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Editorial on the Research Topic 
Bioinoculants with nano-compounds to improve soil health: a step toward sustainable agriculture


INTRODUCTION
Modern agriculture is largely concerned with the sustainable cultivation of cereals and other food-based crops to meet the food difficulties of a growing worldwide population. However, intensive agricultural methods and widespread use of agrochemicals cause soil fertility deterioration, pollution, disturbance of soil diversity, pest resistance and declines in crop yield (Singh and Singh, 2017; Chaudhary et al., 2022). As a result, researchers are changing their focus to more environmentally friendly fertilizing technologies in order to preserve agriculture sustainability (Parveen et al., 2023; Srivastava et al., 2023). The usefulness of beneficial microbes and nanoparticles have been well recognised in reducing the negative impacts of agrochemicals (Mushtaq et al., 2020; Chaudhary et al., 2021; Shah et al., 2021). Applying different nanoparticles/nano-based fertilizers to boost crop production has also resulted in a revolution in agriculture. Given their mutually advantageous qualities, bioinoculants and NPs can be utilized in conjugation to maximize benefits (Kukreti et al., 2020; Agri et al., 2021). However, combination of both or their synergistic use has improved crop-modulating effects in terms of crop production and soil fertility restoration (Kumari et al., 2020; Agri et al., 2022). Bioinoculants and Si-NPs use significantly affects sugar beet growth and yield under soil salinity stress (Alharbi et al., 2022a). Combined application of Azotobacter, Pseudomonas spp. along with silica NPs (Si NPs: 500 mg/L), reduce the negative effects of irrigation with saline water on the growth and productivity of barley (Alharbi et al., 2022b). Silver NPs and Bacillus cereus promoted maize plant development, reducing harmful fungal pathogens growth (Kumar et al., 2020). Silicon dioxide NPs (100 ppm) and B. cereus-Amazcala were applied together, and improved the chilli pepper growth (Ferrusquía-Jiménez et al., 2022). We accepted 11 papers on this Research Topic. The main points of the Research Topic are discussed below.
BIOINOCULANTS AND NANOPARTICLES
According to Adeleke et al. nanomaterials derived from endophytic microorganisms can minimize the abiotic stresses on plants, increase photosynthesis, nutrient absorption and microbial diversity and improved plant and soil health parameters. Applying nano-growth enhancers derived from beneficial bacteria like nano-fertilizers, nano-herbicides and nano-pesticides is considered safe and environmentally benign in assuring sustainable agriculture.
Ayilara et al. provide a wide-ranging summary of the growing use of biopesticide, phyto-pesticides, nano-pesticides and nano-biopesticides to combat plant diseases, enhance plant nutrition and provides crop protection. These are good substitutes for chemical pesticides because they are affordable, have a specific mode of action, are environmentally beneficial and do not create greenhouse gases. As a result, their addition to the currently used synthetic pesticides will be a more effective way to protect crops from pests and ensure sustainable agriculture.
Upadhayay et al. emphasize on the combined effect of different microbes and nanomaterials to maximize the crop production for the growing people, amelioration of biotic and abiotic stress, maintain soil health and lessen the massive dependence on chemical-based fertilizers.
Mishra et al. developed and utilized the urea nanoparticles as nano-biofertilizers. The foliar spray of calcium phosphate urea NPs (CaP-U NPs) on finger millet seeds showed improvement in plant growth parameters such as shoot length, chlorophyll content and enzymatic activities like guaiacol peroxidase and superoxide dismutase under drought circumstances. They reported that CaP-U NPs (0.5%–1%) were effective for growth indices and defence activation.
Kashyap et al. concentrated on the benefits of microbial inoculants and their potential and mechanism of action for increasing agricultural productivity. They also highlighted the screening, characteristics, and importance of bioinoculants as biocontrol agent for controlling plant disease against different pests and insects.
Ayilara et al. examined the role of microorganisms and nanotechnology in cleanup process of harmful pollutants. They discussed about the natural attenuation method of remediation, which encourage and improved the ability of microbes in degradation of pollutants. They also studied nano bioremediation’s role in deleting harmful contaminants from the environment.
Ayilara and Babalola talked about several remediation techniques. They discussed the use of microbial enzymes for cleanup and function of various microorganisms, including bacteria, fungi and algae. They also discussed how various microbial consortiums might be a more effective approach to bioremediation.
Ahamad et al. evaluated the efficacy of beneficial microorganism such as arbuscular mycorrhizal fungi (AMF) and vermicompost, both separately and together in reducing the detrimental effects of Meloidogyne incognita on carrot growth. Applying AMF in carrot plants repressed root galls and nematode inhabitants and improved plant growth, carotenoid, chlorophyll and phenol content, respectively. AFM and vermicompost may be useful alternatives to plant development under biotic stress conditions.
Zhang et al. reported that application of different microbial inoculants, such as Bacillus velezensis and Brevundimonas faecalis, inhibit the growth of pathogenic fungus. These microbial inoculants also improved the plant length and seedling biomass while controlling oat root rot.
Naitam et al. demonstrated the capacity of the halophilic archaea Halolamina pelagica CDK2 to promote wheat growth and to diminish the negative effects of salinity. This strain possesses the potential to produce indole acetic acid and solubilize the essential nutrient such a potassium, phosphorus and zinc, which involved in promoting plant growth. The inoculated treatments showed significantly higher amounts of total protein, chlorophyll and sugar content in presence of haloarchaea. Additionally, the inoculation caused a significant decrease in the antioxidant activity.
Bhandari et al. offers a thorough understanding on nano-biochar applications in different fields. Nano-biochar modulates the transport and absorption of essential micro and macronutrients and harmful pollutants. Nano-biochar is a detoxicant for managing waste, reducing soil erosion and preserving soil nutrients. Additionally, nano-biochar serves as a biosensor for the detection and monitoring of harmful pollutants.
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Plant responses to abiotic stresses through diverse mechanisms and strategic measures in utilizing nanomaterials have positively impacted crop productivity. Stress can cause membrane depletion, reactive oxygen species formation, cell toxicity and death, and reduction in plant growth. However, nanomaterials can mitigate some of the negative impacts of abiotic stresses and enhance crop yield. Some endophytic microbes can synthesize nanomaterials, which can maintain and enhance plant health and growth via nitrogen fixation, siderophore production, phytohormones synthesis, and enzyme production without any pathological effects. Nanoparticle-synthesizing endophytes also help boost plant biochemical and physiological functions by ameliorating the impact of abiotic stresses. The increase in the use and implementation of nano-growth enhancers from beneficial microbes, such as nano-biofertilizers, nano-pesticides, nano-herbicides, and nano-fungicides are considered safe and eco-friendly in ensuring sustainable agriculture and reduction of agrochemical usage. Promisingly, nanotechnology concepts in agriculture aim to sustain plant health and protect plants from oxidative stresses through the activation of anti-oxidative enzymes. The mechanisms and the use of nanomaterials to relieve abiotic plant stress still require further discussion in the literature. Therefore, this review is focused on endophytic microbes, the induction of abiotic stress tolerance in plants, and the use of nanomaterials to relieve abiotic plant stresses.
Keywords: environmental stressors, food security, plant health management, soil-plant microbe interactions, sustainable development goal 2, zero hunger
INTRODUCTION
The environmental problems linked to climate abiotic-induced stresses pose serious threats and ecological pressures on soils and plant health, limiting crop productivity (Varshney et al., 2011). Thus, the need to devise a problem-solving approach to enhance crop yield under stress becomes imperative. The biotic factors, such as bacterial and fungal pathogens, insect and nematode pests as well as abiotic factors such as temperature, salinity, drought, flooding, heavy metals, and pH cause a large number of modifications in plant biochemical and physiological processes (Kumar et al., 2019). The approaches to mitigate these stresses in crops should be targeted to maximally address the food supply and demand of the world population. Over time, the use of chemical fertilizers to improve crop productivity has been employed, but with profound detrimental effects on the ecosystems (Adeleke and Babalola, 2022). Hence, developing modern technology remains important to ensure Sustainable Development Goals (SDGs) without any significant negative impact on the ecosystem.
Nanotechnological approaches have been employed in agriculture, industry, and medicine (Audah, 2019; Elemike et al., 2019; Zulfiqar et al., 2019). Nanoparticles (NPs), are characterized by sizes ranging from 1 to 100 nm in diameter, various physical, chemical features, biochemical activity, and increased reactivity (Dutta and Sugumaran, 2021). Different methods have been employed in the synthesis of NPs, which include inert gas condensation, physical ball milling, biological and chemical processes (Aboyewa et al., 2021). The biological means of synthesizing NPs can be achieved by harnessing some endophytic microbes, such as bacteria and fungi (Ahmad F. et al., 2012; Eid et al., 2021). Some examples of NPs produced by endophytic microbes include titanium, platinum, cadmium, gold, zirconium, selenium, magnetite, usnic acid, gold-silver alloy, uraninite, tellurium, and palladium (Aboyewa et al., 2021). NPs from endophytic fungi have been reported to play an important role in plant disease management due to the presence of NP-assisted genes (Sonawane et al., 2022).
Endophytic microbes are microbes inhabiting the internal tissues of plants, which can be beneficial or pathogenic (Adeleke and Babalola, 2022). The beneficial types help ensure sustainable plant and soil health under a variety of stresses including drought stress (Premachandra et al., 2020). Some of these microbes also possess the ability to synthesize nanomaterials, which can be exploited in maintaining plant health without any pathological effects (Sonawane et al., 2022). Promisingly, NP-synthesizing endophytic microbes can help boost plant physiological functions and can be used as bioinoculants in developing eco-friendly agriculture. Nevertheless, information on the actual mechanisms and the use of nanomaterials to relieve abiotic plant stresses have not been fully discussed in the literature. Depending on the type, application and use, various NPs of carbon-based, metallic and non-metallic and organic polymers have been developed (Kumar et al., 2021; Fadiji et al., 2022b). The use and implementation of known nano-growth enhancers, nano-biofertilizers, nano-pesticides, nano-herbicides, and nano-fungicides are on the increase in modern agricultural systems (Imade et al., 2022; Sonawane et al., 2022). Based on experience to date, this approach is considered safe, eco-friendly for improved soil nutrition and crop yield.
Plants are prone to different environmental stressors, such as ultraviolent light, drought, flooding, salinity, temperature extremes (low or high), and the presence of heavy metals (Chaudhary et al., 2021c). All of these factors can induce oxidative stress causing membrane depletion, reactive oxygen species formation, cell toxicity and death, which cause a reduction in plant growth (Thomas and Puthur, 2017; Hasanuzzaman et al., 2019). Regardless of the nature of the abiotic stress, NPs may be involved in plant cellular metabolism, growth, and stress protection (Ajilogba et al., 2021). Also, some NPs exhibit the ability to modify the expression of genes involved in electron transport, energy transport, cell biosynthesis, and cell organization under stress conditions (Pandey, 2018; Sonawane et al., 2022). Thus, many studies have validated the multifunctional attributes of NPs in crop improvement (Abd-Alla et al., 2019; Chavan and Nadanathangam, 2019; Kibbey and Strevett, 2019).
Notwithstanding the positive attributes of NPs, information on the mechanisms of how NPs alleviate stresses and how endophytic microbes induce plant stress tolerance are still required. Consequently, this review addresses the role of endophytic microbes in inducing abiotic stress tolerance in plants, and the use of nanomaterials to relive abiotic plant stresses.
MICROBE-NANOMATERIAL INTERACTIONS
Biological activities through alterations in the function and structure of bacteria can be unveiled using modern and advanced nano-technological processes (Chaudhary et al., 2021b). Recent methods are been used to assess the surface chemistry, structural form of NPs and their effects on biocidal activities (Noukelag et al., 2022; Rehman et al., 2022). Examples of ecofriendly nano-sized agents include a variety of phyto/zooplankton, fungal spores, bacteria, and other microorganisms. NPs react differently with microbes, which shows that the microbial cell surfaces can differ substantially in their reactivity and attraction (Gangadoo et al., 2022). Silica NPs react effectively with microorganisms of different groups (Wang et al., 2020). For instance, bacteria and microalgae are smaller with less reactive attributes compared to fungal spores. A comprehensive mechanism showing the harmful effect of metallic nano-sized particles on bacteria cells is still required. In addition, there is a need for special attention to the structural alteration of bacterial cells using in vitro studies.
The continuous upsurge in the cases of fungal infections in immunocompromised patients, which require urgent medical treatment has caught the attention of most researchers. Meanwhile, the need for an ecofriendly measure for treating mycoses and identification of the source of infection has prompted researchers toward the use of metallic NPs (Singh et al., 2019; Soliman et al., 2021). Several studies have assessed the antifungal effects of NPs (Khatoon et al., 2018; Ahmadpour et al., 2021; Sadek et al., 2022). A study by Masoumizadeh et al. (2022) reported the effect of AgNPs on fungal pathogens, Candida spp. Also, the findings of Santhoshkumar et al. (2019) on the toxicological ad antidermatophytic activity of AgNPs synthesized using leaf extract of Passiflora caerulea revealed the maximum antifungal activities against dermatophyte, Trichophyton rubrum.
NANOMATERIAL-MICROBIAL COMPATIBILITY
Bacteria and NPs
Plasmolysis of bacteria is a slaying event that involves the breakdown of cytoplasmic components and morphological reduction of cytoplasm due to the loss of intracellular components and plasma membrane contraction from the cell wall. It has been reported that metallic NPs induce pleiotrophic effect on bacteria cells. Nanomaterials bind with bacteria proteins (thiol moieties) hindering their activities, forming an attachment with the cell membrane and causing cell death. Consequently, altering cell permeability by obstructing the activities of electrons in cells and obstructing respiration (Radzig et al., 2013; Mohanty et al., 2014). ROS generated as a result also inhibits respiratory enzymes. Oxidized DNA precursors result in DNA lesions (Park et al., 2009).
Advances in the cell to the non-cell formation, the reaction against resistant, persistent strains and swarming motility have encouraged researchers about bacterial genes encoding guanine nucleotide exchange factors. NPs enhance the activities and response of genes encoding guanine nucleotide exchange factors, which gives scientists better insights into improved NPs applications as antibacterial agents. Because of these highlighted responses, several studies have been conducted to verify the expression of bacterial genes to nano-sized particles (Khati et al., 2018). Exposure to metallic NPs revealed consistent gene patterns using transcriptional analytical methods such as RT qPCR or microarray. For instance, when E. coli was subjected to AgNPs, it exhibited a distinctive expression in gene functions, such as homeostasis of iron, silver and copper, which regulate the oxidative balance via the use of microarray experiment and its features to metabolize sulfur (Nagy et al., 2011; McQuillan and Shaw, 2014). In other studies, researchers assessed alterations in gene expression of bacteria subjected to the treatment with carbon NPs. A study by Kang et al. (2008) showed the leakage of cellular material, disrupted membrane, reduced viability and metabolism of E. coli when subjected to single-walled nanotubes. In another study by Pelletier et al. (2010) using microarray, E. coli was exposed to cerium oxide NPs, the NPs upregulated several oxidoreductases sowing depletion in iron deficiency, oxidation stress and cellular respiration. Yang et al. (2012b) exposed Pseudomonas aeruginosa to quantum dots and genes controlling metal efflux transporters and oxidative stress were upregulated.
To check the compatibility of nanomaterials and bacterial cells, Dimkpa et al. (2012) showed that NPs could also affect microorganisms and plants by causing modifications in cellular levels of siderophores (pyoverdine) of plant growth-promoting bacterium (Dimkpa et al., 2012).
Fungi and NPs
Almost all NPs are capable of creating holes in the membrane of most fungal cells. The alteration in physiological traits of fungi releases biomolecules resulting in cell death. In a study by Kim et al. (2009), Kim and co. observed the reaction between AgNPS and Candida albicans and discovered membrane depolarization in C. albicans. Pits and pores were formed on the cell wall of the organism. This leads to the release of trehalose and glucose into the prepared suspension. The antifungal activity of AgNPs was also performed on other fungal species such as Saccharomyces cerevisiae, Candida tropicalis, Phomopsis spp., Penicillium expansum, Botrytis cinerea and Trichophyton rubrum (He et al., 2011; Nasrollahi et al., 2011; Mallmann et al., 2015). The effect of Fe3O4NPs was tested against Candida spp and perforation of cell membranes was observed (Prucek et al., 2011). The cell wall and the membrane of Cryptoccocus neoformans were also depleted when C. neoformans was exposed to AgNPs in a study by Ishida et al. (2013).
The use of In silico and mathematical modelling could help provide a better understanding of microbe-nanomaterial compatibility and interactions. Studies to experiment with the interaction between microbes and NPs are extremely important to unveil the details of these interactions. Meanwhile, bioinformatics tools are also needed to ensure statistical analysis and data curation about the future occurrences of microbial interaction with NPs (Singh et al., 2019; Adeleke et al., 2022).
SYNERGISTIC RELATIONSHIP: ENDOPHYTE-INDUCED NPS
Recent developments required to ensure an ecofriendly interface for nanoscience studies have delivered exciting results by revealing multifaceted metal-based NPs with numerous applications and functions (Baker et al., 2015a; Kumari et al., 2020). Ecofriendly biological resources viz. algae, fungi, bacteria and plants have been adopted to synthesize NPs, with each bio-factory having its pros and cons (Iravani et al., 2014; Rahman et al., 2019). Microorganisms are said to be an attractive option because of their dependable and unlimited metabolite production which are useful as reducing agents. In the case of plants, the disturbing plant diversity/species most times complicate the usage (because of selection problem) (Baker et al., 2015b). Even though microorganisms have been identified as the best option for the ecofriendly synthesis of NPs, the potential of endophytes remains under-explored. Adopting endophytes as reducing agents for the biosynthesis of nanomaterials opens new opportunities for the discovery of novel NPs with various applications (Rahman et al., 2019). Microorganisms (e.g., endophytes) remain the biological agents with harmless, clean and the most commercially available approach for NPs synthesis. That said, limitations faced by often synthesized endophyte NPs affect the stability of NPs because microbes are retarded overtime. With the variation in parameters such as substrate condition, synthesis condition, growth on media, pH, temperature and physicochemical parameters (stability, shape, and size) of NPs, which might change easily (Ovais et al., 2018).
The diverse endophytic microbes from different sources have been used in the synthesis of NPs. These include; the biosynthesis of AgNPs using Bacillus cereus isolated from Adhatoda beddomei and Garcinia xanthocymus as recapping agents to produce AgNPs with antibacterial properties (Sunkar and Nachiyar, 2012a; b). A study by Devi and Joshi (2015) also reported the use of Cryptosporiopsis ericae isolated from Poteotilla fulgens L. in the synthesis of NPs. The synthesized nanomaterial had an absorbance peek of ≈430 nm, spherical, and a diameter ranging between 2 nm and 16 nm. Rahi and Parmar (2014) and Singh et al. (2013) also synthesized AgNPs using Penicillium spp. isolated from the tissue of Curcuma longa and Aloe vera root. The synthesized NPs had a size range between 15 nm and 45 nm with immense antibacterial activity against antibiotic-resistant pathogens. Several studies have used endophytes as an ecofriendly route for the biosynthesis of multifunctional metal-based NPs. These include; Hulikere and Joshi (2019)—Cladosporium cladosporoides, Ramalingmam et al. (2015)—Cochliobolus lunatus, Qian et al. (2013)—Epicoccum nigrum, Yashavantha Rao et al. (2016)—Endophytic bacterium EH419, Neethu et al. (2018)—Penicillium polonicum and Abdel-Aziz et al. (2018)—Aspergillus spp.
IMPACT OF NANOMATERIALS ON MICROBIAL DIVERSITY AND SOIL HEALTH
In natural ecosystems, microorganisms drive ecological processes (Chaudhary et al., 2022). These processes include; anaerobic digestion, removal of nutrients in wastewater treatment, and biogeochemical cycling (Ahmed et al., 2012). On a single cell or population of microbes, antimicrobial activities and the potency of nanomaterials have been studied extensively elucidating their effects on the microbial community. As a result, there is an extensive understanding of the pros and cons associated with the ecotoxicity of NPs. Recently, scientists have studied the effect of nanomaterials on the community structure and functions of microorganisms in natural environments, such as water treatment facilities, marine, rivers and soils (Mohanty et al., 2014).
Effect of nanomaterials on microbial diversity
Microbial diversity in the soil plays a crucial role in nutrient cycling, plant diversity and agricultural output (Mohanty et al., 2014). Scientists have shown that important nanomaterials properties viz., aggregation, size, shape and charge, could be influenced by the environment (Lowry et al., 2012; Liu et al., 2014). NPs migrate at different levels in the soil matrix, and as such altering the microbial community structure in the soil. Also, the type of soil affects the impact of NPs. In a study by Frenk et al. (2013), the microbial community in clay and sandy soils were shown to respond differently to magnetite and copper oxide NPs. In a related study by Pawlett et al. (2013), a similar result was obtained from the reaction of microorganisms in the sandy soil to zero-valent iron nanomaterials. Herein, the microbial groups obtained from the combination of sandy soil and FeNPs were more susceptible than microbial communities in clay soil. Also, AgNPs were suspected to affect the community profile of freshwater microbial habitat in a study by Das et al. (2012). Both microbial biofilms and planktonic communities were influenced by nanomaterials as related in the study by Flemming and Wingender (2010) and Ding et al. (2014). Although, planktonic communities most times exhibit low tolerance to antimicrobial agents and toxic environments compared to their biofilm counterparts (Cao et al., 2012). For instance, the exposure of marine biofilm to AgNPs does not affect the community structure, succession and biofilm development of the community (Fabrega et al., 2011). However, apart from the reduction in microbial communities associated with a biofilm, the integrity of cells in a biofilm could be compromised because of its exposure to NPs (Battin et al., 2009).
In an engineered ecosystem using nanomaterials, most researchers adopt microbial communities associated with waste plants as model systems. Often, the impact of microbial communities and their community composition is of utmost interest to researchers. Meanwhile, most studies concentrate on the impact of NPs on commonly studied bioprocesses with the inclusion of methanogenesis, phosphorus and nitrogen removal. Even though most studies have reported the negative of nanomaterials on microbial community structure (Liang et al., 2010; Ahmed and Rodrigues, 2013), some other studies showed that the microbial communities associated with sludge digester were not affected by nanomaterials (Nyberg et al., 2008; Yang et al., 2012a). This discrepancy could be associated with variations in the physical and chemical properties of nanomaterials and their complex reaction with several other materials from either organic or inorganic sources (Mohanty et al., 2014).
Impact of nanomaterials on microbial community functions
The effect of nanomaterials on microbial community functions is another important aspect of NPs-induced community variation yet to be explored. Some studies have further highlighted possible alterations in microbial functions induced by the exposure of the environment to nanomaterials. These include functions associated with nutrient removal and methanogenesis in wastewater treatment plants. In a study by Alvarez and Cervantes (2012), the process of methane production was significantly inhibited by nanomaterials such as Al2O3 and its toxicity was reduced when coated with humic acids. In a similar study, Yang et al. (2012a) reported the effect of AgNPs on methane production in landfill bioreactors at different concentrations.
Several studies viz., Masrahi et al. (2014), Liang et al. (2010), and Li et al. (2014) also reported nitrogen removal processes using nanomaterials such as TiO2 and AgNPs. The negative impact of graphene oxide was also reported on wastewater treatment by removing nitrogen and phosphorus from waste materials (Ahmed and Rodrigues, 2013). To discuss the effect of nanomaterials on microbial diversity, structure and functions, organism-determined toxicity of nanomaterials is required i.e., each microorganism with susceptible nanomaterials because bacteria tolerate nanomaterials differently. For instance, Gram-positive bacteria react positively to single-walled carbon nanotubes by changing their membrane lipid composition. The mechanism of nanomaterials-microbe specificity is widely unknown and there is a need to further investigate the process (Jin et al., 2014; Mohanty et al., 2014).
MECHANISMS OF MITIGATING ABIOTIC STRESS IN PLANTS
Abiotic stresses remain one of the most significant factors limiting the growth and yield of plant crops (Yadav, 2017). There is a need for plants to resist stressful edaphic and environmental conditions using either innate or induced biological mechanisms. For induced biological mechanisms to relieve the plant of unwanted stressors, an environmentally friendly method is needed to avoid complications associated with the use of synthetic chemicals. In this regard, the use of endophytic microbes remains one of the more reliable methods to mitigate the effects of abiotic stresses. Microbes are ubiquitous in diverse natural environments and exhibit diverse metabolic responses to manage soil stressors (Meena et al., 2017; Akinola and Babalola, 2020; Akinola et al., 2021b). Due to the proximity between plants and microbes in the soil, the plant microbiome induces local and systemic mechanisms in crop plants to cope with continuous changes to the environment. This synergism (plant-microbe) in the agroecosystem induces complex mechanisms within the plant cellular system (Figure 1). Interestingly, the continuous change in climatic conditions has paved the way for a better understanding of plant cellular complexity; researchers are constantly ruminating on questions associated with the physiological, molecular, and biochemical processes related to plant-microbe interplay (Glick, 2020; Akanmu et al., 2021).
[image: Figure 1]FIGURE 1 | Concept of endophyte interactions and biosynthesized nanoproducts to alleviate abiotic stress and enhance crop yield.
Because of the growing concern about climate change, it is important to explicitly explicate the synergy between plant-soil-microbe about protection against abiotic stressors. Understanding the changes in different abiotic stresses induced by either anthropogenic or natural means is crucial to reducing the negative effects of environmental stress as it impacts agricultural productivity (Jalil and Ansari, 2019). A report by the Food and Agriculture Organization (FAO) of the United Nations on the challenges limiting global food productivity argued that one of the major problems faced by the scientific community in the effort to increase crop production is unwanted abiotic stressors (FAO, 2009). As such, there is a need to address the challenges associated with plant growth sustainably. These include eco-friendly technological processes and the efficient use of bioproducts to address the constraints posed by environmental stresses (FAO, 2009).
Several abiotic factors can limit plant growth and development including low or high temperature, heavy metal toxicity, soil alkalinity or acidity, drought, flooding and salinity (Emamverdian et al., 2015; Pasala et al., 2016; Jalil and Ansari, 2019). Abnormal soil acidity can lead to nutrient deficiency in plants thereby reducing essential physiological attributes needed to improve plant growth and development (Jalil and Ansari, 2019; Akinola and Babalola, 2020). Similarly, salt treatment induces toxicity in plant tissues, leading to osmotic imbalance and stress which hinders plant growth. In addition, abiotic stressors increase the production of ROS and induce phytotoxicity by negatively impacting protein structure and functions (Baral and Izaguirre-Mayoral, 2017; Mukhtar et al., 2018; Komaresofla et al., 2019).
Naturally, plant cell organelles viz., chloroplasts, peroxisomes and mitochondria help in producing ROS, with hydrogen peroxide and oxygen radicals being produced in the mitochondria. Hydrogen peroxide and oxygen are produced in the chloroplast (Jalil and Ansari, 2019). Using peroxidase dismutase, the peroxides are transformed into hydrogen peroxide (H2O2). The oxidation process involved in the conversion of xanthine and hypoxanthine to uric acid is achieved in the peroxisomal matrix using xanthine oxidase to generate oxygen radicals (Halliwell and Gutteridge, 2015; Jalil and Ansari, 2019). These radicals destroy cell biomolecules, such as DNA, carbohydrates, lipids, and proteins, resulting in cell death.
Plants can rapidly acclimatize to an abrupt change in the environment, such as unwanted abiotic conditions. A shift in the soil condition alters plant metabolic equilibrium and causes plant cells to modify genetic and metabolic processes (Tuteja and Mahajan, 2007; Tuteja and Sopory, 2008; Simontacchi et al., 2015). Plants then activate defense mechanisms needed to relieve unwanted stress conditions, reprogramming metabolic processes within the plant cell, thus facilitating bio-physicochemical relief of abiotic stress conditions (Massad et al., 2012; Mickelbart et al., 2015; Yolcu et al., 2016).
Due to uncertainty surrounding the mechanism of action of metallic NPs, different hypothetical mechanisms were frequently mentioned in different studies. These include that:
a) NPs aggregate and dissolve the cell membrane, resulting in the alteration of cell permeability and dissolution of the PMF—Proton motive force (McQuillan, 2010; Singh et al., 2019).
b) ROS—Reactive oxygen species that help in the destruction of the cellular structure are produced by metallic NPs and ions (Singh et al., 2019).
c) Absorption of metal ions by cells helps in the degradation of intracellular ATP and the disruption of DNA synthesis (Singh et al., 2019).
Oxidation reactions attributed to metallic ions in cells induce responses such as ROS—due to cell signal differentiation and cell death (Mueller et al., 2005). The integral components of ROS include peroxomonocarbonate (HOOCO2‾), peroxynitrate (O2NOO‾), peroxynitrite (ONOO‾), nitric compounds, hypochlorite and hypochlorous acids, peroxyl (RO2‾), and hydroperoxyl (HO2‾), and other oxygen-related compounds (Wu et al., 2014). With the catalysis of superoxidase dismutase (SOD), oxygen ions have a short lifespan due to instant reduction. NADPH—nicotinamide adenine dinucleotide phosphate oxidase in the mitochondria induces lipid peroxidation of the cell membrane (Singh et al., 2019). SOD initiates the complete conversion of oxygen into hydrogen peroxide. Physiologically, different detoxifying enzymes viz., glutathione peroxidase, catalase, SOD and antioxidants (flavonoids, vitamin E and ascorbic acids) modulate intracellular stages. Meanwhile, ROS activated by NPs of either CuO, ZnO or Ag plays a crucial role in genotoxicity. Oxidative stress degraded genetic materials are associated with different biological mechanisms viz., mutagenesis. Stress activation due to oxidative species results in nanotoxicity and the accumulation of oxidative stress leading to DNA destruction (Fu et al., 2014). The destruction of DNA because of OS; involves the breakage of single and double-stranded sugar bases, the generation of basic sites and DNA-protein crosslinks. Closely, hydroxyl radicals cause rapid damage to cells, whereas, from a distance, less-reactive ROS may interact easily (Fu et al., 2014).
MICROBE-INDUCED ABIOTIC STRESS TOLERANCE
An adaptation used in the process of abiotic stress tolerance is often referred to as induced systemic tolerance/resistance (IST/ISR). The intrinsic genetic and metabolic potential of microbes contribute immensely to the relief of plants from abiotic stresses (Gopalakrishnan et al., 2015). The role of endosphere and rhizosphere inhabitants belonging to different genera viz., Cyanobacteria (Singh et al., 2011), Trichoderma (Pandey et al., 2016; Igiehon and Babalola, 2021), Burkholderia (Naveed et al., 2014a; Naveed et al., 2014b), Methylobacterium (Meena et al., 2012), Bradyrhizobium (Tittabutr et al., 2013), Enterobacter (Sorty et al., 2016), Bacillus (Ashraf et al., 2004; Sorty et al., 2016), Pantoea (Sorty et al., 2016), Rhizobium (Igiehon and Babalola, 2021; Igiehon et al., 2021), Azospirillum (Omar et al., 2009), Azotobacter, and Pseudomonas (Ndeddy Aka and Babalola, 2016) have functional traits useful in improving plant growth under abiotic stresses. The functional role of Trichoderma harzianum in alleviating soil stresses through the upregulation of genes such as malonialdehyde, dehydrin, and aquaporin genes, has been reported by Pandey et al. (2016) on different serotypes of rice. Also, the synthesis of exopolysaccharides, antioxidants, protein defensins and phytohormones may be induced using plant growth-promoting rhizobacteria. Most of these functions are effective against drought and other abiotic stressors (Kaushal and Wani, 2016). Therefore, the effective productivity monitoring parameters, viz., screening, selection and inoculation of stress-mitigating microbes, can be helpful as a viable option to increase crop productivity to solve the problem of a growing world population with insufficient food (Akinola and Babalola, 2021). Trichoderma harzianum inoculation enhances the oil content of Brassica juncea inhibited by salinity stress and improves the plant’s physiological traits, such as reducing sodium ion uptake, enhancing osmolyte synthesis, antioxidant accumulation, and facilitating the uptake of essential plant nutrients (Ahmad et al., 2015). Similarly, ACC deaminase production was shown to be responsible for the upregulation of monodehydroascorbate reductase in B. juncea (Brotman et al., 2013). Also, the addition of Acinetobacter sp. and Pseudomonas sp. have been used to increase the production of ACC deaminase and indole-3-acetic acid (IAA) in oat and barley grown in salinity-stressed soil (Chang et al., 2014). Streptomyces sp. strain PGPA39 has also been used to alleviate salinity stress in tomato plants (Palaniyandi et al., 2014). In Arabidopsis, wheat, and maize plants, Burkholderia sp., has been used to relieve plants and soil of salt and drought stresses (Naveed et al. (2014a); Naveed et al. (2014b); Pinedo et al. (2015).
There are a large number of microorganisms within proximity to plant tissues and across the vicinity of plant roots because the plant root exudates provide diverse metabolites and nutrients which attract beneficial microorganisms. These metabolites are crucial to the microbial presence surrounding and attached to plants (Akinola et al., 2021a; Akinola and Babalola, 2021) with chemoattraction being associated with microbial movement toward these compounds (Meena et al., 2017). While utilizing these plant exudates, plant growth-beneficial microorganisms associated with the plant endosphere induce both direct and indirect mechanisms, such as biocontrol agents, phytostimulation, and biofertilization (Hayat et al., 2010; Akinola and Babalola, 2020).
Indirect mechanisms of plant growth promotion include the production of antimicrobial agents, hydrogen cyanide (HCN), and antibiotics, which exert antagonistic effects against plant pathogens. Direct mechanisms include nitrogen fixation, stimulation of plant hormone synthesis, solubilization of potassium and phosphorus, synthesis of siderophores which facilitate iron uptake, and sequestration of zinc and other micro-and macronutrients from the soil (Meena et al., 2017). In addition, many plant-associated microbes also induce systemic resistance against various phytopathogens triggered by plant secondary metabolites (Meena et al., 2017; Omomowo and Babalola, 2019). Apart from bacteria, mycorrhizal fungi are also good to plant growth promoters. These include both vesicular-arbuscular mycorrhiza (VAM) and other ectomycorrhizal fungi (Akinola and Babalola, 2021). These fungi use their extensive hyphal networking to increase plant nutrient uptake. For instance, in studies by Sun et al. (2010) and Baltruschat et al. (2008), an endophytic fungus—Piriformospora indica was used to improve drought and salinity tolerance in Chinese cabbage and barley, respectively. These processes were achieved by improving both physiological traits and the level of plant antioxidants. At some point, microbes activate systemic or local stress responses in plants under abiotic stress. In other instances, they activate direct responses to support plant growth and development. This complex and multipronged action of soil microbes makes them a vital and viable choice for disease suppression and abiotic stress control in plants (Franken, 2012; Meena et al., 2017).
Several mechanisms have highlighted the enormous benefit of plant-associated microbiomes (Kushwaha et al., 2020; Glick and Gamalero, 2021; Adeleke and Babalola, 2022). The microbes found in the plant root environment typically belong to the genera Pseudomonas, Klebsiella, Aeromonas, Azotobacter, Enterobacter, Bacillus, Azospirillum, and Achromobacter (Ortiz et al., 2015; Kaushal and Wani, 2016; Sorty et al., 2016; Babalola et al., 2021; Fasusi et al., 2021) (Table 1).
TABLE 1 | Examples from the recent literature of the effect of plant growth-promoting microbes in the relief of plant stress.
[image: Table 1]All rhizosphere and endosphere bacteria with the ability to maintain plant growth under different adverse soil conditions are referred to as plant growth-promoting bacteria (PGPB) (Agri et al., 2022). There are other mechanisms plant microbes use to promote plant growth and development. IAA is produced to improve plant root development (Meena et al., 2017) where auxins initiate root growth and cell elongation. However, the high production of auxin may negatively affect root growth (Sorty et al., 2016; Akinola and Babalola, 2020). High auxin secretion also has drawbacks because of the increased ethylene production. In addition, the enzyme ACC deaminase is a key component in lowering the stress ethylene that results from both biotic and abiotic stress (Glick, 2004).
The mechanisms mentioned above have been reported in rhizosphere bacteria and fungi with enhanced phytohormones production for sustainable plant growth (Belimov et al., 2007; Ojuederie et al., 2019; Akinola et al., 2021c). Other studies have employed rhizobiomes to mitigate environmental stresses and improve the growth of crop plants in maize (Rojas-Tapias et al., 2012; Akinola et al., 2021a; Chaudhary A. et al., 2021), rice (Sharma et al., 2013), soybean (Sen and Chandrasekhar, 2014), and barley (Suarez et al., 2015).
THE USE OF NANOMATERIALS TO RELIEVE ABIOTIC PLANT STRESSES
Plants possess several mechanisms needed to cope with unwanted soil conditions, including heat stress, drought, flooding, salinity, and chilling. Several researchers have studied molecular and cellular plant responses to abiotic stress (Gepstein and Glick, 2013; Ali and Glick, 2019; Santoyo et al., 2021a). Primarily, plants respond to abiotic stress using methods, such as an increase in MAPK (mitogen-activated protein kinase), abscisic acid, ROS, increased intracellular messenger viz., polyphosphate, inositol and raised Ca2+ in the cytoplasm as shown in Figure 2.
[image: Figure 2]FIGURE 2 | The use of nanotechnology to suppress abiotic stress conditions in a plant cell.
Meanwhile, stress relief responses, such as regulation of the expression of specific stress genes, and the proteins involved in the protection from cellular damage are involved in the advanced level of plant response. In addition, secondary metabolites ensure physiological processes to reduce abiotic stress conditions by activating the biosynthesis of polyamines signal transduction, ROS-induced photosystem protection and stabilizing cellular structure (Oh et al., 2009; Jalil and Ansari, 2019).
In mitigating soil stresses, the plant cell wall helps in plant adaptation and guides against stress perception. Induced peroxidases modify plant cell walls, which bring together oxidative stress and ROS when in contact with plant stressors (Rouet et al., 2006; Daudi et al., 2012). When plants encounter oxidative stress, immediate defense responses, such as the regulation of gene expression, enzyme production, phenylpropanoid aggregation, and ROS are produced (Daudi et al., 2012; Jalil and Ansari, 2019).
Although plants develop various mechanisms to initiate responses against adverse conditions. Nevertheless, their responses may differ even among the same plant species. Consequently, augmentation of stress tolerance in plants and identification of tolerant plant material remains conservative and ecofriendly methods towards sustainable agricultural practices and crop production (Akinola et al., 2022; Chaudhary et al., 2022). Nanoscience is an emerging multi-disciplinary area that involved the use of nanomaterials in different fields at the nano-level. The most promising application of nanoscience could be exploited in agroecosystem practices, food processing and packaging materials. In the current scenario, nanomaterials can be used as a tool to effectively promote plant growth and also ameliorate plant stressors (Saxena et al., 2016; Chaudhary et al., 2021b).
A lot has been done on the use of nanotechnological approaches to stress responses (Shabnam et al., 2014; Tripathi et al., 2015; Singh and Lee, 2016). The effect of NPs on sustainable plant growth and development is concentration-dependent, which also increases antioxidant enzyme activity. For example, in a study to assess the effect of TiO2 NPs on onion seedlings, TiO2 NPs increased the activity of the superoxidase dismutase enzyme (Laware and Raskar, 2014). Meanwhile, a drastic change in the physiological traits of the onion plant was noticed with an increased concentration of TiO2 NPs (Laware and Raskar, 2014). Under these conditions, the activities of the catalase and amylase enzymes decreased at lower concentrations of TiO2. In another study by Changmei et al. (2002), SiO2 and TiO2 NPs showed significant positive effects on the growth and sprouting of Glycine max seedlings.
Effect of NPs on heavy metal stressed plants
Contamination of the plant-soil environment by metallic ions is a severe menace to sustainable agricultural practices worldwide. Heavy metal stress increases plant toxicity, thus leading to retarded plant growth (Chibuike and Obiora, 2014; Jalil and Ansari, 2019). This happens due to decreased enzymatic activities induced by a continuous decrease in essential nutrients available in the soil (Sharma et al., 2012). Furthermore, heavy metal ions induce ROS production affecting the plant’s physiological properties; viz., membrane permeability reduction, cell structure deformation, and degradation of available plant cell protein. To relieve the constraints attributed to heavy metal stress, plants induce defense mechanisms including the production of polyphosphates, organic acids, and metal chelates, which all reduce the influx of metal ions and activate the synthesis of antioxidants to lower ROS production. The activation of these defense mechanisms ensures resistance against heavy metal stress. Moreover, the use of synthesized NPs can reduce the burden of phytotoxicity induced by heavy metals on plants (Sharma et al., 2012; Gunjan and Zaidi, 2014; Tripathi et al., 2015).
Because of the small size and surface area of synthesized NPs, they can easily penetrate plant cells and retain a high affinity for metallic ions. In a study by Worms et al. (2012), it was reported that quantum dots (i.e., the nanoparticles of a semiconductor) reduce Pb and Cu accessibility to plant cells. The report of Singh and Lee (2016) showed TiO2 NPs reduce Cd toxicity and improve physiological traits, viz., plant growth, and photosynthetic rate. The study of Li and Huang (2014) with Brassica juncea revealed the effect of hydroxyapatite NPs in the relief of cadmium toxicity. Similarly, synthesized SiNPs helped to reduce chromium toxicity in peas (Tripathi et al., 2015). Shabnam et al. (2014) also discovered that the treatment of cowpea with AuNPs induces a reduction of Au ions to a nontoxic form by phenolic compounds of cowpea seeds (Table 2).
TABLE 2 | Some recent reports of the effect of nanotechnology in alleviating plant stressors.
[image: Table 2]Effect of NPs on heat stress
Exposing a plant to an extreme temperature for a long period results in retarded plant growth and development. Heat stress reduces photosynthetic and chlorophyll content, membrane ion leakage, protein degradation, and lipid depletion. This is because an increase in ROS generation induces oxidative stress (Wahid, 2007; Karuppanapandian et al., 2011; Prasad et al., 2011). Haghighi et al. (2014) reported the effect of low concentrations SeNPs in reducing heat stress by stimulating the photosynthetic ability of plants, increasing hydration, and improving plant growth.
Anti-oxidative properties of the plant have also been improved at low SeNPs levels, while high concentrations of SeNPs induce oxidative stress (Haghighi et al., 2014). Plants induce the production of molecular chaperones and heat shock proteins during heat stress to resist oxidative stress (Hasanuzzaman et al., 2013; Hasanuzzaman et al., 2014).
Furthermore, carbon nanotubes, such as HSP90 have been used to upregulate genes involved in heat shock protein synthesis. A study by Zhao et al. (2012) showed that the exposure of maize to CeO2NPs upregulates HSP70 and generates large amounts of hydrogen peroxide.
Effect of NPs on salinity stress
Salinity is an important abiotic stressor that deteriorates and limits the output of food crops. Owing to the susceptibility of most plants (i.e., lycophyte category) to salt stress, the majority of plant products are negatively affected, thereby reducing their economic value (Munns and Tester, 2008; Akinola and Babalola, 2020). Salinity stress hinders both physiological and biochemical processes associated with the sprouting of the plant.
Salinity causes one or more of the following: specific ionic toxicity, nutritional imbalance, and a reduced osmotic potential (Jalil and Ansari, 2019). In addition, some other critical physiological processes, such as lipid metabolism, protein synthesis, and photosynthesis, are often negatively affected (Parida and Das, 2005). The use of nano-based-fertilization processes proffers solutions to relieve unwanted plant stresses and enhance the efficient use of plant resources. Less than 50% of applied chemical pesticides and fertilizers are used by the plant; the remainder often increases soil toxicity. This problem and many other growth-impeding factors may be effectively resolved using nanoscience (Martínez-Ballesta et al., 2016). For instance, the use of SiNPs and Si-fertilizer has a sustainable effect on the morphological and physiology of basil plants (Ocimum basilicum) under salinity stress. The results of this study suggested that the change in the physiological traits may be a result of tolerance induction in the basil plant, which helps to mitigate the effect of salt stress (Kalteh et al., 2018). Many other studies have shown that SiO2NPs can relieve the effect of salinity stress. For example, Haghighi et al. (2014) and Sabaghnia and Janmohammadi (2015) showed the positive effects of SiNPs on Lens culinaris Medik. Under salinity stress, SiNPs was able to induce a significant increase in the growth of Lens culinaris Medik seedlings and the germination of seeds. Introducing SiNPs not only enhances early seedling growth and seed germination but also improves other growth features associated with the plant under salinity stress. In the same study by Haghighi et al. (2014) on tomatoes, SiO2NPs decreased ionic toxicity of the stressor leading to a substantial increase in the shoot, root fresh and dry weight of tomato plants under salt stress. Gao et al. (2006) showed the effect of SiO2NPs on maize plants after long exposure to salinity stress. Applying SiO2NPs enhanced the sprouting of the plant (Savvas et al., 2009), as shown in Table 2. The mechanism of action of silica nanoparticles reduces the Na+ ion concentration in the plant. As a result, limited Na+ ion is available for absorption by plant tissues. Since salinity stress increases Na+ ion uptake and osmotic potential, the process of contamination is reduced using SiO2NPs because of this mechanism of action (Raven, 1983).
In addition, multi-walled carbon nanotubes (MCN) have been tested against salinity-stressed broccoli plants (Martínez-Ballesta et al. (2016). The MCN-treated plants exhibited increased assimilation of CO2, aquaporin transduction, increased water uptake and modified the broccoli root plasma membrane which increased the sprouting of the plant.
Effect of NPs on chilling stress
Low temperatures can destroy plant cells because of ion leakage and permeability distortion of the plant cell membrane. This chilling stress leads to a reduction in plant growth and germination (Bhattacharya, 2022; Petruccelli et al., 2022) with tolerance to chilling varying between different plant species. The greater the damage to plant membranes, the more deleterious the effect of chilling stress on the plant (Rawat et al., 2020). In addition, photosynthesis and its biochemical components are greatly affected by chilling stress because low temperature damages the photosystems, inhibiting properties associated with light absorption, such as increasing Rubisco degradation, CO2 assimilation, transpiration rate, and reducing the chlorophyll content (Jajoo and Mathur, 2021; Sherin et al., 2022). To ensure the relief of plants from chilling stress, NPs are used to enhance photosystem activities by inhibiting ROS production, increasing the activities of the chloroplast, and improving the production of Rubisco enzymes (Ayyaz et al., 2022; Chandel et al., 2022).
TiO2NPs activate processes needed to enhance the synthesis of chlorophyll and the expression of the Rubisco binding protein gene, improve leaf pigment, antioxidant enzyme synthesis, and decrease the effect of chilling stress by reducing plant cell damage and ion leakage (Asadi and Cheniany, 2022; Sardar et al., 2022; Zare et al., 2022). Low-temperature stress upregulates the expression of MeAPX2 and ZnSOD/MeCu genes, which increases glutathione reductase, dehydroascorbate reductase, and monodehydroascorbate activities that remove ROS. It also helps to reduce oxidative stress (Sonkar et al., 2021). The use of TiO2NPs to reduce chilling stress has restructured plant biochemical physiognomies whenever plant cells are exposed to low-temperature environments (El-Gazzar et al., 2020; Elsheerya et al., 2020; Nasr et al., 2021).
Effect of NPs on drought stress
Soil drought is an abiotic stress limiting crop productivity in arid and semi-arid regions (Gamalero and Glick, 2022). Several studies have highlighted the effects of silicon NPs on drought-induced plant stress. For instance, SiNPs have been used to relieve the impact of drought stress on hawthorns (Crataegus sp.) (Ashkavand et al., 2015). The aforementioned study was conducted using different concentrations of SiNPs, depending on the severity of the stress. Biochemical and physiological responses differ in plant seedlings based on the positive effect of SiNPs on carbohydrate contents, proline, leaf pigments, membrane leakage, water content, malondialdehyde, and photosynthetic parameters (Ashkavand et al., 2015). A study was conducted to test the effect of SiNPs on two different sorghum (Sorghum bicolor (L.) Moench) cultivars with different drought tolerance susceptibility patterns, maintaining the photosynthetic rate and reducing the root-to-shoot ratio. This showed that SiNPs was able to augment plant water uptake efficacy (Hattori et al., 2005). Also, a low concentration of sodium silicate was used to mitigate the effect of drought stress on wheat (Pei et al., 2010). The silicon content of the compound was able to maintain the leaf potential in water absorption, improve the leaf chlorophyll content, and enhance shoot growth. Although the mechanism of action of this compound is yet to be determined, silicon compounds have been reported to be involved in the reduction of plant membrane lipid peroxidation.
In soybean, ZnONPs have been reported to boost the resilience of soybean plants to drought stress (Sedghi et al., 2013). This study revealed that the application of ZnONPs helped in the germination of soybean in a drought-stressed plant; an effect attributed to the role of Zn in the improvement of seed viability and sprouting of plant seeds in Zn deficient areas (Degenhardt and Gimmler, 2000).
Iron is an essential nutrient needed for plant growth and development; an iron-deficient plant shows physiological change, viz., chlorosis and reduced metabolism (Jalil and Ansari, 2019). Micronutrients can be used to relieve the effects of drought stress in some plants. Davar et al. (2014) showed the impact of exogenous FeNPs in the flowering and fruiting stages of a plant under drought stress. In addition, to reduce the adverse effects of drought stress, TiO2NPs have been applied to the leaves of wheat to improve agronomic and physiological features, such as gluten, starch, photosynthetic activities, biomass, harvest index, final yield and plant weight (Jaberzadeh et al., 2013).
PLANT MICROBES IN AGRICULTURE TO ADDRESS FUTURE FOOD SCARCITY
Some bacteria and fungi can colonize the internal tissues of their host plants without causing any detrimental effects (Adeleke and Babalola, 2021b). Various bacterial and fungal endophytes produce plant growth traits, such as siderophores, nitrogen fixation, phosphate solubilization, antibiotic production and induced systemic resistance to various environmental stresses (Santoyo et al., 2016; Adeleke et al., 2021).
Plant roots absorb water and minerals from the soil, then translocate them to other plant parts (Liu et al., 2021). In addition, the plant produces copious amounts of exudates such as amino acids, organic acids, and sugars into the soil which are utilized by soil microbes and contribute to the microbial biomass in the root environment (Lyu et al., 2021). Also, seeds produce low molecular weight organic exudates into the surrounding soil during germination. Several endophytes have been reported to be present in the endosphere (He et al., 2021).
Endophytic relationships with the host plants can be symbiotic or pathogenic. Often, essential and uncommon organic substances are secreted by endophytes that assist in providing various functions, not only for soil health but also as a solution to plant stress challenges. Endophytes can often protect plants from phytopathogens and abiotic stresses (Table 3).
TABLE 3 | Various endophytic microbes inhabiting crop plants and their functions.
[image: Table 3]The impact of abiotic stressors on plant growth and soil health can be major or minor depending on the prevailing environmental conditions (Sachdev et al., 2021). Abiotic stresses negatively affect crop production and microbial diversity (Chouhan et al., 2021). Various mechanisms employed by endophytic microorganisms induce systemic resistance (ISR) or abiotic stress tolerance in plants (Gupta et al., 2021). Therefore, there is a need to restructure modern agricultural systems to include recent developments in endosphere biology (Santoyo et al., 2021b). Some studies have explained the role of endophytic bacteria in agricultural systems under abiotic stresses in combating future food scarcity. For instance, B. amyloliquefaciens RWL-1 producing ABA can enhance rice yield in soil with a high salt concentration (Ganie et al., 2021). This bacterium produces essential amino acids and salicylic acid which assist rice growth in salinity/drought conditions (Thepbandit et al., 2021). The endophytic fungus, Bipolaris sp., produces gibberellins which contribute to the growth of Glycine max (Lubna et al., 2022). Sphingomonas sp. LK11 is an endophyte from leguminous plants that also synthesizes gibberellins which enhance tomato growth and the plant chlorophyll content (Adeleke and Babalola, 2021a).
Various reports revealed the presence of IAA-producing endophytic bacteria (Rashid et al., 2012; Panigrahi et al., 2020; Turbat et al., 2020). Burkholderia kururiensis is an endophyte that stimulates the expression of IAA genes, especially in the roots of transgenic rice, thereby contributing to rice growth (Zhou et al., 2020).
Some endophytes are halotolerant, which can be isolated from the weed Psoralea corylifolia to assess their PGP activity in wheat. The growth of wheat plants can be improved with the aid of an extract from the bacterial isolates during the production of IAA under saline-stress conditions (Amini Hajiabadi et al., 2021). The identification of various strains embedded in weeds revealed various genera including Acinetobacter, Enterobacter, Marinobacterium, Pseudomonas, Rhizobium, and Sinorhizobium (AlSharari et al., 2022). The hormone cytokinin is also produced by some endophytic bacteria, according to Eid et al. (2021). Pseudomonas resinovorans and Paenibacillus polymyxa isolated from Gynura procumbens are good examples of endophytic bacteria producing cytokinin (Eid et al., 2021). From a bacterial culture, the obtained extracts were tested in vitro and inoculated into the cotyledon of cucumber to observe their cytokinin activity.
A strain of Sinorhizobium meliloti engineered to overproduce cytokinin by transferring the Agrobacterium tumefaciens ipt gene into the bacterium, and a strain of Pseudomonas spp., that protected alfalfa plants from drought-stressed conditions (Oleńska et al., 2020), these two bacteria were inoculated together or separately, in the cultivation of sorghum (Sorghum bicolor). The results revealed that the two strains inoculated together reduced the requirement for chemical nitrogen fertilizer to a low level and significantly improved the cultivation of sorghum. The procedure also enhanced the colonization effectiveness of both bacteria in the roots of rice plants (Abbaszadeh-Dahaji et al., 2020). In summary, endophytes can play a major role in modulating phytohormone levels in plants, thereby contributing to plant growth and managing various stress conditions.
Symbiotic nitrogen fixation reduces atmospheric nitrogen by the action of the leguminous plants in association with nitrogen-fixing bacteria, increasing the plant’s nutritional value (Rana et al., 2020). Several years ago, the only known nitrogen-fixing bacteria in legume nodules were rhizobia. However, numerous non-rhizobial bacterial species have been found in legume root nodules. Hanaka et al. (2021) reported how an endophytic bacteria isolated from the soybean, Bacillus mojavensis, exhibited biocontrol activity against the soybean pathogenic fungus, Rhizoctonia solani. These endophytic microorganisms have antagonistic activity against soil-borne pathogens and possess the ability to enhance the growth of soybean plants. The B. mojavensis strain produced ammonia, HCN, and siderophores. It also contributed to chitinase activity and solubilization of phosphate (Hanaka et al., 2021). The inoculation of this endophyte onto soybean seeds can help control various pathogens.
The introduction of nanotechnology in agriculture is a developing sector in agriculture despite several applications, and the true possibilities are yet to be obtained. Nanotechnology constitutes certain substances with unusual features that are revealed either as a result of the quantum confinement effects or the production of certain reactive surfaces that are at a nanoscale (Umapathy et al., 2022). The nanoscale degree when compared with the macroscopic level, reveals the properties of the material that are special as a result of the reduced size, shape of nanomaterials, and greater surface area-to-weight ratio. Nanomaterials or nanoparticles (NPs) have beneficial properties, with high reactivity, modified bioactivity, and surface effects (Bruchiel-Spanier et al., 2022). NPs are produced by either a single element like silver (Au) or gold (Au) or by a mixture of elements, which are observed in those constituting oxides like titanium oxide (TiO2), silicon oxide (SiO2), and zinc oxide (ZnO) (Behl et al., 2022). Gold and silver NPs regarded as inorganic NPs, are relevant as a result of their application. Although, few studies have shown how the NPs are manufactured from endophytes (Fadiji et al., 2022a; Kaur et al., 2022; Saqib et al., 2022), thus suggesting possible means for continuous studies on endophytic nanoparticles.
Various approaches including biological, chemical, and physical approaches are made use of in the production of NP, yet, the process of biosynthesis is environmentally friendly, free of chemical derivatives that are hazardous to humans, animals, and the environment. These chemicals have been used recently to reduce the potential of applying chemicals in the biomedical and food processing industries. Several procedures involving intracellular and extracellular for the biological synthesis of nanomaterials coexist in nature. In this field, the study is still understudied (Qian et al., 2022). The production of environmentally friendly, and non-toxic biological materials for manufacturing NPs would result in supporting the production of natural materials with the aid of living organisms (Fadiji et al., 2022a).
NPs produced from metal-based are manufactured by microorganisms through extracellular and intracellular mechanisms (Franco et al., 2022). The process of electrostatic induction takes place in metallic ions between negative and positive charges intracellularly in the cell wall of the microorganisms, followed by the decrease of the metal ions to their metallic form. Cell disruption is a constitutional prerequisite to acquiring pure NPs (Fadiji et al., 2022a). The biomass extracts from the cell, or culture supernatant when added to the solution of metals produce NPs outside the cell of the microorganisms (extracellularly) (Jadoun et al., 2022). Reductases are produced and liberated into the culture medium by cofactors, with microbial cells that execute this procedure. Endophytic microbes have been suggested as biofactories for the synthesis of metal-based NPs with agricultural and therapeutic applications. These microbes are embedded in plants intercellularly, producing a symbiotic link (Roy et al., 2022). The advantage confers on the plant by the endophytes is to improve health status via various mechanisms, like the release of antimicrobial (antibacterial and antifungal) compounds and the secretion of growth-promoting metabolites (Shahid et al., 2022).
In plant tissues, endophytic microbes accommodating them can produce nanoparticles, which are advantageous to the host plant by promoting plant growth or reducing the prevalence of diseases (Koné et al., 2022). Endophytes can resist metals occurring in the environment to alleviate toxicity and stress in the host plant, as well as improve their beneficial association and adaption over other microbes inhabiting the ecosystem (Mathur and Ulanova, 2022). The potential of endophytes to take away metals can be applied to manufacture metal-based NPs via extracellular and intracellular processes (Table 4). Typical examples were obtained in the production of AgNPs, which have a spherical shape and a mean size of 22 nm–45 nm, which can be manufactured intracellularly employing the supernatant of Ag-resistant Bacillus safensis TEN12 (Ahmed et al., 2020). Zinc oxide (ZnO) NPs sized 2 nm–9 nm, were produced extracellularly by the zinc-tolerant endophyte Curvularia geniculata (Ahmed et al., 2020). Gürsoy et al. (2021) reported how gold nanoparticles (AuNPs) sized 20 nm–40 nm were produced intracellularly in the cell wall and cytoplasm of Chlorella sorokiniana. Cobalt oxide nanoparticles (CoONPs), which are spherical at 20 nm in diameter, were produced extracellularly by the A. nidulans that are CoO-tolerant (Ahmed et al., 2020). Aspergillus nidulans are endophytes, which reveal the potential of the CoO-tolerant produced spherical CoONPs with a diameter of 20 nm through an extracellular tract (Fadiji et al., 2022a). Endophytic microorganisms can produce some biological active materials with a broad gap of structural and biological potential, which can be employed to examine the health and promote plant growth and are significant in improving the sustainability of agriculture (Kumar and Nautiyal, 2022). Fungi and bacteria isolated from parts of plants can be cultured in the laboratory under the most desirable growth conditions to synthesize NPs with the needed characteristics for application in the agricultural sector (Elnahal et al., 2022).
TABLE 4 | The biological activities of nanoparticle-synthesizing endophytic microbes against plant pathogens.
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The use of NPs for agroecosystem practices could be a very complicated matrix and information on the fate of nanomaterials in the soil is inadequate. After applying NPs to the soil, they are absorbed in the plant tissue directly. Such interaction could either increase or decrease the bioavailability and toxicity of NPs depending on the physicochemical properties of the soil. However, the potency of NPs is most dependent on the type of crop and the properties of the soil viz., microbial community, clay content, ionic strength, pH, salinity, organic matter, etc., (Reddy et al., 2016; Thiagarajan and Ramasubbu, 2021).
Effect of microbial community
Plant endophyte and the microbial community helps in the transformation of NPs. They help to recycle nutrients, effectively decomposition of organic compounds and conserve soil quality. The introduction of nanomaterials could affect microbial inhabitation which invariably reduces plant productivity (Jacoby et al., 2017; Chavan et al., 2020). The effect of NPs on the rhizosphere bacteria of butter crunch lettuce was reported by Kibbey and Strevett (2019). NPs and rhizosphere bacteria react together via electrostatic interactions that affect the surface properties of bacteria, which disallow easy attachment to the root surfaces of the plant. They also reported that fluctuations in soil mineral nutrients (P, Fe, Mn, etc.) were a result of spiked biosolid amendment of soil with NPs, which affects soil microbial load. Withal, NPs were also reported to have affected the sequestration of plant nutrients and other agroecosystem processes as reported by Bellani et al. (2020).
At times, NPs may also inhibit the colonization of plant growth promoters when combined with other nutrients. This deleterious effect was reported by Liu et al. (2020). Here, the negative effect associated with the combination of TiO2NPs with Cu2 (OH)2 CO3 was reported. The synergy between TiO2NPs and Cu2 (OH)2 CO3 boosted photocatalytic disinfection processes that disabled the effect of microorganisms such as Fusarium graminearum and E. coli within a short time of application (Liu et al., 2020).
Effect of clay content
Another important component that determines the fate of NPs is the clay content of the soil. The high the clay content of the soil, the decreased mobility of NPs because both the physical straining and electrostatic interactions would be increased. However, the soil retention capacity depends mainly on the clay to NPs ratio. The higher the ratio, the better the soil retention capacity (Shah et al., 2016). Metals are easily retained in the soil when there is an increase in the clay content. And as such reduces the uptake of metallic ions by the plant. This simply indicates the low toxicity of metallic NPs (Larue et al., 2018; Thiagarajan and Ramasubbu, 2021).
Effect of natural organic matter
NOM influences the stability and aggregation of NPs within the soil. NOM includes mobile and reactive organic fractions viz. hydrocarbons, amino acids, hydrophilic acids, fatty acids, fulvic, and humic acids. NOM is produced through the disintegration of animal and plant remains in the soil. Sludge-amended soil and NOM have been reported to cover 10.9% and 8.9% of soil, respectively. Meanwhile, the physicochemical properties of NPs and features of proximal soil are usually influenced after the adsorption of NOM (Bakshi et al., 2019). A recent study by Zhang et al. (2020) showed the stability of TiO2NPs when introduced to a paddy field with high organic matter. In another study that demonstrated the effect of a high concentration of NOM on the bioaccumulation of NPs, the ability of NOM to retrain NPs could be attributed to the change in the surface area of soil as a result of an increase in the concentration of NOM. The interaction of NPs with NOM alters the binding property of the soil to improve the steric repulsion between nanomaterials by aggregating and retaining them in the soil. Asides, the reaction of NPs and NOM depends greatly on their particle sizes through hydrophobic interaction (Lee et al., 2011).
CONCLUSION
Globally, crop improvement and productivity are faced with diverse abiotic stress challenges. To avert this problem, the use of nanomaterials from endophytic microbes has the potential to mitigate the effects of abiotic stresses affecting plants by stimulating plant defense mechanisms. Beneficial endophytic microbes as bioinoculants can be effectively harnessed for various ecological purposes such as abiotic stress reduction, nutrient absorption, enhancing photosynthesis, increasing plant growth parameters, and obviating agrochemical use. Additionally, the nanomaterial synthesizing endophytic microbes promise to improve crop productivity sustainably.
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Over the years, synthetic pesticides like herbicides, algicides, miticides, bactericides, fumigants, termiticides, repellents, insecticides, molluscicides, nematicides, and pheromones have been used to improve crop yield. When pesticides are used, the over-application and excess discharge into water bodies during rainfall often lead to death of fish and other aquatic life. Even when the fishes still live, their consumption by humans may lead to the biomagnification of chemicals in the body system and can cause deadly diseases, such as cancer, kidney diseases, diabetes, liver dysfunction, eczema, neurological destruction, cardiovascular diseases, and so on. Equally, synthetic pesticides harm the soil texture, soil microbes, animals, and plants. The dangers associated with the use of synthetic pesticides have necessitated the need for alternative use of organic pesticides (biopesticides), which are cheaper, environment friendly, and sustainable. Biopesticides can be sourced from microbes (e.g., metabolites), plants (e.g., from their exudates, essential oil, and extracts from bark, root, and leaves), and nanoparticles of biological origin (e.g., silver and gold nanoparticles). Unlike synthetic pesticides, microbial pesticides are specific in action, can be easily sourced without the need for expensive chemicals, and are environmentally sustainable without residual effects. Phytopesticides have myriad of phytochemical compounds that make them exhibit various mechanisms of action, likewise, they are not associated with the release of greenhouse gases and are of lesser risks to human health compared to the available synthetic pesticides. Nanobiopesticides have higher pesticidal activity, targeted or controlled release with top-notch biocompatibility and biodegradability. In this review, we examined the different types of pesticides, the merits, and demerits of synthetic pesticides and biopesticides, but more importantly, we x-rayed appropriate and sustainable approaches to improve the acceptability and commercial usage of microbial pesticides, phytopesticides, and nanobiopesticides for plant nutrition, crop protection/yield, animal/human health promotion, and their possible incorporation into the integrated pest management system.
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1. Introduction

From antiquity, the use of synthetic (chemical) pesticides to control crop pests for improved crop production is known (Anani et al., 2020). Synthetic pesticides are made from chemicals and carriers, such as polymers (Rakhimol et al., 2020), which are specific for different pests. They range from those employed in the control of weeds (herbicides), algae (algicides), fungi (fungicide), mites or ticks (miticides/acaricides), bacteria (bactericides), rodents (rodenticide), termites (termiticides), insects (insecticides), molluscs (molluscicides), and nematodes (nematicides), which form the basis of their classification (Anakwue, 2019). Another mode of pesticide classification can be based on their active ingredients, which include organochlorines, dichlorvos, diazinon, diamide, chlorpyrifos, etc. Although synthetic pesticides have positive effects on crop yield and productivity, they also have some negative impacts on soil biodiversity, animals, aquatic life, and humans (Farooq et al., 2019). Synthetic pesticides usually render the soil brittle, reduce soil respiration, and lessen the activities of some macroorganisms in the soil, such as earthworms (Pertile et al., 2020; Pelosi et al., 2021). They also reduce the characteristics of animal offspring, animal immunity to diseases, vitality, and the success of mating in animals (Syromyatnikov et al., 2020). They negatively affect soil microorganisms by limiting their biological services in the production of certain plant growth-promoting traits, such as siderophores, nitrogen, indole-3-acetic, etc. (Kumar and Kumar, 2019). When synthetic pesticides get into the environment through different means, such as vapormovements, indiscriminate disposal, droplet drift, erosion, and leaching, some non-targeted plants are encountered, thus resulting in a decline in the plant’s photosynthetic ability and seed production (Hashimi et al., 2020). The intrusion of pesticides into the water bodies during runoff can lead to the death of aquatic life and water pollution. Also, the accumulation of pesticides in the water bodies can be transitional from the aquatic lives to the animals and humans, and their biomagnification can result in deadly diseases, such as cancer, kidney diseases, skin rashes, diabetes, etc. (Jayaraj et al., 2017; Sabarwal et al., 2018; Manfo et al., 2020). However, biopesticides have emerged and have been very useful in the control of pests with lot of merits.

Biopesticides are cheap, environment-friendly, specific in their mode of action, sustainable, do not leave residues, and are not associated with the release of greenhouse gases (Borges et al., 2021). These biopesticides can be in the form of phytopesticides (plant origin; Idris et al., 2022), microbial pesticides (microbial origin; Harish et al., 2021), and nanobiopesticides (nanoparticles produced from biological agents; Abdollahdokht et al., 2022; Pan et al., 2023). Unlike synthetic pesticides, microbial pesticides are specific in action, can be easily sourced without the need for expensive chemicals, and are environmentally sustainable without residual effects (Harish et al., 2021; Hummadi et al., 2021). Phytopesticides have myriad of phytochemical compounds that make them exhibit various mechanisms of action, likewise, they are not associated with the release of greenhouse gases and are of lesser risks to human health compared to the available synthetic pesticides (Malahlela et al., 2021; Idris et al., 2022). Nanobiopesticides have higher pesticidal activity, targeted or controlled release with top-notch biocompatibility, and biodegradability compared to the synthetic pesticides (Abdollahdokht et al., 2022; Pan et al., 2023). Biopesticides act through different mechanisms, which include the inhibition and destruction of the plasma membrane and protein translation of pathogens/pests. Although, a few drawbacks have reduced their acceptability and commercial utilization, yet, biopesticides are highly specific in their target, have a short shelf life, are less persistent in the soil environment, and originate from sustainable raw materials, unlike synthetic pesticides (Kumar et al., 2021). Some of the merits of biopesticides mentioned above could also serve as their demerits. For example, the specificity in their target toward pest could be a demerit if the desire is to control many pests simultaneously. Also, their short shelf life means they are easily degradable and persist less in the environment, but this turns to a demerit if the goal is to completely eliminate the existing pests and prevent the growth of the pests that will come after the application of the biopesticides. The critical assessment of these merits and demerits, and the possible measures to improve on these seeming drawbacks has become very important. Therefore, this review examined the types, effects, advantages, and disadvantages of both synthetic and biopesticides. Also, different measures to improve on biopesticides (that is, microbial pesticides, phytopesticides, and nanobiopesticides) for possible incorporation into the integrated pest management system to reduce yield and quality loss were adequately discussed.



2. Classification of pesticides

Pesticides can be classified based on their active ingredients, functions, and sources. According to their active ingredients, pesticides are classified into organochlorines, propanil, and so on (Table 1). In terms of their functions, they can be classified into herbicides, fungicides, algicides, rodenticides, and so on (Figure 1). However, according to their sources, pesticides are classified into synthetic pesticides and biopesticides. Many pesticides, which include carbofuran, carbendazim, dichlorvos, anthraquinone, dinocap, paraquat, methomyl, aldicarb, and diuron have been banned for use in a lot of countries due to their toxicity to humans (Boucaud-Maitre et al., 2019). These banned pesticides are usually preferred by farmers because they are more affordable and more available compared to unbanned pesticides (Kehinde and Tijani, 2021). It is therefore important for World Health Organization (WHO), Food and Agriculture Organization (FAO), and other regulatory bodies to impose a ban on such products worldwide and also sanction companies that produce them.



TABLE 1 Classification of pesticides according to their active ingredients.
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FIGURE 1
 Classification of Bio-pesticides and their target pests.



2.1. Classification of pesticides according to their functions

Pesticides can be classified according to the functions they perform. For instance, algicides (acaricides) destroy algae on different surfaces (Zheng et al., 2018), and antifeedants prevent the destruction of plants or harvested and preserved crops by other pests which could feed on them (Peprah-Yamoah et al., 2022). Herbicides prevent the growth of weeds and eliminate them (Loddo et al., 2019), while miticides are used to kill termites or ticks that destroy crops (Murcia-Morales et al., 2021). Similarly, bactericides and fungicides get rid of harmful bacteria and fungi, respectively, or inhibit their growth without tampering with the beneficial ones (Ullah and Dijkstra, 2019; Akanmu et al., 2021). Fumigants exhibit broad-spectrum activity against fungi, insects, and bacteria (Fang et al., 2020). Termiticides suppress the activities of termites on the soil (Singh et al., 2020). Repellents are used to repel insect pests and birds. Acaricides are used to control arachnids (Benelli, 2022) and insecticides help to destroy insects that affect plants, animals, and humans (Matsuda et al., 2020). Equally, the effective use of nematicides in the control of nematodes, rodenticides in the control of mice and other rodents, and molluscicides in the control of molluscs have been documented (Horgan and Kudavidanage, 2020; Figure 1). Attractants lure and attract pests to a trap or bait (Souto et al., 2021). Insect growth regulators disrupt the molting, maturity from pupal stage to adult, or other life processes of insects (Jindra and Bittova, 2020).



2.2. Classification of pesticides according to their sources

Pesticides are classified into chemical and biological pesticides according to their source. Chemical pesticides are very effective and rapid in the control of pests. They are made from inorganic or synthetic salts, such as sulfur, copper sulfate, lime, and ferrous sulfate. Their chemical compositions are simple and highly soluble in water, which makes them easily absorbable by pests, thereby enhancing their activity and durability in the environment (Kim et al., 2017; Abubakar et al., 2020).

Biological pesticides (biopesticides) are substances produced from biological agents that manage pests in agriculture to enhance crop production (Samada and Tambunan, 2020). They can be sourced from microorganisms, plants, or nanoparticles (Kidd et al., 2017; Samada and Tambunan, 2020; Adeleke et al., 2022d). Microbes release certain metabolites, which protect plants from pests and are useful as microbial pesticides (Samada and Tambunan, 2020). Active compounds from plants used as phytopesticides include phenols, alkaloids, and terpenes (Abubakar et al., 2020). Generally, nanoparticles can be produced from chemical or biological agents (mainly plants or microbes; Omole et al., 2018). Nanoparticles of biological origins that are used as pesticides are termed nanobiopesticides and are also very important as plant protectants (Pan et al., 2023). Nanobiopesticides have found application as pesticidal agents in agriculture because of their excellent physicochemical characteristics like size, reactivity, surface area, and so on. Besides, nanobiopesticides have unambiguous biological interactions with plants, as well as clear transport and fate in the environment (Bratovcic et al., 2021; Kumar et al., 2022; Pan et al., 2023).



