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Editorial on the Research Topic

Investigations into the potential benefits of artificial intelligence and
deep learning to surgical oncologists
‘Any sufficiently advanced technology is indistinguishable from magic.”

So said science fiction writer Arthur C. Clarke, though few could have predicted the

vast advances made in healthcare technology realised over the past decades. In the realm of

surgical oncology, this sentiment holds true as we witness the rise of artificial intelligence

(AI) and deep learning. These transformative technologies have the potential to

revolutionise the field, enabling surgical oncologists to achieve remarkable

advancements. This Research Topic aims to explore the potential benefits of AI and

deep learning in assisting surgical oncologists and enhancing their decision-making

capabilities. By harnessing the power of these technologies, we can aspire to achieve

more accurate diagnoses, personalised treatment plans, optimised surgical interventions,

and improved patient care (1).

This Research Topic presents nine publications spanning the surgical landscape,

featuring research applied to Hepatobiliary Surgery (Jeong et al.; Li et al.; Huang et al.;

Wang et al.), Orthopaedics (Yan et al.), Urology (Zhang et al.), Otolaryngology and

Neurosurgery (Hill et al.; CRANIAL consortium). Each article is a demonstration of the

unique opportunity AI poses to modern surgical oncologists. Here, we summarise the key

insights presented in these publications, highlighting the advancements that AI presents in

the field of surgical oncology.

First, the marriage of AI and deep learning with surgical oncology allows for intelligent

data analysis on an unprecedented scale. These transformative technologies excel at swiftly

and comprehensively processing vast amounts of complex data, as exemplified by the work

of the CRANIAL Consortium et al. Their publication showcases machine learning-driven

identification of predictors of cerebrospinal fluid rhinorrhoea following endonasal skull
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base surgery, utilising a vast corpus of surgical data. Yet AI driven

data analysis is not confined to text data - within the domain of

machine learning is computer vision, a branch of AI that gives

computer platforms understanding of image and video data (2).

Advances in this field, particularly in radiomics, have garnered

global attention due to their remarkable progress; however, their

application in the operating theatre has yet to be fully realised (3).

Within this Research Topic, Wang et al. describe the construction of

a survival prediction model that integrates multimodal imaging

data with clinical data, showcasing how AI can lead to

comprehensive insights and personalised treatment planning,

optimising patient outcomes.

Second, the work published in this Research Topic presents how

AI and deep learning techniques have the potential to enhance

surgical guidance and assistance. Zhang et al. demonstrate the

utility of computer vision in pre-operative planning and

intraoperative decision making through their generation of a

model able to predict renal perfusion regions based on automated

segmentation of renovascular imaging. Such advancement stands to

increase patient safety through ever-more precise surgical planning.

The application of surgical AI is not confined to the pre- and post-

operative stages; by analysing intraoperative data, such as live

imaging, physiological signals, and surgical instrument tracking,

AI algorithms can provide surgical oncologists with valuable

guidance, assisting them in navigating critical structures,

optimizing surgical margins, and ensuring precise tumour

resection (4). Moreover, AI-powered systems can detect and

predict potential complications, alerting surgeons in advance and

allowing for timely interventions, ultimately leading to improved

patient safety and outcomes (5).

Perhaps most valuable, however, is the promise of AI to offer

predictive models that shape treatment decisions and outcomes,

as demonstrated by numerous articles within this Research Topic.

By leveraging large datasets, these models identify prognostic

factors, predict treatment responses, and stratify patients into

risk groups (6). Jeong et al. describe the creation survival

pred ic t ion pla t form for pat i ents wi th intrahepat ic

cholangiocarcinoma (ICC), enabling categorisation of patients

into risk groups to guide clinical interventions. A similar

prognostic approach is adopted by Yan et al., who describe the

creation of a deep learning model to predict overall survival in

chondrosarcoma patients. Notably, their DeepSurv model

outperformed traditional models of survival prediction,

highlighting the unique capability of machine learning methods

to identify subtle relationships between variables in large,

complex datasets. Applications such as this give an insight into

how AI will individualise treatment decisions based on patient-

specific data, replacing crude and generic risk prediction systems.

Surgical oncologists can harness these insights to tailor treatment

plans to individual patients, optimize the sequencing of therapies,

and explore alternative strategies.

The integration of AI and deep learning transcends clinical

practice and extends to surgical training and education. Virtual

reality (VR) and augmented reality (AR) platforms, combined with
Frontiers in Oncology 025
AI algorithms, can simulate realistic surgical scenarios, providing

surgical trainees with a safe and controlled environment for

practicing complex procedures, such as tumour resections. By

analysing trainee performance and offering real-time feedback,

AI-powered systems may accelerate the learning curve, enhancing

surgical skills acquisition (7). The scope of AI to benefit trainees

does not stop there, however – AI algorithms may aid in curating

educational resources, extracting key insights from scientific

literature, and delivering personalised learning experiences to

surgical oncologists. Hill et al. demonstrate the ability of AI to

aid disease classification, through their use of AI to subclassify

glioblastoma, a disease with a profoundly poor prognosis, enabling

a clear taxonomy and better prediction of patient outcomes.

The articles presented within this Research Topic showcase the

rich field of AI research in surgical oncology, yet whilst the potential

benefits of AI and deep learning in surgical oncology are vast,

ethical considerations and challenges must be navigated. Issues such

as data privacy, algorithm bias, transparency, and accountability

must be addressed to ensure patient safety, maintain trust in the

healthcare system, and mitigate potential risks (2). Close

collaboration between clinicians, researchers, policymakers, and

regulatory bodies is crucial to establish guidelines and frameworks

that uphold ethical standards and govern the integration of AI in

surgical oncology (6).

We sincerely believe that the contents of this Research Topic

will be of interest to surgeons, oncologists, and members of the

wider healthcare team alike. AI and deep learning have the potential

to revolutionise the field of surgical oncology, the true benefits of

which are yet to be fully realised. By embracing the future, we

embark on a journey to redefine healthcare.
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Background: Artificial Intelligence (AI) frameworks have emerged as a novel approach

in medicine. However, information regarding its applicability and effectiveness in a clinical

prognostic factor setting remains unclear.

Methods: The AI framework was derived from a pooled dataset of intrahepatic

cholangiocarcinoma (ICC) patients from three clinical centers (n = 1,421) by applying the

TensorFlow deep learning algorithm to Cox-indicated pathologic (four), serologic (six),

and etiologic (two) factors; this algorithm was validated using a dataset of ICC patients

from an independent clinical center (n= 234). Themodel was compared to the commonly

used staging system (American Joint Committee on Cancer; AJCC) and methodology

(Cox regression) by evaluating the brier score (BS), integrated discrimination improvement

(IDI), net reclassification improvement (NRI), and area under curve (AUC) values.

Results: The framework (BS, 0.17; AUC, 0.78) was found to be more accurate than the

AJCC stage (BS, 0.48; AUC, 0.60; IDI, 0.29; NRI, 11.85; P < 0.001) and the Cox model

(BS, 0.49; AUC, 0.70; IDI, 0.46; NRI, 46.11; P < 0.001). Furthermore, hazard ratios

greater than three were identified in both overall survival (HR; 3.190; 95% confidence

interval [CI], 2.150–4.733; P < 0.001) and disease-free survival (HR, 3.559; 95% CI,

2.500–5.067; P < 0.001) between latent risk and stable groups in validation. In addition,

the latent risk subgroup was found to be significantly benefited from adjuvant treatment

(HR, 0.459; 95% CI, 0.360–0.586; P < 0.001).
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Conclusions: The AI framework seems promising in the prognostic estimation and

stratification of susceptible individuals for adjuvant treatment in patients with ICC after

resection. Future prospective validations are needed for the framework to be applied in

clinical practice.

Keywords: biliary malignancy, artificial intelligence, prognostic factor, prediction model, primary liver cancer

INTRODUCTION

Artificial Intelligence (AI) is a field of computer science in which
machines mimic, recognize, and learn cognitive functions of the
human mind and make empirical predictions using task-specific
algorithms (1, 2). It is natural for the humanmind to get confused
when trying to process a lot of information simultaneously,
and this necessitates an auxiliary process. This need has led
to the application of AI in clinical medicine (3). AI has been
applied to develop a diagnostic tool using image-based deep
learning (DL), and the resulting performance was close to that of
humans (4). However, no study has applied an AI framework to
identify patients prone to the latent risk of recurrence even after
curative treatment.

Intrahepatic cholangiocarcinoma (ICC) is a highly aggressive
primary epithelial malignancy arising from the liver, and it has
witnessed rising interests over the years due to rapid increase
in its incidence and the resulting mortality rate (5, 6). Usually,
ICC is diagnosed at an advanced stage, sporadically and without
an explicit etiologic factor, thereby limiting curative approaches
(7). Surgery with curative intent is the current standard of care,
providing the opportunity for long-term survival (8). However,
due to frequent recurrence of ICC, less than half of the post-
surgery patients have been reported to survive for more than 5
years (9).

Despite clinical challenges, the growing understanding of
ICC, led by increased investigations, is providing new insight
into heterogeneity, pathogenesis, and therapeutic strategies with
regard to the disease (10–12). Locally advanced ICC is no longer
a contraindication for transplantation, and adjuvant treatments
are now implemented more frequently worldwide, suggesting
that it is important to identify the prognostic subtype for all
treatments (13, 14). However, prognostic subtypes that support
the selection of therapeutic modality remain limited, especially
for recurrent ICC.

Owing to the exponential increase in the number
of ICC studies, prognosis of the disease is witnessing
development (15). Various prognosis-predictive systems
with biological, pathological, demographic, clinical, and
imaging characteristics have been developed (16, 17).
However, such systems could not be implemented widely
due to their inaccuracy and discriminations against them. To
address this issue, we have developed a DL computational
framework for ICC. The framework was tested in subgroups
of patients who received prophylactic adjuvant transarterial
chemoembolization (PAT), post-recurrent chemotherapy (PRC),
post-recurrent radiotherapy (PRR), post-recurrent transarterial
chemoembolization (PRT), and post-recurrent percutaneous

microwave coagulation (PRP). The tests were carried out in
accordance with prognostic subtypes identified by machine
learning algorithms.

METHODS

Patients
The framework was retrospectively derived using a pooled
dataset from patients with ICC who received surgical resection
at the Eastern Hepatobiliary Surgery Hospital, Second Military
Medical University (n = 1,477), Renji Hospital, School of
Medicine, Shanghai Jiao Tong University (n = 106), and
Mengchao Hepatobiliary Hospital, Fujian Medical University
(n = 14) between 2008 and 2015, which was independently
validated by the patients from Zhongshan Hospital, Fudan
University (n = 246). All four databases satisfied the following
inclusion criteria: Eastern Cooperative Oncology Group
(ECOG) performance status of 0–1, no neoadjuvant treatment,
no mixed hepatocellular-cholangiocarcinoma and hilar/distal
cholangiocarcinoma, no perioperative death (within 30 days after
surgery), and no distant metastasis. In the quality assessment,
188 patients were excluded due to incomplete data, and thus a
total of 1,421 and 234 patients were finally enrolled for the model
training and validation, respectively. This study was carried out
in accordance with the TRIPOD statement. The protocol was
approved by the Ethics Committee of Renji Hospital, School
of Medicine, Shanghai Jiao Tong University. All subjects gave
written informed consent in accordance with the Declaration
of Helsinki.

Diagnosis
Diagnosis of ICC was performed based on results of clinical,
serological, and imaging studies (contrast-enhanced computed
tomography [CT] and/or magnetic resonance imaging [MRI]).
Positron emission tomography (PET) was performed in patients
suspicious of metastases according to clinical and radiological
characteristics. After surgery, CK7, CK19, and MUC1 positivity
along with CK20, HepPar1, and glypican-3 negativity was
considered pathological confirmation of ICC (18).

Clinical Interventions
Resection was carried out according to the size and location of
tumor, estimated post-operative liver volume, and the Couinaud
segmentation as described before (16). Hepatoduodenal
ligament, retropancreatic, and paraaortic lymph nodes were
routinely dissected. Perihepatic lymph node metastasis identified
by preoperative CT/PET was considered for surgery if considered
completely removable.
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PAT was considered after discussion of the pros and cons of
PAT by the operating surgeons and patients. The performance
of PAT mostly depended on their socioeconomic status and
intention. Among the patients who actively agreed to receive
PAT, those with Child-Pugh class of A to B, ECOG score of 0–1,
normal kidney function, no evidence of extrahepatic metastasis,
platelet count above 50 × 109/L, and white blood cell count
above 3 × 109/L were enrolled. PAT was performed within
2 months after resection by injecting 3–5ml of iodized oil
emulsion (Lipiodol, Guerbet Laboratories) with 500mg of 5-
fluorouracil (FU), 10mg of hydroxycamptothecin, and 20mg of
epirubicin (19).

For recurrent ICC, gemcitabine and/or 5-FU-based PRC was
prior for metastatic diseases, whereas a dose volume histogram-
based PRR (90% of dose curve covered by the plan target volume)
was preferentially performed in patients with large tumors and/or
vascular invasion; there was no priority between PRT and PRR, in
line with the National Comprehensive Cancer Network (NCCN)
guidelines. PRT was carried out using the same methodology as
PAT. PRP was proceeded using an MTC-3 microwave generator
(2,450 MHz, 1–100W) at 80–100W for 3–5min automatically
with a safety margin of 1 cm (20). Supportive information related
to inclusion of patients for standardized performance of the
procedures is described in the Supplementary Material.

Follow-up
Active follow-up of serum carbohydrate antigen (CA) 19-9,
carcinoembryonic antigen (CEA), alpha fetoprotein (AFP), liver
function tests, and the abdominal ultrasound was made by
patients once per 2 months within 2 years after surgery and
once per 3–6 months thereafter. Patients without active visits
were contacted by telephone inquiries. CT/MRI was performed
once per 6 months or less when recurrence was suspicious.
Development of new lesions with radiological characteristics of
ICC was considered as a recurrence. Follow-up was discontinued
at the time of death. The terms “disease-free survival (DFS)” and
“overall survival (OS)” were defined as time from surgery to the
detection of recurrence/metastasis and death, respectively.

Network Architecture and Derivation
Procedures
The authors who derived the framework were blinded to the
validation dataset, whereas those who validated the framework
were blinded to the derivation dataset. To infer an estimated
probability for latent risk and latent stable as output, we
conducted a 12× 1 vectors, including 12 clinical indicators, in the
input layer via full-connected hidden layers (12× 28, 28× 28, 28
× 14, and 14× 28 nodes). For the given hidden layer i, we applied
tanh for activation function between input x and output y:

y = fi (x) = tanh
(

Wix + bi
)

tanh x =
sinhx

coshx
=

ex − e−x

ex + e−x

x and y are two arrays of the sized p and q, whereasWi and bi are
the weight matrix and the intercept array, respectively. For the

output layer, we used the softmax as an activation function:

y = fo (x) = softmax
(

Wix + bi
)

softmax fi
(−→x

)

=
exi

∑J
j= 1 e

xj
for i = 1, . . . , J

For the neural network with k layers, y is driven from:

y = F1→k (x) = fk
◦fk−1 . . . ◦f1 (x)

where fk
◦fk−1 (x) = fk

(

fk−1 (x)
)

is the composed function of
fk with fk−1. To train this AI framework to find the different
weight vectors Wi and bias bi by minimizing the error between
predicted output and actual class, we chose cross entropy as the
loss function, which indicates the error between predicted ypred
and actual ending yactual.

Cross entropy H
(

yactual, ypred
)

= −
∑

yactual(x)
∗log ypred(x)

Wi and bi were initialized with truncated normal distribution
(standard deviation= 0.1; https://www.tensorflow.org/api_docs/
python/tf/truncated_normal). The Adam Optimizer algorithm
(initial learning rate=0.001) was used to minimize the loss
function via backpropagation to update weights and biases per
layer (21). In addition, we have applied a dropout layer by
randomly dropping 30% weights before the output layer to
improve the generalization ability, but application of the weight
decay was found to decrease the performance ability of the AI
framework. The model was trained for 1,500 iterations with a
batch size 200 in producing a model update to support multiple
updates for each iteration.

Definition of the Prognostic Subtypes
The term “latent risk (AI-framework-estimated recurrence
probability > 0.5)” refers to a subset of ICCs that are
under severe risk of recurrence at any time after resection;
resection of the tumor is therefore not likely to be curative
regardless of curative intent. “Latent stable (AI-framework-
estimated recurrence probability<0.5)” refers to a relatively
constant disease status that resection of the tumor provides
a long-term satisfactory prognosis. To support understanding,
latent risk and latent stable can be simply considered as AI-high
risk and AI-low risk, respectively.

Statistical Analysis
The primary and secondary endpoints were DFS and OS,
respectively. The model was evaluated by comparing with the
AJCC stage and Cox multivariate hazard proportional model-
derived individualized scores, which were indicated by changes
in χ

2, integrated discrimination improvement (IDI) and a net
reclassification improvement (NRI) with 95% confidence interval
(CI), and receiver operating characteristic (ROC) curves with
area under curve (AUC) values. Although an AJCC stage for ICC
was not developed with intent for survival prediction, it still is
the most commonly applied staging system in clinical medicine
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FIGURE 1 | Workflow of the ICC AI-framework. TensorFlow-based deep learning and machine learning techniques to evaluate latent risk ICC by integrating the

generally obtainable pathologic, serologic, and etiologic clinical factors of the patients from four independent clinical centers. The workflow includes four steps (Step 1:

randomization of derivation and validation datasets; Step 2: Selection of the significant covariates; Step 3: deep learning algorithm for evaluation of individual scores;

Step 4: stratification of latent risk and stable).

supportive of survival estimation. Kaplan-Meier (KM) curves
with the log-rank test for P-value andMantel-Haenszel for hazard
ratio (HR) were generated for evaluation and digitalization of
survival outcomes. P < 0.05 is regarded statistically significant.
The ICC AI framework was constructed using the TensorFlow
(v1.2.1) on servers equipped with dual Intel (R) Core (TM) i7-
4650U CPU @1.70 Ghz 2.30 GHz, 8 GB RAM, and Intel (R)
HD Graphics 5000. All statistical analyses were performed using
Python (v3.6.5) and R Project for Statistical Computing (v3.4.4).

RESULTS

Development of the ICC AI Framework
An AI framework to evaluate individualized probabilities for
identifying categorical prognostic subtypes was developed. For
this purpose, independent significant covariate features and the
DL algorithm were selected using non-overlapping derivation
and validation datasets (Figure 1). Demographic, etiological,
pathological, and serological characteristics were evaluated using
univariable and multivariable Cox regression models for disease-
free survival. The 28 evaluated characteristics were gender; age;
hepatitis B virus (HBV) and hepatitis C virus infections; HBV
DNA; antiviral treatment; syphilis infection; liver cirrhosis and
fluke; fatty liver; smoking and alcohol abuse; diabetes mellitus;
hypertension; tumor location and differentiation; AFP, CA 19-9,
125, and 242; CEA; albumin; platelet count; vascular invasion;
lymph node metastasis; tumor size and number; and surgical
extent. The evaluation identified 12 of the features as most
important, including tumor size and number, surgical extent,
lymph node metastasis, hepatitis B surface antigen (HBsAg),

AFP, CA19-9, CEA, albumin, platelet count, diabetes mellitus,
and cholelithiasis (Tables 1, 2). Albumin (>35 vs. ≤35 g/L),
AFP (>50 vs. ≤50 ng/ml), and CA 19-9 (>37 vs. ≤37 U/ml)
were categorized into normal and abnormal groups according
to the standardized cut-off values for normal ranges; the platelet
count was stratified into <100, 100–300, and >300 × 109/L;
CEA was stratified into <2.5, 2.5–5.0, and >5.0 ng/ml; tumor
size was stratified into <2.5, 2.5–5.0, and >5.0 cm; and tumor
number was categorized into single, double, and multiple
tumors. Tests were conducted to confirm if the covariates were
significant prognostic factors for the OS in the derivation dataset.
The multivariable analysis found all involved factors, except
albumin and diabetes, to be significantly and independently
predictive of the OS (Supplementary Table 1). Additionally,
HBsAg, AFP, tumor size, and resection type were identified as
insignificant independent prognostic factors in the validation
dataset (Supplementary Table 2). Finally, a training dataset (n
= 1,421) was used to derive the framework based on the
12 identified features. The framework was derived with time-
to-event outcomes using a backpropagation technique, which
synchronously updated each lay’s weights and biases to optimize
the statistical likelihood of the framework.

Validation of the ICC AI-Framework
The performance of the model was assessed by comparing the
consistency of the disease status with that of the individualized
stage/score from the validation set (n= 234; Figure 2A). Relative
maldistributions were observed in the range-adjusted American
Joint Committee on Cancer (AJCC) staging system (BS = 0.48)
and the Cox multivariable models (BS = 0.49), whereas the
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TABLE 1 | Baseline demographic and clinical characteristics of the patients.

Derivation dataset

(n = 1,421)

Validation dataset

(n = 234)

Age, years 57 (49–64) 58 (50–65)

Gender, male 915 (64.4) 140 (59.8)

Albumin, g/L 40.4 (36.1–43.5) 41.0 (39.0–43.0)

Platelet count, 109/L 184 (142–238) 189 (147–228)

Diabetes 136 (9.6) 25 (10.7)

HBV infection, HBsAg 624 (43.9) 28 (12.0)

Cholelithiasis 132 (9.3) 18 (7.7)

AFP, ng/ml 3.0 (2.0–5.5) 2.8 (1.9–4.4)

CA19–9, U/ml 57.8 (17.8–548.1) 32.1 (11.6–239.0)

CEA, ng/ml 2.8 (1.7–5.7) 2.4 (1.5–4.8)

Tumor size, cm 6.0 (4.0–8.0) 5.0 (3.5–8.0)

Tumor number

Single 1221 (85.9) 188 (80.3)

Multiple 200 (14.1) 46 (19.7)

Lymph node metastasis 332 (23.4) 60 (25.6)

Resection type

Minor hepatectomy 1052 (74.0) 134 (57.3)

Hemi or extended

hepatectomy

369 (26.0) 100 (42.7)

TNM stagea

I–II 1089 (76.6) 174 (74.4)

III–IV 332 (23.4) 60 (25.6)

Data are n (%) or median (IQR). HBsAg, hepatitis B surface antigen; AFP, alpha fetoprotein;

CA, carbohydrate antigen; CEA, carcinoembryonic antigen. aTNM stage: American Joint

Committee on Cancer 8th edition staging for intrahepatic cholangiocarcinoma.

framework (BS= 0.17) demonstrated well-propagated DL scores.
Furthermore, visualization of the score-dependent disease status
revealed predominance in the AI framework, demonstrating
gradual increase of recurrence in proportion to the DL score
(Figure 2B). Additionally, the AI framework, covariates, AJCC
staging system, and Cox multivariable regression were evaluated
using ROC curves and AUC values, and the Cox score and AJCC
stage were evaluated by the validation dataset (Figure 2C). The
framework was derived (AUC = 0.84) and validated (AUC =

0.78) to be excellent, whereas the AJCC stage (AUC = 0.60)
and Cox score (AUC = 0.70) showed less sensitivity. Calibration
plot also showed good association between actual proportion
and predicted probability for the AI framework (Figure 2D).
In terms of integrated discrimination index (IDI) and net
reclassification index (NRI), performance of the framework was
significantly better compared with the AJCC (derivation: χ

2 =

54.93, P < 0.001, IDI= 0.30, NRI= 19.62; validation: χ2 = 7.22,
P < 0.001, IDI = 0.29, NRI = 11.85) and Cox (derivation: χ

2

= 849.09, P < 0.001, IDI = 0.51, NRI = 63.46; validation: χ2 =

146.44, P < 0.001, IDI= 0.46, NRI= 46.11) models (Table 3).

Survival Outcomes of the Latent Risk and
Stable Subtypes
Taking into consideration the entire dataset, the ratio of the
latent risk group to the stable group was found to be ∼8:2
using probabilistic stratification of the AI framework. KM
curves were generated to evaluate the prognostic subtypes. The

TABLE 2 | Selection of top covariates using the Cox multivariable regression.

Univariable analysis Multivariable analysis

HR (95% CI) P-value HR (95% CI) P-value

Albumin <35 g/L 1.96 (1.66–2.31) <0.001 1.26 (1.05–1.51) 0.015

Platelet count, ×109/La 1.68 (1.45–1.94) <0.001 1.21 (1.04–1.40) 0.011

Diabetes 1.63 (1.34–1.99) <0.001 1.41 (1.15–1.72) 0.001

HBsAg 0.82 (0.72–0.93) 0.002 0.79 (0.69–0.90) 0.001

Cholelithiasis 1.57 (1.28–1.92) <0.001 1.40 (1.13–1.73) 0.002

AFP >50 ng/ml 1.49 (1.19–1.86) 0.001 1.60 (1.26–2.02) <0.001

CA19–9 > 37 U/ml 1.49 (1.32–1.69) <0.001 1.18 (1.03–1.37) 0.020

CEA, ng/mlb 1.37 (1.27–1.47) <0.001 1.12 (1.03–1.22) 0.011

Tumor size, cmc 1.69 (1.56–1.84) <0.001 1.59 (1.46–1.73) <0.001

Tumor numberd 1.51 (1.37–1.67) <0.001 1.28 (1.15–1.42) <0.001

Lymph node metastasis 1.93 (1.68–2.22) <0.001 1.40 (1.21–1.63) <0.001

Resection typee 1.57 (1.42–1.74) <0.001 1.17 (1.05–1.31) 0.005

HR, hazard ratio; CI, confidence interval; HBsAg, hepatitis B surface antigen; AFP,

alpha fetoprotein; CA, carbohydrate antigen; CEA, carcinoembryonic antigen. awas

stratified into <100, 100–300, and >300. bwas stratified into <2.5, 2.5–5.0, and

>5.0. cwas stratified into ≤2.0, 2.1–3.0, 3.1–5.0, and >5.0. dwas stratified into single,

double, and multiple. ewas stratified into minor hepatectomy, hemihepatectomy, and

extended hepatectomy.

differences between latent risk and stable groups in disease-
free survival (DFS) (HR, 4.920; 95% CI, 4.272–5.666; P <

0.001; Figure 3A) and overall survival (OS) (HR, 3.526; 95% CI,
3.026–4.108; P < 0.001; Figure 3B) in the training dataset were
significant. On the contrary, in the validation dataset, similar
results were observed in both DFS (HR, 3.559; 95% CI, 2.500–
5.067; P < 0.001; Figure 3C) and OS (HR, 3.190; 95% CI, 2.150–
4.733; P < 0.001; Figure 3D). The censored subjects-excluded 1-,
3-, and 5-year OS were 95.0, 79.4, and 38.9% vs. 73.2, 36.1, and
2.3%, respectively, in the latent stable group compared to latent
risk group, and the DFS were 87.5, 60.0, and 36.4% vs. 54.1, 21.1,
and 1.3%, respectively, in the validation dataset.

Potential Applicability of the AI-Prognostic
Subtypes
In this paper, an attempt has been made to study whether an AI
framework is able to provide guidance for clinical interventions
as recommended in NCCN as seen in Figure 4 (22). While
evaluating the effectiveness, PAT can result into significant
survival benefit (median survival benefit, 19 months; HR, 0.459;
95% CI, 0.360–0.586; P < 0.001) in the latent risk group.
However, no significant difference was observed in the latent
stable group (HR, 0.800; 95% CI, 0.374–1.713; P= 0.719). In case
of the local intrahepatic recurrent patients, the AI-framework-
derived prognostic subtypes could be effectively utilized to
stratify patients who have been significantly benefited from PRT
(HR, 4.684; 95% CI, 2.997–7.320; P < 0.001) and PRP (HR,
4.625; 95% CI, 2.458–8.704; P < 0.001), respectively. On the
contrary, the patients who underwent radiotherapy did not show
any significant difference as seen in case of the latent risk and
stable groups (HR, 1.839; 95% CI, 0.670–5.046; P = 0.364).
Moreover, chemotherapy did not indicate any significant results
of survival amongst the prognostic subtypes (HR, 1.421; 95% CI,
0.574–3.521; P = 0.482).
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FIGURE 2 | Validation of the ICC AI-framework. (A) Evaluation of the consistency between disease status and the AJCC stage, Cox score, and DL, respectively. BS,

brier score. (B) Coherence comparison among staging/scoring systems. Light yellow, events. (C) ROC curves with AUC values of the AI derivation and validation, Cox

score, AJCC stage, and involved covariates. (D) Calibration plot for evaluation of the actual proportion and predicted proportion of the events using the

validation dataset.

DISCUSSION

We adopted a DL approach to learn prognostic prediction

using significant clinical factors and created dimidiate prognostic

subtypes with distinctive prognosis and efficacy of clinical

interventions. This model was compared for accuracy with

the most widely used, pre-existing AJCC staging system and
the Cox methodology, which was systematically evaluated in

context to current clinical standard for recurrent ICC. In
comparison to the previous studies on prediction of OS, the
current framework specifically caters to cancer-specific survival,
excluding mortality due to unknown causes. Moreover, this
approach increases the accuracy of equal covariates-generated
Cox multivariable hazard proportional model and the stratified
prognostic subtypes depicting significant differences amongst
various recurring treatments. Collectively, the DL approach
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TABLE 3 | Discriminative and risk: reclassification ability of the ICC AI-framework.

Model performance IDI (95% CI) Risk reclassification

Change in χ
2 P-value Events Non-events NRI (95%CI)

Risk up Risk down Risk up Risk down

AI vs. Cox

Derivation 849.09 <0.001 0.51

(0.50–0.52)

0.90 0.06 0.54 0.34 63.46

(61.68–65.24)

Validation 146.44 <0.001 0.46

(0.44–0.47)

0.88 0.08 0.61 0.29 46.11

(40.56–51.66)

AI vs. AJCC

Derivation 54.929 <0.001 0.30

(0.29–0.30)

0.64 <0.01 0.48 0.03 19.62

(18.8–20.45)

Validation 7.2197 0.007 0.29

(0.28–0.31)

0.61 <0.01 0.54 0.04 11.85

(9.39–14.32)

IDI, integrated discrimination improvement; CI, confidence interval; NRI, net reclassification improvement; AJCC, American Joint Committee on Cancer.

FIGURE 3 | Kaplan-Meier estimation of the prognostic subtypes. (A) The OS of training dataset according to the latent status. (B) The DFS of training dataset

according to latent status. (C) The OS of validation dataset according to the latent status. (D) The DFS of validation dataset according to the latent status.

was found to be effective in estimation of survival and to
devise a categorical strategy to deal with heterogeneity of ICCs
by classifying them into latent risk and stable groups for
clinical interventions.

We have attempted to maximize the chances for identification
of prognostic factors for ICC since it is a disease with diverse
outcomes and the issues in identification of the prognostic factors
arises due to its exclusivity (23, 24). Therefore, we adopted an 8:2
ratio in randomization of the derivation and validation datasets

for meticulous detection of prognostic factors, which enabled us
to detect 12 independent prognostic factors. These factors are
pre-specified by the Cox hazards regressionmodel, as it is difficult
to apply different factors owing to complexity.

Recent studies have demonstrated that a post-operative
prophylactic adjuvant therapeutic approach can account
for significant survival benefits by preventing events or
by prolonging the time-to-recurrence (25–27). Latent risk
ICC might be the reason for survival benefits, because the latent
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FIGURE 4 | Outcomes of the NCCN guidelines clinical interventions according to the latent status. Kaplan-Meier curves were generated for each clinical intervention,

including prophylactic adjuvant treatment and recurrence treatment, according to the latent status. For generation of the survival curves, post-recurrence survival was

applied for transarterial chemoembolization, percutaneous microwave coagulation, radiotherapy, and chemotherapy, whereas overall survival was applied for

prophylactic adjuvant treatment.

stable group was associated with significantly favorable prognosis
without the application of adjuvant treatments.

According to the National Cancer Database of the American
College of Surgeons and the American Cancer Society that
takes into account ∼70% of the US population, the median
OS for chemotherapy (n = 2,176) and chemoradiotherapy
(n = 666) are 10.5 (95% CI, 10.0–11.5) and 13.6 (95% CI,
12.3–15.7) months, respectively, for unresectable ICC (28,
29). In our study, estimated latent risk for recurrent ICC
treated with chemotherapy and chemoradiotherapy showed no
significance compared with the latent stable. Recent studies
have suggested, with reasonable evidence, that the application
concurrent chemoradiotherapy has better efficacy is better than
solely applying adjuvant chemotherapy or radiotherapy (28,
29). Therefore, evaluation of the latent risk combined with
chemoradiotherapy may lead to significant survival benefits,
though this awaits further validation by future trials.

Although our study provides insights into the use of DL for

ICC in a clinical factor setting, some clinical interventions, such
as immunotherapy and liver transplantation, are not involved,
and the framework is therefore not comprehensive for all
circumstances. Furthermore, while we have used our techniques
for ICC—the application of the AI-based clinical factors-derived
estimative approaches for other tumors might provide auxiliary
perspicacious insights. The evaluation of the resection candidate
also needs to be considered. There were few patients with regional
disease, which is considered not a candidate for surgical resection
in some surgery centers. Lastly, the proportion of etiologic
subtypes needs to be considered when interpreting the results.

There were relatively large proportion of ICCs arose from HBV
infection, which is not prevalent inWestern countries. Therefore,
validation by Western population is essential for the framework
to be applied in clinical practice.

In conclusion, the AI approach revealed precision prognostic
estimation compared to the AJCC stage for ICC and Cox
multivariable regression model in terms of survival prediction
and prognostic subtype stratification in patients with ICC after
resection. Future validation studies are required to confirm its
applicability in patients with ICC from other regions and in
other cancers.
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Background and Objectives: Currently, the prognostic performance of the staging
systems proposed by the 8th edition of the American Joint Committee on Cancer (AJCC
8th) and the Liver Cancer Study Group of Japan (LCSGJ) in resectable intrahepatic
cholangiocarcinoma (ICC) remains controversial. The aim of this study was to use machine
learning techniques to modify existing ICC staging strategies based on clinical data and to
demonstrate the accuracy and discrimination capacity in prognostic prediction.

