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Editorial on the Research Topic 


Key determinants of biodiversity, ecosystem functioning and restoration in climate change sensitive ecosystems


At the global scale, we are already past the planetary boundary of biodiversity loss (Montoya et al., 2018), and further declines are expected to occur (Tilman et al., 1994; Helm et al., 2006; Vellend et al., 2006). Therefore, ecosystems that contribute greatly to human well-being through the delivery of biodiversity and ecosystem benefits should be the focus of particular concern (Montoya et al., 2012; Seddon et al., 2016). To advance our understanding of biodiversity and ecosystem functioning in the changing world, we organized a Research Topic entitled “Key Determinants of Biodiversity, Ecosystem Functioning and Restoration in Climate Change Sensitive Ecosystems”. This attracted 23 excellent articles, spanning multiple ecosystems including tropical/subtropical forests and alpine meadows, across several climate change sensitive areas and cover five themes (composition and function of tropical/subtropical forests, forest succession, complex trophic interactions, Biodiversity and ecosystems threats).

Six articles shed light on the composition and function of tropical/subtropical forests. Chai et al. test the influence of vertical structure on beta diversity, while Li et al. show how plant height and soil resources affect carbon gain and plant growth. Tian et al. find that the role of resources is again evident in the habitat preferences of vascular herbaceous plants. Su et al. report a comprehensive study using 1,773 species from 370 sites globally to show how a leaf hydraulic trait (leaf turgor loss point) can serve as a strong predictor of drought-induced tree mortality in a tropical forest. Wang et al. examine the question of sample size and show that the commonly recommended sample size is inadequate in many cases, particularly when the habitat is heterogenous like the karst forests they studied. Gong et al. report that carbon storage increased with recent land use changes in a river basin in China.

Four articles provide new findings on forest succession. Liu et al. report divergent intraspecific variation and functional strategies in aboveground and belowground functional traits, and Xing et al. report increase in soil organic carbon during succession from plantation to secondary and old-growth forest and that total root biomass was the important factor in predicting soil organic carbon. Yang et al. find that different successional stages show divergent effects on soil arbuscular mycorrhizal fungal communities, and this fungal association with plant roots contributes directly or indirectly to ecosystem functions at different successional stages. Yang et al. also find that species richness and spatial heterogeneity are accompanied by enhanced soil organic carbon in a 60-ha plot of an old-growth tropical montane rainforest.

Five articles describe new results for complex trophic interactions. Hou et al. demonstrate abiotic effects by showing how soil properties primarily drive nematode community assembly by habitat filtering, while Yang and Chen highlight the importance of biotic interactions in reporting that decreasing phylogenetic diversity in tree species led to decreased generalist herbivore richness, abundance and herbivory, while increasing specialist herbivores. Demonstrating higher level trophic interactions Rao et al. report how nest predation in the red jungle fowl, a ground-dwelling bird involves a wide range of predators including rodents, reptiles and bird species. Wang et al. show that resource availability measured in terms of food plant diversity affects home range area and formation of Hainan gibbon with forage plant diversity impacting survival and fitness. Zou et al. detected that gibbon population growth shows a positive relationship with improved habitat quality, however, changes in individual numbers do not show a significant change with improving habitat quality.

Eight articles provide new understandings of biodiversity and ecosystems threats (biological invasion, global change (nitrogen and phosphorus addition) impacts, infectious diseases and energy needs). Das et al. and Jia et al. provide the following new results on biological invasion threats: 1) the evidence for negative spatial dependence between native and invasive plant species and 2) a replacement control method for managing alien species using biological control. Two studies (Du et al. and Qi et al.) point to the contrasting responses of different biological groups (plant, soil microbial and nematode community) to both nitrogen and phosphorus addition in alpine ecosystems. Two new findings on infectious disease threat are attained by Chen et al. and Chen et al. Namely: 1) host community composition determines the direction and strength of the diversity–disease relationship and 2) adding vector preference and interspecific competition into the system altered the direction of diversity–disease relationship, while host competence, interspecific competition, and vector preference interact to determine the spread of infectious diseases for vector-borne diseases. Bonacic et al. and Zhang et al. report three new energy needs threats: (i) the ecological effects of radioactive leaks on both terrestrial and marine ecosystems, (ii) the rapid increase in construction of solar photovoltaic power stations, which is likely to eat into forest and agricultural lands and (iii) how solar photovoltaic power stations decreased the local air temperature but increased air humidity.

In short, all the studies included in this Research Topic undoubtedly contribute to enhancing our understanding of the biodiversity and ecosystem functioning in climate change sensitive areas. In the future, with the advancement of technology, including sequencing, proteomics, metabolomics, and transcriptomics at the molecular level on one hand, and landscape- and regional-scale analyses using developments in drone-based and satellite-based sensing on the other, studies focused on biodiversity and ecosystem function will gain greater power and impact in managing the global biosphere.
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Due to habitat loss and hunting, the Hainan gibbon (Nomascus hainanus), the world’s rarest primate, was reduced to only two social groups and seven known individuals in 1978. Following the establishment of Bawangling National Natural Reserve (BNNR), gibbon forest habitat increased within this landscape from 56 km2 in 1980 to 300 km2, and the species had increased to five groups and 35 individuals by 2021. It is important to assess whether the large increase in habitat area was responsible for gibbon population increase, or whether gibbon recovery was associated with other factors. Here we use a 21-year longitudinal dataset of Hainan gibbon population change and habitat change, combined with vegetation survey plot data for 2021, to establish an accurate distribution baseline for natural tropical broadleaf forest across the BNNR landscape from 400 to 1300 m (the elevational range of gibbons at BNNR) and within the home range for each of the five Hainan gibbon social groups. We then utilized Landsat time-series images and analysis to compute non-linear causal relationships between forest dynamics and gibbon population growth from 2000 to 2021, both across BNNR and within each gibbon group home range. Metrics of forest dynamics include change in total forest area and forest fragmentation, and metrics of gibbon population dynamics include variation in total number of individuals for the entire population and within each social group, and variation in total number of groups. Our results demonstrate that overall gibbon population growth shows a positive relationship with improved habitat quality, with a one-year time lag of population response. However, changes in numbers of individuals within social groups do not show a similar relationship with improving habitat quality, suggesting that increasing forest cover and connectivity within the BNNR landscape are not direct determinants of Hainan gibbon recovery and that other environmental and/or anthropogenic factors are likely to be involved.

Keywords: habitat quality, Hainan gibbon, population dynamics, primate conservation, remote sensing, species recovery


INTRODUCTION

Effective conservation of tiny threatened populations requires a robust understanding of the factors that regulate population growth and recovery (Carwardine et al., 2012; Crees et al., 2016). However, collection of large datasets for such populations can be challenging, necessitating long-term data to identify possible relationships between population dynamics and available environmental baselines. One such species in urgent need of evidence-based conservation is the Critically Endangered Hainan gibbon (Nomascus hainanus), the world’s rarest primate. It is restricted to a single population of 35 individuals within a single protected area, Bawangling National Natural Reserve (BNNR; 109°14′47.35″E, 19°5′45.17″N) in Hainan, China (Fellowes et al., 2008; Turvey et al., 2015a; Deng et al., 2017; Chan et al., 2020a; Figure 1A). Various factors have been proposed to limit growth of the Hainan gibbon population at BNNR, including human disturbance, habitat and/or resource limitation, low population density, low genetic diversity, and/or limited availability or suitability of mates (Turvey et al., 2015a). Long-term recovery of the Hainan gibbon is likely to require intensive, carefully planned conservation management, but these different proposed processes require different mitigations, making effective identification of the primary factors limiting gibbon population growth a conservation research priority.


[image: image]

FIGURE 1. (A) Topographic map of Bawangling National Natural Reserve, Hainan, China; (B) location and elevation of our study area, distribution of 395 20 m × 20 m plots, and home ranges and elevations of Hainan gibbon social groups.


Hainan gibbon population decline during the twentieth century was driven by hunting and habitat loss, resulting from clearance of natural forests and monoculture plantations (Liu et al., 1984; Zhou et al., 2005). BNNR was established in 1980 in a mountainous landscape (elevation 200–1,800 m) that still retained tropical evergreen rainforest, with trees reaching a maximum of 30 m in height (Zhou et al., 2005; Zhang et al., 2020). The reserve was originally 56 km2, but was later expanded to almost 300 km2 in total area (Turvey et al., 2015a). Establishment of the reserve aimed to prevent hunting of gibbons and natural forest clearance, and to support recovery of the last remaining Hainan gibbon population. The gibbon population at BNNR consisted of only two social groups (A and B) and seven known individuals at the time of the first survey in 1978. The population has been monitored regularly since 2000 by the reserve’s management office, and has increased to five social groups and 31 known individuals in 2021: Group C formed in 2010, Group D in 2015, and Group E in 2019 (Liu et al., 1984; Fellowes et al., 2008; Bryant et al., 2016; Deng et al., 2017; Chan et al., 2020a). This multi-decadal increasing trend suggests that population recovery can be attributed directly to effective protection of gibbons and gibbon habitat within BNNR. Continued increase in natural tropical broadleaf forest habitat (increasing total forest area and decreasing fragmentation) is a primary management policy for the recently established Hainan Tropical Rainforest National Park, which has designated the Hainan gibbon as its flagship species (Chinese National Park Administration, 2019). However, the effectiveness of this policy in recovering the Hainan gibbon population has not yet been evaluated using empirical data.

Remote Sensing (RS) and Geographic Information Systems (GIS) are key tools for detecting and evaluating long-term changes in habitat cover and quality for threatened species management (Jeganathan et al., 2004; McShea et al., 2005; Wang et al., 2008; Zhang et al., 2010). Hainan gibbons are strictly dependent upon natural tropical broadleaf forest habitat (primary or secondary forest, not plantation) from 400 to 1,300 m in BNNR (Bryant et al., 2017; Fan, 2017), so it is necessary to establish a baseline of the changing distribution and quality of this habitat type over time across the BNNR landscape and within the home range of each of the five Hainan gibbon groups. It is also important to recognize that species may not respond instantaneously to environmental change, especially if they have slow life histories, and thus time lags might be expected in population responses to changing habitat conditions. Hainan gibbons require 1 year to birth one infant (Liu et al., 1984; Zhou et al., 2008; Deng et al., 2017), and thus a time lag of this magnitude might be expected in gibbon population response to improving habitat conditions. As such, time-series analyses that can find the most likely time lags in causality between variables (e.g., PCMCI algorithm; Runge et al., 2019) are a suitable methodological choice to investigate whether long-time variation in habitat change is a key determinant in Hainan gibbon population dynamics.

In this study, we first determine the distribution of natural forest habitat (primary and secondary forest) across the BNNR landscape from 400 to 1,300 m and within the home range of all five Hainan gibbon groups. We then use Landsat time-series images to determine natural forest dynamics from 2000 to 2021 across BNNR (400–1,300 m) and within each gibbon home range, and use PCMCI to quantify the relationship between natural forest dynamics and gibbon population dynamics across this 21-year period. In addition, we investigate the relationship between species richness (number of species) of known gibbon food plants and elevation, to provide further insights into environmental factors associated with gibbon dispersal and population growth. Our study provides the first assessment of whether forest dynamics have constituted a key determinant of Hainan gibbon population dynamics during the past two decades, thus identifying how landscape management at BNNR can support gibbon conservation in the future.



MATERIALS AND METHODS


Field-Based Gibbon Home Range and Habitat Data

Hainan gibbon social groups have home ranges with little or no spatial overlap (Bryant et al., 2017; Deng et al., 2017), and have remained in approximately the same locations within the BNNR landscape since 1990 (BNNR Management Office, personal communication, 2021). For the purposes of comparative analysis, we investigated spatial home range locations for each group utilizing unpublished gibbon distribution data provided by the BNNR Management Office (Figure 1B).

We investigated the most accurate boundary for natural (primary and secondary forest) and non-natural forest (plantation) across the BNNR landscape from 400 to 1,300 m, by collecting vegetation and land-use data using 395 20 m × 20 m plots distributed across this elevational range over the BNNR landscape in 2021 (Figure 1B). The area of this vegetation survey represents 31.6% of the total landscape area of BNNR, and includes some areas outside the existing protected area boundary. We also randomly placed another 20 20 m × 20 m plots inside the home range of each of the five Hainan gibbon social groups in 2021, with plots spaced ≥ 50 m apart, to investigate species richness of gibbon food plants. Species were identified as potential gibbon food plants based upon previous published data and unpublished monitoring data (Supplementary Table 1).



Remote Sensing Forest Cover Data

The global distribution of all Hainan gibbon social groups in BNNR is contained within Landsat world reference system tile 124/47 (row/column number). We selected annual Landsat images (30 m resolution) for this region for the period 2000–2021 from USGS,1 selecting images closest to the peak of forest cover (defined as June–September each year) with little to no cloud cover. We performed radiometric calibration and atmospheric correction for each image (Young et al., 2017).

We used specified accurate boundaries for natural and non-natural forest across the BNNR landscape from 400 to 1,300 m, and used the support vector machine method of supervised classification to classify these two land cover types in each image (Phiri and Morgenroth, 2017). Classification requirements were met if separation test values of ROIs (Regions of Interest, selected based on field survey data and representing both land cover types) in each image were greater than 1.9. We manually corrected areas of obvious misclassification based upon field observations. We calculated a confusion matrix by combining classification results and the results of our vegetation survey, with overall classification accuracy for each year greater than 99%. The total area of natural forest across BNNR was then calculated by using the image classification results (number of pixels of each land cover type multiplied by the area of one pixel).

We used FRAGSTATS, a widely used software package for quantifying landscape structure (Ricketts, 2001; Cakir et al., 2007; McGarigal et al., 2012; Lamine et al., 2018), to calculate forest fragmentation across the entirety of BNNR and within the home range of each gibbon group. Fragmentation was calculated according to the formula F = N/A, where F is level of forest fragmentation, N is number of forest patches, and A is total forest area within an image.



Time-Series Analysis

We used the PCMCI algorithm (Runge et al., 2019) implemented in Python2 to compute non-linear causal relationships between changes in forest dynamics (change in total forest area and/or forest fragmentation) across the entirety of BNNR and within the home range of each of the five gibbon groups and Hainan gibbon population dynamics (variation in total number of individuals for the entire gibbon population and within each social group, and variation in total number of social groups) from 2000 to 2021. PCMCI is a two-stage algorithm that includes a PC algorithm and a momentary conditional independence test (MCI; Sun and Bollt, 2014); it can find the most likely time lag of causality between variables, by first running a conditional selection via the PC process to find links between variables based on different conditional independence tests, and then applying the MCI process to remove false positive controls and generate a test statistic to measure the strength of the causal relationship between variables. Model selection (data not shown) supported the use of a τmax (maximum time lag) value of 2, thus including three possible time lags (0, 1, and 2 years). The PCMCI method cannot be used for datasets where n < 7 (Runge et al., 2019). We therefore only analyzed time-series data using the PCMCI method for groups A, B, C, and D, which have existed for seven or more years across our time-series.



Environmental and Anthropogenic Determinants of Gibbon Distribution

To explore the possible effect of both elevation and human land use activities on gibbon social group distribution and formation, we used a 1.5 m-resolution RS image of the entirety of BNNR from 23 April 2019 obtained from the SPOT-7 satellite sensor. Following pre-processing, we used the maximum likelihood method of supervised classification to analyze land cover in the image (Phiri and Morgenroth, 2017). Using artificial interpretation of the image and field survey data, we divided land cover into four categories: natural forest, plantation, roads and construction, and water. We extracted the highest and lowest elevations occupied by each gibbon group using digital elevation model (DEM) data.

We investigated the relationship between elevation and gibbon food plant species richness for each gibbon social group using a generalized linear model (GLM), with a Poisson error structure because food plant richness is a discrete random variable (count data).




RESULTS

Between 2000 and 2021, the total number of Hainan gibbon social groups and individuals increased from two groups and 10 individuals in 2000, to five groups and 35 individuals in 2021 (Figures 2A,B). Overall, Hainan gibbon habitat (natural tropical broadleaf forest) quality also improved across BNNR during this period, with total area increasing from 71.19 to 93.38 km2, and fragmentation decreasing from 0.02 to 0.004 (Figures 3A,B). Within the range of Group C, total natural forest area decreased from 1.42 to 0.95 km2, and fragmentation increased from 0.0072 to 0.042. Conversely, natural forest area and fragmentation remained largely unchanged and consistently high within the ranges of other groups (Figures 3C,D).
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FIGURE 2. Population change from 2000 to 2021 in: (A) total number of Hainan gibbon individuals and social groups, (B) individuals in each social group, (C) history of formation for groups C, D, and E and boundaries of natural forest and plantation in Bawangling National Natural Reserve from 400 to 1,300 m.
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FIGURE 3. Change from 2000 to 2021 in (A,B) total natural forest area and fragmentation across Bawangling National Natural Reserve, (C,D) natural forest area and fragmentation within Hainan gibbon social group ranges.


PCMCI results show that variation in total number of gibbon individuals from 2000 to 2021 was determined by both natural forest area and fragmentation when the time lag was 1 year, with a positive correlation between number of individuals and natural forest area, but a negative relationship between number of individuals and forest fragmentation (p < 0.05; Figure 4A). Variation in both natural forest area and fragmentation could also determine variation in number of individuals within group C when the time lag was 1 year, with a negative correlation with natural forest area (p < 0.05; Figure 4E), and a positive correlation with fragmentation (p < 0.05; Figure 4E). However, natural forest area and fragmentation were not statistically correlated with variation in number of gibbon groups (p > 0.05; Figure 4B). Similarly neither natural forest area nor fragmentation determined variation in number of individuals within groups A, B, and D (p > 0.05; Figures 4C,D,F).
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FIGURE 4. Relationships from 2000 to 2021 between natural forest area and fragmentation, and: (A) number of Hainan gibbon social groups, (B) total number of Hainan gibbon individuals, and number of individuals in (C) Group A, (D) Group B, (E) Group C, and (F) Group D. *** Indicates p < 0.05, NS (non-significant) indicates p > 0.05, based on PCMCI analysis. Time lag (T) varies between 0 and 2 years.


Overall, 59–115 different known gibbon food plant species were recorded across different gibbon social group ranges. There was a significant negative relationship between mean elevation and food plant species richness across the five gibbon groups (p < 0.05; Figure 5), with Group B occupying the highest elevation (mean = 1002.5 m, range = 808–1197 m) and having the lowest food plant species richness, and Group E occupying the lowest elevation (mean = 660.5 m, range = 439–832 m) and having the highest food plant species richness (Figure 5).
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FIGURE 5. Relationship between Hainan gibbon food plant species richness and mean elevation (m) across five existing Hainan gibbon social groups. *** Indicates p < 0.05 based on generalized linear model with Poisson error. Fitted line generated from a generalized linear model with Poisson error structure.




DISCUSSION

Identifying the factors that have regulated past population dynamics and influenced the rate of recovery are key research goals to inform evidence-based conservation of the world’s rarest ape (Turvey et al., 2015a; Qian et al., 2022). Here, we demonstrate that Hainan gibbon habitat quality (as measured by natural forest total area and fragmentation) has improved across the overall BNNR landscape during the past two decades. However, forest dynamics have shown differing patterns within the home ranges of different gibbon groups, with important implications for the likely influence of forest change in promoting gibbon population recovery.

Establishing an accurate understanding of the distribution and long-term change in suitable habitat for threatened species is crucial for evidence-based conservation management, and requires the use of tools such as Landsat time-series images (Oeser et al., 2020). Here we first provide an accurate assessment of the distribution of Hainan gibbon habitat (natural tropical broadleaf forest) within BNNR and within the home range of each gibbon group (Figure 2C). This baseline not only provides a key tool to understand gibbon population responses and environmental requirements, but can also be used in future studies to investigate ongoing change in Hainan gibbon habitat and population dynamics.

Our PCMCI results demonstrate that increased natural forest area and decreased forest fragmentation are highly correlated with an increase in total number of Hainan gibbon individuals with a 1-year time-lag (Figure 4). This temporal pattern is consistent with Hainan gibbon reproductive biology (Liu et al., 1984; Zhou et al., 2008; Deng et al., 2017), and a time-lag of this scale would thus be expected instead of an instant population response to improving habitat conditions. We recommend that PCMCI should be employed more widely in the future to investigate relationships between long-term dynamics of animal populations and potential determining variables, instead of commonly used linear or non-linear regressions (cf. Mougeot et al., 2003; Koenig and Liebhold, 2016; Hansen et al., 2019).

Conversely, our PCMCI analyses do not demonstrate any positive correlations over time between increased habitat quality (indicated by increased forest total area and decreased fragmentation) and increase in total number of individuals within most gibbon groups (A, B, or D) (Figure 4). One potential reason for this lack of signal is that natural forest area has been consistently high and fragmentation has been consistently low within the areas occupied by these groups across the time-series in our study. However, in contrast to the positive relationship between increased habitat quality and increased population growth at BNNR at the total gibbon population level, our PCMCI results also demonstrate an unexpected relationship between growth of Group C and deterioration of local habitat quality within the estimated area of this group’s home range. From its formation in 2010, Group C increased to a maximum of 11 individuals, whilst local natural forest area decreased by 1.47 times and local forest fragmentation increased by 5.75 times over the same period. This group is situated close to the reserve boundary adjacent to a village, and the local habitat in this region has been progressively impacted by human disturbance (e.g., encroachment and clearance of forest for conversion to agroforestry and agriculture; Turvey et al., 2015a). We do not suggest that decreasing habitat quality has been a local driver of gibbon population growth; instead, we suggest that this statistical pattern represents an incidental correlation rather than direct causation, with Group C exhibiting resilience to local habitat deterioration with no apparent adverse effect on social group growth. Population recovery of other Nomascus gibbon species has also been documented within other degraded forest landscapes (Fan et al., 2013).

These findings indicate that, whereas increased natural forest cover and connectivity is correlated with overall Hainan gibbon population increase over time across BNNR, gibbon social group dynamics are clearly not regulated by changes in these habitat quality metrics. Indeed, it is likely that observed growth of the Hainan gibbon population from 2000 onward is also associated with recovery from recent historical hunting (Fellowes et al., 2008; Deng et al., 2017) rather than solely with improving habitat quality. However, hunting restrictions and forest protection have both been simultaneously enforced by conservation management at BNNR, and their respective contributions to local gibbon recovery are thus difficult to distinguish across the same time-series.

While specific Hainan gibbon habitat requirements are still poorly understood, habitat selection by other Nomascus species is determined by local food availability (spatial distribution of food patches and seasonal variation in fruiting; Fan and Jiang, 2008b,2010; Fan et al., 2009; Ni et al., 2018) as well as local distribution of other key resources such as sleeping sites (Fan and Jiang, 2008a; Fei et al., 2012). We demonstrate a significant negative relationship between elevation and food plant species richness at BNNR (Figure 5). These further findings are thus also important for ongoing landscape management and planning for gibbon conservation, and may also help to explain the high growth rate shown by Group C, which occurs at relatively low elevation at the edge of the reserve, despite the progressive decrease in overall forest quality within its home range. Similarly, although Groups A and B both contained only four individuals in 2000, Group A increased to 11 individuals within 10 years, whereas group B, which occurs at a higher elevation within BNNR, required 15 years to increase to the same group size. These results thus provide further evidence that gibbon social group dynamics at BNNR are regulated by extrinsic or intrinsic factors other than overall changes in natural forest quality. Two of the three most recently formed gibbon groups (groups C and E) occur at lower elevations than the other groups. However, their expansion to lower-elevation habitats might merely reflect historical survival of gibbons on Hainan and elsewhere across southwestern China in more remote high-elevation refugia, rather than being associated with natural habitat characteristics of lower-elevation sites (Turvey et al., 2015b). We therefore encourage additional research to better understand specific habitat parameters important in home range site selection during new social group formation by dispersing gibbon individuals (Turvey et al., 2015a).

Hainan gibbon population recovery thus exhibits a complex relationship with increased habitat cover and connectivity at BNNR, with a positive correlation at the overall population level but no positive correlation at the social group level. In order to develop maximally effective conservation management strategies to support further Hainan gibbon population growth, we encourage further investigation into more specific metrics of natural tropical broadleaf forest quality and structure at BNNR, and their relationship to gibbon distribution and population dynamics. However, gibbons are obligate canopy-dwellers that are unlikely to cross even small canopy gaps (Chivers et al., 2013). Thus, existing patterns of forest degradation and fragmentation across the BNNR landscape are recognized to constitute a major barrier to Hainan gibbon population growth and dispersal (Zhang et al., 2010; Turvey et al., 2015a). It is therefore essential to continue efforts to restore and connect natural tropical broadleaf forest habitats across BNNR and beyond, in order to facilitate further gibbon population growth and expansion. Improving natural forest cover and quality with both short-term (e.g., canopy bridges; Chan et al., 2020b) and longer-term solutions (replanting activities, establishment of ecological corridors to other reserves) will be essential to support a resilient and increasing gibbon population on Hainan into the future. Further assessment of specific Hainan gibbon habitat requirements is a vital next step for evidence-based conservation of this Critically Endangered species, and we recommend targeted ecological research combined with continuing forest protection and reconnection (e.g., strategic reconnection of isolated major forest patches to facilitate gibbon population expansion) to constitute key components of management plans for the newly established Hainan Tropical Rainforest National Park (Liu et al., 2020).



CONCLUSION

Overall, two important new insights about the influence of habitat quality on Hainan gibbon population dynamics have been revealed by our study. First, due to the species’ reproductive behavior (requiring 1 year to birth one infant), the Hainan gibbon population exhibits a one-year time lag instead of an instantaneous response to improving habitat quality. Second, improving habitat quality following the establishment of BNNR is not the sole direct determinant of the observed recovery of the Hainan gibbon population within this landscape, a finding that has hugely important implications for ongoing landscape management and conservation decision-making for this species. Our study has wider implications for conservation science, by providing guidelines to identify factors that determine population recovery of the world’s rarest primate and other Critically Endangered species.
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Accurately predicting global drought-induced tree mortality remains a major challenge facing plant science and ecology. Stem hydraulic safety margin (HSM, the difference between water potential at the minimum value and the value that causes xylem vulnerability to embolism) performs as one of the best hydraulic traits in predicting global drought-induced tree mortality, however, HSM is time-consuming and very difficult to measure. We proposed to use leaf turgor loss point (TLP, the water potential at which leaves start to wilt) as a proxy for HSM because HSM may be highly correlated to TLP, as both of them are tightly linked with water potential changes after stomatal closure. Since TLP is more easy and rapid to measure than HSM, if we find strong HSM-TLP relationships at the global scale, TLP can be used in predicting global drought-induced tree mortality. However, no study has quantified the relationships between HSM and TLP at the global scale. Here we draw together published data on HSM and TLP for 1,773 species from 370 sites worldwide to check whether HSM and TLP are highly associated. We found that HSMs and TLPs are merely highly related in tropical forests, thus TLP can be a reliable surrogate of HSM to predict drought-induced tree mortality in tropical forest. Here we are certainly not advocating for the use of TLP instead of HSM to predict drought-induced tree mortality in tropical forests, but simply for predicting drought-induced tree mortality in tropical forests in supplementary of HSM in the future.

KEYWORDS
drought-induced tree mortality, hydraulic failure, physiological trait, stem hydraulic safety margin, turgor loss point, wavelet coherence


Introduction

Climate change is predicted to increase both the frequency and severity of droughts worldwide (Sheffield and Wood, 2008). When the severity of drought increases, water flow in the xylem conduits of trees may be irreversibly disrupted (hydraulic failure), leading to mortality of the roots or branches and even to tree death (Rice et al., 2004; Bréda et al., 2006; Choat et al., 2018). Rapid tree mortality events could convert the world’s forest from a net carbon sink into a large carbon source during this century. However, accurately predicting the impact of climate change on plant performance and survival remains a major challenge facing plant science and ecology (Grierson et al., 2011; Bartlett et al., 2014). Recent tree mortality under frequent extreme drought events have led to recognition of the importance of the physiological mechanisms associated with drought-induced tree mortality in different biomes (McDowell et al., 2011; Anderegg et al., 2012).

Stem hydraulic safety margin (HSM) which defines the difference between water potential at the minimum value and the value that causes xylem vulnerability to embolism, is widely assumed the key to understand drought-induced tree mortality (Brodribb and Holbrook, 2003; Choat et al., 2012; Martorell et al., 2014). A meta-analysis of drought-induced mortality rates across 475 species from 33 studies around the globe revealed that HSM is one of the best predictors of drought-induced forest mortality, with lower HSM indicating higher risk of mortality (Anderegg et al., 2016). Thus, quantifying the variations in global patterns of HSM can facilitate to predict how drought-induced forest mortality varies globally. However, it is time-consuming and hard to measure HSM (Zhu et al., 2018), which impeded the possibility to quantify the dynamics of global HSM. As a result, finding a reliable proxy of HSM can be an alternative way to solve this problem.

When facing drought stress, stomatal closure has been assumed to be the vital mechanism for avoiding xylem embolism as it stops transpiration and water loss in leaves and maintains negative Ψ in stems and roots (Brodribb and Holbrook, 2003). Although stomatal closure does not stop the decline of xylem pressure and hydraulic capacity (Choat et al., 2012), it is strongly associated with both TLP (Blackman, 2018) and HSM (Brodribb and Holbrook, 2003; Martorell et al., 2014), that measure plant’s ability to keep cell turgor pressure when facing drought stress. Compared to HSM, TLP is more easy and rapid to measure (Zhu et al., 2018) and there are largely available TLP dataset at global scale (Bartlett et al., 2012). Thus, if HSM and TLP are highly associated at the global scale, TLP may be a good proxy for HSM to predict drought-induced tree mortality. However, till now only Zhu et al. (2018) has found a strong relationship between TLP and HSM in China. Blackman (2018) also assumes this association is still uncertain, but emphasizes the high necessity to quantify the relationships between HSM and TLP at the global scale.

Here we draw together previous published data on stem HSM and TLP for 1,773 species at 370 sites worldwide. Aridity index (AI), the ratio of mean annual precipitation (MAP), and potential evapotranspiration (PET) were used to represent the water environment. It is highly possible that there is no strong HSM-TLP relationship at the global scale, as at the global scale, HSM does not vary significantly with water environment (Choat et al., 2012), whereas TLP is significantly positively associated with water availability (Bartlett et al., 2012). However, it is also possible that HSM-TLP may be highly correlated in some special water environment (i.e., moist tropical rainforest). Thus we first used traditional Pearson correlation method to quantify the relationship between HSM and TLP at the global scale. Finally, we applied a novel wavelet coherence method, which can compute how the relationship between stem HSM and TLP differs while considering water availability (indicated by AI) at local scales. Our goal was to quantify whether strong HSM-TLP relationship can also be found in some special water environment.



Methods and methods


Data collection

Three categories of data were collected for each site, including plant hydraulic traits (stem HSM and TLP), AI and biome type. The detailed information is shown below:


(1)plant stem HSM and leaf TLP: We obtained stem HSM and leaf TLP for as many woody species and study sites as possible. Datasets we collected were from the TRY Plant Traits Database (Kattge et al., 2011) and published papers (see Supplementary Table 1). We also tried to collect leaf P50, but the largest dataset available was only about 60 species from three different forest types (Zhu et al., 2019), which is not enough for a meta-analysis. Because leaf TLP could be used as a convenient proxy of leaf HSM, we decided to use more available TLP data (298 species in our dataset) to represent leaf drought tolerance. Collected data were confined to measurements taken on the terminal branches of mature plants. For multiple measures on the same species from the same site, we used average values. In total, our collected dataset included 1,116 stem HSM (198 sites) and 703 TLP (172 sites) values for 1,773 species at 370 sites worldwide. There were matched HSM and TLP data in 105 sites.

(2)Aridity index (AI). AI is defined as the ratio of MAP and PET. AI directly reflects a site’s water environment and includes more climatic factors than just precipitation (Maestre et al., 2015). We used AI as a proxy for water availability or drought stress at each site. We extracted AI values for each study site based on the Global Aridity Index database at a 30 arc-s resolution1 (Trabucco and Zomer, 2009). In this study AI values range from 0.1 to 2.5; we discretized them at intervals of 0.1. The distribution of each site and its corresponding AI value are shown in Figure 1.

(3)Biome type for each site. We followed the biome type classification of the geological database of Terrestrial Ecoregions of the World (Olson et al., 2001). The biome type for each site was classified into seven biome types, i.e., deserts, woodland/shrubland, boreal forest, temperate seasonal forest, temperate rain forest, tropical seasonal forest (including savanna), and tropical rain forest. Supplementary Figure 1 shows the distribution of biome type for each study site in our study.
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FIGURE 1
Distribution of the study sites (n = 370) and their corresponding AI values.




Statistical methods


Pearson correlation analysis

Pearson correlation is a measure of the strength and direction of the linear relationship between two random variables. We considered correlations strong if the correlation coefficient was greater than 0.8 and weak if the correlation coefficient was less than 0.5 (Bolboacǎ and Jǎntschi, 2006). A student t-test was used to determine if the value of the Pearson correlation coefficient was statistically significant. We used a significance level of 5%; a p-value less than 0.05 represents evidence to reject the null hypothesis in favor of the alternative hypothesis that there is a linear relationship between the variables. The data length of HSM and TLP are not the same in this study (1,116 stem HSM and 703 TLP values), thus we quantified the HSM-TLP relationship varies with specific water availability levels (classified by AI values). Here we calculated the mean value for stem HSM and TLP at each specific AI interval. The data series relating stem HSM and TLP to AI at a global scale are shown in Supplementary Figure 2. We then applied Pearson correlation analysis on the two data series (mean HSM-TLP vs. AI).



Wavelet coherence analysis

The wavelet transform is a useful tool for analyzing localized variations of a data series. It can transform a data series into frequency space where oscillations can be seen in an intuitive way and can show localized intermittent periodicities or relationships (Grinsted et al., 2014). Wavelet coherence can analyze two data series together. It can be thought of as the local correlation between two data series. Following Torrence and Webster (1999), the wavelet coherence of two data series can define as
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where S is a smoothing operator, and can be written as
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where Sscale denotes smoothing along the wavelet scale axis and Stime smoothing in time. For the Morlet wavelet used in this study, a suitable smoothing operator is given by Torrence and Webster (1999):
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where c1 and c2 are normalization constants and Π() is the rectangle function. The factor of 0.6 is the empirically determined scale decorrelation length for the Morlet wavelet (Torrence and Compo, 1998; Grinsted et al., 2014). The coefficient of wavelet coherence ranges from zero to one and the closer the value approximates one, the more correlated the two series are. The statistical significance levels of the wavelet coherence, which show confidence levels against red noise, were estimated using Monte Carlo methods. The detailed process of calculation and the MATLAB codes for calculating wavelet coherence are provided in Grinsted et al. (2014). Wavelet coherence is most used for time series. Nevertheless, more recently, applications of wavelet coherence have been extended to other data series analysis (He, 2014; Guo et al., 2015; Hu and Si, 2016). Consequently, here we use it to investigate localized intermittent relationships between stem HSM and TLP values in different water environments reflected by AI. Specifically wavelet coherence analysis requires continuous time or spatial variables, so we first calculate the mean HSM and TLP for all species at each of the continuous AI variables (ranging from 0.1 to 2.5 at interval of 0.1). Then we used wavelet coherence analysis to quantify whether strong HSM-TLP relationship can be found in some special AI ranges. Previous studies have found that TLP can be easily affected by whether the species being sampled are deciduous or evergreen (Bartlett et al., 2012). Moreover, tropical rain forests have the largest proportions of evergreen species, thus we further tested if HSM-TLP relationships might vary when merely considering evergreen species, using both Pearson correlation and wavelet coherence analysis.





Results

Stem HSM and TLP values were not significantly correlated when we averaged them according to AI intervals (r = 0.2296, p = 0.2696) (Figure 2), indicating that stem HSM and TLP were not significantly correlated at the global scale. It was possible that the correlation between HSM and TLP was significant only for some particular range of AI. Results of wavelet coherence analysis supported this assertion. The correlation between stem HSM and TLP was significant only for AI values between 1.3 and 1.5 (Figure 3A), which represented the environment of tropical seasonal and rain forests (Supplementary Figure 3). When repeating the wavelet coherence analysis for just evergreen species, we found further evidence for the strongest relationships between stem HSM and TLP values in tropical woody species (Figure 3B).
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FIGURE 2
Relationship between stem HSM and TLP paired according to AI levels (n = 25). The Pearson correlation coefficient (R) and its corresponding p-value are presented in the upper left.
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FIGURE 3
Wavelet coherence analysis between stem HSM and TLP for (A) all woody species and (B) evergreen woody species paired according to AI intervals at global scale. Red reflects perfect correlation while blue reflects a lack of correlation. The thick black contour represents the 95% significance level against red noise. The y label means the period of strong local correlation. In this study, the strong correlation only for AI between 1.3 and 1.5, and the corresponding y label value is about 0.2. It means that the period of strong local correlation is 0.2 (just the interval between 1.3 and 1.5). Because the edge effects cannot be ignored, we only focus on the data inside the Cone of Influence (COI) (darker shade).




Discussion

At the global scale, stem HSM values are not significantly correlated to TLP values. This indicates leaf and stem hydraulic failure are decoupled at the global scale, which supports a strong hydraulic segmentation between leaves and stems in hydraulic pathways (Bucci et al., 2013; Pivovaroff et al., 2014). However, when using wavelet coherence to analyze the regional patterns of stem HSM and TLP, we found strong stem HSM-TLP relationships at AI values indicative of tropical seasonal and rain forests. This indicates that stem and leaf hydraulic properties are well coupled only in tropical forests, as has been found in three tropical forest species (Nolf et al., 2015). This finding suggests that TLP is a good proxy of HSM to predict drought-induced tree mortality only in tropical forests.

It is reasonable that we observed strong correlations between stem HSM and TLP values only in tropical forests, given that plants tend to develop different leaf and stem drought adaptation strategies in different water environments. In wet areas, such as tropical rain and seasonal forests, stem and leaf hydraulic connections can be coupled in the absence of selection pressure from drought (Nolf et al., 2015; Zhu et al., 2016). However, other mechanisms may also save plant species from drought stress in non-tropical forest types (Klein et al., 2014). For example, in extremely dry areas, such as deserts, some plants are adapted to long-term drought stress and can survive under large stem HSM, because xylem cavitation is not always fatal (Fisher et al., 2006; Klein et al., 2011). On the other hand, leaf TLP is not closely related with tree mortality across the globe (Anderegg et al., 2016), thus it has more flexibility in drought tolerance. In deserts (roughly AI < 1.3), species show both very negative stem HSM and leaf TLP values (through different drought tolerance strategies) and no coordination between the two. Furthermore, in biomes with seasonal drought, plants tend to develop drought avoidance strategies, such as dropping leaves to prevent fatal xylem cavitation (Volaire, 2018). Similar deciduousness strategies are also used by shrub species to avoid drought stress in shrubland biomes (Hacke et al., 2000). In our data, if only considering evergreen woody species, comparable correlations between stem HSM and leaf TLP values are evident (see Figure 3B). This confirms that drought avoidance, but not drought stress resistance, prevails in temperate forest and woodland biomes, thereby causing weak HSM-TLP relationships. As a result, except for tropical forests, TLP can act as a safety valve to prevent xylem embolism (low HSM) for global forests.

Our observed HSM-TLP relationships may also explain why HSM does not vary with water environment at the global scale (Choat et al., 2012). In very wet environments, such as tropical rain and seasonal forests, although TLP cannot act as safety valve to prevent xylem embolism, HSM can still persist at safe values to avoid xylem embolism due to the lower probability of drought stress (Nolf et al., 2015) and cavitation-resistant leaves and effective hydraulic compensatory strategies (Zhu et al., 2016). In other biomes, TLP can serve as a safety valve (e.g., shed leaves) to prevent stem xylem embolism even in extreme arid environments such as desert. Thus, HSM can remain at safe values for all biomes. However, there is a possibility that HSM in tropical rain forest could drop under extreme drought stress, as is suggested by high drought-induced tree mortality in tropical rain forests. We noted that our HSM data were not measured during extreme drought stress, which explains why we observed globally similar HSM values (Choat et al., 2012). Future studies should examine HSM during extreme drought stress to better understand how global HSMs response to drought stress.

There are still some gaps in our understanding of the HSM-TLP relationships at the global scale. First, currently, there is a large innovation on the measurements of HSM and TLP and also some difference among them (see Sergent et al., 2020, doi.org/10.1016/j.foreco.2020.118175). Moreover, one single water potential measurement can hardly be considered an estimate of minimum leaf water potential which is the basis for calculating HSM. That is because a proper estimate of minimum water potential is likely to be substantially lower than the values you report for a single date, even if during the dry season. Here for collecting as many HSM and TLP data as possible to perform reliable wavelet coherence analysis, we cannot consider these two potential limitations for our collected HSM and TLP data. Thus, future quantifying the HSM-TLP relationships are still needed to be performed, when many and reliable HSM and TLP data are available. The fifth intergovernmental panel on climate change assessment report (IPCC AR5) indicates that, by the end of the twenty-first century, it is very likely that extreme drought events will be more intense and frequent over the tropical regions (Ipcc, 2013). Indeed, drought has occurred more frequently in tropical regions recently. Examples include the dry extremes over the Amazon in 2005 and 2010 and Northeast Brazil in 2012 (Marengo et al., 2008, 2013; Coelho et al., 2012). Models predict that extreme drought will result in ∼223-million-hectare canopy cover losses by 2050, with the vast majority of losses occurring in the tropics (Cox et al., 2000; Bastin et al., 2019), which in turn could result in large carbon emissions. Given the strong relationship between HSM and TLP in tropical forests, TLP should possibly be used to predict drought induced tree mortality in tropics. Moreover, given the largely available TLP data in tropics, TLP can also be directly incorporated into models forecasting the influence of increased drought-induced tree mortality on carbon emissions in tropical rain forests. Here we are certainly not advocating for the use of TLP instead of HSM to predict drought-induced tree mortality in tropical forests, but simply for the addition of HSM in predicting drought-induced tree mortality in tropical forests in the future.
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Understanding how ecological interactions affect vector-borne disease dynamics is crucial in the context of rapid biodiversity loss and increased emerging vector-borne diseases. Although there have been many studies on the impact of interspecific competition and host competence on disease dynamics, few of them have addressed the case of a vector-borne disease. Using a simple compartment model with two competing host species and one vector, we investigated the combined effects of vector preference, host competence, and interspecific competition on disease risk in a vector-borne system. Our research demonstrated that disease transmission dynamics in multi-host communities are more complex than anticipated. Vector preference and differences in host competence shifted the direction of the effect of competition on community disease risk, yet interspecific competition quantitatively but not qualitatively changed the effect of vector preference on disease risk. Our work also identified the conditions of the dilution effect and amplification effect in frequency-dependent transmission mode, and we discovered that adding vector preference and interspecific competition into a simple two-host-one-vector model altered the outcomes of how increasing species richness affects disease risk. Our work explains some of the variation in outcomes in previous empirical and theoretical studies on the dilution effect.
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Introduction

Vector-borne diseases refer to the infectious diseases that are transmitted by blood-sucking arthropods such as mosquitoes, fleas, lice, ticks, etc. Most vector-borne diseases are zoonosis, they pose a great threat to human health and wildlife conservation. According to estimates, more than 1.5 million people die from vector-borne diseases worldwide each year, which accounts for 3/4 of the newly emerging infectious diseases in recent years (World Health Organization [WHO], 2004). The effective prevention and management of vector-borne diseases remains one of the main challenges of current scientific research.

There is an increased likelihood that host diversity and total disease risk are inversely related, i.e., the dilution effect hypothesis (Keesing et al., 2006, 2010; Ostfeld and Keesing, 2012). Ecologists have recently confirmed that the dilution effect does exist in some systems through the study of Lyme disease (Ostfeld and Keesing, 2000; LoGiudice et al., 2003), West Nile virus (Kilpatrick et al., 2006), amphibian trematodes (Johnson et al., 2013), and leaf fungal diseases (Mitchell et al., 2002; Liu et al., 2016). They have also come to the following conclusion about the underlying mechanism of the dilution effect: the order of community (dis)assembly is non-random, the most competent host species (the hosts’ ability to obtain and transmit pathogens) have the lowest probability of extinction (Halliday et al., 2019, 2020). As host diversity increases, a large number of low-competent or non-competent hosts (a host can become infected but is unable to transmit pathogens) are added to the community, which decreases the contact rate between highly competent hosts and vectors, a dilution effect occurs (Johnson et al., 2013). If this result holds, then the disease risk is highest when the community contains only the most competent host. However, some studies have questioned the universality of the dilution effect by demonstrating that the highest disease risk occurs when the community consists of several host species (Ostfeld and LoGiudice, 2003; Simpson et al., 2012; Costa et al., 2021). Additionally, several researchers have suggested that amplification and no effects also exist in the natural world (Wood et al., 2014; Halliday et al., 2017; Rohr et al., 2019; Vadell et al., 2019). These debates imply that a variety of ecological factors may affect disease risk, and different factors may play different or even perhaps opposite roles in different systems. Exploring how interspecific interactions (resource competition, transmission between species, and vector-host contact rate) affect vector-borne infection is critical not only for theoretical analysis, but also for vector-borne disease prevention and management.

Most vector-borne diseases are transmitted among a variety of hosts, but each host has its own ability to attract vectors, a phenomenon known as the vector preference (Rivera et al., 2020). Several empirical studies supported the existence of vector feeding preferences. For example, Anopheles gambiae, the vector of malaria, prefers to bite humans over cattle (Tirados et al., 2006). Triatoma bugs that transmit Chagas disease have a strong feeding preference for dogs over chickens and cats (Gürtler et al., 2009). Vector preference is an important ecological factor contributing to the heterogeneity in contact rates between hosts and vectors (Simpson et al., 2012). Both theoretical and experimental studies have found that vector preference not only affects the likelihood of disease outbreak and prevalence, but also interacts with other factors to influence disease dynamics (Kilpatrick et al., 2006; Simpson et al., 2012; Zeilinger and Daugherty, 2014).

Interspecific competition can alter the host’s behavior, abundance, living habits, fitness, etc., which can directly or indirectly increase disease risk. For instance, while increased rodent richness facilitates disease transmission between individuals, it can also result in increased interspecific competition, allowing for a decrease in host density, leading to an overall decrease in the prevalence of Sin Nombre Hantavirus (Cortez and Duffy, 2021). Importantly, accounting for interspecific competition may qualitatively alter predictions of diversity-disease relationships. For example, using a mathematical model of infection dynamics and a high-resolution multisite dataset, Luis et al. (2018) found that the prevalence of hantavirus decreased as small mammal diversity increases. However, competition effects, which cause hosts (deer mice) to congregate in refuges far from their main competitors, leading to increased host-to-host contact and thus increased incidence. Therefore, species diversity concurrently dilutes and amplifies disease transmission through competing mechanisms. Similarly, Strauss et al. (2015) used a general trait-based model and found that varying the relationship between the host’s ability to compete and its potential to transmit disease could produced three different outcomes: a dilution effect, an amplification effect, and no significant effect. These findings highlight the need for a better understanding of how interspecific competition affects disease ecology in multi-host communities. Although there have been several studies on the effect of host competition on disease transmission, to the best of our knowledge, few research has examined the situation of a vector-borne system (but see Marini et al., 2017).

The purpose of this paper is twofold. On the one hand, to investigate the combined effects of vector feeding preference and host interspecific competition on vector-borne infection ecology. On the other hand, to explore the exact conditions under which diversity amplification or dilution occurs. To this end, we developed a simple compartment model with two competing host species and one vector, based on the SIS framework, to describe the transmission dynamics of a vector-borne system. The basic reproduction number R0 is used to quantify disease risk, which has been used to identify the conditions under which disease risk would increase or decrease in a multi-host community (Roberts and Heesterbeek, 2013; O’Regan et al., 2015). We found that the conversion of a disease from being extinct to becoming endemic can be made possible by changing the intensity of competition, and that the direction of the effect of competition on disease risk (increasing or decreasing) can be shifted by a combination of vector preference and host competence. Importantly, incorporating vector preference and interspecific competition into a simple model changes the outcomes of how increasing species richness affects disease risk. These findings underscore the importance of linking vector preference, interspecific competition, and host competence in describing vector-borne infection ecology.



Materials and methods


Model description

Mathematical models have been widely used to study complicated ecological processes. Many previous studies have used SIS or SIR compartmental models as a theoretical framework to analyze transmission dynamics in multi-host systems (Dobson, 2004; O’Regan et al., 2015). Similar to the models proposed by Lord et al. (1996) and Simpson et al. (2012), we constructed a simple compartment model with two hosts and one vector, both of which were classified according to whether they are susceptible S or infected I. We refer to host species 1 as the focal host that is a permanent community resident and host species 2 as the introduced host. Assuming that host species 1 and species 2 can compete with each other for resources (Kambatuku et al., 2010), and pathogens can only be transmitted indirectly through the vector, not directly through host-to-host transmission. Vectors feed on both host species, but with different feeding preferences. To simplify the model formulation and analysis, we assumed that infected hosts could die from disease or recover as susceptible individuals, but the vector could not recover from infection.

To model interspecific competition between two host species, as in O’Regan et al. (2015) and Marini et al. (2017), we assumed that the growth of both host species follows Lotka–Volterra dynamics. The following set of differential equations can be used to illustrate the model:

[image: image]

Where Si and Ii represent the number of susceptible and infected individuals of species i, respectively, and Nirepresents the total population size of species i,Ni = Si + Ii (i = 1, 2, v). cij represents the competition coefficient of species j on species i. K1 and K2 denote the carrying capacities of hosts 1 and 2, respectively. Previous studies have suggested that the transmission of pathogens in vector-borne systems follows a frequency-dependent mode. That is, the total number of bites per unit time by a single vector is independent of the host density (Dobson, 2004; Cortez and Duffy, 2021), therefore the incidence [image: image] and [image: image] denote the number of infected individuals per unit time for host species i and vector, respectively. To simplify notation, we let Γi = di + δi + μi and Γv = dv + μv, which denote the per capita removal rate from the Ii class and Iv class, respectively. All parameters and definitions are listed in Table 1.


TABLE 1    Parameters and definitions.

[image: Table 1]



Model analysis

As mentioned above, we used the basic reproduction number R0 as a measure of disease risk. It identifies the number of secondary infections induced by an infected host individual during the disease duration and the lifespan of the vector (Roberts and Heesterbeek, 2013). If R0 < 1, the disease eventually disappears, otherwise, the disease will break out and become endemic. The basic reproduction number R0 of system (1) is calculated by using the next-generation matrix approach, which involves linearizing the system at the disease-free equilibrium [image: image] and decomposing the resulting Jacobian matrix into two matrices, F and V, which describe the disease transmission and transitions out of the infection state, respectively. The dominant eigenvalue of the next-generation matrix is the basic reproduction number R0 (Diekmann et al., 2009; Roberts and Heesterbeek, 2013).

The disease-free non-trivial equilibrium point can be found by setting the first three equations of system (1) to 0:

[image: image]

Specifically, if there is no host interspecific competition, i.e., c12 = c21 = 0, then [image: image].

Here the epidemiological transmission matrix F at the disease-free equilibrium point [image: image] is,

[image: image]

and the epidemiological transition matrix V is,

[image: image]

Therefore, the next-generation matrix M is,

[image: image]

The dominant eigenvalue of M is the basic reproduction number R0 of system (1),

[image: image]

Let [image: image] (i = 1, 2), according to Table 1, this parameter characterizes the transmission efficiency that an infected host species i successfully infects a conspecific individual (pvipiv) via the vector during its disease duration (1/Γi), thus representing the competence of host species i. The higher the gi, the greater the ability of host species i to transmit disease. Substitute gi into Eq. 2, it can be simplified to

[image: image]

As shown in Eq. 3, one of the key factors to determining disease transmission potential and how R0 varies with species richness is how the bites are divided between the two host species, b1 and b2, representing the biting rates of the vector to species 1 and 2, respectively. Assuming that host density is high enough not to limit the biting rate of the vector so that the vector has a fixed daily biting rate bmax (Rogers, 1988). If a vector has no preference for any hosts, then the biting rate of the vector for a specific host is determined by the density of the host (Marini et al., 2017), therefore [image: image]. However, if host species i is preferred, i.e., [image: image], as in Simpson et al. (2012) and Miller and Huppert (2013), we introduced a preference parameter α to represent the feeding preference of the vector, which represents the feeding preference of the vector for host species 1 relative to species 2. From this, the biting rate becomes

[image: image]

Note that when α = 1, the vector has no preference for any host and when α > 1, the vector prefers host 1, and vice versa.

Substituted b1,b2 into Eq. 3, it becomes

[image: image]

By analyzing and numerically simulating Eq. 4, we can figure out how vector preference and host interspecific competition affect disease risk in vector-borne systems.

Another major purpose of this study is to explore the exact conditions under which diversity amplification or dilution occurs. Analytical results of the effect of host species richness on disease risk were obtained via a single- and two-host species community comparison. To this end, we calculated the basic reproduction number [image: image] of a community composed of a single host species (focal host) and compared it to the community composed of focal and alternative host species. The calculation of [image: image] is similar to the process of calculating R0 (see Supplementary material), and we obtained

[image: image]

To explore the conditions under which the dilution effect occurs, we need to find the conditions in which disease risk is reduced in a community consisting of a focal and introduced host species compared to a community with only the focal host species, i.e., [image: image]. If this inequality holds, it is equivalent to

[image: image]

When Eq. 5 holds, the dilution effect will occur. Otherwise, there will be an amplification effect.

To simplify Eq. 5, a dimensionless parameter γ = g1/g2 is introduced to measure the host competence of species 1 relative to 2, which we define as the transmission ratio. When γ = 1, the two hosts were comparable in their ability to transmit disease, and when γ > 1 or 0 < γ < 1, the more competent host is species 1 or 2, respectively.

Next, we will find out the conditions that satisfy Eq. 5 under each of the four combinations with or without vector preference and with or without host interspecific competition. (i) When the vector has no preference for any host (α = 1) and there is no interspecific competition between hosts (c12 = c21 = 0), the non-trivial disease-free equilibrium point is [image: image], and the biting rate [image: image], substitute these parameters into Eq. 5, it is equivalent to [image: image]. Since γ = g1/g2, the expression becomes [image: image]. That is, when there is no vector preference and no interspecific competition, as long as [image: image] holds, the dilution effect can occur. (ii) When there is both vector preference and host interspecific competition (i.e., α≠1,c12,c21 > 0), then

[image: image]

and [image: image].

In the same way, by substituting these parameters into Eq. 5, it is possible to derive the following criteria for the occurrence of the dilution effect:

[image: image]

Note that in this scenario, if interspecific competition is symmetric (c12 = c21) and both hosts have the same carrying capacity (K1 = K2), the above inequality is simplified to [image: image], i.e., whether dilution or amplification occurs in this case is only related to vector preference α and transmission ratio γ. The calculation of the conditions for the dilution effect in the other two scenarios (with preference, without competition, or without preference, with competition) is similar to the above. Table 2 provides a summary of the analytical conditions for the model parameters for which Eq. 5 is valid.


TABLE 2    The analytical conditions for the criterion of [image: image] in four different cases.

[image: Table 2]




Results


The effects of host interspecific competition on R0

To exclude the impact of the presence of other factors on the outcomes, focusing on how interspecific competition affect R0, we first investigated the situation where there is no vector preference and both hosts have the same ability to transmit disease. We assumed that the vector bites hosts based on their density, with a daily biting rate bmax = 0.3 and the disease transmission ratio γ = 1. As seen in Figure 1A (left panel), the maximum R0 occurs when both the competition coefficient c12 and c21 are high (top right), whereas the minimum R0 occurs when both c12 and c21 are very low (bottom left). For a fixed value of cij, an increase in cji will increase R0. Moreover, we also found that even when all other parameters are held constant, a change in c12 and c21 will make R0 changes from less than 1 to larger than 1 (R0 ranges from 0.85 to 1.18). That is, by changing the intensity of competition, the disease may change from extinction to endemic. Secondly, we relaxed the restrictions to consider the scenarios where there is vector preference and differences in host competence. To do this, we simulated the following parameter combinations of γ,α ∈ {0.5,1,2}×{0.5,1,2} (Supplementary Figure 1). In each subplot of Supplementary Figure 1, when the competition coefficients c12 and c21 are large, R0 is large, and vice versa. For a fixed value of cij, R0 increases with the increase of cji(i, j = 1, 2), these findings were consistent with the results in Figure 1. In addition, we found that for the constant values of c12and c21, the larger γ is, the larger R0 is, especially when the preferred host is the highly competent one (see Supplementary Figure 1).


[image: image]

FIGURE 1
(A) The effect of interspecific competition on R0. (B) The effect of interspecific competition (only for c12 = c21) on R0at three different values of bmax = 0.1, 0.2, 0.3, respectively. In panel (A), bmax = 0.3, the other parameters in the two panels have the same values as: α = 1, γ = 1, K1 = K2 = 1000, Kv = 4000, Γv = 0.1, g1 = g2 = 0.4.


In Figure 1B (right panel), we showed how the effect of interspecific competition on R0 is influenced by the biting rate, which we set bmax = 0.1, 0.2, 0.3, respectively. We found that for a fixed interspecific competition coefficient, the larger bmax is, the larger R0 is. At each value of bmax, R0 increases linearly with c12 = c21. Since there is no significant difference in the results for any of the three values of bmax, we only consider the case of bmax = 0.3 in the following study.