2.3. Adverse effects of synthetic pesticides

Synthetic pesticides are faced with drawbacks, which include the cost of purchase and production, persistence in the soil, pest resistance, impacts on health and the environment, economic harm to organic producers due to pesticide drift, disposal of contaminated crops, removal of stockpiles of unused pesticides as well as regular containers, and the disposal of expired/unused products, which can affect organic farms or innocent populace (Hicks et al., 2018; Essiedu et al., 2020).

A large portion of pesticides when applied on the soil for agricultural purposes remains non-degradable. Hence, they are more persistent in the environment and leach to underground and surface water, thus leading to loss of biodiversity and pollution. Of all the pesticides applied on the soil, about 98% affect organisms that are not targeted. For instance, in Europe, pesticides decrease soil respiration by 35%, reduce insect biomass by 70%, and decrease the number of farm birds by 50%; and in America and Europe, it reduces the honeybee population by 30% (Ali et al., 2021). Research by Tongo et al. (2022) revealed Aldrin pesticide as a major pesticide detected in the Ikpoba river in the Southern part of Nigeria. Although, other chemicals, such as diazinon, endrin, glyphosate, aldrin, endosulfan I, heptachlor, heptachlor epoxide, and carbofuran present with the tendencies of being biomagnified need proper monitoring. Furthermore, pesticides (e.g., carbamate and organophosphate) have been reported to negatively affect soil’s nutrients, as they chelate some important metal ions, thus making them unavailable for plant uptake (Kaur et al., 2017). Likewise, plant photosynthesis, reproduction, and seed production can be adversely affected by pesticides (Hashimi et al., 2020).

Residues of pesticides in food crops can be consumed directly by humans or used in the production of animal feeds (Choudhary et al., 2018). This can come to play when pesticides are applied toward harvesting (Jallow et al., 2017). Biomagnification of pesticides occurs in animals when they feed on accidentally or deliberately contaminated harvested food crops or forage. Topical pesticides are applied on food crops to control parasites, and through other means, such as disposal, spraying, and formulations of pesticides (Choudhary et al., 2018). Pesticide accumulation in the granular tissues of animals can lead to the death of cells, necrosis (causing a reduced hormone production), ovarian follicles (resulting in a reduced progesterone level), reduced oestrogen production, reduced libido, and a reduced sperm concentration and quality in male animals (Li et al., 2022).

Accumulation of pesticides in birds (e.g., bald eagles, ospreys, grebes, cormorants, seagulls, pelicans, and peregrine falcons) living in pesticide-polluted areas can lead to reproduction problems (Garces et al., 2020). Pesticides lead to crossed bill deformity in birds. For example, a high concentration of DDT pesticides led to crossed-bill deformity in a wild bald eagle (Garces et al., 2020). In reptiles inhabiting areas close to rivers where water from agricultural farms is washed, deformities could be observed. For example, snapping turtles living in Erie and Lake Ontario in Canada were found to have deformities, such as deformed jaws, limbs, cranium, carapaces, nostrils, and tails, enlarged yolk sacs, dwarfism, missing eyes, unhatched eggs, and these were traced to chemical pesticides contamination (Garces et al., 2020). In soils, the reduction in the function and population of fungi, actinomycetes, and bacteria has been linked to the usage of three pesticides, namely glyphosate, malathion, and alphacypermethrin (Kumar et al., 2019). All the negative effects of synthetic pesticides lead to the loss of biodiversity and genetic conservation in animals. Furthermore, it also alters soil biodiversity and health, by affecting the microbial functions in the soil, which directly or indirectly enhances soil nutrients and plant health.

Consumption of vegetables, food crops, fruits, milk, and meat from animals that contain high pesticide residue can lead to different diseases in humans (Omoyajowo et al., 2018; Li et al., 2022). Onwujiogu et al. (2022) found pesticides in Bambara groundnut quantity, which is beyond the Maximum Residual Limit (MRL) recommended by the WHO and could pose a threat to the health of humans, especially children who feed on them. Omoyajowo et al. (2018) also experimented to unravel the level of pesticides in three fruits and realized that the pesticide level of watermelon was above the MRL level specified by the WHO/FAO, which equally poses a health threat to the consumers. Similarly, pesticides are used to protect harvested food crops, vegetables, and fruits and those used for other purposes aside that which they are manufactured. For instance, the use of calcium carbide to ripen fruits poses health threats to humans. Calcium carbide contains calcium arsenide and calcium phosphide, and when reacts with water, forms arsine and phosphide, thus leading to headache, vomiting, dizziness, nausea, unconsciousness, and fatigue in humans (Andrew et al., 2018). Equally, ethepon, a pesticide used to hasten the ripening of fruits, vegetables, and cereals exhibited hepatocyte properties when tested on albino rats (Bhadoria et al., 2018).

Furthermore, in humans, biomagnification of pesticides through food (such as fish), drinking water, skin pores (while spraying), post-harvest crop preservation, and inhalation, give rise to diseases, such as cancer, Parkinson’s diseases, eye irritation, diabetes, kidney diseases, hypertension, skin rashes, liver dysfunction, eczema, birth defects, Alzheimer’s diseases, neurological destruction, cardiovascular diseases, and endocrine disorder (Damalas and Koutroubas, 2016; Jayaraj et al., 2017; Sabarwal et al., 2018; Manfo et al., 2020). Likewise, high pesticides level can lead to about 25–30% increase in mental ailments, and a 50% increase in severe brain cancer, leukaemia, lymphoma, and cancer.




3. Biopesticides as an alternative to synthetic pesticides

Due to the drawbacks of synthetic pesticides, an alternative means of pest control is being encouraged, which is the use of biopesticides (Ojuederie et al., 2021; Ayilara et al., 2022b; Figure 2). Biopesticides are effective and safer means of controlling pests, they have a mild effect on the environment compared to their synthetic counterpart, and they are specific in their target, hence preventing bioaccumulation (Saberi et al., 2020; Kumar et al., 2021). Biopesticides are made from natural substances, such as plants, microbes, and nanoparticles of biological origin, thus, making them a sustainable means of pest control (Kumar et al., 2021).
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FIGURE 2
 Comparison of the advantages of synthetic pesticides and biopesticides.


Some successes have been recorded in the use of biopesticides in the control of some pests to which chemical pesticides are being applied (Table 2).



TABLE 2 Different Biopesticides and the pest they control.
[image: Table2]

The effectiveness of biopesticides in pest management comes from various modes of action, which include actions that regulate gut disruption, pest growth, and pest metabolism. Biopesticides work by denaturing protein, causing metabolic disorder and paralysis, activating target-poisoning mechanisms, exhibiting multisite inhibitory actions, and releasing neuromuscular toxins and bioactive compounds (Figure 3; Sparks and Nauen, 2015; Dar et al., 2021; Fenibo et al., 2021). These multiple actions offer biopesticides the capacity to alter the course of pest resistance as compared to chemical pesticides. Studies have indicated that biopesticides are eco-friendly, possess low toxicity properties, are biodegradable, and specific in action with little or no negative impact on non-target organisms (Deravel et al., 2014; Kalpana and Anil, 2021), Unlike biopesticides, conventional pesticides are a major source of environmental pollution, which promotes pest resistance with high post-harvest contamination and bioaccumulation in food crops (Fenibo et al., 2021).

[image: Figure 3]

FIGURE 3
 Mechanism of action of biopesticides.


However, there are various limitations to the full adoption, development, and use of biopesticides in agriculture. Biopesticides are often ranked as having low efficacy and a slower rate in the control of pests and diseases (Damalas and Koutroubas, 2016; Delgado‐Carrillo et al., 2018). Commercial biopesticide products are highly expensive and not readily available in the global market. In addition to the problem of commercialization, biopesticides also face quality control problems and concise shelf-life (Arthurs and Dara, 2019).

Many farmers also worry about dosage recommendations and fear the evaluation of new pest species that may be resistant to the existing biopesticides (Stevenson et al., 2017). The advantages and disadvantages of biopesticides are summarized in Table 3. Biopesticides have also been classified into three groups based on their extraction source and the constituting molecule/compound. The three groups include; (i) Microbial Biopesticides; (ii) Biochemical Pesticides; and (iii) GMO-Based Biopesticides. The source characteristics and the consisting molecules of biopesticide influence the mechanisms by which biopesticides protect the crops from the attack of pathogens. For example, fungicides and bactericides derived from microorganisms act by inhibiting or disrupting the process of protein translation, or cause a major disruption in plasma membrane permeability, thus leading to cell death, while some may prevent glucose formation in target pathogens (Parker and Sperandio, 2009; Svidritskiy, et al., 2013; Gwinn, 2018).



TABLE 3 Advantages and disadvantages of biopesticides.
[image: Table3]


3.1. Microbial pesticides

Microbial pesticides consist of substances derived from microorganisms like bacteria, fungi, viruses, protozoa, and algae, which are used in the control of pests (Adeleke et al., 2022c). Microbes use the toxic metabolites produced to destroy and prevent the growth of pests. Microbial pesticides are applied to the environment through different techniques, such as emulsion, electrospraying system, fluidized bed, spray drying, extrusion, lyophilization, spray cooling, and coacervation (De Oliveira et al., 2021). The major categories of microbes used as biopesticides include bacteria genera, Chromobacterium, Pseudomonas, and Yersinia, fungal genera Beauveria, Paecilomyces, Verticillium, Hirsutella, Metarhizium, and Lecanicillium and nematodes belonging to the genera Steinernema and Heterorhabditis (Chang et al., 2003; Kumar et al., 2021; Adeleke et al., 2022b).

A fungi species, Trichoderma sp. has been reported to prevent the activity of numerous fungi inhabiting the soil that cause root rot, black gram, and green gram in chickpeas, and groundnut (Samada and Tambunan, 2020). Likewise, Beauveria bassiana and M. brunneum have been reported in the control of thrips, beetles, weevil, aphids, whiteflies, and mites infestation in ornamental crops, fruits, and vegetables (Dara, 2017; Arthurs and Dara, 2019). Other examples of microbial pesticides are listed in Table 2.

Of all the bacterial pesticides, Bacillus thuringiensis (Bt) is well-known and have been made into products available for commercial purpose (Ujvary, 2010; Ruiu, 2018). Bacillus thuringiensis is a Gram-positive bacteria that acts as an insecticide by producing exudates, such as poisonous parasporal crystals and endospores which when consumed by insects get dissolved in their midgut by the alkaline environment and release delta-endotoxin, a protein that has a lethal effect on insects (Xiao and Wu, 2019). Bacillus thuringiensis is used to reduce pest infestation in plants, such as cabbage and potato, and is capable of controlling lepidopterans in different plants (Berini et al., 2018; Samada and Tambunan, 2020). As good as the positive effects of commercially available Bt sounds, they come with some drawbacks which include quick deactivation when exposed to light, short activity time, slow lethal rate, and low awareness and sensitivity to the environment (Xiao and Wu, 2019). The short life and environmental sensitivity of microbial pesticides, which reduce their awareness and usage are the major challenges associated with their use (Pathak et al., 2017). For instance, baculoviruses only survive in their host and cannot reproduce outside their host; hence, they cannot be used outside their host (Borges et al., 2021). Their host may have an adverse environmental impact on the environment, and their use might be dangerous.

Fungi are also used to control plant pests. An example is the mycoinsecticide, which is a microbial insecticide whose active ingredient is a living fungus that exhibits an antagonistic effect on insects or other arthropod pests, with some strains releasing metabolites while inside the pest that may also injure or kill it (Zaki et al., 2020). Only a few rare fungal strains have been developed as commercial mycoinsecticides, hence, the technology is still in its early stages. Attachments, germination, penetration, invasion, replication, and host death are the six general phases of action for mycoinsecticides (Zaki et al., 2020).

Spores can land on and attach to the target host’s cuticle when the formulated product is diluted and applied according to label instructions. Adhesion is primarily achieved through hydrophobic interactions between the cuticle and the spore. The number of spores attached to the host’s body determines their efficacy. The spore germinates in response to chemical cues on the cuticle and then develops an aspersorium, which is the penetration structure. The fungus penetrates the layers of the cuticle through a combination of mechanical pressure and enzyme degradation (Zaki et al., 2020).

Generally, microbial pesticides exert no adverse effects on the environment, producers, and consumers of agricultural products because their ingredients are generally considered safe and are target-specific (Guven et al., 2021). In addition, their usage lower greenhouse gas emissions compared to chemical pesticides (Llamas et al., 2021). Furthermore, there is a wide variety of organisms from which microbial biopesticides can be derived to solve the problem of resistance and ensures sustainability. Since different microbes used as biopesticides might require different storage condition, it might be cumbersome for sellers, producers, marketers, and end users to cope with their storage and transportation. Hence, more research is needed to ensure a sustainable and extended shelf-ability of microbial pesticides.



3.2. Phytopesticides

Essential oil and extract from different parts of plants have been successfully used to control plant diseases (Ayilara et al., 2022a). They attract, repel, prevent respiration, detect host plants from specific pests, destroy the eggs and larvae of pests, and destroy pests from feeding on plants (Tripathi et al., 2009; Halder et al., 2013; Ali et al., 2017). Essential oil from Coleus aromaticus Benth., Hyptis suaveolens (L.), Azadirachta indica, Ageratum conyzoides L., and Achillea sp., have been reported to control the infestation of Tribolium castaneum (Herbst), a red flour beetle that destroys many crop species (Singh et al., 2014; Jaleel et al., 2015; Upadhyay et al., 2018). Other plant parts, such as bark, flowers, roots, leaves, peels, seeds, and buds can be used to control different plant pathogens (Tongnuanchan and Benjakul, 2014).

Plant families that have been reported to contain bioactive compounds with activity against important crop pests include Myrtaceae, Lauraceae, Rutaceae, Lamiaceae, Asteraceae, Apiaceae, Cupressaceae, Poaceae, Zingiberaceae, Piperaceae, Liliaceae, Apocynaceae, Solanaceae, Caesalpinaceae, and Sapotaceae (Gakuubi et al., 2016). They are easily available which makes them inexpensive and can be easily incorporated into agricultural production systems. Secondary metabolites, such as steroids, alkaloids, tannins, terpenes, phenols, flavonoids, and resins are commonly found in botanical pesticides and have shown antifungal, antibacterial, antioxidant, or insecticidal properties (Ahmad et al., 2017). The specific compounds found in certain plant species make them effective against a specific category of pests and also determine their mode of action on the target pests (Lengai et al., 2020). Botanical pesticides contain bioactive compounds that act in a variety of ways against pests, such as insects, fungi, bacteria, nematodes, and plant host cells infected with viral pathogens (Lengai et al., 2020). Depending on the botanical compound and pest, the modes of action may include repellence, inhibition, protein denaturation, and other effects. Pesticides derived from pyrethrum target insect nerve cells, thus causing paralysis and death. Also, neem-based pesticides with antifeedant and repellent properties, induce moulting abnormalities, hinder oviposition, and disrupt the endocrine system (Lengai et al., 2020).

Pesticides from plants have been well-reported to interfere with the normal metabolism of insect pests, which include the octopamine and acetylcholinesterase pathways (Polsinelli et al., 2010; Pang et al., 2012; Dassanayake et al., 2021). Acetylcholinesterase is an enzyme used by insects in their neuronal communication and neuromuscular functions and can be toxic to insects by destroying the membrane of the postsynaptic junction and the current of the nerve. Octapamine on the other hand is a hormone involved in neuromodulation and neurotransmission in insects and can impair the muscle juncture and homeostasis of the body fluids of insects (Dassanayake et al., 2021). Equally, plant pesticides can prevent cell wall biosynthesis, cell membrane structure, ATPases function, quorum sensing, efflux pumps, and biofilm formation (Lang and Buchbauer, 2012; Hu et al., 2017). Extracts from four weed plants, namely Lippia javanica, Tithonia diversifolia, Vernonia amygdalina, and ephrosia vogelii, in Tanzania were used to control insects in common bean (Mkenda et al., 2015). Similarly, Lovatto et al. (2004) carried out an experiment where nine different aqueous plant extracts from the leaves, fruits, and flowers of nine plants were used to repel and kill Brevicoryne brassicae. Solanum pseudocapsicum L., and Solanum guaraniticum A were reported to be the most effective.



3.3. Nanobiopesticides

Nanobiopesticides can be defined as biological protection products that are developed using nanotechnology to enhance efficacy and reduce an environmental load of pesticides (Chaudhary et al., 2021b,d). Nanobiopesticides are formulated from nanomaterials and applied specially fixed on a hybrid substrate, encapsulated in a matrix or functionalized nanocarriers for external stimuli or enzyme-mediated triggers (Agostini et al., 2012; Khati et al., 2018; Kumari et al., 2020; Agri et al., 2021, 2022; Chaudhary et al., 2022; Pan et al., 2023). They are nanostructures with two or three dimensions used for carrying agrochemical ingredients and can help increase water solubility and bioavailability, and protect agrochemicals against environmental degradation. It also helps revolutionize the control of pathogens, weeds, and insects in crops (Yadav et al., 2020). They are available in different forms, such as nano-gel, nano-encapsulation, nano-fibres, nano-sphere, etc. (Rajna and Paschapur, 2019; Pan et al., 2023).

Nanoparticles in recent years are being reported to be very helpful in agriculture (Omole et al., 2018). They have been used as active ingredients and carriers to stabilize many agrochemicals and their products from them include nanofertilizers, nanopesticides, etc. (Chaudhary and Sharma, 2019; Chaudhary et al., 2021a). For instance, pesticides from nanomaterials, such as magnesium oxide, magnesium hydroxide, copper oxide, and zinc oxide derived from aqueous extracts of Chamaemelum nobile flowers, Punica granatum peels, green peach aphid (GPA) and Olea europaea leaves have been reported in the control of insects (Grillo et al., 2021; Konappa et al., 2021). Also, silver nanoparticles derived from the leaf extract of Euphorbia hirta have been explored in the control of the causative agent of cotton bollworm, Helicoverpa armigera (Devi et al., 2014). The ability of copper oxide nanoparticles and zinc oxide nanoparticles to control Alternaria citri, a causative agent of citrus black rot disease in the plant has as well been reported (Lasso-Robledo et al., 2022). In addition, Sardar et al. (2022) used combined and individual zinc oxide and copper oxide to control citrus black rot disease in a potato dextrose medium. The fungal and insecticidal effects of copper nanoparticles have been demonstrated against Tribolium castaneum, a pest that affects grain (El-Saadony et al., 2020). The major interactions which occur between plants and nanoparticles have been studied using different techniques, which include fluorescence spectroscopy, microscopy, and magnetic resonance imaging (Chhipa, 2019). The effectiveness of nanobiopesticides can be determined by the composition, surface charge, concentration, size, and chemical and physical changes (Chhipa, 2019).

The critical role of nanoformulations in reducing active ingredient degradation, improving water solubility equilibrium, and increasing the biological availability of active ingredients is well understood, and this has helped in avoiding endemic pest infestation, plant injury, and economic loss by lowering the quality and quantity of agricultural products and foods (Syafrudin et al., 2021; Chaudhary et al., 2021a,c).

Because of their small size and larger surface area, nanopesticides’ chemical properties differ significantly from conventional pesticides, and these properties can be used to develop an efficient assemble of a structure with several advantages, such as the possibility of better interaction and mode of action at a target site of the desired pest. Nano-sized products exhibit greater selectivity without impairing compound bioactivity against the target pathogen. Their increased toxicity can also increase pest penetration (Priya et al., 2018). Nanoparticle application reduces drifting and leaching issues and allows for the use of a smaller amount of active compound per area, as long as the formulation can provide optimal concentration delivery for the target insecticide for longer periods. There are several methods for creating pesticide nanoproducts, such as nanoemulsions, nanocapsules, and inorganic engineered nanoparticles (such as metal oxides, metals, and clays), and can be further developed to improve the efficacy of existing pesticides, reduce their environmental toxicity, or both.

On a general note, biopesticides have been reported to be capable of controlling pests but their sole use for sustainable agriculture may not be realistic, majorly because they are not readily available in many locations and their mode of action can be very slow. Hence, they should be incorporated with the existing synthetic pesticides and be applied majorly close to the harvest period of crops since residual chemicals observed in plants are those majorly applied close to harvest periods. Furthermore, this will help to maintain suitable agriculture, pending the improvements of biopesticides.



3.4. Molecular mechanisms of the application of biopesticides

It is very important to understand the molecular mechanisms underlying the action of biopesticides at each stage of action to ensure better control strategies over pests. Understanding the biopesticides mechanisms of action against insect pests at the molecular level will allow for synergistic approaches among biopesticides, which have different mechanisms of action without an overlapping mechanism. This will also give allowance for the exploration of different toxic molecules present in biopesticides that can enlarge the pesticidal arsenal of these biopesticides. The widely used biopesticides and their mechanisms of action at the biochemical level have been described. However, the entomopathogenic fungus, Beauveria bassiana has gained wide acceptance and can be used as a model to describe the molecular mechanism of biopesticides’ application.

Beauveria bassiana is an example of an entomopathogenic fungus that has been widely used as biopesticide because it is highly efficacious against a lot of arthropod hosts (Boomsma et al., 2014). However, to understand their effectiveness and sustainability against pests, there is a need to fully evaluate their molecular mechanism of pathogenicity beyond the conventional approach. The mechanism of pathogenicity of B. bassiana begins with adhesion to the host pest, penetration of cuticle, and colonization of the pest heaemocoel (Wojda et al., 2009).

The hydrophobins-coated aerial conidia of B. bassiana allow its hydrophobic interaction with the cuticles of insects (Holder and Keyhani, 2005). This hydrophobicity of the B. bassiana aerial conidia can be influenced by the role that several genes expressed by B. bassiana play in lipid homeostasis. It has been revealed by transcriptomics analyses that there is an upregulation of gene expressions for hydrophobins and Metarhizium adhesion-like protein 1, 2 (MAD 1, MAD2) by B. bassiana which are crucial for its hydrophobic attachment to the cuticle of insect (Wang and St Leger, 2007). The transportation and storage of lipids in the conidia, and maintenance of the lipid homeostasis of B. bassiana is possible when mammalian-like perilipin 1 (MPL1) genes are over-expressed (Chen et al., 2018). The role that the MPL1 gene plays is crucial because its deletion causes a reduction in the turgor pressure of the appressoria impairing the adhesiveness of B. bassiana (Wang and Leger, 2007). Also, the surface sensing and signaling for the germination of conidia and formation of appressoria is made possible by CFEM-domain-containing genes in B. bassiana (Sabnam and Barman, 2017). Proteomics has also revealed that B. bassiana secretes sphingomyelin phosphodiesterase, which allows it to disrupt the membrane of the host insect upon contact with the cuticles of the insect (Santi et al., 2019).

Once B. bassiana completed adhesion to the host insect, its conidia germinate and develop appressoria to allow penetration into the cuticle of the host. The penetration efficiency of B. bassiana usually increased when the structural outlook of the appressorium allows the synergistic functioning of enzymatic digestion and mechanical pressure (Singh et al., 2017). The hyphae of B. bassiana germinate in the exoskeleton of the insect as the penetration proceeds and B. bassiana produces secondary hyphae inside the cuticle. The hyphae switch to blastospores (motile, more hydrophilic, and better evade the insect’s host immunity) when exposed to hyperosmotic environment in the haemocoel (Ortiz-Urquiza and Keyhani, 2016). Through transcriptomics, it has been reported that chitin synthase is responsible for chitin production, and β-1,3-glucanases soften the cell wall to allow germination, while several cell wall protein-conferring genes give the cell wall of B. bassiana its building blocks (Tartar et al., 2005; Mouyna et al., 2013; Chen et al., 2018). Genes necessary for the cell body differentiation in B. bassiana include osmosensor Mos1, signaling-related genes, and mitogen-activated-protein kinases (MAPKs) like protein kinase A (PKA; Chen et al., 2018; Zhou et al., 2019). For penetration into the cuticle of the host insect, notable proteases, lipases, chitinases, and carboxypeptidases have been reported and these include subtilisin-like protease (Pr) isoform 1A (Pr1A) and 1B (Pr1B), cytochrome P450s (CYPs) and GH18 family chitinases (Lai et al., 2017).

In response to the penetration into the cuticle of the insect, the insect activates melanization and produces antimicrobial peptides (AMPs), reactive oxygen species (ROS), and protease inhibitors (Ortiz-Urquiza and Keyhani, 2016). Stress management and immune-evasion-related genes are upregulated to overcome the host insect defense mechanisms. Glutathione S-transferases (GSTs), catalases, peroxidases, superoxide dismutase (SODs), thioredoxins, and oxidoreductases are anti-oxidative enzyme-producing genes over-expressed in B. bassiana (Lai et al., 2017). Heat shock proteins (HSPs) are expressed to maintain internal cellular integrity against diverse types of stress (Santi et al., 2019). Another mechanism used by B. bassiana is the production of secondary metabolites that are toxic to the insect cell. These metabolites include oosporeins, beauvericin, isarolides, beauverolides, tenellins, and bassianolide (Chandler, 2017). The biosynthesis of oosporein happens in the haemocoel and it is mediated by the over-expression of polyketide synthase (PKS) gene (Lai et al., 2017). It is interesting to note that a greater amount of beauverolides secreted by B. bassiana usually occur when live insect tissues are present than in the presence of dead insect tissues (de Bekker et al., 2013). With these fantastic mechanisms of action, B. bassiana stands out among the entomopathogenic fungi, thus making it an attractive and widely used biopesticide against a lot of arthropod hosts.

Lastly, it is good to note that the complex mechanism of pathogenesis exhibited by B. bassiana cannot be fully understood by a singular omics approach, there is a need to examine the total expressions of different proteins, secondary metabolites, and their genes at every infection stage. Hence, researchers in different fields of omics need to collaborate to work with the same parameters to have a holistic view of the mechanism of action of different biopesticides.




4. Integrated pest management system

Integrated Pest Management (IPM) system refers to the mechanism of controlling pests using different techniques, such as habitat manipulation, biological and chemical control measures, use of pest-resistant varieties, and the modification of cultural practices. These techniques can be merged to ensure the long-term protection of plants (Deguine et al., 2021). For instance, IPM has been used in the control of Tuta absoluta, a deadly pest that affects tomatoes globally, and has developed resistance to insecticides (Desneux et al., 2021). Here, the synthetic pesticides and biological pesticides include the release and conservation of sex pheromones and arthropod natural enemies (Desneux et al., 2021). The use of IPM has been reported to be cost-effective and reduces the loss of crop yield (Hagstrum and Flinn, 2018). Currently, the adoption of IPM is limited owing to several factors, which include awareness, user preference, production industry, technology, policy, and culture (Deguine et al., 2021). It is, therefore, necessary to increase awareness of the inclusion of biological pesticides from microorganisms, plants, and nanobiopesticides in IPM. The awareness of many people about IPM will be an advantage to encourage producers to produce more of it, enhance its adoption and encourage researchers to carry out more research on it.



5. Future prospects and conclusion

A lot of crops are lost yearly to pest, but the emergence of synthetic pesticides have helped to reduce the loss. Nevertheless, the adverse effects of synthetic pesticides limit their use; thus, promoting the use of biological pesticides. Since biopesticides have proven as good alternative to chemical pesticides, it will be very important to explore them for maximum use in agriculture. The demand and availability of biopesticides are very poor, hence discouraging the producers and the users, respectively. Therefore, making grants or capital available for researchers, entrepreneurs, producers, and marketers will help to enhance the production and availability of biopesticides.

The shelf-life of biopesticides is short, as they require special temperatures and conditions for survival during transportation and storage. Hence, more research to unravel the mechanisms to make biopesticides more stable and improve their shelf-life will go a long way in increasing their efficiency.

The fact that biopesticides have no residual effects on the environment could serve as an advantage and a disadvantage. An advantage because it will not remain long enough to be dangerous to the plants, humans, and animals (which is one of the major demerits of synthetic pesticides), and it is a disadvantage because it will only protect crops as long as it has contacts with the pests, and pests that infest after their application would not be affected and might need another application, thus leading to a higher cost implication and labor for farmers. Consequently, more research should be carried out to incorporate bio-carriers and other sustainable methods, which can be used to enhance the persistence of biopesticides in the environment. Since biopesticides are highly specific in their mode of action, chemical reactions may occur if more than a biopesticide is applied to a crop that is affected by different pests. Hence, it is important to carry out more research on the compatibility of different biopesticides, which are likely to be used together on the same crop. Furthermore, most research carried out on biopesticides was focused on yield and not the nutritional quality of the crops, an insight into the nutritional quality of biopesticides will enhance their use.

The Maximum Residual Limit for pesticides in local markets (not only for food crops that would be exported) should be enforced and awareness should be created on the effectiveness of biopesticides so that farmers can explore them. In addition, a mobile meter, device, or strip could be developed, made affordable and easily available to enhance the easy and rapid detection of pesticide levels in food crops. This will help farmers to take caution and also help the populace to avoid feeding on crops with a Maximum Residual Limit greater than the WHO specified value. Awareness of the effects of the indiscriminate use and health effects of biopesticides in humans will also help to promote a good environment and health. Due to the numerous challenges still encountered with the use of biopesticides, the sole use of biopesticides might not be feasible. Therefore, their incorporation with the existing synthetic pesticides will be a better means of preventing crops from pests and ensuring sustainable agriculture.
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Modern agriculture is primarily focused on the massive production of cereals and other food-based crops in a sustainable manner in order to fulfill the food demands of an ever-increasing global population. However, intensive agricultural practices, rampant use of agrochemicals, and other environmental factors result in soil fertility degradation, environmental pollution, disruption of soil biodiversity, pest resistance, and a decline in crop yields. Thus, experts are shifting their focus to other eco-friendly and safer methods of fertilization in order to ensure agricultural sustainability. Indeed, the importance of plant growth-promoting microorganisms, also determined as “plant probiotics (PPs),” has gained widespread recognition, and their usage as biofertilizers is being actively promoted as a means of mitigating the harmful effects of agrochemicals. As bio-elicitors, PPs promote plant growth and colonize soil or plant tissues when administered in soil, seeds, or plant surface and are used as an alternative means to avoid heavy use of agrochemicals. In the past few years, the use of nanotechnology has also brought a revolution in agriculture due to the application of various nanomaterials (NMs) or nano-based fertilizers to increase crop productivity. Given the beneficial properties of PPs and NMs, these two can be used in tandem to maximize benefits. However, the use of combinations of NMs and PPs, or their synergistic use, is in its infancy but has exhibited better crop-modulating effects in terms of improvement in crop productivity, mitigation of environmental stress (drought, salinity, etc.), restoration of soil fertility, and strengthening of the bioeconomy. In addition, a proper assessment of nanomaterials is necessary before their application, and a safer dose of NMs should be applicable without showing any toxic impact on the environment and soil microbial communities. The combo of NMs and PPs can also be encapsulated within a suitable carrier, and this method aids in the controlled and targeted delivery of entrapped components and also increases the shelf life of PPs. However, this review highlights the functional annotation of the combined impact of NMs and PPs on sustainable agricultural production in an eco-friendly manner.

KEYWORDS
 nanomaterials, plant probiotics, sustainable agriculture, soil fertility, bioeconomy


1. Introduction

Numerous tactics dealing with the improvement of crop production are essentially required to meet the basic food needs of the rapidly growing human population. The sector of agriculture affected by climate change, where increasing phenomena of abiotic stresses such as drought, salinity, cold, flooding, and biotic stress (attacks by pathogens such as bacteria, fungi, oomycetes, nematodes, and herbivores) negatively affect agricultural production (Shahzad et al., 2021; Upadhayay et al., 2023). In addition, the agrochemicals showed a significant increase in crop yield in the last few decades (Lin et al., 2019), but later harmful effects from the over-application of chemical fertilizers became apparent (Upadhayay et al., 2022a,b). It led to the degradation of soil quality, disturbance of soil microbial ecology, pollution of soil and water bodies, and harmful effects on human health due to residues of pesticides and herbicides (Singh et al., 2020; Tripathi et al., 2020; Boregowda et al., 2022). Moreover, the transition to organic agriculture, particularly the use of biofertilizers, provided an environmentally friendly alternative to chemical-based agriculture, as well as improved crop yield and soil quality (Asghar et al., 2022; Elnahal et al., 2022). The term “plant probiotics (PPs)” can be used to decode a distinct group of microbial strains with all the necessary characteristics to be classified as biofertilizers that influence plant growth through both direct and indirect mechanisms (microbes that show beneficial attributes for plants in terms of growth and yield; Sarbani and Yahaya, 2022; Rai et al., 2023). The rhizosphere and the inner regions of plant tissues each serve as a special hub for their respective microbial communities, the rhizomicrobiome (Jiang G. et al., 2022), and the endophytomicrobiome (Pandey et al., 2022). This microbiome is a rich source of plant probiotics due to the multitude of traits it possesses, such as the solubilization of nutrients (Khan et al., 2022), nitrogen fixation (Abdelkhalek et al., 2022), production of plant hormones [indole-3-acetic acid (IAA); Nazli et al., 2020], ammonia (Upadhayay et al., 2022b), anti-pathogenic compounds (Mathur et al., 2019), hydrogen cyanide (HCN; Kashyap et al., 2021), exopolysaccharides (Latif et al., 2022), siderophore (Mushtaq et al., 2022), and lytic enzymes (Reddy et al., 2022). Plant probiotics enhance nutrient uptake and provide protection for plants from environmental stresses, such as biotic and abiotic stresses, and also improve plant health (Kenawy et al., 2021; Pandey et al., 2022). Plant probiotics with varying plant growth-stimulating capabilities provide advantages such as improved crop productivity and food security (Arif et al., 2020; Ghoghari et al., 2022). In contemporary times, the use of nanotechnology in developing countries is gaining more attention, especially in the field of agriculture (Neme et al., 2021). Due to their greater surface area and solubility, nanomaterials are regarded as superior to conventional agrochemicals when used as nanofertilizers in agriculture (Fen et al., 2022). Nanofertilizers improve the nutrient uptake efficiency of plants, diminish the detrimental effects of environmental stresses, and increase crop productivity (Guleria et al., 2022). It is possible to use a combination of the selective plant probiotics that have been shown to be compatible with the nanoparticles of interest (Khati et al., 2017, 2018; Agri et al., 2021; Chaudhary et al., 2021a,b,c). NMs and PPs together hold a great promise for sustainable agriculture as better alternatives to agrochemicals and are becoming a popular concept in the agricultural sector. This idea of efficient fertilization can be preferred over chemical-based fertilization because of its higher efficacy in resource utilization, sustained and slow release of nutrients, increase in crop productivity with a lesser dose of fertilizer, and least negative impacts on soil. Moreover, the use of NMs and PPs is economically feasible and poses lesser toxicity to the environment. According to the literature, the “cocktail” of NMs and PPs can be considered a “nanobiofertilizer (NBF),” because it has the effectiveness of both components (i.e., NMs and PPs) and aids in the slow and controlled release of nutrients, improves nutrient use efficiency, and results in a significant increase in crop yield (Kumari and Singh, 2020).

The microbial part of this cocktail contributes benefits to the plant system due to its wide array of plant growth-stimulating traits such as the solubilization of nutrients, nitrogen fixation, production of plant hormones, EPS, siderophore, and anti-pathogenic compounds. The improvement in soil fertility, functional enzymatic activities, NPK content, organic carbon content, and soil microbial biomass are reflected under the influence of the effective microbial component. On the contrary, the second and most effective segment, “NMs,” maximize the benefits and contributes to plant growth through the controlled and sustained release of nutrients, a reduction in the fixation of nutrients in the soil, an increase in the bio-availability of nutrients to plants, making plants more tolerant to environmental stress, and the protection of plants from pests. The combination of nanomaterials and plant probiotics can be applied to plants in a variety of ways, including seed treatment, seedling treatment, foliar application, soil application, and other methods. Nanotechnology advancements have also led to the encapsulation of plant probiotic strains within the appropriate nanomaterials (Panichikkal et al., 2019, 2021; Akhtar et al., 2022) or the encapsulation of both NMs and PPs within a suitable carrier (Moradi Pour et al., 2022), depending on the choice of experiments. This concept maintains the efficacy and shelf life of the microbial component (PPs) as well as the controlled and sustained supply of both NMs and PPs. This two-pronged strategy increases nutrient availability directly through the use of nanomaterials, while also stimulating plant growth through effective microbial treatment. The use of such a combination of effective doses of NMs and PPs has the potential to create a big difference in the agricultural sector, which will eventually be fruitful in providing benefits of sustainable agricultural production and as well as food security (Kumari et al., 2021; Agri et al., 2022; Akhtar et al., 2022). The present review illustrates the impact of the combined use of NM and PP, as an effective but two-way strategy, on food crops in terms of increased crop production, reducing the detrimental effects of environmental stress, improving soil fertility, and strengthening the bioeconomy.



2. Compendious outline of nanomaterials

Nanomaterials are naturally or artificially synthesized exceptionally tiny molecules ranging from 1 to 100 nm in size (Rehman and Pandey, 2022). The smaller size and high surface-to-volume ratio of nanomaterials give them distinct and advantageous properties in different scientific fields compared to their bulk analog (Yang et al., 2022). The NM has unique physiochemical properties and flexible scaffolds, making them functional with biomolecules and unique compared to other materials (Muthukumaran et al., 2022). Furthermore, it has been demonstrated that some NMs, such as magnetic (Armenia et al., 2022), gold (Jiang et al., 2017), polymeric (Kamaly et al., 2016), or hybrid NMs (Ferreira Soares et al., 2020), may react to external stimuli, leading to a spatiotemporally regulated release of macromolecules. In the last few decades, synthetic NMs have been efficiently used in pharmacology and medicine, especially for therapeutic or diagnostic applications (Zain et al., 2022). These NMs or nanoparticles are carbon-based, inorganic, or organic. Inorganic nanoparticles have numerous scientific uses and are metallic or metal oxides. Constructive or destructive processes can synthesize these nanomaterials using nearly all metals (Upadhayay et al., 2019). Among the different elements, Cd, Au, Al, Co, Zn, Pb, Fe, Cu, and Ag are frequently used to synthesize nanoparticles (Ali et al., 2022). It was reported that the metal oxide-based nanoparticles alter the nature of their analog metals (Sanzari et al., 2019). For example, iron (Fe) containing nanoparticles (NPs) rapidly oxidized to Fe oxide in the presence of oxygen (O) at room temperature, making them more reactive and efficient compared to their parent iron nanoparticles (Sanzari et al., 2019; Ezealigo et al., 2021). There are different types of commonly manufactured nanoparticles, such as “silicon dioxide (SiO2),” “zinc oxide (ZnO),” “cerium oxide (CeO2),” “aluminium oxide (Al2O3),” “titanium oxide (TiO2),” and “magnetite (Fe3O4)” which contain metal oxides (Fuskele and Sarviya, 2017). Some nanoparticles, viz., liposomes, dendrimers, ferritin, and micelles, are organic nanoparticles and eco-friendly in nature (Sanzari et al., 2019; Upadhayay et al., 2019).

In addition, “carbon-based” refers to another critical group of nanoparticles, further classified into fullerenes, graphene, carbon nanotubes (CNTs), carbon nanofibers, and carbon black (Ramar and Balraj, 2022). Occasionally, the term “activated carbon in nanosize” is also used for carbon-based nanoparticles (Upadhayay et al., 2019). The “bottom-up” strategy and the “top-down” approach have been suggested as two crucial strategies for the synthesis of NPs (Gutiérrez-Cruz et al., 2022). Among them, the bottom-up method is occasionally referred to as the constructive method because it involves the steady construction of a structure that starts from the atomic level and progresses up to the nanoparticle level (Upadhayay et al., 2019). Different methods such as chemical vapor deposition (CVD), biosynthesis, sol–gel, pyrolysis, and spinning are the bottom-up approach for nanoparticle synthesis. The term “biosynthesis” refers to a sustainable process that uses plant, bacterial, and fungal extracts coupled with precursors to create nanoparticles (Sanzari et al., 2019).

On the other hand, the bulk material is broken down into nanometric-sized particles using the “top-down method” or “destructive process (Yin et al., 2021).” Different strategies frequently used for the development of nanoparticles include laser ablation, thermal decomposition, nanolithography, sputtering, and mechanical milling (Sanzari et al., 2019; Upadhayay et al., 2019). Currently, polymeric nanoparticles have sought lots of attention due to their ease of synthesis, biocompatibility, and responsiveness to stimuli (Zu et al., 2021).

However, core or shell nanoparticles are also available in different combinations of materials used, which are organic/organic, inorganic/organic, and inorganic/inorganic materials. The shell of nanoparticles is selected based on ultimate applications and use (Sanzari et al., 2019). For example, it was proposed that polymeric shells enhance nanoparticle biocompatibility (Sharifianjazi et al., 2021). It has also been possible to create NPs with a nanostructured shell. Mesoporous silica nanoparticles (NPs) are nanoparticles with a mesoporous structure and a highly functionalizable surface (Zhang et al., 2022). In nanotechnology, a novel class of NMs known as nanogels (NGs) is gaining more attention due to its colloidal stability, bioconjugation, good physicochemical qualities, and stimuli sensitivity such as temperature and pH (Dalir Abdolahinia et al., 2022). Nanogels are made up of natural or synthetic polymer chains that are nano-sized ionic as well as non-ionic hydrogels. The NGs are highly porous that have high water content, i.e., 70–90% of the whole structure with high load capacity (Sanzari et al., 2019). A few examples of the nanogels are poly (vinyl alcohol), poly (ethyleneimine), chitosan, poly (ethylene oxide), poly (vinylpyrrolidone), alginate, poly (vinylpyrrolidone), and among them, the most frequent NGs is N-isopropyl acrylamide (Pinelli et al., 2022). Hybrid NGs are classified as (i) “nanomaterial–nanogel,” which incorporates nano-sized materials such as “magnetic” or “carbonaceous” NPs and (ii) “polymer–nanogel composites,” which include “interpenetrated networks (IPNs),” “copolymer,” and “core-shell particles” (Eslami et al., 2019; Sanzari et al., 2019).



3. Nanomaterials in agriculture: A way of smart delivery of nano-based fertilizers

The agricultural sector is highly dependent on climatic conditions, but in recent years, climate change has become a major concern of our human civilization (Qin et al., 2020; Kasperson et al., 2022). The adverse effects of climate change manifested as excessive rainfall, drought, extreme cold, heat wave, pest resurgence, and disease outbreaks caused the biological change in the crop life cycle, resulting in reduced grain yield, which directly affects food security on a global scale (Chitara et al., 2017; Liliane and Charles, 2020). Experts are focusing on the development of cutting-edge technologies in the agricultural sector in order to mitigate the detrimental effects of climate change (Shahzad et al., 2021) and emphasizing the synthesis of various nano-based products and the assessment of safer doses of nano-based products prior to their application. Moreover, nano-based fertilizers can provide an economically feasible and ecologically safe option for sustainable crop production under climate change scenarios.

Nanotechnology-based synthetic fertilizer applications in agricultural crop production are becoming popular strategies due to their beneficial role in increasing crop productivity, improving nutrient use efficiency, and reducing the impact of environmental constraints on crops (Beig et al., 2022). There are certain types of NMs viz. inorganic-based NMs, carbon-based NMs, organic-based NMs, and composite-based NMs have been used in agricultural crop production. Using all these NMs, researchers developed site-specific, targeted nanofertilizers, nanoherbicides, nanopesticides, nanofungicides, and nanoinsecticides, which have to prove themselves as highly efficient nano-based agrochemicals (Bana et al., 2020; Qazi and Dar, 2020; Ahmed et al., 2021; Okey-Onyesolu et al., 2021). Targeted application of nanofertilizers to crops improves nutrient use efficiency and prevents nutrient losses, as well as reducing the over-application of fertilizers can also help reduce fertilizer toxicity, which is followed by many farmers (Hofmann et al., 2020; Mejias et al., 2021). In addition to the application of nano fertilizers, nano herbicides are also used in weed control. Weed also hampers the agricultural dry matter accumulation due to their high competitiveness with the main crop for nutrients and space. Thus, with the help of nanotechnology, more competent nano-based herbicides have been developed that give better results compared to commercially available conventional herbicides (Abigail and Chidambaram, 2017; Balah and Pudake, 2019). Conventional herbicides only kill the top of the leaves, resulting in weed regrowth, but in the case of nanoherbicide application, the targets for killing are the root of the weed. After the roots have died, the weed plants are unable to resist regrowth.

Applications of NMs-based nano-pesticides are helpful in the control of a wide variety of pests that affect crops. In general, the conventional application of pesticides to crops increases cultivation costs and causes environmental pollution (Hajji-Hedfi and Chhipa, 2021). Nano-based pesticides have increased retention capacity with high efficacy, durability, good dispersion, and wettability, which makes them a potent pesticide compared to conventional pesticides, as well as their low dose release, which increases effectiveness and reduces environmental losses, soil degradation, and toxicity (Kumar et al., 2019; Vignardi et al., 2020). Some examples of nano-pesticides are Karate® ZEON against soybeans, rice, and cotton pests; and stomach poison for insects sold as Gutbuster. Similarly, nanomaterial-based nanofungicides and antimicrobial compounds are also helpful in plant disease management. Due to its large surface area to volume ratio, it increases their contact with the microbes and easily penetrates into the microbial cell, making excellent contact for nano-fungicides. Applications of nanofungicides provide targeted delivery, improved bioavailability as a result of increased solubility and penetrability, lower dosages, and decreased dose-dependent toxic effects (Ul Haq and Ijaz, 2019). Recently, metal-based NPs such as Ag, Au, Cu, Cd, Al, Se, Zn, Ce, Ti, and Fe synthesized with plant extract have gained in popularity, and they are all effective in the control of phytopathogens (Hernández-Díaz et al., 2021). Many researchers have demonstrated AgNPs as potent nanometal-based pesticides with antibacterial and antifungal activity, successfully used in controlling plant diseases (Khan et al., 2021; Tariq et al., 2022).

The application of NMs such as nanochitosan, nanogypsum, nanourea, carbon nanotubes, and nanophosphorus also showed their important roles in disease suppression, improvement in soil functions and structure, enhancement in photosynthetic efficiency, and crop production. Meloidogyne incognita densities alone or in the presence of TMV were reduced by nano-chitosan by 45.89 to 66.61%, while root gall density was reduced by 10.63 to 67.8% (Khalil et al., 2022). The combined use of nanogypsum and Pseudomonas taiwanensis on maize improves the structure and function of the soil, which has a beneficial influence on plant health without generating toxicity (Chaudhary et al., 2021c). The foliar application of nano-urea to pearl millet plants improved plant growth metrics, dry matter accumulation, chlorophyll content, and NPK content (Sharma S. K. et al., 2022). Carbon nanotubes have potent antibacterial properties as well as induced defense activation after application to tomato crops infested with Alternaria solani (González-García et al., 2021). The administration of the nanophosphorous (nP) via foliar application to plants growing in P-deficient soil increased plant growth and yield attributing metrics, leaf integrity, chlorophyll content, P contents of leaf and seed, and improved anatomical topographies (Abou-Sreea et al., 2022). Table 1 depicts a recent scenario deciphering the beneficial effects of various NMs on plants. In addition, Table 2 shows some of the commercially available fertilizers based on NMs with their ingredients (Elemike et al., 2019; Pirzadah et al., 2020; Avila-Quezada et al., 2022).



TABLE 1 Beneficial effects of different nanomaterials on plants.
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TABLE 2 List of some approved and commercially available nanomaterials-based fertilizers.
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4. Molecular insights on NMs for plant growth and development

The advancement of NMs in terms of plant growth is further embellished by illustrating their molecular mechanisms, which are particularly well understood at the level of relative gene expression. Several high-throughput studies have been conducted to investigate the effects of NMs on specific gene expression patterns, whether upregulation or downregulation, for a variety of plant activities such as seed germination, photosynthesis, and abiotic and biotic stress tolerance. Application of ZnO NPs (25 mg/L) recorded the maximum level of photosynthetic pigments due to the higher expression of photosynthesis-related genes (“CHLΙ,” “LHCa/b,” and “RSSU”; Mardi et al., 2022). The effect of silica nanoparticles observed in terms of improvement of wheat growth under filed conditions and upregulation of genes related to plant hormones (“TIR1” for IAA; “PYR/PYL,” “PP2C,” “SnRK2,” and “ABF” for abscisic acid), sugar metabolism (α-glucosidase, SUS, SPC), and chlorophyll (“CHLH,” “CAO,” and “POR”; Li et al., 2023). Foliar application of manganese ferrite NMs (10 mg/L) induced early flowering in tomatoes by upregulating the flowering induction gene SFT. A similar study also reported the upregulation of genes associated with gibberellin biosynthesis (GA20ox2, GA20ox3, and SIGAST; Yue et al., 2022). Among the genes involved in the photosynthetic process in Brassica chinensis L., ferredoxin-NADP reductase (PetH) was highly expressed under various concentrations (0.7, 7, and 70 mg/kg) of CeO2 NPs, while photosystem II lipoprotein (Psb27) was downregulated under varying levels of NPs (7, 70, and 350 mg/kg; Hong et al., 2023). One of the most important mechanisms for plant survival under stress conditions is the expression and regulation of abiotic stress-responsive genes (Sahil et al., 2021). NMs, however, showed a positive impact in terms of improving plant tolerance by upregulating the expression of genes involved in plant survival under stress conditions. Chitosan NPs upregulated drought-responsive genes such as “HsfA1a,” “SlAREB1,” “LeNCED1,” and “LePIP1” in Solanum lycopersicum (Mohamed and Abdel-Hakeem, 2023). The genes involved in drought tolerance, such as “P5CS,” “CAT1,” and “DREB2,” related to “proline biosynthesis,” “catalase activity,” and “dehydration-responsive element-binding proteins,” respectively, were highly expressed in wheat by the application of zinc oxide NPs to mitigate the drastic effect of drought in plants (Raeisi Sadati et al., 2022). Recently, Subotić et al. (2022) reported higher expression of aquaporin genes (PIP1;3, PIP1;5, and PIP2;4) related to water and solute transportation across the plant membrane in tomatoes by exposing them to a nanosubstance, i.e., hyper-harmonized hydroxyl-modified fullerene (3HFWC). Phytochemicals, such as alkaloids, have defensible importance in plants under stress conditions, and their biosynthesis is increased under drought conditions (Amirifar et al., 2022). The further addition of nanomaterials can enhance the level of biosynthesis of phytochemicals in plants. The study of Ali et al. (2021) observed the upregulation of key genes such as STR (strictosidine synthase), PRX1 (peroxidase 1), GS (geissoschizine synthase), and DAT (deacetylvindoline-4-O-acetyltransferase) involved in the biosynthesis of alkaloids under the response of chitosan NMs in drought stress. In tomato plants, Rahmatizadeh et al. (2021) showed the effect of nano-SiO2 (50 mg/L) as a possible mediator, stimulating the expression of “LeNRAMP3” and “LeFER.” The overexpression of these genes might enhance the nutritional status of Cd-stressed tomato plants, indicating that the LeFER transporter plays a vital role in alleviating the impact of Cd stress. Furthermore, the resultant upregulation of the several genes associated with various functions under the response of NMs is illustrated in Table 3.



TABLE 3 Upregulation of genes associated with functional attributes in plants under the influence of nanomaterials.
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5. Plant probiotics: Unraveling a long story in a nutshell

Current agricultural production cannot guarantee a consistent food supply for the rapidly expanding global population over the next 50 years. In addition, changes in dietary preferences and the increasing demand for the production of a wide variety of crop-based food products, etc., are imposing massive pressure on the production of crops at a huge scale. In recent decades, excessive amounts of chemical-based fertilizers and pesticides have been used to improve agricultural output on a vast scale; this was also a necessary step in order to solve the food crisis. Indeed, agrochemicals have changed the scenario of the agricultural world in terms of accessing multiple crop yields even under environmental stress conditions, but they have also left negative environmental footprints (Mitra et al., 2021; Tazunoki et al., 2022). Soil quality degradation, disturbance of local soil microbial ecology, health hazards from chemical residues of agrochemicals, and contamination of local water bodies are the adverse consequences of heavy reliance on agro-based chemicals (Mandal et al., 2020; Meena et al., 2020; Tazunoki et al., 2022). In the contemporary world, due to the tremendous awareness of the negative impacts of agrochemicals on organic farming and other chemical-free practices, people’s interest is shifting to reducing dependence on chemical-based products (Nithya et al., 2022). Fortunately, the concept of using plant growth-promoting microbes as biofertilizers/biopesticides is favorable as a green technology for sustainable agriculture (Khan et al., 2019; Elnahal et al., 2022). Plant growth-promoting microbes are actually effective or beneficial microorganisms that confer beneficial attributes to the host plants (Massa et al., 2022; Chaudhary et al., 2022c). Like human probiotics, a specialized set of microbial strains responsible for gut health, the term “plant probiotics” has recently become trendy to denote beneficial microorganisms that are necessary for the wellbeing of host plants (Carro and Nouioui, 2017; Menéndez and Paço, 2020; Sarbani and Yahaya, 2022). Therefore, plant probiotics and plant growth-promoting microorganisms (bacteria, fungi, etc.) are somewhat synonymous with each other and are part of a complex microbial community that either colonizes the rhizosphere (rhizomicrobiome; Ravichandran et al., 2022) or diffuse in or localizes in plant tissues (endophytes; Pandey et al., 2022; Rai et al., 2023) and contribution to beneficial functional traits in favor of plants (Gosal et al., 2017). These beneficial traits include enhancement in plant growth and productivity (Gavelienė et al., 2021), amelioration of abiotic and biotic stresses in plants (Santoyo et al., 2021), lowering the challenges of climate changes effects (Fiodor et al., 2021), and biofortification benefits via improving micronutrients levels in crop edibles (Upadhayay et al., 2018, 2021, 2022a,b,c). Plant probiotics must contain some PGP traits such as the solubilization of elements (P, K, and Zn; Singh et al., 2022), nitrogen fixation (Pandey et al., 2022), production of phytohormones (Kurniawan and Chuang, 2022) aminocyclopropane-1-carboxylate (ACC) deaminase (Santos et al., 2022; Singh et al., 2022), siderophore (Upadhayay et al., 2022a,b), and ammonia (Santos et al., 2022). Production of compounds showing importance in killing pathogens such antibiotics, secretion of enzymes (chitinase, protease/elastase, cellulase, catalase, and β-(1,3)-glucanas; Duhan et al., 2022), volatile compounds (HCN; Vaghela and Gohel, 2022), and also induce systematic resistant in plants against pathogen is the important contribution of plant probiotics (Yin et al., 2022; Chaudhary et al., 2022a). In addition, the ability of plant probiotics to produce exopolysaccharides and biofilms has multiple benefits, including protection from abiotic stress (Banerjee et al., 2019) and desiccation (Mandal et al., 2022), effective root colonization (Naseem et al., 2018), and improved soil aggregation and stabilization (Jhuma et al., 2021). Numerous microbial strains have been identified to possess plant probiotic properties that stimulate plants’ growth and improve crop yield (Das et al., 2022; Pantigoso et al., 2022; Khan et al., 2023). Therefore, such microorganisms can be utilized effectively as bioinoculants for eco-friendly agriculture (Daniel et al., 2022). Plant probiotics are effective “bioelicitors” or “biofertilizers” (Chen et al., 2022) because they improve crop yield-related traits, such as length of shoot and root, biomass of plants, photosynthetic pigments, grain yield, and biological output (Khan et al., 2022; Upadhayay et al., 2022a,b). A remarkable increase in yield-attributed traits was determined for rice, wheat, and maize in response to plant probiotics such as Bacillus (Abd El-Mageed et al., 2022), Azospirillum brasilense (Zaheer et al., 2019), and Pseudomonas stutzeri (Jiang S. et al., 2022), respectively. Plant probiotics such as Burkholderia cepacia and Pantoea rodasii having zinc solubilizing potential improved the overall growth of rice plants and provided biofortification benefits by increasing considerable Zn concentration in grains (Upadhayay et al., 2022b). Plant probiotics also ameliorate abiotic stress effects in plants via enhancing stress tolerance of plants which can be glimpsed by osmolyte accumulation (Tahiri et al., 2022), activation of antioxidant enzymes (Shultana et al., 2022), reduction in MDA content, reduction in electrolyte leakage, and improving in the activity of photosynthetic pigments (Zarei, 2022). Figure 1 shows schematic and beneficial outcomes that can result from using PPs as a green approach. Considering the productive effects of plant probiotics on crop wellbeing, systematic research is needed to identify and characterize a novel microbial strain or microbial consortium having multifarious plant growth-promoting effects. Deeper studies are required to reveal the interaction between plants and microbes at the molecular level and the microbial effects on plants in terms of enhancing physiological phenomena. In addition, a comprehensive analysis is required to illustrate how the inoculation of plant probiotics has a significant impact on the local soil microbiota in addition to their soil-healing properties.
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FIGURE 1
 Schematic flow chart representing the prolific attributes of using plant probiotics (PPs).




6. The synergy of nanomaterials and plant probiotics: A green solution for sustainable agriculture

The harmful effects of agrochemicals are well known and occur as a result of the indiscriminate use of various agrochemicals. In addition, the application of PPs as bioinoculant faces several challenges, including a decline in number, a slow rate of action, a lack of suitable carrier materials, susceptibility to certain stress conditions, such as desiccation and salinity, and a loss of effectiveness in field conditions (Nagpal et al., 2021; Walia et al., 2021). Therefore, to overcome these problems, the potential alternative is a cocktail of suitable nanomaterial and PP strain. Using a combination of PPs and NMs can provide the benefits of both biofertilizers and nanofertilizers (Chaudhary et al., 2021a,b,c). Application of the cocktail of NMs and PPs to agricultural crops is viewed as an alternative eco-friendly method to reduce the use of chemical or synthetic fertilizers in crop management (Kumari and Singh, 2020; Akhtar et al., 2022), due to the risk posed by the excessive use of chemical-based fertilizer and pesticides (Chitara et al., 2022). The slow-release ability of nanobiofertilizers makes them highly efficient, resulting in the accessibility of the nutrients for a longer period of time and increased nutrient use efficiency or vice versa, which reduces nutrient losses and supports agricultural development through increased crop growth and yield (Fazelian and Yousefzadi, 2022).

The microbial components of nanobiofertilizers include nitrogen-fixing microorganisms such as free-living Azotobacter, symbiotic Rhizobium, and associative Azospirillium, phosphorous solubilizing microorganisms such as Pseudomonas striata, Penicillium spp., Bacillus sp., and Aspergillus sp., and phosphorous mobilizers microorganism. On the contrary, nanomaterials such as nanosilicon dioxide (Kukreti et al., 2020), AgNPs (Nawaz and Bano, 2020), nano-iron oxide (Babaei et al., 2017), ZnO-NPs (Azmat et al., 2022), nanozeolite (Khati et al., 2019a,b), nanochitosan (Kumari et al., 2020), and nanogypsum (Kumar et al., 2019) have been employed as nano-constituents of “NMS-PPs cocktail.” This association of microorganisms and nanoparticles exhibits a synergistic effect in soil by improving soil nutrient status through nitrogen fixation, iron chelation through siderophore production, phosphorus solubilization, phytohormone production, induces systemic resistance (ISR), systemically acquired resistance (SAR), and gives plants vigor against pests (Chitara et al., 2021; Chaudhary et al., 2021a,b,c,d,e, 2022b; Mahawer et al., 2022).

However, before using a combination of NMs and PPs, the impact of NMs on PPs should be assessed. The NMs should not be detrimental to the microbial component; rather, they must support microbial growth and activity. In previous studies, NM such as nanozeolite and nanogypsum showed positive impacts on the growth of plant growth-promoting bacteria isolated from NM-infested soil (Chaudhary and Sharma, 2019; Khati et al., 2019a). The synergistic effect of the NMs and PPs could be visualized in the form of enhanced physiological and morphological development through an increased rate of photosynthetic translocation in the aerial plant parts, resulting in improved grain quality and increased yield (Khati et al., 2018; Kukreti et al., 2020; Vedamurthy et al., 2021). Application of the chitosan–iron nanobiofertilizer against bacterial leaf blight of rice caused by Xanthomonas oryzae pv. oryzae (Xoo) under in vitro and in vivo. Under in vitro assay against bacteria, nanobiofertilizer significantly inhibit the biological function such as growth, mobility, and biofilm formation of the bacteria and under in vivo condition foliar spray of the nanobiofertilizer reduced the disease incidence as well as modulate the enzyme system of the plants and improved the photosynthesis by increasing chlorophyll content and carotenoid (Ahmed et al., 2022). Under drought, the application of the nano-Zn chelate and nano-biofertilizer effectively alleviate the impact of the drought stress and significantly augmented the plant biomass and grain yield (Farnia et al., 2015). In maize crops, under water scarcity, the application of the nanobiofertilzer improved water use efficiency and enhanced crop productivity (Janmohammadi et al., 2016). Similarly, the NMs influence the dynamics of PPs as the report of Fetsiukh et al. (2021) showed that silica NPs triggered P. polymyxa A26 for producing EPS and increased water-holding capacity and osmotic pressure of biofilm and such reprogrammed bacterium enhanced plant biomass under drought stress. The application of a combo of nanogypsum and P. taiwanensis improved plant growth and soil health, and the metagenomic study revealed the dominance of beneficial microbial groups such as Acidobacteria, Bacteriodetes, Nitrospirae, Proteobacteria, and Planctomycetes in soil (Chaudhary et al., 2021c). The optimized concentration of TiO2 NPs with bacterial treatment increased maize plant growth, germination percentage, leaf area, and chlorophyll content (Kumari et al., 2021). Moreover, algal-based biofertilizers with mineral nanofertilizers can also be a game changer in agricultural productivity (Mahapatra et al., 2022).

Recent studies to determine the combined effect of NMs and PPs on plant growth and development are presented in Table 4. In addition, Figure 2 shows the advantageousness of using a cocktail of NMs and PPs to reap the benefits of agricultural production.



TABLE 4 Role of combined effects of nanomaterials and plant probiotics in plant growth and development.
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FIGURE 2
 (A) Representation of NMs categorized into the following: inorganic-based (metal-based and metal oxide-based), organic NMs (dendrimers, micells, and liposomes), carbon-based NMs (carbon nanotubes, graphene, fullerenes, carbon nanofibers, and carbon black), and their approaches of synthesis (bottom-up and top-down) with their three physical, chemical, and biological ways of synthesis. (B) The schematization of PPs, especially endophytes and rhizospheric PPs, and their screening on various traits such as nutrient solubilization, production of siderophore, phytohormone, EPS, ammonia, HCN, ACC deaminase, and biocontrol activity. (C) Determination of compatibility between NMs and PPs, and preparation of their combo, either a cocktail of NMs and PPs or the encapsulation of NMs and PPs. Such a combo can be applied by following suitable methods such as seed treatment, foliar spraying, soil application, and seedling treatment. (D) Illustration of the agricultural benefits resulting from the application of a cocktail of NMs and PPs in terms of improvement in plant growth parameters, alleviation of environmental stresses, and prolific effects on soil health.




7. Combo of nanomaterials and plant probiotics in the mitigation of environmental stress

The agriculture sector shows its essentiality in food security as a human population relies on particular crop-based foods for basic diets. However, in the current climate change scenario, crop productivity is experiencing environmental stresses in form of either abiotic or biotic stresses (Xiong et al., 2022). The common instances of abiotic stresses include drought, salinity, heat stress, flood, cold stress, and heavy metal stress (Shikari et al., 2022). On the contrary, pathogens such as bacteria, fungi, and viruses that attack plants are categorized as biotic stressors (Barna, 2022). These categories of stress drastically affect crops in terms of reduction in yield (Anzano et al., 2022). In the coming decades, if the issue of global warming is not solved, the measured portion of arable land might be affected due to various types of abiotic stresses (Shahzad et al., 2021). Therefore, a concept of climate-smart agriculture is in fashion to adopt the strategy to ameliorate the effect of various stresses on crops. The use of agrochemicals to combat the drastic effects of environmental stresses is a leading factor in the contaminating environment and posing a big threat to human health (Omran and Baek, 2022). From the microbial perspective view, the use of plant probiotics can provide an alternative solution for redressing the effects of abiotic and biotic stresses in plants (Mishra et al., 2022). Pant probiotics are a smart player that not only protects the plant from abiotic stress but also reduce the risk of biotic stress by modulating their natural defense (Bhat et al., 2022). Logically, plant probiotics must already be tolerant to various stresses, after which they may only mitigate the effect of various stresses. These special characteristics of tolerance to different types of stress are in fact conferred by the production of exopolysaccharides, the accumulation of osmoprotectants and the production of ACC deaminase, and the activation of different stress-responsive genes (Fadiji et al., 2022). Moreover, when plant probiotics are used as a bioinoculant in plants, they improve the stress-tolerant behavior of host plants by enhancing photosynthetic pigments, accumulating osmolytes, accumulating high phenols, activating antioxidant enzymes, activating stress-responsive genes, and reducting in levels of malondialdehyde and electrolyte leakage (Gamalero and Glick, 2022). Furthermore, plant probiotics mitigate the biotic stress via several mechanisms such as the production of antimicrobial compounds (antibiotics, antifungal, etc.), synthesis of siderophore, volatile compounds (HCN), secretion of enzymes having the capacity to disintegrate pathogen cell wall, and induction of systematic resistance in plants (Boro et al., 2022). Second, the nonfertilizer application is another admirable approach for the fertilizer industry, as they are highly efficient in the context of controlled release of nutrients (Jakhar et al., 2022). However, to combat the negative impact of environmental stresses a systematic application of various nanomaterials such as nanochitosan (Hassan et al., 2021), ZnO NPs (Chanu Thounaojam et al., 2021), nano-selenium (Shalaby et al., 2021), AgNPs (Alabdallah and Hasan, 2021), and carbon nanotubes (CNTs; Faizan et al., 2021) have shown appreciable contribution in improving crop endurance under abiotic stress conditions. Recently, Adil et al. (2022) demonstrated that the application of nano-ZnO (0.12 g/pot) significantly increased photosynthetic pigments (chlorophyll a and b) contents plant height, shoot and spike lengths, root fresh and dry weights, and wheat grain yield under salt stress. Under drought stress conditions, nano-vermicompost application resulted in enhancement in growth, mineral uptake, and activation of antioxidant enzymes in tomatoes (Ahanger et al., 2021). The foliar spray of nanosilicon restored the growth and yield of essential oils of the medicinally important plant feverfew (Tanacetum parthenium) under drought conditions (Esmaili et al., 2022). Nanoparticles exhibit distinctive qualities in plants due to their charge-to-size ratio, such as an improvement in total antioxidant status, which lowers levels of harmful chemicals such as reactive oxygen species (Abdal Dayem et al., 2017). This, in turn, modulates different biochemical and molecular signal transducing pathways, resulting in improved signal perception and, as a result, increased growth and yield potential (Bhatt et al., 2020). However, recent evidence suggests that the coupling effect of plant probiotics (PPs) and NMs may play an excellent role in managing abiotic stress (Azmat et al., 2022; Muhammad et al., 2022; Alharbi et al., 2022a,b). The combo effect of NMs and PPs exhibits various stress ameliorating effects by improving levels of photosynthetic pigments, activities of antioxidant enzymes, total soluble sugars, and reducing stress markers such as MDA content and electrolytic leakage in plants under salt stress (Yasmin et al., 2021; Alharbi et al., 2022a) and drought stress (Akhtar et al., 2021; Azmat et al., 2022). Recently Etesami et al. (2022) deciphered how the combination of nanosilicon and arbuscular mycorrhiza can be a prolific tactic to mitigate environmental stresses in crops and achieve sustainable plant productivity. Table 5 illustrates the combined effect of NMs and PPs in alleviating environmental stresses (salinity, drought, and heavy metal pollution) in plants by demonstrating different mechanisms.



TABLE 5 Prolific effects of a cocktail of nanomaterials and plant probiotics in alleviating various abiotic stresses in plants.
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Combined integration of NPs and PPs to help plants deal with heavy metals and their basic mechanisms involved in the process of phytoremediation and soil remediation. Collective use of Staphylococcus aureus and ZnO NPs detoxifies the effects of chromium on wheat plants and increases its growth, showing a positive impact on plant physiological activities and defense system (Ahmad et al., 2022). Similarly, the joint effect of TiO2 NPs and plant probiotics increased T. repens growth in cadmium-contaminated soil and also improved the accumulation and uptake of this metal by plant (Daryabeigi Zand et al., 2020a). Furthermore, the simultaneous application of nanoscale zero-valent iron (nZVI) and PPs contributed to promoting the phytoremediation of Sb (antimony)-contaminated soils and significantly increased the accumulation capacity of Trifolium repens for Sb (Daryabeigi Zand et al., 2020b). B. subtilis in combination with NMs (ZnO and TiO2) controlled powdery mildew disease in cucumber plants (Hafez et al., 2020). Moreover, nanoencapsulated B. subtilis (Vru1) ameliorated biotic stress by controlling the pathogenic fungus R. solani and decreased the severity of the disease by 75% (Saberi-Rise and Moradi-Pour, 2020). The nanocomposite biofertilizer, which consisted of inclusion complexes of acylated homoserine lactone (AHL)-coated Fe–carbon nanofibers and endospores of P. polymyxa adsorbed in activated carbon beads, demonstrated a good ability to ameliorating effect of biotic stress by preventing Fusarium wilt of chickpea and root rot of wheat (Gahoi et al., 2021).



8. Soil health management through the cocktail of nanomaterials and plant probiotics

Soil is an absolute medium that supports the life of a range of flora and fauna, and provides a better milieu for various microbial activities. The belowground region of soil especially contains rhizospheric and non-rhizospheric environments (Orozco-Mosqueda et al., 2022). Rhizosphere, on the other hand, can be described as a particularly vibrant region due to plant-microbial activities that take part in nutrient cycling (Kumawat et al., 2022). Rhizospheric soil harbors to a variety of beneficial microbiomes that support plants by displaying a range of traits including the solubilization of mineral elements, N2 fixation, siderophore production, and phytohormone synthesis (Mahmud et al., 2021). In addition to this, microbes keep the soil’s nutrient levels balanced through processes such as nitrogen fixation, solubilization of complex inorganic compounds, and mineralization of organic materials (Kaviya et al., 2019). As a result, the soil has a sufficient amount of NPK to support both microbial and plant life. The synthesis of extracellular enzymes by soil microorganisms, such as dehydrogenase, fluorescein diacetate, alkaline phosphatase, and β-glucosidase, contributes to the smooth functioning of the soil environment. These enzymes also serve as a reflection of the microbial activity that takes place in the soil (Kleinert et al., 2018). In addition, the generation of EPS by microorganisms is advantageous in terms of improving soil structure and soil stability (Costa et al., 2018). Due to their extensive roles in soil formation, soil health management, and the remediation of contaminated soil, microorganisms are referred to as “soil probiotics.” In the current scenario, the application of NMs and PPs deciphered a positive impact on soil. Kumari et al. (2020) observed that the application of a combination of NMs (nanozeolite and nanochitosan) and PPs increased soil enzymatic activities such as FDA, dehydrogenase, and alkaline phosphatase and, therefore, showed a growth-stimulating effect on the fenugreek plant. Khati et al. (2017) reported that combining two strains of Bacillus sp. with nanochitosan enhanced the organic carbon content, potassium content, and ammoniacal nitrogen in maize-grown soil. Enzymes that indicate the health of the soil, such as dehydrogenase and alkaline phosphatase, showed a 2- to 3-fold increase after the application of this combination. The study by Kumari et al. (2021) showed that the combination of 10 ppm NPs (TiO2) and bacterial inoculants improved the enzymatic activities (fluorescein diacetate hydrolysis, dehydrogenase, and alkaline phosphatase) of the soil under maize cultivation. In addition, the combination of nanosilicon dioxide and PPs (Pseudomonas taiwanensis and Pantoea agglomerans) improved the pattern in the organic carbon, phosphorus, and potassium content of the cultivated soil and indicated a 1.5- to 2-fold increase in the activities of soil enzymes (dehydrogenase, fuorescein diacetate, and alkaline phosphatase; Kukreti et al., 2020). As the extensive use of agrochemicals has led to a decline in soil quality, an alternative nanobiofertilizers-based strategy can restore soil quality and increase the population of beneficial microbiota. Recent research by Chaudhary et al. (2022b) demonstrated an increase in the microbial population in soil treated with NMs (nanozeolite and nanochitosan) and Bacillus sp. Application of NM should maintain adequate soil microbial population as microbial diversity maintains the elegance of soil fertility level. Through a high-throughput sequencing approach, Khati et al. (2019b) determined the positive impact of nanozeolite on the survival of bacterial populations associated with nutrient cycling and residue degradation.