Patients and Methods: This is a retrospective study based on 1,390 patients who
underwent surgical resection for ICC at Eastern Hepatobiliary Surgery Hospital from 2007
to 2015. External validation was performed for patients from 2015 to 2017. The ensemble
of three machine learning algorithms was used to select the most important prognostic
factors and stepwise Cox regression was employed to derive a modified scoring system.
The discriminative ability and predictive accuracy were assessed using the Concordance
Index (C-index) and Brier Score (BS). The results were externally validated through a
cohort of 42 patients operated on from the same institution.

Results: Six independent prognosis factors were selected and incorporated in the
modified scoring system, including carcinoembryonic antigen, carbohydrate antigen 19-
9, alpha-fetoprotein, prealbumin, T and N of ICC staging category in 8th edition of AJCC.
The proposed scoring system showed a more favorable discriminatory ability and model
performance than the AJCC 8th and LCSGJ staging systems, with a higher C-index of
0.693 (95% CI, 0.663–0.723) in the internal validation cohort and 0.671 (95% CI, 0.602–
0.740) in the external validation cohort, which was then confirmed with lower BS (0.103 in
internal validation cohort and 0.169 in external validation cohort). Meanwhile, machine
learning techniques for variable selection together with stepwise Cox regression for
survival analysis shows a better prognostic accuracy than using stepwise Cox
regression method only.
January 2021 | Volume 10 | Article 576901116

https://www.frontiersin.org/articles/10.3389/fonc.2020.576901/full
https://www.frontiersin.org/articles/10.3389/fonc.2020.576901/full
https://www.frontiersin.org/articles/10.3389/fonc.2020.576901/full
https://www.frontiersin.org/articles/10.3389/fonc.2020.576901/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:gaofei9000@163.com
mailto:jiangxiaoqingpro@sina.com
https://doi.org/10.3389/fonc.2020.576901
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2020.576901
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2020.576901&domain=pdf&date_stamp=2021-01-20


Li et al. An Intrahepatic Cholangiocarcinoma Evaluation System

Frontiers in Oncology | www.frontiersin.org
Conclusions: This study put forward a modified ICC scoring system based on prognosis
factors selection incorporated with machine learning, for individualized prognosis
evaluation in patients with ICC.
Keywords: intrahepatic cholangiocarcinoma, prognosis, staging system, machine learning, overall survival
INTRODUCTION

Intrahepatic cholangiocarcinoma (ICC) is a malignant neoplasm
originating from the epithelial cells of bile ducts located above the
secondary bile duct branch (1). It is the second most common
primary malignancy of liver and its incidence has been increasing
in recent years (2–4). Surgical resection is the main potentially
curative for ICC, the 5-year overall survival (OS) rates after
hepatectomy and lymphadenectomy is 15 to 35% (5–9).
Appropriate staging for ICC patients can be used to describe the
severity and range of involvement of malignant tumors, thus
prompting clinicians to understand the prognosis of the disease.

Now the eighth edition of American Joint Committee on
Cancer (AJCC 8th) staging system and the Liver Cancer Study
Group of Japan (LCSGJ) staging system are widely used in
clinical practice (10–13). Although studies have demonstrated
that the modified AJCC staging system improves stratifying
ability, it remains controversial (14, 15). The LCSGJ staging
system focuses on the hepatocellular carcinoma (HCC) which
has distinct differences in biological behaviors and postoperative
outcomes (16). Some new stratification strategies begin to
incorporate readily available clinical parameters, such as
carbohydrate antigen 19-9 (CA19-9), alkaline phosphatase
(ALP) and alpha-fetoprotein (AFP) (17–19). To more
effectively utilize these clinical parameters, not just on surgical-
pathological factors, we combined the robust machine learning
methods to analyze the high-dimension data in clinical practice.

Meanwhile, the selection of variables which involved in the
outcome imputation was significant for staging performance. In
similar studies, multivariate analysis using Cox regression to
identify the independent prognostic factors for survival was a
common method, such as the ICC prognostic staging systems
performed by Zhou et al. (19), the modified staging system for
mass-forming ICC (16), the Fudan score (17), and in nomogram
predicting strategies (18). In present study, we attempted to
improve the conventional survival analysis by combining with
machine learning algorithms for variable selection, since in the
real-world studies, variables are not always independent to each
other and they are closely related in the non-linear way. The
normal used multivariate analysis methods or linear models
cannot capture the complex relationships of variables, which
are machine learning methods skilled in, especially we used
decision tree-based ensemble methods, i.e., eXtreme Gradient
Boosting (XGBoost), random forest (RF), and gradient boosted
decision tree (GBDT). The three methods are able to divide and
re-aggregate the variables to achieve the minimum prediction
error when growing sub-trees. Through this way, the non-linear
relationship between variables can be well captured. In addition,
217
they are all with the ability of learning from data with missing
values directly, that can better adapt to the data situation in the
real world. To confirm their effectiveness, we performed the three
variable selection methods for comparison and our proposed
method outperforms others by a significant margin. Moreover,
our study also incorporated the prognostic factors for TNM
staging as an improvement of traditional strategy.

The objective of the current study is to integrate pathological
factors and clinical parameters to construct a useful and
personalized scoring system with machine learning methods,
which can accurately predict the survival outcomes of ICC
patients under surgical resection.
MATERIALS AND METHODS

Patients Cohort
The cohort comprised1,390pathologically confirmed ICCpatients
who underwent hepatectomy between January 2007 and October
2015 at the Eastern Hepatobiliary Surgery Hospital (EHBH) in
Shanghai, China, which is a high-volumemedical center. The data
collectionwas cut-off onNovember, 2018. Patients diagnosedwith
Perihilar (Klatskin) tumors and mixed with hepatocellular
carcinoma tumors were excluded. All deaths were confirmed to
have occurred after ICC recurrence to avoid the interference of
competing mortality. The data collection and tumor staging
processes were supervised and examined by two pathologists.
The patients in external validation cohort (n=42, January 2016 to
June 2017) were screened with the same criteria of the internal
cohort. The data collection was cut-off on June, 2020. Variable
characteristic statistics of the training cohort and external
validation cohort were summarized in Supplemental Table and
SupplementaryData of Entire Cohort. The protocol of this study
has been approved by the Ethics Committee of the EHBH, and
the informed consent has been exempted in the Ethical
approval documents.

We collected data of 27 clinical independent variables including
providedbasic clinical information(age, gender, jaundice,historyof
stone, history of tumor, and smoking), laboratory results [blood
type, hepatitis B virus (HBV), CA19-9, g-glutamyltranspeptidase
(g-GT), albumin (Alb), alanine aminotransferase (ALT),
ALP, prealbumin (PA), aspartate aminotransferase (AST),
carcinoembryonic antigen (CEA), AFP, direct bilirubin (DBIL),
and total bilirubin (TBIL)], andperioperativedata (T/N/MorTNM
stage in AJCC 8th, T or TNM stage in LCSGJ, resection type, and
tumor size). All laboratory examinations were performed within 1
week before resection or intervention. To be applicable to machine
January 2021 | Volume 10 | Article 576901
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learning, all relevant variables were cleansed and converted into
numerical codes.

Study Design
The aim of this research was to construct a more accurate and
simple ICC scoring system for predicting the prognosis after
resection based on the clinical factors and stages. Overall Survival
for 3 years after resection was the end point in our study. We
enriched many types of variables in the initial cohort, and
variable selection was implemented via three machine learning
methods, i.e., XGBoost, RF, and GBDT. The algorithms
calculated the contribution of each independent variable to the
target variable and obtained the importance score (IS). We
combined the intersection variables with the highest IS for
further analysis.

Cox proportional hazard models with backward stepwise
regression were used to evaluate the impacts of intersection
variables on survival, and the prognostic scoring equation was
obtained. Overall, the predictive accuracy and discrimination
ability between models were compared. In addition, for
validating the advantages of the research methods, we
compared survival predictions with/without machine learning
screening. Since the data collection and research were
implemented in the Eastern Hepatobiliary Surgery Hospital
(Shanghai, China), this scoring strategy we proposed is simply
called EHBH-ICC in the later section. The overall study process
is illustrated in Figure 1.
Tumor, Node, Metastasis Stage
The 8th edition of AJCC and the LCSGJ staging manual in
patients who underwent operations were adopted as baseline
models for performance comparison (1, 20).
Frontiers in Oncology | www.frontiersin.org 318
Machine Learning
In the process ofmachine learningmodeling,we chose theXGBoost,
RF, andGBDTfor thevariable selection,whichare capableofdealing
with missing values under certain assumptions and do not require
data imputation. Since our datawas derived fromreal-world settings
with a small number of missing values, machine learning methods
with incomplete data learning ability are necessary. We performed
these three algorithms using Scikit-learn: a machine learning
framework (https://www.scikit-learn.org/stable/) in Python 3.6.8.
In order to achieve their best performance, the AutoML (https://
github.com/ClimbsRocks/auto_ml) method was adopted to
automatically select their hyperparameters.

Statistical and Survival Analysis
Data statistics were characterized as quantity (%) or median
(interquartile range, IQR). Mann-Whitney U test and chi-square
were used on continuous variables and categorical variables
respectively, and p<0.05 was considered statistically significant.
Relevant prognostic predictors were evaluated by the Cox
proportional hazard model using backward stepwise regression
(Wald-test, p<0.05 represents a significant difference). We ensured
comparability of the training and internal validation cohorts, a
random distribution was applied in a ratio of 8:2. To estimate the
influenceof prognostic factors, the hazard ratio (HR)was calculated.
Kaplan-Meier analysiswasused in survival analysis and log-rank test
was adopted to compare significant differences. The Concordance
Index (C-index) and Brier Score (BS) were utilized to evaluate the
discrimination ability and predictive performance of the staging
methods. The higher C-index indicates, the better discrimination
ability of the model. BS was an important measure of model
calibration, i.e., the mean squared difference between the predicted
probability and the actual outcome. The lowerBS value indicates the
higher prediction accuracy of the model. Statistical analysis and
FIGURE 1 | The workflow of this study.
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modelingwere performedusingPython (version3.6.8) andRStudio
(version 1.1.463).
RESULTS

Clinicopathologic Characteristics of
Patients
A total of 1,390 patients underwent surgical resection for ICC
during the study period. Twenty-seven types of variables included in
Frontiers in Oncology | www.frontiersin.org 419
the primary entire cohort were sorted out and input into themodels,
patients’ demographic information, medical history, tumor
information, and examination information were contained in
modeling and reported in Table 1. The median survival time was
15.5 months (IQR 7.7 to 27.7 months). Of all ICC patients in this
study, there were 560 of them (40.3%) having a survival of less than
1 year, 576 patients (41.4%) died between 1 and 3 years after
surgery, while 254 (18.2%) died after 3 years. There were 939
females (67.6%) and 451 males (32.4%) enrolled in the study, with a
male-to-female ratio of 1:2.1. Among study population, 316 patients
TABLE 1 | Clinicopathologic characteristics of study patients.

Variable types Variable name Entire dataset (n=1,390)

Basic information and medical record Age, year, median (IQR) 55 (46–62)
Sex, female, n (%) 939 (67.6%)
Blood type, n (%) A 413 (29.7%)

B 379 (27.3%)
AB 136 (9.8%)
O 462 (33.2%)

Jaundice, n (%) 160 (11.5%)
History of stone, n (%) 264 (19.0%)
History of tumor, n (%) 101 (7.3%)
HBV, n (%) 316 (22.7%)
Smoking, n (%) 374 (26.9%)

Tumor information Tumor size, cm, median (IQR) 6.0 (4.0–8.2)
T classification (AJCC 8th), n (%) T1a and T1b 277 (19.9%)

T2 186 (13.4%)
T3 544 (39.1%)
T4 383 (27.6%)

N classification (AJCC 8th), n (%) N0 966 (69.5%)
N1 424 (30.5%)

M classification (AJCC 8th), n (%) M0 1,214(87.3%)
M1 176 (12.7%)

TNM stage (AJCC 8th), n (%) IA and IB 237 (17.1%)
II 147 (10.5%)
IIIA 376 (27.1%)
IIIB 456 (32.8%)
IV 174 (12.5%)

T classification (LCSGJ), n (%) T1 28 (2.0%)
T2 562 (40.4%)
T3 540 (38.9%)
T4 260 (18.7%)

TNM stage (LCSGJ), n (%) I 27 (1.9%)
II 472 (34.0%)
III 317 (22.8%)
IVA 108 (7.8%)
IVB 466 (33.5%)

Excision, n (%) R0 1,253 (90.1%)
R1 54 (3.9%)
R2 83 (6.0%)

Laboratory results CA19-9, U/ml, median (IQR) 55.0 (18.0–490.4)
g-GT, U/l, median (IQR) 84.0 (44.0–177.0)
Alb, g/l, median (IQR) 42.1 (39.3–44.6)
ALT, U/l, median (IQR) 27.1 (17.7–44.8)
ALP, U/l, median (IQR) 110.0 (83.0–153.0)
PA, mg/l, median (IQR) 212.0 (170.0–257.0)
AST, U/l, median (IQR) 29.0 (21.9–42.3)
CEA, mg/l, median (IQR) 2.9 (1.6–6.0)
AFP, mg/l, median (IQR) 3.5 (2.29.0)
DBIL, umol/l, median (IQR) 4.7 (3.5–6.5)
TBIL, umol/l, median (IQR) 12.6 (9.5–17.2)
January 2021 | V
IQR, interquartile range; HBV, hepatitis B virus; AJCC 8th, the 8th edition of the American Joint Committee on Cancer staging system; LCSGJ, the Liver Cancer Study Group of Japan
staging system; CA19-9, carbohydrate antigen; g-GT, g-glutamyltranspeptidase; Alb, albumin; ALT, alanine aminotransferase; ALP, alkaline phosphatase; PA, prealbumin; AST, aspartate
aminotransferase; CEA, carcinoembryonic antigen; AFP, alpha-fetoprotein; DBIL, direct bilirubin; TBIL, total bilirubin.
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(22.7%) had HBV infection. TNM staging and T classification of
AJCC 8th and LCSGJ were evaluated. The T classification (AJCC
8th) includes the extents or existence of tumor diameter, vascular
invasion, solitary or multiple tumors, perforation of the visceral
peritoneum, and direct invasion of local extrahepatic structures.
Nodal andmetastasis categories’ conditions between the two staging
systems were similar, so we counted them together. Only one
patient was diagnosed with T1b, that is, had a tumor size larger
than 5 cm and without vascular invasion, T1a and T1b tumors were
combined in the following study.
Selection and Comparison of Prognostic
Factors
The IS of variables, most relevant to patient OS for 3 years were
calculated by XGBoost, RF, and GBDT, the top 20 important
variables selected from which were assembled in Table 2. Then
we extracted the intersection of the above variables, and the
retained 15 important variables were ALP, g-GT, N, T, Alb,
tumor size, AST, DBIL, TBIL, PA, ALT, AFP, CEA, CA19-9, and
age. Among the variables, IS of T staging of AJCC 8th were
higher than that of LCSGJ staging system, therefore T (AJCC
8th) was adopted and used “T” as a general name in the
following analysis. Variables screened by machine learning
participated in developing the Cox proportional hazard
regression model. Table 3 counted the variables in training
cohort (n=1,112) used for modeling and the internal validation
cohort (n=278) used for verification. The median survival time
(months) of training cohort and internal validation cohort was
15.6 (IQR: 7.9–27.7) and 15.3 (IQR: 7.1–27.4), respectively. The
Frontiers in Oncology | www.frontiersin.org 520
data distribution among all factors in cohorts had relative
equilibrium (p>0.05).

The data sets in Table 3 were used to perform the Cox
regression model, and further screened through backward
stepwise regression (p<0.05). The results of backward stepwise
regression are demonstrated in Table 4. The natural logarithmic
transformation was applied on the continuous variables to avoid
deviation of data distribution. Multivariate analysis by stepwise
regression revealed that T classification of AJCC 8th (HR, 1.204;
95% CI, 1.142–1.270), N (HR, 1.927; 95% CI, 1.655–2.243), ln
(CEA) (HR, 1.158; 95% CI, 1.098–1.221), ln (CA19-9) (HR, 1.127;
95% CI, 1.085–1.171), ln (AFP) (HR, 1.057; 95% CI, 1.019–1.096),
and ln (PA) (HR, 0.830; 95% CI, 0.714–0.964) were determined to
be independent predictors of 3-year OS in ICC patients.
Variable Selection Methods Comparison
The Cox regression models with stepwise selection were
commonly used in similar studies to select variables, which
significantly associated with the prognostic outcome after ICC
resection. To verify whether the variable selection incorporated
machine learning algorithms can improve the model accuracy or
not, we performed three approaches for comparison: only by Cox
proportional hazards model with backward stepwise regression
(namely SR), only by machine learning (namely ML), and
combining both methods (SR+ML) (Figure 2). By establishing
the survival prediction models, the C-index (Figure 2A) and BS
(Figure 2B) of the above three approaches were obtained, and
the results demonstrated that SR+ML (C-index, 0.693; BS, 0.115)
had better performance in the most of survival time than only
TABLE 2 | The important variables calculated by XGBoost, random forest (RF), and gradient boosted decision tree (GBDT), and their intersection variables.

No. XGBoost IS RF IS GBDT IS Intersection variables

1 ALP 0.0792 CA19-9 0.0948 CA19-9 0.1201 ALP
2 Alb 0.0774 ALP 0.0744 T (AJCC8th)a 0.1023 g-GT
3 Age 0.0738 PA 0.0711 ALP 0.0897 N
4 CA19-9 0.0725 g-GT 0.0645 PA 0.0788 T
5 CEA 0.0724 Tumor size 0.0643 ALT 0.0693 Alb
6 AFP 0.0719 CEA 0.0624 g-GT 0.0646 Tumor size
7 ALT 0.0707 AST 0.0615 Tumor size 0.0600 AST
8 PA 0.0671 AFP 0.0591 AFP 0.0593 DBIL
9 TBIL 0.0660 Alb 0.0591 CEA 0.0535 TBIL
10 g-GT 0.0659 ALT 0.0582 Alb 0.0506 PA
11 AST 0.0653 T (AJCC8th)a 0.0549 Age 0.0456 ALT
12 Tumor size 0.0617 TBIL 0.0531 DBIL 0.0435 AFP
13 DBIL 0.0615 Age 0.0530 AST 0.0394 CEA
14 T (AJCC8th)a 0.0243 DBIL 0.0521 TBIL 0.0388 CA19-9
15 T (LCSGJ)a 0.0122 T (LCSGJ)a 0.0264 N 0.0329 Age
16 N 0.0114 N 0.0176 T (LCSGJ)a 0.0194
17 M 0.0084 Smoking 0.0098 History of stone 0.0057
18 Smoking 0.0069 Blood type B 0.0094 M 0.0055
19 Blood type A 0.0065 Gender 0.0085 History of tumor 0.0036
20 History of stone 0.0058 Blood type A 0.0082 Blood type AB 0.0036
Ja
nuary 2021 | Volu
aSince the importance score of T (AJCC 8th) in the three models is greater than T (LCSGJ), stage T is merged and only expressed as T in the intersection variables and following article.
XGBoost, eXtreme Gradient Boosting; RF, random forest; GBDT, gradient boosted decision tree; IS, importance score; ALP, alkaline phosphatase; Alb, albumin; CA19-9, carbohydrate
antigen 19-9; CEA, carcinoembryonic antigen; AFP, alpha-fetoprotein; ALT, alanine aminotransferase; PA, prealbumin; TBIL, total bilirubin; g-GT, g-glutamyltranspeptidase; AST, aspartate
aminotransferase; DBIL, direct bilirubin.
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ML and only SR. Therefore, machine learning was proven to
capture the prognostic predictors of postoperative outcome more
accurately during variable processing, consequently improving
the prediction performance of the model. The influenced factors
Frontiers in Oncology | www.frontiersin.org 621
selected via only SR including: sex, age, history of stone, smoking
habit, HBV, T, N, M, CA19-9, PA, CEA, DBIL, TBIL, excision,
and the blood type A. The variables screening results of SR via
Cox analysis were summarized in Supplemental Table 2.
TABLE 4 | Multivariate regression analysis in the training cohort (n=1,112).

Variables b SE (b) Waldc2 HR 95% CI p-value

T 0.186 0.027 6.844 1.204 1.142–1.270 <0.001***
N 0.656 0.078 8.433 1.927 1.655–2.243 <0.001***
ln (CEA) 0.147 0.027 5.426 1.158 1.098–1.221 <0.001***
ln (CA19-9) 0.120 0.019 6.166 1.127 1.085–1.171 <0.001***
ln (AFP) 0.055 0.019 2.972 1.057 1.019–1.096 0.003**
ln (PA) −0.187 0.077 −2.439 0.830 0.714–0.964 0.015*
Jan
uary 2021 | Volume 10 | Artic
T and N indicates the staging results of AJCC 8th; b, regression coefficient; SE, standard error; HR, hazard ratio; CI, confidence interval; CEA, carcinoembryonic antigen; CA19-9,
carbohydrate antigen 19-9; AFP, alpha-fetoprotein; PA, prealbumin. 0.01 < *p < 0.05, 0.001 < **p < 0.01, ***p < 0.001.
A B

FIGURE 2 | Metrics comparison of models based on different multivariate analysis approaches. (A, B) are C-index and brier score comparisons of models based on
multivariate analysis by ML, SR, and ML+SR, respectively. ML, machine learning; SR, stepwise regression.
TABLE 3 | Variable characteristic statistics of the training cohort and internal validation cohort.

Variables Training cohort (n=1,112) Internal validation cohort (n=278) p value

Age, years, median (IQR) 55 (46–62) 55 (45–62) 0.412
T, n (%) 0.111
T1a and T1b 225 (20.2%) 52 (18.7%)
T2 154 (13.9%) 32 (11.5%)
T3 438 (39.4%) 106 (38.1%)
T4 295 (26.5%) 88 (31.7%)

N, n (%) 0.046*
N0 787 (70.8%) 179 (64.4%)
N1 325 (29.2%) 99 (35.6%)

Tumor size, cm, median (IQR) 5.8 (4.0–8.1) 6.0 (4.1–8.2) 0.209
CA19-9, U/ml, median (IQR) 54.7 (18.4–489.1) 58.3 (16.4–499.8) 0.380
g-GT, U/l, median (IQR) 85.0 (44.8–178.4) 79.0 (43.0–174.5) 0.253
Alb, g/l, median (IQR) 42.1 (39.4–44.7) 41.8 (38.6–44.3) 0.046*
ALT, U/l, median (IQR) 26.9 (17.6–44.8) 28.4 (18.2–44.7) 0.287
ALP, U/l, median (IQR) 109.0 (83.0–156.0) 113.0 (82.0–148.0) 0.250
PA, mg/l, median (IQR) 212.0 (170.0–259.0) 210.0 (162.3–250.0) 0.070
AST, U/l, median (IQR) 28.8 (21.9–41.1) 29.5 (22.2–45.7) 0.090
CEA, mg/l, median (IQR) 3.0 (1.7–5.9) 2.7 (1.6–6.7) 0.323
AFP, mg/l, median (IQR) 3.6 (2.2–9.2) 3.3 (2.3–8.6) 0.338
DBIL, mmol/l, median (IQR) 4.7 (3.5–6.4) 4.7 (3.5–6.7) 0.173
TBIL, mmol/l, median (IQR) 12.6 (9.4–17.1) 12.7 (9.7–17.5) 0.299
le
T and N indicates the staging results of AJCC 8th; IQR, interquartile range; CA19-9, carbohydrate antigen 19-9; g-GT, g-glutamyltranspeptidase; Alb, albumin; ALT, alanine
aminotransferase; ALP, alkaline phosphatase; PA, prealbumin; AST, aspartate aminotransferase; CEA, carcinoembryonic antigen; AFP, alpha-fetoprotein; DBIL, direct bilirubin; TBIL,
total bilirubin. *p < 0.05.
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Establishment and Evaluation of Eastern
Hepatobiliary Surgery Hospital-
Intrahepatic Cholangiocarcinoma
Scoring System
Based on the Cox regression, the range of the prognostic index
for each individual is from −1.2 to 2.4. In order to adjust the
score in our proposed scoring system into positive, we obtained
the EHBH-ICC scoring formula as follows:

EHBH – ICC _ score =

10�
1:2 + 0:186� T + 0:656� N + 0:147� 1n CEAð Þ
+ 0:120� 1n CA19 – 9ð Þ+
0:055� 1n AFPð Þ – 0:187� 1n PAð Þ

0
B@

1
CA

Histograms of survival risk score distribution for training
cohort and internal validation cohort were built based on our
Frontiers in Oncology | www.frontiersin.org 722
EHBH-ICC score (Figures 3A, B). According to the score
distribution, we divided patients into four risk groups: low (0–
10), moderate (11–20), high (21–30), and extremely high (>30).
The median risk scores in training and internal validation
cohorts were 16.3 and 17.0, respectively. Figure 4A displays
the good prognostic stratification for patients between stages in
internal validation cohort (log rank p<0.001).

Comparison of Predictive Accuracy for
Overall Survival in Eastern Hepatobiliary
Surgery Hospital-Intrahepatic
Cholangiocarcinoma, American Joint
Committee on Cancer 8th and the
Liver Cancer Study Group of Japan
Staging System
Further, we made a comparison of the EHBH-ICC staging
system with AJCC 8th and the LCSGJ staging systems. Since
A B

FIGURE 3 | Distribution of risk scores in patients using Eastern Hepatobiliary Surgery Hospital-intrahepatic cholangiocarcinoma (EHBH-ICC) scoring system.
(A, B) are risk score distributions in training cohort (n=1,112, median=16.3) and internal validation cohort (n=278, median=17.0), respectively.
A B

D E

C

FIGURE 4 | Overall survival curves and prognostic performance indicator curves in the Eastern Hepatobiliary Surgery Hospital-intrahepatic cholangiocarcinoma
(EHBH-ICC), American Joint Committee on Cancer (AJCC) 8th, and the Liver Cancer Study Group of Japan (LCSGJ) staging systems. (A–C) depict the overall
survival according to the three staging systems in internal validation cohort, all log rank p<0.001. (D, E) present the C-index and brier score change in long-term
survival, respectively.
January 2021 | Volume 10 | Article 576901
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time-to-mortality and time-to-event were crucial to interpret the
results, Figures 4A–C depict the Kaplan-Meier curves of the
three different staging systems. All of three systems in our study
appeared a progressive decrease in OS during the study period.
The log-rank test proved that all these staging methods
have p<0.001.

The discrimination ability and prediction performance of
EHBH-ICC score model in internal validation cohort and
external validation cohort were respectively indicated with
higher C-index of 0.693 (95% CI, 0.663–0.723) and 0.671 (95%
CI, 0.602–0.740) than the AJCC 8th and LCSGJ staging systems,
which were then confirmed with lower probability calibration of
BS (0.103 in internal validation cohort and 0.169 external
validation cohort). Detailed C-index and BS results are
presented in Table 5 and Figures 4D, E. The model evaluation
results show that the EHBH-ICC score was the most precise in
predicting the survival after resection in this study.
DISCUSSION

ICC is the second most common primary hepatic malignancies
after HCC with increasing incidence and mortality worldwide
(21, 22). Hepatectomy is considered as the mainstay of curative
option for ICC (23). Accurate tumor staging provides the
prognostic details, evaluates the risk level appropriately, as well
as assists the choice of adjuvant therapeutic options.

At present, the most commonly used staging systems for ICC
are the TNM classification systems, among which, the AJCC 8th
and LCSGJ are widely approbatory. With relentless efforts of
AJCC to improve the prognostic staging of ICC, there are still
research evidences that it is inadequate. T1b with single lesion
larger than 5 cm without vascular invasion in AJCC was often
rare in clinical treatments. And some recent studies indicated
that stage II and stage IIIA for ICC patients in AJCC edition
failed to show significant prognostic differentiation. Survival
time for intrahepatic metastases was sometimes lower than in
patients with serous membrane protruding tumors; however,
these patients were only at T2 stage. Some recent studies assessed
the prognostic performance of the 7th and 8th edition versions of
AJCC staging system, proving that there was no remarkable
improvement in overall prognostic discrimination, especially in
Frontiers in Oncology | www.frontiersin.org 823
the staging of T3 category (14, 24, 25). While the LCSGJ focuses
on the HCC which has distinct differences in biological behaviors
and postoperative outcomes. Some modified staging systems for
resectable ICC reserved the prognostic factors in TNM
classification or combined these two systems as one of the
predictors (19, 26). In our investigation, we analyzed the
diagnoses of both staging systems above as separate
independent variables. We hypothesized that pathology factors
are important prognostic factors for postoperative ICC patients
but are only partially relevant. Our study was based on multi-
dimensional clinical real-world data in relatively larger
population, thus we could seek factors affecting postoperative
survival of ICC patients with a wider perspective.

We derived 15 important factors by three algorithms
concurrently (Table 2), and further identified T (AJCC 8th)
and N classifications, CEA, CA19-9, AFP, PA as the prognostic
predictive factors. Multiple potential tumor biomarkers have
been used in evaluating the prognosis of ICC (27–29). For
now, many researches have constructed some new assessment
systems with diagnostic biomarkers to predict the survival of
patients, such as CA19-9, AFP, CEA, ALP, and PA (17, 19, 30).
These factors were confirmed by our results and were involved in
the outcome scoring of ICC patients. Serum CA 19-9 and CEA
were most investigated in prognosis of ICC (17, 18, 31). Jaklitsch
et al. had proven that the inclusion of preoperative CA 19-9 and
CEA in AJCC and LCSGJ staging systems improved the
prognostic survival prediction after resection for ICC (32).
Serum AFP is a widely used tumor marker of HCC (33), and
the positive serum AFP (>20 ng/ml) is seen in approximately
19% of ICC patients (34). Zhou et al. showed that the lymph
node metastasis rate was low in ICC patients with positive AFP
(35). PA generated by liver is commonly regarded as a sensitive
marker of nutritional status. A study reported that patients with
lower PA have poorer outcomes in ICC (19), which is consistent
with our result that PA level is negatively associated with the
score. Compared with pathological factors, clinical parameters
are easier to obtain and can also provide valuable reference. In
our EHBH-ICC scoring system, the diagnosis of T and N and the
laboratory results can be directly substituted into the calculation
to obtain the corresponding risk level scores.

To our knowledge, our report is the first ICC staging method
developed based on machine learning models. In recent years,
TABLE 5 | The comparison of Eastern Hepatobiliary Surgery Hospital (EHBH)-intrahepatic cholangiocarcinoma (ICC), American Joint Committee on Cancer (AJCC) 8th
and the Liver Cancer Study Group of Japan (LCSGJ) staging system in internal and external validation cohorts.

Cohorts Models C-index (95% CI) BS

Internal validation EHBH-ICC 0.693 (0.663–0.723) 0.103
AJCC 8th 0.675 (0.642–0.708) 0.110
LCSGJ 0.665 (0.632–0.698) 0.114

External validation EHBH-ICC 0.671 (0.602–0.740) 0.169
AJCC 8th 0.648 (0.578–0.718) 0.198
LCSGJ 0.539 (0.455–0.623) 0.189
January 2021 | Volume 10 | Article 5
CI, confidence interval; BS, brier score; EHBH-ICC, the prognostic scoring system for postoperative intrahepatic cholangiocarcinoma proposed by Eastern Hepatobiliary Surgery Hospital;
AJCC 8th, the 8th edition of the American Joint Committee on Cancer staging system; LCSGJ, the Liver Cancer Study Group of Japan staging system.
The discrimination ability and prediction performance of EHBH-ICC score model in internal validation cohort and external validation cohort were respectively indicated with higher C-index
of 0.693 (95% CI, 0.663–0.723) and 0.671 (95% CI, 0.602–0.740) than the AJCC 8th and LCSGJ staging systems, which were then confirmed with lower probability calibration of BS
(0.103 in internal validation cohort and 0.169 external validation cohort).
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machine learning-based methods are widely used in diagnosis,
treatment and outcome prediction such as prostate cancer (36),
renal cancer (37), non-small cell lung cancer (38), and
cardiovascular event prediction (39). Machine learning can
deal with different data types even if data are incomplete or
incoherent comparing with traditional statistics. Many studies
have demonstrated the advantages of machine learning
algorithms over traditional statistical methods (40).

According to the EHBH-ICC scoring system, patients are
divided into four survival risk grades (low to extremely high).
This is a scoring approach to predict the outcome of resectable
ICC in Chinese population. The other scoring approach, for
instance, the Fudan scoring system was only conducted for 344
patients with multivariate Cox regression. Compared with the
Fudan scoring system, the EHBH-ICC has different calculation
methods and key prognostic factors. A similarity between Fudan
scoring system and our system was the discovery and application
of the prognostic value of readily available clinical parameters.
Our ultimate validation methods of discrimination ability and
performance were C-index and BS. The EHBH-ICC scoring
system (C-index, 0.693; BS, 0.103) has more accurate
prognostic prediction for ICC patients via comparison with the
AJCC 8th and LCSGJ edition (Figures 4D, E).

In our study, patients’ tumor diversity was well reflected.
With the continuously increasing sample size, the evaluation
system will be more optimized to predict the prognosis of
patients more accurately to make decision of the treatment.
We cannot only obtain the proportion of risk factors in the
prognosis of patients, but also accurately predict the prognosis of
patients with the increasing score via machine learning.

