gene expression and 
production of inflammatory cytokines and type 1 interferons (IFN) 
(Bae et al., 2010; Bao et al., 2022). Although interferons (particularly 
IFN-ɣ) are vital for the immune response to viruses, the activity of 

IFN-α and INF-β can also help the immune system fight off other 
pathogens such as bacteria (Bae et al., 2010).

Researchers report using dosages of LPS ranging from 25 μg/kg to 
over 1 mg/kg, with 100 μg/kg being more commonly used (Boksa, 
2010; Solek et al., 2018). The timing of LPS administration varies 
across gestation, from E9 to E19, with administration most commonly 
reported around E15 and E18. Some models also employ multiple hits 
of LPS, such as subsequent injections on E15 and E16 or on E18 and 
E19. The utility of multiple hits of LPS is lessened by evidence that the 
peripheral cytokine response is attenuated after one previous LPS 
exposure (Wendeln et al., 2018). However, there is evidence to suggest 
the neural cytokine response is augmented to a second, but not a third 
or fourth, “hit” of LPS (Wendeln et al., 2018). Though, in the context 
of MIA, the maternal peripheral immune system is what influences 
the cytokine response in the fetal compartment; there is no evidence 
to support that the maternal neural immune response is implicated in 
the association between MIA and NDDs. Therefore, it is unclear how 
multiple hits of LPS during gestation would affect the developing fetal 
brain any differently than a single hit of LPS.

5.1.3. Relevance of rodent models to human 
studies of maternal immune activation

Several review articles have compiled data from rat and mouse 
MIA models that examine behavioral and neural outcomes following 
exposure to prenatal Poly I:C and LPS (see Meyer et al., 2009; Boksa, 
2010; Solek et al., 2018; Kentner et al., 2019; Bauman and Van de 
Water, 2020). Some of the behavioral outcomes of rodent MIA studies 
that are summarized in these reviews include: deficits of latent 
inhibition and prepulse inhibition, reduced open-field exploration and 
novel object recognition, decreased social interactions, altered spatial 
memory in novel object location and Morris water maze tasks, and 
increased repetitive behaviors such as grooming or stereotyped 
behaviors in an open field. These rodent behavioral phenotypes are 
relevant to humans in that they align with the common overlapping 
symptoms of NDDs, such as deficits in sensorimotor gating, learning 
disabilities, and altered social behaviors, as we previously described. 
Such findings support the RDoC framework. Further, these data 
highlight how maternal inflammation during pregnancy, even in the 
absence of overt infection, can produce NDD-associated behavioral 
changes in offspring, likely through the disruption of neural processes 
necessary for brain development.

Similar to the human epidemiological data summarized above, 
the severity of the immune activation—related to immunogen dose in 
rodent models—may be implicated in neurodevelopmental outcomes 
related to NDDs. MIA with Poly I:C, and with lower doses of LPS 
(100–500 μg/kg), can cause subtle neural changes such as long-term 
alterations in cytokine expression, changes in neurotransmission, 
reduced proliferation of new neurons, and changes in microglia 
activation measured in adolescent and/or adult offspring (see Boksa, 
2010; Solek et al., 2018; Kentner et al., 2019; Hameete et al., 2021 for 
more detailed information). On the other hand, larger doses of LPS 
(more than 1 mg/kg) administered during gestation can produce 
severe damage to white matter, axons, and dendrites (Fan et al., 2005). 
These MIA-driven neural changes may occur during fetal development 
but are often prolonged and measurable throughout offspring 
postnatal development and into adulthood. Again, many of these 
neural changes are thought to be driven by the maternal response to 
MIA, which can interact with the fetal compartment and disrupt 
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immune molecules and immune cells like microglia from performing 
their essential functions during neural development (i.e., synaptic 
pruning, neural circuit formation, etc.). Moreover, sex differences have 
been explored in rodent models of MIA and are detailed in other 
review articles (Ardalan et al., 2019; Bauman and Van de Water, 2020; 
Breach and Lenz, 2022), with the takeaway being that MIA differently 
affects the behavioral and neural phenotypes of male and female 
offspring. Below, we will further discuss the importance of offspring 
sex when studying the association between MIA and NDDs.

Taken together, rodent models of Poly I:C and LPS, which mimic 
viral and bacterial infections, respectively, seem to be  effective in 
modeling the behavioral phenotypes of NDDs, particularly ASD, 
schizophrenia, and generalized learning deficits. Rather than 
employing a direct infection, Poly I:C and LPS are typically 
administered either intraperitoneally or subcutaneously, thereby 
stimulating the innate immune system in a similar manner to a 
peripheral infection in humans, but without the full infection 
(Ashdown et  al., 2006). This is particularly relevant given the 
epidemiological data summarized above, which suggest that the 
maternal immune response (including fever, cytokine production, 
altered fetal microglia function, etc.) may precipitate NDDs in 
offspring rather than the direct infection itself. Interestingly, neonatal 
administration of LPS actually produces a broader and more robust 
neuroimmune response in rat hippocampus than E. coli (Schwarz and 
Bilbo, 2011a). Similarly, Poly I:C is more likely to result in activation 
of the rodent immune system, given that many common human 
viruses are not pathogenic in rodents. Though, many human viruses 
can be adapted for use in a rodent model if part of the immune system 
(e.g., IFN-ɣ) is knocked out of the rodent genome (Brehm et al., 2013; 
Sarkar and Heise, 2019). Thus, LPS and Poly I:C in rodent models may 
allow us to characterize the effects of MIA on neurobiological 
processes underlying symptoms of NDDs, independent of the 
infection itself.

One major limitation in our ability to interpret various rodent 
models of MIA is the variability in experimental design across labs, 
including: gestational timing and frequency of the immune challenge, 
serotype/strain/dose of the immune challenge, age at which behavioral 
measures are tested in offspring, the types of behaviors and neural 
outcomes measured within a lab, and mouse versus rat models (whose 
immune systems are quite distinct). More specifically, researchers 
should determine whether their model of MIA may be better studied in 
mice versus rats, depending on the intended experimental manipulation 
and measured outcomes. For instance, mouse models are currently 
better suited than rat models for manipulations whereby researchers can 
examine the role of particular genes in NDD risk. On the other hand, 
rats are often more adept at performing complex learning and 
behavioral tasks, deficits in which may be associated with NDDs (Parker 
et al., 2014). Furthermore, researchers should consider that different 
strains of mice and rats often display distinct biological and behavioral 
profiles, and that this can even be influenced by the vendor from which 
the animals are sourced (Kentner et al., 2019). Nonetheless, both mouse 
and rat models of MIA seem to yield similar patterns of behavioral and 
neural findings related to NDD risk and symptomatology, even with 
varying rodent strains, offspring age at the time of measured outcomes, 
and dosages/gestational timing of the immune challenge. This provides 
further support that rodent models can provide insight into the 
neurobiological mechanisms underlying MIA-driven disruptions in 
offspring neural and behavioral development.

There are also inconsistencies in the reports of maternal 
death and fetal resorption or pup death that are often an 
inevitable consequence of many of these models. For example, 
even administration of an “ultra-low” dose of LPS (0.5 μg/kg) 
early in gestation (E5) results in significantly smaller litters and 
resorbed fetuses (Xue et  al., 2015). Thus, it is likely that 
experiments using higher doses of LPS or PolyI:C produce a 
much more severe immune activation in the dam and fetuses. The 
question then remains whether this associated fetal mortality is 
actually modeling simple maternal infection (MIA related to 
NDDs), or rather modeling more severe infections like 
chorioamnionitis or endometritis that are associated with serious 
birth complications like premature birth or stalled labor. On the 
other hand, one potential benefit of these experimental 
inconsistencies is that they mirror the in outcomes variability in 
outcomes that can occur within the human population, even in 
the severity of the maternal immune response during pregnancy. 
In all, there are similar neurobiological and behavioral 
consequences reported across multiple different epidemiological 
and rodent studies, even with variation in the factors contributing 
to the models; this provides strong evidence for an association 
between MIA and outcomes associated with NDDs. Beyond this, 
researchers have also begun to utilize “two-hit” and “multi-hit” 
models that incorporate MIA as just one of the multiple “hits” to 
examine the ontogeny or symptoms of NDDs.

5.2. “Two-hit” and “multi-hit” rodent 
models of neurodevelopment

Prenatal infection is not the only risk factor for NDDs. For 
example, environmental stressors such as negative social 
interactions or social exclusion during development, particularly 
adolescence, have also been linked to the onset of symptoms like 
psychosis or aberrant processing of social cues (Li et al., 2012; Davis 
et  al., 2016). Indeed, many environmental and psychological 
stressors themselves—diet, pollutants, allergens, social stress, 
psychological stress, depression, etc. (Carlsson et al., 2021)—are 
able to trigger an inflammatory state in the brain and body. These 
inflammatory stressors can disrupt neural and behavioral 
development in offspring, both when experienced fetally during 
MIA and/or postnatally by the offspring. As such, the “two-hit” and 
“multi-hit” hypotheses of NDDs suggest that a combination of 
environmental, psychological social, or genetic “hits” throughout 
development significantly increases the overall risk for an individual 
to be diagnosed with NDDs such as ASD and schizophrenia (Davis 
et al., 2016), in addition to many comorbid disorders including 
general anxiety, depressive symptoms and learning disorders. Some 
risk factors associated with NDDs that have been examined in Poly 
I:C mouse models of MIA include genetic models of DISC1 
(Disrupted in Schizophrenia 1) mutation, acute stress during 
juvenile development, and pubertal social isolation (Yee et al., 2011; 
Solek et  al., 2018; Goh, 2020). Researchers should continue to 
develop more complex models of MIA that incorporate various 
other risk factors, in order to better understand how environmental 
and genetic factors mediate individual differences in the maternal 
and fetal immune responses and drive alterations in the behavioral 
and neurobiological development of offspring.
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6. Factors to consider in rodent 
models of maternal immune activation

There are many factors that should be considered by researchers 
when studying NDDs, as they have an important role in the etiology 
and/or manifestation of symptoms of NDDs. These factors include (1) 
developmental timing of the immune challenge, (2) sex of the 
offspring, and (3) individual factors that may influence one’s immune 
response, such as genetics, parental age, the gut microbiome, prenatal 
stress, and placental buffering.

6.1. Developmental timing of the immune 
challenge

The gestational timing of MIA may affect the fetal and maternal 
immune response differently throughout pregnancy. Individual 
differences in the immune response may be influenced by genetic 
predisposition to the infectious agent (Carter, 2009) and by the 
influence of pregnancy itself on the immune system (Sherer et al., 
2017), as we described earlier. Furthermore, in both human and 
rodent studies, there is evidence that the timing of MIA can alter 
behavioral and neural outcomes in both the mother and offspring. 
For instance, maternal estradiol levels are lower during early stages 
of pregnancy compared to late stages, and ERβs begin to 
be  expressed in fetal tissues around 16–18 weeks of gestation 
(Takeyama et  al., 2001; Shepherd et  al., 2021). Incubation with 
estradiol decreased levels of LPS-induced TNF and IL-6 cytokine 
production in infant cord blood mononuclear cells (Giannoni et al., 
2011), suggesting that the circulating pregnancy hormones from the 
mother may impact the fetal immune response, in addition to the 
maternal immune response, as we already described. As another 
example, maternal infection with Zika virus during the first half of 
pregnancy is associated with greater rates of birth defects than 
during the latter half of pregnancy, likely due to the targeting of 
proliferative cells in the early developing brain (Honein, et al., 2017; 
Pomar et al., 2017).

The timing of MIA matters because it may affect different 
neurodevelopmental processes occurring during fetal development at 
that time. It is important to keep in mind that the gestational timing of 
animal models is shifted relative to that of humans, whereby the 
gestational period of mice is generally 21 days, of rats is 23 days, and of 
humans is 40 weeks. The first and second halves of gestation in rodents 
is approximately the equivalent of the first and second trimesters in 
humans, whereas the human equivalent to the third trimester in rodents 
occurs during the first 2 weeks of neonatal life, because rodent pups are 
born altricial. Therefore, many important neurodevelopmental 
processes—neurogenesis, immunogenesis, apoptosis, synaptogenesis—
occur during gestation in humans but continue post-birth in rodents 
(Estes and McAllister, 2016; Guma et al., 2019). Moreover, some of these 
neurodevelopmental processes may be  affected differently if the 
immune response occurs during early stages versus later stages of the 
developmental process (Bauman and Van de Water, 2020).

Overall, future research should take a more systematic approach 
to evaluate the effects of gestational timing within rodent models of 
MIA and try to better characterize which neurobiological processes 
are being studied and thus perturbed during fetal vs. postnatal 
neurodevelopment. In doing so, we should keep in mind that the later 

fetal developmental processes in humans are still being modulated by 
maternal biology, hormone production, and immune responses, 
whereas neurodevelopment in rodents continues postnatally, without 
these influences.

6.2. Sex of the offspring

As mentioned previously, NDDs—such as ASD, ADHD, and 
early-onset schizophrenia—are more commonly diagnosed in males 
than in females. There may be two reasons for such discrepancies: (1) 
the manifestation of symptoms in females is different than in males, 
and the current diagnostic criteria is more aligned with symptoms 
commonly presented in males, and/or (2) the disruption of 
neurobiological processes that cause NDDs are more likely to occur 
in males than in females. It is also possible that certain neural and 
behavioral processes mature at different rates between males and 
females, and therefore exposure to immunogens may differentially 
affect males and females depending on the developmental timing of 
the exposure. Despite the known sex-bias, there are limited 
epidemiological data investigating how sex may impact the role of 
MIA as a risk factor for NDDs, because research does not always seek 
out an equal female-matched comparison group (D’Mello, 2022). 
Moreover, rodent models themselves can contain sex biases in 
experimental design and analysis of results. For instance, many 
behavioral protocols were generated and validated when the use of 
only males in rodent studies was common (Beery and Zucker, 2011; 
Shansky and Murphy, 2021), which makes it difficult to assess the 
same behavioral endpoints in females. Studies that do now include the 
use of both male and female subjects often lack substantial power to 
statistically detect sex differences, or fail to examine the data for sex 
differences at all (Coiro and Pollak, 2019). Nevertheless, when 
properly designed to account for potential sex differences, rodent 
models can help us identify how MIA may impact the 
neurodevelopment of males and females differently and contribute to 
the variety of phenotypes relevant for NDDs. Sex differences have 
been successfully explored in rodent models of MIA and are detailed 
in other review articles (Ardalan et al., 2019; Bauman and Van de 
Water, 2020; Breach and Lenz, 2022).

One mechanism by which sex of the offspring may interact with 
MIA may be through estradiol receptors (ERα and ERβ). Estradiol 
regulates the activation of innate immune signaling pathways and can 
influence the synthesis of pro- and anti-inflammatory cytokines by the 
NF-κB pathway (Kovats, 2015; Liu et al., 2017). For example, estradiol 
(E2) can inhibit this pathway via increased production of IκBα mRNA 
(Xing et al., 2012). The expression and activation of ERs vary between 
males and females, which causes differences in the magnitude and 
duration of the innate inflammatory response between sexes (Kovats, 
2015; Arnold and Saijo, 2021). For instance, females have a higher 
basal expression of ERα and ERβ than males in human blood 
monocytes-derived macrophages (MDMs) (Campesi et  al., 2017). 
Similarly, female mice had a higher basal density of ERβ relative to 
male mice at postnatal day 21 (P21) in the anteroventral 
periventricular nucleus (AVPV), an area important for cardiovascular 
functions supporting female reproduction (Zuloaga et al., 2014; Saper 
and Stornetta, 2015). When human MDMs were incubated with 
100 ng/ml of LPS for 24 h, both expression and phosphorylation ERα 
were upregulated to a larger degree in males than females (Campesi 
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et al., 2017). Thus, it is possible that the female immune response to 
pathogens may occur on a temporally faster timeline than males, due 
to a lesser need to express or phosphorylate ERs in response to the 
immunogenic insult.

Sex differences in the density, maturation, or activation of 
microglia, the innate immune cells of the brain, may also contribute 
to variability in immune response between males and females 
(Schwarz et al., 2012; Klein and Flanagan, 2016; Hanamsagar et al., 
2017; Ardalan et al., 2019). As discussed above, microglia have an 
active role in the developmental pruning and maturation of synapses, 
and compromising these functions can lead to alterations in neural 
circuit development and deficits in learning (Paolicelli et al., 2011; 
Schafer et al., 2012; Zhan et al., 2014; Tay et al., 2017). One hypothesis 
may be that MIA alters the number or activational state of microglia 
differently in males and females, which may contribute to sex 
differences in the ontology and manifestation of various NDDs. 
Indeed, microglia with a stout and ameboid morphology—which 
commonly occur when microglia are activated during an immune 
response or insult—are more prevalent in females than males from 
P0–P4 and from P30–P60 (Schwarz et al., 2012; Hui et al., 2020). 
Differences in microglial activation state may potentiate differences in 
the neuroimmune response between males and females (Osborne 
et  al., 2018). The role of microglia in the maternal neuroimmune 
response to MIA has been well-studied, however there are often 
conflicting findings due to differences in study design and analysis 
methods (see review: Smolders et al., 2018).