Although microbial use is usually environmentally acceptable, the combined use of effective microorganisms and nanomaterials is beneficial for improving agricultural production. However, nanoconjugates have not yet been fully determined in the context of environmental concerns. Nanobioferilizers are comparatively less toxic than traditional fertilizers, and very few studies have been reported to decipher the risk associated with the nanomaterial portion of nanobiofertilizer disturbing soil structure and soil microbial activities. Following the nanobiofertilizer application, the nanocomponents are released into the environment and can reach or drain into the soil depending on the type of soil and its properties (Sambangi et al., 2022). NMs, in soil, may show toxic effects on plant growth-promoting microbes, especially nitrogen-fixing bacteria and mineral-solubilizing bacteria, and thus a consequent shift in the bacterial community can affect the functioning of the local soil ecosystem (Chavan et al., 2020). Most NPs based on metal and metal oxide can show the highest degradative effect against microorganisms due to their toxic effects by affecting cell membrane architecture, enzymatic and metabolic activities, and nutrient availability, which ultimately results in microbial death (Kumar et al., 2018; Upadhayay et al., 2019). Recent studies have illustrated the destructive effects of NMs on soil microorganisms involved in various important activities. Ma et al. (2023) showed that the application of elevated levels of CO2 (590 μmol mol−1) and titanium dioxide NPs disrupted soil bacterial activities involved in the nitrogen and carbon cycles. The beneficial contribution of NMs glimpses as their application allows slow and sustained release of nutrients, supporting plant growth while conserving the diversity of the beneficial microbiome. Their toxicity can be attributed to their physical properties, and the ambiguous dose and structure of the exposed microbial community (Chhipa, 2021). Table 6 depicts the negative consequences of using metal and metal oxide-based NMs. An increasing number of researchers are focusing on this problem. Acquired results show contradiction; some authors illustrated evidence of safer use of NMs, while some researchers reported significant risk (Kolesnikov et al., 2019). However, the following points can be considered for the safer use of NMs with lesser toxic effects on the environment, such as (a) an eco-nanotechnological study for massively producing NMs due to nanotechnological advancement; (b) a proper and adequate characterization of NMs on physical and chemical basis and evaluation of environmentally safe exposure doses of NMs before their widespread applications; (c) proper monitoring and risk assessment of NMs use; (d) a comprehensive assessment to decipher the impact of NM as soil pollutants and their potential destructive behavior on soil microbial diversity and their functions.



TABLE 6 Negative impacts of metal and metal oxide-based NMs on soil microbes and soil activities.
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9. Nanoencapsulation of plant probiotics: How can it shape crop growth?

Nanoencapsulation research is being increased in the last few years in response to the rising need for PPs (Nayana et al., 2020; Saberi Riseh et al., 2022b). Such kind of formulation can address the issues of free-form formulations of PPs (Bala, 2022). Nanoencapsulation can improve the efficacy of PPs by extending their shelf life and providing a controlled release of bio-component (Pour et al., 2019). After inoculation, several factors affect the competency of PPs in the natural environment in terms of ineffective colonization of plant roots by applied microbial inoculant, lesser microbial activity in the rhizospheric milieu, and decline in microbial population (Ahmad et al., 2011; Khare and Arora, 2015). Since a minimum number of inoculant cells (106 and 107) is a critical factor in deciding the positive impact on plants (de Moraes et al., 2021). Thus, PPs need suitable physical protection for an extended period. As a novel approach, the nanoencapsulated PPs is providing a better platform for enhancing crop growth and amelioration of abiotic and biotic stresses (Ravichandran et al., 2022; Saberi Riseh et al., 2022a). The nanoencapsulation provides stability and reproducibility of entrapped PPs by enhancing their resistance to UV radiation, heat, and desiccation (Balla et al., 2022). Encapsulating nanoparticles with biofertilizer is a step in the production of nanobiofertilizer. The encapsulation of biofertilizers and biocontrol agents works well in biopolymer-based nanocomposites (Akhtar et al., 2022). In addition, nanoencapsulation prevents bacterial strains from mechanical stress and lowers nutrient release, which further increases the efficacy of this product (Kumari et al., 2020). Biofertilizer cells are incorporated into the nanomaterial capsule by a process called encapsulation, and this involves the application of non-hazardous, biodegradable materials such as starch and calcium alginate (Vejan et al., 2019; Akhtar et al., 2022). Three crucial steps are involved in the production of nanobiofertilizers: (1) the growth of culture for biofertilizer, (2) the encapsulation of culture with nanoparticles, and (3) the assessment of its efficacy, quality, purity, and shelf life (Akhtar et al., 2022). Microcapsules can also be used to make nanobiofertilizer. Its production includes mixing PGPR suspension in a 2:1 ratio with a solution of 1.5% sodium alginate, 3% starch, and 4% bentonite (Akhtar et al., 2022; Pour et al., 2022). After washing the microcapsules in sterile distilled water, the mixture is covered with the crosslinking calcium chloride solution (Adjuik et al., 2022).

Salicylic acid and nanoparticles have also been combined to form a nanobiofertilizer (Gupta et al., 2019). This technique involves mixing the biofertilizer with sodium alginate (2%), ZnO NPs (1 g/ml), and salicylic acid (1.5 mM). Then, 1-mm beads are prepared, shaped, and air-dried in the solution before incubating at 4°C with calcium chloride (3% solution; Panichikkal et al., 2019; Akhtar et al., 2022).

Pseudomonas sp. (DN18) entrapped in the alginate beads along with the salicylic acid and the ZnO NPs demonstrated antifungal activity against Sclerotium rolfsii and showed superior plant growth-promoting activity on Oryza sativa seedlings compared to the free-living bacterial strain (Panichikkal et al., 2021). Nanoencapsulation of P. fluorescens (VUPF5) and B. subtilis (VRU1; using silica nanoparticles and carbon nanotubes) and their metabolites improved pistachio micropropagation via a significant enhancement in the root length and proliferation (Pour et al., 2019). Nanoencapsulated Bacillus subtilis (VRU1) prepared with sodium alginate, starch, and bentonite have shown effectiveness in controlling the proliferation of Rhizoctonia solani and increased the bean vegetative growth parameters (Saberi-Rise and Moradi-Pour, 2020). “Sodium alginate–gelatin microcapsules” containing nanomaterials (SiO2 and carbon nanotubes) and PPs Bacillus velezensis demonstrated synergistic suppression of pathogens (Phytophthora drechsleri) in Pistacia vera L. (pistachio; Moradi Pour et al., 2022). The study by De Gregorio et al. (2017) exhibited the nanofiber-immobilized rhizobacteria (P. agglomerans and B. caribensis) prepared by electrospinning and observed its efficiency as seed bioinoculant in terms of improving the length of root, dry weight of root and shoot, leaf, and the number of soybeans. The bacteria (Pseudomonas stutzeri) encapsulated in the coating composed of N-hydroxysuccinimide (NHS)-modified poly γ-PGA and Ca ions exhibited remarkable resistance against harsh conditions and showed better plant growth potential (Yang et al., 2021).



10. Cocktail of nanomaterials and plant probiotics: Understanding in the context of the bioeconomy

The concept of the bioeconomy is well described in the context of biofuel production (Zilberman et al., 2018), but the role of agriculture is also justified in strengthening the bioeconomy (Upadhayay et al., 2022c). In the context of agriculture, the bioeconomy can be described as improving crop productivity through the use of various resources. Indeed, innovations in life sciences, agriculture, biotechnology, and the evolving wisdom in these sectors provide the ultimate ground for sustainable production and sustain a stable bioeconomy. The lack of essential nutrients in the soil poses significant problems for farmers due to several factors including intensive and poor farming practices (Elbasiouny et al., 2022). In addition to these factors, soil types and different agroclimatic conditions at different altitudes are common features that contribute to declines in crop growth and production, and adversely affect the socioeconomics of farmers (Sivakumar, 2021; Upadhayay et al., 2022c). Various ways of soil nutrient management are used, such as the use of chemical fertilizers, which reduces soil fertility, have a detrimental impact on local soil microbial ecology, and cause health problems for consumers. The production of agrochemicals by various manufacturers around the world is effective and beneficial in increasing crop productivity, but it is more expensive and not ideal for underprivileged farmers. However, a variety of techniques (agronomic, breeding, and genetic modifications) are used to improve the nutrient content and yield of plants (Ahmar et al., 2020). On the other hand, in areas with a predominantly rural population, these methods are seen as both lucrative and undesirable. In addition, these crop yield-increasing techniques are not consumable as they require more effort and technical skill. In addition, the quality of the harvested commodities must be high so that farmers may sell them for a reasonable price. However, the use of nanotechnology has advanced agriculture, and nano-based fertilizers, insecticides, and herbicides are being used to protect and produce crops in a prodigious manner (Chand Mali et al., 2020). An increase in gain yield has the potential to play a significant job in the improvement of the bioeconomy. Babaei et al. (2017) reported a 17.40% increment in the grain yield of wheat by the application of nano-Zn–Fe oxide in comparison to the control. The nano-urea treatment (3 g/kg) exhibited maximum biological yield (332.7 g/bag) and economic yields (283.1 g/bag) at the third flush (Naim et al., 2020). On the other hand, PPs as potential biostimulators showed the highest grain yield in various crops such as wheat (between 9.6 and 29.29%) by Bacillus sp., (Öksel et al., 2022), rice (3.35 t/ha) by B. subtilis and B. megatherium strain (Abd El-Mageed et al., 2022), and maize (5,880 kg/ha) by P. putida (Mubeen et al., 2021). However, in recent years, the combined application of NM and PP has led to a breakthrough in the agricultural sector, especially in terms of increasing crop yield (Akhtar et al., 2022). Combined application of plant probiotics (Azotobacter) and nano-Zn–Fe oxide showed an 88% increase in wheat grain yield compared to water-restricted conditions (Seyed Sharifi et al., 2020). Hafez et al. (2021) observed that the synergy of rhizobacteria and 500 mg SiNPs per liter showed an increase in maize yield (6325.4 kg/ha) and also improved nutrient uptake such as NPK in plants. This synergistic strategy of utilizing microbes and nanomaterials is described in this article as an ecologically sound solution to optimize plant growth and yield. The use of agrochemicals is reduced in this way, and the combined use of NM and PP will significantly increase crop yield. Thus, the detection, characterization, and competence of PPs as prospective bioinoculants and as a synergistic partner of suitable NMs for improving yield appears to be promising goals in order to (i) in vitro evaluation of PPs from rhizospheric soils of plants and selection of cultivable microorganisms on the basis of multifarious plant growth-promoting traits, (ii) determination of the compatibility of a prospective PPs strain with suitable nanocompounds, (iii) improvement in the overall productivity of crops under the application of a cocktail of PPs and NMs, (iv) evaluating uptake and density of nutrients in different plant parts to illustrate the quality of crop harvest, (v) analyzing the soil health and dynamics of the inoculated bacterial population from field plots and conserving proficient microbial pools for future use, and (vi) ultimately reducing reliance on agrochemicals showing harmful impacts.



11. Future prospects for nano-biofertilizers: A roadmap

Sustainable agricultural practice can be represented as the coordinated action of abiotic and biotic factors to maintain the stability of agricultural production and soil nutrient balance. Nonetheless, the benevolent effect of PPs supports plant growth in a very harmless way and, hence, it is included as a main choice for use in agricultural applications. The incorporation of nanotechnology is both modernizing agriculture and winning consumer acceptance as nano-based fertilizers (Xin et al., 2020). However, the coming decade is eagerly waiting to further design the technology of combined application of NMs and PPs in the agricultural sector. The encapsulation of both PPs and NMs has the unique property of showing productiveness in the context of a smart farming system to improve crop yield, plant-derived food quality, and nutritional value of plant-based products.

The core agricultural sector needs attention in the future and may require the following ways to effectively apply the combination of NMs and PPs.

• The properties of NMs such as size, surface chemistry, structure, dose, and toxicity should be carefully monitored.

• Novel analytical methods are needed to develop NMs with unique properties, their detection, validation, effects under field conditions, and associated toxicity.

• Establish guidelines for the responsible use of NM in agriculture and a roadmap to reduce the risk of using nano-based products.

• The compatibility of PPs with target NMs must be established when NMs are used as a synergistic component of PPs.

• As a variety of environmental factors affect the microbial population in the soil, a PPs strain with the ability to survive under diverse stress conditions should be selected for subsequent application.

• The combined application of NMs and PPs should preserve the local microbial community and must not be detrimental to the soil ecology. The technology for the development of nanobiofertilizers has a significant impact on agricultural yields; therefore, the knowledge related to the effective application of nanobiofertilizer should be communicated from researchers to authorities and industrial sectors.

• A new venue for discussion needs to be established, and it should be used to discuss the significant impact that nanobiofertilizers have on agriculture, the economy, and human life.

• The performance of novel nano-based materials or products should be compared to that of previously formulated products.

• Multiple field studies should be conducted at diverse sites to evaluate the performance of created nanobioformulations in terms of their efficacy and environmental impact.



12. Conclusion

Improving food-based crop production is the primary need for a rapidly growing world population. This goal can be achieved through strategies that use agriculturally important microbe and nanomaterial-based fertilizers without relying heavily on agrochemicals. The abundant scientific literature supports the effectiveness of using NMs and microorganisms as PPs in improving plant growth, ameliorating environmental stresses, and improving soil health. In recent years, however, scientists have been keenly interested in investigating the synergistic effects of NMs and PPs in agriculture to maximize crop yields and maintain soil health. In this cocktail of NMs and PPs, nanomaterials serve as effective sources of nutrients for plants, while PPs stimulate plant growth, therefore serving as natural crop vitalizers. According to the recent literature, the synergistic effect of NMs and PPs has played a promising role in achieving the following target: (a) maximization of crop productivity and crop quality, (b) assurance of food security for the rapidly escalating global population, (c) amelioration of the drastic effects of various environmental stresses such as drought, salinity, and cold, as well as biotic stresses, (d) maintenance of soil health, (e) reduction of the massive reliance on chemical-based fertilizers, and (f) strengthening of the bioeconomy by improving grain yield, grain quality, and biomass in a sustainable way without showing negative impact on the environment. The breakthroughs in nanotechnology have also facilitated the inclusion of plant probiotic strains within the ideal nanomaterials or the entrapment of both NMs and PPs within a suitable carrier. In addition to the controlled and consistent supply of both NMs and PPs, this strategy retains the effectiveness and longevity of the PPs and exhibits a positive impact on crop productivity. In addition, the safe dose of NMs must be determined from an environmental perspective, and a risk assessment must be conducted to ensure that NMs are not hazardous to local soil microbial populations. In conclusion, the application of NMs and PPs in a synergistic manner is demonstrated as an efficient way of improving the quality and production of food-based crops and strengthening the bioeconomy. Furthermore, detailed investigations are also required to develop a customized cocktail of NMs and PPs, understanding their controlled and targeted delivery as well as their molecular mechanisms in plants, to pave the way for sustainable agriculture.
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Drought is a leading threat that impinges on plant growth and productivity. Nanotechnology is considered an adequate tool for resolving various environmental issues by offering avant-garde and pragmatic solutions. Using nutrients in the nano-scale including CaP-U NPs is a novel fertilization strategy for crops. The present study was conducted to develop and utilize environment-friendly urea nanoparticles (NPs) based nano-fertilizers as a crop nutrient. The high solubility of urea molecules was controlled by integrating them with a matrix of calcium phosphate nanoparticles (CaP NPs). CaP NPs contain high phosphorous and outstanding biocompatibility. Scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD) were used to characterize the fabricated NPs. FE-SEM determined no areas of phase separation in urea and calcium phosphate, indicating the successful formation of an encapsulated nanocomposite between the two nano matrices. TEM examination confirmed a fiber-like structure of CaP-U NPs with 15 to 50 nm diameter and 100 to 200 nm length. The synthesized CaP-U NPs and bulk urea (0.0, 0.1% and 0.5%) were applied by foliar sprays at an interval of 15 days on pre-sowed VL-379 variety of finger millet (Eleusine coracana (L.) Gaertn.), under irrigated and drought conditions. The application of the CaP-U NPs significantly enhanced different plant growth attributes such as shoot length (29.4 & 41%), root length (46.4 & 51%), shoot fresh (33.6 & 55.8%) and dry weight (63 & 59.1%), and root fresh (57 & 61%) and dry weight (78 & 80.7%), improved pigment system (chlorophyll) and activated plant defense enzymes such as proline (35.4%), superoxide dismutase (47.7%), guaiacol peroxidase (30.2%), ascorbate peroxidase (70%) under both irrigated and drought conditions. Superimposition of five treatment combinations on drought suggested that CaP-U NPs at 0.5 followed by 0.1% provided the highest growth indices and defense-related enzymes, which were significantly different. Overall, our findings suggested that synthesized CaP-U NPs treatment of finger millet seeds improved plant growth and enzymatic regulation, particularly more in drought conditions providing insight into the strategy for not only finger millet but probably for other commercial cereals crops which suffer from fluctuating environmental conditions.
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1 Introduction

Drought is one of the important abiotic stresses, where plants constantly do not receive sufficient rainfall required to complete their metabolic activities (Zhang et al., 2022). The unavailability of water reduces 9-10% of the total crop productivity worldwide (Lesk et al., 2016). Monsoon rainfall has decreased by roughly 6% from 1951 to 2015 as per the climate change assessment report by the Ministry of Earth and Science (Krishnan et al., 2020). Low rainfall makes the dry land areas more vulnerable to runoff losses leading to drought proneness. A study from South Africa during 2017-2021 revealed that 25000 agricultural sector-based workers lost their jobs due to the adverse impact of drought on the economy (Orimoloye et al., 2022).

Drought impacts seed germination, the number of tillers, spikes, grain per plant, grain weight, plant stand and grain yield (Oumarou Abdoulaye et al., 2019; Ning et al., 2020; Gui et al., 2021a; Gui et al., 2021b; Sheteiwy et al., 2021a; Sheteiwy et al., 2021b; Ben-Jabeur et al., 2022; Sial et al., 2022; Sheteiwy et al., 2022). The drought also impairs the nutrient absorption ability of plants from the upper soil horizon (Abdelaal et al., 2021). It also modulates the physiological processes of the plants such as photosynthesis, respiration, leaf water potential, mineral absorption, circadian rhythm and hormone regulation etc. (Seleiman et al., 2021; Wang et al., 2021; Ghani et al., 2022; Hemati et al., 2022). Drought stress increases the production of reactive oxygen species (ROS) such as superoxide (O2-), singlet oxygen (O2), hydrogen peroxide (H2O2), and hydroxyl radicals (OH-) to levels that are frequently greater than the plant’s scavenging capability (Chitara et al., 2017; Kumari et al., 2021; Sachdev et al., 2021). ROS damages cells and cellular components, impair physiological and biochemical processes and can even cause plant death (Xie et al., 2019). Owing to ROS-induced oxidative stress increased electrolyte leakage followed by lipid peroxidation and plasmalemma damage. Lipid peroxidation causes the breakdown of polyunsaturated lipids in ketones and malondialdehyde (MDA) (Ju et al., 2018). Excessive ROS generation causes site-specific amino acid modification, peptide chain fragmentation, changed electric charge and enhanced protein proteolysis. ROS causes deoxyribose oxidation, strand breaks, nucleotide loss, a variety of changes to the bases of the nucleotides, and DNA-protein crosslinks (Sharma et al., 2019; Ahmed and Lingner, 2020).

Finger millet (Eleusine coracana (L.) Gaertn) is a millet crop widely produced in tropical and subtropical areas of Asia and Africa. It contains a very high amount of calcium (344 mg/100 g). The millet seed coat is an edible component of the kernel and has a high concentration of dietary fiber, phytochemicals such as polyphenols (0.2–3.0%) and high gallic acid (Hadimani and Malleshi, 1993; Chethan and Malleshi, 2007). Finger millet is important for pregnant and breastfeeding women and children’s nutrition. It plays a significant role in the economies of marginal farmers. Furthermore, finger millet straw is an excellent animal feed, containing up to 60% digestible elements. The seed coat also has anti-cancer and anti-diabetic properties owing to its high polyphenol content.

Nutrients play a significant role in plant growth and development. The scarcity of nutrients in the plants caused an irreversible change. Presently used fertilizers especially nitrogenous fertilizers in crops are less efficient due to their losses in the form of volatilization, surface runoff, leaching and gaseous form. The scarcity of nutrients are more severe when plants are suffering from water deficiency because most of the mineral uptake from the soil to plant cell take the same pathway as a water flow. The application of nanomaterials to crops would revolutionize farming practices by reducing the adverse environmental effects of modern agricultural activities and improving nutrient use efficiency (NUE), grain quality and crop yield (Liu and Lal, 2015; Mahil and Kumar, 2019). Nanotechnology can provide a workable solution to control the difficulties associated with increasing N-based fertilizer usage efficiency (Zulfiqar et al., 2019). It is anticipated to cause a paradigm shift in NUE, resulting in increased agricultural productivity (Ladha et al., 2005). In this context, sequential research was undertaken by synthesizing CaP-U NPs. In comparison to bulk counterparts, CaP-U NPs exhibit greater reactivity and surface area. Considering the above facts, the current study was conducted to reveal the Plant growth promoting potential of urea-doped calcium phosphate nanoparticles (CaP-U NPs) in finger millet (Eleusine coracana (L.) Gaertn.) under irrigated and drought stress conditions: an emerging fertilization technique under climate change scenario.

Nanofertilizer such as U-ACP nanoparticles were used as a nitrogen source for Vitis vinifera L. (Gaiotti et al., 2021). N-doped ACP NPs with half the absolute N-content than in conventional urea treatment promote the formation of an equivalent amount of root and shoot biomass, without nitrogen depletion (Carmona et al., 2021). The high nitrogen use efficiency (up to 69%) and a cost-effective preparation method support the sustainable real usage of N-doped ACP as a nano fertilizer. In a field experiment, the use of calcium phosphate NPs doped with urea (U-ACP) for the fertilization of Triticum durum plants, indicated that yields and quality of the crops treated with the nanoparticles at reduced nitrogen dosages (by 40%) were unaltered in comparison to positive control plants, which were given the minimum N dosages to obtain the highest values of yield and quality in fields. In light of these reports here bring to light the possibility of using engineered nanoparticles to deliver nitrogen to plants more safely and efficiently. However, further research is still needed to secure the most suitable application protocols for real agricultural practices (Ramírez-Rodríguez et al., 2020b). Nano-Urea applied to Pennisetum glaucum L. at 30 and 45 DAS, significantly increased plant height, dry matter accumulation, chlorophyll content and nitrogen content (Sharma et al., 2022).

Indeed, drought continues to ravage different regions of the globe, with devastating consequences on soil nutrient bioavailability and crop productivity. Nano NPK improved photosynthetic rate, stomatal conductance, CO2 concentration, water use efficiency and relative water content. The chemical composition (plant pigments, total carbohydrates, total phenolic, tannin, total flavonoids, oil constituents, macro and micro-elements) with indigenous hormones (gibberellic acid GA3 and abscisic acid ABA) and antioxidant enzymes (peroxidase and superoxide dismutase) were also positively affected (Mahmoud and Swaefy, 2020). Furthermore, Ca2+ improved maize photosynthesis (45%), stomatal conductance (47%), and accumulation of total soluble sugars (20%) along with the decline in H2O2 content (23%) (Naeem et al., 2018). hydroxyapatite nanoparticles foliar application in Adansonia digitata provide a significant increase in plant growth characteristics (Soliman et al., 2016).

Mechanistically, Research has shown that increased nitrogen (N) improves crop drought tolerance and significant impact on photosynthesis. The nitrogen in plants influenced the water conductivity increasing the accumulation of osmoprotectants and antioxidants (Chang et al., 2016; Zhong et al., 2017; Song et al., 2019). But the majority of supplied N is lost through leaching, volatilization and denitrification leading to a reduction in crop N usage efficiency (Hussain et al., 2019; Pan et al., 2021). The objectives of the present study are to: i) synthesize and characterize urea-doped calcium phosphate nanoparticles (CaP-U NPs); ii) determine whether CaP-U NPs can mitigate the impact of drought stress on the performance of finger millet; and iii) evaluate whether using a lower dose of CaP-U NPs. Collectively, all effects were compared with those of bulk urea to determine the significance of nanoscale size.




2 Material and methods


2.1 Preparation and characterization of CaP-U NPs

To synthesize CaP-U NPs, urea (70%) was dissolved in a beaker containing distilled water (DW) and kept on a magnetic stirrer until proper mixing. Subsequently, calcium hydroxide [Ca(OH)2] was added to the beaker. Afterward, orthophosphoric acid (H3PO4) was added drop by drop into the beaker containing suspension. Field Emission Scanning Electron Microscope (JEOL FE-SEM) was used to characterize the external morphology of the nanoparticles. The shape and size of the NPs were determined using Transmission Electron Microscopy (TALOS HR-TEM) facility at AIIMS, Delhi. Furthermore, the size and shape of NPs were determined using X-Ray Diffractometer (Bruker). Sonics VCX 750 ultrasonicator (750-watt power and 20kHz frequency) was used to prepare a homogenous solution of CaP-U NPs.




2.2 Pot experimental setup

Seeds of finger millet (var.VL-379) were procured from Vivekanand Parvartiya Krishi Anusandhan Sansthan (VPKAS), Almora, Uttarakhand, India. For the experiment, finger millet seeds were surface-disinfected by immersion, first in 3 per cent sodium hypochlorite and then in 70 per cent ethanol for 3 and 1 min, respectively. The seeds were then washed thoroughly three times with sterile distilled water. For germination, the seeds were kept on sterilized Petri dishes containing one sheet of sterilized paper moistened with sterilized distilled water and placed in an incubator at 30°C for 2 days. All steps were carried out aseptically. Before seed sowing, the pots were filled with sandy loam soil: FYM (3:1). After proper seedling establishment in the pots, 6 seedlings were maintained in each pot till the experiment. CaP-U NPs were tested in the glasshouse to see their ability to increase finger millet growth under irrigated and drought conditions. After seed sowing, in both conditions, 3 treatments were divided into 3 sets; in the first set, pots were untreated, in the second set, pots were treated with foliar spray of bulk urea (0.1 and 0.5%) and in the third set, pots were treated with foliar spray of CaP-U NPs (0.1 and 0.5%) at 15 and 30 days after sowing (DAS). Each treatment was maintained in three replications.




2.3 Determination of plant parameters


2.3.1 Plants’ vegetative development parameters

The observation concerning the length of shoot and root, fresh weight of shoot root, dry weight of shoot-root ratio and leaf ratio was recorded at 45 days after sowing. For dry weight, plant samples were kept in an oven at 75°C until constant weight. Shoot and root length was measured from the collar region to the tip of the flag leaf and from the coleoptile region to the tip of the root using a meter scale and expressed in centimeters (cmLeaf area was calculated by measuring the length and width of the leaves per replication. It is multiplied by the total number of small and medium leaves separately. The total leaf area per plant was calculated by the formula given below:

Total leaf area per plant (cm2) = Leaf area of small leaf (cm2) + Leaf area of medium leaf (cm2).




2.3.2 Physiological parameters


2.3.2.1 Estimation of chlorophyll content

Chlorophyll a (Chl a) and chlorophyll b (Chl b) content was estimated by Arnon (1949) method. Fresh leaf of the plant (0.1 g) was collected and placed in a test tube, then added to 10 ml of 80% acetone, sealed with parafilm to prevent evaporation, and kept in the dark for 24 hours. The amounts of Chl a and Chl b were determined by a UV-Visible spectrophotometer at wavelengths 663 nm and 645 nm. The concentrations of chlorophyll a and chlorophyll b (mg g-1 FW) in leaf tissues were determined using the following equations:

	

	

A = Absorbance at specific wavelength, V = Final volume of chlorophyll extract in 80 percent acetone, W = Fresh weight of tissue extracted (g).




2.3.2.2 Estimation of proline content

Proline content was estimated by Bates et al. (1973) method. First, the plant sample’s fresh leaf (0.2 g) was homogenized in 2.0 ml of 3 percent sulphosalicylic acid (w/v) and centrifuged to remove the residue. After this, 2 ml of leaf extract was treated with 2 ml glacial acetic acid and 2 ml acid ninhydrin for 60 minutes at 100°C. Finally, an ice bath terminated the reaction, and the proline was extracted with 4 ml of toluene. Sample absorbance was measured at 520 nm, and the quantity of proline was calculated using a standard curve. The results were represented in µg free proline per Gram fresh weight (FW).




2.3.2.3 Measurement of malondialdehyde concentration

The MDA content was estimated using Heath and Packer (1968) method. First, the fresh leaf sample (0.3 g) was homogenized in 4 ml of tricholoroacetic acid (0.1 percent). The homogenized sample was centrifuged at 10000 rpm for 15 min. at 4°C, the supernatant was used to estimate MDA. Next, the 0.3 ml of extract was mixed with 1.2 ml of 0.5percent (w/v) 2-thiobarbiturie acid (TBA) prepared in trichloroacetic acid (TAC) (20 percent). The mixture was incubated at 95°C for 30 min. The reaction was terminated by putting the test tubes in an ice bath quickly and then cool samples were centrifuged at 10000 rpm for 10 min. The absorbance of the clear supernatant was recorded at 532 nm and 600 nm. Absorbance at 600 nm is subtracted from the absorbance at 532 nm for non-specific absorbance. The MDA concentration was calculated by an extinction coefficient of 155 mM-1 cm-1.




2.3.2.4 Estimation of hydrogen peroxide

The H2O2 content was determined by Alexieva et al. (2001) method. Hydrogen peroxide was detected spectrophotometrically after interaction with potassium iodide (KI). Leaf samples (0.1g) were homogenized in 2.0 ml of 0.1 percent trichloroacetic acid (TCA). The reaction mixture included 0.5 ml of supernatant, 0.5 ml of potassium phosphate buffer (0.1 M), and 2 ml of KI solution (1 M). The reaction was carried out in complete darkness for 1 hour and the absorbance was measured at 390 nm. The amount of H2O2 was determined using a standard curve generated with various dilutions of a working standard of 100 µM of H2O2.




2.3.2.5 Estimation of total phenol

The total phenol content was estimated by Zieslin and Ben Zaken (1993) method. Fresh leaf sample (0.2 g) were homogenized in 4 ml of 80 percent methanol, heated at 80°C for 20 min, and centrifugated at 10,000 rpm. Next, 1 mL of methanolic extract containing phenol was mixed with 5 mL of distilled water and 250 µl of Folin-Ciocalteau reagent (1 N) in a 5 mL vial. Finally, 1 mL saturated sodium carbonate (20 percent) was added immediately, and the mixture was incubated at 25°C for 30 min. A Genesys 10S UV–Vis Spectrophotometer was used to measure the absorbance of the generated blue color at 725 nm. Phenolic content is represented as µg GAE g-1 fresh weight.






2.4 Estimation of antioxidant enzymes of plants


2.4.1 Preparation of enzyme extracts

For determination of antioxidant enzyme activities, 0.5 g fresh leaf sample was homogenized with a pestle in an ice-cold mortar in 5 ml cold buffer containing: 50 mM potassium phosphate buffer (pH 7.0), 2 mM ethylene diamine tetra acetic acid (EDTA) and 1% polyvinyl-pyrrolidone (PVP). The whole extraction procedure was carried out at 4°C. The homogenate was centrifuged at 10,000 rpm for 30 min at 4°C and the supernatant collected was used to assay enzyme activity.




2.4.2 Estimation of superoxide dismutase activity

SOD activity was assay based on the ability of superoxide dismutase to inhibit the reduction of nitro-blue tetrazolium (NBT) (Beauchamp and Fridovich, 1971). The reaction mixture (3 ml) for the SOD assay contained 50 mM Na-phosphate buffer (pH 7.8), 13 mM L-methionine, 75 uM NBT, 10 µM EDTA, 2.0 µM riboflavin, and 0.1 ml enzyme extract. The reaction mixture was incubated in test tubes for 10 minutes at 35°C in 4000 lux. After illumination, the tubes were covered with black cloth, and absorbance was measured at 560 nm. The activity is represented as a unit per mg protein (unit mg-1 protein).




2.4.3 Estimation of guaiacol peroxidase activity

Peroxidase activity was determined by a pyrogallol method developed by Kar and Mishra (1975). H2O2 oxidized a colorless pyrogallol compound into a colored purpurogallin compound. 100 mM potassium phosphate buffer (pH 7.2), 0.1 mM EDTA, 5 mM guaiacol, 15 mM H2O2, and 100 µl enzyme extract were used in the reaction. At 470 nm, an increase in absorbance was recorded every 10 seconds. The amount of enzyme activity is determined by the formation of tetra-guaiacol. The activity is represented as µmol tetra-guaiacol formed per min. per mg protein.




2.4.4 Estimation of ascorbate peroxidase activity

Ascorbate peroxidase (APX) activity was determined by Nakano and Asada (1981) method. The enzyme was extracted in 50 mM phosphate buffer for APX activity. The APX reaction mixture contained 50 mM phosphate buffer, 0.5 mM ascorbic acid, 0.2 mM EDTA, and enzyme extract. The reaction began after the addition of 0.1 mM H2O2. Absorbance was measured spectrophotometrically at 290 nm and the reduction in absorbance was recorded for up to 90 seconds after the reaction began. Therefore, the activity is represented as nmol per minute per mg protein.






3 Statistical analysis

Data and results were represented in means, which were statistically examined by SPSS (Statistical package for the social science) software comparing variance (ANOVA) function. Duncan’s multiple range test was used to compare the treatment mean values at the P ≤ 0.05 significant level. Principal component analysis (PCA) and Pearsion correlation were done using Origin and R-square (version 4.1.2) to demonstrate the correlation between the various plant growth parameters and defense enzyme and their relationship with the different treatments.




4 Results


4.1 Synthesis and characterization of CaP-U NPs by FE-SEM, TEM and XRD analysis

In the visual examination of the CaP-U NPs urea solution, the color changed from transparent to white, indicating the formation of CaP-U NPs (Figure 1). The morphology of CaP-U NPs was determined by FE-SEM (magnification 20000 x) (Figure 2A). There are no areas of phase separation in urea and calcium phosphate, indicating the successful formation of an encapsulated nanocomposite between the two nano matrices. HR-TEM further confirmed this formation. TEM analysis depicted rod-like, irregularly shaped smaller particles of CaP-U NPs with diameters in the range from 15 to 50 nm and lengths ranging from 100 to 200 nm (Figure 2B). According to TEM analysis, the rods are covered with urea at the nanoscale. High-resolution images showed the partial porous structure of CaP-NPs, which was then executed to load urea onto it. X-ray diffraction (XRD) patterns of the powder samples were recorded using Cu Kα radiation (= 1.54178 Å). Spectra were recorded in the 2θ range from 10° to 60° with a step size (2θ) of 0.02 and a counting time of 0.5 s. The graph with the sharpest peaks, like the (101) plane, corresponds to the pure hexagonal structure of Ca(OH)2 (JCPDS No. 84-1276), as indicated by the green bar diagram. The graph displays the diffraction peaks of urea, with the maximum intensity peak (111) corresponding to a pure tetragonal structure that matches JCPDS No. 99-101-0067 and is displayed as a blue bar diagram. Further evidence that there isn’t any characteristic peak of the crystalline impurity is provided by the crystal phases of the mixture of Ca(OH)2 and urea displayed in the graph (Figure 2C).




Figure 1 | Visual examination of generated CaP-U NPs.






Figure 2 | (A) CaP-U NPs under FE-SEM microscope (B) TEM-image showing CaP-U NPs with irregular morphology (scale bar 50 nm) (Tiny rods with diameters in the range from 15 to 50 nm and lengths ranging from 100 to 200 nm) (C) XRD analysis of CaP-U NPs.






4.2 Pot experiment

In the pot experiment, the observation concerning plant growth parameters and biochemical analysis was recorded at 45 days after sowing (DAS) under both irrigated and drought conditions.



4.2.1 Shoot length

In this experiment, at 45 DAS, the maximum shoot length was recorded at 0.5% conc.of CaP-U NPs, with 29.4 and 41% increase followed by 0.1% conc. of CaP-U NPs, with 26.2 and 37.5% increase under irrigated and drought conditions respectively. In contrast, in case of urea, the maximum shoot length was recorded at 0.5% conc., with 11.1 and 18.7% increase followed by urea 0.1% conc., with 7.8 and 15% increase compared to control under irrigated and drought conditions respectively (Figure 3A).




Figure 3 | Effect of different concentrations of CaP-U NPs on (A) shoot length, (B) root length, and (C) leaf area of Eleusine coracana under irrigated and drought conditions. Results are indicated as means of three replications and vertical bars express the standard deviation (SD) of the means. Different letters denote significant differences among treatment outcomes taken at the same time interval according to Duncan’s multiple range test at P≤ 0.05.






4.2.2 Root length

Water deficiency first affects the roots (Hsiao and Xu, 2000); deep-rooted plants are better adapted to drought conditions (Ho et al., 2005). In this experiment, at 45 DAS, the maximum root length was recorded at 0.5% conc. of, with 46.4 and 51% increase followed by 0.1% conc. of CaP-U NPs treatment, with 41.4 and 47.4% increase. In case of urea, the maximum root length was recorded at 0.5% conc., with 20.7 and 29.3% increase followed by 0.1% conc. urea, with 12.6 and 21% increase compared to control, under irrigated and drought conditions respectively (Figure 3B).




4.2.3 Leaf area

Under drought conditions, the leaf area of the plants was significantly impacted. Prolonged drought stress caused a significant reduction in the leaf area due to decreased cell division and cell expansion (Koch et al., 2019). In this experiment, at 45 DAS, in the case of CaP-U NPs treatment, the maximum leaf area was recorded at 0.5% conc., with 34.1 and 58.6% increase followed by 0.1% conc. of CaP-U NPs, with 27.2 and 54.5% increase under irrigated and drought conditions respectively, compared to control. In the case of urea, the maximum leaf area was recorded at 0.5% conc., with 9.3 and 29.1% increase followed by 0.1% conc.of urea, with 6.4 and 20.2% increase compared to control, under irrigated and drought conditions respectively (Figure 3C).




4.2.4 Shoot fresh weight

Plants with lesser biomass reduction under drought stress are drought-tolerant (Passioura, 2002). In this experiment, at 45 DAS, in the case of foliar spray of CaP-U NPs, the maximum shoot fresh weight was recorded at 0.5% conc., with 33.6 and 55.8% increase followed by 0.1% conc. of CaP-U NPs with 25.3 and 49.7% increase under irrigated and drought conditions respectively. While in the case of urea the maximum shoot fresh weight was recorded at 0.5% conc., with 6 and 25.3% increase followed by 0.1% conc. of urea, with 3 and 17.3% increase compared to control, under irrigated and drought conditions respectively (Figure 4A).




Figure 4 | Effect of different concentrations of CaP-U NPs on (A) shoot fresh weight, (B) root fresh weight, (C) shoot dry weight and (D) root dry weight of Eleusine coracana under irrigated and drought conditions. Results are indicated as means of three replications and vertical bars express the standard deviation (SD) of the means. Different letters denote significant differences among treatment outcomes taken at the same time interval according to Duncan’s multiple range test at P≤ 0.05.






4.2.5 Shoot dry weight

Dry weight loss in drought conditions has been more associated with shoot than root (Mohammadian et al., 2005). In this experiment, at 45 DAS, in CaP-U NPs treatment, the maximum shoot dry weight was recorded at 0.5% conc., with 63 and 59.1%i increase followed by 0.1% conc. of CaP-U NPs, with 58 and 51.8%i increase; while in the case of urea, the maximum shoot dry weight was recorded at 0.5% conc., with 32.6 and 28.8% increase followed by treatment with 0.1% conc. urea, with 23 and 23.3% increase compared to control under irrigated and drought conditions respectively (Figure 4C).




4.2.6 Root fresh weight

Drought stress has been reported to reduce roots’ fresh and dry weight (Mohammadkhani and Heidari, 2008). In this experiment, at 45 DAS, in case of CaP-U NPs treatment, the maximum root fresh weight was recorded at 0.5% conc., with 57 and 61% increase followed by 0.1% conc. of CaP-U NPs, with 52 and 54.1% increase; while in urea treatment, the maximum root fresh weight was recorded at 0.5% conc., with 19.6 and 24.6% increase followed by 0.1% conc. of urea, with 16.9 and 18.2% increase compared to control, under irrigated and drought conditions respectively (Figure 4B).




4.2.7 Root dry weight

In the case of CaP-U NPs, at 45 DAS, the maximum root dry weight was recorded at 0.5% conc., with 78 and 80.7% increase followed by 0.1% conc. of CaP-U NPs, with 73 and 74.6% increase; while in the case of urea, the maximum root dry weight was recorded at 0.5% conc. with 27 and 37.5% increase followed by 0.1% conc. of urea, with 22 and 25% increase compared to control, under irrigated and drought conditions respectively (Figure 4D).




4.2.8 Chlorophyll content

Under drought conditions, producing excessive reactive oxygen species might cause a decreased chlorophyll content. Therefore, retaining green leaves under drought conditions is considered an important parameter for drought tolerance (Deblonde and Ledent, 2001).

At 45 DAS, the maximum Chl a was recorded at 0.5% conc. of CaP-U NPs, with 56.4 and 62.3% increase followed by 0.1% conc of CaP-U NPs, with 48.6 and 58% increase. In contrast, with application of urea, the maximum Chl a was recorded at 0.5% conc., with 15.5 and 21.9% increase followed by 0.1% conc. urea, with a 9.4 and 15.1% increase compared to control, under irrigated and drought conditions respectively. Similarly, maximum Chl b was recorded at 0.5% conc. of CaP-U NPs, with 55.6 and 79.4% increase followed by 0.1% conc. resulting in a 49.2 and 72.9% increase. In the case of urea, the maximum Chl b was recorded at 0.5% conc., with 19.3 and 31.6% increase followed by treatment with 0.1% conc. of urea resulting in a 15.2 and 23.5% increase compared to control, under irrigated and drought conditions, respectively (Figures 5A, B).




Figure 5 | Effect of different concentrations of CaP-U NPs on (A) chlorophyll a, (B) chlorophyll b, (C) total proline content, and (D) total phenol content of Eleusine coracana under irrigated and drought conditions. Results are indicated as means of three replication and vertical bars express the standard deviation (SD) of the means. Different letters denote significant differences among treatment outcomes taken at the same time interval according to Duncan’s multiple range test at P≤ 0.05.






4.2.9 Total proline content

During drought stress, plants accumulate more proline than in normal (no drought) conditions (Shakeel et al., 2011). In drought stress, a high level of leaf proline plays a crucial role in maintaining the osmotic potential of the tissues, which prevents severe dehydration. At 45 DAS, in the case of CaP-U NPs, the maximum total proline content was recorded at 0.5% conc., with a 35.4% increase followed by 0.1% conc. of CaP-U NPs, with a 29.8% increase; while in the case of urea, the maximum total proline content was recorded at 0.5% conc., with a 17.9% increase followed by 0.1% conc. of urea, with a 13.4% increase compared to control under drought conditions. There were no significant differences between control and treated plants under irrigated conditions (Figure 5C).




4.2.10 Total phenol content

Drought induces oxidative stress in plants, which results in ROS production. Phenols and Flavonoids are examples of adaptive natural compounds that enable plants to scavenge ROS (Yadav et al., 2021). Increased synthesis of phenols promotes drought tolerance in plants (Verma and Deepti, 2016). n this experiment, at 45 DAS, in the case of CaP-U NPs, the maximum total phenol content was recorded at 0.5% conc., with a 39.3% increase followed by CaP-U NPs at 0.1% conc., with a 33.1% increase. In case of urea, the maximum total phenol content was recorded at 0.5% conc., with a 15.3% increase followed by urea at 0.1% conc., with a 13.2% increase compared to control, under drought conditions. Thus, in the present study, TPC levels did not differ significantly under irrigated conditions, whereas TPC levels increased under drought-stressed conditions (Figure 5D).





4.3 Enzymatic antioxidant analysis

Under irrigated conditions, antioxidant enzyme activity did not differ significantly between the control and treatments. However, the activity of SOD, POD and APX was significantly increased in finger millet plants treated with foliar spray in response to drought stress compared to untreated control (Figures 6A–C). Correlation coefficient analysis of genes/proteins with NPs further revealed that the higher binding potential of the NPs on the proteins/genes would result in more transcriptional modulation and more expression of genes (Kumar et al., 2015; Chandra et al., 2021).




Figure 6 | Effect of different concentrations of CaP-U NPs on (A) superoxide dismutase, (B) peroxidase (POD), and (C) ascorbate peroxidase (APX), of Eleusinecoracana (L.) Gaertn under irrigated and drought conditions. Results are indicated as means of three replication and vertical bars express the standard deviation (SD) of the means. Different letters denote significant differences among treatment outcomes taken at the same time interval according to Duncan’s multiple range test at P≤ 0.05.





4.3.1 Super oxide dismutase

Abiotic stresses have been associated with a progressive rise in the activity of SOD, APX and CAT (Caverzan et al., 2016). Increased antioxidant enzymes showed plant adaptation to counteract increased oxidant production (Bagheri et al., 2015). SOD is the primary scavenger of superoxide and plays a vital role in defense against cellular damage caused by environmental stress (Ren et al., 2016). SOD levels did not differ significantly under irrigated conditions, whereas SOD levels increased under drought-stressed conditions. In this experiment, at 45 DAS, the maximum SOD was recorded at 0.5% conc. of CaP-U NPs, with a 47.7% increase followed by 0.1% conc. of CaP-U NPs, with a 42.1% increase; while with urea treatment, maximum SOD was recorded at 0.5% conc., with a 22.6% increase followed by 0.1% conc. of urea, with a 16% increase compared to control under drought conditions (Figure 6A).




4.3.2 Peroxidase

POD levels did not differ significantly under irrigated conditions, whereas POD levels increased under drought conditions. In this experiment, at 45 DAS, in the case of CaP-U NPs treatment, the maximum POD activity was recorded at 0.5% conc., with a 30.2% increase followed by 0.1% conc. of CaP-U NPs, with a 25.7% increase, while in the case of urea, maximum POD was recorded at 0.5% conc., with a 16.9% increase followed by 0.1% conc. of urea, with a 13.9% increase compared to control, under drought conditions (Figure 6B).




4.3.3 Ascorbate peroxidase

APX levels did not differ significantly under irrigated conditions, whereas APX levels increased under drought conditions. In this experiment, at 45 DAS, in the case of CaP-U NPs, the maximum APX was recorded at 0.5% conc., with a 70% increase followed by 0.1% conc. of CaP-U NPs, with a 65.6% increase, while with urea treatment, the maximum APX was recorded at 0.5% conc., with a 47.1% increase followed by 0.1% conc. urea, with a 27.1% increase compared to control, under drought conditions (Figure 6C).




4.3.4 Malondialdehyde content

MDA levels did not differ significantly under irrigated conditions, whereas MDA levels increased under drought stress conditions. In this experiment, at 45 DAS, in the case of N-CaP U NPs, the minimum MDA was recorded at 0.5% conc., with a 112.5% decrease followed by 0.1% conc. of CaP-U NPs, with a 93.7% decrease, while in the case of urea, the minimum MDA was recorded at 0.5% conc., with a 46.1% decrease followed by 0.1% conc. of urea, with a 31.8% decrease compared to control, under drought conditions (Figure 7A).




Figure 7 | Effect of different concentrations of CaP-U NPs on (A) Malondialdehyde (MDA), and (B) Hydrogen peroxide (H2O2) of Eleusinecoracana (L.) Gaertn under irrigated and drought conditions. Results are indicated as means of three replication and vertical bars express the standard deviation (SD) of the means. Different letters denote significant differences among treatment outcomes taken at the same time interval according to Duncan’s multiple range test at P≤ 0.05.






4.3.5 Hydrogen peroxide

Dismutation of superoxide radicals results in hydrogen peroxide accumulation under stress conditionsH2O2 levels did not differ significantly under irrigated conditions, whereas H2O2 levels increased under drought stress conditions. In this experiment, at 45 DAS, in the case of CaP-U NPs, the minimum H2O2 was recorded at 0.5% conc. with a 134.5% decrease followed by 0.1% conc. of CaP-U NPs, with a 119.9% decrease; while in the case of urea, the minimum H2O2 was recorded at 0.5% conc., with a 47.7% decrease followed by 0.1% conc. of urea, with a 20.4% decrease compared to control under drought conditions (Figure 7B).





4.4 Principal component analysis of plant growth and biochemical data under NP and urea treatment

PCA analysis was done to establish a relationship between plant growth and biochemical parameters in relation to CaPU NPs and urea applications under both irrigated and drought conditions. The distribution of growth and biochemical parameters in space defined by the first and second PCA dimensions is shown in Figure 8B. The PCA comprising two principal components (PC1 and PC2) explained 98.77 and 99.67% of the total variation in irrigated and drought conditions, respectively. Under irrigated conditions, PC1 explained 93.74% and PC2 explained 5.03% of the total variation while in drought conditions PC1, explained 97.88% and PC2 explained 1.79% of the total variation (Figure 8A). A strong correlation was observed between various growth and biochemical attributes. Superimposition of five treatments combinations on drought suggested that CaP-U NPs at 0.5 followed by 0.1% provided the highest growth indices and defense-related enzymes, which were significantly different. Further, in the control group, all the growth parameters and enzymatic activity were the least and did not show any correlation with growth and biochemical attributes. Under the irrigated conditions, the normal trend was observed, in which CaP-U NPs at 0.5 followed by 0.1% provided the highest growth indices and defense-related enzymes.




Figure 8 | Principal component analysis of plant growth parameters upon application of CaP-U NPsa and urea under (A) Irrigated and (B) Drought conditions.






4.5 Pearson correlation explains the strength of the growth and biochemical attributes under irrigated and drought conditions influenced by the NP and urea treatment

The leaf area of a plant is considered one of the important components of the growth attributes due to its excellent role in photosynthesis accumulation. High leaf areas intercept more light compared to low ones resulting in more food accumulation in the plants which directly influenced plant growth and enzymatic regulations. Under irrigated conditions, leaf area had a significant strong positive correlation with the shoot (0.99) and root (0.99) length, shoot (1.0) and root (1.0) fresh weight, shoot (1.0) and root (1.0) dry weight and also a strong positive correlation with defense enzymes such as Chl a (1.0), Chl b (1.0), SOD (0.97), TPC (0.92), total proline (1.0), APX (0.98) and POD (0.93) while negatively correlated with H2O2 (-0.88) and MDA (-0.82). However, other growth parameters such as root and shoot length also showed a significant strong positive correlation with leaf area, root fresh weight (0.99 & 0.99), shoot fresh weight, root dry weight (0.98 & 0.98), shoot dry weight (1.0 & 1.0), respectively. It also showed a strong positive correlation with enzymes such as Chl a & b, SOD (0.99 & 0.99), Total proline (1.0 & 0.99), TPC (0.94 & 0.94), APX (0.98 & 0.98) and POD (0.95 & 0.95) but negatively correlated with H2O2 (-0.84 & -0.85) and MDA (-0.78 & -0.77), respectively (Figure 9A).




Figure 9 | Correlation of different growth and defense parameters upon CaP-U NPs and urea application in finger millet under Irrigated (A) and drought (B) conditions.



Under drought conditions, leaf area has a significant strong positive correlation with the shoot (1.0) and root (0.99) length, shoot (1.0) and root (0.99) fresh weight, shoot (0.99) and root (0.99) dry weight as well as showed a strong positive correlation with biochemical parameters such as Chl a (0.99), Chl b (0.98) and defense enzymes such as SOD (1.0), TPC (1.0), total proline (0.99), APX (0.99) and POD (0.97) while negatively correlated with H2O2 (-0.97) and MDA (-0.94). However, other growth parameters such as root and shoot length also showed a significant strong positive correlation with leaf area (0.99 & 1.0), root fresh weight (0.98 & 0.99), shoot fresh weight (0.99 & 0.99), root dry weight (0.97 & 0.98), shoot dry weight (0.99 & 0.99), respectively. It also showed a strong positive correlation with enzymes such as Chl a (0.98 & 0.99) & Chl b (0.97 & 0.97), SOD (1.0 & 1.0), Total proline (1.0 & 0.99), TPC (0.99 & 1.0), APX (1.0 & 0.99) and POD (0.99 & 0.98) but negatively correlated with H2O2 (-0.98 & -0.97) and MDA (-0.97 & -0.96), respectively (Figure 9B).





5 Discussion

Water scarcity significantly influences plant performance by reducing growth, development and other physiological processes by higher accumulation of ROS levels, which causes cell dysfunction in the plants. However, in the present study, applying CaP-U NPs increased the growth, photosynthetic pigments as well as antioxidant enzyme activity by reducing the ROS level under drought-stress conditions. N accumulation in the foliar parts of the plants has a positive correlation with root water conductivity (Figure 10). The nitrogen in plants influenced the water conductivity, which is regulated by the expression of the aquaporin gene mainly nodulin 26-like protein (NIPs) and tonoplast intrinsic proteins (TIPs). However, over-expression of the aquaporin genes could enhance plant drought tolerance (Ren et al., 2015; Li et al., 2016). Generally, NIPs were observed to facilitate the transport of water and the efflux of N, as well as the entry of N into cells via the plasma membrane, followed by vacuolar loading through TIPs. Vacuolar loading is beneficial for the storage of excess N, and vacuolar unloading can remobilize the N under N starvation conditions (Ding et al., 2018).




Figure 10 | General mechanism of CaP-U NPs induced drought stress tolerance in plants.



Nano-fertilizers application significantly improved uptake through pores or uptake could be facilitated by complexation with molecular transporters, through the creation of new pores, or by exploitation of endocytosis or ion channels (Rico et al., 2011). Nano-fertilizers are nutrient carriers capable of holding bountiful nutrients due to their high surface area and releasing it slowly (Abdel-Aziz et al., 2016). Nano fertilizers control the release of nutrients from the fertilizer granules to improve nutrient utilization efficiency (NUE) while preventing the nutrient ions from getting fixed or lost in the environment (Subramanian et al., 2015; Chhipa, 2017). Nanoscale fertilizers could lead to the more effective delivery of nutrients as their small size may allow them access to various plant surfaces and transport channels. Leaf surfaces are nano- and microstructured surfaces containing cuticular pores and stomata. A study on the penetration of two different sizes particles (43 nm or 1.1 μm diameter) into leaves of Vicia faba L. indicated that the nano-sized particles could penetrate the leaf interior through the stomatal pores (Eichert et al., 2008). The stomatous leaf surfaces of V. faba and Prunus cerasus had an average pore radius ranging from 25 to 100 nm. Once within the plant, cell-to-cell transport within a plant could be facilitated by the plasmodesmata (Zambryski, 2004). Plasmodesmata are nanoscale channels, 50-60 nm in diameter, enabling cell-to-cell communication and transport (Gunning and Steer, 1996). Chitosan-NPK (10%) fertilizer application gives a significant increase in crop index and harvest index as compared to conventional fertilizer used in wheat crops (Abdel-Aziz et al., 2016). Although in Abelmoschus esculentus, the application of commercial fertilizer needed more quantity (5 g/week) compared to manufactured nano urea (50 mg/week) (Tarafder et al., 2020). Zeolite Based Nitrogen Nano-fertilizers increase yield and nitrogen content in Maize plants (Manikandan and Subramanian, 2016). Urea nano fertilizers can reduce a minimum of 25% of the recommended dose of conventional urea fertilizer, which may be introduced as a more sustainable and economical agricultural practice (Singh et al., 2023). A study was conducted in the Haryana state of India with a total area of 1225 acres and found that an average yield was recorded 5.35% higher in wheat, 24.24% in sesame and 8.4% in mustard by applying nano fertilizers of nitrogen and zinc along with the organic farming practice (Kumar et al., 2022). If N nano fertilizer was applied at the rate of 60 kg ha−1 on Sunflowers would produce the highest seed yield (17.6%) and oil yield (28.7%) as compared to conventional N fertilizer (Handayati and Sihombing, 2019). Half doze of HA-N nano fertilizer shows a similar effect of urea in rice (Bhavani et al., 2020).

CaP-U NPs are primarily used as a regulator rather than a nutrient source because they have the ability to control the release of urea and other nutrients. This controlled release feature allows for more efficient use of the nutrients by the plants. Furthermore, the calcium phosphate component of CaP-U NPs can also increase the availability of essential nutrients such as phosphorus and calcium. This can enhance plant growth and improve crop yields. In the present study, the formation of the CaP-U NPs was confirmed by the color change of the solution. FE-SEM determined the morphology of CaP-U NPs. In FE-SEM Neither urea nor calcium phosphate exhibit any areas of phase separation, indicating that the nanocomposite is successfully encapsulated between the two nano matrices. According to FE-SEM analysis, nano urea particles were of different sizes and possessed a fiberlike structure. These findings are similar to Tarafder et al. (2020) and Kottegoda et al. (2017). According to TEM analysis, the rods are covered with urea at the nanoscale. Carmona et al. (2021) found the existence of irregularly shaped Nano-U-ACP in TEM imaging. Nano NPK TEM analysis confirmed the precipitation of amorphous round-shaped nanoparticles with sizes in the 10-25 nm range (Ramírez-Rodríguez et al., 2020a). The shape of luminous europium-calcium phosphate nanoparticles was round, with sizes far below 100 nm under TEM analysis (Ortiz-Gómez et al., 2020). CaP NPs had a diameter of 26 nm as measured by TEM photomicrographs (Morgan et al., 2008).

Rajonee et al. (2016) designed a nitrogen delivery system wherein hexadecyl trimethyl ammonium bromide (HDTMABr) was used as a surfactant for modifying zeolite, which was then loaded with nitrogen. A pot experiment with Ipomoea aquatica was carried out to evaluate the efficiency of this synthesized nanocomposite and the results showed that nitrogen uptake by the plants treated with nanocomposite was higher than those treated with conventional urea. CaP-Urea NPs have a larger specific surface area and reactivity than their crystalline counterparts (bulk) material. In lettuce, foliar spray of the urea and dry yeast extract significantly improved vegetative growth characteristics, pigment content, chemical content as well as head yield compared to untreated control (Abd El Galil et al., 2021).

In the present study, urea is loaded onto the CaP surface and hence released more slowly than highly soluble traditional fertilizers; this helped in plants’ gradual nitrogen absorption. CaP also shows high solubility in neutral or slightly acidic environments and hence can transfer more of these essential ions to the plant, allowing them to be used as multi-nutrient nano fertilizer (Giroto et al., 2017; Kopittke et al., 2019). Calcium plays a significant role in the development of the structural part and in the biochemical process, i.e., signaling of the plants (Sharma et al., 2017). Calcium also gives resistance to plants against fungal infection since it plays a crucial role in stabilizing and strengthening the cell wall (Cesco et al., 2020). In soybean (Glycine max), the application of the hydroxyapatite nanoparticles as a rich source of phosphorus was reported to be remarkably efficient in increasing growth rate and seed yield by 32.6 and 20.4%. In the current research, the well-characterized CaP-U NPs were used for foliar treatment of the finger millet under irrigated and drought conditions. Experimental results revealed that CaP-U NPs significantly improved all the growth-related parameters viz., shoot and root length, shoot and root dry weight, shoot and root fresh weight and leaf area of finger millet at both 0.1 and 0.5% concentrations under irrigated and drought conditions. Biochemical parameters such as chlorophyll a, chlorophyll b, total proline content, total phenol content, superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX) etc. Also significantly improved by the foliar treatment of CaP-U NPs under irrigated and drought conditions.

The maximum content of chlorophyll a (2.2 and 2.6-fold increase) (Figure 5A) and b (2.2 and 4.8-fold increase) (Figure 5B) was recorded in CaP-U NPs treated plants, both under irrigated and drought conditions. Previous research has found that by controlling the biosynthesis of PSI, PSII, and LHCs, Cyt b6f, ATP synthase, and photosynthetic enzymes, N supply and allocation within the leaf have a significant impact on photosynthesis. Out of the total nitrogen (N) in leaf cells, 75% is present in the chloroplast (Onoda et al., 2017). About 24% of the N in leaves goes to thylakoids, and 75% of that nitrogen goes to light-harvesting proteins (Zhong et al., 2019). N is a part of the chlorophyll molecule. One molecule of Chl contains 4 molecules of N (Evans and Clarke, 2019), which helps in photosynthesis to absorb sunlight energy, promoting plant growth and grain yield (Li et al., 2008). Drought stress reduced plant photosynthesis by destroying the pigment system. Therefore, retaining green leaves during drought in plants is a significant indicator of drought tolerance.

N has a close relationship with stomatal conductance and/or movement. As the main N source for plants, nitrate could regulate stomatal movements (De Angeli et al., 2006). The leaf analysis from nano fertilizer-treated plots found 17.04% more nitrogen, 16.31% phosphorus, and 67.50% potassium compared to the control; the total chlorophyll content rose to 30.68%, and the net rate of photosynthesis increased to 71.7% (Ha et al., 2019). The number of leaves, plant height, and leaf area of the coffee seedlings under greenhouse conditions were also improved by the use of Chitosan-based NPK nano fertilizer (Ha et al., 2019). In Sesame indicum L., the combined application of potassium nano fertilizer and urea could relieve water stress and adverse effects (Mahdavi Khorami et al., 2020). The maximum shoot length was recorded in CaP-U NP at 0.5% with 1.4- and 1.7-fold increase (Figure 3A), while maximum root length was also recorded in CaP-U NP at 0.5% with 1.9 and 2-fold increase (Figure 3B), respectively. Nitrogen differentially regulates cell elongation and division (Luo et al., 2021). Generally, nitrogen-efficient plants developed a strong root system, which has large root biomass, root volume, root absorption surface area, root active absorption area and a high root oxidation capacity (Xiong et al., 2021). The deposition of lignin and suberin in the roots is controlled by N (Gao et al., 2017). In a study on C. sativus, foliar application of CaP-U NPs provided approximately a three-fold increase in the shoot length, as compared to the control, as well as increased nitrogen (N), calcium (Ca) and phosphorus (P) accumulation in both root and shoot (Feil et al., 2021). In wheat crops, foliar application of the chitosan nanoparticles loaded with nitrogen, phosphorus and potassium (NPK) increased shoot length and grain yield substantially (Abdel-Aziz et al., 2016). The leaf area of the plants was significantly impacted under drought conditions. The maximum leaf area was recorded in CaP-U NP at 0.5% with 1.4 and 2.3-fold increases respectively (Figure 3C). The maximum plant fresh weight was recorded in CaP-U NP at 0.5% with 1.6 and 2.3-fold increases (Figures 4A, B), while the dry biomass of plants decreased due to severe water stress. The maximum plant dry weight was recorded in CaP-U NP at 0.5% with 3.3 and 2.8-fold increases (Figures 4C, D) respectively, as compared to control, under irrigated and drought conditions. Pradhan et al. (2021) synthesized Urea Hydroxyapitide (UH) NPs and tested them only for the germination of rice seed (IR-36) and observed that UH NPs substantially increase seedling growth, fresh weight and dry weight of treatments compared to control. Applying CaP-U NPs to Triticum durum Desf., significantly increased the fresh and dry weight of the shoot (Ramírez-Rodríguez et al., 2020b). Rice plants fertilized with exogenous urea–chitosan nanohybrid (i.e., 500 mg/L) + 60% classical urea, significantly enhanced the growth and yield-related traits (Elshayb et al., 2022). In Sorghum bicolor (L.) Moench, application of the calcium nitrate-gelatin (CNG) coated urea showed maximum dry matter accumulation, high average plant chlorophyll content and apparent nitrogen recovery (ANR) of 71.14% in shoot and 4.5% in roots, respectively (Khan et al., 2021). In Solanum tuberosum L., application of the nano-tri combination (N+Mo+B) increased chlorophyll content, the yield of the dry vegetative part, starch content, total protein and ascorbic acid (Al-juthery and Al-Maamouri, 2020). In hydroponics also, Cucumis sativus L. supplemented with urea provides a maximum growth of root-shoot length and biomass of the plant (Carmona et al., 2021). In addition, Pisum sativum L. treated with SiO2 NPs significantly increased their relative water content by 29% and specific leaf area by 17% compared to the non-treated control (Sutulienė et al., 2021). Applying the Chitosan nanoparticles in Zea mays significantly enhanced the plant height, leaf area, number of leaves and concentration of organic acids regulators of stress tolerance mechanisms (Khati et al., 2017).

During water scarcity in plants, the activity of the osmoprotectants is increased, which regulates the osmotic potential and increases the stability of membranes and metabolic enzymes of the cells by ROS scavenging (Ahanger et al., 2014). Many researchers suggested a positive correlation between proline accumulation and plant stress. Proline, an amino acid, plays a significant role in alleviating various stress conditions in plants. Besides acting as an excellent osmolyte, proline plays three major roles during stress, i.e., as a metal chelator, an antioxidative defense molecule, and a signaling molecule (Ghosh et al., 2022). Research suggested that proline is 300 times more soluble in water than other amino acids and thus acts as a comparatively non-toxic osmolyte. Nitrogen deficiency in Phaseolus vulgaris has declined the proline level by stimulating proline dehydrogenase. However, the proline level was raised under adequate nitrogen due to the activation of ornithine δ-aminotransferase (Sánchez et al., 2002). Proline helps to maintain the structural integrity of the plant cell, as well as the scavenging of reactive oxygen species (ROS) under drought stress. The maximum total proline content was recorded in CaP-U NP at 0.5% with 1.5-fold increase (Figure 5C) and total phenol with a 1.6-fold rise (Figure 5D) compared to control under drought conditions. No significant changes were observed between control and treated plants under irrigated conditions. The regulation of antioxidant enzymatic activity is a natural response of plants to oxidative stress caused by various external biotic and abiotic stress factors (Mohammadi et al., 2021). To deal with oxidative damage, plants have evolved an excellent defensive strategy of antioxidant enzyme activities such as SOD, POD, CAT, and APX (Xie et al., 2019). SOD catalyzes superoxide (O-) elimination by dismutation into oxygen (O2) and hydrogen peroxide (H2O2). The plant’s ability to cope with drought stress is associated with low MDA and H2O2. Therefore, under drought conditions, the minimum MDA and H2O2 content were recorded (Figures 7A, B) in CaP-U NP-treated plants at 0.5% as well as significantly improved SOD (1.9-fold) (Figure 6A), POD (1.4-fold) (Figure 6B) and APX (3.3-fold) (Figure 6C) activity under drought conditions compared to the control. Here, finger millet plants treated with CaP-U NPs showed a good resistance system to alleviate the damage caused by oxidative stress. The enhanced antioxidant enzymatic activities such as SOD, POD and CAT and reduction in MDA and H2O2 content indicated an increased redox defense system in response to drought stress. N fertilizer significantly increases leaf superoxide dismutase (SOD) and peroxidase (POD) activities of rice (Jalloh et al., 2009) growing under Cd stress and maize under water stress conditions (Zhang et al., 2007; Ahmad et al., 2022). Foliar application of Chitosan NPs under greenhouse conditions enhanced enzyme activity such as chitosanase, peroxidase and polyphenol oxidase (Sathiyabama and Manikandan, 2021). Chitosan (CHNPs) nanoparticles enhanced phenylalanine ammonia-lyase (PAL), peroxidase (POX), polyphenol oxidase (PPO), catalase (CAT) and β-1, 3 glucanase (GLU) activity in tomato during bacterial wilt infection (Narasimhamurthy et al., 2022). The foliar application of Fullerenol Nanoparticles reduced drought impact by increasing APX in sugarbeets (Beta vulgaris L.) (Borisev et al., 2016). During stress conditions, ascorbic acid (AA) acts as a reducing agent, which reduces H2O2 to H2O and dehydroascorbate (DHA) in chloroplasts and cytosols, respectively (Sharma and Dubey, 2004). The cytosolic APX plays a crucial role in protecting plants from drought and heat stress (Koussevitzky et al., 2008). A heme-containing enzyme, GPX removes excess H2O2 in cytosol and vacuole (Sreenivasulu et al., 2004). The foliar application of chitosan nanoparticles (Cs NPs) on L. iberica. during water stress conditions provided the increased activity of superoxide dismutase (SOD), ascorbate peroxidase (APX) and peroxidase (POD) (Javanmard et al., 2022). Foliar and soil treatment of Chitosan NPs (30, 60, and 90 ppm)increased the proline level, catalase (CAT), and superoxide dismutase (SOD) activity during drought stress conditions in Hordeum vulgare L. (Behboudi et al., 2018). Si NPs alleviate the stress in finger millet by up-regulating the activity of antioxidant enzymes like APX, CAT, SOD and GPX (Mundada et al., 2021). The foliar application of Fullerene nanoparticles reduced drought impact by decreasing MDA in sugar beets (Borisev et al., 2016). Application of CaP-U NPs significantly improved morphological and physiological traits more compared to similar or higher doses of bulk urea. This improvement in the plants could be linked to the higher N availability from the CaP-U NPs treatment, as compared to the control. Foliar application of CaP-U NPs on finger millet showed positive effects in terms of improved leaf relative water content (LRWC), stomatal conductance, chlorophyll contents, photosynthetic rate, nitrogen assimilation, increased carbohydrate production and N metabolism under drought stress.




6 Conclusion

The present study aimed to synthesize and characterize CaP-Urea NPs to assess their potential role in plant growth promotion and defense activation in finger millet under drought conditions. Color changes in visual observation and morphology of NPs by FE-SEM, HR-TEM, and XRD analysis confirmed the synthesized nanoparticles as CaP-U NPs. A broader and valuable outcome of the present work is that a lower dose of CaP-U NPs seems superior in enhancing crop growth, relative to a higher bulk urea dose. Foliar application of the CaP-U NPs increased plant growth indices and activated plant defense under adverse climatic conditions compared to urea as bulk application. Furthermore, CaP-U NPs at 0.5 and 0.1% were found to be slightly more effective in growth indices and defense activation. This investigation demonstrates the roles of nanotechnology in agriculture, one of which is to minimize the input of chemicals into the environment while sustaining crop growth. In future, further studies on yield and nutritional quality improvement using these novel nano-particles under field studies challenged with environmental stresses would provide a deeper understanding of the overall field performance of CaP-U NPs and their potential for commercialization as nano-fertilizer.
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The growing rate of urbanization and industrialization has led to an increase in several types of pollution caused by the release of toxic chemicals to the environment. This is usually perpetuated by the manufacturing industry (e.g. detergent and dye), agricultural sectors (e.g. fertilizers and pesticides), mining industry (e.g. cyanide and sulphuric acid) and construction companies (e.g. cement and metals). These pollutants have adverse effects on the health of plants, animals, and humans. They also lead to the destruction of the microbial population in both aquatic and the terrestrial regions, and hence, have necessitated the need for remediation. Although different remediation methods, such as the physical and chemical methods, have been adopted for years, however, the drawbacks and challenges associated with them have promoted the use of an alternative which is bioremediation. Bioremediation involves using biological agents such as plants and microbes to remove or lessen the effects of environmental pollutants. Of the two, microbes are more utilized primarily because of their rapid growth and ability to be easily manipulated, thus enhancing their function as agents of bioremediation. Different groups of bacteria, fungi and algae have been employed to clean up various environmental pollutants. This review discusses the types, mechanisms, and factors affecting microbial bioremediation. It also recommends possible steps that could be taken to promote the use of microbes as bioremediation agents.
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1 Introduction

The rise of urbanization and industrialization, has left the environment exposed to numerous pollutants which are toxic to living things. Pollutants arising from different industrial processes are major sources of pollution to the soil and aquatic environment. Different types and quantities of heavy metals are released during the industrial production process and as effluents after further industrial production. For instance, the wastewater from dye-producing companies are associated with antimony, chromium and mercury (Methneni et al., 2021). The application of fertilizers, pesticides and herbicides in the agricultural sector generates pollutants that include aluminium, copper, zinc, nickel, lead and arsenic to the environment (Ayilara et al., 2020; Prabagar et al., 2021). Similarly, untreated pollutants from wastewaters of the agri-food industries disposed into river canals and other waterbodies have harmful effects on the environment (Siric et al., 2022a; AL-Huqail et al., 2022). Crude oil also serves as a major environmental pollutant particularly through pipeline vandalization, transportation leakage, and/or accidental spillage (Ogunlaja et al., 2019). During mining, some chemicals such as lead, arsenic, cadmium, and copper which are toxic to the immediate environment are released (Liu et al., 2020). Some other environmentally toxic chemicals including but not limited to cyanide and sulphuric acid are used during the mining process. (Ayangbenro et al., 2018; Orlovic-Leko et al., 2022). Equally, other industrial wastes such as those produced in cement-making industries release zinc, copper and cadmium and can be found in the top soils (Jafari et al., 2019). Chromium and lead from pharmaceutical effluents (Kumari and Tripathi, 2020), plastics containing lead, manganese, iron, copper, chromium, silver, cadmium, antimony and mercury all pollute water (Zhou et al., 2019). In addition, copper, arsenic, mercury, chromium, lead, nickel, cadmium and zinc from the coal industry serve as environmental pollutant (Sun et al., 2019). These heavy metals are very toxic to aquatic and terrestrial habitats and their inhabitants. In humans, mercury, cadmium and lead alters the central nervous system, especially in infants, while lead results in liver and kidney dysfunction, cardiovascular diseases, malfunctioning of the reproductive and immune system (Zwolak et al., 2019; Fashola et al., 2020a; Fashola et al., 2020b; Ayangbenro and Babalola, 2020). Cadmium causes cancers, skeletal disorders, neurotoxic and nefrotoxic complexities, and dysfunction of the reproductive system (Zwolak et al., 2019; Fashola et al., 2020a; Fashola et al., 2020b; Ayangbenro and Babalola, 2020). Wastes containing heavy metals are often improperly disposed into soil and water environments. When disposed into water bodies, they can lead to the death of fishes, and other aquatic inhabitants, otherwise, they are biomagnified and cause chronic diseases in humans and animals. Therefore, there is need for the remediation of these pollutants using physical, chemical, or biological methods. The physical and chemical methods have been used for years but they come with their drawbacks which include the need for an expert and special equipment for the chemical bioremediation procedure while the physical bioremediation procedure is expensive (Mahmood et al., 2021). This has called for the need for a better alternative which is the biological remediation (Bioremediation). Bioremediation is a most efficient, eco-friendly and cost effective technology for the transformation of contaminants (Sonune, 2021). Biological remediation can be carried out using both plants and microorganism, nonetheless, plants take a longer time to grow and cannot be easily manipulated like the microbes which makes the microbes more preferable (Hussain et al., 2022). In addition, microbes mitigates heavy metals and improve soil fertility and plant development (Chaudhary et al., 2023b). Hence, this review discusses the types, mechanism, challenges as well as the factors affecting microbial bioremediation, with recommendation on how to enhance the use of microbes in aquatic and terrestrial bioremediation.