However, there are limitations in our study. Our study is a
retrospective study in one single center. More medical centers
and samples could be added to optimize our evaluation system
and solve the limitation. In conclusion, the EHBH-ICC scoring
system shows good predictive ability for ICC patients who
underwent surgical operation via evaluation and comparison
Frontiers in Oncology | www.frontiersin.org 924
with existing staging systems (the AJCC 8th and LCSGJ). The
machine learning-based EHBH-ICC scoring system can
effectively evaluate the ICC prognosis after resections and be
used in clinical practice.
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Machine Learning Prognostic Model
for Hepatocellular Carcinoma
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and Jingfeng Liu1,2,3*

1 Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China, 2 The United Innovation of
Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical
University, Fuzhou, China, 3 The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, China, 4 Department of
Computer Science, Shanghai Jiao Tong University, Shanghai, China

Surgical resection remains primary curative treatment for patients with hepatocellular
carcinoma (HCC) while over 50% of patients experience recurrence, which calls for
individualized recurrence prediction and early surveillance. This study aimed to develop a
machine learning prognostic model to identify high-risk patients after surgical resection
and to review importance of variables in different time intervals. The patients in this study
were from two centers including Eastern Hepatobiliary Surgery Hospital (EHSH) and
Mengchao Hepatobiliary Hospital (MHH). The best-performed model was determined,
validated, and applied to each time interval (0–1 year, 1–2 years, 2–3 years, and 3–5
years). Importance scores were used to illustrate feature importance in different time
intervals. In addition, a risk heat map was constructed which visually depicted the risk of
recurrence in different years. A total of 7,919 patients from two centers were included, of
which 3,359 and 230 patients experienced recurrence, metastasis or died during the
follow-up time in the EHSH and MHH datasets, respectively. The XGBoost model
achieved the best discrimination with a c-index of 0.713 in internal validation cohort.
Kaplan-Meier curves succeed to stratify external validation cohort into different risk groups
(p < 0.05 in all comparisons). Tumor characteristics contribute more to HCC relapse in 0 to
1 year while HBV infection and smoking affect patients’ outcome largely in 3 to 5 years.
Abbreviations: a-7-nAChR, 7-nicotinic acetylcholine receptor; APTT, Activated partial thromboplastin time; ALBI,
Albumin-bilirubin grade; AJCC, American Joint Committee on Cancer; CPH, Cox Proportional Hazards Model; DeepSurv,
Deep Learning-based Survival Model; ERASL, Early Recurrence After Surgery for Liver tumor model; EHSH, Eastern
Hepatobiliary Surgery Hospital, Second Military Medical University; XGBoost, Extreme Gradient Boosting; FLD, Fatty liver
disease; GSH, glutathione; HBG, Hemoglobin concentration; HCC, Hepatocellular carcinoma; HBV, Hepatitis B virus; MaVI,
Macrovascular invasion; MHH, Mengchao Hepatobiliary Hospital, Fujian Medical University; MVI, Microvascular invasion;
PVTT, Portal vein tumor thrombosis; PT, Prothrombin time; RSF, Random survival forest; ROS, Reactive oxygen species; RFS,
Recurrence-free survival; AFP, Serum alpha-fetoprotein; SLICER, Singapore Liver Cancer Recurrence score; SS-CLIP, Surgery-
Specific Cancer of the Liver Italian Program; TT, Thrombin time; TBIL, Total bilirubin.
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Based on machine learning prediction model, the peak of recurrence can be predicted for
individual HCC patients. Therefore, clinicians can apply it to personalize the management
of postoperative survival.
Keywords: hepatocellular carcinoma, recurrence, machine learning, modeling, prognosis
INTRODUCTION

Hepatocellular carcinoma (HCC) is the most common primary
liver cancer and ranks as the fourth leading cause of cancer-
related mortality (8.2%) worldwide (1). Surgical resection
remains the primary curative treatment for patients with
adequate liver function (2). However, 50% to 70% of patients
who undergo complete tumor resection still suffer from frequent
recurrence and disease progression, ultimately leading to
unfavorable prognoses (3). Therefore, the identification of
patients at high risk of recurrence after surgical resection is
essential for clinicians to provide appropriate surveillance
and therapy.

During the past decade, researchers have primarily focused
on prognosis-predictive models based on biological,
demographic, and clinical factors. The most acknowledged
system of the American Joint Committee on Cancer (AJCC)
tumor-node-metastasis (TNM) is commonly used to determine
the staging of liver cancer. However, its prognostic value in
predicting tumor recurrence is widely debated (4). Recent
models, including the Singapore Liver Cancer Recurrence
(SLICER) score, Surgery-Specific Cancer of the Liver Italian
Program (SS-CLIP), and the Korean model, were designed to
detect tumor recurrence in specific groups of patients. Due to the
inaccuracy and diversity of these models, they have not been
widely implemented (5–7). In addition, the Early Recurrence
After Surgery for Liver tumor (ERASL) model, which is based on
Cox regression analysis, has been established to predict early
tumor recurrence after liver resection. Despite its better
discriminatory performances than other tools, the limited
clinical parameters and the prediction for 2-year recurrence
restrict its application in the full HCC survivorship
management (8).

Machine learning, a field of computer science in which
machines mimic, recognize, and learn cognitive functions of
the human mind to make empirical predictions, is gaining more
and more attention in recent years (9). For cancer, machine
learning demonstrates the advantages of image recognition and
feature selection compared to traditional methods (10, 11).
Recently, automated machine learning algorithms have been
developed to detect metastasis in sentinel lymph nodes of
women with breast cancer, and showed better diagnostic
performance than pathologists (12). In patients with bladder
cancer, a novel predictive model based on machine learning
algorithms was also created. In the model, disease recurrence
after cystectomy was predicted with more than 70% sensitivity
and specificity (13). However, few studies have applied a
machine learning framework to identify HCC patients with the
potential risk of recurrence after curative treatment.
227
Briefly, we aimed to utilize machine learning algorithms to
develop a risk prediction model to predict HCC recurrence
among patients who underwent surgical resection. We also
explored feature importance in this process, verifying the
important prognostic factors for tumor relapse. In addition, a
risk heat map covering five years that visually depicts the risk
of recurrence was constructed. In this way, we hope to improve
the performance of HCC recurrence predictive models
using big data and to provide evidential support for
individualized management.
MATERIALS AND METHODS

This analysis was reported according to the TRIPOD
(Transparent Reporting of a Multivariable Prediction Model
for Individual Prognosis or Diagnosis) guidelines (14).

Patients
The database was retrospectively derived from patients with
HCC who underwent hepat ic resect ion at Eastern
Hepatobiliary Surgery Hospital, Second Military Medical
University (EHSH) (n = 7,411, from May 2008 to Sept. 2018)
or Mengchao Hepatobiliary Hospital, Fujian Medical University
(MHH) (n = 508, from Nov. 2014 to Nov. 2018). The patients in
this study met the inclusion criteria as follows: (1) pathological
confirmation of HCC, (2) Child-Pugh A/B before surgery, (3) R0
surgical resection of tumor with curative intent. However,
patients who (1) died within 30 days after surgery or lost to
follow-up, (2) received preoperative neoadjuvant treatment (3)
diagnosed with extrahepatic cancers, HCC relapse, or metastasis
(4) younger than 18 years old were excluded from this study.
Inclusion and exclusion of patients and following analysis can be
found in Supplementary Figure 1.

Different models were constructed on the EHSH dataset,
which was randomly divided into derivation and internal
validation cohorts at a ratio of 8:2. The models were validated
externally using the dataset from MHH. The study was approved
by the Ethics Committee of the two centers, and the requirement
of written informed consent was waived. All procedures were
performed in accordance with the Declaration of Helsinki.

Clinical Variables
The demographics, laboratory tests, and HCC etiologies were
collected from the database. The laboratory tests included
various parameters of blood examination, liver and coagulation
function, and hepatitis virus markers. Tumor characteristics
included, but were not limited to, the number of tumors, the
diameter of the largest nodule, differentiation, capsule, cirrhosis
February 2021 | Volume 10 | Article 593741
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in non-cancerous tissues, and vascular invasion. Macrovascular
invasion was defined as tumor invasion of large vessels, which
can be detected by Computed Tomography/Magnetic Resonance
Imaging (CT/MRI) (8). Microvascular invasion refers to the
histologically microscopic presence of cancer cell clusters in
the blood vessels lined with endothelial cells (15). Thirty-five
variables were selected by health professionals based on literature
review and clinical expertise.

Follow-up and Outcome
During the follow-up, serum alpha-fetoprotein (AFP) levels were
measured, as well as ultrasonography, CT, or MRI of the chest
and abdomen once every two months for six months, and then
once every three months for the next 1.5 years. For patients who
were free of cancer recurrence two years after surgery, a 6-month
interval surveillance was carried out. The outcome of this study,
recurrence-free survival (RFS), was defined as the time from
surgery to the detection of recurrence, metastasis, or death.

General Statistical Principle
After preliminary data cleaning, multiple imputation was
performed in R (v3.6.2) based on the Multivariate Imputation
by Chained Equations (MICE, v3.8.0). Continuous variables,
which were tested for normality by Anderson-Darling tests,
were abnormally distributed. Therefore, the variables were
summarized by median (IQR), and Wilcoxon rank-sum tests
were used for between-groups comparisons. Categorical
variables were expressed as frequency (%), and Chi-squared
tests or Fisher’s exact tests were applied, as appropriate. All
statistical analyses above were two-sided, while p < 0.05 was
considered statistically significant, and conducted in Python
(v3.7) with Scipy (v1.4.0) package.

Model Development
Cox Proportional Hazards Model (CPH)
The clinicopathologic parameters of HCC recurrence were fitted
by the Cox regression using the Survival package (v3.1) in
R-language. Univariable Cox regression was firstly conducted
to identify potential predictors (p < 0.1). Variables identified in
univariable cox model were then applied in multivariable cox
regression with stepwise selection method.

Machine Learning Models
Three machine learning models, including Deep Learning-based
Survival Model (DeepSurv), Extreme Gradient Boosting
(XGBoost), and Random survival forest (RSF) were applied to
perform the task of predicting HCC recurrence using all 35
variables preselected. DeepSurv is a multi-layer feed-forward
neural network that predicts the effects of diverse variables on
their hazard rate parameterized by the weights of the network
(16). Based on its algorithm principle, we redeveloped DeepSurv
in Python under Pytorch deep learning framework (version 1.3.1,
CPU version) and optimized the hyper-parameter search.
XGBoost is an improved supervised learning algorithm based
on the Gradient Boosting Decision Tree algorithm, which can
deal with survival problems by setting partial likelihood
functions of the optimization object and log-rank tests as node
Frontiers in Oncology | www.frontiersin.org 328
split criteria (17). Our XGBoost model was implemented in
Python using the XGBoost (v.0.9) package. RSF is another
machine learning approach for survival analysis that eliminates
the proportional hazard assumption and can fit a more general
spectrum of survival problems, which conducted in R
(randomForestSRC v2.9.3) (18).

Model Discrimination and Calibration
The discrimination performance among the four models in both
derivation and validation sets were measured by Harrell’s
c-index. Comparison of c-index among different models in
each cohort was conducted afterwards (19).

As suggested by previous study Kaplan-Meier survival curves for
various risk groups were used as informal evidence of discriminative
ability (20). Kaplan-Meier curve for the external validation cohort
after calibration allows a visual comparison of discrimination
among different risk groups at the cut-off of 50th and 84th centiles.

Calibration plots of XGBoost were applied to the derivation
and validation sets to determine whether each patient’s predicted
risk was consistent with the actual outcome. We followed the
practice of Chan et al. to draw the calibration plots (8) at 1, 2, 3,
and 5 years.

Models in Different Time Intervals
and Predictive Heat Map
Inspired by lifetable methodology, we applied XGBoost to
different time intervals, including 0 to 1 year, 1 to 2 years, 2 to
3 years, and 3 to 5 years, with the same software. Importance
scores were exported, and the Harrell’s c-index of each interval
were reported at the same time. Furthermore, fifty patients from
the external validation cohort were randomly selected to create a
heat map for visually illustrating the risk of recurrence within
five years after surgery, with aim of providing guidance and
support in clinical practice.
RESULTS

Clinicopathologic Features and Outcome
A total of 7,919 patients who underwent surgical resection from
two centers were included in the study. 80% of EHSH cohort was
assigned as the derivation set (n = 5,928) and the rest was
designated as internal validation set (n = 1,483). By the time of
data analysis, 3,359 and 230 patients experienced recurrence,
metastasis or died during the follow-up time in the EHSH dataset
and MHH datasets, respectively. Median follow-up period for
two datasets were 3.51 (IQR: 0.41–8.32) and 2.04 (IQR: 0.23–
3.88) years. Detailed outcome descriptions are provided in
Supplementary Table 1.

Thirty-five predictors were included in the final analysis.
Preoperat ive cl inical and postoperat ive pathologic
characteristics of the three cohorts are shown in Table 1.

Predictive Performance
The discriminatory performance of the four models was assessed
with the Harrell’s c-index (Table 2). The c-index of the Cox
regression model in three cohorts were 0.704 (EHSH derivation),
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0.700 (EHSH validation), and 0.703 (MHH validation). Among
four models, XGBoost achieved the highest c-index in the
internal validation cohort (c-index: 0.713, P < 0.05, all
comparisons). The c-index of XGBoost in the external
validation cohort of MHH is 0.697, no statistically significant
difference from those of CPH, DeepSurv, and RSF (0.703, P =
0.470; 0.700, P = 0.616; and 0.699, P = 0.672; respectively).
Meanwhile, XGBoost model outperformed the Early Recurrence
After Surgery for Liver tumor (ERASL) model (c-index: 0.672,
P < 0.001; 0.673, P < 0.001; and 0.679, P = 0.185) in all three
Frontiers in Oncology | www.frontiersin.org 429
cohorts with our dataset. Thus, XGBoost was employed for the
following demonstration and analysis. KM curves of the external
validation dataset (Figure 1) indicated good discriminative
ability of XGBoost to categorize patients into three risk groups
after resection: low risk, intermediate risk (p < 0.001 in
comparison to the low-risk group), high risk (p < 0.001 in
comparison to the intermediate-risk group).

As shown in Figure 2, the calibration plots demonstrated a
satisfying agreement between predictions made by XGBoost and
actual patient outcomes in all datasets.
TABLE 1 | Baseline characteristics of patient.

EHSH derivation (n = 5,928) EHSH validation (n = 1,483) MHH validation (n = 508) p-value*

Gender, male, n (%) 5096 (86.0%) 1305 (88.0%) 437 (86.0%) 0.825
Age (years), median (IQR) 52.0 (44.0–60.0) 51.0 (44.0–59.0) 56.0 (48.0–63.2) <0.001
Smoking, n (%) 2278 (38.4%) 587 (39.6%) 121 (23.8%) <0.001
Alcohol consumption, n (%) 1215 (20.5%) 293 (19.8%) 53 (10.4%) <0.001
FLD, n (%) 209 (3.5%) 72 (4.9%) 96 (18.9%) <0.001
Ascites, n (%) 149 (2.5%) 45 (3.0%) 43 (8.5%) <0.001
Cirrhosis, n (%) 5126 (86.5%) 1261 (85.0%) 497 (97.8%) <0.001
ALBI grade, n (%) <0.001
1 4546 (76.7%) 1122 (75.7%) 215 (42.3%)
2 1379 (23.3%) 361 (24.3%) 293 (57.7%)
3 3 (0.1%) 0 (0.0%) 0 (0.0%)
Child-Pugh score 0.003
A 5843 (98.6%) 1468 (99.0%) 493 (97.0%)
B 85 (1.4%) 15 (1.0%) 15 (3.0%)
HBV history, n (%) 5307 (89.5%) 1334 (90.0%) 206 (40.6%) <0.001
HBV-DNA load (IU/ml), median (IQR) 1000.0 (1000.0–58000.0) 1000.0 (1000.0–56100.0) 1280.0 (500.0–48400.0) <0.001
HBsAg, n (%) 5028 (84.8%) 1258 (84.8%) 206 (40.6%) <0.001
HBsAb, n (%) 809 (13.6%) 207 (14.0%) 55 (10.8%) 0.066
HbcAb, n (%) 5789 (97.7%) 1449 (97.7%) 493 (97.0%) 0.376
HBeAg, n (%) 1474 (24.9%) 365 (24.6%) 114 (22.4%) 0.230
HBeAb, n (%) 4222 (71.2%) 1075 (72.5%) 358 (70.5%) 0.629
AFP (ng/ml), median (IQR) 95.7 (6.5–1210.0) 76.5 (6.7–1210.0) 61.8 (6.2–905.9) 0.148
GGT (IU/L), median (IQR) 66.0 (37.0–120.0) 64.0 (36.0–113.4) 53.0 (30.8–102.0) <0.001
TBIL (mmol/L), median (IQR) 13.4 (10.3–17.2) 13.4 (10.4–17.5) 15.7 (11.1–21.5) <0.001
Albumin (g/L), median (IQR) 41.8 (39.4–44.2) 42.0 (39.3–44.2) 39.0 (36.0–42.0) <0.001
HBG (g/L), median (IQR) 143.0 (132.0–152.0) 144.0 (134.0–152.0) 144.0 (132.0–152.0) 0.586
Prealbumin (mg/L), median (IQR) 218.0 (177.0–264.0) 225.0 (178.0–269.0) 198.0 (151.0–240.2) <0.001
Platelet (109/L), median (IQR) 156.0 (116.0–202.0) 161.0 (121.0–204.0) 169.5 (120.8–219.0) 0.002
PT (s), median (IQR) 11.9 (11.3–12.6) 11.9 (11.4–12.6) 13.5 (13.0–14.2) <0.001
TT (s), median (IQR) 19.3 (18.3–20.3) 19.3 (18.3–20.3) 17.6 (16.9–18.3) <0.001
Fibrinogen (mg/dl), median (IQR) 2.4 (2.0–3.0) 2.4 (2.0–3.0) 2.8 (2.4–3.4) <0.001
APTT (s), median (IQR) 27.4 (25.3–29.9) 27.3 (25.4–29.8) 37.2 (34.7–40.0) <0.001
Tumor number <0.001
1 4749 (80.1%) 1198 (80.8%) 437 (86.0%)
2 729 (12.3%) 181 (12.2%) 54 (10.6%)
3 170 (2.9%) 36 (2.4%) 0 (0.0%)
4 63 (1.1%) 17 (1.1%) 0 (0.0%)
5 217 (3.7%) 51 (3.4%) 17 (3.3%)
Tumor diameter (cm), median (IQR) 5.2 (3.4–8.5) 5.3 (3.5–8.3) 4.5 (3.0–7.5) <0.001
Tumor capsule, n (%) 4309 (72.7%) 1070 (72.2%) 399 (78.5%) 0.003
Tumor differentiation, Ⅰ/Ⅱ, n (%) 4845 (81.7%) 1230 (82.9%) 207 (40.7%) <0.001
Tumor thrombus, n (%) 802 (13.5%) 181 (12.2%) 95 (18.7%) <0.001
Satellite nodules, n (%) 2594 (43.8%) 650 (43.8%) 139 (27.4%) <0.001
MaVI, n (%) 1004 (16.9%) 228 (15.4%) 142 (28.0%) <0.001
MVI, n (%) 2279 (38.4%) 562 (37.9%) 314 (61.8%) <0.001
Major resection, n (%) 4728 (79.8%) 1169 (78.8%) 425 (83.7%) 0.026
Blood transfusion, n (%) 645 (10.9%) 158 (10.7%) 70 (13.8%) 0.040
F
ebruary 2021 | Volume 10 | Articl
IQR, interquartile range (25%–75%).
EHSH, Eastern Hepatobiliary Surgery Hospital; MHH, Mengchao Hepatobiliary Hospital; FLD, fatty liver disease; HBV, hepatitis B virus; AFP, alpha-fetoprotein; TBIL, total bilirubin; PT,
prothrombin time; HBG, hemoglobin concentration; GGT, gamma-glutamyl transpeptidase; TT, thrombin time; APTT, activated partial thromboplastin time; MaVI, macrovascular invasion;
MVI, microvascular invasion; ALBI grade, albumin-bilirubin grade.
*Comparison between EHSH and MHH cohorts.
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Models and Feature Importance
in Different Time Intervals
We established the XBGoost model in different time intervals,
including 0 to 1 year, 1 to 2 year, 2 to 3 year, and 3 to 5 years, to
examine the dynamics of feature importance in HCC patients.
The specific predictive performance measurements using c-index
and 95% CI for each time slot are listed in Table 3.

The variables with the top 10 importance scores are shown in
Table 4. During 0 to 1 year after resection, the importance score
of tumor thrombus (defined as the tumor extending into a vessel,
typically portal vein) was 103.01, substantially higher than scores
of other factors, such as tumor diameter (33.94), gamma-
glutamyl transpeptidase (GGT) (20.25), and tumor capsule
(19.22). For 1 to 2 year, tumor number (13.39) was the most
important variable related with patient outcomes, followed by
resection type (major resection 13.22), tumor thrombus (13.04),
and tumor diameter (12.36). In the latter two intervals, apart
from tumor number, HBV infection was found to be a relatively
important variable. HBV-DNA load has the third highest
importance score for 2 to 3 years and HBsAg ranked first in
the last period. Furthermore, smoking, an unhealthy lifestyle,
was also associated with late recurrence.
Frontiers in Oncology | www.frontiersin.org 530
The Pattern of Recurrence Risk
Using the XGBoost model in different time intervals, a risk heat
map covering four time intervals was developed that visually
depicts a patient’s risk of tumor recurrence, metastasis or death
after undergoing curative liver resection. In general, individual
heat map indicated a trend of relatively high recurrence risk in
0 to 1 year and 3 to 5 years after surgical resection (Figure 3).

DISCUSSION

HCC is one of themost commonmalignancies worldwide. Though
curative resection offers the best prognosis for patients, disease
recurrence remains a major obstacle to the long-term survival of
patients (21). Moreover, little is known about the potential risk
andpeak timeperiodsofHCC recurrence after curative surgery (22,
23). We therefore conducted this research to mediate this gap. In
this study, the risk prediction model based on the XGBoost
algorithm showed the best c-index in the EHSH validation set. To
observe the recurrence risk of individual patients at different time
intervals post-surgery, a heat map was constructed based on the
XGBoost model for 50 randomly selected HCC patients. The
majority of patients had a similar trend of postoperative
recurrence that risks in 0 to 1 and 3 to 5 years after surgery were
higher than those in 1 to 2 and 2 to 3 years.

In the past few years, several scoring systems have been
developed for estimating HCC recurrence risk and stratifying
patients. These systems have primarily selected significant
clinical parameters through multivariate analyses and
constructed conventional Cox proportional hazard models
based on the limited risk factors (24–26). One of the
important assumptions for Cox proportional hazards
regression is that each variable makes linear contribution to
model. However, in clinical studies, multiple risk factors
usually have non-linear effects with recurrence-free survival,
especially in cancer studies (16, 27, 28). Due to this reason, the
previous models might fail to show goodness-of-fit and to
make accurate prediction. Machine learning algorithms are
probably superior than conventional CPH because they can fit
more sophisticated non-linear relationship. According to our
attempts of building different models, the XGBoost model did
better prediction of liver recurrence.
TABLE 2 | Predictive performance (c-index with 95% CI) of the different models.

EHSH derivation EHSH validation MHH validation

CPH 0.704
(0.694–0.712)

0.700
(0.683–0.719)

0.703
(0.671–0.733)

DeepSurv 0.697
(0.687–0.707)

0.698
(0.682–0.718)

0.700
(0.663–0.737)

RSF 0.702
(0.691–0.713)

0.704
(0.685–0.722)

0.699
(0.665–0.730)

XGBoost 0.704
(0.695–0.714)

0.713*
(0.698–0.731)

0.697
(0.661–0.728)

ERASL 0.672
(0.663–0.681)

0.673
(0.654–0.690)

0.679
(0.636–0.714)
February 2021 | Volume 10
EHSH, Eastern Hepatobiliary Surgery Hospital; MHH, Mengchao Hepatobiliary Hospital; CPH, Cox Proportional Hazards Regression; DeepSurv, Deep Learning-Based Survival Model;
RSF, Random Survival Forest; XGBoost, Extreme Gradient Boosting; ERASL, Early Recurrence After Surgery for Liver tumor models
*p < 0.001 in comparison to DeepSurv and RSF models, p = 0.008 in comparison to CPH model.
FIGURE 1 | Kaplan-Meier curves for different risk groups among MHH
patients. MHH, Mengchao Hepatobiliary Hospital.
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TABLE 3 | Predictive performance (c-index with 95% CI) of XGBoost in four time intervals.

Time Intervals EHSH derivation EHSH validation MHH validation

0–1 year 0.736 (0.726–0.748) 0.751 (0.731–0.772) 0.712 (0.671–0.751)
1–2 years 0.608 (0.579–0.632) 0.551 (0.498–0.604) 0.667 (0.553–0.757)
2–3 years 0.581 (0.545–0.622) 0.571 (0.508–0.641) NA
3–5 years 0.565 (0.530–0.605) 0.689 (0.625–0.751) NA
Frontiers in Oncology | www.frontiersin.org
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EHSH, Eastern Hepatobiliary Surgery Hospital; MHH, Mengchao Hepatobiliary Hospital; NA, not available.
TABLE 4 | Feature importance during the four time intervals.

No. 0–1 year 1–2 years 2–3 years 3–5 years

Features Importance
Score

Features Importance
Score

Features Importance
Score

Features Importance
Score

1 Tumor thrombus 103.01 Tumor number 13.39 Tumor number 8.00 HBsAg 13.26
2 MaVI 37.47 Major resection 13.22 Smoking 7.99 Prealbumin 11.28
3 Tumor diameter 33.94 Tumor

thrombus
13.04 HBV-DNA load 7.48 Smoking 8.94

4 MVI 33.63 Tumor diameter 12.36 HBeAg 7.20 Tumor number 8.67
5 GGT 20.25 Satellite nodules 12.01 Major resection 7.14 Age 8.41
6 AFP 19.55 HBV-DNA load 11.89 MaVI 6.95 Platelet 8.40
7 Tumor capsule 19.22 GGT 11.89 Alcohol

consumption
6.70 AFP 8.26

8 Blood
transfusion

18.21 Albumin 9.94 MVI 6.68 PT 8.21

9 Major resection 17.57 Tumor capsule 9.58 Platelet 6.58 Tumor
diameter

8.17

10 Tumor number 15.10 Platelet 8.98 Tumor diameter 6.52 MaVI 8.13
AFP, serum alpha-fetoprotein; GGT, gamma-glutamyl transpeptidase; HBV, hepatitis B Virus; MaVI, macrovascular invasion; MVI, microvascular invasion; PT, prothrombin time.
A B

D E F

C

FIGURE 2 | Calibration plots for XGBoost models in predicting 1- and 2-year RFS. Calibration plots for (A, D) EHSH derivation cohort, (B, E) EHSH validation
cohort, and (C, F) MHH validation cohort in predicting 1-year (A–C) and 2-year RFS (D–F). RFS, recurrence-free survival.
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Apart from an individualized heatmap for illustrating
recurrence risk, a feature importance analysis was conducted
based on the XGBoost model and was used to evaluate dynamics
of variables contributing to the interesting outcome. Specifically,
tumor characteristics, such as tumor thrombus, tumor number,
tumor size, and tumor differentiation, contributed more to the
model’s predictive performance in our study. In addition,
macrovascular invasion (MaVI), microvascular invasion
(MVI), gamma-glutamyl transpeptidase (GGT), intraoperative
blood transfusion and major resection also showed a more
significant contribution to the predictive performance of the
model. Furthermore, smoking as an unhealthy lifestyle also
hampered prognosis of HCC patients. These findings are
supported by previous research as follows.

Firstly, previous studies found that patients with portal vein
tumor thrombosis (PVTT) usually decreased liver function
reserves, which was a high-risk factor for disease progression
and recurrence (29, 30). In addition to tumor thrombus, tumor
volume is also associated with HCC recurrence. In another study,
tumor volume was shown to be a predictor of HCC recurrence
after liver transplantation (31). A clinical study in Korea
confirmed that the maximal size of HCC and the number of
tumors were significantly correlated with the recurrence of HCC
after liver transplantation (32). In line with our results, MVI was
also a unique parameter assessed in the ERASL, SLICER, SS-
CLIP, and Korean models (5–8). The dissemination and spread
of tumors through micro-vessels may explain the advanced
tumor stage, tumor progression, and worse outcomes (33–35).

Secondly, perioperative blood transfusions were independently
associated with survival and cancer recurrence after surgical
resection (36). A meta-analysis found that allogeneic blood
transfusions were associated with poor clinical prognoses in
patients with HCC who underwent radical hepatectomy (37).
The association between major resection and blood loss as well
as RFS of HCC patients has been examined: the more complicated
hepatectomy is, the more likely patients are to suffer from
intraoperative blood loss, leading to shorter time to recurrence (38).

Thirdly, liver function presented by GGT was another crucial
prognostic factor to predict tumor recurrence (39). GGT was first
found to modulate the metabolism of glutathione (GSH) and
facilitate amino-acid recovery for GSH synthesis (40). Recently,
GGT was reported to be involved in tumor initiation,
progression, and invasion. As such, GGT may induce the
production of endogenous reactive oxygen species (ROS),
leaving cells exposed to persistent oxidative stress, leading to
DNA damage and tumor growth (41, 42).

Moreover, smoking was associated with an increased risk of
HCC (43, 44) and disease-free survival of patients who
Frontiers in Oncology | www.frontiersin.org 732
underwent resection (45). In the current study, we found that
smoking was associated with a recurrence risk of 2 to 3 and 3 to 5
years after HCC. The underlying mechanism might be that
nicotine increases the expression of a-7-nicotinic acetylcholine
receptor (a-7-nAChR), leading to recurrence through the JAK2/
STAT3 signaling pathway (46). A previous study found that the
history and amount of smoking were both risk factors for the
progressive recurrence of HBV-related HCC (47).

Finally, early disease recurrence (0–1 year) is often thought to
be a result of intrahepatic metastases, while late recurrence is
more likely to result from newly-onset tumors with multicenter
origins (48, 49). In accordance with this theory, HBV-DNA load
and HBsAg contribute significantly to HCC recurrence from two
to five years in our study, which likely induce genomic
alternations and pro-oncotic signaling for de novo HCC in the
long term (50).

Our results suggest that clinicians can provide personalized
management of recurrence risk after surgical resection in HCC
patients based on information provided by heat maps and feature
importance, which may improve postoperative survival
outcomes. The risk heat map allows clinical teams to detect
patients most at risk of HCC recurrence, schedule appointments
for them in the “heat zones” that most likely for recurrence, and
take interventions as needed. For example, clinicians may give
greater attention to malignant characteristics of tumors,
including the presence of tumor thrombus, larger tumor sizes,
multiple tumor nodules, and micro- or macro-vascular invasion,
if the heat map indicates a high risk within one year after surgery.

There are certain underlying limitations to our study. Firstly,
our model is primarily based on two Chinese institutions of
patients with HCC in hepatitis B virus-endemic areas. It is
necessary to validate our model in international cohorts to
extend our results to patients with HCC of various etiologies.
Second, some other variables that may be associated with the
prognosis of HCC patients, such as postoperative adjunctive
therapies and serum inflammatory markers, were not evaluated
in this study. In addition, further prospective studies with longer
follow-ups are essential to extend the performance of our
model further.

In summary, we have developed a model based on a machine
learning algorithm that better predicts the risk of disease
recurrence in individual patients following hepatic resection in
a large population. We further applied this model to four time
periods to describe patterns of HCC relapse, and to explore
important risk factors. The heat map offers clinicians a decision
support tool to identify individuals prone to recurrence, while
also allowing clinicians to identify the prognostic factors, which
are clinically useful in terms of individualized patient
FIGURE 3 | Risk heat map for 50 randomly selected patients.
February 2021 | Volume 10 | Article 593741

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Huang et al. Models for HCC Recurrence
monitoring, surveillance, and management. Future prospective
studies are needed to verify our conclusions.
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Deep learning models for
predicting the survival of
patients with chondrosarcoma
based on a surveillance,
epidemiology, and end
results analysis

Lizhao Yan1†, Nan Gao1†, Fangxing Ai1, Yingsong Zhao2,
Yu Kang1, Jianghai Chen1* and Yuxiong Weng1*

1Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of
Science and Technology, Wuhan, China, 2Department of Orthopaedics, Liyuan Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan, China
Background: Accurate prediction of prognosis is critical for therapeutic

decisions in chondrosarcoma patients. Several prognostic models have been

created utilizing multivariate Cox regression or binary classification-based

machine learning approaches to predict the 3- and 5-year survival of patients

with chondrosarcoma, but few studies have investigated the results of

combining deep learning with time-to-event prediction. Compared with

simplifying the prediction as a binary classification problem, modeling the

probability of an event as a function of time by combining it with deep

learning can provide better accuracy and flexibility.

Materials and methods: Patients with the diagnosis of chondrosarcoma

between 2000 and 2018 were extracted from the Surveil lance,

Epidemiology, and End Results (SEER) registry. Three algorithms—two based

on neural networks (DeepSurv, neural multi-task logistic regression [NMTLR])

and one on ensemble learning (random survival forest [RSF])—were selected for

training. Meanwhile, a multivariate Cox proportional hazards (CoxPH) model

was also constructed for comparison. The dataset was randomly divided into

training and testing datasets at a ratio of 7:3. Hyperparameter tuning was

conducted through a 1000-repeated random search with 5-fold cross-

validation on the training dataset. The model performance was assessed

using the concordance index (C-index), Brier score, and Integrated Brier

Score (IBS). The accuracy of predicting 1-, 3-, 5- and 10-year survival was

evaluated using receiver operating characteristic curves (ROC), calibration

curves, and the area under the ROC curves (AUC).

Results: A total of 3145 patients were finally enrolled in our study. The mean

age at diagnosis was 52 ± 18 years, 1662 of the 3145 patients were male (53%),

and mean survival time was 83 ± 67 months. Two deep learning models
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outperformed the RSF and classical CoxPH models, with the C-index on test

datasets achieving values of 0.832 (DeepSurv) and 0.821 (NMTLR). The

DeepSurv model produced better accuracy and calibrated survival estimates

in predicting 1-, 3- 5- and 10-year survival (AUC:0.895-0.937). We deployed

the DeepSurv model as a web application for use in clinical practice; it can be

accessed through https://share.streamlit.io/whuh-ml/chondrosarcoma/

Predict/app.py.