Overall, there is a need to examine sex as a factor in both human 
and rodent studies of MIA. It is important to mention there are sex 
biases in the experimental designs, the inclusion of male and female 
animal subjects, and the neurochemical analyses of MIA studies 
(Coiro and Pollak, 2019). It is again essential to note that a proper 
experimental design including sex as a variable requires sex to 
be statistically included in the analysis (i.e., testing for an interaction 
between sex and another factor of interest). Researchers should also 
report that sex was included in their analyses, even when there are no 
significant findings. In all, developing well-designed experiments that 
include sex as a variable can help us better identify how neurobiological 
processes are differently dysregulated by the maternal and fetal 
immune response and how sex may interact with MIA to contribute 
to differences in NDD diagnostic rates between males and females.

6.3. Individual differences in immune 
response

There is often high variability in the maternal and fetal immune 
response when examining cytokine expression in rodent models of 
MIA, which suggests that there may be individual differences in the 
immune response to MIA (Sherer et  al., 2017). This individual 
susceptibility or resilience to MIA can also manifest in offspring 
behavioral outcomes. For example, one study found that MIA with 
Poly I:C resulted in two groups of adult offspring with distinct 
behavioral phenotypes: those with enhanced prepulse inhibition (PPI) 
and those with deficits in PPI, as compared to saline-exposed offspring 
(Chamera et al., 2021). Interestingly, only the MIA-exposed offspring 
with enhanced PPI had altered protein levels of CX3CL1-CX3CR1 
(molecules involved in microglia–neuron signaling, important for 
synaptic organization) in the frontal cortex and hippocampus. It is 

also essential for researchers to consider how differences in the 
immune response at the litter level (maternal immune response) or at 
the offspring level (fetal or postnatal immune response) may impact 
their experimental and/or statistical design. A few articles (see Lazic 
and Essioux, 2013; Weber-Stadlbauer and Meyer, 2019) have been 
published to help guide researchers experimentally and statistically 
account for sources of variability in rodent models.

Individual susceptibility or resilience in the response to MIA, at 
both the maternal and fetal levels, indicate that other biological, 
environmental, and genetic factors may have an influence on offspring 
outcomes related to NDDs (Meyer, 2019; Herrero et al., 2023). It is 
also possible that these other factors—such as genetics, parental age, 
dietary deficiencies, stress, and placental buffering—may contribute 
to or account for some of the observed immune and behavioral 
variability in human and rodent studies of MIA and NDDs. It is 
therefore essential to take such factors into consideration when 
designing rodent and human studies of MIA and, rather than shy away 
from potential variability within the data, investigate the potential 
factors that may have individual or multiplicative effects on MIA and 
subsequent predisposition to NDDs.

6.3.1. Genetics
Twin studies have identified a high concordance among 

monozygotic (MZ) twins that is much lower in dizygotic (DZ) twins, 
demonstrating that many NDDs—namely ASD or schizophrenia—have 
a strong genetic link (Tick et al., 2016). That said, while thousands of 
genes, copy number variants, and de novo mutations have been 
associated with NDDs, to date there have been no risk loci identified 
that are common within each type of NDD or across all types of NDDs 
(Vorstman et  al., 2017; López-Rivera et  al., 2020). Rather, 
epidemiological data suggest that genetic risk provides a foundation 
upon which other factors may precipitate or enhance the risk for many 
NDDs (Zawadzka et al., 2021). It is possible that this genetic risk could 
be hereditary in nature, as both a familial history of psychiatric disorders 
and a parental history of severe infections seem to be involved in the 
association between MIA and offspring NDD risk, as discussed above.

Accordingly, genes that are implicated in schizophrenia may also 
impact how the body processes and fights off different pathogens, 
including influenza, rubella, and T. gondii (Carter, 2009), which 
suggests that individuals with these genes may be  more prone to 
infections and, in turn, more at risk of NDDs as a consequence of the 
maternal infection. Similarly, people with ASD have an upregulation 
in genes that regulate neural cell development, but also in genes that 
regulate the immune response, the inflammatory response, antigen 
production and presentation, as well as immune cell signaling 
(Voineagu et al., 2011; Voineagu and Eapen, 2013). These genetic 
markers can also increase one’s susceptibility to other inflammation-
inducing factors, such as diet, physical stress, psychological stress, etc. 
There is also evidence that MIA produces transcriptional changes in 
expression of inflammatory markers, GABAergic signaling proteins, 
and myelin, and may drive epigenetic changes in the transcription of 
genes associated with NDDs (Woods et al., 2021). For example, MIA 
with Poly I:C in mice produced an integrated stress response (ISR) in 
male offspring, associated with increased phosphorylation of eIF2α 
which is important for cellular translation (Kalish et  al., 2021). 
Therefore, genetic influences may impact both the maternal immune 
response as well as the neurodevelopmental and behavioral processes 
in offspring that are ultimately affected by the immune response. 
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6.3.2. Parental age
Maternal and paternal age have also been implicated in the risk 

for certain NDDs. For instance, older maternal and paternal ages have 
been linked with increased risk for ASD (Abdallah et al., 2012; Sandin 
et al., 2012; Carlsson et al., 2021). Advanced paternal and maternal 
ages have also been associated with increased risk for schizophrenia 
and psychosis (El-Saadi et al., 2004; Lopez-Castroman et al., 2010; 
Fountoulakis et al., 2018). On the other hand, younger maternal age 
has also been implicated in risk for psychosis, when controlling for 
paternal age (El-Saadi et al., 2004). Younger maternal and paternal 
ages have been associated with increased risk for ADHD diagnosis 
overall (Chang et  al., 2014; Hvolgaard Mikkelsen et  al., 2017). 
Interestingly, older maternal age and younger paternal age have been 
associated with hyperactivity/impulsivity symptoms of ADHD, 
whereas younger maternal and paternal ages have been linked to 
inattentive symptoms of ADHD (Ghanizadeh, 2014; Sciberras 
et al., 2017).

Not much is known about how parental age influences the risk of 
NDD in children. Maternal age may influence the immune response 
to MIA, given that immune function changes with age (though usually 
much older ages; see Haynes, 2020). Increased maternal age is also 
associated with an increased risk of pregnancy and obstetric or birth 
complications that are often associated with inflammation, such as 
preeclampsia, gestational diabetes, or general hypertension (Londero 
et al., 2019). The role of paternal age as a risk for NDDs implies that 
genetics may also have a role in this relationship. As the body ages, 
there is a greater risk for genetic mutations in the eggs or the sperm 
that would contribute to an increased risk of NDDs. Moreover, 
environmental exposure to toxins or infections throughout the 
lifespan may also result in de novo genetic mutations that can 
be passed to offspring and increase their risk for NDDs, an effect that 
appears to happen more frequently in sperm than in eggs (Kong et al., 
2012; Jónsson et al., 2017).

Notably, the age of the dam or sire are not consistently reported 
or controlled for in animal models, nor how many litters that any 
one dam has had previously. Furthermore, there are few to no animal 
studies that have examined maternal or paternal age as a risk factor 
that may interact with MIA or developmental outcomes in the 
offspring. As with all controlled rodent studies, reporting the age of 
the mating pair is important, whether or not it has an effect on MIA 
or on the behavioral outcomes in the phenotype being examined. 
Human epidemiological studies often control for age as a covariate 
when examining the link between MIA and NDDs, however few 
studies actively include it as a variable in their overall analysis. As 
future studies characterize the role of aging in the risk of NDDs, they 
should consider use of a multivariate model that considers parental 
age, along with infection during or before pregnancy in either the 
mothers or the fathers, to get a better understanding of how these 
risk factors interact.

6.3.3. The gut microbiome and dietary factors
The gut microbiota can be impacted by diet and by metabolic 

conditions. Maternal metabolic conditions such as obesity, diabetes, 
and hypertension have been associated with increased risk for ASD 
(Van Lieshout and Voruganti, 2008; Krakowiak et  al., 2012). In 
mice, maternal high-fat diet has been shown to produce microglia-
associated changes in myelination and increase the number of 
perivascular microglia in the offspring brain (Bordeleau et al., 2021, 

2022), as well as cause offspring to have less diverse gut 
communities, decreased oxytocin production in the paraventricular 
nucleus of the hypothalamus, and diminished synaptic plasticity in 
the ventral tegmental area (Buffington et  al., 2016). Maternal 
high-fat diet itself has been used to model MIA in rodents, as it can 
trigger a chronic inflammatory profile in the dam and can produce 
behavioral phenotypes in offspring that are related to NDDs, 
including increased repetitive behaviors and disruptions in social 
and cognitive behaviors (Sullivan et  al., 2015; Buffington et  al., 
2016; Penna et al., 2020; Bordeleau et al., 2021, 2022). Gestational 
diabetes may also interact with MIA to impact neurodevelopmental 
processes in offspring (Van Lieshout and Voruganti, 2008). Prenatal 
exposure to both gestational diabetes mellitus and Poly I:C in mice 
resulted in offspring with an altered transcriptional profile of genes 
that are associated with differentiation of dopamine neurons and 
the innate immune response (Money et al., 2018). Finally, antibiotic 
use can also alter the composition of the gut microbiota (Patrono 
et  al., 2021). In humans, second trimester influenza infection 
associated with ASD risk was only apparent when antibiotics were 
not taken at any point during the pregnancy (Holingue et al., 2020), 
which suggests that the antibiotics may have altered the microbiome 
in a way that prevented the negative consequences of influenza from 
affecting the developing fetal brain.

The gut microbiota are essential in regulating the immune 
system, including the proliferation and differentiation of T- and 
B-cells that drive the maternal cytokine production implicated in 
MIA (Minakova and Warner, 2018). Certain forms of commensal 
gut bacteria, like segmented filamentous bacteria, are more likely to 
induce differentiation of T-cells that produce IL-17a, which is a 
cytokine that has consistently been associated with behavioral 
changes (particularly decreased social behaviors) and cortical 
abnormalities in various models of MIA (Kim et  al., 2017). 
Colonization of Pregnant female mice that were colonized with 
segmented filamentous bacteria, then challenged with Poly I:C on 
E12.5, were more likely to produce TH-17 cells and have offspring 
with  distinct behavioral phenotypes characteristics of NDDs (Kim 
et  al., 2017), likely triggered by exposure to the enhanced IL-7 
production from the maternal gut’s adaptive immune cells (Kim 
et  al., 2017). Similarly, increased levels of pro-inflammatory 
cytokines in the gut have also been associated with the positive 
symptoms of schizophrenia in humans (Patrono et al., 2021). Taken 
together, the gut microbiome may prove useful in providing 
additional biomarkers for immune dysregulation associated with 
NDDs or as targets for therapies against NDDs, particularly if the 
microbiome changes in concert with, or before the onset of, 
symptoms for many NDDs.

Maternal diet deficiencies of iron, omega-3 fatty acids, and folic 
acid may also impact neurodevelopmental outcomes in rodents and 
humans in the context of MIA. Long ago, researchers determined that 
folic acid was necessary as part of the maternal diet to ensure proper 
development of the fetal neural tube (Greenberg et al., 2011). In mice 
exposed to LPS on E17, omega-3 deficiency in the maternal diet 
caused increased IL-6 expression in maternal plasma, placenta, and 
fetal brain (Richardson and Ross, 2000; Labrousse et al., 2018). Adult 
offspring exposed to both the MIA and omega-3 deficiency during 
development had spatial memory deficits in a Y-maze task. 
Furthermore, in humans, anemia, with or without exposure to 
prenatal infection, is associated with an increased risk for 
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schizophrenia (Nielsen et al., 2016). In rats, dams fed an iron-deficient 
diet had increased serum levels of IL-6 and TNF-α following prenatal 
LPS on E15, as compared to typical chow-fed dams (Harvey and 
Boksa, 2014). Moreover, exposure to iron-deficiency and to MIA 
independently caused deficits in the offspring’s development of 
various sensorimotor behaviors. In all, there is limited evidence of 
multiplicative effects between dietary iron deficiencies and MIA 
exposure, however both seem to be independently implicated in the 
risk for NDDs.

Perhaps with growing evidence such as that described here, 
future research should examine whether the gestational/
developmental timing of dietary deficiencies or alterations in the 
gut microbiota may interact with MIA to increase the risk of NDDs. 
In turn, studies should examine whether diet-derived 
supplementations might mitigate the effects of MIA. For example, 
maternal dietary supplementation with choline, around the time of 
birth in rats, attenuated the splenic cytokine immune response of 
3-week-old offspring to an ex vivo immune challenge (Richard 
et al., 2017). In addition, several dietary factors—including high 
maternal iron, zinc, and vitamin D—have been associated with 
resilience to effects of MIA via anti-inflammatory cytokine 
production and enhancement of antioxidant systems (Vuillermot 
et al., 2017; Meyer, 2019).

6.3.4. Prenatal stress and inflammation
Prenatal stress has long been associated with an increased risk of 

various NDDs, most notably schizophrenia, ADHD and autism 
(Ronald et al., 2011; Diz-Chaves et al., 2012, 2013; Chan et al., 2018; 
Minakova and Warner, 2018; Makris et al., 2022). More recently, this 
association has been further characterized by changes in inflammatory 
biomarkers in the maternal circulation that may increase the risk of 
various NDDs. For example, even socioeconomic disadvantage is a 
stressor that is associated with transcriptional indications of greater 
immune activation and slower tissue maturation in the placenta 
(Miller et  al., 2017). This stress can lead to overproduction of 
pro-inflammatory cytokines by immune cells in response to additional 
immunostimulation (Miller et al., 2017). Stress-induced susceptibility 
to MIA may be linked to changes in baseline maternal cortisol levels 
(Van den Bergh et al., 2005), resulting in continuously elevated or 
stimulated pro-inflammatory cytokine levels that may impact fetal 
neurodevelopment associated with NDD risk.

Animal models of prenatal stress have demonstrated a 
pro-inflammatory cytokine response, particularly IL-6, with 
microglial activation similar to that elicited by MIA models. 
Specifically, prenatal stress in rodents enhanced cytokine levels in 
the hippocampus and increased the total number of immunoreactive 
microglial cells in the offspring compared to non-stressed animals, 
which exacerbated the inflammatory response to LPS (Diz-Chaves, 
et al., 2012). Behavioral phenotypes of anxiety, learning deficits, and 
depressive-like symptoms in prenatally stressed rat and non-human 
primate offspring are further associated with maternal and fetal 
HPA-axis alterations (Weinstock, 2005; Weinstock, 2008). 
Gestational stress and excess corticosterone in maternal and fetal 
plasma can impair feedback regulation of the HPA axis in both 
infancy and adulthood and can increase corticotropin-releasing 
hormone (CRH) activity in the amygdala (Van den Bergh et al., 
2005; Weinstock, 2005; Weinstock, 2008). Excess amounts of CRH 
and cortisol that reach the fetal brain during periods of chronic 

maternal stress could thereby influence how the fetal brain responds 
in the presence of MIA, or how the brain is programmed to respond 
to subsequent stressors or immune challenges later in life.

Animal models often fail to report or account for unintended 
stressors in their models that may interact with MIA to exacerbate the 
neural and behavioral consequences in dams and offspring. For 
instance, stress associated with ambient noise levels, bedding levels, 
handling, injection procedures, behavioral tests, caging conditions, 
and nearby construction are all factors that may commonly occur 
throughout the course of an experiment. Researchers should take care 
to reduce exogenous stressors wherever possible, and when unable to 
control for such factors, should document and report them in 
the literature.

6.3.5. The placenta: Protector or instigator?
The placenta is an important organ that connects mother and 

fetus, providing oxygen and nutrition to the baby while protecting the 
delicate fetus from certain factors, most notably infections, that could 
harm it. That said, while it is well-known that many pathogens and 
larger immunogenic molecules do not cross the placental barrier, the 
placenta might also be implicated in the active transfer of immune 
molecules through the circulation to the fetus (Robbins and 
Bakardjiev, 2012). Unfortunately, research examining the site of the 
placental transfer of cytokines associated with MIA is sparse. 
Nevertheless, it is important to understand the role of the placenta as 
a site of cytokine transfer during MIA.

Decades ago, research indicated that monozygotic twins 
concordant for schizophrenia were more likely to have been 
monochorionic and to have shared a single placenta, whereas 
discordant monozygotic twins appear more likely to have been 
dichorionic with separate placentas (Davis et al., 1995). In human twin 
pregnancies with a conjoined placenta, the dividing membrane 
between the two placentae can be  composed of four layers—the 
amnion and chorion of each twin—which allows some degree of 
shared circulation between the two fetuses (Benirschke, 1990). In this 
case, each twin may be exposed to similar circulating molecules, such 
as cytokines, from the mother. Maternal immune and endothelial cells 
come into contact with extravillous fetal cells at the uterine 
implantation site, allowing for maternal blood to surround the 
epithelial covering of placental cells, called syncytiotrophoblasts.

The syncytiotrophoblasts have been shown to be resistant to 
infections and thereby may contribute to the protective function 
of the placenta. At the same time, they are a type of immune cell 
that can initiate their own cytokine response in the presence of 
innate immune receptor activation. Due to their hemochorial 
nature, the placental buffer in rats and humans function in 
similar ways. Like in humans, the trophoblast epithelium of the 
rat placenta is directly bathed in maternal blood (Furukawa et al., 
2019). In humans, this occurs at the decidua, the site of uterine 
implantation, which only has one dividing layer (the 
syncytiotrophoblasts). However, the rat has three layers at this 
site, which might imply differences in the fetal-maternal exchange 
processes between the two species. In both species, uterine 
natural killer (NK) cells are present in parts of the placenta, and 
help the uterus to adapt and accommodate for the fetus. In rats, 
MIA with Poly I:C can increase maternally-derived IL-6 protein 
directly in the placenta, which activates the JAK/STAT3 pathway 
and causes expression of acute phase immune genes in the 
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placenta that can enter into the fetal circulation (Hsiao and 
Patterson, 2011). In humans, IL-6 is transferred bidirectionally 
between maternal and fetal circulation (Zaretsky et al., 2004). 
While studies suggest that many immunogenic molecules, like 
LPS, do not cross the placental barrier (Ashdown et al., 2006; 
Ning et al., 2008), there remains some debate of whether fetal 
immune activation by way of MIA occurs via the reception of 
cytokines from the maternal circulation or via an immune 
response precipitated in the placenta itself. Thus, additional 
research should be performed to examine the rat placental barrier 
and its potential ability to transfer immune molecules from 
maternal circulation.