2 Different pollutants and their toxicity on living things

Exposure of humans to air pollutants can cause developmental disorders, respiratory problems, cancers, cardiovascular diseases, and other health issues (Table 1). For instance, it has been reported that exposure to particulate matter in the air was associated with an increased risk of premature death in humans (Pope et al., 2019). Nitrogen oxides produced by combustion processes, are significant air pollutants. They irritate the respiratory system, cause cough, shortness of breath, and exacerbate asthma (Zhao et al., 2020). Equally, Sulfur dioxide, produced by burning fossil fuels, can cause respiratory and cardiovascular diseases, including bronchoconstriction, shortness of breath, and coughing. A recent study found that exposure to sulfur dioxide was associated with increased mortality from respiratory diseases in China (Luo et al., 2015). Volatile organic compounds (VOCs), emitted by various sources, including paints, cleaning products, and vehicle emissions, can cause eye, nose, and throat irritation, headaches, nausea, and dizziness. Some VOCs (such as benzene) are also carcinogenic, and are associated with an increased risk of leukemia (Bala et al., 2021). Water pollutants which include pesticides, heavy metals, and organic compounds are sometimes ingested by humans either directly or indirectly (through the consumption of aquatic animals). These pollutants can cause various health problems, including cancer, neurological disorders, and reproductive issues. It has been reported that exposure to heavy metals result in a higher risk of hypertension and kidney damage in humans (Wu et al., 2018; Rai et al., 2019).


Table 1 | Effect of pollutants on living things.



Similarly, different animal diseases are caused by pollutants. Exposure to particulate matter (PM) can cause inflammation and damage to the respiratory system of animals, leading to respiratory diseases such as chronic obstructive pulmonary disease (COPD) and asthma (Manisalidis et al., 2020). When animals consume water contaminated with heavy metals, pesticides, and pharmaceuticals, it leads to reproductive disorders, liver damage, and cancer (Hitt et al., 2023). Nitrogen dioxide when present in the environment, reduces the growth of plants and the yield of crops while sulfur dioxide causes acid rain and acidification (Manisalidis et al., 2020). An impairment in the photosynthetic rhythm and metabolism is observed in plants exposed to ozone (Zuhara and Isaifan, 2018). In the aquatic environment, eutrophication occurs when there is a high concentration of nitrogen availability. This leads to algal bloom and cause death and disequilibration in the diversity of fish (Zuhara and Isaifan, 2018).



2.1 Types of remediation

There are different types of remediation, namely the physical, chemical and biological techniques. The physical remediation involves the use of skimmers, sorbent materials and booms. Boom is a physical barrier made of materials that absorbs oil pollutants and prevents it from spreading before a further remediation procedure is carried out (Vocciante et al., 2019) (Figure 1). Skimmers and sorbents are methods that are further used to absorb and adsorb pollutants after booms (Kumari et al., 2019). The major challenge associated with the use of bloom remediation technique is that it is dependent on the buoyancy and roll response. When the boom is buoyant, it floats and remains longer on the water surface. The roll response refers to the torque required to rotate the bloom from its vertical position. That is, an increased roll response results in a higher remediation process (Dhaka and Chattopadhyay, 2021).




Figure 1 | Types of bioremediations.



Chemical remediation is the process of adding chemicals such as clay minerals, phosphate, biochar, aluminum salts, silicocalcium materials, and sulfide to stabilize and remove heavy metals from the environment. The mechanism behind the use of these chemicals include adsorption, reduction, oxidation, complexation, precipitation and ion exchange (Xu et al., 2022). Chemical remediation technique is an easy, simple, and rapid technique; however, the chemical used can also serve as a source of environmental pollution (Xu et al., 2022) (Figure 1).

Bioremediation is another method of pollution treatment, it is a sustainable, affordable and safe remediation technique (Kumar A. et al., 2021; Kumar G. et al., 2021; Patel A. K. et al., 2022). The technology involves the use of organics such as plants and microbes. The viability of this method depends on the nature, location and level of pollution (Patel A. K. et al., 2022). Microbes on the other hand have proved to be efficient in the remediation of environmental pollutants. They are preferred to plants in remediation, this is due to their ease of growth, rapid growth period and easy manipulation. It is therefore necessary to improve the use of microbes as agent of bioremediation to promote a sustainable environment.





3 Different microbes used as bioremediation agents

Microorganisms can convert toxic elements into water, carbon dioxide, and other less toxic compounds, which are further degraded by other microbes in a process referred to as mineralization (Mahmoud, 2021; Kumar G. et al., 2022). Bioremediation can be carried out using bacteria, fungi, algae, etc. (Table 2). Microbes are ubiquitous in nature, and they utilize a wide range of substrates as carbon source; hence, they are found in unusual environments where they can absorb a wide range of pollutants (Kour et al., 2022). Also, their ability to survive in odd environments promote their efficiency. For example the acidophiles survive in acidic environments, the psychrophiles thrive in cold climates and the halophiles survive in saline region (Perera and Hemamali, 2022).


Table 2 | Different microbes used in bioremediation.






4 Mechanisms of microbial bioremediation

Microbes can remove pollutants from the environment using different mechanisms. These mechanisms can be placed into two broad categories namely immobilization and mobilization (Ndeddy Aka and Babalola, 2016; Verma and Kuila, 2019). Mobilization process involves, enzymatic oxidation, bioleaching, biostimulation, bioaugmentation and enzymatic reduction procedure. On the other hand, immobilization includes bioaccumulation, complexation, biosorption, and precipitation (solidification) (Tak et al., 2012; Ayangbenro et al., 2019). During mineralization, microbes help transform pollutants into end products such as carbon dioxide and water or other intermediate metabolic substances. Similarly, immobilization is the conversion of compounds into a form where it will be unavailable in the environment. For instance, the conversion of nitrate nitrogen into organic nitrogen (Pratush et al., 2018). The method is usually utilized for the bioremediation of heavy metals, especially in highly contaminated environments.

Immobilization can be carried out using the in-situ and the ex-situ methods (Pratush et al., 2018). The ex-situ process involves the removal of polluted soils from the site of pollution to another location where it would undergo a microbial process to immobilize the metal ions responsible for the contamination (Ayangbenro and Babalola, 2017). On the other hand, in the in-situ procedure, the pollution is treated on site (Cao et al., 2020). Microbes such as E. asburiae and B. cereus have been reported to be involved in immobilization of heavy metals which pollute the environment (Fashola et al., 2020a). During microbial bioremediation, microbes protect themselves from toxic compounds by forming hydrophobic or solvent efflux pump that protects the outer membrane of the cell (Verma and Kuila, 2019).



4.1 Enzymatic oxidation

Enzymatic oxidation is the process of oxidizing pollutant compounds from a higher oxidation state to a lower one, during which heavy metals lose an electron and become less toxic. This process utilizes an enzyme (oxidoreductase) released by the microbes involved. This method is highly effective in the remediation of dyes, phenols, and other pollutants which are not easily degraded by bacteria (Unuofin et al., 2019). The oxidative enzymes form radicals which can be broken down into different fractions, eventually forming compounds with high molecular weight (Unuofin et al., 2019). An example of an oxidoreductase enzyme is laccase, which catalyzes the oxidation of aromatic amines (Gangola et al., 2018). Other examples are phenols and polyphenols, which cause the reduction of molecular oxygen to water (Kushwaha et al., 2018; Sahay, 2021). Laccase production has been reported in Pycnoporus sp. and Leptosphaerulina sp. where it was outlined to degrade heavy metals (Copete-Pertuz et al., 2018; Tian et al., 2020).




4.2 Enzymatic reduction

This process is the opposite of enzymatic oxidation, here, the pollutants are converted to a reduced oxidized state where they become insoluble. Obligate and facultative anaerobes carry out the process; this method is effective in the bioremediation of compounds such as polychlorinated dibenzo-p-dioxins and dibenzofurans (Zacharia, 2019). Equally, chrome reductase catalyzes the reduction of hexavalent chromium to trivalent chromium, and azoreductase reduces the azo compounds by cleaving to azo bonds (Saxena et al., 2020). Much more research is needed to unravel other organisms which are capable of bioremediating pollutants in the environment.




4.3 Bioaugmentation

Microorganisms are specially added to polluted sites to feed on toxic pollutants in a process referred to as bioaugmentation. It is a very effective, rapid and cost-effective method of bioremediation (Mahmoud, 2021). External microbes are added to polluted sites to augment the resident microbes. In other cases, it could also involve the isolation and genetic modification of microbes from the site of pollution before returning them to the same site for remediation. Genetic manipulation of resident microbes of polluted sites is carried out because the organisms may naturally not be capable of degrading the pollutant present at a site, and hence are modified to enhance their ability. In some other cases, non-resident microbes are added to polluted areas to promote the degradation of pollutants. The effectiveness of these new strains depends on some factors, which include the ability to compete with the resident microbes and the ability to adapt to the new environment (Fashola et al., 2016; Ayangbenro and Babalola, 2017; Goswami et al., 2018; Babalola et al., 2019). Burkholderia sp. FDS-1 which was added to a polluted site, has been reported to degrade nitrophenolic compound present in pesticides polluted soil to a less toxic form at a slightly acidic pH and a temperature of about 30° C (Goswami et al., 2018; Ojuederie et al., 2021) (Table 3).


Table 3 | Mechanism of Bioremediation.






4.4 Biostimulation

Biostimulation is the addition of nutrients (such as nitrogen, potassium, phosphorus), metabolites, electron donors, enzymes, electron acceptors, biosurfactants, etc., which are limiting to the soil to enhance the activity of the resident microbes and increase the remediation process (Ojuederie and Babalola, 2017; Ayangbenro and Babalola, 2018). It is an affordable, environmentally friendly and efficient process (Goswami et al., 2018). Compared to the bioaugmentation method, the biostimulation method is preferable because indigenous microbes are more competitive than the introduced ones (Sayed et al., 2021), and this method helps to maintain the natural microbial diversity balance of the environment. Nivetha et al. (2022) reported the effectiveness of Bacillus sp., Rhodococcus sp., Staphylococcus sp., Klebsiella sp., Pseudomonas sp., and Citrobacter sp. in bioremediation of heavy metals through the biostimulation technique. Unfortunately, as effective as this method of bioremediation may be, it could lead to some other environmental complications, including eutrophication due to the excess nutrient present in the environment. Also, if the sources of the nutrients are chemicals (synthetic), they can serve as a source of pollution to the environment defeating the initial purpose of bioremediation (Table 3).




4.5 Bioleaching

Bioleaching is the process of utilizing acidophilic microbes to promote the solubilization of heavy metals which are in a solid state from the sediment matrix. The process is particularly useful for iron or sulfur pollutants (Sun et al., 2021; Bhandari et al., 2023). Therefore, iron- or sulfur-oxidizing bacteria are majorly recruited for this process; examples of such organisms are A. thiooxidans, Aspergillus sp., Mucor sp., Penicillium sp., Cladosporium sp. and Rhizopus sp. (Medfu Tarekegn et al., 2020). These microbes create an acid environment and solubilize heavy metals in an immobilized state, into an aqueous solution (Medfu Tarekegn et al., 2020).




4.6 Biosorption

This is the adsorption of heavy metals from pollutants through proton and ion displacement, complexation, chelation and physical interaction with electrostatic forces (Mahmoud, 2021). It involves the removal of contaminants from solutions as a result of the outer cell shield of bacteria, fungi and algae which are bioremediation agents. Generally, metals are linked through the active groups of the compounds which exist at the cells surface layer. This results in the transfer of ion between metal cations and the negatively charged active group potentials present at the outer part of the microorganism structure. Rhodococcus erythropolis, Streptomyces sp. K11, and Bacillus anthracis have been reported to be capable of bioremediation through the biosorption process (Mathew and Krishnamurthy, 2018; Baltazar et al., 2019; Sedlakova-Kadukova et al., 2019). Oftentimes, heavy metal pollutants (e.g., gold, zinc and copper) have some economic importance and are very useful in industrial processes. Hence, the ability of the compounds to be recovered through a process called desorption (using the solution of weak mineral solution or chelating compounds), which is a reversible step in biosorption makes it a good process (Medfu Tarekegn et al., 2020).

Complexation involves using ligand to form a complex with inorganic metals, which are pollutants in the environment, especially solid wastes (Ayangbenro and Babalola, 2017). Complexation is carried out mainly through different agents, namely the high molecular weight ligands, siderophores and toxic metal-binding compounds as well as the low-molecular weight organic acids (alcohols, tricarboxylic acids and citric acids) (Pratush et al., 2018). Complexation occurs when extracellular polymeric substances, found on the surfaces of microbes interact with heavy metals which pollute the environment (Xie et al., 2020). Xiao et al. (2019) reported the removal of copper (II) oxide and hexavalent chromium from wastewater using biochar in a mechanism which includes complexation. The organisms that have been reported to be involved in complexation include Rhodobacter blasticus (Bai et al., 2019) and B.lichenformisis (Wang et al., 2019).

When microbes are exposed to a polluted environment where there is iron-deficiency, they produce siderophores which are iron chelators. The siderophores have binding groups such as hydroxamate, catecholate and phenolates that form complexes with heavy metals and increase their solubility (Khan et al., 2018). Siderophores are capable of producing reactive oxygen species, which also enhance their function as bioremediation agents for organic contaminants (Albelda-Berenguer et al., 2019). Cyanobacteria have been reported to be effective as bioremediation agents due to the production of siderophores; for example, they are capable of bioremediating complex compounds like polythene and are capable of producing different types of siderophores, which include the anachelin, synechobactin and schizokinen (Arstol and Hohmann-Marriott, 2019; Sarmah and Rout, 2020) (Table 3).




4.7 Bioaccumulation

Bioaccumulation refers to the process where the rate of absorption of a compound is more than the rate at which the compound is lost. This process leads to the (toxic) build-up of compounds in the intracellular portion of the microbes. (Sharma et al., 2022a). Heavy metals move across the membrane of microbes using different mechanisms such as carrier-mediated transport, protein channel and ion pumps (Mir-Tutusaus et al., 2018). Many organisms have been reported to be very active in bioaccumulation of heavy metals. For example, Rhizopus arrhizus, bioremediates mercury, Pseudomonas putida, bioremediates cadmium and Aspergillus niger bioremediates thorium (Sharma et al., 2022a).




4.8 Precipitation

This is the conversion of heavy metals or pollutants into precipitates or crystals, resulting in a reduced toxicity level; this process can occur during the biogeochemical cycling to form deposing of metals (iron and manganese), mineralized manganese and silver as well as microfossils, due to the activity of enzymes and galactosis of secondary metabolites (Sharma et al., 2022a). For instance, sulfate-reducing bacteria are capable of converting organo-phosphate to ortho-phosphate when the pH is alkaline (i.e. above 7) (Pratush et al., 2018). Similarly, Bacillus subtilis and Oceanobacillus indicireducens have also been reported to be associated with the precipitation of heavy metals in the environment (Maity et al., 2019).





5 Factors affecting microbial bioremediation

The ability of microbes to bioremediate heavy metals is determined by different factors, which include the total metal ion concentration, redox potential, chemical forms of the metals, competition among microbes, pH, temperature, soil structure, presence of oxygen, moisture content, nature of the soil and the solubility of the heavy metal in water (Medfu Tarekegn et al., 2020). At acidic pH, free ionic species are formed by heavy metals, leading to the availability of more protons which would saturate the binding site of the metals. The pH of an environment affects the structure of the pollutant and also determines the ability of the microbe to survive in such an environment; the optimum pH that enhances bioremediation falls between 6.5 and 8.5 (Kharangate-Lad and D’Souza, 2021).

Microbes compete for carbon which is a limited resource and serve as an energy source for microbes. Therefore, the inherent ability of the microbes, which compete better to degrade heavy metal pollutant, would affect the biodegradation rate. In addition to carbon, microbes responsible for biodegradation also require nitrogen (N) and phosphorus (P), thus it is important to balance the C:N:P ratio to enhance the rate of biodegradation, in environment when these essential nutrients are limited. They can be added to increase microbial activities (Bala et al., 2022). The type and population of microbes determine the rate and success of a bioremediation process, for instance in the laboratory, a strain of organism might successfully bioremediate a particular heavy metal, which becomes problematic in a field situation where a consortium of microbes would be needed (Patel A. B. et al., 2022). The molecular nature, gene and enzyme induction, metabolite production, growth efficiency and survival rate affect the ability of individual microbes as bioremediation agents (Kebede et al., 2021). In addition, the ionization of the cell wall’s chemical moieties, the configuration of the microbial cell wall and sorption site also affect the rate of microbial biodegradation (Mahmoud, 2021).

The amount of moisture present in an environment affects the solubility of the heavy metals in water, as well as their availability, pH and osmotic pressure (Medfu Tarekegn et al., 2020). At a high moisture content, the microbial biodegradation rate is very low. This might be a result of an anaerobic condition that is created, which prevents the survival of aerobic microbes. Also, at a low moisture content, microbes might not be able to survive; hence an optimum moisture content is required for a successful microbial biodegradation process. In the cold regions where only psychrophiles can survive, the rate of microbial degradation of heavy metals is slow. This is because metabolic activities are reduced as the microbial transport channels is freezed by the sub-zero water; the degradation of each compound also occurs at different temperature even though most bioremediation processes are favored by high temperature (Ren et al., 2018; Bala et al., 2022; Sharma et al., 2022c). At an increased temperature, the rate of heavy metal solubility is increased, which consequently increases their rate of availability as well as the rate of microbial biodegradation (Mahmoud, 2021).

Similarly, the chemical structure, bioavailability, concentration, toxicity and stability of the metal or pollutant determines the rate at which microbial biodegradation takes place (Kebede et al., 2021). For instance, heavy metals with a simple chemical structure and low concentration would be easier to be remediated by microbes compared to those with a complex chemical structure and high temperature. Cycloalkane compounds that are highly condensed as well as high molecular weight polymatic hydrocarbons (those containing four rings and above) are more difficult to degrade compared to the lighter polyhydrocarbons (anthracene, naphthalene and phenanthrene) and unbranched alkanes (alkanes with intermediate length of about C10–C25) (Kebede et al., 2021). Hence, in order of ascending degradation, the n-alkanes are more easily degraded compared to the branched alkanes, low molecular weight aromatics, high molecular weight hydrocarbons and the asphaltenes (Imam et al., 2019). Biodegradation is carried out aerobically and anaerobically. The ability of an organism which degrades a particular nutrient to survive in such an environment depends on the nature of the organism (Jacob et al., 2018). For example, oxygenase associated with organisms that are active in aerobic regions is only produced in the presence of oxygen.

Different soil parameters, including the soil region, moisture-holding capacity texture and particle size, affect the rate of microbial biodegradation (Alvarez et al., 2020). There is a higher population and diversity of microbes at the top layer of the soil (0-10cm). This is due to the increased availability of oxygen and organic matter, which is the opposite of what happens in sediment soils (Ndeddy Aka and Babalola, 2017). In soils with fine particles, such as clayey soils, hydrocarbon retention takes place more at the surface, which renders the nutrient of the soil and oxygen unavailable. Therefore the best soil texture that promotes increased microbial biodegradation is the well-drained soil which supports oxygen availability and inhabits more soil microbes (Huang et al., 2019). The presence of salinity has an effect on the hydrocarbonoclastic activity of the halotolerant and halophilic microbes, and it also exposes the soil microbes to stress conditions. The osmotic pressure of microorganisms increases as the saline concentration of an environment increases. This has a direct negative impact on the metabolic activities, of the microbes as well as the transportation system and solubility of the heavy metals (Imron et al., 2020; Kebede et al., 2021).




6 Microbial enzymes used in bioremediation

Different microbial enzymes have been reported to be helpful in the removal of pollutants (especially heavy metals) in the environment (Verma and Kuila, 2019; Bhatt et al., 2021a; Chaudhary et al., 2023a) (Table 4). Mechanisms such as elimination, oxidation, ring-opening and reduction are used by enzymes in bioremediation (Bhandari et al., 2021). Different factors which include temperature, contact time, concentration and pH affect the potency of microbial enzymes (Bhandari et al., 2021). Enzyme bioremediation is expensive and time-consuming and therefore cannot be used when there is an urgent need for bioremediation (Narayanan et al., 2023). Equally, the stability and activity of the pollutants, affects the potency of the bioremediation process. It is difficult to determine and discover multiple sources of a particular type of enzyme which might make the procedure unsustainable (Narayanan et al., 2023).


Table 4 | Enzymes used in Microbial Bioremediation.






7 Molecular approaches for validating microbial remediation

Molecular mechanisms help to unravel the microbial metabolism, genes, nature, diversity and dynamics of microbes involved in microbial remediation. Diverse molecular mechanisms are utilized in the study of microbes used in bioremediation. Metabolic and protein profiling, sequencing as well as the use of advanced bioinformatics resources are particularly used to unravel the different groups of microbes and the factors affecting them in bioremediation process (Sharma et al., 2022b). On the other hand, conventional and culture-dependent molecular methods are also used in the monitoring of microbial communities during bioremediation. These methods include the use of terminal-restriction fragment (T-RF) length polymorphism, amplified ribosomal DNA restriction analysis, temperature gradient gel electrophoresis, randomly amplified polymorphic DNA analysis, length heterogeneity polymerase chain reaction, amplified fragment length polymorphisms, denaturing gradient gel electrophoresis, length heterogeneity polymerase chain reaction, automated ribosomal intergenic spacer analysis and single strand conformation polymorphism (Bharagava et al., 2019).

Moreover, omics approaches such as transcriptomics, proteomics and metagenomics have greatly contributed in this field. Metagenomics involve the extraction of genomic DNA from all forms of life residing in a sample. Thereafter, the DNA will be fragmented, cloned, transformed and screened in the metagenome library (Bharagava et al., 2019). The approaches to metagenomics include metabolomics, metatranscriptomics, fluxomics and metabolomics. Metatranscriptomics involve the use of metagenomic mRNA which unravel the function and expression of microbes present in a sample (Mukherjee and Reddy, 2020). Metaproteomics involved the assessment of all the protein samples that comes from environmental samples (Bargiela et al., 2015). Metabolomics is the identification and quantification of all the metabolites released into an environment (Liu et al., 2022). Fluxomics refers to the different approaches used to study the rate of metabolic activities in a biological sample (Kumar V. et al., 2022). More recently, the use of Next-Generation sequencing which is viewed as the most powerful technology for gene sequencing has become more popular (Eisenhofer et al., 2019).




8 Other bioremediation metabolites produced by microbes

Microbes produce metabolites such as organic acids, biosurfactants and polymeric substances which are also used in bioremediation. Organic acids improve the bioavailability, mobility and solubility of metals; examples of organic acids include citric acids, malate and acetic acids (Saha et al., 2021). Polymeric substances are beneficial in bioremediation by enhancing the phytostabilization of metals (through mobility), examples of polymeric substances include polyesters, polysaccharides and polyphosphates. Equally, biosurfactants which include viscosin, polymixin, glycoprotein and gramicidin help to solubilise, mobilise and increase the bioavailability of hydrophobic substrates (Ojuederie and Babalola, 2017; Saha et al., 2021).




9 Recent advancements in microbial bioremediate

Lately, many improvements have been observed with the use of microbes as agents of bioremediation. Microbial glycoconjugates help to reduce the surface tension, increase the bioavailability, and create a solvent interface of organic pollutants. This helps to enhance the removal of the pollutants in the environment (Bhatt et al., 2021b). Atakpa et al. (2022) reported the use of microbial glycoconjugates from Scedosporium sp. and Acinetobacter sp. in the biodegradation of petroleum hydocarbons.

Microbial biofilms which consist of polysaccharides, extracellular DNAs and proteins are also lately used in the bioremediation of organic pollutants (Sonawane et al., 2022). They are particularly used in the remediation of recalcitrant pollutants. The technology is presently being made better by improving on the quorum sensing, environmental factors and surface of adhesion (Sonawane et al., 2022). In a research carried out by Andreasen et al. (2018), it was revealed that Exiguobacterium profundum was able to significantly reduce the concentration of arsenic in synthetic wastewater after 48 hours of incubation.

Bioelectrochemical system is another emerging technology which combines the use of biological and electrochemical methods in the control of pollutants (Ambaye et al., 2023). This technology helps to majorly remediate petroleum hydrocarbon pollutants and its efficiency depends mainly on the syntrophic and cooperative interactions between the members of the microbial groups involved (Ambaye et al., 2023). Sharma et al. (2020) stated that Pseudomonas sp., Ralstonia sp., Rhodococcus sp., and Thauera sp. are capable of remediating phenanthrene from petroleum hydrocarbon polluted soils.

Nanotechnology is a thriving method of pollution control globally. Nanomaterials can be sourced from different sources which include the physical and chemical sources (Shanmuganathan et al., 2019). The efficiency of nanoparticles as bioremediation agents is dependent on different factors such as the size, chemical nature, surface coating and shape of the nanoparticles (Tan et al., 2018). Other factors such as the nature of the pollutants, type of media, temperature and the environmental pH affect the potency of nanoparticles in the bioremediation process (Tan et al., 2018). For instance, carbon dots nanoparticles have recently gained attention in the remediation of environmental pollutants owing to their abundance, low toxicity and unique optical properties (Long et al., 2021). It is therefore necessary to carry out further research to unravel technologies and mechanisms to improve the efficiency of the bioremediation process.




10 Future perspectives and conclusions

A number of research endeavours have been carried out on the use of microbial enzymes for bioremediation of waste materials; however, it is very important to improve the process to ensure a safer and more sustainable environment. It is imperative to intensify research to unravel novel microbes that can effectively and rapidly bioremediate different pollutants, especially from industrial sources. Perhaps the novel microbes and their enzymes may have the inherent ability to bioremediate pollutants better than the presently used ones. It is also very important to carry out more studies to innovate rapid detection methods to reveal the progress or help to confirm total biodegradation of pollutants in the environment. Similarly, microbes presently used in bioremediation can be genetically modified to produce more enzymes which will enhance their biodegrading ability. A combination of different microbial consortium other than a single microbial consortium would be a better approach to bioremediation, as this would bring about the presence of different organisms which utilizes different substrate, consequently increasing the rate of microbial biodegradation.

Often, microbes are majorly used to degrade organic substrates, leaving out the persistent inorganic pollutants. Hence, research should be intensified to discover microbes that are capable of degrading inorganic (synthetic) pollutants. In recent years, nuclear wastes generated from the research sectors, hospitals, fuel processing plants and nuclear reactors have remained a global source of pollution. Therefore, the use of microbes and microbial enzymes in the bioremediation of nuclear wastes should be seriously taken into consideration. Occasionally, microbes themselves serve as a source of pollution instead of remediating pollutants. An example of such can be found when microbial biostimulation which results in algal bloom is carried out Consequently, methods to prevent this should be devised to ensure a sustainable environment.

Furthermore, in nature (outside the laboratory), the degradation of different compounds occurs at a different temperature, while the survival of microbes in nature are also environment-specific (temperature). It is therefore essential to carry out more field research to determine the optimum temperature for the degradation of different compounds in nature. In addition, it is also essential to find a balance between the environmental temperature and the temperature for the survival of different microbes in the environment. This would help to prevent bioremediation failure when external microbes are to be recruited or introduced to an environment. As positive and effective microbes might be recruited in the bioremediation of pollutants, it is important to carry out follow-up research to understand their effects on the environment after bioremediation, as some organisms which are introduced to an environment might later constitute pollution to the environment through mutation and other means. Hence, there should be regulatory bodies which would monitor the potential risk associated with microbes in specific environments.

Finally, if enzymes or microbes are directly applied to the soil, they might die or lose their potency before the remediation process begins; therefore, their combination with other agents, such as the nanoparticle could enhance their activity. More awareness is needed on the adoption of microbial degradation, and this will help policymakers as well as the populace to utilize this method. Many people unaware of this procedure might use the available conventional method, which might not be as safe and effective as the microbial biodegradation.
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Introduction: Sustainable agricultural practices for controlling crop pests are urgently needed to reduce the reliance on chemical pesticides, which have long-term detrimental effects on ecosystems. In this study, we assessed the effectiveness of arbuscular mycorrhizal fungi (AMF) and vermicompost (Vc) supplementation, alone and in combination, in mitigating the negative impacts of Meloidogyne incognita infestation on carrot (Daucus carota L.) growth, development, and physiology.

Methods: We measured different plant growth parameters such as plant height and biomass accumulation, several plant physiological parameters such as the levels of photosynthetic pigments, phenolics, and the activity of defense enzymes such as peroxidases and polyphenol oxidases, and evaluated the severity of Meloidogyne incognita nematode infestation on plants treated or not treated with vermicompost (Vc) and/or arbuscular mycorrhizal fungi (AMF).

Results: Our findings show that M. incognita significantly affects plant growth, biomass accumulation, and photosynthetic pigment and carotenoid content. The incorporation of Vc and AMF into the soil, either individually or in combination, significantly alleviates the negative effects of nematode infestation on carrot plants. This was accompanied by the induction of phenolic compounds and defense enzymes such as peroxidases (+15.65%) and polyphenol oxidases (29.78%), and by a reduction in the severity of nematode infestation on Vc and AMF-treated plants compared to nematode-infested plants. Principal component analysis (PCA) shows significant correlations between various of the studied parameters. In particular, we observed negative correlations between the application of AMF and Vc alone and in combination and disease severity, and positive correlations between plant growth, photosynthetic pigments phenol content, and activity of defense enzymes.

Discussion: Our study highlights the relevance of cultural practices and beneficial microorganisms for the sustainable and environmentally friendly management of agricultural pests.
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1. Introduction

Carrot (Apiaceae; Daucus carota L) is an economically important and nutrient-rich root vegetable crop cultivated in several countries worldwide. Its edible part, the taproot, is particularly rich in ß-carotene, vitamins, proteins and nutrients (Megueni et al., 2017; Fabiyi, 2021). One of the major threats to the production of carrots is root-knot nematodes (Meloidogyne spp., RKN). These minute worm-like animals create metabolic sinks in infested plants that limit photo-assimilates’ availability for plant growth. In addition, RKN colonizes the taproot, the root hairs and the lateral roots, forming a syncytium that disrupts the uptake of nutrients and water, thus causing substantial damage to carrot plants (Hussain et al., 2016; Khan et al., 2018). Moreover, by inducing galling and forking in the carrot roots, these nematodes render the infested carrot taproots unmarketable, thereby causing substantial direct economic losses (Prasad et al., 2014; Hussain et al., 2016). Therefore, finding sustainable and effective control measures against this agricultural pest is compulsory.

The fields infested with plant parasitic nematodes can be controlled by agricultural practices such as the use of nematicides, the application of biocontrol agents (Vagelas and Gowen, 2012), soil amendments (Asif et al., 2016, 2017), and other cultural practices such as crop rotation and the use of antagonistic plants (Hussain et al., 2011; Kayania et al., 2012). The application of chemical nematicides is highly effective in controlling root-knot nematodes, but their use is not recommended due to the huge detrimental effects on human health, the environment, and non-target organisms (Damalas and Eleftherohorinos, 2011). Currently, there is a worldwide swing towards eco-friendly, cost-effective and biocontrol management practices to combat nematode infestation for sustainable agriculture (Collange et al., 2011). One of the promising methods to combat nematodes is the application of vermicomposting and arbuscular mycorrhizal fungi (AMF).

Vermicomposting (Vc) is an eco-friendly biotechnological process that involves the combined action of earthworms and microbes to transform organic matter or waste to Vc nutrient-enriched products (Yadav et al., 2022). The microbes present in the gut of earthworms and feed-stock are accountable for the biochemical degradation of the organic matter (OM), while the earthworms are responsible for substrate breakdown and expanding the surface area accessible to microorganisms (Xu and Mou, 2016). Vermicompost nourish plants because it is rich in various nutrients, including calcium (Ca), phosphorus (P) and soluble potassium (K), which are essential for plant growth (Kumar et al., 2021). In addition, Vc is rich in humic acid compounds, nematicidal compounds (hydrogen sulfate, ammonia and nitrite) and hormones (cytokinins, indole acetic acid and gibberellins) that prevent nematode infestation (Oka, 2010; Khorshidi et al., 2013).

AMF are beneficial soil microorganisms that forms a symbiotic relationship with plants (Smith and Read, 2010). They have the potential to stimulate plant growth by improving the uptake of nutrients in return for photo-synthetic carbon (Vos et al., 2012). AMF decrease the severity of phytopathogenic nematodes (Fellbaum et al., 2012; da Silva Campos, 2020). Various mechanisms are involved in AMF-mediated biocontrol, including direct effects on the pathogen, such as competition for space and nutrients, or indirect effects, including the induction of plant defenses (Schouteden et al., 2015).

The current investigation explores the interactive effects of Vc and AMF applications on the growth, photosynthetic pigments, phenol contents and defense enzymes (peroxidase and polyphenol oxidase) in carrot plants when challenged with M. incognita nematodes. Our results reveal the great potential of Vc and AMF applications to ameliorate the negative impact of nematode infestation on carrot plants. Hence, our study highlights the relevance and feasibility of cultural practices and the use of beneficial microorganisms to control agricultural pests in eco-friendly and sustainable practices.



2. Materials and methods


2.1. Experimental setup

The experiment was carried out in a completely randomized block design (CRD). Plants were maintained at 28°C, 96% relative humidity, and 16/8 h photoperiod under greenhouse conditions. The light source in greenhouse was the sun during the daytime and an electric bulb during the early evenings. The following treatments were included: 1) Control, 2) Meloidogyne incognita, 3) AMF (Funneliformis mosseae) + M. incognita, 4) Vermicompost (Vc) + M. incognita, 5) Vc + AMF + M. incognita. Five independent replicates per treatment were analyzed.



2.2. Planting conditions

Plants were grown on loam soil collected in agricultural farms of the Aligarh district (Uttar Pradesh, India). Soil was crushed and passed through a 10-mesh sieve to obtain fine soil particles. The fine soil was mixed with farmyard manure in a ratio of 3:1, then autoclaved at 137.9 kPa pressure for 20 min. After sterilization, 1 kg soil mixture was filled in clay pots (15 × 8.5 × 13.5 cm). Prior to sowing, Daucus carota L. seeds cv. Red Rose were surface sterilized with 0.1% HgCl2 solution for 2 min followed by three times rinsing in autoclaved distilled water (DW). Seeds were purchased from the local market of Aligarh city, U.P., India. Five sterilized seeds were sown 2 cm deep in each pot. After emergence, the seedlings were thinned at the two-leaf stage to maintain one healthy plant in each pot. Plants were watered at regular intervals.



2.3. Collection of earthworms, leaf litter, and cow dung

The earthworms used in the experiments were purchased from a private vermiculture unit (Manglakanshi, Mahila Mandal F-1 Sai Vatika, Devpuri Raipur, Chhattisgarh), and were reared on partially decomposed cow dung under greenhouse conditions. A total of 10 worms were narcotized in 70% alcohol and preserved in 5% formaldehyde for species identification. The earthworm species were identified as Eisenia fetida Savigny based on taxonomic characters. The identification was carried out in the Zoological Survey of India (ZSI) (Kolkata, India). Fresh cow dung was collected from nearby cattle shed and stored for 1 week before its use for vermicomposting. The leaf litter (mixture of Ricinus communis L. and Parthenium hysterophorus L.) was collected from the vicinity of the Aligarh Muslim University, and chopped and dried prior to its use for vermicompost (Vc).



2.4. Preparation of vermicompost

Seven-day-old cow dung was mixed with chopped leaf litter in a 3:1 ratio respectively, and left in a pit (size 90 × 30 × 15 cm) for 3 weeks. During initial decomposition, organic material (OM) was mixed and turned upside down several times. In addition, water was added regularly to maintain the compost with moisture of 30%. After this time, a plastic container (45 × 30 × 30 cm) was filled up to 20 cm with the mixture of partially decomposed cow dung and leaf litter. This mixture was watered to reach 65–70% moisture and was kept for 24 h at 25–30°C to stabilize. One hundred mature Eisenia fetida worms were then released in 4 kg of the resulting compost (i.e., 25 worms/kg of compost). Then the top surface of the compost was covered with gunny bags and sprinkled with water to maintain 60–65% moisture for 60 days till the compost was ready to use. After 60 days, watering was stopped, the earthworms were sieved out, and the Vc was let to partially dry before its use for the experiments. 50 g of this Vc was used as a soil amendment for the experiments.



2.5. Preparation of sample for scanning electron microscopy and energy dispersive X-ray analysis

A small amount of Vc was fixed with a few drops of glutaraldehyde (2.5%) for 24 h at 4°C. After this, the sample was washed with 0.1 M phosphate buffer and centrifuged at 5,000–7,000 × g for 15 min at 4°C. The supernatant was discarded and the pellet was rewashed with 0.1 M phosphate buffer. This procedure was repeated thrice. The resulting pellet was fixed with a 1% OsO4 solution for 2 h at 4°C and washed thrice with 0.1 M phosphate buffer as described above. The pellet was then dried, mounted on SEM stubs and coated with gold. The mounts were examined for ultrastructural studies with a JEOL 6490LV low vacuum scanning electron microscope (Akishima, Tokyo, Japan). The Vc sample elemental composition was determined by Energy dispersive X-ray spectroscopy (EDX). After capturing the images of a particular sample, peaks of elements present in the sample were identified. After peak identification, the composition of elements present in the sample on a percentage basis was computed using an EDX spectroscope (INCA x-act, Oxford Instruments, Paris, France).



2.6. Sample preparation for Fourier transform infra-red spectroscopy

The vermicompost of cattle manure was processed for the FT-IR analysis. The raw Vc was dried at 40–50°C clean environments to avoid contamination for 4 to 5 h to remove the excessive moisture. The dried sample was crushed into a fine powder using a sterile mortar and pestle, and 1 mg of the sample was mixed with 100 mg of dry potassium bromide (KBr). The KBr-based pellets were compressed into thin disks using a hydraulic press (PCI Analytic, Mumbai, India) by establishing about 15-ton pressure. The disks were fixed into the sample holder of the FT-IR spectrometer (Thermo Nicolet 6700, Waltham, Massachusetts, United States), and the spectra were analyzed with a total of 32 scans against the KBr background. The FT-IR spectra were collected for the wave number 4,000–400 cm−1. Peak heights of spectra were measured using OMNIC software.



2.7. Collection and isolation of AM fungi from the rhizosphere of Daucus carota root

Soil samples collected from the carrot fields were processed using wet sieving and decanting techniques (Gerdemann and Nicholson, 1963). 100 g soil sample was dissolved into 1 L water, thoroughly shaken and left for 1 min to let the heavier particles settle down. The soil solution was first passed through a coarse sieve and then decanted on a series of sieves, i.e., 80, 150 and 300 meshes. The spores obtained on sieves were collected with water in separate beakers. The suspension of the spores was repeatedly washed with Ringer’s solution (NaCl 6 g/L, KCl 0.1 g/L and CaCl2 0.1 g/L in distilled water of pH 7.4) to remove adherent soil particles from the spores and surface sterilized (Mosse and Hayman, 1971). The spore suspensions were poured on the filter papers placed in the funnels. The spores of similar shape and size were picked with the help of a camel hair brush under the stereomicroscope and put on a glass slide. Some of the collected AM fungal spores were mounted permanently on a glass slide in polyvinyl-lacto-glycerin (PVLG) containing polyvinyl alcohol 8.33 g, glycerin 5 mL and distilled water 50 mL (Koske and Tessier, 1983). The PVLG solution was mixed 1:1 (v/v) with Melzer’s reagent (Iodine 2.5 g; Potassium iodide 7.5 g; Chloral hydrate 100 g; Distilled water 100 mL) for the staining of fungal spores.



2.8. Morphological and molecular identification of arbuscular mycorrhizal fungi

The fungal species were identified morphologically under a 40X light microscope (Olympus SZ61). Spores (n = 3–5) of similar morphology were assembled on a strip in polyvinyl alcohol-lactic acid-glycerol (PVLG) mixture with Melzer’s reagent. The AMF spores were identified based on morphological characters such as spore color, dimension, the thickness of walls, number of walls and width of subtending hypha using the synoptic keys of Trappe (1982) and Schenck and Pervez (1990).

For molecular characterization, genomic DNA (gDNA) of the fungal spores collected above was extracted using PureLink® Genomic Plant DNA Purification Kit (Thermo Fisher Scientific). Internal Transcribed Spacer (ITS) rRNA was amplified by PCR with the following components: 1 μL of gDNA, 0.5 μL of ITS1 (5′tccgtaggtgaacctgcgg-3′) and 0.5 μL of ITS4 (5′-tcctccgcttattgatatgc-3′) primers, 12.5 μL of Thermo Scientific DreamTaq Green PCR Master Mix and 10.5 μL nuclease-free dH2O (Bhat et al., 2023). The cycling conditions on the thermal cycler were set as follows: 1 cycle at 94°C for 5 min, followed by 37 cycles at 95°C for 60 s, 58°C for 45 s, 70°C for 60 s, and a final extension at 72°C for 10 min (Sebumpan et al., 2022). Sanger sequencing was performed in a bidirectional manner, and generated sequences were submitted to the National Centre for Biotechnology Information (NCBI) under the accession number OQ703041. The genomic sequences of fungi (Funneliformis sp.) closely related to the present sequence were searched using the Basic Local Alignment Search Tool (BLAST) of NCBI. The downloaded sequences were aligned with MUSCLE (v3.8.31) (Edgar, 2004), and evolutionary relationships were drawn by the Maximum Likelihood method based on the Tamura-Nei (T93 + G + 1) nucleotide substitution model in MEGA 11 (Tamura et al., 2021). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. Graphical representation and edition of the phylogenetic tree were performed with Interactive Tree of Life (v3.5.1) (Chevenet et al., 2006; Letunic and Bork, 2016).



2.9. Inoculum preparation of AM fungi

Spores of AM fungi were transferred to sterile paper cones. A solution of 2% chloramines-T and 0.025% streptomycin sulphate was poured drop by drop into each cone for 20 min (Hepper and Mosse, 1980). The spores were then washed thoroughly with sterilized distilled water. A pure culture of AM fungus (Funneliformis sp.) was maintained separately into each pot on Chloris gayana Kunth (Rhodes grass) grown in sandy loam soil mixed with river sand and farmyard manure in the ratio of 3:1:1 (v/v) respectively. The populations of AM fungus in the inoculums were assessed by the most probable number method (Porter, 1979). 50 g inoculum with soil was added around the seedling to inoculate 100 infective propagules of AM fungus per pot. The crude inoculum consists of soil, extra matrical spores and sporocarps, hyphal fragments and infective Rhodes grass segments. 50 g of AMF soil inoculum with approximately 200 spores was used for the experiments (Bhardwaj and Sharma, 2006). The crude inoculum of AMF consisted of soil, extra metrical spores and sporocarps, hyphal fragments and infected grass fragments.



2.10. Molecular and morphological identification of Meloidogyne incognita

Nuclear DNA was extracted from single specimens of nematodes as described by Bhat et al. (2021). The D2-D3 expansion segment of 28S rRNA was amplified by polymerase chain reaction (PCR) using the primers D2F: 5′-CCTTAGTAACGGCGAGTGAAA-3′ (forward) and D3R 5′-CAGCTATCCTGAGGAAAC-3′ (reverse) (Nadler et al., 2006). PCR reactions and cycling profiles were set as described by Rana et al. (2019). PCR products were purified, sanger sequenced and submitted to the NCBI under the accession number ON514606. The closely related sequences of other Meloidogyne species were downloaded from NCBI using the Basic Local Alignment Search Tool (BLAST) (Altschul et al., 1990). Resulting sequences were aligned with MUSCLE (v3.8.31) (Edgar, 2004), and phylogenetic relationships were constructed by the Maximum Likelihood method based on the Kimura 3–parameter (T92 + G) nucleotide substitution model in MEGA 11 (Tamura et al., 2021). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. Graphical representation and edition of the phylogenetic tree were performed with Interactive Tree of Life (v3.5.1) (Chevenet et al., 2006; Letunic and Bork, 2016). Perineal pattern arrangement was observed for the morphological characterization of nematodes in mature females.



2.11. Preparation of Meloidogyne incognita inoculum

Nematode inoculum was prepared by using the method described by Ahamad and Siddiqui (2021). Egg masses from severely infested roots of eggplants were picked for isolation of the infective juveniles (J2) using sterilized forceps. These egg masses were washed twice with dH2O and placed in sieves (9 cm diameter with 1 mm pore size) containing double-layered tissue paper and then placed in Petri dishes filled with distilled water deep enough to make a film with the egg masses. The whole setup was then incubated at 25 ± 1°C. The nematode J2s were collected in a culture flask daily, fresh distilled water was added as required in Petri dishes, and the process was repeated continuously to obtain the required number of nematode populations. The density of J2 nematodes in the suspension was assessed by direct counting under a light microscope. The volume of the suspension was adjusted to 100 nematodes per mL. 20 mL of this suspension were applied to each pot around the carrot seedlings (2000 freshly hatched J2s). Prior to inoculation, three holes were made gently around the roots so that J2 nematodes could reach the roots of seedlings and inoculum suspension was poured carefully into these holes.



2.12. Determination of plant growth characters

After inoculation, the plants were harvested after 90 days and cleaned with tap water to remove the adhered soil particles. Different growth traits such as plant length (cm), plant fresh weight (g), and shoot and root dry weight (g) were measured. The plant length was recorded by measuring the plant from the top of the shoot to the bottom of the root. To measure plant fresh weight, the roots were gently dried using blotting sheets before weighing them. Plant dry weight was evaluated in roots and shoots independently by cutting the plants at the root initiation zone with the help of a sharp knife to separate roots and shoots. Roots and shoots were kept in envelopes in an oven at 60°C for 7–10 days.



2.13. Determination of leaf photosynthetic pigment content

Chlorophyll and carotenoid content in fresh leaves were determined using the Mackinney method (MacKinney, 1941). Briefly, 1 g of freshly harvested leaves was mixed with 20 mL of 80% acetone and ground to a fine pulp using a mortar and pestle. The mixture was centrifuged at 5,000 × g for 5 min, and the supernatant was collected in 100 cm3 volumetric flasks. The residue was washed thrice with 80% acetone. Each washing was collected in the same volumetric flask, and volume was made up to mark, using 80% acetone. The absorbance was read at 645 and 663 nm for chlorophyll and 480 and 510 nm for carotenoid against the blank (80% acetone) on a spectrophotometer (Shimadzu UV-1700, Tokyo, Japan).



2.14. Determination of phenol content

The estimation of total phenol content was determined by the Folin-Ciocalteau reagent (Singleton and Rossi, 1965). Fresh leaves (2.0 g) were homogenized in 80% aqueous ethanol at room temperature and then placed in a cooled centrifuge at 10,000 × g for 15 min. Supernatants were collected and the remaining leaf pellets were re-extracted twice with 80% ethanol. All supernatants were pooled, put into evaporating dishes, evaporated to dryness at room temperature, and reconstituted in 5 mL distilled water. 100 μL of the resulting extract were mixed with 3 mL of distilled water, and 0.5 mL of Folin-Ciocalteau reagent. After 3 min, 2 mL of sodium carbonate (20%) was added. Samples were then thoroughly mixed and incubated for 1h. Then, absorbance at 650 nm was measured in a spectrophotometer (Shimadzu UV-1700, Tokyo, Japan). The results were expressed as mg catechol/g of fresh weight.



2.15. Determination of activities of peroxidase and polyphenol oxidase

To determine peroxidase (POX) and polyphenol oxidase (PPO) activities, 500 mg of fresh leaf tissues were homogenized in 5 mL of 50 mM phosphate buffer (pH 6.5) containing EDTA.Na2 (1 mM) and 1% polyvinylpyrrolidone. The homogenate was centrifuged at 15,000 × g for 10 min at 5°C, and the supernatant was used as an enzyme extract. Peroxidase (POX, EC 1.11.1.7) activities were measured by the method described by Chance and Maehly (1955) in fresh leaf samples. Pyrogallol phosphate buffer (3 mL), enzyme extract (0.1 mL) and 1% H2O2 (0.5 mL) were mixed in glass cuvettes, and changes in absorbance at 420 nm were measured at intervals of 20 s for 3 min using a spectrophotometer (Shimadzu UV-1700, Tokyo, Japan). The control group was prepared in a similar manner, but no enzyme extract was used. The peroxidase activity was expressed as U mg−1 fresh weight.

Polyphenol oxidase (PPO, EC 1.14.18.1) activities were measured using the protocol of Mayer et al. (1965) with minor modifications. The reaction mixture consisted of 200 μL of the enzyme extract and 1.5 mL of 0.1 M sodium phosphate buffer (pH 6.5). The reaction was started after adding 200 μL of 0.01 M catechol, and absorbance was recorded at intervals of 30 s for 3 min at 495 nm on a spectrophotometer (Shimadzu UV-1700, Tokyo, Japan). The control group was prepared in a similar manner, but no enzyme extract was used. The activity of polyphenol oxidase (PPO) was expressed as U mg−1 fresh weight.



2.16. Determination of root colonization by arbuscular mycorrhizal fungi

Arbuscular mycorrhizal fungi (AMF) root colonization was determined by the grid line intersecting method (Giovannetti and Mosse, 1980). AMF-inoculated roots were collected and washed gently with dH2O to remove soil particles. Roots were then cut into small pieces (1 cm), placed in KOH solution (10%) in a beaker, and autoclaved for 10 min at 103.4 kPa to remove the cytoplasmic content. The KOH solution was poured off and the root segments were rinsed in distilled water until no brown color appeared in the water. These root segments were then transferred in another beaker containing alkaline H2O2 at room temperature for 20 min for bleaching. Then, the roots were thoroughly rinsed with distilled water. The root segments were placed into a beaker containing HCl (1%) for 3 to 4 min. The solution was poured off and root segments were placed in another beaker with trypan blue lactophenol solution (0.05%). The root segments were observed under the stereomicroscope (Olympus, Mumbai, India) for mycorrhizal colonization. The per cent root colonization was calculated using the following formula:
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2.17. Root galling and nematode density determination

The number of nematodes were determined by the Cobb’s sieving and decanting technique followed by Baermann funnel extraction (Southey, 1986). A total of 250 g of well-mixed soil from each treatment was processed. Nematode suspension was collected after 24 h, and the number of nematodes was counted in five aliquots of 1 mL of suspension from each sample. The mean of five counts was used to calculate the population of nematodes per kg of soil. To estimate the number of juveniles (J2s), eggs and females inside the roots, 1 g of roots was macerated in a Waring blender, and counts were made from the suspension thus obtained. The number of nematodes present in roots was calculated by multiplying the number of nematodes present in 1 g of the root by the total weight of the root. The number of galls and egg masses per root system was also counted.



2.18. Instruments

The chemical analysis of vermicompost was performed using a energy dispersive X-ray instrument from France and Thermo Nicolet 6,700, FT-IR spectrometer from United States. Biochemical studies were conducted using a Shimadzu UV-1700, UV-Vis spectrophotometer from Japan, which had a wavelength range of 190–1,100 nm and an accuracy of ±0.3 nm. The scanning electron microscope JEOL JSM-6490LV from Japan was utilized for ultrastructural studies.



2.19. Statistical analysis

At least five independent replicates were analysed for all the parameters measured. Data were analyzed using R software (2.14.0). Analysis of variance (ANOVA) was used to test the significance (p ≤ 0.05) of applied treatments. Least significant differences (LSD) and Duncan’s multiple range tests (DMRT) were employed to represent the significant differences between the treatments. Graphs were made by using SigmaPlot 14.0 software. Presentations of error bars in graphs showed the standard error (±SE). Principal component analysis (PCA) was done through OriginPro_2022 software.




3. Results


3.1. Occurrence and identification of AM fungi

From the soil samples, five genera of AMF were observed and identified morphologically: Funneliformis sp., Gigaspora sp., Septoglomus sp., Claroideoglomus sp. and Acaulospora sp. (Figures 1A–E). Funneliformis isolates possess visible septum, often cylindrical or funnel-shaped, and have subtending hypha. Gigaspora isolates bear irregular to rarely subglobose septum, spore wall consisting of two layers, stained dark red to red-brown in Melzer’s reagent. Septoglomus isolates display dark black colored spores visible when stained with Melzer’s reagent and having two- or three-layered walls, one subtending hypha. Claroideoglomus isolates show flexible, thin, colorless innermost layer; and bill-shaped, colorless subtending hyphae. Acaulospora sp. shows a wall structure with three layers, whitish-yellow in color, and possesses a granular germ layer with a beaded surface that reacts to Melzer’s reagent.
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FIGURE 1
 Different arbuscular mycorrhizal fungi (AMF) from the rhizosphere of Daucus carota. (A) Funneliformis mossae spore showing subtending hyphae (SH), germ tube (GH), wall structure-Layer 1, Layer 2, and Layer 3 designated as (L1), (L2), and (L3), respectively; (B) Gigaspora sp., (C) Septoglomus sp., (D) Claroideoglomus sp., and (E) Acaulospora sp.


The number of spores of AM fungi also varied across treatments. Funneliformis sp. was the most abundant genus (4.3 spores/g of soil), followed by Gigaspora (3.01 spores/g of soil), Claroideoglomus sp. (2.6 spores/g of soil), Acaulospora sp. (2.38 spores/g of soil) and Septoglomus sp. (1.88 spores/g of soil) (Table 1). Of these AMF genera, Funneliformis sp. was used in the present investigation and was subjected to detailed morphological and molecular characterization.



TABLE 1 Occurrence of different arbuscular mycorrhizal fungi isolated from the rhizosphere of carrot roots.
[image: Table1]

Based on morphological characters, the Funneliformis sp. strain isolated in this study was identified as Funneliformis mosseae. It has visible septum, often cylindrical or funnel-shaped, and spore showing subtending hyphae, germ tube, and a three-layered wall (Figure 1A). The Funneliformis AM fungi were further characterized by analyzing the sequences of the ITS rRNA (OQ703041). The nucleotide sequences of the ITS rRNA of the fungal isolate used in this study show 100% similarity with the sequences of F. mosseae from different geographical regions of the world deposited in the NCBI. Upon alignment, no nucleotide difference was observed between the sequences analyzed. Phylogenetic reconstructions based on these sequences show that the AM fungi used in this study form a clade with previously described F. mosseae species from Germany, Italy, and India, and form a clade with Funneliformis coronatum, and together form a sister clade with Funneliformis geosporum and Funneliformis caledonium (Figure 2). Thus, morphological, molecular and phylogenetic studies confirm that the fungal isolate used in this study is F. mosseae.
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FIGURE 2
 Phylogenetic tree based on ITS rRNA gene sequences of the Funneliformis mosseae isolated in this study and several related species inferred by using the Maximum Likelihood method based on the Timura-Nei Parameter Model. The percentage of trees in which the associated taxa clustered together is shown next to the branches. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site.




3.2. Identification of root-knot nematodes

Morphologically, the perineal pattern of the adult females used in the present study showed an angular oval structure and an inverted V shape (Figure 3). This perineal pattern is similar to the previously described for M. incognita (Hunt and Handoo, 2009). These Meloidogyne nematodes were further characterized by analyzing the sequences of the D2-D3 region of the 28S rRNA gene (ON514606). The nucleotide sequences of the D2-D3 region of the nematodes used in this study show 100% similarity with the sequences of several other M. incognita nematodes from the United States, China, Brazil, Colombia, Myanmar, Vietnam and other regions of the world deposited in the NCBI. Upon alignment, no nucleotide difference was observed between the sequences analyzed. Phylogenetic reconstructions based on these sequences show that the nematodes used in this study form a clade with previously described M. incognita nematode species from China and USA, and together formed a group with other species (Figure 4). Thus, morphological, molecular and phylogenetic studies confirm that the nematode used in this study is M. incognita.
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FIGURE 3
 Light microscopy of Meloidogyne incognita nematodes on carrot plants. (A) M. incognita female, (B) A nematode juvenile (J2) invading root, (C) Root galling caused by M. incognita nematodes on carrot roots, (D) Transverse section (TS) of root gall showing the giant cell formation induced by the M. incognita female.
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FIGURE 4
 Phylogenetic tree based on D2D3 expansion segments of the 28S rRNA gene sequences of the Meloidogyne incognita isolated in this study and several related species inferred by using the Maximum Likelihood method based on the General Time Reversible model. The percentage of trees in which the associated taxa clustered together is shown next to the branches. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site.




3.3. Energy-dispersive X-ray spectroscopy and scanning electron microscopy

The observations of EDX analysis showed that O, N, Na, Mg, Al, Si, P, Cl, K, Ca, and Fe elements were found in the cow manure Vc. Moreover, oxygen (O) was the most predominant atom (46.29%) and sodium (Na) the least (0.25%) in the Vc (Figure 5A). Other elements, such as Fe, Mg, Ca, and K were also present in the of Vc at medium concentrations (Figure 5A).
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FIGURE 5
 (A) Energy-dispersive X-ray (EDX) spectrum of vermicompost, (B) scanning electron microscope (SEM) analysis of vermicompost (C) absorbance spectrum and FT-IR dominant peaks of the vermicompost.


SEM analysis was used to study the ultrastructural morphology of the prepared Vc. The SEM micrograph of the Vc sample revealed that the surface area of the Vc sample was larger and had more porosity, fragmentation, and granular structures. The highest proportion of surface area and the smaller particle size were recorded in the Vc sample. The micrographs showed a greater surface area with single particles packed together to form aggregates. Such aggregation is responsible for the uncertainty about the real surface area of Vc because the internal area was not fully accessible (Figure 5B).



3.4. Fourier transform infra-red spectroscopy

The FT–IR spectra were used to determine the compounds’ functional group(s) based on the peak values. The presence of primary amine was confirmed by the high absorption bands seen at 3,406 cm−1 as a result of the bonded N-H stretching (Figure 5C). The strong variable bands were observed at 2926.6 cm−1 to 2957.6 cm−1 due to asymmetric stretching of bonded C–H, which shows the presence of alkene (CH2) and alkane (CH3) groups. In addition, the bands observed at 2852.9 cm−1 to 2856.6 cm−1 due to the C–H symmetric stretch show the presence of alkene as a common biochemical constituent. The C–O bands were predominantly observed at 2363.7 cm−1 due to the carboxyl group, whereas the spectral band observed at 1743.2 cm−1 due to C=O stretch vibration corresponds to the presence of saturated aliphatic esters (Figure 5C).

The secondary structure of amine caused by N–H bending is observed at 1653.4 cm−1 to 1555.9 cm−1. The bands observed at 1405.1 cm−1 are caused by alcohols and phenols’ bonded C–O/O–H bending. The band observed at 1360.7 cm-1 due to C–H bending shows the presence of alkane. The IR spectrum seen at 1315.5 cm−1 as a result of S=O stretching shows the presence of sulphone. The bonded C–O absorbed IR spectrum at 1206.1 cm−1 shows the presence of ether functional groups. The strong bands observed at 1073.8 cm−1 to 1034.0 cm−1 due to C–O–C symmetric stretching shows the presence of polysaccharides. The presence of sulfide and disulfide compounds can be seen in the faint absorption bands at 575.5 cm−1, which may be caused by S-S stretching (Figure 5C).



3.5. Effects on plant growth parameters

Meloidogyne incognita significantly reduced plant growth parameters such as plant height, fresh weight, and shoot and root dry weight. The application of Vc and AMF (F. mosseae), both individually and in combination, significantly increased several plant growth parameters (Figures 6A–D). Interestingly, a more substantial positive effect was observed when Vc was applied to nematode-infested plants than when F. mosseae fungi were applied. Moreover, the combined applications of F. mosseae and Vc to nematode-infested plants increased the plant length by 13.60%, fresh plant weight by 37.85%, shoot dry weight by 42.85%, and root dry weight by 59.17% (Figures 6A–D).
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FIGURE 6
 (A–F) Effects of arbuscular mycorrhizal fungi (Funneliformis mosseae) and vermicompost applications on different traits of plants infested or not by M. incognita. (A) Mean (±SEM) plant length. (B) Mean (±SEM) plant fresh weight. (C) Mean (±SEM) shoot dry weight. (D) Mean (±SEM) root dry weight. (E) Mean (±SEM) chlorophyll content. (F) Mean (±SEM) carotenoid content. AMF, Arbuscular-mycorrhizal fungi (Funneliformis mosseae); Vc, Vermicompost; Mi, Meloidogyne incognita; Error bars represent standard error (SE); Data present mean values of 5 replicates (n = 5).




3.6. Effects on chlorophyll and carotenoid content

A significant reduction in chlorophyll and carotenoid content was observed in M. incognita-infested plants (Figures 6E,F). A significant chlorophyll and carotenoid increase content was observed when M. incognita-infested plants were treated with Vc but not with AMF (F. mosseae). In addition, synergistic effects of Vc and F. mosseae treatments were observed. More specifically, the combined applications of both F. mosseae and Vc to M. incognita-infested plants increase chlorophyll and carotenoid content by 21.51 and 14.10%, respectively (Figures 6E,F).



3.7. Effects on phenol content, peroxidase and polyphenol oxidase enzyme activity

A significant induction of phenol content, peroxidase (POX) and polyphenol oxidase (PPO) enzyme activity was observed in M. incognita-infested plant (Figures 7A–C). When M. incognita-infested plants were treated with AMF (F. mosseae) or with Vc, phenol content, peroxidase (POX) and polyphenol oxidase (PPO) enzyme activity were further increased, although these effects were stronger in Vc-treated plants than in AMF-treated plants. In addition, synergistic effects of Vc and F. mosseae treatments were observed. More specifically, the combined applications of both F. mosseae and Vc to M. incognita-infested plants increase phenol content, POX and PPO activities by 23.78, 15.65, and 29.78%, respectively (Figures 7A–C).
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FIGURE 7
 (A–F) Effects of arbuscular mycorrhizal fungi (Funneliformis mosseae) and vermicompost applications on different traits of plants infested or not by M. incognita. (A) Mean (±SEM) phenol content. (B) Mean (±SEM) peroxidase (POX) activity. (C) Mean (±SEM) polyphenol oxidase (PPO) activity. (D) Mean (±SEM) number of galls per plant. (E) Mean (±SEM) number of nematodes per plant. (F) Mean (±SEM) proportion of roots colonized by AMF (%). AMF, Arbuscular-mycorrhizal fungi (Funneliformis mosseae); Vc, Vermicompost; Mi, Meloidogyne incognita. Error bars represent standard error (SE); Data present mean values of 5 replicates (n = 5).




3.8. Effects on root galling and nematode population with arbuscular mycorrhizal fungi colonization

A significant reduction in root galls and nematode population was observed when M. incognita-infested plants were treated with AMF or with Vc, alone or in combination. However, these effects were stronger in Vc-treated plants than in AMF-treated plants. In addition, synergistic effects of Vc and AMF treatments were observed (Figure 7). More specifically, the combined applications of both AMF (F. mosseae) and Vc to M. incognita-infested plants reduce root galling and nematode populations by 42.04 and 55.51%, respectively (Figures 7D,E). The mycorrhizal response of carrots inoculated with M. incognita, showed that the addition of Vc considerably (p = 0.05) boosted root colonization by F. mosseae (Figures 7F, 8). The application of Vc treatments resulted in a notable increase in mycorrhiza colonization in carrot plants that were infested with M. incognita. Among the treatments, the combination of AMF (F. mosseae) and Vc showed the highest percentage of root colonization (63%) in the presence of M. incognita, followed by the inoculation of F. mosseae alone (57%) (Figures 7F, 8).
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FIGURE 8
 Root colonization by arbuscular mycorrhizal fungi (Funneliformis mosseae). (A) Control (without root colonization) (B) AMF treated plants (with root colonization) (C,D) AMF + Vermicompost treated plants (with root colonization).




3.9. Principal component analysis

Principal component analysis was carried out to study the effect of AMF (F. mosseae) and Vc on plant growth parameters (plant length, plant fresh weight, shoot and root dry weight), plant biochemical profiles (chlorophyll, carotenoid and phenol content), plant defense enzyme activities (POX and PPO), nematode disease severity parameters (root galling and nematode population). The PCA data showed an accumulated variability of 93.19%. The PC1 and PC2 displayed 69.10 and 24.09% (total 93.19%) of the novel information, respectively (Figure 9). AMF and Vc treatments, individually and in combination, show significant positive correlations with plant growth, photosynthetic pigment content, phenol contents and defense enzyme activities. Moreover, these latest plant traits showed a negative correlation with number of galls and nematode densities (Figure 9).
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FIGURE 9
 Biplots of principal component analysis (PCA) comparing the effects of arbuscular mycorrhizal fungi, vermicompost treatments and M. incognita infestation on different plant traits. PL, Plant length; PFW, Plant fresh weight; SDW, Shoot dry weight; RDW, Root dry weight; CHL, Chlorophyll content; CTD, Carotenoid content; PHL, Phenol content; POX, Peroxidase; PPO, Polyphenol oxidase; NG, Number of galls; NP, Nematode population; RC, Root colonization; Mi, M. incognita; AMF, Arbuscular mycorrhizal fungi (Funneliformis mosseae); Vc, Vermicompost.





4. Discussion

In this study we show that the application of vermicompost and AMF to M. incognita attacked plants significantly alleviates the negative impact of these nematodes on plant growth. These effects are accompanied by the suppression of galling and nematode populations and a greater induction of phenolic compounds and defensive enzymes in vermicompost- and AMF-treated plants.

The application of Vc and AMF as soil amendments is a fast-emerging and encouraging area of research. Our results showed that the application of Vc and AMF to the soil significantly improved several plant growth parameters and greatly alleviated the negative consequences of M. incognita attack. A potential explanation for this observation is the induction of defense compounds that suppress nematodes and/or the increase of several macro- and micronutrients required for plant growth. In support of this hypothesis, previous studies also showed that the application of Vc in susceptible tomato plants increases root defense against root-knot nematodes by increasing the levels of defense compounds and by changing soil properties, which translates into better plant growth (Xiao et al., 2016). Furthermore, AMF significantly increased the growth through the induction of resistance against M. incognita in cherry tomatoes (Wang et al., 2022). In addition, AMF and Vc treatments improve plant defenses against other pathogens (Meng et al., 2021). In addition, some other studies show that Vc and AMF treatment enhances N, K, Ca, Zn, S and P contents in the soil, improving plant growth (Balliu et al., 2015). The AMF can significantly boost plant and soil characteristics in both root and shoot systems (Al-Hmoud and Al-Momany, 2017). Only a few reports are available on Vc and AMF, which showed beneficial roles in the growth and development of crops (Khorshidi et al., 2013; Khan et al., 2014; Oliveira et al., 2015; Shamshiri and Fattahi, 2016; Naeeni et al., 2017). The present study showed the AMF application alone and with the combination of Vc significantly increases the productivity of carrots and decreases the nematode infestation.

We also observed that AMF and Vc applications alone and in combinations increased the contents of plant pigments (chlorophyll and carotenoids). An increase in the pigments may be due to increase in nitrogen content of leaves of plants supplied with vermicompost (Yadav and Garg, 2015). Previous studies have shown that the Vc amendments in the soil increase the chlorophyll and carotenoid contents in plants, which in turn improves plant resistance against M. incognita (Xiao et al., 2016), and soil amendment with Rhizophagus irregularis (AMF) increases chlorophyll and carotenoid content of carrot plants infested with M. incognita (Ahamad and Siddiqui, 2021). Moreover, mycorrhizal inoculations enhance magnesium and phosphorus uptake in plants, which in turn increases chlorophyll content and overall performance of plants (Ait-El-Mokhtar et al., 2020). Vermicompost and AMF synergistically increase total chlorophyll content in plants when applied with Rhizobium (Rajasekaran and Nagarajan, 2004; Rajasekaran et al., 2006; Arumugam and Rajasekaran, 2010). Total chlorophyll content, fresh weight, and leaf area were higher in AMF-treated plants than in plants without AMF, but variations were notable under drought stress environments (Morte et al., 2000; Zhu et al., 2012; Sivakumar et al., 2020).

Our results also show that AMF and Vc applications alone and in combinations increased the phenolic contents and defense enzymes (POX and PPO). Several studies show that phenolics play an important role in plant resistance against biotic and abiotic stresses (Rehman et al., 2012; Tuominen, 2013). AMF effectively induces the accumulation of phenols and flavonoids, which are powerful antioxidants that act as free radical scavengers and reducing agents (Chen et al., 2013). The addition of AMF in the soil with or without M. incognita increases phenol contents in plants (Nagesh and Reddy, 2004). Soil amendments with Vc followed by inoculation of M. incognita increased the activities of defense enzymes (POX and PPO) in olive trees (Mohamed et al., 2019). Several studies report that the addition of compost increases plant defense against pathogens (Zhang et al., 1998). Similarly, AMF inoculations induces POX and PPO activities in cucumber plants infested with M. incognita (Choshali et al., 2019). AMF can improve plant tolerance to biotic and abiotic stressors and stimulate plant development under these conditions (Plassard and Dell, 2010; Alqarawi et al., 2014; Navarro et al., 2014). AMF immunization increases the nutritional value, physiology, quality and quantity of the plant products and pumps the biological activity, increasing the biochemical process (Yang et al., 2014; Canellas et al., 2015; Shi-Chua et al., 2019; Gao et al., 2020). In addition, the interaction between Vc and AMF may help speed up 15N acquisition through mineralization induced by vermicompost amendment and transfer from the soil to the plant (Liu et al., 2020).

With reference to root galling and nematode multiplication, when Vc was applied to carrot plants, a decrease in M. incognita population and the formation of galls was observed. Similar results were shown in tomato plants infected with M. javanica (Hemmati and Saeedizadeh, 2019). Moreover, nematode hatching is reduced when Vc exudates are applied (Mondal et al., 2021). Arugula Vc also decreases the reproduction factor of the nematode by 54.4 to 70.5% in infected tomato plants. It affects the expression of resistance genes and induces systemic resistance against root-knot nematodes (Rostami et al., 2022). Moreover, soil application of AMF fungi also reduced plants’ root galling and nematode population (Siddiqui and Akhtar, 2007). The mycorrhizal fungi could activate plant systemic resistance to resist possible nematode invasion (Nafady et al., 2022). Alternatively, mycorrhizal fungi may have a direct mechanism to suppress nematode root infection by competing for feeding and root space. The mechanisms by which this elicitation in the systemic defensive capacity of the roots occurs are related to the activation of genes that encode PR proteins, chitinases and enzymes that participate in reactive oxygen species (ROS) detoxification (whose accumulation occurs during hypertrophy and cell death by the nematodes) like glutathione S-transferase (GSTs)/superoxide dismutase (SOD), enzymes involved in the biosynthesis of lignin, and shikimate pathway which in turn, produces precursors of various aromatic secondary metabolites against nematodes (Schouteden et al., 2015; Sharma and Sharma, 2017; Balestrini et al., 2019). AMF colonization could reduce the density of M. incognita in soil (Wang et al., 2022). Soil amended with Vc increased the root colonization caused by AM fungi in the presence of M. incognita in carrot plants. Other studies also supported this statement that Vc application with AMF improves root colonization in tomato plants when infected with M. incognita compared to the individual application (Serfoji et al., 2010).

The surface area of the Vc was found to be larger, and it showed more porosity, fragmentation, and granular structures that are packed together to form aggregates as compared to pre-vermicompost. Complete internal area was not accessible due to these aggregates. The changes in surface morphology of pre- and post-vermicompost substrate mixtures and maturity were studied by SEM of Vc samples (Kumar et al., 2014; Unuofin and Mnkeni, 2014; Sharma and Garg, 2018; Srivastava et al., 2020). Irregular morphology in Vc samples with a high number of pores was observed by Kumar et al. (2014). Similar findings were observed in cation exchange capacity value in Vc samples (Pereira and Arruda, 2003; Ravindran et al., 2008). Disaggregation in the lignin matrix was followed by Hussain et al. (2016), it is because of the joint action of earthworms and microbes. Authors suggested that earthworms ingest and grind the substrate in their gizzard and pass it to the intestine, where enzymes and microbes carry out further degradation and disaggregation (Bhat et al., 2017). The EDX analysis in the present study showed the presence of various inorganic and organic elements in the cow manure vermicompost. The results of this study also corroborated with Zulhipri and Purwanto (2021), which showed that multiple elements of vermicompost were present in small and large proportions.