Conclusions: Time-to-event prediction models based on deep learning

algorithms are successful in predicting chondrosarcoma prognosis, with

DeepSurv producing the best discriminative performance and calibration.
KEYWORDS

chondrosarcoma, survival analysis, machine learning, DeepSurv, deep learning
Introduction

Chondrosarcoma accounts for 20-30% of primary bone

tumors in adulthood and is the second most frequently

occurring bone sarcoma behind osteosarcoma (1). Compared to

Ewing sarcoma and osteosarcoma, chondrosarcoma is a less

malignant disease, with most patients living for 10 years

following standard therapy (2). The clinical presentation of

chondrosarcoma varies. 90% are conventional chondrosarcomas

and 90% of these are low to intermediate-grade tumors. These

tumors are slow growing, less likely to metastasize and relatively

insensitive to both chemotherapy and radiotherapy (3). The

remaining 10-8% of non-conventional tumors are further

classified into five subtypes: myxoid, mesenchymal,

dedifferentiated, juxtacortical, and clear cell. Those sarcomas

(including 5-10% of high-grade conventional chondrosarcomas)

can be highly malignant and aggressive, with a higher probability

of metastasis, leading to poorer outcomes for patients (4).

Several prognostic models have been created utilizing

multivariate Cox regression or machine-learning approaches to

predict the 3- and 5-year survival of patients with

chondrosarcoma (5–8). Among these models, the nomogram

is a frequently used method for integrating and measuring

different significant clinical variables of patients when

assessing the odds of occurrence of events using the Cox

proportional hazards (CoxPH) model. However, one of the

underlying assumptions regarding the CoxPH model is that

each predictor variable has the same effect at each follow-up time

point; however, this overlooks changes in the effect of predictor

factors on individual patients at different time points.

Additionally, these models use linearity assumptions rather

than conducting nonlinear analyses that represent clinical

aspects in the real world. As a result, improved solutions

focusing on nonlinear variables are required. The Skeletal
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Oncology Research Group (SORG) algorithm was proposed

(5), which trained several binary classification-based machine

learning models using the National Cancer Institute’s

Surveillance, Epidemiology, and End Results (SEER) data to

predict 5-year survival, with the highest AUC being 0.868. The

algorithm was subsequently validated on data from two external

datasets (9, 10) and showed good performance. Although the

SORG algorithm achieves better prediction performance than

traditional methods by assessing the nonlinear relationships

between variables, its limitations are also obvious. Firstly, it

applied a machine learning method to survival data by

simplifying the prediction as a binary classification problem;

this approach lacks the interpretability and flexibility provided

by modeling the probabilities of events as a function of time (11).

Secondly, it was trained using data from the SEER database

between 2004 and 2010, but data from 2011 to 2018 are already

available in the SEER database. Since treatment strategies have

evolved in recent years, the patient’s clinical characteristics may

have changed. Thirdly, the surgical treatment of patients (one of

its input features) is not classified in detail. However, the type of

surgery may be associated with survival rates (5).

In order to address all of the above-mentioned issues

concerning survival predictions, new approaches for

combining machine learning methods with survival models

have been proposed. Katzman et al. (12) integrated the Cox

proportional hazards model with neural networks (DeepSurv)

and showed that this novel approach was able to outperform

classical Cox models (13, 14). The DeepSurv model used the

negative log partial likelihood function to assess patients’

survival hazards, utilizing a core hierarchical structure

composed of fully connected feed-forward neural networks

with a single output node. Yu et al. (15) proposed the Linear

Multi-Task Logistic Regression (MTLR) model—an extension of

binomial log-likelihood—for jointly modeling a series of binary
frontiersin.org
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labels representing event indicators. It is a collection of logistic

regression models constructed at several different time intervals

that can be used to assess the probability that the event of

interest occurred within each interval. The neural MTLR (N-

MTLR) (16) model is based on the MTLR technique but utilizes

a deep learning architecture that considers nonlinear

relationships in datasets; this method has been shown to

outperform the MTLR model in the majority of cases (16).

The random survival forest (RSF) model is an extension of the

random forest model that takes censoring into account and has

been used as a benchmark for method comparison in many

pieces of literature (11).

This study aimed to develop models for predicting the

overall survival (OS) of patients with chondrosarcoma using

the Cox proportional hazards model and three machine learning

algorithms and compared the predictive performance of these

methods. In addition, the best algorithm will be deployed as an

accessible web-based app for clinical use.
Methods

Patient population and data collection

Patients were identified from the SEER database for the

period 2000-2018 for this retrospective cohort study. The SEER

database collects information from 18 cancer registries and

covers approximately 28% of the total US population.

SEER*Stat software (Version 8.4.0; National Cancer Institute,

Bethesda, MD) was used to extract information from the SEER

database. We collected the baseline information of cases (year of

diagnosis, gender, age), tumor characteristics (size, number,

histologic type, grade, primary site, tumor extension, distant

metastasis site, and stage) and treatment details (surgical type,

radiotherapy and chemotherapy). The inclusion criteria were as

follows: (1) patients have a confirmed diagnosis of

chondrosarcoma according to the third edition of the

International Classification of Diseases for Oncology (ICD-O-

3), morphological code (9220, 9240); (2) bones and joints are the

primary site (site recode ICD-O-3/WHO 2008 = Bones and

Joints). The exclusion criteria were as follows: (1) survival time is

unknown or less than one month; (2) chondrosarcoma was not

identified as the primary tumor (first malignant primary

indicator = No). A flowchart of the detailed selection process

is presented in Figure 1.
Variable’s definitions

The following variables are extracted from the SEER

database: Year of diagnosis, Age, Gender, Histological type,

Primary site , Stage, Grade, Surgery, Radiotherapy,

Chemotherapy, Tumor size, Number of tumors, Tumor
Frontiers in Oncology 03
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extension, Distant metastasis, Survival months, Status. The

original name of variables in the SEER database and the

specific details of each categorical variable was shown in

Supplementary Material E1, section S1. Until 2018, The

grading system in SEER has been consistent throughout all the

years of data collection and consists of a four‐tier system with

grade IV corresponding to undifferentiated tumors in addition

to the common grades I (well), II (moderate) and III (poorly).

The new grading strategy “Grade Clinical (2018+)” has been

implemented in the SEER database since 2018, which consists of

three grades and explicitly mentions that Grade 3 includes

undifferentiated tumors.
Deep learning model design

The source code of model development is available on

GitHub (https://github.com/WHUH-ML/Chondrosarcoma).
Feature selection

Collinearity occurs when two features have a strong

association with one another. Highly correlated features

should be avoided since they increase computational cost and

effort and they overfit the model. Thus, the cor function in the

stats R package was used to calculate correlations between

features, with a Pearson’s correlation value of 0.7 indicating

that features are highly collinear. In addition, univariate and

multivariate Cox regression were used to assess the

potential features.
Data preprocessing

Binary categorical features were coded as 0 and 1. Ordinal

features were encoded as ordinal numeric values, and

categorical features were one-hot encoded. We implemented

the nonparametric missForest imputation method for handling

missing data, which imputes missing values based on random

forest predictions. Continuous features were standardized

using the StandardScaler function from the sklearn

preprocessing library.
Model development

The primary predicted outcome was overall survival (OS).

Three algorithms—two based on neural networks (DeepSurv,

NMLTR) and one on ensemble learning (RSF)—were selected

for training. Meanwhile, a multivariate CoxPH model was also

constructed for comparison. The dataset was randomly divided

into training and testing datasets at a ratio of 7:3.
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Hyperparameter tuning

It was essential to find the best configuration for our

proposed network, including network architecture and

hyperparameter values. Hyperparameter tuning was conducted

through a 1000-repeated random search with 5-fold cross-

validation on the training dataset. The concordance index (C-

index) was used to evaluate the performance of models with

different combinations of hyperparameters.
Model evaluation

The accuracy of models was determined using C-index,

which is a correlation coefficient between predicted survival

risks and observed survival times. A C-index value of 0.5

indicates that the prediction is random, whereas a C-index

value of 1.0 indicates excellent prediction. The difference

between the two models’ C-index was tested using Kang’s

method (17). Brier scores were also obtained; they indicate the

mean square difference between observed patient status and
Frontiers in Oncology 04
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predicted survival probability and are always between 0 and 1,

with 0 being the best possible result. A model with a Brier score

of less than 0.25 is considered useful in practice. The Integrated

Brier Score (IBS) was also calculated to determine the models’

overall performance across all available periods. The 1-, 3-, 5-

and 10-year OS were calibrated using a calibration curve,

comparing expected and observed survival. In order to assess

the time-dependent sensitivities and specificities of the models,

receiver operating characteristic (ROC) curves were generated,

and the area under the curve (AUC) values were calculated for

1-, 3-, 5- and 10-year survival.
Feature importance

To determine the association between individual features and

model performance, we estimated the importance of each feature

within the test set by replacing the feature data with random

numbers (18). The performance of the models, as measured by the

concordance index, was then computed using the data after

replacement to assess the importance of each feature.
FIGURE 1

Study profile and analysis pipeline.
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Model deployment

The algorithm with the best performance was deployed

using the Streamlit package in Python to create an interactive

web-based tool for practical use.
Statistical analysis

All continuous variables in clinical data are displayed as the

mean value ± standard deviation (SD). Frequencies and

percentages are used to characterize categorical variables. The

chi-square test and unpaired two-side t-test were utilized to

examine the differences in variables across groups. The R

programming language (version 4.1.2) was used to carry out

data preprocessing and plotting. The machine learning models

were constructed using the PySurvival package in the Python

programming language (version 3.6.8).
Results

Basic characteristics

A total of 3145 chondrosarcoma patients registered in the

SEER database from 2004 to 2015 were finally enrolled in this

study. The patient demographic characteristics are shown in

Table 1. 1483 cases were female (47%), and 1662 were male

(53%); the mean age was 52 ± 18 years. In terms of the primary

site of tumors, 1595 of them were in the extremities (51%), 702

in the axial skeleton (22%), and 848 in other joints and bones

(27%). 1033 cases were well-differentiated (39%), 1099 were

moderately differentiated (41%), 319 were poorly differentiated

(12%), and 208 were undifferentiated (7.8%). 393 cases did not

undergo surgery (13%), 1066 underwent a local treatment (35%),

1243 underwent a radical excision with limb salvage (41%), and

358 underwent amputation surgery (12%). The mean overall

survival (OS) was 83 ± 67 months, and 904 patients died (29%).
Feature selection and data preprocessing

In the univariate Cox regression, OS was significantly

associated with most features except for the year of diagnosis

and the number of tumors (Table 1). For the multivariate Cox

regression, age, gender, histological type, primary site, grade,

surgery, tumor size, tumor extension, and distant metastasis

were independent factors for OS (P<0.05). Results of the

collinearity analysis showed high collinearity between stage and

distant metastasis, and between stage and grade (Figure 2).
Frontiers in Oncology 05
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Considered together, we ultimately included nine features (age,

gender, histological type, primary site, grade, surgery, tumor size,

tumor extension and distant metastasis) in the model

development. The dataset was divided into two subsets—training

set and testing set; 2203 cases were used for the training set, and

the remaining 942 cases were used for the test set (Table 2).
Hyperparameter tuning

After a 1000-repeated random search with 5-fold cross-

validation on the training dataset, we selected those

parameters showing the highest average C-index in cross-

validation as the optimal parameters. The graph of the loss

function for the two neural network models (DeepSurv, and

NMTLR) is shown in Figure 3. The search space and optimal

parameter combinations for models’ hyperparameters are

displayed in our open-source code on GitHub (https://github.

com/WHUH-ML/Chondrosarcoma).
Model comparisons

The predictive performance of the machine learning and

CoxPH models is shown in Table 3. In the test dataset, the three

machine learning models showed significant (P < 0.01) better

discrimination (C-index of DeepSurv: 0.832; NMLTR: 0.821;

RSF: 0.803) compared with the standard CoxPH model (C-

index: 0.773); of the three, DeepSurv had the highest C-index of

0.832. The IBS of the four models were 0.108 (DeepSurv), 0.115

(NMLTR), 0.128 (RSF) and 0.126 (CoxPH) (Figure 4). There is

little difference between the C-index obtained from the training

data set (DeepSurv: 0.854; NMLTR: 0.850; RSF: 0.829; CoxPH:

0.782) and that from the test set, indicating that the models do

not suffer from overfitting.

The calibration plots showed that the consistency between

the model’s prediction and the actual observation in terms of the

1-, 3-, 5- and 10-year overall survival rates were best for the

DeepSurv model, followed by the NMTLR, CoxPH, and RSF

models (Figure 5). The AUC was larger for the DeepSurv model

than for the three other models (1-year-AUC of DeepSurv:

0.937, NMLTR: 0.896, RSF: 0.900, CoxPH: 0.879; 3-year-AUC

of DeepSurv: 0.907, NMLTR: 0.896, RSF: 0.900, CoxPH: 0.879;

5-year-AUC of DeepSurv: 0.895, NMLTR: 0.889, RSF: 0.889,

CoxPH: 0.865; 10-year-AUC of DeepSurv: 0.896, NMLTR:

0.890, RSF: 0.885, CoxPH: 0.870) (Figure 5). The results

showed that the deep learning models—especially the

DeepSurv model—were more accurate in predicting the

survival prognosis of chondrosarcoma patients than the RSF

and classical CoxPH models.
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TABLE 1 Patient demographic, disease, treatment characteristics, and Cox regression analysis.

Overall Univariate Cox Multivariate Cox

Characteristic N = 3,1451 HR2 95% CI2 P-value HR2 95% CI2 P-value

Year of diagnosis 0.23 0.17

2004-2010 1,768 (56%) — — — —

2011-2015 1,377 (44%) 1.10 0.94, 1.27 0.85 0.68, 1.07

Age 52 (18) 1.05 1.05, 1.06 <0.001 1.04 1.03, 1.05 <0.001

Gender <0.001 <0.001

Female 1,483 (47%) — — — —

Male 1,662 (53%) 1.48 1.29, 1.69 1.58 1.27, 1.96

Histological type <0.001 <0.001

Conventional 2,879 (92%) — — — —

Dedifferentiated 266 (8.5%) 6.30 5.34, 7.42 1.96 1.42, 2.69

Primary site <0.001 0.018

Extremity 1,595 (51%) — — — —

Axial skeleton 702 (22%) 1.60 1.37, 1.86 1.09 0.84, 1.42

Other 848 (27%) 0.77 0.65, 0.91 0.72 0.54, 0.95

Stage <0.001 0.80

I 1,083 (73%) — — — —

II 249 (17%) 3.36 2.68, 4.22 1.21 0.69, 2.14

III 15 (1.0%) 1.33 0.49, 3.57 0.73 0.21, 2.49

IV 140 (9.4%) 12.8 10.2, 16.2 1.33 0.46, 3.83

Missing 1,658

Grade <0.001 0.007

Well differentiated 1,033 (39%) — — — —

Moderately differentiated 1,099 (41%) 1.75 1.45, 2.11 1.40 1.05, 1.88

Poorly differentiated 319 (12%) 4.18 3.36, 5.22 1.73 0.94, 3.20

Undifferentiated 208 (7.8%) 10.4 8.31, 13.0 2.63 1.38, 5.03

Missing 486

Surgery <0.001 0.002

No 393 (13%) — — — —

Local treatment 1,066 (35%) 0.24 0.20, 0.29 0.54 0.37, 0.80

Radical excision with limb salvage 1,243 (41%) 0.33 0.28, 0.39 0.48 0.33, 0.68

Amputation 358 (12%) 0.65 0.53, 0.80 0.62 0.42, 0.90

Missing 85

Radiotherapy <0.001 0.39

No 2,822 (90%) — — — —

Yes 323 (10%) 1.42 1.17, 1.72 1.15 0.84, 1.56

Chemotherapy <0.001 0.18

No 2,905 (92%) — — — —

Yes 240 (7.6%) 4.92 4.14, 5.83 1.26 0.90, 1.75

Tumor size, mm 81 (60) 1.00 1.00, 1.01 <0.001 1.00 1.00, 1.00 <0.001

Missing 1,552

Number of tumors 0.28 0.23

1 2,867 (91%) — — — —

> 1 278 (8.8%) 1.12 0.91, 1.37 0.82 0.59, 1.14

Tumor extension <0.001 0.002

No break in periosteum 553 (29%) — — — —

Extension beyond periosteum 1,251 (67%) 2.27 1.81, 2.85 1.50 1.12, 2.00

Further extension 75 (4.0%) 4.73 3.28, 6.82 2.30 1.41, 3.75

(Continued)
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Feature importance

The assessment of feature importance (Figure 6) identified

features important to model accuracy for prognosis, with a more

than 1% mean reduction in the concordance index with

replacement data of age, tumor size, distant metastasis,

histological type, grade, tumor extension and primary site.
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41
Algorithm deployment

A visual representation of the functionality and output of the

application is presented in Figure 7. The web application, which

is primarily for research or informational purposes, can be

publicly accessed at https://share.streamlit.io/whuh-ml/

chondrosarcoma/Predict/app.py.
Discussion

Accurate prediction for chondrosarcoma survival is crucial for

the counseling, follow-up, and treatment planning of patients.

Previous studies have revealed various prognostic factors

influencing the survival times of patients with chondrosarcoma,

including patient age, tumor size, histological type, tumor grade,

and metastasis (6, 19–21).. At the same time, increasing amounts of

imaging (22, 23) and genetic data (2, 24) are being mined for

survival analysis of chondrosarcoma patients. In the face of high-

dimensional data, the limitations of the linear relationship between

variables assumed by the classical CoxPH model are evident (11).

Deep learning is applied to survival analysis due to its ability to

comprehensively reveal potential nonlinear relationships in data. In

recent years, this method has been gradually improved and

successfully applied to clinical (25–27), imaging (28, 29), and

genetic data (27). As far as we know, this approach has not been

applied to bone tumors. Therefore, we constructed two deep

learning models to predict the OS of chondrosarcoma patients

and compared the models’ performance with two classical models.

By gathering potentially significant characteristics from the

SEER database, this study constructed different models for

predicting the survival rates of chondrosarcoma patients. We

firstly used Cox proportional hazards regression to identify

variables related to the prognosis of 3145 individuals with

chondrosarcoma. Age, gender, histological type, original
TABLE 1 Continued

Overall Univariate Cox Multivariate Cox

Characteristic N = 3,1451 HR2 95% CI2 P-value HR2 95% CI2 P-value

Missing 1,266

Distant metastasis <0.001 0.012

No 1,792 (93%) — — — —

Yes 128 (6.7%) 9.98 8.07, 12.4 3.15 1.11, 8.93

Missing 1,225

Survival months 83 (67)

Status

Alive 2,241 (71%)

Dead 904 (29%)
frontiersin.or
1n (%); Mean (SD).
2HR = Hazard Ratio, CI = Confidence Interval.
P values are bolded to indicate they are less than 0.05.
FIGURE 2

Correlation coefficients for each pair of variables in the data set.
The estimated correlation values are distributed within the range
of -1 to +1. They are represented by color depth, with a number
closer to either end value implying a stronger negative
correlation or positive correlation.
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TABLE 2 Characteristic distribution of data in training sets and test sets.

Level Overall Train Test P-value

Total 3145 2203 942

Age (mean (SD)) 51.58 (17.53) 51.70 (17.41) 51.29 (17.82) 0.547

Gender (%) Female 1483 (47.2) 1036 (47.0) 447 (47.5) 0.857

Male 1662 (52.8) 1167 (53.0) 495 (52.5)

Histological type (%) Conventional 2879 (91.5) 2025 (91.9) 854 (90.7) 0.274

Dedifferentiated 266 (8.5) 178 (8.1) 88 (9.3)

Primary site (%) Extremity 1595 (50.7) 1121 (50.9) 474 (50.3) 0.395

Axial skeleton 702 (22.3) 502 (22.8) 200 (21.2)

Other 848 (27.0) 580 (26.3) 268 (28.5)

Grade (%) Well differentiated 1033 (38.8) 725 (38.6) 308 (39.5) 0.933

Moderately differentiated 1099 (41.3) 782 (41.6) 317 (40.7)

Poorly differentiated 319 (12.0) 228 (12.1) 91 (11.7)

Undifferentiated 208 (7.8) 145 (7.7) 63 (8.1)

Surgery (%) None 393 (12.8) 266 (12.4) 127 (14.0) 0.571

Local treatment 1066 (34.8) 762 (35.4) 304 (33.5)

Radical excision with limb salvage 1243 (40.6) 874 (40.6) 369 (40.7)

Amputation 358 (11.7) 251 (11.7) 107 (11.8)

Tumor size, mm (mean (SD)) 80.65 (60.19) 80.96 (62.00) 79.88 (55.47) 0.746

Tumor extension (%) No break in periosteum 553 (29.4) 389 (28.9) 164 (30.8) 0.425

Extension beyond periosteum 1251 (66.6) 900 (66.8) 351 (66.0)

Further extension 75 (4.0) 58 (4.3) 17 (3.2)

Distant metastasis (%) Not 1792 (93.3) 1280 (93.5) 512 (92.9) 0.721

Yes 128 (6.7) 89 (6.5) 39 (7.1)

Survival months (mean (SD)) 83.16 (66.93) 84.50 (66.86) 80.04 (67.01) 0.087

Status (%) Alive 2241 (71.3) 1572 (71.4) 669 (71.0) 0.882

Dead 904 (28.7) 631 (28.6) 273 (29.0)
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FIGURE 3

Loss convergence graph for (A) DeepSurv, (B) neural network multitask logistic regression (N-MLTR) models.
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location, tumor grade, surgery, tumor size, tumor extension, and

distant metastasis were selected to incorporate in the modeling

(p<0.05) (Table 1). The two-layer neural network DeepSurv model

performed the best, followed by NMTLR, RSF and CoxPH. The C-

index values for the DeepSurv model were 0.854 for the training

dataset and 0.832 for the test dataset. Roc curves and calibration

curves further validated DeepSurv’s performance in terms of

discrimination and calibration for predicting 1 -, 3 -, 5 - and 10-

year survival. By combining deep learning methods to model the

probabilities of events as a function of time, the DeepSurv model

outperforms other models when dealing with large samples,

multiple variables, and nonlinearity. The best-performing

DeepSurv model was incorporated into a user-friendly web-based

application that can be accessed for free at https://share.streamlit.io/

whuh-ml/chondrosarcoma/Predict/app.py.

Compared to previous studies predicting chondrosarcoma

survival, our study showed advantages in terms of

discrimination and flexibility. Song (6) used a nomogram to fit

data from chondrosarcoma patients in the SEER database prior

to 2011 to predict OS, with a c-index of 0.753 for the validation

set. In our study, the discrimination of the CoxPH model was

slightly improved (0.773), which may be related to the fact that

we included more cases and a more detailed classification of
Frontiers in Oncology 09
43
surgical procedures. The SORG algorithm proposed by Thio

(10) made progress under the task of predicting 5-year survival

in chondrosarcoma, with an AUC of 0.87 in the internal

validation dataset. Although our DeepSurv model slightly

outperformed the SORG algorithm in predicting 5-year

survival (AUC of DeepSurv: 0.895), what makes our study

more significant is that the influence of time on events is

considered. Unlike SORG, which can only predict the binary

outcome of 5-year survival, the DeepSurv model is more flexible

and able to directly predict the patient’s survival function,

thereby obtaining the probability of survival at any point in

time. In addition, the neural network embedded in the DeepSurv

model has great potential to learn from high-dimensional data

and can be further enhanced by fitting images and genetic data,

or by using multimodal information fusion techniques.

There are several limitations to consider in our study. Firstly,

with the removal of one-third of the data used for internal

validation, only 2,203 pieces of data were used for model

training. Since chondrosarcoma tumors are mostly early-stage

tumors (distant metastasis occurred in 128 of the 2203 patients),

deep learning may not fully learn the characteristics of patients

with advanced tumors. The prediction error curve also shows

that the prediction performance of the DeepSurv model is
TABLE 3 Performance of four survival models.

C indexa

Models Trainb Testb IBSa 1-year AUCa 3-year AUC 5-year AUC 10-year AUC

CoxPHa 0.782 0.773 0.126 0.923 (0.897-0.948) 0.879 (0.852-0.906) 0.865 (0.836-0.893) 0.870 (0.841-0.899)

DeepSurva 0.854 0.832 0.108 0.937 (0.911-0.962) 0.907 (0.883-0.931) 0.895 (0.870-0.920) 0.896 (0.870-0.921)

NMTLRa 0.850 0.821 0.115 0.928 (0.900-0.956) 0.896 (0.870-0.922) 0.889 (0.862-0.915) 0.890 (0.863-0.917)

RSFa 0.829 0.803 0.128 0.931 (0.905-0.958) 0.900 (0.873-0.926) 0.889 (0.862-0.916) 0.885 (0.857-0.913)
aCoxPH, standard cox proportional hazards; NMLTR, neural multi-task logistic regression; RSF, random survival forest; IBS, Integrated Brier Score; AUC, area under receiver operating
characteristic curve. C index, concordance index.
bC index in train and test dataset are calculated separately, other metrics are calculated only in the test set.
Bolded metrics indicate that the metric is the best of the fourgroups.
FIGURE 4

Prediction error curve. As a benchmark, a useful model will have a Brier score below 0.25.
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significantly better than that of other models for patients with

longer survival (Figures 4, 5). Secondly, since the data are from

national databases, some known prognostic factors [such as

pathologic fracture (6) and biomarkers (2)] were not available.

Thirdly, the model in this study has not been externally validated.

Although we have adoptedmeasures such as data segmentation and

cross-validation in model development, the generalization and

reliability of the model need to be further validated using other

data sets. Fourthly, personalized treatment recommendations are
Frontiers in Oncology 10
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another advantage of the DeepSurv algorithm (12, 18) but were not

validated in this study because of the lack of treatment data. Due to

the linear fitting of variables by the classical Cox model, the model

recommended a constant treatment plan for all patients according

to the calculated hazard ratio (HR) value. However, DeepSurv can

make personalized treatment recommendations for different

patients based on the complex non-linear relationship between

the variables fitted by the model (12), which is more in line with

real-world rules. For example, the use of chemotherapy in patients
A B

D

E F

G H

C

FIGURE 5

The receiver operating curves (ROC) and calibration curves for 1-, 3-, 5-, 10-year survival predictions. ROC curves for (A) 1-, (C) 3-, (E) 5-, (G)
10-year survival predictions. calibration curves for (B) 1-, (D) 3-, (F) 5-, (H) 10- year survival predictions.
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FIGURE 6

Heatmap of feature importance for DeepSurv, neural network multitask logistic regression (N-MLTR) and random survival forest (RSF) models.
The values are expressed as a percentage reduction in the C-index after the value of a feature has been replaced by random numbers. Higher
values suggest that a feature is more important in influencing the predictive accuracy of the corresponding deep learning model.
FIGURE 7

A screenshot of the online web-based application of DeepSurv model.
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with chondrosarcoma is still controversial (1). By fitting the

complex factors that affect the efficacy of chemotherapy, a

treatment recommendation system based on deep learning may

suggest the appropriate treatment for each individual.

To conclude, this study evaluated and compared the

performance of two deep learning-based algorithms and two

conventional methods for predicting overall survival in patients

with chondrosarcoma. Overall, deep learning algorithms showed

excellent discriminating capabilities, calibration, and stability in

survival prediction. DeepSurv performed best in terms of

discrimination and model calibration and was incorporated

into a web-based application for clinical use. Further extension

of the models developed in this work—considering specific

aspects such as prognostic biomarkers, and image data—is

necessary for future studies in order to encourage their

widespread use in orthopedic oncology clinics for customized

treatment planning and monitoring.
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Jie Li1, Pu Li1, Yuting He2, Yi Xu3, Pengfei Shao1*

and Zengjun Wang1
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2Key Laboratory of Computer Network and Information Integration, Southeast University, Ministry
of Education, Nanjing, China, 3Department of Radiology, The First Affiliated Hospital of Nanjing
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Purpose: Nephron-sparing surgery (NSS) is a mainstream treatment for

localized renal tumors. Segmental renal artery clamping (SRAC) is commonly

used in NSS. Automatic and precise segmentations of renal artery trees are

required to improve the workflow of SRAC in NSS. In this study, we developed a

tridimensional kidney perfusion (TKP) model based on deep learning technique

to automatically demonstrate renal artery segmentation, and verified the

precision and feasibility during laparoscopic partial nephrectomy (PN).

Methods: The TKP model was established based on convolutional neural

network (CNN), and the precision was validated in porcine models. From

April 2018 to January 2020, TKP model was applied in laparoscopic PN in 131

patients with T1a tumors. Demographics, perioperative variables, and data from

the TKP models were assessed. Indocyanine green (ICG) with near-infrared

fluorescence (NIRF) imaging was applied after clamping and dice coefficient

was used to evaluate the precision of the model.

Results: The precision of the TKP model was validated in porcine models with

themean dice coefficient of 0.82. Laparoscopic PNwas successfully performed

in all cases with segmental renal artery clamping (SRAC) under TKP model’s

guidance. The mean operation time was 100.8 min; the median estimated

blood loss was 110 ml. The ischemic regions recorded in NIRF imaging were

highly consistent with the perfusion regions in the TKP models (mean dice

coefficient = 0.81). Multivariate analysis revealed that the feeding lobar artery

number was strongly correlated with tumor size and contact surface area; the

supplying segmental arteries number correlated with tumor size.
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Conclusions: Using the CNN technique, the TKP model is developed to

automatically present the renal artery trees and precisely delineate the

perfusion regions of different segmental arteries. The guidance of the TKP

model is feasible and effective in nephron-sparing surgery.
KEYWORDS

tridimensional kidney perfusion model, automatic segmentation, deep learning
technique, convolutional neural network, nephron-sparing surgery
Introduction

As a minimally invasive nephron-sparing surgery,

laparoscopic partial nephrectomy (laparoscopic PN) is a

mainstream treatment for cT1a renal tumors (1). In

laparoscopic PN, renal artery clamping induces warm ischemic

injury (WII) (2), which could be minimized by segmental renal

artery clamping (SRAC) technique, converting global

parenchymal ischemia to regional ischemia (3–6). To

implement the SRAC technique, dual-source computed

tomography (DSCT) angiography was applied to reveal a

high-quality three-dimensional vasculature model of the renal

hilum, and identify the target segmental arteries needed to be

clamped if their branches enter or abut the tumor (6, 7).

However, DSCT angiography is unable to provide the details

of the perfusion regions of different segmental arteries, and the

determination of the target arteries is inaccurate occasionally,

which could lead to insufficient clamping and result in arterial

bleeding (5). Therefore, a more precise clamping strategy

is required.

Based on the contrast CT scan, organ segmentation with

different kinds of statistical models were reported in several

abdominal organs over the years (8–10). Previously, in our

center, to meet the requirement of a more precise SRAC

technique, a novel functional three-dimensional perfusion

model was established to determine the target arteries by

depicting the parenchymal perfusion regions of different

segmental arteries using the semi-automatic segmentation of

the kidney and renal arteries (11). Recently, with the

development of medical image processing technology,

convolutional neural network (CNN) as a kind of deep

learning technique has gradually begun to be applied in the

segmentation of organs and vasculature (12). Based on the CNN,

we previously created a series of novel methods, which could

provide a fully automatic segmentation of kidney, tumor, and

renal artery trees (13, 14). In present study, integrating CNN

technique and the distance transformation algorithm, a novel

three-dimensional perfusion model was established, which was

called the tridimensional kidney perfusion (TKP) model.
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Materials and methods

The establishment procedure of the TKP model was

presented. The accuracy of the TKP model was verified in

porcine models, and the feasibility and efficacy of this model

were assessed in patients undergoing laparoscopic PN

with SRAC.
Establishment of the TKP model

Automatic segmentation of the kidneys
and tumors

Our homemade three-dimensional fully-supervised

convolutional neural (FCN) network with a pyramid-pooling

module (PPM) (3D_FCN_PPM) was proposed for segmentation

of kidneys and tumors previously (13) (Figure 1). During the

establishment of the 3D_FCN_PPM network, the abdominal CT

images of 140 patients were recruited from the department of

radiology after the informed consent was obtained. And the

images were obtained and analyzed in Dicom format. Ninety

images were used for the training set, and the remaining

50 images were used for testing. The 3D_FCN_PPM network

was demonstrated to be efficient and precise in segmentation

with the dice coefficient equal to 0.931 for kidney and 0.802 for

renal tumors.

Automatic segmentation of the renal
artery trees

Integrating the technologies of deep-priori anatomy (DPA),

dense-biased network (DenseBiasNet), and hard-region

adaptation loss (HRA loss), we proposed a fine three-

dimensional renal artery segmentation framework, called

DPA-DenseBiasNet framework (14). The DPA-DenseBiasNet

framework was based on a two-stage CNN, including (1)

autoencoder (AE) network pre-training and (2) DPA features

embedding and DenseBiasNet training. AE is an unsupervised

neural network, which can extract anatomical features (15). In

this framework, AE is applied to acquire the representation
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ability of anatomical features (DPA features) through a big

unlabeled dataset. In stage 2, extracted DPA features from AE

are embedded in the DenseBiasNet system, forming the priori

anatomy information, which can adapt anatomical variations.

Finally, modified by HRA loss function, a precise tridimensional

renal artery segmentation is achieved (Figure 2). During the

establishment of the DPA-DenseBiasNet framework, a total of

196 patients with 392 kidney images were recruited. Fifty-two

labeled images and 236 unlabeled images were used for training,

and 104 labeled images were used for testing. The DPA-

DenseBiasNet was demonstrated to have high predictive

accuracy in renal artery segmentation with a mean dice

coefficient of 0.884.

Estimation of the arterial perfusion regions on
the renal parenchyma

After automatic segmentation, the estimation procedure

based on the two-step algorithm in C++ programming: (1) set

the lobar arteries and their branches to the same category and
Frontiers in Oncology 03
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marked with the same color if they branch out from the same

segmental artery (Figure 3A, the arteries with the same color are

the same segmental artery subtree); (2) the distance

transformation algorithm is used to find the closest lobar

arteries or their branches for every voxel point in the renal

parenchyma as its blood supply vessel, and the color of this point

is marked. All voxel points in the renal parenchyma are

categorized according to their colors, and the perfusion

reg ions o f d i ff e ren t s egmenta l a r t e r i e s a re then

depicted (Figure 3B).