Next, we investigated how interspecific competition coefficient c12 affects R0 in the presence of vector preference and differences in host competence (i.e.,α≠1,γ≠1) (Figure 2). The horizontal axis represents the competition effect of host species 2 on species 1 (i.e., c12), and the vertical axis represents R0. As can be seen from Figure 2, for a fixed c12, the larger the transmission ratio γ, the larger the R0, especially when the preferred host is a highly competent one. As c12increases, R0 shows a non-linear trend, increasing or decreasing depending on the combined effect of transmission ratio γ and vector preference α, suggesting that vector feeding preference and differences in host competence may shift the direction of the effect of interspecific competition on R0.


[image: image]

FIGURE 2
R0 according to interspecific competition coefficient c12 in the presence of vector preference and differences in host competence. The four lines represent four different combinations of vector preferences α and transmission ratios γ. Here c21 = 0.5, bmax = 0.3, K1 = K2 = 1000, Kv = 4000, Γv = 0.1, g2 = 0.4.




The effects of vector preference on R0

Vector feeding preferences can lead to heterogeneity in host-vector contact, which may affect disease dynamics. To understand the effect of vector preference on disease transmission potential, we first assumed that there was no interspecific competition between hosts. In Figure 3, the horizontal axis represents the feeding preference index α, which ranges from 0 to 2, and the vertical axis represents R0. It can be seen from Figure 1 that as α increases, R0may increase, decrease, or vary slightly, depending on the host transmission ratio γ. If species 1 is the more competent host at this time (γ > 1), then R0increases with the increase of α. On the contrary, if species 1 is the lower competent host, then R0decreases as αincreases. When the two hosts are comparable in their competence (γ = 1), R0varies within a small range as α increases. In fact, in this case, when we narrow the range of the vertical axis (the inset graph of Figure 3), we find that R0 first decreases and then increases as α increases, and when the vector has no preference for any hosts (α = 1), R0 takes the minimum value.


[image: image]

FIGURE 3
The effect of vector preference α on R0 without host interspecific competition. Different lines represent the results of different values of the transmission ratio γ. The inset of figure shows the case of γ = 1 when narrowing the vertical axis. The other parameters are: c12 = c21 = 0, bmax = 0.3, K1 = K2 = 1000, Kv = 4000, Γv = 0.1, g2 = 0.4.


Secondly, we considered the effect of vector preference α on R0 in the presence of interspecific competition by simulating different competition coefficient combinations (Supplementary Figure 2). Different panels of Figure 2 refer to different values of (c12,c21)that assume the values of 0.1, 0.5, 0.9. It was found that there is no qualitative difference with the results in Figure 3, except that when species 1 is a less competent host or the two hosts are comparable in their competence. As α increases, the magnitude of the decrease of R0 is lower than that in the absence of interspecific competition (Figure 3). All these results indicate that the presence or absence of interspecific competition quantitatively but not qualitatively changes the effect of vector preference on R0.



Dilution effect versus amplification effect

Table 2 summarizes the analytical conditions that are satisfied [image: image] under each of the four combinations with or without vector preference and with or without host interspecific competition (see section “Materials and methods”). In this section, we focused on how interspecific competition, vector preference, and host competence affect the occurrence of dilution effects. According to Table 2, when both interspecific competition and vector preference exist, a dilution effect can occur when

[image: image]

Conditions for [image: image](i.e., [image: image]) were represented by a linear configuration of vector preference α and the transmission ratio γ, the line divided α-γ parameter space into disjoint regions for which dilution and amplification effects were exhibited (Figure 4). Different lines represent different competition intensities of c12, which are taken as 0.1, 0.5, and 0.9, respectively. On the upper right side of each line, it shows the parameter area where the dilution effect happens (symbol DE). On the lower left side of each line, it shows the parameter area where the amplification effect happens (symbol AE).


[image: image]

FIGURE 4
Analytical relationships for combinations of interspecific competition, vector preference and transmission ratio. The dotted and solid lines represent parameter sets (α,γ) for which [image: image] under different competition intensity c12. These lines divided α−−γ parameter space into disjoint regions where dilution and amplification effects were exhibited. The upper right of each line represents parameter pairs for which a dilution effect occurs (symbol DE), whereas the lower left of each line represents parameter pairs for which an amplification effect occurs (symbol AE). The other parameters are: K1 = K2 = 1000, c21 = 0.5.


As shown in Figure 4, adding new species to a community can lead to both a dilution effect and an amplification effect, depending on the values of α and γ. When the focal species (species 1) is a highly competent host and the vector prefers the focal species, the addition of the introduced species (species 2) dilutes the proportion of the focal species and reduces the effective contact between the focal species and the vector, resulting in a dilution effect ([image: image]) (the upper right area of Figure 4). Conversely, when the introduced species is a highly competent host and the vector prefers the introduced species, the addition of the introduced species results in a higher disease risk compared to the community containing only the focal host, and thus an amplification effect occurs ([image: image]) (the lower left part of Figure 4). In addition, for a fixed value of c21, the larger the c12, the larger the parameter area where the dilution effect can occur, and vice versa.




Discussion

Understanding how ecological interactions and significant ecological factors affect vector-borne disease dynamics is crucial given the rapid loss of biodiversity and the rise in newly emerging vector-borne diseases (Rivera et al., 2020). In this study, we constructed a simple compartment model with two competing host species and one vector, in which the vector has different preferences for the hosts, to study the combined impact of vector feeding preferences and host interspecific competition on vector-borne infection ecology. Furthermore, we investigated the relationship between host species richness and disease risk by comparing disease risk R0 in single- and two-host communities. We demonstrated that disease transmission dynamics in multi-host communities are more complex than anticipated, highlighting the significance of linking vector preference, interspecific competition, and host competence in describing vector-borne infection ecology. More specifically, we found that vector preference and differences in host competence shifted the direction of the effect of competition on R0, yet interspecific competition quantitatively but not qualitatively changed the effect of vector preference on R0. Furthermore, this study quantified the conditions of dilution effect and amplification effect, and clarified that incorporating vector preference and interspecific competition into a simple two-host-one-vector model changes the outcomes of how increasing species richness affects disease risk R0.

For vector-borne diseases, the dynamics of pathogen transmission depend on the ability of host species to maintain and transmit disease and on ecological factors such as interspecific competition and contact rate between hosts and vectors (Simpson et al., 2012). Interspecific competition can either increase R0 by increasing the vector/host ratio or decrease R0 by decreasing the density of the host population (Marini et al., 2017), the general pattern of the effect of competition on R0 is hard to predict, and whether competition has a positive or negative effect on R0 depends largely on host preferences and host competence. We also found that R0 is strongly influenced by vector feeding preference. R0 increases with the increase of vector preference, as long as the preferred host is a highly competent host. The reason for this phenomenon may be that vector preference allows a large number of bites to be concentrated on the preferred host, increasing the effective contact between the vector and highly competent hosts, thereby increasing the efficiency of disease transmission. In fact, these findings have been confirmed in some field experiments and theoretical studies. For example, if all individuals in the community have the same ability to transmit disease, vector-host contact heterogeneity owing to vector preference can increase the risk of disease outbreak (Woolhouse et al., 1997; Miller and Huppert, 2013). These facts tell us that it is important to be scientific and rational in developing disease control strategies, and that if the control measures are not appropriate, they may be counterproductive. For example, for a population with identical individuals, selective use of insect repellent will result in a higher concentration of vectors on the unprotected individuals, which is equivalent to the vector feeding preference, the disease risk R0 may rise rather than fall (Miller and Huppert, 2013).

Whether increased host species richness results in greater or lower disease risk has been controversial in the literature, leading to calls for theoretical studies on what conditions promote amplification versus dilution (Buhnerkempe et al., 2015; Halsey, 2018). Many previous studies on the biodiversity-diseases risk relationship have demonstrated that when diseases are transmitted in a frequency-dependent mode, an increase in species richness decreases the community R0 (Dobson, 2004; Rudolf and Antonovics, 2005; Rohr et al., 2019). However, an interesting finding of this study is that, even in frequency-dependent transmission mode, the introduction of new species to a community may increase or decrease disease risk if interspecific competition and contact heterogeneity due to vector preference are taken into account, which is in contrast to the results of previous studies. The reason for this phenomenon can be understood from the mechanism of the dilution effect. Keesing et al. (2006) constructed a general mathematical model framework and proposed five mechanisms by which dilution effects occur. Among them, encounter reduction and susceptible host regulation have been confirmed in many empirical studies (Allan et al., 2009; Johnson and Thieltges, 2010). In a vector-borne disease system, encounter reduction refers to the presence of additional species that affects host behavior, reduces the probability of contact between vector and host, or influences vector behavior, decreasing the likelihood that susceptible individuals will become infected individuals (Clay et al., 2009). Susceptible host regulation refers to the fact that the addition of new host species to a community regulates susceptible host numbers through interspecific interactions such as competition or predation (Keesing et al., 2006). If the above assumptions are satisfied, an increase in species richness may lead to a dilution effect. Conversely, if the introduced host is a highly competent host or one that the vector prefers to feed on, or if the introduced host has strong interspecific competition ability, which reduces the frequency of low competent hosts through interspecific competition, then an increase in species richness will increase the communityR0, whereby an amplification effect occurs. This explains, to some extent, why an amplification effect can occur in the frequency-dependent transmission mode. Our study emphasizes the need to focus not only on the transmission mode of disease, but also on interspecific interactions (interspecific competition and vector-host contact rate) and host competence (Cortez and Duffy, 2021; Su et al., 2022).

Although mathematical models have been widely used to study complex ecological phenomena, explaining and validating many empirical studies, there are still several limitations (O’Regan et al., 2015). In fact, the two-host-one-vector Lotka–Volterra competition model used in this study is very simplistic compared to the complexity of real community ecology. For example, we only compared disease risk R0 when pathogen was transmitted in single- and two-host communities, despite the fact that natural communities can have dozens of host species. We focused only on the effect of interspecific competition on disease risk, ignoring the possible effect of intraspecific competition. Moreover, we used the basic reproduction number R0 as a measure of community disease risk, which is challenging to estimate in field and empirical studies and does not allow for comparisons between studies (Roberts and Heesterbeek, 2018; Cortez and Duffy, 2021). In addition, we ignored some ecological factors that could affect the potential of outbreaks, including the seasonal variation in vector feeding preference (Burkett-Cadena et al., 2012; Marini et al., 2017) and demographic stochasticity (Dizney and Ruedas, 2009). However, we believe that this study of a simplified scenario provides a theoretical framework for incorporating interspecific competition, vector preference and host competence into vector-borne systems. Our work emphasizes the significance of ecological interactions in determining infection dynamics in a multi-host vector system, and contributes to explaining some of the variation in outcomes in previous empirical and theoretical studies on the dilution effect.
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Global primates are endangered, and thus it is important to know the determinants of primate population dynamics. It is widely reported that food plant diversity and nutrients are key determinants of many primate population dynamics. However, it remains unknown whether this can be applied to explain the population dynamics of Hainan gibbon (Nomascus hainanus), the world’s rarest primate. Recently, two individuals moved out from one family group (group C) and went across more than 9 km to form a new family group (group E), thus providing a perfect chance to quantify whether food plant diversity and nutrients can determine Hainan gibbon’s formation of the new family group. Here, we used a plot survey to compare the differences in food plant diversity (species richness and abundance) and nine leaf nutrient traits (leaf water content, total soluble sugar, vitamin C, calorific value, crude fat, crude protein, crude fiber, Zn, and Fe) between group C and group E. We found that plant diversity in group E was indeed higher (1.35–1.41 times) than that in group C. Moreover, in both groups C and E, food plant diversity within the home range was also higher (1.4–1.6 times) than that out of the home range. However, both cases could not be witnessed for all leaf nutrient traits. Results of principal component analysis revealed that food plant species between groups C and E were all significantly separated by food plant diversity but not leaf nutrient traits. Food plant species within and out of the home range of both groups C and E could also be significantly separated by food plant diversity, but not for all leaf nutrient traits. In conclusion, food plant diversity was one key determinant of the formation of a new family group of Hainan gibbons. Choosing high food plant diversity was also one key motivation for Hainan gibbons to select their home range.
Keywords: food plant diversity and nutrients, Hainan gibbon, new formation of the family group, population dynamics, primate conservation, species recovery
INTRODUCTION
Globally, approximately 60% of primate species are at threat of extinction (Estrada et al., 2017). Among them, the critically endangered Hainan gibbon (Nomascus hainanus), the world’s rarest primate, should have a high priority of conservation (Zou et al., 2022). That is because it is restricted to a single population of c.35 individuals within a single protected area, Bawangling National Nature Reserve (BNNR) in Hainan, China (Fellowes et al., 2008; Turvey et al., 2015; Chan and Lo, 2020). Thus, it is essential to perform an effective protection strategy to prevent the early extinction of the Hainan gibbon (Liu et al., 2020). However, without knowing the key determinants of Hainan gibbon population dynamics, it is impossible to make an effective conservation strategy (Turvey et al., 2015; Zhang et al., 2020).
A number of factors (i.e., climate, predation, and stress or disease) can affect Hainan gibbon population dynamics (Turvey et al., 2015), but the effect of food has typically been considered of paramount importance (Hanya and Chapman, 2013; Bach et al., 2017) That is because food is a fundamentally important resource of animals, and the adequacy of food directly affects animal behavior, growth, reproduction, population structure, and population dynamics (Zhao et al., 2013). Quantifying food diversity and nutrients is also a prerequisite for exploring the interaction mechanism between animals and habitats (Clink et al., 2017; Deng and Zhou, 2018). Primates will select a home range with high food tree diversity and high calorie likely as an adaptation for fluctuating food environments (Hladik and Simmen, 1996; Jang et al., 2021). Importantly, this “high-calorie bias” in primates’ spatial memory seems to yield consequences for individual eating behavior in food-abundant settings (Arce et al., 2010; de Vries et al., 2022). It has been found that food abundance and distribution can directly determine primate ranging patterns and home range area (Milton and May 1976; Kim et al., 2011; Simmen et al., 2014; Ning et al., 2019). Thus knowledge of habitat and feeding ecology is essential for developing an effective conservation management plan for threatened primates (Fan et al., 2021).
In 2019, two individuals moved out from one family group (group C) and went across more than 9 km to form a new family group (group E) (Zou et al., 2022). As a result, quantifying the differences in food plant diversity and nutrients between group C and group E can provide a perfect chance to reveal 1) whether choosing high food plant diversity or/and nutrients was one key motivation for group C and E to select their home range and 2) whether the formation of a new family gibbon group (group E) is determined by food diversity or/and nutrients. We hypothesized that food plant diversity and nutrients determined both gibbon home range selection and formation of the new family group.
To test this hypothesis, we evaluated differences in food plant diversity and nutrients within and out of home range in groups C and E and between groups C and E by examining the following: 1) food plant diversity (richness and abundance) in 20 plots of 400 m2 each and 2) nine leaf nutrient traits (leaf water content, total soluble sugar, vitamin C, calorific value, crude fat, crude protein, crude fiber, Zn, and Fe) for all food plant species. Fruit is the favorite for Hainan gibbon, but in the dry season, Hainan gibbons use leaves as fallback food, and when they fed on a higher percentage of leaves, they decreased traveling time (Deng and Zhou, 2018). Based on the phenology of food plant species, it is impossible to provide fruits for all food plant species in 1 or 2 months (Du et al., 2020), which will make measuring fruit nutrients to perform fruit nutrient comparison impossible. Thus, we choose to measure leaf nutrient traits.
The selection of these nine leaf nutrient traits is based on their strong associations with primate population dynamics (growth, abundance, home range, and so on). For example, some gibbons (white-handed gibbons) primarily meet their water requirement by consuming immature leaves as they rarely drink from open water sources (Jildmalm et al., 2008). Maintaining the required calorie value is key for the survival of primates (Grether et al., 1992). Sugar makes food attractive because of its sweet taste and rich sensation (Huang et al., 2021). Since mature leaves have higher crude fiber content but lower crude protein than young leaves (Yeager, 1989), gibbons usually prefer to eat young leaves but not mature leaves. However, some primates, such as the Colobine monkey, prefer leaves with high crude fiber (Borah et al., 2021). Fat serves as an energy reserve of the animal body, and primates usually store surplus energy as fat in preparation for the impending period of food scarcity (Felton et al., 2009). Vitamin C is essential for growth, development, and tissue repair of animals through collagen synthesis (Lee et al., 2022), and primates will suffer from vitamin deficiency or multivitamin deficiency syndrome when they eat leaves with low vitamin C. Zinc determines daily functioning of the animal body, proper growth and regeneration of tissues, structure of some proteins, absorption of vitamins (vitamin A), and functioning of the immune system (Golub et al., 1995; Salachna et al., 2021). Iron is vital for transport of oxygen in the hemoglobin of red blood cells and in the myoglobin of muscles (Chen et al., 2022). Specifically, we aim to use this dataset to quantify 1) whether food plant diversity and nutrient traits within the home range are higher than those out of the home range in both groups C and E and 2) whether group E has higher food plant diversity and nutrient traits than group C.
METHOD AND MATERIALS
Study sites
The study was conducted in the location of groups C and E at the northeastern margin of BNNR (109°14′ 47.35″E, 19°5′ 45.17″N; Figure 1). This area is covered by tropical evergreen rainforest, and the terrain is relatively rough and mountainous, with a vertical elevation difference of about 500 m. This area is located on the northern edge of the tropics and has a tropical marine monsoon climate with a mean annual rainfall of 1759 mm (Du et al., 2020). There is a distinct wet season from May to October when about 80% of the total rainfall occurs. Its annual temperature is between 22.5 and 26.0°C.
[image: Figure 1]FIGURE 1 | Location of our study area, the home range of group C and group E, and spatial location of all 20 m × 20 m plots.
Field sampling
In July 2018 (maximum growing season), within and out of the home range of groups C and E, 20 plots, each of 20 m × 20 m, that are 20 m apart from one another, were arranged along five parallel transects (Figure 1). Then, we recorded and measured all freestanding trees with a diameter of ≥1 cm at breast height (DBH) within each plot and identified them to species. Species were identified as potential food plants based on Zou et al. (2022). We also sampled 20 fully expanded and healthy leaves from five individuals for each food plant species in both groups C and E to measure leaf nutrients [leaf water content (%) and total soluble sugar (mg g−1), vitamin C (mg 100 g−1), calorific value (KJ g−1), crude fat (%), crude protein (%), crude fiber (%), Zn (μg g−1), and Fe (μg g−1)]. To minimize intraspecific variation in trait measurements, we selected only individuals with DBH near the species mean value. Importantly, the nine traits for the same species were measured separately if they occurred in both groups C and E. All leaf samples were marked and stored in a sealed bag and immediately transported to the Laboratory of Biodiversity and Ecosystem Functions, School of Forestry, Hainan University. In the laboratory, all samples were weighed fresh, dried to constant weight in an oven at 75°C, and weighed again to determine leaf water content (Fernández et al., 2014). Then, all dried samples were ground to homogenates using a processor grinder for measuring the remaining eight nutrient traits.
Following Arya et al. (2001), total soluble sugar and Vitamin C were measured by using a spectrophotometer. The calorific value was measured by using the oxygen bomb of the automatic calorimeter (ZDHW-5000 type) (Darling, 1976; Gao et al., 2022). Crude fat was measured by using the Soxhlet extraction technique and a fat extractor (JC-ZF-04) (Felton et al., 2009). We first measured the N in all dry leaf samples using a semi-automatic Kjeldahl apparatus (NKB-3100) and then multiplied the N by 6.25 to estimate the crude protein content (Ganzhorn et al., 2017). The crude fiber was quantified by using the fiber analyzer CXC-06 (Honeck et al., 2020). Zn and Fe were measured by using a WA 2081 Atomic Absorption Spectrophotometer (Misra et al., 2020).
Statistic methods
We first calculated food plant diversity (species richness and abundance). Then, for each of the nine leaf nutrient traits (leaf water content, total soluble sugar, vitamin C, calorific value, crude fat, crude protein, crude fiber, Zn, and Fe), we calculated the community-weighted mean (CWM) as follows:
[image: image]
where pij and tij are the relative abundance and the mean trait value of food plant species i in plot j, respectively. We then utilized non-parametric analysis (Wilcoxon signed-rank test) to quantify whether there were any important differences in food plant diversity (richness and abundance) and leaf nutrient traits between groups C and E and also between within and out of home range in groups C and E. Finally, we used principal component analysis (PCA) to evaluate whether food plant diversity and leaf nutrients can best-discriminate food plant species between groups C and E and food plant species between within and out of home range in groups C and E.
RESULTS
Food plant diversity (richness and abundance) within the home range was significantly much higher (1.35–1.41 times) than that out of the home range in both groups C and E (Figures 2A–D, p of Wilcoxon signed rank test <0.05). Food plant diversity in the home range of group E was also significantly much higher (1.4–1.6 times) than that in the home range of group C (Figures 2E,F), p of Wilcoxon signed rank test <0.05). However, there were no significant differences in CWM for all nine leaf nutrient traits within and out of the home range of groups C and E and between the home range of groups C and E (Figures 3–5, p of Wilcoxon signed rank test >0.05).
[image: Figure 2]FIGURE 2 | Differences in food plant diversity (richness and abundance) between within and out of the home range in groups C and E (A–D) and between the home range of groups C and E (E,F). Box plots show the median (line within the box), 25th and 75th percentiles (the boundaries of the box), and 90th and 10th percentiles (error bars). *** indicates p < 0.05 and shown are results from Wilcoxon signed rank tests.
[image: Figure 3]FIGURE 3 | Differences in community weighted mean values (CWM) for nine food plant nutrient traits (A-I) between within and out of the home range of group C. These nine traits include leaf water content (%), total soluble sugar (mg g−1), vitamin C (mg 100 g−1), calorific value (KJ g−1), crude fat (%), crude protein (%), crude fiber (%), Zn (μg g−1), and Fe (μg g−1). Box plots show the median (line within the box), 25th and 75th percentiles (the boundaries of the box), and 90th and 10th percentiles (error bars) of CWM for food plant leaf nutrient traits. NS indicates p > 0.05 and shown are results from Wilcoxon signed rank tests.
[image: Figure 4]FIGURE 4 | Differences in community weighted mean values (CWM) for nine food plant nutrient traits (A-I) between within and out of the home range of group E. These nine traits include leaf water content (%), total soluble sugar (mg g−1), vitamin C (mg 100 g−1), calorific value (KJ g−1), crude fat (%), crude protein (%), crude fiber (%), Zn (μg g−1), and Fe (μg g−1). Box plots show the median (line within the box), 25th and 75th percentiles (the boundaries of the box), and 90th and 10th percentiles (error bars) of CWM for food plant leaf nutrient traits. NS indicates p > 0.05 and shown are results from Wilcoxon signed rank tests.
[image: Figure 5]FIGURE 5 | Differences in community weighted mean values (CWM) for nine food plant nutrient traits (A-I) between the home range of groups C and E. These nine traits include leaf water content (%), total soluble sugar (mg g−1), vitamin C (mg 100 g−1), calorific value (KJ g−1), crude fat (%), crude protein (%), crude fiber (%), Zn (μg g−1), and Fe (μg g−1). Box plots show the median (line within the box), 25th and 75th percentiles (the boundaries of the box), and 90th and 10th percentiles (error bars) of CWM for food plant leaf nutrient traits. NS indicates p > 0.05 and shown are results from Wilcoxon signed rank tests.
Results of PCA revealed that food plant species within and out of the home range of groups C and E and food plant species between the home range of groups C and E all could be significantly separated by food plant diversity (Figure 6). However, CWM for all nine leaf nutrients traits could not significantly separate food plant species within and out of the home range of groups C and E and food plant species between the home range of groups C and E (Figure 6).
[image: Figure 6]FIGURE 6 | Principal component analysis of food plant diversity (richness and abundance) and CWM for nine food plant leaf nutrient traits between within and out of the home range in groups C and E and between the home range of groups C and E. These nine traits include leaf water content (WC, %), total soluble sugar (TSS, mg g−1), vitamin C (VC, mg 100 g−1), calorific value (VC, kJ g−1), crude fat (CFA, %), crude protein (CP, %), crude fiber (CFI, %), Zn (μg g−1), and Fe (μg g−1).
DISCUSSION
In this study, we quantified whether food plant diversity and nutrients determined both gibbon home range selection and formation of a new family group as we hypothesized that choosing high food plant diversity was one key motivation for groups C and E to select their home range. Moreover, food plant diversity determined the formation of a new family group of Hainan gibbons.
A number of studies have found that food abundance and distribution can directly determine primate ranging patterns and home range area (Milton and May 1976; Kim et al., 2011; Simmen et al., 2014; Ning et al., 2019). However, until now, it remains unknown whether food plant diversity can directly determine the Hainan gibbon home range area. Primates can use spatial memory of food tree locations (Garber, 1989; Jang et al., 2021). Since group E originates from group C, if food plant diversity can indeed determine the home range area of Hainan gibbon, both groups C and E will select a home range with high food plant diversity. This can be simply revealed by the differences in food plant diversity within and out of the home range of both groups C and E. Our results clearly demonstrated that in both groups C and E, food plant diversity within the home range was indeed much higher than that out of the home range. Moreover, food plant diversity could also significantly separate food plant species within and out of the home range of groups C and E. These results indeed indicated that choosing high food plant diversity was also one key motivation for groups C and E to select their home range. Thus, our results for the first time revealed that food plant diversity could indeed determine the home range area of Hainan gibbon.
It is also unknown why two individuals move out from group C to go across 9 km to form group E in 2019 (Zou et al., 2022). Here, our results showed that food plant diversity within the home range of group E was indeed much higher than those in the home range of group C. Moreover, food plant diversity could also significantly separate food plant species between the home range of groups C and E. These results also elucidated that food plant diversity was one key determining force to drive Hainan gibbon to form a new family group (group E). It has been found that food plant diversity increased significantly from the oldest group (group A) to the youngest group (group E) (Zou et al., 2022). Thus, food plant diversity may determine the forming of new Hainan gibbon family groups.
Food plant nutrients (leaf water content, total soluble sugar, vitamin C, calorific value, crude fat, crude protein, crude fiber, Zn, and Fe) are also widely reported to affect primate population dynamics (growth, abundance, and home range) (Grether et al., 1992; Laska et al., 2000; Marshall and Leighton, 2006; Hansell et al., 2020). However, it is also unclear whether food plant nutrients can indeed influence Hainan gibbon population dynamics. If food plant nutrients can indeed determine the Hainan gibbon home range area and the forming of the new family group, plant nutrients within the home range of groups C and E should be much higher than those out of the home range of groups C and E. Similarly, plant nutrients within the home range of group E should also be much higher than those within the home range of group C. Here, our results showed that there are no significant differences in plant nutrients (leaf water content, total soluble sugar, vitamin C, calorific value, crude fat, crude protein, crude fiber, Zn, and Fe) between within and out of the home range of groups C and E and between the home range of group C and E. Furthermore, all food plant nutrients could not significantly separate food plant species within and out of the home range of groups C and E and between the home range of groups C and E. Thus, food plant nutrients can affect neither the home range area nor forming of the new family group of Hainan gibbon. One potential reason is that there is enough food plant diversity within the home range of Hainan gibbon. That is because, usually, when food is scarce, primates will select food in light of nutrients (Marshall et al., 2009).
We noted that although our results indicate that food plant diversity is one potential driver of the formation of the new family group of Hainan gibbon, other factors (i.e., natural enemies, human disturbance, and relatively rough and mountainous terrain) can also be potential determinants. Moreover, we only found the strong influences of food plant diversity on groups C and E, and the effects of food plant diversity on the remaining three family groups (groups A, B, and D) were also necessary to be quantified. As a result, the other drivers of the formation of the new group of Hainan gibbon merit future investigation to explore.
CONCLUSION
Overall, three important new insights about the influence of food plant diversity and nutrients on Hainan gibbon population dynamics have been revealed by our study. First, choosing high food plant diversity was also one key motivation for Hainan gibbons to select their home range. Second, food plant diversity may be one key determinant of the formation of the new family group of Hainan gibbon. Third, food plant nutrients cannot determine both the home range area and forming of the new family group of Hainan gibbon.
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This study aims to evaluate the effects of the spatiotemporal patterns of land-use and land-cover (LULC) changes on the dynamics of carbon storage in a tropical region of China by linking the trajectory analysis of LULC changes and the InVEST model. Based on remote sensing (RS), geographic information system (GIS) and change trajectories, the spatiotemporal evolution of LULC changes was explored. This evolution could be coupled with the spatiotemporal LULC change trajectories and the InVEST model for the quantitative study of the spatial distribution and temporal variation in regional carbon stocks. The results showed that during the 2000–2020 period, the built-up land continually increased to 206.05 km2 through urban expansion, and forestland became the dominant type of land, with an area of 357.39 km2. In addition to the change in land use, the carbon storage in the study region increased by 4.87 Tg C. The anaphasic trajectory had the largest area ratio at 7.05% in the total area, while the prophasic trajectory contributed to the largest increase in carbon storage, 5.87 Tg C. Moreover, the repetitive trajectories had no impact on carbon sinks and sources, whereas the anaphasic trajectory and the continual trajectory imposed passive impacts on carbon storage. These advances in research underpin scientific efforts to improve the understanding of the relationship between the optimization of land-use structure and patterns and the carbon storage service in the Nandu River Basin.
Keywords: carbon storage, LULC, InVEST model, trajectory analysis, Nandu river basin, Hainan island
1 INTRODUCTION
Land-use and land-cover changes (LULCCs) are not only the most crucial link between human activities and the ecological environment but also the main factor affecting regional climate change (Liu et al., 2014). It is estimated that approximately 35% of the carbon emissions in the atmosphere have been the consequence of human activities since the industrial revolution (Houghton et al., 2012). Human activities have altered the original patterns, structures, processes and functions of terrestrial ecosystems through different land-use practices, resulting in serious damage to the land surface of the ecological environment, which directly or indirectly affects carbon storage and carbon-cycle processes in regional ecosystems (Zaehle et al., 2007; Gao and Wang, 2019; Zhang et al., 2021) and the process of regional climate change. Terrestrial ecosystems are an important source and sink of atmospheric greenhouse gases (Cui et al., 2019). Since carbon storage in terrestrial ecosystems is a significant component of global carbon storage, these ecosystems play an important role in mitigating global warming by reducing the concentrations of atmospheric CO2 and other greenhouse gases (Lal, 2004). The estimation of annual net carbon absorption by global terrestrial ecosystems ranges between 2000 Pg and 2,500 Pg, including 500 Pg to 600 Pg by vegetation and 1,500 Pg to 2,300 Pg by soil (Zhao et al., 2019; Liang X. et al., 2021; Liang Y. et al., 2021). It is widely recognized that terrestrial ecosystems, with a strong carbon absorption capacity, are one of the most economically feasible and ecologically friendly approaches to alleviate the impact of the greenhouse effect on the global climate (Zhu E.et al., 2019). The carbon absorption capacity of terrestrial ecosystems has become the focus of attention for governments and scholars worldwide (Schimel et al., 2001; Ji et al., 2008; Piao et al., 2009; Fang et al., 2015; Dai et al., 2016). Several factors, such as climate change, land-use change, and land management, interact to regulate soil carbon storage (Xia et al., 2010), among which land-use changes and land management measures are key factors influencing greenhouse gases and affecting carbon emissions (Smith and Conen, 2006). The Intergovernmental Panel on Climate Change (IPCC) report states that the contribution of LULCCs to the increase in atmospheric CO2 is expected to be only second to the combustion of fossil fuels in the future (Houghton, 2003; Foley et al., 2005). It is obvious that LULCCs, as one of the most important factors affecting soil carbon storage in terrestrial ecosystems, also dominate the spatiotemporal evolution of carbon sources and sinks (Houghton et al., 2000). Thus, a deep understanding of the impact of the spatiotemporal evolutionary characteristics of land-use patterns on regional carbon source and sink mechanisms is a prerequisite for reducing and managing carbon dioxide emissions (Hwang et al., 2021).
Estimating the effect of land-use changes on soil carbon storage depends on data sources and techniques (Leifeld, 2013). Assessing and analysing the spatial distribution and mechanisms of soil carbon sources/sinks is a major challenge faced by many researchers (Xu et al., 2011). At present, the methods for assessing regional carbon storage mainly include field surveys (Ren et al., 2011), remote sensing inversion (Lu et al., 2010; Fu et al., 2013) and model simulations (Sohl et al., 2012; Zhao et al., 2013). The field survey method mainly uses regional carbon density profiles of different vegetation and soil types to estimate carbon storage. Although it is relatively simple and accurate, field surveys are only suitable for small regions and have limited effectiveness in reflecting the dynamic changes in carbon storage at large regional scales (Huang et al., 2014). Remote sensing is a cost-effective and useful technique for both qualitative and quantitative analyses of LULC changes in terrestrial ecosystems using satellite imagery (Mayani-Parás et al., 2021). Additionally, time-series analysis of remote sensing data provides an excellent opportunity to understand and map LULCCs from small to large catchments (Abdullah et al., 2016; Yan et al., 2019). Hence, the remote sensing method has been broadly used for LULC change detection from small to large regions/catchments (Kuma et al., 2022). The model simulation method applies different models to simulate and estimate land use, among which the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model is widely used due to the advantages of simplicity, flexible parameters, and relatively accurate results. The approach of combining the GIS, RS and InVEST models has been extensively used by governments, companies and researchers to explore the simulation, prediction and assessment of the carbon storage of ecosystems and has been applied at different scales, such as regional (Chuai et al., 2014), national (Ni, 2013) and global (Nelson et al., 2010) scales. In particular, by combining the InVEST model with the land-use simulation model (CA-Markov, CLUe-S, etc.), some scholars have revealed the temporal and spatial variation characteristics of regional carbon storage at the watershed and urban scales in the past, predicted the trends in the future, and discussed the future scenarios of land-use and land-cover changes and their impact on regional ecosystem carbon storage (Li et al., 2020; Zhu et al., 2020; Liu et al., 2021).
According to the variation in ecosystem carbon storage patterns in different periods, most previous studies have indicated the influence mechanisms of LULCCs on regional carbon storage at different scales. However, it has been difficult to uncover the impact of the spatiotemporal evolution of land-use patterns on the dynamic processes of regional carbon storage patterns under the effect of comprehensive driving forces. In addition, there are still many uncertainties about the impact of land-use change on carbon balance and carbon intensity (Permpool et al., 2016). As a complementary methodology, the LULC change trajectory can dynamically track the spatiotemporal evolution of continuous and long-term land-use change processes in the same region (Zomlot et al., 2017). For example, Zhou et al. (2008) used multitemporal remotely sensed imagery to derive land-cover change trajectories to understand the spatiotemporal pattern of ecosystem dynamics. Similarly, Wang et al. (2012) proposed trajectory analysis as a new mathematical algorithm to explore the spatiotemporal analysis of land-use/cover change by using GIS and RS. The same approach was carried out by Wang et al. (2013) with high-resolution remote sensing imagery to monitor the spatiotemporal change of land use/cover by using pattern metrics of change trajectories in smaller scale valleys. Zomlot et al. (2017) used trajectory analysis as a preprocessing tool to identify LULC changes to improve spatiotemporal patterns and conduct impact assessments on groundwater recharge. However, there is still a gap in the exploration of the effects of spatial and temporal changes in land use on soil carbon storage at the regional scale, especially in the tropics. The tropics have a greater potential for reducing atmospheric CO2 (De Sousa-Neto et al., 2018), but no previous study has focused on matching the carbon density of the Nandu River Basin in the tropics over a long span, such as 30 years, to calculate the soil carbon storage caused by LULCCs. Furthermore, the study of trajectory analysis to quantify the impact of land-use change on soil carbon has not been applied in tropical areas at large scales. Therefore, it is necessary to quantify the effect of regional LULCCs on carbon storage by coupling InVEST models with spatiotemporal LULC change trajectories.
The Nandu River, as an important source of drinking water, is the largest river on Hainan Island and is known as the Mother River of Hainan Island, China. With the rapid socioeconomic development and the increasing population of the study region, agricultural water use has increased sharply, and the problem of agricultural nonpoint source pollution has become an urgent issue in the middle and lower reaches of the Nandu River (Liu et al., 2013). In addition, excessive discharge of domestic wastewater has seriously polluted the regional ecological environment, particularly in urban and rural areas. It was reported that the urban domestic sewage treatment rate in some areas was only 2.97% (Province, T.P.s.G.o.H., 2015), whereas rural domestic sewage was rarely treated. Some relevant studies have demonstrated that the water quality of the middle and lower reaches of this river belongs to the fifth type of surface water (Class V) (Liu et al., 2013), which is mainly applicable to agriculture and meets general landscape requirements. Moreover, indiscriminate and illegal mining is very prominent in some sections of the river, which has caused damage to the local ecological environment. Furthermore, the disturbance intensity in the natural ecosystem of the basin caused by human activities has been severe over the last decade. Together with an increased intensity of deforestation, grassland clearance and wetland reclamation for farmland expansion and the built-up land construction encroachment on farmlands and forestlands, this area has incurred significant changes to the LULCC pattern, which has increased the uncertainty of carbon sink functions across the Nandu River Basin. These changes will have a profound impact on the ecological environment of the study area in the future. Nevertheless, less research has been carried out on the relationship between land-use change and carbon storage services in this region. Therefore, we believe that it is necessary to quantify local regional carbon storage and fill in the gap in regional ecological environmental research.
This paper was based on land-use/cover data obtained from remote sensing image interpretation in 1990, 2005 and 2020, coupling the InVEST model with spatiotemporal LULC change trajectories to estimate the distribution of carbon storage, such that this research will provide meaningful resources for land-use managers. The primary objectives of our study include 1) using GIS and RS applications to investigate the spatiotemporal LULC change from 1990 to 2020 by using trajectory analysis; 2) linking the trajectory analysis and the InVEST models to map the carbon storage spatial distribution and exploring its spatiotemporal evolutionary tracking; 3) providing a new way to quantify the response mechanism of land-use dynamic processes on regional carbon source/sink effects; and 4) proposing some suggestions for implementing appropriate land-use policies to wisely control LULCCs to reduce carbon emissions (Zhu W.et al., 2019).
2 STUDY AREA
The Nandu River (located between 18° 56′ N and 20°05′ N latitude and 109°12′ E and 110°35′ E longitude) is the largest river on Hainan Island (Figure 1). Its main tributaries include the Longzhou River, Datang River, Yaozi River, etc. It originates from the Nanfeng Mountains in Baisha County and enters the Qiongzhou Strait in Haikou city, where it has a wide channel with many sandbanks, hills and shoals. Both banks of the river are flat platforms, most of which are cropland, covering a total area of 7,033 km2. The slope of the total terrain of the basin gradually decreases from south to north. The upper reaches of the river are high mountains and hills with large topographic fluctuations, while the slopes in the middle and lower reaches are gentle. The annual average temperature is 23.5°C, and the annual average precipitation is 1935 mm. The main soil types include mountain yellow soil, mountain lateritic soil, lateritic soil, sandy soil, paddy soil, etc. The river basin is rich in forest resources, with more than 1,200 species of coniferous broad-leaved trees and more than 700 species of arbor trees. Moreover, the plant resources in the basin are abundant and diverse. The vegetation type is mainly evergreen broad-leaved forest, with various tropical shrubs, vines, herbs and so on under the forest.
[image: Figure 1]FIGURE 1 | Location and elevation of the study area.
3 METHODS
3.1 Image collection and processing
Landsat satellite images (5, ETM+, and 8) with Spectral Bands 3 (0.63–0.69 mm), 4 (0.77–0.90 mm) and 5 (1.55–1.75 mm) from Landsat TM5 and ETM+ and Bands 4 (0.64–0.67 mm), 5 (0.85–0.88 mm) and 6 (1.57–1.65 mm) from Landsat Imager OLI were used for 2000, 2010 and 2020 for LULCC mapping. All satellite images were obtained from the USGS (http://glovis.usgs.gov/). At the beginning, ENVI 5.5 software was employed to process all Landsat scenes, which were reprojected with WGS84/UTM Zone 49 N for geometry and resampled to a 30-m spatial resolution, followed by using the FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hyper cubes) module in ENVI 5.5 software for atmospheric correction. Next, all satellite images were composed using red‒green-blue (RGB) colour composition with Band 543 (Landsat TM5 and ETM+) and Band 654 (Landsat OLI). According to the classification criterion issued by the Ministry of Natural Resources of China and the current land-use situation, the land use of the study region was categorized into the following five groups: croplands, forestlands, grasslands, water bodies, and built-up areas. Training of classes was conducted using the data from field surveys, high-resolution Google Earth maps, and previous land-use maps. The support vector machines (SVM) algorithm in ENVI 5.5 was used to classify the images from 2000, 2010 and 2020. The second step was the accuracy assessment of classified images from 2000, 2010 and 2020. Ground truth points were taken from the high-resolution Google Earth maps and from field surveys with a simple GPS instrument for training and testing classified maps and their accuracy assessment. In addition, a confusion matrix was developed to evaluate the accuracy of the classified images from 1990, 2010 and 2020. The overall accuracy and Kappa coefficient are the two most extensively used accuracy assessment methods for classified images. The Kappa indices for all classes exceeded 0.75, with values of 0.813, 0.832 and 0.854, respectively. Finally, five classes for land-use and land-cover maps with a spatial resolution of 30 × 30 m were generated in Grid format with Arc Pro 2.8 (ESRI, United States), which were used to detect the dynamic tracking of the spatiotemporal evolution of broad land-use/land-cover areas in this region.
3.2 Trajectory analysis
A change trajectory of a time series can be expressed by trajectory codes in all forms (e.g., in values or letters) for every pixel in the raster image (Wang et al., 2012). In this paper, the land-use types, croplands, forestlands, grasslands, water bodies, and built-up areas, were assigned the numeric codes 1, 2, 3, 4 and 5, respectively, which were used as trajectory codes for detecting the changes for each pixel at each time node through the three temporal slices, 2000, 2010 and 2020. The algebraic superposition of the trajectory analysis unit for LUTs was conducted in ArcPro 2.8. Trajectory codes for each land-use/cover object can be achieved by land-use/cover attribute calculation using the formula below (Wang et al., 2012).
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where [image: image] has no mathematical sense and represents the trajectory code of the pixel at row [image: image] and column [image: image] in the trajectory layer, [image: image] refers to the number of time codes, and [image: image], [image: image] and [image: image] represent the LULC map code values in different periods.
In the calculation results, the trajectory analysis of the LULC map in this study was summarized into five types (Gong et al., 2015): 1) A numeric trajectory code in the form of xxx was treated as stable, such as 111, 222, 333 and so on, with all the same codes at each time node. This denotes those objects with no land-cover change from 1990 to 2020; 2) xyy was identified as prophasic, with 155 representing the change from cropland to built-up land in the second time and kept for in the third period; 3) xxy was recognized as anaphasic, with 112 referring to the cropland only converted to forestland in the third period; 4) xyx was defined as repetitive, with 121 demonstrating the changes from cropland to forestland only occurred in the second period while the initial and final land types were the same; and 5) xyz was seen as continual, with 123 suggesting the transition from cropland to forestland and grassland was continuous during the study period, while the initial and final land types were not the same.
3.3 InVEST model
In this study, the Carbon Storage and Sequestration module of the InVEST model was applied to estimate the amount of carbon stored in this area, which was divided into four basic carbon pools in terrestrial ecosystems, followed by aboveground carbon (AGC), belowground carbon (BGC), soil organic carbon (SOC, 0–20 cm) and dead organic carbon (DOC) in the present study (Zhao et al., 2019). In detail, AGC encompasses the branches, leaves, trunks, bark, and other living plant materials above the soil level, while BGC includes the living roots of AGC, the DOC comprising dead matter as well as litter and the SOC representing the organic components of soil. Additionally, the carbon storage of an ecosystem is calculated by multiplying the average carbon density of AGC, BGC, SOC and DOC of each land-use/cover type by their corresponding areas (Zhao et al., 2019). In this study, the LULC maps generated from the three periods, 2000, 2010 and 2020, were used as input maps, whereas the carbon density for all four carbon pools for each land-use and cover type was derived from the relevant scientific literature with similar conditions to those of the study area in the tropical region (Table 1).
TABLE 1 | Carbon density of each land-cover type in the study region.
[image: Table 1]Although the carbon density parameters represent data from a single time point, research has demonstrated that the effects of LUCCs on carbon storage changes can be evaluated well even if the changes in carbon density are ignored (Zhu W.et al., 2019; Li et al., 2021). Using the InVEST model, the calculation formulas for carbon storage estimation are as follows (Li et al., 2021):
[image: image]
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where [image: image] denotes the total carbon density of each land-use and land-cover type; [image: image], [image: image], [image: image], and [image: image] represent the carbon densities of AGC, BGC, SOC and DOC, respectively; [image: image] represents the area of each land-use type; and [image: image] denotes total carbon storage.
4 RESULTS
4.1 Land-use/land-cover change detection
To determine the direction of changes in land use and land cover in this study (Table 2), five classes covering a total area of 7,083.63 km2 were represented in different colours. The results indicated that forestland was the dominant land-use type, accounting for 63.08, 71.08, and 68.13% of the total area, respectively, during each study period and spreading all over the study region. In 2000, the estimated forestland area was 4,468.34 km2, whereas in 2010 and 2020, it was 5,034.76 km2 and 4,825.73 km2, respectively. It represented an upwards trend in the earlier period and a downwards trend in recent times. As the second largest land-use type, cropland played a subsidiary role in the study region, which was mainly distributed in the northeastern region, accounting for 29.97, 24.70 and 23.84% of the total area during the study periods, respectively. Its proportion in the total area presented a downwards trend all the time, possibly due to the implementation of the Grain for Green Program (GGP) by the Chinese government, implemented after 1999, in which a certain proportion of cropland has been abandoned and converted to other land-use types, especially in southwestern mountain areas and northern coastal areas of the study area. As a result, the proportion of cropland decreased to 6.13% from 2000 to 2020. Built-up land was mainly distributed in the northern coastal and northeastern plain areas. It accounted for only 1.36, 1.50 and 4.27% of the total area, respectively, showing a continual upwards trend from 2000 to 2020. The growth of built-up land was mainly observed in the northern coastal areas of Haikou city, the capital of China’s largest special economic zone on Hainan Island. The urban areas expanded to 203.7 km2 in 2020, approximately 6 times the area of 34 km2 in 2000. Compared with that in 2000, the spatial distribution of urban areas sharply changed, driven by advancements in modern tropical agriculture, the mass tourism industry and rapid economic development. The proportion of water bodies increased by 0.53% from 2000 to 2020, experiencing a minimal change in spatial distribution, while grassland decreased by 2.36% during the study period, which was mainly observed in the southern mountain region.
TABLE 2 | LULC area coverage and changes between 2000, 2010 and 2020.
[image: Table 2]4.2 Change trajectory distribution map
Based on the spatiotemporal trajectory calculation, all distribution trajectory maps for the three LULC maps (2000, 2010, and 2020) in the study area are presented in Figure 2. A total of 104 trajectories were identified, among which 99 trajectories varied with time, associated with 16.77% of the total area, whereas the remaining 5 trajectories were trajectories with no land-use changes, accounting for 83.23% of the study area with 59.22% covered forestland (Table 3).
[image: Figure 2]FIGURE 2 | Land-use/land-cover change trajectory map of the Nandu River Basin (2000–2020).
TABLE 3 | Trajectory analysis of land-use/land-cover change in the study region.
[image: Table 3]In all change trajectories of the whole area, the anaphasic trajectory occupied the largest area ratio at 7.05% of the total area. The most obvious changes in the anaphasic trajectory were Trajectories 112 and 225, accounting for 34.83 and 22.57% of the total converted land-use types in the anaphasic transition, ranking first and second in the lands with anaphasic trajectories, respectively. While the transformation from cropland to forestland in Trajectory 112 was due to the implementation of GCP, Trajectory 225 mostly occurred in Haikou Jiangdong New Area, which was determined by the Hainan Provincial Government as the main undertaker and the pioneer for the free-trade port policies since 2019. With the construction of the Hainan Free Trade Port, more land was needed for urbanization, and deforestation continued. Moreover, Trajectories 115 and 551 accounted for 12.40 and 0.56% of the total area of the anaphasic transition types, respectively. As they were widely distributed around the suburban area and the urban agglomerations, it implied that a large area of cropland was occupied by built-up land and that only a small proportion of built-up land was compensated by land reclamation.
The area of the prophasic trajectory was 465.62 km2, the second largest in all land-use change trajectory types, accounting for 6.57% of the total area during this period. In particular, Trajectory Types 122 and 322 were the major prophasic transition types, accounting for 47.81 and 37.12% of the total area of the prophasic trajectory type, respectively. The transition areas of 211 and 233 were only 0.48 and 5.82 km2, respectively, indicating a large imbalance between forestland, cropland and grassland. Trajectory 122 was closely related to the implementation of forestry ecological policy and readjustment of the local industrial structure, in which a fraction of cropland was converted to forestland. Trajectory 322 indicated that a large area of grassland was occupied by forestland due to economic profits, especially for the extensive planting of fast-growing tree species, such as Eucalyptus and Acacia.
The area of repetitive transition was 183.93 km2, accounting for 2.6% of the total area, while the areas of Trajectories 121, 424, and 232 were evidently higher than those of the other repetitive trajectory types, each accounting for 126.92, 30.0, and 7.07 km2, respectively. Trajectory 121 was the dominant repetitive trajectory type, accounting for 69.01% of the total area in the repetitive trajectory, suggesting that the mutual transition between cropland and forestland was frequent under the context of economic interests and land-protection policies.
The percentage of the continual trajectory type was 0.55%, which was the smallest among all transition types. Among the continual trajectory types, Trajectory 125 was dominant and accounted for 56.04% of the total area, followed by Trajectories 324 and 124 with proportions of 10.34 and 8.36%, respectively. Trajectory 125 occurred in the suburb of Haikou city as an economic development zone, indicating that the transition from cropland to forestland and built-up land was very common in the context of fast-growing urbanization and forestry ecological policy.
4.3 Carbon storage between 2000 and 2020
Over the past 2 decades, the total carbon storage increased from 105.19 Tg C (1 Tg = 1012 g) in 2000 to 113.92 Tg C in 2010, followed by a decline from 113.92 Tg C in 2010 to 110.06 in 2020 (Table 4). Although it showed an upwards trend followed by a downwards trend, the change was not significant, with only a net increase in carbon storage of 4.87 Tg C and an average annual increasing rate of 0.2316% in the whole study region. Among the four carbon pools during the study period, SOC was dominant and accounted for 73.60, 73.66 and 73.78% of the total carbon storage in 2000, 2010 and 2020, respectively. AGC was the second most significant, accounting for 22.00, 22.06 and 21.96% of the total carbon storage across the whole region in each period, respectively. DOC occupied the lowest proportion of the total area, with an approximate carbon storage of 0.93 Tg C, 1.01 Tg C and 0.97 Tg C during the study period, respectively. Spatially, the carbon density in the southern part of the mountain region was greater than that in the northern part (Figures 3A,B,C). This trend was evident in all three periods because most forestland was widely distributed in the southern mountain region of the study area and had significantly high carbon stocks due to robust photosynthesis. In addition, the southern mountain region is located in the National Park of Hainan Tropical Rainforest, where forestland (tropical rainforest) has been strictly protected and there is almost no human disturbance due to the strict implementation of the Natural Forest Protection Project (NFPP) by the Chinese government.
TABLE 4 | Total carbon storage of different carbon pools in 2000, 2010 and 2020 in the study region (Tg).
[image: Table 4][image: Figure 3]FIGURE 3 | The spatial distribution of total carbon density in 2000, 2010 and 2020 (A–C).
Figures 4A,B,C shows the spatial changes in carbon density from 2000 to 2020. Generally, the carbon-emission areas for LULC in the study region showed an increase, which was mainly distributed in industrial parks close to the coastal zone and the economic area along the Nan Du River. While the carbon sink areas spread across the whole study region during the study period, they were largely concentrated in the southern mountain region. The total areas of carbon emissions and carbon sinks were approximately 5.25 and 8.93%, respectively, during the whole study period (Table 5), with 85.82% of this area undergoing no change between 2000 and 2020. The change in carbon emissions from land-use conversion between 2000 and 2020 was 4.66 Tg C, whereas the change in carbon sinks from LULC was 9.53 Tg C. To some extent, this indicates that the carbon sequestration capacity caused by land-use changes is much more significant than the carbon-emission capacity in this study region. Due to the expansion of forestland and grassland areas for the implementation of the GCP during the study period, the changes in total carbon storage suggest that the land-use and land-cover changes between 2000 and 2020 led to a net increase in carbon by 4.87 Tg C. During 2000–2010, the percentage of carbon emissions was only 0.86% of the total area in this study region, 7.07% between 2010 and 2020, which was 8.22 times higher than that during 2000–2010, showing that the spatial distribution of carbon-emission areas was more dispersive than that in the first stage. While the carbon sink areas accounted for 8.86 and 3.13% in the first and second stages, respectively, they were more spatially scattered in the first stages. The total area of no carbon changes between 2000 and 2010 was approximately 90.28 and 89.80%, respectively, which was dominant in the study area and showed a similar spatial distribution pattern during both stages in the study period.
[image: Figure 4]FIGURE 4 | Spatiotemporal carbon change between 2000, 2010 and 2020 in the study region (A–C).
TABLE 5 | Area percentages of carbon density changes in the study region (%).
[image: Table 5]5 DISCUSSION
5.1 Spatiotemporal trajectory and patterns of carbon storage induced by LULCCs
The results in land-use/cover conversion directly led to the great changes in large carbon sinks and carbon sources. Land use change will change the amount of plant residues entering soil, affect the decomposition and loss of soil organic carbon, break the balance of soil organic carbon, and change the soil carbon density. Land use change will lead to the transfer of vegetation carbon, part of vegetation carbon stays in place in the form of dead branches and leaves, enters the soil and is transformed into soil organic carbon, and the other part of vegetation carbon is used and removed in different ways, and finally enters the atmosphere, which changes the vegetation carbon density. Due to the difference of land transfer area and carbon density, the change of land use types has different effects on carbon storage. In particular, built-up expansion areas affect not only the carbon-emission intensity of human activities but also carbon sinks within terrestrial ecosystems (Hergoualc’h and Verchot, 2013; Tubiello et al., 2015). Therefore, combining the spatiotemporal trajectory of LULC changes with InVEST models, this study aimed to analyse the effects of LULC on carbon storage in the Nandu River watershed in the tropical region of Hainan Island. The following discussion focuses on the effects of land-trajectory analysis on carbon storage.
5.1.1 Impact of land-use patterns for trajectory analysis on carbon storage from 2000 to 2010
The results obtained with the InVEST model revealed that the conversion of LULC classes resulted in an increase in carbon storage in the first stages (2000–2010). The total carbon stock estimated for the land-use pattern in the study area in 2000 amounted to 105.19 Tg C, which increased by 113.92 Tg C in 2010, with a net increase in the total carbon storage of 8.73 Tg C and an annual increase of approximately 0.873 Tg C (Table 3).
From the land-use conversion matrix (Table 6), the area that underwent land-use change in the study region was 688.53 km2, accounting for 9.72% of the total land. Conversions between cropland and forestland were the major transition during this stage, accounting for 54.64% of the total land change, as 374.98 km2 of cropland was converted to forestland, and 1.26 km2 of forestland was transformed into cropland. The benefits of afforestation do not balance out the negative effects of deforestation in this stage. Conversion from cropland to forestland was mostly distributed in the northern part of the study region, which created the largest net carbon storage, 5.82 Tg C, in the study region as a direct result of the GGP, suggesting that afforestation and recovery of forestland had positive effects on carbon sequestration due to its greater carbon density (Krogh et al., 2003; Wang et al., 2020). However, under the impacts of local urbanization and industrialization and industrial restructuring, especially the development of high-efficiency tropical agriculture and the development of international tourism on Hainan Island that expanded rural people’s economic prospects beyond farming, an increasing number of farmers are migrating into urban areas for nonfarm employment opportunities. The remaining farmers are primarily elderly people and women with relatively low labour capacity (Li et al., 2014). Our results showed that a certain amount of cropland was converted into forestland for fast-growing timber plantations, rubber plantations, and betel-nut plantations, especially in the plain region, as a direct result of the declining relative profitability of traditional farming businesses (Yan et al., 2016). This transformation in land use will undermine national food security for China in the future. Driven by local economic interests or industrial restructuring, the development from grassland to forestland accounted for 180.54 km2, which was the second largest transition area with a net carbon storage of 2.70 Tg C. The conversion from water bodies to forestland comprised the third largest area on the trajectory maps, covering an area of 51.59 km2 and creating 0.89 Tg C.
TABLE 6 | Land-use conversion matrix from 2000 to 2010 (in km2).
[image: Table 6]The shift from forestland to water bodies covered 19.04 km2, the largest area for the passive impacts on carbon storage, with a total loss of 0.89 Tg C. This indicated that the contribution of water bodies to carbon storage was far less than that of forestland. In addition, interchanges between forestland and built-up land were also observed during the study period. The transformation from forestland to built-up land was another important trajectory for carbon emissions, accounting for 2.13% of the total change area. With rapid economic development and urbanization, the expansion of built-up land occurred in the economic development zone or new urban development zone (Chen et al., 2020). A significant fraction of land was needed for built-up construction, thereby resulting in deforestation and a 0.26 Tg C decrease in regional carbon storage. Moreover, 13.47 km2 of forestland was estimated to have converted to grassland, causing a 0.20 Tg C decrease in carbon storage.
5.1.2 Impact of land-use patterns for trajectory analysis on carbon storage from 2010 to 2020
Specifically, during the 2010–2020 period, the spatial distribution of the trajectory in the study region exhibited significant differences (Figure 5).
[image: Figure 5]FIGURE 5 | Land-use/land-cover change trajectory map of the study region from 2010 to 2020.
The most obvious changes in trajectory units were the conversion from forestland to cropland and its reverse, accounting for 25.06 and 24.17% of the total converted land-use types, occupying the largest and the second largest areas of total land changes, respectively. With the implementation of the GCP, 175.25 km2 of cropland was estimated to be converted to forestland, causing a 2.72 Tg C increase in carbon storage. However, under the influence of local industrial policy, especially with the emphasis on returning Eucalyptus to sugarcane or cropland, 181.65 km2 of forestland was converted to cropland, resulting in a total loss of 2.82 Tg C of carbon storage, while these conversions were estimated to lead to a slight decrease in carbon storage of 0.10 Tg C.
Correspondingly, with the acceleration of urbanization and the expansion of urban areas, carbon storage in the transformation from forestland to built-up land showed a significant decreasing trend, with 140.97 km2 of forestland estimated to be converted into built-up land. This trajectory was the third largest change area of trajectory types and the main source of decrease in carbon storage by 2.54 Tg C. On the other hand, only 6.49 km2 of built-up land was estimated to be converted to forestland, resulting in a total increase of 0.12 Tg C. The trajectory change from forestland to built-up land was mostly distributed in Jiangdong New Area, mainly composed of Guilinyang Economic Development Zone and Lingshan Town. Since 2018, the Chinese government announced that Hainan will be built into the largest free-trade port in the world, taking up an area of 3.5 × 104 km2, especially for international tourism, consumption, and investment centres in the future. Under the guidance of major national policies and strategies and the Free Trade Island policy of Hainan Island, Hainan fully launched the construction of the pilot FTZ (Free Trade Zone) and made significant progress in infrastructure development, including key industrial parks, new development zones, and property booms in coastal areas. The planted forest near the coastal region or along the Nandu River was converted into built-up land. Although the local government launched a strict policy of forestland replacement and implemented forest ecological protection measures, a vast amount of land was needed for urbanization, and local deforestation still occurred (Zhu E.et al., 2019).
The trajectory type of cropland transformed to built-up land was also noteworthy, accounting for 8.85% of the total land types that were converted, which was mostly distributed around the major townships on the plains and along the Nandu River. The trajectories resulted in a decrease in carbon storage of 0.16 Tg C, with carbon losses mainly caused by the loss of cropland with high SOC content (Zhu E.et al., 2019). In contrast, only 6.49 km2 of built-up land was reclaimed as cropland, accounting for 0.90% of the total land-use types that were converted, indicating a severe imbalance in cropland that was created and destroyed. Moreover, the transitions between cropland and built-up land were relatively concentrated (Figure 3). Therefore, how to coordinate ecological protection and rapid economic development is a major challenge that this basin or even all of Hainan Island will face in the future.
Additionally, ‘‘forestland → water body” was another important trajectory type, with an area of 79.92 km2. This is mainly due to the increase of water body area, and the rising water level leads to part of forestland being covered by water body, mainly concentrated in the reservoir in the study area. While 12.61 km2 of water bodies was converted to forestland, the conversions between water bodies and forestland were estimated to lead to a net total loss of carbon storage of 1.16 Tg C, partly due to the relatively higher carbon storage capacity of forestland compared with water bodies (Pagiola, 2008). The transition between forestland and grassland exhibited a relative balance, and the trajectory units of “grassland → forestland” and “forestland → grassland” accounted for 16.70 and 18.67 km2, respectively, resulting in a net decrease in regional carbon storage by only 0.03 Tg C. The decrease is mainly attributed to the diminished forestland, by 1.97 km2, and grassland has a lower storage capacity than forestland.
5.1.3 Impact of land-use patterns for trajectory analysis on carbon storage from 2000 to 2020
Specifically, during the 2000–2020 period, enormous LULC changes were observed in the trajectory analysis of regional carbon sources and sinks in the Nandu River watershed (Figure 6).
[image: Figure 6]FIGURE 6 | Land-use change trajectory of the Nandu River watershed from 2000 to 2020.
The prophasic trajectory was the major carbon storage sink in the study region, causing a 5.87 Tg C net increase in carbon storage, with a mean accumulation of 0.29 Tg C per year. The most obvious trajectory in the prophasic trajectory was Trajectory 122, which was mainly distributed in the northern region of the suburban area around Haikou city and was the main source of the increase in carbon storage, the contribution rate is 58.77% (3.45 Tg C). As the second significant factor, Trajectory 322 resulted in a total increase of 2.59 Tg C of carbon storage, contributing 44.12% of the increase. Trajectories 122 and 322 led to an increase in carbon storage due to the expansion of forestland and grassland areas with higher carbon storage capabilities. These results were similar to the findings of Zhang et al. (2010) and Lu et al. (2018). On the one hand, local carbon storage was expected to increase under the implementation of the Grain to Green Program (GGP). On the other hand, as a result of the vigorous development of construction driven by urban expansion, tropical ecotourism development and the construction of the international free-trade islands on Hainan Island, especially in Haikou city, the expansion of the urban area has been developing at an am azing speed, with an annual change rate of 16.46% from 1990 to 2020. In addition, the local government implemented a series of policies and measures to develop the economy, such as coastal ecotourism, tropical high-efficiency agriculture, intensive and productive industrial zones, free-trade zones and free-trade port construction, which accelerated the migration flows from rural to urban areas (Yan et al., 2016). The official data showed that the population of Haikou increased from 150.83 × 104 in 2000 to 287.33 × 104 in 2020, with an increase of 136.50 × 104 during the study period (http://stats.hainan.gov.cn/tjj/). With an annual population growth rate of 6.23%, rural‒urban labour migration from rural areas was a major cause of the abandonment of cropland and rural settlement, leading to the ‘‘hollow village” phenomenon in rural areas. In addition to population flow, a fraction of cropland was converted to forestland for tropical economic forests or tropical fast-growing timber forests. Zhang et al. (2014) indicated that under the effects of local economic development, China has experienced land abandonment in recent years. The results showed that the changes in regional carbon sink capacity lie in the imbalance between regional economic development and industrial restructuring. Similar situations were reported by Jerath et al. (2016). Therefore, it is very important to coordinate the future processes of urbanization, industrial restructuring and food security in the study region. Trajectory 255 in the prophasic trajectories caused the largest total loss (0.23 Tg C) of carbon storage. In these areas, large tracts of forestland were developed into built-up land and thus caused carbon storage loss from the SOC stock (Zhu E.et al., 2019). The results showed that the change in land use/cover from natural lands to built-up areas led to remarkable carbon emissions. Trajectory 244 was estimated to lead to a second major decrease in carbon storage of 0.22 Tg.
In summary, the net carbon emissions for the anaphasic trajectory in the study region were 0.23 Tg C. Trajectory 112 was the main carbon sink, boosting carbon storage by 2.70 Tg C, followed by Trajectory 332, with an increase in carbon storage of 0.14 Tg C. Trajectory 112 was mainly distributed in the southern mountain region and northern plain region. While the situation of Trajectory 112 in the northern plain region was similar to that of Trajectory 122 in the prophasic trajectory, Trajectory 112 in the southern mountain region mostly occurred in the National Park of Hainan Tropical Rainforest, indicating that the Grain to Green Program has been strictly implemented in the region with an expected increase in regional carbon storage in the form of a local carbon sink. Trajectory 225 caused a considerable amount of carbon losses, 2.03 Tg C, which was mainly distributed in the New Development Area in the coastal region. Due to the special natural tourism resources and the excellent environment, the construction of the Hainan International Island occurred in 2008, and many more people have come to Hainan Island for tourism or to make a living, especially those from the notrtheastern region of China. According to official statistics, the total number of tourists and tourism revenue in Hainan reached 8.07 million and 37.75 billion yuan (RMB) in 2020, 2.4 times and 4.3 times the data in 2000, respectively. Currently, the tourism economy has become an essential engine of economic growth for this area (Cui et al., 2019). The total income of tourism accounts for over 12% of the region’s GDP. The booms in the tourism industry have promoted the real estate industry in the region. As a consequence, the construction of seascape housing and the expansion of built-up areas not only occupied the coastal region but also destroyed forestland, especially the coastal protective forest, and expanded onto the beaches and led to corresponding carbon storage losses. Our results showed that human settlements had a great impact on carbon storage losses in the study area. A similar result of increasing carbon emissions in the region was reported by Cai et al. (2018). Although the Chinese government has launched environmental inspections to protect the ecological environment since 2016, illegal land conversion, such as illegal reclamation, deforestation, and wetland destruction, still occurred in some parts of the study region. Therefore, coordinating the complex relationship between LULCCs and carbon sinks and sources is the key point of implementing the optimized local land-use structure. Trajectory 221 experienced the second largest carbon storage loss, 0.81 Tg C, which was due to deforestation for reclamation.
In general, the change of carbon sink capacity is closely related to the change of LULC, and the government needs to regulate carbon storage by macro-regulating LULC change. After 2020, the construction of Hainan Free Trade Port will enter the stage of full implementation and development. In the future, the intensity and direction of land use development should be conducive to the increase of regional carbon storage, explore ways to optimize the land use structure with the goal of carbon balance, and strengthen reasonable control over the expansion of construction land. Decision-makers can take a series of land use control measures such as increasing the proportion of forestland, strengthen the transformation of construction land and unused land into forestland and grassland through reclamation and greening of construction land and restoration of ecological land, and continue to implement ecological transformation projects such as returning farmland to forest and grassland. Meanwhile, the government can strengthen the ecological protection of coastal wetlands and other wetlands, strengthen the protection and restoration of degraded forestland, grassland and wetlands, and realize the land use regulation of regional low-carbon construction and ecological environmental protection.
The repetitive trajectories had no impact on carbon sinks and sources. The contribution to carbon storage for the continual trajectory type was insignificant. The total carbon storage of the repetitive trajectory was estimated to decrease by only 0.075 Tg C. Trajectory 125 in the continual trajectory was the main carbon source, with carbon storage losses of 0.054 Tg C, followed by Trajectory 215, which resulted in a total loss of 0.0133 Tg C of carbon storage, accounting for 72.00% and 17.73% of the total reduction, respectively. The results showed that carbon emissions in the continual trajectory were the primary carbon sources in built-up areas, which was mainly ascribed to human activities. In 2018, the Chinese government announced to the world the establishment of the world’s largest free-trade port on Hainan Island. With the implementation of national and local policies, the urbanization process of Hainan International Free Trade Island has accelerated, leading to intensive population expansion, profound regional economic development, unbalanced rapid economic development and regional industrial restructuring. These forces were the root cause of changes in regional LULC patterns, which ultimately affected the capacity of carbon sources and carbon sinks (Cui et al., 2019). The results of the study showed that the carbon sink capacity of economically developed regions with intensive land use declined and became the new significant carbon source area. Therefore, further exploring the complex relationship between LULCCs and carbon sinks and sources is the key to optimizing land-use structure and patterns. Trajectory 412 in the continual trajectory was the largest carbon sink, with an increase in carbon storage of 0.015 Tg C, followed by Trajectory 512, causing 0.007 Tg C of increased carbon storage.
5.2 Strengths and limitations of the linked model
This study assessed the impact of land-use changes on regional carbon sources and sinks utilizing remote sensing and GIS modelling combined with the InVEST model. Additionally, we improved previous studies by revealing the response mechanisms of land-use dynamic processes on regional carbon sources/sinks by linking trajectory analysis and the InVEST models. Although more effects of spatiotemporal trajectory analysis in LULC change on carbon storage in the Nandu River Basin were examined from 2000 to 2020, this study is still limited in a few aspects. Due to the lack of accurate and long-term ground observation data of carbon density in these land covers during each period, this study could only obtain the approximate carbon storage values during the different periods and suffered the risk of reduced accuracy in the assessment of carbon stocks. However, the overall spatial pattern of carbon storage was not affected. Second, the carbon module of the InVEST model simplified the process of the carbon cycle to a certain extent (Chen et al., 2017) by assuming that the carbon density was homogeneous with constant values and focusing on the difference in carbon density between different land-use types. Additionally, without considering the dynamic changes in carbon density for the same land-use type along with the change in environment and time, the estimated results of carbon stock could be uncertain. Therefore, for future research, to obtain more accurate carbon storage values in these land covers in the study region during each period, it will be increasingly necessary to collect accurate carbon density data through long-term observations and large-scale experiments. There is a need to timely supplement the influence of spatial heterogeneity within land-use types and vegetation age structure on carbon density by using more field data.
6 CONCLUSION
This study demonstrated a change trajectory methodology to identify the spatiotemporal evolutionary tracking of land-use/land-cover (LULC) changes. The change trajectories and the InVEST models were linked to determine the spatiotemporal dynamics of carbon storage and investigate the impact of land-use change on carbon storage in the Nandu River Basin on Hainan Island in China, the world’s largest free-trade island.
Between 2000 and 2020, forestland showed the largest growth, 357.39 km2, followed by the continuous expansion of built-up land by almost 206.05 km2, with an annual rate of 24.96%. Urbanization was accompanied by an increase of approximately 4.87 Tg C of carbon storage in the study region. In contrast, the areas of cropland and grassland declined continuously by 434.44 and 166.77 km2, respectively. The anaphasic trajectory had the largest area fraction, 7.05%, in the total area, whereas the proportion of the continual trajectory was the smallest among all transition types at 0.55%. During the two time spans from 2000–2010 to 2010–2020, the spatiotemporal trajectories for land-use changes significantly contributed to carbon sequestration in the study region through the conversion from cropland to forestland, causing 5.82 Tg C and 2.72 Tg C in carbon storage, respectively. In the trajectory analysis of LULCCs over the whole period, the prophasic trajectories were the major contributor to carbon storage sinks in the study region, resulting in a rise in carbon storage by 5.87 Tg C, while the repetitive trajectories had no impact on carbon sinks and sources.
The findings in this study provide a new way to identify the spatiotemporal patterns of LULC changes by using trajectory analysis as a preprocessing tool. The new methods could be revised for assessing the impact of trajectory analysis for land-use changes on the change in carbon storage by coupling the Invest Model and trajectory analysis in other study areas.
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Rapid global biodiversity loss and increasing emerging infectious diseases underscore the significance of identifying the diversity-disease relationship. Although experimental evidence supports the existence of dilution effects in several natural ecosystems, we still know very little about the conditions under which a dilution effect will occur. Using a multi-host Susceptible-Infected-Recovered model, we found when disease transmission was density-dependent, the diversity-disease relationship could exhibit an increasing, decreasing, or non-monotonic trend, which mainly depended on the patterns of community assembly. However, the combined effects of the host competence-abundance relationship and species extinction order may reverse or weaken this trend. In contrast, when disease transmission was frequency-dependent, the diversity-disease relationship only showed a decreasing trend, the host competence-abundance relationship and species extinction order did not alter this decreasing trend, but it could reduce the detectability of the dilution effect and affect disease prevalence. Overall, a combination of disease transmission mode, community assembly pattern, and host community composition determines the direction or strength of the diversity-disease relationship. Our work helps explain why previous studies came to different conclusions about the diversity-disease relationship and provides a deeper understanding of the pathogen transmission dynamics in actual communities.
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disease risk, dilution effect, amplification effect, community disassembly, host competence, stochastic extinction, deterministic extinction