Moreover, early work has identified dichorionic monozygotic 
twins as having a lower rate of concordance for various NDDs 
(Davis et al., 1995), which should also be considered within the 
context of rodent pregnancies where each pup has its own placenta 
and might respond differently to MIA. Hormones can travel 
through the multiple placentae among fetuses due to the blood flow 
of the mother. More specifically, in pregnant rats, blood flows from 
the caudal to distal direction, or from cervix to ovaries. Thus, a rat 
fetus located at the cervical end of the uterus will receive maternal 
blood flow prior to fetuses in other uterine positions. In litter-
bearing mammals that have multiple pregnancies, effects of 
intrauterine position on fetal development have been observed 
(Ryan and Vandenbergh, 2002). For instance, female fetuses that 
develop downstream from male fetuses have been shown to exhibit 
slightly masculinized anatomical, physiological, and behavioral 
characteristics as adults, including altered hormone levels and 
disrupted endocrine systems (Ryan and Vandenbergh, 2002). This 
is due to diffusion of testosterone from male fetuses to their uterine 
neighbors via amniotic fluid and the maternal circulation. Given 
this mechanism of hormonal transfer, it may be possible for the 
same type of transfer to occur with immune factors such as 
cytokines; this may result in differential exposure to MIA-associated 

molecules between fetuses based on their uterine position. It is also 
possible that some fetuses may be more exposed to the circulating 
maternal immune molecules from the pregnant dam in MIA 
models, particularly those located more caudally as they are the first 
to receive maternal blood flow.

In all, more research is needed to consider the role of the placenta 
in the fetal response and susceptibility to the inflammatory effects of 
MIA. Researchers should consider how differences in rodent and 
human pregnancies—particularly the number of fetuses, 
characteristics of the placental barrier, and maternal transference or 
fetal production of cytokines and other immunogens—may impact 
the generalizability of their findings to human NDDs and the 
translatability of rodent models of MIA to humans.

7. Discussion

We conclude this review with a figure that identifies the various 
factors that may influence the developing fetus in the context of MIA and 
the ontogeny of NDDs (Figure 1). Our conclusion is that every study 
need not examine every one of these factors in their experimental 
design. Rather, basic research that investigates the effect of MIA on 
NDDs should consider these factors when analyzing and interpreting 
their data. Kentner et  al. (2019) have introduced a list of reporting 
guidelines for animal models of MIA in an effort to help standardize 
MIA models, to provide transparency in variability of these factors 
across labs, and to better enable reproducibility of findings across 
laboratories. Studies may still contain variability associated with these 
factors of consideration that we have introduced; however, this variability 
is similar to that observed in the risk factors and behavioral symptoms 
associated with human NDDs. Further investigation is still required for 
us to better understand the general effects of each of these factors, how 
they interact with perinatal immune activation (particularly with regard 
to the degree and severity of the MIA response), and how they contribute 

FIGURE 1

Proposed model of the association between maternal immune activation (MIA) and neurodevelopmental disorders (NDDs). Blue boxes represent 
human pathogens and outcomes related to MIA. Green boxes represent rodent immunogens and outcomes related to MIA. Orange boxes represent 
factors that should be considered in rodent models of MIA and their relevance for human NDDs. Dark orange boxes represent factors that are related 
to the gestational immune response, whereas light orange boxes represent factors that are related to the immune response both during gestation and 
in postnatal offspring.
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to the ensuing manifestation or ontogeny of the behavioral and neural 
phenotypes associated with NDDs.
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At birth, mammals experience a massive colonization by microorganisms. We

previously reported that newborn mice gestated and born germ-free (GF) have

increased microglial labeling and alterations in developmental neuronal cell death

in the hippocampus and hypothalamus, as well as greater forebrain volume

and body weight when compared to conventionally colonized (CC) mice. To

test whether these effects are solely due to differences in postnatal microbial

exposure, or instead may be programmed in utero, we cross-fostered GF

newborns immediately after birth to CC dams (GF→CC) and compared them to

offspring fostered within the same microbiota status (CC→CC, GF→GF). Because

key developmental events (including microglial colonization and neuronal cell

death) shape the brain during the first postnatal week, we collected brains on

postnatal day (P) 7. To track gut bacterial colonization, colonic content was

also collected and subjected to 16S rRNA qPCR and Illumina sequencing. In the

brains of GF→GF mice, we replicated most of the effects seen previously in GF

mice. Interestingly, the GF brain phenotype persisted in GF→CC offspring for

almost all measures. In contrast, total bacterial load did not differ between the

CC→CC and GF→CC groups on P7, and bacterial community composition was

also very similar, with a few exceptions. Thus, GF→CC offspring had altered brain

development during at least the first 7 days after birth despite a largely normal

microbiota. This suggests that prenatal influences of gestating in an altered

microbial environment programs neonatal brain development.

KEYWORDS

cross-fostering, cell death, microglia, forebrain size, bacterial load, colonic content

1. Introduction

Microbiota from maternal and environmental sources rapidly colonize all epithelial
surfaces of mammalian neonates at birth. Disruptions of the maternal microbiota during
pregnancy, such as those resulting from a high fat diet or antibiotic treatment, alter the
vertical transmission of microbes from mother to offspring and have long-term effects on
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offspring physiology and behavior (Olszak et al., 2012; Bokulich
et al., 2016; Leclercq et al., 2017; Schulfer et al., 2018; Chen
et al., 2021a,b; O’Connor et al., 2021). In addition, several recent
studies suggest in utero effects of the maternal microbiota on fetal
development (Humann et al., 2016; Tochitani et al., 2016; Kim
et al., 2017; Thion et al., 2018; Pronovost and Hsiao, 2019; Vuong
et al., 2020), due to the presence of bacterial metabolites in maternal
circulation that cross the placenta or other signaling mechanisms.

By far the largest population of microbes resides in the distal
gastrointestinal tract (i.e., the colon), with bacteria comprising the
vast majority of those microorganisms (Sender et al., 2016). The gut
microbiota communicates reciprocally with the brain via the gut-
microbiota-brain axis (Cryan and Dinan, 2012; Morais et al., 2021),
and animals living in the absence of microbes [i.e., germ-free (GF)]
have played a crucial role in establishing this link. GF mice have
an altered neuroendocrine stress response, changes in hippocampal
neurogenesis, reduced anxiety, and altered social behavior in
adulthood compared to conventionally colonized (CC) controls
(e.g., Sudo et al., 2004; Diaz Heijtz et al., 2011; Clarke et al., 2013;
Ogbonnaya et al., 2015). Some of these changes are normalized by
introducing a microbiota in adulthood or adolescence, but others
persist, suggesting early life neural programming. However, the
specific brain processes affected early in life by microbe exposure
are largely unknown.

Microglia are the macrophages and primary innate immune
cells of the brain, and they respond to the microbiota throughout
life. GF adults have increased microglial numbers but decreased
microglial responsiveness to immune challenges compared to
controls (Erny et al., 2015; Matcovitch-Natan et al., 2016). The
co-housing of GF dams and their litters with CC female mice
soon after birth reduces microglial numbers in comparison to GF
mice when examined in adulthood (Erny et al., 2021), suggesting
a normalization of microglia in GF mice by long-term postnatal
colonization. How quickly the normalization occurs, however, is
unknown. This is an important question because current obstetric
practices routinely alter the microbiota of pregnant mothers and
their babies. For example, 40% of mothers in the United States
are treated peripartum with antibiotics (Ledger and Blaser, 2013;
Martinez de Tejada, 2014) that cause a marked depletion of
their microbiota and that of their offspring. Even transient
alterations in the microbiota during perinatal life could have lasting
effects on offspring brain development, given the many important
neurodevelopmental events that occur during the early postnatal
period. In rodents, a depletion of the maternal/prenatal or postnatal
microbiota by antibiotics alters social behaviors and anxiety-like
behavior in the offspring in adolescence and adulthood (Tochitani
et al., 2016; Leclercq et al., 2017; O’Connor et al., 2021; Lynch et al.,
2023).

Microglial colonization and naturally occurring cell death are
two of the most salient neurodevelopmental events occurring
around the time of birth in mice. We recently showed that,
compared to CC mice, those that are gestated and born into a
GF environment have increased microglial labeling and altered
neuronal cell death in the brain during the newborn period
(Castillo-Ruiz et al., 2018a). It is unknown whether these changes
are due solely due to the postnatal absence of microbes, or whether
the maternal microbiota may program offspring brain development
before birth. To test this, mice in the current study were gestated
and born to a GF mother and then cross-fostered immediately after

birth to CC dams; newborns fostered within microbial status served
as controls. Colon contents and brains of offspring were collected
7 days later to compare bacterial colonization of the gut and several
measures of brain development. Our results suggest that maternal
microbial status in utero has a prolonged effect on neonatal brain
development.

2. Materials and methods

2.1. Animals

Adult Swiss Webster GF and CC mice were purchased from
Taconic Biosciences (Germantown, NY, USA). All mice were
housed in our GF facility in an isolated, ventilated caging system
(Isocage, Techniplast, Buguggiate VA, Italy). Mice were maintained
on a 12:12 light-dark cycle with ad libitum access to autoclaved
food and water. All animal procedures were approved by Georgia
State University’s Institutional Animal Care and Use Committee
(protocol #A20013) and followed the National Institutes of Health
Guide for the Care and Use of Laboratory Animals.

2.2. Cross-fostering procedure

Females and males were housed together for 1–4 days.
Beginning on the eve of the first possible embryonic day (E) 19, we
performed hourly, around-the-clock checks for births, with checks
during the dark period performed under red light illumination.
Immediately upon observing the birth of a litter, cages were
thoroughly sprayed with a sterilizing solution (1 part Exspor base:
1 part Expsor activator: 4 parts tap water; Ecolab Inc., Saint Paul,
MN, USA) and placed within a biosafety cabinet that prior to the
procedure had been UV treated and sprayed with the sterilizing
solution. Offspring were gently transferred to a sterile container
using a sterile set of tweezers before being assigned to a foster dam
that had given birth within the previous 48 h. The foster dam’s
own pups were removed and experimental pups (whole litters) were
then placed in the foster dam’s cage under sterile conditions. We
cross-fostered GF pups to CC dams (GF→CC group; n = 34), and,
to control for the cross-fostering procedure, CC and GF pups to
dams within the same microbiota status (CC→CC group, n = 37
and GF→GF group, n = 15) (Figure 1). In two additional cases,
foster mothers were not available for control litters (one CC→CC
n = 17 and one GF→GF litter n = 10) and these pups were
sham cross-fostered; that is, they underwent all the procedural
steps of cross-fostering (spraying of cages, placement of pups in
sterile holding container) but pups were returned after a delay to
the birth mother. Sham cross-fostered mice did not differ from
pups fostered to an unrelated mother for any dependent variable
tested (determined by ANOVA or t-tests within microbial status,
as appropriate) and are therefore included in the analyses below
and identified as sham cross-fostered on all figures. The total
number of litters represented in each group was four for CC→CC,
two for GF→GF and three for GF→CC. Note that due to low
GF pregnancy rates, it was challenging to foster GF pups within
microbial status; this explains the lower number of litters and
subjects for the GF→GF group.
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FIGURE 1

Experimental design. GF newborns were cross-fostered immediately after birth to CC dams (GF→CC group) and compared to offspring fostered
within the same microbiota status (CC→CC, GF→GF groups).

2.3. Tissue collection

To assess how rapidly gut colonization takes place, we sacrificed
half of each litter at P3 and collected colon contents from a subset of
mice (CC→CC n = 16; GF→CC: n = 12; GF→GF n = 14). To assess
brain effects related to bacterial colonization of the gut, we collected
brains (CC→CC n = 20; GF→CC: n = 12; GF→GF n = 10)
and colon contents (CC→CC n = 17; GF→CC: n = 10; GF→GF
n = 10) of a subset of offspring at P7. On collection days, mice
were weighed and immediately euthanized via rapid decapitation
8–10 h after lights on. Brains (P7) were fixed in 5% acrolein in
0.1 M phosphate buffer for 24 h at room temperature and then
transferred to 30% sucrose at 4◦C, followed by cryoprotection at
−20◦C until sectioning. Colon contents (P3 and P7) were collected
by excising the colon and gently extruding contents with the flat
surface of a curved, sterile tweezer. Contents were weighed, and
stored at−80◦C prior to processing.

2.4. Immunohistochemistry

Brains were coronally sectioned on a freezing microtome into
four, 40 µm series. Sections were collected into cryoprotectant
solution and stored at −20◦C. One series was processed for
the immunohistochemical detection of ionized calcium binding
adaptor molecule 1 (Iba1) to label microglia, and two series for
the detection of activated caspase-3 (AC3) to identify dying cells.
Unless otherwise stated, tissue was washed between steps in 1X
tris buffered saline (TBS) and all steps were carried out at room
temperature. Epitope retrieval was performed with 0.05 M sodium
citrate for 1 h for Iba1 or 30 min for AC3. Then, unreacted
aldehyde was blocked via incubation with 0.1 M glycine for
30 min, followed by an incubation in a blocking solution (20%

normal goat serum (NGS), 1% H2O2, 0.3% Triton X in TBS),
and an overnight incubation with the primary antibody: rabbit
anti-Iba1 (Wako, Chuo-Ku, Osaka, Japan; 1:3,000; 2% NGS, 0.3%
Triton X in TBS) or rabbit anti-AC3 (Cell Signaling, Beverly,
MA, USA; 1:5,000; 2% NGS, 0.3% Triton X in TBS). Sections
were washed in a dilute blocking solution (1% NGS, 0.02% Triton
X in TBS), incubated for 1 h in a goat anti-rabbit secondary
antibody (Vector Laboratories, Burlingame, CA, USA; 1:1,000 for
Iba1 or 1:500 for AC3; 0.32% Triton X in TBS), washed in 1X
TBS-0.2% Triton X, and incubated for 1 h in an avidin–biotin
solution (Vector Laboratories; 1:1,000 for Iba1 or 1:500 for AC3
in 1X TBS). Tissue was washed in acetate buffer and incubated in
0.02% diaminobenzidine tetrahydrochloride, 2% nickel sulfate, and
0.0025% H2O2 made in the same buffer. Sections were mounted
onto gelatin-coated slides, counterstained with thionin in the case
of AC3-immunoreacted tissue, dehydrated, and coverslipped.

2.5. Quantification of microglia, dying
cells, and forebrain size

All analyses were performed on coded slides by an investigator
blind to treatment group. We analyzed brain regions where we
previously observed differences between neonatal GF and CC
mice: the paraventricular nucleus of the hypothalamus (PVN), the
CA1 oriens layer of the hippocampus, and the arcuate nucleus
(ARC) (Castillo-Ruiz et al., 2018a). In addition, we included the
primary somatosensory cortex (S1) in our analyses of microglia
as microbiota-dependent effects have been previously reported for
microglia in this region (Thion et al., 2018). For the PVN, we
analyzed all available sections, starting when the nucleus has a
tubular shape (Plates 127-131 in Paxinos et al., 2007). For the CA1
oriens, we included sections from the rostral-most appearance of
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the dentate gyrus (Plate 128) to the point where the hippocampus
starts to tip ventrally (Plate 131). For the ARC, sampling started
at the point where the nucleus has a well-defined triangular shape
(Plate 133) and ended when the nucleus was no longer visible (Plate
142). S1 was analyzed in three consecutive sections, starting where
the dentate gyrus is clearly defined (Plate 128) and ending when
the hippocampus tips ventrally (Plate 131), as described in Strahan
et al. (2017).

Slides were scanned using a Hamamatsu Nanozoomer
(Hamamatsu Photonics K. K. Hamamatsu City, Japan) and cell
quantification was performed using Aperio Image Scope (Leica
Biosystems Inc., Buffalo Grove, IL, USA). Contours were drawn
around the regions of interest and the number of microglia and
dying cells within those contours was recorded. The sum of
AC3+ and Iba1+ counted cells across all sections in each animal
was divided by total area sampled, and then multiplied by section
thickness to obtain cell density per mm3.

To assess forebrain size, we outlined the left side of the forebrain
in one series of the AC3 labeled tissue, using six alternate sections,
starting from the section where the medial border of the anterior
commissure lies ventral to the tip of the lateral ventricle (Plate 117)
and ending at the section with the rostral most appearance of the
dorsomedial nucleus of the hypothalamus (Plate 133), as previously
described (Castillo-Ruiz et al., 2018a). The sum of areas across all
sections was multiplied by two and then by section thickness to
obtain overall forebrain volume in mm3 for each animal.

2.6. DNA extraction from colon contents

Deoxyribonucleic acid extraction from colon contents was
performed using the QIAamp fast DNA stool mini kit (Qiagen
LLC, Germantown, MD, USA) according to the manufacturer’s
instructions, with the addition of a bead beating step at the
beginning of the procedure to aid with homogenization: samples
were transferred to PowerBead Pro Tubes (Qiagen) and agitated for
2 min in the Mini-Beadbeater (Biospec Products, Inc., Bartlesville,
OK, USA). The stock DNA was used for polymerase chain reaction
(PCR) and sequencing analysis of the 16S rRNA gene.