By the automatic segmentation and the perfusion region

estimation algorithm, the TKP model is finally established.
Validation in animal models

Subjects preparation
The validation procedure in swine was approved by the

Animal Use and Management Ethics Committee of Nanjing
B

A

FIGURE 1

The 3D_FCN_PPM network is applied in the automatic segmentation of kidney and tumor. (A) the pipeline of kidney and tumor segmentation;
(B) the architecture of the 3D_FCN_PPM network.
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FIGURE 2

The 3D DPA-DensebiasNet framework is applied in the automatic segmentation of renal artery trees. The procedure includes two stages. Stage
1(the upper dotted box): is AE pre-training. The AE is trained by a lot of unlabeled images and DPA features are extracted. Stage 2 (the lower
dotted box): extracted DPA features from AE are embedded in the DenseBiasNet system, forming the priori anatomy information, which can
adapt anatomical variations. And finally, modified by HRA loss function, a precise tridimensional renal artery segmentation is achieved.
BA

FIGURE 3

The estimation of perfusion regions. (A) The lobar arteries and their branches are extracted, set to the same category and marked with the same
color if they branch out from the same segmental arteries. The distance transformation algorithm is used to find the closest lobar arteries or
their branches for every voxel point in the renal parenchyma as its blood supply vessel, and the color of this point is marked. (B) All voxel points
in the renal parenchyma are categorized according to their colors, and the perfusion regions of different segmental arteries are then depicted.
The TKP model is finally established.
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Medical University. Six domestic female pigs with 11 kidneys

were recruited and the median weight was 39.5 kg (Table 1). All

swine were intramuscularly injected with xylazine (1.5 mg/kg),

atropine (0.02 mg/kg) and diazepam (10 mg) for initial

anesthesia and intravenously injected with propofol (25 mg/kg/
min) for maintaining anesthesia. Tracheal intubation was

conducted and the right femoral artery was punctured.

Validation procedure
All subjects underwent contrast CT scan to establish the

TKP models (Figures 4A–D). One candidate segmental artery in

each kidney was selected and ligated with a double-strand 1/0

suture during open surgery. The ischemia region was revealed

and recorded (Figures 4E, F). To evaluate the accuracy of the
Frontiers in Oncology 05
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TKPmodel, a second contrast CT scan was performed after open

surgery to present the actual ischemia region (Figure 4H). Using

the method of dice coefficient, the actual ischemia region from

the second contrast CT scan was compared with the perfusion

region predicted by the TKP model (Figure 4G).
Clinical application in laparoscopic PN

Patients preparation
Laparoscopic PN with SRAC under the TKP model’s

guidance was performed in 131 patients from April 2018 to

January 2020. All the recruited patients signed a written

informed consent form approved by the institutional review

board of Nanjing Medical University. Inclusion criteria were: 1)

a single localized mass ≤4 cm (clinical T1a); 2) normal renal

function (defined as creatinine clearance rate (CCR) ≥90 ml/

min). All patients underwent a contrast CT scan to establish the

TKP model before operation. The R.E.N.A.L scores were applied

to estimate the complexity of tumors, including Radius

(maximum tumor diameter), Exophytic/Endophytic, Nearness

of the tumor to the collecting system, Anterior/Posterior and

Location relative to the polar lines (16, 17). The contact surface

area (CSA) of tumors, as another index predicting the tumor

complexity (18), could be calculated by area element algorithm

according to the model. Additionally, the numbers of target

segmental arteries and feeding lobar arteries of tumors could be

provided from the model.
Precise determination of the target segmental
arteries

In the TKP models, the tumors, segmental renal arteries and

their corresponding perfusion regions were automatically

presented. The target segmental arteries supplying tumors

were determined by the perfusion regions wherein the renal

tumors were confined (Figures 5A, G).

Surgical procedure and follow-up
All surgical procedure were conducted by the same surgeon

(Pengfei Shao). During laparoscopic PN, target segmental

arteries determined by TKP models were clamped by bulldog

clamps. Immediately after clamping, 5 mg indocyanine green

(ICG) was intravenously injected and the absence of perfusion

on renal parenchyma was presented in near-infrared

fluorescence (NIRF) imaging (Figures 5D, J). The similarity

was evaluated between the absence of perfusion in NIRF

imaging and the predicted perfusion region in TKP model by

the method of dice coefficient. Tumor resection was conducted

and the parenchymal defect was closed. Finally, the mass was

retrieved to receive a pathological examination.

The follow-up period was defined as the duration from the

date of operation to the date of the most recent examination. For
TABLE 1 Patient characteristics and the TKP model information.

Variables
Patient characteristics

Patients, no. 131

Age, yr, mean±SD 56.3±11.4

Male, no. (%) 97 (74.0)

BMI, kg/m2, mean±SD 25.1±3.3

Hypertension, no. (%) 53 (40.5)

Diabetes mellitus, no. (%) 24 (18.3)

The TKP model information

R.E.N.A.L score, mean±SD 6.4±1.4

Radius of tumor (maximal diameter), cm, mean±SD 2.5±0.8

Exophytic/endophytic properties, no. (%)

≥50% 68 (51.9)

<50% 53 (40.5)

Entirely endophytic 10 (7.6)

Location relative to the polar line, no. (%)

Entirely upper or lower polar 61 (46.6)

Lesion crosses polar line 45 (34.4)

Middle polar (>50% crosses polar line) 25 (19.1)

Nearness to UCS/sinus, no. (%)

≥7mm 25 (19.1)

<7mm and >4mm 64 (48.9)

≤4mm 42 (32.1)

Contact surface area (CSA), cm2, mean±SD 13.5±11.3

Feeding lobar artery number, no. (%)

1 21 (16.0)

2 56 (42.7)

3 43 (32.8)

4 10 (7.7)

5 1 (0.8)

Target segmental artery number, no. (%)

1 79 (60.3)

2 49 (37.4)

3 3 (2.3)
TKP, tridimensional kidney perfusion; BMI, body mass index; SD, standard deviation;
UCS, urinary collecting system.
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FIGURE 4

animal validation of the TKP model. (A–D) The TKP model of a porcine kidney is automatically established based on the first CT scan, and a
candidate segmental artery is selected. (E, F) The ischemic line on renal parenchyma is visible and recorded after the candidate segmental artery
is ligated. (G, H) The second CT scan is performed and the similarity between the actual ischemia region from the second CT scan and the
perfusion region from the TKP model is calculated using the algorithm of dice coefficient. In this case, the dice coefficient is 0.77.
FIGURE 5

the clinical application of TKP model. (A–F) Case 1: a male patient with 3.8 cm tumor on the posterior part of the right kidney. The R.E.N.A.L
score is 9. (G–L) Case 2: a female patient with 3.1 cm tumor on the upper polar of the right kidney. The R.E.N.A.L score is 5. (A, G) The TKP
model is automatically established based on contrast CT scan and the target segmental artery is determined. (D–F, J–L) ICG is injected
immediately after clamping, and the absence of perfusion on the renal parenchyma was confirmed with NIRF imaging. (C vs. F, I vs. L) The
algorithm of dice coefficient is applied in assessing the similarity, and the dice coefficient is 0.92 and 0.81, which indicates that the ischemic
region recorded in NIRF imaging is highly consistent with the perfusion region predicted in the TKP model.
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follow-up and surveillance, abdominal plain CT scan was

performed at 3 and 6 months and every 6 months. Chest CT

scan and abdominal contrast CT scans were performed every 6

and 12 months, respectively.
Statistical analysis

Categorical variables were presented as frequencies and

percentages. Continuous variables were reported as mean ±

SD (normal distribution) or medians and ranges (abnormal

distribution). Complications were analyzed according to the

Clavien–Dindo system (19). Logistic regression analysis was

used to test the correlation of tumor characteristics and the

number of arteries supplying the tumor. All statistical analyses

were conducted using IBM SPSS v.22 (SPSS Inc., Chicago, IL,

USA), and two-sided p < 0.05 was considered to be statistically

significant. Dice coefficient was applied to evaluate the similarity

of regions or volumes in two images, and high similarity was

defined as dice coefficient > 0.7.
Results

Of 11 porcine kidneys, the median number of segmental

arteries was 3. After clamping, the ischemic regions were located

on the upper, middle, and lower polar in three, one, and seven

kidneys, respectively (Table 1). As shown in Figure 4, the

boundaries of the perfusion regions in the TKP models were

consistent with the ischemic lines recorded intraoperatively. It

was demonstrated to have high similarity between the actual

ischemia region from the post-operative CT scan and the

perfusion region from the TKP model (dice coefficient =

0.82) (Table 1).

In clinical procedure, basic characteristics are shown in

Table 2. There were 97 males and 34 females, aged 56.3 ± 11.4

years, with a mean body mass index of 25.1 kg/m2. The mean

tumor size (radius of the tumor as maximal diameter) was

2.5 cm, and the R.E.N.A.L score was 6.4 ± 1.4. According to

the TKP model, the CSA was 13.5 ± 11.3 cm2. There were 79, 49,

and 3 patients with tumors supplied by one, two, and three target

segmental arteries, respectively. Furthermore, subclassified by

the numbers of feeding lobar arteries, there were 21, 56, 43, 10,

and 1 patients with tumors supplied by one, two, three, four and

five lobar arteries, respectively.

Laparoscopic PN with precise SRAC was successfully

performed under the TKP models’ guidance in all patients.

The mean operation time was 100.8 min, with a mean warm

ischemic time (WIT) of 27.0 min. The median estimated blood

loss (EBL) was 110 ml (40 - 400 ml). There were no patients

converting to main renal artery clamping, radical nephrectomy,

or open surgery. No arterial bleeding or uncontrolled

hemorrhage from the tumor bed occurred during tumor
Frontiers in Oncology 07
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resection (Table 3). The ischemic regions recorded by ICG

with NIRF imaging were highly consistent with the perfusion

regions in the TKP models, with the dice coefficient of 0.81

(0.72–0.94) (Figure 5 and Table 3). The median length of stay

after the operation was 7 days. Postoperative complications

occurred in eight (6.1%) patients, including five patients with

grade 1 complication (hematuria not requiring intervention),

two patients with grade 2 complication (hematuria requiring

blood transfusion), and one patient with grade 3a complication

(bleeding requiring embolization intervention under local

anesthesia). Pathology and follow-up results were also revealed

in Table 3. At a median follow-up of 21 months, no patient had

tumor recurrence or metastasis.

According to the number of tumor supplying arteries,

subjects were divided into subgroups with one and two or

more supplying segmental arteries or subgroups with 1–2 and

3–5 supplying lobar arteries. The comparisons of tumor

characteristics between these subgroups are conducted in

Table 4. Furthermore, logistic regression analysis is applied

and presented in Table 5. On multivariate analysis, the

numbers of both supplying segmental and lobar arteries

strongly correlated with tumor size (OR = 5.92, p = 0.000 for

segmental arteries and OR = 4.84, p = 0.002 for lobar arteries).

The larger the tumor size, the more the number of supplying

segmental and lobar arteries. The CSA of the tumor had

correlation with the number of supplying lobar arteries (OR =

1.11, p = 0.014), instead of segmental arteries (p = 0.815). None
TABLE 2 Perioperative outcomes and follow-up.

Variables

Dice coefficient (NIRF imaging vs. TKP model) 0.81 (0.72-
0.94)

Operation time, min, mean±SD 100.8±11.2

Warm ischemic time, min, mean±SD 27.0±5.2

EBL, ml, median (range) 110 (40-
400)

LOS after operation, days, median (range) 7 (3-17)

Post-operative complications, no. (%) 8 (6.1)

Grade 1 (hematuria not requiring intervention) 5 (3.8)

Grade 2 (hematuria requiring blood transfusion) 2 (1.5)

Grade 3a (bleeding requiring embolization intervention
under local anaesthesia)

1 (0.8)

Pathology, no. (%)

Clear cell carcinoma 112 (85.5)

Perivascular epithelioid cell tumor 7 (5.3)

Papillary renal cell carcinoma 6 (4.6)

Oxyphilic adenoma 3 (2.3)

Chromophobe renal cell carcinoma 3 (2.3)

Follow-up, mo, median (range) 21 (13-33)

Tumor recurrence and metastasis 0
frontiers
NIRF, near-infrared fluorescence; TKP model, tridimensional kidney perfusion model;
SD, standard deviation; EBL, estimated blood loss; LOS, length of stay.
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of the correlations was found between the other tumor

characteristics and the number of supplying arteries.
Discussion

Traditionally, DSCT angiography was utilized to reveal the

three-dimensional hilar vasculature during SRAC procedure (5). In

DSCT angiography, the target arteries were determined manually,

leading to the underestimation of artery branches feeding both

tumor and the surrounding normal tissue (7). Someasurement bias,

insufficient clamping, arterial bleeding or even converting to the

main artery clamping during resection might occur. For a more

efficient and precise SRAC technique, the TKP model was

established using a homemade CNN technology, becoming an

automatic tool in the surgical strategy-making of the SRAC
Frontiers in Oncology 08
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during nephron-sparing surgery (14). ICG with NIRF imaging, as

an empirical technique of fluorescence guidance (20), was

introduced in this study to delineate the real ischemic area after

clamping. Our results confirmed that the perfusion regions

predicted in the TKP model were highly consistent with the real

ischemic area in NIRF imaging during operation. In this study,

under the guidance of the TKPmodels, all surgical procedures were

performed successfully, and there was no occurrence of

uncontrolled bleeding during tumor resection.

Recently, by constructing various models, researchers have

been exploring the navigation technique in PN with SRAC.

Ukimura et al. established a 3D model that could present opaque

tumors and renal arterial trees by making the renal parenchyma

semitransparent (21). By manually segmenting kidney shape,

vasculature, collecting system, and tumor, Porpiglia proposed a

hyperaccuracy 3D model (22), which used an augmented reality
TABLE 3 Validation results of TKP model in porcine models.

Variables

Subjects/kidneys, no.
Weight, kg, median (range)

6/11
39.5 (28-42)

Number of segmental arteries per kidney, median (range)
Location of the perfusion regions of the candidate arteries, no. (%)
Upper polar
Middle polar
Lower polar

Dice coefficient (TKP model vs. postoperative CT scan)

3 (2-4)

3 (27.3)
1 (9.1)
7 (63.6)

0.82 (0.63-0.88)
TKP model, tridimensional kidney perfusion model.
Bold value, dice coefficient showed high similarity.
TABLE 4 Relationship between the tumor characteristics and the number of feeding arteries.

Variables Target segmental artery, no. P Feeding lobar artery, no. P

1 2-3 1-2 3-5

Patients no. 79 52 77 54

R.E.N.A.L score 6.3 ± 1.4 6.6 ± 1.3 0.270 6.0 ± 1.3 7.0 ± 1.3 0.000

Radius, cm, mean ± SD 2.2 ± 0.7 3.1 ± 0.7 0.000 2.1 ± 0.7 3.2 ± 0.6 0.000

Growth pattern, no. (%) 0.212 0.035

Exophytic 43 (54.4) 25 (48.1) 46 (59.7) 22 (40.7)

Mesophytic 28 (35.4) 25 (48.1) 24 (31.2) 29 (53.7)

Endophytic 8 (10.1) 2 (3.8) 7 (9.1) 3 (5.6)

Nearness to UCS/sinus, no. (%) 0.194 0.001

≥7 mm 19 (24.1) 6 (11.5) 22 (28.6) 3 (5.6)

<7 mm and >4 mm 37 (46.8) 27 (51.9) 37 (58.1) 27 (50.0)

≤4 mm 23 (29.1) 19 (36.5) 18 (23.4) 24 (44.4)

Location of tumor, no. (%) 0.862 0.019

Entirely at the polar 38 (48.1) 23 (44.2) 42 (54.5) 19 (35.2)

Mostly at the polar 27 (34.2) 18 (34.6) 26 (33.8) 19 (35.2)

Mostly between polar lines 14 (17.7) 11 (21.2) 9 (11.7) 16 (29.6)

CSA, cm2, mean ± SD 9.2 ± 8.2 20.0 ± 12.4 0.000 7.6 ± 5.8 22.0 ± 12.0 0.000
frontiers
SD, standard deviation; UCS, urinary collecting system; CSA, contact surface area.
Bold value, p value < 0.05.
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(AR) technique to guide surgeons during operation (23).

Additionally, the goal of purely automatic segmentation of

different organs and even renal artery trees using CNNs was

achieved (24–26). We had developed a series of novel CNNs,

including 3D_FCN_PPM and DPA-DenseBiasNet, providing a

precise segmentation of kidney, tumors, renal arteries and their

branches (distal to interlobar arteries) (13, 14). These homemade

CNNs, along with the distance transformation algorithm, made

the establishment of the TKP model fully automated. And the

automatic procedure could reduce the manual workload of

delineation in the radiological process and significantly

improve the efficiency of the preoperative plan of laparoscopic

PN with a precise SRAC technique.

Using CNN techniques, automatic segmentation could be

accurate to distal interlobar arteries, facilitating a more precise

estimation of the arterial perfusion regions. In the future, in

combination with the AR technique, it is expected that the TKP

model could be implanted into the surgery console and become

visual and synchronous. It is beneficial for improving the

accuracy and efficacy of SRAC technique and tumor resection.

Leslie and his colleagues presented the CSA as a novel

parameter to predict the complexity of renal tumors (18). In

our study, tumor size and CSA strongly correlated with the

number of feeding arteries. Larger CSA was accompanied by

more feeding lobar arteries, instead of the target segmental

arteries. In the future, the number of lobar arteries feeding the
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tumor is expected to predict renal tumor complexity and become

an indicator in the scoring system to evaluate the difficulty of PN.

This study is not devoid of limitations. Firstly, we still lack a

multi-center research. Secondly, we lack a randomized controlled

study to compare the TKP model and the traditional DSCT

angiographymodel since the former is anewlydeveloped technology.

Notwithstanding these limitations, the TKP model was more

than satisfactory because of the hyperaccuracy verified during

operation. It is expected to become a comprehensive tool with

multiple functions, such as preoperative assessment of tumor

complexity, automatic planning of surgical strategy and real-

time navigation of selective clamping and tumor resection.

Conclusions

Using the CNN technique, the TKP model is developed to

automatically present the renal artery trees and precisely

delineate the perfusion regions of different segmental arteries.

The guidance of the TKP model is feasible and effective in

nephron-sparing surgery.
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TABLE 5 Logistic regression analysis on the numbers of target segmental arteries and feeding lobar arteries.

Variables Univariate analysis Multivariate analysis

OR 95% CI P OR 95% CI P

TSA no. (2-3 vs 1)

Radius 6.43 3.32-12.43 0.000 5.92 2.29-15.30 0.000

CSA 1.10 1.06-1.15 0.000 1.01 0.95-1.07 0.815

FLA no. (3-5 vs 1-2)

Radius 11.88 5.26-26.85 0.000 4.84 1.76-13.29 0.002

Growth pattern 0.037 0.326

Exophytic ref

Mesophytic 2.53 1.20-5.31 0.014

Endophytic 0.90 0.21-3.80 0.882

Nearness to UCS/sinus 0.004 0.784

≥7 mm ref

<7 mm and >4 mm 5.35 1.45-19.72 0.012

≤4 mm 9.78 2.53-37.80 0.001

Location of tumor 0.023 0.318

Entirely at the polar Ref

Mostly at the polar 1.62 0.72-3.60 0.241

Mostly between polar lines 3.93 1.48-10.47 0.006

R.E.N.A.L 1.76 1.31-2.36 0.000 0.495

CSA 1.20 1.12-1.29 0.000 1.11 1.02-1.20 0.014
frontiers
TSA, target segmental artery; FLA, feeding lobar artery; CSA, contact surface area; UCS, urinary collecting system; OR, odd ratio; CI, confidence interval. Bold value, p value < 0.05.
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carcinoma within three years
after surgery
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Preoperative prediction of recurrence outcome in hepatocellular carcinoma

(HCC) facilitates physicians’ clinical decision-making. Preoperative imaging and

related clinical baseline data of patients are valuable for evaluating prognosis.

With the widespread application of machine learning techniques, the present

study proposed the ensemble learning method based on efficient feature

representations to predict recurrence outcomes within three years after

surgery. Radiomics features during arterial phase (AP) and clinical data were

selected for training the ensemble models. In order to improve the efficiency of

the process, the lesion area was automatically segmented by 3D U-Net. It was

found that the mIoU of the segmentation model was 0.8874, and the Light

Gradient Boosting Machine (LightGBM) was the most superior, with an average

accuracy of 0.7600, a recall of 0.7673, a F1 score of 0.7553, and an AUC of

0.8338 when inputting radiomics features during AP and clinical baseline

indicators. Studies have shown that the proposed strategy can relatively

accurately predict the recurrence outcome within three years, which is

helpful for physicians to evaluate individual patients before surgery.

KEYWORDS

recurrence prediction, efficient features, ensemble learning, hepatocellular
carcinoma, surgery
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1 Introduction

Hepatocellular carcinoma (HCC) accounts for 85%-90% of

the main pathological types of primary liver cancer (1–3). It is

easy to spread in the liver through the portal vein system to form

intrahepatic metastasis, and it is also easy to form tumor

thrombus in the portal vein and cause portal hypertension.

HCC is mostly found in the middle and late stages, which

leads to its generally poor prognosis (4–8). According to

statistics, the recurrence rate of HCC after surgery is as high

as about 70% (9), and the survival rate is only 15%-40% (10).

Fortunately, treatment modalities represented by precision

surgery have greatly improved patient prognosis. Liver

resection with early diagnosis can improve the survival rate of

patients within one year to 91%-98% (11, 12). Therefore, rational

clinical decision-making is essential to reduce recurrence and

improve survival.

Accurate preoperative prediction of recurrence can help

doctors assess the necessity and risk of surgery, so that they

can design rational clinical decisions. Early (1-2 years after

surgery) (13) and long-term (5 years and beyond) (14)

recurrence predictions have been performed in a small

number of studies, with encouraging results. It is worth noting

that the recurrence rate of HCC within 3 years after surgery is

50-55%, which accounts for about 71%-78% of the total

recurrence (15). Three years after surgery is a critical period,

and the absence of recurrence within 3 years indicates a

relatively good prognosis. There is no doubt that preoperative

prediction of the recurrence outcome in patients within 3 years

after surgery is also of great significance for evaluating the illness

and selecting treatment options.

The rise of artificial intelligence (AI) technology has brought

new strategies for the prediction of HCC recurrence, especially

novel data processing methods represented by machine learning

and radiomics. Studies have shown that patients’ preoperative

imaging, personal information and clinical manifestations are

closely related to prognosis (16, 17). Because of this, some

researchers have employed the preoperative performance of

patients to predict postoperative recurrence through AI

algorithms. Ji et al. (18) collected data on 480 patients

undergoing HCC resection from 3 centers. Combined with

radiomics characteristics and some biochemical indicators, a

Cox-based recurrence risk prediction model was constructed,

and the final C-index reached 0.633-0.699. Zeng et al. developed

a random survival forest (RSF) model using the 15

characteristics of HCC patients. The model obtained a C-index

of 0.725 on the validation set, which was encouraging. Huang

et al. (19) developed a machine learning prognostic model to

identify high-risk patients after surgical resection. The results

show that the eXtreme Gradient Boosting tree (XGBoost)

achieved the best discrimination in the internal validation

queue. In reference (20), 143 features were extracted, including
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26 preoperative clinical features, 5 postoperative pathological

features, and 112 imaging features, for predicting early

recurrence of HCC. As a result, the area under the receiver

operating characteristic curve (AUC) of the preoperative model

was 0.739, with relatively strong generalization ability.

Nevertheless, there is still room for improvement in the

current related work. For example, the lesion area adopted to

extract features in most studies needs to be manually segmented

from the original image, which brings great challenges to

improving work efficiency and reducing costs. In addition, the

features of the input model are often not concise and efficient,

which will lead to a decrease in accuracy. It is necessary to

explore efficient feature representations and achieve automatic

and accurate predictions.

This study aimed to develop an excellent predictive strategy

for recurrence-free survival (RFS) outcomes in patients with

HCC within 3 years after surgery. A 3-dimension deep learning

framework was applied to automate lesion segmentation. Seven

feature representation methods were compared to explore the

most superior feature combinations, including clinical baseline

indicators, radiomics features during arterial phase (AP), portal

venous phase (PVP), and delayed phase (DP), and combination

of clinical data with radiomics features during each phase. Four

novel Boosting ensemble learning models were selected for

prediction of recurrence outcome. This work has the

following highlights:
● Deep learning was employed for automatic segmentation

of regions of interest (ROI), which avoided the

drawbacks of manual delineation.

● Seven feature representations were explored to find the

best model input.

● The study compared novel Boosting ensemble learning

methods to select the model with best performance,

which may be applicable in the future.
2 Materials and methods

The workflow of this study is shown in Figure 1.
2.1 Patients

HCC patients who underwent partial hepatectomy in

Qingdao University Affiliated Hospital from January 2014 to

December 2018 were followed after surgery regularly. The

inclusion criteria were as follows: 1. The pathological diagnosis

was HCC; 2. The first treatment was partial hepatectomy; 3.

Enhanced CT examination was performed within 1 month

before surgery, and all periods were completed; 4. The
frontiersin.org

https://doi.org/10.3389/fonc.2022.1019009
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2022.1019009
patient’s personal information and relevant clinical data were

complete; 5. It has been confirmed that whether the recurrence

occurred within 36 months after surgery. The following were the

exclusion criteria: 1. Patients who have received chemotherapy,

interventional therapy, targeted therapy, etc. before partial

hepatectomy; 2. Patients with a history of other tumors; 3.

Patients whose tumors have metastasized; 4. Imaging and

clinical data were incomplete; 5. The follow-up data were

incomplete or the recurrence outcome within 3 years couldn’t

be judged. Additionally, all patients included in the study

underwent radical hepatectomy. The criteria for radical

hepatectomy were: (1) no residual tumor was found at the

margin of resection, which was negative; (2) no tumor was

found in the remaining liver; (3) tumor markers returned to

normal within two months after surgery. Ultimately, 105

patients were selected for the study. RFS period is defined as

the time from the date of liver resection to the date of recurrence

and within 3 years after surgery is within 36 months from the

date of liver resection.

It must be emphasized that the principles of the Declaration

of Helsinki were followed and the study was approved by the

hospital ethics committee (ethics number: 20001-01). All

patients signed an informed consent certificate before surgery.
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2.2 Imaging acquisition

The scanning equipment for the detection was the German

CT (SOMATOM Definition Flash, Siemens) and the American

Discovery CT (GE Healthcare). The scanning method was a

three-level contrast-enhanced scan of the upper abdomen, and

the scanning range was from the top of the liver to the lower

edge of the two kidneys. During the scanning process, the

voltage, current, scanning layer thickness, layer spacing, and

pixel matrix size were set to 120 kV, 200-350 mA, 5 mm, 5 mm,

and 512 × 512, respectively. Workers administered iohexol and

350 mg/m1 of iodine through a peripheral vein at a flow rate of

3.0 ml/s and a dose of 1.5 ml/kg under the action of a pressure

syringe. Finally, AP, PVP, and DP images were obtained for

the study.
2.3 Lesion segmentation

Generally, studies mostly segment lesions manually, which

reduces work efficiency. Based on the previous manual

annotation, we built a 3D U-Net deep learning model for

automatic and accurate segmentation of lesions.
FIGURE 1

The workflow of this study.
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2.3.1 Manual annotation
This work adopted the supervised learning to automatically

segment the ROIs, so manual annotation was required before

model training. Two physicians with extensive experience in

radiology were selected for this task, one of whom delineated the

tumor area of each slice with the help of 3D Slicer (Boston, MA,

USA) software without knowing any patient’s baseline data, and

the other one was responsible for checking the annotation

results. Once there was a dispute, return to discuss and re-

mark if necessary. All CT images for the three periods were

delineated and formed into volumes of interest (VOIs).
2.3.2 Data pre-processing
Considering that some slices in CT images do not contain

ROIs, this will increase the computational complexity. Slices

without lesions were cropped according to the annotated images

and the remainders were studied. Moreover, we normalized the

image format to 256×256×48 for better input to the model. In

order to expand the amount of data, data augmentation

operations were performed on the divided training set,

including but not limited to image flipping, rotation, cropping,

scaling, and blurring (21, 22).
2.3.3 Construction of segmentation model
CT images have 3D structures, and the traditional method

convert them into 2D slices and then send into the 2D

segmentation model, which results in the loss of spatial

information. In this study, a 3D convolutional neural network

(3D U-Net) was constructed to segment lesions directly, which

comprehensively preserved the spatial information between

slices (23, 24).

Similar to the classic U-Net, the 3D U-Net also consists of

Encoder and Decoder, each of which contains four sub-modules.

In the Encoder, each sub-module contains two 3 × 3 × 3

convolutional layers, and each convolutional layer is connected

to an activation function. After completing the convolution

operation, max-pooling with a stride of 2 is performed on

each dimension. In Decoder, each sub-module contains an

upsampling process (deconvolution operation) with a stride of

2, and then two 3 × 3 × 3 convolutional layers and activation

functions are added in turn. It must be emphasized that the

padding in the convolutional layer of this module is set to 1,

which makes the convolution operation not change the size of

the image. Changes in image size are completely controlled by

pooling and upsampling. Additionally, the last sub-module of

the Decoder consists of a 1 × 1 × 1 convolutional layer, which

reduces the number of output feature maps. Batch normalization

(BN) was introduced before each activation function.

This work aims to segment liver tumors from other tissues,

where the input channel of the model was set to 256 × 256 × 48,

and the activation function adopted ReLU. After the

construction was completed, the total parameters and the
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trainable parameters of the neural network reached 4,122,466

and 4,117,570, respectively.
2.4 Radiomics feature extraction
and selection

Feature extraction is an essential part of radiomics analysis.

In this study, we performed radiomic feature extraction for

segmented liver tumors. Using the Pyradiomics 3.0.1 library in

Python, a total of 788 dimensional features including Shape,

Firstorder, GLCM, GLRLM, GLSZM, and GLDM were

extracted. Each type of features was performed 9

transformations including Original, Wavelet-LLH, Wavelet-

LHL, Wavelet-LHH, Wavelet-HLL, Wavelet-HLH, Wavelet-

HHL, Wavelet-HHH, and Wavelet-LLL. Among them,

“Wavelet-XXX” represents the wavelet transform, followed by

the corresponding basis function type.

Due to the high dimension of the extracted features, it is easy

to cause “dimensionality disaster” and affect the model

performance. Therefore, selecting features with large

contributions can reduce the dimension as much as possible

without affecting the comprehensiveness of the features. This

work employed the Least Absolute Shrinkage Selector Operator

(Lasso) algorithm to select the extracted features and ranked the

contribution of each feature. By constructing a penalty function,

Lasso can compress the coefficients of variables and make some

regression coefficients 0, so as to achieve the purpose of variable

selection. In addition, Lasso can also filter variables and reduce

the complexity of the model. The variable screening here refers

to not putting all the variables into the model for fitting, but

selectively putting the variables into the model to get better

performance parameters. Complexity adjustment refers to

controlling the complexity of the model through a series of

parameters to avoid overfitting. The optimal model was fit and

the value of the penalty parameter a was determined based on

the sklearn library in Python. For the dimensionality-reduced

features, correlation coefficients and cluster heatmaps, as well as

the coefficient distribution of each feature are visualized to better

interpret the radiomics features.
2.5 Selection of clinical baseline features

This study collected clinical baseline data of HCC patients in

addition to CT images, such as personal information and clinical

indicators. The gender and age of patients were collected as

personal information data. Clinical indicators here were mainly

tumor markers and liver function indicators, including alpha-

fetoprotein (AFP), hepatitis B surface antigen (HBsAg), albumin

(ALB), the total bilirubin (T- BIL), alanine aminotransferase

(ALT) and aspartate aminotransferase (AST), etc. It should be

noted that positive and negative results were obtained for AFP
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and HBsAg, while other liver function indicators were

represented as specific test results.
2.6 Construction of recurrence
prediction models

A total of seven feature representations, including selected

radiomics features during AP, PVP, and DP, clinical baseline

features, and their combined features, were input into the

recurrence prediction models. The Boosting ensemble learning

algorithms were adopted to predict the RFS outcome within

3 years.

2.6.1 Light gradient boosting machine
Gradient Boosting Decision Tree (GBDT) is a classic

ensemble algorithm in machine learning. Its main idea is to

employ weak classifiers (decision trees) to iteratively train to

obtain the optimal model, which has the advantages of good

training effect and not easy overfitting. LightGBM (Light

Gradient Boosting Machine) is a framework for implementing

the GBDT algorithm. It supports efficient parallel training and

has faster training speed, lower memory consumption, better

accuracy, support for distributed and fast processing of massive

data, etc. (25). Currently, this framework has been relatively

widely used in the field of medical data processing (26–28), but it

has not been attempted in the HCC recurrence prediction task.

A leaf-wise algorithm with a depth limit is adopted in

LightGBM. This strategy finds the leaf with the largest split

gain from all the current leaves each time, and then splits and

loops, which reduce more errors and get better accuracy under

the same number of splits. Moreover, the Gradient-based One-

Side Sampling (GOSS) operation is proposed to reduce

computation and improve accuracy. This method does not

calculate the gradient through the sample points used, but

calculates the gradient by partial sampling. The Exclusive

Feature Bundling (EFB) is also proposed to bundle some

features together to reduce the feature dimension, thereby

reducing the time-consuming to find the best fork. This study

implemented the LightGBM algorithm based on the sklearn

library in Python to perform the binary classification task, that

is, recurrence or not within 3 years.
2.6.2 Categorical boosting
Categorical Boosting (CatBoost), as a novel ensemble

learning algorithm, has been applied to some medical data

processing tasks, but has not been used to predict HCC

recurrence (29, 30). Catboost adopts the oblivious tree as the

base tree model, which is characterized by the same
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segmentation features in each layer. Leaf nodes can be

converted to binary codes, and the value of the node is stored

in a floating-point vector of length 2 to the power of d (d is the

depth of the tree). One of the advantages of this tree is that the

prediction performance is better, and this structure can also

weaken the shortcomings of easy fitting in decision trees to a

certain extent. When Catboost completes training, it stores the

leaf node value of each tree into a vector. When predicting, it can

quickly retrieve the corresponding leaf node value by judging

which leaf node it is in, so it can improve the prediction

efficiency and enhance the model performance. This work

selected it for predicting HCC recurrence.