Introduction

In recent decades, emerging infectious diseases (primarily zoonotic diseases) have been increasing at an unprecedented rate, posing a severe threat to human health and affecting agricultural production and wildlife conservation (Allen et al., 2017; Gibb et al., 2020). At the same time, the increasing disturbance of ecosystems by human activities has accelerated the rate of extinction for species (Estrada-Peña et al., 2014). The biodiversity-disease relationship is one of the fundamental challenges in studying infectious disease ecology (Huang et al., 2016). Accurate prediction of infectious disease risk in the context of declining biodiversity is important both in theory and in practice.

Although the link between host species richness and disease risk has long been identified in entomology, veterinary medicine, and epidemiology (Elton, 1958), this relationship attracted the attention of ecologists only since last two decades. The dilution effect hypothesis, whereby increased host biodiversity reduces disease risk, was formally proposed in studies of Lyme disease transmission dynamics (Keesing et al., 2006). The dilution effect shows a win-win situation in public health and nature conservation, reflecting the service function of ecosystems (Ostfeld and Keesing, 2012). Although many cross-taxa and cross-system empirical studies have confirmed the existence of the dilution effect in nature (Ostfeld and Keesing, 2000; Johnson et al., 2013; Liu et al., 2016), and ecologists have summarized the mechanisms by which the dilution effect occurs (Keesing et al., 2006), there are still some debates about the diversity-disease relationship. Several studies have discovered that the relationship between diversity and disease risk is highly context-dependent (Liu et al., 2020; Cortez and Duffy, 2021), with some studies confirming no effect (Salkeld et al., 2013; Vadell et al., 2020) or even an amplification effect (increased host biodiversity increases disease risk) in some ecosystems (Wood, 2014; Halliday et al., 2017). Clarifying the conditions under which the dilution effect occurs not only helps to gain insight into the dynamics of disease transmission in multi-host communities but also provides a theoretical basis for the prevention and control of infectious diseases in the real world.

Host community composition is essential in determining the relationship between biodiversity and disease risk (Johnson et al., 2015). Due to factors such as life history traits and evolutionary history, host competence (the host’s ability to maintain and transmit disease) varies significantly among different species (Downs et al., 2019). The number and proportion of high competent hosts in a community directly determine the disease prevalence of the community, so community composition can affect community disease risk. In fact, changes in community composition are primarily determined by species extinction orders under community disassembly (LoGiudice et al., 2003). Deterministic and stochastic extinctions reflect different host competence-extinction risk relationships. In the case of deterministic extinction, low competent hosts go extinct first. Therefore, it is not difficult to predict that as species richness decreases, the proportion of high competent hosts will increase, leading to an increase in disease risk in the community, i.e., a dilution effect occurs. Both field and theoretical studies have confirmed that deterministic extinction of host species is an important mechanism for the dilution effect (Lacroix et al., 2014; Johnson et al., 2019). However, when host species go extinct at random, it is unclear whether host richness promotes or inhibits disease risk.

Many empirical studies support a negative correlation between host competence and extinction risk, which is considered necessary to cause a dilution effect. Taking Lyme disease as an example, the less competent Virginia opossum and chipmunk are first to go extinct when host species richness decreases, while the most competent white-footed mouse can be abundant in communities with low species richness (Ostfeld and Keesing, 2000; Keesing et al., 2010). Similarly, Johnson et al. (2013) found a non-random nested structure of amphibian community composition in 345 wetlands in California. High competent hosts appeared in almost all wetlands, and low competent hosts usually appeared only in wetlands with higher species richness. This phenomenon also exists in plant communities (Lind et al., 2013; Liu et al., 2017). Although the above examples support a negative correlation between host competence and extinction risk, the generality of this finding remains to be confirmed due to limitations in field observations and experimental conditions (Rohr et al., 2019). For example, in a study of primates, no significant association was found between host competence and extinction risk (Young et al., 2013).

Since species richness and host abundance can influence pathogen transmission (Dobson, 2004), the total community abundance-species richness relationship should influence the diversity-disease relationship (Mihaljevic et al., 2014). The community assembly pattern reflects how community abundance scales with species richness. Compensatory assembly and additive assembly are two extreme assembly patterns often considered in theoretical studies, which yield completely different richness-abundance relationships. The former means that total community abundance does not vary with host richness, and the latter means that total community abundance increases linearly with host richness. It has been demonstrated that when disease transmission is density-dependent, the compensatory assembly will lead to a dilution effect, while the additive assembly will lead to an amplification effect (Rudolf and Antonovics, 2005; Chen and Zhou, 2015). However, some studies found that the saturated relationship between community abundance and species richness is more reasonable than additive and compensatory assemblies, and can better reflect the changes in the total community abundance during biodiversity loss (Lehman and Tilman, 2000; Rohr et al., 2019). Until now, few studies have considered the effect of saturated community assembly on the diversity-disease relationship [but see Mihaljevic et al. (2014)]. Furthermore, to our knowledge, no studies have explored the combined effects of community composition, community assembly patterns, and disease transmission modes on the diversity-disease relationship.

In this study, using a multi-host Susceptible-Infected-Recovered (SIR) model, we hope to explore how host community composition, community assembly pattern, and disease transmission mode jointly affect community disease risk under community disassembly. We predict that different patterns of community assembly and disease transmission modes will result in different trends in diversity-disease relationships, and that shifts in community composition may alter such trends.



Materials and methods

The SIR model is the most classical and fundamental infectious disease model. It can characterize both density-dependent and frequency-dependent transmission of diseases. Similar to Dobson (2004), we adopt the classical multi-host SIR model to describe the state transition process of disease:

[image: image]

Here the subscript i represents the host species i (i = 1 …n), Si,Ii,Ri represent three different states of host i, namely susceptible, infected and recovered. [image: image] represents the number of newly infected individuals of host i per unit time. di, μi, and γi represent natural death rate, disease-induced death rate, and recovery rate, respectively. Other parameters and their meanings are shown in Table 1.


TABLE 1    Parameters, definitions, and values for generating the global species pool.

[image: Table 1]

The framework of the simulation was as follows. First, we constructed a global species pool containing 49 host species, the vital parameters of each species followed the parameter setting method established by Roche et al. (2012) and Mihaljevic et al. (2014). Second, we simulated the process of biodiversity loss under deterministic and stochastic extinction respectively, generating local communities with different species richness. Finally, for each local community, we calculated community R0 as a measure of community disease risk to explore how different combinations of community composition, disease transmission mode, and community assembly pattern affect community disease risk under community disassembly.


Generating a global species pool

In multi-host communities, different hosts have different epidemiological and ecological traits (Joseph et al., 2013). In order to make the constructed communities closer to the actual communities, we drew heavily on the existing community ecology rules and parameter setting methods to assign reasonable parameter values to each host species (Roche et al., 2012; Joseph et al., 2013). These parameters mainly include species abundance, demographic rate, and epidemiological traits.


Species abundance

Species abundance in the global species pool was assumed to follow Preston’s law. This law yields a species-abundance relationship that follows a log-normal distribution, in which a few species are common, and most species are rare (Preston, 1948). This distribution has been proved to describe the abundance distribution patterns in many ecosystems, such as vertebrates, alpine meadows, and fungi (Preston, 1962). It can be expressed as

[image: image]

where z is a constant, s0 is the number of species in the modal rank, and s(P) is the number of species in Pth rank from the modal rank. We assumed a total of eight ranks, including 49 species (Table 1). The abundance at each rank was assigned on alog2 base, which we considered to be the species’ equilibrium abundanceKi (Roche et al., 2012).



Demographic rate

Assuming that the community was in equilibrium, i.e., the birth rate of any host is equal to death rate. Empirical studies have shown that species’ birth and death rates tend to be allometrically related to body weight (Charnov, 1993). Similar to Roche et al. (2012), the relationship between birth (death) rate and body weight was expressed as

[image: image]

where Mi represented the average body weight of species i. We assumed the body weight is exponentially related to its abundance (Mihaljevic et al., 2014),

[image: image]

It can be seen from the above equation that the species with the smallest body weight is the most abundant.



Epidemiological traits

Field evidence suggests that host species vary significantly in their competence. Taking West Nile Virus as an example, hosts range from birds to horses to humans (Ezenwa et al., 2006). Birds are the most competent hosts, while horses are dead-end hosts, contributing little to the spread of the disease. In order to reflect the variations in host competence, we drew intraspecific values R0i from a truncated gamma distribution. The value of R0i reflects the competence of the host i. If R0i is greater than one, the pathogen can successfully invade the host population, and vice versa.

We considered three possible relationships between host competence R0i and abundance. First, R0i was positively related to abundance, so the most abundant species are the most competent. Then we relaxed this condition by assuming that there was no relationship between R0i and species abundance (neutral). Finally, we considered a negative relationship between R0i and host abundance, where the most abundant species were the least competent (Vinson and Park, 2019).

Similar to Mihaljevic et al. (2014), we calculated intraspecific transmission rate βii by

[image: image]

The interspecific transmission rate βij was proportional to the geometric mean of the intraspecific transmission rate βii and βjj, modified by a constant scaling factor ε, i.e., [image: image] (Roberts and Heesterbeek, 2018). In this study, we assumed the interspecific transmission rate were symmetrical (i.e., βij = βji), and the transmission rates were the same for different individuals of the same species.

Till now, we have constructed a global species pool containing 49 hosts and described in detail how different demographic and epidemiological parameters were assigned to host species (Table 1). To get robust results, we repeated the above process 1,000 times to generate different global species pools.




Simulating the process of community disassembly

For each global species pool, we considered deterministic extinction and stochastic extinction of host species to simulate different biodiversity loss processes, generating local communities with species richness ranging from 2 to 49. According to the life history trade-off theory, the higher body weight, the lower number of species, and therefore the higher the risk of extinction (Huang et al., 2013). Thus, under deterministic extinction, we removed the highest body weight (the least abundant) host species from the community at a time until two host species remained in the community. While under stochastic extinction, we randomly selected one host species to remove at a time to simulate the decrease of species richness. Note that these two different species extinction ways correspond to different species extinction orders, thus reflecting different host community compositions.

Next, we separately considered the additive, compensatory, and saturated community assembly under each extinction pattern. In the additive assembly, the addition of new species increases the total community abundance, so the total community abundance was linearly accumulated with species richness. In contrast, in the compensatory assembly, the total community abundance was kept constant, and the abundance of remaining species in the community was compensated in proportion to their abundance when species richness decreased. In the saturated assembly, the community abundance (Kcom) increased asymptotically with species richness (R) by

[image: image]

This asymptotic function is close to the form of the relationship between plant cover and species richness (Tilman et al., 1996). If the total community abundance KT < Kcom, the abundance of each species was not adjusted, and the increase in community abundance was almost linearly with species richness. In contrast, if KT > Kcom, the adjusted abundance of each host was obtained by multiplying the abundance of each species by a scaling factor Kcom/KT, and then the increase in community abundance was almost a fully compensatory assembly.

In order to get rid of random effects and to get general results, we repeated the process of stochastic extinction 1,000 times for each of the above scenarios [all the nine possible combinations of community assembly patterns (i.e., additive, saturated, and compensatory assembly) and host competence-abundance relationships (i.e., positive, neutral, and negative correlations)].



Community basic reproduction number R0

As in previous studies, the community basic reproduction number R0 was used as a proxy for disease risk, which measures the possibility of successful disease invasion in a multi-host community (Roberts and Heesterbeek, 2013; O’Regan et al., 2015). We used the next-generation matrix method to calculate community R0 (Dobson, 2004). For a local community containing m species, the expression of the next-generation matrix G based on the SIR model is

[image: image]

where i,j = 1…m. [image: image] represents the lifespan of the infected host i. pji depends on whether the disease transmission mode is density-dependent or frequency-dependent. For density-dependent transmission, pji equals to the equilibrium abundance Ki of infected host species i. For frequency-dependent transmission, pji equals to the proportion of infected host species i, namely [image: image]. By calculating the dominant eigenvalues of the next-generation matrix G, we can obtained the community basic reproduction number R0.




Results


Results in the case of density-dependent transmission

In the case of density-dependent transmission and stochastic species extinction, the relationship between species richness and community abundance determined how community R0 varied with species richness (Figure 1). Specifically, when community abundance increased linearly with species richness (i.e., the additive assembly), community R0 increased monotonically with species richness, i.e., the amplification effect. While when community abundance was kept constant with species richness (i.e., the compensatory assembly), the community R0 initially decreased monotonically with increasing species richness and then gradually became stable. That is, a dilution effect occurred at low species richness, while when species richness was high, the community R0 was almost unchanged with species richness. When community abundance was saturated with species richness (the saturated assembly), the diversity-disease relationship showed a non-monotonic hump-shaped trend, with a peak corresponding to species richness of about 15. Along the species richness gradient, the community R0 first increased (amplification effect) and then decreased (dilution effect).


[image: image]

FIGURE 1
The relationship between host species richness and community R0 under density-dependent transmission and stochastic extinction scenario. Each column represents different community assembly pattern. From the first column to the third column are additive, saturated, and compensatory assembly, respectively. Each row represents the relationship between host competence and abundance. Positive, neutral, and negative correlations are from the first to the third row. The x-axis in each panel represents species richness, and the y-axis represents community R0. Each boxplot represents the values of 1,000 simulations for each species richness level, and the red dots represent the mean values of community R0.


As shown in Figure 1, the above conclusions still hold for positive, neutral, or negative species competence-richness relationships. These findings suggested that in this case, community assembly patterns qualitatively determined whether disease risk increases, decreases, or is non-monotonic under community disassembly. However, the relationship between species competence and extinction risk could only quantitatively but not qualitatively alter the diversity-disease trend.

Conversely, in the case of density-dependent transmission and deterministic species extinction, the community R0 increased monotonically with species richness when community assembly was additive (Figure 2). The host competence-richness relationship only affected the value of community R0, but did not change this increasing trend. These results were consistent with the stochastic extinction scenario. However, when community abundance was saturated with species richness (saturated), community R0 increased monotonically with the increase of species richness, which is different from the non-monotonic humped-shaped curve in the stochastic extinction scenario. When community abundance did not change with species richness (compensatory), the direction of the diversity-disease relationship depended on how host competence varied with abundance (The third column in Figure 2). If host competence was positively correlated with abundance, then community R0 decreased as the increase of species richness, i.e., a dilution effect occurred. In contrast, if host competence was negatively correlated with abundance, then community R0 increased with species richness, i.e., an amplification effect occurred. If host competence was neutral with abundance, community R0 first slightly decreased and then slightly increased with species richness. An interesting finding is that the results in the latter two cases (negative or neutral relationship between host competence and abundance) were quite different from those in stochastic extinction scenario (Figures 1, 2).


[image: image]

FIGURE 2
The relationship between host species richness and community R0 under density-dependent transmission and deterministic extinction scenario. Other details are the same as in Figure 1.


In summary, the direction and strength of the relationship between diversity and disease risk under density-dependent transmission were determined by a combination of community assembly pattern, host community composition, and host competence-abundance relationship.



Results in the case of frequency-dependent transmission

In the case of frequency-dependent transmission, disease transmission was determined by the proportion of host species, not by host abundance. Therefore, there was little difference in disease transmission whether the community assembly was additive, compensatory, or saturated. Thus, we used the additive method as an example to show how species extinction pattern and host competence-abundance relationship affect the relationship between diversity and disease risk (Figures 3, 4).


[image: image]

FIGURE 3
The relationship between host species richness and community R0 under frequency-dependent transmission and stochastic extinction scenario. Each column represents different relationship between host competence and abundance. Positive, neutral, and negative correlations are from the first to the third column. Each boxplot represents the values of 1,000 simulations for each species richness level, and the red dots represent the mean values of community R0.



[image: image]

FIGURE 4
The relationship between host species richness and community R0 under frequency-dependent transmission and deterministic extinction scenario. Other details are the same as in Figure 3.


As seen in Figures 3, 4, regardless of whether species extinction was deterministic or stochastic, community R0 decreased monotonically with the increase of host richness, i.e., only a dilution effect occurred. The host competence-abundance relationship only changed the value of community R0, but did not alter diversity-disease trends. For a fixed species richness level, the community R0 was highest when host competence and abundance were positively correlated and lowest when there was a negative correlation between them. In particular, a negative host competence-abundance relationship exhibited a weak dilution effect when the species richness was low, while when species richness was high, community R0 did not change with species richness, that is species richness had no effect on disease risk (third column in Figures 3, 4).




Discussion

The relationship between host diversity and disease risk is one of the central concerns in disease ecology. In the context of rapid global biodiversity loss and increasing emerging infectious diseases, a deeper understanding of the diversity-disease relationship is important for public health and wildlife conservation. Although extensive experimental evidence supports the existence of dilution effects in natural ecosystems, we still know very little about the conditions under which the dilution effect occurs (Keesing and Ostfeld, 2021). By building a multi-host SIR model, we found when disease transmission was density-dependent, the diversity-disease relationship could exhibit an increasing, decreasing, or non-monotonic trend, which mainly depended on the patterns of community assembly. However, the combined effects of the host competence-abundance relationship and species extinction order may reverse or weaken this trend. In contrast, when disease transmission was frequency-dependent, the diversity-disease relationship only showed a decreasing trend (i.e., only a dilution effect occurred). The host competence-abundance relationship and species extinction order did not alter this decreasing trend in this case, but it could reduce the detectability of the dilution effect and affect the value of the community R0. Overall, a combination of disease transmission mode, community assembly pattern, and host community composition can alter the direction or strength of the diversity-disease relationship.

Exploring the general consequences of the host competence-abundance relationship on disease risk is one of the main goals of this study. An interesting finding is that under density-dependent and deterministic extinction scenario (Figure 2), different host competence-abundance relationships (positive, neutral, or negative) may lead to opposite results in the case of compensatory assembly. The reason may be that a positive relationship between host competence and abundance means that low competent hosts are the first to be extirpated from the community. Therefore, community disease risk increases with decreasing species richness, i.e., a dilution effect occurs (Rosenthal et al., 2021). Conversely, if host competence is negatively related to abundance, then the most competent hosts go extinct first, resulting in community contains a large number of less competent hosts. Hence, disease risk decreases when community disassembly, i.e., an amplification effect occurs. If host competence is neutral with abundance, then host species are randomly removed as species richness decreases, therefore the relationship between diversity and disease risk is weak.

Our results have been confirmed by some empirical studies. For example, a survey of amphibian communities in 147 wetland areas in California found that the relationship between diversity and trematodes disease risk showed a dilution effect when low competent host species went extinct first, but showed no effect when host species went extinct at random (Johnson et al., 2019). Similar results were found for plant communities. For example, for alpine meadow plant communities, the low competent host plants were the first to go extinct after nitrogen addition, and the relationship between plant richness and leaf fungal disease risk showed a dilution effect. However, when plants were randomly removed in controlled experiments, plant richness had almost no effect on fungal disease risk (Liu et al., 2018). It is worth noting that traditional biodiversity-ecosystem function controlled experiments tend to assemble communities by randomly sampling species from the species pool. This may ignore the importance of species loss order and may underestimate disease risk (Wolfi and Zavaleta, 2015).

In the case of deterministic extinction, our results were consistent with previous findings that an amplification effect occurred when community assembly was additive, and a dilution effect occurred when community assembly was compensatory under density-dependent transmission (Rudolf and Antonovics, 2005; Mihaljevic et al., 2014). While under frequency-dependent transmission, the diversity-disease relationship did not change with different patterns of community assembly. However, as mentioned in the Introduction, neither additive nor compensatory community assembly patterns reflect species richness-abundance relationship in actual communities. In a community, both additive and compensatory assembly can occur (Rohr et al., 2019). In general, additive assembly happens in the early stages of a community (Chen and Zhou, 2015). As competition gets tougher and resources are limited, it will switch to compensatory assembly. Therefore, the saturated assembly is more reasonable, and can better reflect the changes in the total community abundance under community disassembly. For example, using three different theoretical models, Lehman and Tilman (2000) found a saturated relationship between total community biomass and species richness due to competition. Similarly, Guo et al. (2006) showed a non-monotonic relationship between grassland biomass and plant richness within a certain range of species richness.

Saturated community assembly resulted in a non-monotonic hump-shaped diversity-disease relationship under density-dependent transmission and stochastic extinction scenario, which emphasized the importance of host richness ranges for identifying diversity-disease relationships in field studies. The occurrence of a dilution or amplification effect depends on whether species richness falls to the left or right side of the peak (Halliday et al., 2019; Rohr et al., 2019). If host species richness falls to the left side of the peak, then an amplification effect can occur when community disassembly. On the contrary, there will be a dilution effect. This finding may explain the divergent results in field studies and the controlled experiments. In most field studies, species richness often falls to the right side of the peak, making it easy to conclude a dilution effect (Johnson et al., 2013; Kilpatrick et al., 2017). However, in controlled experiments, given the difficulty of manipulating species richness, species richness tends to fall to the left side of the peak, so it is easier to conclude an amplification effect (Halliday et al., 2017). In future research, we must focus on evaluating the shape of the diversity-disease relationship and determining where species richness lies on this curve.

Due to the complexity of the multi-host-pathogen system, exploring the general diversity-disease relationship is challenging, for which we made some simplifications. For example, in natural communities, the presence of keystone species may have a significant impact on diversity-disease relationships (Levi et al., 2016), which we did not take into account. Furthermore, we only considered the saturated community abundance-species richness relationship due to competition. However, in many natural systems where predation has a more substantial effect on disease dynamics than competition (Chen et al., 2022), all of which needs to be addressed in future studies. Despite these limitations, this study demonstrated for the first time that the trends of the diversity-disease relationship did not only depend on community assembly pattern and disease transmission mode. The relationship between host competence and extinction risk could alter the direction and strength of the diversity-disease relationship. This study not only explains the current debate about the dilution effect, but also contributes to a deeper understanding of the pathogen transmission dynamics in actual communities.
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Nitrogen (N) and phosphorus (P) are the main restrictive elements in terrestrial ecosystems, which have an important role in determining the community composition of plants and soil microorganisms. However, there is still a lack of understanding about whether plant and soil microbes respond synchronously to external N and P addition deposition, particularly on a short time scale (< 1 year). Here, we conducted a short-term experiment (3 months) involving control, N addition, P addition, and N + P addition in an alpine grassland on the Qinghai-Tibetan Plateau. Responses of plant and soil microbial (bacterial and fungal) communities were analyzed using the quadrat method and high-throughput sequencing, respectively. N addition significantly increased aboveground biomass and changed the plant community composition, but had no significant effect on soil microbes. Thus, microbial and plant processes were asynchronous following the resource availability in this alpine meadow. According to our research, the plant community may react to short-term nutrient deposition more quickly than the soil microbial community.
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Introduction

In terrestrial ecosystems, nitrogen (N) and phosphorus (P) are two crucial nutrients for organisms and have an impact on a variety of biogeochemical processes. Due to several recent worldwide changes (such as climate warming, nitrogen deposition, etc.) caused by human activity, the availability of these nutrients in the environment has dramatically changed (Wang et al., 2020). This change triggered an imbalance between the availability of resources and organisms. On a worldwide scale, numerous studies have been carried out to investigate how plants or bacteria react to simulated N and P addition (Stiles et al., 2017; Li et al., 2020). These studies considerably contribute to our understanding of biogeochemical cycles in the context of global change (Ling et al., 2022). However, combined field experimental studies about both plant and microbial responses to N and P additions are still comparatively underutilized. In order to comprehend terrestrial ecosystem responses to nutrient deposition more thoroughly, both plant and soil communities should be taken into account at the same time.

Naturally, the aboveground and belowground ecosystems are closely connected (Wardle et al., 2004), and both plant and soil microbial communities could be affected by environmental factors (Dahl et al., 2017; Ma et al., 2018; Adair et al., 2019). The interactions between plants and soil bacteria make it more difficult to distinguish how environmental change affects a single population (Rudgers et al., 2020). On the other hand, little is known about whether these communities respond similarly or synchronously to environment change (Classen et al., 2015). It will be necessary to fill information gaps regarding the sequential or concurrent responses of plant and soil microbial populations to environmental change. In order to achieve this, short-term trials (less than a year) may present the chance to screen out the ephemeral responses brought on by the stepwise change, which are crucial for comprehending and identifying the tipping points (De Boeck et al., 2015).

The Qinghai-Tibetan Plateau is the plateau with the highest altitude and the largest area on earth, known as the “third pole of the world.” Affected by global change, the climate in this region has undergone drastic changes, and the annual average temperature, annual precipitation, and total nitrogen deposition rate have increased to varying degrees (Chen et al., 2013; IPCC, 2018). Under such a background, it is necessary to investigate the response mode mechanism of plant and soil microbial organisms to resource availability in this region. Here, we conducted a 3 months experiment with increasing soil fertility (nitrogen and phosphorus addition), the response of species composition of plant and soil microbes under different treatments were measured simultaneously. The following questions were specifically addressed by this study in an effort to provide answers: (1) How do the assemblages of plant and soil microbes respond to temporary external nutrient addition? (2) Do soil microbial and plant communities react simultaneously to resource availability?



Materials and methods


Study site

This experiment was carried out on a flat field located at the Haibei Alpine Grassland Ecosystem Research Station (37°36′N, 101°19′E, c. 3,215 m a.s.l.), located on the northeastern Qinghai-Tibetan Plateau in Qinghai Province, China. The site is a typical continental climate, where the annual average precipitation is 488 mm, and the annual average temperature is –1.1°C. The growing season in this region is from May to September. The vegetation is dominated by Kobresia humilis, Elymus nutans, and Stipa aliena.



Experimental design

Experimental treatments began in June 2021. A two-way factorial design with N and P addition was implemented involving four treatments: (1) control, CK; (2) nitrogen addition, N; (3) phosphorus addition, P; and (4) combined N and P addition, NP. With NH4NO3 and Ca(H2PO4)2, respectively, 10 g N m–2 and 5 g P m–2 of N and P addition were added to the meadow’s surface. The fertilizer was manually spread in solid form manually on drizzly day. Each treatment was replicated four times, resulting in a total of 16 plots. These plots (2.5 m × 2.5 m) were arranged in a complete randomized block design and each plot was separated by a 2-m buffer zone to minimize nutrient exchange between plots.



Sampling

After 3 months, we collected samples from all plots in the middle of August 2021. The plant species richness was determined for each plot as the total number of species in one 0.5 m × 0.5 m quadrat at the center of each plot. In each plot, three 0.16 m × 0.16 m quadrats were further randomly selected to measure the plant biomass. All individual plants in each quadrat were clipped to the soil surface and used to measure the shoot biomass after drying at 80°C for 48 h. Three soil cores with a depth of 0–10 cm and a diameter of 3.5 cm were randomly collected and mixed as one sample. Fine live roots were carefully separated from each soil sample, washed cleanly, and used for the determination of belowground biomass. The remaining soil samples were transported in sterile plastic bags on dry ice to the laboratory and stored at –20°C until the start of the extraction.



Sequencing and bioinformatics

Total DNA was extracted from soils using a PowerSoil® DNA Isolation Kit (Qiagen, USA), following the manufacturer’s instructions. Universal primers were used to amplify the 16S rRNA genes of bacteria (338F and 806R) and ITS genes of fungi (ITS1 and ITS2). Amplicons were purified and sequenced by Magigene (Guangzhou, China) on a NovaSeq6000 platform (Illumina Inc., San Diego, USA). The resulting sequences were first merged using FLASh v1.2.11. Afterward, the primer sequences were removed by the command of “fastq_filter” in VSEARCH 2.14.2. The filtered sequences were assigned to zero-radius operational taxonomic units (zOTUs) using UNOISE3 algorithm. The command of “usearch_global” was then used to map the fastq file into an zOTU table. The representative sequences were annotated for their taxonomic information based on the RDP database version 11.5 for bacteria and UNITE database release version 8.2 for fungi, respectively. All non-bacteria or non-fungi sequences and singletons were removed from the analysis. To correct for sampling effort, the number of sequences per sample was rarefied to the minimum number for the bacterial and fungal community, respectively. Raw sequence data is deposited to the Genome Sequence Archive (GSA) in National Genomics Data Center, China National Center for Bioinformation (CNCB) under the BioProject id PRJCA011844.



Statistical analysis

The data analyses were conducted using various packages in R v4.0.2. Before analysis, the data were tested for normality and loge(x + 1)-transformed when needed. The effects of treatments on plant and soil microbial richness were analyzed using mixed linear models with block as a random effect. The analysis was performed in R using the “lmer” command in the “lme4” package. The corresponding F and P values were derived from the “anova” function in the “lmerTest” package. Based on the linear mixed-effects models, the differences of each variable between treatments were tested by post hoc pairwise comparisons (Tukey method) using “glht” function of multcomp package. The principal coordinates analysis (PCoA) was performed to visualize differences in the plant or microbial community composition using “pcoa” function of the ade4 package in R. Significant differences in the plant or microbial community among treatments were further analyzed by Permutational multivariate ANOVA (PERMANOVA) with constraining permutations within blocks using “adonis2” function of the vegan package.




Results

The N addition significantly increased shoot biomass (F = 21.59, P < 0.001). Compared with unfertilized soils, the shoot biomass was increased by 17.91 and 31.94% under N and NP treatments, respectively (Figure 1A). Besides, the shoot biomass was marginally affected by P addition (F = 3.63, P = 0.08) and not affected by the interaction between N and P addition (F = 0.95, P = 0.35). On the other hand, we did not observe significant effects of our treatments on the root biomass (all P > 0.05, Figure 1B). We recorded 56 plant species belonging to 41 genera and 18 families over the course of the experiment. The richness of plant communities was not significantly affect by N addition (F = 0.01, P = 0.93), P addition (F = 0.07, P = 0.78), or their interaction (F = 1.43, P = 0.25; Figure 1C). PCoA ordinations of plant communities revealed that the species composition was highly changed by nitrogen addition (Figure 1D), which was confirmed by PERMANOVA analysis (F = 1.71, P = 0.01). With an increase in N availability, fast-growing grasses like E. nutans are more abundant relatively.
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FIGURE 1
Shoot (A), root (B) biomass and plant richness (C) under different treatments. Bars represent means ± SEs. Significant differences of each variable among treatments are indicated by dissimilar letters above boxes (post hoc Tukey’s test). Principal coordinate analysis ordination (PCoA) plot based on a Bray–Curtis dissimilarity matrix of plant communities under different treatments (D).


Illumina NovaSeq paired-end sequencing of bacterial V3–V4 and fungal ITS1 region yielded 412,048 and 688,592 clean reads, respectively. These sequences were grouped into 7,016 bacterial zOTUs and 2,142 fungal zOTUs. The bacterial zOTUs were classified into 21 phyla, Proteobacteria (35.89%) and Acidobacteria (16.04%) were the two predominant phyla (Figure 2A), followed by Actinobacteria (15.48%) and Bacteroidetes (9.17%). The fungal communities were mainly dominated by Ascomycota with an average of 34.04% reads, followed by Basidiomycota with 26.94% of reads (Figure 2B). We did not observe any significant effect of our treatment on bacterial or fungal richness (all P > 0.05, Figures 3A,B). The PCoA based on Bray–Curtis dissimilarities was conducted to reflect the soil bacterial and fungal beta diversity among different treatments. The results showed that our treatment did not influence the bacterial or fungal community composition (Figures 3C,D), which was confirmed by the PERMANOVA analysis (all P > 0.05). Therefore, we speculate that in an alpine meadow on the Qinghai-Tibetan Plateau, the soil microbial community may react to resource availability more slowly than plants.
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FIGURE 2
Relative abundances (%, proportion of sequencing reads) of bacteria (A) and fungi (B) at the phylum level in this study.
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FIGURE 3
Bacterial richness (A) and fungal richness (B) under different treatments. Bars represent means ± SEs. Principal coordinate analysis ordination (PCoA) plot based on a Bray–Curtis dissimilarity matrix of bacterial communities (C) and fungal communities (D) under different treatments.




Discussion

By examining the effect of nutrient addition on the plant and soil microbial community structure, our results provide strong evidence that plant and soil microbes responded asynchronously to short-term nutrient deposition on the Qinghai-Tibetan Plateau.

Our results demonstrated that the N addition significantly increased aboveground biomass and altered the composition of plant community. The results are in line with the findings of previous studies, which shown that additional N increases aboveground biomass (Gao et al., 2018) and changed plant community composition (Stiles et al., 2017). However, neither the aboveground biomass nor the plant community composition was substantially influenced by P addition in our study. Therefore, it is possible that N was the predominant limiting nutrient in the alpine grassland on the Qinghai-Tibetan Plateau (Jiang et al., 2018; Li et al., 2021). In contrast to most previous findings, we did not observe any significant effect of nutrient addition on plant richness. In alpine meadows, nutrient addition typically resulted in the loss of some sedges and forbs (Sun et al., 2016). The explanation for the not significant decline of plant richness in response to nutrient enrichment in our study might be the relatively short-term experimental duration (Humbert et al., 2016). So, instead of the loss of species, our data also implied that the response of plants to nitrogen addition is firstly caused by changes in community composition.

Soil microorganisms are commonly thought to respond quickly to short-term events due to their rapid generation rates, high population densities, and diverse communities (Chase et al., 2021). Contrary to what we expected, the addition of fertilizer had no obvious influence on the diversity or composition of the soil microbial community. The following potential reasons might be responsible for the observations. First, soil microbial communities are insensitive to nutrient addition in our ecosystem, because previous study also reported that soil microbial biomass and community structure showed minor responses to 4 years of nitrogen and phosphorus addition (Chen et al., 2019). Since the root biomass was the major determinant of soil microbial community (Rinnan et al., 2005), the insensitivity of soil microbes could be related to the stability of root biomass in this study. The limitation of our study design is that we did not analyze the soil properties from soil. Therefore, we could not conclude whether the stability of soil microbial communities was also related to the soil properties.

Second, soil microbial composition transition may need a longer time than plant community to show up, since many studies reported changes in both plant and soil microbial community composition after long-term scale (Dahl et al., 2017; Ma et al., 2018). An apparent lack of responses in the short term may progress or cascade through the system, leading to long-term changes and adaptations (Knapp et al., 2012). In this case, the changes of soil microbial communities maybe triggered by plant community or changes in plant resource stoichiometry (Yuan et al., 2016; Liu et al., 2020; Wang et al., 2022). This finding corroborates the previous study which also reported that N deposition has greater effects on the plant community than on the soil microbial community (Wu et al., 2013). However, given that long-term time scale (8 years) used in their study, our current result may relate to different mechanism. Further dynamic monitoring is needed to illustrate the possible effects and mechanisms by which resource availability alter plant and soil microbial development at multiple time points.

In our study, fertilization addition affected plant shoot biomass and community composition while having no effect on the composition of the soil microbial community, demonstrating that, on a short-term time scale, resource availability has a greater impact on the plant community than the soil microbial community. This research contributes to our understanding of how above- and below-ground microbial communities are impacted by short-term environmental change, and the knowledge acquired can be applied to forecast long-term implications in alpine grassland ecosystems.
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More than half of the world's tropical lowland rainforests have been lost due to conversion to agricultural land (such as rubber plantations). Thus, ecological restoration in degraded tropical lowland rainforests is crucial. The first step to restoration is restoring soil functioning (i.e., soil fertility, carbon, and nitrogen cycling) to levels similar to those in the primary tropical lowland rainforest. This requires understanding soil nematode community assembly in primary tropical lowland rainforest, which has never been explored in this habitat. In this study, we measured species compositions of plant and soil nematode communities and soil characteristics (pH, total and available nitrogen, phosphorus, and soil water content) in a primary tropical lowland rainforest, which is located on Hainan Island, China. We performed two tests (the null-model test and distance-based Moran's eigenvector maps (MEM) and redundancy analysis-based variance partitioning) to quantify the relative contribution of the deterministic (abiotic filtering and biotic interactions) and stochastic processes (random processes and dispersal limitation) to the soil nematode community. We found that a deterministic process (habitat filtering) determined nematode community assembly in our tropical lowland rainforest. Moreover, soil properties, but not plant diversity, were the key determinants of nematode community assembly. We have, for the first time, managed to identify factors that contribute to the nematode community assembly in the tropical lowland rainforest. This quantified community assembly mechanism can guide future soil functioning recovery of the tropical lowland rainforest.

KEYWORDS
  biotic interaction, community convergence or divergence, dispersal limitation, habitat filtering, stochastic processes


Introduction

Tropical lowland forests harbor the most biodiversity, but these forests are also easily destroyed due to their suitability for agricultural use (Corlett, 2011). As of now, over half of the tropical lowland rainforest has been lost due to its conversion into agricultural lands (i.e., rubber plantations and palm plantations). (Aleman et al., 2018). Thus, ecological restoration is crucial to restoring the percentage of tropical lowland rainforests worldwide (Brancalion et al., 2019). The first step in reforestation is restoring the soil functioning of degraded soil (Zhang et al., 2019). Soil nematodes are the most abundant soil-dwelling animal group on earth and are vital to soil function (i.e., processing soil organic nutrients and regulating soil microorganism populations) (Ferris et al., 2001; Ruess, 2003; Pausch et al., 2016; van den Hoogen et al., 2019). Thus, a deep understanding of soil nematode community assembly in the primary tropical lowland rainforest can aid the recovery of soil functioning (Wang et al., 2022). That is because soil nematode community assembly in the primary tropical lowland rainforest can easily establish a restoration standard (Wang et al., 2022). For example, soil nematode community assembly in the restored tropical lowland rainforest should be comparable to that in the primary tropical lowland rainforest.

Identification of different ecological processes that shape the community assembly of different communities is the primary focus of ecological research (Condit et al., 2002; Chave, 2013; Chase, 2014). For more than a century, community ecologists have debated whether the deterministic or stochastic processes play a primary role in structuring ecological communities (Hubbell, 2001; Chase and Myers, 2011; Trisos et al., 2014). This debate has led to conceptual ideas that invoke multiple processes ranging from niche-based habitat filtering and interspecific competition (niche differentiation) to random dispersal and demographic stochasticity (Weiher et al., 2011). The relative contribution of deterministic and stochastic processes to community assembly has been widely investigated for plant communities, soil bacterial, and fungal communities in different ecosystems (Zhang et al., 2015; Moroenyane et al., 2016; Tripathi et al., 2018; Jiao et al., 2021; Ni et al., 2021). However, till now, there has been no study investigating soil nematode community assembly in the tropical lowland rainforest.

A recent global meta-analysis indicated that a deterministic process may dominate soil nematode community assembly globally (Luan et al., 2020). Thus, we hypothesized that deterministic processes (habitat filtering) might also dominate nematode community assembly in the tropical lowland rainforest. To test this hypothesis, in the primary tropical lowland rainforest on Hainan Island, we evaluated the relative contributions of the deterministic and stochastic processes to soil nematode community assembly by examining the following: (i) species compositions of plant and soil nematode communities in 20 plots of 400 m2 each and (ii) soil characteristics (pH, total and available nitrogen, and phosphorus, and soil water content) in each plot. With this dataset, we first used a null model test to compare the observed beta diversity and the beta diversity of simulated random communities to determine if there is significant community convergence, divergence, or random distribution. Then, we used it to reveal the relative contributions of the deterministic process (soil variables) and stochastic processes (dispersal limitation and random process) to the beta diversity of the nematode community. Finally, by determining the beta diversity of the soil nematode community, we were able to quantify the relative importance of soil variables and plant diversity if a deterministic process dominated the nematode community assembly.



Materials and methods


Study site

The study site is the Xinglong National Forest Park (110.16°E, 18.77°N) in Hainan Province, southern China (Figure 1). It has a unique primary tropical lowland rainforest with high species diversity. Its altitude ranges from 5 to 300 m; the area has a mean annual temperature of 24.5°C, and the lowest and the highest mean monthly temperatures are 18.7°C (January) and 28.5°C (July), respectively (Guo et al., 2018). The mean annual precipitation is ~2,500 mm, and most of the precipitation is distributed between May and November.
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FIGURE 1
 The map of our study site and detailed spatial location of our 20 × 20 m2 plots in the primary tropical lowland rainforest.




Sampling

On 10 August 2021 (at the peak of the growing season), we randomly sampled 20 plots in the adjacent undisturbed secondary tropical rainforest. Each of these plots was 20 × 20 m2 and at least 100–300 m apart (Figure 1). The elevation of all 20 plots ranged from 15 to 150 m. Within a plot, all freestanding trees with a DBH (diameter at breast height) of ≥1 cm were measured and identified as species. The spatial locations (x- and y- coordinates) for each plot were also recorded. We randomly collected five soil cores (depth diameter of soil cores, 0–20 cm) from each plot and mixed them into one soil sample. We then used 100 g of soil to measure the soil properties, and soil nematodes were extracted from another 100 g of soil using Baermann's funnel method (Barker et al., 1985). Then, we used a microscope (Leica DM500) to measure nematode abundance in each soil sample by identifying the first 100 nematodes to the genus level based on their morphological traits. All nematode images were identified to genus level for soils with fewer than 100 nematodes. We followed the method used by Yeates et al. (1993) to classify all the identified nematodes into five functional groups: phytophagous nematodes, bacterivores, fungivores, predators, and omnivores (Supplementary Table S1).

As described by Burt (2009), the soil N concentration was determined using the Kjeldahl digestion method and an OIFS 3000 autoanalyzer (OI Analytical, College Station, TX, USA). Both ammonium N and nitrate N were extracted from 2 g of soil using a 2.0 M KCl solution. The ammonium and nitrate N extracts were further analyzed colorimetrically using a KCl extract and an OIFS 3000 autoanalyzer (OI Analytical, College Station, TX, USA). To determine the total P in the soil, we took 2.5 g of fresh soil, added Mehlich III solution, and then evaluated the color change in the soil with a spectrophotometer after the soil was digested with perchloric acid. Elemental analysis of P was performed on the Mehlich III extracts using inductively coupled plasma atomic emission spectroscopy (ICP-AES). Soil pH was measured using a pH meter in a KCl suspension (UB-7, UltraBASIC, Denver, CO, USA). The water content of the soil was determined by measuring the amount of weight lost upon drying the soil at 100°C for 48 h in an oven.