2.7. 16S rRNA PCR for total bacterial load

Polymerase chain reaction was performed in the C1000 Touch
Thermal Cycler (Bio-Rad, Hercules, CA, USA) (2 min at 95◦C,
followed by 40 cycles of 5 s at 95◦C and 10 s at 60◦C) using
a QuantiNova SYBR green PCR kit (Qiagen) with universal
16S rRNA primers 8F: 5′-AGAGTTTGATCCTGGCTCAG-3′ and
338R: 5′-CTGCTGCCTCCCGTAGGAGT-3′. Negative controls
were run concurrently and included clean paper towels used for
sample collection and buffer from the DNA extraction kit. The
quantitative cycle (Cq) values for negative control and GF samples
were very close to the final cycle of the PCR run (mean = 38.47;
SEM = 0.19; compare these values with the much earlier read outs
from CC groups: mean = 22.51; SEM = 0.31). In order to calculate
fold-increase in bacterial load in CC groups, we used the GF Cq
values as reference. Bacterial load was calculated using the formula
2−(1Cq), where 1Cq was obtained by subtracting the Cq average of

the GF→GF group from each individual animal’s Cq value. Fold-
change values were then obtained by dividing each experimental
value by the average for the GF→GF group.

2.8. 16S rRNA gene sequencing and
analysis

16S rRNA gene amplification and sequencing were
performed using Illumina MiSeq technology (Illumina Inc.,
San Diego, CA, USA). The 16S rRNA genes, region V4, were
PCR amplified from each sample using a composite forward
primer and a reverse primer containing a unique 12-base
barcode, designed using the Golay error-correcting scheme,
which was used to tag PCR products from respective samples
(Caporaso et al., 2012). We used the forward primer 515F 5′-
AATGATACGGCGACCACCGAGATCTACACGCTXXXXXXXXX
XXXTATGGTAATTGTGTGYCAGCMGCCGCGGTAA-3′: the
italicized sequence is the 5′ Illumina adaptor, the 12 X
sequence is the Golay barcode, the bold sequence is the
primer pad, the italicized and bold sequence is the primer
linker, and the underlined sequence is the conserved
bacterial primer 515F. The reverse primer 806R used
was 5′-CAAGCAGAAGACGGCATACGAGATAGTCAGC
CAGCCGGACTACNVGGGTWTCTAAT-3′: the italicized
sequence is the 3′ reverse complement sequence of Illumina
adaptor, the bold sequence is the primer pad, the italicized and
bold sequence is the primer linker and the underlined sequence is
the conserved bacterial primer 806R. PCR was performed using a
Hot Master PCR mix (Quantabio, Beverly, MA, USA) in the C1000
Touch Thermal Cycler (3 min at 95◦C, followed by 30 cycles of
45 s at 95◦C, 60 s at 50◦C and 90 s at 72◦C). PCR products were
purified with Ampure magnetic purification beads (Agencourt,
Brea, CA, USA), and visualized by gel electrophoresis. Products
were then quantified (BioTek Fluorescence Spectrophotometer;
BioTek Instruments, SAS, France) using Quant-iT PicoGreen
dsDNA assay (Invitrogen, Carlsbad, CA, USA). A master DNA
pool was generated from the purified products in equimolar ratios.
The pooled products were quantified using Quant-iT PicoGreen
dsDNA assay and then sequenced using an Illumina MiSeq
sequencer (paired-end reads, 2 × 250 bp) at Cornell University,
Ithaca.

Sequences were demultiplexed and quality filtered using the
Dada2 method (Callahan et al., 2016) with QIIME2 default
parameters in order to detect and correct Illumina amplicon
sequence data, and a table of QIIME2 artifact was generated.
A tree was next generated, using the QIIME fragment-insertion
sepp command, for phylogenetic diversity analyses, and alpha and
beta diversity analyses were computed using the core-metrics-
phylogenetic command. For taxonomy analysis, features were
assigned to amplicon sequence variants (ASVs) with a 99%
threshold of pairwise identity to the Greengenes reference database
13_8 (McDonald et al., 2012).

2.9. Statistics

We combined the data for males and females in all
analyses below. Preliminary analyses did not identify significant
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FIGURE 2

Microglial effects of gestating germ-free persist in mouse neonates despite introduction to a microbiota at birth. (A) Photomicrographs of
Iba1 + stained tissue in representative CC→CC, GF→GF, and GF→CC mice, showing the brain regions analyzed: CA1 oriens, S1, PVN, and ARC
(regions smaller than field of view indicated with black lines). 3V, third ventricle. Scale bar = 100 µm. (B,C) Microglial density was higher in groups
gestated GF in the CA1 oriens (B) and S1 (C), regardless of introduction to a microbiota at birth in the GF→CC group. (D) In contrast, microglial
density in the PVN was no different between GF→CC and either control group, suggesting partial normalization of the microglial phenotype by
microbiota introduction at birth. (E) No differences between groups were seen in the ARC. Group means with different letters are significantly
different from each other. Mean + SEM and individual data points are depicted, with gray symbols representing sham cross-fostered mice in control
groups.

effects of sex for any variable, although some comparisons
may have been under-powered for identifying sex differences.
One-way ANOVA was used to evaluate cross-fostering effects

on microglial number, cell death, body weight, forebrain size,
colon content weight, and bacterial diversity. When applicable,
ANOVA was followed by Fisher’s least significant difference.
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FIGURE 3

Cell death effects of gestating germ-free persist in the ARC of mouse neonates despite introduction to a microbiota at birth. (A) Photomicrographs
of AC3 + stained tissue (counterstained with thionin) in representative CC→CC, GF→GF, and GF→CC mice, showing the brain regions analyzed:
ARC, CA1 oriens, and PVN (all regions indicated with black lines). Arrowheads point to cells shown at higher magnification in the insets. 3V, third
ventricle. Scale bar = 100 µm (main photomicrograph) and 20 µm (insets). (B) Cell death density was lower in groups gestated GF in the ARC,
regardless of introduction to a microbiota at birth in the GF→CC group. (C,D) Cell death density did not differ between groups in the CA1 oriens (C)
or PVN. (D) Group means with different letters are significantly different from each other. Mean + SEM and individual data points are depicted, with
gray symbols representing sham cross-fostered mice in control groups.

Non-parametric tests (Kruskal–Wallis followed by Dunn’s test)
were performed for bacterial load as data did not conform to
the homogeneity of variance assumption of ANOVA. Two-tailed
independent samples t-tests were used to test the effects of
cross-fostering on metrics of alpha diversity: ASVs and Shannon
diversity index. Principal coordinate analysis (PCoA) plots of
Bray Curtis distances were used to assess the variation between
the experimental groups (beta diversity), which was further
tested via Permutational analysis of variance (PERMANOVA).
Analysis of composition of microbiomes (ANCOM) was used
to identify differentially abundant species between groups,
and one-tailed independent samples t-tests or Mann–Whitney
tests were used to confirm differences. Statistical analyses
were performed using GraphPad Prism (GraphPad software
LLC, San Diego, CA, USA) and QIIME2 (Bolyen et al.,
2019). Two immunohistochemical runs were performed per
marker (Iba1, AC3), with half of the subjects per group

included in each run. The second run for Iba1, however, was
unsuccessful so animal numbers are lower for Iba1 than for AC3
analyses.

3. Results

3.1. Microglial effects of gestating
germ-free persist in some brain regions
despite introduction to a microbiota at
birth

We first examined microglia in four brain regions in which
we or others have reported effects of GF status. Specifically,
microglial labeling is increased in the PVN, ARC, cortex, and CA1
oriens layer of the hippocampus in perinatal or adult GF mice
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(Erny et al., 2015; Castillo-Ruiz et al., 2018a; Thion et al., 2018).
Here, we found significant effects of group in the CA1 oriens
[F(2,14) = 4.40, p = 0.03], S1 [F(2,15) = 4.40, p = 0.03], and PVN
[F(2,15) = 6.77, p = 0.008] (Figures 2A–D). As seen previously
when comparing GF and CC mice, GF→GF mice had more
microglia than CC→CC mice in these brain regions (ps ≤ 0.03).
Remarkably, the introduction of a microbiota at birth was not
sufficient to change the GF phenotype in the CA1 oriens or S1, as
microglial number in GF→CC mice remained significantly higher
than in CC→CC mice (ps ≤ 0.03) and was no different from
GF→GF mice at P7 (Figures 2B, C). In contrast, the PVN showed
partial normalization of microglial phenotype as the GF→CC
group did not differ from either the GF→GF or CC→CC groups
(Figure 2D). For the ARC, there was no difference between groups
in the overall ANOVA [F(2,15) = 2.53, p = 0.11] (Figure 2E).

3.2. Cell death effects of gestating
germ-free persist despite introduction to
a microbiota at birth

Compared to CC mice, we previously observed increased cell
death in the CA1 oriens and PVN and reduced cell death in the
ARC of GF mice on P0 and P3 (Castillo-Ruiz et al., 2018a). Here,
we again found an effect in the ARC [F(2,36) = 22.28, p < 0.0001]
and, as before, the GF→GF group had fewer dying cells than the
CC→CC group (Figures 3A, B). Importantly, introduction to a
microbiota at birth was not sufficient to change this phenotype as
the GF→CC group did not differ from the GF→GF group and
remained different from the CC→CC group at P7 (p < 0.0001). We
did not find an effect of group in the CA1 [F(2,38) = 0.30, p = 0.74]
or PVN [F(2,38) = 1.33, p = 0.28], perhaps because P7 is well after
the peak of cell death in these regions (Figures 3C, D; Mosley et al.,
2017).

3.3. Gross measurement effects of
gestating germ-free persist in mouse
neonates despite introduction to a
microbiota at birth

Our previous study also showed greater body weight and
forebrain size in GF neonates compared to CC controls (Castillo-
Ruiz et al., 2018a). Here we again found significant effects of group
for both measures [F(2,39) = 16.41, p < 0.0001 and F(2,32) = 3.89,
p = 0.03, respectively], and similar to what we observed previously,
the GF→GF group weighed more and had a larger overall forebrain
size (Figures 4A, B) than the CC→CC group (ps ≤ 0.04). The
GF→CC mice remained significantly different from CC→CC mice
(ps ≤ 0.02) for both measures (Figures 4A, B) and were no different
from GF→GF mice on either measure.

3.4. Cross-fostering largely normalizes
gut bacterial load and composition

Persistence of the GF phenotype seen above in the GF→CC
group could be related to differences in the amount (load) and/or

FIGURE 4

Effects of gestating germ-free on body weight and forebrain size
persist in mouse neonates despite introduction to a microbiota at
birth. Body weight (A) and forebrain size (B) were greater in GF→GF
and GF→CC mice, in comparison to the CC→CC group. Group
means with different letters are significantly different from each
other. Mean + SEM and individual data points are depicted, with gray
symbols representing sham cross-fostered mice in control groups.

FIGURE 5

Introduction to a microbiota at birth normalizes the bacterial load
of mice gestated germ-free at P7. (A) Relative quantification of the
16S rRNA gene from colon content showed similar levels of
bacterial DNA in the groups harboring microbiota. The GF→GF
group was used as reference group for fold change calculations.
(B) Size of the colon content sample was unlikely to affect the
assessment of bacterial load as there were no differences in this
measure between groups. Group means with different letters are
significantly different from each other. Mean + SEM and individual
data points are depicted, with gray symbols representing sham
cross-fostered mice in control groups.

identity (composition) of gut microbial species. To test these
hypotheses, we first assessed bacterial load in colon contents
7 days after birth. Not surprisingly, a non-parametric one-way
ANOVA revealed significant effects of group on bacterial load
(H2 = 23.38, p < 0.0001), with CC→CC and GF→CC groups
having approximately 106 -fold greater bacterial load than the
GF→GF group (ps ≤ 0.0002). Importantly, the CC→CC and
GF→CC groups did not differ from each other on this measure
(Figure 5A). This effect is unlikely driven by group differences in
colon content size as there was no effect of group on this measure
[F(2,34) = 2.84, p = 0.07] (Figure 5B).
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We next assessed bacterial composition through 16S rRNA
gene sequencing. Metrics of alpha diversity showed that there was
no difference in ASVs (richness) between GF→CC and CC→CC
groups (Figure 6A, top). However, there was a difference between
these groups when richness and abundance (evenness) were
considered using the Shannon diversity index: the GF→CC group
had slightly lower diversity [t(24) = 2.77, p = 0.01] (Figure 6A,
bottom). Taxon abundance assessment revealed that the colonic
microbiota of GF→CC and CC→CC groups were remarkably
similar but vastly distinct from negative control samples. The
presence of a bacterial signal in 16S rRNA amplification of negative
control samples is expected, as it captures any environmental
contamination as well as the so-called “kit-ome,” (i.e., bacterial
presence in buffers and other reagents) (Grahn et al., 2003; van
der Horst et al., 2013; Olomu et al., 2020). Interestingly, the profile
observed in negative controls and GF→GF mice was very similar,
further validating the absence of endogenous bacteria in the GF
group (Figure 6B). Lactobacillus, Proteus, and Staphylococcus were
predominant across GF→CC and CC→CC samples. In contrast,
Bacteroides and Enterobacteriaceae were the contaminants that
dominated in negative control and GF→GF samples.

Principal coordinate analysis of Bray Curtis distances was
used to evaluate differences at the level of bacterial community
composition (beta diversity). PCoA plots show that GF→CC
and CC→CC samples cluster together but separately from
negative control and GF→GF samples, suggesting that bacterial
communities are similar in composition in the microbiota
harboring groups (Figure 6C). Nonetheless, PERMANOVA found
a significant difference between the GF→CC and CC→CC samples
(p = 0.03). ANCOM was used to test for individual species that
differed significantly in abundance between the GF→CC and
CC→CC groups. Remarkably, just one species was identified:
Lactobacillus reuteri (W = 32; U = 45, p = 0.003) was present
in half of the GF→CC samples and absent in all CC→CC
samples (Figure 6D). We also note that although CC→CC and
sham CC→CC offspring overall had similar bacterial composition,
ANCOM revealed that the sham CC→CC group had more Proteus
(W = 12; also captured in Figure 6B). However, this comparison
did not quite reach significance in a non-parametric t-test (U = 19,
p = 0.054).

Thus, bacterial load and composition were largely identical
between GF→CC and CC→CC mice at P7, but brain measures
were not. Colon contents that were collected at P3 allowed us to
test how quickly bacterial normalization occurs. Similar to what
was seen at P7, bacterial load and colon content size did not
differ between GF→CC and CC→CC groups at P3 (Figures 7A,
B). However, colon contents of the CC→CC group had double
the number of ASVs (U = 18, p = 0.0004) (Figure 8A, top), but
similar values of the Shannon diversity index compared to the
GF→CC group (Figure 8A, bottom). Taxon abundance assessment
revealed that overall CC→CC and GF→CC were similar (and,
again, vastly different from or negative controls of GF→GF
samples), although Streptococcus appeared more predominant in
CC→CC colons (Figure 8B). CC→CC and GF→CC groups at
P3 clustered slightly further apart on PCoA plots than they did
at P7 and PERMANOVA confirmed this difference (p < 0.002)
(Figure 8C). However, ANCOM analysis again found only a
single species that was significantly different in abundance between
the groups: Streptococcus acidominimus [W = 44; t(26) = 5.18,

p < 0.0001] was more predominant in the colons of CC→CC
mice than in GF→CC mice at P3 (Figure 8D). In addition, we
did not observe taxa abundance differences between CC→CC
and sham CC→CC offspring at P3. Thus, when exposed to a
normal microbiota on the day of birth, the neonatal gut microbiota
was largely similar whether pups were gestated and born CC
or GF, with some subtle differences, especially at the earlier
timepoint (P3).

4. Discussion

We previously identified effects of the microbiota on microglia
and neuronal cell death within hours after birth (Castillo-Ruiz et al.,
2018a). In this study, a cross-fostering approach allowed us to test
whether these effects are caused solely by the postnatal microbiota,
or whether in utero exposure to the maternal microbiota plays a
role. Overall, we find that the GF phenotype persists during the
first postnatal week, despite successful acquisition of a microbiota
at birth, suggesting a role for prenatal programming.

4.1. Microglia, cell death, and gross
development effects

Microglial colonization of the brain and neuronal cell
death are two of the most prominent neurodevelopmental
events during the newborn period in mice. The number of
microglia increases rapidly after birth and microglia undergo
major morphological and gene expression changes during this
period (Dalmau et al., 2003; Schwarz et al., 2012; Crain et al.,
2013; Lai et al., 2013; Sharaf et al., 2013; Christensen et al.,
2014; Matcovitch-Natan et al., 2016; Castillo-Ruiz et al., 2022).
Similarly, developmental neuronal cell death is concentrated
during the first postnatal week in mice (Ahern et al., 2013; Mosley
et al., 2017). Microglia are quite sensitive to the microbiota.
Erny et al. (2015) demonstrated increased microglial labeling
in adult GF mice, and extended that to mice in which the
microbiota was severely depleted in adulthood with antibiotics
or which lacked a complex microbiome by virtue of being
colonized by only three bacterial species. These findings suggest
continuous regulation of microglia by the microbiome throughout
life.