2.6.3 eXtreme gradient boosting
XGBoost has been widely used in the field of medical data

analysis since it was proposed in 2014 (31, 32). In the HCC

recurrence prediction task, this algorithm was also tried and

achieved significant results (19). Its greedy algorithm-based split

node calculation and missing value handling techniques are very

suitable for data mining. The algorithm was trained to predict

RFS outcomes and compared with other models such as

LightGBM and CatBoost.

2.6.4 Gradient boosting decision tree
We also employed GBDT as the baseline model for

comparison. It is an ensemble learning algorithm based on

decision trees that iterates over new learners through gradient

descent. In this paper, the classification task was performed,

and the Classification And Regression Tree (CART)

was selected.
2.7 Statistical analysis

For the analysis of clinical baseline data, the differences

involved in this study were compared using student t-test or

Mann-Whitney U-test, where the criterion of significant

difference was set at P<0.05. Mean ± 95% confidence interval

(CI) was calculated as results for continuous variables. To reflect

the criticality of certain variables, the univariate Kaplan-Meier

curve was introduced for survival analysis.

We calculated the mean Intersection overUnion (mIoU),

accuracy (Acc), Kappa and Dice coefficients of 3D U-Net to

reflect the segmentation effect. Additionally, Acc, recall,

precision (Prec), F1 score, receiver operating characteristic

curve (ROC) and corresponding AUC were introduced as

performance evaluation criteria for the ensemble learning

models. It should be emphasized that the classification

threshold was set to 0.5.
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2.8 Experimental setup

The image data during the three scanning periods were

randomly divided into training set, validation set and test set

according to the ratio of 8:1:1. The segmentation model was

trained on the training set and validation set, and the test set was

employed to demonstrate the performance. All lesions

segmented by the model during three periods were acquired

and their radiomic features were extracted. For the Lasso

regression algorithm, the study obtained the best a value

through 10-fold cross-validation to select key features.

Considering the small sample size, this study selected the 5-

fold cross-validation method to determine the features

representation and predict the recurrence outcome, and

calculated the mean value of five experiments and the

corresponding 95% CI as the results. The relevant computing

equipment for this experiment was configured with a CPU AMD

Ryzen 7 5800H (16 GB memory) and a GPU NVIDIA® Tesla

V100 (32 GB memory) with acceleration support of the compute

unified device architecture (CUDA). All work was carried out in

the Windows 10 operating system, and the programming

language, deep learning framework and key libraries included

Python 3.7, Pytorch, Pyradiomics, sklearn, VTK, etc.
3 Results

3.1 Analysis of patients’ basic data

During follow-up, 52 patients (49.52%) were found to have

recurrence within 3 years after surgery, of which 46 (88.46%)

were male and 6 (11.54%) were female; 24 (46.15%) were aged 60

years or older and 28 (53.85%) were younger than 60 years old;

34 (65.38%) were AFP positive, and 18 (34.62%) were negative;

51 (98.08%) were HBsAg positive, and 1 (1.92%) were negative.

53 patients (50.48%) were found to have no recurrence within 3

years after surgery, of which 41 (77.36%) were male and 12

(22.64%) were female; 25 (47.17%) were aged 60 years or order

and 28 (52.83%) were younger than 60 years old; 30 (56.60%)

were AFP positive, and 23 (43.40%) were negative; 45 (84.91%)

were HBsAg positive, and 8 (15.09%) were negative. Based on

this, a univariate Cox proportional hazards model was

established to judge the influence of different factors on RFS,

and the related results were represented by the Kaplan-Meier

curves (Figure 2). Through the statistics of gender classification

group (HR=1.85, P=0.155) and HBsAg result classification

group (HR=6.15, P=0.072), it was found that gender and

HBsAg affect RFS to some extent although the differences were

not significant, followed by AFP (HR=1.37, P=0.280). Notably,

age was not significantly associated with recurrence outcome

from the age-categorized group in this study (HR=0.90,

P=0.711). However, patient’s age is a key factor affecting
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prognosis from previous studies (20, 33), so we still regarded it

as one of the features. Table 1 shows the statistical results of

some continuous clinical indicators. It can be found that ALB, T-

BIL, ALT, and AST (P=0.149, 0.377, 0.128, and 0.223,

respectively) were relatively significantly different or not

significantly different between the recurrence and non-

recurrence groups.
3.2 Results of lesion segmentation

The training and validation sets during the three periods

were input into 3D U-Net for training, and the model

performance was optimized through parameter adjustment

and continuous iteration. The key hyperparameters were set as

follows: Momentum optimizer was selected and set to 0.9, initial

learning rate, weight_decay and batch_size were set to 0.001,

4.0×10-3, 2, respectively. After the model iterated for 500 epochs,

it fully converged (the loss value of the validation set was lower

than 0.001). At this point, we stopped the training and saved the

parameters. The performance on the test set was excellent, with

mIoU of 0.8874, Acc of 0.9915, Kappa of 0.8738 and Dice

coefficient of 0.9360, which indicates that the deep learning

model has strong generalization ability for segmenting liver

lesions. To visually compare the segmentation effects, this

paper presents 3D reconstruction visualization images of the

upper abdomen based on CT scans, manually annotated tumors,

and deep learning-segmented tumors (Figure 3). The VTK

library in Python was adopted as the relevant drawing tool. It

must be emphasized that the lesion areas involved in subsequent

calculations were automatically segmented by the trained model.
3.3 Results of radiomics feature
extraction and selection

A total of 788 radiomic features were extracted in this study,

including 100 features from original transform and 688 features

from wavelet transform. In the original transform, the extracted

contents were 14 shapes, 18 firstorder, 22 GLCM, 16 GLRLM, 16

GLSZM and 14 GLDM features. In the wavelet transform, the

contents extracted by Wavelet-LLH, Wavelet-LHL, Wavelet-

LHH, Wavelet-HLL, Wavelet-HLH, Wavelet-HHL, Wavelet-

HHH, and Wavelet-LLL included 144 firstorder, 176 GLCM,

128 GLRLM, 128 GLSZM and 112 GLDM features. Since high-

dimensional features may affect model performance,

dimensionality reduction and selection of contributing features

is significant.

The Lasso algorithm was used for fitting to obtain the best a
values during AP, PVP and DP, respectively. The model was

fully converged after 10,000 iterations based on the 10-fold

cross-validation. The optimized a values for AP, PVP and DP

were calculated as 0.0518, 0.0244 and 0.0202, respectively.
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Meanwhile, 22, 38, and 41 features with contribution degrees

were selected during the above three periods respectively.

Figures 4A, B, and C show the selected feature names and the

corresponding coefficients distribution in AP, PVP, and DP,

respectively. Figure 5 shows the correlation coefficient between

the features and the clustering results through heatmaps (the

color depth represents the correlation strength).
Frontiers in Oncology 07
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3.4 Results of recurrence prediction

3.4.1 Comparison of different feature
representations

Seven feature representation methods for evaluating the

prognosis of HCC were considered, including clinical baseline

features, radiomics features of AP, radiomics features of PVP,
TABLE 1 Statistical results of 4 clinical indicators.

Clinicalindicator Total dataset (N = 105) P-value

Recurrence (N =52) Non-recurrence (N = 53)

ALB(g/L) 40.36 ± 1.28 40.42 ± 1.26 0.1493

T-BIL(mmol/L) 20.32 ± 4.81 20.34 ± 4.69 0.3765

ALT(u/L) 51.12 ± 15.42 50.89 ± 15.02 0.1282

AST(u/L) 42.78 ± 12.23 42.20 ± 11.92 0.2233
front
all outcomes are based on recurrence within 3 years after surgery. ALB, T-BIL, ALT, and AST represent albumin, the total bilirubin, alanine aminotransferase and aspartate
aminotransferase, respectively. Each indicator is represented by the mean of the sample and the corresponding 95% confidence interval (CI).
B
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A

FIGURE 2

Kaplan-Meier survival analysis curve of patients, where the variables in (A–D) are gender, age, alpha-fetoprotein (AFP), hepatitis B surface
antigen (HBsAg) respectively.
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radiomics features of DP, radiomics features of AP combined

with clinical indicators, radiomics features of PVP combined

with clinical indicators, and radiomics features of DP

combined with clinical indicators. In order to explore the

most excellent feature representation, we separately input the
Frontiers in Oncology 08
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above features into the ensemble learning algorithms and

optimized the training. Considering the randomness of the

results based on the small sample size, the training process

adopted 5-fold cross-validation, that is, the dataset was

randomly divided into 5 equal parts, 4 of which were used
FIGURE 3

3D reconstruction visualization images before and after segmentation. (A) is the 3D visualization of the original CT image before segmentation;
(B) is the 3D visualization after manually segmenting the tumor; (C) is the 3D visualization after segmenting the tumor using deep learning.
B

C

A

FIGURE 4

Distribution of selected radiomics feature coefficients. (A–C) show the features and their distributions during arterial phase (AP), portal venous
phase (PVP) and delay period (DP), respectively.
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for training and the remaining 1 was used for testing. This step

was repeated 5 times. The average value of 5 experiments and

the corresponding 95% CI were regarded as the evaluation

standard. Meanwhile, the ROC curves and their AUC values

reflected the generalization ability of the models. The ROC

curves of the models with different features were drawn and

their AUC values were calculated. Due to space limitations, we

only show the results using the LightGBM algorithm in Table 2

and Figure 6, and the rest of the results are in the Appendix. It

can be seen that the effect of combining radiomics features with

clinical baseline indicators was better than inputting radiomics

features or clinical indicators alone, with AP combining

obtaining the best effect, followed by DP combining and PVP

combining. The effect of only inputting clinical indicators was

the least satisfactory, which might be caused by too little

information represented by the features.
Frontiers in Oncology 09
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3.4.2 Comparison of prediction models
Seven feature representations were employed to compare the

performance of ensemble learning models. Likewise, the study

performed five-fold cross-validation on each model and

calculated the associated evaluation metrics. During training,

GridSearchCV method was adopted to adjust the model

parameters and no overfitting occurred for each model. Due to

space limitations, we only show the results inputting the most

effective feature representations in this section, and the rest of

the results are in the Appendix. It is found that for the four

ensemble learning algorithms, different feature expressions input

have similar laws, so the following only analyzes the models

when radiomics features during AP and clinical indicators are

input. Table 3 shows certain key parameters of each model. The

test results of the Boosting ensemble models are shown in

Table 4. It can be found that the performance of LightGBM
B

C

A

FIGURE 5

(A–C) represent the correlation and the clustering heatmaps between features during the AP, PVP and DP, respectively.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1019009
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2022.1019009
was the most excellent, with an average Acc of 0.7600, recall of

0.7673, Prec of 0.7733, and F1 score of 0.7553, which indicated

that this algorithm can accurately predict recurrence outcome

within 3 years after surgery. It is worth noting that XGBoost

performed well in previous similar studies, but not as good as the

former in this task. It had an Acc of 0.7224 and an F1 score of

0.6936, which was not as superior to LightGBM. Additionally, as

the baseline model, GBDT only obtained an average Acc of

0.6543, recall of 0.6382, Prec of 0.6600 and F1 score of 0.6387.

The per-fold and averaged ROC curves and corresponding AUC

values are shown in Figure 7. LightGBM had the strongest

generalization, and its AUC reached 0.8338 (CI: ± 0.0680),

followed by CatBoost (0.8084 ± 0.0650), XGBoost (0.7441 ±

0.0946), and GBDT (0.7343 ± 0.0214).
4 Discussion

In this study, the LightGBM model was constructed for the

first time to accurately predict the recurrence outcome of HCC

within three years after surgery. An efficient feature

representation was explored, that is, the combination of

radiomics features of tumor during AP, patient personal

information, and clinical indicators. We trained the deep

learning automatic segmentation model to make the process

efficient. The results show that the proposed method was the

most effective, achieving an accuracy of 0.7600 and an AUC

of 0.8338.

Compared with manual segmentation, although the effect of

deep learning segmentation is not as good as the former, it has

higher efficiency and lower labor cost (34). In this paper, the

mIoU of 3D U-Net reached 0.8874, which indicated that this

algorithm can accurately segment the liver tumor region. It only
Frontiers in Oncology 10
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took 1.22-1.85s to execute each sample on the local device, which

was much faster than the manual way. It is undeniable that deep

learning with excellent performance is the future trend of lesion

segmentation methods (35).

This work selected 22 radiomics features during AP combined

with 8 clinical baseline features from the seven feature

representations and validated superiority. This feature

combination eliminated dimensional redundancy, including

tumor features with large contribution coefficients and clinical

factors that affect prognosis. Notably, the present study found that

the radiomics features during AP were superior to during PVP

and DP, suggesting that AP might better capture features affecting

recurrence. In addition, combined representations outperformed

individual clinical or radiomics feature representations. Possibly

the combination increased the amount of available information,

making the model more likely to learn complex preoperative-

prognostic associations (36).

Four novel Boosting ensemble models were adopted for

comparison, among which LightGBM achieves the best

performance (AUC=0.8338), outperforming CatBoost

(AUC=0.8084), XGBoost (AUC=0.7441) and GBDT

(AUC=0.7343) when inputting radiomics features during AP

and clinical baseline indicators. Previous studies have confirmed

the state-of-the-art of the XGBoost algorithm in the HCC

prognosis prediction task (19). XGBoost belongs to the

boosting family and is an engineering implementation of the

GBDT algorithm. It focuses the residuals during training, uses a

second-order Taylor expansion in the objective function and

adds regularization. Meanwhile, the exact greedy idea is adopted

in the generation process of the decision tree. When looking for

the best split point, a pre-sort algorithm is adopted, that is, all

features are pre-sorted according to the value of the feature, and

then all the split points on all the features are traversed, and the
TABLE 2 Comparison of recurrence prediction results of ensemble learning models using different feature representations.

Feature representation Acc Recall Prec F1 score

Personal and 0.6062 0.6164 0.6019 0.6039

clinical indicators ± 0.0877 ± 0.1429 ± 0.0930 ± 0.1027

AP 0.7224 0.6946 0.7528 0.7156

± 0.0834 ± 0.0944 ± 0.1231 ± 0.0804

PVP 0.6438 0.6782 0.6409 0.6570

± 0.1117 ± 0.1122 ± 0.1019 ± 0.1014

DP 0.6343 0.6909 0.6331 0.6560

± 0.0690 ± 0.0413 ± 0.0872 ± 0.0520

AP+ 0.7495 0.7673 0.7402 0.7502

other indicators ± 0.0629 ± 0.1051 ± 0.0525 ± 0.0710

PVP+ 0.6824 0.6927 0.6844 0.6846

other indicators ± 0.0783 ± 0.0941 ± 0.0780 ± 0.0771

DP+ 0.6819 0.6309 0.7168 0.6630

other indicators ± 0.0659 ± 0.0912 ± 0.1273 ± 0.0756
fron
Each result is represented by the mean of 5 experiments and 95% CI.
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FIGURE 6

The ROC curves and the corresponding AUCs of the ensemble learning model with different feature representations. (A) is the result of
inputting personal information and clinical indicators; (B–D) are the results of inputting radiomic features during AP, PVP and DP respectively;
(E–G) are the results of inputting radiomics features during AP, PVP and DP combined with clinical data respectively.
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total number of samples split according to these candidate split

points is calculated. The objective function gain is to find the

feature and candidate splitting point corresponding to the

maximum gain, so as to split. XGBoost training is performed

by addition, that is, each time a tree is trained by focusing

residuals, and the final prediction result is the sum of all trees.

However, XGBoost performs pre-sorting in the selection of
Frontiers in Oncology 12
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optimal split points, and then calculates the objective function

gain of all samples for all split points of all features. The space

and time complexity of this process is very large, and to a certain

extent affects the accuracy (31).

To address this issue, we adopted LightGBM for predicting

recurrence. Based on XGBoost, LightGBM employs histogram

algorithm to solve the problem of excessive number of split

points. This method takes up less memory and reduces

computation time. Secondly, it introduces the GOSS

algorithm, which extracts according to the weight information

of the samples to reduce a large number of samples with small

gradients, and at the same time does not change the distribution

of the dataset too much. Moreover, LightGBM also proposes the

EFB mode, which reduces dimensionality by bundling features.

Therefore, LightGBM can improve the model accuracy while

reducing the computational effort (37), which leads to its better

performance in the prognosis prediction task. In the future, it is

necessary to further validate the applicability of the proposed

method on larger datasets.

It should be emphasized that this study aimed to predict the

postoperative recurrence risk of patients only through

preoperative factors, including preoperative imaging

examination and clinical indicators detection. Because only in

this way can it help the doctor’s clinical decision-making.

Although postoperative pathological examinations, such as

microvascular invasion (MVI) are very meaningful for

recurrence prediction (38), they were not considered in this

study. The feasibility and effectiveness of this method have been

demonstrated in reference (39, 40).

There are some other studies to predict the recurrence of HCC

after surgery. Shen et al. (41) used the TCGA database and

machine learning method to build a prediction model for

recurrence of HCC patients, and optimized the recurrence

prediction model. After the model was optimized, the prediction

accuracy was 74.19%. Lee et al. (20) employed genetic algorithm to

predict early recurrence of HCC, and extracted a total of 143

features, including 26 preoperative clinical features, 5

postoperative pathological features, and 112 imaging features.

After training, the AUC of the preoperative and postoperative
TABLE 3 Key parameter settings for each ensemble learning model.

Model Parameter name Parameter settings

LightGBM n_jobs -1

n_estimators 600

learning_rate 0.01

max_depth 5

num_leaves 32

colsample_bytree 0.51

subsample 0.6

CatBoost iterations 5000

learning_rate 0.01

l2_leaf_reg 3

bagging_temperature 1

subsample 0.6

random_strength 1

depth 6

border_count 128

XGBoost learning_rate 0.001

n_estimators 1000

max_depth 5

min_child_weight 1

gamma 0

subsample 0.6

colsample_bytree 0.8

seed 27

GBDT n_estimators 1000

learning_rate 0.01

max_depth 5

random_state 4
TABLE 4 5-fold cross-validation results for recurrence prediction using different ensemble learning models.

Model Acc Recall Prec F1 score

LightGBM 0.7600 0.7673 0.7733 0.7553

± 0.0579 ± 0.1311 ± 0.0771 ± 0.0716

CatBoost 0.6833 0.6164 0.7107 0.6511

± 0.0543 ± 0.1313 ± 0.0397 ± 0.0879

XGBoost 0.7224 0.6346 0.8032 0.6936

± 0.0834 ± 0.1154 ± 0.1521 ± 0.0978

GBDT 0.6543 0.6382 0.6600 0.6387

± 0.0463 ± 0.1328 ± 0.0286 ± 0.0828
fron
Each model was evaluated employing the mean of each fold result and corresponding 95% CI.
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models were 0.781 and 0.767 on the training set, and 0.739 and

0.741 on the test set, respectively. Saito et al. (42) adopted support

vector machine (SVM) to predict the recurrence outcome of HCC

patients based on the postoperative pathological results. The

patients were grouped according to the criteria of recurrence

within 1 year, 1-2 years, and 4 years after resection. The final

accuracy of ROI prediction in HCC and non-HCC regions was

80.6% and 68.1%, respectively. It must be emphasized that our

work only collected 105 patients, but still obtained relatively

remarkable performance, suggesting that the proposed method

had more potential for predicting recurrence outcomes.

It is undeniable that the present study still has some

shortcomings. For example, the small sample size from a

single center challenges the applicability of the models. This

work only focuses on the prediction of recurrence outcomes

within 3 years, and further follow-up is required to predict at

different times in the future. Moreover, the proposed method has

not been tested in real clinical practice, which needs to be

validated in the future. Zeng et al. (43) developed a machine

learning method to predict the early recurrence of radical HCC

hepatectomy using the data from two centers, and the effect was

relatively significant. While we have mined the key features that

influence the model, the interpretability issues of machine

learning still need to be addressed.
Frontiers in Oncology 13
71
5 Conclusion

This study aims to help physicians to evaluate the

effectiveness of surgery and thus facilitate rational clinical

decision-making. An ensemble learning strategy based on

efficient feature representation was proposed for the

recurrence outcome in HCC patients within three years after

surgery. The 3D U-Net was used to automatically segment the

lesions. Radiomics features during AP and clinical baseline

features were selected as input and four ensemble models were

trained. The results showed that LighGBM outperformed other

ensemble algorithms, suggesting that it may be a novel model for

predicting recurrence. In the future, the dataset will be expanded

for early and late recurrence prediction and external clinical

validation will be performed to validate the applicability of the

method. When the generalization ability of the method is

successfully verified, the relevant software (or web program)

will be designed and applied to clinical practice.
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CSF rhinorrhoea after endonasal
intervention to the skull base
(CRANIAL): A multicentre
prospective observational study

CRANIAL Consortium
Objective: Despite progress in endonasal skull-base neurosurgery,

cerebrospinal fluid (CSF) rhinorrhoea remains common and significant. The

CRANIAL study sought to determine 1) the scope of skull-base repair methods

used, and 2) corresponding rates of postoperative CSF rhinorrhoea in the

endonasal transsphenoidal approach (TSA) and the expanded endonasal

approach (EEA) for skull-base tumors.

Methods: A prospective observational cohort study of 30 centres performing

endonasal skull-base neurosurgery in the UK and Ireland (representing 91% of

adult units). Patients were identified for 6 months and followed up for 6

months. Data collection and analysis was guided by our published protocol

and pilot studies. Descriptive statistics, univariate and multivariable logistic

regression models were used for analysis.

Results: A total of 866 patients were included - 726 TSA (84%) and 140 EEA

(16%). There was significant heterogeneity in repair protocols across centres. In

TSA cases, nasal packing (519/726, 72%), tissue glues (474/726, 65%) and

hemostatic agents (439/726, 61%) were the most common skull base repair

techniques. Comparatively, pedicled flaps (90/140, 64%), CSF diversion (38/

140, 27%), buttresses (17/140, 12%) and gasket sealing (11/140, 9%) were more

commonly used in EEA cases. CSF rhinorrhoea (biochemically confirmed or

requiring re-operation) occurred in 3.9% of TSA (28/726) and 7.1% of EEA (10/

140) cases. A significant number of patients with CSF rhinorrhoea (15/38, 39%)

occurred when no intraoperative CSF leak was reported. On multivariate

analysis, there may be marginal benefits with using tissue glues in TSA (OR:

0.2, CI: 0.1-0.7, p<0.01), but no other technique reached significance. There

was evidence that certain characteristics make CSF rhinorrhoea more likely –

such as previous endonasal surgery and the presence of intraoperative CSF

leak.

Conclusions: There is a wide range of skull base repair techniques used across

centres. Overall, CSF rhinorrhoea rates across the UK and Ireland are lower than

generally reported in the literature. A large proportion of postoperative leaks

occurred in the context of occult intraoperative CSF leaks, and decisions for

universal sellar repairs should consider the risks and cost-effectiveness of repair
frontiersin.org01
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strategies. Future work could include longer-term, higher-volume studies,

such as a registry; and high-quality interventional studies.
KEYWORDS

cerebrospinal fluid rhinorrhoea, CSF, EEA, endoscopic endonasal, cerebrospinal fluid
leak, skull base surgery
Introduction

Endonasal approaches have revolutionized skull-base

neurosurgery (1, 2). The most commonly utilized approach is

the transsphenoidal approach (TSA), frequently used for sellar

lesions. More recently, the development of the expanded

endonasal approach (EEA) has allowed access to pathologies

extending beyond the sella, with growing indications as this

technique evolves (3, 4).

An international expert consensus on TSA workflow

highlighted the potential for practice variations, particularly in

closure, due to a variety of skull-base repair options (5). Previous

systematic reviews examining skull-base repair techniques

across endonasal skull-base neurosurgery found absolute

heterogeneity across studies and centres, likely due to a

paucity of high-level comparative evidence (6). Similarly, there

is variance in postoperative cerebrospinal fluid (CSF)

rhinorrhoea rates, one of the commonest postoperative

complications – generally up to 5% in TSA and 20% in EEA

(4, 7–12). CSF rhinorrhoea has potentially serious consequences

including pneumocephalus, meningitis, and prolonged hospital

admission or re-admission (9, 13, 14).

CRANIAL (CSF Rhinorrhoea After Endonasal Intervention

to the Skull Base) was a prospective, multicentre observational

study seeking to determine the: (1) scope of the methods of

skull-base repair; and (2) corresponding rates of postoperative

CSF rhinorrhoea in the UK and Ireland (15–17). CRANIAL was

a collaboration between three bodies: students and junior

doctors via NANSIG (The Neurology and Neurosurgery

Interest Group), neurosurgical trainees via BNTRC (British

Neurosurgical Trainee Research Collaborative) and skull-base

consultants (neurosurgery and otorhinolaryngology) via the

CRANIAL Steering Committee.

After piloting at 12 centres, preliminary results suggested

practice heterogeneity (15, 16). Thus, the study was expanded

UK and Ireland wide, and herein, we present the results.
SF Rhinorrhoea After

brospinal fluid; EEA,
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unt.
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Methods

The Strengthening the Reporting of Observational Studies in

Epidemiology (STROBE) statement guided this methodology

and report (18).
Study design

A multicentre, prospective, observational cohort study

design was conducted across tertiary neurosurgical units with

2 pilot phases (Phase 1, 4 centres, 01/11/2019-22/03/2020; Phase

2, 12 centres, 23/03/2020-31/07/2020) and a full study period

(15–17). The full study included 30 centres, representing 91%

(29/32, of adult neurosurgical centres performing endonasal

skull-base neurosurgery in the UK and Ireland). One pediatric

centre was included, whilst others provided both adult and

pediatric services. The study period included 6 months of

consecutive case recruitment (10/08/20–10/02/21) and 6

months of follow-up (10/02/21–10/08/21) (19).

Cases included patients of all ages undergoing TSA for sellar

tumors and EEA for skull base tumors (17). TSA was defined as

surgical access to the sella alone (transsphenoidal) whilst EEA

was defined as acquiring surgical access to an area not limited to

the sella (e.g., transplanum or transcribriform) (17, 20).

Exclusion criteria were patients undergoing transcranial

surgery and those with preoperative CSF rhinorrhoea.
Data collection

Each centre registered the project as a service evaluation with

appropriate approvals. Following the BNTRC model (21), the

local team consisted of consultant lead(s) with overall project

responsibility, with trainee lead(s) and student lead(s) for data

collection via a secure web-based central database (Castor

Electronic Data Capture). NANSIG and the BNTRC provided

project support, overseen by the CRANIAL consultant

steering committee.

Data were collected as per protocol (15–17). The Esposito-

Kelly system graded intraoperative CSF leak if present (22).
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Local teams aimed to collect data within 30 days of operation for

admission data, and at the end of the 6-month follow-up

window for follow-up data (17). Primary outcomes were: (1)

methods of intraoperative skull-base reconstruction, and (2)

postoperative CSF rhinorrhoea biochemically confirmed or

requiring intervention (CSF diversion and/or operative

repair) (17).
Data validation

Data were confirmed with operating surgeons or senior team

members before final submission. An independent local data

validator screened a random 10% of submitted cases at each

centre. The primary validation target was >95% accuracy across

audited data (17). Finally, each local team reviewed their final

validated dataset before analysis.
Data analysis

Pre-processing included re-categorizing free-text entries.

Descriptive statistics summarized baseline characteristics

(demographic, tumour, and operative characteristics) and

surgical outcomes, using Microsoft Excel (Version 16.54). The

incidence density of repair methods and combinations within

TSA/EEA and CSF leak grade subgroups were calculated.

Corresponding postoperative CSF rhinorrhoea rates were

summarized as incidence percentages per TSA/EEA subgroups

and repair method used. Univariate and multivariable logistic

regression models assessed the impact of baseline characteristics

(from the literature) on skull-base repair methods, and the

influence of baseline characteristics and skull-base repair

methods on CSF rhinorrhoea incidence, with odds ratios and

95% confidence intervals reported (Stata, Version 16, StataCorp,

USA) (17). Fisher’s exact test was used to compare repair

methods used with and without intraoperative CSF leak.
Results

866 patients (726 TSA, 140 EEA) were included across 30

centres. All centres completed data validation, with >95% record

accuracy in audited cases and no duplicates included.
Patient characteristics

The median patient age was 53 years (range: 5–84), 23% (198/

866) were older than 65. There were 416 male patients and 450

female patients; 238 (TSA: 210/726; EEA: 28/140) patients were

obese (body mass index >30) (Tables 1, 2). Pre-operative visual
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deficits (acuity and/or field) were present in 464 patients (TSA:

374/726; EEA: 91/140); 6 were blind with binocular <6/60 acuity

(TSA: 9/374; EEA: 3/91) (Supplementary Material 6). Pre-

operative anterior hypopituitarism (requiring hydrocortisone

supplementation) was present in 215 cases (TSA: 184/726; EEA:

31/140), and posterior hypopituitarism (requiring desmopressin

supplementation) in 36 cases (TSA: 28/726; EEA: 8/140). The

commonest TSA pathologies were non-functioning pituitary

adenoma (410/726), functioning pituitary adenoma (249/726),

and Rathke’s cleft cyst (26/726) (Supplementary Material 3). For

EEA, craniopharyngioma (38/140), meningioma (25/140) and

non-functioning pituitary adenoma (23/140) were the

commonest. Most tumors were >1cm in maximum diameter

(TSA: 607/726; EEA: 131/140).
Operation characteristics

Of TSA cases, endoscopic was most prevalent (615/726),

followed by microscopic (80/726), and a combined approach

(32/726) method. Revision surgery was infrequent (TSA 98/726;

EEA 21/140). On multivariate logistic regression, TSA was less

likely to be used for larger tumors (maximum diameter >1cm)

compared to EEA, aligning with indications for these approaches

(OR: 0.4, CI: 0.2-0.9, p=0.03). Most TSA surgeries were

performed by neurosurgeons alone (458/726), whereas most

EEA cases were performed with both neurosurgery and

otorhinolaryngology specialists (90/140). Infrequently cases

were performed by otorhinolaryngologists alone (TSA: 22/726;

EEA: 3/140). The median operation duration was 110 minutes

for TSA (range: 29–540 minutes) and 220 minutes for EEA

(range: 30–795 minutes).

Intraoperative CSF leak was reported in 214 TSA cases (214/

726) and 79 EEA cases (79/140). Intraoperative CSF leaks were

most commonly low-flow in TSA (131/214 grade 1) and high-

flow in EEA (39/79 grade 3) (Tables 1, 2).
Skull-base reconstruction overview

A taxonomy for skull-base repair was adapted from a

systematic review of the literature (Supplementary Material 2)

(20, 21). Heterogeneity of repair technique choice across both

approaches was evident (Figures 1, 2).

In TSA, the commonest techniques were nasal packing (519/

726), tissue glues (474/726) and hemostatic agents (439/726)

(Table 1; Supplementary Material 4). The most prevalent nasal

packing was Nasopore® (369/519), Merocel® (94/519) and

Rapid Rhinos® (33/519). Tissue glues most frequently used

were Adherus® (146/474), Duraseal® (137/474) and Tisseel®

(126/474); whilst common hemostatic agents included Surgicel®

(189/439), Surgiflo® (141/439) and Floseal® (91/439). Tissue
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TABLE 1 Incidence of repair technique categories across surgical approaches, intraoperative CSF leak presence/grade, tumour diameter, BMI and age.