Statistic methods

We first calculated Bray–Curtis dissimilarities to represent the beta diversity of the nematode community. To test whether any observed beta diversity pattern was a random distribution or showed species convergence or divergence, we first simulated null communities in which species abundance values were randomly assigned. Randomization procedures were applied to calculate “null” distributions for both species composition (i.e., on the species × quadrat matrix) and all species (Götzenberger et al., 2012). We reshuffled the species × quadrat matrices with three constraints simultaneously, following the method of Zhang et al. (2015, 2018); that is, keeping (1) the same number of species (species richness) per plot in the simulated and observed data; (2) the same number of total species occurrences per region (i.e., the number of plots where the species occur in each group of the five spatial scales); and (iii) the total abundance of species in a region constant (i.e., the sum of the number of quadrats occupied in all plots). We implemented this using the function “randomized matrix” in the “Picante” package in R software (Kembel et al., 2010). We then compared the observed beta diversity to the beta diversity simulated in 1,000 randomly assembled communities. Beta diversity was quantified using the standard effect size index (SES) developed by Gotelli and McCabe (2002):
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where beta diversity observed and beta diversity random represent observed beta diversity and mean beta diversity values of the simulated null community, respectively. The beta diversitysd represents the standard deviation of beta diversity values generated from the 1,000 simulations. We used the Wilcoxon signed-rank tests to examine whether SES was significantly more than, less than, or ≈0, which indicated the prevalence of significant species divergence, species convergence, and random distribution, respectively.



Partitioning the spatial patterns in the beta diversity of nematodes

We first used the “diversity result” in the “biodiversity” package in r software to calculate plant diversity (richness and abundance). Then, we used Moran's eigenvector maps (MEM) and the spatial location of each plot to quantify spatial autocorrelations in nematode species composition in each plot. The MEM was based on the principal coordinates of neighbor matrix axes (Legendre and Legendre, 2012) and could be used to describe the spatial autocorrelations in beta diversity (Zhang et al., 2015, 2018). We used the function “cmdscale” in the “SpacemakerR” package in r software (Stephane, 2013) to calculate MEM. We then used the r function“poly” to quantify each variable's polynomial terms, including the linear and nonlinear relationships between soil variables and species composition. While performing redundancy analysis (RDA)-based variance partitioning, we used the method developed by Blanchet et al. (2008) to forward-select significant soil variables and purely spatial variables represented by MEM associated with beta diversity of the soil nematode community. Finally, we used variance partitioning to allocate variations in beta diversity of nematode community to eight complementary components: (a) “purely soil variables” (explained by soil factors only), (b)“purely spatial variables” (spatial autocorrelation in beta diversity independent of soil variables and induced by dispersal limitation and biotic interactions), (c) “purely plant diversity variables (explained by plant diversity (richness and abundance) only),” (d) “spatially structured abiotic variables” (spatial autocorrelation in beta diversity and merely induced by soil variables), (e) “spatially structured plant diversity” (spatial autocorrelation in beta diversity and merely induced by plant diversity), (f) variables explained by both soil variables and plant diversity, (g) variations in beta diversity explained by soil variables, spatial variables, and plant diversity, and “undetermined variables” (Legendre et al., 2009; Zhang et al., 2018). Variation in beta diversity of the soil nematode community explained by soil variables was represented by a + d + f + g, whereas b + d + e + g showed the variation in the soil nematode community explained by MEM. In addition, the variation of the soil nematode community explained by plant diversity was reflected by c+e+f+g. Variance partitioning was performed using the function “varpart” in the “vegan” package in R (Oksanen et al., 2016).




Results

There are a total of 29 genera of soil nematodes across all plots in our primary tropical lowland rainforest (Supplementary Table S1). Bacterivores had the most (12) genera, whereas predators had the fewest (2) genera (Supplementary Table S1). Both phytophagous nematodes and omnivores had six genera (Supplementary Table S1). In addition, fungivores had three genera (Supplementary Table S1).

The nematode community converged, as indicated by a significantly smaller SES than zero (Figure 2), indicating that the deterministic processes (habitat filtering or exclusion of weak competitors) dominated the nematode community assembly. The deterministic process (habitat filtering), represented by the soil variables, accounted for 63% of the variation in beta diversity, respectively (Figure 3). By contrast, the stochastic process (dispersal limitation), represented by spatial variables, explained 22% of the variation in beta diversity (Figure 3). In the tests of soil variables on beta diversity of soil nematode communities, the forward selection analysis revealed that the significant abiotic variables that predicted beta diversity of soil nematode communities included pH, soil total and available phosphorus, and soil water content (Supplementary Table S2). When comparing the relative contributions of all soil variables and plant diversity (richness and abundance) to the beta diversity of the soil nematode community, we found that soil variables explained 63% of the variation in beta diversity, whereas plant diversity merely accounted for 25% of the variations in beta diversity (Figure 3).


[image: Figure 2]
FIGURE 2
 Distribution of standard effect size (SES) of beta diversity in our primary tropical lowland rainforest. SES that is significantly greater than, smaller than, or approaching zero indicates significant trait divergence, trait convergence, or random distribution, respectively. The box plot shows the median (line within the box), 25 and 75th percentiles (the boundaries of the box), and 90 and 10th percentiles (error bars) of SES at each spatial scale. ***Indicates a p-value < 0.001 based on the Wilcoxon signed-rank tests.



[image: Figure 3]
FIGURE 3
 The variations of beta diversity are partitioned into eight complementary components if statistically significant (p < 0.05). Analysis was performed, including all quadrants. These eight components include (a) “purely soil variables” (explained by soil factors only), (b) “purely spatial variables” (spatial autocorrelation in beta diversity independent of soil variables and induced by dispersal limitation and biotic interactions), (c) “purely plant diversity variables (explained by plant diversity (richness and abundance) only),” (d) “spatially structured abiotic variables” (spatial autocorrelation in beta diversity and merely induced by soil variables), (e) “spatially structured plant diversity” (spatial autocorrelation in beta diversity and merely induced by plant diversity), (f) variables explained by both soil variables and plant diversity, (g) variations of beta diversity explained by soil variables, spatial variables, and plant diversity and “undetermined variables.” Variation in beta diversity of the soil nematode community explained by soil variables is represented by a + d + f + g, whereas b + d + e + g shows the variation of the soil nematode community explained by MEM. In addition, the variation of soil nematode community explained by plant diversity is reflected by c + e + f + g.




Discussion

We studied a primary tropical lowland rainforest to estimate the relative importance of the deterministic and stochastic processes in determining soil nematode community assembly in tropical lowland rainforests. As we hypothesized, habitat filtering was the major determinant of the soil nematode community assembly in tropical lowland rainforests. Moreover, soil properties determine soil nematode community assembly.

By comparing observed beta diversity to that simulated from null communities, we found significant convergence (SES < 0), indicating deterministic processes (habitat filtering or exclusion of weak competitors) dominated community assembly of soil nematodes (Kraft et al., 2008; De Bello et al., 2012; Zhang et al., 2015, 2018). We further showed that habitat filtering (indicated by soil variables) explained 63% of the variations in the beta diversity of soil nematodes. We noted that our attribution of the effect of dispersal limitation on the beta diversity of soil nematodes to purely spatial variables might be an overestimate (Legendre et al., 2009), which could be, despite our attempt to include the important soil nutrient variables, because some significant abiotic variables remain unaccounted for (Siefert et al., 2013). However, given the high variations in beta diversity explained by soil variables, we can easily judge habitat-filtering-dominated soil nematode community assembly; this is consistent with a recent meta-analysis, which showed that a deterministic process dominated soil nematode community assembly at the global scale (Luan et al., 2020). However, different results have also been found in other ecosystems. For instance, Zou et al. (2022) found that the stochastic processes are the primary determinants of soil nematode community assembly in three Asian mountains. In contrast, the deterministic process dominated the community assembly of nematodes in a tropical seasonal forest (Wang et al., 2022) and our tropical lowland rainforest. The different soil (i.e., N-limited or P-limited) and plant diversity (e.g., high or low) types in different ecosystems may result in inconsistent soil nematode community assembly patterns between our study and other studies. Thus, comparative research on the community assembly mechanisms of soil nematode communities across different ecosystems should be performed in the future to generate a general community assembly mechanism of soil nematodes at the global scale.

A null-model approach developed by Kraft et al. (2008) and distance-based Moran's eigenvector maps (MEM) and redundancy analysis-based variance partitioning have widely proven to be helpful in identifying community assembly mechanisms of plant communities (Kraft and Ackerly, 2010; De Bello et al., 2012; Myers et al., 2013; Zhang et al., 2015, 2018). However, no study used them to identify the relative contributions of deterministic and stochastic processes to community assembly of nematode communities. It remains unclear whether they can also be applied to dissolve soil nematode community assembly. In this study, the results clearly demonstrated that they could successfully determine the key determinants of community assembly of soil nematodes. We recommend that these two methods be used to reveal the community assembly of soil nematodes in future studies.

Soil properties and plant diversity are reported as the key influences on the soil nematode community (Neher, 2010; Viketoft et al., 2011; Liu et al., 2015; Wang et al., 2018). However, the relative contributions of soil characteristics and plant diversity to community assembly of the soil nematode community remain unknown. Our variance partitioning results clearly demonstrated that soil properties explained 63% of the variations in the beta diversity of soil nematodes, whereas plant diversity merely explained 25%. This indicated that soil properties, but not plant diversity, dominated the soil nematode community assembly in the tropical lowland rainforest. However, we only measured plant diversity, and it is highly possible that plant-derived resources (e.g., litter input) may be more important than plant diversity in determining the beta diversity of the soil nematode community. As a result, the plant-derived resources should be measured in the future to identify the relative contributions of soil properties and plant-derived resources in driving the variation in beta diversity of the soil nematode community.



Conclusion

Overall, we gained invaluable insights into soil nematode community assembly in tropical lowland forests. The first null-model test, distance-based Moran's eigenvector maps (MEM), and redundancy analysis-based variance partitioning revealed the community assembly of soil nematodes in tropical lowland rainforests. Second, the deterministic process (habitat filtering) dominated the community assembly of soil nematodes. Third, soil properties but not plant diversity were the primary determinants of soil nematode community assembly. This quantified community assembly mechanism can guide future soil functioning recovery of tropical lowland rainforests. For example, since soil properties are the key determinants of soil nematode communities, adding fertilization to improve soil fertility is one key step to recovering the soil nematode community and its induced key soil functioning in degraded tropical lowland rainforest.
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Mikania micrantha is one of the most notorious invasive weeds in south China, especially in orchard habitats. Based on the principle of niche competition, screening plants with strong competitiveness and managing vacant niches through natural alternative methods (replacement control) were expected to achieve sustainable ecological management of invasive species. To this end, two legumes, Desmodium heterocarpon and Senna tora, were selected to conduct field competition experiments with M. micrantha to investigate the interspecific competitiveness of these two legumes and M. micrantha from the aspects of adaptability to low light and response to drought stress. We found that the relative interaction indexes of D. heterocarpon and S. tora to M. micrantha were both negative and the competitive inhibition of S. tora on M. micrantha was higher than that of D. heterocarpon. Compared with M. micrantha, D. heterocarpon and S. tora have higher photosynthetic efficiency and lower dark respiration efficiency under low-light conditions, thus maintaining positive plant carbon balance capacity in the low-light understory and becoming more shade-tolerant. Besides, the water stress experiment found that M. micrantha had the lowest tolerance to drought stress, followed by S. tora, and D. heterocarpon was the most drought tolerant. These results showed that D. heterocarpon and S. tora can effectively prevent and control M. micrantha, mainly due to their higher competitiveness, shade tolerance, and drought tolerance. The control effect of D. heterocarpon is better than that of S. tora which is an alien species. Therefore, we believed that the replacement control of the invasive weed M. micrantha by D. heterocarpon is expected to be a sustainable ecological management strategy for M. micrantha biocontrol in the dryland orchard habitat. These findings provide a theoretical basis for the selection of species for alternative control in the future and provide new ideas for solving the problem of repeated regeneration in the existing M. micrantha control process.
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1. Introduction

Due to the rapid development of economic globalization and international transportation, more and more species have been introduced, intentionally or unintentionally, into new environments previously isolated by natural barriers (Chen et al., 2016; Courchamp et al., 2017). These alien species are often highly adaptable and able to survive, reproduce, and spread in new environments, resulting in severe alien species invasions (Theoharides and Dukes, 2007). Biological invasions pose an enormous threat to ecosystems and public health by replacing native species, reducing biodiversity, altering community structure, and impairing ecosystem function (Slingenberg et al., 2009), resulting in huge economic losses (Pimentel et al., 2001). Therefore, how to effectively control invasive alien species, especially the control of alien weeds, is a hot spot in the field of invasive ecology research.

Mikania micrantha (mile-a-minute weed) is native to tropical regions of Central and South America and the Caribbean and is a fast-growing perennial vine belonging to the Asteraceae family (Choudhury et al., 2016). Due to natural and anthropogenic factors, M. micrantha is widely distributed in tropical and subtropical regions of Asia and the Pacific, and is one of the 100 worst invasive alien species announced by the International Union for Conservation of Nature (IUCN; Day et al., 2016). M. micrantha germinates early in the growing season, has a fast growth rate (up to 20 cm per day), and can reproduce vegetatively by forming roots and branches at each node, resulting in new individuals (Kaur et al., 2012). Therefore, if not controlled, it may rapidly spread to new habitats, covering the forest or plantation canopy (Day et al., 2012), causing the covered plants to suffocate and die due to lack of sunlight, so M. micrantha is also known as “plant killer” (Zhang et al., 2004). The rapid spread of M. micrantha not only destabilized the ecosystems in which it invaded, but also caused great economic losses (Day et al., 2016). For example, due to the invasion of M. micrantha every year in Neilingding Island in Shenzhen, China, the average annual economic loss amounts to CNY 4.5–10.13 million for the whole island (Zhong et al., 2004). Most notably, M. micrantha is responsible for the reduction of the production in many orchards by climbing up the orchard canopy and blocking the sunlight (Macanawai et al., 2012; Shen et al., 2015). It is thus essential to seek an effective method for controlling M. micrantha in orchards.

The serious invasion of M. micrantha in tropical and subtropical regions has attracted more and more attention around the world. In order to remove M. micrantha from the invasion area, different control methods have been developed, mainly divided into physical control, chemical control, and biological control (Li M. et al., 2012, 2015). Physical control, usually harvesting the above-ground part of the M. micrantha, can only control the invasion in a short term and does not completely eradicate M. micrantha, but may increase the potential threat of further spread (Swamy and Ramakrishnan, 1987). Herbicide is the main method of chemical control to remove M. micrantha. However, it can lead to drug resistance and chemical contamination of the local environment (Islam et al., 2018; Mohanty and Jena, 2019). At present, the most successful method for M. micrantha is biological control. It has been found that the rust fungus Puccinia spegazzinii and the butterfly Actinote anteas (natural enemy insect of M. micrantha) have good pathogenicity and encroach on M. micrantha, and can control M. micrantha to a certain extent (Barreto and Evans, 1995; Li et al., 2004; Day et al., 2013). Previous studies found that the parasitic field dodder Cuscuta campestris parasitized M. micrantha, which could cause M. micrantha to die (Li F. L. et al., 2012). However, due to the safety and limitations of biological control, there is no precedent for biological control of M. micrantha in orchards. The growth of fruit trees and the formation of orchard habitats have their unique characteristics. With the fruit trees bearing from young age to mature, the stand space appeared obvious differentiation, which was manifested as distinct differences in plant composition, spatial distance, and microclimate between canopy and understory. However, the long-term periodic reclamation and weeding operations of understory make understory vegetation dwarf, sparse, or even lose, and the ecological niche is finally vacant, resulting in ecosystem loopholes, which leads to the invasion of notorious weeds led by M. micrantha. If we choose native or valuable species with high competitiveness to cover the orchard ground based on replacement control technology, the growth of M. micrantha could be suppressed or its establishment can be prevented.

The current control methods for M. micrantha cannot solve the problem of regeneration and proliferation of M. micrantha, the main reason is that the management of the vacant ecological niche after the control is neglected. If we can use the principle of niche competition, select plants with strong competitiveness, and fill vacant niches progressively through natural succession, it will be possible to achieve ecological sustainability in the management of invasive species, which can be regarded as replacement control (Piemeisel and Carsner, 1951; Piemeisel, 1954; Li et al., 2015; Shen et al., 2015, 2016). Compared with chemical or mechanical control methods, replacement control is generally considered more economical, safe, eco-friendly, and sustainable. Regarding the replacement control of M. micrantha, the reported replacement plants are mainly herbs, shrubs, and fast-growing trees, such as grass species tall fescue Festuca arundinacea (Xu et al., 2011), Mosla chinensis (Song et al., 2020), perennial Italian ryegrass Lolium multiflorum (Xu et al., 2011), annual wormwood Artemisia annua (Xu et al., 2011) and sweet potato Ipomoea batatas (Shen et al., 2016), leguminous shrub Stylosanthes guianensis (Song et al., 2020), southeast Asian pioneer tree Macaranga tanarius (Li M. et al., 2012), and kesseru plant Heteropanax fragrans (Li M. et al., 2012), etc. Among them, the replacement effect of sweet potato was better, and field experiments have been done. The results showed that when sweet potato was mixed with M. micrantha, it can accumulate more biomass and absorb more soil nutrients, so it has a stronger competitive advantage (Shen et al., 2015), and can inhibit the reproductive ability of M. micrantha (Shen et al., 2016). However, the reported replacement plants and M. micrantha belong to different life forms and occupy different ecological niches. Although sweet potatoes can disperse by crawling, they cannot climb upward. According to the limiting similarity theory, species with similar niches tend to be more competitive, so whether they have a similar niche to invasive species is an important determinant for replacement plants to resist invasive species (Price and Partel, 2013; Kimball et al., 2014). Different species with the same ecological niche strive to suppress each other in order to compete for limited resources and space, which directly leads to interspecific competition (MacArthur and Levins, 1964). Replacement control research has recently focused on screening valuable or native species for competitiveness, mechanisms of competition, and native ecosystem restoration effects. Therefore, screening native species in similar ecological niches to control invasive species is beneficial to the sustainable ecological management of invasive species.

The principle of replacement control is to use the mutual competition between plant species to control harmful weeds, especially invasive weeds, with one or more plants with competitive advantage. Plant competition plays an important role in shaping individual plant morphology, physiology, and life history and in determining plant community structure and succession (Grace, 2012), thus plant competition is one of the areas that ecologists focus on. The maximum growth rate theory proposed by Grime (1979) and the minimum resource requirement theory by Tilman (1980) are two classic competition theories. Grime’s theory is based on the life strategies and traits of plants, and believes that the species with the greatest resource capture potential will be the competition winner (Grime, 1977, 1979). Tilman’s theory proposes a numerical model of plant individual populations with resource capture rates as a function of plant traits, which believes that the species with the smallest resource requirements will be the winner of the competition (Tilman, 1988). In recent years, many studies have carried out researches on the competition between indigenous plants and forages and invasive alien plants, and found that some indigenous plants and forages have a strong competitive effect on invasive alien plants, which can better control the growth, development, and spread of alien plants (Scasta et al., 2015). Our preliminary work found that using native legumes can be a better option for the replacement control of invasive weeds (Li et al., 2015). Therefore, in order to elucidate which theory can explain such phenomenon, we selected a variety of plants for trial to screen replacement plants in the orchard, and finally screened out two forage legumes with the potential to control M. micrantha, and explored the ecological processes and mechanisms of replacement control of M. micrantha under low-light and drought-stressed treatments in two legumes to provide a theoretical basis for the selection of replacement species in the future. The results obtained in this study are of great significance for ensuring ecological security and promoting sustainable prevention and control of invasive species and ecological restoration.



2. Materials and methods


2.1. Screening of replacement plants in the field

We selected an orchard with severe invasion of M. micrantha to carry out the replacement control experiment of M. micrantha. The orchard was located at Huaguo village in the northeast of Xinxu Town, Huiyang District, Huizhou City, Guangdong Province (22°52′24”N, 114°21′21″E, at the altitude of 93 meters), with a total area of 24 square kilometers and a subtropical monsoon climate. The village has sufficient water resources, and the fruit trees mainly include bananas and wampees. Due to its proximity to Shenzhen, most of the orchards in the village were invaded by M. micrantha. In June 2016, clean tillage was carried out in an orchard of Huaguo Village with mowing of natural weed flora in case of weeds emerged. We also applied herbicide with a hand pump sprayer backpack to make the plot weed-free. After the clean tillage was completed, we established 16 plots, including 3 plots of Desmodium heterocarpon monoculture, 3 plots of Senna tora monoculture, 4 plots of Spermacoce latifolia monoculture, 3 plots of Ageratum conyzoides monoculture, and 3 plots of M. micrantha monoculture. Each plot was 3 m × 3 m. After the experimental plot was constructed, photographs were taken once a month to record the control effects of the four test plants on M. micrantha.



2.2. Interspecific competition experiment in the field

The experimental materials were D. heterocarpon, S. tora, and M. micrantha, and the seeds were collected from the replacement control experimental site in Huaguo village, Huizhou city from November to December 2016. The experimental design was as follows: M. micrantha, D. heterocarpon, and S. tora were planted individually; D. heterocarpon and S. tora were planted with M. micrantha together with a ratio of 1:1, respectively. There were five treatments in total, and each plot was 1.5 m × 1.5 m. Three months after transplanting, the coverage and plant height of D. heterocarpon, S. tora and M. micrantha was measured. The number of leaves per plant was counted, and the area of leaves with medium size was measured with a leaf planimeter (LI-3100, LI-COR, USA). At the end of the experiment, the medium-sized plants in each treatment were harvested. The shoots and roots were separated from each plant and dried to constant weight for at least 72 h at 60°C and then weighed to get the total biomass of shoots and roots.

Relative interaction index (RII) was calculated as: RII = (Bw-Bo)/(Bw + Bo), where Bw was the observed biomass of the target plant when growing with other species and Bo was the biomass of the target plant when growing individually. A negative value indicates that other species compete with the target plant and therefore inhibit the growth of target plants. A positive value indicates that other species promote the growth of the target plant.



2.3. Low-light treatment of Desmodium heterocarpon, Senna tora, and Mikania micrantha


2.3.1. Plant materials and seedling cultivation

The seeds of M. micrantha, D. heterocarpon, and S. tora were collected from the replacement control experimental field and germinated in Petri dishes. After germination, the seedlings were transferred to a float tray with nutrition soil and we watered them to keep the soil moist. After about 30 days of growth, healthy seedlings were selected and transplanted into a pot (plastic flowerpot 13 cm in diameter and 12 cm in height filled with mixed soil up to 2/3 of the height of the pot to ensure that the soil weight of each pot was basically the same) in the greenhouse on the top floor of the School of Life Science, South China Normal University. The mixed soil is composed of garden soil, which was collected from the topsoil of the Botanical Garden of South China Normal University, and nutrition soil in a ratio of 1:1.



2.3.2. Low-light treatment establishment

Three light conditions (light 100%, light 42%, and light 17%) were established. After 2 weeks of adaptive cultivation, the transplanted seedlings were shaded under three light conditions. There were 8 replicates per treatment for M. micrantha, D. heterocarpon, and S. tora (72 pots in total). All pots were positioned randomly and the experiment lasted for 60 days. At the end of the experiment, the plants in each treatment were harvested. The above-ground and below-ground parts were separated from each plant and dried to a constant weight for at least 72 h at 60°C and then weighed. The total biomass was the sum of above-ground and below-ground parts.



2.3.3. Measurements of chlorophyll fluorescence parameters

Chlorophyll fluorescence parameters were determined on a sunny day with a portable PAM-2100 fluorometer (Waltz, Germany) once a week. All fluorescence measurements were started after an additional 20 min dark adaptation. Minimal fluorescence (F0) and maximal fluorescence (Fm) were recorded and the maximal photochemical efficiency (Fv/Fm) is calculated as: Fv/Fm = (Fm-F0)/Fm. After the plant leaves were adapted to the light intensity of 200 mol m−2 s−1, steady-state fluorescence yield (Fs), maximal fluorescence yield (Fm′), electron transfer rate (ETR), and quantum yield of photosystem II (Yield) were recorded once per week.



2.3.4. Measurements of the light response curve

The light response curve was determined on a clear sunny day with a Li-6,400 portable photosynthesis analyzer (LiCor Inc., United States). The measurement time was 9:00–11:00 a.m. and 3:00–5:00 p.m. The chamber flow rate was adjusted to 500 μmol s−1. Before measuring the curve, the light intensity of 1,600 μmol m−2 s−1 was set to induce the leaves to reach a stable state. The light intensity gradient was set to 1,600, 1,400, 1,200, 1,000, 800, 600, 400, 200, 100, 40, 20, and 0 μmol m−2 s−1. After reaching the maximum stabilization time, we recorded the parameters of the instrument at each light intensity and measured continuously for 2 days until all data were obtained. Next, we took the light intensity as the x-axis and the net photosynthetic rate as the y-axis to draw a scatter plot of the light response curve. According to the method of Feng et al. (2004), we fitted the light response curve equation to calculate the maximum net photosynthetic rate (Pmax), light compensation point (LCP), light saturation point (LSP), dark respiration rate (Rd), and apparent quantum yield (AQY). AQY was represented by the initial slope of the light response curve when the light intensity was less than 200 mol m−2 s−1 and was fitted by the standard form of linear regression.




2.4. Drought-stressed treatment of Desmodium heterocarpon, Senna tora, and Mikania micrantha

After 1 week of adaptive cultivation of the seedlings, drought stress experiment was carried out. All experimental groups were subjected to drought treatment after fully absorbing water. The method of drought stress was carried out by natural drought without water. The control group was normally watered. The experimental group was treated with drought stress for 10 days and rehydrated for 3 days from the 11th day. There were 12 replicates per treatment for M. micrantha, D. heterocarpon, and S. tora (108 pots in total). All pots were placed randomly. At the end of the experiment, the plants in each treatment were harvested. The above-ground and below-ground parts were separated from each plant and dried to a constant weight for at least 72 h at 60°C and then weighed. The total biomass was the sum of above-ground and below-ground parts.


2.4.1. Measurements of gas exchange parameters in the drought stress experiment

Gas exchange parameters were determined using the Li-6,400 portable photosynthesis analyzer (LiCor Inc., United States) at 9:00 a.m. and were completed within 2 h on a sunny day. The photosynthetic photon flux density (PPFD) of the natural light was set to 1,000 μmol m−2 s−1 under daily ambient temperatures varied from 28 to 30°C. CO2 concentration inside the leaf chamber was maintained at 380 cm3 m−3 through the CO2-controlling system of the Li-6,400 attached to a portable CO2 cylinder. The PPFD of 1,000 μmol m−2 s−1 on the cuvette surface was provided by an LED source. Before taking measurements, the leaves were equilibrated under artificial light conditions in the leaf chamber for at least 10 min. Net photosynthetic rate (Pn), intercellular CO2 concentration (Ci), stomatal conductance (Gs), and transpiration rate (Tr) were recorded.



2.4.2. Measurements of proline content in the drought stress experiment

Proline was extracted by sulfosalicylic acid and the proline content was determined by ninhydrin colorimetry. 0.1 g fresh weight leaves of each plant in the control group (well-watered treatment) and the experiment group on the 10th day of drought treatment and the 3rd day of rehydration were placed in a centrifuge tube, respectively. 2.5 ml 3% sulfosalicylic acid solution was added to each tube and then all tubes were treated in the boiling water bath for 10 min. After filtering and cooling, 1 ml filtrate was absorbed into another centrifuge tube and then 1 ml glacial acetic acid and 1 ml 2.5% acid ninhydrin reagent were added. The mixture was heated in the boiling water bath for 30 min and turned red. After the mixture was cooled, 2 ml toluene was added. After 30 s of oscillation, the supernatant was transferred into a 10 ml centrifuge tube and centrifuged at 3000 rpm for 5 min. The red proline toluene supernatant was absorbed into a colorimetric cup. The toluene solution was used as blank control and the absorbance value was determined at A520. The standard curve of proline was prepared and the content of proline was calculated according to the regression equation of the standard curve.



2.4.3. Measurements of soluble sugar content in the drought stress experiment

The soluble sugar content was determined by thiobarbituric acid method. 0.1 g plant leaves were placed in a pre-cooled mortar and 1 ml pre-cooled 10% acetic acid (TCA) was added. After the leaves were grounded on ice homogeneously, the homogenate was transferred to the centrifuge tube, and then the mortar was washed with 1 ml 10% TCA. The washing liquid was also transferred to the centrifuge tube and centrifuged at the speed of 4,000 rpm for 10 min. 1 ml supernatant (1 ml sterile water in blank control) and 1 ml 0.6% thiobarbituric acid solution (TBA) were added into a new centrifuge tube and thoroughly mixed. The mixture was heated in a boiling water bath for 15 min and centrifuged at the speed of 4,000 rpm for 10 min after cooling down at room temperature. The supernatant of the mixture was taken to determine the absorbance value at A450.




2.5. Statistics analysis

We used one-way ANOVA analysis and Duncan’s test (p < 0.05) to test for differences between treatments using SPSS 18.0 (SPSS Inc., United States). SigmaPlot 12.0 and Origin 8.5 software were used for data visualization.




3. Results


3.1. The preliminary selection of replacement plants in the field

One month after clean tillage (Figure 1A), the seedlings of S. tora successfully established with a survival rate of over 95% (Figure 1B). The seedlings of D. heterocarpon successfully established with a survival rate of over 90% (Figure 1C). A large number of S. latifolia and a few M. micrantha individuals regenerated in the quadrats gap (Figure 1D). A few seedlings of A. conyzoides but a large number of M. micrantha individuals regenerated in the quadrats (Figure 1E). Four months after clean tillage (Figure 1G), S. tora entered into reproductive growth, some of the leaves aged and turned yellow, and lots of pods grew. Few M. micrantha was found in the plot, but weeds appeared in the lower layer (Figure 1H). D. heterocarpon also entered into reproductive growth, bearing a lot of pods, but the leaves remain green, with a small amount of M. micrantha (Figure 1I). When S. latifolia entered the aging stage, its stem lodging occurred and leaves withered and turned yellow, and a large amount of M. micrantha occupied the quadrats (Figure 1J). A. conyzoides entered the aging stage, while M. micrantha grew vigorously, occupying most of the quadrats (Figure 1K). Therefore, we did not involve S. latifolia and A. conyzoides in the following experiments. We observed that compared with the natural growth of M. micrantha (Figure 1F, L), D. heterocarpon and S. tora had obvious replacement control effect on M. micrantha, which can inhibit the growth and regeneration of M. micrantha in the orchards. Next, we used these two plants as replacement plants to study the interspecific competition effects between two legumes and M. micrantha in the field.
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FIGURE 1
 Growth status of four replacement plants after one and four months of clean tillage, respectively. (A, G) The original status after clean tillage; (B, H) S. tora; (C, I) D. heterocarpon; (D, J) S. latifolia; (E, K) A. conyzoides; (F, L) M. micrantha naturally regenerated as the control.




3.2. Interspecific competition between two legumes and Mikania micrantha in the field

When M. micrantha was planted with S. tora or D. heterocarpon, its coverage was significantly decreased compared with that of M. micrantha monoculture, which was 77% or 73.9%, respectively. Compared to D. heterocarpon monoculture, the coverage of D. heterocarpon decreased significantly by 17.3% when it was planted with M. micrantha, while the coverage of S. tora was not significantly different between monoculture and polyculture with M. micrantha (Figure 2A). Due to the competition of S. tora and D. heterocarpon, the leaf area of M. micrantha per plant decreased significantly by 30.9 and 36.3%, respectively. On the contrary, the leaf area of S. tora and D. heterocarpon per plant increased significantly by 7.1 and 25%, respectively, when they were planted with M. micrantha, compared to the monoculture (Figure 2B). The total biomass of M. micrantha decreased by 23.5 and 58.3%, respectively, when M. micrantha was planted with S. tora and D. heterocarpon, compared to the monoculture. There was no significant difference between the total biomass of D. heterocarpon when it was planted with M. micrantha and the monoculture, so as S. tora (Figure 2C). The RII can indicate the interaction between plants. A negative value indicates competition and a positive value indicates facilitation. The RII of M. micrantha in the presence of D. heterocarpon and S. tora were both negative (RIIMm (Dh) = −0.42, RIIMm(St) = −0.13, respectively), indicating that two replacement species competed well with M. micrantha, and that the strength of the negative effect of D. heterocarpon on M. micrantha was larger than that of S. tora on M. micrantha (Figure 2D). On the other hand, the effect of M. micrantha on D. heterocarpon was negative [RIIDh(Mm) = −0.03], close to zero, while the effect of M. micrantha on S. tora was positive [RIISt(Mm) = 0.12, Figure 2D], indicating that M. micrantha could promote the growth of S. tora.
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FIGURE 2
 Changes of the plant coverage (A), leaf area (B), total biomass (C), and relative interaction index (D) of M. micrantha and the replacement plants under different interspecific competition experiments (average ± SE, n = 4). M(D): M. micrantha when grown under competition with D. heterocarpon; M(S): M. micrantha when grown under competition with S. tora; D(M): D. heterocarpon when grown under competition with M. micrantha; S(M): S. tora when grown under competition with M. micrantha. Different letters above bar plots indicate significant differences (Duncan test, p < 0.05).




3.3. The adaptability of two replacement forage legumes and Mikania micrantha to low-light stress

Under light 100%, M. micrantha had more branches and leaves, but the leaves turned yellow. As the light intensity decreased, the number of branches and leaves of M. micrantha decreased significantly and the greenness of the leaves deepened. M. micrantha was the smallest and grew the worst under light 17% (Figure 3A). Under light 100% and light 42%, D. heterocarpon had more branches and leaves. The number of branches and leaves decreased under light 17%. As the light intensity decreased, the greenness of D. heterocarpon leaves deepened (Figure 3B). Under light 100%, S. tora grew low and stout with yellowish leaves and branches; with the decrease in light intensity, the plants became thinner and taller, and the greenness of leaves deepened. S. tora was the highest under light 42% (Figure 3C).

[image: Figure 3]

FIGURE 3
 Changes of shoot phenotype, root phenotype and biomass of two replacement forage legumes and M. micrantha under different light conditions. (A, D) Represent M. micrantha; (B, E) Represent D. heterocarpon; (C, F) represent S. tora. The treatments of each plant from left to right were light 100%, light 42% and light 17%, respectively. (G) The average values ± standard errors of five replicates were shown. The lowercase letters above bar plots represent the difference in the above-ground biomass of each plant under different light treatments. The lowercase below bar plots represent the difference in the below-ground biomass of each plant, and the capital letters below bar plots represent the difference in the total biomass (Duncan test, p < 0.05).


From the perspective of root phenotype changes, M. micrantha had the most developed roots and the largest number of roots under light 100%. With the decrease in light intensity, the number of roots decreased significantly. Under light 17%, the growth of roots was greatly affected and the number of roots was the least (Figure 3D). Under light 100%, the roots of D. heterocarpon were the most developed. With the decrease in light intensity, the number of roots gradually decreased, and the number of roots was the least under light 17% (Figure 3E). Under light 100%, the number of S. tora roots was the largest, and with the decrease in light intensity, the number of roots decreased dramatically. Under light 17%, the growth of S. tora roots was greatly inhibited and the number was the least (Figure 3F).

Compared with light 100%, the above-ground biomass of M. micrantha decreased significantly by 32.8 and 78.8% under light 42% and light 17%, respectively (Figure 3G). The above-ground biomass of D. heterocarpon and S. tora decreased by 55 and 63.6% under light 17% compared with that under light 100%. The root biomass of M. micrantha decreased significantly by 63 and 91.3% under light 42% and light 17%, respectively, compared with that under light 100%. The root biomass of D. heterocarpon significantly decreased by 81% under light 17% compared with light 100%, while there was no significant difference between the root biomass of D. heterocarpon under light 42% and light 100%. The root biomass of S. tora was significantly decreased by 31.3 and 79.7% under 42% and light 17% compared with light 100%, respectively. Under light 42% and light 17%, the total biomass of M. micrantha decreased significantly by 38.5 and 86.5%, respectively. The total biomass of D. heterocarpon decreased significantly by 60.2% under light 17% compared with light 100%and the total biomass of S. tora decreased by 66.1% under light 17% compared with light 100%. It can be seen that under the low-light treatment the biomass of M. micrantha decreased the most, followed by S. tora, and the biomass of D. heterocarpon was the smallest, and it was also the least affected by low light.

From the perspective of photosynthetic parameters, Pmax of M. micrantha significantly decreased by 23.4 and 37.8% respectively, under light 42% and light 17%, compared with light 100% (Table 1). There was no significant difference in Pmax between D. heterocarpon and S. tora under three light conditions, indicating that D. heterocarpon and S. tora have higher photosynthetic efficiency under medium-light and low-light conditions. Under the conditions of light 100% and light 17%, the LSPs of M. micrantha and S. tora were greater than those of D. heterocarpon, indicating that D. heterocarpon has stronger photosynthetic utilization ability under low-light conditions. The LCPs of M. micrantha and D. heterocarpon both decreased with the decrease in light intensity, and the LCP of D. heterocarpon was lower than that of M. micrantha and S. tora under light 42% and light 17%, indicating that D. heterocarpon was more tolerant to low-light condition. There was no significant difference in the AQY of D. heterocarpon and S. tora under different light conditions, while the AQY of M. micrantha significantly decreased by 22.4 and 28.2% under light 42% and light 17%, respectively, compared with light 100%, which indicated that the two forage legumes were more efficient for low light. The Rd. of M. micrantha under light 42% and light 17% was not significantly different from that under light 100%. Under light 42% and light 17%, the Rd. of D. heterocarpon decreased significantly by 29.9 and 38.8% compared with light 100%, respectively, and that of S. tora decreased significantly by 32.7% under light 17% compared with light 100%, which indicated that under low-light conditions, D. heterocarpon and S. tora can adapt to the low-light environment by reducing their own energy consumption.



TABLE 1 Changes of photosynthetic parameters under different light conditions (average ± SE, n = 4).
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With the increase of treatment time, the Fv/Fm of M. micrantha continued to decrease under the three light conditions (Figure 4A), while that of D. heterocarpon was not significant under different light conditions and showed an upward trend (Figure 4B). Similar to M. micrantha, the Fv/Fm of S. tora also continued to decrease under three light conditions (Figure 4C). Under light 100%, the ETR and Yield of M. micrantha remained stable, showed a downward trend under light 42% and light 17%, and decreased dramatically under light 17% (Figures 4D, G). The ETR and Yield of D. heterocarpon showed an upward trend under all light conditions (Figures 4E, H), showing good adaptability to the low-light environment. The ETR and Yield of S. tora increased gradually with the increase of treatment time, and there was little difference among different treatments (Figures 4F, I). After light 42% and light 17% treatment for 49 days, the photochemical quenching (qp) of M. micrantha decreased significantly compared with light 100% (Figure 4J), while that of D. heterocarpon and S. tora both increased with the increase of treatment time (Figures 4K, L).
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FIGURE 4
 Changes of chlorophyll fluorescence parameters of two replacement forage legumes and M. micrantha under different light treatments (average ± SE, n = 3). (A, D, G, J) M. micrantha; (B, E, H, K) D. heterocarpon; (C, F, I, L) S. tora.




3.4. The response of two replacement forage legumes and Mikania micrantha to drought stress

After 7 days of drought treatment, the leaves of M. micrantha began to wilt and the leaves of S. tora wilted on the 10th day, while the leaves of D. heterocarpon did not change significantly (Figure 5). After 10 days of drought treatment, the phenotypes of two replacement forage legumes and M. micrantha showed obvious differences. The leaves of D. heterocarpon were still green without visible changes, while the leaves of M. micrantha shrunk due to water loss, and the stem tips were dry and withered. The leaves of S. tora also lost water and wilted, and the leaves were closed, but the degree of wilting was significantly lower than that of M. micrantha. From the observation of phenotype, the tolerance to drought stress of D. heterocarpon was higher than that of S. tora and M. micrantha, among which M. micrantha has the deepest degree of wilting. After rehydration, the leaves of M. micrantha were still wilted, the wilting symptoms of S. tora leaves disappeared, and the leaves of D. heterocarpon did not change significantly and remained green.

[image: Figure 5]

FIGURE 5
 Changes of plant phenotype and leaf phenotype of two replacement forage legumes and M. micrantha under drought stress. Mm: M. micrantha; Dh: D. heterocarpon; St: S. tora; Rh: rehydration.


Under drought stress, the total biomass of M. micrantha and S. tora decreased significantly by 65 and 14.9%, respectively, while D. heterocarpon was not affected by drought stress (Figure 6A). The root biomass of M. micrantha was significantly reduced under drought stress, while neither D. heterocarpon nor S. tora was affected by drought stress (Figure 6C). Under the drought treatment, the plant height and root length of M. micrantha decreased significantly by 38.7 and 32%, respectively, compared with the well-watered group (Figures 6B, D). There were no significant differences in plant height and root length between the well-watered group and drought stress group for D. heterocarpon and S. tora (Figures 6B, D).
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FIGURE 6
 Changes of (A) total biomass, (B) plant height, (C) root biomass, and (D) root length of two replacement forage legumes and M. micrantha under drought stress (average ± SE, n = 4). Different letters above bar plots indicate significant differences analyzed using ANOVA followed by Dunnett’s test. Significance levels: ** p < 0.01; * p < 0.05.


Drought stress had a significant effect on the Pn of M. micrantha and S. tora. With the increase of drought treatment time, Pn of M. micrantha and S. tora showed a continuous downward trend, and M. micrantha had the largest decrease (96.71%), followed by S. tora, with a decrease of 92.4%, while the Pn of D. heterocarpon remained at a relatively high level after 10 days of drought treatment, only decreased by 2.4%. After rehydration, the Pn of M. micrantha remained at a low level and could not be recovered, and that of S. tora recovered to a level comparable to the well-watered group, while that of D. heterocarpon increased slightly (Figure 7A). The Gs and Tr of M. micrantha and S. tora showed similar changing patterns, both of which continued to decline with the increase of drought treatment time. After rehydration, the Gs and Tr of M. micrantha could not recover to a level comparable to the well-watered group, while that of S. tora could basically recover (Figures 7B, D). During the drought treatment, Gs, Ci, and Tr of D. heterocarpon remained at a stable level with little change (Figures 7B–D).

[image: Figure 7]

FIGURE 7
 Changes of (A) net photosynthetic rate, (B) intercellular CO2 concentration, (C) stomatal conductance and (D) transpiration rate of two replacement forage legumes and M. micrantha under drought stress and after rehydration (average ± SE, n = 4).


The Fv/Fm of M. micrantha and S. tora showed a downward trend under drought treatment, which could not be recovered after rehydration, but continued to decline, while that of D. heterocarpon did not change and slightly increased after rehydration (Figure 8A). As drought treatment continued, ETR of M. micrantha decreased by 16%, and that of S. tora decreased by 26.6%, while ETR of D. heterocarpon increased by 6.5% (Figure 8B). After rehydration, the ETR of M. micrantha was unable to recover, while that of S. tora was partially recovered (Figure 8B). On the 10th day of drought treatment, the Yield of M. micrantha and S. tora decreased by 30.6 and 21.9%, respectively. After rehydration, the Yield of S. tora partially recovered, while that of M. micrantha could not recover to a level comparable to the well-watered group (Figure 8C). During the drought treatment, the Yield of D. heterocarpon was at a high level (Figure 8C). With the increase of drought treatment time, the qP of M. micrantha and S. tora decreased by 11.6 and 20.7%, respectively, on the 10th day and could be recovered to a level comparable to the untreated group after rehydration, while that of D. heterocarpon remained basically unchanged under all conditions (Figure 8D).
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FIGURE 8
 Changes of (A) maximal photochemical efficiency, (B) electron transfer rate, (C) quantum yield of photosystem II and (D) photochemical quenching of two replacement forage legumes and M. micrantha under drought-stressed treatment and after rehydration (average ± SE, n = 4).


Under the drought treatment, the proline content of M. micrantha, D. heterocarpon, and S. tora increased to varying degrees, and were significantly increased by 229.3, 0.96 and 47.7 times, respectively, compared with well-watered treatment (Figure 9A). After rehydration, the proline content of M. micrantha remained at a high level and both D. heterocarpon and S. tora recovered to a level comparable to the well-watered group (Figure 9A). Under drought treatment, the soluble sugar content of M. micrantha, D. heterocarpon, and S. tora increased significantly by 72.4, 28.9, and 31% respectively, compared with the well-watered treatment. The soluble sugar content of all three plants recovered to a level comparable to the well-watered group after rehydration (Figure 9B).
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FIGURE 9
 Changes of (A) proline and (B) soluble sugar content of two replacement forage legumes and M. micrantha under drought stress and rehydration (average ± SE, n = 3). Different letters above bar plots indicate significant differences analyzed using ANOVA followed by Dunnett’s test. Significance levels: ** p < 0.01; * p < 0.05.





4. Discussion

Much work so far has focused on the ecological mechanism of why biological invasion could be successful (Hengeveld, 1988; van der Putten et al., 2007; Rejmánek, 2014; Olenin et al., 2017). However, rather than understanding the mechanism of the invasion, it might be more important to apply the mechanism to the actual restoration and management of invaded sites. We provided experimental evidence that replacement control of invasive plants, through selecting and cultivating suitable native plants, is effective. In the field experiment, we selected 4 replacement plants that commonly appear in orchard habitats (i.e., D. heterocarpon, S. tora, S. latifolia, and A. conyzoides) and screened out two potentially effective plants among these four plants, D. heterocarpon and S. tora, for further experiments to investigate the potential in controlling M. micrantha. One of the most important reasons for the successful replacement of invasive plants by replacement plants is the interspecific competitive advantage of replacement plants (Gaudent and Keddy, 1988; Keddy et al., 2002). Species with greater competitiveness can inhibit the growth of invasive plants and replace them, thereby enabling sustainable restoration of damaged soil ecosystems (Chen et al., 2017). We investigated the effect of interspecific competition on the replacement effect of two forage legumes, D. heterocarpon and S. tora in mixed cultivation with M. micrantha. Both D. heterocarpon and S. tora significantly reduced the coverage of M. micrantha and suppress the growth of M. micrantha. At the same time, the total leaf area per plant and the total biomass of M. micrantha were also significantly reduced when mixed cultivation, indicating that D. heterocarpon and S. tora had great potential in controlling the expansion of M. micrantha. RII is one of the important indicators to measure the competition strength of plants (Ulrich and Perkins, 2014). RII of M. micrantha grown in the presence of D. heterocarpon [RIIMm(Dh)] was −0.42, while that of M. micrantha grown in the presence of S. tora [RIIMm(St)] was −0.13, indicating that these two species have a more competitive advantage compared to the alien species. In addition, we observed that RIIMm(Dh) was significantly smaller than RIIMm(St), indicating that D. heterocarpon was more effective in controlling M. micrantha than S. tora. The question we were trying to answer in this study is why D. heterocarpon and S. tora are so effective in suppressing the expansion of M. micrantha in the field experiment. The field competition experiment was carried out in an orchard habitat with low soil moisture content and some degree of light blocking. Therefore, we simulated low-light and drought-stressed environmental conditions and compared the growth and photosynthetic characteristics of these two plants with M. micrantha in order to study the physiological and ecological mechanism of the success replacement controlling effect.

M. micrantha is a tropical heliophytic plant (Han et al., 2017; Sheam et al., 2020), and the biomass of M. micrantha decreased significantly with the decrease in light intensity after low-light treatment. On one hand, the AQY of the M. micrantha significantly decreased under low-light condition, illustrating that the amount of the light-harvesting pigment–protein complexes which absorbs sunlight and transforms light energy into chemical energy might be reduced, resulting in a decrease of photosynthetic rate and a consequent weakening of the ability to utilize weak light (Richardson and Berlyn, 2002). On the other hand, the dark respiration rate of M. micrantha was maintained at a high level, while the photosynthetic rate decreased, leading to a proportional reduction in biomass accumulation. However, under low-light treatment, the dark respiration rate of D. heterocarpon and S. tora were significantly decreased, indicating that the replacement plants were able to adapt to the low-light environment by reducing energy consumption and maintaining a higher photosynthetic rate (Gyimah and Nakao, 2007; Martínez Pastur et al., 2007). Fv/Fm reflects the maximum light energy conversion efficiency of PSII, which tends to decrease significantly when plants are stressed (Guo and Tan, 2014). ETR reflects the activity of PSII and is directly related to plant photosynthetic rate (Koblížek et al., 2001; Burda, 2007; Yamori et al., 2008), and Yield is also positively correlated with the activity of PSII (Krall and Edwards, 1992). Fv/Fm, ETR, Yield, and qp of the replacement plants under low-light treatment did not change significantly compared with those values under light 100%, while those of M. micrantha decreased to different degrees after low-light treatment. Therefore, D. heterocarpon and S. tora show good adaptability and strong shade tolerance under low-light environment so that they can quickly grow and cover the soil surface to rob most of the light.

Moisture is an important limiting factor during plant growth and development (Davies et al., 1990; Ghaderi and Siosemardeh, 2011). Soil moisture is a key factor in M. micrantha seed germination and population expansion, and determines the growth and distribution of M. micrantha (Yue et al., 2019). After drought treatment, we found that the biomass of M. micrantha decreased by 65% and the plant height and root also decreased by 38.7 and 32%, respectively, compared to the well-watered group, while the replacement plants outperformed M. micrantha in all aspects of plant growth parameters. In addition, under drought-stressed condition, phenotype change of M. micrantha was the most serious, and the water loss was severe, so that M. micrantha needed to absorb more water from the soil for supplementation, resulting in serious soil water loss and soil compaction, which was difficult to restore soil nutrient supply and return to original soil status (Demchik and Sharpe, 2000; Ober and Parry, 2011; Kilpeläinen et al., 2017). A large number of studies have shown that photosynthesis is sensitive to water stress, and the photosynthetic rate decreases with the increase of water stress (Boyer, 1970). We observed that M. micrantha was irreversibly damaged after 10 days of drought treatment, and all photosynthetic indexes of M. micrantha failed to recover after rehydration. Chlorophyll fluorescence parameters can detect the effects of drought stress on plant photosynthesis (Bi et al., 2008; Su et al., 2015). Chlorophyll fluorescence parameters of M. micrantha revealed that drought stress caused irreversible damage to the PSII of M. micrantha. However, both the photosynthetic index and chlorophyll fluorescence parameters of S. tora recovered after rehydration, indicating that S. tora had strong self-repair potential in drought stress and showed resistance to drought stress (Georgieva et al., 2006). The performance of D. heterocarpon was better than that of S. tora, and its various indicators remained stable during drought stress, reflecting excellent adaptability and tolerance to drought stress. Among two replacement forage legumes and M. micrantha, D. heterocarpon was the most drought-resistant, while M. micrantha was the least drought-resistant and its growth was susceptible to water limitation. In addition, in response to drought stress, M. micrantha accumulated a large amount of proline, and after rehydration, the proline concentration remained high, indicating that M. micrantha is often difficult to recover after severe damage (Waldren and Teare, 1974; Patel and Vora, 1985; Carvalho et al., 2019). Nevertheless, the proline content of D. heterocarpon and S. tora recovered to a level comparable to the well-watered group after rehydration. The replacement plants show excellent adaptation to drought stress, suggesting that the use of D. heterocarpon and S. tora to control the spread of M. micrantha in dryland orchards has good application prospects.

Theoretical studies of plant interspecific competition have been the focus of research in the field of ecology, and the long-standing debate on explaining interspecific competition is between Philip Grime and David Tilman (Grime, 1977; Tilman, 1980). A series of previous studies tend to support one side (Jabot and Pottier, 2012; DeMalach et al., 2016). In our study, we found that the replacement plants can obtain sufficient nutrients to sustain themselves and grow rapidly in low-level resource environments, accumulate more above-ground and underground biomass, and more mineral nutrition, water, and sunlight, to eventually win in the competition against invasive plants, eliminate them, and achieve the ecological restoration of the invaded sites. The invasive plants often covered the soil surface quickly through rapid growth and excluded the native plants, which severely disrupted ecological balance and threatening biodiversity (Pyšek and Richardson, 2010; Oduor, 2013). When the resource was sufficient, the plant height and above-ground biomass of M. micrantha were significantly higher than those of D. heterocarpon and S. tora, indicating that these two legumes are not better than M. micrantha in terms of growth rate during the same time period. The key to the legume’s victory over M. micrantha in the field was not its rapid growth, which was not in line with Grime’s theory. However, with the reduction of light resources and the lack of water, the difference between the plant heights of D. heterocarpon, S. tora, and M. micrantha has narrowed, while the above-ground biomass of D. heterocarpon has successfully surpassed M. micrantha under low light and water shortage. The above-ground biomass of S. tora also surpassed that of M. micrantha under drought stress. It can be seen that low light and drought were the environmental constraints that can significantly reduce the above-ground biomass of M. micrantha. When the light and water resources were limited, the two legumes have higher resource utilization and smaller resource requirements. The limited resources can be fully utilized, thereby accumulating more above-ground biomass and ultimately winning the competition. This is consistent with the idea that “resource availability can affect competition” proposed by Carlyle et al. (2010). Therefore, we propose that the reason why D. heterocarpon and S. tora are more competitive than M. micrantha may be that they have smaller resource requirements and can survive in the absence of light and water resources, which is in line with Tilman’s theory of minimum resource requirements.

Because of the rapid growth and expansion of invasive plants, environmental conditions and resources are particularly important to them and also tend to be limiting conditions. The findings of this study mean that in the future, people can control one or more resources that restrict the rapid growth of invasive plants by analyzing the environmental resources of the invaded site, and screening out the native plants that can grow rapidly and cover the soil surface under stressed conditions and eventually the invasive plants can be replaced without leaving other ecological problems. The two-phase resource dynamics hypothesis states that resources appear as pulses rather than continuously, including two stages, one is pulse periods when the available resources are high and most plants can grow and accumulate resources; the other is interpulse periods when the available resources are too low for most plants to absorb, and most plants die due to insufficient resources (Goldberg and Novoplansky, 1997). Our experimental environment is the understory habitat of the orchard, the trees have a canopy effect on light, and soil moisture content is relatively low, which means that light resources and water resources are always in interpulse periods. Therefore, we infer that in the pulse period, the resources can meet the growth of the invasive plant M. micrantha, and once transferred to the interpulse period, the replacement plants can survive and grow well, and M. micrantha was eventually eliminated because it was at a disadvantage in the competition for resources (Goldberg et al., 2017).



5. Conclusion

In this study, we selected two plants with practical application value for replacement control, which is a potential method to prevent invasive weeds M. micrantha from regeneration. D. heterocarpon and S. tora have strong competitive advantage over M. micrantha, mainly due to their strong shade tolerance and drought tolerance. However, considering that S. tora is an alien species, it is hoped that the sustainable ecological management of M. micrantha in the dryland orchard will be achieved by using D. heterocarpon, a native legume, as a competitive substitute for M. micrantha. Our study revealed the physiological and ecological mechanism of using replacement plants to control biological invasion, and provide a new method to solve the problem of alien invasive weeds. Based on Tilman’s theory of minimum resource requirements, native plants with higher resource utilization and smaller resource requirements (e.g., shade tolerance and drought tolerance) are potential species for controlling M. micrantha in dryland orchard habitats.
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Plants growing in forests at different succession stages in diverse habitats may adopt various life strategies from the perspective of plant functional traits. However, species composition differs with forest succession, and the effects of forest succession on traits have often been explored without considering the effects of species identity. We comprehensively investigated intraspecific variations in 12 traits of six overlapping species (two tree species and four understory shrub species) in three typical subtropical evergreen broad-leaved forests at different succession stages in eastern China. We found that intraspecific variations differed among traits. Fine root specific length presented large intraspecific variation, leaf area, specific leaf area and fine root tissue density showed medium intraspecific variations, and other traits displayed small intraspecific variations. Trees and understory shrubs in the early-stage forest exhibited higher leaf thickness, dry matter contents and tissue densities of leaves, roots, twigs, and stems and lower leaf area and specific leaf area. Those in the medium- and late-stage forests displayed contrasting trait characteristics. From the perspective of plant functional traits, plants in the early-stage forest formed a series of trait combinations for a resource conservative strategy with a low growth rate to adapt to fragile habitats with poor soil nutrients and changeable soil temperature and humidity, and those in the medium- and late-stage forests (especially the former) formed converse trait combinations for a resource acquisitive strategy with a high growth rate to adapt to low light availability and strongly competitive habitats. Our study reveals that plants in forests at different succession stages adopt various life strategies and provides data to the TRY and China plant trait databases.
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Introduction

Plant functional traits are measurable characteristics formed from long-term plant-environment interactions and are closely linked to the growth, reproduction, and survival processes of plants (Violle et al., 2007; Garnier et al., 2016; Kattge et al., 2020). A single trait and the combinations of multiple traits not only respond to plant life history strategy, biodiversity, vegetation, environment, and disturbance changes but also affect ecosystem processes and functions (Cornelissen et al., 2003; Vandewalle et al., 2010; Mensens et al., 2017; Wang et al., 2020). Therefore, the study of plant functional traits is at the forefront of modern ecology and global change ecology (Meng et al., 2007; Liu and Ma, 2015; Blondeel et al., 2020).