In the CA1 oriens and S1 we found that mice born GF,
regardless of microbial status at P7, had more microglia than CC
mice, suggesting persistence of the GF microglial phenotype in
the GF→CC group. The ARC had a similar microglia pattern
but we were underpowered to detect an effect. In contrast, in
the PVN we observed partial normalization of the GF phenotype
by the cross-fostering manipulation. The PVN is enriched in
blood supply in comparison to neighboring regions (van den
Pol, 1982), and this pattern develops during the first days
postnatal in rats and mice (Menendez and Alvarez-Uria, 1987;
Frahm et al., 2012). We speculate that microbial metabolites
may be more accessible to the PVN via its nascent rich blood
supply than to the other brain regions examined here. Consistent
with this hypothesis, administration of bacterial metabolites to
adult GF mice can rescue microglial numbers, morphology,
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FIGURE 6

Introduction to a microbiota at birth largely normalizes bacterial composition of mice gestated germ-free by P7. (A) Measures of alpha-diversity
revealed no difference between CC→CC and GF→CC groups in the number (richness) of ASVs (top). In contrast, when richness and abundance
were considered by using the Shannon diversity index, the GF→CC group showed slightly lower diversity (bottom). Mean + SEM and individual data
points are depicted, with gray symbols representing sham cross-fostered mice in control groups. *p = 0.01. (B) Relative abundance of bacterial
groups per sample (columns), showing that overall bacterial composition was normalized in the GF→CC group as this group was similar to the
CC→CC controls but markedly different from negative control samples and GF→GF controls. Asterisks identify the sham cross-fostered mice in
control groups. The 12 most abundant taxa are shown in the color key. Sequences were classified to the lowest taxonomic level that could
confidently be identified. f, family; g, genus. (C) PCoA plots based on Bray-Curtis dissimilarity, showing that GF→CC and CC→CC groups were
similar in bacterial community composition as individual samples (symbols) clustered together but separate from controls (clustering indicated with
ellipses). Note that most samples for negative control and GF→GF groups overlap due to tight clustering; n = 6 and 10 for those groups, respectively.
Percent of variance explained by principal coordinates is indicated on the axes. (D) Boxplots of the number of reads per sample of the ASV identified
as Lactobacillus reuteri. While the CC→CC group did not return positive L. reuteri reads, half of the samples in the GF→CC group did. **p = 0.003.

Frontiers in Neuroscience 09 frontiersin.org123

https://doi.org/10.3389/fnins.2023.1130347
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1130347 April 26, 2023 Time: 14:1 # 10

Castillo-Ruiz et al. 10.3389/fnins.2023.1130347

FIGURE 7

Introduction to a microbiota at birth normalizes the bacterial load
of mice gestated germ-free at P3. (A) Relative quantification of the
16S rRNA gene from colon content showed similar levels of
bacterial DNA in the groups harboring microbiota. GF→GF group
was used as reference group for fold change calculations. (B) There
were no differences in weight of the colonic content between
groups. Group means with different letters are significantly different
from each other. Mean + SEM and individual data points are
depicted, with gray symbols representing sham cross-fostered mice
in control groups.

and physiology (Erny et al., 2015, 2021). Moreover, gut-derived
bacterial metabolites cross the blood-brain barrier in vivo (Frost
et al., 2014) and influence microglia function in vitro (Erny et al.,
2021).

For cell death, we found an effect of group in the ARC,
with greater cell death in both GF→CC and GF→GF than in
CC→CC mice. Interestingly, the ARC is involved in food intake,
which is increased in GF mice (Bäckhed et al., 2004). In the
CA1 oriens and PVN we did not find an effect of group on cell
death, probably due to the fact that this process has tapered off
in these regions by P7 (Ahern et al., 2013; Mosley et al., 2017).
We did not assess the phenotype of the cells undergoing cell
death in this study, however, they are likely to be mainly neurons
based on previous reports in the neonatal brain (Zuloaga et al.,
2011) and the neuron-like morphology shown by the cells we
quantified.

Gross development was also affected by prenatal microbial
absence, with GF→CC and GF→GF mice having greater forebrain
size and body weight than CC→CC mice at P7. These measures
may be dependent on mouse strain or diet, as they are found in
some studies of GF mice but not others (Bäckhed et al., 2004;
Fleissner et al., 2010; Khosravi et al., 2015; Selwyn et al., 2015;
Kawase et al., 2017; Castillo-Ruiz et al., 2018a; Vuong et al.,
2020). It is notable that most of the GF effects that we identified
previously on microglia, cell death, and gross development in
Swiss Webster mice at P0 and P3 (Castillo-Ruiz et al., 2018a)
were replicated here at P7. Therefore, the GF phenotype persists
throughout at least the first postnatal week. Because the brain
undergoes extensive development during this time (Reemst et al.,
2016), our past and current results could help explain why
exposing GF rodents to microbes beyond the early postnatal
window does not normalize some brain and behavior measures
(Sudo et al., 2004; Clarke et al., 2013; Desbonnet et al., 2014).

Similarly, introduction to a wild/more diverse mouse microbiota
protects against diet-induced obesity if introduced to CC mice
on P2, but not if the introduction is delayed to P15 (Hild et al.,
2021).

As mentioned above, the co-housing of GF mice with CC
mice at birth reduces microglial numbers in comparison to
GF mice when examined in adulthood. Our results suggest
that the normalization of brain measures is not immediate.
Similarly, delayed effects of microbiota colonization have
been reported in adult mouse colon (El Aidy et al., 2012;
Johansson et al., 2015). Because microglia participate in diverse
neurodevelopmental processes, including the phagocytosis of
dying cells, neuro/gliogenesis, and synaptic pruning (Ferrer
et al., 1990; Caldero et al., 2009; Paolicelli et al., 2011; Schafer
et al., 2012; Cunningham et al., 2013; Shigemoto-Mogami
et al., 2014; Lenz and Nelson, 2018), any deviations from
their typical state could have significant effects on brain
development.

4.2. Bacterial load and composition

Bacterial load and composition were largely identical between
GF→CC and CC→CC mice at P7, suggesting rapid colonization
of the gut in mice gestated GF and introduced to a microbiota at
birth. In agreement, El Aidy et al. (2012) conventionalized adult GF
mice and found that bacterial copy number reached its maximum
after just 1 day. Overall, the species diversity observed in our
study concurs with a previous report in neonatal mice showing
low diversity at the end of the first week postnatal followed by
a more stable and diverse community by weaning age (Pantoja-
Feliciano et al., 2013). The predominant genera we observed
are also in agreement with Pantoja-Feliciano et al. (2013), with
dominance of Lactobacillus and Streptococcus during the first week
postnatal. The prevalence of Lactobacillus may in part be due to
its role inhibiting the growth of other bacterial communities via
production of lactic acid from milk (Vandenbergh, 1993; Brownlie
et al., 2022).

There were slight differences in alpha and beta diversity
between CC→CC and GF→CC groups at P7 and ANCOM found
a significant difference in one taxon: L. reuteri was greater in
GF→CC than in CC→CC neonates. This finding is interesting
given that administration of L. reuteri in its biofilm state normalizes
microglia numbers in a mouse model of neonatal necrotizing
enterocolitis (Wang et al., 2021). Therefore, it is tempting to
speculate that L. reuteri may participate in the partial normalization
of microglia seen in the PVN of GF→CC mice. However,
L. reuteri was present in only half of the GF→CC mice at P7
and the presence of this species within the GF→CC group did
not correlate significantly with microglial or cell death measures
(not shown). We cannot rule out an association, however, as we
may not have been sufficiently powered, especially for microglial
measurements.

The GF→CC and CC→CC groups were already very similar
in bacterial load and composition at P3. Nonetheless, we
detected more pronounced differences between the groups at
this age than at P7. The most notable was the predominance
of Streptococcus in the CC→CC group, and as per the
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FIGURE 8

Introduction to a microbiota at birth largely normalizes bacterial composition of mice gestated germ-free by P3. (A) Measures of alpha-diversity
revealed a difference between CC→CC and GF→CC groups in the number (richness) of ASVs: the CC→CC group showed doubled the number of
ASVs (top). In contrast, when richness and abundance were considered by using the Shannon diversity index, there was no difference between
groups (bottom). Mean + SEM and individual data points are depicted, with gray symbols representing sham cross-fostered mice in control groups.
***p = 0.0004. (B) Relative abundance of bacterial groups per sample (columns), showing that overall bacterial composition was similar between
GF→CC and CC→CC groups, with the exception of higher abundance of Streptococcus in the CC→CC group. These two groups, however, were
markedly different from negative and GF→GF groups. Asterisks indicate the sham cross-fostered mice in control groups. The 12 most abundant taxa
are shown in the color key. Sequences were classified to the lowest taxonomic level they could confidently be identified. f, family; g, genus. (C)
PCoA plots based on Bray-Curtis dissimilarity, showing that GF→CC and CC→CC individual samples (symbols) clustered somewhat further apart
than at P7 but markedly separate from controls (clustering indicated with ellipses). Note that most samples for negative control and GF→GF groups
overlap due to tight clustering; n = 6 and 14 in those groups, respectively. Percent of variance explained by principal coordinates is indicated on the
axes. (D) Boxplots of the number of reads per sample of the ASV identified as Streptococcus acidominimus. Gray symbols represent sham,
cross-fostering in control mice. ****p < 0.0001.
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ANCOM results, this may in part relate to higher abundance of
S. acidominimus. Interestingly, this species is sensitive to perinatal
manipulations as shown by reduction in its numbers in the
P2 mouse colon upon prenatal maternal stress (Jasarevic et al.,
2018).

Overall, we did not find differences between true and sham
cross-fostered mice for any of the variables assessed, with
the exception of higher Proteus at P7 in the sham CC→CC
group. Differences in gut microbiota composition due to cross-
fostering were recently reported by Morais et al. (2020) in
weanling and adult mice. However, in that study all non-cross-
fostered pups remained undisturbed with the birth mother.
Here, both sham and true cross-fostered pups experienced
maternal separation and a disinfection regime, which may
have more nearly equalized stress of the procedure across
groups.

4.3. Does the maternal microbiota
program brain effects?

The similarities between GF→CC and CC→CC bacterial
communities are not surprising, given that the fetus develops
in a sterile (or nearly sterile) womb and CC and GF offspring
are expected to be on equal footing with respect to direct
exposure to intestinal bacteria throughout gestation. Although
we did not assess the maternal gut microbiota in our study,
this microbiota was likely transferred promptly to GF→CC
newborns via feces in the cage and foster dam behaviors:
licking and grooming of pups after engaging in self-anogenital
grooming and coprophagy. If so, our current results suggest
that the maternal microbiota has programming effects on
brain development in utero. Similarly in utero effects of the
maternal microbiota have been reported for microglia and
other neurodevelopmental events, including axonogenesis and
sympathetic nervous system development (Thion et al., 2018;
Kimura et al., 2020; Vuong et al., 2020). In fact, Thion et al.
(2018) reported higher microglial numbers in GF mice as early
as E14. We previously observed no differences in microglia
and cell death between GF and CC mice in the hours just
before birth (Castillo-Ruiz et al., 2018a) but this discrepancy
may be due to the inflammation that occurs around time of
parturition and that extends to the brain (Castillo-Ruiz et al., 2018b,
2022).

Alternatively, it is possible that our cross-fostering
manipulation (GF→CC) did not fully mimic the vertical
transmission of microbes that occurs at birth in CC animals,
and that the subtle differences we found in the microbiota could
explain the persistence of the GF phenotype for most brain
measures. There are at least two ways that the initial colonization
of pups gestated and born GF versus CC may differ. First, mice
born to a GF dam are not exposed to a vaginal microbiota during
parturition. However, the maternal gut microbiota most powerfully
shapes the newborn’s gut microbiota, and most maternal vaginal
microbes are only very transiently found in the neonate’s gut
(Sakwinska et al., 2017; Ferretti et al., 2018; Jasarevic et al.,
2021). Nonetheless, the transient presence of vaginally-derived
species could alter subsequent stages of gut colonization and

affect development (Jasarevic et al., 2021). The two species
identified as significantly different between GF→CC and CC→CC
mice in our study: S. acidominimus at P3 and L. reuteri at P7,
inhabit the gut but also may be found in the vagina (Smith
and Sherman, 1939; Rabe et al., 1988; Tannock, 1995; Oh et al.,
2010; Leccese Terraf et al., 2016). Thus, it is plausible that initial
inoculation by vaginal microbes could account for differences
in the abundance of these species, although this explanation is
difficult to reconcile with the greater presence of L. reuteri in
GF→CC mice.

A second possible reason that colonization during the first
7 days postnatal might not be identical in GF→CC and CC→CC
newborns is in utero effects of the maternal microbiota on
development of the fetal intestine or immune system. If arriving
bacteria encounter a different environment in the GF→CC versus
CC→CC colon, this could affect the persistence of specific species.
Indeed, the maternal microbiota in utero plays a role in the
development of the immune system (Gomez de Agüero et al., 2016).
Our results suggest that if there are differences, they have only
subtle effects on colonization since bacterial load and composition
were remarkably similar in the GF→CC and CC→CC groups.

Finally, we cannot ignore the possibility that the persistence
of the GF phenotype in the GF→CC group may be related to
differences in microbial populations that we did not assess (e.g.,
fungi, viruses, or protozoans). However, at least for microglia,
bacterial normalization may be more important as bacterial
metabolites rescue microglial effects in adult GF mice (Erny et al.,
2015, 2021).

5. Conclusion

In sum, we find that brain effects of gestating GF persist
during the first postnatal week, despite successful acquisition
of a microbiota at birth. These findings argue for an important
role of the maternal microbiota during fetal life on neonatal
brain development. Because our results identify specific
neurodevelopmental events that are sensitive to prenatal microbial
exposure, this information could aid in interpretation of future
studies that evaluate programming effects of microbiota on brain
physiology and behavior. In addition, our work identifies two
potential species: L. reuteri and S. acidominimus, to target in future
experiments examining the role of specific bacteria in orchestrating
neonatal brain development.
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Developing brain under renewed 
attack: viral infection during 
pregnancy
Hatice Recaioglu  and Sharon M. Kolk *
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Netherlands

Living in a globalized world, viral infections such as CHIKV, SARS-COV-2, and ZIKV 
have become inevitable to also infect the most vulnerable groups in our society. 
That poses a danger to these populations including pregnant women since the 
developing brain is sensitive to maternal stressors including viral infections. Upon 
maternal infection, the viruses can gain access to the fetus via the maternofetal 
barrier and even to the fetal brain during which factors such as viral receptor 
expression, time of infection, and the balance between antiviral immune responses 
and pro-viral mechanisms contribute to mother-to-fetus transmission and fetal 
infection. Both the direct pro-viral mechanisms and the resulting dysregulated 
immune response can cause multi-level impairment in the maternofetal and 
brain barriers and the developing brain itself leading to dysfunction or even 
loss of several cell populations. Thus, maternal viral infections can disturb brain 
development and even predispose to neurodevelopmental disorders. In this 
review, we discuss the potential contribution of maternal viral infections of three 
relevant relative recent players in the field: Zika, Chikungunya, and Severe Acute 
Respiratory Syndrome Coronavirus-2, to the impairment of brain development 
throughout the entire route.

KEYWORDS

SARS-COV-2, CHIKV, ZIKV, vertical transmission, pregnancy, brain development, brain 

barrier, brain inflammation

1. Introduction

A sudden rise of a viral infection among populations can take a toll on societies by 
influencing daily life, economy, and public health as it continues to spread. In order to intervene 
and decelerate the spread as soon as possible, health organizations such as the World Health 
Organization (WHO) and the National Institutes of Health (NIH) promote research and 
development on viral pathogens that have the potential to cause widespread health issues (NIH, 
2023; World Health Organization, 2023). Nonetheless, extensive spread of viral pathogens is 
inevitable, especially considering the fast-adapting nature of viruses, climate change, and 
expanded (inter)national travel (Abdul-Ghani et al., 2020; Pergolizzi et al., 2021). In this review, 
due to the (i) consistently reported high Zika virus (ZIKV) and Chikungunya virus (CHIKV) 
case numbers by numerous countries in the recent past, (ii) recent Severe Acute Respiratory 
Syndrome Coronavirus-2 (SARS-COV-2) pandemic, and (iii) known or potential mother-to-
fetus transmission and subsequent neurodevelopmental impact, we have particularly focused 
on ZIKV, CHIKV and SARS-COV-2 within the context of exposure during brain development. 
Nevertheless, we realize that TORCH infections as well as HIV infections can still pose a threat 
to the developing brain in similar ways (NIH, 2023; World Health Organization, 2023); we focus 
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on the “renewed” attack of three of the most recent viral players in 
the field.

Historically, CHIKV and ZIKV viruses were identified in Africa 
between the 1940s and 1950s. With recurring outbreaks, CHIKV 
infections spread through the Indian ocean and Asian regions (2004–
2007) reaching the Americas and subsequently leading to the 2013 
Caribbean epidemic (Mugabe et al., 2018; Périssé et al., 2020). Travel-
associated cases also contributed to its emergence in Europe, for 
example in Italy (Pierelli et  al., 2018). Similarly, ZIKV drew the 
attention with outbreaks in Higuera and Ramírez (2019) and French 
Ginige et  al. (2021) where 73% and 66% of the population were 
affected, respectively (Pergolizzi et al., 2021). Growing spread through 
the Pacific Islands and the Americas as well as reported striking 
negative pregnancy outcomes were followed by the declaration of 
ZIKV as an international health emergency by WHO in 2016. In the 
past 6 years, CHIKV and ZIKV infections have been consistently 
reported to health organizations reaching 115 and 87 countries, 
respectively, infecting thousands of people, especially in the Americas 
region. SARS-COV-2, on the other hand, emerged in Wuhan, China, 
causing a national outbreak in 2019. Not long after, it was declared as 
a global pandemic by WHO on 11 March 2020, and is the most recent 
example of the multifaceted devastating impacts of (global) viral 
spread. Within months of the emergence of SARS-COV-2, the virus 
has spread throughout the world, infected millions of people, and 
caused the death of thousands of people worldwide. These three 
viruses are still closely monitored by NIH (2023) and World Health 
Organization (2023).