Category Dural Dural replace- Tissue graft Synthetic Button tech- Pedicled Tissue glue Haemostatic Buttress Gasket
sealing

Nasal
packing

CSF diver-
sion

CSF
rhinorrhoea

.5%) 31
(4.3%)

15 (2.1%) 519 (71.5%) 29 (4%) 28 (3.9%)

4%) 17
(12.1%)

11 (7.9%) 116 (82.9%) 38 (27.1%) 10 (7.1%)

.5%) 19
(3.3%)

11 (1.9%) 403 (70.3%) 19 (3.3%) 15 (2.6%)

3%) 7 (4.9%) 3 (2.1%) 114 (79.7%) 13 (9.1%) 4 (2.8%)

3%) 10
(14.9%)

4 (6%) 52 (77.6%) 8 (11.9%) 10 (14.9%)

6%) 9
(20.5%)

6 (13.6%) 31 (70.5%) 16 (36.4%) 2 (4.5%)

5%) 1 (2.6%) 2 (5.1%) 18 (46.2%) 46.2 (30%) 7 (17.9%)

.3%) 33
(6.5%)

21 (4.2%) 297 (58.8%) 40 (7.9%) 21 (4.2%)

0%) 0 (0%) 0 (0%) 25 (100%) 0 (0%) 4 (16%)

.3%) 15
(4.5%)

5 (1.5%) 313 (93.2%) 27 (8%) 13 (3.9%)

.8%) 44 (6%) 24 (3.3%) 546 (74%) 61 (8.3%) 31 (4.2%)

4%) 4 (3.1%) 2 (1.6%) 89 (69.5%) 6 (4.7%) 7 (5.5%)

.2%) 41
(6.5%)

24 (3.8%) 456 (72.6%) 51 (8.1%) 25 (4%)

.7%) 7 (2.9%) 2 (0.8%) 179 (75.2%) 16 (6.7%) 13 (5.5%)

.7%) 35
(5.2%)

17 (2.5%) 493 (73.8%) 54 (8.1%) 35 (5.2%)

.1%) 13
(6.6%)

9 (4.5%) 142 (71.7%) 13 (6.6%) 3 (1.5%)
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Approach

TSA (N = 726),
n (n/N%)

0 (0%) 196 (27%) 221 (30.4%) 204 (28.1%) 20 (2.8%) 116 (16%) 474 (65.3%) 439 (60

EEA (N = 140),
n (n/N%)

0 (0%) 66 (47.1%) 65 (46.4%) 47 (33.6%) 7 (5%) 90 (64.3%) 114 (81.4%) 93 (66

Intraoperative CSF leak grade

Grade 0 (N = 573),
n (n/N%)

0 (0%) 136 (23.7%) 106 (18.5%) 163 (28.4%) 9 (1.6%) 88 (15.4%) 335 (58.5%) 358 (62

Grade 1 (N = 143),
n (n/N%)

0 (0%) 54 (37.8%) 89 (62.2%) 45 (31.5%) 7 (4.9%) 37 (25.9%) 124 (86.7%) 82 (57

Grade 2 (N = 67),
n (n/N%)

0 (0%) 27 (40.3%) 41 (61.2%) 18 (26.9%) 7 (10.4%) 33 (49.3%) 55 (82.1%) 33 (49

Grade 3 (N = 44),
n (n/N%)

0 (0%) 23 (52.3%) 33 (75%) 15 (34.1%) 3 (6.8%) 30 (68.2%) 44 (100%) 28 (63

Grade unknown
(N = 39), n (n/N%)

0 (0%) 22 (56.4%) 17 (43.6%) 10 (25.6%) 1 (2.6%) 18 (46.2%) 30 (76.9%) 31 (79

Specialty

Neurosurgery only (N=505),
n (n/N%)

0 (0%) 154 (30.5%) 219 (43.4%) 164 (32.5%) 24 (4.8%) 63 (12.5%) 361 (71.5%) 274 (54

Otorhinolaryngology only
(N=25), n (n/N%)

0 (0%) 17 (68%) 2 (8%) 14 (56%) 0 (0%) 5 (20%) 25 (100%) 25 (10

Multidisciplinary (N=336),
n (n/N%)

0 (0%) 91 (27.1%) 65 (19.3%) 73 (21.7%) 3 (0.9%) 138
(41.1%)

202 (60.1%) 233 (69

Tumour diameter

>1cm (N=738),
n (n/N%)

0 (0%) 238 (32.2%) 243 (32.9%) 218 (29.5%) 26 (3.5%) 190
(25.7%)

510 (69.1%) 456 (61

<1cm (N=128),
n (n/N%)

0 (0%) 24 (18.8%) 43 (33.6%) 33 (25.8%) 1 (0.8%) 16 (12.5%) 78 (60.9%) 76 (59

BMI

<30 (N=628),
n (n/N%)

0 (0%) 190 (30.3%) 211 (33.6%) 181 (28.8%) 20 (3.2%) 148
(23.6%)

416 (66.2%) 378 (60

>30 (N=238),
n (n/N%)

0 (0%) 72 (30.3%) 75 (31.5%) 70 (29.4%) 7 (2.9%) 58 (24.4%) 172 (72.3%) 154 (64

Age

<65 (N=668),
n (n/N%)

0 (0%) 201 (30.1%) 216 (32.3%) 197 (29.5%) 19 (2.8%) 168
(25.1%)

462 (69.2%) 419 (62

>65 (N=198),
n (n/N%)

0 (0%) 61 (30.8%) 70 (35.4%) 54 (27.3%) 8 (4%) 38 (19.2%) 126 (63.6%) 113 (57

CSF, cerebrospinal fluid; BMI, body mass index.
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grafts were used in 221 cases (221/726), usually fat (189/221,

most commonly abdominal), fascia (27/221, most often fascia

lata) and mucosa (28/221, usually middle turbinate). Synthetic

grafts (204/726) included Spongostan™ (181/204), Tachosil®

(21/204) and Gelfoam® (2/204). The button technique was used

with these grafts in 20 cases (20/726). There was overlap between

these graft materials and dural replacement (or reconstruction

via layering) strategies (196/726) which usually consisted of

Duragen® (136/196), fascia lata (18/196) or Lyoplant® (17/

196). Pedicled flaps were used in 116 cases (116/726), most

frequently nasoseptal flaps (105/116). Rigid buttresses were used
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in 31 cases (31/726), commonly Medpor® (15/31), autologous

bone (14/31, usually septal) and autologous cartilage (1/31).

These buttresses were used with a gasket seal technique in 15

cases (15/726), usually with fascia lata.

Comparatively, pedicled flaps (90/140), CSF diversion (38/

140), buttresses (17/140), and gasket sealing (11/140) were more

commonly used in EEA cases (Table 1; Supplementary Material

4). Nasoseptal flaps (87/90) were again the most frequent

pedicled flaps. Like TSA, supportive buttresses were often

Medpor® (10/17) or autologous bone (5/17), the majority of

these being used with the gasket seal technique (11/17).
TABLE 2 Summary of CSF rhinorrhoea incidence per baseline and operative risk factor subgroups – incidence and statistical analysis via
multivariate logistic regression.

Transsphenoidal approach Expanded Endonasal Approach

CSF
Rhinorrhoea rate

Multivariate Analyses
(OR, CI, p-value)

CSF
Rhinorrhoea rate

Multivariate Analyses
(OR, CI, p-value)

Approach

TSA 28/726 (3.9%) – – –

EEA – – 10/140 (7.1%) –

Baseline characteristics

Age >65 0/172 (0.0%) – 3/27 (11.1%) OR: 3.8, CI: 0.6–23.7, p =0.16

Age <65 28/553 (5.1%) Reference 7/113 (6.2%) Reference

BMI >30 11/210 (5.2%) OR: 1.7, CI: 0.7-4.4, p=0.26 2/28 (7.1%) OR: 0.7, CI: 0.1-6.1, p=0.7

BMI<30 17/516 (3.3%) Reference 8/112 (7.1%) Reference

Tumour diameter >1cm 21/607 (3.5%) OR:0.5; CI: 0.2 – 1.5, p=0.22 10/131 (7.6%) –

Tumour diameter <1cm 7/119 (6.0%) Reference 0/9 (0%) Reference

Primary surgery 8/98 (8.2%) OR:0.4, CI: 0.1-0.9, p=0.05 1/21 (4.8%) OR: 0.6, CI; 0.1-8.4, p=0.71

Revision surgery 19/573 (3.3%) Reference 7/113 (6.2%) Reference

Presence of Otorhinolaryngologist 9/268 (3.4%) OR: 0.4, CI: 0.1-1.6, p=0.2 8/93 (8.6%) OR: 0.6, CI: 0.1-7.4, p=0.72

Presence of Neurosurgeon 25/704 (3.6%) OR: 0.2, CI: 0.1-1.9, p=0.17 9/137 (6.6%) OR: 0.1, CI: 0-1.8, p=0.1

Intra-operative CSF leak grade

Grade 0 11/512 (2.1%) Reference 4/61 (6.6%) Reference

Grade 1 3/131 (2.3%) OR: 1.5, CI: 0.4-6.6, p=0.56 1/12 (8.3%) OR: 2.2, CI: 0.1-39.9, p= 0.61

Grade 2 9/54 (16.7%) OR: 16.1, CI: 4.6-56.3, p<0.01 1/13 (7.7%) OR: 1.8, CI: 0.1-24.2, p=0.67

Grade 3 0/5 (0%) - 2/39 (5.6%) OR: 1.2, CI: 0.1-11.5, p=0.87

Leak present, grade unknown 5/24 (20.8%) OR: 7.6, CI: 1.8-33.4, p<0.01 2/15 (13.3%) OR: 12, CI: 0.4-356.3, p=0.15

Repair methods

Dural closure – – – –

Dural replacement 11/196 (5.6%) OR: 2.6, CI: 0.8-8.8, p=0.13 5/66 (7.6%) OR: 0.9, CI: 0.1-5.1, p=0.85

Tissue graft 13/221 (5.9%) OR: 1.8, CI: 0.6-5.3, p=0.29 3/65 (4.6%) OR: 0.3, CI: 0.1-2.2, p=0.21

Synthetic graft 7/204 (3.4%) OR: 1.2, CI: 0.4-3.6, p=0.79 6/47 (12.8%) OR: 5.2, CI: 0.7-39.1, p=0.11

Button Technique 0/20 (0%) – 0/7 (0%) –

Pedicled Flap 5/116 (4.3%) OR: 0.9, CI: 0.3-3.2, p=0.87 8/90 (8.9%) –

Tissue Glue 15/474 (3.2%) OR: 0.2, CI: 0.1-0.7, p<0.01 8/114 (7.0%) OR: 4.4, CI: 0.3-78.6, p=0.31

Haemostatic agent 18/439 (4.1%) OR: 1.3, CI: 0.5-3.4, p=0.63 5/93 (5.4%) OR: 0.3, CI: 0.1-2.5, p=0.27

Buttress 0/31 (0%) – 1/17 (5.9%) OR: 2.8, CI: 0.1-63.1, p=0.53

Gasket sealing 0/15 (0%) – 0/11 (0%) –

Nasal packing 22/519 (4.2%) OR: 1.9, CI: 0.6-5.8, p=0.29 10/116 (8.6%) –

CSF diversion 1/29 (3.4%) OR: 0.9, CI: 0.1-8.3, p=0.96 1/38 (2.6%) OR: 0.2, CI: 0-5.3, p =0.298
frontiersin.org

https://doi.org/10.3389/fonc.2022.1049627
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


10.3389/fonc.2022.1049627
Additionally, nasal packs (116/140), tissue glue (114/140) and

hemostatic agents (93/140) were prevalent. The commonest

nasal packs were Nasopore® (86/116), Merocel® (20/116) and

Bismuth-Soaked Ribbon Gauze (11/116). Again, Tisseel® (32/

114), Adherus® (22/114) and Duraseal® (22/114) were the most

used tissue glues; whilst Surgicel® (51/93), Surgiflo® (24/93) and

Floseal® (13/93) were common hemostatic agents. Tissue grafts
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(65/140), were frequently fat (45/65), fascia (36/65) and mucosa

(8/65), akin to TSA. Similarly, synthetic grafts (47/140) included

Spongostan™ (39/47) and Tachosil® (5/47). The button

technique was sometimes used with these grafts (47/140).

Finally, common dural replacement (66/140) strategies

included Duragen® (43/66), fascia lata (12/66) and Tutoplast®

(6/66).
FIGURE 1

Heat map highlighting frequency of repair technique category use per centre for transsphenoidal cases.
FIGURE 2

Heat map highlighting frequency of repair technique category use per centre for expanded endonasal cases.
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Factors affecting repair technique choice

Repair methods appeared to be tailored according to

postoperative CSF rhinorrhoea risk (Table 1 for descriptive

analyses, Supplementary Material 5 for further statistical

analyses). In cases with intraoperative CSF leak, there was a

statistically significant (via Fisher’s exact test) increased use of

tissue grafts (p<0.01), pedicled flaps (p<0.01), tissue glues

(p<0.01) and CSF diversion (TSA p<0.01; EEA p<0.05) for

both TSA and EEA on univariate analysis. Additionally, dural

replacements (p<0.01), hemostatic agents (p=0.01) and

buttresses (p<0.01) were also used more in EEA (but not TSA)

with intraoperative CSF leak. Similarly, the use of pedicled flaps

(OR: 2.3, CI: 1.3-4.2, p=0.01), dural replacement (OR: 2.1, CI:

1.3-3.4, p<0.01) and tissue glues (OR: 1.36, CI: 1.1-2.5, p=0.02)

were statistically associated with operations for larger tumors

(maximum diameter >1cm) on multivariate logistic regression.

Regarding surgical specialty, the use of pedicled flaps (OR: 4.5,

CI: 3.1-6.3, p<0.01) and hemostatic agents (OR: 1.9, CI: 1.5-2.7,

p<0.01) were statistically associated with otorhinolaryngology

involvement, whilst the use of tissue grafts (OR: 0.3, CI: 0.2-0.5,

p<0.01) and tissue glues (OR: 0.6, CI: 0.4-0.8, p<0.01) was

reduced on multivariate logistic regression.
CSF diversion

67 cases used CSF diversion (TSA: 29/726; EEA: 38/140). In

TSA, lumbar drainage was most common (27/29) with one of

these patients subsequently requiring a ventriculoperitoneal

shunt (VPS). The remainder underwent lumbar puncture (1/

29), or external ventricular drain (EVD) placement (1/29).

Lumbar drains were usually placed under the same anesthetic

(pre-procedure, 15/29; post-procedure, 7/29), with regimes (if

specified) volume-led (14/29, usually 5-10mls/hr), pressure-led

(6/29) or using a LiquoGuard® system (1/29). Three drains

inserted pre-procedure were removed before any effective

postoperative CSF drainage (used for intraoperative saline

injection or inserted prophylactically in case of subsequent

CSF rhinorrhoea). Excluding these, the median length of

drainage via lumbar drain was five days (range: 2-11).

Regarding EEA surgeries, all CSF diversion was performed

via lumbar drain with most placed under the same anesthetic

(immediately pre-procedure: 22/38; or immediately post-

procedure: 8/38). The most common drainage regime was

volume-led (21/22), with 5-10mls/hr the commonest protocol.

One case also had an EVD placed one week before tumour

resection for acute hydrocephalus. Three pre-procedure drains

inserted were removed before any effective postoperative CSF

drainage. Excluding these, the median length of drainage was

five days (range: 1-7).
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Postoperative management

The median patient hospital stay was four days (range: 1–37)

for TSA and seven days (range: 1–35) for EEA. Regarding

conservative measures, bed rest was advised in 20% (147/726)

TSA cases (head elevated: 72/147; head flat: 5/147; unspecified

height: 70/152) and 40% (52/140) EEA cases (head elevated: 37/

52; head flat: 3/52; unspecified height: 12/52). Avoiding straining

(e.g., lifting, sneezing, etc.) was advised in most TSA (502/726)

and EEA (91/140) cases. Stool softeners were prescribed in 191

TSA cases (191/726) and 30 EEA cases (30/140). Rarely,

acetazolamide (TSA: 1/726; EEA 1/140) was offered. Visual

outcomes, endocrine outcomes and complications at 6 months

follow-up are summarized in Supplementary Material 6.
Postoperative CSF rhinorrhoea

CSF rhinorrhoea (biochemically confirmed or requiring re-

operation) occurred in 3.9% of TSA (28/726) and 7.1% of EEA

(10/140) cases.

In TSA, most cases occurred during the index admission

(21/28), presenting a median of 2 days postoperatively (range: 1-

17), whereas those presenting during follow-up (7/28) a median

of 10 days postoperatively (range: 2-84). Almost all cases were

managed operatively (index: 18/21; follow-up: 6/7). Initial

surgical treatment included lumbar drain alone (8/24), lumbar

drain & direct endonasal repair (8/24), direct endonasal repair

alone (6/24), or VPS alone (2/24). Five cases required further

operations for recurrent CSF rhinorrhoea. Regarding EEA, CSF

rhinorrhoea occurred during the index admission for 8 cases,

and during follow-up for 2 cases. All cases were managed

operatively (lumbar drain & endonasal repair: 6/10; lumbar

drain alone 3/10; endonasal repair alone: 1/10). Two cases

required further operations for recurrent CSF rhinorrhoea.

Cases presenting during index admission were detected at a

median of 2 days postoperatively (range: 1-11), whilst those

detected during follow-up were found at a median of 19 days

postoperatively (range: 8-54).

On univariate logistic regression analysis, displayed in

Figure 3, the following variables were associated with CSF

rhinorrhoea: revision surgery (TSA), presence of intraoperative

CSF leak (TSA), and the absence of neurosurgery involvement

(TSA) (Table 2; Figure 3; Supplementary Material 5). On

multivariate analysis, revision surgery and the presence of

intraoperative CSF leak remained a predictor of CSF

rhinorrhoea in TSA (Table 2; Figure 3; Supplementary

Material 5). No specific technique category (including CSF

diversion) considerably impacted the odds of CSF rhinorrhoea

for EEA. However, tissue glues in TSA (OR: 0.2, CI: 0.1-0.7,

p<0.01) may be related to a slight decrease in CSF rhinorrhoea
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rates on multivariate analyses (Table 2; Figure 3; Supplementary

Material 5).
Discussion

Principal findings

This multicentre, prospective, observational study represents

the first study of its kind, exploring skull base repair techniques

and CSF rhinorrhoea rates in a collaborative project involving

almost all neurosurgical centres in the UK and Ireland.

There is clear heterogeneity in skull-base repair regimes

across centres, with no two sharing the same protocol.

Additionally, no specific type of repair technique made a

significant difference in postoperative CSF rates, although
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there may be marginal benefits with tissue glue in TSA.

Certain characteristics appear to make CSF rhinorrhoea more

likely – previous endonasal surgery and intraoperative CSF leak.

This translates into the tailoring of repair strategies. For

example, in EEA, multilayer regimes using pedicled flaps, rigid

buttresses (often with gasket sealing) and CSF diversion were

frequent. Similarly, in the context of intraoperative CSF leak,

tissue grafts, tissue glues, pedicled flaps and CSF diversion were

used more often. Larger tumors (maximum diameter >1cm)

were associated with the use of pedicled flaps, dural replacement

and tissue glues. Surgeon preference or training may also

factor in, with pedicled flaps and hemostatic agents used less

in the absence of otorhinolaryngologists. Tissue grafts, tissue

glues, and construct support strategies (e.g., rigid buttresses

and CSF diversion) were less frequent in the absence of

neurosurgical involvement.
B

C D

A

FIGURE 3

Summary of univariate and multivariate logistic regression of baseline characteristics and operative technique against CSF rhinorrhoea across
transsphenoidal (A, B) and expanded endonasal (C, D) appraoches. CSF, cerebrospinal fluid, BMI=body mass index, TSA=transsphenoidal
approach; EEA, expanded endonasal approach. *Statistically significant relationships (p<0.05, see Table 2 and Supplementary Information 3).
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CSF rhinorrhoea for both TSA (28/726, 3.9%) and EEA (10/140,

7.1%)are lower thangenerally reported in the literature (6, 7, 9, 10, 12,

23). This may reflect the ongoing improvement in endonasal skull-

base repair andCSF rhinorrhoea rates, demonstratedby recentmeta-

analyses over time (24). Additionally, the UK and Ireland are

consolidating pituitary services into dedicated “centres of

excellence”, which may influence surgical outcomes (25).

Furthermore, as a prospective series, surgeons were aware of the

monitoring of this outcome, perhaps influencing their management

via theHawthorne effect (26). Importantly, a significantproportionof

postoperative CSF rhinorrhoea cases had no recorded intraoperative

CSF leak (Total: 15/38; TSA: 11/28; EEA: 4/10), suggesting occult

intraoperative leak, or possibly a thinned and vulnerable arachnoid

dome which tears postoperatively in the absence of support. In our

series, this subgroup had the lowest frequency of almost every repair

method category (except synthetic grafts and hemostatic agents).

This phenomenon is described in other case series, with many

authors advocating for universal sellar repair for this reason, and

some recommending routine use of intrathecal fluorescein (27, 28).

However, these strategies should be balanced against the increased

operative time, cost-effectiveness, and additional repair-related

morbidity (e.g., donor site injuries or scars) (27, 28).
Findings in the context of literature

The development of endonasal techniques have revolutionized

skull base surgery by allowing direct access to the skull base regions

via a natural working channel which although long and narrow,

accommodates specialized long instruments (1, 29–31). Gravity and

the pressure gradient across the surgical bony/dural opening often

assists surgical resection, for example in thedescent of softer pituitary

tumours, and is sometimes manipulated through pressure

modulation (e.g., Valsalva and intrathecal saline injection) (1, 29–

31). However, these advantages also contribute to the endonasal

approach’s inherent susceptibility ofCSF rhinorrhoea– repairing the

skull baseusing long rigid instruments via anarrowsurgical corridor,

with restricted motion and dexterity, against gravity and CSF

pressure, creating a significant surgical challenge (1, 6, 29–31). This

challengehasbeenmetbyrefinements inendoscopicandmicroscope

techniques, however, large variations in CSF rhinorrhoea rates still

exist in both transsphenoidal and expanded endonasal surgery (6, 24,

32). An important component of this refinement has been the

development of new closure strategies (24, 33–35).

However, recent systematic reviews of skull-base repair

techniques have highlighted the variations across surgeons and

centres, likely related to the lack of high-level comparative

evidence (6, 36–38). There is an ever-expanding list of repair

options, from autologous grafts to synthetic glues and even 3D-

printed custom implants, without a complimentary expansion in

the evidence base (6, 36, 39). These repair materials are

sometimes supported by CSF diversion to reduce the pressure

across the surgical repair. In fact, the only high-level evidence
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within the field of endonasal skull base repair is a randomized

controlled trial investigating perioperative lumbar drainage

(combined with nasoseptal flap repair) in EEA with high-flow

intraoperative CSF leak (35). Lumbar drains were inserted

immediately postoperatively (under the same anaesthetic),

draining 10 ml/h for 3 days, resulting in a decrease in CSF

rhinorrhoea rates (8.2% with lumbar drainage vs. 21.2% without;

p = 0.03) (35).

Furthermore, most modern protocols adapt the extent of skull

base reconstruction to postoperative CSF rhinorrhoea risk,

balancing the risks of the former against the latter (4, 6, 10, 40–

46). Numerous factors weigh into this decision-making, from

demographics, co-morbidities, tumour characteristics, and

operative factors (e.g., CSF leak), although the exact

contribution of each potential factor in surgical decision-making

remains poorly defined (6, 14, 22, 32, 44, 47, 48). Techniques

reported commonly for low-risk cases include fat grafts, fascia lata

grafts and synthetic grafts; whereas multilayer regimes with

vascularized flaps, gasket-sealing, and lumbar drains are

commoner in higher-risk cases (6, 37, 49, 50). Future studies

would benefit from multimodal datasets which encompass these

risk factors (e.g. combination of clinical metadata, imaging and

operative video) and advanced analysis techniques (e.g. machine

learning) to explore the interactions between risk factors, repair

techniques and CSF rhinorrhoea rates.
Strengths and limitations

The strengths of this study are its prospective, consecutive

recruitment (despite COVID-19), and the creation of a collaborative

network of neurosurgeons and otorhinolaryngologists with a

specialist interest in skull-base and pituitary, spanning almost

every adult neurosurgical centre in the UK and Ireland. There are

several limitations. Firstly, the study involved only two countries,

limiting the generalizability of the findings. Furthermore, the study

is observational and occurred during a pandemic wave, possibly

hampering case recruitment. Due to pandemic-related pressures

and redeployments, several centres uploaded data in retrospect but

submitted cases were reviewed in detail by supervising consultants.

Only one dedicated pediatric centre was included, although 6

centres (joint adult and pediatric) included patients less than 16

years old. CSF rhinorrhoea was infrequent, whilst there was a wide

array of combinations for relevant variables (particularly skull-base

repair methods) making statistical analysis challenging.
Conclusions

Heterogeneity of skull-base repair techniques exists across

centres. Multilayer regimes with vascularized flaps, CSF

diversion and rigid buttresses appear commoner in higher-risk

cases, such as in EEAs. Overall, corresponding CSF rhinorrhoea
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rates across the UK and Ireland are lower than generally

reported in the literature. A large proportion of postoperative

leaks occurred in the context of occult intraoperative CSF leaks,

and decisions for universal sellar repairs should consider the

risks and cost-effectiveness of repair methods used. Future work

could include longer-term, higher-volume studies, such as a

registry; and high-quality interventional studies.
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Calatayud M, et al. Endoscopic transnasal trans-sphenoidal approach for pituitary
adenomas: A comparison to the microscopic approach cohort by propensity score
analysis. Neurosurgery (2020) 86(3):348–56. doi: 10.1093/neuros/nyz201

31. Ogiwara T, Nagm A, Hasegawa T, Hanaoka Y, Ichinose S, Goto T, et al.
Pitfalls of skull base reconstruction in endoscopic endonasal approach. Neurosurg
Rev (2019) 42(3):683–9. doi: 10.1007/s10143-018-1006-5

32. Conger A, Zhao F, Wang X, Eisenberg A, Griffiths C, Esposito F, et al.
Evolution of the graded repair of csf leaks and skull base defects in endonasal
endoscopic tumor surgery: Trends in repair failure and meningitis rates in 509
patients. J Neurosurg (2018) 130(3):861–75. doi: 10.3171/2017.11.JNS172141

33. Hadad G, Bassagasteguy L, Carrau RL, Mataza JC, Kassam A, Snyderman
CH, et al. A novel reconstructive technique after endoscopic expanded endonasal
Frontiers in Oncology 14
87
approaches: Vascular pedicle nasoseptal flap. Laryngoscope (2006) 116(10):1882–6.
doi: 10.1097/01.mlg.0000234933.37779.e4

34. Leng LZ, Brown S, Anand VK, Schwartz TH. “Gasket-seal” watertight
closure in minimal-access endoscopic cranial base surgery. Operative Neurosurg
(2008) 62(suppl_5):ONS342–3. doi: 10.1227/01.neu.0000326017.84315.1f

35. Zwagerman NT, Wang EW, Shin SS, Chang YF, Fernandez-Miranda JC,
Snyderman CH, et al. Does lumbar drainage reduce postoperative cerebrospinal
fluid leak after endoscopic endonasal skull base surgery? a prospective, randomized
controlled trial. J Neurosurg (2018) 1:1–7. doi: 10.3171/2018.4.JNS172447

36. Hannan CJ, Kelleher E, Javadpour M. Methods of skull base repair following
endoscopic endonasal tumor resection: A review. Front Oncol (2020) 10. doi:
10.3389/fonc.2020.01614

37. Harvey RJ, Parmar P, Sacks R, Zanation AM. Endoscopic skull base
reconstruction of Large dural defects: A systematic review of published evidence.
Laryngoscope (2012) 122(2):452–9. doi: 10.1002/lary.22475

38. Oakley GM, Orlandi RR, Woodworth BA, Batra PS, Alt JA. Management of
cerebrospinal fluid rhinorrhea: An evidence-based review with recommendations.
Int Forum Allergy Rhinol (2016) 6(1):17–24. doi: 10.1002/alr.21627

39. Essayed WI, Unadkat P, Hosny A, Frisken S, Rassi MS, Mukundan S, et al.
3d printing and intraoperative neuronavigation tailoring for skull base
reconstruction after extended endoscopic endonasal surgery: Proof of concept. J
Neurosurg JNS. (2018) 130(1):248–55. doi: 10.3171/2017.9.JNS171253

40. Zhou Q, Yang Z, Wang X, Wang Z, Zhao C, Zhang S, et al. Risk factors and
management of intraoperative cerebrospinal fluid leaks in endoscopic treatment of
pituitary adenoma: Analysis of 492 patients. World Neurosurg (2017) 101:390–5.
doi: 10.1016/j.wneu.2017.01.119

41. Zaidi HA, Awad A-W, Bohl MA, Chapple K, Knecht L, Jahnke H, et al.
Comparison of outcomes between a less experienced surgeon using a fully
endoscopic technique and a very experienced surgeon using a microscopic
transsphenoidal technique for pituitary adenoma. J Neurosurg (2016) 124
(3):596–604. doi: 10.3171/2015.4.JNS15102

42. Rabadán AT, Hernández D, Ruggeri CS. Pituitary tumors: Our experience in
the prevention of postoperative cerebrospinal fluid leaks after transsphenoidal
surgery. J Neurooncol (2009) 93(1):127–31. doi: 10.1007/s11060-009-9858-8

43. Nix P, Tyagi A, Phillips N. Retrospective analysis of anterior skull base csf
leaks and endoscopic repairs at Leeds. Br J Neurosurg (2016) 30(4):422–6. doi:
10.3109/02688697.2016.1161176

44. Hannan CJ, Almhanedi H, Al-Mahfoudh R, Bhojak M, Looby S, Javadpour
M. Predicting post-operative cerebrospinal fluid (Csf) leak following endoscopic
transnasal pituitary and anterior skull base surgery: A multivariate analysis. Acta
Neurochir (Wien) (2020) 162(6):1309–15. doi: 10.1007/s00701-020-04334-5

45. Han Z-L, He D-S, Mao Z-G, Wang H-J. Cerebrospinal fluid rhinorrhea
following trans-sphenoidal pituitary macroadenoma surgery: Experience from 592
patients. Clin Neurol Neurosurg (2008) 110(6):570–9. doi: 10.1016/
j.clineuro.2008.02.017

46. Dlouhy BJ, Madhavan K, Clinger JD, Reddy A, Dawson JD, O'Brien EK,
et al. Elevated body mass index and risk of postoperative csf leak following
transsphenoidal surgery. J Neurosurg (2012) 116(6):1311–7. doi: 10.3171/
2012.2.JNS111837

47. Park J-H, Choi JH, Kim Y-I, Kim SW, Hong Y-K. Modified graded repair of
cerebrospinal fluid leaks in endoscopic endonasal transsphenoidal surgery. J
Korean Neurosurgical Society (2015) 58(1):36. doi: 10.3340/jkns.2015.58.1.36

48. Cappabianca P, Cavallo LM, Esposito F, Valente V, de Divitiis E. Sellar
repair in endoscopic endonasal transsphenoidal surgery: Results of 170 cases.
Neurosurgery (2002) 51(6):1365–72. doi: 10.1097/00006123-200212000-00006

49. Iavarone A, Luparello P, Lazio MS, Comini LV, Martelli F, De Luca O, et al.
The surgical treatment of cerebrospinal fistula: Qualitative and quantitative
analysis of indications and results. Head Neck (2020) 42(2):344–56. doi: 10.1002/
hed.25981

50. Soudry E, Turner JH, Nayak JV, Hwang PH. Endoscopic reconstruction of
surgically created skull base defects: A systematic review. Otolaryngology–Head
Neck Surg (2014) 150(5):730–8. doi: 10.1177/0194599814520685
frontiersin.org

https://doi.org/10.1016/j.wneu.2020.12.171
https://doi.org/10.1080/02688697.2020.1795622
https://doi.org/10.7326/0003-4819-147-8-200710160-00010
https://doi.org/10.1016/j.wneu.2019.08.067
https://doi.org/10.3171/foc.2005.19.1.7
https://doi.org/10.1007/s00701-017-3351-5
https://doi.org/10.1227/01.NEU.0000255354.64077.66
https://doi.org/10.1016/j.wneu.2017.01.022
https://doi.org/10.1016/j.wneu.2017.01.022
https://doi.org/10.1007/s00701-020-04641-x
https://doi.org/10.1007/s11102-017-0838-2
https://doi.org/10.1111/ans.15475
https://doi.org/10.1016/j.wneu.2013.06.005
https://doi.org/10.1055/s-0034-1544118
https://doi.org/10.3171/JNS-07/10/0713
https://doi.org/10.3171/JNS-07/10/0713
https://doi.org/10.1093/neuros/nyz201
https://doi.org/10.1007/s10143-018-1006-5
https://doi.org/10.3171/2017.11.JNS172141
https://doi.org/10.1097/01.mlg.0000234933.37779.e4
https://doi.org/10.1227/01.neu.0000326017.84315.1f
https://doi.org/10.3171/2018.4.JNS172447
https://doi.org/10.3389/fonc.2020.01614
https://doi.org/10.1002/lary.22475
https://doi.org/10.1002/alr.21627
https://doi.org/10.3171/2017.9.JNS171253
https://doi.org/10.1016/j.wneu.2017.01.119
https://doi.org/10.3171/2015.4.JNS15102
https://doi.org/10.1007/s11060-009-9858-8
https://doi.org/10.3109/02688697.2016.1161176
https://doi.org/10.1007/s00701-020-04334-5
https://doi.org/10.1016/j.clineuro.2008.02.017
https://doi.org/10.1016/j.clineuro.2008.02.017
https://doi.org/10.3171/2012.2.JNS111837
https://doi.org/10.3171/2012.2.JNS111837
https://doi.org/10.3340/jkns.2015.58.1.36
https://doi.org/10.1097/00006123-200212000-00006
https://doi.org/10.1002/hed.25981
https://doi.org/10.1002/hed.25981
https://doi.org/10.1177/0194599814520685
https://doi.org/10.3389/fonc.2022.1049627
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Frontiers in Oncology

OPEN ACCESS

EDITED BY

Alireza Mansouri,
The Pennsylvania State University (PSU),
United States

REVIEWED BY

Julius Höhne,
University Medical Center Regensburg,
Germany
Ramez Kirollos,
National Neuroscience Institute (NNI),
Singapore

*CORRESPONDENCE

Adrito Das

adrito.das.20@ucl.ac.uk

Danyal Z. Khan

d.khan@ucl.ac.uk

SPECIALTY SECTION

This article was submitted to
Neuro-Oncology and
Neurosurgical Oncology,
a section of the journal
Frontiers in Oncology

RECEIVED 16 September 2022
ACCEPTED 27 January 2023

PUBLISHED 23 March 2023

CITATION

CRANIAL Consortium (2023) Machine
learning driven prediction of cerebrospinal
fluid rhinorrhoea following endonasal skull
base surgery: A multicentre prospective
observational study.
Front. Oncol. 13:1046519.
doi: 10.3389/fonc.2023.1046519

COPYRIGHT

© 2023 CRANIAL Consortium. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 23 March 2023

DOI 10.3389/fonc.2023.1046519
Machine learning driven
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skull base surgery: A multicentre
prospective observational study

CRANIAL Consortium
Background: Cerebrospinal fluid rhinorrhoea (CSFR) is a common complication

following endonasal skull base surgery, a technique that is fundamental to the

treatment of pituitary adenomas and many other skull base tumours. The CRANIAL

study explored CSFR incidence and related risk factors, particularly skull base repair

techniques, via a multicentre prospective observational study. We sought to use

machine learning to leverage this complex multicentre dataset for CSFR prediction

and risk factor analysis.

Methods: A dataset of 865 cases - 725 transsphenoidal approach (TSA) and 140

expanded endonasal approach (EEA) - with cerebrospinal fluid rhinorrhoea as the

primary outcome, was used. Relevant variables were extracted from the data, and

prediction variables were divided into two categories, preoperative risk factors; and

repair techniques, with 6 and 11 variables respectively. Three types of machine

learning models were developed in order to predict CSFR: logistic regression (LR);

decision tree (DT); and neural network (NN). Models were validated using 5-fold

cross-validation, compared via their area under the curve (AUC) evaluation metric,

and key prediction variables were identified using their Shapley additive

explanations (SHAP) score.

Results: CSFR rates were 3.9% (28/725) for the transsphenoidal approach and 7.1%

(10/140) for the expanded endonasal approach. NNs outperformed LR and DT for

CSFR prediction, with a mean AUC of 0.80 (0.70-0.90) for TSA and 0.78 (0.60-

0.96) for EEA, when all risk factor and intraoperative repair data were integrated

into the model. The presence of intraoperative CSF leak was the most prominent

risk factor for CSFR. Elevated BMI and revision surgery were also associated with

CSFR for the transsphenoidal approach. CSF diversion and gasket sealing appear to

be strong predictors of the absence of CSFR for both approaches.