Forests are the largest vegetated areas in global terrestrial ecosystems and play important roles in global biodiversity maintenance and climate change mitigation (Melillo et al., 1993; Anderson-Teixeira et al., 2015). Plant functional traits, such as morphological traits and C: N: P ecological stoichiometry of leaves, roots, stems, and twigs (especially leaves) in forests worldwide have been intensively investigated at local, regional and global scales (McGroddy et al., 2004; Chave et al., 2009; Díaz et al., 2016; He et al., 2019; Guerin et al., 2021; Liu et al., 2022). Compared to interspecific trait variations (trait differences among species) of woody plants in forests, intraspecific trait variations (trait differences among independent individuals within a species) are yet to be fully investigated. However, intraspecific trait variations are non-negligible, and they may account for an average of 32% of the total trait variations based on a global database (Siefert et al., 2015). Environmental factors, such as climate, topography, and soil nutrition, greatly affect intraspecific trait variations (Hultine and Marshall, 2000; Thuiller et al., 2004; Quested et al., 2007; Wang et al., 2016a).

In addition, most plant functional trait studies conducted in forests have focused on dominant trees, and understory shrubs have rarely been described. As an important component of forest ecosystems, understory shrubs influence the energy and water cycles of forests and participate in forest renewal, development, and succession (Cao et al., 2020). In limited trait studies on understory shrubs, the latitudinal distribution pattern and driving factors of leaf traits (Luo et al., 2019), the correlation between morphological traits and nitrogen and phosphorus nutrients (Wang et al., 2017), relationships between twigs and leaf traits at different succession stages (Ma, 2014), and different phenotypes of understory shrubs (Wang et al., 2016b) have been reported. Light conditions and canopy coverage are the main environmental factors driving intraspecific variations in leaf traits (Burton et al., 2017). However, studies on intraspecific trait variation in understory shrubs in forests at different succession stages in different habitats are scarce (Kumordzi et al., 2019; Vanneste et al., 2019; Cao et al., 2020).

Environments (or habitats), species composition, and the structure of a forest community change with progressive succession. In early-stage forests, illumination is sufficient, but soil nutrients are poor, and soil temperature and humidity fluctuate. Such forests are committed to gap formation, understory initiation, and regeneration (Moridi et al., 2015; Zhang et al., 2016). In medium-stage forests, soil humidity and nutrients are greatly improved, but light availability is the lowest because of the highest canopy coverage and stand density. Such forests are in volume accumulation, lightning, and stem exclusion phases (Zhang et al., 1999; Wang et al., 2004; Yan et al., 2008; Moridi et al., 2015). Light conditions improve in late-stage forests because of slightly lower canopy coverage and stand density (Moridi et al., 2015; Zhang et al., 2016). Some species (turnover species) only appear in forests at one succession stage and disappear in the next stage, whereas, some species (overlapping species) grow in forests at many succession stages (Yang et al., 2014). Overlapping species in the early-stage forest may form a series of trait combinations for a resource conservative strategy to adapt to fragile habitats with poor soil nutrients and changeable soil temperature and humidity, and those in the medium- and late-stage forests may form converse trait combinations for a resource acquisitive strategy to adapt to low light availability and strongly competitive habitats (Li and Ma, 2002).

Originating from the uplift of the Qinghai–Tibet Plateau, a broad subtropical evergreen broad-leaved forest was found in China. This forest is a unique vegetation type on Earth and is essential to the global gene pool and regional environments (Song, 2013). In the present study, dominant overlapping species, including tree and understory shrub species, in three evergreen broad-leaved forests at different succession stages in eastern China were investigated as examples. The leaf, twig, stem, and root traits were comprehensively measured. Here, the life strategies of plants growing in forests at different succession stages in various habitats were determined from the perspective of plant functional traits. Specifically, the following predictions were made. (1) Overlapping species in the forests at three succession stages present significant differences in plant functional traits. (2) Plants (trees and understory shrubs) in the early-stage forest form a series of trait combinations with higher leaf thickness (LT), dry matter contents and tissue densities of leaves, roots, twigs, and stems and lower leaf area (LA) and specific leaf area (SLA) for a resource conservative strategy with a low growth rate. Plants in the medium- and late-stage forests form converse trait combinations for a resource acquisitive strategy with a high growth rate. This study provides basic data to global (Kattge et al., 2020) and China (He et al., 2019) plant trait databases and guides the sustainable management and ecological restoration of evergreen broad-leaved forests in eastern China.



Materials and methods


Study area

Field measurements were conducted in three permanent monitoring plots of the Zhejiang Tiantong Forest Ecosystem National Observation and Research Station (121.783° E, 29.800° N) in the Tiantong National Forest Park, Zhejiang Province, Eastern China. This area is located in mid-subtropical China and controlled by monsoon climates. The mean annual temperature is 16.2°C, with temperatures of 4.2°C and 28.1°C in January and July, respectively. Considerably high and low temperatures are 38.7°C and −8.5°C, respectively. The growing degree days on the base of 10°C is 5,166.2°C. The mean annual precipitation and evaporation are 1,374.7 and 1,320.1 mm, respectively. The native vegetation is subtropical evergreen broad-leaved forest dominated by Castanopsis fargesii Franch. and Schima superba Gardn. et Champ. Existing forests in the Tiantong National Forest Park are classified as early-, medium-, and late-stage forests along a secondary succession series because of the intensity of human disturbances (Song and Wang, 1995). Three forest plots (each with an area of 2,500 m2, 50 m × 50 m) at three succession stages (i.e., early, medium and late stages) were established and investigated in 2007.

The early-stage forest (121.786° E, 29.801° N) is 20° south of the east and has a 25° slope. This forest is restored from a shrubland with a stand age of 35 y. The height and coverage of the tree layer are 8 m and 70%, respectively. Its dominant tree species is S. superba. Another common species in the tree layer is C. fargesii. Loropetalum chinense (R. Br.) Oliver and Symplocos sumuntia Buch. -Ham. ex D. Don are dominant understory shrub species. The medium-stage forest (121.788° E, 29.786° N) is 70° south of the east and has a 20° slope. The stand age is 90 y, and the height and coverage of the tree layer are 15 m and 95%, respectively. This forest is also dominated by S. superba, and C. fargesii is distributed in the subtree layer. The main understory shrub species are Eurya rubiginosa var. attenuata H. T. Chang, Camellia fraterna Hance, and S. sumuntia. The late-stage forest (121.787° E, 29.808° N) is 45° south of the east and has a 26° slope. This forest is in the climax stage with a stand age of 170 y. The height and coverage of the tree layer are 18 m and 90%, respectively. C. fargesii is the dominant tree species, and S. superba is widely distributed in the subtree layer. E. rubiginosa, C. fraterna, and L. chinense are common in the understory shrub layer.



Measurement of plant functional traits

Overlapping species, including two tree species (C. fargesii and S. superba) and four understory shrub species (C. fraterna, S. sumuntia, E. rubiginosa, and L. chinense), in the three forests were selected for trait measurements. Ten healthy dominant individuals per species in each plot were chosen. From each individual, a branch was collected from the sunlit tree canopy by using a long reach chain saw (tree species) or collected from the upper canopy by using a lopper (understory shrub species). Twenty mature leaves without visible damage were collected. An approximately 20 cm length current-year twig was sampled using a lopper, and a stem sample was determined using a SY-CO (trees) or a lopper (shrubs). The roots of trees were difficult to recognize, and C. fraterna was grown in rocks in the early-stage forest, so only fine roots (root diameter ≤ 2 mm) of three understory shrub species, that is, S. sumuntia, E. rubiginosa, and L. chinense, were sampled using a hoe.

Fresh masses of leaf, twig, and stem samples were weighed using an electronic balance. Leaf thickness was measured using an electronic Vernier caliper. The length and volume of fine roots and LA were scanned using a WinFOLIA multipurpose leaf area meter (Regent Instruments, Canada). Leaf sample volume was calculated as the product of LA and LT, and twig and stem sample volumes were determined using the drainage method (Cornelissen et al., 2003). All samples were dried in an oven at 80°C for 72 h to determine their dry masses. The values of traits were calculated as shown in Table 1.


TABLE 1    Plant functional traits and their abbreviations, units, and calculations.
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Data analysis

The coefficient of intraspecific variation (standard deviation divided by mean) was used to characterize the varying degrees of traits among individuals of a certain species. One-way ANOVA was conducted to determine the trait differences among plant growth forms (trees and understory shrubs) and species in the forests at three succession stages. The principal component analysis (PCA) was done to evaluate the effect of plant species on traits, and show the distributions of traits among plant species. Trait data were log-transformed prior to PCA analysis. Fisher’s least significant difference (homogeneity of variance) or Tamhane (heterogeneity of variance) methods were used to conduct post hoc tests after the homogeneity test of variances. All statistical analyses were performed using the SPSS version 20 and the CANOCO 5.




Results


Plant functional traits and their intraspecific variations

The 12 plant functional traits varied among plant species (Figure 1). Among the stem, twig, and leaf traits, C. fargesii exhibited the highest leaf dry matter content (LDMC) and the lowest stem dry matter content (SDMC) and stem tissue density (STD). S. superba showed the highest LA and leaf tissue density (LTD) and the lowest SLA, twig dry matter content (TDMC), and twig tissue density (TTD). S. sumuntia presented the lowest LDMC and LTD, E. rubiginosa had the highest LT. L. chinense displayed the highest SLA, TDMC, TTD, SDMC, and STD and the lowest LT and LA. C. fraterna had intermediate trait values. Among the root traits, S. sumuntia presented the lowest fine root dry matter content (RDMC) and fine root tissue density (RTD). E. rubiginosa had the highest RTD and the lowest fine root specific length (SRL). L. chinense displayed the highest SRL and RDMC.
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FIGURE 1
Plant functional traits and their intraspecific variations in overlapping species in three evergreen broad-leaved forests. The circles and stars in the box plots indicate the abnormal values. The percentage of data in the box plots are the coefficients of trait intraspecific variation. 1–6 represent species in the ordinate: species number 1, Castanopsis fargesii; 2, Schima superba; 3, Camellia fraterna; 4, Symplocos sumuntia; 5, Eurya rubiginosa var. attenuata; 6, Loropetalum chinense. LT, leaf thickness; LA, leaf area; SLA, specific leaf area; LDMC, leaf dry matter content; LTD, leaf tissue density; TDMC, twig dry matter content; TTD, twig tissue density; SDMC, stem dry matter content; STD, stem tissue density; SRL, fine root specific length; RDMC, fine root dry matter content; RTD, fine root tissue density.


The intraspecific variations differed among plant functional traits (Figure 1). SRL exhibited the largest intraspecific variations. The intraspecific variations in the SRL of S. sumuntia and L. chinense were highly variable, indicated by large coefficients of intraspecific variation (56.1 and 51.7%, respectively). The coefficients of intraspecific variation of LA, SLA, and RTD generally ranged from 15 to 35%. Other traits displayed small intraspecific variations, indicated by small coefficients of intraspecific variation, especially for LDMC, SDMC, and STD, whose coefficients of intraspecific variation were generally less than 10%.



Plant functional traits of plant growth forms at different succession stages

The LA, SDMC, and STD of trees were close in the forests at three succession stages (FLA = 2.904, FSDMC = 1.694, FSTD = 2.892, P > 0.05), whereas other traits showed significant differences (FLT = 20.858, FSLA = 20.012, FLDMC = 11.176, FLTD = 7.204, FTDMC = 4.497, FTTD = 8.709, P < 0.05; Figure 2). Trees in the early-stage forest presented the highest LT, LDMC, LTD, TTD, SDMC, and STD and the lowest LA and SLA; trees in the medium-stage forest exhibited the highest LA and SLA and the lowest LDMC, TDMC, TTD, SDMC, and STD; and those in the late-stage forest generally displayed intermediate trait values (Figure 2). Understory shrubs in the forests at three succession stages showed small discrepancies in LT, TDMC, and SDMC (FLT = 1.934, FTDMC = 0.169, FSDMC = 0.477, P > 0.05), but they exhibited significant differences in other traits (FLA = 2.082, FSLA = 6.294, FLDMC = 5.716, FLTD = 5.642, FTTD = 14.524, FSTD = 4.676, FSRL = 15.995, FRDMC = 9.023, FRTD = 6.521, P < 0.05; Figure 2). Shrubs in the early-stage forest presented the highest LT, TTD, RDMC, and RTD and the lowest LA, SLA, and SRL; shrubs in the medium-stage forest exhibited the highest SLA and SRL and the lowest LT, LDMC, LTD, TDMC, TTD, SDMC, STD, RDMC, and RTD; and those in the late-stage forest also displayed intermediate trait values (Figure 2).
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FIGURE 2
Plant functional traits of plant growth forms in forests at different succession stages. Trait values with different letters among succession stages are significantly different (one-way ANOVA, P < 0.05). LT, leaf thickness; LA, leaf area; SLA, specific leaf area; LDMC, leaf dry matter content; LTD, leaf tissue density; TDMC, twig dry matter content; TTD, twig tissue density; SDMC, stem dry matter content; STD, stem tissue density; SRL, fine root specific length; RDMC, fine root dry matter content; RTD, fine root tissue density.




Plant functional traits of overlapping species at different succession stages

The traits of overlapping species in forests at three succession stages differed to varying degrees (Figures 3, 4 and Supplementary Table 1). In general, plants in the early-stage forest exhibited high LT, LDMC, LTD, TDMC, TTD, SDMC, STD, RDMC, and RTD and low SLA and SRL; plants in the medium-stage forest presented contrary trait characteristics compared with those in the early-stage forest; and those in the late-stage forest displayed intermediate trait values except high LA (Figure 4). Specifically, the LA, TDMC, TTD, SDMC, and STD of C. fargesii exhibited small discrepancies in the forests at three succession stages (FLA = 1.851, FTDMC = 2.945, FTTD = 0.649, FSDMC = 0.183, FSTD = 0.424, P > 0.05). However, C. fargesii in the early-stage forest exhibited significantly higher LT, LDMC, and LTD and significantly lower SLA (FLT = 7.101, FLDMC = 7.469, FLTD = 4.041, FSLA = 12.254, P < 0.05; Figure 4). All traits of S. superba showed significant differences in the forests at three succession stages (P < 0.05). S. superba in the early-stage forest showed significantly higher LT, LDMC, SDMC, and STD and significantly lower LA and SLA (FLT = 64.481, FLDMC = 10.140, FSDMC = 15.454, FSTD = 19.011, FLA = 11.506, FSLA = 41.995, P < 0.05); S. superba in the medium-stage forest showed significantly lower LTD, TDMC, and TTD (FLTD = 5.079, FTDMC = 16.451, FTTD = 17.975, P < 0.05; Figure 4). The LA, SDMC, and STD of C. fraterna did not differ in the forests at three succession stages (FLA = 3.021, FSDMC = 0.318, FSTD = 0.243, P > 0.05). Conversely, C. fraterna in the early-stage forest had significantly higher LT and TDMC (FLT = 11.128, FTDMC = 15.314, P < 0.05); C. fraterna in the medium-stage forest had significantly higher SLA and significantly lower LDMC (FSLA = 8.543, FLDMC = 13.261, P < 0.05); and C. fraterna in the late-stage forest had significantly higher LTD and TTD (FLTD = 27.678, FTTD = 9.051, P < 0.05; Figure 4). The LDMC, LTD, and TDMC of S. sumuntia presented small discrepancies in the forests at three succession stages (FLDMC = 2.181, FLTD = 1.721, FTDMC = 5.545, P > 0.05). However, S. sumuntia in the early-stage forest presented significantly higher LT, TTD, and RTD and significantly lower SLA (FLT = 2.999, FTTD = 3.754, FRTD = 6.109, FSLA = 6.277, P < 0.05); S. sumuntia in the medium-stage forest presented significantly higher SRL and significantly lower SDMC, STD, and RDMC (FSRL = 12.966, FSDMC = 10.480, FSTD = 5.873, FRDMC = 30.602, P < 0.05); and S. sumuntia in the late-stage forest presented significantly higher LA (FLA = 4.846, P < 0.05; Figure 4). The LT, SLA, LDMC, LTD, SRL, and RTD of E. rubiginosa exhibited no differences in the forests at three succession stages (FLT = 0.745, FSLA = 1.043, FLDMC = 0.566, FLTD = 2.468, FSRL = 1.329, FRTD = 0.453, P > 0.05). By comparison, E. rubiginosa in the medium-stage forest exhibited significantly higher TDMC and SDMC and significantly lower TTD and STD (FTDMC = 3.110, FSDMC = 4.452, FTTD = 49.393, FSTD = 22.889, P < 0.05). E. rubiginosa in the late-stage forest exhibited significantly higher LA and significantly lower RDMC (FLA = 3.057, FRDMC = 4.201, P < 0.05; Figure 4). The LA, LTD, TDMC, TTD, SDMC, and STD of L. chinense displayed small discrepancies in the forests at three succession stages (FLA = 1.863, FLTD = 1.427, FTDMC = 3.032, FTTD = 3.858, FSDMC = 0.534, FSTD = 1.092, P > 0.05). Conversely, L. chinense in the medium-stage forest exhibited significantly higher SRL and significantly lower LT, SLA, LDMC, RDMC, and RTD (FSRL = 9.020, FLT = 6.386, FSLA = 14.432, FLDMC = 7.311, FRDMC = 2.477, FRTD = 6.157, P < 0.05; Figure 4).
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FIGURE 3
PCA showing the distribution of plant functional traits among species in forests at different succession stages. (A,D) Early-stage forest; (B,E) medium-stage forest; (C,F) late-stage forest. LT, leaf thickness; LA, leaf area; SLA, specific leaf area; LDMC, leaf dry matter content; LTD, leaf tissue density; TDMC, twig dry matter content; TTD, twig tissue density; SDMC, stem dry matter content; STD, stem tissue density; SRL, fine root specific length; RDMC, fine root dry matter content; RTD, fine root tissue density.
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FIGURE 4
Plant functional traits of overlapping species in forests at different succession stages. Trait values with different letters among succession stages are significantly different (one-way ANOVA, P < 0.05). 1–6 represent species in the ordinate: species number 1, Castanopsis fargesii; 2, Schima superba; 3, Camellia fraterna; 4, Symplocos sumuntia; 5 Eurya rubiginosa var. attenuata; 6, Loropetalum chinense. LT, leaf thickness; LA, leaf area; SLA, specific leaf area; LDMC, leaf dry matter content; LTD, leaf tissue density; TDMC, twig dry matter content; TTD, twig tissue density; SDMC, stem dry matter content; STD, stem tissue density; SRL, fine root specific length; RDMC, fine root dry matter content; RTD, fine root tissue density.





Discussion

Few studies on intraspecific trait variations have been conducted compared with studies on interspecific trait variation in the world’s forests, and most trait studies have focused on trees and their leaf traits, such as LA, LDMC, and SLA (Rosbakh et al., 2015; Siefert et al., 2015; Zhou, 2016; Heilmeier, 2019; Zhang et al., 2019). The intraspecific trait variation characteristics of understory shrubs and those of the twigs, stems, and roots of trees have rarely been reported (Burton et al., 2017; Zhong et al., 2018; Cao et al., 2020). The present study comprehensively investigated the intraspecific variation characteristics of 12 traits of leaves, twigs, stems, and roots of six common species (two tree species and four understory shrub species) in three typical subtropical evergreen broad-leaved forests in eastern China. This study could fill the gap in plant functional trait studies in subtropical China.

Since the application of succession in plant ecology research, studies on vegetation succession have been widely performed. Biodiversity and carbon storage were often used as indicators to evaluate vegetation succession processes in early studies (Ni et al., 2015; Capellesso et al., 2021). Plant functional traits and trait-based community ecology (a theory using trait-based approaches to determine community composition, structures and functions) offer an alternative approach to reveal the colonization, survival, growth, and death processes of plants and plant communities in different succession vegetation (Song et al., 2018). However, species compositions vary in different succession vegetations, and traits of different species were measured in previous studies. Rather than considering several dominant species in different succession vegetation (Chazdon, 2008; Muscarella et al., 2017), the present study focused on overlapping species and provided another pathway to understand the interaction of plant functional traits and vegetation succession.

Plant functional traits are codetermined by species identity (genetic factors) and environment (Scheiner and Lyman, 1991; Weiher and Keddy, 1995). Environments promote the coexistence of species with similar functional traits in local habitats, but intraspecific trait variations cause differences in the life history strategy of a certain species or different species (Ackerly and Cornwell, 2007; Auger and Shipley, 2013; Siefert et al., 2015; Kumordzi et al., 2019). However, the species composition of a plant community differs with the environment. The effects of environments on traits are often discussed without considering the effects of species identity, or some statistical analysis methods, such as two-way ANOVA, are used in species–environment interactive analysis in other studies (Zhong et al., 2018; Cao et al., 2020). In the present study, overlapping species in three typical subtropical evergreen broad-leaved forests with different habitats in eastern China are investigated as an example to explore the effects of the environment on traits. This investigation method is preferred because of the direct exclusion of the effects of species identity.

Root traits often exhibit the largest interspecific and intraspecific variations resulting from complex and diverse below-ground habitats (Comas and Eissenstat, 2004). Leaf traits display larger interspecific and intraspecific variations than twig and stem traits (Ackerly and Reich, 1999; Garnier et al., 2001; Zhong et al., 2018). In the present study, variations in the intraspecific traits of overlapping species in the forests at three succession stages with different habitats ranged from 2.8% to 56.1%, with an average of 13.5%. Some traits of roots and leaves considerably varied. SRL, RTD, LA, and SLA also differed, but RDMC, LT, LTD, and LDMC (especially the last leaf trait) slightly varied. Consistent with early studies (Garnier et al., 2001), our study showed that intraspecific variations in twig and stem traits slightly differed.

A single trait and the combinations of multiple traits can indicate the adaptation and response of plants to certain environments, expose the plant trade-off strategies of resource acquisition and utilization, and reveal the different life history strategies of plants in different environments (Wright et al., 2004; Díaz et al., 2016). Some species (resource acquisitive strategy adopters) present a high SLA, leaf nitrogen content, photosynthetic and respiratory rates, and short lifespans. Some other species (resource conservative strategy adopters) display low SLA, leaf nitrogen content, photosynthetic and respiratory rates, and long lifespan (Chen and Xu, 2014). Such plant and trait combinations favor niche overlap and competition reduction, rich biodiversity maintenance, and ecosystem stability enhancement (Liu and Ma, 2015). In the present study, the early-stage forest is a relatively fragile ecosystem with poor soil nutrients and fluctuating soil temperature and humidity. Trees and understory shrubs in such forests allocate more nutrients to resist adverse environments. Thus, they adopt a slow investment-return (resource conservation) strategy and form a series of trait combinations with higher LT, LDMC, LTD, TDMC, TTD, SDMC, STD, RDMC, and RTD and lower SLA and SRL for storing more nutrients and growing slower. However, in the medium- and late-stage forests, trees and understory shrubs are exposed to lower light availability and stronger competition. They adopt a quick investment-return (resource acquisitive) strategy and are associated with a series of trait combinations with higher LA, SLA, and SRL and lower LT, LDMC, LTD, TDMC, TTD, SDMC, STD, RDMC, and RTD for faster growth. Plants in medium-stage forests are more resource acquisitive for lower light availability and stronger competition than those in late-stage forests.

The remaining primary evergreen broad-leaved forests only account for 4% of its total distribution area in eastern China because of intensive human disturbances. Degraded secondary forests, shrub and grass communities, and bare land are distributed everywhere. However, excellent hydrothermal conditions promote secondary forest succession once human disturbances stop. Evergreen broad-leaved forests may recover gradually in this area. Therefore, research on the secondary succession mechanism and restoration ecology of evergreen broad-leaved forests should be strengthened (Song, 2013). Understanding the trend of changes in trait characteristics with vegetation succession and the life strategies of plants adapted to different succession vegetation is important not only for providing data to the global and China plant trait databases but also for establishing regional forest management and restoration in eastern China.
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Introduction: Although numerous studies have investigated ecosystem-scale soil respiration (SR) at different ecosystem, our understanding of spatial heterogeneity of SR at plot scale is still incomplete, especially in tropical rainforests with complex topography. Further, the ecological factors that drive the variability of SR in tropical rainforests is also poorly understood.

Methods: Here, we investigated the spatial variations and control mechanisms of SR in a 60-ha plot of old-growth tropical rainforest with complex topography. Specifically, we sampled a 60-ha plot in intervals of 20 m to measure SR with LI-8100, used semi-variogram of geostatistical tools to examine spatial heterogeneity of SR.

Results: The mean SR rate in this plot was 4.312 ± 0.0410 (SE) μmol m−2 s−1. Geostatistical analysis indicated that the SR rate at this plot had a moderate spatial dependence, with a nugget-to-sill ratio of 68.1%. The coefficients variance of SR was 36.2% and the patch size was approximately 112 m. Stepwise linear regression analysis (involving a multiple regression tree) revealed that the independent factors regulated different types of SR’s. Liner mix-effect models showed that SR was significantly positively related to soil phosphorus and negatively to the slope in the 60-ha plot. Spatial disturbance of SR along multidimensional habitats that an increase in elevation of the multidimensional habitat, which was accompanied by enhanced SOC and soil phosphorous, also increased its SR in the 60-ha plot.

Discussion: This study would be helpful in designing future field experiments for a better understanding of SR at plot scale.

KEYWORDS
 spatial heterogeneity, soil respiration, soil topography, soil properties, geostatistical analysis


1. Introduction

Soil organic carbon (SOC) is the largest pool of carbon (C) in terrestrial ecosystems on a global scale, and soil respiration (SR) is a crucial pathway for the transferring of C to the atmosphere. Even small changes in SR may strongly affect atmospheric CO2 (Haaf et al., 2021; Watts et al., 2021), and then affect climate change in future. The SR is an important component of the carbon cycle and a sensitive indicator for the overall belowground biogeochemical processes in terrestrial ecosystems (Lei et al., 2021). However, the amount and regulation factors of SR show great uncertainties. Therefore, accurately monitoring and evaluation of SR could meaningfully contribute to predict climate change.

Accurate quantification of SR was extremely difficult largely due to its high variability at different spatial scales (Stell et al., 2021). In fact, spatial heterogeneity of SR was influenced by various soil factors, such as soil nutrient availability (Liang et al., 2021; Xiao et al., 2021), soil C/nitrogen (N)ratio (Cui et al., 2021), soil moisture and temperature (Numa et al., 2021). Moreover, soil topography was regarded as the main factor that was involved the induction of spatial variation of SR (Zhang et al., 2021). Topography, generated a local microclimate, led to variations in soil drainage and SOC distribution, and a change in the soil moisture and temperature, which directly influenced SR (Kang et al., 2003). However, investigation of the influence of complex topography on SR is limited (Chambers et al., 2004).

The magnitude of spatial variation in soil CO2 could be larger in a tropical forest as compared to other forest ecosystems (Boonriam et al., 2021; Cai et al., 2021). A few studies conducted in undisturbed forest have focused on temporal variation in SR (Hashimoto et al., 2004; Lei et al., 2021). Our knowledge on spatial variations of SR in tropical forests, especially in Asia, is still very poor (Feng and Zhu, 2019).

Environmental perturbations affected abiotic factors could alter SR. For example slope aspect might determine SR rates by modifying the microclimatic conditions (Martínez-García et al., 2017). SR was higher in the upper part of the slope and lower in the lower part (Ohashi and Gyokusen, 2007). However, SR was 6.0% higher in the lower than upper slope over the 2 growing seasons (Xu and Wan, 2008). In the natural forests slope position had a significant effect on SR (Zhao et al., 2018). Most of these studies have indicated that the difference in soil water content between different positions along a slope was the main factor contributing to spatial variation of SR (Takahashi et al., 2011; Hereș et al., 2021). Although the altitude was a variable including various environmental factors, it might be used as a surrogate parameter of SOC (Moriyama et al., 2013). SR was mainly depended on soil temperature (Karhu et al., 2014). Other abiotic factors such as soil texture, SOC, soil nitrogen (SN), C/N ratio and soil phosphorus (SP) could also influence SR (Su et al., 2016; Yazdanpanah et al., 2016). N addition could significantly promote SR (Li et al., 2022). The responses of SR to N addition were also mediated by topography (Duan et al., 2023). Phosphorus (P) addition significantly increased SR by 17.4% in tropical forest, changes of C pools might drive the responses of SR to P addition (Feng and Zhu, 2019). SR was positively related with SOC and P (Tao et al., 2016).

In this study, a series of measurements of SR were conducted in a 60-ha old-growth tropical rainforest with complex topography. Related abiotic factors, such as altitude, convexity, slope, SN, SOC and SP, were also measured to explain the spatial pattern of SR. The specific objectives of this study were to: (i) assess the spatial heterogeneity of SR at the subplot scale (20 m × 20 m) in a tropical rainforest, and (ii) explore the key factors that drive these spatial patterns of SR.



2. Materials and methods


2.1. Study sites

The study was conducted in the Jianfengling National Nature Reserve (JFR), which is located in Ledong county in the southwestern region of Hainan Island, China (latitude and longitude ranges: 18°23′N-18°50′N and 108°36′E-109°05′E, altitude range: 0–1,412 m above sea level). The region comprises mostly of an old-growth tropical montane rainforest (163 km2) at the northern edge of tropical Asia (Jiang et al., 2002; Wang et al., 2014). It has a tropical monsoon climate that is characterized with distinct wet (May to November) and dry (December to April of the second year) seasons. The mean annual air temperature is 24.5°C, and varies between 19.4°C (January) to 27.3°C (June), whereas there has a yearly mean relative humidity is 88%. The annual rainfall in the region ranges from 1,000 to 3,600 mm, with an average precipitation of 2,449 mm, of which 80–90% occurs from May to October (Zhou et al., 2013; Liu et al., 2021). This region has an irregular topography with granite as the predominant soil parent material. The most common soil type is the montane lateritic red or yellow earth (Xu et al., 2013).

A 60-ha plot was established in the tropical montane rainforest of JFR (Figure 1). It had 1,500 basic plots (20 m × 20 m) with a width of 600 m (East–West) and a length of 1,000 m (South–North; Figure 2). The plot establishment, included topographic mapping (using electronic whole-station theodolites), corner-post setting, and an initial tree census (adapting the techniques developed by the Center for Tropical Forest Science; Condit, 1998), was started in March 2009 and completed in December 2012. The altitude of the plot ranged from 866.3 m to 1016.7 m (Xu et al., 2015).

[image: Figure 1]

FIGURE 1
 The topographic map of 60-ha tropical rainforest plot in Jianfengling, China, color gradient represents the range of altitude (866.3 m to 1016.7 m).


[image: Figure 2]

FIGURE 2
 The 1,500 measurement points for SR in 60-ha tropical rainforest plot in Jianfengling, China. The blank circles represent the points where SR is tested.


The primary vegetation of this 60-ha plot is dominated by Lauraceae, Fagaceae, Rubiaceae and Palmaceae families, along with the presence of Hopea hainanensis from Dipterocarpaceae, which is a symbol of a typical tropical flora in Southeast Asia. Here, the mean canopy is 23.7 m height, and the mean total basal area per ha is 56 m2 (Jiang and Lu, 1991).



2.2. Sampling design and SR measurements

SR was measured by LI-8100 (LI-COR, Inc., Lincoln, Nebraska United States) from 20th October to 23th November in 2015. In the measurement mode, the LI-8100 system monitors the changes in CO2 concentration inside the chamber by using an infrared gas analyzer (IRGA). The soil chamber had an internal volume of 4,824 cm3 with a circular contact area to soil of 317.8 cm2. Polyvinyl chloride collars were placed in the center of each basic plot (Figure 2). A collar, 19.6 cm in internal diameter and 5 cm high, was buried in the soil at a depth of 2–3 cm at each point to minimize soil disturbance at least 1 week before the measurement. Plant was not present inside the collars, but small litter and branches were left in the collar. The measurements were replicated three times at each sampling point and the data was collected from 09:00 to 14:00 (Beijing standard time), which represented SR in that day (Sha et al., 2005). This time-frame was regarded as the most suitable period of the day for such types of studies because soil moisture, temperature and SOC were relatively stationary and did not influence the measurements (Yao et al., 2011).

No rainfall occurred during 9-14 h on all days from 20th October to 23th November in 2015 through the experimental plot. At the same time, soil temperature was measured at a depth of 5 cm using a hand-held digital thermometer (SP-E-17 thermometer, Jinzhengmao Instruments China Inc., Beijing), while the chamber temperature at a depth of 5 cm was measured by a conventional thermometer.

The temperature sensitivity of SR was usually described by Q10, which was determined by the following formula:

[image: image]

where b was the soil temperature response coefficient and e was the natural logarithm.



2.3. Soil physical and chemical properties

A 60-ha (600 m × 1,000 m) plot was systematically divided into grids of 40 × 40 m, which generated 416 nodes that were considered as base points. Together with each base point, two additional sampling points were located at random combinations of 2 and 5 m, 2 and 15 m, and 5 and 15 m, along a random compass bearing away from the associated base point. A total of 1,248 topsoil (0–10 cm) samples were collected. Soil samples were air dried, sieved through a 2 mm mesh to remove coarse fragments. SOC was measured with the help of H2SO4-K2Cr2O7 oxidation method (Schumacher, 2002). SN was measured by the Micro-Kjeldahl method (Bremner, 1960), and the available nitrogen was estimated with the help of a micro-diffusion method (Mulvaney and Khan, 2001). SP were measured by using an inductively coupled plasma atomic-emission spectrometer (Thermo Jarrell Ash Co., Franklin, United States) and HNO3-HClO4 soil solution (McDowell and Sharpley, 2001). The level of available phosphorus was estimated colorimetrically based on measurements from a 0.03 mol l−1 NH4F and 0.025 mol l−1 HCl soil solution (Allen et al., 1974).



2.4. Statistical analyzes

Statistical outliers were eliminated with the help of Grubbs outlier test (the numbers of valid data points were 1,454). Normality of the datasets was assessed with the one-sample Kolmogorov–Smirnov (K-S) test before data analyzes, the datasets would be logarithmically converted if datasets was not a normal distribution. All the analyzes were done in R 3.3.0. Principal component analysis (PCA) was used to reduce the number of parameters when several parameters reflected the same underlying process.


2.4.1. Geostatistical methods

Spatial heterogeneity of the SR data was examined with the help of geostatistical tools, which were beneficial for understanding spatially structured phenomena. The theoretical basis of geostatistics used in the current study reflects theories described in several studies (Vieublé Gonod et al., 2006; Liu et al., 2011). Our geostatistics approach consisted of two parts: (i) the calculation of an experimental variogram from the data and model fitting; and (ii) using the knowledge about strength and scale of this variogram to interpolate values of variates at the locations that were not sampled (Burgos et al., 2006).

The calculation of semivariances from the field data and fitting of the models to a semi-variogram was performed using the R 3.3.0 (package gstat; R Foundation for Statistical Computing, Vienna, Austria). Semi-variogram computation was also performed, as following, to ascertain the strength and scale of the spatial dependence of SR.
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where γ(h) was the semivariance for the lag interval h, Z(xi) and Z(xi + h) were the variables at locations xi and xi + h, and N(h) was the number of lag pairs separated by a distance interval h (Stoyan et al., 2000; Mitra et al., 2014). Semivariogram modeling and kriging estimations were performed on the basis of residuals. The final semivariogram model was chosen by minimizing the root mean squared error (RMSE). A spherical model, an exponential model, and a gaussian model were selected to further investigate the spatial structure.

Only isotropic semivariograms were considered for further analysis and the semivariance data was fit to a spherical function. In this analysis, the default active lag distance was set as 60% of the maximum. A typical semivariogram had a nugget variance (C0), where the nugget represents either a random error or a spatial dependence at a scale smaller than the minimum distance examined (Robertson, 1987). With an increasing lag distance, the variance also increased up to a point of a sill variance (C0 + C), which was spatially independent. The distance at which the sill was reached was called the range. The measurement points estimated within this range were spatially autocorrelated, whereas points outside this range were considered independent (Robertson et al., 1988). The values of the semivariance, and thus C0 and C0 + C, were scaled to sample variance (Hirobe et al., 2001; Mori and Takeda, 2003). The nugget (C0) to sill (C0 + C) ratio (NSR) was used to define distinct classes of spatial dependence. If the ratio was ≤25%, the variable was considered as strongly spatially dependent, a ratio between 25 and 75% indicated the variable to be moderately spatially dependent, and if the ratio was >75%, the variable was considered to be weakly spatially dependent (Liu et al., 2011). The kriging interpolation was hypothesized to be the most accurate when the RMSE was at a minimum and was stable. The accuracy of the kriging method was calculated in the form of RMSE by using the following formula:
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where Y(x1) was the measured value, Y*(xi) was the predicted value, and n was the sampling number.



2.4.2. Linear mixed-effects models

Linear mixed-effects models, computed with the lmer function in the lme4 package of R (Bates et al., 2015), were used to determine the contributions of different factors (e.g., altitude, convexity, slope, and the four soil properties) to the spatial differences in SR. Random effects were groups of topography that could be categorized on the basis of connectivity models (Hierarchical clustering method) and centroid models (partition clustering method, k-means), respectively (Kusiak et al., 1985; Senin et al., 2007). The intercept and slope of altitude, convexity, slope, altitude and convexity, altitude and slope, and convexity and slope were influenced throughout the random effects. Based on the Akaike information criterion (AIC) of these models, the best optimal model was chosen when AIC was the minimum.



2.4.3. Kernel methods for estimating SR along multidimensional habitats

The distribution of SR, soil temperature, altitude, SOC and SP along an environmental gradient were estimated by the methods of Xu et al. (2015). The environmental space was defined as the first and second ordination axes (PC1and PC2) of the PCA of altitude, convexity, slope, and the four soil properties.





3. Results


3.1. Spatial patterns of SR

The spatial mean SR of the entire 60-ha plot was 4.327 ± 0.0411 (standard error) μmol m−2 s−1, and the coefficient of variation (CV) of SR was 36.2%. These findings were confirmed by semivariogram analysis (Figure 3), and the best-fit semivariogram models and important parameters were provided in Table 1. The range of SR autocorrelation was 112.7 m, and the NSR was 68.1% indicated that there was a moderate spatial dependency of SR (Table 1). The contour maps, obtained by ordinary kriging for SR (Figure 4), showed a patchy distribution pattern.
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FIGURE 3
 Semivariance (γ) of SR versus lag distance within an old-growth tropical rainforest (unit: μmol m−2 s−1). The solid line represents fitted spherical model (details of the fitted parameters are shown in Table 1), blank circles represent the empirical semivariograms.




TABLE 1 The parameters of semivariogram spherical models for SR.
[image: Table1]
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FIGURE 4
 The spatial distribution of SR with intervals of 20 m from a 60-ha tropical rainforest plot in Jianfengling, China.




3.2. Stepwise linear regression analysis of SR

On the basis of a multiple regression tree, 1,454 sampling plots were divided into six types of low altitude (altitude < 914.4, type 1), high altitude(altitude > 991.5, type 2), low convexity and low slope (altitude; 963.5–991.5, convexity < 2.5, slope < 23.6, type 3), low convexity and high slope (altitude; 963.5–991.5, convexity < 2.5, slope ≥ 23.6, type 4), low convexity (altitude; 914.4–963.5, convexity < 2.5, type 5), and high convexity (altitude; 914.4–991.5, convexity ≥ 2.5, type 6; Figure 5). Stepwise linear regression analysis results showed that the SP was a major influencer for types 1, 2, and 5, whereas the SOC and soil available nitrogen were major influencer for types 3 and 4, respectively (Table 2).

[image: Figure 5]

FIGURE 5
 A multiple regression tree for SR. SR is the dependent variable, while altitude, convexity and slope are the independent variables. Tree construction is completed by the comprehensive gradient of the elevation, convexity and slope. “n” represents the numbers of subplots.




TABLE 2 Stepwise linear regression analysis results between SR and topography, soil properties (n = 1,454).
[image: Table2]



3.3. Relationships between covariates and spatial variability of SR

The linear mix-effect model analysis showed that SR was significantly positive correlated to SP, and negatively to the slope in all subplots (Figure 6; Table 3). The low-nitrogen and high-nitrogen plots were distinguished by k-means clustering method; the soil average nitrogen was 1.930 ± 0.00379 g kg−1 (n = 831), 2.245 ± 0.00538 g kg−1 (n = 623), respectively. In low-nitrogen plots, SR was significantly positive related to SP, and negatively related to the slope (Figure 7; Table 4). In high-nitrogen subplots, SR was significantly positively related to SOC (Figure 8; Table 5). Also, there was a significant index relationship between SR and soil temperature (Q10 of 1.92; Figure 9).

[image: Figure 6]

FIGURE 6
 The overall result of linear mixed-effects models with all plots (n = 1,454) in the study site. SR is the dependent variable, whereas altitude, convexity, slope, SN, available nitrogen, SOC, SP and available phosphorus are independent variables. The black circles and horizontal short lines left to vertical dotted line represent significant level, while the white circles and horizontal short lines intersect to vertical dotted line represent non-significant level.




TABLE 3 The estimate of parameters for the optimal liner mixed-effect model in all plots of 60-ha (n = 1,454).
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FIGURE 7
 The results of linear mixed-effects models for low-nitrogen plots (n = 831) in the study site. The black circles and horizontal short lines left to vertical dotted line represent significant levels, while the white circles and horizontal short lines intersect to vertical dotted line represent non-significant levels.




TABLE 4 The estimate of parameters for the optimal liner mixed-effect model in low-nitrogen plots of 60-ha (n = 831).
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FIGURE 8
 The results of linear mixed-effects models for high-nitrogen plots (n = 623) in the study site. The black circles and horizontal short lines left to vertical dotted line represent significant levels, while the white circles and horizontal short lines intersect to vertical dotted line represent non-significant level.




TABLE 5 The estimate of parameters for the optimal liner mixed-effect model in high-nitrogen plots of 60-ha (n = 623).
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FIGURE 9
 The relationships between SR and soil temperature. Y, R2, P, Q10 represents SR, coefficient of determination for this regression equation, probability for rejecting the original assumed, temperature sensitivity of SR, respectively. The circles and line represent SR of each sample point, regression equation, respectively.




3.4. Spatial disturbance of SR, SN, SOC and SP along multidimensional habitats

The cumulative proportion of altitude, convexity, slope, and the four soil properties, explained by PC1 and PC2, was 57.1% of the total variance. This showed the distribution of topography and soil properties on the PC1-PC2 axis, indicated a high SR occurs in the habitats of high altitude, high SOC and high SP (Table 6; Figure 10).



TABLE 6 Results of the principal components analysis.
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FIGURE 10
 Distribution of SR and significantly relevant factors along the first two principal components. Soil temperature, Altitude, Soil organic carbon, Soil phosphorus represent the distribution of Soil temperature, Altitude, Soil organic carbon, Soil phosphorus along the first two principal components, respectively.





4. Discussion


4.1. CV of SR in tropical forests

Quantifying the spatial heterogeneity of SR was a challenging matter, which we accomplished with the help of estimating CV. Here, we found that the CV of tropical montane rainforests in Jianfengling was 36.2%. It was consisted with previous study results of CV for SR of tropical forests in Malaysia (33%) (Katayama et al., 2009) and in Indonesia (36%) (Ishizuka et al., 2005). These were reported over 1,600 m2 (10 × 10 m) and 567 m2 (8 × 10 m) grids, respectively. In another Malaysian forest, Kosugi et al. (2007) observed that the CV of SR increased with subplot size, from 29 to 39%, for plot size ranging from 25 to 2,500 m2, respectively. Further, the CV for SR was 42.7% for 50 lattice positions within a 100 m × 200 m plot (Adachi et al., 2005). Moreover, the spatial variability of SR in perhumid Amazonian and Malaysian rainforests were characterized by CV ranging from 24 to 45% (Schwendenmann et al., 2003; Sotta et al., 2004), and from 26 to 62% (Kosugi et al., 2007; Katayama et al., 2009), respectively. The CV of SR for rainforests in Xishuangbanna was 42% in the rainy seasons and 38% in the dry seasons (Song et al., 2013). Overall, these results showed that the CV of SR in tropical forests generally varied from 20% to 50%.



4.2. Spatial structure of SR

In this study, SR of 60-ha plot had a moderate spatial dependence. Some scholars found SR had a strong spatial dependence in a Southeast Asian tropical rainforest (Kosugi et al., 2007). Investigation of a 20-ha plot, in a seasonal tropical rainforest in Xishuangbanna, also revealed a strong spatial heterogeneity (Song et al., 2013). In this study, the spatial heterogeneity of SR, at small scales (below 20 m) was caused by random factors, accounting for 68.1%, while it was caused by spatially autocorrelated factors at relatively large scales (20 to 112.7 m). There was little information about the spatial structure of SR in tropical forests, and additional studies were needed.



4.3. Range of SR

In our study, SR exhibited spatial autocorrelation at the larger scales, across the subplots, with semivariogram ranges of 112.7 m, which have been caused by the influence of large-scale edaphic or topographic gradients, as previously reported by La Scala et al. (2000). They have measured spatial autocorrelation in CO2 emissions as a result of a heterotrophic activity (bare soil) at scales from 29 to 58 m (La Scala et al., 2000). Kosugi et al. (2007) determined the ranges between 4.4 and 24.7 m on a 50-by 50-m plot for a tropical rainforest. The average range of the spatial autocorrelation for SR was 40 m in rainforests in Xishuangbanna (Song et al., 2013). Furthermore, Pringle and Lark (2006) detected a range of 174 m by using 156 sampling points on a 1,024-m transect, for which incubated bare soil samples were used to measure SR. Since the scales of spatial autocorrelation of SR appear to be ecosystem-and species-specific, nested sampling designs (i.e., two or more sampling intervals) in situations such as ours were recommended (Fox et al., 2015). The scale of measurement of spatial autocorrelation (less than 20 m) from this study might be used as a guide to stratify future sampling schemes in tropical montane rainforests or similar ecosystems. Since the range values were always greater than the chosen grid size, the sampling design was inferred to be adequate for the study site. In addition, column by one column mechanical point sampling was applied in our experiment in order to eliminate the effect of temporal variables. The style was to first do odd columns, followed by even columns. Random factors for mechanical point sampling were not considered; therefore, 1,500 pairs of parameters about distance and angle were randomly generated from 1,500 sub-sample centers as the center; then 1,500 sites were filtered to measure SR for further research.



4.4. Influence mechanism of SR

The relationships illustrated in this study advances our understanding of the ecological variables that affected spatial patterns of SR within a forest. This was necessary for enhancing the understanding of mechanistic basis of SR models (Chen et al., 2011; Martin et al., 2012). Spatial relationships were found between SR, soil environment, and topography, but models were not identical across all the plots of 60-ha of sampled area. This suggested that SR might have responded to ecological covariates at varying spatial and temporal scales, created a complex pattern of SR that was not easily modeled. Spatial variations of SR in the forests have been ascribed to differences in soil C (Soe and Buchmann, 2005; Saiz et al., 2006). Many measurements suggested that SOC could be one of the main determinants of SR, particularly at large spatial and temporal scales (Giardina et al., 2003; Davidson and Janssens, 2006). Since it involved the conversion of organic to inorganic C, SR was ultimately controlled by the supply of C (Wan et al., 2007). And significantly positive relationships between SR and SOC had been reported (Chen et al., 2010). Further, SR was reported to be strongly related to SOC in a tropical rain forest in French Guiana (Epron et al., 2006). It was important to know the factors and mechanisms that controlled the spatial pattern of SR for scaling up and predicted patterns of soil C emissions. These results suggested that several soil topography and chemical factors, such as altitude, SOC, and SP, controlled the spatial distribution of SR at this site. Physical and chemical conditions of soil were also related directly and indirectly to SR, increased the complexity of SR. The next step in the process of investigation would be to independently confirm the inferences drawn in our study by generating more datasets.

We observed that the effect of convexity on SR was complex: in the lower N range, the relationship between SR and convexity was negative (Figure 7). However, in the higher N range, the relationship was positive (Figure 8). These effects could offset each other when the data was generalized over the whole of the 60-ha plot, and there was no significant relationship observed initially between convexity and SR (Figure 6). Similarly, the effect of available phosphorus on SR was also two-fold: when N was in the lower range, the relationship between SR and available phosphorus was positive (Figure 7). However, in the higher N range, this relationship became negative (Figure 8). These effects were offset when data of the complete 60 ha-plot was not parsed and no significant relationship between available phosphorus and SR was observed (Figure 6). Tropical ecosystems that were typically developed on old and nutrient-impoverished soils were considered to be rather P limited (Vitousek et al., 2010).

Although soil temperature played a leading role in controlling the temporal patterns of SR, this factor rarely explained the spatial variation of SR (Sotta et al., 2004). Here, we found a weak correlation between the soil temperature and SR (R2 < 0.3; Figure 9). Furthermore, topographically induced microclimates and variations in soil temperature and soil water content could also cause spatial heterogeneity by affecting soil’s ability to retain C, water, and nutrients (Kang et al., 2000).

Yang et al. (2018) found that the average emission rate of soil CO2 during daytime was very close to those for the time from 9:00 to 12:00. Therefore, it was crucial to measure soil CO2 at this time points as these were the best representatives of the daily flux means. In our study, the measurements of the 1,500 sampling points were carried out during 09:00 to 12:00, and were basically the representatives of the average SR in that day. In our study, the spatial heterogeneity was surveyed only in the dry season. Therefore, more work will be needed to conduct in wet season to fully understand the temporal variation of SR in the tropical rainforest.




5. Conclusion

Investigation involving geostatistical analyzes of a 60-ha permanent plot in an old-growth tropical montane rainforest in the northwest of Hainan Island (China) revealed a moderate spatial heterogeneity. The variability of 36.2% in SR of this plot was recorded. The patch size of the SR was approximately 112 m. The spatial variation of SR in a tropical rain forest in Jianfengling was closely related to soil’s temperature, topography, and other properties. The current study provided some insights in identifing the underlying determinants of spatial variations of SR. This has contributed to develop more mechanistic models of SR. The effect of the community structure of microbes and soil’s other properties on SR would be examined in future studies.
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Understory herbaceous plants are an important component of forest ecosystems, playing important roles in species diversity and forest dynamics in forests. However, the current understanding of the biodiversity of forest communities is mostly from woody plants, and knowledge of community structure and species diversity for understory herbaceous plants remains scarce. In a subtropical forest in China, we investigated understory vascular herbaceous diversity from 300 plots (5 × 5 m) in the main growing season. In this study, we analyzed the community structure and diversity pattern of the understory herbaceous community and linked the species diversity pattern to both abiotic and biotic environments. We found a rich diversity of understory herbaceous communities in this forest (81 species belonging to 55 genera), and floristic elements at the genus level were dominated by tropical elements, followed by temperate elements. The diversity pattern of the understory herbaceous showed a significant habitat preference, with the highest diversity in the lowland valleys and then followed by in middle slopes. In addition, herbaceous diversity was significantly affected by both abiotic factors (such as terrain convexity) and biotic factors (such as the diversity of surrounding woody plants). Our study indicated that species diversity of understory herbaceous showed a remarkable habitat preference, such as lowland valleys, and highlighted the importance of both abiotic and biotic environments in driving herbaceous diversity patterns in the subtropical forest understory.
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vascular herbaceous plants, community structure, species diversity, Gutianshan, subtropical forest


1. Introduction

Understory herbaceous plants are important components in forest ecosystems worldwide (Murphy et al., 2016), which are the most species-rich plant growth forms, even accounting for 80% of all vascular plant species in temperate forests (Gilliam, 2007). Understory herbaceous communities affect forest regeneration patterns through species interactions with woody plant seedlings (Holeksa, 2003), playing important roles in ecosystem function and biodiversity conservation (Landuyt et al., 2019). In addition, understory herbaceous plants are small in stature and have less-persistent aboveground structures than most woody plants, and their diversity is more sensitive to both spatial and temporal environmental changes (Garg et al., 2022). To date, the majority of our knowledge of forest biodiversity comes from woody plants (Murphy et al., 2016), which only represent a small fraction of biodiversity in the forest community. However, as an important component in forests, knowledge of community structure and species diversity for understory herbaceous communities remains scarce (Wang et al., 2021).

Previous studies showed that the diversity pattern and species coexistence mechanism of herbaceous plants might be quite different from woody plants (Spicer et al., 2021). On the one hand, herbaceous plants and woody plants show quite differences in the root system (Cicuzza et al., 2013), leaves, and stature, which may lead to a significant difference in responding to light resources and available nutrition (Siebert, 2002; Ramadhanil et al., 2008), and ultimately present a different diversity pattern. On the other hand, local environmental factors, such as elevation, slope (Wiharto et al., 2021), soil (Beck and Givnish, 2021; Mao et al., 2021), community edge (De Pauw et al., 2021), thinning intensity (Wang et al., 2021), and climate change (Cacciatori et al., 2022), also have been shown to have significant effects on the diversity of understory herbaceous plants. However, the effect of habitat filtration may be different between woody and herbaceous plants. For example, elevation showed opposite effects on the diversity of woody plants and herbaceous plants (Cicuzza et al., 2013; Xu et al., 2019). Therefore, a more comprehensive analysis of possible mechanisms of understory herbaceous diversity is needed, as are studies on woody plants.

However, these present studies mainly focus on tropical forests and cold temperate forests and usually do not take subtropical understory into consideration (Wang et al., 2021; Garg et al., 2022). Understory herbaceous plants in different climatic zones, such as tropical and temperate forests, may show different species richness and biodiversity (Gilliam, 2007). Moreover, almost no study has been conducted to investigate the effects of both abiotic and biotic environments on understory herbaceous diversity patterns in subtropical forests at the same time. Thus, the assessment of the community structure and diversity pattern of the understory herbaceous community and linked the species diversity pattern to abiotic and biotic environments will further improve our understanding of the ecology of understory herbaceous plant diversity (Lagomarsino et al., 2016).

The subtropical evergreen broad-leaved forest is a typical zonal vegetation type with a vast area in China (Zhu et al., 2008). Its rich vegetation diversity is much higher than that of other evergreen broad-leaved forests, and its species richness is second only to tropical rainforests (Song et al., 2005). However, the research data on herbaceous plant communities in China are limited, especially in the typical subtropical evergreen broad-leaved forest plots (Song et al., 2015).

Thus, in order to understand the community structure and diversity pattern of the understory herbaceous community and the potential contribution of abiotic and biotic environments to the species diversity pattern, we analyzed the community structure and diversity pattern of the understory herbaceous community and linked the species diversity pattern to abiotic and biotic environments in the Gutianshan 24-ha subtropical forest dynamic plot. Specifically, we focused on the following questions:


(1)What is the community structure and diversity pattern of the understory herbaceous community in the subtropical evergreen broad-leaved forest?

(2)To what extent do the species diversity pattern of herbaceous plants in the subtropical understory driven by both abiotic and biotic environments?





2. Materials and methods


2.1. Study area and herbaceous plants survey

The Gutianshan National Nature Reserve (29°10′19.4″–29°17′41.4″N, 118°03′49.7″–118°11′12.2″E) is located in Kaihua County, Zhejiang Province in China, with a total area of 8,107 ha and a typical mid-subtropical evergreen broad-leaved forest (Supplementary Figure 1A; Legendre et al., 2009). According to the ForestGEO plot construction standard (Condit, 1998; Davies et al., 2021), the 24-ha (600 m × 400 m) Gutianshan Forest Dynamics Plot (GFDP) was established in 2005 by selecting typical mid-subtropical evergreen broad-leaved forest with dominant species of Castanopsis eyrei and Schima superba (Legendre et al., 2009). The plot ranges from 446.3 to 714.9 m in elevation, ranges from 12.8 to 62.0° in slope, and ranges from 93.9 to 269.2° in aspect (Ren et al., 2022). The first tree census in the 24-ha forest plot was conducted in 2005 and re-censused at 5-year intervals. All free-standing woody stems ≥1 cm diameter at breast height (d.b.h., 1.3 m) were tagged, measured, mapped, and identified (Legendre et al., 2009; Wang et al., 2020). According to the first survey, there were 140,700 trees in total, with 159 species belonging to 49 families and 103 genera.

In order to meet the necessary systematic investigation scope and area of systematic investigation and minimize human interference to the plot, on the basis of the original 24-ha plot in Gutianshan, we divided 600 20-m × 20-m unit quadrats (as the basic stations) into two parts evenly in July 2011. Therefore, we conducted a systematic investigation of herbaceous plants in 300 stations with a 5 m × 5 m area. The position of these survey quadrats was relatively fixed in the 20-m × 20-m unit plots; that is, the east of the unit plot was the second 5-m × 5-m quadrat to the north (Supplementary Figure 1B). The herbaceous plants in the stations were systematically investigated from August to October in the main growing season in 2011. The species composition of herbaceous vascular plants in each quadrat, the number of individuals of each species (Poaceae and Cyperaceae record the number of clusters, and ferns that cannot count the number of clusters record the number of members), the average height, the coverage of each species, and the total coverage of all herbaceous vascular plants were all recorded.