FT-IR analysis results indicate that this technique is suitable for the identification of the functional groups in Vc maturity and stability. Bhat et al. (2017) applied FT-IR spectra to analyze the mineralization of organic matter and degradation of complex aromatics (lignin, polyphenols) into simpler compounds (carbohydrates, lipids) by earthworms. The band height reduction was observed at 3,100–3,600 cm−1 in the Vc samples compared to the raw waste. Moreover, Sen and Chandra (2007) applied an estimate of humic acid derived from sugar industry wastes, which showed the broadband at 3,400–3,300 cm−1. Ravindran et al. (2008) identify the chemical structural changes in the control and final Vc mixtures of solid waste (animal fleshing) produced from the leather industry by applying FT-IR spectroscopy technique. FT-IR spectra observed a reduction of aliphatic compounds in the final Vc mixture. Deka et al. (2011) confirmed that FT-IR spectra of final Vc mixtures increased nitrogen compounds and decreased aliphatic and aromatic compounds compared to the pre-Vc waste mixtures. This indicates the degradation of bio-waste during the vermicomposting process. Lv et al. (2013) applied FT-IR spectra on water extractable organic matter (WEOM) extracted from the vermicomposting process of cattle dung, and observed a decreasing trend of aliphatic C–H stretching at 2936–2958 cm − 1 that confirms lipids and carbohydrate degradation. Similar findings were observed in FT-IR spectroscopy analysis of Parthenium mediated Vc (Rajiv et al., 2013). Ravindran et al. (2013) observed the appearance of COO groups and relative reduction in OH, CH3 and CH2 groups in Vc prepared from biodegradation of fermented animal fleshing mixed with leaf litter and cow dung using earthworm, Eudrilus eugeniae.



5. Conclusion

The root-knot nematode, Meloidogyne incognita causes significant damage to carrots under greenhouse and field conditions. Supplementation of Vc and AMF alone and in combination, enhanced plant growth, chlorophyll, carotenoid, and phenol contents, and increased in the defense enzyme activities. In addition, mycorrhizal root colonization was also increased when plants were amended with Vc in the presence of M. incognita. Vc and AMF soil amendments in carrot plants suppressed root galls and nematode populations. The results of the present study, therefore, strongly support the use of Vc and AMF against M. incognita. Hence, Vc along with AMF could be an efficient alternative to promote sustainable plant production under biotic stress conditions.
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Microbial inoculants may be called magical bullets because they are small in size but have a huge impact on plant life and humans. The screening of these beneficial microbes will give us an evergreen technology to manage harmful diseases of cross-kingdom crops. The production of these crops is reducing as a result of multiple biotic factors and among them the bacterial wilt disease triggered by Ralstonia solanacearum is the most important in solanaceous crops. The examination of the diversity of bioinoculants has shown that more microbial species have biocontrol activity against soil-borne pathogens. Reduced crop output, lower yields, and greater cost of cultivation are among the major issues caused by diseases in agriculture around the world. It is universally true that soil-borne disease epidemics pose a greater threat to crops. These necessitate the use of eco-friendly microbial bioinoculants. This review article provides an overview of plant growth-promoting microorganisms bioinoculants, their various characteristics, biochemical and molecular screening insights, and modes of action and interaction. The discussion is concluded with a brief overview of potential future possibilities for the sustainable development of agriculture. This review will be useful for students and researchers to obtain existing knowledge of microbial inoculants, their activities, and their mechanisms, which will facilitate the development of environmentally friendly management strategies for cross-kingdom plant diseases.
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 bioinoculants, evergreen technology, nanotechnology, sustainable agriculture, magical microbial bullets, plan growth promoting microorganism, soil born pathogen


Introduction

The world population growth is increasing at an alarming rate, hence global food output must quadruple by 2050 to meet the needs of a growing population. The predictions made thus far are significantly lower than what we require. It is estimated that worldwide food production is reduced by 36% due to plant diseases, insects, and weeds, with diseases alone reducing yields by 14%. (Agrios, 2005; Manzar et al., 2021a,b; Kashyap et al., 2022b). As a result, reducing the prevalence of plant diseases benefits agricultural output. Soil-borne diseases account for 10–20% of annual yield losses and are more detrimental to agricultural output than seed-borne or air-borne diseases (USDA, 2003).

Solanaceous crops are crucial to both the global economy and the diet of humans. They are known by the name “Nightshades” as well. All continents, with the exception of Antarctica, are home to members of this family. With 2,700 species and 98 genera, the Solanaceae family has the most diversity in terms of habitat, morphology, and ecology. Many regularly cultivated species are found in the Solanaceae family. The most significant genus in the Solanaceae family is “Solanum, “which comprises edible plants like potatoes, tomatoes, brinjal, chili, and capsicum. They can flourish in a variety of environments, from subtropical to tropical. They are plagued by a range of diseases in these various climatic situations and one among them being bacterial wilt caused by the bacterium Ralstonia solanacearum. It is one of the most serious diseases discovered to date because it causes host plants to wilt quickly and fatally. The pathogen has a vast host range of more than 200 species, is present around the world, and has a detrimental economic impact (Mansfield et al., 2012). Depending on the host, cultivar, temperature, soil type, cropping pattern, and strain, direct yield losses caused by R. solanacearum might vary greatly. For instance, yield losses for the tomato range from 0 to 91%, for the potato from 33 to 90%, for tobacco from 10 to 30%, for bananas from 80 to 100%, and for groundnuts from 10 to 20% (Elphinstone, 2005).



Bacterial wilt and geographical distribution

At the end of the 19th century, bacterial wilt disease was first reported on peppers tomatoes, potatoes, groundnuts, and tobacco in the southern USA and Asia, as well as the continent of South America (Seleim et al., 2014). The pathogen is infectious in soil and soilless culture resulting in the wilt of plants in the Solanaceae family. It is globally distributed in diverse climatic conditions (tropical, subtropical, and a few warm temperate regions, Hayward, 1991; Prameela and Rajamma, 2020). Twenty-five percent of the total area under vegetables is of solanaceous vegetables, primarily eggplants, chilies, and tomatoes. In India, the pathogen has been reported on various solanaceous vegetables including chili, tomato, potato, and brinjal from several states. It is reported from both the plains and plateau region of the west coast from Trivandrum in Kerala to Khera in Gujarat, Deccan and the central plateau of Karnataka, the North Eastern Hills region of India, Madhya Pradesh, Himachal Pradesh, Western Maharastra, Punjab, Tamil Nadu, West Bengal, Odisha, Jammu and Kashmir, Tamil Nadu, the Chotanagpur plateau area of Jharkhand, Uttarakhand, Bihar, and the eastern plains of Assam (Singh et al., 2010). Ralstonia solanacearum causes a 20–50 percent loss of solanaceous vegetable production in India each year (Singh et al., 2014). It has been recorded that wilt disease has destroyed 1.53 million hectares of tomato crops in around 80 countries, with a total worldwide loss of more than $950 million per year (Elphinstone, 2005). Solanaceous vegetable crops are mainly affected by R. solanacearum, such as summer-grown tomatoes, plain brinjal and tomatoes, and hill potatoes. Bacterial wilt losses range from 20 to 100% (Shekhawat et al., 2000) and 2–95% in tomatoes (Mishra, 1995; Singh et al., 2010; Yuliar et al., 2015). Extensive research was conducted on the use of physical, chemical, biological, and cultural techniques to manage bacterial wilt. Approximately 24% of the studies were concerned with breeding aspects, pathogen’s diversity, distribution, and host range (22%), detection and diagnosis of the pathogen (4%), pathogenicity and host-pathogen interactions (17%), epidemiology and ecology (3%), disease management and control (18%), and biological control (10%). There were more studies on disease management aspects like biological control of bacterial wilt (54%), followed by cultural practices (21%), chemical methods (8%), and physical methods (6%). Additionally, integrated pest management was the topic of some studies (11%) (Yuliar et al., 2015). This result revealed that biological control was of interest to many researchers. Kanyagha (2021) reported limited success even with the commitment of farmers to follow integrated disease management strategies such as cultural norms, the use of resistant cultivars, and crop rotation. The use of chemicals is a challenging task to manage bacterial wilt disease because the pathogen is localized within the xylem and is able to persist in the soil for a long time (Yuliar et al., 2015). Hartman and Elphinstone (1994) tested a bactericide in Taiwan and reported that chemical management by antibiotics (Penicillin, Tetracycline, Ampicillin, and Streptomycin) and soil fumigation causes limited suppression of the wilt pathogen. Biological control is a possible non-chemical means for plant disease management. Substantial research has been done on the management of major diseases of plants through biological control. In the recent past, the applications of microbial inoculants to combat soil-borne pathogens and increase crop yields have acquired significance (Elnahal et al., 2022). To attain sustainable yields, beneficial microorganisms can be an essential part of the management strategy. Plant growth-promoting rhizobacteria (PGPR) help in promoting the growth of plants and also protect the plants from devastating plant pathogens. The PGPR belong to the genera Pseudomonas, Azospirillum, Clostridium, Arthrobacter, and Serratia (Kloepper and Schroth, 1978; Hurek and Reinhold-Hurek, 2003). Pseudomonas fluorescens and other species have been reported to be effective in managing soil-borne plant pathogens through their biocontrol activity (Mohammed et al., 2020). The Pseudomonads is a major rhizobacteria group having biocontrol potential (Li et al., 2012). Pseudomonas spp. is prevalent in agricultural soils. Substantial progress has been made in characterizing the root colonization process by Pseudomonads, the abiotic and biotic factors affecting colonization, bacterial traits and genes contributing to the competence of the rhizosphere, and the processes of pathogen suppression (Sivasakthi et al., 2017). Pseudomonads have been reported to suppress soil-borne pathogens (Tao et al., 2020). Since humans consume vegetables in their less processed or unprocessed forms, quality control and safety are of utmost importance in vegetable cultivation. The controlled environment of a greenhouse makes it easier to incorporate PGPR and many different BCE strains have been identified and are ready for deployment (Singh et al., 2017), with some having already been tested successfully in greenhouse experiments (Liu et al., 2013). For example, Pseudomonas fluorescens is being studied as a possible helpful biocontrol agent, while Bacillus spp. has emerged as an essential microbe for the prevention of diseases in the field (Miljakovi et al., 2020). These particular isolates Pseudomonas stutzeri, Bacillus subtilis, and Bacillus amyloliquefaciens have been isolated and demonstrated to be successful in root colonization. In addition, Phytophthora capsici, a disease that affects cucumber plants, is greatly inhibited by these isolates (Islam et al., 2016). Bacillus subtilis was found to be efficient in preventing fruit infections caused by Penicillium spp. and Rhizopus stolonifer during the post-harvest stage. This was achieved by applying Bacillus subtilis to the fruit (Punja et al., 2016). In greenhouse conditions, Fusarium wilt caused by the fungus Fusarium oxysporum can be significantly inhibited by using Bacillus amyloliquefaciens isolates (Gowtham et al., 2016). These case studies show the efficacy of PGPR as BCAs in simulated lab settings. This ensures the viability and efficiency of PGPR for industrial horticulture by giving validity to its usage in greenhouse production systems (Jiao et al., 2021).

In the past, researchers have demonstrated that certain promising BCAs have the potential to be useful in the management of bacterial wilt disease. They may be avirulent strains of pathogens or different species of Bacillus, Pseudomonas, and Streptomyces spp. (Kurabachew and Wydra, 2014). The amount of research that is being done on Bacillus species, specifically on Bacillus amyloliquefaciens, is rising (Hu et al., 2010; Wei et al., 2011; Ding et al., 2013; Tan et al., 2013a,b; Chen et al., 2014; Yuan et al., 2014). Interesting methods for isolating rhizobacteria that stimulate plant development have been reported. Isolates taken from the rhizosphere of diseased plants were more effective at reducing disease incidence than those taken from healthy plants, as shown by Huang et al. (2015). The researchers found that the antagonists’ biocontrol efficacies were linked to the antagonists’ abilities to colonize plant roots but not to exhibit antibiosis in vitro. This finding suggests that root colonization plays an important role in disease suppression. Milagrosa and Balaki (1999) found that the incidence of wilting caused by P. solanacearum in potatoes was lower when Bokashi and effective microorganisms (EM) concentrate was applied alone or combined with inorganic fertilizer than the untreated control. Among the biocontrol agents, EM and Bokashi were found to be the best in the suppression of R. solanacearum (Lwin and Ranamukhaarachchi, 2006). Different bacteria and actinomycetes, viz., B. megaterium, B. mesentericus, B. mycoides, and B. subtilis have been reported to be effective against R. solanacearum (Doan and Nguyen, 2006). In contrast, Shekhawat et al. (1993) suggested that the biocontrol potential of fluorescent Pseudomonads be evaluated against the bacterial wilt pathogen. Various rhizobacteria are active in the rhizosphere and they play an important part in suppressing the R. solanacearum population and its activity. Different antagonisms have different ways of producing advantageous effects. According to Jagadeesh et al. (2001), RBG 114, Arthrobacter RBE 201, and P. fluorescens CHAO, the reference strain, were able to control the disease by 83.33 percent against pathogens. The combined application of biocontrol agents like P. putida, Bacillus pumilus, and Actigard (acibenzolar S-methyl) was more effective against R. solanacearum than against the untreated control (Anith et al., 2004). Various cross-kingdom biological control agents having plant growth and protection ability studied by different research groups are shown in Table 1.



TABLE 1 Research shows that various cross-kingdom microbiota support plant growth promotion and disease suppression in solanaceous crops.
[image: Table1]



Biochemical characterization of biocontrol agents

Various biochemical and phenotypic methods have been used to characterize fluorescent Pseudomonad isolates. The genus Pseudomonas is described as an aerobic cell rod shaped like a gram-negative and is associated with plants, with P. aeruginosa, P. fluorescens, P. aureofaciens, and P. putida being important organisms. Most of the experiments were performed to classify fluorescent Pseudomonads (Krieg and Holt, 1984). P. aeruginosa forms a light cluster among the Pseudomonads community and develops at 41°C. The organisms are again categorized into separate subgroups and biovars based on similarities (Barrett et al., 1986). Therefore, it is possible to identify fairly and economically sustainable bioagents easily by different biochemical tests (Weller et al., 2002). The colonies of P. fluorescens give bluish-green fluorescens under UV light. Pseudomonas species are morphologically short rods and develop yellow-green diffusible pigmenton King’s B medium except for P. putida. Mulla et al. (2013) found that P. fluorescens strains isolated from the soil of various agro-climate zones were gram-negative, rod-shaped and motile, and developed Bluish green smooth colonies that fluoresced under UV light and in King’s B broth produced water soluble and fluorescent bluish-green pigmentation. The positive effect of gelatin liquefaction and levan formation was observed in all isolates. The isolates were indole negative and positive. The positive effect of gelatin liquefaction and levan formation was observed in all isolates. Indole negative was observed because they did not develop a red layer at the top of the medium of tryptophan broth and was positive for catalase as shown by the development of air bubbles with the addition of hydrogen peroxide. The bacterial strains isolated from the rhizosphere of medicinal and aromatic plants were described by Malleswari (2014) as Bacillus sp. gram-positive, white colonies with flat edges, large, smooth, and a high nutrient agar center developed. Isolates were positive for the use of citrate and sorbitol and negative for the use of lysine ornithine, urease, deamination of phenylalanine, nitrate, glucose, and adonitol, as well as the development of H2S. Arabinose, lactose, indole, Voges-Proskauer, gelatinase, methyl red test, and catalase activities showed a positive test.



Identification of microbial inoculants by molecular techniques

Microorganisms are being identified through genotypic and phenotypic characterization. 16SrRNA was used as a marker for the identification of bacteria and deciphering their phylogenetic relationship. The 16SrRNA is present among all bacteria; the gene function has not changed over time and the 16SrRNA gene (1,500 bp) is sufficient for accurate identification (Patel, 2001). Fungal inoculants were characterized using ITS, GAPDH, LSU, and Tef genomic regions (Manzar et al., 2022a; Kashyap et al., 2023). Zinniel et al. (2002) reported six endophytic bacteria that had colonized a range of host plants and identified them as Bacillus sp. using 16S rRNA genotyping. Phytopathogenic bacteria were severely restricted in their growth by the bacterial strain J12, which was isolated from the rhizosphere soil of tomato plants. Based on the 16SrRNA gene sequence, P. brassicacearum was distinguished from R. solanacearum (Zhou et al., 2016).



Rhizobacteria in the management of biotic stress in plants

Through various modes of action, plant growth-promoting rhizobacteria contribute to improving plant fitness. Direct and indirect strategies were typically used by rhizobacteria; these mechanisms are covered in more detail below.

Direct mechanisms of PGPR: Phosphate solubilization; Phytohormone production.

Indirect mechanisms of PGPR: Cyanide production; Siderophore production; Induced systematic resistance; Volatile compounds produced by PGPR.


Direct mechanisms of PGPR


Phosphate solubilization

Phosphorus contributes to the biomass construction of micronutrients, the metabolic process of energy transfer, macromolecular biosynthesis, signal transduction, respiration chain reactions, and photosynthesis (Shenoy and Kalagudi, 2005). Rhizobacteria that are capable of phosphate solubilization play an essential part in the accumulation and conversion of phosphate to plant roots (Bechtaoui et al., 2020). The enzyme phytase is in charge of liberating the phosphorus that has been bound in soil organic molecules like seeds or pollen and was preserved as phytate (inositol polyphosphate). Phytates are a useful source of phosphorous, making up 60–80% of the P in soil. Strong and stable ester linkages seen in phytates make them readily hydrolyzable by PSR. During vegetative growth, phosphorus is primarily absorbed and this absorbed form of phosphorus is found in seeds and fruits (Batool and Iqbal, 2019). Research has shown that the application of Enterobacter, Bacillus, Agrobacterium, Trichoderma, Pseudomonas, Glomus, and Aspergillus, as well as phosphate-solubilizing microbes to soils, roots, and fertilizers releases soluble phosphorus, stimulates growth, and protects plants from infection by pathogens (Liu X. et al., 2019; Liu Z. et al., 2019; Hii et al., 2020; Nacoon et al., 2020; Manzar et al., 2021a,b, 2022b; Kirui et al., 2022).



Phytohormone production by rhizobacteria

Phytohormones play a major role in maintaining plant growth. They act as molecular signals under varying environmental conditions that restrict the growth of the plant. Root-associated microbes such as symbiotic or endophytic bacteria strongly influence the production of phytohormones and promote seed germination, root development, vascular tissue development, shoot elongation, flowering, and complete plant growth (Sgroy et al., 2009; Antar et al., 2021). Root growth is promoted by auxins produced by PGPRs (e.g., Ahemad and Kibret, 2014; Afzal et al., 2015). Numerous research works suggest that hormones may be used to improve plant stress tolerance and promote growth. These include auxin in rice (Etesami and Beattie, 2017), cytokinins in wheat (Kudoyarova et al., 2014), abscisic acid in corn (Sgroy et al., 2009), and gibberellins in cucumber, tomato, immature radish, and rice (Kang et al., 2009). In plants, hormone levels can be controlled by microbes that generate plant growth regulators. These plant growth regulators exert effects that are similar to those caused by the application of exogenous plant phytohormones (Turan et al., 2009). Auxins and cytokinins are examples of phytohormones produced by microbes that are similar to plant-synthesized phytohormones. These microbe-produced phytohormones regulate plant hormone levels, which in turn affect the biochemical elicitation of defensive pathways (Backer et al., 2018).




Indirect mechanism


Cyanide production

A volatile metabolite hydrocyanic acid (HCN) is deemed to play an important part in the biocontrol of soil-borne pathogens (Siddiqui, 2006). Cyanide ions are primarily metabolized by thiocyanate. As an HCN, the cyanide ion is exhaled and metabolized to other compounds to some extent. HCN restricts electron movements, thus destroying the energy supply to the cells, resulting in the death of the microbial invaders. It regulates the enzyme function and natural receptors by reversible inhibition mechanisms (Corbett, 1974). Various researchers have documented the production of hydrocyanic acid (HCN) from P. aeruginosa, P. fluorescens, and rhizobacteria (Ahmad et al., 2008). Voisard et al. (1989) showed that the P. flourescens strain CHAO involves HCN in biological regulation. Root hair formation was stimulated by the cyanide-producing strain CHAO, suggesting that the strain brought about the alteration of the physiological activities of the plant. They further noted that three biosynthetic genes encode the enzyme HCN synthase (henA, henB, and henC).



Siderophore-mediated biocontrol

Siderophores are secondary metabolites that have low molecular weight and the ability to chelate iron. They are peptide molecules with side chains and functional groups that are composed of small compounds that can transport ferric ions through cell membranes with great affinity (Hofte et al., 1991; Raymond et al., 2015; Niehus et al., 2017). They also inhibit plant pathogens by competing with them for iron (Duijff et al., 1997). Rhizobacterial strains produce siderophores to chelate iron from the rhizosphere condition which is not soluble in water, therefore, not available for bacteria under iron-limiting conditions (Ghavami et al., 2017). Pseudomonas fluorescens produce siderophores under iron-limiting conditions in the Chrome Azurol medium. The production of siderophore, yellow color with a golden periphery, showed a positive result in casamino and succinate medium (Suryakala et al., 2004). The work with pyoverdin, a class of siderophores produced by fluorescent pseudomonads, provides evidence to support the siderophore theory of rhizobacteria’s biological regulation (Demange et al., 1987). Pyoverdin produced by P. aeruginosa 7 NSK 2 was reported by Hofte et al. (1991), which increased the yield of cucumber, spinach, barley, maize, and wheat. Suryakala et al. (2004) indicated that siderophores of the tri-hyobroxamate group could be used against plant pathogens as effective biocontrol compounds. Zhou et al. (2016) reported that 2,4-DAPG, HCN, siderophores, and protease produced by P. brassicacearum J12 inhibited pathogen growth, thereby, revealing its potential in the biocontrol of tomato bacterial wilt. Karimi et al. (2012) stated that bacterial isolates are capable of being isolated. Bacillus subtilis (Bl, B6, B28, B40, B99, and BIOS), P. putida (P9 and PIO), and P. aeuroginosa (Pll, PI2, P66, and PI 12) differed in the synthesis of hydrogen cyanide, siderophore, protease, and indole acetic acid. Yu et al. (2011) have reported that B. subtilis CAS 15 isolated from the rhizospheric pepper soil in Hainan, China, produced siderophore on CAS agar plate and was found to be promising in promoting plant growth and biological control against Fusarium wilt of pepper.





Induced systemic resistance

Plant growth-promoting rhizobacteria (PGPR) are beneficial rhizobacteria that protect plants from pathogens by triggering the plant’s immune system to react strongly to the invasion (Figure 1). The bacteria that cause ISRs have the ability to alter the morphological, physiological, and molecular reactions of plants. Over the past ten years, a lot of studies have been done on the mechanisms of microbial signals, plant receptors, and hormone signaling pathways that are involved in PGPR-induced ISR in plants. In terms of the mechanism associated with Bacillus spp. Elicitation of ISR. Investigations show that ISR is associated with ultra-structural and cytochemical changes in plants during the pathogen attack (Kloepper et al., 2004). There are a number of metabolic changes that occur in the host during ISR that ultimately result in the manufacture of defense-related molecules to be used against challenging pathogens. When a pathogen threatens, the priming action of PGPR activates cellular defense responses such as an oxidative burst, cell wall strengthening, the activation of defense-related genes, and the buildup of secondary metabolites (Conrath et al., 2006).
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FIGURE 1
 Cross-kingdom microbiota boosting systemic resistance in plants to manage plant diseases.


Several species of Bacillus, viz., B. amyloliquefaciens, B. subtilis, B. pasteurii, B. cereus, B. pumilus, and B. mycoides have been reported to induce ISR and protect plants against pathogen attacks (Beneduzi et al., 2012; Garcia-Gutierrez et al., 2013; Pieterse et al., 2014; Kashyap et al., 2021). According to Kashyap et al. (2021), induced systemic resistance (ISR) is a promising method for managing plant diseases that can successfully protect a plant against the respective plant diseases such as tomato wilt and chili wilt. The treatment of chili plants with Bacillus subtilis KA9 and Pseudomonas fluorescens PDS1 resulted in increased defense enzyme activities and resulted in the induction of resistance in chili against Ralstonia solanacearum. According to Yadav et al. (2017) PAL and PPO are the major ISR-based enzymes in plants and their activities are related to plant resistance. It was, therefore, important to find out whether tomato plants had improved resistance to infection with R. solanacearum after treatment with B. amyloliquefaciens DSBA-11, which mediates an oxidant/antioxidant system. Instead of increasing their development, ISR is linked to an increase in sensitivity to these hormones, which could activate a slightly separate set of defense genes. Choudhary et al. (2007) reported that after exposure to biotic stimuli by different PGPRs, ISR is induced, and plants acquire increased levels of resistance to pathogens. Recently, research has found that certain strains of Bacillus can regulate the gene expression of antioxidants genes such as CaPR1, CaPR4, and CaPR10 in their hosts, hence, triggering ISR against the pepper bacterial spot disease (Ma et al., 2018).

Tan et al. (2013a,b) reported resistance induction by B. amyloliquefaciens in tomatoes which provides protection against bacterial wilt. Research has found that CM-2 and T-5 B. amyloliquefaciens strains were antagonistic to R. solanacearum under greenhouse conditions and produced bioorganic fertilizers to control tomato wilt. The use of bioorganic fertilizers considerably reduced the tomato wilt incidence (63–74%), encouraged plant growth, and reduced the rhizosphere RS population relative to the control population. In the tomato rhizosphere, both strains of CM-2 and T-5 applied with bioorganic fertilizer application survived well. The use of Bacillus amyloliquefaciens (SN13) was found to enhance tolerance through a higher defense response against Rhizoctonia solani in cotton. The colonized plants showed altered phytohormone signaling, ongoing elicitor maintenance, and synthesis of secondary metabolites (Srivastava et al., 2016). Enterobacter asburiae strains were reported to increase the expression of defense-related genes and antioxidant enzymes, as well as other defensive enzymes (PPO, SOD, PAL, catalase, and PO) to protect the plant from tomato yellow leaf curl viruses (Li et al., 2016). PGPR colonization led to improved plant physiology, tissue health, and increased development of flowers and seeds (Kumar, 2016).



Plant genes modulated by PGPR

Plant growth promotion and its protection against many biotic and abiotic stresses are brought about by PGPR through the modulation of plants. The proteome analysis of PGPR-treated leaves showed increased expression of RuBisCo protein (Kandasamy et al., 2009). RuBisCo plays a role in photosynthesis and accumulation of chlorophyll, thus treated plants have increased photosynthetic rate and, hence, better growth (Agrios, 2005). Another protein that is responsive to PGPR is the chaperone, a stress-related protein. PGPR-treated plants show the induced expression of Nucleoside diphosphate kinases (NDKs). There are reports stating the role of NDKS in wounding, heat shock, and oxidative stress (Harris et al., 1994; Moisyadi et al., 1994; Moon et al., 2003). Thus, the NDKs play a role in primary metabolic function and regulatory function too. Rhizobacteria SN13 provides stress tolerance against Rhizoctonia solani (a necrotrophic fungus) and bacterial mycolytic enzymes. They create a balance between ROS and ROS scavengers by induced expression of ferric reductases and defense response by increased expression of terpene synthase (Srivastava et al., 2016). Soil inoculation with PGPR improves the yield and nutrient uptake of crops by inducing the expression of various phosphate and nitrate transporter genes in absence of organic phosphorus and nitrogen (Saia, 2015). As PGPR modulates gene expression in plants to promote their growth, this study aims to understand the molecular mechanism involved in the modulation of gene expression. This investigation was conducted based on the view that not only the bacterium was promoting the growth of the plant but it too was also getting benefitted. The improved growth of the plant will provide better care and shelter to the bacteria too. The interaction between pathogens and host plants causes some changes in the activity of certain enzymes, including phenylalanine ammonia lyase, peroxidase, polyphenol oxidase, lipoxygenase, superoxide dismutase, and −1,3-glucanase (Kavitha and Umesha, 2008; Manzar et al., 2021a,b). These enzymes determine the degree of host resistance. They participate in biosynthetic wall-related activities such as phenol, lignification, polymerization of hydroxyproline-rich glycoproteins, control of cell wall elongation, and wound healing that improve antimicrobial effectiveness (Belkhadir et al., 2004).

Yang et al. (2009) reported a group of plant growth-promoting rhizobacteria (PGPR) bacteria that showed an increase in crop growth. PGPR produce antagonistic compounds which help to reduce plant disease directly. The indirect control of plant disease is through the elicitation of induced systemic resistance (ISR). The ISR elicited by PGPR has been deciphered in the model plant Arabidopsis; however, it is not well characterized in pepper. Bacillus cereus strain BS107 induced ISR against Xanthomonas axonopodis pv. vesicatoria in pepper leaves and its priming effect on plant defense genes as an ISR mechanism was assessed in order to understand the mechanism of ISR in agricultural plants. To systemically prime the expression of Capsicum annum pathogenesis-protein 4 and CaPR1, strain BS107 was administered to the roots of pepper plants. This was verified by quantitative-reverse transcriptase PCR. The study corroborated that rhizobacterium has a priming effect on the expression of pepper defense genes that take part in ISR. Bacillus thuringiensis has been shown by Hyakumachi et al. (2013) as a possible biological control agent for plant disease suppression. The bacterial wilt disease-suppressing activity of B. thuringiensis in this research has been observed in tomato plants. It was found that challenge-inoculation of tomato plants with R. solanacearum after cell-free filtrate (CF) pre-treatment resulted in clearly decreased growth of R. solanacearum in stem tissues and there was induced expression of defense-related genes such as acidic chitinase, β-1, 3-glucanase, andPR-1 in stem and leaf tissues. In addition, resistance to direct inoculation with R. solanacearum was observed in the stem tissues of tomato plants when their roots were pre-treated with CF. Taken together, these findings indicate the CF treatment of tomato roots. B. thuringiensis, by systemic activation of the plant defense system, suppresses bacterial wilt. Jayanna and Umesha (2017) analyzed the accumulation of differentially expressed defense genes in susceptible and resistant cultivars of tomatoes by qRT-PCR. It was found that as against the control, there was upregulation of gene expression of defense genes in the resistant tomato cultivar. The upregulation was significantly increased upon the inoculation of R. solanacearum. There was a down-regulation of defense genes in susceptible cultivars as compared to the control. However, C8-HSL treatment resulted in upregulation. Thus, the results reveal that C8-HSL can induce significant defense genes in resistant and susceptible tomato cultivars.

Pseudomonas putida (RA) strain MTCC5279 has been shown to possess multiple advantageous traits, including P-solubilization, siderophore production, and indole acetic acid (IAA) production, all of which stimulate plant growth and alter the physiological, biochemical, cellular, and molecular responses of plants (Jatan et al., 2020). Roots of P. putida inoculated Arabidopsis plants were collected, and microRNA expression was examined. From sequencing the control and RA-inoculated libraries, 293 known and 67 potential new miRNAs were found. Following RA-inoculation, as compared to the control group, stem-loop quantitative real-time PCR verified the differential expression of 15 well-characterized miRNAs. Multiple biological, cellular, and molecular processes were found to be influenced by miRNAs both previously discovered and hypothesized. Additional evidence supporting R’s central function in developmental regulation comes from an inverse relationship between the expression of RA-responsive miRNAs and their target genes.



Volatiles and other factors

Besides direct surface-to-surface communication, PGPRs and plant interaction also take place through volatiles. Low polarity and high vapor pressure are characteristics of volatiles generated by microorganisms, which facilitates their diffusion in soil and over extensive atmospheric distances (Vespermann et al., 2007). Using PGPRs that produce volatile compounds can be an effective way to control plant diseases, particularly post-harvest diseases (Arrebola et al., 2010). PGPR-produced volatiles can positively or negatively impact both plants and plant pathogens (Table 2).



TABLE 2 Volatile compounds produced by Rhizoxbacteria acted as growth inhibitors for plantpathogens.
[image: Table2]

Ryu et al. (2003) showed that Bacillus sp. strains GB03 and IN937produced 2,3-butanediol and its precursor acetoin that stimulate plant growth. However, volatiles from the same species inhibited Arabidopsis growth in another experiment conducted later by Ryu et al. (2005). This inhibition was dependent on the distance between the plant’s Bacillus strains and the specimen, indicating that the amount of chemical released may have an impact on the inhibitory action (Ryu et al., 2005). Kashyap et al. (2022a) revealed that B. subtilis KA9 and P. fluorescens PDS1 VOCs pyrazine compounds significantly increased defensive enzyme activity and overexpressed the antioxidant genes related to plant defense to manage the Ralstonia under in vitro conditions.

Bacillus amyloliquefaciens strain SQR-9 showed significant efficiency against the tomato wilt pathogen Ralstonia solanacearum by producing 22 volatile organic compounds. A lack of inhibition was observed in the case of treatment with a bacterium that did not produce VOCs, Additionally, the VOCs strongly hindered R. solanacearum ability to colonize tomato roots and develop its motility features, exopolysaccharide and antioxidant enzyme production, biofilm formation, and other traits (Raza et al., 2016a,b,c). Kim et al. (2010) isolated a Bacillus subtilis strain from Bacillus subtilis CMB32 by HPLC to monitor the anthracnose disease caused by Colletotrichum gloeosporioides and also studied the development of biosurfactant lipopeptides such as Fengycin, Iturin A, and Surfactin A. Gond et al. (2015) on the other hand (2015) investigated endophytic Bacillus spp. that produced antifungal lipopeptides in maize and induced the expression of the host defense gene. Mubarak et al. (2015) standardized a procedure for the identification and quantification of surfactin using high-performance liquid chromatography (HPLC) from the Bacillus strain (2015). The cumulative elution time of the surfactin peaks obtained was found to be four times faster than the numerous methods previously described. Fine separation of surfactin in the standard sample (98 percent purity) and surfactin in the fermentation broth was possible using the method described here. Bio-control strains produce VOCs, promote the growth of plants, and inhibit pathogens via the induction of systemic resistance in plants (Raza et al., 2016a,b). Bacterial genera like Pseudomonas, Bacillus, Stenotrophomonas, and Serratia produce VOCs that have a beneficial impact on plants. The bacterial VOCs serve as triggers for the plant ISR (Sharifi and Ryu, 2016). Increased disease resistance, abiotic stress tolerance, and plant biomass are all mediated by the VoCs from PGPR strains, either directly or indirectly. A wide range of soil microorganisms emit VOCs, which is a trait shared by a large number of them (Kanchiswamy et al., 2015).



Antimicrobial peptides

Bacillus spp. suppress plant pathogens and reduce disease incidence in plants through various mechanisms, viz., production of antibiotics, lysis of cells, induced resistance to the pathogen, and competition for food and space. The bacteria produce antibiotics such as iturinA, bacillomycin D, Surfactin, polyketides antibiotics, bacteriocins (Rea et al., 2010), cyclic lipopeptides (Ramarathnam et al., 2007), polyketides mcrolectine (Chen et al., 2009), and phospholipid (Tamehiro et al., 2002), to suppress the bacterial pathogens. B. amyloliquefaciens produce polyketides, viz, difficidin, bacillaene, and macrolectin, having antibacterial properties. B. amyloliquefaciens and B. subtilis produce dificid which is a highly unsaturated 22-membred macro cyclicpolyene lactone phosphate ester. The dfn gene sequence exhibits a reasonable co-linearity with the polyketides structure to deduce a biosynthetic module (Chen et al., 2006). The bacillaene gene cluster is assigned to synthesize the bacillaene polyketides (Chen et al., 2009). B. amyloliquefacins FZB42 also produces another polyketide macrolactin that has a macrolide-like structure. Macrolactin has a 24-membered lactone ring which contains three separate diene structure elements (Gustafson et al., 1989). Macrolactin is effective against bacterial pathogens (Chen et al., 2009 a). Polyketides difficidin, bacillaene (Hofemeister et al., 2004), and macrolactin (Jaruchoktaweechai et al., 2000) are found in the genome of B. amyloliquefaciens FZB 42 and these gene clusters are involved in the polyketides synthesis together, spanning nearly 200 kb (Koumoutsi, 2004). When compared to B. amyloliquefaciens FZB42 (340 kb, 8.5%), the genetic capacity for synthesis of antibiotics in strain B. subtilis 168 is lower (180 kb, 4–5% of the whole genome) (Chen et al., 2009). The biosynthetic pathway for peptides determines whether the active antimicrobial compounds are ribosomally synthesized (lantibiotics or bacteriocins) or non-ribosomally generated (lipopeptides and polyketides) (Stein, 2005). Antibacterial peptides with inter-residual thioether bonds, known as lantibiotics, are synthesized by the ribosome and further modified after crossing international borders (Abriouel et al., 2011). These antimicrobial peptides (AMPs) have a high degree of specificity for the target microorganisms and have advantages in multiple terms of agronomical, pathological, and economical practices to secure sustainability in agriculture (Figure 2).
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FIGURE 2
 Advantages of microbial inoculants in terms of agronomical, pathological, and economical practices to secure sustainability in agriculture.


This Review manuscript shows multiple functions of microbial inoculants and their screening is based on biochemical, molecular, volatile, mode, and nature of actions. Such eco-friendly bioinoculant screening will be the next evergreen technology for the sustainability of agriculture in this 21st era where we are facing global warming and population blasts. Microbes may be used as magic bullets in the coming days to shoot out multiple problems of cross-kingdom plant diseases.
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Biochar is a carbonaceous by-product of lignocellulosic biomass developed by various thermochemical processes. Biochar can be transformed into “nano-biochar” by size reduction to nano-meters level. Nano-biochar presents remarkable physico-chemical behavior in comparison to macro-biochar including; higher stability, unique nanostructure, higher catalytic ability, larger specific surface area, higher porosity, improved surface functionality, and surface active sites. Nano-biochar efficiently regulates the transport and absorption of vital micro-and macro-nutrients, in addition to toxic contaminants (heavy metals, pesticides, antibiotics). However an extensive understanding of the recent nano-biochar studies is essential for large scale implementations, including development, physico-chemical properties and targeted use. Nano-biochar toxicity on different organisms and its in-direct effect on humans is an important issue of concern and needs to be extensively evaluated for large scale applications. This review provides a detailed insight on nanobiochar research for (1) development methodologies, (2) compositions and properties, (3) characterization methods, (4) potentiality as emerging sorbent, photocatalyst, enzyme carrier for environmental application, and (5) environmental concerns.
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 Nano-biochar, biochar, nanotechnology, environmental pollution, remediation
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GRAPHICAL ABSTRACT: FABRICATION, CHARACTERIZATION, AND APPLICATIONS OF NANO-BIOCHAR.
 



1. Introduction

Extensive industrialization, urbanization, and modern agricultural methods have resulted in accumulation of innumerous toxic compounds (pesticides, pharmaceutical and personal care products, antibiotics, hormones, organic compounds, nano-compounds, endocrine disruptors, steroids, surfactants and their metabolites, industrial additives, and heavy metals) in the different environmental matrices (Bhatt et al., 2022; Gangola et al., 2022). Anthropogenic activities such as healthcare, industries, power plants, oil refineries, mining, improper waste treatment, agriculture and household activities can lead to build-up of pollutants ranging from 1 μg/kg to 10 mg/kg in the different environments (Zhou et al., 2021). Furthermore, aquatic and soil sediments also function as potent sink for innumerous hydrophobic compounds (polychlorinated biphenyl, poly-and perfluoroalkyl compounds, and organochloride insecticides) (Bhatt et al., 2022). The immoderate enhancement in the amount of such contaminants in the environment has alarmed the scientific and regulatory bodies across the globe due to acute and chronic human health toxicities. With time, various physico-chemical and biological processes such as adsorption, advanced oxidation methods, sonocatalysis, nano-filtration/reverse osmosis and bioremediation have been developed for efficient treatment of contaminated environments (Amusat et al., 2021). However, majority of these advanced methods are energy and cost extensive and release more toxic secondary by-products in the environment. The sustainable, eco-friendly nature, easy operation, and low cost of bioremediation in comparison with traditional and advanced physico-chemical methods have resulted in the establishment of bioremediation technologies recently (Bhatt et al., 2020; Suresh et al., 2022). Nonetheless, limitations such as dynamic microbial habitat fluctuation, reproducibility, cross contamination with other contaminants, and interfacial physical and biogeochemical methods in the soil-aquatic shift may render biodegradation slow and inefficient (Mukherjee et al., 2022).

Several authors have recently concentrated on the utilization of nano-compounds for the development of better remediation methods (Mahmoud et al., 2022; Rajput et al., 2022). Due to distinct physical characters of nano-materials such as excellent surface-to-volume proportion, higher reactivity, ability modify surface chemistry, smaller intra-particle diffusion distance, higher contaminant removal efficiency, stable nature and reusable and recyclable capacity, nanobiotechnology has recently received great attention for environmental applications recently (Xia et al., 2022). Biochar (BC) is a carbon containing solid compound fabricated by pyrolytic degradation of biomass (agricultural, animal and solid waste) in the absolute vacuum conditions (Bolan et al., 2022). It is generally produced using different thermochemical methods; fast and slow pyrolysis, flash and hydrothermal carbonization, gasification and torrefaction (Bolan et al., 2022; Mukherjee et al., 2022). Biochar has shown a substantial ability to remediate pollutants since it is cheap accessibility of feedstock, economical, and desirable physicochemical surface properties (Xiao et al., 2021). Among these physicochemical properties, the biodegradable nature plays a crucial role especially in agricultural activities (Širić et al., 2022). The synthesis and applications of biochar have however also faced few hurdles due to low catalysis, inadequate pore size and surface area, deficiency of simple and chemical-free functionalization processes (Li et al., 2019a).

Recently, studies on the production of nano-biochar (nano-BC) for environmental and agriculture applications has been documented (Nath et al., 2019; Li et al., 2019b; Rajput et al., 2022). Carbonization results in fabrication of micro-sized BC with size 1 μm-1 nm referred to as “dissolved” or “nano-BC.” The elemental composition, aromatic/polar nature, cation exchange capacity, crystalline form, graphitic nature, pH, specific surface area, pore size, stability, temperature-dependent dispersibility and zeta potential of nano-BC vary in comparison with bulk-BC (Ramanayaka et al., 2020a). Colloidal and nano-BC possess features such as surface hydrophobicity, nano-scale size, significantly high specific surface area, micro-porous structure, diverse surface functionality (hydroxyl, carboxy, lactonyl) and thus significantly enhance the adsorption and immobilization capability of nano-BC for different pollutants, including heavy metals, pesticides, PCBs, PAHs, and others (Nath et al., 2019; Mahmoud et al., 2022). Nano-BC assisted adsorption for the removal of toxicants from water bodies have been developed recently, which also enable for both “C” sequestration in addition to remediation (Xia et al., 2022).

Furthermore, due to high porosity, surface functionality and larger surface-to-volume ratio, nano-BC functions as an excellent immobilization material for enzymes and can thus function as a nanocatalyst in bioremediation (Naghdi et al., 2018). The chemical and physical properties of nano-BC dictate its ability to remove various pollutants, which are dependent on feedstock material, production method, pyrolysis temperature, and other pre-or post-treatment methods (Xia et al., 2022). Thus, nano-BC, with its unique features and applications, opens up new avenues for a long-term, cost-effective, and sustainable solution to environmental pollution. Therefore, the present review provides updated information on the methodologies for fabrication and characterization of nano-BC and its application for managing hazardous contaminants in the environment. Furthermore, for future research, an extensive appraisal of the potentiality of nano-BC-assisted contaminant removal is presented.



2. Production of nanobiochar

Nano-BC is a novel nano-sized carbonaceous material generally manufactured using green and energy-saving nanotechnology methods. Nano-BC differs from macrochar by of possessing higher specific surface area, higher porosity, lower hydrodynamic radius, stronger negative zeta potential, better oxygen-consisting surface functional groups, and lower carbon defects (Qin et al., 2018; Ramanayaka et al., 2020a). The most widely employed feedstocks for fabrication of nano-BC include animal wastes, municipal wastes, lignocellulosic agricultural wastes (grass, palm, peanut shell, rice husk and straw, sugar cane bagasse, bamboo, and soy bean stover), woody forest residues and sewage sludge. Initially the biomass is transformed into bulk-BC followed by size reduction through various fractionation approaches to produce nano-BC (Figure 1).
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FIGURE 1
 Different feedstock material for fabrication of nano-BC and its wide applications.



2.1. Preparation of bulk biochar

Biochar is fabricated from lignocellulosic biomass using thermo-chemical approaches such as pyrolysis (slow and fast), torrefaction, carbonization (hydrothermal or flash), and gasification (Amusat et al., 2021). The feedstock material is thermochemically or pyrolytically decomposed at 350–700°C in vacuum (<1% O2) for the generation of BC. Slow pyrolysis is an eco-friendly process commonly employed for BC fabrication and results in high yield of bio-oil and 35% yield of dry mass (Tomczyk et al., 2020). Zhang et al. (2017) used slow pyrolytically produced BC for soil remediation and sorption of different pollutants from wastewater. For biofuel production, fast pyrolysis is favored over other processes; gasification is primarily employed for the synthesis of syngas, which subsequently produces heat and energy. Additionally, lignocellulosic material caused higher BC yield than municipal solid waste (Ashiq et al., 2019). To expedite the nano-BC production the employment of BC produced by traditional thermochemical methods is advised, while optimizing the quality of biomass materials through transforming them to nano-particles. The traditional methods produce BC with different yields and elemental constitution (C, H, O). Biomass normally becomes more carbonized as treatment intensity increases, which corresponds to an elevation in C composition but a reduction in O and H composition. Additionally, BC is modified physically and chemically for a variety of purposes to enhance its functionality. Steam coating, chemical oxidation, acidic/basic treatment, CO2 activation, saturation with native and artificial nano-materials is used for chemically modifying BC (Song et al., 2022).



2.2. Conversion of bulk biochar to nanobiochar

Nano-BC inherently forms while synthesizing macro-BC, however its output is limited (<2.0% from peanut shell-derived BC) (Liu et al., 2018). It is thus necessary to undergo a size reduction process in order to enhance the amount of nano-BC (Table 1). The production of nanomaterials can be performed by top-down or bottom-up processes. In the top-down process, the size of the macro BC is minimized to nanoscale; whereas in the bottom-up method, the nanomaterial is amassed from the atomic level. Top–down methods such as grinding, cutting, centrifugation and etching are used for the fabrication of nano-BC in an economical manner. Lonappan et al. (2016), Dong et al. (2018), Lian et al. (2020), and Ramanayaka et al. (2020a) have employed grinders for reducing the size of macro-BC to nanoscale. The bottom up method includes disintegration by ball milling or sonication and carbonization. Ball milling enables fabrication of nano-BC with improved properties without destroying its crystal structure (Amusat et al., 2021). Ball-milling has received great attention because of its low cost and energy demand during manufacturing, eco-friendly nature and wide range of application. The ball milling method disintegrates bulk-BC into nanoscale by the colliding it between metallic balls. The desired particle size may be attained by regulating the aggregation and modifying the ball sample ratio and milling time. There are two ways to ball mill BC at the nanoscale: wet and dry techniques. The wet approach is more preferred due to synthesis of nano-BC with superior dispersivity, higher surface functionality, eco-friendly and less labor intensive approach (Yuan et al., 2020). Ball milling method effectively tailors nano-BC characteristics by enhancing surface area, decreasing material size, improving surface oxygen functionality, and increasing sorption and photocatalytic efficacy (Lyu et al., 2017, 2018; Naghdi et al., 2017; Wang et al., 2018). Nano-BC with particle size smaller than 100 nm was fabricated within 30 h using planetary ball milling method (Richard et al., 2016). Naghdi et al. (2019) suggested a pre-treatment of BC at 80°C for 24 h before conversion to nano-BC using planetary ball milling within 100 min. The pre-conditioning subdued the agglomeration of nano-particles and reduced the size of BC from 212 to 60 nm. Double-disc milling is also an alternative method for nano-BC fabrication; however it demands high operational costs. Among the different ball mill methods, vibrating disc milling produces greater quantities of nano-BC with consistent size and shape due to attrition and shear stress (Karinkanta et al., 2018). Several studies have reported fabrication of nano-BC in a controlled environment using process parameters such as milling period of 120–1,200 min, number of balls from 25 to 800, ball weight from 0.5 to 100 g, and ball size from 3/4 to 15 mm. Ma et al. (2022) optimized the process parameters for synthesis of ball-milled nano-BC by regulating grinding time, rotating speed, and ball-to-powder mass ratio. The BC mixtures must be subsequently dispersed in different solvents post milling to improve particle distribution before separation (Song et al., 2022). The pre-treatment at 80°C however enables the reduction in size aggregation, but is a high-cost method thus restricting its scale-up. Iron oxides can be also added into BC for suppressing the agglomeration of particles and enhancing their distribution (Li et al., 2020a). Ball milling is a high atom economy method and generates nano-scale biodegradable products using renewable sources by limiting the usage of hazardous chemical-assisted procedures.



TABLE 1 Different approaches for synthesis of nano-biochar and its wide applications.
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Among physical methods, sonication is an efficient method for production of nano-BC by employing high-energy ultrasonic radiations to disintegrate BC in suspension. The microporous region in BC increases due to shock waves resulting in opening of clogged pores and exfoliating the carbon structure. The small exfoliated particles then adhere to the surface or embed in the pores of BC resulting in nano-BC production (Liu et al., 2018). The uniformity in nano-BC surface and the development of porosity without obstruction are two prime benefits of sonication (Yang Y. et al., 2020). Few investigations also reported the generation of nano-BC from waste lignin carbonization as a post or pre-treatment with milling for enhancing the surface features and size of nano-BC with subsequent removal of impregnating salts (Jiang et al., 2020; Makshut et al., 2020). Guo et al. (2020) employed hydrothermal reaction for fabricating nano-BC from agricultural waste biomass. Soybean straw and animal wastes were employed as feedstock and digested with acids in a high-pressure hydrothermal reactor. Furthermore, multiple rounds of centrifugation are also employed for separating highly dispersed nano-BC particles (Ullmann et al., 2017). Different feedstock material and pyrolytic conditions, centrifugation period (2–30 min) and rotational speed (3,500–1,000 rpm) were used to prepare nano-BC (Anupama and Khare, 2021).



2.3. Functionalization of nano biochar

The intrinsic characters of nano-BC can be readily modified thus providing a platform for the easy modification for wide applicability in different sectors. Surface fictionalization using amination, sulfonation and oxidation improves the performance of BC-based nanomaterials (Nath et al., 2019). It has been observed that employment of different combination of pure and acid mixtures (H2SO4, HNO3, and HCl) for surface functionalization increased carboxylic group formation with concurrent laccase adsorption (Naghdi et al., 2017). Similarly, Fe3O4 engineered nano-BC has a greater surface area and adsorption site owing to mesoporous structure (Nath et al., 2019). Cellulosic nanocrystal derived nano-BC was modified with ZnO and it displayed greater active sites and functioned as potent photo-catalysts for phenol removal (Zhang et al., 2021). Nano-BC obtained from artichoke leaves was base-modified with NaOH and employed for removal of metformin hydrochloride. The results revealed the existence of COOH, OH, and C=C groups and higher elimination rates of metformin by modified nano-BC in comparison with pristine nano-BC (Mahmoud et al., 2020). Ethylenediamine functionalized nano-BC was employed as an effective nano-sorbent for removing prednisolone and Cr(VI) (Mahmoud et al., 2022). The significance of magnetic nano-BC for treating tetracycline and Hg(II) polluted wastewater was assessed by Li et al. (2019b). The modified nano-BC exhibited high removal rates (>99%) for both tetracycline and Hg(II) (Li et al., 2019b). The employment of pristine BC imposes some limitations on the adsorption efficacy for various contaminants due to low surface functionality and pore size. The surface modification of BC by different approaches improves the surface area, furnishes additional surface functional groups and adsorption sites. Thus, functionalized BC is a promising potential substitute for treating wide range of contaminants.




3. Inherent properties of nano-BC and their characterization

The intrinsic properties of nano-BC are significant in their selection for wide applications. Plant derived nano-BC have large aromatic cluster size and high oxygen surface functionality resulting in higher affinity and coordinate binding of organic pollutants and heavy metals (Figure 2). Nano-BC fabricated from municipal wastes have abundant carbonate, sulfate and aluminosilicate groups, which enable heavy metal complexation and co-precipitation (Song et al., 2019). Likewise, the degree and type of functional groups and porosity influence nano-BC efficacy as a nano-adsorbent and nano-catalyst. The graphitic and amorphous character of BC (hardness and abrasion resistance) can influence the fabrication, characters and morphological and physiological diversity of nano-BC (Anupama and Khare, 2021). Nano-BC synthesized by bulk-BC fabricated at high-temperature has a higher carbon amount, bulk density, and extractable cations such as Ca, Fe, K, Mg, Mn, P, and Zn (Nath et al., 2019). The carbon amount of nano-BC derived from coconut fibers (90–94%) was greater than that of nano-BC from sewage sludge (4%). Generally, the nano-BC has comparatively greater ash content and lower aromatic and carbonized carbon content than the macro-BC (Wang et al., 2013).
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FIGURE 2
 The different approaches for synthesis of nano-BC and its method of characterization.


The duration and operating temperature of pyrolysis affect the properties of fabricated nano-BC. An increase in pyrolysis temperature increases nano-BC size owing to improved solid density of micro-BC, resulting in the synthesis of large particle (Zhou et al., 2017). Likewise, increasing pyrolysis duration facilitates the transformation of less dense disordered carbon to small particles that form denser mass fractal architectures (Nath et al., 2019). Nano-BC synthesized at lower temperatures (300–400°C) have smaller surface areas (5.6–47.2 m2g−1), but nano-BC synthesized at higher temperatures (450–600°C), possess higher surface area (342–430 m2g−1) due to devolatilization of biomass and generation of surface porosity (Ramanayaka et al., 2020a). The surface area of nano-BC produced by ball milling, sonication, carbonization and centrifugation were in ranges of 3.67–1736, 0.76–264, 9.08–173, and 21.7–253 m2g−1, respectively (Anupama and Khare, 2021). The zeta potential describes the charge on nano-BC surface and stabilizes the efficiency of nano-BC colloidal solution. The higher zeta potential exhibits lesser particle aggregation and increased dispersion. Nano-BC display greater zeta potential (19.4 to 87 mv) as compared to bulk-BC indicating that nano-BC possesses higher degree of dispersity and colloidal stability.



4. Application of nano-BC in environmental remediation

Biochar is recognized as a carbon-negative source since it produces energy while sequestering carbon and has emerged as a potential technology for dealing with several environmental challenges (Jiang et al., 2023). Moreover, the generation of eco-friendly energy and electrodes having enhanced properties using nano-BC is also being explored. Recently, nano-BC is being explored for diverse environmental applications including carbon sequestration, energy generation and treatment of emerging contaminants (agrochemicals, pharmaceuticals, inorganic and organic compounds) from contaminated sites (Figure 3). Nano-BC functions as an excellent adsorbent and thus displays remarkable adsorption capacity for wide range of contaminants (Tables 2, 3). Furthermore, nano-BC also accelerates the breakdown of organic compounds through catalytic electronic shifts like a biocatalyst (Yang et al., 2017).
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FIGURE 3
 Application of nano-BC in remediation of environment pollutants and their mechanism.




TABLE 2 Applications of nano-BC for heavy metal adsorption from contaminated environments.
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TABLE 3 Applications of nano-BC in remediation of organic pollutant contaminated environments.
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4.1. Nano-biochar as an adsorbent

Nano-BC has demonstrated exceptional adsorption capability of hazardous organic and inorganic compounds, personal care products, pharmaceutically active compounds, insecticides, and heavy metals from various environmental matrices (Ma et al., 2022; Jiang et al., 2023; Mahmoud et al., 2023). The excellent sorption ability of nano-BC is due to the generation of a stable colloidal solution, greater surface areas, porosity, and surface charge. Chemical and physical adsorption, precipitation, and ion-exchange are the three primary process described for the adsorption of inorganic pollutants on nano-BC (Amusat et al., 2021). The carboxyl, phenol and hydroxyl groups present on nano-BC surface assist in chemi-sorption of contaminants by exchanging anionic ions with cationic contaminants. Physi-sorption occurs due to electrostatic and Van der Waals interactions among the freely mobile electrons of surface aromatic functional groups of the derived nano-BC, ultimately resulting in non-covalent attraction with C=C bonds (Amusat et al., 2021). Precipitation is also considered as one of the primary processes of sorption of inorganic contaminants. It generally involves heavy metal ion precipitation onto the nano-BC surface either in solid form or in the solvent during the adsorption process. The adsorption of organic contaminants by nano-BC consists of different sorption mechanisms including; electrostatic and hydrophobic interaction, ion exchange and pore–filling (Rajput et al., 2022). Moreover physical sorption is regarded as an initial removal mechanism indicating that nano-BC may transport and subsequently desorb the toxic contaminants from aquatic environment. High temperature pyrolysis enhances the specific surface area and void structure richness of nano-BC and reduces hydrophilic surface functional groups and thus physic-sorption is the prominent mechanism for adsorption. However, the surface area of low-temperature pyrolyzed nano-BC is comparatively low and hydrophilic surface functional groups are high, suggesting chemi-sorption to be the dominant mechanism of adsorption (Jiang et al., 2023).



4.2. Nano-biochar as an adsorbent for removal of inorganic compounds

Elbehiry et al. (2022) studied the mono-and multi-sorption of metals (Cd, Cr, and Ni) on water hyacinths and black tea derived BC and nano-BC as a potent, economical and environmentally acceptable absorbents. The nano-BC eliminated >98.8% of Cr and Cd in mono-and competitive systems and the Freundlich isotherm model fitted most appropriately in the sorption kinetics (Elbehiry et al., 2022). The elimination of Cd(II) from an contaminated systems by nano-BC embedded in Ca-alginate beads and fabricated using ball-miller were reported (Wang et al., 2018). The improved surface functionality (oxygen-consisting groups) worked as effective sorption sites, promoting Cd(II)-calcium(II) ion exchange. The pH-dependent variations in Cd(II) sorption revealed the significance of oxygen-consisting surface groups (carboxylic, lactonic, and hydroxyl). The adsorption potential of nano-BC is determined by the surface area, humic acid, functional groups, and graphitic nature. Magnetic nano-BCs (nano zero-valent iron, iron sulfide, and iron oxide BC) display better functionality and magnetic properties that permit nano-BC recovery for recurrent usage. Improved chemical reduction, chemical precipitation, electrostatic interaction, surface complexation, ion exchange and radical activation due to synergistic effect of iron and nano-BC composites, better removal rate for wide range of pollutants are reported (Lyu et al., 2020a; Li et al., 2020b). Sisay et al. (2023) reported that Mg/Zr modified nano-BC derived from spent coffee grounds is an efficient sorbent for phosphate recovery and phosphorous release fertilizer. Furthermore, thiol-modified ball-milled BC demonstrated an improved Hg(II) elimination efficiency, with a sorption rate of 320.1 mg g−1, as compared to unmilled BC (105.7 mg g−1) (Lyu et al., 2020b). The amino-functional silica-coated magnetic nano-BC derived from Cynodon dactylon exhibited improved adsorption rates of 220.4 and 185.4 mg g−1 for Cu and Pb, respectively. The nano-composites also demonstrated a 15-fold reuse capability and highest elimination rates for Cu and Pb (Dhanya et al., 2022). The efficacy of ethylenediamine modified nano-BC in the elimination of Cr (VI) and prednisolone was investigated (Mahmoud et al., 2022). Electrostatic, hydrophobic and π-π interaction, ion exchange and complexation are the reported processes for Cr (VI) and prednisolone sorption onto the modified nano-BC. Similarly electrostatic interaction was involved in the elimination of anionic inorganic contaminants from aqueous systems by CuO modified nano-BC. CuO provides cationic sorption sites on surface of nano-BC for the contaminant binding and its subsequent elimination (Wei et al., 2020).



4.3. Nano-biochar as an adsorbent for treating organic compounds

Bulk-BC is the most commonly employed sorbent for treating a wide range of toxic contaminants (Yang F. et al., 2020). Nonetheless, nano-BC has an advantage above macro-BC due to larger specific surface area, higher negative Zeta-potential and greater surface functionality (Lian et al., 2018). Ball-milled BC displayed adsorption capabilities of 100.3 and 57.9 mg g−1 for removing antibiotics sulfamethoxazole and sulfapyridine, respectively (Huang et al., 2020). According to Shen et al. (2020), any changes in mechanical, physico-chemical, and morphological characters of nano-BC may improve its adsorption efficacy. Luong et al. (2020) described that the change in pH from acid to alkaline using a detergent (tween 80) can increase the sorption capacities of pinewood nano-BC by up to 63%. Xiao et al. (2020) reported that goethite modified peanut shell nano-BC exhibited intercalated hetero-structures and improved hetero-aggregation, which resulted in better adsorption rates. Few reports have employed nano-BC for efficiently removing oxytetracycline from aqueous systems (Li et al., 2020b; Ramanayaka et al., 2020b). The larger surface areas and higher oxygenic groups on nano-BC surface enabled remarkable removal of trichloroethylene with a degradation rate of 99.4% within 5 min, where nZVI-enhanced SO4• synthesis improved the degradation rate (Yan et al., 2015). The removal rate for dimethyl phthalate, diethyl phthalate, and dibutyl phthalate by BC-graphene nanosheets was substantially greater than that of bulk-BC. The aromatic groups on BC graphene nanosheets displayed π–π EDA linkages with the aromatic ring of dimethyl phthalate while hydrophobic groups are involved in dibutyl phthalate binding (Abdul et al., 2017).

The sorption of Cu(II), tylosin and sulfamethoxazole on nano-hydroxyapatite modified BC occurred due to electrostatic and π–π interaction, and hydrogen bonds (Li et al., 2020b). The occurrence of tylosin and/or sulfamethoxazole increased adsorption of Cu(II) significantly (Li et al., 2020b). Nano-BC obtained from hickory wood with specific surface area of 305 m2 g−1 efficiently adsorbed various compounds (acetone, cyclohexane, chloroform, ethanol, and toluene) with an adsorption rate in the range of 23.4–103.4 mg/g (Xiang et al., 2020). The volatile organic compounds easily diffuse through the pores of nano-BC to reach the interior during sorption, reaching equilibrium after about 1 h. The physico-chemical, morphological and mechanical characters of nano-BC such as pore size, specific surface area, BC composition and contaminant characters are the most important factors in surface sorption (Xiang et al., 2020). The volatile polar organic compounds (acetone, ethanol, and chloroform) are sorbed onto nano-BC by dipole–dipole interaction and hydrogen bonds. The sorption of weakly polar volatile organic compounds exhibited more heterogeneity than the sorption of polar compounds. Furthermore, due to stronger intermolecular forces, organic contaminants with high boiling points (ethanol, cyclohexane, and toluene) were efficiently sorbed by nano-BC. Thus, the sorption of volatile contaminants by ball-milled nano-BC is a highly potent alternative for removal of air pollutants and warranting detailed research into the mechanisms and critical factors (Anupama and Khare, 2021).



4.4. Nano-biochar as an immobilization material for enzymes/biocatalysts

Nano-BC can be utilized as an enzyme/microbe/biocatalyst carrier material for achieving continued breakdown of contaminants due to its high mobility and tunable surface chemistry (Table 4). Enzymatic catalysis is a sustainable process for degradation of pollutants and thus laccases immobilized nano-BC is being extensively employed for biodegradation of different contaminants. Oxygen functionalized nano-BC supported Lacasse was utilized for treating carbamazepine contamination (Naghdi et al., 2017). The acidic treatment introduced hydroxyl groups, with its subsequent oxidation to carboxyl groups. The degradation rates of >80% for carbamazepine with recyclability for 3 cycles at a comparative removal efficacy were reported (Naghdi et al., 2017). The immobilization process can be improved by addition of cross-linking compounds such as carbodiimide hydrochloride or glutaraldehyde (Naghdi et al., 2018). Naghdi et al. (2019) recently described a hydrogel technique for encapsulating laccase on nano-BC and chitosan. They reported that adding laccase onto nano-BC significantly improved its thermostability (4–70°C) during storage. Lonappan et al. (2018) used laccase immobilized nano-BC to completely remove (100%) diclofenac (2.5 mg L−1) in 2 h, which was faster than laccase immobilized carbon nanotube (6 h), and 40% of the efficacy was retained post 5 cycles. More recently, laccase immobilized onto magnetic nano-BC was fabricated and employed for elimination of bisphenol A from aqueous environment (Zhang et al., 2020). The complete elimination of bisphenol A (25 mg L−1) was reported within 75 min and 85% efficacy of the composite remained after 7 cycles. Cold-active toluene/o-xylene monooxygenase and catechol 1,2-dioxygenase were immobilized onto micro/nano-BC or chitosan and employed for petroleum hydrocarbon degradation (Miri et al., 2021). The results suggested that immobilization improved the storage stability of the enzymes (>50% recyclability after 1 month at 4°C) and degradative ability (>80% degradation of BTEX).



TABLE 4 Recent studies on application of nano-biochar and biochar based nano-composites.
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4.5. Nanobiochar as photocatalyst

In recent times nano-BC supported photocatalysts have been fabricated through different methods to photo-catalytically breakdown water pollutants (phenolics, dyes, pharmaceutically active components, antibiotics). The photocatalysis is dependent on the methods of nano-BC synthesis. BC is an excellent support for photocatalysts owing to its tunable functional groups, chemo-stability, and electrical conductance. BC as a photocatalytic support reduces e−/h + recombination and thus displays increased catalytic efficiency (Ahmaruzzaman, 2021). Recently, the nano-BC/ZnO photocatalyst derived from carbon/ZnO nanocomposite were employed for photocatalytic breakdown of phenol (Zhang et al., 2020). In-situ precipitation and carbonization were used to create the photocatalyst, with carbon nano-composites serving as both the template and the carbon source. These composites demonstrated remarkable stability and durability with photodegradation rate of 95% suggesting that the integration of carbon nano-composites could efficiently reduce the photo-corrosion of ZnO (Zhang et al., 2020). The BC caused a reduction in the band gap of ZnO through continuous electron/hole separation and transport, increasing phenol degradation rates. A unique core-shell P-laden BC/ZnO/g-C3N4 nano-composite was recently reported as an excellent catalyst for atrazine breakdown and a potential regulated-release nanofertilizer for enhancing P utilization rates (An et al., 2022). The results revealed the formation of a Z-shaped heterojunction between ZnO and g-C3N4 in Pbi-ZnO-g-C3N4. The authors suggested that BC functions as an electron-transfer agent promoting the disjunction of electron–hole pairs. Highest atrazine photodegradation rates of 85.3% within 260 min were reported (An et al., 2022).



4.6. Nano-biochar used in electrochemical biosensor

The electrochemical characteristics of nano-BC have recently received attention for its potential application as an alternative to carbon electrodes. The high adsorption capacity of nano-BC enables selective entrapment of chemicals to improve their concentration on electrode surface thus increasing the sensitiveness of electrochemical biosensors for detection (Table 4). The water-dispersible nature of nano-BC allows its use in film-forming methods for creating film electrodes with potent electrochemical applications (Plácido et al., 2019). In supercapacitors also, the electrode materials have recently been substituted with nano-BC due to its both meso and microporous structures having higher specific surface area resulting in improved performance. Biochar is also being used to replace cathode materials in batteries. Water dispersible nano-BC has been successfully used as an electrode material for Pb(II) and Cd(II) voltammetric sensors (Liu et al., 2016; Li et al., 2017). Li et al. (2017) investigated the impact of loading a hybrid of both bulk and nano-BC on the electrodes of a voltammetric sensor for detection of Pb2+, and increased sensitivity and electric current (3.24–4.0 and 4.5 μA) were reported. Moreover, fluorescence assay confirmed that BC releases dissolved organic matter containing fluorescent humic compounds (Hernandez-Soriano et al., 2016). The fluorescent characters of nano-BC have also been exploited for development of fluorescent detectors for metals (Plácido et al., 2019). Nano-BC fabricated from sorghum and rice straw and dairy manure was utilized as a probe for heavy metal detection and the results revealed a 100, 66, 66, and 33% accuracy for Pb2+, Ni2+, Cu2+, and Hg2+ detection, respectively, (Plácido et al., 2019). This was the initial report to suggest the application of nano-BC quenching data as a simple and accurate method for detection of toxic metal ions.

Furthermore, functionalized magnetic baggase nano-BC was fabricated by combining carboxyl groups and enzymes for bisphenol A monitoring in aqueous systems, demonstrating high sensitiveness as well as excellent electrochemical activity. Dong et al. (2018) studied the possibility of loading nano-BC on glass carbon electrodes for 17-estradiol monitoring and the electric current increased from 0 to 1.5 μA at the 17-estradiol amount of 3 M. The transfer resistance was lowered from 495 to 325 Ω on loading electrodes with nano-BC fabricated at 800°C in comparison with pristine BC resulting in increased electrode conductance. Ball-milled BC modified carbon electrodes displayed remarkable electrochemical characters and electrocatalysis as indicated by conductance, peak-to-peak disjunction, resistivity, and charge transfer resistance (Lyu et al., 2019). He et al. (2020) employed tyrosinase immobilized magnetic nano-BC for detection of bisphenol A. The developed electrochemical biosensor demonstrated a monitoring range of 2.78 nM with a linear range of 0.01–1.01 M, and the sensitivity remained consistent after 8 cycles without signal reduction. The use of nano-BC in electrochemistry can be expanded into new fields such as biomass electrocatalysis, fuel cells, and CO2 reduction. A novel electrochemical biosensor for detection of lead and cadmium was synthesized by fabricating a high conductance and contaminant specific electrode. Ball milled BC was employed as the conductive material having large conductance, oxygen rich functionality and pores of ion-imprinted polymer functioned as target interacting sites (Mao et al., 2022). The ion imprinted bulk-BC electrode was created by in situ electro-polymerization of L-Cysteine and template metal ions on glassy carbon-modified bulk-BC, followed by template removal. The electrode detected very low concentrations of lead and cadmium using anodic dissolved differential pulse voltammetry. The monitoring range of 5.86 fM and 0.883 aM, and linear ranges of 25 fM ~ 1 μM and 0.1 fM ~ 1 μM, respectively were reported. The electrodes displayed no interaction with other ionic and organic molecules, and could be recycled for 7 cycles without losing detection sensitivity (Mao et al., 2022). Ferlazzo et al. (2023) described an electrochemical biosensor fabricated by nano-BC for the detecting nitrites and sulfites in contaminated water bodies. The nano-BC was placed on a commercial screen-printed carbon electrode (SPCE). The fabricated sensor outperformed the normal SPCE sensor in terms of detection limits and electrochemical oxidization of sulfites and nitrites in water (Ferlazzo et al., 2023).




5. Factors affecting performance of nano-BC for environmental remediation

The biogeochemical nature of nano-BC during contaminant elimination is influenced by a variety of physico-chemical parameters (Table 5). Nano-BC possessing high cationic surface groups allows improved ion exchange capacity of nano-BC with toxic metal ions. A higher concentration of aromatic groups on surface of nano-BC results in better π-π-interactions with organic contaminants (Jiang et al., 2023). The aggregation capability, suspension stability, and electrokinetic characters of nano-BC impact the sorption of contaminants that may be determined by the zeta potential (Filipinas et al., 2021). The surface functionality is also dependent on pyrolysis temperature used for BC synthesis and low pyrolytic temperature was found to have abundant surface functional groups, higher zeta potential and stronger colloidal stability (Xu et al., 2020). In case of metal ions, the valency, hydration area, electronegative nature and hydrolytic constant are the dominant parameters that influence the metal ion removal by nano-BC. Zhang et al. (2022) reported that the sorption rate of nano-BC for Pb2+ was significantly higher than that for Cd2+ in same treatment conditions. The authors suggested that variation in metal characteristics (hydration area, hydrolytic constant) and their affinity for binding sites are responsible for different sorption rates. For organic contaminants, groups such as polar, hydrophobic, aromatic, and molecular weight of the contaminant affect their interaction with nano-BC. In general, the sorption of highly hydrophobic compounds by carbonaceous compounds is slow (Choi et al., 2014). Galaxolide is a highly hydrophobic contaminant and therefore shows high sorption to ball milled nano-BC (Zhang Q. et al., 2019). Moreover, high molecular weight contaminants are hardly sorbed by nano-BC due to size exclusion and pore filling effect resulting in restriction of these compounds from entering small pores on nano-BC (Zhu et al., 2022). Nano-BC assisted remediation of contaminants is also influenced by environmental parameters including: pH, soil microbes, dissolved organic matter, root exudates and coexisting contaminants (Jiang et al., 2023). In lower pH environments, the surface functional groups of nano-BC get protonated to generate H+. This causes competition between H+ and cationic contaminants for sorption sites thus affecting nano-BC’s sorption capability (Mahmoud et al., 2023). Wang et al. (2017) reported that co-existence of lead and p-nitrophenol improved the sorption of p-nitrophenol on nano-BC. In soil systems, carbon of nano-BC may functions as a source of nutrition to soil microbes, thus improving their metabolism and contaminant degradation efficacy (Mukherjee et al., 2022). The root exudates released from plant in contaminated soils can also impact the physical and chemical characteristics of nano-BC thus influencing its contaminant sorption ability (Li et al., 2019).