Extensive spread of viral pathogens raises concern, particularly for 
pregnant women. Epidemiologic studies of previous pandemics and 
epidemics have shown that pregnant women and/or their offspring 
had higher rates of severe illness, morbidity, and mortality (Jamieson 
et al., 2009; Louie et al., 2010; Charlier et al., 2017; Van Campen et al., 
2020; De St Maurice et al., 2021; Ginige et al., 2021). Though overall 
ZIKV, CHIKV, and SARS-COV-2 do not pose a major threat to 
pregnant women, upon SARS-COV-2 infection, pregnant women are 
more likely to require critical care and to have pregnancy 
complications (Musso et al., 2019; Pomar et al., 2019; Allotey et al., 
2020; Schwartz and Morotti, 2020; Jacques et al., 2021; Jafari et al., 
2021) and these may have indirect consequences for brain 
development (Vohr et al., 2017). In ZIKV and CHIKV infections, the 
main subject of concern had become the neonates due to the observed 
neurologic and neurodevelopmental abnormalities as a result of 
vertical transmission (CHIKV, ≥15.5%; ZIKV, 10.9%; Pomar et al., 
2017; Contopoulos-Ioannidis et  al., 2018; McEntire et  al., 2021). 
Severe neonatal CHIKV cases involving central nervous system (CNS) 
manifestation was first time reported during Reunion Island outbreak 
in 2005 (Enserink, 2006; Josseran et al., 2006). Later, it was found that 
vertically transmitted neonates did not only develop encephalopathy, 
but also microcephaly and neurodevelopmental delay (Josseran et al., 
2006; Borgherini et al., 2007; Couderc and Lecuit, 2009; Gérardin 
et al., 2014; Ramos et al., 2018; Waechter et al., 2020; Shukla et al., 
2021). ZIKV causes congenital malformations which was first 
suspected during the French Polynesia outbreak but the association 
could be  only made after its arrival to Brazil (Duffy et  al., 2009; 
Hennessey et  al., 2016; Mlakar et  al., 2016; Moore et  al., 2017). 
Prenatal ZIKV infection can result in a wide range of 
neurodevelopmental problems including microcephaly, cortical and 
cerebellar developmental impairment (Mlakar et al., 2016; Yoon et al., 

2017; Yuan et al., 2017; Freitas et al., 2020). Despite ongoing debates, 
it has been generally accepted that SARS-COV-2 can be vertically 
transmitted during pregnancy (5.3%) and can result in neurological 
manifestation upon birth (Vivanti et  al., 2020; Shook et  al., 2022; 
Vivanti et al., 2022). Although longitudinal cohort studies are still in 
infancy due to the recent occurrence of the pandemic, emerging data 
have been pointing out that maternal SARS-COV-2 infection during 
pregnancy could affect neurodevelopment negatively and even 
increase the chance of neurodevelopmental and neurologic diagnosis 
later on (Chevalier and Poillon, 2022; Germano et al., 2022; Shook 
et al., 2022; Taquet et al., 2022; Wang et al., 2022).

Early brain development spanning from prenatal to postnatal is 
an intricate and sensitive period. The necessity of rapid but timely and 
precise changes in the developing brain as well as the relatively naive 
immune state of the neonates, make the developing brain susceptible 
to environmental insults including maternal viral infections (Vohr 
et al., 2017; Elgueta et al., 2022; Jash and Sharma, 2022). Throughout 
pregnancy, mother and the maternofetal barrier undergo a series of 
structural and immunological alterations to provide protection against 
pathogens and ensure healthy development of the fetus until term 
(Silasi et al., 2015; Cornish et al., 2020). Nonetheless, some viruses 
have the ability to directly circumvent protective mechanisms and/or 
induce inflammatory response which can create multi-level 
alterations. Maternal viral infections can directly and/or indirectly 
interfere with neurodevelopmental processes and increase the risk for 
brain injury and brain disorders including neurodevelopmental 
(NDDs) and neuropsychiatric disorders (NPDs) as well as 
neurodegenerative diseases (Tomonaga, 2004; Silasi et  al., 2015; 
Zimmer et al., 2021; Elgueta et al., 2022; Ayesa-Arriola et al., 2023). In 
line with that, in 6% of the prenatally ZIKV-exposed neonates 
(Martins et al., 2021) and in 51% of the perinatally CHIKV-exposed 
neonates50 CNS-associated problems were reported, while the 
proportion of neurological manifestation among neonatal SARS-
COV-2 infections was 18% (Raschetti et al., 2020).

Considering recurring outbreaks affecting multiple countries 
worldwide, and the danger to the developing brain with long-lasting 
effects, it is important to understand; (I) how viruses can bypass 
protective mechanisms and barriers, (II) how infections alter the 
developing brain, (III) how hosts (in this context, both mother and 
fetus) react to the infection, and (IV) how these reflect onto the 
developing brain such that it deviates from its developmental 
trajectory eventually disturbing normal functioning. In this review, by 
focusing on these points as well as the factors influencing susceptibility 
of the developing brain to viral infection, our aim is to provide 
stepwise insights into the effects of viral infection on protective 
barriers and the developing brain and highlight gaps in the current 
knowledge which could be helpful in future research of environmental 
insult-associated impairment of brain development.

1.1. Viruses, the maternofetal barrier and 
brain development

The maternofetal barrier with its two main components, placenta 
and the amniochorionic membrane, develop throughout gestation 
and create a multicellular complex structure to ensure healthy fetal 
development by allowing molecule transmission between mother and 
fetus (e.g., oxygen, nutrients, growth factors) and by providing fetal 
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protection both structurally and immunologically (Figure 1; Pereira, 
2018; Silini et al., 2020; Megli and Coyne, 2022). Vertical transmission, 
the passage of virus from mother to fetus, can occur transplacentally 
and/or paraplacentally through direct infection of maternofetal cell 
layers, cell-mediated transport and breach/diffusion.

From a closer perspective, chorionic villi are covered with 
trophoblast cells (e.g., cytotrophoblasts (CYT) and 
syncytiotrophoblasts (SYN)) located on the fetal side of the placenta 
and contain fetal blood vessels as well as fetal macrophages (Hofbauer 
cells; HFB). CYT and SYN which are in contact with the maternal 
blood filling the intervillous space, allowing nutrient and oxygen 
exchange (Megli and Coyne, 2022). Fundamentally, infection of these 
cells by CHIKV (Gérardin et al., 2014), ZIKV (Tabata et al., 2016; 
Pereira, 2018; Zanluca et al., 2018; Megli and Coyne, 2022), or SARS-
COV-2 (Facchetti et  al., 2020; Vivanti et  al., 2020) indicates a 
transplacental viral passage. Especially, infection of the HFB cells by 
the viruses could be a direct threat to the developing brain due to their 
migrational ability. That way, they may mediate cell-associated 
transport into the brain (Tabata et al., 2016; Facchetti et al., 2020; 
Megli and Coyne, 2022; Vivanti et al., 2022) (see also section 1.3). 
ZIKV may also diffuse through trophoblastic plugs during the 1st 
trimester given the susceptibility of extravillous trophoblasts (EVTBs) 
(Adibi et al., 2016a,b). In addition, viral transportation across barriers 
can enable transmission. Even in the absence of infection of all cell 
types, virus-induced cytopathy and a strong immune response could 
disturb the placental architecture and/or functioning allowing viral 

transmission, resulting from ZIKV (Miner et al., 2016; Matusali et al., 
2019; Cribiu et al., 2021; Ferreira et al., 2021), SARS-COV-2 (Vivanti 
et al., 2020; Cribiu et al., 2021; DeGrace et al., 2022) and possibly 
CHIKV (Ferreira et al., 2021) infections. Interestingly, in the earlier 
CHIKV studies, the absence of placental infection and the presence of 
perinatal maternal viremia led to the placental breach hypothesis. 
According to this hypothesis, CHIKV rather than infecting the 
maternofetal barrier, it infiltrates through the placental breaches 
during labor when maternal-fetal blood contact occurs (Gérardin 
et al., 2014; Matusali et al., 2019). The route and gestational time of 
vertical transmission have importance for the assessment of both 
preventative options and gestational time-dependent risk for brain 
development. Although SARS-COV-2 vertical transmission is a rare 
event, there is clear clustering of reported cases around the 3rd 
trimester-to-early postnatal period which may be reflective of entry 
receptor expression-dependent vulnerable period or reporting bias 
(Allotey et al., 2020; Facchetti et al., 2020; Fenizia et al., 2020; Hosier 
et  al., 2020; Vivanti et  al., 2020). Also, sparse CHIKV vertical 
transmission studies concluded contrasting findings (Gérardin et al., 
2014; Contopoulos-Ioannidis et al., 2018; Honorio et al., 2019; Ferreira 
et al., 2021); hence, further research is required for both viruses.

Amniochorionic membrane attached to the uterine wall (decidua) 
encapsulates the fetus, thus, enhances fetal protection. The multi-layered 
membrane is formed with the alignment of the amniotic epithelial cells 
(AmEpCs), trophoblast cells (TBCs), CYT and decidual cells from most 
interior (fetal side) to outer surface (maternal side) (Silasi et al., 2015; 

FIGURE 1

Viral infection of maternofetal barriers. The viruses infecting the mother during pregnancy could reach the fetus by acting on the maternofetal barriers. 
The maternal side of the placenta, consisting of basal decidua and maternal blood vessels, is in communication with the fetal side of the placenta, 
containing chorionic villi, mainly through maternal blood filling the intervillous space. However, maternal blood flow is blocked by EVTBs (trophoblastic 
plugs) during the 1st trimester, and it gradually disintegrates by the beginning of the 2nd trimester. Transplacental transmission of viral infection could 
occur through (I) infection of/diffusion through the plugs, (II) infection of/transportation across the trophoblasts of chorionic villous, and/or (III) 
through the structural alteration of the placenta (e.g., via inflammatory response). Upon entering the chorionic villi, viruses can gain access to fetal 
blood vessels and even directly the developing brain by infecting the HFBs. On the other hand, viruses reaching the amniochorionic membrane are 
able to elicit the release of viruses into the amniotic fluid, hence, paraplacental transmission. The viruses can directly alter the functioning of the 
placenta. Also, the maternal and placental inflammatory response might affect placental functioning in addition to allowing the transmission of 
inflammatory molecules (cytokines and chemokines) to the fetal side. Both cases will have harmful effects on the developing brain. Created with 
BioRender.com.
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Silini et  al., 2020). Susceptibility of AmEpCs and TBPCs to ZIKV 
suggests ZIKV diffusion into the amniotic fluid where it may infect fetal 
skin and/or placenta (Adibi et al., 2016a; Tabata et al., 2016). Similarly, 
detection of CHIKV in the endometrial epithelium, amniotic fluid, and 
AmEpCs (Tabata et al., 2016; Platt et al., 2018) and SARS-COV-2 in fetal 
membranes and amniotic fluid may suggest paraplacental transmission 
(Fenizia et al., 2020; Penfield et al., 2020; Cribiu et al., 2021).

It should be noted that maternal viral infections during pregnancy 
is a risk for brain development due to both vertical transmission and 
maternofetal barrier dysregulation (Yoon et al., 2017; Baines et al., 
2020; Shukla et al., 2021; Ayesa-Arriola et al., 2023). As mentioned 
above, dysregulation can occur via virus-induced cytopathy and 
inflammatory response. For example, placental cell death and 
inflammation was reported among ZIKV-infected offspring with 
neurodevelopmental abnormality (Adibi et al., 2016a,b) and among 
SARS-COV-2-infected/exposed offspring some of which had a 
neurological manifestation (Fenizia et al., 2020; Vivanti et al., 2020; 
Favre et  al., 2021). The contribution of placental dysfunction to 
neurodevelopmental outcome is partially due to its impaired secretory 
(e.g., neurotrophic factors, serotonin and glucocorticoids) function 
(Racicot and Mor, 2017; Narang et al., 2021; Megli and Coyne, 2022). 
Moreover, inflammatory response in the maternofetal barrier can not 
only cause placental dysregulation, but also affect neurodevelopmental 
processes in the fetal brain locally (see section 1.5). For instance, 
prematurity and chorioamnionitis both of which indicating placental 
dysfunction (Racicot and Mor, 2017; Narang et al., 2021) and were 
reported in maternal ZIKV (Garcia-Flores et al., 2022; Gomez-Lopez 
et al., 2022) and SARS-COV-2 infections (Jafari et al., 2021; Wong 
et al., 2021) could increase the risk for neurodevelopmental disorders 
(Allotey et al., 2020; Elgueta et al., 2022).

1.2. Susceptibility of the developing brain 
to viral infections

Gestational time of infection, viral tropism, exposed viral load, in 
combination with the balance between antiviral host immune 
response and pro-viral strategies are among the factors influencing 
susceptibility of developing brain to infection. Viral recognition of its 
entry mediators on host cells, with subsequent viral uptake via 
endocytosis initiates cellular infection (Agrelli et al., 2019; V’Kovski 
et al., 2021). The location of the mediators is important since they 
constitute the target of the viruses. In this way, their localization in 
maternofetal and brain barriers (e.g., ZIKV: TIM-1, AXL; CHIKV: 
DC-SIGN, MXRA8, TSPAN9; SARS-COV-2: ACE2) enables vertical 
transmission and access to the brain (Schnierle, 2019; Feng et al., 2020; 
Pellegrini et al., 2020; Teixeira et al., 2020; Varma et al., 2020; Xie et al., 
2020). The expression pattern of the mediators creates cell-specific 
tropism of viruses and the distribution of the susceptible cells across 
the gestational period contributes to gestational time point-associated 
vulnerability. CHIKV, ZIKV and SARS-COV-2 show overlap in 
susceptible CNS cell populations, with different cell preference toward 
astrocytes, neural progenitor stem cell (NPSCs), and mature neurons, 
respectively (Retallack et al., 2016; Tang et al., 2016; Matusali et al., 
2019; Pellegrini et al., 2020; Varma et al., 2020; Yi et al., 2020). It 
should be noted that none of the CHIKV entry mediators have been 
specifically associated with brain infectivity. But, the expression 
pattern of the mediators (e.g., PHB, AXL, FUZ, TIM-1, TSPAN9) 

some of which are common with ZIKV (Haddad-Tovolli et al., 2017; 
Garcez et al., 2018; Ramani et al., 2020; Kumari et al., 2021) and the 
brain injury pattern suggest that CHIKV can infect the brain (e.g., 
neurons, glial cells, neural stem cells; NSCs) (Das et al., 2015; Racicot 
and Mor, 2017; Schnierle, 2019; Baines et al., 2020). Interestingly, 
occurrence of viral infection in the absence of the mediators, especially 
for CHIKV (Schnierle, 2019; Kril et al., 2021) and ZIKV (Retallack 
et  al., 2016; Hastings et  al., 2017) implies employed other routes, 
presence of unidentified entry mediators and/or interchangeable use 
of mediators having multiple functions.

Viral infection initiates an antiviral host immune response 
through viral recognition by pattern recognition receptors (PRRs) 
such as RIG-I-like receptors (RLRs) and Toll-like receptors (TLRs) 
leading to release of interferons, inflammatory cytokines, and 
chemokines (Silasi et al., 2015; Racicot and Mor, 2017; Pereira, 2018). 
A sufficient level of antiviral response both on maternofetal barrier 
and in offspring is crucial for viral clearance and to prevent negative 
outcome. As an example, placental Type-3 interferon (IFN) response 
(IFN-λ) during the 3rd trimester can prevent ZIKV vertical 
transmission (Baines et  al., 2020). During pregnancy, both 
maternofetal barrier and fetus have a tolerogenic immune state to 
prevent fetal rejection. The naïve immune state of the offspring 
extending to the neonatal period create immature immune responses 
(e.g., lower innate immune effector, lower IFN response), especially 
upon viral infection. Together, these create susceptibility to early life 
viral infections (Kollmann et al., 2017; Cornish et al., 2020). Indeed, 
insufficient antiviral type-1 IFN has been implicated in neonatal brain 
infection, developmental delay and severe vertical transmission cases 
of CHIKV as well as in vertical transmission and brain infection of 
ZIKV (Miner and Diamond, 2016; Van den Pol et  al., 2017). 
Furthermore, the ability of ZIKV (Adibi et al., 2016a; Adams Waldorf 
et al., 2018; Lee et al., 2018), CHIKV (Priya et al., 2014; Kril et al., 
2021), and SARS-COV-2 (Pellegrini et al., 2020; Song et al., 2021) to 
evade and/or inhibit Type-1,-2, and/or − 3 IFN responses can 
contribute vertical transmission, BBB breakdown and/or CNS 
infection. For instance, SARS-COV-2, inducing metabolic changes in 
infected and neighboring neurons of cerebral organoids were 
accompanied with lack of IFN response implying potential 
contribution of immune response interference in SARS-COV-2 
neuropathogenesis (Pellegrini et al., 2020; Song et al., 2021).