2.2. Community structure of understory herbaceous

According to the existing research on the distribution types and floristic division of seed plants (Wu et al., 2003; Li, 2008; Zuo et al., 2017) and ferns (Lu, 2017), the distribution types of herbaceous genera in the plot were divided. We calculated the important value (IV) of each constituent species of the herbaceous plant community in the 24-ha plot by using the survey data of 300 5-m × 5-m quadrats:

[image: image]

Thus, the relative density refers to the percentage of the number of individuals of one species to the number of individuals of all species in the whole plot.



2.3. Herbaceous diversity and habitat types

We counted the number of herb species (S) in each 5-m × 5-m survey quadrat and calculated the Shannon–Wiener index (H) and Pielou’s evenness index (E) (Whittaker, 1972; Whitney and Foster, 1988):
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where [image: image], N0 is the number of individuals of all observed species, Ni is the number of individuals of species i, and S is the species richness.

Based on the multivariate regression tree (MRT) analysis results constructed on the topography, soil, and the first survey data of the plot (Chen et al., 2010), the habitats of the GFDP were divided into the following five types: low valley, low ridge, mid-slope, high slope, and high ridge (Supplementary Figure 2). Low ridge and low valley are the two most extensive habitat types among them.

According to the sampling principle of rarefaction (Hurlbert, 1971; Heck et al., 1975), we observed the characteristics of the change curve of community species richness as the sampling number of individual herbaceous plants in the plot increased. We divided herbaceous community individuals based on their habitat types and performed the rarefaction repeated sampling. We compared the abundance of herbaceous plants distributed in different habitats and the differences in the species richness of herbaceous plants in different habitat types under the same sampling amount. We also analyzed the distribution of species diversity index of herbaceous plants in different habitat types by variance analysis and compared the differences in herbaceous plant diversity among different habitat types by the Tukey honestly significant difference (HSD) test.



2.4. Abiotic and biotic drivers of diversity pattern of understory herbaceous

We performed correlation analysis on the total herb coverage, the Shannon–Wiener index (Hherb), Pielou’s evenness index (Eherb), and the main environmental factors of the plot, then calculated the Pearson correlation coefficient matrix among the variables and performed the significance test. Environmental variables that affect the growth of herbaceous plants can reflect environmental factors, such as forest vegetation community coverage, terrain, and light conditions in the quadrat. The variables selected in this study are as follows: terrain concavity and convexity, elevation, slope, and aspect where the plot is located, canopy closure, tree community diversity in the upper and surrounding plots, and the sum of cross-sectional area at breast height (dm2) during environmental variables that affect the growth of herbaceous plants can reflect environmental factors, such as forest vegetation community coverage, terrain, and light conditions in the quadrat. The four topographic factors are calculated as the same as the 20-m × 20-m plot in which the survey plot is located (Lai et al., 2009); we defined trees on the upper level of the quadrat and surrounding and living individuals of woody plants with DBH ≥1 cm within a radius of 10 m from the center of the survey plot (including dead, broken and lodging individuals, the data are from the first review of the plot in 2010). The Shannon–Wiener index was used to represent the tree diversity, which is more comprehensive and suitable for tree communities (taking into account both abundance and evenness).

Based on the correlation coefficient test results, we used the distribution patterns of herbaceous plant diversity indices (richness S, Shannon–Wiener index H, and Pielou’s evenness index E) in each survey quadrat as fitting variables, performed multiple linear regression fitting with factors that are significantly related to a diversity index as explanatory variables, analyzed the fitting of the model to the variation of the diversity pattern, and compared the effects of each explanatory variable. Then, we further explored the relative importance of each variable to herbaceous plant diversity.

All analyses were performed with R (version 4.1.3): The species diversity index and rarefaction species richness comparison were calculated with the vegan package (Jost, 2007). Tukey HSD test was calculated with the agricolae package (Hsu, 1996), and the fitted line for scatter graph between variables was performed with lowess function (Cleveland, 1979, 1981). The relative importance analysis based on l mg and pmvd methods was implemented by the calc.relimp function in the relaimpo package (Groemping, 2006).




3. Results


3.1. Species composition and flora of understory herbaceous

We recorded a total of 81 species, 31 families, and 55 genera of herbaceous vascular plants in the 24-ha Gutianshan plot (Supplementary Table 1). The results of the floristic analysis showed that the world distribution types accounted for the largest proportion of herbaceous community genera, including 15 genera, such as Dryopteris, followed by pantropical genera with 12 genera, including local common herbaceous groups, such as Diplopterygium, and more genera are widely distributed in Northern hemisphere and East Asia. There are 28 genera of tropical types, accounting for 50.91% of the total, indicating that the herbaceous groups living under the subtropical evergreen broad-leaved forest in Gutianshan are mainly tropical species, while temperate and world distributions account for 49.09% of the total, making it an important constituent group of the herbaceous community (Table 1).


TABLE 1    Genus areal types of herbaceous vascular plants in Gutianshan subtropical understory.
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The important values of each species are shown in Supplementary Table 1; the important value of Diplopterygium glaucum is the largest. There are a large number of D. glaucum in a total of 162 quadrats, and their rhizomes walk underground with huge leaves, with a wide distribution in the plot. Nearly 39,482 clonal component units were counted, accounting for 64.70% of the total number of individuals in the herbaceous plant community. The relative frequency and relative coverage are 11.54 and 81.90%, and the important value is 48.69%, which indicates its extensive distribution and dominant position in the plot. The important values of Dicranopteris pedata and Carex sp. are also relatively high.

The top 15 important values of herbaceous plants account for 92.19% of the total. These species are the most common in the plot, and their density and coverage are relatively large. In the survey, 24 species of the herbaceous plant appeared in only one quadrat, accounting for 29.63% of the total number of species, and 44 species appeared in no more than five quadrats, accounting for 54.32% of the total species, and the sum of their important values accounted for 2.18%. These reflect the imbalance in the composition pattern of the understory herbaceous plant community in the plots and the differences in the species composition in different areas. When the dominant species status is clear, there are more rare species coexisting in the community, and this structural feature can also be observed in frequency statistics for species (Figure 1A).
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FIGURE 1
Species occurrences (A) and species richness distribution of herbaceous plants (B) in Gutianshan subtropical understory.


The coverage of herbaceous plants varies greatly in different plots. In some plots, herbaceous plants cover the entire understory, while there are no herbaceous plants at all in others (Figure 2A). There is no particularly obvious regularity in the distribution of the coverage in Gutianshan.
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FIGURE 2
Coverage (A) and diversity (B) distribution of herbaceous plants in Gutianshan subtropical understory. “×” shows the locations of investigation plots, and the size of “•” represents the coverage or diversity index values in each plot.




3.2. Herbaceous diversity pattern within habitat types

There are differences in species richness among the 300 survey quadrats, with the number of species ranging from 0 to 25. Only a few quadrats have high species richness (Figure 1B), which might be related to the occurrence of specific environmental conditions, and the number of species in most quadrats is less than 10. The range of the Shannon–Wiener index of each quadrat is 0.00–2.50. The diversity of the ridge zone of the quadrats is generally low, while the quadrats with higher diversity index tend to be distributed along the valley (Figure 2B). This shows that the relatively shady and humid environmental conditions in the valley area are conducive to the coexistence of more understory herbaceous plants.

With the increase of rarefaction sampling, the trend of species richness increase in various habitat types is obviously different (Figure 3, five curves representing different habitats are significantly distinguished). The low valley has the fastest increase, followed by the mid-slope, indicating that this habitat type is conducive to maintaining high diversity of herbaceous plants. However, the high ridge rises the slowest, indicating that many herbaceous plants are not suitable for surviving in this habitat. Similarly, although many herbaceous plants are distributed in the low ridge, the species richness is very limited. Even if the number of samples is increased, the potential to find more coexisting species is very low.
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FIGURE 3
Rarefied species richness of herbaceous plants within different habitat types in Gutianshan subtropical understory.


The Shannon–Wiener diversity index of herbaceous plants varies greatly among habitat types, with significant differences among different habitats. The highest diversity lies in the low valley and mid-slope, and the lowest in the low ridge and high ridge. The difference between the high slope and other habitat types is not significant (Table 2), and the variation of evenness among different habitats is relatively weak. Compared with different habitats, the low valley was the highest, the low ridge, mid-slope, and high slope were the second, and the high ridge was the lowest.


TABLE 2    Tukey honestly significant difference (HSD) test of richness, herbaceous plant diversity, and evenness between different habitat types in Gutianshan subtropical understory.
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3.3. Abiotic and biotic drivers of understory herbaceous diversity

According to the results of correlation analysis, Hherb is significantly negatively correlated with coverage as a whole, while Eherb has a significant positive correlation with coverage (Figure 4). Except for the aspect factor, other abiotic factors were significantly correlated with at least one of the three characteristic variables of the herbaceous plant community, and the diversity of the tree community (Htrees) was significantly positively correlated with all three herbal community variables, in particular, the linear fitting degree with the evenness of herbaceous plants is very high, and the linear regression analysis of the two is up to 0.56. The canopy density was significantly negatively correlated with the three herbaceous plant community variables. The tree breast height basal area of the tree and convexity was significantly negatively correlated with Hherb and Eherb. The elevation was significantly negatively correlated with the Eherb and coverage of herbaceous plants. The slope was positively correlated with the coverage of herbaceous plants but was not significantly related to the Hherb and Eherb (Figure 4).
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FIGURE 4
Correlation matrix of nine herbaceous plant community and environment variables in Gutianshan subtropical understory. Histograms of variables were shown on the diagonal, scatter plots between the variables were shown on the upper panel, and the lower panel showed Pearson correlation coefficients, where gray represents negative correlation.


The multiple linear regression analysis of the herbaceous community diversity index showed that the effect of each influencing factor on community diversity was consistent with the results of correlation coefficient analysis which includes R2 of species richness (S), Shannon–Wiener index (H), and Pielou’s evenness index (E) model is 0.46, 0.47 and 0.61 (Table 3). The results show that the selected explanatory variables can well explain the various characteristics of herbaceous plant community diversity distribution patterns.


TABLE 3    Multivariable linear regression models of three diversity indices of herbaceous plant community to seven environment factors in Gutianshan subtropical understory.
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The analysis of the relative importance of various factors showed that tree diversity was the main factor affecting the evenness of understory herbaceous plants, and the concavity and basal area of trees made the greatest contribution to the explanation of herbaceous richness and the Shannon–Wiener index variation (Figure 5).
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FIGURE 5
Relative importance of biotic/abiotic factors based on lmg (A) and pmvd (B) to the diversity of understory herbaceous plants.





4. Discussion


4.1. Species composition and flora of herbaceous in the subtropical understory

The herbaceous plants in Gutianshan 24-ha plot are dominated by tropical areal types, with both cosmopolitan areal type and temperate characteristics, which is the same as the general trend indicated by the results of the floristic analysis of trees in the plot (Zhu et al., 2008) and the floristic analysis of the middle subtropical evergreen broad-leaved forest in China (Chen, 2006). The species composition of herbaceous plants is rich (81 species, 31 families, and 55 genera). Compared with other plots located in different climatic zones in China, it is found that the species richness of evergreen broad-leaved forest understory herbaceous plants in Gutianshan are less than those in 20-ha Parashorea chinensis forest in Xishuangbanna (115 species, 41 families, and 76 genera) (Chen, 2008), which is a tropical forest, and the 25-ha broad-leaved Korean pine forest in Changbai Mountain (102 species, 40 families, and 84 genera) (Li et al., 2008), which is a temporal forest. However, the species richness of Gutianshan is close to that of 90 species in the Longyan forest zone, which is also in the subtropical monsoon climate zone (Su et al., 2022). It shows that there is a different richness of forest herbaceous plants in different climatic zones.

The coverage of herbaceous plant communities varies greatly in different areas, among which ferns are numerous and widely distributed. Ferns are strongly dependent on natural environmental conditions, and their species diversity changes are closely related to environmental conditions (Lwanga et al., 1998). They can respond to changes in environmental conditions with a significant indicative effect (Karst et al., 2005; Gasper et al., 2021). The prosperity of understory ferns may be related to their physiological characteristics. Some studies have suggested that the shade tolerance of ferns is related to their photosynthetic mechanism, so it is suitable for the understory environment (Kawai et al., 2003; Nuccio et al., 2020). D. glaucum and D. pedata occupy a lot of space in the understory and have high coverage, which is the absolutely dominant species of herbaceous plant community and an important indication of vegetation types in the understory of this area, which may be related to the climatic conditions, light and heat environment, forest succession types, and acidic soil properties of the plots (da Costa et al., 2019; Oseguera-Olalde et al., 2022).



4.2. Herbaceous diversity pattern related to habitat types

Among the five habitat types of the plot, the low valley and mid-slope could maintain higher herbaceous species richness, while the low ridge had the lowest species richness (Figure 3 and Table 2). This is similar to the individual tree distribution pattern and woody seedling regeneration pattern in the plot affected by habitat heterogeneity (Lai et al., 2009). The heterogeneous habitats of the Gutianshan plot also had a significant impact on the diversity distribution pattern of understory herbaceous plant communities. D. glaucum is the dominant species with high density in the plot, which mostly occurs in the lowland ridge. It is speculated that the low species richness in the ridge (Figure 3) is due to D. glaucum being too luxuriant in the herbaceous plant community, and the strong competitive exclusion makes it difficult for other herbaceous species to obtain living space, despite the fact that the light conditions in the valley of the plot are not as good as those in the ridge. However, the competitive pressure from the dominant species is less, and the water resources are good, so there may be more species growth (Figures 2B, 3). The proportion of rare species will also be higher. This is also consistent with the negative effect of terrain convexity on herbaceous plant diversity.



4.3. Abiotic and biotic drivers of understory herbaceous diversity

The Shannon–Wiener index and Pielou’s evenness index of understory herbaceous plant community are opposite to the coverage of herbaceous plants. Further analysis shows that the Shannon–Wiener index has a better fitting relationship with the quadratic formula of coverage; it shows a unimodal relationship (Figure 4). It is speculated that the environmental stress and filtering effect may be stronger in the areas with too low coverage, so the biomass and richness of herbaceous plant communities are limited (Grace, 1999; Fornara and Tilman, 2009; Chase, 2010). In contrast, areas with too large coverage are too dense to compete and repel and do not take advantage of the maintenance of richness. The Pielou’s evenness index increases monotonously with the increase of coverage, which may be because the richness of the herbaceous community with low coverage is small and the random variability of species is very large, so the abundance of each species is more inconsistent, that is, the evenness is the lowest. While in the herbaceous plant community with high coverage, because environmental factors are suitable for the growth of more herbaceous species, and the structural composition of the dominant species of the community and even associated species is relatively stable, so the evenness is the highest.

In tropical and temperate forests, the community structure and diversity of herbaceous plants are affected by temperature (Cicuzza et al., 2013), elevation, slope (Wiharto et al., 2021), soil (Mao et al., 2021), canopy (Ford et al., 2000), and other factors. The results of correlation analysis and multiple regression analysis between the diversity of subtropical herbaceous plants and the main biotic/abiotic factors showed that elevation, concavity, basal tree area, tree diversity, and canopy density had certain effects on the diversity pattern of understory herbaceous plants in the subtropical forest. However, this effect showed different significance under different indexes.

Generally speaking, in subtropical forests, the increase of tree diversity is beneficial to maintain the evenness of herbaceous plants, which, in turn, can improve the species diversity of the whole forest vegetation. At the same time, the areas with fewer individuals of big trees will have higher understory herbaceous plant diversity, which may be because the fewer individuals of big trees, the smaller the canopy density of the community, and the more available light quantity will be obtained by understory herbaceous plants, and ultimately lead to showing higher richness (Facciano et al., 2023). Our results further confirmed the relationship between canopy density and herbaceous diversity under the forest. Therefore, we speculate that the diversity pattern of vegetation in the canopy and herb layer of the subtropical forest community is closely related: In the community with a high degree of coexistence of canopy trees, there will be an under-forest environment suitable for the stable coexistence of more herbaceous species. At the same time, the increase of herbaceous plant diversity can produce a ground cover environment suitable for seedling planting and renewal of multi-tree species, which, in turn, increases the diversity of woody plants (Rawlik et al., 2018; Cheng et al., 2020). Elevation was negatively correlated with Pielou’s evenness index and total coverage of herbaceous communities, which was different from the conclusion that there was a unimodal relationship between herbaceous plant diversity and elevation in tropical forests (Gómez-Díaz et al., 2017). In addition, there is no significant relationship between slope and herbaceous community diversity, which may be affected by canopy openness and surface soil (Wiharto et al., 2021).




5. Conclusion

The findings reported here in the community structure and diversity pattern of understory herbaceous, as well as a link between species diversity pattern and abiotic and biotic environments, provide insight into the community structure and biodiversity of herbaceous plants in the subtropical understory. We found that understory herbaceous species diversity is a rich component in the Gutianshan forest, with approximately accounting half of species of woody plant species in this subtropical forest. Understory herbaceous diversity prefers in some specific habitats, which was highest in the lowland valleys, followed by middle slopes. Moreover, we found that herbaceous diversity was driven by both abiotic and biotic environments. Among them, tree diversity and terrain convexity are the main important factors in driving the diversity of understory herbaceous plants. Our results suggest that understory herbaceous communities are a non-negligible and important component of biodiversity in a subtropical forest. Our study also indicates that in order to better protect herbaceous biodiversity in the subtropical understory, more attention should be paid to some special habitats, such as low valleys and mid-slopes.
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Introduction: Soil organic carbon (SOC) accumulation changed with forest succession and hence impacted the SOC storage. However, the variation and underlying mechanisms about SOC during tropical forest succession are not fully understood.

Methods: Soil samples at four depths (0–10 cm, 10–20 cm, 20–40 cm and 40–60 cm), litter, and roots of 0–10 cm and 10–20 cm were collected from three forest succession stages (plantation forest, secondary forest, and old– growth forest) in the Jianfengling (JFL) National Nature Reserve in Hainan Island, China. The SOC, soil enzyme activities, physiochemical properties, the biomass of litter and roots were analyzed.

Results: Results showed that forest succession significantly increased SOC at 0–10 cm and 10–20 cm depth (from 23.00 g/kg to 33.70 g/kg and from 14.46 g/kg to 22.55 g/kg, respectively) but not at a deeper depth (20–60 cm). SOC content of the three forest succession stages decreased with increasing soil depth and bulk density (BD). With forest succession from plantation to secondary and old–growth forest, the soil pH at 0–10 cm and 10–20 cm depth decreased from 5.08 to 4.10 and from 5.52 to 4.64, respectively. Structural equation model (SEM) results showed that the SOC at depths of 0–20 cm increased with total root biomass but decreased with increasing soil pH value. The direct positive effect of soil TP on SOC was greater than the indirect negative effect of decomposition of SOC by soil acid phosphatase (AP).

Discussion: To sum up, the study highlighted there was soil P– limited in tropical forests of JFL, and the increase in TP and total root biomass inputs were main factors favoring SOC sequestration during the tropical forest succession. In addition, soil acidification is of great importance for SOC accumulation in tropical forests for forest succession in the future. Therefore, forest succession improved SOC accumulation, TP and roots contributed to soil C sequestration.

KEYWORDS
 enzyme activity, pH value, root biomass, phosphorus limitation, litter biomass


1. Introduction

Forest soil carbon is the main component of the terrestrial ecosystem carbon pool. Small variations of this component will affect atmospheric carbon concentrations and future global climate changes (Fang et al., 2015). Tropical forests cover only 6% of the world’s land area but contain about 40% of the terrestrial ecosystem carbon (Ren et al., 2014), with old–growth forests still accumulating carbon stably in soil (Zhou et al., 2006). However, tropical primary forest areas have been decreasing under the global climate change and human disturbances over the last century (Ma et al., 2022). Studies found a reduction in soil organic carbon (SOC) during the conversion of tropical primary forests to other land–use types (Zhou et al., 2018). Conversely, when forest vegetation is restored, the SOC will increase with positive forest succession (Deng et al., 2013). Meanwhile, long–term observational data show that soil in the northern hemisphere and temperate forests has always acted as a carbon sink, but there are relatively few studies on its dynamic change in tropical forests (Zhu et al., 2020). Therefore, studying the variation characteristics of SOC during tropical forest succession is important to understand the carbon sequestration capacity of forest soil.

SOC accumulation during forest succession is largely influenced by biotic and abiotic factors (Smith, 2008; Hu and Lan, 2020). In terms of abiotic factors, TN and TP are two important factors that influence SOC by regulating SOC input and output, because nitrogen and phosphorus are critical elements for plant growth (Schleuss et al., 2019). The high N/P ratios will increase nitrogen uptake by plants, promote plant growth and increase SOC input (Peng et al., 2019). In terms of biotic factors, the accumulation of SOC depends on the balance of the input of exogenous SOC from litter and roots and the output of SOC through microbial consumption. It is important source of soil nutrients from litter decomposition that replenished by forest ecosystems (Rubino et al., 2010). Huang et al. (2011) reported that the increase of litter decomposition with forward succession help accumulate SOC. The increase of roots and their secretions can also increase SOC in the late afforestation restoration stage (Hu et al., 2016). In addition, soil microbes, one of the main decomposers of organic carbon, act on the decomposition of soil organic matter by regulating enzymatic activity. Soil microbes secreted extracellular enzymes to decompose complex organic matter for obtaining carbon and other nutrients, which also have important impacts on the sequestration of forest SOC (Cui et al., 2019). To reveal the biotic, abiotic factors and their interact effect on SOC accumulation during tropical forest succession is of importance for guiding tropical forest management and SOC sequestration.

The tropical forest in Hainan Island accounts for 31.4% of the total tropical forest area in China, which plays a key role in ecological environment construction and it’s largely affected by global climate changes (Li et al., 2019). The Jianfengling (JFL) tropical forest remains one of the few well–preserved tropical primary forests in China (Guo et al., 2015). The slash–and–burn and traditional agricultural methods used over the last century are what have caused severe damage and the subsequent restoration of tropical forests, and form an ideal area to study the variations and influencing factors of SOC during the tropical forest succession. In this study, three forest succession stages, plantation forest, secondary forest, and old–growth forest in JFL, which belong to early, middle and late succession stages were selected. The SOC and other soil physicochemical properties, soil enzyme activities, litter and roots biomass were investigated in different forest succession stages. The objectives were to: (1) explore the variations of SOC and enzyme activities at different succession stages and soil layers; (2) find the effects of soil environmental factors, litter and roots on SOC during tropical forest succession. We proposed two hypotheses: (1) SOC increases with forest succession from plantation forest to secondary forest and old–growth forest; (2) the increase of litter and root biomass is beneficial for SOC accumulation. The study results are expected to provide theoretical reference for soil carbon management in tropical forest.



2. Materials and methods


2.1. Study site

The study site, the JFL National Nature Reserve, is located in the southwestern part of Hainan Island, China (18°23′–18°50″N 108°36′–109°05′E). The area has a typical tropical monsoon climate with a wet season from May to October and a dry season from November to April in the following year (Jiang et al., 2017). The mean annual temperature ranges from 25.2°C in coastal tablelands to 19.7°C in mountainous rainforest areas (Xu et al., 2015). The mean annual precipitation ranges from 1,500 to 2,600 mm, with a maximum of 3,500 mm, 80%–90% of which falls in the wet season. The soil types are mainly montane lateritic red or yellow earth according to the World Reference Base for soil resources, and granite is the main soil parent material (Yang et al., 2018).

Our study site mainly includes three forest succession types: old–growth forest (OF), secondary forest (SF), and plantation forest (PF). Three 20 m × 20 m plots were established in each forest. In total, there were nine sample plots. We used the space–for–time substitution method, which has been commonly used for similar soil changes over time under consistent climatic conditions (Walker et al., 2010). The OF is natural mature forest without human disturbance for a long time, while SF and PF are the natural regeneration forest which developed on the OF after different degrees of human disturbance. These forests have similar geographical and climatic conditions with uniform temperature and precipitation. Cryptocarya chinensis, Gironniera subaequalis, Mallotus Hookerianus (Seem.) Muell. Arg, and Nephelium topengii (Merr.) H. S. Lo are the dominant species in OF, which maintains a high biodiversity (Fang et al., 2004). The SF naturally regenerated following selective logging of OF in the 1960s and mainly consists of Castanopsis fissa, Castanopsis tonkinensis, Sapium discolor, Syzygium tephrodes, and Schefflera octophylla (Xu et al., 2009). Cunninghami alanceolata (Lamb.) Hook. is the dominant species in the PF, and it was established after being felled in the 1980s. The basic sample sites information is shown in Table 1.



TABLE 1 Location and basic characteristics of sampling plots in different succession stages in the Jianfengling National Nature Reserve.
[image: Table1]



2.2. Sampling design

In September 2021, we collected litter, root and soil samples along the forest succession stages from PF, SF, to OF. At each forest stage, three sampling plots were selected. At each plot, we divided into four subplots (10 m × 10 m), and litter was collected randomly with three replicates by litter traps (50 cm × 50 cm). A total of 27 above–ground litter samples were obtained. At each sampling plot, root samples at 0–10 cm and 10–20 cm soil depths were collected using an auger (inner diameter, 9.5 cm), and then fully soaked in water for 5 h in the laboratory, and washed with water for 20 mesh to carry out root picking. Roots were divided into two types according to root diameter: they were defined as fine roots and thick roots with root diameter ≤ 2 mm and root diameter > 2 mm, respectively. Root biomass was determined after being oven–dried at 65°C for 24 h.

The soil samples were collected at four depths (0–10 cm, 10–20 cm, 20–40 cm and 40–60 cm) using a stainless soil corer at each plot. A composite sample consisted of five soil cores, and then divided into two subsamples. In total, 72 soil subsamples were collected and transported to the laboratory with ice bags. After removing animal and plant residues, roots and other visible items, soil samples were passed through a 2 mm mesh. Finally, each sample was separated into two parts to measure (1) the basic physical and chemical properties after being air–dried, and (2) the soil enzyme activity within 1 week with soils stored at 4°C. The soil bulk density (BD) sample was collected using a cutting ring (volume of 100 cm3). We used the method of digging the soil profile, and then collected three soil samples per soil layer using cutting ring, and measured the ratio of the weight of dry soils to the volume of each soil core.



2.3. Laboratory analysis

After drying at 105°C for 12 h, soil water content (SWC) was measured by mass loss. The soil pH was measured by the potentiometric method (the soil: water ratio = 1:2.5). SOC was determined by the K2Cr2O7–H2SO4 oxidation method (Bao, 2000). Soil total nitrogen (TN) and total phosphorus (TP) were extracted by the semimicro kelvin method and determined by Continuous Flow Analyzer (PROXIMA 1022/1/1, ALLIANCE Instruments, France; Zhang et al., 2019). Soil ammonium nitrogen (NH4+–N) and nitrate nitrogen (NO3−–N) contents were determined by extracting fresh soil with 2 M KCL and analyzing it using the Continuous Flow Analyzer (SKALAR San++, SKALAR Co., Netherlands). The soil available phosphorus (SAP) was determined by ammonium chloride hydrochloric acid extraction. The activities of acid phosphatase (AP), β–1,4–glucosidase (BG), β–1,4–N–acetyl–glucosaminidase (NAG) and leucine aminopeptidase (LAP) were determined by 96–well microplates (German et al., 2011; Bach et al., 2013).

Microbial nutrient limitations were determined by calculating the vector length, and angle A with enzyme activity stoichiometry vector analysis using the following formulae (Moorhead et al., 2013):
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The larger the vector L, the stronger the carbon constraint. Angles A < 45° and >45° indicate that the microbes are limited by nitrogen and phosphorus, respectively.



2.4. Statistical analysis

To identify the differences in SOC, TN, TP, C:N, C:P and N:P ratios, soil enzyme activities and other soil properties in different forest succession stages and different soil layers, one–way ANOVA followed by the Least Significant Difference (LSD) test was applied (p < 0.05). On the basis of the homogeneity test of variance, two–way ANOVA followed by the LSD test were used to investigate the effects of soil depth, forest succession stages, and their interactions on SOC, TN, and TP and their stoichiometric ratios. Pearson correlation analysis was used to analyze the correlation between the soils’ properties and enzyme activities. The structural equation model (SEM), which combines path analysis and factor analysis, has been applied as causal inference in ecology, mainly using maximum–likelihood (Shipley, 2001). Before starting, to avoid multicollinearity, we used the variance inflation factor (VIF) threshold to eliminate those variables that were strongly correlated (Kock, 2015). Then, we established an a-prior model (Supplementary Figure S4) based on the known effects and relationships among the drivers of SOC. The SEM analyses were performed using R software (4.2.0) lavaan package. SPSS 19.0 (IBM SPSS Predictive Analytics Community, United States) software, Origin 2019b (Origin Lab Corp. United States), and R (R 4.2.0) were used for all statistical analyses and figures in the study.




3. Results


3.1. Changes of soil organic carbon in different forest succession stages

SOC was significantly affected by soil depth, forest succession stages, and their interactions (p < 0.05; Table 2). The SOC in the four soil layers increased with forest succession from PF to SF and OF, with the highest SOC of 33.70 g/kg at the depth of 0–10 cm in OF, which was significantly higher than that of in SF (25.48 g/kg) and PF (23.00 g/kg; p < 0.05). The SOC at the depth of 10–20 cm in OF (22.55 g/kg) was significantly higher than that of in PF (14.46 g/kg). In the vertical direction, SOC at the depth of 0–40 cm significantly decreased at each forest stage, but tend to be stable below 40 cm (Figure 1).



TABLE 2 F-values for two–way ANOVAs on the effects of soil depth, forest succession stages, their interaction on the concentrations of soil organic carbon (SOC), total soil nitrogen (TN), total soil phosphorus (TP), C:N, C:P, and N:P ratios.
[image: Table2]
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FIGURE 1
 Variations of SOC in different forest succession stages in the Jianfengling National Nature Reserve. SOC, soil organic carbon; PF, plantation forest; SF, secondary forest; OF, old-growth forest. Different lowercase letters indicate significant differences between different soil layers at the same stage. Different capital letters indicate significant differences in the same soil layer at different forest succession stages (p < 0.05).




3.2. Changes in soil physical and chemical properties in different forest succession stages

As shown in Table 3, the soil pH at each soil layer gradually decreased with forest succession, and the soil pH at a depth of 0–10 cm in OF was significantly lower than that in SF and PF, indicating that surface soil acidification was aggravated at the later stage of forest succession. In the vertical direction, the soil pH increased with soil depth, indicating that the acidification degree decreased with increasing soil depth. The SWC in SF was significantly lower than that in PF and OF in lower soils (0–10 cm and 10–20 cm), and the SWC in SF was significantly lower than that in OF in deeper soils (20–40 cm and 40–60 cm).



TABLE 3 The soil properties at different forest succession stages in the Jianfengling National Nature Reserve (n = 6).
[image: Table3]

The TN, TP and their stoichiometric ratios were significantly affected by soil depth, forest succession stages, and their interactions (Table 2). The TN in OF was significantly higher than that in SF and PF at depths of 0–10 cm and 10–20 cm (Table 3), indicating that TN increased with forest succession processes. The TN was positively linked with NH4+–N and NO3−–N (p < 0.01), and it was positively correlated with TP and BG (p < 0.05; Figure 2).

[image: Figure 2]

FIGURE 2
 The correlation of different soil properties in different forest succession stages in the Jianfengling National Nature Reserve. SWC, soil water content; BD, bulk density; SOC, soil organic carbon; TN, total nitrogen; TP, total phosphorus; NH4+–N, ammonium nitrogen; NO3—N, nitrate nitrogen; SAP, soil available phosphorus; Roots, total root biomass; Litter, litter biomass; AP, acid phosphatase; BG, β–1,4–glucosidase; NAG, β–1,4–N–acetyl–glucosaminidase; LAP, leucine aminopeptidase. Significance levels: ***p < 0.001; **p < 0.01; *p < 0.05.


The TP in the four soil layers increased with forest succession and was obviously lower in PF than in SF and OF. The C:N ratio increased with forest succession but did not change significantly in different soil depths. The ratios of C:P and N:P initially decreased and then increased with forest succession, with the N:P ratio in PF significantly higher than that in the latter two stages (Table 3).

The NH4+–N in all four soil layers did not change significantly with forest succession, while the NO3−–N increased significantly. The SAP increased first and then decreased with forest succession, where the SAP in SF was obviously higher than that in PF and OF (Table 3).



3.3. Soil enzyme activities in different forest succession stages

The activity of BG first decreased and then increased with forest succession (Figure 3A). The activity of BG decreased with soil depth. The NAG and LAP activities decreased first and then increased (Figures 3B,C). The AP activity showed a general decreasing trend with forest succession and was obviously lower in SF than in PF and OF at a depth of 0–10 cm. In the vertical direction, there was no significant difference for AP in the different soil layer in PF and SF (Figure 3D). BG, NAG, and LAP all had significant correlations with AP activity, while the NAG activity was positively correlated with LAP (Figure 2).

[image: Figure 3]

FIGURE 3
 Variations of soil enzyme activities in different forest restoration stages in the Jianfengling National Nature Reserve. (A) β–1,4–glucosidase (BG), (B) β–1,4–N–acetyl–glucosaminidase (NAG), (C) leucine aminopeptidase (LAP), and (D) acid phosphatase (AP) activities. PF, plantation forest; SF, secondary forest; OF, old-growth forest. Different lowercase letters indicate significant differences between different soil layers at the same stage. Different capital letters indicate significant differences in the same soil layer at different forest succession stages (p < 0.05).




3.4. Changes of litter and total root biomass in different forest succession stages

With the progression of forest succession, the amount of litter per unit area increased first and then decreased, and the litter amount in SF was significantly higher than that of in PF and OF (Figure 4). However, the SOC, TN, and TP contents of litter did not change significantly with forest succession (Supplementary Figure S1).

[image: Figure 4]

FIGURE 4
 Litter biomass in different forest succession stages in the Jianfengling National Nature Reserve. PF, plantation forest; SF, secondary forest; OF, old-growth forest. Different lowercase letters indicate significant differences at different forest succession stages (p < 0.05).


From the PF to SF and OF, the total root biomass of different soil layers increased significantly (p < 0.05). Especially, the total root biomass of the 10–20 cm soil layer was significantly higher than that of the 0–10 cm soil layer (Figure 5). In different forest succession stages, the SOC, TN, and TP contents of fine and thick roots showed an increasing trend, but not all of them were significant (Supplementary Figure S2).

[image: Figure 5]

FIGURE 5
 Total root biomass in different forest succession stages in the Jianfengling National Nature Reserve. PF, plantation forest; SF, secondary forest; OF, old-growth forest. Different lowercase letters indicate significant differences between different soil layers at the same stage. Different capital letters indicate significant differences in the same soil layer at different forest succession stages (p < 0.05).




3.5. The influencing factors of soil organic carbon in different forest succession stages

The SOC substantially negatively correlated with BD and pH, while it obviously positively correlated with TN, TP, NH4+–N and NO3−–N (Figure 2). The SEM showed that the biological and environmental factors selected in this study explained 79.9% of the variations in SOC (Figure 6A). The AP, total root biomass and pH value were the three main important factors influencing SOC (Figure 6B). The AP and TP had a direct positive effect on SOC (p < 0.01), while soil TP indirectly affected SOC through its direct effect on AP activity. Total root biomass could affect SOC through its direct effect (p < 0.05). In addition, pH had an indirect effect on SOC by mainly affecting litter biomass and enzyme activities.

[image: Figure 6]

FIGURE 6
 Structural equation model (SEM) of the effect of soil properties on SOC (0–20 cm) in the Jianfengling National Nature Reserve. The model was fitted by maximum likelihood estimation. In panel (A), red arrows represent significant positive effects and blue arrows represent significant negative effects (p < 0.05), and gray dotted line indicates non–significant relationship (p > 0.05). The numbers on the line represent normalized path coefficients (*p < 0.05, **p < 0.01, ***p < 0.001). In panel (B), the total effect is the sum of direct and indirect effects. χ2, global similarity of matrix; df, degree of freedom; GFI, goodness of fit index; CFI, comparative fit index; RMSEA, approximate root mean square error; R2, variance ratio of priming effect explained by variables; SOC, soil organic carbon; TP, total phosphorus; Roots, total root biomass; Litter, litter biomass; AP, acid phosphatase; BG, β–1,4–glucosidase.





4. Discussion


4.1. Effects of forest succession on soil organic carbon

In this study, SOC showed an increasing trend from PF to SF and OF, which supports the first hypothesis. The SOC increased with tropical forest succession, which is similar to the results of previous studies in the subtropical Dinghushan Region (Shao et al., 2017), temperate Loess Plateau (Deng et al., 2013), and subtropical Dashanchong Forest Park (Xu et al., 2018). Litter and roots are the two main resources of carbon input by plants, and the changes in litter and plant roots caused by forest succession affect soil carbon cycling (Guo et al., 2005). Generally, forest succession tends to improve the soil environment, enhance soil microbial activity, improve soil fertility, and increase the input of litter and root biomass (Li et al., 2007; Hu et al., 2016). However, there were no significant differences in litter quantity and quality between different forest stages in the results of this study (Figure 4; Supplementary Figure S1), and further, we found that total root biomass had a direct and significant positive effect on SOC, while litter had no direct effect on SOC (Figure 6A). Those results indicated that the increase in the total root biomass at a later stage of forest succession was more conducive to soil carbon sequestration, which was also consistent with the results in the restoration of tropical forests in India (Lalnunzira et al., 2019). In general, fine roots contribute more to SOC because they have a large surface area and fast turnover rates, and they are the direct way of through which plant photosynthesis transports nutrients to the soil (Zhang et al., 2021). However, Sun et al. (2018) conducted a 6-year experiment on fine root decomposition and found that the decomposition rate of fine roots was slower than that of thick roots, so the contribution of fine roots and thick roots to SOC is still controversial. The results of our study showed that fine root biomass or thick root biomass alone had no significant effect on SOC, while total root biomass had a direct and significant effect on SOC (Figure 6A), which partially supported the second hypothesis. Thus, the role of roots on SOC in tropical forests still needs more attention.

In this study, from PF to OF, the SOC in top soils (0–10 cm and 10–20 cm) increased more significantly than that in deeper soils (20–40 cm and 40–60 cm; Figure 1), which was consistent with the findings of Yang et al. (2019). The physiochemical properties of top soils and deep soils were significantly different, thus, the regulate factors and mechanism of SOC varied across soil layers (Fontaine et al., 2007; Mobley et al., 2015). Generally, surface SOC accumulation is the result of interactions between environmental factor–regulated abiotic processes and microbe–regulated biotic processes (Hooper et al., 2000). Because the surface soil contains a large amount of vegetation litter, and sufficient water and air in the surface are also conducive to soil microbial activities (Zhang et al., 2021). The SOC changed significantly during forest succession in this study at the depths of 0–10 cm and 10–20 cm (Figure 1). This can be attributed to the increase in organic materials (litter and roots), weathering and microbial decomposition reducing along the forest succession (Smith, 2008). For deep soils (20–40 cm and 40–60 cm), the input of SOC is mainly from the leaching of surface SOC and a few roots. Since the soil clay proportions were higher in the study area (Jiang et al., 2021), there was less leaching of surface SOC to the deep soil. In addition, this study found a significant negative correlation between bulk density (BD) and SOC (Figure 2), which indicates that the high soil BD is also not conducive for the leaching of surface SOC to deep soil layers. A previous study also found that the low SOC in deep soil is related to the high BD in the tropical forests of Hainan Island (Yang et al., 2016).



4.2. Effect of P on soil organic carbon in different forest succession stages

The results of SEM suggest that AP had a direct and positive effect on SOC of the soil layer 0–20 cm (Figure 6A). The AP decreased first and then increased with forest succession, helping in the latter stage of carbon sequestration (Figure 2). Soil extracellular enzymes are associated with soil nutrient utilization, AP can change with the demand phosphorus by soil microbes (Sinsabaugh and Shah, 2012). According to the microbial nutrient allocation theory, microbes will preferentially allocate resources to secrete enzymes that mine the most limited nutrients (Sinsabaugh and Moorhead, 1994; Xiao et al., 2018). In our study, vector analysis of soil extracellular enzymes was used to assess the nutrient limitation of soil microbes (Moorhead et al., 2013). Our results showed that the vector angle of extracellular enzymes was always >45° (Supplementary Figure S3), indicating that soil microbial biomass is limited by soil phosphorus availability (DeForest and Moorhead, 2020). The soil available phosphorus contents and nutrient ecological stoichiometry ratio also show that the tropical forest soil was severely restricted by phosphorus (Table 3), which is consistent with the phosphorus limitation of soil microbe. The soil TP (0.37 g/kg) was lower than the average TP of Chinese soil (0.56 g/kg) and subtropical soil (0.52 g/kg; Han et al., 2005), and the average soil available phosphorus (SAP) was only 1.57 mg/kg. Meanwhile, the soil N:P ratio (as the index of soil to plant nutrient status) is limited by nitrogen when the N:P ratio is <14, and phosphorus when the N:P ratio is >16 (Peng et al., 2019). In our study, this ratio was almost always >16, so it was always limited by phosphorus (Table 3). Previous studies have also shown that tropical forests with high soil acidification tend to exhibit a phosphorus constraint (Waring et al., 2014; Xu et al., 2018). Generally, the change in soil phosphorus limitation will lead to a change in microbial limitation, which affects SOC accumulation (Wang et al., 2022). Hence, soil phosphorus limitation will lead to high AP activity (Wang et al., 2020). A corresponding increase in SOC decomposed by AP. That is, AP and SOC had a positive direct effect relationship, which is consistent with the results of SEM (Figure 6).

In addition, TP had a positive direct effect on SOC (Figure 6A), because soil nutrients and microorganisms were severely restricted by phosphorus in our study area. The increase in soil TP was conducive to the acquisition of phosphorus by plants, which can improve plant productivity and thus increase the input sources of SOC (Schleuss et al., 2019). In conclusion, the negative effect of AP decomposition caused by P restriction was traded off by the direct positive effect of TP on SOC, which was conducive to C sequestration.



4.3. Effect of soil acidification on soil organic carbon in different forest succession stages

Our results suggested that the pH value has no direct effect on SOC, but it has an indirect effect on SOC by inhibiting AP activity (Figure 6A). Previous studies also reported that soil acidification (low pH) has the potential to delay the decomposition of SOM in acid soils by changing the composition of microorganisms, thus favoring SOC accumulation (Lu et al., 2021). In our study, the pH values at a depth of 0–20 cm ranged from 4.01 to 5.52, and the pH values gradually decreased with forest succession from PF to SF and OF (Table 3), indicating that soil acidification was aggregated. Zhu et al. (2021) also found that forest succession can decrease the soil acidity, especially in topsoil. Lower soil pH inhibited the activities of soil microbial activities (Wang et al., 2018a), as the most suitable pH for soil microbe is generally in the neutral range of 6.5–7.5 (San Le et al., 2022). Studies have shown that pH value was negatively correlated with hydrolase activity, which was consistent with the negative correlation between BG, AP and pH in our study (Ghiloufi et al., 2019). Thus, increased soil acidification would be beneficial for SOC accumulation by affecting AP activity under soil nutrient limited by phosphorus (Figure 6). Under the background of future N deposition, soil acidification accelerates soil carbon sequestration in tropical forests. This has important implications to better understand and predict the effects of P limitation on soil acidification in the global tropical terrestrial ecosystems.




5. Conclusion

Forest succession increased SOC significantly at the depth of 0–20 cm from PF to SF and OF, while there were no significant changes of SOC in deeper soils (20–40 cm and 40–60 cm). Microbial nutrient limitation and N:P ratio reflected that the soil was always limited by phosphorus in the tropical forest of JFL. Except for the microbe–regulated biotic processes, the TP and total root biomass were important factors affecting SOC at depths of 0–20 cm. The increase of total root biomass input rather than litter biomass contributed to SOC sequestration during the tropical forest succession. In addition, the soil acidification caused by forest succession and nitrogen deposition is beneficial to SOC sequestration in tropical forests in the future. This study provides new insights into SOC accumulation during the tropical forest succession.
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A nuclear leakage or tactical nuclear weapon use in a limited war could cause immense and long-lasting ecological consequences beyond the direct site of exposure. We call upon all scientists to communicate the importance of the environmental impacts of such an event to all life forms on Earth, including humankind. Changes to ecosystem structure and functioning and species extinctions would alter the biosphere for an unknown time frame. Radiation could trigger cascade effects in marine, atmospheric and terrestrial ecosystems of a magnitude far beyond human capabilities for mitigation or adaptation. Even a “tactical nuclear war” could alter planet Earth’s living boundaries, ending the current Anthropocene era.
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One sentence summary

We describe the devastating effects of nuclear radiation and its long-lasting consequences on Earth’s ecosystems.



Main text

Recent events related to the armed conflict in Ukraine have been linked to the possibility of radioactive leaks, the risk of using “tactical nuclear bombs,” or even full-scale nuclear war. The shelling of the Zaporizhzhia Nuclear Power Plant represents a particular risk. As environmental scientists, ecologists, and conservationists from all corners of the world, we would like to call upon all scientists to communicate the risks associated with radiation to the public and policymakers. We must be proactive and explain to our people the stark implications of an accidental nuclear leak, the use of tactical bombs, or a full-scale nuclear war if any of these were to happen. Our ethical and professional duty is to communicate the multiple potential consequences to life on Earth, including humankind. We propose a key summary of facts to communicate our concerns to leaders, stakeholders, and society effectively.

In any socioecological system, many variables, components, and processes can be affected by human intervention. Radiation leakage and nuclear explosions can severely affect natural (and anthropogenic) systems. Adding a major disturbance to the intrinsic uncertainty and unpredictability of these systems (Battisti et al., 2016). Any nuclear explosion can trigger ecological consequences far beyond the site where it occurs. Nuclear weapons can release massive radiation with total burdens of radionuclides amounting to millions of curies of strontium, cesium, plutonium, and carbon (Leaning, 2000; Pereira et al., 2022). Those consequences are long-lasting, affect ecosystem structure and function, lead to decline and local extinctions, severely hamper life on Earth, and reduce opportunities for humans to sustain our civilization (Leaning, 2000; Burkitbayev et al., 2011).

A nuclear bomb detonation spreading radiation causes direct physical effects to all life forms, including multiple species mortalities, mutations (Schmitz-Feuerhake et al., 2016), and impairment of species’ capacity to continue reproducing and playing their ecological roles in nature. Abiotic elements and nutrient cycles will suffer severe radiation contamination and cascading effects on terrestrial and marine life (Paraskevi et al., 2021). Atmospheric dynamics, freshwater resources, underground water, and ocean currents can move particles containing radioactive substances far beyond the point of explosion. Their contamination can last hundreds or even thousands of years (Burkitbayev et al., 2011).

While there has rightly been a focus on the tragic consequences of the ongoing Russian-Ukrainian conflict on the civilian population of Ukraine and its broader implications for geopolitics, the world economy, food security, and human lives, the impacts on ecosystem services have been largely overlooked. We need to recognize urgently the immediate effects of the war on air quality, biodiversity loss due to deforestation, wildfires, habitat loss, and their effects on water resources, soils, and landscape morphology. These impacts would increase significantly in the event of an accidental or deliberate release of radiation (Balonov, 2019; Dombrovski et al., 2022).

Beyond the immediate devastating effects of a nuclear blast, the impact of a nuclear plume, depending on its magnitude, is to obstruct solar radiation, altering climate locally, regionally, and potentially globally. Increased UV radiation, less available atmospheric oxygen, and lower atmospheric temperature will affect plant primary productivity, causing a decline in crop production in the area affected by the plume (Tinus and Roddy, 1990; Nakanishi and Tanoi, 2016). Food security globally could be affected, with more significant plumes, compounding the effects already seen from the restrictions on food exports from Ukraine. Food chains may be contaminated in areas affected by the plume, making any agricultural products unfit for human consumption.

Biodiversity loss can be massive in places where nuclear bombs explode. Large fires can also extend the damage and spread radioactive particles beyond the explosion site, leading to soil erosion and nutrient depletion (Tinus and Roddy, 1990; Gudkov et al., 2011). Nuclear explosions can potentially destroy forests, wetlands, and biodiversity hotspots. Ecosystem services such as pollination would be affected by species extinctions (Møller et al., 2012; Nakanishi and Tanoi, 2016). Multiple nuclear explosions could accelerate the demise of many species already threatened with extinction because of climate change and other anthropogenic causes. Endemic species could be lost as the radioactivity can spread over hundreds of square kilometers, potentially eliminating entire populations of endangered animals and plants. The 1986 explosion of the Chernobyl nuclear reactor and the subsequent open reactor core fire significantly contaminated more than 100,000 km2. Radioactive dust from the site was identified throughout most of Europe (except for the Iberian Peninsula).

Despite much data about the effects of radiation exposure from bomb detonation sites or nuclear accidents such as Chernobyl, the public and decision-makers are generally unaware of the long-lasting consequences for whole ecosystems. The Chernobyl Forum (Balonov, 2007) summarized the effects of immediate and middle-term radioisotope exposure. The report concluded that long-lasting bioaccumulation pervaded at all trophic levels. The radionuclide fallout could reach regions far beyond the detonation site with a severe nuclear exchange. Earth’s carrying capacity to sustain life could be seriously hampered, if not crippled. Contrafactual results suggest that following the Chernobyl accident, biodiversity boomed after a few decades in the surrounding area (Møller and Mousseau, 2011; Deryabina et al., 2015). However, as that accident occurred at a single site, it cannot be used as an argument to suggest that the impact of multiple nuclear bomb detonations will be minimal. The cumulative effect of nuclear bombs exploding in different locations would have an additive effect with devastating consequences for multi-taxa species abundance and richness, a decline in species recruitment, and artificially changing species composition in communities affected by radiation (Balonov, 2007).

All these cascading effects could directly hamper human survival and living conditions as we know them. The Chernobyl explosion, the Fukushima disaster, and other radiation leaks may have misled decision-makers to underestimate the grave consequences of a nuclear war, even on a limited basis. Global food web disruption, abrupt changes in climate caused by a nuclear winter, and radioactive air, water, and soil pollution could result in the deaths of many people. The direct consequences of a nuclear explosion will be widespread hunger, radiation toxicity, and large areas of uninhabitable ecosystems (Balonov, 2007; Burkitbayev et al., 2011). A “tactical nuclear war” could end the Anthropocene era by moving Earth far from the living boundaries that make the planet habitable for humans and many known species.

In essence, what humanity has failed to recognize, thereby causing extensive damage to the planet, is the value of all life on Earth. All humans must stand together to prevent a catastrophic nuclear event.
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Breeding success is an important factor determining fecundity with nest predation being the main factor limiting avian breeding success. Understanding of nest predation and its influencing factors are highly significant to explore the dynamics of bird populations and developing appropriate conservation strategies. In two breeding seasons of the year 2020 and 2021, natural nests of the red junglefowl (Gallus gallus jabouillei) were systematically searched and monitored using infrared camera, in two nature reserves (Datian and Bangxi) of tropical Hainan island, China. Results showed that breeding season of the red junglefowl is mainly from March to July, with April being the breeding peak. The clutch size was 5.15 ± 1.28 (n = 13), and nesting success of natural nests was 31.2%, with nest predation accounting for 45.4% of nest failure. Artificial nest experiments showed that predation rates of artificial nests were 25% (Datian, 2020), 6.67% (Datian, 2021), and 0% (Bangxi, 2020). Rodents, reptiles, and coucals are the main nest predators of red junglefowls, while activities of Hainan Eld’s deers (Panolia siamensis) may interfere with the reproduction of red junglefowls. We suggest that the conservation management policies should consider the impacts on junglefowls’ breeding success when reconstructing the suitable habitat of the Hainan Eld’s deer.
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 artificial nest, breeding success, Gallus gallus jabouillei, infrared camera, nest predation


Introduction

The study of reproductive biology and the estimation of nest survival rates are critical to understanding avian life history (Martin, 2004; Stutchbury and Morton, 2008, 2023). Life history traits related to reproduction, such as clutch size, parental care, chick development, and survival rate, can provide insights for solving problems related to the assessment of population status and conservation (Martin, 2002, 2008; Martin et al., 2017). Most recent studies on reproductive biology have focused on northern temperate zone birds (Martin, 2004; Lloyd et al., 2014; Xiao et al., 2017), while birds in other regions, especially tropical birds, have been relatively less studied (Xiao et al., 2017). The main reason may be that tropical birds are relatively difficult to monitor (Martin, 1996; Jiang et al., 2017; McCullough and Londoño, 2017). Studies have shown that the reproductive strategies of birds in different regions are different mainly due to the differences in the breeding habitats of birds and their nest predation rates (Martin, 1996). Compared with temperate birds, tropical birds are characterized by a longer breeding season, smaller clutch size, longer brooding, and hatching periods (Martin, 1996; Lloyd et al., 2014). Therefore, expanding the understanding of the life history of tropical birds can help us better understand the global trend of life history strategies (Ricklefs and Wikelski, 2002; Slevin et al., 2020).

Nest predation is a major factor limiting the success of bird reproduction and affects the life history and population dynamics of birds (Reidy and Thompson, 2012; Thompson and Ribic, 2012; Ibáñez-Álamo et al., 2015; Chen et al., 2020). Especially for ground-nesting birds, nest predation has become one of the most critical factors affecting their reproductive performance and population growth (Sanders and Maloney, 2002; MacDonald and Bolton, 2008; Pedersen et al., 2011; Melville et al., 2014). Based on this, understanding predation on birds and its influencing factors is of great significance for studying bird population dynamics and proposing conservation strategies (Martin, 1993; Chalfoun et al., 2002; Seibold et al., 2013; Chen et al., 2020).

The red junglefowl (Gallus gallus) belong to the genus Gallus of the pheasant family (Phasianidae) in the order Galliformes and is a ground-active bird (Zheng, 2022). According to the differences in their distribution range and morphological characteristics, the world’s red junglefowl can be divided into five subspecies, all of which are distributed in southern Asia (Johnsgard, 1999; del Hoyo et al., 2001). There are two subspecies in China, the southern Yunnan subspecies (G. g. spadiceus) and the Hainan subspecies (Gallus gallus jabouillei; Zheng, 2022).

In this study, we searched and monitored the natural nests of red junglefowls, the Hainan subspecies, in Datian and Bangxi Nature Reserves, tropical Hainan Island, China, using infrared cameras. Considering that the number of natural nests of Galliformes birds is limited and nest sites are relatively difficult to find (Luo et al., 2017), the use of artificial nests for simulation studies can not only reduce human interference on hatching in the wild but also has the advantage of ease of use, and can provide sufficient samples for research (Martin, 1987; Major and Kendal, 1996; Wilson et al., 1998; Zanette and Jenkins, 2000; McDonald et al., 2009; Melville et al., 2014; Luo et al., 2017), we carried out artificial nest experiments in the study area to compare the survival rates and potential predators of natural nests and artificial nests.



Materials and methods


Study area

This study was conducted in Datian and Bangxi Nature Reserves. The Hainan Datian National Nature Reserve (19°05′-17′ N, 108°47′-49′ E, with 30–80 m in elevation and 1,310 ha in total area) is located in Dongfang city, Hainan Province, with the Hainan Eld’s deer and its habitat being the main target for protection. Bangxi Provincial Nature Reserve (19°22′-24′ N, 109°05′-06′ E, with an elevation of 17–80 m and a total area of 361.8 ha) is located in Bangxi town, northwest of Baisha County, Hainan Province, with the Hainan Eld’s deer and its habitat also being the main target for protection.



Monitoring of natural nests

In 2020 and 2021, we carried out a search for the natural nests of red junglefowls following Conkling et al. (2012). The search was divided between two groups. The first group consisted of forest rangers in the reserve, who searched for nests during daily routine patrols; the second group consisted of researchers who used the behavioral observation and systematic search technology of adult birds and monitored them at 06:00 ~ 09:00 and 16:00 ~ 19:00 every day. Once the nest was found, we used a GPS device (eTrex 32x, Garmin) to mark its location and recorded the status of the female (brooding or flew away) and of the nest (building, hatched, brooded, or abandoned). To avoid interference, we used a telescope to observe the nest every 3–5 days. If at least one egg in the nest successfully hatched, we considered the reproduction to be successful; if all the eggs were not hatched or were destroyed, we considered the reproduction to be a failure (Visco and Sherry, 2015).

In addition, an infrared camera was also aimed at each breeding nest to accurately identify predators and assess the fate of the nests. To avoid abandonment by parent birds due to human interference, the infrared cameras were installed in the incubation period (DeGregorio et al., 2016). We usually adopted the method of using local materials to fix the camera to the tree trunk at 1–1.5 m away from the nest; for situations in which we were unable to fix the camera to a tree trunk, we used the method of piling objects to set up the camera and disguise it appropriately. The infrared camera was set to record continuously throughout the day, and the shooting mode was set to “photograph + video.” Each time the camera was triggered, it shot three photos and 15 s of video, and the trigger sensitivity was set to “medium” (Xiao et al., 2014). After the nest was preyed upon, we reviewed the camera records to identify the type of predator and recorded the time of predation. For predation events in which the predators were not recorded due to camera failure or other reasons, we speculated on the identity of the predators based on the status of the nests after the predation event occurred because some predators will leave evidence behind. For example, rodents usually leave behind eggshell fragments, while some reptiles prey on nests without leaving any traces (Klug et al., 2010).