TABLE 5 Factors affecting the performance of nano-biochar for environmental applications.
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6. Challenges and environmental concern of N-BC

Nano-BC and colloidal BC possess high surface area, pore size, and surface functionality thus demonstrating remarkable contaminant removal efficiency as compared to pristine BC (Ramanayaka et al., 2020b). However there are several constraints to using native nano-BC in environmental applications including low yield and stability, easy mobilization, high agglomeration, uptake, accumulation, toxic nature and limitations in recovery (Liu et al., 2018). Functionalizing nano-BC with appropriate redox functional groups promotes its stability/suitability for contaminant removal in different environmental matrices but these studies are still in infancy and broad understanding is still necessary for on-site application. The inter-linkages among BC structure, oxygenic surface functional groups, feedstock types and pyrolytic parameters must be assessed for postulating molecular mechanisms of contaminant removal by electrochemical reaction pathways (Amusat et al., 2021). The technologies for large-scale fabrication of nano-BC need to be developed for achieving high yield of nano-BC for wide applications. The green and biogenic methods for fabricating nano-BC need to be investigated for reducing the risk of cross-contamination of chemicals used for synthesis during wastewater treatment. Nano-BC showed improved results when compared to the bulk-BC, however, the comparative performance to other nanomaterials and carbon based nanocompounds should be investigated further (Rajput et al., 2022). The economical assessment of the expenses is critical in evaluating the manufacture and deployment of the nano-BC for wide application. The lack of data on large level synthesis and employment of nano-BC makes estimating the economic aspect of nano-BC difficult. Furthermore, the utilization of wide range of raw feedstock material and different factors and processes for the fabrication of bulk-BC and the lack of standard procedures limit the cost analysis of nano-BC synthesis. The higher adsorption of contaminants and transportability of nano-BC, can cause the risk of cross-contamination of different ecosystems. High dispersion of nano–BC in natural aquatic systems can further expose different organisms to nanoparticle-associated risks (Freixa et al., 2018). The examination of toxic impact on respiratory system indicated a lower risk to human health (Dong et al., 2019). A very limited number of reports suggested the toxic impact of nano-BC and nanocarbon compounds on plant, mammals and soil microflora, thus in spite of their numerous benefits, the eco-toxicity must be investigated (Zhang K. et al., 2019; Rajput et al., 2022).



7. Conclusion

Nano-BC is an emerging and potential alternative to carbon-based nanomaterials for wide applicability in comparison to the pristine and bulk-BC. Nano-BC exhibits exceptional physicochemical characters such as high surface functionality and ease of surface modification. It is generally manufactured using ball miller, ultra-sonication, carbonization, centrifugation, and manual grinders. Ball milling is an economical, sustainable and green method, while ultrasonication is more energy-intensive and non-eco-friendly. Nonetheless, process optimization, eco-toxicity, and life cycle evaluation of nano-BC fabrication is necessary for individual process prior to its selection for commercial-scale synthesis. The distinctly minute size of nano-BC offers improved surface areas imparting it with the potential of applicability in environmental remediation. Nano-BC efficiently reduced toxic organic and inorganic pollutants from different environmental matrices as compared to bulk-BC. Nano-BC functions as detoxicant, playing vital part in waste management, reduction of soil erosion, and preventing nutrient loss from soil. The surface features of nano-BC allow it to function as carrier for the immobilizing enzymes, biocatalysts and microbes. Nano-BC is also a potential alternative to chemical electrode and thus functions as biosensor for detection and monitoring of toxic contaminants. Additionally the high surface area also provides habitat for microorganisms on nano-BC, thus understanding their interactions at molecular and genetic level can unfold new areas for hybrid remediation strategies, which however warrants future research. However, there is a considerable knowledge gap about the parameters of the nano-BC synthesis by different methods and their physicochemical characters. The optimization of process parameter for desirable properties (porosity, surface area and functionality and binding sites) and yield is required. Methods for rapid valorization of nano-BC and their transport and distribution into different ecosystems need to be studied for restricting the detrimental impact.
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In order to develop environment friendly microbial inhibitor that can also control disease and promote oat (Avena sativa) growth, the growth rate method and response surface methodology were used to screen wetting agents, preservatives and protective agents at optimal concentrations in this study. Antagonistic activity of the tested bacterium and cell-free fermentation liquid against pathogenic fungi was evaluated on potato dextrose agar (PDA) substratum plates by dual culture technique. Oxford cup method was used to measure antagonistic reaction between screened bacteria. According to each screened bacteria with 50 mL were mixed and cultured in Luria-bertani (LB) substratum. Additives of Wetting agents, UV-protectors, and preservatives were screened by single factor test on the growth concentration of screened mixed bacteria. Afterwards, the optimal additives and concentrations were screened by Box-Behnken method. The microbial inhibitor was detected according to national standards GB20287-2006 and tested on oat in a pot experiment. The results showed that: (1) Functional bacteria which including Bacillus velezensis and Brevundimonas faecalis had control effects of 50.00% to 83.29% on three pathogenic fungi, and their cell free-fermentation liquid could inhibit the growth of pathogenic fungi from 23.51% to 39.90%; (2) Tween-80 was most suitable as wetting agents for Mix biocontrol bacteria (MBB) with 1.00% mass fraction; Sorbitol was selected as UV protective agents for MBB with 0.50% mass fraction. And methyl paraben was used as a preservative for MBB, with 0.50% mass fraction; (3) The most effective adjuvant contained 14.96 mL/L Tween-80, 5.12 g/L methylparaben and 5.6 g/L sorbitol; and (4) The microbial inhibitor controlled 45.57% of oat root rot and increased plant height, root length and seedling biomass. This study provides a suitable environment for the protection of mixed biocontrol bacteria, and lays a foundation for the prevention and control of oat diseases, the promotion of growth and the improvement of quality.
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 mix biocontrol bacteria, additive screening, formulation optimization, Avena sativa, disease control, growth promotion


1. Introduction

Food security has always been a topic of concern. Unfortunately, in the past few years, pesticide pollution in the air, water, and soil and deaths caused by pesticides have been serious in various countries (Karunarathne et al., 2020). Pesticide poisoning often happens when chemical pesticides are used to control a pest, and it affects humans, wildlife, plants, and beneficial insects (Wang et al., 2022). Therefore, a biological control strategy is an important alternative for this type of agriculture, and Trichoderma spp. and Bacillus spp. are well known as biological agents and have been applied to control root rot disease in many crops (Alamri et al., 2019). A microbial inhibitor has already applied to control root rot by seed dressing and plant spraying and to control plant diseases and plant growth promotion (O'Callaghan, 2016; Abbas et al., 2019). The problem is that most microbial agents are susceptible to ultraviolet, temperature, and sunlight (Compant et al., 2005; Kaewkham et al., 2016). The number of effective microorganisms in microbial inhibitors decreases and reduces their colonization on the crop root surface (Arora and Mishra, 2016). The reason for this problem is that, on the one hand, the biocontrol effect of the selected bacteria itself is not very high, but on the other hand, the protective effect of the adjuvant is insufficient. Therefore, it is imperative to screen bacteria with good biocontrol effect, and then through good additives, to ensure their role.

As the main components of biocontrol agents, microbial agents play important roles in the biological control of diseases. Common biocontrol bacteria include Bacillus subtilis, Bacillus velezensis, Bacillus thuringiensis, Pseudomonas fluorescens, Trichoderma harzianum, Alternaria spp., and Streptomyces (Duan et al., 2020; Müller and Behrendt, 2021). Microbial agents were found to have controlled 80% of root rot in ginseng in Jilin Province (Zhang et al., 2019). The application of microbial agents increases wheat yield by 7.7–24.2% (Chang et al., 2017). In Sweden, microbial agents increased the yield of wheat suffering from root rot by 26.37% (Al-Sadi, 2021). Additives can effectively protect the activities of microorganisms and improve the durability of microbial agents and even improve disease control effects (Yardin et al., 2000; Raymaekers et al., 2020). The use of a combination of lignosulfonate and polyethylene glycol additives in the formulation increased the survival of Lysobacter capsici cells living on grapevine leaves under field conditions by 10 times and caused a reduction of 71% in Plasmopara viticola attacks (Segarra et al., 2015). Common forms of additives include granules, suspension agents, water agents, and wettable powders (Shi et al., 2008; Yang et al., 2017). Additives commonly used in suspension agents are wetting agents, preservatives, and UV-protective agents (Shi et al., 2008). When 650 μL Tween-80, 164.58 mg sodium citrate, and 308.12 mg sodium lignosulfonate were added to 65 mL Bacillus amyloliquefaciens fermentation broth, they controlled 84.78% of apple rot (Sun C. H et al., 2017). The addition of 0.5% folic acid, 0.5% tyrosine, and 1% riboflavin in yeast reduced the mortality of ultraviolet (UV) irradiation yeast (Lahlali et al., 2011).

Cereal crops are the most important food crops, and their yield accounts for about 90%. Cereal root rot can occur during the whole growth period and reduce yield by 20–30%, even 50% in severely affected plots (Tunali et al., 2008; Gupta et al., 2017; Li et al., 2019). The main pathogens are Bipolaris sorokiniana, Fusarium graminearum, and Fusarium equiseti (Kazan and Gardiner, 2018; Al-Sadi, 2021). Oat is one of the eight major grain crops of cereal crops. Oat is a one-year-old cereal crop and the field incidence of oat root rot diseases is 4–15%, and the main pathogens are F. avenaceum, F. solani, F. graminearum, Gibberella moniliformis, and Gibberella acuminata (Yang et al., 2021). Root rot is mainly controlled by biological agents in central and northern America and northern Italy (Parikh and Adesemoye, 2018; Colombo et al., 2019), as well as in crop-planting areas in China (Sun, 2019). Although the effects of biological control are remarkable, some problems such as single composition, uneven distributions, poor UV resistance, and resultant pollution have also been reported (O'Brien, 2017; Brodeur et al., 2018). Thus, it is necessary to develop microbial biocontrol agents with high activity, long action time, UV protection, and uniform dispersion. Therefore, the objectives of this study are to (1) obtain biocontrol bacteria with high control effect of pathogenic fungi, (2) select the best protective agents for antagonistic bacteria, and (3) verify the effectiveness of the biocontrol agent on oat.



2. Materials and methods


2.1. Test strains and culture medium

The eight bacteria and three pathogenic fungi were provided by the laboratory of grassland microbiology, Gansu Agricultural University, China (Tables 1, 2). The tested bacteria were cultured in a Luria–Bertani (LB) medium, and the pathogenic fungi were cultured in a potato dextrose agar (PDA) medium.



TABLE 1 The basic information of pathogenic fungi includes name, host, location and gene sequence number.
[image: Table1]



TABLE 2 The host, characteristics and references of the test bacteria.
[image: Table2]



2.2. Test reagents

The wetting agents consisted of Tween-20, Tween-80, and OP emulsifiers, purchased from Beijing Solarbio Technology Co. Ltd., China. The UV-protective agents were sodium alginate, sorbitol, and xanthan gum, ordered from Tianjin Tianchen Chemical Co. Ltd., China. The preservatives included methylparaben, ethylparaben, kaisong, and sodium citrate, purchased from Tianjin Guangfu Fine Chemical Co. Ltd., China. The protein peptone, yeast powder, agar, and glucose were purchased from Beijing Aobox Biotechnology Co. Ltd., China. The glucose and sodium chloride were purchased from Sinopharm Chemical Reagent Co. Ltd., China.



2.3. Screening bacteria and preparation of bacterial suspension

The antagonistic activity of the tested bacteria against pathogenic fungi was evaluated on PDA plates by the dual culture method. The tested bacteria were inoculated in a liquid LB medium at 25°C, 180 r/min for 24 h to achieve a 108 cfu/mL concentration. Pathogenic fungi were grown on a PDA medium at 25°C for 5 d. The mycelial disk (5 mm) was placed at the center of the PDA medium, and bacterial suspension (100 uL) was spotted at 2 cm juxtaposed from the fungal disk four times with four replicates. The plates were incubated at 28°C for 3–7 days. The percentage of growth inhibition (I) was calculated by measuring the distance between the edges of the bacterium and fungal colonies by the following calculation (Sun G. Z et al., 2017):

[image: image]

where I represents the inhibition rate, C indicates the colony radius of the fungi in control, T is the colony semidiameter of the fungi in the dual culture, and C0 means the radius of the test fungi agar disks.

To test the antifungal activity of the cell-free fermentation liquid (Sun G. Z et al., 2017), 2% (V/V) bacterial suspension was inoculated to the liquid LB medium and placed in a shaker at 28°C for 48 h at 180 r/min. The fermentation liquid was then centrifuged at 8000 r/min for 10 min and filtered by 0.22 μm filtration membranes. The media incorporating the filtrate at a volume fraction of 10% were inoculated with agar disks containing the tested fungi and sterile water (10% by volume, control) with three replicates and then incubated at 28°C for 3–7 days. The radius of mycelium growth of the fungi (mm) in both the treated (T) and control (C) petri dishes was measured in perpendicular directions until the fungi growth in the control dishes was almost complete. The percentage of growth inhibition (I) was calculated using the formula:

[image: image]

where I represents the inhibition rate, C indicates the colony radius of the fungi in control, T is the colony semidiameter of the fungi in the dual culture, and C0 means the radius of the test fungi agar disks.

The bacterium combination was screened by the Oxford cup method (Sun G. Z et al., 2017). The Oxford cup method means that the growth of bacteria in the range of the bacteriostatic concentration around the Oxford cup is inhibited, forming a transparent bacteriostatic ring. In all, 100 μL of filtrate of one bacterium and 100 μL sterile water (control) were dropped into the Oxford cup (diameter 7 mm) at the center of the solid LB agar culture containing 2% of another bacterium. The plates were observed for inhibition zone after 24 h of incubation at 28°C, and the experiment was replicated thrice (Sun G. Z et al., 2017). The selected bacterium was inoculated in 50 mL liquid LB and shaken at 180 r/min, 28°C for 72 h. Then, the fermentation of each seed strain with 50 mL was mixed in a flask containing 500 mL of liquid LB medium and shaken at 180 r/min, 28°C for 72 h, and then put in a 4-degrees refrigerator spare.



2.4. Additive selection and microbial agents making

To select different additives, a single additive was added to a flask containing 50 mL of liquid LB medium and 5 mL of mixed bacteria (Table 3), using no additive one as control, with five replicates. Then, the sealed flasks were put at 180 r/min, 28°C for 40 h, and OD600 was determined by an ultraviolet spectrophotometer every 4 hours to draw the growth curve of the mixed bacteria.



TABLE 3 Experimental design of different chemical additive concentration.
[image: Table3]

Based on the results of the single-additive experiment, the optimal wetting agent, UV-protection agent, preservative, and their concentration for the mixed bacteria were screened. The Box–Behnken design was used for the response surface analysis of the optimal additives and concentrations for the mixed bacteria growth (Barrera et al., 2019). The Box–Behnken central composite test was adopted using appropriate concentrations of different optimal additives as independent variables and the OD600 value of the mixed bacterial suspension as a response value. The quadratic regression was used to analyze the central composite test results to verify the fitting effect of the model, and the optimal combination of the concentration ratio of additives was determined.

To make the fungi inhibitor, the additives were added into a liquid LB medium containing mixed bacteria according to their best combination and placed at 180 r/min at 28°C for 72 h before being stored at room temperature.

To detect the quality of the inhibitor, two sample were taken every 15 d until 90 days (Wang et al., 2021). One sample was diluted to 108 cfu/mL using sterile water, taken at 20 μL and coated on a solid LB medium with five replicates, and then incubated at 28°C for 48 h to count the number of living bacteria and contaminating microorganisms. The other sample was used to determine the pH. The calculation formula used is as follows:
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where BN represents the number of colonies, AN is the average bacteria count, DM means the dilution multiple, BV denotes the base liquid volume, SS indicates the sample volume, SA is the pipetting volume, MR means the mixed bacteria rate, IC indicates the microbial contaminant, and LC is the effective viable count.



2.5. Biocontrol efficacy evaluation of microbial inhibitor

To test the effectiveness of the fungi inhibitor, a pot experiment was conducted. Oat seeds were disinfected with 1% NaClO for 1 min, and 10 were seeded in each plastic pot (80 mm × 45 mm × 205 mm) containing farmland soils. The pots were put in an incubator (25°C/18°C, 16 h/ 8 h) for 1 w before being thinned to seven plants. The oat variety was Longyan 3, which was provided by the College of Grassland Science, Gansu Agricultural University, China.

The pathogenic fungi PB1 (Bipolaris sorokiniana), PB6 (Fusarium avenaceum), and PB7 (Fusarium equiseti) were scraped onto PDA plates and incubated at 25°C for 7 days; then, spores of the pathogenic fungi were dispersed into a 6 g/L carboxymethyl cellulose solution to produce a 107 cfu/mL spore suspension.

Two weeks after thinning, the 5 mL spore suspension and sterile water (control) were inoculated (Table 4) by the perfusion method (Zheng et al., 2019). A five-milliliter microbial inhibitor (MA) was injected into each pot 7 days after inoculation. The root rot disease symptoms were recorded 21 days after the pathogenic fungi inoculation.



TABLE 4 Pot-experimental design.
[image: Table4]

Six oat plants were selected for each treatment, and plant height, fresh biomass, and root length were determined. Disease was ranked according to Table 5, and disease incidence was calculated as per the following equation:
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where I means incidence, TD represents the total number of diseased plants, TI is the total number of plants investigated, DI denotes the disease index, TL signifies the total number of diseased plants at all levels, RV means the representative value, ML denotes the maximum disease level representation, CE represents the control effect, CI is the control disease index, and TI signifies treatment of the disease index.



TABLE 5 Classification standard of root rot diseases.
[image: Table5]



2.6. Data analysis

The data of the inhibition of mycelial growth of the tested bacteria against the pathogenic fungi, the Box–Behnken central composite experiment, and the control effect of the microbial inhibitor on oat root diseases were analyzed using analysis of variance (ANOVA) for individual parameters on the basis of mean values to find out the significance at a 5% level. The standard errors of the mean and ANOVA statistics were calculated using SPSS 22.0. Design Expert was used for experimental design response surface optimization analysis, and Origin software was used for plotting.




3. Results


3.1. Effect of tested bacterium on the growth of pathogenic fungi


3.1.1. In vitro antifungal activity of tested bacterium and liquid cell-free fermentation

Different bacteria had different inhibition effects on pathogenic fungi growth (Figure 1). After 7-day cultivation, the antifungal activity of the tested bacteria varied from 50.00 to 83.29%, whereas liquid cell-free fermentation showed a 8.35–39.90% inhibition rate (Table 6). Moreover, GAU88 had the highest antifungal activity on Bipolaris sorokiniana (83.29%) and Fusarium avenaceum (74.56%), while GAU68 was most effective (75.30%) on Fusarium equiseti. Among the eight bacteria, GAU24, GAU68, and GAU88 had better inhibitory effects on the three pathogenic fungi, while liquid cell-free fermentation of GAU24 and GAU88 also gave better performance.
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FIGURE 1
 Confrontation between two strains (part). A represented the inhibitory effect of GAU88 (Brevundimonas faecalis) on Bipolaris sorokiniana; B was the inhibitory effect of GAU39 (Bacillus xiamenensis) on Fusarium avenaceum; C meant the inhibitory effect of GAU24 (Bacillus velezensis) on Fusarium equiseti; D and E denoted the co-growth effect of GAU24 (B. velezensis) on GAU88 (B. faecalis).




TABLE 6 Inhibition of mycelial growth of the tested bacteria against pathogenic fungi.
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3.1.2. Screening of bacterium combinations

Bacteriostatic ring was not observed after one day of bacteria in the Oxford cup, indicating a good growth. According to the result from Table 6, GAU24 and GAU88 were finally selected and tested for antagonism by the Oxford cup method, which showed no antagonism; thus, they could coexist (Figures 1D,E).




3.2. Screening of auxiliary agents for antifungal bacteria


3.2.1. Screening of the wetting agents

Wetting agents can increase the activity of mixed biocontrol bacteria (MBB). Different concentrations of Tween-20, Tween-80, and OP emulsifier had different influence on the growth activity of MBB (Figures 2A–C). MBB grew rapidly and then slowly with the prolonging culture. Tween-80 had little influence on MBB growth, while Tween-20 and OP emulsifier had strong inhibitory effects on the growth of MBB. After 12 h culture, the OD600 value of the OP emulsifier-treated MBB was 48.42% (p<0.05) lower than the control. After 24 h culture, the OD600 value of Tween-80-treated MBB was 5.80% higher than the control, and when its mass fraction was 1.00%, the OD600 value of MBB reached 1.471 (10.91% greater than the control, p < 0.05) after 32 h culture. Therefore, Tween-80 was most suitable as a wetting agent for MBB with 1.00% mass fraction.
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FIGURE 2
 Effect of different types and concentrations of auxiliary agents on mixed biocontrol strains growth. A: Tween-20; B: Tween-80; C: OP emulsifier; D: sodium alginate; E: sorbitol; F: xanthan gum; G: methyl paraben; H: ethyl paraben; I: kathon; J: sodium citrate.




3.2.2. Screening of ultraviolet protective agents

Ultraviolet protection agents can reduce the ultraviolet damage of MBB and improve their activity. Different concentrations of sodium alginate, sorbitol, and xanthan gum had different effects on the growth activity of MBB (Figures 2D–F). With the increase of culture time, the growth of MBB increased and then decreased after adding sodium alginate, sorbitol, and xanthan gum. After 28 h culture, xanthan gum inhibited MBB growth, as indicated by the much lower OD600 value than that of the control. When the mass fraction of sorbitol was 0.50%, the MBB’s OD600 value was higher than that of the control (1.411 vs. 1.296, p < 0.05) after 40 h culture. Thus, sorbitol was selected as a UV-protective agent for MBB with 0.50% mass fraction.



3.2.3. Screening of preservatives

Preservatives can reduce bacterial contamination and prolong the storage time of MBB. Adding different concentrations of methylparaben, ethylparaben, Kathon, and sodium citrate had different effects on the growth of MBB (Figures 2G–J). With the increase of culture time, compared with the control, Kathon and ethylparaben inhibited MBB, and Kathon was the most effective inhibitor. However, low concentrations of methylparaben and sodium citrate promoted MBB growth. At 0.50% mass fraction of methylparaben, the OD600 value of MBB was 8.82% greater than that of the control (p<0.05). Therefore, methylparaben was used as a preservative for MBB with 0.50% mass fraction.




3.3. The ratio optimization of additives

Based on a single-factor test, a 3 × 3 response surface analysis experiment was conducted for the mixed biocontrol agents (Table 7). According to the Box–Behnken central composite experiment (Table 8), 750 μL Tween-80, 300 mg sorbitol, and 300 mg methylparaben were added into the mixed biocontrol bacterial suspension, and the highest OD600 value was 1.51. Data regression analysis was performed using the RSA program, and the regression equation models between the OD600 value and three influencing factors were as following:
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where A, B, and C were Tween-80, sorbitol, and methylparaben, respectively.



TABLE 7 The test factor levels of the Box–Behnken.
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TABLE 8 Box–Behnken central composite experiment.
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The regression model was significant (p < 0.0001, Table 9). Three different types of additives had significant effects on the growth of MBB. The equation’s lack fit was 0.9748 > 0.05, indicating a stable model with accurate predicted value. The coefficient of determination R2 = 0.9759, showing a good fitting degree. The influence of each additive on the OD600 value of MBB activity could be judged by the F value. The greater the F value, the greater the influence.



TABLE 9 Variance analysis of the regression equation.
[image: Table9]

The response surface is a three-dimensional surface figure composed of response values and tested factors. Figure 3 shows that Tween-80 and methylparaben had the strongest interaction. The Design-Expert 10 software gave the optimal combination formula, i.e., 14.96 mL/L Tween-80, 5.60 g/L sorbitol, and 5.12 g/L methylparaben, under which the OD600 value of MBB was 1.53, very close to the result shown in Table 8 (1.51 OD600 value), thus indicating an accurate and reliable result of the response surface method.

[image: Figure 3]

FIGURE 3
 Contour plot (up) and surface (down) of mutual-influence for the selected adjuvant. Letter in the figure, A was contour plot and B meant surface of mutual-influence for the tween-80 and sorbitol; C denoted contour plot and D indicated surface of mutual-influence for the tween-80 and methylparaben; E was contour plot and F meant surface of mutual-influence for the sorbitol and methylparaben.




3.4. Quality inspection of microbial inhibitor


3.4.1. Living bacteria count of microbial inhibitor

As the storage time of the microbial inhibitor prolonged, the living bacteria count decreased (Figure 4A). It was 5.10 × 109 cfu/mL on the 15th day, which was 5.46 times that on the 30th day and 16.45 times that on the 90th day. The living bacteria count was 3.10 × 109 cfu/mL on the 90th day, still much greater than that required by China National Standard GB 20287–2006 (1.00 × 108 cfu/mL).
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FIGURE 4
 Effect of storage time on the main indexes of microbial inhibitor. Different letters within different storage time indicate significant difference at p < 0.05 level by Duncan’s test.




3.4.2. The number and rate of contaminating microorganisms in microbial inhibitor

With the increase of the storage time of the microbial inhibitor, the number of contaminating microorganisms was 6.28 × 105 cfu/mL on the 90th day(Figure 4B), which was 1.14 times that on the 60th day (p < 0.05). However, the contaminating microorganism count was far less than 104 cfu/mL (GB 20287–2006). Moreover, the mixed bacteria rate on the 90th day was 2.22 times that on the 60th day and 1.19 times that on the 75th day (Figure 4C), but it was still much lower than required by GB 20287–2006 (3.0 × 106 cfu/mL).



3.4.3. pH value of microbial inhibitor

The pH of the microbial inhibitor increased initially and then decreased with the increasing storage time (Figure 4D). It was 7.55 on the 15th day, then declined to 7.46 on the 30th day, and rose up to 7.58 on the 90th day. This range is in accordance with GB 20287–2006.




3.5. Control effect of microbial inhibitor on oat root diseases and growth of oat

The incidence of three pathogenic fungi on oat roots was 34.71% (T1), 30.02% (T7), and 25.84% (T6) (Table 10). The highest disease index was 27.68 from T1. The highest control effect of the microbial inhibitor was observed in T6 (68.44%), followed by T7 (52.96%) and T1 (48.70%). Accordingly, the best plant growth was obtained in the T6 treatment with a taller plant (p < 0.05), longer root length, and greater biomass (Figure 5).



TABLE 10 Control effect of microbial inhibitor on oat root diseases.
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FIGURE 5
 Effect of microbial inhibitor on oat seedling stage growth. PB in CK and in T treatment represent sterile water and pathogenic fungi respectively; MA was microbial inhibitor. Different letters within the treatment indicate significant difference at p < 0.05 level by Duncan’s test.





4. Discussion

Some biocontrol bacteria produce resistant substances against pathogens and play important roles in disease biocontrol (Compant et al., 2005; Kaewkham et al., 2016). Bacillus velezensis, Bacillus xiamenensis, Bacillus mycoides, and Brevundimonas faecalis significantly inhibited the growth of the three pathogens in this study. Similar results were also reported by Ait-Kaki et al. (2014), who obtained 60.00 and 61.00% inhibitory rates of B. velezensis isolated from Calendula officinalis against F. oxysporum and Botrytis cinerea, respectively. Moreover, 66.00 and 56.00% inhibitory rates of B. velezensis isolated from Cucumis sativus against F. oxysporum were obtained by Liu et al. (2017). Streptomyces sp., Saccharothrix sp., and Nocardpsis sp. isolated from the rhizosphere of Solanum tuberosum were shown to significantly inhibit the mycelial growth of Phytophthora infestans with a 35.02–79.20% inhibitory rate (Feng et al., 2022). Bacteria isolated from rice leaves have antagonistic effects on Rhizoctonia solani and inhibit disease spot extension in vitro (Shrestha et al., 2016). Inhibitory rates as high as 73.82, 66.81, and 85.71% of biocontrol bacteria on Sclerotinia sclerotiorum, F. oxysporum, and R. solani, respectively, were reported (Sun G. Z et al., 2017). In this study, cell-free fermentation liquid of biocontrol bacteria also inhibited the growth of the pathogenic fungi. The fermentation broth of GAU88 had inhibitory effects on B. sorokiniana (PB1) and F. avenaceum (PB6), with inhibitory rates of 39.90 and 31.37%, respectively; even higher inhibitory rates (67.00 and 54.00%) of the cell-free fermentation liquid of B. velezensis isolated from Cucumis sativus against F. oxysporum have been observed (Liu et al., 2017). Bacillus and Brevundimonas may produce antimicrobial proteins (Kim et al., 2017) and lipopeptide antibiotics (Peypoux et al., 1978, 1999; Vanittanakom et al., 1986) and secrete growth hormones (Meng et al., 2016; Yaashikaa et al., 2020), pyoverdine, and NH3 (Meng et al., 2016). It can be seen that biocontrol bacteria have a good inhibitory effect on the growth of pathogenic fungi. In order to make biocontrol bacteria play a better role, it is a good choice to add preservatives, protective agents, and wetting agents to them.

Biocontrol bacteria are viable microorganisms and sensitive to UV, extreme temperature, light, and other environmental factors (Liu and Xing, 2016). To reduce these impacts and prolong the shelf life of microbial preparations, it is necessary to add appropriate protective additives (Arora and Mishra, 2016). At present, most auxiliary additives are chemically synthesized, and so the compatibility of the additives with living microorganisms should be fully considered. The addition of Tween-80 to the culture medium of Streptomyces padanus was demonstrated to enhance the inhibitory effect of S. padanus against cucumber downy mildew (Fan et al., 2019). Furthermore, the addition of 0.1% Tween-80 to laboratory growth media increased the growth rate of planktonic Staphylococcus aureus batch cultures, and it also increased the total biomass when S. aureus was grown as biofilms (Nielsen et al., 2016). Studies have shown that sorbitol may act as an antioxidant to scavenge reactive oxygen species and precisely regulate the balance of reactive oxygen species under the synergistic effect of antioxidant enzyme systems (SOD, POD, CAT) (Smirnoff and Cumbes, 1989). Parabens are a class of compounds primarily used as antimicrobial preservatives in pharmaceutical products, cosmetics, and foodstuffs (Nguyen et al., 2021). It was shown that in a control of grape downy mildew, a combination of corn steep liquor, lignosulfonate, and polyethylene glycol in Lysobacter capsici formula increased the survival rate of L. capsici in the field and reduced the occurrence of disease by 71%; in addition, the authors also admitted that the required quantities limited the usefulness of that particular formulation (Segarra et al., 2015). In this study, adding 1.00% Tween-80, 0.50% sorbitol, and 0.50% methylparaben to 50 mL of mixed fermentation had no inhibitory effects, indicating that the developed biocontrol bacteria had good compatibility with the additives. During the growth of biocontrol bacteria, their viable counts decrease due to the decline of nutrients and oxygen and the production of lactic acid, causing fluctuation of the pH (Wong et al., 2019). The microbial inhibitor developed in this study was in compliance with the China National Standards of Agricultural Microbial Agents (GB 20287–2006) in terms of living bacteria counts, contaminating microorganism counts, undesirable mixed bacteria rate, and pH.

To test the effectiveness of the developed microbial inhibitor, the pathogenic fungi and microbial inhibitor were inoculated on oat, and the results showed as a control effect as high as 68.44%, much higher than that of Bacillus cereus on tobacco bacterial wilt (31.43%, Wu et al., 2020). Pseudomonas brassicacearum, Pseudomonas putida, Paenibacillus peoriae, and Bacillus licheniformis isolated from potato have been shown to reduce potato disease occurrence by 27–55% (Bahmani et al., 2021). Plant growth-promoting rhizo-bacteria may interact with plants directly by increasing the availability of essential nutrients (nitrogen, phosphorus, and iron), production and regulation of compounds involved in plant growth (phytohormones), and stress hormonal status (ethylene levels by ACC-deaminase). They may also indirectly affect plants by protecting them against diseases through competition with pathogens for highly limited nutrients, biocontrol of pathogens through the production of aseptic-activity compounds, synthesis of fungal cell-wall-lysing enzymes, and the induction of systemic responses in host plants (Olenska et al., 2020). In this study, although the microbial inhibitor showed good control effects on the different pathogenic fungi in the pot experiments, their effects in fields need further study.



5. Conclusion

In conclusion, this study comprehensively analyzed the additive screening and formula optimization of a microbial inhibitor with disease prevention and growth promotion effects on Avena sativa. B. velezensis GAU24 and B. faecalis GAU88 had good inhibitory effects on B. sorokiniana, F. avenaceum, and F. equiseti and could be used to make the biocontrol agent. Their optimal additives consisted of 1.00% wetting agent Tween-80, 0.50% UV-protective agent sorbitol, and 0.50% preservative methylparaben, and the optimal combination formula was 14.96 mL/L Tween-80, 5.6 g/L sorbitol, and 5.12 g/L methylparaben. When used on oat, it could control 48.70–68.44% of root rot. In addition, the developed microbial inoculants have disease prevention and growth-promoting effects on plants. This study provides a suitable environment for the protection of mixed biocontrol bacteria and lays a foundation for the prevention and control of oat diseases, the promotion of growth, and the improvement of quality.
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Salinity is a serious environmental factor that impedes crop growth and drastically reduces yield. This study aimed to investigate the potential of halophilic archaea isolated from the Rann of Kutch to alleviate the negative impact of salinity on crop growth and yield. The halophilic archaea, which demonstrated high tolerance to salinity levels up to 4.5 M, were evaluated for their ability to promote plant growth in both salt-tolerant and salt-susceptible wheat cultivars. Our assessment focused on their capacity to solubilize essential nutrients, including phosphorus (14-61 mg L−1), potassium (37-78 mg L−1), and zinc (8-17 mg L−1), as well as their production of the phytohormone IAA (17.30 to 49.3 μg ml−1). To conduct the experiments, five wheat cultivars (two salt-tolerant and three salt-susceptible) were grown in triplicates using soft MS agar tubes (50 ml) and pots containing 10 kg of soil with an electrical conductivity (EC) of 8 dSm−1. Data were collected at specific time points: 21 days after sowing (DAS) for the MS agar experiment, 45 DAS for the pot experiment, and at the time of harvest. In the presence of haloarchaea, the inoculated treatments exhibited significant increases in total protein (46%), sugar (27%), and chlorophyll (31%) levels compared to the un-inoculated control. Furthermore, the inoculation led to an elevated accumulation of osmolyte proline (31.51%) and total carbohydrates (27.85%) while substantially reducing the activity of antioxidant enzymes such as SOD, catalase, and peroxidase by 57–76%, respectively. Notably, the inoculated treatments also showed improved plant vegetative growth parameters compared to the un-inoculated treatments. Interestingly, the positive effects of the halophilic archaea were more pronounced in the susceptible wheat cultivars than in the tolerant cultivars. These findings highlight the growth-promoting abilities of the halophilic archaeon Halolamina pelagica CDK2 and its potential to mitigate the detrimental effects of salinity. Consequently, further evaluation of this halophilic archaeon under field conditions is warranted to explore its potential use in the development of microbial inoculants.

KEYWORDS
halophilic archaea, wheat, salinity alleviation, abiotic stress, plant growth promotion


1. Introduction

Salinity is one of the most detrimental kinds of abiotic stress that affects agricultural productivity and food security (Sardar et al., 2023). Soil salinity causes several morphological, physiological, and molecular changes in crop plants which result in decreased growth and productivity. The enhanced production of reactive oxygen species in plants under oxidative stress induced by salinity causes damage to the cell membrane, proteins, lipids, and nucleic acids and triggers programmed cell death (Gill and Tuteja, 2010; Calanca, 2017). Globally, an estimated 20% of arable soil is affected by salinity at the moment, and that number may rise to 50% by 2050 due to a variety of factors, including the lack of effective mitigation practices (Rakshit et al., 2020). Efficient resource management and crop improvement for the development of better cultivars can aid in the reduction of salinity stress. To reduce salinity stress in agriculture, commonly practiced strategies include soil and irrigation management, selecting and breeding salt-tolerant crop varieties, implementing agronomic practices, such as mulching, crop rotation, and intercropping, leaching excess salts, and employing biotechnological interventions to develop and utilize salt-tolerant plant varieties (Ondrasek et al., 2022). Given the time-consuming and expensive nature of current strategies, it is crucial to develop cost-effective and easily adaptable biological methods to manage agricultural stress. These methods can have direct implications in the near future. Microorganisms could play an important role in this regard if we take advantage of their unique properties. Not only microbial inoculation can help in the control of different stresses, but also it can trigger plant development and production and the improvement of soil fertility (Chaudhary et al., 2023). These include salinity tolerance, the ability to thrive in varying water conditions, production of plant growth-promoting hormones, nutrient cycling, siderophore production, volatile organic compound production, ACC deaminase activity, antioxidant capabilities, and the ability to produce osmolytes. They also interact with other microbes and crops, thereby helping plants withstand multiple stresses simultaneously (Sharma et al., 2021; Suman et al., 2022). In this regard, the ability of bacterial inoculants to alleviate biotic and abiotic stresses in plants is well documented and demonstrated, but the members of the domain Archaea are still under explored (Naitam and Kaushik, 2021).

Prokaryotes from the domain Archaea have long been considered native inhabitants of ecological niches with extreme conditions of temperature, acidity, alkalinity, and salinity (Gubry-Rangin et al., 2010; Naitam and Kaushik, 2021). However, this notion of a scientific community has changed since the advent of next-generation genome sequencing techniques (metagenomics and metatranscriptomics) that have revolutionized the study of microbial diversity (Oren, 2014; Yadav et al., 2017). In recent decades, archaea have also been isolated from a wide range of ecological niches that have normal environmental conditions; these include arable and barren lands, plant rhizosphere, freshwater lakes, sediments, humans, and animals' guts (Kumar et al., 2009; Gubry-Rangin et al., 2010; Yadav et al., 2019; Jung et al., 2020; Akinola and Babalola, 2021; Hu et al., 2021). Archaea also constitute a significant proportion of microbiomes, phytobiomes, and various plant-associated ecosystems (Jung et al., 2020). Archaea can play a potential role in improving crop production and sustainability in arid and semi-arid (Alori et al., 2020). Few studies reported the presence of archaea and their role in improving plant growth. Thaumarchaeota was reported as dominant phyla in the rhizospheric soils of native alpine trees of the Qinghai-Tibetan Plateau along with some unclassified archaeal groups as keystone species. The results suggested that the archaeal community structure in rhizospheric soil is simple as opposed to bulk soils (Zhang et al., 2020). Cultivar-specific variation (rhizospheric effect) in the archaeal community was observed in tomatoes; however, a many-fold reduction in the archaeal community was observed during vertical transmission in the F1 generation (Taffner et al., 2020). The archaeal community in tomato rhizosphere studies was dominated by Thaumarchaeota and Euryarchaeota (Taffner et al., 2020).

Among archaea, the halophilic archaea belonging to the class Halobacteria and phylum Euryarchaeota have significant economic importance due to their wider adaptability to salinity levels for growth (1.5 M NaCl to saturation) (Oren, 2014; Naitam and Kaushik, 2021). Halophilic archaea are natural inhabitants of the hypersaline environment of salt lake and salt evaporation ponds (Oren, 2014, 2019). Halophilic archaea Haloferax sp. strain NARS9, isolated from the solar salterns from the coast of Jeddah, Saudi Arabia, ameliorated the cobalt heavy metal stress and improved grain yield in wheat (Hagagy et al., 2023). Halophilic archaea found in the rhizosphere of plants in high-salinity areas can be assessed for their potential to alleviate salinity stress and enhance crop growth and productivity in cultivated regions affected by salinity. In the pursuit of exploring such possibilities, 28 halophilic archaea were isolated and characterized from bulk soil, water bodies, and rhizosphere of wild vegetation in the saline desert of Rann of Kutch, Gujarat, India. The salinity levels in this region ranged from 1.19 to 106.7 dSm-1, and the pH varied from 7.40 to 10.15 (Yadav et al., 2015). Most of the isolates belonged to 16 genera, viz. Halobacterium, Halococcus, Halolamina, Haladaptatus, Haloarcula, Haloferax, Halogeometricum, Halopenitus, Halosarcina, Halostagnicola, Haloterrigena, Halorubrum, Natrialba, Natrinema, Natronoarchaeum, and Natronomonas. In many of the isolates belonging to these 16 genera, solubilization of inorganic phosphorous was reported (Yadav et al., 2015). Studies on the population dynamics of halophilic archaea in different samples revealed seasonal variation. The highest and lowest diversity and population of archaea were observed in winter and autumn, respectively, whereas some of the archaea were season-specific (Yadav et al., 2019). Furthermore, in lab-scale studies, we observed stimulation of Wheat and Bajara germination upon inoculation of some of these isolates of halophilic archaea in a saline soft agar medium having electrical conductivity (EC) ranging from 6.8 to 8.4 dSm−1.

Hence, a hypothesis can be proposed that halophilic archaea inhabiting the rhizosphere of wild vegetation in hypersaline soils of Rann of Kutch, Gujarat, India, may have developed a mutualistic relationship with the plant system. It is likely that they assist in the establishment and growth of the plants by mitigating the detrimental effects of salinity. However, to date, very few significant findings are available which can prove that halophilic archaea can promote plant growth by alleviating the harmful effects of salinity.

Based on soil EC, the saline soils are classified as slightly saline (4.0–8.0 dSm−1), moderately saline (8–30 dSm−1), and strong saline (>30.0 dSm−1) (Gorji et al., 2020). The optimal range of soil EC for the growth of crops ranges from 1 to 2 dSm−1, and an increase in soil EC from slightly to strongly saline significantly reduces crop growth and productivity (Sadaty and Nazari, 2021). The EC of soil in different regions of Rann of Kutch varies from 1.19 to 106.7 dSm−1 (Yadav et al., 2019). The halophilic archaea in our previous study were isolated from barren soil (EC >75.25 dSm−1) and rhizosphere of wild vegetation growing in soil having EC ranging from 4.79 to 34.2 dSm−1 (Yadav et al., 2019). In this study, the ability of halophilic archaeal isolates to thrive in moderately saline soil was examined. Additionally, their potential as bioinoculants for enhancing wheat growth was explored through nutrient solubilization, phytohormone production, and mitigation of salinity-induced oxidative stress.



2. Materials and methods


2.1. Procurement of halophilic archaea and quantification of their growth

In total, 28 halophilic archaea previously isolated from the rhizosphere of wild plants growing in the hypersaline region of the Rann of Kutch, Gujarat, India, were procured from the microbial culture collection of the Division of Microbiology, Indian Agricultural Research Institute, New Delhi, India. All the isolates were cultured in the liquid broth of a modified DSMZ 1184 medium, and their growth was quantified in terms of μg protein ml−1. The composition of the DSMZ 1184 growth medium was modified and standardized for culturing of halophilic archaea inhabiting plant rhizosphere. The modified media used in this study was called the halophilic rhizospheric archaea (HRA) medium. Its composition per liter included the following: 1.0 g of sodium pyruvate, 1.0 g of yeast extract, 80.0 g of NaCl, 32.5 g of MgCl2.6H2O, 50.8 g of MgSO4.7H2O, 5.0 g of KCl, 0.25 g of NaHCO3, 1.0 g of NaNO3, 0.8 g of CaCl2.2H2O, 0.05 g of KH2PO4, 0.03 g of NH4Cl, traces of FeSO4.7H2O, traces of MnSO4.7H2O, and 20 g of agar. pH was adjusted to 7.4 with a 1 M Tris base, and the final EC of the media was 119.8 dSm−1. The stock solution of NaHCO3 and sodium pyruvate was filter-sterilized and added aseptically to the autoclaved HRA medium. Approximately 1 ml of actively growing inoculum containing 108 CFU ml−1 of the respective isolates was inoculated in the 50 ml HRA broth and incubated at 37 °C at 130 rpm. After 10 d of incubation, the 5 ml of culture broth was centrifuged at 7,500 g for 10 min, and the pellet was used for quantification of protein by Bradford's method (Marion, 1976). The amount of protein in the culture was extrapolated by comparison with a standard curve prepared using different concentrations of bovine serum albumin (BSA).



2.2. Evaluation of PGP attributes
 
2.2.1. Solubilization of P, K, and Zn

All 28 halophilic archaeal isolates were assessed qualitatively and quantitatively for solubilization of phosphorus (P), potassium (K), and zinc (Zn). The HRA medium was modified by adding 5.0 g L−1 tricalcium phosphate to estimate P solubilization (HPS medium), and KCl was replaced with 5.0 g L−1 potassium aluminum silicate to estimate K solubilization (HKS medium). Similarly, Zn solubilization was quantified using two sets of HRA medium supplemented with zinc oxide and zinc carbonate, respectively (added at 1.0 gL−1) (HZS medium). For qualitative estimation of P, K, and Zn solubilization, 10 μl of log phase cultures were spot-inoculated on respective modified HRA agar and incubated at 37 °C. The formation of the halo zone around colonies was recorded periodically until the 10th day of incubation and the D/D ratio was calculated, i.e., the diameter of the zone of solubilization/colony diameter. The cultures which solubilized the P, K, and Zn with a D/D ratio higher than one were selected for quantifying the extent of their solubilization. For this, 1 ml inoculum (108 CFU ml−1) of the selected cultures was inoculated in 50 ml (for P solubilization) and 100 ml (for K and Zn solubilization) of respective HRA broth and incubated at 37 °C at 130 rpm. After 10 d of incubation, the pH of the culture broth was recorded and subjected to centrifugation at 10, 000 g for 5 min. The supernatant was used for quantitative estimation of soluble P, K, and Zn by the ascorbic acid method (Yadav et al., 2015), flame photometer (Banerjee and Prasad, 2020), and atomic absorption spectrophotometer (ZEEnit 700 P, Analytik Jena, Gmbh) (Saravanan et al., 2004), respectively. The experiment was performed in triplicates, and un-inoculated control was maintained.



2.2.2. Quantification of indole-3-acetic acid production

The production of indole-3-acetic acid (IAA) by 28 isolates of halophilic archaea was quantified by culturing them in HRA broth supplemented with L-tryptophane (at 500μg ml−1). The 50 ml broth was inoculated with 1 ml of actively growing inoculum (108 CFU ml−1) and incubated at 37 °C for 10 d at 130 rpm. Following incubation, the culture was centrifuged at 5,500 g for 10 min, and 2 ml supernatant was used for spectrophotometric estimation of IAA production by Salkowski's reagent method (Goswami et al., 2014). The concentration of IAA in the samples was inferred by comparison with the standard curve. The un-inoculated medium was used as blank, and the experiment was conducted in triplicates.




2.3. Growth and PGPR studies in soil extract medium
 
2.3.1. Preparation of HSE medium

Plant growth-promoting rhizobacteria (PGPR) play a big role in the mitigation of abiotic stresses by improving the expansion of soil colonization by plant roots. This can be reflected in higher affordability to retain the needed nutrients for plant growth and development (Širić et al., 2022). To determine whether the halophilic archaea can grow in soils having slight (4.0 to 8.0 dsm−1) to moderate (8.0 to 30.0 dsm−1) salinity, a modified halophilic broth was prepared using soil extract, where the water component was replaced with soil extract. The soil extract was prepared from the soil sample collected from a wheat field (15 cm depth) located at the village Chhapra Khera (29°40′42.3′′N and 77°02′50.7′′E), Karnal, Haryana, India. The soil was sandy loam in texture with an EC of 6.2 dsm−1, pH 8.1, total carbon: 0.48 %, total nitrogen: 0.051%, exchangeable K: 173.61 mg Kg−1, and available P: 4.21 mg Kg−1. For the preparation of soil extract, 400 g of fine soil was mixed with 1600 ml of tap water and mixed thoroughly to make a uniform solution. The mixture was heated at 121°C for 15 min. After cooling to room temperature, the mixture was filtered through a sterile muslin cloth followed by filter paper (Whatman No. 1). The filtrate was used as a water component in the preparation of halophilic broth. The HRA broth was modified to develop halophilic soil extract (HSE) broth having EC and nutrient mineral composition (gL−1) as shown in Table 1. The composition of major mineral ingredients (NaCl, MgCl2.6H2O, MgSO4.7H2O, KCl, NaHCO3, NaNO3, and CaCl2.2H2O) was subjected to change to achieve desired EC levels, and the composition of remaining minor mineral nutrients (KH2PO4, NH4Cl, FeSO4.7H2O, and MnSO4.7H2O) was kept constant. The medium was denoted as HSE-1 to HSE-9 (EC: 7.13–30.84 dsm−1). HRA medium (EC: 119.8 dsm−1) was used as a reference control for comparing the growth and PGP properties of selected halophilic archaea. The HSE broth (HSE-1 to HSE-9) was used to quantify the growth and PGP attributes of H. pelagica CDK2.


TABLE 1 Composition and salinity levels (EC) of halophilic soil extract (HSE) broth.
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2.3.2. Growth, nutrient solubilization (p, k, and zn), and IAA production by a selected halophilic archaeon in different strength HSE broth

Based on the results of the experiment as described in Section 2.2, the best performing halophilic archaeon was selected for evaluating its growth, nutrient solubilization (P, K, and Zn) potential, and IAA production at different strengths of EC in HSE broth. The growth was quantified by estimating protein by Bradford's protein assay (Marion, 1976) as described above in Section 2.1. For quantifying IAA production and the solubilization of P, K, and Zn, the HSE broth was amended with tryptophan, tricalcium phosphate, potassium aluminum silicate, ZnO, and ZnCO3 similarly as described above in Section 2.1 for the modification of HRA medium. The quantification of IAA production and P, K, and Zn solubilization was carried out as per the method described in Section 2.1.



2.3.3. Inoculum preparation for in planta studies

The inoculum for in planta studies was raised by culturing H. pelagica CDK2 in 250 ml of HRA1 broth for 15 days. The exponentially growing culture was centrifuged at 7,500 g for 15 min, and the supernatant was discarded. The pellet was washed twice with phosphate buffer saline (PBS) whose electrical conductivity was maintained at 8 dSm−1. The washed pellet was suspended in PBS (prepared using soil extract instead of water; EC: 8dsm−1) to maintain the cell density of ~109 cells ml−1. The PBS with archaeal cells was mixed with charcoal (sterilized at 121°C for 20 min for 3 consecutive days and buffered with calcium carbonate) and homogenized. This mixture was air-dried overnight at room temperature under sterile conditions and was coated over wheat seeds immediately before sowing in the pots. For the soft mineral salt agar experiment, the seeds were soaked directly in the PBS with archaeal cell suspension for 30 min and were sown in the soft agar tubes.



2.3.4. Soft agar experiment

Five wheat cultivars, namely two tolerant (K65 and KRL210) and three susceptible (HD2380, HD3086, and HD2687), were procured from ICAR-Indian Institute of Wheat and Barley Research, Karnal, India. A 21-day wheat-halophilic archaea interaction experiment was carried out in soft agar test tubes under controlled conditions to assess the effect of inoculating H. pelagica CDK2 on seed germination. Seeds of all the wheat cultivars were treated with cells of H. pelagica CDK2 suspended in PBS (halophilic archaeal soil extract phosphate buffer saline suspension; EC: 8 dsm−1) for 30 min. The mineral salt soil extract soft agar (MSSE) was prepared by dissolving various macro- and micronutrients, vitamins, and amino acids in previously prepared soil extract as per composition. The composition of MSSE was as follows: a) macronutrients (mg L−1): 1650.0 NH4NO3, 332.0 CaCl2, 180.690 MgSO4, 1900.0 KNO3, and 170.0 KH2PO4, b) micronutrients (mg L−1): 6.20 H3BO3, 0.025 CoCl2.6H2O, 0.025 CuSO4·5H2O, 37.30 disodium EDTA dihydrate, 27.800 FeSO4.7H2O, 16.90 MnSO4·H2O, 0.213 Na2MoO4·2H2O, 0.830 KI, 8.60, and ZnSO4.7H2O, c) vitamins (mg L−1): 100.0 myoinositol, 0.50 nicotinic acid, 0.50 pyridoxine HCl, and 0.10 thiamine HCl, and d) amino acid (mg L−1): 2.00 glycine and agar 8.0 gL−1 (pH 6.8 and EC: 8 dSm−1). The treated seeds were placed in a 50 ml test tube having 35 ml of MSSE soft agar medium (Filek et al., 2010). The tubes were incubated in the dark until seed germination and were later transferred to a glasshouse of Phytotron facility, IARI, New Delhi, under controlled conditions (glasshouse conditions were as follows; temperature: 20-24° C, humidity: 50%, and white LED lights, 15000 lux with 10 h of daily illumination). The un-inoculated control was maintained, and the experiment was carried out in three replications. Observations on vegetative growth were recorded after 21 days of incubation.



2.3.5. Mesocosm study for plant–microbe interaction

The wheat–H. pelagica CDK2 interaction was further evaluated in a pot experiment to verify the effect of inoculating H. pelagica CDKA on wheat growth and yield parameters in an un-sterile rooting medium. The study was conducted in the net house of the Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi. The treatment included two salt-tolerant (K65 and KRL210) and three susceptible (HD2380, HD3086, and HD2687) wheat cultivars in triplicates. The seeds were coated with the halophilic archaeal-charcoal-based inoculum (as described in section 2.4) and were sown in 14-inch pots each containing 10 kg of un-sterile soil. The electrical conductivity of the soil was maintained at 8 dSm−1 using a mineral salt solution. An un-inoculated control was maintained for all the wheat cultivars in triplicates. The pots were fertilized with the recommended dose of NPK (120:60:60). The full dose of P, K, and 50% of N was applied as a basal dose before sowing. The remaining half dose of nitrogen was applied in 2 split doses at 21 d and 45 d. Observations on vegetative growth, osmolyte accumulation, and biochemical and yield parameters were recorded after 45 days of sowing and at the time of harvesting.




2.4. Estimation of vegetative and biochemical parameters
 
2.4.1. Vegetative parameters

The shoot and root length (cm) and shoot and root biomass (g) were measured manually using standard laboratory protocols. The plants at 21 d from MSSE and at 45 d from pot experiments were sampled destructively. The roots were washed thoroughly with water to remove adhering medium and soil, respectively. The above-ground part (shoots) was separated from the roots and allowed to air dry for 1 h. The fresh weight (biomass) and the length of the shoot and roots were measured manually with a balance and sliding caliper, respectively.



2.4.2. Quantification of crude protein

Crude protein was extracted from 100 mg wheat leaves homogenized with the 5 ml salt-alkaline phosphate extraction buffer (0.1 M NaOH in 3.5% NaCl; pH 7.4). The homogenate was incubated at 60 °C for 90 min followed by centrifugation at 4,000 g for 20 min at room temperature. A total of 1 ml of supernatant was used for the quantification of crude protein following Bradford's quantitative protein extraction method (Marion, 1976). The protein content was expressed as μg protein mg−1 of wheat tissue. The quantity of protein in the sample was extrapolated from a standard curve prepared using different concentrations of bovine serum albumin (BSA).



2.4.3. Quantification of total chlorophyll

Chlorophyll from the leaf sample was estimated using the DMSO method (Blanke, 1992). A 100 mg fresh plant leaf sample was placed in a 100 ml volumetric flask containing 10 ml DMSO (Dimethyl sulfoxide). The flask was allowed to stand overnight before measuring the spectroscopic absorbance at 663 and 645 nm. DMSO without leaf sample was used as blank, and un-inoculated wheat leaf was used as control. The total chlorophyll content of the wheat leaf was calculated using the formula given below.
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2.4.4. Quantification of total sugars and proline accumulation

Total sugars in wheat leaf samples were quantified using the phenol-sulfuric acid method (Dubois et al., 1951). D-glucose was used as a standard for the preparation of the standard curve, and a run without a sample was used as a blank. The amount of proline synthesized in wheat seedlings in response to salinity stress was estimated using an acid ninhydrin-sulfosalicylic acid method as described by Ábrahám and László Erdei (2010). A blank was run without the sample, and a standard graph was prepared using L-proline.



2.4.5. Quantification of antioxidant enzyme activity

The antioxidant enzymes, such as ascorbate peroxidase (APox), catalase (CAT), and superoxide dismutase (SOD) accumulation, were quantified in wheat leaves. The enzyme extract was prepared by freezing 1 g of wheat leaf sample in liquid nitrogen to arrest the proteolytic activity followed by grinding with 10 ml of extraction buffer (0.1 M phosphate buffer, pH 7.5, containing 0.5 mM EDTA with 1 mM ascorbic acid). The mixture was passed through four-layered muslin cloth followed by centrifugation at 15,000 g for 20 min. The resultant filtrate was used as an enzyme in the enzyme assay. The APox activity was determined by measuring the decrease in ascorbic acid content as described by Nakano and Asada (1981). Superoxide dismutase activity was quantified by measuring the decrease in the absorbance of formazan generated by superoxide radicles and nitroblue tetrazolium (NBT) dye as per the method described by Dhindsa et al. (1981). A unit of SOD activity was expressed as the amount of enzyme, which reduced the absorbance to 50% as compared to tubes lacking enzyme. Catalase antioxidant enzyme activity was analyzed by calculating the amount of H2O2 decomposed by comparing it to a standard curve of known concentrations of hydrogen peroxide (Aebi, 1984).



2.4.6. Estimation of root architecture parameters at harvesting

Analysis of changes in root physiological parameters at the harvesting was performed using a root scanner LA2400 Instruments REGENT, equipped with WinRhizo software. Freshly harvested roots were washed under running tap water to remove all the soil particles attached to the roots. After washing, the roots were kept immersed in water in a 500 ml beaker and taken for root imaging. Roots were placed horizontally on the scanner block filled with a minimal amount of distilled water to keep the roots submerged. The entangling of roots was removed using the forceps.




2.5. Quantification of yield parameters at harvest

To quantify yield parameters, such as grain yield per plant and grains per spike, the plants were harvested after grain filling and drying. The spikes were manually separated from the harvested plants, and the data for grain content per spike were recorded. The grains separated from spikes of a single plant were combined to extrapolate grain yield per plant manually.



2.6. Statistical analysis of data

All the experiments were carried out in triplicates, and statistical analysis was performed using WASP 2.0 (Web Agri Stat Package, Indian Council of Agricultural Research, India). The data were subjected to ANOVA, and the least significant differences (LSDs) at P ≤ 0.05 and P ≤ 0.01 for in planta and in vitro studies, respectively, among means were compared using standard deviation.




3. Results


3.1. Growth of halophilic archaea in halophilic broth

All 28 halophilic archaeal isolates exhibited growth in the HRA broth. The production of protein after 10 days varied significantly among these isolates (Supplementary Table 1). The protein production in the halophilic broth ranged from 122.371 μg ml−1 to 271.80 μg ml−1. The highest protein production was observed in Halococcus hamelinensis IARI-SNS2 (271.8 μg ml−1), followed by Halococcus sp. IARI-BGAK2 (268.94 μg ml−1), Natrialba sp. IARI-SGAB2 (257.51 μg ml−1), Halolamina pelagica CDK2 (252.65 ± 8.33 μg ml−1), Haloferax volcanii IARI-CFAB4 (254.08 ± 1.81 μg ml−1), and Halogeometricum borinquense IARI-WRAK9 (255.22 ± 7.96 μg ml−1). The protein production of H. pelagica IARI-CDK2, H. volcanii IARI-CFAB4, and H. borinquense IARI-WRAK9 did not significantly differ from each other (252.65, 253.08, and 255.22 μg ml−1, respectively). The lowest growth in terms of protein production was observed in Natrinema altunense IARI-WRAK5 (122.37 μg ml−1).



3.2. Quantification of plant growth-promoting properties of halophilic archaea
 
3.2.1. Qualitative estimation of P, K, and Zn solubilization

Based on the halo zone formation observed around spot-inoculated colonies in specific solubilization media (HPS, HKS, and HZS medium), we qualitatively assessed the ability of 28 halophilic archaea to solubilize phosphorus (P), potassium (K), and zinc (Zn) (Supplementary Table 2). Among the isolates, 17 showed significant zones of P solubilization. The highest D/D ratio (cm) for P solubilization was observed in H. pelagica CDK2 (1.8), followed by Halobacterium sp. IARI-SNS3 (1.75), Natronoarchaeum mannanilyticum IARI-SSAB3 (1.6), H. borinquense IARI-WRAK9 (1.6), Halolamina pelagica IARI-CSK1 (1.6), and Natronomonas pharaonis IARI-MAAB4 (1.6). The halophilic archaea N. mannanilyticum IARI-SSAB3, H. borinquense IARI-WRAK9, H. pelagica IARI-CSK1, and N. pharaonis IARI-MAAB4 exhibited similar D/D ratios for P solubilization. Conversely, the lowest D/D ratio was observed in Halorubrum sp. IARI-WRAB4 (1.16), followed by Halostagnicola kamekurae IARI-TWAK7 (1.2) and Halosarcina sp. IARI-WRAB3 (1.25), respectively. Furthermore, 21 isolates displayed significant K solubilization zones, with D/D ratios ranging from 1.25 to 1.68. The highest D/D ratios for K solubilization were recorded in Haloterrigena sp. IARI-SOAB2, N. pharaonis IARI-MAAB4, and H. pelagica CDK2 (1.68, 1.66, and 1.65, respectively). In contrast, only a few isolates demonstrated the ability to solubilize Zn, with six isolates solubilizing ZnO and three isolates solubilizing ZnCO3 in the respective HZS medium. The D/D ratio for all the Zn solubilizing isolates was just above 1, indicating the formation of very small clearing zones around the spot-inoculated colonies.



3.2.2. Quantitative estimation of P, K, and Zn solubilization and effect on medium ph

We conducted quantification of P solubilization and measured the reduction in pH of the medium for the selected 17 isolates, grown in HPS broth. On the 10th day of growth, a significant decrease in pH was observed, ranging from 3.6 to 4.8, compared to the initial pH of 7.2. The greatest reduction in pH was observed in Haloarcula tradensis IARI-WRAK3 and H. pelagica CDK2 (pH: 3.6), while the least reduction occurred in Halorubrum sp. IARI-WRAB4 and Haloarcula argentinensis IARI-SOAB1 (pH: 4.8) (Figure 1A). Regarding P solubilization in HPS broth, the values ranged from 15.98 ± 1.46 to 61.10 ± 2.56 mg L−1 among the 17 isolates. H. pelagica IARI-CDK2 demonstrated the highest P solubilization, significantly measuring 61.10 ± 2.56 mg L−1. Close behind were N. mannanilyticum IARI-SSAB3 with 55.17 ± 1.36 mg L−1, Halogeometricum rufum IARI-WRAK7 with 50.04 ± 1.56 mg L−1, and N. pharaonis IARI-MAAB4 with 49.69 ± 1.45 mg L−1 (as depicted in Figure 1A). Conversely, the lowest P solubilization was observed in Halorubrum sp. IARI-WRAB4 (15.98 ± 1.46 mg L−1), H. kamekurae IARI-TWAK7 (16.20 ± 1.21 mg L−1), Halopenitus persicus IARI-MAAB3 (16.30 ± 1.06 mg L−1), and H. argentinensis IARI-SOAB1 (19.68 ± 1.35 mg L−1) (Figure 1A).
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FIGURE 1
 Quantification of (A) P and (B) K solubilization and reduction in pH of the respective modified HRA media by selected isolates of halophilic archaea after 10 d of growth (LSD p ≤ 0.05: for P and K solubilization between isolates is 2.98 and 2.544, respectively; for pH reduction: for P and K solubilization between isolates is 0.133 and 0.165, respectively); (C) quantification of indole acetic acid production by the selected halophilic archaea isolates grown in HRA broth supplemented with L-tryptophane (LSD p ≤ 0.05: 1.46; error bar denotes standard deviation from the mean).


Similarly, a significant reduction in the pH of HKS broth was observed on the 10th day of incubation, compared to the initial pH of 7.4, during the solubilization of P. The highest pH reduction was observed in Haloferax sp. IARI-MAAK4, H. rufum IARI-WRAK7, and H. pelagica CDK2 (pH: 3.6), followed by Haloferax alexandrinus IARI-MAAB1 (pH: 3.68) and Natrinema sp. IARI-WRS9 (pH: 3.7) (as depicted in Figure 1B). Conversely, the least decrease in pH was observed in Halopenitus persicus IARI-MAAB3 and Haloterrigena hispanica IARI-SGAB3 (pH: 4.8), followed by Halobacterium sp. IARI-SNS3 and N. pharaonis IARI-MAAB4 (pH: 4.7) (refer to Figure 1B). For potassium solubilization in HKS broth, the halophilic archaea exhibited a range of solubilization from 27.89 ± 0.30 to 74.36 ± 2.74 mg L−1. H. pelagica CDK2 (74.36 ± 2.74 mg L−1), N. pharaonis IARI-MAAB4 (73.85 ± 1.26 mg L−1), and H. persicus IARI-MAAB3 (73.16 ± 1.84 mg L−1) solubilized a significantly high amount of K. On the other hand, H. argentinensis IARI-SOAB1 (27.89 ± 0.30 mg L−1), Haloarcula sp. IARI-DWAK3 (33.64 ± 0.39 mg L−1), and H. kamekurae IARI-TWAK7 (38.19 ± 0.06 mg L−1) solubilized a significantly low amount of K (Figure 1B).

The solubilization of Zn by six isolates in the HZS medium using ZnO as the source ranged from 4.96 ± 0.03 mg L−1 to 7.21 ± 0.29 mg L−1. Additionally, in the HZS medium with ZnCO3 as the source, three positive isolates exhibited Zn solubilization ranging from 4.91 ± 0.15 to 5.84 ± 0.25 mg L−1. Notably, H. borinquense IARI-WRAK9, H. pelagica CDK2, and Natrinema pallidum IARI-WRAK8 were capable of solubilizing both insoluble sources of Zn (ZnO and ZnCO3), whereas H. alexandrinus IARI-MAAB1, N. pharaonis IARI-MAAB4, and Halorubrum sp. IARI-WRAB4 solubilized only ZnO. Among the ZnO-containing HZS media, H. pelagica CDK2 exhibited the maximum quantity of Zn solubilization (7.21 ± 0.29 mg L−1), which was statistically comparable to Halorubrum sp. IARI-WRAB4 (7.14 ± 0.21 mg L−1) and significantly higher than IARI-MAAB4 (5.72 ± 0.09 mg L−1), IARI-MAAB1 (5.28 ± 0.98 mg L−1), IARI-WRAK8 (5.4 ± 0.20 mg L−1), and IARI-WRAK9 (4.96 ± 0.23 mg L−1). In contrast, N. pallidum IARI-WRAK8 exhibited the highest solubilization of Zn in the HZS media containing ZnCO3 (5.84 ± 0.25 mg L−1), which was significantly higher than the solubilization by H. pelagica IARI-CDK2 (5.27 ± 0.12 mg L−1) and IARI-WRAK9 (4.91 ± 0.15 mg L−1). A significant reduction in pH was observed in the HRA medium containing ZnO and ZnCO3 compared to the initial pH of 7.4, ranging from 3.6 ± 0.15 to 4.2 ± 0.13.



3.2.3. Phytohormone production (IAA production)

The ability of all halophilic archaea isolates to produce the phytohormone IAA (indole-3-acetic acid) was assessed by culturing them in HRA media supplemented with tryptophan. Out of the isolates, 17 exhibited significant production of IAA, ranging from 17.33 ± 0.43 μg ml−1 to 49.31 ± 1.79 μg ml−1 (Figure 1C). Among them, the highest amount of IAA was produced by H. rufum IARI-WRAK7 (49.31 ± 1.79 μg ml−1), which was significantly greater than the IAA production of all other isolates. Following closely were H. kamekurae IARI-TWAK7 (29.97 ± 0.79 μg ml−1), H. hispanica IARI-SGAB3 (29.06 ± 0.82 μg ml−1), and IARI-SNS3 (28.49 μg ml−1). The isolate Halolamina pelagica CDK2, which exhibited significant solubilization of P, K, and Zn, also produced IAA (23.86 ± 0.52 μg ml−1). On the other hand, Halococcus sp. IARI-BGAK2 produced the lowest amount of IAA, which was significantly measured at 17.33 ± 0.43 μg ml−1.



3.2.4. Quantification of growth and plant growth-promoting properties of a selected halophilic archaeon in halophilic soil extract broth having different salinity concentrations

Based on the obtained results, H. pelagica CDK2 was chosen for further investigation. The study aimed to assess its ability to thrive in lower electrical conductivity (EC) conditions, compared to its natural habitat with EC ranging from 75.25 to 106.7 dSm−1. Additionally, the study aimed to evaluate its potential in enhancing wheat growth by managing nutrient availability and mitigating salinity stress. A modified growth medium suitable for halophilic organisms, supplemented with soil extract (HSE), was utilized. The HSE medium was prepared with different levels of EC, as shown in Table 1. The growth and plant growth-promoting (PGP) attributes of H. pelagica CDK2 were quantified at 8-, 15-, and 21-day intervals, as outlined in Table 2. Observations revealed that H. pelagica CDK2 exhibited growth even at the lowest EC of 7.13 dSm−1. Protein production by the haloarchaeon increased significantly as the electrical conductivity (EC) of the HSE broth increased (Table 2). Notably, at the highest EC level of 119.8 dSm−1, H. pelagica CDK2 produced the highest amount of protein throughout the incubation period. Specifically, protein production reached 220.80 ± 2.35 μg ml−1, 243.25 ± 10.40 μg ml−1, and 263.45 ± 10.10 μg ml−1 at 8, 15, and 21 days, respectively (Table 2 and Figure 2A).


TABLE 2 Quantification of growth (protein mg ml−1), nutrient solubilization (P, K, and Zn), and indole acetic acid production by Halolamina pelagica CDK2 in different strength halophilic soil extract (HSE) broth.
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FIGURE 2
 Wheat seedlings growth as influenced by inoculation of Halolamina pelagica CDK2 (A) at 21st day of seed germination in soft agar having EC of 8 dS m-1, (B) effect of inoculating Halolamina pelagica CDK2 on the growth of different wheat cultivars at 45th d of seed germination, and (C) effect of inoculating Halolamina pelagica CDK2 on root architecture of different wheat cultivars at harvesting (Un-In: un-inoculated; In: inoculated).


H. pelagica CDK2 exhibited the ability to solubilize insoluble tricalcium phosphate across various salinity levels, ranging from EC: 7.13 to 30.84 dSm−1 (HSE-1 to HSE-9). The solubilization of phosphorus (P) in different EC levels of HSE broth ranged from 8.12 ± 0.19 mg L−1 (EC: 7.13 dSm−1) to 31.44 ± 1.17 mg L−1 (EC: 30.84 dSm−1) after 10 days. The lowest values of P solubilization in HSE-1 broth (EC: 7.13 dSm−1) were statistically similar to those observed in HSE-2, with a P solubilization of 8.12 ± 0.20 mg L−1 at an EC of 9.73 dSm−1. However, a significant increase in P solubilization was observed as the EC level increased from 12.20 to 30.84 dSm−1. The highest solubilization, reaching 31.44 ± 1.17 mg L−1, was observed in HSE-9 with an EC of 30.84 dSm−1. It is worth noting that the P solubilization in HSE-9 was significantly lower compared to the solubilization observed in the control HRA media (61.10 ± 2.56 mg L−1) with an EC of 119.8 dSm−1 (Table 2). A similar pattern was observed for potassium (K) solubilization, with the exception that H. pelagica CDK2 did not exhibit K solubilization in the HSE-1 medium with the lowest EC of 7.13 dSm−1. However, K solubilization began at a level of 3.67 ± 0.036 mg L−1 in HSE-2 with an EC of 9.73 dSm−1, and this was statistically similar to the K solubilization (4.92 ± 0.12 mg L−1) observed in HSE-3 with an EC of 12.20 dSm−1. A significant increase in K solubilization was observed as the EC increased from 16.59 to 30.84 dSm−1, reaching a maximum yield of 42.09 ± 1.44 mg L−1 in HSE-9 medium with an EC of 30.84 dSm−1. However, this value was significantly lower than the K solubilization observed in the control HRA medium (74.36 ± 2.74 mg L−1) with an EC of 119.8 dSm−1 (Table 2).