To establish successful infection, initial high viral load may not 
be as crucial for highly neurotrophic viruses like ZIKV (Halai et al., 
2017; Adams Waldorf et al., 2018). On the other hand, high dose of 
exposure to the viruses with lower neurotropism (e.g., CHIKV, SARS-
COV-2) together with impaired host immune response might increase 
the risk for brain infection (Vivanti et al., 2020; Wong et al., 2021). 
Nonetheless, dose-dependent CNS infectivity of SARS-COV-2 was 
not consistently reported (Ramani et al., 2020; Yi et al., 2020; Kumari 
et  al., 2021), maybe suggesting a more prominent role of entry 
mediator expression level compared to viral load.

All three viruses could affect the fetus at any time during pregnancy, 
especially considering their ability to disturb placental (see section 1.1) 
and brain barrier (see section 1.3) homeostasis, and to interfere with 
the development through inflammatory factors (see section 1.5). 
However, within the context of viral tropism and (anti/pro-viral) 
immune responses, ZIKV has higher likelihood of affecting the brain 
during early pregnancy (Miner et al., 2016; Mittal et al., 2022), while 
CHIKV (Ramos et al., 2018; Waechter et al., 2020), and SARS-COV-2 
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are more likely to most harmful during late pregnancy (Pellegrini et al., 
2020; Vivanti et al., 2020). In line with that, early neurodevelopmental 
processes (e.g., neurogenesis, migration) are more likely to be affected 
by ZIKV and late neurodevelopmental processes (e.g., neural circuitry 
formation and maturation) by CHIKV and SARS-COV-2.

1.3. Routes to developing brain and impact 
of viral infection

In order to affect the developing brain in utero, once the virus 
crosses maternofetal barrier, it needs to cross brain barriers to be able 
to infect neural tissue (Figure 2). Brain barriers start to form at very 
early stages, show early functionality, and continue to develop and 
mature after the postnatal period. Naturally, these structures are 
different than mature brain barriers: for example, the developing 
Blood–Brain Barrier (BBB) allows more restricted passage than the 
mature BBB (Obermeier et al., 2013; Haddad-Tovolli et al., 2017). The 
embryonic Blood-Cerebrospinal Fluid Brain barrier (e/BCSFB) 
differently structured than the adult BCSFB, transiently functions 
during embryonic and fetal stages. Together, the developing BBB and 

e/BCSFB provide protection from toxins and pathogens, and allow 
proper development of the brain by creating a controlled internal 
environment and by adjusting a molecule gradient specific to each 
developmental time point (Saunders et al., 2018, 2019). Nonetheless, 
they can be targeted by viruses from the mother during pre/perinatal 
period which access the developing brain. During that process, the 
viruses can adopt various strategies which can be generally categorized 
as with or without barrier disruption.

1.3.1. Blood–brain barrier
Endothelial cells, which are joined together via tight junctions 

(TJs) restricting paracellular permeability, as well as the basal 
membrane, which is in contact with pericytes, microglia, and astroglia 
end feet, constitute the two main components of cerebral blood vessels 
(Obermeier et al., 2013). By encircling the vessels, they create a highly 
selective adult BBB. During development, with the appearance of TJs 
and transporters at gestational week (GW) 12 and becoming more 
adult-like by GW18, it creates a barrier that pathogens need to cross 
(Obermeier et al., 2013; Goasdoue et al., 2017; Saunders et al., 2018, 
2019). A growing body of evidence indicates that ZIKV can enter the 
brain mainly without overtly disturbing the BBB permeability via 

FIGURE 2

Viral infection of brain barriers. Brain barriers stand as obstacles in the way of viral access to the developing brain. To tackle the limited transmission 
across barriers, viruses employ various mechanisms. (A) Following viral entry into fetal blood circulation, viruses can travel into the blood lumen of the 
BBB. Infection of endothelial cells can result in viral release into the brain through distinct transcytosis and endocytosis-exocytosis mechanisms. 
Similarly, the use of immune cells (e.g., leukocytes, microglia) as Trojan horses, can enable viral transmission across the BBB without damaging the 
barrier. On the other hand, direct modulation of BBB components (e.g., TJs, endothelium) by the viruses and resulting inflammatory response on the 
barrier can give access to the brain as a result of interrupted barrier integrity. (B) Contrary to the BBB, viruses can traffic across fenestrated capillary of 
the BCSF and reach the ChP stroma. The infection of cells in the stroma, such as pericytes, and/or epithelium could disturb barrier integrity by direct 
modulation of BCSF components (e.g., TJs, epithelium) or inflammatory response. Trojan horse mechanisms may also be employed in BCSF 
transmission. (C) The strap junctions between neuroepithelial cells, specific to embryonic and fetal stages, form the first brain barrier, limiting the 
molecule transmission between CSF and the brain. Gradually disappearing strap junctions are replaced by gap junctions of ependyma throughout a 
period extending to the postnatal stage. The transition from strap to gap junctions may enable viral trafficking. Created with BioRender.com.
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transcytosis (e.g., caveola-dependent transcytosis), endocytosis-
exocytosis-dependent replication, and transinfection followed by 
basolateral release (Tomonaga, 2004; Papa et al., 2017; Leda et al., 
2019; Chiu et  al., 2020). Similarly, SARS-COV-2 crossing the 
endothelium via transcytosis (e.g., adsorptive) can breakdown the 
basement membrane by MMP9-mediated collagen degradation and 
taken up by several brain regions in an ACE2-dependent manner, 
which appears to be the main route in SARS-COV-2 encephalopathy 
cases (Leda et  al., 2019; Song et  al., 2021; V’Kovski et  al., 2021). 
Limited studies are available showing that the effect of CHIKV on the 
BBB provides controversial findings: while in murine brain, the BBB 
was not affected, in zebra fish larvae, both brain vascular endothelium 
and parenchyma infection without BBB disruption were reported 
(Couderc et al., 2008; Passoni et al., 2017). However, the mechanism 
through which CHIKV crossed the BBB could not be assessed. The 
difference between these findings could be  a result of different 
experimental paradigms (e.g., viral titer, model organism), limited 
brain endothelial infectivity of CHIKV, and/or low viral release 
into parenchyma.

The viruses can directly (e.g., cytopathy, interference with 
developmental processes) and indirectly (e.g., via the immune 
response) damage the BBB, enabling dissemination into the CNS. For 
example, (de)phosphorylation-dependent TJ modulation and 
endothelial cytotoxicity leading to cell death can affect endothelial 
permeability (Papa et al., 2017; Leda et al., 2019; Buzhdygan et al., 
2020; Song et  al., 2021). Neurovasculature development starting 
around GW8, sets the onset of BBB formation and it proceeds in 
parallel with neurogenesis and brain expansion during which it 
provides necessary oxygen and nutrients to the cells. Therefore, it is 
important to have a parallel development of the brain and a proper 
functioning of the BBB. As such, ZIKV-induced cerebral vasculature 
developmental delay associated with the reduced neurogenesis, 
indicated that it affected BBB function (Papa et al., 2017; Garcez et al., 
2018; Leda et al., 2019). Likewise, altered protein levels connected to 
Rho family-associated pathways in CHIKV-infected neonate mice, 
could disturb blood vessel permeability (Couderc et  al., 2008). 
Receptor ACE2 expression in cerebral vasculature and vascular injury 
in SARS-COV-2 infection, probably as a result of direct and immune-
mediated effects, also pose as a risk factor for the developing brain 
(Leda et al., 2019; Buzhdygan et al., 2020; Wenzel et al., 2021).

Maternal and placental cytokines produced as an immune 
response to infection can have detrimental consequences for both the 
developing brain (see section 1.5) and the BBB. Initiated inflammatory 
responses against the viral attack, whether it is systemic or local, could 
disturb BBB permeability through its components (e.g., endothelium, 
astrocytes, transporters, TJs) resulting in viral entry into the CNS and 
exacerbation of brain injury. More specifically, activated endothelium 
upregulates adhesion molecules (e.g., ICAM-1) and inflammatory 
cytokines (e.g., CCL5, CXCL10, IL-1B, IL-6), allowing recruitment 
and docking of leukocytes to the BBB as well as increasing permeability 
(Adams Waldorf et al., 2018; Baines et al., 2020; Fenizia et al., 2020; 
DeGrace et  al., 2022). Passage of leukocytes and viruses into the 
parenchyma further amplifies inflammatory mediators and BBB 
breach. Observation of such alterations along with increased matrix 
metalloproteinases and BBB permeability upon SARS-COV-2 
infection indicates inflammation-associated BBB disturbance 
(Buzhdygan et al., 2020). Similar findings, albeit slight perturbations 
in TJs and BBB permeability upon ZIKV infection, imply that this 

may not be  the main route of CNS entry, though induced local 
inflammation followed by subsequent events could amplify brain and 
barrier damage as well as viral entry (Cle et al., 2020). Indeed, within 
the brain, dysregulated immune responses associated with vascular 
damage resulted in leaky BBB and potentially brain calcification (Shao 
et al., 2016). A dysregulated neuroinflammatory response may also 
contribute to BBB breakdown in CHIKV infection (Dahm et al., 2016).

Leukocyte (e.g., macrophage, monocyte, microglia) recruitment 
during or after BBB breakdown confers as a risk factor since they can 
be hijacked by the viruses for CNS entry with a so-called Trojan horse 
mechanism (Mustafa et  al., 2019). Peripheral monocyte and 
macrophage infectivity of the viruses further demonstrates their 
versatility in routes of dissemination and/or persistence (Silasi et al., 
2015; Lang et al., 2018; Jafarzadeh et al., 2020; V’Kovski et al., 2021). 
As an example, increased number of alveolar macrophages with 
abundant ACE2 expression in severe elderly cases led to the hypothesis 
of, SARS-COV-2 infection of lungs may enable dissemination to other 
organs (e.g., brain) via infected macrophages (Abassi et  al., 2020; 
Ferren et al., 2021). Though validity of this mechanism for the fetal 
stage is not known, in the vertical transmission case, lung infection 
and brain injury was however reported. Exceptionally, yolk 
sac-derived microglial cells appearing and migrating to the developing 
brain (GW4-24; Menassa and Gomez-Nicola, 2018) not only 
participate in brain development in critical stages but also are the 
resident macrophages of the brain acting as first-line defenders against 
pathogens (Tremblay et al., 2020). For example, ablation of microglias,  
which were localized at the embryonic murine cerebral vessels, 
decreased not only ZIKV load in brain but also fetal demise (Xu 
et al., 2020).

1.3.2. Blood-cerebrospinal fluid-brain barriers
Unlike the BBB, inner embryonic CSF (eCSF)-brain and blood-

eCSF barriers are the first appearing transient barriers in the 
developing brain (Goasdoue et al., 2017; Saunders et al., 2019). Both 
the epithelial blood vessel TJs and the neuroepithelial strap junctions 
are impermeable to all except smallest lipid soluables as opposed to 
the adult CSF-brain barrier, hence, create a controlled internal 
environment and allow expansion of the developing brain until 
choroid plexus (ChP) becomes functional (Saunders et al., 2018). As 
these barriers progressively disappear, they become ependyma starting 
around late 2nd trimester and form the BCSF barrier on the 
ventricular system (Saunders et al., 2018, 2019). With the initiation of 
ChP differentiation between GW 6–8, the BCSFB barrier on ChPs 
forms the 4th, lateral and 3rd ventricles, respectively, until the end of 
pregnancy (Lun et al., 2015). BCSF barrier on the ChP consists of 
epithelial cells with TJs on the apical side (Saunders et al., 2018), while 
the ChP stroma contains endothelial fenestrae with attached pericytes 
around the blood vessels. ChPs show secretory, barrier, and 
transportation functions after differentiation, although, similar 
impermeability pattern as eCSF-brain barrier mentioned above, seem 
to apply to early differentiated ChPs as well.

Despite restricted molecule transmission between blood-CSF-brain 
early in development, structural alterations, transitional stages and 
long-lasting formation of protective ependymal layer may create 
vulnerability to viral infections (Coletti et al., 2018). As such, it was 
suggested that BCSF barrier could be vulnerable to ZIKV infection 
based on its developmental structure, susceptibility of NSCs to ZIKV 
infection which are closely located to CSF in ventricular zone (VZ) of 
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developing brain, and observed periventricular injury pattern (Nelson 
et  al., 2020). Similarly, CHIKV-infected neonates were claimed to 
be  affected by Trojan horse-associated CNS damage through ChP, 
leptomeninges, and ependyma due to the subcortical and periventricular 
damage (Ferreira et al., 2021). Infection on the level of BCSFB barrier 
can not only cause barrier dysfunction, but also enable viral access to 
the interior and outer surface of the brain upon viral release into CSF, 
in both cases there could be  negative consequences for brain 
development. For example, ZIKV-infected pericytes in BCSF barrier 
disturb ChP epithelial barrier integrity and allow ZIKV CSF entry, likely 
by releasing factors (e.g., cytokines) (Kim et al., 2020). CHIKV can 
infect ChP ependymal and leptomeningeal cells and cause severe 
vacuolization of ChP epithelial cells which could affect its functionality. 
Productive SARS-COV-2 infection of ChP epithelium initiates cell 
death and inflammatory responses resulting in functional and structural 
deficits in the BCSF barrier. Also, decreased production of TTR protein, 
carrying thyroid hormone from the blood to CSF, may indicate 
developmental delay if it occurs during gestation (Richardson et al., 
2015; Jacob et al., 2020; Pellegrini et al., 2020). Developmental stage-
specific CSF volume and component adjustment provides necessary 
hydrostatic pressure and signaling factors (e.g., differentiation, 
guidance) to even distant regions. During this process, BCSFB barriers 
transport the factors from blood to CSF. ChPs play a crucial role by 
adjusting CSF volume and releasing ChP-derived factors which can 
affect the behavior of the neural stem cells on the ventricles. Moreover, 
even at postnatal stage, ChP continues to contribute to the development 
of the brain such as by modulating cerebral cortex plasticity. Therefore, 
virus-associated BCSFB damage and viral dissemination into the CSF 
could be detrimental for the developing brain.

1.4. Virus-induced direct damage to 
developing brain

The neurotrophic viruses entering the brain can interfere with the 
antiviral mechanisms (e.g., apoptosis, autophagy), cellular morphology 
(e.g., cell lysis, syncytia formation), and functionality (e.g., transcription 
and translation) through viral replication and/or interaction between 
viral components and the host. While benefiting from these 
interferences, such as by enhancing their replication and disseminating 
within the brain, the viruses create cytotoxicity during the process and 
temper cellular and molecular events which can damage cell populations 
and impair proper neurodevelopment (Figure 3). The extent of the 
impairment depends on several factors such as viral dissemination, 
targeted cell populations, and developmental time of interference.

1.4.1. Zika virus
ZIKV, having tropism to several cell populations (e.g., glial cells, 

early-late neurons) in addition to their well-known targets the neural 
progenitor/stem cells (NP/SCs), can affect the VZ where newborn 
neurons are generated of different brain regions such as hippocampus, 
cerebellum, thalamus, and hypothalamus (Cugola et al., 2016; Li et al., 
2016; Van den Pol et al., 2017; Shelton et al., 2021). Apart from the 
presence of entry receptors, axonal transportation, infection through 
astrocytes and NPC pool, could enhance its dissemination ability 
(Retallack et al., 2016; Shelton et al., 2021). ZIKV replication and 
proteins modulating distinct mechanisms such as apoptosis, 
autophagy, and cell cycle create multi-level impairment in the 

developing brain spanning from structural defects to (sub−/extra-)
cellular alterations (e.g., cytoplasmic vacuolization, mitochondria 
disruption, axonal rarefaction, and adherens junction impairment) 
(Miner and Diamond, 2016; Yoon et al., 2017; Lee et al., 2020; Yang 
et al., 2020). The high impact of ZIKV on neurodevelopment, more 
specifically on proliferation, differentiation, and migration processes, 
is due to higher tropism toward NP/SC populations. ZIKV-induced 
autophagy enhances viral replication by creating favorable conditions 
for its replication and inhibiting virus-targeted autophagy (virophagy). 
In the meantime, modulated pathways (e.g., Akt–mTOR, FA) in NSCs, 
having a dual role in autophagy and brain development, impair 
neurogenesis (Liang et  al., 2016; Tiwari et  al., 2020). Commonly 
observed apoptosis, probably as an antiviral host response, follow an 
incremental trend over the infection period attenuating brain growth 
(Cugola et al., 2016; Li et al., 2016). Apoptosis can be  initiated in 
neuronal and glial lineages due to ZIKV-induced transcriptional 
dysregulation of related genes (Zhang et al., 2016), mitochondrial 
dysfunction (Yang et al., 2020), oxidative stress (Ledur et al., 2020), 
and DNA damage (Ledur et  al., 2020). Regardless of intrinsic or 
extrinsic induction of apoptosis, it can be suppressed via stabilization 
of anti-apoptotic Bcl-2 family proteins by ZIKV (Turpin et al., 2019) 
demonstrating the extent of self-protective mechanisms especially 
during early infection while creating a catastrophic environment for 
the developing brain over time. Furthermore, ZIKV can dysregulate 
DNA damage repair- and cell cycle-associated (e.g., mitosis, cell cycle 
process) pathways (Tang et al., 2016; Zhang et al., 2016). As such, 
directly induced DNA damage combined with cell cycle arrest prevent 
host DNA replication thereby promoting ZIKV replication (Hammack 
et al., 2019). ZIKV protein-specific cell cycle arrest at different points 
with inhibition of differentiation can result in NPC pool depletion (Li 
et al., 2016; Hammack et al., 2019). During the process, mitotic and 
centrosomal alterations can interfere with the mode of NPC division 
(asymmetric/symmetric), chromosome segregation, and cell polarity 
which can result in chromosomal abnormalities, migration defects, 
and NPC pool depletion potentially due to chromosomal damage 
(Gabriel et al., 2017; Kesari et al., 2020).