After breeding, we recorded and measured the following nest site parameters: (1) nest size (long and short diameters); (2) nest depth; (3) nest materials; (4) distance from nest to the nearest water source; and (5) shortest distance from the nest to the road. For the natural nests in which reproduction failed, the following parameters were recorded and measured: (1) clutch size; (2) egg size; and (3) weight of the eggs. We used a tape measure which ranging from 0 to 500 cm to measure the nest size, nest depth, distance from the nest to the nearest water source, and shortest distance from the nest to the road. For indicators that exceeded the measuring range of the tape measure, we used the method of walking estimation. Eggs were measured using a digital Vernier caliper; the egg size measurement was accurate to 0.01 mm. The egg weight measurement was accurate to 0.01 g.



Artificial nest experiments

During the breeding season in 2020, we conducted artificial nest experiments in Datian (6–25 May 2020) and Bangxi (7–25 May 2020). The location for setting up the artificial nests was selected in the same area where natural nests of red junglefowl were found in a previous study (Yuan, 2009) or was determined according to the characteristics of the site of the natural nests (Yuan et al., 2009a). Artificial nests were constructed by imitating the structure of natural nests, which are shallow pits, and using dry leaves, twigs, and feathers as nest materials. Two eggs of domesticated chickens that were similar in size and color to those of wild red junglefowl were placed in each artificial nest. Two groups of experiments were set up at each study site (the distribution of artificial nests is shown in Figures 1, 2). The first group consisted of 10 nests for the non-covered group (infrared camera), and the second group consisted of 10 nests, with dry leaves used to cover the experimental eggs. The artificial nest incubation period was set as 19 days, which similar to its natural incubation period (Yuan, 2009). The artificial nests were inspected every 6 days for a total of three times, on the 7th day, 13th day, and 19th day after nest set up (Dinsmore et al., 2002). In each inspection, the artificial nest was photographed, and the nest number was recorded. If there were two eggs or one egg in the artificial nest, the nest was inspected again the next time (fully covered nests were covered with leaves again after the inspection); if the two eggs were preyed on or disappeared, the results were recorded immediately after taking pictures, and this signified the end of the experiment. The inspection results were divided into: (1) two eggs intact; (2) one egg intact, one egg preyed on (with eggshell or predation traces); (3) one egg intact, one egg missing (no traces); (4) two eggs preyed on (with eggshell or predation traces); (5) two eggs missing; and (6) experimental eggs were moved by unknown animals.

[image: Figure 1]

FIGURE 1
 Distribution of artificial nests in Datian National Nature Reserve, Hainan, in 2020.
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FIGURE 2
 Distribution of artificial nests in Bangxi Provincial Nature Reserve, Hainan, in 2020.


During the breeding season in 2021, we conducted artificial nest experiments in Datian (11–29 March 2021). Similarly, we set up two sets of experiments, with 15 nests in each group (the distribution of artificial nests is shown in Figure 3). In the non-covered group, every nest was deployed together with an infrared camera, and only some of the nests (three totals) in the fully covered group were deployed together with a camera. The specific operations and methods were the same as described above.

[image: Figure 3]

FIGURE 3
 Distribution of artificial nests in Datian National Nature Reserve, Hainan, in 2021.


To reduce the influence of researchers on the experiment, human interference should be minimized during artificial nest inspection, for example, to leave as little footprint as possible around the artificial nest and to avoid the behavior that may affect the nest, such as touching the experimental eggs (Driscoll et al., 2005). In the wild, if the nest is disturbed or the eggs in the nest are preyed upon, the female chickens will abandon the nest (Yuan, 2009). Therefore, if the eggs in the artificial nest are damaged, removed or disappeared, we will not replace the new experimental eggs (Nour et al., 1993) and define the nest as a reproductive failure (Noske et al., 2008). Otherwise, the nest is considered a successful breeding nest.

Species identification was performed based on photos or videos taken by the infrared cameras. When identifying species, we mainly referred to the “Chinese Wildlife Manual of Mammals” (Smith and Xie, 2009), “A Checklist on the Classification and Distribution of the Birds of China (third Edition)” (Zheng, 2022) and the “The CNG field guide to the birds of China” (Liu and Chen, 2021). To calculate the number of animals captured by the cameras, when an animal was photographed by the same camera more than 30-min apart, this was considered an independent capture and an individual animal (O’Brien et al., 2003; Rovero et al., 2014).




Results


Natural nests

In the breeding season of 2020 and 2021, we found 16 natural nests of red junglefowl at the two study sites (Table 1; Figure 4). There were 12 nests in Datian and four nests in Bangxi (Figures 5A–D). Among the 16 nests found, infrared cameras were installed in 13 nests for monitoring (Figure 6). In total, five out of the 16 nests reproduced successfully (Figures 7A–C), and the reproductive success rate was 31.25%. Among them, five nests were preyed upon and nest predation accounted for 45.45% of nest failures. Nests 008 and 013 were both visited by the Hainan Eld’s deer during the hatching period (Supplementary Videos S1, S2; Figure 8); the female bird in nest 008 abandoned it (one chick hatched successfully), and the eggs were preyed upon after the female bird abandoned nest 013.



TABLE 1 Active nests of red junglefowls (Gallus gallus jabouillei) in Datian and Bangxi Nature Reserves in 2020 and 2021.
[image: Table1]
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FIGURE 4
 Distribution of natural nests of red junglefowls (Gallus gallus jabouillei).


[image: Figure 5]

FIGURE 5
 (A,B) Natural nests of red junglefowl (Gallus gallus jabouillei) found in the study sites (females brooding), (C,D) Natural nests of red junglefowl (Gallus gallus jabouillei) found in the study sites (female birds flew away).


[image: Figure 6]

FIGURE 6
 Infrared camera monitoring of a natural nest of red junglefowl (Gallus gallus jabouillei).


[image: Figure 7]

FIGURE 7
 (A,B) Natural nests with successful reproduction; (C) Natural nests that failed to reproduce.


[image: Figure 8]

FIGURE 8
 A Hainan Eld’s deer visited the natural nest (the date was set incorrectly).


The clutch size of red junglefowls was 4.50 ± 1.83 (n = 16). The egg parameters were showed as follows: weight: 24.26 ± 0.60 g, long diameter: 43.88 ± 1.18 mm, and short diameter: 33.45 ± 0.52 mm, n = 9. The nest parameters were showed as follows: long diameter: 15.51 ± 4.21 cm, short diameter: 13.00 ± 4.23 cm, and depth: 3.55 ± 0.80 cm, n = 8. The distance between the natural nest and the nearest water source was 56.18 ± 57.58 m (n = 11), and the closest distance between the natural nest and the road was 12.65 ± 27.40 m (n = 13). The number of nests found was the highest in April, with 11 nests, accounting for 68.75% of the total number of nests, followed by May, with two nests, accounting for 15.38%. Only one nest was found in July.



Artificial nest experiments and potential nest predators

Among the 20 nests in Datian, five nests were preyed upon, and the predation rate was 25%. In one of the nests, the experimental eggs were moved (Figure 9A). However, no predation occurred in the Bangxi. Vertebrates were the main cause of nest predation in the experiments, including two bird incidents (coucals) and two rodent incidents (Figure 9B). There were similarities in the types and numbers of animals that visited the artificial nests at the two study sites. Among them, Hainan Eld’s deers (Figure 10A) and several small rodents (Rattus spp.; Figure 10B) were photographed at the two experimental sites. Wild boars (Sus scrofa; Figure 11A), greater coucals (Centropus sinensis; Figure 11B), and lesser coucals (Centropus bengalensis; Figure 11C) were only photographed in Datian, while red-bellied squirrels (Callosciurus erythraeus; Figure 11D) and domestic chicken (Gallus gallus domesticus; Figure 12) were only photographed in Bangxi.

[image: Figure 9]

FIGURE 9
 (A) Experimental eggs were moved by unknown animals; (B) Rodent predation of experimental eggs.


[image: Figure 10]

FIGURE 10
 (A) Hainan Eld’s deer near the artificial nest; (B) Small rodent near the artificial nest.


[image: Figure 11]

FIGURE 11
 (A) Wild boar near the artificial nest, (B) Greater coucal near the artificial nest, (C) Lesser coucal near the artificial nest, and (D) Red-bellied squirrel near the artificial nest.


[image: Figure 12]

FIGURE 12
 Domestic chicken near the artificial nest.


Among 30 artificial nests set up in Datian in March 2021, two nests that were preyed on (Figure 9B), and experimental eggs in two nests were moved by unknown animals. However, they were not preyed upon. The predation event was not captured by the infrared camera, but animals that appeared near the artificial nests were recorded. These animals were the red junglefowl (Figure 13), black-throated laughingthrush (Garrulax chinensis monachus), wild boar, Hainan muntjac (Muntiacus nigripes; Figure 14), leopard (Prionailurus bengalensis alleni; Figure 15), and several small rodents.

[image: Figure 13]

FIGURE 13
 Red junglefowl near the artificial nest.


[image: Figure 14]

FIGURE 14
 Hainan muntjac near the artificial nest.


[image: Figure 15]

FIGURE 15
 Leopard near the artificial nest.





Discussion

In the two breeding seasons of 2020 and 2021, we found a total of 16 natural nests and nesting success of the red junglefowl was 31.25%, which was higher than the result observed by Yuan (2009) in the same area (18.2%). However, the rate of nest abandonment was as high as 68.75%, higher than the results of previous studies (55.6%; Yuan, 2009).

In a study of the Indian subspecies, it was found that after the first reproductive failure, red junglefowls would choose to reproduce a second time (Collias and Collias, 1967). Similarly, the reproduction record of the southern Yunnan subspecies also mentions that it may reproduce twice a year (Zheng et al., 1978). It is likely that the Hainan subspecies may reproduce multiple times to improve the reproductive success, which needs further confirmation in the wild. The clutch size in our study areas was similar to that of the Indian subspecies (Anwar et al., 2016) but was significantly lower than that of the southern Yunnan subspecies (Zheng et al., 1978). In southern Yunnan, female and male birds brood and hatch eggs together (Zheng et al., 1978). Yuan (2009) observed that in the field, both male and female birds brood nestlings, while we found that only female birds were responsible for brooding in the wild.

We found that the Hainan subspecies was breeding from March to July, and that the number of broods was highest in April. It is thus speculated that the breeding peak in the Hainan subspecies is April. This is consistent with the results of Yuan (2009), but there are differences between the Indian subspecies from different areas and the southern Yunnan subspecies. For example, in India, broiler flocks were found to breed in January–October, and the breeding peak period was March–May (Ali and Ripley, 1987; Anwar et al., 2016); in the Malay Peninsula region, the breeding time is from December to May of the following year, and the breeding peak is from January to February (del Hoyo et al., 2001). In areas with sufficient food, red junglefowl can even breed year-round (Arshad and Zakaria, 1999). In southern Yunnan, the breeding time is from February to October (Zheng et al., 1978). Tropical birds have different life history traits (Stutchbury and Morton, 2023). Anyway, we only carried out the breeding monitoring of the red junglefowl for 2 years, which may be the reason that the breeding season in Hainan subspecies differs from other subspecies. There should be a long-term monitoring to the subspecies in the wild.

Studies have found that red junglefowl tend to choose areas with well-developed herbs and patches for nesting (Collias and Collias, 1967). However, some studies have suggested that deciduous trees and bamboo forests with scattered patches are the favorite nesting habitats of red junglefowls during the breeding season (Johnson, 1963). In this study, it was observed that female birds mostly nested on patrol roads or in open areas near the edge of forests with fewer deciduous leaves. This reflects the geographical differences in the selection of nesting sites among different subspecies. The edge effect hypothesis indicates that because the edge area of the habitat has more abundant vegetation resources and a more complex environment, the predation pressure is usually greater than that of the central area (Ewers and Didham, 2007). However, studies on the Reeves’s pheasant (Syrmaticus reevesii) do not support this hypothesis, as this species tends to nest in marginal areas with more human interference (Luo et al., 2017). Our results are consistent with that study, as the female birds of the Hainan subspecies chose to nest on patrol roads or at the edge of the forest. It is possible that human activities in these areas are more frequent, and some predators are forced to enter the central area where there are fewer disturbances, thereby reducing predation by natural enemies. Nest predation is the main factor in the failure of pheasant reproduction (Lu and Zheng, 2001; Sherry et al., 2015). In the predation events we observed, eggshells were either left in the nest or no trace of the predator was left after the eggs were preyed upon. Therefore, we speculated that rodents and reptiles may be the main nest predators. This is because rodents usually leave eggshells or debris behind after predation, and some reptiles leave no traces when preying on nests (Klug et al., 2010). In addition, in the study area, small carnivorous mammals, such as leopards, falcons, and raptors are the main natural enemies of the subspecies (Zheng et al., 1978; Evans et al., 1993), and snakes are also the main predators of red junglefowls (Anwar et al., 2016).

In our study, although artificial nests were set up in the same study area, their predation rate was lower than that of natural nests, and the types of predators were also different. This result is consistent with the results of a study of the reed parrotbill (Paradoxornis heudei) (Chen et al., 2020). This is different from the results of other studies. For example, snakes were found to be the main predators of natural nests, while mammals were found to be the main predators of artificial nests (Thompson and Burhans, 2003; Chen et al., 2020).

The use of infrared camera technology to monitor artificial nests is ideal for the determination of nest predator species (Anthony et al., 2006; Kross et al., 2013). In this study, the infrared cameras captured a number of wild animals, such as greater coucals, lesser coucals, and Hainan Eld’s deers. Among them, the greater coucal was the main predator of the experimental eggs, and the feeding activity of Hainan Eld’s deers caused female birds to abandon nests. Studies have shown that wild boars can change the terrain by overturn large areas of soil, thereby changing the vegetation structure and composition of their habitats (Singer et al., 1984; Lacki and Lancia, 1986), which is particularly harmful to ground-nesting birds (Barrios-Garcia and Ballari, 2012; Sanders et al., 2020). Therefore, the wild boar may be an opportunistic predator of nests. A recent study has shown that gray squirrels (Sciurus carolinensis) are widely considered to be important predators of bird eggs and chicks (Broughton, 2020). We photographed red-bellied squirrels in the vicinity of artificial nests many times and speculate that the red-bellied squirrel is a potential nest predator. In addition, studies have found that bats are the main nest predators of tropical forest birds (Perrella et al., 2019). In our study, we did not find predation of eggs by bats. In follow-up work, we intend to carry out effective and continuous monitoring of breeding nests and clarify the antipredation strategies of red junglefowl.

In this study, the predation rates of artificial nests varied in Datian. The main reason is that the artificial nest experiments were done at the buffer zone in 2020, while at the core zone in 2021. The habitats in the two regions are significantly different, and so are the predation rates. The predation rate was 0% in Bangxi. There are two possible reasons. Firstly, our sample size is not large enough, secondly, there is a relative lack of potential predators for red junglefowl eggs. Although the survival rates of the artificial nests in the two study sites were higher than those of the natural nests. The possible reason is that the experiment was conducted in May 2020, while in March 2021, the birds had just started breeding, and most of them were in the hatching period in May. Most previous studies used the quadrat survey method (Johnson, 1963; Kalsi, 1992; Arshad and Zakaria, 2009; Yuan et al., 2009a,b) or radio tracking technology (Arshad and Zakaria, 2011) to investigate habitat selection and habitat utilization in red junglefowls. Satellite tracking technology is a tool to effectively track the small-scale movement of highly mobile and inaccessible species (Cagnacci et al., 2010; Coxen et al., 2017). The application of this technology to the study of ground-dwelling pheasants such as red junglefowl is very important for understanding how these birds use their habitat, the motivation for their movements, and the process of space utilization, to ultimately improve pheasant protection.



Conclusion

Red junglefowl are ground-nesting pheasants that are highly alert, which makes field research and tracking difficult (Arshad and Zakaria, 2011; Anwar et al., 2016). Human interference or direct observation of brooding parent birds may lead to abandonment of the nest and reproduction failure (Yuan, 2009). Therefore, there is limited information on the survival rate of red junglefowl nests. Protecting the habitat and reducing human disturbance will play a positive role in the growth of the red junglefowl population in our study areas. Datian and Bangxi are both protected areas with the main goal of protecting Hainan Eld’s deer. Burning grassland vegetation, thinning, plowing, and manual removal of waste can alleviate the degradation of Hainan Eld’s deer habitat quality (Fu et al., 2016, 2018). We suggest that the conservation area should take into account the impact on the reproduction of ground-dwelling pheasants when rebuilding or reconstructing the suitable habitat of Hainan Eld’s deer. In addition, domestic chickens were photographed in the Bangxi Nature Reserve, indicating the possibility of hybridization between wild red junglefowl and domestic chickens. It is recommended that free-range domestic chickens be banned within protected areas to avoid the problem of genetic contamination of wild red junglefowls.
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Introduction: The grasslands in the Nature Reserve of Ganshenling, in the south of Hainan Island, were first formed after deforestation disturbance before a natural restoration of shrubs and secondary forests. However, the stages of grassland and shrubs in some parts of Ganshenling regions could not be naturally restored to secondary forests. In addition, the forest form of the secondary forest after 40 years (40a) of succession was similar to that of the secondary forest of 60 years (60a). However, it was not known whether the microorganisms recovered to the level of the secondary forest of 60a. Arbuscular mycorrhizal fungi (AMF) are plant root symbionts that can improve the nitrogen and phosphorus absorption of plants and play a key role in secondary forest succession. An understanding of the essential role of soil AMF in secondary forest succession of tropical rainforest in Ganshenling regions is still limited.

Methods: Therefore, the soil of 0–10 cm was collected with the help of a 5-point sampling method in grassland, shrubs, and second tropical lowland rainforest of 40a and 60a. We studied community changes in AMF with the succession and explored the impacts of soil physicochemical properties on soil AMF.

Results: Our findings were as follows: (1) Different successional stages showed divergent effects on soil AMF communities. (2) After 40a recovery, the alpha-diversity indices of AMF recovered to the level of secondary forest of 60a, but the similarity of soil AMF communities only recovered to 25.3%. (3) Species richness of common species, rare species, and all the species of AMF showed a significantly positive correlation with soil nitrogen. (4) OTU10; OTU6, OTU9, and OTU141; OTU3 and OTU38; and OTU2, OTU15, OTU23, and OTU197 were significantly unique AMF for grasslands, shrubs, and secondary forests of 40a and 60a, respectively. (5) The phylogenetic tree and the heatmap of AMF showed that the OTUs in grasslands and shrubs were in contrast to the OTUs in secondary forests of 40a and 60a.

Discussion: We concluded that the succession of a secondary forest after deforestation disturbance was probably limited by its AMF community.

KEYWORDS
arbuscular mycorrhizal fungi, succession stages, soil physicochemical properties, tropical lowland rainforest, Nature Reserve of Ganshenling


1. Introduction

Grasslands (G) and shrubs (S) are formed after deforestation, and are restored to the tropical rainforest by nature (Szefer et al., 2020; Liu et al., 2021). However, the G and S in the Natural Reserve of Ganshenling in the south of Hainan Island do not lead to succession for a long time. This leads to a decline in biomass and degradation in soil fertility, the reason remains unknown.

An estimated 90% of terrestrial plants are associated with mycorrhizal fungi, 80% of these being arbuscular mycorrhizal fungi (AMF), including in tropical lowland rainforests (Haug et al., 2021). AMF play critical roles in facilitating the supply of immobile nutrients (especially nitrogen and phosphorus) and water to the host plants in exchange for photosynthates (Delavaux et al., 2017; Nie et al., 2022). They are sensitive to vegetation as the nature of vegetation along the successional stages of an ecosystem can shape the associated AMF community and vice versa (Asmelash et al., 2016).

A comprehensive understanding of the physicochemical properties of the interactions of soil AMF with different vegetation types helps in understanding the stability and resilience of the tropical rainforest ecosystem. Numerous studies were conducted to investigate the effect of the composition and diversity of vegetation on soil AMF (Šmilauer et al., 2021; Zhang et al., 2021). Some previous studies showed that soil AMF significantly increased along the successional stages in a tropical rainforest ecosystem (Cowan et al., 2022). In contrast to early successional species, late-successional plant species were highly dependent on AMF (Koziol and Bever, 2015). In addition, the changes in AMF could mediate plant species turnover among successional stages (Koziol and Bever, 2016). However, other studies showed that the soil AMF had no response to the diversity and productivity of vegetation (Bauer et al., 2015). In pasture and secondary natural succession, the biomass and catabolic diversity of soil microbial communities were regulated by soil organic carbon (SOC) and soil nitrogen (SN) (Iyyemperumal et al., 2007; Zhang et al., 2022).

Recently, various studies focused on the changes in soil AMF across various successional stages in temperate and subtropical forest ecosystems. However, less information is available on tropical lowland forest ecosystems. While the importance of AMF for a tropical secondary forest successional stage is well understood (Vasconcellos et al., 2013; Reyes et al., 2019), less is known about the potential impacts of AMF on G and S. Furthermore, the possibility that a limited presence of AMF species could influence secondary forest regrowth dynamics is also less explored (Heilmann-Clausen et al., 2015).

The National Nature Reserve of Ganshenling offers a typical ecosystem that comprises G, S, and secondary forests. Its succession follows a vegetation transect sequence of G, S, the secondary forest of 40a (SF40), and the secondary forest of 60a (SF60). Our geographical study sites differ from those of most other studies on AMF communities in tropical vegetation with their coverage of G and S (Zangaro et al., 2012; Leal et al., 2013). Long-term non-succession of G and S has reduced vegetation diversity and biomass recovery (Šmilauer et al., 2020). This is representative of the future of many more recent G and S regions throughout the tropical lowland rainforests. In this study, soil AMF composition in different successional stages was investigated. We analyzed the influence of topsoil fertility (acidity and nutrient availability) on soil AMF.

The specific objectives of this study were as follows: (1) to explore the characteristics of soil AMF community along the successional stages and (2) to identify the factors that drive the changes in soil AMF community along these successional stages.



2. Materials and methods


2.1. Study area

This study was carried out at the Natural Reserve of Ganshenling (109°37'−109°41'E, 18°19'−18°24'N), which has a typical tropical lowland rainforest with a tropical marine monsoon climate. The annual average precipitation and temperature are 1,800 mm and 25.4°C, respectively. The dominant plant species in this area include Hopea reticulata, Vatica mangachapoi, Koilodepas hainanense, Rhodomyrtus tomentosa, Melastoma sanguineum, Scleria elata, and Blechnum orientale (Qi et al., 2014; Mao et al., 2021).



2.2. Sampling collection and environmental variables

Four successional stages in the Natural Reserve of Ganshenling were selected: (1) G (109°39'−109°41'E, 18°21'−18°23'N); (2) S (109°39'−109°41'E, 18°22'−18°23'N); (3) SF40 (109°39'−109°40'E, 18°21'−18°23'N); and (4) SF60 (109°39'−109°40'E, 18°22'−18°23'N).

From each successional stage, five soil samples of 0–10 cm depth were collected by following the 5-point sampling method from five plots of 900 m2 (30 m × 30 m) in August 2019 (Wang et al., 2020). These samples were divided into two groups: one was stored at −80°C until the measurement of soil AMF communities; the other group was used to measure soil physicochemical properties. These soil samples were subsequently air-dried. A 2-mm screen sieve was used to sieve air-dried soil samples for analyzing soil pH, SOC, SN, and soil phosphorus (SP). The SOC was measured with the help of the H2SO4-K2Cr2O7 oxidation method (Bisutti et al., 2004). SN was measured using the Micro-Kjeldahl method (Bremner, 1960), and the available nitrogen was estimated with the help of a micro-diffusion method (Mulvaney and Khan, 2001). SP was measured using an inductively coupled plasma atomic-emission spectrometer (Thermo Jarrell Ash Corporation, Franklin, USA) and HNO3-HClO4 soil solution (McDowell and Sharpley, 2001).



2.3. DNA extraction and amplicon sequencing

Soil DNA was extracted from 250 mg soil samples with the help of a MO-BIO PowerSoil DNA Isolation Kit (MO BIO Laboratories, Carlsbad, CA, USA). DNA was analyzed and quantified with the help of a NanoDrop ND-2000 Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). A standard concentration of AMF was used for PCR amplification.

For PCR amplification, AMV4.5NF (5′-AAGCTCGTAGTTGAATTTCG-3′) and AMDGR (5′-CCCAACTATCCCTATTAATCAT-3′) were used as primers. An AMF library was constructed using two-step PCR amplification. Target fragments were amplified using these primers. Then, an Illumina adapter sequence, a primer pad, and a barcode were added to both the forward and reverse target fragments. A 50-μL reaction volume was used for PCR of each sample, comprising 10 μL of 5x buffer, 1 μL of dNTP (10 m/M), 1 U of Phusion High-Fidelity DNA Polymerase (New England Biolabs, Ipswich, MA, USA), 1 μL of forward and reverse phasing primers, and 3–10 ng of target sequencing. The reaction volume was supplemented with 50 μL of RNase-free ultrapure water. An ABI9700 PCR amplifier (Applied Biosystems, Waltham, MA, USA) was used to amplify DNA. The holding temperature was set at 10°C. PCR products were run on an agarose gel and PCR products were purified from the gel with the help of an AxyPrep DNA Gel Recovery Kit (Axygen Biosciences, Corning, NY, USA) and pooled. FTC-3000TM real-time PCR instrument (Richmond Biotechnology Inc., Richmond Hill, Ontario, Canada) was used to quantify purified DNA and mixed it to an equal molar ratio to perform the second PCR amplification, for which the reaction volume changed to 40 μl: 5x buffer (8 μl), dNTP (1μL, 10 m/M), Phusion High-Fidelity DNA Polymerase (0,8 U, New England Biolabs, Ipswich, MA, USA), both forward and reverse primers (1 μl, 5 μmol/L), respectively, and DNA template (5 μl, 100 μg/ml) and RNase-free ultrapure water (5 μl).

Barcodes were used to identify sequences of different samples in a parallel sequencing test. The sequence with a complete barcode was regarded as valid and extracted to a dataset stored in the FASTQ format. Quality assurance and splicing were performed on such valid sequences and included the following steps: (1) Poorly overlapped and low-quality sequences (quality score <20 and window size <5) were removed with the help of the Trimmomatic program (Bolger et al., 2014); (2) paired reads were merged into a sequence, where the overlap of PEreads (>10 bp) was evaluated with the help of the FLASH program (Magoc and Salzberg, 2011); and (3) merged sequences were screened according to an error ratio (<0.2). Mothur V.1.39.5 was used for quality control of merged reads by removing sequences that were ambiguous, homologous, or chimeras generated during PCR amplification (Schloss et al., 2009). Further analysis of information on species and clustering of operational taxonomic units (OTUs) was based on the clean tags. OTUs were selected with the help of UPARSE with a cutoff of 97% similarity (Edgar, 2013). The dataset was screened for chimeric reads using UCHIME in a reference database mode (Edgar et al., 2011). Through USEARCH global, all sequences were compared to OTU representative sequences to obtain the OTU abundance table. The identity of OTU taxonomy was determined with BLAST (Ye et al., 2006) by comparing them to representative sequences in the MaarjAM database (Zhang et al., 2000; Opik et al., 2010). The taxonomy of an OTU was obtained for the species that had the highest similarity or identity with OTU representative sequences in the MaarjAM database. Some OTUs didnot contain any species information and were therefore marked as “Nomatch”. The library preparation and sequencing were performed by TinyGene Bio-Tech (Shanghai, China). Raw sequence data were submitted to NCBI's Sequence Read Archives (SRP399604).



2.4. Bioinformatics and environmental correlation analyses

We analyzed the overall AMF species richness and diversity (Shannon H' and Simpson indices) and equitability (Pielou J'). Following the classification proposed by Logares et al. (2014), we classified species' relative abundances within each successional stage as “dominant” (>1%), “common” (1–0.01%), and “rare” (<0.01%) (Galand et al., 2009).

OTUs that included an unknown genus and contained <5 sequences were not used for bioinformatics analysis. The species diversity was calculated in R package “vegan.” The principal coordinate analysis (PCoA) was performed using Bray–Curtis distances with 999 permutations with the help of R 4.2.2. The linear discriminant analysis effect size (LEfSe) and linear discriminant analysis (LDA) were performed with R 4.2.2 (Sirova et al., 2018; Nauta et al., 2020). The phylogenetic tree and heatmap of AMF were analyzed with the help of R 4.2.2.




3. Results


3.1. AMF community and Bray–Curtis similarity

Bray–Curtis-based PCoA showed that successional stages had different effects on AMF communities (Figure 1). The AMF communities clustered according to different successional stages, demonstrating that there were large differences between G and S, as well as between SF40 and SF60 (Figure 1).


[image: Figure 1]
FIGURE 1
 Principal coordinate analyses of Bray–Curtis distances of AMF. G: grasslands; S: shrubs; SF40: secondary forest of 40a; and SF60: secondary forest of 60a.


The PERMANOVAs of Bray–Curtis distances also revealed significant differences among the AMF communities at different successional stages (P = 0.001). Additionally, our beta-diversity results were not significant (P = 0.149), indicating that our groups had the same dispersions. This fact also confirmed that our PERMANOVA results were reliable. Successional stages had a significant effect on the overall AMF community, which contributed to 33.7% of the total variation (Figure 1).

To further elucidate the trend in recovery of the AMF communities during successional stages, the similarity of community composition at the OTU level between different successional stages and SF60 was calculated. There was an average Bray–Curtis similarity of 35.6% between all AMF communities and SF60. The average Bray–Curtis similarity of AMF community between the different successional stages and SF60 was 21.0% for G, 16.0% for S, and 25.3% for SF40, respectively (Figure 2). This suggested that there was a trend of increasing similarity of soil AMF communities from S and G to SF40 compared to SF60.


[image: Figure 2]
FIGURE 2
 Bray–Curtis similarity of AMF on the basis of OTUs between other successional stages and secondary forest of 60a. G: grasslands; S: shrubs; SF40: secondary forest of 40a; and SF60: secondary forest of 60a.




3.2. Phylogenetic diversity and composition of soil AMF community

The alpha-diversity indices that were based on phylogenetic species richness and phylogenetic diversity of soil AMF communities exhibited different trends (Supplementary Figure S1). AMF phylogenetic species richness and phylogenetic diversity of G were significantly lower than those of SF60 (P < 0.01). However, these parameters showed no significant differences between SF40 and SF60 (Supplementary Figure S1).

The dominant orders of AMF communities among all samples were Glomerales (42.8 ± 3.8%; means ± SD), followed by Paraglomerales (29.1 ± 5.1%), Archaeosporales (0.8 ± 0.3%), and Diversisporales (0.8 ± 0.2%). Together, these accounted for more than 73.5% of the total AMF sequences in all the samples (Supplementary Table S1). The relative abundance of Paraglomerales was significantly increased along the successional stages (Figure 3). Interestingly, the lowest relative abundances of Glomerales and Archaeosporales were found in SF40. However, these relative abundances had no significant differences among the successional stages (Figure 3; Supplementary Table S1). These findings indicated a partial recovery of AMF communities at the order levels (Paraglomerales increasing, while Glomerales and Archaeosporales were decreasing) through the 40a recovery after deforestation disturbance.


[image: Figure 3]
FIGURE 3
 The relative abundance of dominant AMF orders along successional stages. Error bars denote the standard deviation. A: Archaeosporales; D: Diversisporales; G: Glomerales; P: Paraglomerales; G: grassland; S: shrubs; SF40: secondary forest of 40a; and SF60: secondary forest of 60a. Different lowercase letters represent signicant differences along successional stages. Glomerales:a,a,a,a; Paraglomerales:b,b,a,ab; Archaeosporales:a,a,a,a; and Diversisporales:a,a,a,a.


The AMF were mainly distributed in the orders Glomerales (42.8% of the total AMF reads) and Paraglomerales (29.1% of the total AMF reads). The relative abundances of Glomerales were no significant differences among the successional stages (Figure 3). In addition, no significant changes were observed at the family or lower levels, except for OTU13, OTU15, OTU23, and OTU28 (Supplementary Table S1).



3.3. Relationship between AMF community composition and soil factors

SOC, SN, carbon/nitrogen ratio (C/N), and pH had significant differences among the successional stages (Supplementary Table S2). The species richness of common species, rare species, and all species of AMF exhibited a significantly positive relationship with SN (Figure 4). However, species richness of all species of AMF, species richness, Shannon H', Simpson, and Pielou J' indices of rare species of AMF showed a significantly negative relationship with C/N (Figure 4).


[image: Figure 4]
FIGURE 4
 The relationship between diversity indices of AMF and soil physicochemical properties. Y and R2 represent the diversity indices of AMF and the coefficient of determination for this regression equation, respectively. Diagrams of all species of AMF: (A, D); Diagrams of rare species of AMF: (B, E–H); Diagrams of common species of AMF: (C); TN, soil nitrogen; C/N, carbon/nitrogen ratio.




3.4. The LEfSe of AMF

The LEfSe of AMF at successional stages were OTU10 for G; OTU6, OTU9, and OTU141 for S; OTU3 and OTU38 for SF40; and OTU2, OTU15, OTU23, and OTU197 for SF60, respectively (Figure 5).


[image: Figure 5]
FIGURE 5
 The LEfSe of soil AMF communities along successional stages. G: grasslands; S: shrubs; SF40: secondary forest of 40a; and SF60: secondary forest of 60a.




3.5. The phylogenetic tree and heatmap of AMF

The most dominant orders of AMF communities among successional stages were Glomerales and Paraglomerales. The distribution of OTUs of G was similar to that of S, whereas this was in contrast to those of SF40 and SF60 (Figure 6).


[image: Figure 6]
FIGURE 6
 The phylogenetic tree and heatmap of soil AMF along successional stages, drawn on the basis of the top 30 OUTs. G: grasslands; S: shrubs; SF40: secondary forest of 40a; and SF60: secondary forest of 60a.





4. Discussion


4.1. The differences in AMF composition across successional stages

Significant differences were observed in AMF communities between G and S, as well as between SF40 and SF60. Previous studies demonstrated that changes in fungal composition occurred during field successions, where late-successional plant species were highly dependent on AMF as compared to the early-successional plant species, which were not observed in the study of Koziol and Bever (2015). As many the mid- and late-successional plant species were shown to have a high overall beneficial response to AMF, these species were also likely to be more sensitive to the presence of particular beneficial AMF in their environment (Maitra et al., 2021). The changes in AMF composition could mediate plant species turnover during successional periods, which could be particularly important for the establishment and subsequent dynamics of late-successional plants (Koziol and Bever, 2016). AMF have played an important role in secondary forest successions (Heilmann-Clausen et al., 2015). Differences in AMF species composition along the successional stages were also found in the eastern periphery of Amazonia (Reyes et al., 2019), which confirmed the results of Pereira et al. (2014) in Atlantic rainforest areas of Northeast Brazil and those of Leal et al. (2013) in western Amazonia.



4.2. The relationship between AMF and soil physicochemical properties

In this study, the SOC, SN, C/N, and pH showed significant differences with succession, and the species richness of common species, rare species, and all species of AMF indicated a significantly positive relationship with SN. Whereas, the species richness of all species of AMF showed a significantly negative relationship with C/N. Some previous studies reported that SOC and SN were increased along with proceeding successions (Allison et al., 2007; Eisenhauer et al., 2010). In addition, C/N in S was significantly lower than those of other successional stages (Xue et al., 2017). Both SOC and SN were increased along with the succession from G to other stages, which stimulated microbial metabolisms and changed bacterial and fungal community structure by increasing soil amino sugars (Shao et al., 2017). The C/N could significantly affect the structure of the soil microbial community and the nitrogen supply of plants (Waring et al., 2013).

The soil nutrient availability had been proven to be the key determinant that regulated the assembly of AMF communities (Johnson et al., 2015; Jiang et al., 2018) and vice versa (Rillig et al., 2015). The SN could directly drive the change in the AMF community in mixed roots (Shi et al., 2022). The change in SN indirectly regulated the species composition of the AMF community by driving plant species richness at both the whole-community scale and the individual plant species scale (Shi et al., 2022).




5. Conclusion

The changes in AMF along the successional stages were examined in this study. We found that successional stages had different effects on AMF communities. After 40a recovery, the alpha-diversity indices of AMF had recovered to the level of SF60, but the species of AMF had not recovered. The species richness of common species, rare species, and all species of AMF was found to be significantly positively associated with SN. The vegetation succession after deforestation was likely limited by the AMF community. Further research will need to be focused on exploring the effects of soil physicochemical properties on the AMF function diversity along the successional stages in tropical lowland rainforest ecosystems.
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Over various terrain types, natural forests exhibit tree size and biomass variation. We started long- term research that consists of forest vegetation surveys in the Dinghushan National Nature Reserve to comprehensively investigate productivity based on the structure and species composition of China’s forest communities. We grouped the trees into three categories, i.e., as large or mature (DBH > 30 cm), medium-sized or growing (DBH 10–30 cm), and small-sized or regenerating seedlings (DBH < 10 cm). Forest data observations, i.e., species DBH, height, and biomass components (trunk, leaves, branches, above-ground dry weight, and below-ground dry weight) were recorded by use of standard protocols. All recorded observations were statistically analyzed by use of SPSS version 25. To comprehend the connections between the many elements of forest bio-productivity, linear regression analysis was utilized. Total above-ground biomass was 34.19 ± 5.75Kg/tree, but varied results were obtained when the forest was clustered based on DBH. Large-sized trees contributed an average of 2400.54 ± 510.4 kg/tree (93.24%), while medium-sized trees contributed 171.61 ± 25.06 kg/tree, and the least was regenerating seedlings which contributed 3.013 ± 0.07 kg/tree. There were positive linear relationships for all life forms between biomass and DHB, as well as DBH and height. The evergreen broadleaved shrubs were shorter in height (3.06 ± 0.99 m) than palm-leaved life forms (19.29 ± 5.39 m). Height influenced biomass accumulation and hence C gain, where life forms with tall stands had higher biomass. Generalized biomass estimation without clustering based on life forms or size class underestimates biomass components and hence lower C stocks for most forests worldwide. It’s also crucial to remember that trees with big DBH have tall, broad, well-lit crowns, which raise the primary productivity of forests and increase carbon storage. Besides natural disturbance (Typhoon) and climate change, it could be interesting to understand the relationship between soil resources such as nutrient and soil moisture content. These are factors that have direct impact on growth and biomass accumulation.

KEYWORDS
 bio-productivity, forest biomass, life forms, diameter at breast height, broadleaved


1. Introduction

Comparative productivity and large-scale patterns of plant species richness have been described in parts of Asia (Guo, 1999; Shen et al., 2013; Wu et al., 2015), but more attempts have yet to be made to identify the mechanisms of such patterns. Forests are constantly in flux as they grow and vary in size, composition, structure, and health, as well as in response to climate shifts and oscillations (Shen et al., 2013; Maina and Li, 2021). Within natural forests and plantations, tree size and stock diversity can be noticed at any moment, especially over varied terrain (Weiner and Thomas, 1986; Maina and Li, 2021). Because of this temporal and spatial heterogeneity, it can be challenging to derive accurate estimates of forest carbon stocks and biomass accumulation (Skovsgaard and Vanclay, 2013). Climate change driven increase in CO2 has been predicted to affect forest productivity by affecting biomass accumulation in different plant functional groups (Shaver et al., 2000) as well as their carbon storage (carbon stock) ability (Shaver et al., 2000; Gielen and Ceulemans, 2001). Therefore, understanding the factors that influence changes in forest carbon stocks and biomass accumulation is essential for sound management decisions and scientific researches.

Site index, or average height at a given age, is a popular indicator for forest site quality used by forest growth modelers to consider productivity differences between stands. The application of site index is not appropriate for trees that have experienced height suppression since it frequently relies on time- consuming increment core ring-count data to estimate stand age and needs to completely account for changes in volume growth (Skovsgaard and Vanclay, 2013). The ability to stratify sampling among more homogeneous subsets of the population of interest and to identify relatively homogeneous areas to serve as “blocks” in replicated field experiment installations are made possible by changes in forest growth (Husch et al., 2002). When links between forest production and its environment are taken into account or known and integrated into decision support systems, we can research or forecast changes in forest structure and productivity brought on by climate shifts, management actions, or other disturbances in ecosystems such as Dinhushan nature reserve. Aboveground biomass in the forest reflects the status of forest in terms of environmental conditions and health of the entire ecosystem (KoÈh et al., 2017; Lutz et al., 2018). Although this biomass is a key component in forest contribution to gas and water fux, available studies have focused on remotely sensed data (Skovsgaard and Vanclay, 2013), with scanty data available for in situ measurements especially for Dinghushan nature reserve. Available measurements have considered the entire ecosystem without clustering in trunk diameter classes. Field-based data from Dinghushan forest will provide relevant information on the forest characteristics and unveil determinants of forest carbon stocks, the structure and composition as well the history of disturbance.

For modelers of forest carbon stocks or biomass accumulation, different growth forms or habits lead to further problems, particularly in multi-aged stands (Murali et al., 2005). This study intends to overcome this challenge by estimating biomass, tree height, and DBH based on life forms and grouped DBH.

Several researchers have reported allometric connections between standing biomass and diameter at breast height (DBH) (Comley and McGuinness, 2005; Kirui et al., 2006) and linear equations between DBH and height for biomass estimation (Murali et al., 2005). These correlations have been calculated between DBH and above-ground biomass or its component elements (Kirui et al., 2006). However, limited information is available for allometric relationships or linear equations between above-ground biomass and DBH or height and DBH for different life forms of group datasets in a heterogenous forest like the Dinghushan forest. We explored different growth facets in the Dinghushan forest to examine relationships between biophysical gradients and productivity. Our goal was to determine which biophysical factors account for regional variations in forest productivity. We hypothesized the strongest correlations between DBH and height for various biophysical parameters for distinct life forms.



2. Materials and methods


2.1. Study site description

This study was carried out in Dinghushan National Nature Reserve (23°09′21″–23°11′ 30″N, 112°30′39″–112°33′41″E), which is located in Dinghu District, Zhaoqing City, Guangdong Province, covering a total area of 1,155 ha. The region experiences a south subtropical monsoon climate, with 1714 mm of annual rainfall and 76% annual humidity. The dry season lasts from October to March, and the wet season is from April to September. About 80% of the annual precipitation falls during the wet season. The coldest month is January, which has a mean temperature of 13.8°C, while the hottest month is July, which has a mean temperature of 28.8°C. The predominant topography comprises low mountains and hills ranging from 100 to 700 meters. Southern subtropical lateritic red soil comprises the zonal soil, which comprises Devonian sandstone, shale, sandstone, and quartz sandstone (Zou et al., 2018). Dinghushan’s plant community has a 95% canopy density and is year-round evergreen. The plant community in Dinghushan can be separated into three stages based on the succession of the forest ecosystem: Masson pine coniferous forest in the early stage, coniferous and broad-leaved mixed forest in the middle stage, and monsoon evergreen broad-leaved forest in the later stage. Aidia canthioides, Macarashell cnga sampsonii, Gironniera subaequalis, Cryptocarya chinensis, Cryptocarya concinna, Schima superba, Castanopsis chinensis, etc., are the dominant species in the tree layer of monsoon evergreen broad-leaved forests (Zou et al., 2018).

A long-term monitoring experiment on the dynamics of the monsoon evergreen broadleaved forest was started in 1978 to examine the longer-term effects of climate change and human activity on ecological resilience, biodiversity, and ecosystem services. A 1-ha permanent monitoring site was also created in the monsoon evergreen broad-leaved forest. The core section of the reserve is made up of monsoon evergreen broadleaved forest that has not been altered and is located adjacent to a Buddhist monastery (Zhou et al., 2013). The landscape of the location before (A) and after (B) the typhoon is depicted in Figure 1 as the well-preserved monsoon evergreen broad-leaved forest suffered greatly from typhoon Mangkhut in 2018. Although previous studies have indicated Dinghushan nature reserve has not been heavily disturbed for more than 400 years (Zhou et al., 2006, 2013), the 2018 typhoon affected the number of tree stands as indicated in our previous study (Li et al., 2021). This study also illustrated that trees with <10 cm DBH and < 10 m heaigh were completelu destroyed by the storm as shown in Figure 1B while those with > 20 cm DBH were moderately destroyed. Table 1 provides a quick summary of the permanent site based on historical monitoring data (Zhang, 2011; Zhou et al., 2013, 2014).

[image: Figure 1]

FIGURE 1
 Figure showing landscape of the study site location before (A) and after (B) the typhoon.




TABLE 1 Description of the permanent site.
[image: Table1]




3. Methods


3.1. Tree selection

Within the 100 m by 100 m 1-ha permanent plot, 10 sites were established and sub-divided into 10 m by 10 m, 100 subplots (quadrats) where inventories of trees was carried out. In the clearly defined plots and with the appearance of being in good health, trees of the four life types were marked for measurements. Following that, DBH measurements were taken for each tree, with each multi-stemmed tree’s stems being treated separately, as reported by Clough et al. (1997). Each stem’s DBH was measured at a height of around 1.3 meters above the substrate or above the highest buttress root. The life/growth forms includes: Broadleaf evergreen trees that had large leaves, that stay green all year long; Broadleaf evergreen shrub that are small tree-like multi-stemmed trunk plants with year round green leaves; deciduous evergreen broadleaved tree that shed their leaves during cold and dry seasons and palm leaved trees that were tall, slender with smooth trunks and occasionally with no branches but have large spreading leaves at the top.



3.2. Biomass

Based on the harvesting quadrats described by Luo et al. (2009), biomass for all the components was estimated in all 100 plots. All trees had a diameter at breast height larger than 3 cm; their height (H, m) and diameter (D, cm) were measured. We removed six to eight trees in each sub-plot, each with a different diameter, and measured the amounts of stem, branch, leaf, and root biomass. Linear equation as described by Murali et al. (2005) was adopted where height and basal area relations facilitated calculation of biomass. Additionally, the “clear-cutting approach” (all trees in a plot were chopped down) and the “mean tree method” (a number of “mean trees” in a plot were fallen) were used in a few plots to estimate the tree biomass.

Data analysis.

SPSS 25 was used for all statistical analysis (IBM, Armonk, NY, United States). To comprehend the correlations between the biomass of various components and predictor variables, linear regression analysis was utilized. All values were reported as mean and standard error for each parameter.




4. Results


4.1. Stand characteristics

In the study, 6,883 trees and shrubs stands were recorded in the 100 sub-plots from which four life forms were identified within which several species were investigated for their diameter at breast height (DBH), stand height and biomass of trunk, leaves, branches, total above ground and below ground dry weights. The plots were dominated by evergreen broadleaved trees (5,723) followed by evergreen broadleaved shrubs (1,145), palm type life form (7), and the least dominant being deciduous broadleaved trees (8). Total number of trees per hectare varied before and after the typhoon as described in our study site section and presented in Figure 1. A study carried out by Li et al. (2021) indicated a total of 5,682 trees in 2015 and 5,022 trees per hectare in 2018. This is indicated that the typhoon caused a decline in the number of tree stands. Our study indicated an increase in trees and shrubs by 1,861 stands accounting for 37% recovery in 2020.



4.2. Tree height (m)

The average tree height for the entire forest was 4.7 ± 3.22 m. This height varied depending on the life form where the tallest trees were from the palm leaved trees (19.29 ± 5.39 m) followed by deciduous broadleaved trees (8.05 ± 4.55 m), evergreen broadleaved trees (5.11 ± 3.35 m) and shortest being evergreen broadleaved shrubs (3.06 ± 0.99 m; Figure 2A). Tall trees from evergreen broadleaved trees and palm leaved life forms with over 30 cm DBH had heights above 22 m (Figure 3D).

[image: Figure 2]

FIGURE 2
 Tree height for the entire forest (A); less than 10 cm DBH (B), 10–30 cm DBH (C), and above 30 cm DBH (D). *BL (Broad leaved).


[image: Figure 3]

FIGURE 3
 Above-ground dry weight (ABDW) for Dinghushan forest: (A) below 10 cm DBH; (B) 10– 30 cm DBH; (C) above 30 cm DBH and (D) the entire forest data.


Similar to stand height, the mean forest DBH was 3.76 ± 6.26 cm but this was contributed differently by different life forms. Palm-leaved trees had large trunks with DBH of 25.8 ± 8 cm followed by deciduous broadleaved trees (8.97 ± 6.88 cm), evergreen broadleaved trees (4.13 ± 6.73 cm), and the smallest trees being evergreen broadleaved shrubs (1.75 ± 0.73 cm) Figure 4A.

[image: Figure 4]

FIGURE 4
 Diameter at breast height (cm) for the entire forest (A); less than 10 cm DBH (B), 10–30 cm DBH (C), and above 30 cm DBH (D). *BL (Broad leaved).




4.3. Forest biomass

Biomass varied depending on the life form whereas the highest biomass was recorded in broad- leaved evergreen forest and the least in deciduous broad-leaved evergreen trees. Looking at the entire above-ground dry weight for the forest, 63.91 kg/tree was recorded. However, forest life forms contributed differently to this biomass where palm-leaved trees recorded the highest above ground (6180.46 kg/tree) followed by deciduous broadleaved trees (63.91 ± 26.43 kg/tree), evergreen broadleaved trees (33.36 kg/tree) and evergreen broadleaved shrub had the least above ground biomass (0.56 kg/tree; Figure 3).

Below-ground dry weight for the Dinghushan forest was lower than the above-ground biomass. The palm-leaved type had the highest biomass of 1827.02 ± 24.82 kg/tree. Deciduous broad-leaved trees recoded 8.89 ± 3.52 kg/tree while evergreen broad-leaved shrubs had the lowest below- ground biomass of 0.11 ± 2.2 kg /tree. Grouping datasets based on DBH size class revealed that only broad- leaved evergreen and palm tree type had below-ground biomass of >30 cm DBH (Figure 5).

[image: Figure 5]

FIGURE 5
 Below ground dry weight (ABDW) for Dinghushan forest: (A) below 10 cm DBH; (B) 10– 30 cm DBH; (C) above 30 cm DBH and (D) the entire forest data. *BL (Broad leaved).


Based on Table 2, generalizing biomass for the entire forest underestimates the contribution of each life form in the Dinghushan forest. Total above-ground biomass was 34.19 ± 5.75Kg/tree but varied results are obtained when the forest is stratified based on DBH. Trees with DBH above 30 cm contributed an average of 2400.54 ± 510.4 kg/tree while trees with DBH 20–30 contributed 171.61 ± 25.06 kg/tree and the least was below 10 cm DBH which contributed 3.013 ± 0.07 kg/tree. More than 50% of the total above-ground mass was mainly contributed by trunk dry weight regardless of the size of the tree. The leaves contributed less than 10.3% to the total above- ground biomass whereas large-diameter trees had only a 7.3% contribution from leaves. Similarly, below-ground biomass was highest in trees with more than 30 cm DBH (632.23 ± 148.68 kg/tree). The overall forest below-ground biomass was 8.66 ± 1.64 kg/tree which was higher than trees with less than 10 cm DBH (0.77 ± 0.016 kg/tree).



TABLE 2 Forest attributes for the entire data stratified based on DBH.
[image: Table2]



4.4. Relationships between biophysical characteristics and biomass

This study found variability in the relationship between DBH and tree height depending on class size clustering (Figure 6). Regardless of tree size (DBH), DBH was positively correlated with tree heights whereas below 10 cm DBH was highly correlated (R2 = 0.63) compared to large tree size which had an R2 of 0.102. Pooled data without clustering showed a highly positive relationship (R2 = 0.68).

[image: Figure 6]

FIGURE 6
 A quadratic and linear relationship between DBH and height for pooled data (A), DBH below 10 cm (B), DBH between 10 and 30 cm (C), and DBH above 30 cm (D).


Diameter at breast height (DBH) showed a significant relationship with above-ground biomass (R2 = 0.7) for small-sized trees which reduced with the increase in tree size (Figure 7). 10–30 cm tree sizes exhibited the weakest relationship (R2 = 0.18) between DBH and biomass. Considering the overall relationship without size class clustering could overestimate the relationship for the 10–30 cm diameter trees by 45% and underestimate for the small-sized trees (less than 10 cm DBH) by 57%.

[image: Figure 7]

FIGURE 7
 Relationship between DBH and above-ground dry weight; (A) (overall dataset); (B) (less than 10 cm DBH dataset); (C) (10–30 cm DBH dataset) and (D) (above 30 cm DBH dataset).





5. Discussion

Forests are always changing as they adapt to variations in climatic fluctuations by changing their structure and composition (Weiner and Thomas, 1986; Skovsgaard and Vanclay, 2013). In the current study, large trees (with DBH >30 cm) stored large amounts of biomass as observed from below-ground and above-ground biomass. They may have significant controls over the Dinghushan forest carbon store due to the dynamics and sensitivity of biomass to environmental change. Previous studies have shown that large-diameter trees constitute roughly half of the mature forest biomass worldwide (Lutz et al., 2018). According to previous research, big trees may be more susceptible to climate change, ultimately diminishing forest biomass storage (KoÈh et al., 2017; Lutz et al., 2018). In natural forests, tree size and stocking variation could be seen at any time, especially over varied terrain (Weiner and Thomas, 1986), similar to our study. This was true for the Dinghushan forest, where variability in tree height and diameter at breast height (DBH) produced varied biomass for different life forms. This study also showed that due to this temporal and spatial variability, when various life forms occur in a forest and individual species are of different size classes, it might be challenging to acquire reliable estimations of forest carbon stocks and biomass accumulation (Skovsgaard and Vanclay, 2013).

Previous studies have indicated that large-diameter forest trees (≥ 60 cm DBH) can account for up to 41% of above-ground biomass (AGB) globally (Lutz et al., 2018). In the current study site, big- sized trees (≥30 cm DBH) contributed 93.24% of the total AGB if we considered contribution based on DBH size class. Large-sized DBH trees had tall, broad, well-lit crowns that increased the primary productivity of forests and allowed them to store more carbon. This was different when we compared the contribution of evergreen broadleaved shrubs. The evergreen broadleaved shrubs were shorter in height (3.06 ± 0.99 m) than palm-leaved life forms (19.29 ± 5.39 m). Studies have demonstrated that the growth and biomass accumulation of trees are subject to year-to-year and long-term fluctuations (KoÈh et al., 2017), with the majority of the carbon being accumulated at older ages, even though we did not take the age of the trees into account. Therefore, it is assumed that the large-sized trees in our study accumulated more carbon and recorded higher biomass.

This study revealed that the Dinghushan forest is constantly changing in size and composition over time as the trees develop and react to climatic fluctuations. When growing in a dense forest, small- diameter trees have been found to take advantage of canopy gaps and concentrate biomass production through height growth rather than diameter expansion until they reach the high crown layers (McGregor et al., 2021). Tree DBH and height relationship are important elements describing attributes of forest stands. Although stand height has been applied as a variable in volume and biomass models (Comley and McGuinness, 2005) and DBH with height relationships used to determine volume and biomass estimates (Gobakken et al., 2008), such relationships may not provide accurate information regarding the entire forest if datasets are not grouped based on life forms or size class for the heterogeneous forest like Dinghushan forest. Furthermore, generalizing the entire dataset without grouping based on DBH, as observed in our study, may underestimate the forest biomass for less than 30 cm DBH trees and overestimate for trees with more than 30 cm DBH. It is worth noting that large-diameter trees represented fewer species in the entire forest (low stem density). However, they exhibited tall trees with more biomass in the trunk, leaves, branches, and below and above-ground dry weights. The dry weight of the Dinghushan forest is a complex trait that combines a variety of functional processes and structural characteristics. These attributes are linked to individual tree height, forest bio-productivity, and stem density (Shen et al., 2013). Since long-term forest biomass is driven by a balance between the rates at which wood growth and mortality rates, the observed differences in biomass between different life forms in this study emphasize the importance of understanding forest carbon budgets separately based on growth forms. Furthermore, biomass estimates should be based on carbon allocation ratios to foliage, branches, roots, and woody tissues, as described in (Sitch et al. (2008).

The results were more life-form specific than the others, and as a result, the weights recorded underestimated the true below-ground biomass of the larger trees. This resulted in a poor relationship between DBH and below-ground biomass. Trees with larger DBH had the most expansive root system for the life forms studied. The observed linear relationship between above- ground and DBH, and height and DBH indicated a close linkage between stand-level productivity and biomass across this forest complex. The differences in biomass between different DBH classes for different life forms reflect the differences in species composition, tree density, and basal area. Although the tree density was higher in species with DBH less than 10 cm, the biomass was lower than in species with larger DBH >10 cm. This is due to lower height and hence less accumulation of biomass. This was evident where large-sized trees recorded higher biomass accumulation and hence C gain.