In contrast to P and K solubilization, the solubilization of zinc (Zn) by H. pelagica CDK2 in HSE media using ZnO as the source of Zn was not observed at lower EC levels of 7.13, 9.73, and 12.20 dSm−1 (HSE broth 1, 2, and 3, respectively). Solubilization of ZnO was statistically similar (ranging from 1.25 ± 0.02 to 2.96 ± 0.05 mg L−1) in media with ECs ranging from 16.59 to 27.63 dSm−1 (HSE-4 to HSE-8). The maximum solubilization of zinc oxide (ZnO) was observed in the medium with an EC of 30.84 dSm−1, specifically in the HSE-9 medium, with a solubilization level of 3.54 ± 0.10 mg L−1. However, this value was significantly lower than the solubilization observed in the control HRA medium with an EC of 119.8 dSm−1. Furthermore, H. pelagica CDK2 did not exhibit solubilization of zinc carbonate (ZnCO3) at any of the lower EC levels. It only showed solubilization in the medium with an EC of 30.84 dSm−1, with a solubilization level of 2.47 ± 0.015 mg L−1. Again, this value was significantly lower than the solubilization observed in the control HRA medium with an EC of 119.8 dSm−1 (Table 2).

The production of indole acetic acid (IAA) was observed at all EC levels in different HSE broths. There was a significant increase in indole-3-acetic acid (IAA) production with each subsequent increase in the electrical conductivity (EC) level, as indicated in Table 2. The IAA production in HSE broth supplemented with tryptophan ranged from 2.64 ± 0.027 μg ml−1 in HSE-1 medium with an EC of 7.13 dSm−1 to 16.98 ± 0.20 μg ml−1 in HSE-9 medium with an EC of 30.84 dSm−1 on the 10th day of incubation. Notably, the IAA production in the control HRA medium (23.85 ± 0.52 μg ml−1) was significantly higher compared to the values observed in the HSE-9 medium (16.98 ± 0.20 μg ml−1) (Table 2).



3.2.5. Effect of H. pelagica CDK2 inoculation on germination parameters of different wheat cultivars in MS-soft agar

Inoculation of the halophilic archaea H. pelagica CDK2 had a significant positive impact on the germination and initial vegetative growth of all wheat cultivars grown in soft agar (EC 8 dSm−1) compared to the un-inoculated control (Figure 2A). The germination time of the inoculated wheat cultivars was significantly reduced by 2 to 3 days compared to the germination observed on the 8th day in the un-inoculated control treatment. Among the inoculated treatments, wheat cultivar K65 exhibited the fastest germination on the 5th day, followed by germination on the 6th day for all other cultivars. On the 21st day of germination, shoot and root growth parameters were measured (Supplementary Table 3). Inoculation resulted in a significant increase in the total shoot weight and length of all wheat cultivars compared to their respective un-inoculated treatments. The maximum percent increase in shoot weight due to inoculation was observed in wheat cultivar HD2687 (21.23%), followed by HD2380 (18.48%), K65 (16.96%), HD3086 (15.93%), and KRL210 (13.78%) compared to their respective un-inoculated wheat cultivars. Similarly, the maximum percent increase in shoot length due to inoculation was observed in wheat cultivar K65 (25.19%), followed by HD3086 (21.45%), HD2687 (18.80%), HD2380 (17.82%), and KRL210 (15.24%) compared to their respective un-inoculated wheat cultivars.

Likewise, inoculation of H. pelagica CDK2 in different wheat cultivars significantly improved the root growth parameters compared to their respective un-inoculated wheat cultivars. Inoculation significantly increased the percent root weight of wheat cultivar K65 by 67.18%, followed by HD3086 (47.06%), HD2687 (46.56%), KRL210 (42.30%), and HD2380 (42.22%) compared to their respective un-inoculated wheat cultivars. The number of lateral roots also increased compared to the un-inoculated control (Figure 2A). A similar effect was observed on total root length, and inoculation of H. pelagica CDK2 significantly increased the percent root length of wheat cultivar HD2380 by 39.93%, followed by HD2687 (37.81%), HD3086 (33.53%), K65 (16.45%), and KRL210 (14.62%) compared to their respective un-inoculated wheat cultivars.




3.3. Pot evaluation of the effect of inoculating H. pelagica CDK2 in different wheat cultivars
 
3.3.1. Shoot and root parameters on the 45th day of seed germination

Inoculation with H. pelagica CDK2 significantly increased the fresh shoot biomass and shoot length of all wheat cultivars compared to their respective un-inoculated treatments on the 45th day after seed germination (Table 3). The wheat cultivar HD3086 showed the maximum percent increase in shoot biomass due to inoculation (47.13%), followed by HD2380 (32.44%), KRL210 (32.37%), HD2687 (30.65%), and K65 (28.81%) compared to their respective un-inoculated cultivars. Similarly, the maximum percent increase in shoot length due to inoculation was observed in wheat cultivar KRL210 (10.32%), followed by HD3086 (9.30%), K65 (6.32%), HD2380 (4.94%), and HD2687 (4.25%) over their respective un-inoculated treatments (Table 3). The differences in shoot biomass and shoot height in response to halophilic archaeal inoculation were statistically significant among the wheat cultivars at p ≤ 0.05. A representative image of the pot experimental study is shown in Figure 2B.


TABLE 3 Quantification of vegetative growth and yield parameters in different wheat cultivars (pot experiment) as influenced by inoculation of H. pelagica CDK2.
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In a similar manner to the shoot parameters, inoculation of H. pelagica CDK2 significantly improved root growth in different wheat cultivars compared to their respective un-inoculated treatments (Table 3). The maximum significant increase in root biomass (%) due to inoculation was observed in wheat cultivar HD3086 (52.08%), followed by HD2687 (46.41%), KRL210 (38.96%), K65 (33.66%), and HD2380 (29.10%) compared to their respective un-inoculated treatments (Table 3). The percent increase in root biomass in inoculated HD3086 was significantly higher than the percent increase observed in other wheat cultivars. Similarly, inoculation significantly increased the root length of all wheat cultivars compared to the un-inoculated treatments. The maximum root length due to inoculation was observed in wheat cultivar HD3086 (27.48 cm). Among the inoculated cultivars, KRL210, K65, and HD2380 showed statistically similar root lengths (25.16 cm, 25.06 cm, and 25.06 cm, respectively). The least increase in root length was observed in cultivar HD2687 (19.36 cm). The percent increase in root length due to inoculation was maximum in HD3086 (41.21%), followed by HD2687 (28.81%), K65 (14.63%), KRL210 (13.18%), and HD2380 (11.13%) compared to their respective un-inoculated wheat cultivars (Table 3).



3.3.2. Root architecture at harvest time

The root scanning revealed significant increases in the number of lateral roots, total root surface area, and root volume due to the inoculation of H. pelagica CDK2 compared to the un-inoculated control at harvest time (Figure 3). The root surface area in the inoculated wheat treatments at harvest time ranged from 148.34 ± 6.41 cm2 to 241.25 ± 3.91 cm2, which was significantly higher than their respective un-inoculated control treatments (ranging from 91.67 ± 1.15 cm2 to 140 ± 2.88 cm2). The overall percent increase in root surface area ranged from 51.34% to 73.75%. The wheat cultivar HD3086 showed the maximum percent increase in root surface area (73.75%), followed by K65 (71.96%), KRL210 (61.82%), HD2687 (56.42%), and HD2380 (51.34%) compared to their respective un-inoculated control (Figure 3A).
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FIGURE 3
 Root parameters of wheat cultivars: (A) root surface area (RSA) (cm2) and the total root volume (RV) (cm3) and (B) average root diameter as influenced by the seed inoculation of H. pelagica CDK2 in different wheat cultivars (UI: un-inoculated; I: inoculated). (LSD p ≤ 0.05 for root surface area: Factor A (Cultivars): 5.20, Factor B (Treatments): 3.29, Interaction AxB: 7.36; LSD p ≤ 0.05 for root volume: Factor A (Cultivars): 0.077, Factor B (Treatments): 0.042, Interaction AxB: 0.107, LSD p ≤ 0.05 for average root diameter: Factor A (Cultivars): 0.036, Factor B (Treatments): 0.029, Interaction AxB: 0.04; error bar represents standard deviation).


The total root volume of the different wheat cultivars significantly increased compared to their respective un-inoculated cultivars. The root volume in the treated wheat cultivars at harvest time ranged from 1.85 ± 0.061 cm3 to 2.91 ± 0.12 cm3, which was significantly higher than their respective control treatments (ranging from 1.20 ± 0.018 cm3 to 2.19 ± 0.080 cm3) (Figure 3A). The overall percent increase in root volume ranged from 21.97% to 131.83%. The maximum percent increase in root volume due to inoculation was observed in wheat cultivar HD2687 (131.83%), followed by HD3086 (71.96%). Cultivar HD2380, KRL210, and K65 showed significantly less percent increase due to inoculation (30.14%, 25.11%, and 21.97%, respectively) compared to HD2687 and HD3086. The average root diameter in each of the H. pelagica CDK2-treated wheat cultivars (ranging from 0.68 ± 0.026 mm to 1.76 ± 0.025 mm) increased significantly compared to their respective non-treated wheat cultivars (ranging from 0.53 ± 0.02 mm to 1.02 ± 0.021 mm) (Figure 3B). The average root diameter also varied significantly among inoculated wheat treatments. The maximum root diameter due to inoculation was observed in HD2687 (173.37%), followed by HD3086 (126.87%) and HD2380 (50.06%). In comparison, the salinity-tolerant wheat cultivars, K65 and KRL210, showed significantly less improvement in root diameter upon halophilic archaeal inoculation (20.78% and 12.89%, respectively). The overall effect of halophilic archaeal inoculation seems to be higher in salinity-susceptible wheat varieties compared to tolerant varieties.



3.3.3. Grain yield per spike and per plant

Inoculation with halophilic archaea resulted in a significant increase in both grain yield per spike and grain yield per plant across all wheat cultivars compared to their respective untreated controls (Table 3). The number of grains per spike ranged from 51.67 ± 1.15 to 58.00 ± 2.01 in the inoculated wheat cultivars, while it ranged from 44.00 ± 1.00 to 52.00 ± 1.01 in the untreated controls. The wheat cultivars HD2687 (20.00%) and HD3086 (19.69%) showed the maximum percentage increase in grain per spike due to inoculation, which was statistically similar to each other. These values were significantly higher than the percentage increase in grain yield per spike observed in HD2380 (13.98%), K65 (11.40%), and KRL210 (7.69%) compared to their respective untreated controls (Table 3).

Similarly, the grain yield per plant also exhibited a significant increase as a result of inoculation with H. pelagica CDK2 in various wheat cultivars compared to their respective untreated controls. The grain yield per plant in the inoculated cultivars ranged from 3.68 g to 5.21 g, while it ranged from 2.70 g to 3.47 g in the untreated treatments (Table 3). The increase in grain yield showed significant variation among different wheat cultivars. The wheat cultivar K65 demonstrated the highest percentage increase in grain yield (50.28%), followed by KRL210 (47.91%), HD2687 (41.85%), HD3086 (38.48%), and HD2380 (30.03%). It is worth noting that the salinity-tolerant varieties of wheat displayed a stronger response to inoculation with halophilic archaea in terms of grain yield per plant (Table 3).



3.3.4. Effect of H. pelagica CDK2 inoculation on biochemical growth parameters and osmolyte content of wheat cultivars
 
3.3.4.1. Total shoot protein and leaf chlorophyll content

The inoculation of wheat cultivars with H. pelagica CDK2 resulted in a significant increase in wheat shoot protein content across all cultivars compared to their respective untreated controls. Among the different inoculated treatments of wheat cultivars, the total shoot protein content ranged from 201.27 ± 6.92 to 205.92 ± 2.39 μg mg−1 fresh weight (FW) (Figure 4A) and was statistically similar. The wheat cultivars HD2687 (44.63%) and HD2380 (43.01%) exhibited the highest percentage increase in protein content due to inoculation, which was statistically similar to each other. HD3086 showed a significant increase of 29.37% in total shoot protein. However, the salinity-tolerant wheat cultivars, KRL210 and K65, demonstrated significantly lower percentage increases in total shoot protein, with values of 1.86% and 4.26%, respectively (Figure 4A).
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FIGURE 4
 Biochemical growth parameters and osmolyte content of the wheat cultivars (pot experiment): (A) protein (μg mg-1 FW*), (B) chlorophyll (μg g-1 FW) (C) total carbohydrates (μg mg-1 FW), and (D) proline content of different wheat cultivars as influenced by archaeal inoculation (LSD p ≤ 0.05 for protein: Factor A (Cultivars): 6.333, Factor B (Treatments): 4.007, Interaction AxB: 8.968; LSD p ≤ 0.05 for chlorophyll: Factor A (Cultivars): 0.047, Factor B (Treatments): 0.034, Interaction AxB: 0.073, LSD p ≤ 0.05 for total carbohydrates: Factor A (Cultivars): 6.097, Factor B (Treatments): 3.856, Interaction AxB: 8.613 and LSD p ≤ 0.05 for proline content: Factor A (Cultivars): 0.085, Factor B (Treatments): 0.056, Interaction AxB: 0.125; error bar represents standard deviation). *FW, fresh weight.


In addition, the chlorophyll content in different inoculated wheat cultivars also showed a significant increase compared to the untreated controls (Figure 4B). The overall increase in chlorophyll content ranged from 16.14% to 23.72% due to inoculation with halophilic archaea. The salt-susceptible wheat cultivar HD2687 displayed the maximum response to inoculation, with a 20.12% increase in chlorophyll content. This increase was significantly higher than the increases observed in HD3086 (19.40%), K65 (17.80%), KRL210 (17.61%), and HD2380 (16.14%).



3.3.4.2. Total carbohydrate and proline content

Treatment with H. pelagica CDK2 resulted in a significant increase in the total carbohydrate content of all wheat cultivars compared to their respective untreated varieties. The total carbohydrate content ranged from 92.88 ± 8.16 to 188.01 ± 3.46 μg mg−1 FW in the treated cultivars, which was significantly higher than the total carbohydrates ranging from 72.23 ± 1.11 to 159.0 ± 3.65 μg mg−1 FW in the un-inoculated treatments (Figure 4C). Among the cultivars, HD2380 showed the highest increase in total carbohydrate content (27.85%) after treatment with halophilic archaea, followed by HD3086 (22.85%), which was statistically similar to HD2687 (22.23%). KRL210 and K65 demonstrated increases of 20.93% and 15.42%, respectively. The differences in the percentage increase in total carbohydrates between HD3086, HD2687, and KRL210 were not statistically significant.

Inoculation with H. pelagica CDK2 resulted in a significant increase in proline content in different wheat cultivars, ranging from 18.11% to 31.51%. The proline content in un-inoculated wheat cultivars ranged from 3.25 ± 0.032 to 3.47 ± 0.103 μg g−1 FW, and a significant increase was observed in the respective inoculated wheat cultivars, ranging from 4.23 ± 0.011 to 4.83 ± 0.043 μg g−1 FW (Figure 4D). The highest percentage increase in proline content was observed in HD2687 (31.51%), followed by HD3086 (30.47%), KRL210 (25.97%), and HD2380 (25.49%), and the lowest increase was seen in K65 (18.11%).




3.3.5. Impact of halophilic archaea inoculation on antioxidant enzyme activity

Seed treatment with halophilic archaea resulted in a significant reduction in antioxidant enzyme activity in all wheat cultivars. The inoculated wheat cultivars showed a decrease in ascorbate peroxidase activity ranging from 20.0% to 57.43%, while the reduction in superoxide dismutase activity ranged from 59.22% to 75.99%. The decrease in ascorbate peroxidase activity was statistically similar among the susceptible cultivars HD2687 (57.43%), HD2380 (56.08%), and HD3086 (55.17%) but significantly higher than the reduction observed in the salinity-tolerant wheat cultivars, KRL210 (23.33%) and K65 (20.17%). The highest percentage reduction in SOD activity was observed in wheat cultivars HD3086 (75.99%), followed by HD2687 (75.82%), HD2380 (68.55%), KRL210 (60.16%), and K65 (59.22%) (Table 4). Catalase activity also exhibited a significant reduction in susceptible wheat cultivars (HD2380: 61.14%, HD2687: 52.86%, and HD3086: 49.89%) compared to tolerant ones (K65: 32.50% and KRL210: 29.88%) when compared to their respective un-inoculated treatments (Table 3). The overall impact of halophilic archaeal inoculation was more pronounced in susceptible wheat cultivars than in tolerant ones. This suggests that the inoculation of halophilic archaea H. pelagica CDK2 has assisted wheat cultivars in mitigating salinity stress.


TABLE 4 Quantification of antioxidant enzymes in different wheat cultivars as influenced by inoculation of H. pelagica CDK2.
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4. Discussion

A variety of cultural and metagenomic studies across the world have changed the notion that archaea inhabit only niches with extreme physiological conditions. Furthermore, they have been discovered in normal soil conditions as well as in the rhizospheres of many crops, where they help improve plant growth (Jung et al., 2020) and form an important part of soil microbiomes, phytobiomes, and plant-associated ecosystems (Gubry-Rangin et al., 2010; Yadav et al., 2019; Taffner et al., 2020; Zhang et al., 2020; Wicaksono et al., 2022). Seasonal population dynamics of halophilic archaea inhabiting the rhizosphere of wild vegetation growing in the saline Indian desert were previously reported (Yadav et al., 2019). There is evidence that rhizospheric archaea do play an important role in the growth variety of crops, such as Zea mays, Oryza sativa, Lycopersicon esculentus, and Coffea arabica, in arid and semi-arid regions (Alori et al., 2020). However, to date, no significant reports are available in the literature indicating the direct role of rhizosphere-dwelling halophilic archaea in alleviating the harmful effects of salinity in crop plants. This study investigated the plant growth-promoting characteristics of 28 different halophilic rhizosphere-dwelling archaea and evaluated the efficacy of selected isolates in promoting the growth of wheat under salinity stress. In their respective HPS, HKS, and HZS modified media, a total of 17, 21, and 6 halophilic archaeal isolates solubilized the insoluble source of P, K, and Zn, respectively, and significantly lowered the pH of medium (up to 3.6) (Figure 1). Our previous study reported that halophilic archaea solubilizing P in different sources (rock phosphate, hydroxyapatite, and tricalcium phosphate) lowered the pH of growth media, and the lowering of pH was attributed to the production of organic acids (gluconic, citric, fumaric, succinic, propionic, formic, and tartaric acid) (Yadav et al., 2015). Hence, it can be stated that the mechanism of P solubilization by halophilic archaea is similar to that of bacteria and is accompanied by a lowering of pH due to the production of organic acids. Because no significant information is available regarding the mechanisms of K and Zn solubilization by archaea, it is possible that the lowering of pH in growing media suggests a similar process. It has been reported that most of the prokaryotes lower the pH of the growth medium by the secretion of various organic acids and/or by proton extrusion (Illmer and Schinner, 1995). In a study, Siles et al. (2022) found that organic P hydrolyzing alkaline phosphatases, PhoD and PhoX, were expressed in archaea (Euryarchaeota) isolated from arable, forest, and grassland soil, indicating that P hydrolyzes around plants.

Bacteria in the plant rhizosphere produce indole acetic acid (IAA), a key plant growth hormone that regulates cell division, cell expansion, root initiation, and lateral root formation (Goswami et al., 2014; Khatoon et al., 2020). Exogenous production of IAA is not restricted to bacteria as archaea have also been found capable of producing IAA. IAA production was observed in 17 halophilic archaeal isolates, with concentrations ranging from 17.30 to 49.3 μg ml−1 IAA (Figure 1C). Halogeometricum rufum IARI-WRAK7 produced the significantly highest quantity of IAA (49.3 μg ml−1) as compared to other isolates. The first report on the production of IAA by archaea was reported in Sulfolobus acidocaldarius (White, 1987). Later, biosynthesis of IAA was also reported in the hyperthermophilic archaeon Ferroglobus placidus during the anaerobic degradation of tryptophan (Aklujkar et al., 2014). A metagenomic study revealed genetic evidence for auxin biosynthesis in archaea associated with bog vegetation, which supports archaea's plant growth-promoting activity (Taffner et al., 2018). IAA production and the solubilization of P, K, and Zn by rhizosphere-dwelling halophilic archaea indicate their crucial role in ensuring that plant nutrients are available in high-salinity ecosystems. This is an important paradigm shift in how we understand plant–microbiota interactions in hypersaline environments. For further studies, Halolamina pelagica CDK2 was selected from 28 halophilic archaea as it produced a significant quantity of IAA and solubilized P, K, and Zn in HRA media with EC 119.8 dSm−1. Most agricultural soils, however, have much lower salinity levels, and halophilic archaea must be able to grow in low-to-moderate salinity levels and be able to withstand hypo-osmotic conditions genetically and biochemically. The halophilic archaea used in this study were isolated from the rhizosphere of wild grasses, non-rhizospheric soil, sediments, and saline water bodies having different salinity levels (EC ranging from 1.19 to 106.7 dSm−1). Our previous study demonstrated that isolates from rhizospheric soil samples with less salinity than bulk soil, sediments, or water samples could grow in a defined medium with a NaCl concentration of 10 to 25% but were not able to produce measurable growth below 10% (Yadav et al., 2019). In the past, several methods have been developed for culturing un-culturable bacteria that mimic the physicochemical conditions of natural habitats (Vartoukian et al., 2010). The concept of using soil extract in the growth medium is one such strategy to culture bacteria (Taylor, 1951). In a study, an intensive soil extract medium was successfully used to isolate previously uncultured bacteria and new taxonomic candidates, which accounted for 49% and 55% of the total isolates examined, respectively (Nguyen et al., 2018). In this study, a modified growth medium (halophilic soil extract medium) (HSE medium) with different levels of electrical conductivity (7.13 to 30.84 dSm−1) was developed using soil extract to test the ability of H. pelagica CDK2 to solubilize nutrients (P, K, and Zn) and produce IAA. H. pelagica CDK2 grew in the HKS broth over a wider range of ECs (7.13 to 30.84 dSm−1), and its growth (protein μg ml−1) showed an increasing trend as the EC of the HKS broth increased (Table 2). It also produced IAA and solubilized the P, K, and Zn in HSE broth (HSE-1 to HSE-9) and different levels of EC (7.13 to 30.84 dSm−1) (Table 2). The study showed that the selected isolate was capable of growing and exhibiting PGP attributes in HSE broth at low, moderate, and high EC. Oren (2014) reported that halophilic archaea belonging to the class Halobacteria possess wider adaptability to salinity levels for growth (1.5 M NaCl to saturation). In another study, halophilic archaea (Haloferax sp. and Halogeometricum sp.) were isolated using low salinity (2.5% NaCl) growth media, and it was concluded that they can grow at all salinity levels that are lower than those considered minimum for halophilic archaea (9–10% w/v NaCl) (Purdy et al., 2004). With the ability to grow at a wide range of salinities, H. pelagica CDK2 with PGP attributes was evaluated further in plant–microbe interaction studies. To date, no significant findings are available on plant–microbe interaction studies involving archaea and/or halophilic archaea. In the soft agar (EC 8 dsm−1) experiment, the inoculation of the halophilic archaea H. pelagica CDK2 significantly reduced the germination time by 2–3 d and improved the initial vegetative growth of all the wheat cultivars as compared to un-inoculated treatment (Figure 2A). Further in a pot experiment (soil with EC 8 dSm−1), inoculation of H. pelagica CDK2 in two salt-tolerant (K65 and KRL210), and three susceptible wheat cultivars (HD2380, HD3086, and HD2687) improved the vegetative parameters and grain yield per plant (30 to 50%) of wheat as compared with the un-inoculated treatment. Several researchers have previously reported the improvement in plant growth and yield parameters of plant growth under saline conditions by inoculating with different salt-tolerant bacterial isolates such as Azospirillum brasilense (Nabti et al., 2010), Pseudomonas fluorescence, Bacillus pumilus, and Exiguobacterium aurantiacum (Kakar et al., 2016; Sardar et al., 2023). A significant increase in wheat shoot protein content was observed across different salinity-susceptible wheat cultivars compared to salinity-tolerant wheat cultivars (1.86 to 4.26%) and un-inoculated treatments. The protein content ranged from 44.63% to 29.37% (Figure 4A). Treatment of salinity-stressed wheat plants with halotolerant Bacillus safensis, B. pumilus, and Zhihengliuella halotolerant isolated from halophytic range land plants increased leaf crude protein by 30%, water-soluble sugar content by 34%, and metabolic energy by 37% (Amini et al., 2021). Rajput et al. (2018) and Nawaz et al. (2020) both reported a significant improvement in total sugar content, protein, and chlorophyll synthesis due to the inoculation of halotolerant PGPR. After inoculation with H. pelagica CDK2, a significant increase in the total carbohydrate content of all wheat cultivars was observed compared to their respective un-inoculated wheat varieties. The total carbohydrate content ranged from 92.88 ± 8.16 to 188.01 ± 3.46 μg mg−1 FW in treated cultivars (Figure 4). Inoculation of halotolerant plant growth-promoting microbes is known to alleviate salinity stress in plants by modulating membrane integrity, proline accumulation, and reactive oxygen species scavenging and activating antioxidant mechanism (Sandhya et al., 2010; Upadhyay et al., 2012; Yogendra et al., 2015; Etesami and Noori, 2019). In this study, inoculation of halophilic archaea significantly reduced the antioxidant enzyme activity (ascorbate peroxidase, superoxide dismutase, and catalase) and improved the proline accumulation in all the wheat cultivars (Table 3 and Figure 4). Proline protects plant cells from osmotic stress damage and does not interfere with cellular machinery (Iqbal and Nazar, 2015). An increase in proline accumulation in different crops grown under salt stress due to the inoculation of halotolerant plant growth-promoting bacteria has been reported by various workers (Nawaz et al., 2020; Amini et al., 2021). This is the first report of halophilic archaea inoculating plants under salt stress and resulting in a reduction in antioxidant enzyme activity and an improvement in proline accumulation. No significant reports are available in the literature indicating this.

Archaea are still an under-detected and little-studied part of the plant rhizosphere, and their contributions to plants' health remain mostly unknown. Our data provide the first evidence of the importance of halophilic archaea as a functional component of the plant rhizosphere. In a previous study, the presence of certain plant growth-promoting and salinity resistance genes in H. pelagica CDK2 was reported through genome sequencing (Gaba et al., 2017); accession number: LGUC00000000) and transcriptome analysis (unpublished report; NCBI Accession number SRX13131461 and SRX13131462). The comprehensive analysis of the genome, genes, and pathways of halophilic archaea Halolamina pelagica CDK2 revealed the presence of genes for phosphate uptake and metabolism (polyphosphate kinase, alkaline phosphatase, phosphate ABC transporter, phosphate transport system regulatory protein, and pyrophosphate kinase), osmolyte biosynthesis (trehalose synthase and trehalose phosphatase), and antioxidant enzymes (superoxide dismutase and catalase peroxidases; Gaba et al., 2022). Through plant–microbe interaction studies, the genomic insights obtained in the previous report were corroborated. Inoculation of halophilic archaeon H. pelagica CDK2 showed greater potential in improving the growth and yield of susceptible wheat cultivars as compared to tolerant ones and decreased the activity of antioxidant enzymes. Hence, the inoculation alleviated the harmful effects of salinity on plants, allowing them to grow more efficiently. More efforts are needed to cultivate plant-associated archaea and to learn more about plant-associated archaeal diversity.