1.4.2. Chikungunya virus
“The relative less tropism of CHIKV” is in comparison to 

ZIKV. While the ZIKV can extensively infect neuronal and glial cells, 
same level of infection was not reported for CHIKV (e.g., cerebral 
cortex, hippocampus, and cerebellum) during which axonal 
transportation and syncytia formation play a role (Das et al., 2015; 
Schnierle, 2019; Ferreira et  al., 2021). CHIKV replication with 
subsequent induction of cell stress, apoptosis, and autophagy mediate 
its cytopathic effects resulting in cellular damage (e.g., cell lysis, death, 
cellular disintegration) likely contributing to brain injury (Ramos 
et al., 2018; Van Ewijk et al., 2021). Although cell type-specific CHIKV 
vulnerability is not known, higher susceptibility of immature neurons 
to cytopathy and potential involvement of NS/PCs infection in 
neurological manifestation was suggested. CHIKV replication and/or 
interfered cellular processes (e.g., antioxidant enzyme production) can 
induce endoplasmic reticulum (ER) stress and oxidative stress during 
which CHIKV can take different routes in modulating the antiviral 
responses for its benefit. For instance, during ER stress-associated 
unfolded protein response (UPR) activation, UPR can be suppressed 
via CHIKV NSP2-mediated host shut-off potentially to evade from 
UPR-associated antiviral mechanisms (Meshram et al., 2019; Law 
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et  al., 2021). The interaction between CHIKV non-structural 
protein-2 (NSP2) and HSP90-associated PI3K/AKT/mTOR 
pathway, enables viral replication during early infection. While the 
occurrence and effects of these interferences in the developing brain 
is not known, the investigation of the PI3K/AKT/mTOR pathway 
within the context of CHIKV brain infection may provide information 
on neurodevelopmental aspects given its importance in 
neurodevelopment and cell death (Gérardin et al., 2014). Further, 
independent of stress-induced mTOR inhibition, CHIKV can activate 
autophagy and apoptosis. Specifically, the interaction of CHIKV NSP2 
with human autophagy receptor NDP52, reduces cell death by limiting 
cell shut off and enhances viral replication by allowing anchorage of 
the viral replication complex to the Golgi complex (Verlhac et al., 
2015). Early induction of autophagy in a glioblastoma cell line and 
prominent cell death especially in the late stages of the CHIKV brain 
infection may be the result of skewed autophagy and apoptosis toward 
a pro-viral role in the CNS (Abraham et al., 2013). Nonetheless, the 
possibility of host antiviral immune response-associated apoptosis 
induction cannot be overlooked given simultaneous activation of the 
immune response (Law et al., 2021). Also, hiding of CHIKV within 
apoptotic blebs could enable its cell-to-cell spread (e.g., neighboring 
cells, macrophages), hence, enhance its dissemination. In line with 
that, bystander apoptosis in murine brain with viral dissemination 
might be contributed by apoptotic bleb-associated infection (Abraham 
et al., 2013). Differential expression analyses have revealed modulation 
of several pathways including synaptic functioning, neurotransmission 
and neuronal cytoskeletal proteins in addition to cell death and stress 
response (Lim et al., 2017). However, specific functional connections 
of these modulations to the observed developmental delay in exposed 

neonates is not known. Further, despite an observed dysregulated 
immune response and its known negative influence on 
neurodevelopment (see section 1.5), a higher likelihood of direct CNS 
infection in neonates was implied. Therefore, investigation of CHIKV 
infection in the developing brain by focusing on functional 
consequences of the directly induced alterations could be informative 
for directly modulated neurodevelopmental processes.

1.4.3. Severe acute respiratory coronavirus-2
Despite the lower expression of SARS-COV-2 entry-associated 

proteins in the brain compared to lungs, several brain regions are 
vulnerable to infection with a preference toward mature neurons (e.g., 
excitatory, dopaminergic neurons; Jacob et al., 2020; Pellegrini et al., 2020; 
Lukiw et al., 2022). ZDHHC5, GOLGA7, and ATP1A1 are expressed 
abundantly during fetal brain development, especially in the 2nd and 3rd 
trimester, in (im)mature neurons and NPCs unlike widely investigated 
entry proteins (ACE2 and TMPRSS2; Varma et al., 2020; Chen et al., 
2021). While showing the potential danger to the developing brain, the 
in vivo and in vitro assessment of newly identified interactors is still 
lacking. The dissemination within the brain might be contributed by 
syncytia formation allowing cell-to-cell spread (Jacob et al., 2020; Zhang 
et al., 2020) and axonal transport given its ability to mimic relevant 
transport proteins (Yapici-Eser et al., 2021). Cell death, particularly at the 
proximity of infected cells, has been commonly reported within the 
context of brain infection which could be contributed by inflammatory 
response (Jacob et al., 2020; Ferren et al., 2021) and cellular dysfunction 
(Song et al., 2021; Valeri et al., 2021). For example, neuronal metabolic 
alterations can manage cellular resources to both un/infected neurons 
probably for viral replication and lead to death of nearby neurons as a 

FIGURE 3

Viral acting mechanisms and consequences for the developing brain. Viral infection initiates a cascade of events in favor (pro-viral) of and against 
(antiviral) the establishment of persistent, productive infection in the host. The balance between pro-viral and antiviral mechanisms as well as the level 
and the length of the immune response could dictate the degree to which the developing brain is affected by the infection. As such, the shift in 
balance toward pro-viral mechanisms coupled with the cytopathic effects (CPEs) of the viruses and strong/prolonged immune response can affect 
several neurodevelopmental processes in a negative way. As illustrated, viruses can dysregulate several mechanisms including DNA repair, cell cycle, 
host proteins (e.g., Tau), and cellular metabolism managing the resources (e.g., oxygen), mostly, as a pro-viral strategy. CPEs, including the dysfunction/
stress of cellular and sub-cellular structures (e.g., mitochondria, endoplasmic reticulum), in addition to immune response activation leading to, such as, 
the activation of glial cells (microglia, astrocytes) and release of GCs, can also be observed. These in turn, can have an impact on cell survival, 
neurodevelopmental processes, neuronal functioning, glial behavior, and neuroendocrine system activity. Created with BioRender.com.
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result of hypoxic-state (Song et  al., 2021). SARS-COV-2-induced 
oxidative stress, either as a result of mitochondrial manipulation (Clough 
et al., 2021) or facilitated infection, leads to DNA damage that cannot 
be repaired and enhances cortical neuronal death. Further, cell cycle 
impairment, which could be due to the DNA damage and/or oxidative 
stress, could induce neuronal senescence in which proliferation is 
permanently inhibited (Valeri et al., 2021). While SARS-COV-2 does not 
seem to have teratogenic effects similar to ZIKV, loss of neuronal 
populations during 2nd–3rd trimester when cortical growth continues 
may create subtle changes, contributing to cognitive and behavioral 
alterations (Andescavage et al., 2017). SARS-COV-2 interacting with host 
proteins could cause their dysfunction and affect relevant processes 
negatively (Idrees and Kumar, 2021; Yapici-Eser et al., 2021; DeGrace 
et al., 2022; Hok et al., 2022). For instance, the viral heparin binding site 
could assist binding of relevant proteins (e.g., Aβ, α-synuclein, tau, prion) 
and lead to their aggregation and neurodegeneration (Idrees and Kumar, 
2021). Similarly, as the hallmark of adult-onset taupaties, mislocalized 
and aberrantly phosphorylated Tau was reported in cerebral organoids 
(Ramani et al., 2020, 2021). Given the role of Tau on axonal microtubule 
organization during neural differentiation as well as synaptogenesis and 
dendritic spine formation, dysfunctional Tau could have consequences 
for the developing brain (Rankovic and Zweckstetter, 2019). Additionally, 
viral interaction with MAO, growth factors, and the proteins having role 
in synaptic and neurotransmission could misbalance neurotransmitter 
levels, affect neuronal survival and neuronal differentiation (Yapici-Eser 
et al., 2021; Hok et al., 2022). Despite recent occurrence of the pandemic, 
emerging information suggests neurobiological interference of SARS-
COV-2 creates a neurotoxic environment, though mechanisms and 
functional consequences especially for developing brain require 
further investigation.

1.5. Immune activation, inflammatory 
mediators and developing brain

Maternal viral infection inducing immune response which is 
mediated by inflammatory factors can change the homeostasis of the 
barriers and the developing brain, as mentioned in previous sections. 
During maternal infection, inflammatory cytokines in the fetus can 
increase due to the transplacental passage, placental production or fetal 
production posing as a developmental stressor for fetus (Fenizia et al., 
2020; Ferreira et al., 2021; Han et al., 2021). Specifically, pathogen/
damage-associated molecular patterns recognized by PRRs (e.g., TLRs) 
which are expressed in the CNS (e.g., neurons, microglia, astrocytes) 
and peripheral immune cells (e.g., macrophages) mediate cytokine 
release. Not only this molecular pathway was suggested to be the link 
between maternal inflammatory factors and immune-mediated 
disruption of brain development but also cytokines are recognized as 
the key modulators of developmental trajectories (Han et al., 2021).

Even a slight change in the balance between pro- and anti-
inflammatory factors released upon pathogen encounter can 
be  enough to deviate from normal neurodevelopment. Evidence 
suggests that all three viruses can induce immune activation and cause 
dysregulated immune response. Firstly, fever, associated with 
pyrogenic cytokines (IL6, IL1b, and TNFα) is among the symptoms 
in infected pregnant women and/or exposed neonates (Dahm et al., 
2016; Raschetti et al., 2020; Ginige et al., 2021). Secondly, enhanced 
level of cytokines and chemokines (e.g.IL1B, IL6, CCL5-2, CXCL9-10, 
and TNFα) in the mother, placenta, and/or neonate was reported in 

SARS-COV-2 (Fenizia et al., 2020; Cribiu et al., 2021; DeGrace et al., 
2022) and ZIKV (Lima et al., 2019; Rabelo et al., 2020) infections. 
Further, there is an association between SARS-COV-2 and cytokine 
storm (DeGrace et al., 2022) as well as between maternal cytokines 
and fetal brain abnormalities in ZIKV infection (Adams Waldorf et al., 
2018). In case of CHIKV, maternofetal cytokine transmission is likely 
given the higher level of cytokine release during the acute phase of the 
infection compared to the convalescent phase (Kril et  al., 2021). 
Prenatal exposure to some cytokines at high levels which are also seen 
in the viral infections (e.g., IL6, IL17) is sufficient to drive a behavioral 
outcome (Venugopalan et al., 2014; Chirathaworn et al., 2020). But 
maternal immune activation (MIA) is seen as a disease primer due to 
absence of neonatal neuropathology in most cases (Jiang et al., 2018). 
Thirdly, neuroinflammation and/or glial activation was demonstrated 
individually for all viruses mentioned (Dahm et al., 2016; Raschetti et 
al., 2020; Han et al., 2021; Elgueta et al., 2022). Finally, ZIKV (Cle 
et al., 2020; Rabelo et al., 2020), CHIKV, and potentially SARS-COV-2 
(DeGrace et al., 2022) can cause prolonged immune activation. Several 
routes have been postulated through which immune activation and 
inflammatory responses may alter the developing brain, thus, 
exacerbate brain injury and/or predispose to NDDs, NPDs such as via 
glial cells, trained immunity, and HPA-axis (Figure 3).

Glial cells namely astrocytes and microglia play an important 
role during development enabling functional neural circuitry 
formation, maturation and maintenance (Lago-Baldaia et al., 2020; 
Eze et al., 2021). In response to infection and cytokine release, glial 
cells become activated showing a pro-inflammatory state to improve 
neuroprotection and homeostasis (Dahm et al., 2016; Cornish et al., 
2020; Elgueta et al., 2022; Kim et al., 2022). However, such early life 
stresses can be  damaging to the developing brain due to a 
dysregulated glial functioning (e.g., impaired phagocytic activity, 
over/prolonged activation) and blunted glial development. 
Phagocytosis, required for synaptic pruning by astrocytes and 
primarily by microglia, is one of the functions that is found to 
be impaired upon MIA and is associated with NDDs (Lago-Baldaia 
et  al., 2020; Carloni et  al., 2021). Astrocytes, having a role in 
synaptogenesis, synapse regulation and neurotransmitter turnover, 
upon overactivation can release neurotoxic molecules as well as 
causing excitotoxicity due to impaired neurotransmitter turnover 
function resulting in neuronal dysfunction and cell death (Inglis 
et  al., 2016; Lago-Baldaia et  al., 2020; Linnerbauer et  al., 2020; 
Stasenko et  al., 2023). Further, microglia can amplify not only 
excitotoxic activity of astrocytes but also fetal brain injury via, e.g., 
secreted cytokines and free radicals (Linnerbauer et al., 2020). For 
example, the myelinating cells, pre-oligodendrocytes, are vulnerable 
to cytokines partially due to their inability to scavenge free radicals 
efficiently. Thus, potential damage can result in hypomyelination 
and even white matter injury (Motavaf and Piao, 2021; Stasenko 
et al., 2023). That may contribute to brain injury and developmental 
abnormality in CHIKV-exposed infants considering oligodendrocyte 
susceptibility to the infection, and the presence of inflammatory 
response, demyelination, and white matter injury (Gérardin et al., 
2014; Das et  al., 2015; Mehta et  al., 2018; Ramos et  al., 2018). 
Moreover, microglial activity could contribute disruption of 
oligodendrocyte development in Zika infections (Li et al., 2016).

Microglias, as the primary immune cells of the CNS, as well as 
peripheral immune cells (e.g., macrophages, monocytes) are particularly 
relevant within the context of trained immunity and long-term impact 
of the prenatal immune activation. Developmental stressors (e.g., 
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infection or cytokine exposure) (1st hit) can induce immune training by 
epigenetic and metabolic reprogramming immune cells (priming) thus 
enabling them to create strong inflammatory responses to the 
subsequent stimulus (2nd hit) (Netea et al., 2020; Carloni et al., 2021). 
Particularly microglia priming could be the key mediator of the negative 
consequences (e.g., neuronal and behavioral abnormalities) of the 
developmental stressor since MIA alters the function of microglia to the 
subsequent stimulus. Moreover, compared to adult microglias, neonatal 
microglias are more prone to priming (Carloni et al., 2021). For example, 
developmental stressor-induced inflammatory response, by priming 
microglias, created susceptibility to Alzheimer’s disease. As such, late 
low-dose Aβ treatment exacerbated microglial activation contributing 
to synapse damage and cognitive impairment (Frost et al., 2019). A 
potential role of trained immunity in ASD onset and progression was 
suggested with the observations of altered immune response to the 
subsequent stimuli along with fluctuating neuropsychiatric symptoms 
in a subset of the ASD children in the cohort.

Infection and cytokines (e.g., IL-1/2/6, TNFα) by affecting hormone 
release from Hypothalamus, Pituitary and Adrenal glands activate 
maternal and/or fetal HPA axis leading to release of glucocorticoids 
(GCs) as an end product (Han et  al., 2021). HPA-axis activity is 
controlled by a negative feedback loop during which produced GCs 
inhibit its continuous activation, preventing excess GC exposure. 
However, cytokines can not only downregulate placental GC 
inactivating enzyme (Cottrell and Seckl, 2009) but also create GC 
resistance upon prolonged exposure, thus, exposing the fetus to 
unrestrained GC. Also, GCs can suppress inflammation through 
production of anti-inflammatory cytokines (Han et al., 2021). Therefore, 
the ability of the developing brain to cope with inflammation partially 
depends on sufficient stress response generation through the HPA-axis. 
And that may differ before late gestation and during early postnatal 
period considering the functionality of the HPA axis throughout 
development (Sheng et al., 2020). Altogether, these can permanently 
alter HPA-axis response to stress (e.g., hyperactivation) which can 
contribute behavioral alteration (e.g., anxiety) and vulnerability to 
several diseases (e.g., psychiatric) in adulthood (Cottrell and Seckl, 
2009; Han et al., 2021). Further, HPA-axis’ hyperactivation could affect 
development of neurotransmitter systems and neurotransmitter levels 
in the developing brain due to the connection between neurotransmitter 
systems (e.g., serotonergic, dopaminergic) and the HPA-axis.

2. Conclusion and perspectives

Viruses whether it is due to viral receptor expression or placental 
breach can reach the fetus and move toward the fetal brain. But 
knowing the route, vulnerable developmental timing and the type of 
dysfunction can help to better assess the risk for brain development. 
The viruses inherently trying to establish productive and persistent 
infection can affect distinct developmental processes such as neuronal 
proliferation, differentiation as well as synaptic and brain barrier 
function especially considering the naïve immune state of offspring. 
Further, virus-induced dysregulated immune responses could have 
long-lasting effects on the developing brain. Better identification of 
the targeted cellular processes with respect to brain development for 
CHIKV and SARS-COV-2, additionally, the effects of dysregulated 
immune response upon CHIKV, ZIKV, and SARS-COV-2 infection 
on developing brain can help understanding the scope of 
neurodevelopmental impact. And that could enable development and/
or application of the targeted therapies for the affected newborns.
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