Conclusion: Neural networks are effective at predicting CSFR and uncovering key

CSFR predictors in patients following endonasal skull base surgery, outperforming

traditional statistical methods. These models will be improved further with larger

and more granular datasets, improved NN architecture, and external validation. In
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the future, such predictive models could be used to assist surgical decision-

making and support more individualised patient counselling.
KEYWORDS

cerebrospinal fluid leak, cerebrospinal fluid rhinorrhoea, CSF, endoscopic endonasal,
skull base surgery, machine learning - ML, neural network, outcome prediction
1 Introduction

Endonasal operative approaches, including the transsphenoidal

approach (TSA) and the expanded endonasal approach (EEA), have

become workhorses in skull base neurosurgery (1, 2). They are

predominately used in the treatment of pituitary adenomas and

other sella-region neoplastic pathologies, with growing indications

as these techniques evolve (3, 4). Despite the benefits the approaches

offer in terms of access, the most common surgical complication

remains cerebrospinal fluid rhinorrhoea (CSFR) – generally up to 5%

in TSA and 20% in EEA, although these rates vary significantly across

the literature (3, 5–18). CSFR has potentially serious sequelae,

including meningitis; severe headache, pneumocephalus; increased

length of hospital stays; re-admission; and need for further surgery (9,

12, 13).

Numerous risk factors have been identified for CSFR, including

the presence of intraoperative cerebrospinal fluid (CSF) leak; revision

surgery; and high body mass index (BMI) (19). A particularly

important factor is the choice of skull base repair technique used

intraoperatively (7, 10, 13, 16, 20). A recent expert consensus

conducted via The Pituitary Society highlighted the practice

variations across TSA, particularly during the skull base closure

phase (21). A systematic review of the literature has found absolute

heterogeneity across studies and centres in terms of skull base repair

techniques, likely due to a lack of high-level comparative

evidence (10).

CRANIAL (CSF rhinorrhoea after endonasal intervention to the

skull base) was a prospective, multicentre observational study seeking

to determine the: (1) scope of the methods of skull base repair; and (2)

corresponding rates of CSFR (22–25). It represents the largest dataset

of its kind, seeking to audit practice across the UK and Ireland. It

revealed a CSFR incidence rate of 3.9% for TSA and 7.1% for EEA,

lower than the literature standard, with minimal influence of

particular repair regimes on CSFR incidence via traditional

statistical analysis (25). In neurosurgery, machine learning models
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(MLs), or more specifically neural network models (NNs), have been

shown to outperform these traditional statistical methods by

leveraging their ability to utilise complex non-linear relationships

between the various prediction variables (26–28). For example, NNs

were able to identify the risk factors associated with a high risk of

intraoperative CSF leak where traditional statistical analysis

failed (29).

In this study, we use NNs on the granular multicentre CRANIAL

dataset for analysis of CSFR, its risk factors, and the comparative

effectiveness of skull base repair techniques in both TSA and EEA.
2 Methods

The transparent reporting of a multivariable prediction model for

individual prognosis or diagnosis (TRIPOD) guided this

methodology and report (30).
2.1 Data

2.1.1 Collection
A detailed description of the generation of the CRANIAL dataset

is described in (25). In brief, it is a multicentre dataset (30 centres in

the UK and Ireland), collected via a prospective observational study in

3 phases encompassing November 2019 – July 2020 (22–25). All TSA

(defined as transsphenoidal access to the sella alone) and EEA

[defined as acquiring surgical access to an area beyond the sella (17,

19)] were included. The dataset is composed of baseline characteristic

data (e.g., age; sex; tumour diameter), operative data (e.g.,

intraoperative CSF leak presence; skull base repair method) and

postoperative outcomes (e.g., CSFR) (22–25). A taxonomy for skull

base repair was adapted from a systematic review of the literature (10,

24). Postoperative CSFR was confirmed biochemically and/or

required intervention (CSF diversion and/or operative repair)

(22–25).

2.1.2 Processing
The dataset contained 866 participants (726 TSA, 140 EEA).

Variables relevant to CSFR (as guided by consensus-derived protocol

and literature review) were extracted from the dataset (24, 25). The

primary outcome was CSFR. Prediction variables (predictors) were

divided into two prediction categories: ‘preoperative risk factors for

CSFR’ (risk factors) and ‘repair techniques used’ (repair techniques),

with 6 and 11 predictors respectively, as shown in Table 1. Tumour

type has been excluded as a risk factor predictor in this study, as many
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of the tumour types are too few in number for internal validation.

Ultimately, this results in three prediction categories: 1) risk factors;

2) repair technique; 3) risk factors and repair technique.

The participants were divided into three approach categories:

TSA; EEA; TSA or EEA. This, therefore, leads to nine total

subcategories for each method: a separate model for the three

approach categories multiplied by the three prediction categories.

One additional model was created using surgical approach as a

predictor, and hence the final number of subcategories for each

method is 10.

Binary values (1 for used, 0 for not used) were set for all 11 repair

technique predictors, and if missing, assumed not to be used and

hence set to 0. Binary values were also set for the risk factor predictors:

sex (male set to 1, female set to 0); BMI (>30 set to 1, ≤ 30 set to 0);

tumour size (tumour diameter ≥ 1cm set to 1, tumour diameter < 1cm

set to 0); intraoperative CSF leak (grade 1, 2, 3, or present but

unknown grade set to 1, not present set to 0). Intraoperative CSF

leak grade was not set as a categoric variable as conversion to a

nominal variable would split each grade into its own prediction

variable, leading to poorer correlations; and conversion to an

ordinal variable would require the loss of the present but unknown

grade category, representing an 18% loss of positive cases. Age was left

as a continuous predictor but normalised to a Gaussian distribution

with mean 0 and standard deviation 1. If any risk factor predictor was

missing, the participant was excluded. Binary values were also
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assigned to the surgical approach (TSA set to 0, EEA set to 1) and

CSFR (1 for present, 0 for not present), and if either was missing, the

participant was excluded.
2.2 Model development

2.2.1 Machine learning
Three ML methods have been used in this study: logistic

regression models (LRs); decision tree models (DTs); and neural

network models. These have been chosen as they represent the

increasing complexity of ML methods as measured by the number

of adjustable parameters present in each model. The code is written in

Python 3.8 (31, 32).

2.2.2 Validation
For validation, 5-fold cross-validation was used, with an 80:20

training to validation split for each fold. This was achieved by first

separating the participants by the two surgical approaches, and then

further separating the participants by the two CSFR outcomes,

leading to four subgroups of participants (TSA with CSFR; TSA

without CSFR; EEA with CSFR; EEA without CSFR). For each of

these subgroups, the participants were randomly split into 5-folds,

and assigned an appropriate fold number (1 to 5). Next, the

participants from each output subgroup were combined by fold
TABLE 1 Distribution details of variables (predictors, approach, outcome) split by approach categories.

Category Parameter Distribution

Approach Surgical Approach TSA 725 (83.4%) EEA 140 (16.2%) TSA or EEA (866)

Risk Factors

Median Age (IQR) 53 (41-64) years 51 (34-62) years 53 (40-63) years

Male Sex 355 (49.0%) 61 (43.5%) 416 (48.0%)

BMI > 30 210 (29.0%) 28 (20.0%) 238 (27.5%)

Tumour Diameter ≥ 1cm 606 (83.6%) 131 (93.6%) 737 (85.2%)

Revision Surgery 98 (13.5%) 21 (15.0%) 119 (13.8%)

Presence of Intraoperative CSF Leak 214 (29.5%) 79 (56.4%) 293 (33.9%)

Repair Techniques

CSF Diversion 29 (4.0%) 38 (27.1%) 67 (7.8%)

Dural Closure 0 (0.0%) 0 (0.0%) 0 (0.0%)

Dural Replacement 196 (27.0%) 66 (47.1%) 262 (30.3%)

Vascularised Flap 116 (16.0%) 90 (64.3%) 206 (23.8%)

Tissue Graft 221 (30.5%) 65 (46.4%) 286 (33.1%)

Synthetic Graft 203 (28.0%) 47 (33.6%) 251 (28.9%)

Tissue Glue 473 (65.2%) 114 (81.4%) 587 (67.7%)

Haemostatic Agent 439 (60.6%) 93 (66.4%) 532 (61.5%)

Rigid Buttress 31 (4.3%) 17 (12.1%) 48 (5.5%)

Gasket Seal 15 (2.1%) 11 (7.9%) 26 (3.0%)

Nasal Packing 518 (71.4%) 116 (82.9%) 635 (73.3%)

Outcome CSFR 28 (3.9%) 10 (7.1%) 38 (4.4%)
All variables are binary, excluding age which is continuous. For the binary variables the number of entries where the variable is present (represented as a 1) is given, with the round brackets giving the
percentage (%) proportion. For the singular continuous parameter (age), median; and inter-quartile range (IQR) are given instead.
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number, producing two groups separated by surgical approach.

Finally, these two approach groups were combined by fold number.

This means there are three groups separated by approach (TSA; EEA;

TSA or EEA), where the ratio between the two CSFR binary outputs

remains approximately the same for each fold as found in the data.

Moreover, the ratio between TSA and EEA in the ‘TSA or EEA’

approach group remains the same as found in the data. This group

methodology is displayed in Figure 1 and variable (predictors, surgical

approach, outcome) distributions for each of the 5-folds can be found

in Supplementary Material Table 3.

For each fold, after a model was trained on the other folds’

participants (training dataset), it was then evaluated on the fold

participants (validation dataset), and the evaluation metrics

recorded. After repeating this for all folds, the evaluation metrics

for both the mean-average and standard deviations were calculated

across the 5-folds. Hyperparameter tuning of all MLs were performed

through multiple runs on the validation dataset via grid search, and

for NNs this was done at the epoch level.

Given the number of participants with CSFR represents just 4.4%

of the data, for the training dataset, these participants were

oversampled randomly such that they represent 50% of the data.

This prevents overfitting to the entries without CSFR, where the

models would simply always predict CSFR not occurring, leading to

an effectively useless model. For evaluation metric calculations of both

the training and validation datasets, no such oversampling was done.
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2.3 Evaluation
2.3.1 AUC

The primary evaluationmetric to compareMLs is the ‘area under the

receiver operating characteristic’ (AUC) curve, which ensures a balance

of both the sensitivity (true positive rate) and specificity (true negative

rate), and these two are also given as secondary evaluation metrics.

2.3.2 SHAP

To compare a specific predictor’s contribution to a NN predicting

CSFR, ‘Shapley additive explanations’ (SHAP) scores were calculated.

The SHAP method does this by calculating all possible combinations

of the predictors, inputting each predictor combination into the

model, and evaluating the combination’s contribution to the model

on the validation dataset. By doing this, each predictor’s contribution

to the model is calculated in isolation of the other predictors while

also accounting for the non-linear relationships (33).

The magnitude (independent of score sign) of a SHAP score

determines how large of a contribution that predictor has to the NN’s

outcome prediction. The sign of a predictor’s score determines whether the

NN has an increased (if positive) or decreased (if negative) probability of

predicting a CSFR. A red dot means this probability is due to the predictor

being present, a blue dot means it is due to the predictor not being present.

If the red and blue dots have a clear boundary about a score of 0.0 and are

not overlapping, this is interpreted as the predictor’s value being highly

correlated with the NN’s outcome prediction. Similarly, the greater the
FIGURE 1

Participants breakdown displayed as a flowchart. The top section (identification) displays the included and excluded participants. The middle section (5-fold
splitting) displays how the 5-folds were created, including the breakdown by surgical approach and outcome. The predictor distributions of the overall
participants can be seen in Table 1, and the predicter distributions for each of the 5-folds can be seen in Supplementary Material Table 3 The bottom section
(evaluation example) displays an example of a model training on one fold’s training dataset, and then evaluated on the same fold’s validation dataset.
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overlap, the weaker the correlation. (Note purple dots are seen for age as it

is a continuous variable: here red represents the oldest participant; blue the

youngest participant; and purple for the ages in between.)
3 Results

3.1 Data

Out of the initial 866 participants, one case was removed due to

missing age, resulting in 855 cases (725 TSA, 140 EEA). Full

distribution details of all included variables (predictors, surgical

approach, outcome) are given in Table 1, and the distribution

across each of the 5-folds is given in Supplementary Material Table 3.
3.2 Machine learning

The trained models, and a guide on how to use them, can be

found in an open-access code repository (32).

3.2.1 Logistic regression
The LRs were created using scikit-learn 0.23.2 (34), and liblinear

was chosen as the optimisation algorithm. The inverse of

regularisation strength (C-value) was chosen as a hyperparameter

to be tuned, and found to have an optimal value of 0.1, with the

remaining parameters set as default values as stated in (35).

3.2.2 Decision tree
The DTs were created using scikit-learn 0.23.2 (34), and

‘classification and regression trees’ (CART) was chosen as the tree

algorithm. The maximum tree depth was chosen as a hyperparameter

to be tuned, and found to have an optimal value of 4, with the

remaining parameters set as default values as stated in (36).
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3.2.3 Neural network
The NNs were created using PyTorch 1.8.1 (37) and run on an

Nvidia 2070 Super GPU using CUDA 11.2. A feedforward network

was created with a linear input layer of 8 neurons, 3 linear hidden

layers with 12 neurons each, and a final linear output layer with one

neuron, followed by a sigmoid activation function with a 0.5 threshold

for CSFR classification. For the non-output layers, the ‘rectified linear

activation unit’ (ReLu) was used as the activation function, with a 0.35

dropout. Binary cross-entropy was used as the loss function and

‘stochastic gradient descent’ (SGD) was used as the optimiser, with

learning rate; momentum; batch size; and number of epochs

hyperparameters to be tuned. A learning rate of 0.001; momentum

of 0.9; batch size of 100; and number of epochs equalling 100 were

found to be optimal.
3.3 Evaluation

3.3.1 AUC
From Figure 2 and Table 2, it can be seen that the NNs were able

to predict the existence of CSFR across all prediction categories and

approach categories with an AUC > 0.50 (an AUC of 0.50 is

equivalent to a model that randomly predicts CSFR). Both LRs and

DTs performances are outperformed by NNs, and for a few instances

have an AUC < 0.5.

Comparing approach categories, it can be seen all three categories

have similar NNs performances, but EEA performs worse than TSA

for LRs. After mean-averaging across approach categories, and then

comparing NNs performance across prediction categories, it can be

seen risk factors slightly outperform repair techniques, which are in

turn outperformed when all predictors (excluding surgical approach)

are used. The inclusion of surgical approach as a predictor does not

improve NN performance.
FIGURE 2

AUC of MLs displayed as a vertical bar chart. The AUC scale ranges from 0.35 to 0.75, with a thicker line at 0.50. Error bars representing the standard
deviation across the 5-folds are not given. The AUC for LRs in the risk factors EEA case is not displayed as the AUC (0.22) is too low. The full values,
including the standard deviation error bars, can be seen in Table 2.
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As seen in Table 2, a high AUC in the training dataset does not

necessarily correspond to a high AUC in the validation dataset. In

particular,

for DTs, the issue is exacerbated. For example, for the TSA repair

techniques, a 0.86 training AUC translates to a 0.37 validation

AUC for DT, compared to a 0.79 training AUC to 0.67 validation

AUC translation for LR, or 0.90 training AUC to 0.71 validation AUC

translation for NN.
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3.3.2 SHAP
Figure 3 displays the SHAP scores for each predictor for two NNs

(TSA risk factors and repair techniques; EEA risk factors and repair

techniques). Supplementary Figures 1, 2 display the SHAP scores for

the remaining eight NNs and Supplementary Table 2 shows the SHAP

correlation coefficients for all ten NNs - consistent with the trends

shown in Figure 3. Comparing approach categories, the SHAP scores

are larger in magnitude for TSA than EEA. Comparing prediction
TABLE 2 Performance of MLs.

Predictor Category Surgical
Category

ML Method Training Validation

AUC Sensitivity Specificity AUC Sensitivity Specificity

Risk Factors

TSA LR 0.74±0.02 0.75±0.02 0.64±0.02 0.68±0.10 0.64±0.11 0.63±0.04

DT 0.79±0.02 0.63±0.04 0.79±0.01 0.69±0.18 0.56±0.21 0.79±0.02

NN 0.83±0.02 0.78±0.12 0.71±0.19 0.75±0.08 0.69±0.17 0.70±0.18

EEA LR 0.62±0.02 0.75±0.08 0.38±0.05 0.22±0.09 0.30±0.24 0.40±0.15

DT 0.87±0.05 0.93±0.10 0.68±0.12 0.47±0.18 0.30±0.40 0.62±0.06

NN 0.59±0.10 0.80±0.40 0.30±0.37 0.68±0.08 0.80±0.40 0.28±0.37

TSA or EEA LR 0.69±0.02 0.69±0.05 0.61±0.02 0.64±0.11 0.65±0.19 0.61±0.04

DT 0.83±0.01 0.65±0.04 0.83±0.04 0.59±0.12 0.36±0.17 0.81±0.03

NN 0.79±0.03 0.63±0.17 0.78±0.12 0.68±0.08 0.45±0.19 0.76±0.12

Repair Techniques

TSA LR 0.68±0.04 0.62±0.07 0.61±0.09 0.56±0.14 0.43±0.26 0.59±0.09

DT 0.91±0.05 0.93±0.15 0.78±0.15 0.49±0.22 0.10±0.20 0.74±0.13

NN 0.74±0.08 0.73±0.20 0.61±0.23 0.66±0.08 0.60±0.21 0.61±0.23

EEA LR 0.81±0.05 0.80±0.10 0.64±0.07 0.54±0.16 0.40±0.37 0.56±0.12

DT 0.79±0.04 0.75±0.03 0.69±0.05 0.57±0.06 0.53±0.13 0.67±0.05

NN 0.76±0.11 0.75±0.39 0.59±0.29 0.72±0.14 0.70±0.40 0.50±0.37

TSA or EEA LR 0.69±0.01 0.70±0.04 0.59±0.04 0.58±0.06 0.50±0.16 0.59±0.04

DT 0.77±0.04 0.73±0.15 0.68±0.08 0.46±0.07 0.35±0.25 0.68±0.12

NN 0.77±0.05 0.72±0.20 0.70±0.17 0.62±0.05 0.49±0.22 0.69±0.17

Risk Factors and Repair Techniques

TSA LR 0.79±0.01 0.73±0.04 0.68±0.01 0.67±0.09 0.49±0.25 0.67±0.06

DT 0.86±0.04 0.88±0.08 0.72±0.05 0.37±0.16 0.20±0.24 0.67±0.11

NN 0.90±0.05 0.89±0.16 0.80±0.13 0.71±0.09 0.49±0.29 0.80±0.10

EEA LR 0.81±0.03 0.85±0.09 0.59±0.05 0.42±0.20 0.40±0.37 0.47±0.07

DT 0.75±0.02 0.76±0.07 0.61±0.06 0.50±0.07 0.41±0.10 0.59±0.05

NN 0.79±0.10 0.58±0.38 0.80±0.18 0.72±0.09 0.50±0.45 0.78±0.18

TSA or EEA LR 0.75±0.01 0.70±0.04 0.66±0.01 0.65±0.10 0.57±0.21 0.64±0.04

DT 0.84±0.01 0.78±0.15 0.73±0.15 0.59±0.13 0.47±0.17 0.70±0.16

NN 0.88±0.05 0.91±0.14 0.67±0.17 0.73±0.03 0.63±0.31 0.64±0.17

All (Including Approach)

TSA or EEA LR 0.76±0.01 0.73±0.03 0.67±0.01 0.65±0.09 0.59±0.24 0.65±0.03

DT 0.91±0.03 1.00±0.00 0.74±0.07 0.43±0.19 0.20±0.40 0.67±0.07

NN 0.91±0.02 0.96±0.06 0.69±0.06 0.71±0.06 0.57±0.13 0.68±0.06
f

Values are given to two decimal places in the form ‘mean ± standard deviation’ calculated over the 5-fold cross-validation. Bolded values highlight the best performing metric in the (subset, approach)
category for that column’s performance metric.
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categories, the SHAP scores for risk factors have a clearer boundary

between not present and present than repair techniques.

Focusing on TSA risk factors, the presence of intraoperative CSF

leak appears to be the strongest predictor of CSFR within the NN

(Figure 3 and Supplementary Table 4). This is followed by younger

age, elevated BMI, revision surgery, and male sex seem to also increase

the probability of CSFR, albeit with a weaker correlation. EEA risk

factors have a much smaller magnitude and weaker correlation, with

intraoperative CSF leak having the strongest relative relationship with

CSFR incidence (Figure 3 and Supplementary Table 4).

The impact of repair techniques on CSFR is less clear. In TSA, the

use of CSF diversion, vascularised flaps, rigid buttresses +/- gasket

sealing, and tissue glues appear to be protective against CSFR

(Figure 3 and Supplementary Table 4). However, synthetic grafts,

and to a lesser extent, dural replacement and tissue grafts appear to be

associated with CSFR occurrence. For EEA, CSF diversion, gasket

sealing, and to a lesser extent tissue grafts and haemostatic agents

appear to reduce CSFR incidence. Synthetic grafts, vascularised flaps

and dural replacement appear to be associated with CSFR occurrence.
4 Discussion

4.1 Principal findings

In this study, three ML methods were applied to a complex,

multicentre, prospective skull base neurosurgery database

encompassing CSFR and relevant predictor data (risk factors and

intraoperative repair techniques).

Firstly, NNs outperformed LR and DT for CSFR prediction, with

a mean AUC of 0.80 (0.70-0.90) for TSA and 0.78 (0.60-0.96) in EEA,

when all risk factor and intraoperative repair data were integrated into

the model. This is likely explained by NNs’ known ability to learn

complex non-linear relationships, even in the context of a large
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number of variables (27, 28). In this dataset, this likely reflects the

use of multiple repair techniques synergistically and in layers, tailored

to risk factors encountered on a case-by-case basis (10). NNs achieved

this despite the class imbalance caused by a CSFR rate lower than the

literature standard, with oversampling 5-fold validation (25, 28).

Furthermore, there was an iterative improvement in NN

performance with larger datasets, with TSA models (725 cases)

generally outperforming EEA models (140 cases), and the use of

risk factor data with intraoperative repair technique data improved

CSFR prediction when compared with using a single data category.

Using SHAP scores, the relationship between predictor variables

(risk factors and intraoperative repair techniques) was explored for

their relative predictive value within NN models. The presence of

intraoperative CSF leak was the most prominent risk factor for CSFR

in TSA and EEA, which is in line with existing studies (7, 10, 20, 38,

39). The presence of elevated BMI and revision surgery were also

associated with CSFR for the larger TSA dataset, again reflected in the

literature (16). Modern repair regimes are tailored to risk factors, and

this analysis consolidates pertinent factors to guide surgeons in repair

technique decision-making (10).

When compared with traditional statistical models (e.g.,

multivariate logistic regression models), which suggested tissue

glues alone may have a benefit in TSA, NN SHAP analysis has

highlighted new potential relationships within the dataset, as well as

reproducing the potential impact of tissue glues on CSFR rates (25).

Specifically, CSF diversion and gasket sealing appear to be strong

predictors of the absence of CSFR in both TSA and EEA – in line with

RCT evidence (lumbar drainage) and numerous institutional series

(gasket sealing) (10, 20, 40–42). Synthetic grafts and dural

replacements (which often have overlapping materials) were

associated with the development of CSFR in both TSA and EEA.

Whilst autologous tissue repair had contradictory results depending

on approach nasoseptal flaps (associated with CSFR in EEA, but

protective against CSFR in TSA) and tissue grafts (associated with
FIGURE 3

SHAP scores for predictors displayed as a bee diagram for the predictor category ‘risk factors and repair techniques’, where the NNs are split by
approach. Scores are shown for each predictor across all 5-folds. As shown in the ‘predictor value’ legend – a high value is indicated in red, and a low
value is indicated by blue; for binary variables this means red indicates a value of 1 (i.e. present) and blue indicates a value of 0 (i.e. not present).
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CSFR in TSA, but protective against CSFR in EEA). The reasons for

this are difficult to further ascertain within the NN structure, but

theoretically may be due to differences in the groups of patients

undergoing these repairs (for example, patients deemed at higher risk

of CSFR at a baseline in EEA undergo nasoseptal flap) (25).
4.2 Comparison to literature

To our knowledge, only one other study has applied ML to a

similar research question. However, this study examined

intraoperative CSF leak (rather than postoperative CSFR), had a

more imaging-centric dataset, was single centre (rather than 30

centres), and resultantly smaller volume (154 vs 855 cases) (29).

Using a NN, Staartjes et al. were able to identify risk factors (higher

Hardy grade, revision surgery, older age) whereas conventional

statistical methods were unable to do so, echoing our experience in

this study (29). There are however numerous studies utilising

traditional statistical techniques in institutional case series in this

field. Patel et al. use logistic regression models in a large volume single

centre series, finding elevated BMI and hydrocephalus as significant

risk factors for CSFR (43). Hannan et al. used similar methods and

found that surgical experience, intraoperative CSF leak, Cushing’s

disease and the absence of nasoseptal flap use as CSFR risk factors

(38). Similarly, Xue et al. highlighted intraoperative CSF leak as a key

CSFR predictor and recommend nasoseptal flaps and lumbar

drainage to decrease its incidence (39). Finally, Cai used a Least

Absolute Shrinkage and Selection Operator (LASSO) model with

multivariate logistic regression in a single centre moderate volume

data set in the context of intraoperative CSF leak prediction,

suggesting tumour size and preoperative albumin as key

determinants (44).
4.3 Strengths and limitations

One of the strengths of this study is the large number of centres

the data has come from, leading to data diversity, and hence

improving the generalisability of the models. Overfitting was

mitigated against in NNs using drop-out between layers, whilst

evidence of this remained in LR and DT models (mismatch

between training and validation datasets). More data (with more

CSFR cases), from more countries, and an external validation dataset

would be useful to improve model performance and generalisability

further. Moreover, although our study is prospective with an

internally validated dataset, observational studies inherently contain

various types of bias, and so the correlations made may not be

reflective of the overall population.

Another strength of the study is the large number and variety of

predictors used, which improves model performance. On the other

hand, the choice of predictors is also a limit, as other predictors, (such

as type of tumour); or more granular versions of the predictors (such

as intraoperative CSF leak grade rather than binary presence), have

not been used. Furthermore, the range of ML models trialled, and the

use of SHAP analysis, showing how and why NNs outperform LRs

and DTs is a relative study strength. Nevertheless, the choice of NNs is

limited to one simple architecture, and it is unknown whether more
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sophisticated architectures will improve performance in the future.

Finally, this study shares the common issue of interpretability that

many ML studies have, particularly the SHAP analysis, which may

affect model usability and uptake by clinicians.
5 Conclusion

Three ML methods were applied to a complex, multicentre,

prospective skull base neurosurgery database to predict CSFR

following endonasal skull base surgery, and prediction variables that

are most important for its development. NNs outperformed traditional

statistical models and other ML models in CSFR prediction. NNs also

uncovered relationships between risk factors and repair techniques on

CSFR, which were otherwise not detected using traditional statistical

approaches. These models will be improved further with larger and

more granular datasets, improved NN architecture, and external

validation. In the future, the next generation of these predictive

models could be used to assist surgical decision-making and to

support more individualised patient counselling.
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Glioblastoma a deadly brain cancer that is nearly universally fatal. Accurate

prognostication and the successful application of emerging precision medicine

in glioblastoma relies upon the resolution and exactitude of classification. We

discuss limitations of our current classification systems and their inability to

capture the full heterogeneity of the disease. We review the various layers of data

that are available to substratify glioblastoma and we discuss how artificial

intelligence and machine learning tools provide the opportunity to organize

and integrate this data in a nuanced way. In doing so there is the potential to

generate clinically relevant disease sub-stratifications, which could help predict

neuro-oncological patient outcomes with greater certainty. We discuss

limitations of this approach and how these might be overcome. The

development of a comprehensive unified classification of glioblastoma would

be a major advance in the field. This will require the fusion of advances in

understanding glioblastoma biology with technological innovation in data

processing and organization.
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Gliomas represent the most common primary brain cancer.

They have distinct biological features and clinical behavior, and

account for nearly 80% of the malignant brain tumors in adults

(1, 2). The commonest subtype of glioma is glioblastoma a deadly

brain cancer that is nearly universally fatal. Understanding of

natural history, accurate prognostication, therapeutic efficacy, and

the successful application of emerging precision medicine in

glioblastoma relies upon the resolution and exactitude of

classification. The WHO classification of Central Nervous System

tumors began in 1970 (3). The first edition was largely based on

anatomical and histological findings. Many of the major shifts in

neuro-oncology and glioblastoma understanding over the

intervening years have been represented in the subsequent WHO

classification updates and the associated cIMPACT-NOW

statements (4). A major conceptual leap was made in 2012 with

the recognition of key subclassification of glioblastoma based on

IDH mutation status (10.1038/nature10860.). This single mutation

cleaved glioblastoma into two major subtypes with differing

etiology, therapeutic vulnerability, and prognosis. In 2021 the

significance of this stratification became codified by separating

glioblastoma (IDH wild type) fully from grade 4 diffuse

astrocytoma with IDH mutation (5).

In addition to the formal WHO classification there have been a

multitude of differing stratifications of glioblastoma categorizations

based on transcriptional profiles. A major development was in 2006

when Phillips et al. published a transcriptional classification of

high-grade glioblastoma (6). This was advanced in 2010 when

Verhaak et al. used data derived from The Cancer Genome Atlas

to sub-stratify into 4 subgroups; proneural, mesenchymal, classical,

and neural (7, 8). These were reported to have differing prognosis

and treatment vulnerabilities. Further modifications and

refinements to transcriptional groups, including single-cell

profiling of both the tumor cells and microenvironmental
Frontiers in Oncology 02101
components such as the neuro-immune niche have since been

proposed by several groups including Neftel et al (9) and

Richards et al (10). Another layer of complexity was added by

epigenetic DNA-methylation profiling. This has already had

significant clinical impact in supporting diagnosis and risk

stratification (11, 12). Single-cell level profiling is not limited to

transcriptional RNA profiling, it can also be applied across a range

of biological analytic technologies including proteomic analysis -

this opens up unparalleled levels of biological data.

Technologies in spatial-omics enable a greater understanding of

cellular organizations and interactions within a tissue of interest.

This is particularly of interest in cancer biology and can be applied

at microscopic and super-resolution levels across the full range of

spectral wavelengths and including spectroscopy data (13–16).

However, histology, selective mutations, transcriptional

profiles and epigenetic changes do not tell the full story of

glioblastoma diversity. One of the major barriers to successful

new therapies in glioblastoma is considered the intra- and inter-

heterogeneity of the tumors and this extends beyond these

molecular sources of variability. In addition to transcriptional

and epigenetic variability, anatomical location and structural

features – including presence of cysts, degree of necrosis,

proliferation indices etc (17), variability in radiomic findings

(18), whole genome genetic/mutational characteristics

(potentially including variability in extra-chromosomal sites)

(19, 20) metabolic and lipidomic (21) and proteomics (22) can

all be used to codify glioblastoma.

Integrating all these variables into a unified classification which

reflects the diversity of glioblastoma states and in a clinically relevant

manner, represents a daunting task (see Figure 1). Without this

nuanced lamination we continue to risk masking the efficacy of new

therapies by disease heterogeneity leading to variability of response.

Likewise, our ability to accurately provide disease prognostication

will remain limited.
FIGURE 1

Example of multisource data input and integration for deep learning guided classification of glioblastoma.
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Artificial intelligence (AI) tools provide the opportunity to

organize and integrate these factors to generate clinically relevant

disease sub-stratifications, which would help predict neuro-

oncological patient outcomes with greater certainty. With enough

data, DL (deep learning) methods based on neural networks have

emerged as a leading approach for capturing highly informative

features in oncology datasets. Using these tools, rapid progress has

been made in each of the modalities described above. However,

unanswered questions remain about how multimodal data can be

integrated and a unified classification model be built.

A key requirement of multimodal integration is that each data

source complements the others, enhancing information content

beyond the scope of any single modality. For example, radiological

data on macroscopic tumor morphology, as well as molecular and

histological data, describe disease from different perspectives and

scales. Each data source in a unified model should be at least

partially orthogonal to the next.

While multimodal patient stratification methods have been

developed for cancer patients in general, these mainly rely on

multi-omic (multi-dimensional genomic data) in the absence of

radiological or clinical information (23), and there currently exist

few examples which utilize multimodal strategies for glioma patients

specifically. Among these, there have been single-center studies which

stratify glioma patients using multiparametric MRI, molecular and

transcriptome information using kernel based learning (24), and deep

learning approaches to predict survival which integrate both

histological and genomic (but not radiological) information based

on gliomas from The Cancer Genome Atlas (25, 26). These studies

suggest that multimodal integration improves patient stratification

and outcome prediction over unimodal methods.

Given its purported success, what is limiting this type of work?

Many major limitations are simply related to the lack of availability

of large, annotated datasets with multimodal information streams,

which are sufficiently rich and class-balanced that the breadth of

glioma heterogeneity can be encompassed. Other limitations

pertain to how individual data modalities should be fused. It is

unclear whether raw data should be concatenated from the start and

used to train a single model. Or, alternatively, a composite model

should be built from learned features, that are each derived from

multiple single modality models (27).

In this regard, novel dimension-reduction and clustering

methods (28), alongside other techniques which appropriately

weigh will help in leveraging the vast amount of collected

multimodal parameters for each patient and help prevent

overfitting (29, 30). Finally, interpretation of deep learning

models is notoriously difficult, and if clinicians want to

understand how a unified model relates to the disease process,

methods to make such models explainable are urgently needed.

Only by developing a comprehensive unified classification of

glioblastoma can we optimize our prognostication and maximize
Frontiers in Oncology 03102
the chance of precision therapies being successful. A system that

allows integration of ever-increasing complexity and nuance will

allow flexibility and adaption to new discoveries and therapies.

Given the multiple layers of data involved in glioblastoma biology

and their deep complexity and inter-related influence the

consolidation and organization into a utilizable structure will

require novel approaches. The application of artificial

intelligence and deep machine learning in oncology is

expanding at an explosive rate with numerous potential

applications (31, 32). These technologies will be instrumental in

achieving this final goal of a single unified classification of

glioblastoma heterogeneity.
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