5. Conclusion

The potential of halophilic archaea isolated from the rhizosphere of wild vegetation in improving wheat growth by alleviating the effects of high salinity was investigated in this study. This is the first report highlighting the prospects of using rhizosphere-dwelling halophilic archaea in alleviating salinity-associated abiotic stress in wheat. The plant growth-promoting halophilic archaeon Halolamina pelagica CDK2 demonstrated tremendous potential not only in improving the vegetative growth and biochemical parameters of different wheat cultivars but also in improving osmolyte levels. The use of H. pelagica CDK2 also helped plants in reducing the negative effects of salinity stress by significantly lowering the level of antioxidant enzymes. As a result, this halophilic archaeon can be further evaluated in field trials before being included in various biofertilizer development programs for managing abiotic stress in agriculture.
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The uncontrolled use of chemicals, urban wastes, nuclear resources, mining, petrochemicals and disposal of sewage sludge only a few anthropogenic activities that have contributed to the rapid industrialization and severe heavy metal contamination of soils and waterways. Both inorganic and organic pollutants, such as heavy metals, pesticides, petroleum hydrocarbons, and polycyclic aromatic hydrocarbons, can impact the composition and functionality of soils. Soils and plants are affected by pollution, thus, pose a dire threat to food security. This directly renders the soil unuseful for agricultural purposes, destroys the beneficial microbes in the soil, reduces the soil organic matter content, causes the imbalance of soil nutrients, affects plant growth and the interaction between the plants and microbes, subsequently affecting the soil and crop productivity. In addition, environmental pollutants affect human health, leading to different illnesses such as headaches, allergies, coughs, depression, chest pain, nausea, diabetes, liver problems, cancers, eye problems, and so on. Remediation (physical, chemical or biological) is therefore necessary to reduce the impacts of these pollutants in the environment. Bioremediations involve using natural products from plants, microbes, and so on, to detoxify the environment and make it useful or productive again. A key type of remediation is the Remediation by Enhanced Natural Attenuation (RENA) which involves the turning of soil to promote microbial proliferation, aeration, nutrient availability, moisture and consequently, the degradation of pollutants. This review discusses the technology of RENA, the associated microbes, the mechanism of its action, challenges associated with its usage and recommendations to advance the use of RENA for a sustainable environment.
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1 INTRODUCTION
The soil is often polluted by different agents, such as heavy metals from mining, agricultural, petrochemical and other industries, including radiological, nuclear and other anthropogenic pollutants (Li et al., 2019b; Chaudhary et al., 2022) (Table 1). These agents negatively affect the soil, plants, organisms and humans, and have necessitated the need for remediation (Tyagi and Kumar, 2021). Many compounds arising from different pollutants have been reported to be very dangerous to humans. Acetaldehyde causes lesions to the nervous system, benzaldehyde causes irritation to the respiratory system, eyes, and skin and reduces the functioning ability of the brain, while polychlorinated dibenzo-dioxin causes cancers, respiratory system, eye, and skin irritation (Alabi et al., 2019). In animals, plastic wastes have been reported to disrupt the digestive systems of cattle (Evode et al., 2021). Equally, plant growth and root development have been reduced as a result of hydrocarbon pollutants (Hussain et al., 2019). These have called for a need for remediation. Remediation is the removal or reduction of the effects of pollutants in the environment; remediation can be carried out physically, chemically or biologically (Ayangbenro et al., 2018) (Figure 1). The physical and chemical methods involve soil washing, chemical extraction, soil treatment, supercritical fluid oxidation, encapsulation, stream extraction, chemical treatment, thermal treatment and volatilization (Riser-Roberts, 2020). The biological method, referred to as bioremediation, is a process by which wastes and toxic materials are organically removed or rendered less harmful into the environment (Ojuederie and Babalola, 2017; Ayangbenro and Babalola, 2018). This utilizes agents such as plants, microbes and nanoparticles of biological sources (Figure 1), which are more cost-effective compared to the other methods (Tyagi and Kumar, 2021; Chaudhary et al., 2023b; Bhandari et al., 2023). Remediation by enhanced natural attenuation (RENA) is a type of remediation process used to control soil pollutants by turning the soil to promote microbial proliferation, aeration, nutrient, moisture and degradation (Okoye et al., 2019). RENA is mainly used to control pollution caused by crude oil through different microbes such as those belonging to the genera Achromobacter, Azospirillus, Ochrobactrum, Bacillus, Alcaligenes, Lysinibacillus, Pusillimonas, and Proteus (Chikere et al., 2017). These microbes reduce the environmental pollutants by using them as carbon sources or by immobilizing them, thus making them unavailable for plant uptake (Chikere et al., 2017). Different organic and inorganic substrates are applied to improve the ability of microbes used in RENA (Kumar et al., 2021b; Mafiana et al., 2021; Parveen et al., 2022). Microbes produce different enzymes such as lipase, hydrogenase, laccase, etc., which help to degrade a wide range of pollutants (Bhandari et al., 2021). This is a very important mechanism of pollutants which should be well explored, especially in cases where an environment is polluted with more than one contaminant. The efficiency of RENA bioremediation can be altered by different factors which include the environmental pH, oxygen, temperature, and nutrient (Al-Hawash et al., 2018b). These factors affect the microorganisms directly and in cases where they are unfavorable the microbes that are expected to carry the bioremediation process die. RENA can be applied on both dry and swampy land areas, in cases where bioremediation is carried out in a swampy area, different steps are taken. Firstly, the stumps on the land has to be removed before the baseline studies are carried out (this is to ensure that the proper method of bioremediation is utilized (Orji et al., 2012). These procedures are followed by soil tillage, nutrient application and the monitoring of remediation. In cases where baseline studies are not carried out on the soil, the extent of pollution might not be known. For instance, in cases of underground water pollution, which leads to an assumption that RENA is not an efficient bioremediation procedure (Adesipo et al., 2020). The aim of this review is to discuss the technology of RENA, the different microbes associated with its usage, its mechanism of action, challenges associated with its application and recommendations to advance its usage to promote a sustainable environment.
TABLE 1 | Different pollutants and their toxicity effects.
[image: Table 1][image: Figure 1]FIGURE 1 | Types of bioremediation.
2 ENVIRONMENTAL POLLUTANTS AND THEIR NEGATIVE IMPACTS
There are different types of soil pollutants which have different detrimental effects on the environment.
3 TYPES OF BIOREMEDIATION
To remove pollutants arising from heavy metals such ascadmium, copper, nickel, mercury, organic pollutants and hydrocarbons from the soil, different plants, microbes, and nanobiomaterials have been utilized (Masowa et al., 2022). Therefore, according to their agents, bioremediation can be classified as a plant, microbial and nanobiomaterial remediation.
3.1 Phytobioremediation
Phytobioremediation (phytoremediation), is a process by which plants and the microbes associated with them (the plants) helps to reduce toxic pollutants in the environment. This mechanism of pollutant reduction is a cost-effective and environment friendly, it stabilizes, immobilizes, degrades and uptake pollutants from the environment (Kafle et al., 2022). Plants are capable of removing antibiotics, heavy metals, pesticides, radionuclides and organic pollutants from the environment (Kafle et al., 2022). Different plants have been reported to be involved in phytoremediation, these include Parthenium hysterophorus, Melilotus indicus, Cnicus benedictus, Anagallis arvensis, Verbesina encelioides, Dalbergia sissoo, Conyza canadensis, Lathyrus aphaca, Stellaria media, Xanthium strumarium, Chenopodium album, Medicago polymorpha, Amaranthus viridis, Mirabilis jalapa, Chenopodiastrum murale, Prosopis juliflora, Chrozophora tinctoria, C. tinctoria, Cerastium dichotomum and Arenaria serpyllifolia (Naz et al., 2022).
Jiang et al. (2019) and Parsamanesh and Sadeghi (2019) reported that plant species, Medicago scutellata and Mulberry sp. were able to bioremediate cadmium successfully from the soil. Similarly, other plants have been reported to bioremediate heavy metals; for instance, Cassia tora was reported to remediate chromium (Patra et al., 2021), while Polypogon monspeliensis and Rumex dentatus remediated nickel from the soil (Samreen et al., 2021). The different types of phytoremediation that exist include phytoextraction, phytostabilization, phytofiltration and phytovolatilization (Shen et al., 2022). Phytoextraction is the process by which metalloids are extracted from contaminated soil, with the aid of accumulator plants (Yu et al., 2022). The phytostabilization process, uses plants that are resistant to metals to reduce he availability of pollutants in the environment (Kumar et al., 2023). Phytofiltration is the application of plants and the microbes associated with their roots in the removal of heavy metals from the environment (Akhtar et al., 2019). Phytovolatization is the process by which wastes are taken off the environment through plants and they are transformed into gaseous state, which is released into the atmosphere (Pidlisnyuk et al., 2021). These processes are affected by the bioavailability of heavy metals and biomass of plants (Shen et al., 2022). The efficiency of phytoremediation is affected by stomatal conductance, the species of the microorganism present, intensity of light, plant species involved (its metabolism, photosynthesis and absorption rate) and temperature (Wei et al., 2021).
3.2 Nanoremediation
Nanoremediation is the application of nanomaterials in the treatment of environmental pollutants, especially on the soil and in water (El-Ramady et al., 2020). The different types of nanoparticles used in bioremediation, they include zinc nanoparticles, iron nanoparticles, aluminum nanoparticles, gold nanoparticles, titanium nanoparticles, carbon nanoparticles, and silver nanoparticles (Alazaiza et al., 2021). Nanoparticles, especially iron nanoparticles, are very active in soil bioremediation. The mechanism of nanoremediation include catalysis, adsorption, photodegradation and filtration (Mukhopadhyay et al., 2022). In a study carried out by Ji et al. (2023), diatomaceous earth nanoparticles were combined with polyethyleneimine nanoparticles to remove copper pollutants arising from acid mine drainages. Equally, nano biosurfactants have been reported to be capable of cleaning up toxic wastes from the soil arising from fertilizers, pesticides, herbicides, insecticides and heavy metals (Boregowda et al., 2022). Research carried out by Cao et al. (2022) showed that iron oxide nanoparticles could bioremediate cadmium and lead. These nanobiomaterials have been proven to be very efficient in the removal of toxic chemicals and heavy metals from the environment, particularly, the soil (Torimiro et al., 2021 (Chaudhary et al., 2023a)). However, a few drawbacks like adverse effects on soil microorganisms and the reduction in the activity of these nanoparticles as they age have been reported (Cecchin et al., 2017). Since the reduction in the efficiency of these nanoparticles with age can impact negatively their shelf life when made into commercial products, it is necessary that more research should be channeled toward strategies to increase their stability and lessen their harmful impacts on beneficial soil microbes to enhance their applicability as agents of bioremediation. The efficiency of nanoparticle as agents of bioremediation can be improved by fortifying them with polymers, zeolites, biochar, activated carbon and clay minerals (Mukhopadhyay et al., 2022).
3.2.1 Microbial bioremediation
Microbial remediation is the use of microbes to reduce the concentration of heavy metal pollutants in the environment (Jin et al., 2018). Microorganisms such as fungi, algae and bacteria have been used to bioremediate polluted soils (Ndeddy Aka and Babalola, 2016; Karthika et al., 2017; Ndeddy Aka and Babalola, 2017; Thesai et al., 2021; Kumar et al., 2022) (Table 2). The efficiency of these organisms is affected by the temperature of the environment, substrate where the microbes are getting their nutrient from and the pH of the environment (Jin et al., 2018). A report by Ghosh et al. (2021) revealed that generally, bacteria species like Brevibacterium iodinum, Pseudomonas aeruginosa, Pseudomonas florescens and Alcaligenes faecalis, as well as the fungi species like Saccharomyces cerevisiae are very active in the bioremediation of the soil; the researchers equally reported the effectiveness of Anaeromyxobacter sp., Comamonas sp., Saccharibacteria sp., Desulfomicrobium sp., Acinetobacter sp., Zoogloea sp., Sphingobiun sp., Terrimonas sp. and Thiobacillus sp. in the bioremediation of organic compounds such as pyridine, indole and quinolone. El-Ansary and Ahmed-Farid (2021) as well reported the ability of algae species such as Scenedesmus obliquus, Nostoc muscorum, Chlorella vulgaris and Anabaena oryza to degrade oxyl nematicide. These organisms usually use these pollutants as carbon and energy sources and convert them into water, microbial biomass, metabolites and carbon dioxide, which are generally not as toxic as the initial pollutants but could be useful to the soil health and plants alike (Tyagi and Kumar, 2021).
TABLE 2 | Different microorganisms used in bioremediation.
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3.2.1.1 Bacterial bioremediation
Bacteria are important agents of bioremediation, they are capable of removing polyaromatic, aromatic and aliphatic hydrocarbons (Table 2). The optimum conditions required for bacterial remediation include a temperature ranging between 30°C and 40°C, a carbon/nitrogen and phosphorus ratio of 100; 20; 1, a pH range of between five to eight and an oxygen level of between 10 and 40 percent (Kebede et al., 2021). Bacteria involved in bioremediation can live in a cooperative or competitive relationship, when in a cooperative relationship, the biodegradation process is enhanced; however, when they are in a competitive relationship, the biodegradation process is reduced (Kebede et al., 2021). Resident bacteria are more competitive in hydrocarbon degradation compared to the introduced species, especially in a long term (Kaminsky et al., 2019). Bacteria undergo genetic modifications to maximally remediate hydrocarbons, otherwise, they produce enzymes. Therefore, more research should be carried out to focus on the discovery of more enzymes that can successfully bioremediate complex pollutants.
3.2.2 Fungal bioremediation
Different fungal species have been successfully used as agents of bioremediation (Table 2). Fungi degrade pollutants by intracellular compartmentalization, organic acid precipitation, metal-binding proteins, active transport, metabolite, and inorganic acid precipitation (Li et al., 2020). When different metabolites and compounds are released by fungi, they help to immobilize and mobilize metal pollutants in the soil. In addition, fungi produce melanin and polymers which have oxygen groups which include carbonyl, carboxyl, phenolic hydroxyl, methoxyl, and alcoholic hydroxyl which are used to clean up pollutants in the environment (Li et al., 2020). They are capable of degrading a wide range of substrates such as pesticides and hydrocarbons, due to their ability to tolerate and survive in adverse environments (Mostafa et al., 2022).
3.2.2.1 Algal bioremediation
Algaebioremediation happens majorly through two different mechanisms, the first is adsorption, while the second is adsorption (Dwivedi, 2012). Adsorption involves the adherence of pollutants to the surface of algae, the process takes place very fast and is independent of the cell metabolism. Adsorption is a two-way process, initially, the pollutants get adsorbed to the surface of the cell, and subsequently, they are moved into the cytoplasm, in a process called chemisorption (Liu et al., 2021). Interestingly, algae can bioremediate pollutants both in their living and dead states, but the living cells have the ability to bioremediate pollutants better than the dead ones (Salama et al., 2019). The ability of algae in bioremediation is affected by different factors such as pH, the effect of counter ion, temperature, ionic strength and contact time (Salama et al., 2019). If these factors are optimized, the maximum potentials in the bioremediation process of algae would be tapped into.
4 MECHANISM OF RENA
RENA is a modern concept of microbial-assisted remediation, and it is gaining more insights because it enhances the function and the ability of the microbes in bioremediation. It is a more affordable method when compared to other remediation methods which include washing of soils and burning and helps to ensure maximum remediation as the microbes involved are able to completely break down pollutants such as hydrocarbons (Kanwal et al., 2022). Pollutants in the soil can be degraded by the RENA technique through different mechanisms, which include biodegradation, biotransformation (bioaugmentation) and bioaccumulation (bioassimilation) (Oghoje et al., 2021) (Figure 2).
[image: Figure 2]FIGURE 2 | Mechanism of RENA.
4.1 Bioassimilation
Bioassimilation, which is also referred to as bioaccumulation is the process by which microbes accumulate heavy metals in their body, making them unavailable for uptake by the plant; for instance, the sorption of chromium, cadmium and lead by Panteoa species and Pseudomonas koreensis have been reported (Ayangbenro and Babalola, 2017; Ayangbenro et al., 2019; Oghoje and Ukpebor, 2020) (Table 3). Bioaccumulation is a bioremediation process that consumes energy and also serves as a basis for methylation and redox in microbial remediation (Yin et al., 2022). When bacterial cells are used, bioaccumulation includes transport mediated by carriers, ion pumps, lipid infiltration and endocytosis (Yin et al., 2022). The pollutants removed from the environment through this method is attached to the cellulose derivatives, chitin and polysaccharides active sites of microorganisms through the physical and chemical binding with biofunctional groups (Tarfeen et al., 2022). This method involves forces such as the ion exchange processes, electrostatic attraction, covalent bonding, Van der Waal’s forces, and microprecipitation, while the functional groups involved include the sulfhydryl, hydroxyl, phosphonate, carboxyl and amine on the active cell component (Tarfeen et al., 2022).
TABLE 3 | Mechanism of microbial bioremediation.
[image: Table 3]5 BIOTRANSFORMATION
Biotransformation, also called bioaugmentation, is the conversion of a pollutant from one oxidation state to another. In bioaugmentation, microbes that are capable of degrading hydrocarbons but are not residents in the soil are introduced from external sources to supplement the resident organism, mostly bacteria and fungi (Essabri et al., 2019; Sayed et al., 2021) (Table 3). Sulfur-reducing bacteria such as Sulfolobus sp., Acidiphilium cryptum, T. thioparus, A. cryptum, S. acidophilus, Citrobacter sp., Thiobacillus denitrificans, Acidithiobacillus ferrooxidans, Sulfobacillus thermosulfidooxidans, At. caldus, Gallionella ferruginea, At. thiooxidans, Ferroplasma acidiphilum, Clostridium sp., Acidianus brierleyi, and Leptospirillum ferrooxidans have been reported to be potent in the mobilization and elimination of heavy metals from mines by dissolution, precipitation and retrieving safer metals from them (Schippers et al., 2010; Martins et al., 2011; Anawar, 2015; Ayangbenro et al., 2018). The bioaugmentation procedure is a fast, easy and effective method of RENA using different agents such as bacteria, algae, archaea and fungi (Ghosal et al., 2016; Kong et al., 2018).
6 BIODEGRADATION
Biodegradation is the process by which microbes use the carbon in petroleum pollutants as a source of energy to disintegrate the hydrocarbon compounds into an environment-friendly form, such as carbon dioxide and water, with the aid of genes and enzymes produced by the microbes (Arumugam et al., 2017; Ahmed et al., 2018; Arumugam et al., 2018; Masowa et al., 2018; Karthika et al., 2020; Masowa et al., 2021; Priya et al., 2022) (Table 3). Adlan et al. (2020) reported the biodegradation of crude oil paraffin wax using Anoxybacillus geothermalis, Geobacillus kaustophilus, Parageobacillus caldoxylostilyticus, Geobacillus jurassicus, Geobacillus stearothermophilus and Geobacillus thermocatenulatus where around 70% degradation efficiency was observed in crude oil; the organisms involved in the degradation produced enzymes such as esterase, alkane monooxygenase, lipase and alcohol dehydrogenase.
When microbes use pollutants as carbon sources, they do so through three different techniques, namely, biostimulation, bioaugmentation and bio-facilitation (Azubuike et al., 2016; Oghoje et al., 2021). Bio-facilitation is a process by which the physiochemical content, and oxygen level, among others, in the soil are altered to make the inherent soil microbes more active to access pollutants. An example of this technique is land farming which involves the spread of evacuated soil and the tilling of soils where pollutants are found to increase oxidation (Oghoje et al., 2021). For instance, nutrients from organic wastes, synthetic fertilizers, humic acids, nanomaterials and so on, can be added to enhance microbial growth (Bianco et al., 2020). Bianco et al. (2020) carried out research to assess the ability of fresh organic municipal solid wastes, combined macro and micronutrients and digestate to increase the metabolism of microbes in the remediation of pyrene, anthracene, fluoranthene and phenanthrene. Other agents of biostimulation include blood meal which is a form of fertilizer that releases nutrients slowly. It is highly rich in nutrients such as tryptophan, lysine, histidine, leucine and valine, and can be used in the degradations of dichlorodiphenyltrichloroethane and polycyclic hydrocarbons (Wang et al., 2017). Biostimulation can be carried out using composting; it is cost friendly as it employs agents like manures, activated sludge and maple leaves, which will increase the population of microbes in the soil; compost from green forest debris and sewage sludge was able to reduce polycyclic hydrocarbons pollution (Guo et al., 2020).
7 ENZYMES USED IN RENA
Scanty information is available on the microbial enzymes used in RENA; however, enzymes like laccase, hydrolase, cytochrome P450, protease, dehalogenase, lipase, dehydrogenase and so on, have been reported to be useful (Adlan et al., 2020). Proteases enhance the disintegration of peptide bonds in a protein. Their ability to degrade a wide range of substrates and their unique catalytic mechanism makes them a very effective method of bioremediation (Bhunia and Basak, 2014). Examples of microbes that produce proteinases are Aspergillus sp., Cladosporium sp., Trichoderma sp., Bacillus sp. and Penicillium sp. (Kumar and Jain, 2020). Cytochrome P450 enzymes are monooxygenases (haem) that can bioremediate pollutant compounds by reducing an atom to water and inserting an atom from molecular oxygen into the substrate (Behrendorff, 2021). White rot fungi have recently been used extensively in degrading pollutants, owing to the cytochrome enzyme produced by them (Lin et al., 2022); cytochrome P450 degrades xenobiotics using chemical transformation techniques such as dehalogenation, epoxidation, dealkylation and aliphatic hydroxylation (Bhandari et al., 2021). Laccases are enzymes that oxidize compounds in pollutants, leading to degradation and bioremediation. They are majorly observed in plants and fungi but lately, researches are emerging about their production by bacteria (because of their ability to survive at high temperatures and in different organic compounds), although their efficiency is determined by their substrate tolerance, selectivity and the center of their catalysis (Zhang et al., 2020). Dai et al. (2020) reported the ability of laccase from bacteria to degrade pollution resulting from heavy oil by 66.5% in 100 days. Remediation using dehydrogenase happens through reductive, oxygenlytic and hydrolytic mechanisms; oxygenlytic mechanism occurs when one or two atoms of oxygen is incorporated into a substrate, hydrolytic mechanism occurs with the water molecule acts as a cofactor when the hydroxyl group replaces the halogen substituent in SN reaction. In contrast, in the reductive mechanism, under aerobic conditions, hydrogen substitutes the halogen using the organohalides as the terminal electron acceptor (Bhandari et al., 2021). Li et al. (2019c) unraveled a novel hydrolase enzyme from Bacillus amyloliquefaciens to degrade soil and food polluted by carbendazim. Equally, Ugochukwu et al. (2008) carried out a research and reported that Bacterium aliphaticum, Candida tropicalis, Bacillus megaterium, Pseudomonas maltiphilia, Bacillus cereus, Botryodiphodia thiobroma, Edwardsiella tarda, Fusarium vertiaculloide, Cryptococcus neofomas, Aspergillus niger and Fusiarum oxysporum can bioremediate crude oil pollution due to the production of lipase.
Six Esterases which are produced by Bacillus sp. are useful in degrading polyesters, plastics and polyurethane (Bhatt et al., 2019). Nitrilases were used to remediate cyanide and can be produced by different yeast, bacteria and fungi (Gong et al., 2012; Park et al., 2017). Similarly, peroxidases produced by Sphingobium sp. are used to degrade phenols, lignin, methoxybenzenes and manganese oxide (Wang et al., 2009; Sharma et al., 2019). Dehydrogenase which is an active enzyme utilized for respiration by microbes was observed to be very helpful in the measurement of the total oxidation activity during the bioremediation of diesel (Lee et al., 2011). Manganese peroxidase which was sourced from fungi was reported to be positively correlated with the complete biodegradation of petroleum hydrocarbon (Košnář et al., 2019). Out of all the enzymes produced by fungi, oxidoreductases and hydrolases have a broad spectrum, with the ability to degrade a wide variation of pollutants (Kumar et al., 2021a). In their natural environment, microbes produce enzymes which are very active in the degradation of environment pollutants, however, the further utilization of these microbes has proved to be very challenging (Sharma et al., 2018). Sometimes, compaenzyme production in the lab can be complicated, as microbes tend to act differently in the lab red to the when they are in their natural environment. In situations where they are able to produce the enzymes in the laboratory, technologies such as enzyme immobilization, nanozymes and recombinant technology are used to multiply and/or stabilize the enzymes so that they can be further used on the field (Meng et al., 2019; Kumar et al., 2021a). Practical application of RENA at the field level.
On the field scale, RENA is used to remove pollutants from the soil and water, using methods such as stabilization, chemical transformation, dilution, volatilization dispersion and biodegradation (Naeem and Qazi, 2020). RENA has been used to clean up different oil spillage in groundwater and soil. In Nigeria, RENA was reported to be used in the remediation of oil spillage in Emohua community, Rivers State by adding top soils to the polluted site and frequent aeration (Chikere et al., 2019). A significant reduction was observed in the petroleum hydrocarbon from 8,635.68 mg/kg to 677.2 mg/kg after 56 days on this site. The bacteria involved were Pseudomonas sp., Xenorhabdus sp., Bacillus sp., Myroides sp., Proteus sp., Staphylococcus sp., Pectobacterium sp., and Providencia sp., while the fungi species which include Fusarium sp., Penicillium sp., Meyerozyma sp., and Candida sp. were used. Generally, topsoil contains many bacteria and fungi species and nutrients irrespective of organic and inorganic nutrient amendments. Hence, mixed plowing of nutrient-rich topsoil with contaminated soil can increase soil nutrient parameters necessary for microbial growth (Celestina et al., 2019) Similarly, in the Ikarama community, Bayelsa state, Nigeria RENA was used to clear oil spillage in a period of 60 days, by burning the polluted site’s vegetation and plowing with a tractor (Ezekoye et al., 2018). This process utilized different organisms such as Acremonium sp., Phoma sp., Candida sp., Scopulariosis sp., Aspergillus sp., Sepedonium sp., Cladophialophora carrionii, Gliocladium sp., Paecilomyces variotii, Trichophyton tonsurans and Geotrichum cardidum (Ezekoye et al., 2018). The effective usage of RENA on the field has been ascertained; however, the technology might be ineffective when practices such as fertilizer application, tilling and windrow are used, this is as a result of the presence of non-biodegradable residues in the soil beyond where there is aeration. Other challenges with this technology include a delayed response to oil spillage emergencies, which enhances the penetration of oil to a region beyond the soil which can be reached by turning (Mafiana et al., 2021).
Chicken manure digestates have been reported to serve as a source of nutrients when RENA technology is used in the removal of diesel on farmland (Oghoje et al., 2021). When 10% and 20% of the chicken manure digestate were used, about 50% and 58% of the diesel were removed from the environment. Spent mushroom substrate also have been reported to be used to serve as a source nutrients for four different fungal species, namely, Agaricus bisporus, Pleurotus eryngii, Pleurotus ostreatus, and Lentinula edodes, which were used to remediate petroleum hydrocarbon. The remediation process was evaluated for 40 days and the aliphatic and aromatic hydrocarbon were observed to reduce from C10 to C35 (Antón-Herrero et al., 2022).
7.1 Molecular mechanism of RENA
Identification of the microbes involved in RENA bioremediation is very necessary as it will help to understand better, the mechanism and enzymes used in the remediation of different heavy metals, organic pollutants, and hydrocarbons and also enhance the remediation process. Different molecular methods are used to study the microbes involved in the bioremediation processes such as RENA, as the methods (proteomics, transcriptomics, metagenomics and metabolomics) help to elucidate non-culturable organism, and also reveals the genes involved in bioremediation process (Rawat and Rangarajan, 2019). Each of these methods have an advantage of others, for instance, in a case where the quantity of the total mRNA is required, transcriptomics is used; however, this method does not reveal other expressed protein as well as their biological activity and expressed protein. Metagenomics is a method used to study the taxonomic and functional structure of different microbes (Pande et al., 2020; Hualpa-Cutipa et al., 2023). Proteomics is the study of the entire protein that are produced or modified by different microorganism (Nascimento et al., 2022). Transcriptomics deals with use of the total set of mRNA and the noncoding RNA transcripts which are produced by microbial cells, it controls the physical expression and acts as a connector between protein and DNA (Bogati and Walczak, 2022). Metabolomics is the study of all the primary and secondary metabolites produced by microbes, and in RENA, it involves microbes that are involved in RENA remediation (Wu et al., 2022). Hence, to have a detailed knowledge of the microbes present during RENA remediation, it would be helpful to combine different omics processes instead of just one approach.
8 FACTORS AFFECTING THE EFFICIENCY OF RENA
The application of RENA to biodegrade pollutants is hindered by several factors ranging from the availability of microbes capable of degrading the pollutants to pH, temperature, nutrients and oxygen. When the diversity of microbes that can degrade microbes in the soil is limited, the biodegradation process is limited (Al-Hawash et al., 2018b). This is why sometimes nutrients are added to the environment, which will promote the growth and activities of the desired organism.
Bioremediation using RENA can be carried out in the presence and absence of oxygen, while in the presence of oxygen, it is referred to as aerobic condition the lack of oxygen, it is termed anaerobic condition; in the latter, microbes utilizes iron, carbon dioxide, sulfate and nitrate to exchange electron, thereby, forming methane and carbon (Patel et al., 2020). An oxygen percentage of 10%–40% was reported to be optimum for the biodegradation of hydrocarbon because, at this temperature, microbial activity and degradative enzymes are promoted (Kebede et al., 2021).
The mobility of pollutants (e.g., oil) can be affected by the moisture content in the soil, which consequently affects the allocation, existence, movement and activities of microbes in the soil (Al-Hawash et al., 2018b). Some pollutants are more soluble in aqueous solutions, while some are not, and this affects their remediation (Fu and Secundo, 2016). The chemical constituent of hydrocarbons or waste to be degraded is an important factor to be considered when hydrocarbons are degraded, and specific microorganisms are just capable of degrading a single chemical compound, while some are capable of degrading multiple hydrocarbons or pollutants (Fu and Secundo, 2016).
The pH of the soil is paramount in the survival of microbes in the soil, unfavorable pH can be dangerous to the survival of microbes in the soil. Those that survive in acidic pH are termed acidophiles. Those that live in alkaline pH are called alkaliphiles, while those that survive neutral pH are called neutrophils (Schröder et al., 2020). The optimum pH observed when A. niger was used to bioremediate Hg, Cu, Co., Zn, and Ag was between 4–5.5 (Acosta-Rodríguez et al., 2018). On the other hand, Pawar (2015) reported that a pH of 7.5 was optimum for the degradation of hydrocarbons when Penicillium freii and A. niger were used.
Microbes required for the degradation of toxic heavy metals can die in the absence of optimum nutrients. Hence the presence of desired nutrients is needed for them to metabolize and remediate pollutants effectively. For example, Aspergillus sydowii bioremediated heavy metals and pesticides when mineral salt was used as the medium, as the nutrient was optimum for the growth and metabolism of the fungi (Zhang et al., 2019).
Some organisms are capable of surviving in extreme conditions; some organisms which live in extreme temperatures are termed extremophiles; those capable of living in cold regions are termed psychrophiles, and those who live in high temperatures are termed thermophiles (Malakootian et al., 2018). Research carried out by Acosta-Rodríguez et al. (2018) where A. niger was used to remove heavy metal pollutants in the environment revealed that the optimum remediation process occurred at a temperature of 28°C (Acosta-Rodríguez et al., 2018). Hence, it is important to carry out more research to understand the different pH levels, temperature, nutrient and oxygen requirements which will enable the survival of other microbes that can degrade various pollutants in the environment.
9 CHALLENGES ASSOCIATED WITH THE ADOPTION OF RENA
RENA, as technology has proven useful in the degradation of pollutants in the soil, and in ensuring the effective bioremediation of soil, but, the RENA process comes with some challenges which will be highlighted in this section. First, the RENA technology cannot degrade all waste. For example, RENA is highly specific in nature, hence, if there is the presence of more than one waste on the site, different microbes must be recruited, which probably might not be compatible to survive together (Sharma, 2020). Second, the biodegradation process of RENA sometimes brings about new products that may be more toxic compared to the initial pollutant, and the process is often time-consuming (Sharma, 2020). Third, the introduction of external nutrients or the turning of the normal soil structure of the soil during RENA to enhance the activity of microbes from another perspective can be seen as a negative move, as the normal eco-balance of the soil could shift and the soil structure can be destroyed by the movement of the soil (Chikere et al., 2017). Still, the addition of nutrients, especially from synthetic sources can lead to air and water pollution during rainy seasons (Chikere et al., 2017). Turning of the soil during RENA can as well promote the leaching of soil pollutants, as the pollutants which were at the surface are moved downwards, leading to underground water pollution (Chikere et al., 2017). Fourth, when the environment is altered, such as in the case of RENA, the expression of the gene by microbes might be altered (Smith et al., 2018). This may eventually affect the activity of the microbes either positively or negatively. It would not be appropriate to leave this to a game of chance, more research should be done to optimize the alteration in gene expression to be favorable to the microbes.
Lastly, the inhabitants of many communities do not trust the RENA technology, owing to the fact that in cases of severe pollution, a rapid method is always preferred. Since RENA is most times slow, it is assumed that it is not effective (Council, 2000). As a buttress, in some cases where a soil sample is taken from the environment to the laboratory or greenhouse to demonstrate the RENA technology, a false positive result might emerge because other factors might favor the technique in the greenhouse and might be otherwise on the field, resulting in lack of trust from the populace (O’Brien et al., 2021).
10 CONCLUSION AND FUTURE PROSPECTS
RENA is an adequate, sustainable, non-toxic, cost-effective process which can be carried out at the site of pollution without posing any major health threat to the land, microbes and humans. This method removes the pollutants permanently, and not just transfer them to another environment (Sharma, 2020; Nuhu et al., 2022). Methods of RENA, such as the introduction of aeration and moisture to the soil which does not involve the movement of the soil, should be encouraged. Also, in cases where external nutrients would be added to the soil, organic nutrients in optimum quantity should be added as they are non-toxic to the environment, and if applied in optimum quantity, they will help to reduce the risk of eutrophication in water bodies.
RENA technology has proven to be effective and has successfully bioremediated some wastes, it comes with some drawbacks. This includes the inability to degrade some pollutants and the fact that RENA occurs mainly at the topsoil (0–5 m). Hence pollutants that go beyond this depth are leached into underground water (Ebuehi et al., 2005; Orji et al., 2012; Bolade et al., 2021)); therefore, it is recommended that research should be intensified to unravel organisms with strong abilities to bioremediate complex wastes. Also anaerobic microorganisms can be utilized through a deep injection technique to give microbes’ access to wastes that are beyond 5 m where microbes used in RENA cannot access. Alternatively, RENA should be combined with other safe bioremediation techniques such as phytoremediation and nanoremediation to ensure a safe and more sustainable environment.
Since remediation using RENA has come with some challenges, it is therefore advised to carry out more research to beat the challenges associated with it to improve the utilization of the technology. For instance, when using RENA, the microbes used are highly specific, that is, they remove one compound at a time from the environment which makes the process complicated in a situation where different compounds pollute a particular environment. Hence, it is recommended that more studies should be carried out to discover different microbes that have no antagonistic effects on each other and are capable of remediating different organic compounds and pollutants in a favourable manner. In addition, more studies should be conducted to recruit more microbes, especially from untapped resources such as the endophytes, rhizosphere and rhizoplane of underutilized legumes, since the underutilized legumes can survive in extreme conditions and the microbes capable of surviving in such environments could possess the same ability as well. Furthermore, not much work has been done on the different microbial enzymes and their ability to produce enzymes in different environments. An insight on this could help develop these enzymes into stable products for commercial purposes, which could be applied directly on the soil for bioremediation. To promote the use and acceptability of RENA, it has become important that more attention should be paid to local communities. Informal and formal education in secondary schools on the benefits of a sustainable environment should be conducted. Hesitancy and other cultural quirks that could slow the adoption of RENA technology should be broken through proper enlightenment. This will in turn, help to foster homegrown technological expertise, researchers, stake holders, investors, and grant donors, thereby, further reducing the cost of bioremediation in the long run.
Experiments which have been tested in the laboratory or greenhouse should be well tested on the field in different environments to ascertain their functionality and effectiveness across diverse soil conditions, to earn the trust of the populace. Governmental policies could also be amended to promote the use of bioremediation techniques like RENA, compared to the physical and chemical methods, which are more disadvantageous and environmentally unsustainable. Finally, it is necessary to understand the mechanism of RENA when combined with other bioremediation methods, as this would help to improve these two technologies and make them more sustainable.
AUTHOR CONTRIBUTIONS
MA and OB conceived the idea, wrote and revised the manuscript. BA, MA, SA, CF, FO, UA, LG, RO, RJ, and ME contributed to the writing of the manuscript and the final version of the work was approved by all authors for publication and production. All authors contributed to the article and approved the submitted version.
FUNDING
This study was funded through research grants from the National Research Foundation, South Africa (UID: 123634).
ACKNOWLEDGMENTS
This OB appreciates the research grants from the National Research Foundation, South Africa.
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
REFERENCES
 Acosta-Rodríguez, I., Cárdenas-González, J. F., Rodríguez Pérez, A. S., Oviedo, J. T., and Martínez-Juárez, V. M. (2018). Bioremoval of different heavy metals by the resistant fungal strain Aspergillus Niger. Bioinorganic Chemistry Applications. 
 Adesipo, A. A., Freese, D., and Nwadinigwe, A. O. (2020). Prospects of in-situ remediation of crude oil contaminated lands in Nigeria. Sci. Afr. 8, e00403. doi:10.1016/j.sciaf.2020.e00403
 Adlan, N. A., Sabri, S., Masomian, M., Ali, M. S. M., and Rahman, R. N. Z. R. A. (2020). Microbial biodegradation of paraffin wax in Malaysian crude oil mediated by degradative enzymes. Front. Microbiol. 11, 565608. doi:10.3389/fmicb.2020.565608
 Agboola, O., Babatunde, D. E., Fayomi, O. S. I., Sadiku, E. R., Popoola, P., Moropeng, L., et al. (2020). A review on the impact of mining operation: Monitoring, assessment and management. Results Eng. 8, 100181. doi:10.1016/j.rineng.2020.100181
 Ahmed, A. A. Q., Babalola, O. O., and Mckay, T. (2018). Cellulase-and xylanase-producing bacterial isolates with the ability to saccharify wheat straw and their potential use in the production of pharmaceuticals and chemicals from lignocellulosic materials. Waste biomass valorization 9, 765–775. doi:10.1007/s12649-017-9849-5
 Akhtar, M., Oki, Y., Bich, B., and Nakashima, Y. (2019). Estimation of phytofiltration potential for Cu and Zn and relative growth response of Azolla japonica and Azolla pinnata. J. Agric. Sci. Technol. 21, 895–909. 
 Al-Dhabi, N. A., and Arasu, M. V. (2022). Biosorption of hazardous waste from the municipal wastewater by marine algal biomass. Environ. Res. 204, 112115. doi:10.1016/j.envres.2021.112115
 Al-Hawash, A. B., Alkooranee, J. T., Abbood, H. A., Zhang, J., Sun, J., Zhang, X., et al. (2018a). Isolation and characterization of two crude oil-degrading fungi strains from Rumaila oil field, Iraq. Biotechnol. Rep. 17, 104–109. doi:10.1016/j.btre.2017.12.006
 Al-Hawash, A. B., Dragh, M. A., Li, S., Alhujaily, A., Abbood, H. A., Zhang, X., et al. (2018b). Principles of microbial degradation of petroleum hydrocarbons in the environment. Egypt. J. Aquatic Res. 44, 71–76. doi:10.1016/j.ejar.2018.06.001
 Al-Hussieny, A. A., Imran, S. G., and Jabur, Z. A. (2020). The use of local blue-green algae in the bioremediation of hydrocarbon pollutants in wastewater from oil refineries. Plant Arch. 20, 797–802. 
 Alabi, O. A., Ologbonjaye, K. I., Awosolu, O., and Alalade, O. E. (2019). Public and environmental health effects of plastic wastes disposal: A review. J. Toxicol. Risk Assess. 5, 1–13. 
 Alazaiza, M. Y., Albahnasawi, A., Ali, G. A., Bashir, M. J., Copty, N. K., Amr, S. S. A., et al. (2021). Recent advances of nanoremediation technologies for soil and groundwater remediation: A review. Water 13, 2186. doi:10.3390/w13162186
 Alhumairi, A. M., Hamouda, R. A., and Saddiq, A. A. (2021). Bio-remediation of most contaminated sites by heavy metals and hydrocarbons in dhiba port kingdom of Saudi arabia using Chlorella vulgaris. Res. Square 1, 1–17. 
 Alviz-Gazitua, P., Fuentes-Alburquenque, S., Rojas, L. A., Turner, R. J., Guiliani, N., and Seeger, M. (2019). The response of Cupriavidus metallidurans CH34 to cadmium involves inhibition of the initiation of biofilm formation, decrease in intracellular c-di-GMP levels, and a novel metal regulated phosphodiesterase. Front. Microbiol. 10, 1499. doi:10.3389/fmicb.2019.01499
 Al-Hawash, A. B., Zhang, X., and Ma, F. (2019). Removal and biodegradation of different petroleum hydrocarbons using the filamentous fungus Aspergillus sp. RFC-1. Microbiologyopen 8, e00619. doi:10.1002/mbo3.619
 Ameen, F. A., Hamdan, A. M., and El-Naggar, M. Y. (2020). Assessment of the heavy metal bioremediation efficiency of the novel marine lactic acid bacterium, Lactobacillus plantarum MF042018. Sci. Rep. 10, 314–411. doi:10.1038/s41598-019-57210-3
 Anastopoulos, I., and Kyzas, G. Z. J. J. O. M. L. (2015). Progress in batch biosorption of heavy metals onto algae. J. Mol. Liq. 209, 77–86. doi:10.1016/j.molliq.2015.05.023
 Anawar, H. M. (2015). Sustainable rehabilitation of mining waste and acid mine drainage using geochemistry, mine type, mineralogy, texture, ore extraction and climate knowledge. J. Environ. Manag. 158, 111–121. doi:10.1016/j.jenvman.2015.04.045
 Antón-Herrero, R., García-Delgado, C., Baena, N., Mayans, B., Delgado-Moreno, L., and Eymar, E. (2022). Assessment of different spent mushroom substrates to bioremediate soils contaminated with petroleum hydrocarbons. Appl. Sci. 12, 7720. doi:10.3390/app12157720
 Arumugam, K., Renganathan, S., Babalola, O. O., and Muthunarayanan, V. (2018). Investigation on paper cup waste degradation by bacterial consortium and Eudrillus eugeinea through vermicomposting. Waste Manag. 74, 185–193. doi:10.1016/j.wasman.2017.11.009
 Arumugam, K., Seenivasagan, R., Kasimani, R., Sharma, N., and Babalola, O. (2017). Enhancing the post consumer waste management through vermicomposting along with bioinoculumn. Int. J. Eng. Trends Technol. 44, 179–182. doi:10.14445/22315381/ijett-v44p235
 Asemoloye, M. D., Tosi, S., Daccò, C., Wang, X., Xu, S., Marchisio, M. A., et al. (2020). Hydrocarbon degradation and enzyme activities of Aspergillus oryzae and Mucor irregularis isolated from nigerian crude oil-polluted sites. Microorganisms 8, 1912. doi:10.3390/microorganisms8121912
 Ayangbenro, A. S., and Babalola, O. O. (2017). A new strategy for heavy metal polluted environments: A review of microbial biosorbents. Int. J. Environ. Res. public health 14, 94–16. doi:10.3390/ijerph14010094
 Ayangbenro, A. S., Babalola, O. O., and Aremu, O. S. (2019). Bioflocculant production and heavy metal sorption by metal resistant bacterial isolates from gold mining soil. Chemosphere 231, 113–120. doi:10.1016/j.chemosphere.2019.05.092
 Ayangbenro, A. S., and Babalola, O. O. (2018). Metal(loid) bioremediation: Strategies employed by microbial polymers. Sustainability 10, 3028. doi:10.3390/su10093028
 Ayangbenro, A. S., Olanrewaju, O. S., and Babalola, O. O. (2018). Sulfate-reducing bacteria as an effective tool for sustainable acid mine bioremediation. Front. Microbiol. 1, 1986. doi:10.3389/fmicb.2018.01986
 Azubuike, C. C., Chikere, C. B., and Okpokwasili, G. C. (2016). Bioremediation techniques–classification based on site of application: Principles, advantages, limitations and prospects. World J. Microbiol. Biotechnol. 32, 180–218. doi:10.1007/s11274-016-2137-x
 Bastida, F., Jehmlich, N., Lima, K., Morris, B., Richnow, H., Hernández, T., et al. (2016). The ecological and physiological responses of the microbial community from a semiarid soil to hydrocarbon contamination and its bioremediation using compost amendment. J. Proteomics 135, 162–169. doi:10.1016/j.jprot.2015.07.023
 Behrendorff, J. B. (2021). Reductive cytochrome P450 reactions and their potential role in bioremediation. Front. Microbiol. 12, 649273. doi:10.3389/fmicb.2021.649273
 Bhandari, G., Dhasmana, A., Chaudhary, P., Gupta, S., Gangola, S., Gupta, A., et al. (2023). A perspective review on green nanotechnology in agro-ecosystems: Opportunities for sustainable agricultural practices and environmental remediation. Agriculture 13, 668. doi:10.3390/agriculture13030668
 Bhandari, S., Poudel, D. K., Marahatha, R., Dawadi, S., Khadayat, K., Phuyal, S., et al. (2021). Microbial enzymes used in bioremediation. J. Chem. 2021, 1–17. doi:10.1155/2021/8849512
 Bharagava, R. N., and Mishra, S. (2018). Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries. Ecotoxicol. Environ. Saf. 147, 102–109. doi:10.1016/j.ecoenv.2017.08.040
 Bhatt, P., Gangola, S., Chaudhary, P., Khati, P., Kumar, G., Sharma, A., et al. (2019). Pesticide induced up-regulation of esterase and aldehyde dehydrogenase in indigenous Bacillus spp. Bioremediation J. 23, 42–52. doi:10.1080/10889868.2019.1569586
 Bhunia, B., and Basak, B. (2014). A review on application of microbial protease in bioremediation. Industrial Environ. Biotechnol. 1, 217–228. 
 Bianco, F., Race, M., Papirio, S., and Esposito, G. (2020). Removal of polycyclic aromatic hydrocarbons during anaerobic biostimulation of marine sediments. Sci. Total Environ. 709, 136141. doi:10.1016/j.scitotenv.2019.136141
 Bogati, K., and Walczak, M. (2022). The impact of drought stress on soil microbial community, enzyme activities and plants. Agronomy 12, 189. doi:10.3390/agronomy12010189
 Bolade, O. P., Akinsiku, A. A., Oluwafemi, O. S., Williams, A. B., and Benson, N. U. (2021). Biogenic iron oxide nanoparticles and activated sodium persulphate for hydrocarbon remediation in contaminated soil. Environ. Technol. Innov. 23, 101719. doi:10.1016/j.eti.2021.101719
 Boregowda, N., Jogigowda, S. C., Bhavya, G., Sunilkumar, C. R., Geetha, N., Udikeri, S. S., et al. (2022). Recent advances in nanoremediation: Carving sustainable solution to clean-up polluted agriculture soils. Environ. Pollut. 297, 118728. doi:10.1016/j.envpol.2021.118728
 Cao, X., Xu, L., Chen, Y. P., Decho, A. W., Cui, Z., and Lead, J. R. A. (2022). Contribution, composition, and structure of eps by in vivo exposure to elucidate the mechanisms of nanoparticle-enhanced bioremediation to metals. Environ. Sci. Technol. 56, 896–906. doi:10.1021/acs.est.1c05326
 Cecchin, I., Reddy, K. R., Thomé, A., Tessaro, E. F., and Schnaid, F. (2017). Nanobioremediation: Integration of nanoparticles and bioremediation for sustainable remediation of chlorinated organic contaminants in soils. Int. Biodeterior. Biodegrad. 119, 419–428. doi:10.1016/j.ibiod.2016.09.027
 Celestina, C., Wood, J. L., Manson, J. B., Wang, X., Sale, P. W., Tang, C., et al. (2019). Microbial communities in top-and subsoil of repacked soil columns respond differently to amendments but their diversity is negatively correlated with plant productivity. Scientific Reports 9 (1), 8890.
 Chaudhary, P., Ahamad, L., Chaudhary, A., Kumar, G., Chen, W.-J., and Chen, S. (2023a). Nanoparticle-mediated bioremediation as a powerful weapon in the removal of environmental pollutants. J. Environ. Chem. Eng. 11, 109591. doi:10.1016/j.jece.2023.109591
 Chaudhary, P., Singh, S., Chaudhary, A., Agri, U., and Bhandari, G. (2022). Agrochemicals and their effects on soil microbial population. Plant Prot. Chem. Biol. 1, 45.
 Chaudhary, P., Xu, M., Ahamad, L., Chaudhary, A., Kumar, G., Adeleke, B. S., et al. (2023b). Application of synthetic consortia for improvement of soil fertility, pollution remediation, and agricultural productivity: A review. Agronomy 13, 643. doi:10.3390/agronomy13030643
 Chellaiah, E. R. (2018). Cadmium (heavy metals) bioremediation by Pseudomonas aeruginosa: A minireview. Appl. water Sci. 8, 154–210. doi:10.1007/s13201-018-0796-5
 Chikere, C. B., Azubuike, C. C., and Fubara, E. M. (2017). Shift in microbial group during remediation by enhanced natural attenuation (RENA) of a crude oil-impacted soil: A case study of Ikarama community, Bayelsa, Nigeria. Biotech 7, 152–211. doi:10.1007/s13205-017-0782-x
 Chikere, C. B., Tekere, M., and Adeleke, R. (2019). Enhanced microbial hydrocarbon biodegradation as stimulated during field-scale landfarming of crude oil-impacted soil. Sustain. Chem. Pharm. 14, 100177. doi:10.1016/j.scp.2019.100177
 Costa, C. S. D., Bertagnolli, C., Boos, A., Da Silva, M. G. C., and Vieira, M. G. A. (2020). Application of a dealginated seaweed derivative for the simultaneous metal ions removal from real and synthetic effluents. J. Water Process Eng. 37, 101546. doi:10.1016/j.jwpe.2020.101546
 Council, N. R. (2000). Natural attenuation for groundwater remediation. 
 Dai, X., Lv, J., Yan, G., Chen, C., Guo, S., and Fu, P. (2020). Bioremediation of intertidal zones polluted by heavy oil spilling using immobilized laccase-bacteria consortium. Bioresour. Technol. 309, 123305. doi:10.1016/j.biortech.2020.123305
 Dwivedi, S. (2012). Bioremediation of heavy metal by algae: Current and future perspective. J. Adv. Lab. Res. Biol. 3, 195–199. 
 Ebuehi, O., Abibo, I., Shekwolo, P., Sigismund, K., Adoki, A., and Okoro, I. (2005). Remediation of crude oil contaminated soil by enhanced natural attenuation technique. Jasem 9, 103–106. 
 El Enshasy, H. A., Hanapi, S. Z., Abdelgalil, S. A., Malek, R. A., and Pareek, A. (2017). Mycoremediation: Decolourization potential of fungal ligninolytic enzymes. Mycoremediation Environ. Sustain. 1 (1), 69–104.
 El-Ansary, M. S. M., and Ahmed-Farid, O. A. (2021). Bioremediation of oxyl compounds by algae: Description and traits of root-knot nematode control. Waste Biomass Valorization 12, 251–261. doi:10.1007/s12649-020-00950-5
 El-Naggar, N. E.-A., Hamouda, R. A., Mousa, I. E., Abdel-Hamid, M. S., and Rabei, N. H. (2018). Biosorption optimization, characterization, immobilization and application of Gelidium amansii biomass for complete Pb2+ removal from aqueous solutions. Sci. Rep. 8, 13456–13519. doi:10.1038/s41598-018-31660-7
 El-Ramady, H., El-Henawy, A., Amer, M., Omara, A. E.-D., Elsakhawy, T., Salama, A.-M., et al. (2020). Agro-pollutants and their nano-remediation from soil and water: A mini-review. Environ. Biodivers. Soil Secur. 4, 0–375. doi:10.21608/jenvbs.2020.47751.1111
 El-Sheekh, M., and Hamouda, R. (2014). Biodegradation of crude oil by some cyanobacteria under heterotrophic conditions. Desalination Water Treat. 52, 1448–1454. doi:10.1080/19443994.2013.794008
 Esringü, A., Turan, M., Güneş, A., and Karaman, M. R. (2014). Roles of Bacillus megaterium in remediation of boron, lead, and cadmium from contaminated soil. Commun. soil Sci. plant analysis 45, 1741–1759. doi:10.1080/00103624.2013.875194
 Essabri, A., Aydinlik, N. P., and Williams, N. E. (2019). Bioaugmentation and biostimulation of total petroleum hydrocarbon degradation in a petroleum-contaminated soil with fungi isolated from olive oil effluent. Water, Air, Soil Pollut. 230, 76–16. doi:10.1007/s11270-019-4127-8
 Evode, N., Qamar, S. A., Bilal, M., Barceló, D., and Iqbal, H. M. (2021). Plastic waste and its management strategies for environmental sustainability. Case Stud. Chem. Environ. Eng. 4, 100142. doi:10.1016/j.cscee.2021.100142
 Ezekoye, C., Chikere, C., and Okpokwasili, G. (2018). Fungal diversity associated with crude oil-impacted soil undergoing in-situ bioremediation. Sustain. Chem. Pharm. 10, 148–152. doi:10.1016/j.scp.2018.11.003
 Fabre, E., Dias, M., Costa, M., Henriques, B., Vale, C., Lopes, C. B., et al. (2020). Negligible effect of potentially toxic elements and rare Earth elements on mercury removal from contaminated waters by green, Brown and red living marine macroalgae. Sci. Total Environ. 724, 138133. doi:10.1016/j.scitotenv.2020.138133
 Fu, P., and Secundo, F. (2016). Algae and their bacterial consortia for soil bioremediation. Chem. Eng. Trans. 49, 427–432. 
 Gargouri, B., Mhiri, N., Karray, F., Aloui, F., and Sayadi, S. (2015). Isolation and characterization of hydrocarbon-degrading yeast strains from petroleum contaminated industrial wastewater. BioMed Res. Int. 2015, 1–11. doi:10.1155/2015/929424
 Ghosal, D., Ghosh, S., Dutta, T. K., and Ahn, Y. (2016). Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A review. Front. Microbiol. 7, 1369. doi:10.3389/fmicb.2016.01369
 Ghosh, P., and Ghosh, U. (2018). Bioconversion of agro-waste to value-added product through solid-state fermentation by a potent fungal strain Aspergillus flavus PUF5. Utilization and Management of Bioresources. Springer. 
 Ghosh, S., Sharma, I., Nath, S., and Webster, T. J. (2021). Bioremediation—the natural solution. Microbial ecology of wastewater treatment plants. Elsevier. 
 Gomes, M., Gonzales-Limache, E., Sousa, S., Dellagnezze, B., Sartoratto, A., Silva, L., et al. (2018). Exploring the potential of halophilic bacteria from oil terminal environments for biosurfactant production and hydrocarbon degradation under high-salinity conditions. Int. Biodeterior. Biodegrad. 126, 231–242. doi:10.1016/j.ibiod.2016.08.014
 Gong, J.-S., Lu, Z.-M., Li, H., Shi, J.-S., Zhou, Z.-M., and Xu, Z.-H. (2012). Nitrilases in nitrile biocatalysis: Recent progress and forthcoming research. Microb. Cell factories 11, 142–218. doi:10.1186/1475-2859-11-142
 Guo, Y., Rene, E. R., Wang, J., and Ma, W. (2020). Biodegradation of polyaromatic hydrocarbons and the influence of environmental factors during the co-composting of sewage sludge and green forest waste. Bioresour. Technol. 297, 122434. doi:10.1016/j.biortech.2019.122434
 Havugimana, E., Bhople, B. S., Kumar, A., Byiringiro, E., Mugabo, J. P., and Kumar, A. (2017). Soil pollution–major sources and types of soil pollutants. Environ. Sci. Eng. 11, 53–86. 
 Hualpa-Cutipa, E., Acosta, R. A. S., Cariga, O. J. M., Espinoza-Medina, M. A., Chavez-Rojas, D. C., Medina-Cerna, D., et al. (2023). Metagenomic approach role of psychrotrophic and psychrophilic microbes in bioremediation. Metagenomics to Bioremediation. Elsevier. 
 Hussain, I., Puschenreiter, M., Gerhard, S., Sani, S. G. A. S., Khan, W.-U.-D., and Reichenauer, T. G. (2019). Differentiation between physical and chemical effects of oil presence in freshly spiked soil during rhizoremediation trial. Environ. Sci. Pollut. Res. 26, 18451–18464. doi:10.1007/s11356-019-04819-6
 Igiri, B. E., Okoduwa, S. I., Idoko, G. O., Akabuogu, E. P., Adeyi, A. O., and Ejiogu, I. K. (2018). Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: A review. J. Toxicol. , 2018, 1–16. doi:10.1155/2018/2568038
 Inthama, P., Pumas, P., Pekkoh, J., Pathom-Aree, W., and Pumas, C. (2021). Plant growth and drought tolerance-promoting bacterium for bioremediation of paraquat pesticide residues in agriculture soils. Front. Microbiol. 12, 604662. doi:10.3389/fmicb.2021.604662
 Jayakumar, V., Govindaradjane, S., Rajamohan, N., and Rajasimman, M. (2022). Biosorption potential of Brown algae, Sargassum polycystum, for the removal of toxic metals, cadmium and zinc. Environ. Sci. Pollut. Res. 29, 41909–41922. doi:10.1007/s11356-021-15185-7
 Jayakumar, V., Govindaradjane, S., and Rajasimman, (2021). Efficient adsorptive removal of Zinc by green marine macro alga Caulerpa scalpelliformis–characterization, optimization, modeling, isotherm, kinetic, thermodynamic, desorption and regeneration studies. Surfaces Interfaces 22, 100798. doi:10.1016/j.surfin.2020.100798
 Ji, M., Li, B., Majdi, A., Alkhalifah, T., Alturise, F., and Ali, H. E. (2023). Application of nano remediation of mine polluted in acid mine drainage water using machine learning model. Chemosphere 311, 136926. doi:10.1016/j.chemosphere.2022.136926
 Jia, H., Zhang, M., Weng, Y., Zhao, Y., Li, C., and Kanwal, A. (2021). Degradation of poly (butylene adipate-co-terephthalate) by Stenotrophomonas sp. YCJ1 isolated from farmland soil. J. Environ. Sci. 103, 50–58. doi:10.1016/j.jes.2020.10.001
 Jiang, Y., Jiang, S., Li, Z., Yan, X., Qin, Z., and Huang, R. (2019). Field scale remediation of Cd and Pb contaminated paddy soil using three mulberry (Morus alba L) cultivars. Ecol. Eng. 129, 38–44. doi:10.1016/j.ecoleng.2019.01.009
 Jin, Y., Luan, Y., Ning, Y., and Wang, L. (2018). Effects and mechanisms of microbial remediation of heavy metals in soil: A critical review. Appl. Sci. 8, 1336. doi:10.3390/app8081336
 Kafle, A., Timilsina, A., Gautam, A., Adhikari, K., Bhattarai, A., and Aryal, N. (2022). Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environ. Adv. 8, 100203. doi:10.1016/j.envadv.2022.100203
 Kalaimurugan, D., Balamuralikrishnan, B., Durairaj, K., Vasudhevan, P., Shivakumar, M., Kaul, T., et al. (2020). Isolation and characterization of heavy-metal-resistant bacteria and their applications in environmental bioremediation. Int. J. Environ. Sci. Technol. 17, 1455–1462. doi:10.1007/s13762-019-02563-5
 Kalhor, A. X., Movafeghi, A., Mohammadi-Nassab, A. D., Abedi, E., and Bahrami, A. (2017). Potential of the green alga Chlorella vulgaris for biodegradation of crude oil hydrocarbons. Mar. Pollut. Bull. 123, 286–290. doi:10.1016/j.marpolbul.2017.08.045
 Kalola, V., and Desai, C. (2020). Biosorption of Cr (VI) by Halomonas sp. DK4, a halotolerant bacterium isolated from chrome electroplating sludge. Environ. Sci. Pollut. Res. 27, 27330–27344. doi:10.1007/s11356-019-05942-0
 Kaminsky, L. M., Trexler, R. V., Malik, R. J., Hockett, K. L., and Bell, T. H. (2019). The inherent conflicts in developing soil microbial inoculants. Trends Biotechnol. 37, 140–151. doi:10.1016/j.tibtech.2018.11.011
 Kanwal, M., Ullah, H., Gulzar, A., Sadiq, T., Gul, Z., Ullah, M., et al. (2022). Biodegradation of petroleum hydrocarbons and the factors effecting rate of biodegradation. Am. J. Biomed. Sci. Res. 16, 6–15. doi:10.34297/ajbsr.2022.16.002182
 Karthika, A., Seenivasagan, R., Kasimani, R., Babalola, O. O., and Vasanthy, M. (2017). The role of Eudrillus eugenia in the degradation of paper cup waste and the morphological, physiological and histological changes in the organism. Bioremediation Sustain. Technol. Clean. Environ. 1, 65–76.
 Karthika, A., Seenivasagan, R., Kasimani, R., Babalola, O., and Vasanthy, M. (2020). Cellulolytic bacteria isolation, screening and optimization of enzyme production from vermicompost of paper cup waste. Waste Manag. 116, 58–65. doi:10.1016/j.wasman.2020.06.036
 Kebede, G., Tafese, T., Abda, E. M., Kamaraj, M., and Assefa, F. (2021). Factors influencing the bacterial bioremediation of hydrocarbon contaminants in the soil: Mechanisms and impacts. J. Chem. 2021, 1–17. doi:10.1155/2021/9823362
 Kong, F.-X., Sun, G.-D., and Liu, Z.-P. (2018). Degradation of polycyclic aromatic hydrocarbons in soil mesocosms by microbial/plant bioaugmentation: Performance and mechanism. Chemosphere 198, 83–91. doi:10.1016/j.chemosphere.2018.01.097
 Košnář, Z., Částková, T., Wiesnerová, L., Praus, L., Jablonský, I., Koudela, M., et al. (2019). Comparing the removal of polycyclic aromatic hydrocarbons in soil after different bioremediation approaches in relationto the extracellular enzyme activities. J. Environ. Sci. 76, 249–258. doi:10.1016/j.jes.2018.05.007
 Kumar, A., Das, S. K., Nainegali, L., and Reddy, K. R. (2023). Phytostabilization of coalmine overburden waste rock dump slopes: Current status, challenges, and perspectives. Bull. Eng. Geol. Environ. 82, 130. doi:10.1007/s10064-023-03159-7
 Kumar, A., Yadav, A. N., Mondal, R., Kour, D., Subrahmanyam, G., Shabnam, A. A., et al. (2021a). Myco-remediation: A mechanistic understanding of contaminants alleviation from natural environment and future prospect. Chemosphere 284, 131325. doi:10.1016/j.chemosphere.2021.131325
 Kumar, G., Lal, S., Maurya, S. K., Bhattacherjee, A., Chaudhary, P., Gangola, S., et al. (2021b). Exploration of Klebsiella pneumoniae M6 for paclobutrazol degradation, plant growth attributes, and biocontrol action under subtropical ecosystem. Plos one 16, e0261338. doi:10.1371/journal.pone.0261338
 Kumar, G., Lal, S., Soni, S. K., Maurya, S. K., Shukla, P. K., Chaudhary, P., et al. (2022). Mechanism and kinetics of chlorpyrifos co-metabolism by using environment restoring microbes isolated from rhizosphere of horticultural crops under subtropics. Front. Microbiol. 13, 891870. doi:10.3389/fmicb.2022.891870
 Kumar, L., and Jain, S. K. (2020). Role of proteases in bioremediation of temple protein-containing waste with special reference to mangalnath, ujjain (MP)–India. Indian J. Pure Appl. Biosci. 8, 602–607. doi:10.18782/2582-2845.8178
 Lara-Moreno, A., Morillo, E., Merchán, F., Madrid, F., and Villaverde, J. (2022). Bioremediation of a trifluralin contaminated soil using bioaugmentation with novel isolated bacterial strains and cyclodextrin. Sci. Total Environ. 840, 156695. doi:10.1016/j.scitotenv.2022.156695
 Lee, E.-H., Kang, Y.-S., and Cho, K.-S. (2011). Bioremediation of diesel-contaminated soils by natural attenuation, biostimulation and bioaugmentation employing Rhodococcus sp. EH831. Microbiol. Biotechnol. Lett. 39, 86–92. 
 Li, F., Zheng, Y., Tian, J., Ge, F., Liu, X., Tang, Y., et al. (2019a). Cupriavidus sp. strain Cd02-mediated pH increase favoring bioprecipitation of Cd2+ in medium and reduction of cadmium bioavailability in paddy soil. Ecotoxicol. Environ. Saf. 184, 109655. doi:10.1016/j.ecoenv.2019.109655
 Li, Q., Liu, J., and Gadd, G. M. (2020). Fungal bioremediation of soil co-contaminated with petroleum hydrocarbons and toxic metals. Appl. Microbiol. Biotechnol. 104, 8999–9008. doi:10.1007/s00253-020-10854-y
 Li, T., Liu, Y., Lin, S., Liu, Y., and Xie, Y. (2019b). Soil pollution management in China: A brief introduction. Sustainability 11, 556–615. doi:10.3390/su11030556
 Li, Y., Chi, M., and Ge, X. (2019c). Identification of a novel hydrolase encoded by hy-1 from Bacillus amyloliquefaciens for bioremediation of carbendazim contaminated soil and food. Int. J. Agric. Biol. Eng. 12, 218–224. doi:10.25165/j.ijabe.20191202.4190
 Lin, S., Wei, J., Yang, B., Zhang, M., and Zhuo, R. (2022). Bioremediation of organic pollutants by white rot fungal cytochrome P450: The role and mechanism of CYP450 in biodegradation. Chemosphere 301, 134776. doi:10.1016/j.chemosphere.2022.134776
 Liu, P., Rao, D., Zou, L., Teng, Y., and Yu, H. (2021). Capacity and potential mechanisms of Cd (II) adsorption from aqueous solution by blue algae-derived biochars. Sci. Total Environ. 767, 145447. doi:10.1016/j.scitotenv.2021.145447
 Long, Z., Huang, Y., Zhang, W., Shi, Z., Yu, D., Chen, Y., et al. (2021). Effect of different industrial activities on soil heavy metal pollution, ecological risk, and health risk. Environ. Monit. Assess. 193, 20–12. doi:10.1007/s10661-020-08807-z
 Mafiana, M. O., Bashiru, M. D., Erhunmwunsee, F., Dirisu, C. G., and Li, S.-W. (2021). An insight into the current oil spills and on-site bioremediation approaches to contaminated sites in Nigeria. Environ. Sci. Pollut. Res. 28, 4073–4094. doi:10.1007/s11356-020-11533-1
 Mai, C. T. N., Linh, N. V., Lich, N. Q., Ha, H. P., Van Quyen, D., Tang, D. Y. Y., et al. (2021). Advanced materials for immobilization of purple phototrophic bacteria in bioremediation of oil-polluted wastewater. Chemosphere 278, 130464. doi:10.1016/j.chemosphere.2021.130464
 Malakootian, M., Mahdizadeh, H., Nasiri, A., Mirzaienia, F., Hajhoseini, M., and Amirmahani, N. (2018). Investigation of the efficiency of microbial desalination cell in removal of arsenic from aqueous solutions. Desalination 438, 19–23. doi:10.1016/j.desal.2018.03.025
 Maltman, C., and Yurkov, V. (2018). Bioremediation potential of bacteria able to reduce high levels of selenium and tellurium oxyanions. Archives Microbiol. 200, 1411–1417. doi:10.1007/s00203-018-1555-6
 Martins, M., Santos, E. S., Faleiro, M. L., Chaves, S., Tenreiro, R., Barros, R. J., et al. (2011). Performance and bacterial community shifts during bioremediation of acid mine drainage from two Portuguese mines. Int. Biodeterior. Biodegrad. 65, 972–981. doi:10.1016/j.ibiod.2011.07.006
 Marzan, L. W., Hossain, M., Mina, S. A., Akter, Y., and Chowdhury, A. M. A. (2017). Isolation and biochemical characterization of heavy-metal resistant bacteria from tannery effluent in Chittagong city, Bangladesh: Bioremediation viewpoint. Egypt. J. Aquatic Res. 43, 65–74. doi:10.1016/j.ejar.2016.11.002
 Masowa, M., Kutu, F., Babalola, O., and Mulidzi, A. (2022). Optimizing application rate of winery solid waste compost for improving the performance of maize (zea mays L) grown on luvisol and cambisol. Appl. Ecol. Environ. Res. 20, 815–828. doi:10.15666/aeer/2001_815828
 Masowa, M., Kutu, F., Babalola, O., and Mulidzi, A. (2018). Physico-chemical properties and phyto-toxicity assessment of co-composted winery solid wastes with and without effective microorganism inoculation. Res. Crops 19, 549–559. 
 Masowa, M. M., Kutu, F. R., Babalola, O. O., Mulidzi, A. R., and Dlamini, P. (2021). Effects of complementary and sole applications of inorganic fertilizers and winery solid waste compost on maize yield and soil health indices. Emir. J. Food Agric. 1, 565–574. doi:10.9755/ejfa.2021.v33.i7.2721
 Mbachu, A., Chukwura, E., and Mbachu, N. (2016). Isolation and characterization of hydrocarbon degrading fungi from used (spent) engine oil polluted soil and their use for polycyclic aromatic hydrocarbons (PAHs) degradation. Univers. J. Microbiol. Res. 4, 31–37. doi:10.13189/ujmr.2016.040105
 Medaura, M. C., Guivernau, M., Moreno-Ventas, X., Prenafeta-Boldú, F. X., and Viñas, M. (2021). Bioaugmentation of native fungi, an efficient strategy for the bioremediation of an aged industrially polluted soil with heavy hydrocarbons. Front. Microbiol. 12, 626436. doi:10.3389/fmicb.2021.626436
 Meng, X., Fan, K., and Yan, X. (2019). Nanozymes: An emerging field bridging nanotechnology and enzymology. Sci. China Life Sci. 62, 1543–1546. doi:10.1007/s11427-019-1557-8
 Minari, G. D., Saran, L. M., Constancio, M. T. L., Da Silva, R. C., Rosalen, D. L., De Melo, W. J., et al. (2020). Bioremediation potential of new cadmium, chromium, and nickel-resistant bacteria isolated from tropical agricultural soil. Ecotoxicol. Environ. Saf. 204, 111038. doi:10.1016/j.ecoenv.2020.111038
 Mitra, S., Pramanik, K., Sarkar, A., Ghosh, P. K., Soren, T., and Maiti, T. K. (2018). Bioaccumulation of cadmium by Enterobacter sp. and enhancement of rice seedling growth under cadmium stress. Ecotoxicol. Environ. Saf. 156, 183–196. doi:10.1016/j.ecoenv.2018.03.001
 Mnif, S., Chebbi, A., Mhiri, N., Sayadi, S., and Chamkha, M. (2017). Biodegradation of phenanthrene by a bacterial consortium enriched from Sercina oilfield. Process Saf. Environ. Prot. 107, 44–53. doi:10.1016/j.psep.2017.01.023
 Moino, B. P., Costa, C. S., Da Silva, M. G., and Vieira, M. G. (2017). Removal of nickel ions on residue of alginate extraction from Sargassum <scp>f</scp>ilipendula seaweed in packed bed. Can. J. Chem. Eng. 95, 2120–2128. doi:10.1002/cjce.22859
 Montazer, Z., Habibi Najafi, M. B., and Levin, D. B. (2019). Microbial degradation of low-density polyethylene and synthesis of polyhydroxyalkanoate polymers. Can. J. Microbiol. 65, 224–234. doi:10.1139/cjm-2018-0335
 Mosharaf, M., Tanvir, M., Haque, M., Haque, M., Khan, M., Molla, A. H., et al. (2018). Metal-adapted bacteria isolated from wastewaters produce biofilms by expressing proteinaceous curli fimbriae and cellulose nanofibers. Front. Microbiol. 9, 1334. doi:10.3389/fmicb.2018.01334
 Mostafa, A. A.-F., Yassin, M. T., Dawoud, T. M., Al-Otibi, F. O., and Sayed, S. R. (2022). Mycodegradation of diazinon pesticide utilizing fungal strains isolated from polluted soil. Environ. Res. 212, 113421. doi:10.1016/j.envres.2022.113421
 Mukhopadhyay, R., Sarkar, B., Khan, E., Alessi, D. S., Biswas, J. K., Manjaiah, K., et al. (2022). Nanomaterials for sustainable remediation of chemical contaminants in water and soil. Crit. Rev. Environ. Sci. Technol. 52, 2611–2660. doi:10.1080/10643389.2021.1886891
 Naeem, U., and Qazi, M. A. (2020). Leading edges in bioremediation technologies for removal of petroleum hydrocarbons. Environ. Sci. Pollut. Res. 27, 27370–27382. doi:10.1007/s11356-019-06124-8
 Nascimento, S. V. D., Costa, P. H. D. O., Herrera, H., Caldeira, C. F., Gastauer, M., Ramos, S. J., et al. (2022). Proteomic profiling and rhizosphere-associated microbial communities reveal adaptive mechanisms of dioclea apurensis kunth in eastern amazon’s rehabilitating minelands. Plants 11, 712. doi:10.3390/plants11050712
 Naskar, A., Majumder, R., and Goswami, M. (2020). Bioaccumulation of Ni (II) on growing cells of Bacillus sp.: Response surface modeling and mechanistic insight. Environ. Technol. Innovation 20, 101057. doi:10.1016/j.eti.2020.101057
 Nath, S., Deb, B., and Sharma, I. (2018). Isolation of toxic metal-tolerant bacteria from soil and examination of their bioaugmentation potentiality by pot studies in cadmium-and lead-contaminated soil. Int. Microbiol. 21, 35–45. doi:10.1007/s10123-018-0003-4
 Naz, R., Khan, M., Hafeez, A., Fazil, M., Khan, M., Ali, B., et al. (2022). Assessment of phytoremediation potential of native plant species naturally growing in a heavy metal-polluted industrial soils. Braz. J. Biol. 84, e264473. doi:10.1590/1519-6984.264473
 Naz, T., Khan, M. D., Ahmed, I., Rehman, S. U., Rha, E. S., Malook, I., et al. (2016). Biosorption of heavy metals by Pseudomonas species isolated from sugar industry. Toxicol. Ind. health 32, 1619–1627. doi:10.1177/0748233715569900
 Ndeddy Aka, R. J., and Babalola, O. O. (2016). Effect of bacterial inoculation of strains of Pseudomonas aeruginosa, Alcaligenes feacalis and Bacillus subtilis on germination, growth and heavy metal (Cd, Cr, and Ni) uptake of Brassica juncea. Int. J. Phytoremediation 18, 200–209. doi:10.1080/15226514.2015.1073671
 Ndeddy Aka, R. J., and Babalola, O. O. (2017). Identification and characterization of Cr-Cd-and Ni-tolerant bacteria isolated from mine tailings. Bioremediation J. 21, 1–19. doi:10.1080/10889868.2017.1282933
 Nguyen, D. D., Ha, M.-G., and Kang, H. Y. (2021). Potential of versatile bacteria isolated from activated sludge for the bioremediation of arsenic and antimony. J. Water Process Eng. 39, 101890. doi:10.1016/j.jwpe.2020.101890
 Nishikawa, E., Da Silva, M. G. C., and Vieira, M. G. A. (2018). Cadmium biosorption by alginate extraction waste and process overview in life cycle assessment context. J. Clean. Prod. 178, 166–175. doi:10.1016/j.jclepro.2018.01.025
 Nuhu, M. M., Rene, E. R., and Ishaq, A. (2022). Remediation of crude oil spill sites in Nigeria: Problems, technologies, and future prospects. Environ. Qual. Manag. 31, 165–175. 
 O’Brien, R. M., Phelan, T. J., Smith, N. M., and Smits, K. M. (2021). Remediation in developing countries: A review of previously implemented projects and analysis of stakeholder participation efforts. Crit. Rev. Environ. Sci. Technol. 51, 1259–1280. doi:10.1080/10643389.2020.1755203
 Oghoje, S., and Ukpebor, J. (2020). The effects and efficacy of chicken manure digestates on bioremediation of petroleum hydrocarbons polluted soils. Niger. Res. J. Chem. Sci. 8, 311–328. 
 Oghoje, S., Ukpebor, J., and Ukpebor, E. (2021). The effects of chicken manure digestates on the removal of diesel range organics from petroleum products polluted soils. Bulg. J. Soil Sci. 6, 78–95. doi:10.5281/zenodo.4887779
 Ojuederie, O. B., and Babalola, O. O. (2017). Microbial and plant-assisted bioremediation of heavy metal polluted environments: A review. Int. J. Environ. Res. public health 14, 1504. doi:10.3390/ijerph14121504
 Okoye, A., Chikere, C., and Okpokwasili, G. (2019). Fungal population dynamics associated with active-phase of hydrocarbon degradation in oil-polluted soil. J. Adv. Microbiol. 19, 1–12. doi:10.9734/jamb/2019/v19i230190
 Orji, F., Ibiene, A., and Ugbogu, O. (2012). Petroleum hydrocarbon pollution of mangrove swamps: The promises of remediation by enhanced natural attenuation. Am. J. Agric. Biol. Sci. 7, 207–216. doi:10.3844/ajabssp.2012.207.216
 Pahalvi, H. N., Rafiya, L., Rashid, S., Nisar, B., and Kamili, A. N. (2021). Chemical fertilizers and their impact on soil health. Microbiota Biofertilizers Ecofriendly Tools Reclam. Degraded Soil Environs 2, 1–20.
 Pande, V., Pandey, S. C., Sati, D., Pande, V., and Samant, M. (2020). Bioremediation: An emerging effective approach towards environment restoration. Environ. Sustain. 3, 91–103. doi:10.1007/s42398-020-00099-w
 Park, J. M., Trevor Sewell, B., and Benedik, M. J. (2017). Cyanide bioremediation: The potential of engineered nitrilases. Appl. Microbiol. 101, 3029–3042. doi:10.1007/s00253-017-8204-x
 Park, S. Y., and Kim, C. G. (2019). Biodegradation of micro-polyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site. Chemosphere 222, 527–533. doi:10.1016/j.chemosphere.2019.01.159
 Parsamanesh, S., and Sadeghi, H. (2019). The phytoremediation effect of Medicago scutellata (L) mill. On soils under Cd–water stress: A good choice for contaminated dry lands. Environ. Sci. Pollut. Res. 26, 29065–29073. doi:10.1007/s11356-019-05989-z
 Parveen, H., Chaudhary, A., Chaudhary, P., Sultana, R., Kumar, G., Khati, P., et al. (2022). Omics approaches for the production of the microbial enzymes and applications. Industrial Applications of microbial enzymes. CRC Press. 
 Patel, A. B., Shaikh, S., Jain, K. R., Desai, C., and Madamwar, D. (2020). Polycyclic aromatic hydrocarbons: Sources, toxicity, and remediation approaches. Front. Microbiol. 11, 562813. doi:10.3389/fmicb.2020.562813
 Patel, J. G., Nirmal Kumar, J., Kumar, R. N., and Khan, S. R. (2015). Enhancement of pyrene degradation efficacy of Synechocystis sp., by construction of an artificial microalgal-bacterial consortium. Cogent Chem. 1, 1064193. doi:10.1080/23312009.2015.1064193
 Patra, D. K., Grahacharya, A., Pradhan, C., and Patra, H. K. (2021). Phytoremediation potential of coffee pod (Cassia tora): An in situ approach for attenuation of chromium from overburden soil of sukinda chromite mine, India. Environ. Prog. Sustain. Energy 40, e13510.
 Paul, A., and Mukherjee, S. K. (2016). Enterobacter asburiae KUNi5, a nickel resistant bacterium for possible bioremediation of nickel contaminated sites. Pol. J. Microbiol. 65, 115–118. doi:10.5604/17331331.1197284
 Pawar, R. (2015). The effect of soil pH on bioremediation of polycyclic aromatic hydrocarbons (PAHS). Bioremediat Biodegr. 2015, 291–304. doi:10.4172/2155-6199.1000291
 Pidlisnyuk, V., Hettiarachchi, G. M., Zgorelec, Z., Prelac, M., Bilandžija, N., Davis, L. C., et al. (2021). Phytotechnologies for site remediation. Phytotechnology with biomass production. CRC Press. 
 Pm Tavares, A., R Pereira, S., and Mrb Xavier, A. (2017). Biotechnological applications of Trametes versicolor and their enzymes. Curr. Biotechnol. 6, 78–88. doi:10.2174/2211550105666160510113212
 Princy, S., Sathish, S. S., Cibichakravarthy, B., and Prabagaran, S. R. (2020). Hexavalent chromium reduction by Morganella morganii (1Ab1) isolated from tannery effluent contaminated sites of Tamil Nadu, India. Biocatal. Agric. Biotechnol. 23, 101469. doi:10.1016/j.bcab.2019.101469
 Priya, A., Dutta, K., and Daverey, A. (2022). A comprehensive biotechnological and molecular insight into plastic degradation by microbial community. J. Chem. Technol. Biotechnol. 97, 381–390. doi:10.1002/jctb.6675
 Rahman, Z., Thomas, L., and Singh, V. P. (2019). Biosorption of heavy metals by a lead (Pb) resistant bacterium, Staphylococcus hominis strain AMB-2. J. basic Microbiol. 59, 477–486. doi:10.1002/jobm.201900024
 Raju, C. A., Anitha, J., Kalyani, R. M., Satyanandam, K., and Jagadeesh, P. (2021). Sorption of cobalt using marine macro seaweed graciliariacorticatared algae powder. Mater. Today Proc. 44, 1816–1827. doi:10.1016/j.matpr.2020.12.009
 Ramírez, V., Baez, A., López, P., Bustillos, R., Villalobos, M. Á., Carreño, R., et al. (2019). Chromium hyper-tolerant Bacillus sp. MH778713 assists phytoremediation of heavy metals by mesquite trees (Prosopis laevigata). Front. Microbiol. 10, 1833. doi:10.3389/fmicb.2019.01833
 Rawat, M., and Rangarajan, S. (2019). Omics approaches for elucidating molecular mechanisms of microbial bioremediation. Smart bioremediation technologies. Elsevier. 
 Riser-Roberts, E. (2020). Remediation of petroleum contaminated soils: Biological, physical, and chemical processes. Boca Raton, Florida, United State: CRC Press. 
 Sahmoune, M. N. (2018). Performance of Streptomyces rimosus biomass in biosorption of heavy metals from aqueous solutions. Microchem. J. 141, 87–95. doi:10.1016/j.microc.2018.05.009
 Salama, E.-S., Roh, H.-S., Dev, S., Khan, M. A., Abou-Shanab, R. A., Chang, S. W., et al. (2019). Algae as a green technology for heavy metals removal from various wastewater. World J. Microbiol. Biotechnol. 35, 75–19. doi:10.1007/s11274-019-2648-3
 Samreen, S., Khan, A. A., Khan, M. R., Ansari, S. A., and Khan, A. (2021). Assessment of phytoremediation potential of seven weed plants growing in chromium-and nickel-contaminated soil. Water, Air, Soil Pollut. 232, 209–218. doi:10.1007/s11270-021-05124-0
 Saranya, K., Sundaramanickam, A., Shekhar, S., Meena, M., Sathishkumar, R. S., and Balasubramanian, T. (2018). Biosorption of multi-heavy metals by coral associated phosphate solubilising bacteria Cronobacter muytjensii KSCAS2. J. Environ. Manag. 222, 396–401. doi:10.1016/j.jenvman.2018.05.083
 Sari, E. M., Novianty, R., Awaluddin, A., and Pratiwi, N. W. (2019). Effectiveness of crude oil degrading fungi isolated from petroleum hydrocarbon contaminated soil in Siak, Riau. Acta Biochim. Indones. 2, 15–22. doi:10.32889/actabioina.v2i1.35
 Sarma, H., Sonowal, S., and Prasad, M. (2019). Plant-microbiome assisted and biochar-amended remediation of heavy metals and polyaromatic compounds─ a microcosmic study. Ecotoxicol. Environ. Saf. 176, 288–299. doi:10.1016/j.ecoenv.2019.03.081
 Satyapal, G. K., Mishra, S. K., Srivastava, A., Ranjan, R. K., Prakash, K., Haque, R., et al. (2018). Possible bioremediation of arsenic toxicity by isolating indigenous bacteria from the middle Gangetic plain of Bihar, India. Biotechnol. Rep. 17, 117–125. doi:10.1016/j.btre.2018.02.002
 Sayed, K., Baloo, L., and Sharma, N. K. (2021). Bioremediation of total petroleum hydrocarbons (TPH) by bioaugmentation and biostimulation in water with floating oil spill containment booms as bioreactor basin. Int. J. Environ. Res. Public Health 18, 2226. doi:10.3390/ijerph18052226
 Schippers, A., Breuker, A., Blazejak, A., Bosecker, K., Kock, D., and Wright, T. (2010). The biogeochemistry and microbiology of sulfidic mine waste and bioleaching dumps and heaps, and novel Fe (II)-oxidizing bacteria. Hydrometallurgy 104, 342–350. doi:10.1016/j.hydromet.2010.01.012
 Schröder, C., Burkhardt, C., and Antranikian, G. (2020). What we learn from extremophiles. ChemTexts 6, 8–6. doi:10.1007/s40828-020-0103-6
 Senthilkumar, R., Prasad, D. R., Govindarajan, L., Saravanakumar, K., and Prasad, B. N. J. E. T. (2019). Green alga-mediated treatment process for removal of zinc from synthetic solution and industrial effluent. Environ. Technol. 40, 1262–1270. doi:10.1080/09593330.2017.1420696
 Shameer, S. (2016). Biosorption of lead, copper and cadmium using the extracellular polysaccharides (EPS) of Bacillus sp., from solar salterns. Biotech 6, 194–210. doi:10.1007/s13205-016-0498-3
 Sharma, A., Sharma, T., Sharma, T., Sharma, S., and Kanwar, S. S. (2019). Role of microbial hydrolases in bioremediation. Microbes Enzym. Soil Health Bioremediation J. 16, 149–164.
 Sharma, B., Dangi, A. K., and Shukla, P. (2018). Contemporary enzyme based technologies for bioremediation: A review. J. Environ. Manag. 210, 10–22. doi:10.1016/j.jenvman.2017.12.075
 Sharma, I. (2020). “Bioremediation techniques for polluted environment: Concept, advantages, limitations, and prospects,” in Trace metals in the environment-new approaches and recent advances ed . Editors M. A. MURILLO-TOVAR, H. SALDARRIAGA-NORENA, and A. SAEID (London: IntechOpen). 
 Shen, X., Dai, M., Yang, J., Sun, L., Tan, X., Peng, C., et al. (2022). A critical review on the phytoremediation of heavy metals from environment: Performance and challenges. Chemosphere 291, 132979. doi:10.1016/j.chemosphere.2021.132979
 Sher, S., and Rehman, A. (2019). Use of heavy metals resistant bacteria—A strategy for arsenic bioremediation. Appl. Microbiol. Biotechnol. 103, 6007–6021. doi:10.1007/s00253-019-09933-6
 Shilpa, , Basak, N., and Meena, S. S. (2022). Microbial biodegradation of plastics: Challenges, opportunities, and a critical perspective. Front. Environ. Sci. Eng. 16, 161. doi:10.1007/s11783-022-1596-6
 Singh, A. K., Yadav, P., Bharagava, R. N., Saratale, G. D., and Raj, A. (2019). Biotransformation and cytotoxicity evaluation of kraft lignin degraded by ligninolytic Serratia liquefaciens. Front. Microbiol. 10, 2364. doi:10.3389/fmicb.2019.02364
 SAKSHI Singh, S., and Haritash, A. (2019). Polycyclic aromatic hydrocarbons: Soil pollution and remediation. Int. J. Environ. Sci. Technol. 16, 6489–6512. doi:10.1007/s13762-019-02414-3
 Smith, A., Kaczmar, A., Bamford, R. A., Smith, C., Frustaci, S., Kovacs-Simon, A., et al. (2018). The culture environment influences both gene regulation and phenotypic heterogeneity in Escherichia coli. Front. Microbiol. 9, 1739. doi:10.3389/fmicb.2018.01739
 Song, L., Niu, X., Zhang, N., and Li, T. J. C. (2021). Effect of biochar-immobilized Sphingomonas sp. PJ2 on bioremediation of PAHs and bacterial community composition in saline soil. Chemosphere 279, 130427. doi:10.1016/j.chemosphere.2021.130427
 Su, L. S. (2016). Isolation and identification of heavy metal-tolerant bacteria from an industrial site as a possible source for bioremediation of cadmium, lead, and nickel. Adv. Environ. Biol. 10, 10–15. 
 Sujkowska-Rybkowska, M., and Ważny, R. (2018). Metal resistant rhizobia and ultrastructure of Anthyllis vulneraria nodules from zinc and lead contaminated tailing in Poland. Int. J. phytoremediation 20, 709–720. doi:10.1080/15226514.2017.1413336
 Syed, S., and Chinthala, P. (2015). Heavy metal detoxification by different Bacillus species isolated from solar salterns. Scientifica 2015, 1–8. doi:10.1155/2015/319760
 Taran, M., Fateh, R., Rezaei, S., and Gholi, M. K. (2019). Isolation of arsenic accumulating bacteria from garbage leachates for possible application in bioremediation. Iran. J. Microbiol. 11, 60–66. doi:10.18502/ijm.v11i1.707
 Tarfeen, N., Nisa, K. U., Hamid, B., Bashir, Z., Yatoo, A. M., Dar, M. A., et al. (2022). Microbial remediation: A promising tool for reclamation of contaminated sites with special emphasis on heavy metal and pesticide pollution: A review. Processes 10, 1358. doi:10.3390/pr10071358
 Telesiński, A., and Kiepas-Kokot, A. (2021). Five-year enhanced natural attenuation of historically coal-tar-contaminated soil: Analysis of polycyclic aromatic hydrocarbon and phenol contents. Int. J. Environ. Res. Public Health 18, 2265. doi:10.3390/ijerph18052265
 Thesai, A. S., Nagarajan, G., Rajakumar, S., Pugazhendhi, A., and Ayyasamy, P. M. (2021). Bioaccumulation of fluoride from aqueous system and genotoxicity study on Allium cepa using Bacillus licheniformis. J. Hazard. Mater. 407, 124367. doi:10.1016/j.jhazmat.2020.124367
 Tyagi, B., and Kumar, N. (2021). Bioremediation: Principles and applications in environmental management. Bioremediation for environmental sustainability. Elsevier. 
 Tyagi, D., Tyagi, S., and Narayan, R. (2018). Bacterial bioremediation of arsenic from contaminated groundwater and soil. Eur. J. Biotechnol. Biosci. 6, 45–51. 
 Ugochukwu, K. C., Agha, N., and Ogbulie, J. (2008). Lipase activities of microbial isolates from soil contaminated with crude oil after bioremediation. Afr. J. Biotechnol. 7. 
 Utami, U., Harianie, L., and Dunyana, N.ROMAIDI (2020). Lead-resistant bacteria isolated from oil wastewater sample for bioremediation of lead. Water Sci. Technol. 81, 2244–2249. doi:10.2166/wst.2020.281
 Viesser, J. A., Sugai-Guerios, M. H., Malucelli, L. C., Pincerati, M. R., Karp, S. G., and Maranho, L. T. (2020). Petroleum-tolerant rhizospheric bacteria: Isolation, characterization and bioremediation potential. Sci. Rep. 10, 2060–2111. doi:10.1038/s41598-020-59029-9
 Wang, B.-Z., Guo, P., Hang, B.-J., Li, L., He, J., and Li, S.-P. (2009). Cloning of a novel pyrethroid-hydrolyzing carboxylesterase gene from Sphingobium sp. strain JZ-1 and characterization of the gene product. Appl. Environ. Microbiol. 75, 5496–5500. doi:10.1128/aem.01298-09
 Wang, C., Huang, Y., Zhang, Z., Hao, H., and Wang, H. (2020). Absence of the nahG-like gene caused the syntrophic interaction between Marinobacter and other microbes in PAH-degrading process. J. Hazard. Mater. 384, 121387. doi:10.1016/j.jhazmat.2019.121387
 Wang, H., Wang, X., Liu, C., Wang, Y., Rong, L., Sun, L., et al. (2017). In-situ bioremediation of DDTs and PAH contaminated aging farmland soil using blood meal. Soil Sediment Contam. Int. J. 26, 623–635. doi:10.1080/15320383.2017.1385593
 Wang, L., Xiao, H., He, N., Sun, D., and Duan, S. (2019). Biosorption and biodegradation of the environmental hormone nonylphenol by four marine microalgae. Sci. Rep. 9, 5277–5311. doi:10.1038/s41598-019-41808-8
 Wei, W., Wang, Q., Li, A., Yang, J., Ma, F., Pi, S., et al. (2016). Biosorption of Pb (II) from aqueous solution by extracellular polymeric substances extracted from Klebsiella sp. J1: Adsorption behavior and mechanism assessment. J. Sci. Rep. 6, 31575–31610. doi:10.1038/srep31575
 Wei, Z., Van Le, Q., Peng, W., Yang, Y., Yang, H., Gu, H., et al. (2021). A review on phytoremediation of contaminants in air, water and soil. J. Hazard. Mater. 403, 123658. doi:10.1016/j.jhazmat.2020.123658
 Wu, C., Ma, Y., Wang, D., Shan, Y., Song, X., Hu, H., et al. (2022). Integrated microbiology and metabolomics analysis reveal plastic mulch film residue affects soil microorganisms and their metabolic functions. J. Hazard. Mater. 423, 127258. doi:10.1016/j.jhazmat.2021.127258
 Wu, Y., Luo, Y., Zou, D., Ni, J., Liu, W., Teng, Y., et al. (2008). Bioremediation of polycyclic aromatic hydrocarbons contaminated soil with monilinia sp.: Degradation and microbial community analysis. Biodegradation 19, 247–257. doi:10.1007/s10532-007-9131-9
 YalçıN, S., and Özyürek, M. (2018). Biosorption potential of two Brown seaweeds in the removal of chromium. Water Sci. Technol. 78, 2564–2576. doi:10.2166/wst.2019.007
 Yin, S., Zhang, X., Yin, H., and Zhang, X. (2022). Current knowledge on molecular mechanisms of microorganism-mediated bioremediation for arsenic contamination: A review. Microbiol. Res. 258, 126990. doi:10.1016/j.micres.2022.126990
 Yu, F., Tang, S., Shi, X., Liang, X., Liu, K., Huang, Y., et al. (2022). Phytoextraction of metal(loid)s from contaminated soils by six plant species: A field study. Sci. Total Environ. 804, 150282. doi:10.1016/j.scitotenv.2021.150282
 Zhang, C., Tao, Y., Li, S., Tian, J., Ke, T., Wei, S., et al. (2019). Simultaneous degradation of trichlorfon and removal of Cd (II) by Aspergillus sydowii strain PA F-2. Environ. Sci. Pollut. Res. 26, 26844–26854. doi:10.1007/s11356-019-05811-w
 Zhang, J. H., Xue, Q. H., Gao, H., Ma, X., and Wang, P. (2016). Degradation of crude oil by fungal enzyme preparations from Aspergillus spp. for potential use in enhanced oil recovery. J. Chem. Technol. Biotechnol. 91, 865–875. doi:10.1002/jctb.4650
 Zhang, Y., Lin, D.-F., Hao, J., Zhao, Z.-H., and Zhang, Y.-J. (2020). The crucial role of bacterial laccases in the bioremediation of petroleum hydrocarbons. World J. Microbiol. Biotechnol. 36, 116–210. doi:10.1007/s11274-020-02888-1
Conflict of interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2023 Ayilara, Adeleke, Adebajo, Akinola, Fayose, Adeyemi, Gbadegesin, Omole, Johnson, Edhemuino, Ogundolie and Babalola. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.


[image: image]


OPS/images/fmicb-14-1208591/fmicb-14-1208591-g003.jpg


OPS/images/fmicb-14-1208591/fmicb-14-1208591-g004.jpg


OPS/images/fmicb-14-1208591/fmicb-14-1208591-g005.jpg


OPS/images/fmicb-14-1208591/fmicb-14-1208591-t001.jpg


OPS/images/fmicb-14-1208591/fmicb-14-1208591-e010.jpg


OPS/images/fmicb-14-1208591/fmicb-14-1208591-e011.jpg


OPS/images/fmicb-14-1208591/fmicb-14-1208591-g001.jpg


OPS/images/fmicb-14-1208591/fmicb-14-1208591-g002.jpg


OPS/images/fmicb-14-1208591/fmicb-14-1208591-e008.jpg


OPS/images/fmicb-14-1208591/fmicb-14-1208591-e009.jpg


OPS/images/fenvs-11-1182586/fenvs-11-1182586-t003.jpg


OPS/images/fenvs-11-1182586/fenvs-11-1182586-t002.jpg


OPS/images/fenvs-11-1182586/fenvs-11-1182586-t001.jpg


OPS/images/fenvs-11-1182586/fenvs-11-1182586-g002.gif


OPS/images/fenvs-11-1182586/fenvs-11-1182586-g001.gif


OPS/images/fenvs-11-1182586/fenvs-11-1182586-.gif


OPS/images/fmicb-14-1133968/fmicb-14-1133968-g001.jpg


OPS/images/fmicb-14-1133968/fmicb-14-1133968-g002.jpg


OPS/images/fmicb-14-1133968/fmicb-14-1133968-t001.jpg


OPS/images/fmicb-14-1040901/fmicb-14-1040901-t001.jpg


OPS/images/fmicb-14-1040901/fmicb-14-1040901-t002.jpg


OPS/images/fmicb-14-1040901/fmicb-14-1040901-t003.jpg


OPS/images/fmicb-14-1133968/crossmark.jpg


OPS/images/fmicb-14-1208591/fmicb-14-1208591-t009.jpg


OPS/images/fmicb-14-1040901/fmicb-14-1040901-g001.jpg


OPS/images/fmicb-14-1208591/fmicb-14-1208591-t010.jpg


OPS/images/fmicb-14-1040901/fmicb-14-1040901-g002.jpg


OPS/images/fmicb-14-1212349/crossmark.jpg


OPS/images/fmicb-14-1040901/fmicb-14-1040901-g003.jpg


OPS/images/fmicb-14-1208591/fmicb-14-1208591-t005.jpg


OPS/images/fmicb-14-1208591/fmicb-14-1208591-t006.jpg


OPS/images/fmicb-14-1208591/fmicb-14-1208591-t007.jpg


OPS/images/fmicb-14-1208591/fmicb-14-1208591-t008.jpg


OPS/images/fmicb-14-1208591/fmicb-14-1208591-t002.jpg


OPS/images/fmicb-14-1208591/fmicb-14-1208591-t003.jpg


OPS/images/fmicb-14-1208591/fmicb-14-1208591-t004.jpg


OPS/xhtml/Nav.xhtml


Contents



		Cover


		Bioinoculants with nano-compounds to improve soil health: A step toward sustainable agriculture

		Editorial: Bioinoculants with nano-compounds to improve soil health: a step toward sustainable agriculture

		Introduction


		Bioinoculants and nanoparticles


		Author contributions


		Acknowledgments


		Publisher’s note


		References







		Synergistic relationship of endophyte-nanomaterials to alleviate abiotic stress in plants

		Introduction


		Microbe-nanomaterial interactions


		Nanomaterial-microbial compatibility

		Bacteria and NPs


		Fungi and NPs







		Synergistic relationship: Endophyte-induced NPs


		Impact of nanomaterials on microbial diversity and soil health

		Effect of nanomaterials on microbial diversity


		Impact of nanomaterials on microbial community functions







		Mechanisms of mitigating abiotic stress in plants


		Microbe-induced abiotic stress tolerance


		The use of nanomaterials to relieve abiotic plant stresses

		Effect of NPs on heavy metal stressed plants


		Effect of NPs on heat stress


		Effect of NPs on salinity stress


		Effect of NPs on chilling stress


		Effect of NPs on drought stress







		Plant microbes in agriculture to address future food scarcity


		Fate of NPs

		Effect of microbial community


		Effect of clay content


		Effect of natural organic matter







		Conclusion


		Author contributions


		Funding


		Acknowledgments


		Publisher’s note


		References







		Biopesticides as a promising alternative to synthetic pesticides: A case for microbial pesticides, phytopesticides, and nanobiopesticides

		1. Introduction


		2. Classification of pesticides

		2.1. Classification of pesticides according to their functions


		2.2. Classification of pesticides according to their sources


		2.3. Adverse effects of synthetic pesticides







		3. Biopesticides as an alternative to synthetic pesticides

		3.1. Microbial pesticides


		3.2. Phytopesticides


		3.3. Nanobiopesticides


		3.4. Molecular mechanisms of the application of biopesticides







		4. Integrated pest management system


		5. Future prospects and conclusion


		Author contributions


		Funding


		Acknowledgments


		Conflict of interest


		Publisher’s note


		References







		Synergistic impact of nanomaterials and plant probiotics in agriculture: A tale of two-way strategy for long-term sustainability

		1. Introduction


		2. Compendious outline of nanomaterials


		3. Nanomaterials in agriculture: A way of smart delivery of nano-based fertilizers


		4. Molecular insights on NMs for plant growth and development


		5. Plant probiotics: Unraveling a long story in a nutshell


		6. The synergy of nanomaterials and plant probiotics: A green solution for sustainable agriculture


		7. Combo of nanomaterials and plant probiotics in the mitigation of environmental stress


		8. Soil health management through the cocktail of nanomaterials and plant probiotics


		9. Nanoencapsulation of plant probiotics: How can it shape crop growth?


		10. Cocktail of nanomaterials and plant probiotics: Understanding in the context of the bioeconomy


		11. Future prospects for nano-biofertilizers: A roadmap


		12. Conclusion


		Author contributions


		Acknowledgments


		Conflict of interest


		Publisher’s note


		References







		Plant growth promoting potential of urea doped calcium phosphate nanoparticles in finger millet (Eleusine coracana (L.) Gaertn.) under drought stress

		1 Introduction


		2 Material and methods

		2.1 Preparation and characterization of CaP-U NPs


		2.2 Pot experimental setup


		2.3 Determination of plant parameters

		2.3.1 Plants’ vegetative development parameters


		2.3.2 Physiological parameters

		2.3.2.1 Estimation of chlorophyll content


		2.3.2.2 Estimation of proline content


		2.3.2.3 Measurement of malondialdehyde concentration


		2.3.2.4 Estimation of hydrogen peroxide


		2.3.2.5 Estimation of total phenol












		2.4 Estimation of antioxidant enzymes of plants

		2.4.1 Preparation of enzyme extracts


		2.4.2 Estimation of superoxide dismutase activity


		2.4.3 Estimation of guaiacol peroxidase activity


		2.4.4 Estimation of ascorbate peroxidase activity












		3 Statistical analysis


		4 Results

		4.1 Synthesis and characterization of CaP-U NPs by FE-SEM, TEM and XRD analysis


		4.2 Pot experiment

		4.2.1 Shoot length


		4.2.2 Root length


		4.2.3 Leaf area


		4.2.4 Shoot fresh weight


		4.2.5 Shoot dry weight


		4.2.6 Root fresh weight


		4.2.7 Root dry weight


		4.2.8 Chlorophyll content


		4.2.9 Total proline content


		4.2.10 Total phenol content







		4.3 Enzymatic antioxidant analysis

		4.3.1 Super oxide dismutase


		4.3.2 Peroxidase


		4.3.3 Ascorbate peroxidase


		4.3.4 Malondialdehyde content


		4.3.5 Hydrogen peroxide







		4.4 Principal component analysis of plant growth and biochemical data under NP and urea treatment


		4.5 Pearson correlation explains the strength of the growth and biochemical attributes under irrigated and drought conditions influenced by the NP and urea treatment







		5 Discussion


		6 Conclusion


		Data availability statement


		Author contributions


		Acknowledgments


		Conflict of interest


		References







		Bioremediation of environmental wastes: the role of microorganisms

		1 Introduction


		2 Different pollutants and their toxicity on living things

		2.1 Types of remediation







		3 Different microbes used as bioremediation agents


		4 Mechanisms of microbial bioremediation

		4.1 Enzymatic oxidation


		4.2 Enzymatic reduction


		4.3 Bioaugmentation


		4.4 Biostimulation


		4.5 Bioleaching


		4.6 Biosorption


		4.7 Bioaccumulation


		4.8 Precipitation







		5 Factors affecting microbial bioremediation


		6 Microbial enzymes used in bioremediation


		7 Molecular approaches for validating microbial remediation


		8 Other bioremediation metabolites produced by microbes


		9 Recent advancements in microbial bioremediate


		10 Future perspectives and conclusions


		Author contributions


		Funding


		Conflict of interest


		References







		From soil to plant: strengthening carrot defenses against Meloidogyne incognita with vermicompost and arbuscular mycorrhizal fungi biofertilizers

		1. Introduction


		2. Materials and methods

		2.1. Experimental setup


		2.2. Planting conditions


		2.3. Collection of earthworms, leaf litter, and cow dung


		2.4. Preparation of vermicompost


		2.5. Preparation of sample for scanning electron microscopy and energy dispersive X-ray analysis


		2.6. Sample preparation for Fourier transform infra-red spectroscopy


		2.7. Collection and isolation of AM fungi from the rhizosphere of Daucus carota root


		2.8. Morphological and molecular identification of arbuscular mycorrhizal fungi


		2.9. Inoculum preparation of AM fungi


		2.10. Molecular and morphological identification of Meloidogyne incognita


		2.11. Preparation of Meloidogyne incognita inoculum


		2.12. Determination of plant growth characters


		2.13. Determination of leaf photosynthetic pigment content


		2.14. Determination of phenol content


		2.15. Determination of activities of peroxidase and polyphenol oxidase


		2.16. Determination of root colonization by arbuscular mycorrhizal fungi


		2.17. Root galling and nematode density determination


		2.18. Instruments


		2.19. Statistical analysis







		3. Results

		3.1. Occurrence and identification of AM fungi


		3.2. Identification of root-knot nematodes


		3.3. Energy-dispersive X-ray spectroscopy and scanning electron microscopy


		3.4. Fourier transform infra-red spectroscopy


		3.5. Effects on plant growth parameters


		3.6. Effects on chlorophyll and carotenoid content


		3.7. Effects on phenol content, peroxidase and polyphenol oxidase enzyme activity


		3.8. Effects on root galling and nematode population with arbuscular mycorrhizal fungi colonization


		3.9. Principal component analysis







		4. Discussion


		5. Conclusion


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Conflict of interest


		Publisher’s note


		References







		Screening microbial inoculants and their interventions for cross-kingdom management of wilt disease of solanaceous crops- a step toward sustainable agriculture

		Introduction


		Bacterial wilt and geographical distribution


		Biochemical characterization of biocontrol agents


		Identification of microbial inoculants by molecular techniques


		Rhizobacteria in the management of biotic stress in plants

		Direct mechanisms of PGPR

		Phosphate solubilization


		Phytohormone production by rhizobacteria







		Indirect mechanism

		Cyanide production


		Siderophore-mediated biocontrol












		Induced systemic resistance


		Plant genes modulated by PGPR


		Volatiles and other factors


		Antimicrobial peptides


		Author contributions


		Funding


		Conflict of interest


		Publisher’s note


		References







		Nano-biochar: recent progress, challenges, and opportunities for sustainable environmental remediation

		1. Introduction


		2. Production of nanobiochar

		2.1. Preparation of bulk biochar


		2.2. Conversion of bulk biochar to nanobiochar


		2.3. Functionalization of nano biochar







		3. Inherent properties of nano-BC and their characterization


		4. Application of nano-BC in environmental remediation

		4.1. Nano-biochar as an adsorbent


		4.2. Nano-biochar as an adsorbent for removal of inorganic compounds


		4.3. Nano-biochar as an adsorbent for treating organic compounds


		4.4. Nano-biochar as an immobilization material for enzymes/biocatalysts


		4.5. Nanobiochar as photocatalyst


		4.6. Nano-biochar used in electrochemical biosensor







		5. Factors affecting performance of nano-BC for environmental remediation


		6. Challenges and environmental concern of N-BC


		7. Conclusion


		Author contributions


		Conflict of interest


		Publisher’s note


		References







		Additive screening and formula optimization of microbial inhibitor having disease prevention and growth promotion effects on Avena sativa

		1. Introduction


		2. Materials and methods

		2.1. Test strains and culture medium


		2.2. Test reagents


		2.3. Screening bacteria and preparation of bacterial suspension


		2.4. Additive selection and microbial agents making


		2.5. Biocontrol efficacy evaluation of microbial inhibitor


		2.6. Data analysis







		3. Results

		3.1. Effect of tested bacterium on the growth of pathogenic fungi

		3.1.1. In vitro antifungal activity of tested bacterium and liquid cell-free fermentation


		3.1.2. Screening of bacterium combinations







		3.2. Screening of auxiliary agents for antifungal bacteria

		3.2.1. Screening of the wetting agents


		3.2.2. Screening of ultraviolet protective agents


		3.2.3. Screening of preservatives







		3.3. The ratio optimization of additives


		3.4. Quality inspection of microbial inhibitor

		3.4.1. Living bacteria count of microbial inhibitor


		3.4.2. The number and rate of contaminating microorganisms in microbial inhibitor


		3.4.3. pH value of microbial inhibitor







		3.5. Control effect of microbial inhibitor on oat root diseases and growth of oat







		4. Discussion


		5. Conclusion


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Conflict of interest


		Publisher’s note


		References







		Rhizosphere-dwelling halophilic archaea: a potential candidate for alleviating salinity-associated stress in agriculture

		1. Introduction


		2. Materials and methods

		2.1. Procurement of halophilic archaea and quantification of their growth


		2.2. Evaluation of PGP attributes

		2.2.1. Solubilization of P, K, and Zn


		2.2.2. Quantification of indole-3-acetic acid production







		2.3. Growth and PGPR studies in soil extract medium

		2.3.1. Preparation of HSE medium


		2.3.2. Growth, nutrient solubilization (p, k, and zn), and IAA production by a selected halophilic archaeon in different strength HSE broth


		2.3.3. Inoculum preparation for in planta studies


		2.3.4. Soft agar experiment


		2.3.5. Mesocosm study for plant–microbe interaction







		2.4. Estimation of vegetative and biochemical parameters

		2.4.1. Vegetative parameters


		2.4.2. Quantification of crude protein


		2.4.3. Quantification of total chlorophyll


		2.4.4. Quantification of total sugars and proline accumulation


		2.4.5. Quantification of antioxidant enzyme activity


		2.4.6. Estimation of root architecture parameters at harvesting







		2.5. Quantification of yield parameters at harvest


		2.6. Statistical analysis of data







		3. Results

		3.1. Growth of halophilic archaea in halophilic broth


		3.2. Quantification of plant growth-promoting properties of halophilic archaea

		3.2.1. Qualitative estimation of P, K, and Zn solubilization


		3.2.2. Quantitative estimation of P, K, and Zn solubilization and effect on medium ph


		3.2.3. Phytohormone production (IAA production)


		3.2.4. Quantification of growth and plant growth-promoting properties of a selected halophilic archaeon in halophilic soil extract broth having different salinity concentrations


		3.2.5. Effect of H. pelagica CDK2 inoculation on germination parameters of different wheat cultivars in MS-soft agar







		3.3. Pot evaluation of the effect of inoculating H. pelagica CDK2 in different wheat cultivars

		3.3.1. Shoot and root parameters on the 45th day of seed germination


		3.3.2. Root architecture at harvest time


		3.3.3. Grain yield per spike and per plant


		3.3.4. Effect of H. pelagica CDK2 inoculation on biochemical growth parameters and osmolyte content of wheat cultivars

		3.3.4.1. Total shoot protein and leaf chlorophyll content


		3.3.4.2. Total carbohydrate and proline content







		3.3.5. Impact of halophilic archaea inoculation on antioxidant enzyme activity












		4. Discussion


		5. Conclusion


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Conflict of interest


		Publisher's note


		Supplementary material


		References







		Remediation by enhanced natural attenuation; an environment-friendly remediation approach

		1 Introduction


		2 Environmental pollutants and their negative impacts


		3 Types of bioremediation

		3.1 Phytobioremediation


		3.2 Nanoremediation







		4 Mechanism of RENA

		4.1 Bioassimilation







		5 Biotransformation


		6 Biodegradation


		7 Enzymes used in RENA

		7.1 Molecular mechanism of RENA







		8 Factors affecting the efficiency of RENA


		9 Challenges associated with the adoption of RENA


		10 Conclusion and future prospects


		Author contributions


		Funding


		Acknowledgments


		Publisher’s note


		References


















OPS/images/fenvs-10-1015897/fenvs-10-1015897-g002.gif


OPS/images/fmicb-14-1214870/fmicb-14-1214870-t002.jpg


OPS/images/fenvs-10-1015897/fenvs-10-1015897-t001.jpg


OPS/images/fmicb-14-1214870/fmicb-14-1214870-t003.jpg


OPS/images/fenvs-10-1015897/crossmark.jpg


OPS/images/fenvs-10-1015897/fenvs-10-1015897-g001.gif


OPS/images/fenvs-10-1015897/fenvs-10-1015897-t004.jpg


OPS/images/fmicb-14-1214870/fmicb-14-1214870-g002.jpg


OPS/images/fmicb-14-1040901/crossmark.jpg


OPS/images/fmicb-14-1214870/fmicb-14-1214870-g003.jpg


OPS/images/fenvs-10-1015897/fenvs-10-1015897-t002.jpg


OPS/images/fmicb-14-1214870/fmicb-14-1214870-g004.jpg


OPS/images/fenvs-10-1015897/fenvs-10-1015897-t003.jpg


OPS/images/fmicb-14-1214870/fmicb-14-1214870-t001.jpg


OPS/images/fmicb-14-1174532/fmicb-14-1174532-t001.jpg


OPS/images/fmicb-14-1174532/fmicb-14-1174532-t002.jpg


OPS/images/fmicb-14-1214870/crossmark.jpg


OPS/images/fmicb-14-1214870/fmicb-14-1214870-g001.jpg


OPS/images/fenvs-11-1270002/crossmark.jpg


OPS/images/fmicb-14-1208591/fmicb-14-1208591-e007.jpg


OPS/images/fmicb-14-1208591/fmicb-14-1208591-e003.jpg


OPS/images/fmicb-14-1208591/fmicb-14-1208591-e004.jpg


OPS/images/fmicb-14-1208591/fmicb-14-1208591-e005.jpg


OPS/images/fmicb-14-1208591/fmicb-14-1208591-e006.jpg


OPS/images/fmicb-14-1214870/fmicb-14-1214870-t005.jpg


OPS/images/fmicb-14-1208591/crossmark.jpg


OPS/images/fmicb-14-1208591/fmicb-14-1208591-e001.jpg


OPS/images/fmicb-14-1208591/fmicb-14-1208591-e002.jpg


OPS/images/fmicb-14-1214870/fmicb-14-1214870-t004.jpg


OPS/images/fmicb-14-1206217/fmicb-14-1206217-e001.jpg


OPS/images/fmicb-14-1206217/fmicb-14-1206217-g001.jpg


OPS/images/fmicb-14-1206217/fmicb-14-1206217-g002.jpg


OPS/images/fmicb-14-1206217/fmicb-14-1206217-g003.jpg


OPS/images/fagro.2023.1183691/table2.jpg


OPS/images/fagro.2023.1183691/table3.jpg


OPS/images/fagro.2023.1183691/table4.jpg


OPS/images/fmicb-14-1206217/crossmark.jpg


OPS/images/fagro.2023.1183691/fagro-05-1183691-g001.jpg


OPS/images/fagro.2023.1183691/table1.jpg


OPS/images/back-cover.jpg


OPS/images/fmicb-14-1174532/crossmark.jpg


OPS/images/fmicb-14-1174532/fmicb-14-1174532-g001.jpg


OPS/images/fmicb-14-1174532/fmicb-14-1174532-g002.jpg


OPS/images/fmicb-14-1206217/fmicb-14-1206217-g007.jpg


OPS/images/fmicb-14-1206217/fmicb-14-1206217-g008.jpg


OPS/images/fmicb-14-1206217/fmicb-14-1206217-g009.jpg


OPS/images/fmicb-14-1206217/fmicb-14-1206217-t001.jpg


OPS/images/fmicb-14-1206217/fmicb-14-1206217-g004.jpg


OPS/images/fmicb-14-1206217/fmicb-14-1206217-g005.jpg


OPS/images/fmicb-14-1206217/fmicb-14-1206217-g006.jpg


OPS/images/fmicb-14-1212349/math_1.gif


OPS/images/fmicb-14-1212349/fmicb-14-1212349-t004.jpg


OPS/images/fmicb-14-1212349/fmicb-14-1212349-t003.jpg


OPS/images/fmicb-14-1212349/fmicb-14-1212349-t002.jpg


OPS/images/fmicb-14-1212349/fmicb-14-1212349-t001.jpg


OPS/images/fmicb-14-1212349/fmicb-14-1212349-g004.gif


OPS/images/fmicb-14-1212349/fmicb-14-1212349-g003.gif


OPS/images/fmicb-14-1212349/fmicb-14-1212349-g002.gif


OPS/images/fmicb-14-1212349/fmicb-14-1212349-g001.gif


OPS/images/fpls.2023.1137002/fpls-14-1137002-g003.jpg


OPS/images/fpls.2023.1137002/fpls-14-1137002-g004.jpg


OPS/images/fmicb-14-1133968/fmicb-14-1133968-t006.jpg


OPS/images/fpls.2023.1137002/crossmark.jpg


OPS/images/fpls.2023.1137002/fpls-14-1137002-g001.jpg


OPS/images/fpls.2023.1137002/fpls-14-1137002-g002.jpg


OPS/images/fmicb-14-1133968/fmicb-14-1133968-t002.jpg


OPS/images/fmicb-14-1133968/fmicb-14-1133968-t003.jpg


OPS/images/fmicb-14-1133968/fmicb-14-1133968-t004.jpg


OPS/images/fmicb-14-1133968/fmicb-14-1133968-t005.jpg


OPS/images/fenvs-11-1182586/crossmark.jpg


OPS/images/cover.jpg


OPS/images/fagro.2023.1183691/crossmark.jpg


OPS/images/fpls.2023.1137002/fpls-14-1137002-g010.jpg


OPS/images/fpls.2023.1137002/fpls-14-1137002-g011.jpg


OPS/images/fpls.2023.1137002/M1.jpg


OPS/images/fpls.2023.1137002/M2.jpg


OPS/images/fpls.2023.1137002/fpls-14-1137002-g006.jpg


OPS/images/fpls.2023.1137002/fpls-14-1137002-g007.jpg


OPS/images/fpls.2023.1137002/fpls-14-1137002-g008.jpg


OPS/images/fpls.2023.1137002/fpls-14-1137002-g009.jpg


OPS/images/fpls.2023.1137002/fpls-14-1137002-g005.jpg