It’s possible that environmental and biological heterogeneity within the forest will make it difficult to generalize findings from one location to another. The results of this study occasionally differed significantly from those of Ong et al. (2004), where high tree density (10 cm DBH) contributed the least to below-ground and above-ground biomass. As a result of the lifetime of the main tree species, which provides outstanding contributions to their spectacular heights and vast biomass, studies have demonstrated that a few temperate rainforest locations have excessive above-ground biomass compared to their yearly net productivity (KoÈh et al., 2017). Dinghushan forest complex is a subtropical monsoon forest; trees have a more open canopy than rain forests, creating a dense, closed forest floor or a sub- tropical forest. Therefore, the high biomass accumulation in large-sized trees may be driven by their higher carbon use efficiency; hence large fractions of their photosynthetic products are used for accumulating biomass. Though tropical forests are often more productive, this may conflict with the fact that they utilize less carbon (DeLucia et al., 2007). The typical biomass turnover and mortality rates in tropical forests can be rather high, which prevents the buildup of living biomass (Maina and Li, 2021). Previous studies have indicated an above-ground biomass in the inland and coastal tropical dry evergreen forests of peninsular India to be estimated at 39.69 to 170.02 Mg/ha (Mani and Parthasarathy, 2017). This values were way too low if we compared our data where aboveground biomass ranged between 3.013 ± 0.07 kg/Tree and 2400.54 ± 510.4 kg/Tree depending on DBH class. We must emphasize that the natural disturbance in this forest such as the 2018 typhoon destroyed the forest and affected its structure and functioning based on comparative data by Li et al. (2021). Although other studies have revealed the commercial role of biomass (Mani and Parthasarathy, 2017), the obtained biomass estimates from Dinghushan nature reserve is scientifically relevant for understanding the entire of ecosystem health and productivity, nutrient flow and energy balance. Our findings are important for assessing the contribution of each life form to the entire forest role in global carbon cycle. With combined effects of climate change, different life forms may respond differently to disturbances and this is an area that should be researched across succession stages in the nature reserve.

Furthermore, generalized forest biomass underestimates the contribution of each life form to the total forest carbon stock. Nevertheless, apart from the life forms with less than 30 cm DBH, our study site still has on average the greatest biomass stocks. Most earlier research (Comley and McGuinness, 2005) concentrated only on the above-ground biomass C stocks in tree species, neglecting to take into account the contributions made by C stocks of other life forms like shrubs, herbs, or even roots (below ground), as well as small diameter < 10 cm DBH tree individuals in tropical forest ecosystems. Our focus on assessing the C stocks and their allocation in different structural components between life forms provides a new front in understanding the general components and their contribution to the overall biomass accumulation for the entire ecosystem.



6. Conclusion

This is the first study to cluster the Dinghushan forest based on tree size class. Biomass (C stocks) is influenced by structural attributes (DBH, height) and diversity attributes (life forms). The dynamics of individual tree collectives can be used to explain why the observed forest bio- productivity dynamics occur over such vast areas. High biomass carbon stocks cause size distributions to shift in favor of trees with bigger DBH. The Dinghushan forest complex’s C storage will be improved by maintaining big-sized trees and stand structures and continuing to preserve biodiversity. Although this study found a positive relationship between DBH and stand height (h), physical measurements of these parameters are time-consuming. Due to optical interference from nearby trees or rounded crown forms, it might be challenging to acquire a clear view of the treetop. Thus, measurement costs can be decreased while maintaining an acceptable degree of H accuracy by creating predictive models of H from DBH. The results help to highlight the regions in action plans that require additional attention for conservation and C stock improvement. We suggest managing forests to preserve existing big-diameter trees or those that may soon achieve large diameters as a straightforward method to preserve and possibly improve ecosystem services. Our study on biomass in four life forms in a forest plot ws based on data obtained after the typhoon destruction. These possess a limitation on wider application of our findings. Additionally, we did not consider biomass accumulation in relation to environmental variables within the nature reserve. Therefore, future studies could consider spatio-temporal variation in biomass in relation to environmental conditions.
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Nitrogen and phosphorus are important nutrient elements for plants and underground organisms. The nematode is an important part of the soil food web. Although many studies have explored the effects of fertilization on soil nematode community structure, little is known about the response mechanism of the nematode community to fertilization. In this study, we investigated the diversity and functional diversity of soil nematode communities, as well as soil physicochemical properties, root functional traits, and plant richness. We explored the response mechanism of soil nematode communities to nitrogen and phosphorus fertilizer. Nitrogen fertilizer increased the abundance and richness of bacterivorous nematodes, while phosphorus fertilizer decreased the total abundance of bacterivorous nematodes. Meanwhile, the diversity of the nematode community was significantly affected by soil physicochemical properties and plant root functional traits. Therefore, our study revealed the effects of nitrogen and phosphorus fertilizer on soil nematode community diversity and functional diversity. Exploring the response mechanism of soil nematode communities to fertilization interference provides further evidence for the role of nematodes in maintaining the function of subsurface ecosystems.
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Introduction

Nematodes are pseudocoelomata belonging to the phylum Nematoda, the most abundant phylum in the kingdom Animalia (Lorenzen, 1994; van den Hoogen et al., 2019). Nematodes are widespread in terrestrial ecosystems, where they are noted for their diversity and hardiness (Yeates et al., 1993; Wu, 1999). These organisms are the most important component of the soil food web, and monitoring changes to nematode community composition is a useful tool for assessing soil quality (Liu et al., 2018). Soil nematodes are classified according to their feeding habits as bacterivores, fungivores, plant-feeders, or omnivore-predators (Wu, 1999). In recent years, atmospheric nitrogen deposition has emerged as an important global change factor (Vitousek et al., 1997; Reay et al., 2008). In many natural or semi-natural plant communities, nitrogen is often the main factor limiting plant growth and development, and phosphorus is an essential nutrient for plant growth (Bardgett et al., 1998). Nitrogen addition can mitigate this limitation, inducing changes in the productivity of above-ground vegetation communities and preferentially promoting the growth of particular species, resulting in a loss of diversity (Bobbink et al., 2010). Moreover, nitrogen addition can also change plant community structure (Reich et al., 2006; Yang H. et al., 2012) and productivity, and affect plant root exudates and soil physicochemical properties (DeForest et al., 2004; Niu et al., 2010; Contosta et al., 2011). Human agricultural management has greatly altered the amount of nitrogen and phosphorus found in the soil (Villenave et al., 2010; Liu et al., 2012; Yang Y. et al., 2012).

Recently, the focus has shifted to the effects of fertilization on soil faunal communities (Qi et al., 2010; Zhang et al., 2022), especially on soil nematode communities. Fertilizer application is not only known to affect the structure and composition of vegetation but also belowground organisms and the soil environment has potential effects (Bardgett et al., 1998) and may alter nematode community structure. In grassland ecosystems, the long-term addition of nitrogen fertilizer reduces the number of plant-feeders (Ruan et al., 2012); the application of nitrogenous fertilizers is associated with a decline in the size of fungivore, plant-feeder, and omnivore-predator populations and an increase in the size of bacterivore populations (Murray et al., 2006; Zhang et al., 2022). Nitrogen fertilization is also associated with soil acidification, which may directly contribute to nematode population declines (Wei et al., 2012). Scientists have observed a negative correlation between plant-feeder and fungivore population sizes and levels of ammonium and nitrate after fertilization (Sarathchandra et al., 2001; Pey et al., 2014), suggesting that nitrogen fertilization has a direct effect on soil nematodes. The addition of phosphorus fertilizer increases the number of bacterivores (Qi et al., 2010) and overall soil nematode population, while at the same time altering organic matter decomposition pathways and reducing the number of rare species (Chen et al., 2014). In tropical rainforest, phosphorus supplementation significantly inhibited the total density of soil nematodes and the density of omnivore-predators nematodes (Zhao et al., 2014). In contrast, Rovira and Simon (1985) found that the addition of phosphorus fertilizer significantly increased the number of nematodes. There are few studies on the effects of mixed application of N and P fertilizer on soil nematode community. It has been found that in a long-term fertilization experiment for agricultural ecosystems in Heilongjiang Province, China, mixed application of N and P fertilizer increased the abundance of bacterivores nematodes (Pan et al., 2015).

The health of soil nematode populations is coupled to interactions with other animals, fungi, and bacteria, as well as to soil physicochemical properties and inter-root resource inputs from plants (Bongers and Ferris, 1999). Plants promote soil nematode diversity (Liu et al., 2012) by increasing the diversity of nematode food sources (Hooper et al., 2000; De Deyn et al., 2004). Changes in the soil environment or vegetation composition can directly or indirectly affect soil nematode communities (Wang et al., 2019; Chen et al., 2021). An increase in soil water content is associated with an increase in the number of plant-feeders (Ruan et al., 2012) and a decrease in the number of bacterivores and omnivore-predators (Chen et al., 2021); changes in the biomass of dominant plants in an ecosystem indirectly affects soil nematode abundance (Yeates, 1999; Wang et al., 2019).

With increasing scientific interest in soil nematodes and the development of functional ecology (Violle et al., 2007), researchers have begun to quantify the functional attributes of soil nematodes using traits such as individual size. The objective of these efforts is to understand how nematode functional diversity changes in response to environmental changes and their associated effects on ecosystem function (Tita et al., 1999; Pey et al., 2014). One metric for assessing functional attributes is community-weight mean (CWM), which is calculated as the weighted average of individual size and relative abundance of each genus. Wang et al. (2002) found that soil organic carbon, microbial biomass, and plant tissues provided food resources for soil nematodes, contributing to nematode growth and overall size. Recent work found that increasing soil nutrient concentrations by applying fertilizers increased the length of individual nematodes (Liu et al., 2015). When soil organic matter and total nitrogen content are higher, food resources for larger nematodes increase, thereby increasing CWM (Liu et al., 2015; Andriuzzi and Wall, 2018). In contrast, phosphorus limitation favors the survival of smaller soil animals and, as such, phosphorus content is positively correlated with community level size (Mulder and Elser, 2009). Consistent with this finding, researchers found that small individual nematodes have a better survival rate in gully bottoms with lower phosphorus levels in alpine meadow ecosystems (Wang and Niu, 2020).

The Qinghai-Tibet Plateau alpine meadow is an important grassland ecosystem in China (Du et al., 2003), and numerous studies have investigated the effects of fertilization on plant communities and soil factors in this ecosystem (Yang Z. et al., 2012). A recent experiment in alpine meadows on the Tibetan plateau did not find significant changes to nematode communities resulting from long-term nitrogen and phosphorus fertilization (Andriuzzi and Wall, 2018). However, little research has been conducted on the effects of fertilizer application on the functional diversity of soil nematode communities in this ecosystem. It is unclear whether the effect of fertilization on the nematode community is due to changes in the soil microenvironment or plant community composition, and there are few studies on the interaction between plants and nematodes. In this study, we conducted an experiment in alpine meadows on the Tibetan Plateau were continuously fertilized for 4 years to investigate the effects of nitrogen and phosphorus addition on soil nematode diversity. CWM was used as an indicator of soil nematode response to fertilization. We also investigated the effects of aboveground vegetation, soil physicochemical properties, and plant root characteristics on soil nematode communities and the mechanisms of fertilization on nematode communities. We hypothesized that (1) fertilization reduces soil nematode abundance and the species richness of aboveground vegetation; (2) fertilization increases CWM values of the individual size of soil nematode communities; and (3) fertilization affects soil nematode communities by changing plant community structure.



Materials and methods


Study site and experimental design

The study was conducted at the Haibei Alpine Meadow Ecosystem Open Experimental Station of the Chinese Academy of Sciences in Menyuan County, Qinghai Province, in the northeastern part of the Tibetan Plateau (101°12′–101°23′, 37°29′–37°45′). The area has a plateau continental climate with damp and rainy summers and cold and dry winters, with an average altitude of 3,215 m, an average annual temperature of −1.2°C, and annual precipitation of 489 mm. Precipitation occurs mainly between May and September (Wang et al., 2012). The plant community in this typical alpine meadow is dominated mainly by Poaceae, Asteraceae, and members of the buttercup family, such as silver lotus (Anemone obtusiloba), sheep grass (Elymus nutans), big leaf gentian (Gentiana macrophylla), yellow flower Poaannua, fern (Potentilla bifurca), and black snowdrop (Saussurea nigrescens) (Liu et al., 2020). The soils are thin with high organic matter content but low effective phosphorus and nitrogen content; thus, plant communities in this area are limited by both nitrogen and phosphorus (Niu et al., 2016).

Fertilization experiments began in 2018 in sample plots in the study area. Four fertilization treatments were randomly distributed among six blocks arranged across the sample plots, with six replicates of each treatment and a 3 m buffer interval between each block. Each sample square was 3 × 3 m in size, with a 2 m distance separating each square. A 0.5 m × 0.5 m fixed sample square in the middle of each 3x3m square was used to assess plant cover and abundance. There were four treatments in this study: blank control (CK), phosphorus fertilizer (P, added amount: 10 g m−2 year−1), nitrogen fertilizer (N, added amount: 10 g m−2 year−1), and nitrogen and phosphorus fertilizer applied together (NP, N: 10 g m−2 year−1, P: 10 g m−2 year−1) (Liu et al., 2020). Fertilization treatments were applied every June.



Sample collection

Sampling was conducted at the end of August 2021 after 4 years of fertilization treatments. Plants were at the time of sampling. A 0.5 m × 0.5 m area was randomly selected within the lower left 1/4 of the sample plot for plant species identification and counting. Above-ground plant parts were cut, sorted, and taken to the laboratory, where they were dried at 65°C before weighing.

Soil and root samples were collected and analyzed in early September 2021. Soil samples were taken from each 3 m × 3 m treatment sample square with a 4-cm diameter soil auger, using the five-point method to bore five holes 15 cm deep. Each set of five samples was mixed into a single sample and placed into a self-sealing bag, after which it was labeled and stored at 4°C during transit to the laboratory. In the laboratory, a 2 mm soil sieve was used to remove debris and sort out plant roots in the soil. Samples were divided into 2 parts: one portion was stored at 4°C for 1 day until soil nematodes could be extracted, and the other one was used to characterize soil physicochemical properties.



Measurement of plant root functional traits

Sorted roots were gently washed with deionized water to remove attached soil and other residues, wrapped in plastic wrap and tin foil and refrigerated at 1°C. Root samples were scanned and imaged (Winrhizo, Regent Instruments, Inc. Nepean, Ontario, Canada) to determine total root length (Length), total root volume (Root Volume), and total root surface area (Surf Area). Specific root area (SRA: root length per unit weight), root tissue density (RTD), total root biomass (Root biomass), specific root length (SRL), and root length density (RLD) were calculated from root dry weights (Freschet et al., 2021).



Physical and chemical soil properties

10 g of soil was placed in an aluminum box and dried at 105°C for 72 h to determine soil moisture content (SM). Soil pH was determined using a pH analyzer (meter-s210 Seven Compact™, Switzerland) with a 1:2 ratio of soil to water. Soil total nitrogen (TN) was determined by the semi-Kaeschner method (Sparks et al., 1996), soil total phosphorus (TP) by the sulfuric acid-perchloric acid digestion-molybdenum antimony anti-colorimetric method, soil available phosphorus (P) by the sodium bicarbonate leaching-molybdenum antimony anti-colorimetric method, and soil organic carbon (SOC) by the walker-black method (Nelson and Sommers, 1982). Soil ammonium (NH4 +) and soil nitrate (NO3−) were determined by the indophenol blue colorimetric method (Dorich and Nelson, 1983) and salicylate colorimetric method (Yang et al., 1998), respectively.



Isolation, identification, and measurement of soil nematodes

Soil nematodes were isolated using a modified Bellman funnel method (Liu et al., 2015). The soil was stored in a refrigerator at 4°C, after which a 50 g sample was taken and isolated for 48 h before being fixed and filmed with glycerol. Head and tail morphology were used to sort nematodes into genera, after which nematodes were counted and photographed under a compound microscope (Olympus BX53 microscope at 10–1,000×). Nematodes were identified using the Soil Fauna of China Retrieval Atlas (Yin, 1998) and the Study of Freshwater and Soil Nematodes in China (Wu, 1999).

The number of individual nematodes was converted to bars/100 g of dry soil. When the number of isolated nematodes was less than 100, all nematodes were identified; if the number was greater than 100, 100 individuals were randomly selected. The nematodes were classified into four groups according to their feeding characteristics: bacterivores, fungivores, plant-feeders, and omnivore-predators (Bongers and Bongers, 1998).

For each sample, the overall size was calculated by summing the sizes of all identified nematodes. The relative abundance of a genus was calculated as the ratio of the abundance of a genus to the total abundance of nematodes in a sample. Community-weighted mean (CWM) was calculated by weighting the average body size to relative diversity. The calculation of the cluster individual size weighted mean is based on the equation presented by Liu et al. (2015):

[image: image]

where N represents the number of nematode genera, Xi represents the mean body size value for genus i; Pi represents the relative abundance of genus i.

The body type characteristics of soil nematodes were determined by Digimizer software. The nematode body size (V) was calculated using the following equation:

[image: image]

where V represents the volume of each nematode; L represents the body length of each nematode; D represents the maximum body width of each nematode, and 1.7 is a constant.



Statistical analysis

Here, we assess how soil nematode diversity is influenced by changes in soil physicochemical properties and plant communities occurring in response to nitrogen and phosphorus fertilization. Species richness was calculated from plant community data; Soil physicochemical properties (e.g., soil pH, soil organic carbon, total nitrogen, total phosphorus, ammonium nitrogen, nitrate nitrogen, and available phosphorus) were measured from soil samples; Plant root traits were determined from subsurface sections.

At the community level, nematode abundance, functional group abundance, genus richness, and Shannon diversity were calculated. CWM was calculated using individual body length and body width data. This index was used to better explain the response of nematode communities to nitrogen and phosphorus additions. Through the analysis of different functional groups of nematodes, the changes in the structure and function of the soil food web were studied, to evaluate the response of the soil food web to environmental disturbance.

A linear mixed-effects model and two-factor ANOVA were used to analyze changes to soil physicochemical factors, root functional traits, plant species richness, soil nematode diversity, and each nematode functional group. Principal component analysis (PCA) was used to standardize the soil physicochemically and root functional trait variables, and the respective first axis principal component data were extracted and recorded as “SoilPC1” and “RootPC1.” SoilPC1 and RootPC1 were then used to analyze the effects of soil physicochemical properties and root functional traits on soil nematode diversity (i.e., total abundance, abundance, Shannon diversity, Simpson diversity, and evenness) and functional diversity (i.e., CWM values dispersion based on body size). Simple linear regression analysis was used to investigate the correlation between soil nematode diversity and functional diversity and “SoilPC1,” “RootPC1,” and plant species richness using the “lm” function in R. Finally, structural equation modeling (SEM) was used to explore the pathways by which fertilizer application influences soil nematode communities, with “SoilPC1,” “RootPC1,” and plant species richness as potential variables.

All data were analyzed using R software version 4.1.2. The “FD” package was used to calculate CWM and FDis based on nematode size (Laliberté et al., 2014). The “vegan” package was used to calculate Shannon diversity, Simpson diversity, and evenness metrics for nematodes. PCA was also conducted using the “vegan” package (Oksanen, 2016). The “lme” function in the “lme4” package was used to calculate linear mixed effects (Bates et al., 2015). Finally, the “ggplot2” package was used for plotting, and the “piecewiseSEM” package was used for SEM (Lefcheck, 2016).




Results


The influence of fertilizer application on nematode and plant diversity

Fertilizer application had different effects on soil nematode diversity and functional diversity. Shannon diversity, Simpson diversity, and evenness increased significantly when only nitrogen (N) fertilizer was applied. When only phosphorus (P) fertilizer was added, the individual abundance of soil nematodes was reduced significantly and the functional richness index (FRic) of nematode communities increased significantly. Nematode abundance, Shannon diversity, Simpson diversity, community functional dispersion (FDis), and Rao’s quadratic entropy index (RaoQ) decreased significantly with the co-application of nitrogen and phosphorus (NP) fertilizers. Moreover, the co-application of NP fertilizer significantly reduced above-ground plant species richness (Table 1). This indicates that the addition of different chemical fertilizers has different effects on the soil nematode community. Soil nematode diversity was greater in all cases of N-only fertilization compared to P-only fertilization, suggesting that phosphorus deposition may be a key factor affecting nematode communities.



TABLE 1 Effect of fertilizer application on soil nematode and plant diversity.
[image: Table1]



The influence of fertilizer application on soil physicochemical properties and root functional traits

Fertilization treatments were observed to affect the subsurface soil environment and plant roots. Under N addition, soil pH decreased significantly and nitrate (NO3−) content increased significantly, but the effect of N addition on root traits was not significant (Table 2). Under P addition, soil effective phosphorus content and total soil phosphorus (TP) content increased significantly; fine root dry weight (FM) and root length density (RLD) values of the underground root fraction decreased significantly (Table 2). However, the effect of fertilization on soil physicochemical factors and root traits was not significant under the NP treatment (Table 2). These changes indicate that soil physicochemical factors were more sensitive to the addition of either N or P fertilizers compared to NP treatment. Changes to root system functional properties were stronger for P treatment than for N or NP.



TABLE 2 Effect of N and P fertilizer addition and their interaction on subsurface soil environmental factors and functional attributes of the root system.
[image: Table2]



Effect of fertilizer application on nematode functional groups

Fertilizer application also affected soil nematodes of different functional groups. Bacterivore richness and abundance increased significantly under the N application and decreased significantly under the NP application (Table 3). In the P treatment, only the abundance of plant-feeder nematodes was reduced significantly (Table 3). The abundance and richness of omnivore-predator nematodes decreased significantly in the NP treatment (Table 3). We found that fertilization did not significantly affect soil nematode volume in any group. This indicates that N fertilization favored the growth of bacterivore nematode communities, P fertilization inhibited the survival of plant-feeder nematodes, and NP fertilization was determinantal to the development of soil nematode communities (Table 3).



TABLE 3 Effect of fertilization treatments on soil nematode communities of each functional group.
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Effects of soil physicochemical properties and root traits on soil nematode diversity

Principal component analysis (PCA) was performed on soil physicochemical properties and root characteristics. Results showed a significant positive correlation between soil physicochemical properties, nematode species richness, Shannon diversity, Simpson diversity, and FDis (Figure 1A; Supplementary Figure S1). CWM and nematode community evenness (E) were not correlated to soil physicochemical properties (Figure 1A). There was a significant negative correlation between root characteristics, Shannon diversity, and Simpson diversity (Figure 1B; Supplementary Figure S2). Plant species richness was negatively correlated to E and root characteristics (Supplementary Figure S3).

[image: Figure 1]

FIGURE 1
 Principal component analysis (PCA). Relationship between soil nematode diversity and soil physicochemical properties (A) and plant root functional traits (B) under fertilization treatments. CWM, community means based on nematode body size; FDis, Functional dispersion index; Abundance, Abundance of soil nematodes in 100 g of dry soil; Richness, Soil nematode richness; E, Community evenness; Plant_ richness, Plant species richness. Soil physical and chemical properties and root functional traits were extracted separately from the first principal component (PC1) after dimensionality reduction by principal component analysis. The indicators measured for root functional traits were RTD, Root tissue density; RLD, Root length density; FM, Fine root dry weight; Length, Total root length; RootVolume, Total root volume; SRL, Specific root length; SRA, Specific root area; SurfArea, Total root surface area. Soil physical and chemical properties were measured as follows: SOC, Soil organic carbon; TN, Total soil nitrogen; TC, Total soil carbon; TP, Total soil phosphorus; P, Soil available phosphorus; pH, Soil pH; NH4+, Soil ammonium; NO3−, Soil nitrate. Variables corresponding to the red arrows indicate that the effect on soil or root traits is significant. Gray arrows indicate that the effects are not significant.


Structural equation modeling (SEM) analysis was performed to illuminate the relative importance of relationships between measured variables. The model included plant community richness, root functional attributes, and soil nematode community variables. NP fertilization significantly reduced plant community richness, and soil physicochemical properties; N and P treatments had a direct effect on soil physicochemical properties (Figures 2A,B). P fertilization directly resulted in lower nematode abundance (Figure 2A). NP treatment indirectly affected nematode species richness by altering soil physicochemical properties (Figure 2B). Therefore, we concluded that P fertilization exerts a direct effect on soil nematode communities. N and P fertilization had no significant effect on CWM (Table 1). In summary, we found that P fertilization had a direct effect on soil nematode abundance and that NP fertilization had an indirect effect on nematode species richness.

[image: Figure 2]

FIGURE 2
 SEM analysis showed the interaction between plant and soil and its effects on (A) soil nematode abundance (AIC = 60, Fisher’s C = 0, p = 1) and (B) richness (AIC = 60, Fisher’s C = 0, p = 1). Roots and soils are represented by principal component analysis (PCA) of the reduced dimensional first principal component, respectively. Root functional property variables include all indices measured, and soil physicochemical property variables include so-measured soil physicochemical indicators. Boxes in the model represent individual variables; solid arrows represent significant effects (p < 0.1); dashed arrows represent non-significant effects (p > 0.1); numbers on the arrows represent path coefficients. R2 values represent the variance of response variables explained by other variables. ***: p < 0.001; **: p < 0.01; *: p < 0.05; a: p < 0.1.





Discussion


The influence of fertilization on soil nematode diversity

Fertilization significantly altered the soil nitrogen and phosphorus levels. This experiment found that the addition of N significantly altered soil nitrate N content and pH; P treatment significantly altered soil effective P and total soil P, while the mixed addition of N and P fertilizer had no effect on soil physical and chemical properties. The effects of the treatment type on soil nematodes were different from their effects on physicochemical properties. N fertilization significantly increased Shannon diversity, Simpson diversity, and E, which is consistent with previous work conducted in Inner Mongolia (Wang et al., 2019).

These results corroborated our first hypothesis and found that P fertilization greatly reduced soil nematode abundance and that the interaction of N and P fertilizers significantly reduced soil nematode richness. The addition of P fertilizer significantly decreased overall nematode abundance, consistent with work done in a low-lying paddy field located on the Ivory Coast of Africa and a tropical forest (Zhao et al., 2014; Čerevková et al., 2017). However, other studies have shown that fertilization can have a positive effect on nematodes and improve overall species richness (Sarathchandra et al., 2001). One of the reasons for this inconsistency is likely due to the amount of fertilizer applied. In the study by Sarathchandra et al., the amount of fertilizer applied was 20 g per m 2 N and 20 g per m 2 P, and our application amount of N and P fertilizer was only 10 g per m 2. Most of the fertilizer was probably taken up by the plants, and the remaining amount was insufficient to change the soil nematode community. Moreover, the effects of N and P fertilization on soil physicochemical properties are also important. N application lowers soil pH and increases soil nitrate N content, and P application increases the content of effective and total phosphorus; the decrease in soil pH leads to soil acidification, which contributes to the decreasing nematode populations because soil acidification destroys optimal growth conditions, and some soil nematodes are sensitive to changes in the soil environment (Li et al., 2013), especially large nematodes (Liang et al., 2009). Furthermore, it has been shown that P fertilization is toxic to nematodes and can restrict their reproductive ability (Hu et al., 2017). Here, we found that N fertilization increased the abundance and richness of bacterivores, similar to findings by other researchers (Hu et al., 2017). Hu et al. found that soil microbial biomass, C and N increased significantly, increasing the amount of food available for bacterivore nematodes. Consistent with these findings, PCA revealed that soil N and organic matter content increased, positively impacting bacterivores (Figure 1A).

In contrast, a study conducted in a New Zealand pasture found that P additions significantly increased fungivore abundance (Chen et al., 2014), while other work found that P fertilization resulted in slight increases in bacterivore and omnivore-predator populations as well as soil nematode species richness (Sarathchandra et al., 2001). Bottom-up control mechanisms are widely present in subsurface ecosystems (Neher, 2010), and P input changes the composition and functional characteristics of the soil microbial community by promoting the rapid growth of vegetation (Leff et al., 2015). In this study, structural equation modeling revealed that P fertilization had a direct negative effect on soil nematode abundance (Figure 2A), which was inconsistent with hypothesis 3. Other nematode studies found that the addition of P fertilizer under N-enriched conditions significantly increased the functional variables in soil nematode communities, which attenuated the positive effect of P (Zhao et al., 2014). In contrast, our experiments found that NP application significantly reduced nematode richness and functional diversity, and P attenuated the positive effect of N on soil nematode communities.

At the same time, fertilization reduces plant species richness. Numerous studies have shown that fertilizer application increases above-ground plant biomass, increasing canopy cover. This results in decreased light for non-grass vegetation and legumes, ultimately leading to the loss of these species (Qi, 2013). Previous studies have found that fertilization alters soil nematode community structure by decreasing plant species diversity. However, our results differ in that fertilization did not affect the functional traits of plant roots (Figure 2). The reduction in nematode abundance under P fertilization was mostly due to a decrease in the number of plant-feeders (Table 3); this is probably because plant-feeders subsist on root secretions, and P fertilization reduced fine root dry weight and root tissue density and had an indirect negative effect on root functional attributes by reducing plant species diversity. Thus, changes in root functional attributes may affect root exudation, thereby affecting the population of plant-feeders. An additional explanation may be that the loss of plant species that results from fertilization causes changes in root biomass (Cortois et al., 2017), which in turn reduces plant-feeder nematode populations.

Roots play a vital role in ecosystems and provide habitats for many underground organisms (Bardgett and van der Putten, 2014). Thin roots provide more space for herbivores and predators to survive in the soil (Legay et al., 2020). The greater the root length, the more beneficial it is to microbial life, and thus to the microfauna living there (Picot et al., 2019). Second, there is a strong selectivity of root secretions to rhizosphere microorganisms, and the addition of nitrogen has a significant effect on the rhizosphere bacterial community (Wang et al., 2022). Although we did not find any significant effect of fertilization on the root functional traits, research based on root characteristics can help us to better understand the soil nematode community.



The influence of fertilization on plant functional diversity

To improve investigation into the relationship between soil nematode communities and environmental changes and ecosystem functions, nematode body size indicators are increasingly used as a measure of functional diversity in soil systems (Mulder et al., 2009). Indicators such as CWM, which are based on body size, are more reliable than those based on abundance to explain the response of soil nematode communities to fertilization (Liu et al., 2015). Of the large variation in body size among different genera of nematodes, CWM was introduced to facilitate the description of soil nematode communities (Niu et al., 2014). Work in rice fields found that CWM values of soil nematode communities were positively correlated with soil nutrients, and could serve as a sensitive indicator of nematode community response to fertilizer application (Liu et al., 2015). Research by Christian et al. found that low P soils were more favorable for the survival of small-bodied soil animals, and high P soils supported larger-bodied soil animals at higher trophic levels; this was because increased P content improved the quality of food for small soil animals, who were previously limited by their food’s stoichiometric ratio and also improved the quality of organic matter in the soil, Together, these factors increased the nutrient transfer rate among soil animals (Mulder and Elser, 2009). However, some work suggests that in areas with high P content, small nematodes such as bacterivores, fungivores, and plant-feeders can survive better due to higher microbial diversity (Zhao et al., 2020). Other studies have also found that functional diversity improves as soil N and soil organic matter increases (van den Hoogen et al., 2019) and results in increasing size of individual nematodes, indicating that nitrogen fertilization favors the survival of large-bodied nematodes (Liu et al., 2015; Andriuzzi and Wall, 2018).

Here, we found that the CWM of soil nematode communities did not respond significantly to fertilization, which was not consistent with hypothesis 2. Changes in nematode communities take place over long periods, and 4 years of fertilization may not be long enough to induce substantial changes in nematode community structure. As such, we need longer-term fertilization experiments to understand soil nematode community dynamics under such conditions. Additionally, further investigation is needed to determine how fertilization affects soil nematodes at different trophic levels.




Conclusion

In alpine meadow ecosystems of the Tibetan Plateau, although N fertilization increased the abundance and richness of bacterivore nematodes, the abundance and richness of both bacterivore and omnivore-predator nematodes decreased under NP application, suggesting that P fertilization has a greater impact on soil nematode communities than N fertilization does. Here, we use soil physicochemical properties and root functional traits to understand how fertilization alters nematode communities; however, we did not investigate how changes in plant root secretions and soil microorganisms resulting from fertilization influence nematode communities. Longer-term studies examining how fertilization alters subsurface biological communities and abiotic factors are needed. Moreover, the effects of fertilization, the soil environment, and plant root systems are intertwined. We must further investigate how interactions between these factors alter soil nematode communities in fertilized soils to provide a scientific basis for the management of alpine meadows in the Tibetan Plateau.
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The rapid increase in construction of solar photovoltaic power stations (SPPs) has motivated ecologists to understand how these stations affect terrestrial ecosystems. Comparing study sites, effects are often not consistent, and a more systematic assessment of this topic remains lacking. Here, we evaluated the effects of SPP construction on carbon emissions, edaphic variables, microclimatic factors and vegetation characteristics in a meta-analysis. We employed log response ratios (as effect sizes) to assess how control plots differed from those beneath solar photovoltaic panels. We found that SPP construction decreased the local air temperature and photosynthetically active radiation, while increasing air humidity, especially in grasslands. Furthermore, plant aboveground biomass and vegetation cover were also enhanced by SPP construction in grassland ecosystems. In farmland ecosystems, photovoltaic panel installation increased plant aboveground biomass, soil available phosphorus and soil pH, while reducing CO2 flux, plant species richness and vegetation cover in woodlands. Thus, while SPP construction had profound ecological impacts in terrestrial ecosystems, the direction and strength of these effects were largely dependent on ecosystem type. Most studies of SPP construction to date have focused on local microclimatic and plant diversity effects, but few studies have examined effects on ecosystem functions and services. Future assessments are needed of both the benefits and disbenefits of SPP construction across different ecosystems, to improve SPP site selection and adaptive management.
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 comprehensive assessment, ecosystem types, microclimatic factors, vegetation characteristics, soil environment


1. Introduction

Replacing fossil fuels with clean energy sources to reduce carbon emissions is an important step toward achieving carbon neutrality (Armstrong et al., 2014). In recent years, great progress has been made in exploiting renewable resources to optimize existing energy infrastructure (Li, 2021). Photovoltaic (PV) power generation using solar energy is one of the most promising technologies for sustainable energy generation (Wilberforce et al., 2019; Bogdanov et al., 2021). In 2018, global solar PV capacity accounted for 55% of all new renewable energy capacity (Dunnett et al., 2020). The installed capacity of solar PV systems is expected to reach 4,600 GW by 2050 and avert up to 4 Gt of CO2 emissions annually (Wang and Cong, 2021). Currently, the world’s PV power capacity accounts for about 1% of total power capacity, by 2030, it is expected to provide 15% of the global electricity supply (Helveston et al., 2022), crucially helping achieve global carbon neutrality (Liu et al., 2012).

The construction of SPPs has profound effects on terrestrial ecosystems, because ground-mounted PV panels are considered a new form of land use change, shading large areas of previously open land (Turney and Fthenakis, 2011; Armstrong et al., 2016; Chang et al., 2016). Previous studies have found that SPP construction can affect the local climate and soil environment (Hong and Kim, 2008; De Marcoa et al., 2014; Choi et al., 2020) by perturbing the surface energy balance (Mercado et al., 2009; Nemet, 2009; Broadbent et al., 2019; Yu et al., 2020; Lambert et al., 2021). Photovoltaic panels can affect air humidity and soil water content by moderating the photosynthetically active radiation (PAR) received (Weinstock and Appelbaum, 2009; Lu, 2013), as well as by significantly reducing wind speed and turbulence (Armstrong et al., 2016; Zhao, 2016; Yin et al., 2017). These effects in turn affect plant communities, altering plant biomass, species richness and vegetation cover (Liu et al., 2019; Zhai et al., 2020; Lambert et al., 2022). Local impacts of SPPs on the microclimate and vegetation may further influence broader ecosystem processes, such as carbon flux balance and soil water retention capacity, leading to changes in ecosystem services across spatial scales (Armstrong et al., 2014; Liu et al., 2020).

However, the ecological impacts of SPPs reported to date vary substantially among studies. In the Mu Us Desert, China (Liu et al., 2019), PAR was reduced by 67.4% beneath PV panels as compared to an unaltered area. However, the installation of PV panels did not affect PAR in the desert ecosystems of Inner Mongolia, China (Zhao, 2016) or in the farmland ecosystems of Italy (Vervloesem et al., 2022). A 83.9% increase in vegetation cover and 68.7% increase in plant biomass were associated with PV panels in the Gonghe Basin, Qinghai Province, China (Li et al., 2016). Similarly, Wang et al. (2016) reported a 128% increase in the fresh weight of plant biomass under PV panels. In contrast, in a woodland ecosystem in the south of France (Lambert et al., 2022), aboveground biomass, soil temperature and vegetation cover were significantly reduced beneath PV panels, with soil temperature a full 10% lower (Lambert et al., 2021). Similarly, in a farmland ecosystem in central Italy (Moscatelli et al., 2022), soil temperature was reduced by PV panels. However, in the Mu Us Desert (Liu et al., 2019), soil temperature was 3°C higher under PV panels as compared to controls. For soil pH, contrasting results have also been reported. Under PV panels, soil pH increased by 14.04% in central Italy (Moscatelli et al., 2022) but decreased by 13.93% in Datong, China (Liu, 2020).

To understand the overall ecological impacts of SPPs on terrestrial ecosystems. We conducted a meta-analysis of SPP effects on carbon processes, edaphic factors, microclimatic factors and vegetation characteristics. We hypothesized that the mixed effects observed to date were caused by variations among study ecosystems; we therefore examined how ecosystem type (i.e., desert, farmland, grassland, or woodland) affected the SPP ecological impacts. Our study is hoped to provide a comprehensive evaluation of SPP impacts on terrestrial ecosystems and to improve the rational management and ecological restoration of SPP localities.



2. Materials and methods


2.1. Data collection

To test how PV panels affected terrestrial ecosystem ecology, we conducted a systematic literature search using the ISI Web of Science and CNKI for the terms [photovoltaic AND (ecology system OR vegetation OR biodiversity OR soil nutrient OR soil moisture OR soil temperature)]. The investigations spanned published records from 1st January 2010 to 31st December 2022. This search led to an initial set of 1,491 publications. These were checked for relevance by examining the title, abstract and main text in succession (Supplementary Figure S1).

We collected data from publications that met the following three criteria: (1) a focus on the ecological and environmental impact of SPPs, including at least one indicator of carbon flux, microclimatic factors, the soil environment and/or vegetation characteristics; (2) the experimental design included both control and experimental groups, and each group contained at least three replicates; (3) the mean and standard deviation (or variance, standard error and 95% confidence interval) of relevant indexes were provided. After screening, a total of 16 papers were selected for data extraction and further analysis (Supplementary Table S1).

Data were extracted from the main text and tables, or indirectly from figures using “GetData.” The indices we extracted included microclimatic factors (air humidity, air temperature and PAR), soil characteristics (available phosphorus, CO2 flux, pH, soil temperature, soil water content, total carbon and total nitrogen) and vegetation characteristics (plant aboveground biomass, Shannon-Wiener diversity index, Simpson’s diversity index, species richness and vegetation cover). For each indicator, we recorded the mean, standard deviation (or variance, standard error and 95% confidence interval) and sample size.



2.2. Statistical analysis

We calculated effect sizes based on the mean (Y), standard deviation (SD) and sample size (n) of each indicator and derived the variance associated with each study. In cases where only a standard error (SE) was provided, it was converted to a SD using (1):
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The log response ratio (RR) was used as a measure of the effect size to quantify differences between control and experimental groups (Hedges et al., 1999) and was calculated as follows:
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where Ye is the mean value of the experimental group, and Yc is the mean value of the control group. The corresponding variance (Vi) for RR was calculated as follows:
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where Ne is the sample size of the experimental group and Nc the control group.

We built a series of random effects models by employing the rma.mv function from the “metafor” package in R (4.2.1) (Wallace et al., 2017). “Study case” was nested in “literature” as a random effect. The cumulative effect value ([image: image]), weights of individual studies (wi*), population variance (VM), and the total standard error (SEM) and its 95% confidence interval were calculated according to the following formulas:
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If the 95% confidence interval encompassed zero, the indicator in question did not differ significantly between the control and experimental groups (p > 0.05). Lastly, we used “Origin 2022” to draw a “forest map” showing the meta-analysis results.




3. Results


3.1. Effects of solar photovoltaic panel construction on microclimate factors

Overall, air temperature (mean ln RR = −0.073, 95% CI = [−0.125, −0.021], p = 0.006) and PAR (ln RR = −1.563, [−2.537, −0.590], p = 0.002) were significantly lower within PV panel plots than within control plots, while air humidity (ln RR = 0.144, [0.013, 0.274], p = 0.031) showed the opposite pattern (Figure 1). Due to shading by PV panels, the PAR received by farmland (ln RR = −2.830, [−3.664, −1.996], p < 0.001) and grassland (ln RR = −2.100, [−2.558, −1.642], p < 0.001) ecosystems was lower, respectively, as compared to control plots. Meanwhile, air humidity (ln RR = 0.223, [0.088, 0.357], p = 0.001) increased and air temperature (ln RR = −0.099, [−0.144, −0.054], p < 0.001) decreased by in grassland ecosystems in experimental versus control plots (Figure 1).
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FIGURE 1
 Effects of solar photovoltaic panels on microclimatic conditions in terrestrial ecosystems. Error bars indicate 95% confidence intervals (CIs). If the CI did not overlap zero, the response was considered significant: *p < 0.05, **p < 0.01, and ***p < 0.001. The numbers in parentheses represent the sample size of each observation.




3.2. Effects of solar photovoltaic panel construction on soil conditions

The construction of SPPs had no significant effect on total carbon, soil total nitrogen, soil temperature, or soil water content in terrestrial ecosystems (Figure 2). In farmland ecosystems, the soil available phosphorus (ln RR = 2.363, [0.279, 4.448], p = 0.026) and soil pH (ln RR = 0.154, [0.003, 0.304], p = 0.045) were higher within PV panel plots versus controls, whereas the soil pH (ln RR = −0.108, [−0.136, −0.081], p < 0.001) decreased with PV panel construction in grassland ecosystems. SPP construction did not affect the overall CO2 flux, but reduced CO2 fluxes (ln RR = −1.053, [−1.404, −0.702], p < 0.001) in woodland ecosystems (Figure 2).

[image: Figure 2]

FIGURE 2
 Effects of solar photovoltaic panels on the soil environment in terrestrial ecosystems. (A) Soil physical properties, (B) soil chemical properties, and (C) soil functions. Error bars indicate 95% confidence intervals (CIs). If the CI did not overlap zero, the response was considered significant: *p < 0.05, **p < 0.01, and ***p < 0.001. The numbers in parentheses represent the sample size of each observation.




3.3. Effects of solar photovoltaic panel construction on vegetation characteristics

The use of SPPs enhanced vegetation cover in grassland (ln RR = 1.000, [0.290, 1.709], p = 0.006) and desert (ln RR = 1.960, [1.742, 2.178], p < 0.001) ecosystems while decreasing the vegetation cover in woodland ecosystems (ln RR = −0.806, [−1.230, −0.398], p < 0.001; Figure 3). Compared with control plots, the aboveground biomass was higher in PV panel plots, with the aboveground biomass greater in grasslands (ln RR = 0.751, [0.571, 0.931], p < 0.001) and farmlands (ln RR = 0.823, [0.750, 0.896], p < 0.001), respectively (Figure 3). In general, PV panel construction did not affect plant species diversity indices, with the exception that plant species richness (ln RR = −0.555, [−0.720, −0.390], p < 0.001) was significantly reduced in woodland ecosystems.
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FIGURE 3
 Effects of solar photovoltaic panels on vegetation characteristics in terrestrial ecosystems. (A) Aboveground biomass and cover and (B) plant diversity. Error bars indicate 95% confidence intervals (CIs). If the CI did not overlap zero, the response was considered significant: *p < 0.05, **p < 0.01, and ***p < 0.001. The numbers in parentheses represent the sample size of each observation.





4. Discussion

Overall, SPP construction had a significant effect on microclimatic factors such as air humidity, air temperature and PAR, which are major climate moderators influencing vegetation growth and terrestrial ecosystem functioning. In PV panel plots, PAR was much lower than in control plots, especially in grassland and farmland ecosystems. Photovoltaic panels convert solar radiation into electricity and therefore block sunlight from reaching the ground (Lewis and Nocera, 2006), the land surface beneath PV panels receives less radiation than uncovered land (Zhou et al., 2012). Here, we found that SPP had no significant effect on PAR in deserts, while another study (Liu et al., 2019) found a 67.3% decrease. In the desert system studied by Liu et al. (2019), vegetation cover was enhanced under the PV panels, resulting in less solar radiation reaching the surface. Changes in PAR induced by SPPs may lead to further alterations of other environmental factors. For example, in the Sahara, the PV panels of large-scale solar farms directly reduce surface albedo, creating a positive albedo-precipitation-vegetation feedback loop that triggers increases in temperature and precipitation (Li et al., 2018).

Compared to control plots, PV panel plots had significantly lower air temperature, with an average air temperature decrease in grassland ecosystems. The cooling of the land surface associated with SPP construction is related to the physical shading caused by PV panels (Marrou et al., 2013) and the interception of shortwave radiation by the PV arrays (Weinstock and Appelbaum, 2009). In grassland ecosystems, hot PV panel surfaces can heat the ambient air, driving a PV heat-island effect (Chang et al., 2018).

Air humidity is another important factor affecting vegetation. Overall, SPP construction led to a significant increase in air humidity, especially in grassland ecosystems, where air humidity increased. This increase in air humidity may be caused by a reduction in net radiation and air temperature under the PV panels (Chang et al., 2018), or by changes in wind speed and turbulent mixing at the land surface (Armstrong et al., 2014). How SPPs affect air humidity can also be closely linked to the vegetation status of an area. For example, Zhu et al. (2021) found that SPPs tended to indirectly affect humidity by regulating plant distribution and growth within the area.

Changes in microclimatic factors can produce corresponding changes in soil temperature and soil water content. However, SPP construction did not impact the overall physical properties of the soil. In a recent study (Zhou and Wang, 2019), soil organic matter, pH and total N and P varied little between PV panel rows and undisturbed areas outside the panel rows. We also did not detect an effect of SPP construction on soil total C or N content. However, SPP construction had contrasting effects on soil pH in farmlands versus grasslands. This may be due to variation among ecosystems in a number of important influential factors, including: Na salt leaching from PV panels, precipitation, soil erosion, surface runoff, vegetation characteristics and wind speed (Golubiewski, 2006; Cook, 2011; Barron-Gafford et al., 2019; Moscatelli et al., 2022). In farmland ecosystems, elevation of soil pH (from moderately acidic to slightly acidic) can increase the availability of soil P (Moscatelli et al., 2022). This reduction in soil C and N content is likely caused by the removal of topsoil during PV array construction (Choi et al., 2022). However, soil texture may also be an important determinant of how PV panels affect soil nutrient cycling (Mazaheri and Mahmoodabadi, 2012).

Our study found no net effect of SPP construction on CO2 flux, but a decrease in CO2 flux in woodland ecosystems. This decline in soil respiration may be due to reductions in plant growth and surface clearance under the PV panels (Lambert et al., 2021). To date, there remain few case studies of CO2 fluxes under SPP construction, with only a small amount of data from agricultural and forest ecosystems and no data from other ecosystems. Therefore, our assessment of SPP impacts on CO2 fluxes and other greenhouse gas emissions in terrestrial ecosystems is preliminary, and considerable future research will be required to fully elucidate these effects.

The construction of SPPs leads to changes in local shading and a redistribution of precipitation, as well as the evaporation of soil water (Cui et al., 2017). Together, the combined effect of these changes, as well as shifts in PAR and other soil variables, can greatly affect plant growth and community succession (Yan, 2017; Liu et al., 2022). Overall, in this study, both the vegetation cover and plant productivity (as aboveground biomass) were much increased under PV panels as compared to controls. In farmland and grassland ecosystems, aboveground biomass and vegetation cover increased significantly. For comparison, Wang et al. (2016) found increases in both the fresh (128%) and dry (127%) weight of aboveground plant materials under PV panels, while in the Gonghe Basin of China, PV panels resulted in increases in vegetation cover (83.9%) and aboveground biomass (68.7%) (Li et al., 2016). Despite variation in plant productivity and cover changes, SPP construction appears to be beneficial to plant growth in most cases.

Improved plant growth can lead to the absorption of more carbon from the atmosphere, while also regulating the terrestrial carbon cycle through plant–soil processes and thereby affecting soil carbon storage, greenhouse gas emissions and ecosystem stability (Bardgett et al., 2008). The enhanced plant productivity seen at SPP sites allows more litter to enter the soil, providing a greater influx of nutrients, improving soil structure and increasing soil water holding capacity (Jia et al., 2018). More vegetation cover, especially in arid, sandy areas where vegetation cover is typically low, can provide protection from wind erosion (Wang, 2015). Taken together, the establishment of SPPs can not only provide electricity (via a new energy source), but also precipitate ecological benefits by enhancing vegetation cover.

We found no significant impact of SPP construction on plant species diversity. However, Wang et al. (2016) found that the Shannon-Wiener and Simpson’s diversity indices increased by 60% and 32%, respectively, under PV panels as compared to control areas. The same trend was found by Zhang et al. (2020) in a desert ecosystem, where species richness, the Shannon-Wiener diversity index and Simpson’s diversity indices were higher below PV panels than outside the SPP. In Gonghe Basin, plant species richness increased by 119.2% under PV panels (Li et al., 2016). However, fewer plant species and lower species diversity occurred under PV panels in a typical grassland area (Du and Sun, 2017; Zhai et al., 2018). This indicates that the effects of PV panels on plant diversity are varied and may even be in opposite directions. Furthermore, SPP construction may cause changes in plant community structure, which may not necessarily be reflected in plant diversity shifts (Zhai et al., 2018). Understanding the specifics of how SPP construction affects plant community structure requires further study.

Woodland ecosystems showed different responses to SPP construction than other ecosystem types. In woodlands, we found reductions in plant species richness and vegetation cover beneath PV panels. This is probably because, in woodland ecosystems, woody plants are removed and the land surface cleared prior to PV array construction (Lambert et al., 2022).



5. Conclusion

In our meta-analysis, SPP construction was found to significantly alter the local climate, increasing air temperature and PAR, while decreasing air humidity, these impacts were more prominent in grasslands versus other terrestrial ecosystems. However, SPP effects on soil parameters were generally not significant, perhaps due to the substantial spatial and temporal variation observed in these effects. Nevertheless, changes in vegetation caused by shifting environmental factors were evident. In most studies, SPP construction has been found to increase plant productivity (as aboveground biomass) and vegetation cover, except for in woodlands, where woody plants are removed during SPP construction. SPP projects not only generate clean energy, but also provide additional benefits by greening land surfaces in arid areas and increasing carbon sequestration. However, given the variation in these effects among ecosystem types, caution needs to be taken when considering future SPP development and management across regions.
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Temporal change of beta diversity provides a better understanding of the extent and consequences of species composition in forest communities with the ongoing global climate change. However, relatively little is known about temporal beta diversity changes across vertical stratification in the forest. In this study, we divided more than 5,000 tree individuals from a mixed broadleaf-conifer forest into four vertical strata (i.e., shrub, subcanopy, lower canopy, and upper canopy) to quantify how vertical stratification drives the temporal change of taxonomic and phylogenetic beta diversity. We found that taxonomic beta diversity significantly decreased while phylogenetic beta diversity showed an insignificant increase after 5 years. When considering vertical stratification, taxonomic beta diversity in the subcanopy, lower canopy, and upper canopy significantly changed with inconsistent directions, but phylogenetic beta diversity in the shrub significantly increased. Moreover, the significant decrease in taxonomic beta diversity is mainly driven by changes in species composition in shrub and subcanopy stratification (with 85.89% contributions). The changes in phylogenetic beta diversity are driven by shifts in the shrub and upper canopy (with 96.02% contributions). Our study suggests that taking community vertical stratification into consideration contributes to a better understanding of temporal beta diversity in forest communities.
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1. Introduction

Beta diversity is defined as the spatial variation in species composition among sites, providing insights into the ecological processes and driving patterns of biodiversity in the context of the ongoing global climate change (Whittaker, 1960; Anderson et al., 2011; Magurran et al., 2018, 2019; Reu et al., 2022). Growing concerns about the state of biodiversity change with climate change highlight the need for a better understanding of the extent and consequences of species composition in forest communities. Forest communities are dynamic (Hilmers et al., 2018; Legendre, 2019; Wang et al., 2020a), and the shifts within the community may drive temporal patterns of beta diversity (Magurran et al., 2018; Tatsumi et al., 2021). However, relatively little is known about how temporal beta diversity changes across vertical stratification in forest communities. The understanding of temporal beta diversity within forests can help us to understand forest community succession and highlight principal driving factors (Magurran et al., 2019).

In the process of forest community succession, the change in landscape of beta diversity may be affected by multiple factors. A study on the Loess Plateau of China (Chai et al., 2016) showed that taxonomic beta diversity did not change significantly with succession; however, other studies have found that taxonomic beta diversity decreased with succession (Kavgacı et al., 2010; Purschke et al., 2013). This difference may be related to forest age (Dalmaso et al., 2020), local climate (Keil et al., 2012), topography (Ahmad et al., 2020), research scales (Zhang et al., 2015), and other factors. Most studies of phylogenetic beta diversity showed a downward trend with succession (Purschke et al., 2013; Chai et al., 2016), indicating that deterministic processes gradually dominated the shift of phylogenetic structure in the community. The changes in temporal taxonomic and phylogenetic beta diversity can be explained at the species level (Tatsumi et al., 2021), and exploring the variation in diversity of different community structures containing different species composition can help provide greater insight into community successional mechanisms.

The vertical structure is an important structural feature of forests (Hao et al., 2007). Each vertical stratification has different levels of light absorption and transpiration (Tian et al., 2023), resulting in a pattern of vertical stratification of species composition (Onaindia et al., 2004; Wang et al., 2020b). Species occupying different vertical strata may show different responses to disturbance (Peterson and Reich, 2008; Decocq et al., 2014) such as climate change (Nakamura et al., 2017), among others. Therefore, as natural community succession progresses, the biodiversity represented across vertical stratification may also show alternative temporal changes with consequential impacts on the community as a whole. However, the contribution of diversity changes of each vertical stratum to overall diversity shifts during succession is unknown. Exploring this part of the research gap may help us to better understand the different outcomes of temporal beta diversity. In addition, previous studies have adopted a fixed standard method for measuring vertical stratification (Onaindia et al., 2004). However, this method does not account for the difference in local forest structure or the temporal change in structure that may occur during succession (Marziliano et al., 2013). Thus, in this study, we utilize a quantitative stratification method that accounts for the local variation of forest structure (Latham et al., 1998; Maeda et al., 2022). It is practical and meaningful to explore the temporal diversity of vertical stratification based on quantitative methods.

In this study, we explored the changes in taxonomic and phylogenetic beta diversity of vertical forest stratification during succession. We utilized tree census data from the Dongbaishan 1 ha mixed broadleaf-conifer forest in the Zhejiang Province in China (Wang et al., 2015), which was surveyed in 2013 and 2018. Individuals with DBH ≥ 1 cm were divided into different vertical stratification according to their height by using the TSTRAT algorithm and k-means cluster analysis. We focused on the following questions:


(1)How does taxonomic and phylogenetic beta diversity change within vertical stratification in this forest?

(2)How does the beta diversity in different vertical stratification contribute to the total temporal taxonomic and phylogenetic beta diversity?





2. Materials and methods


2.1. Study area and tree survey

The study was carried out in the Dongbaishan Provincial Nature Reserve (120°22′45″–120°30′48″E, 290°30′4″–290°30′48″N) in the Zhejiang Province in China with a total area of 5,071.5 ha and the main peak at an altitude of 1,194.6 m. Dongbaishan Nature Reserve has a mid-north subtropical monsoon climate with an average annual temperature of 11.7°C and an average annual precipitation of 1,541.4 mm. The area is rich in species with a total of 179 families, 749 genera, and 1,530 species of vascular plants (Wang et al., 2015).

In 2013, a 1 ha (100 m × 100 m) fixed dynamic monitoring plot (120°23′35.69″–120°23′40.63″ E, 290°23′40.63″–290°23′40.63″ N) was established in the Dongbaishan Nature Reserve following the construction standard of CForBio (Feng et al., 2016). The plot ranges from 135 to 157 m in elevation, ranges from 8° to 62° in slope, and consists of 25 20 m × 20 m quadrats. In 2013, all woody plants with DBH (diameter at breast height) ≥ 1 cm in the plot were investigated; the investigation content includes species name, DBH, height (vertical height from root to crown), crown base height, etc. Since then, the first re-census was conducted in 2018 (Supplementary Table 1).



2.2. Division of vertical stratification

The heights of all individuals were analyzed by the k-means clustering algorithm (Hartigan and Wong, 1979) to obtain the height of definitive vertical stratification. Before that, the range of optimal clustering number k is determined based on the number of strata under different competition coefficients obtained by the TSTRAT algorithm (Latham et al., 1998). The TSTRAT algorithm defines strata based on competing cut-off points with the tree canopy in a given area:

[image: image]

where CCH is the competition cut-off height, CL is the crown length, HBLC is the height-to-base of the live crown, and a is the competition coefficient. The range of a in this study is 0.3–0.5.

Then, the ideal clustering number k is found when the total sum of squares plateaus and when the gap statistic is at its maximum.



2.3. Analysis of taxonomic and phylogenetic beta diversity

The abundance-based Bray-Curtis index (βbc) (Baselga and Chao, 2016) was chosen to measure the taxonomic beta diversity of the total community and each vertical stratification:
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where A is the abundance of individuals of each species that exist in both sites j and k; B and C are the abundances of individuals that are unique to sites j and k, respectively.

The MPD_beta (interassemblage mean pairwise distance) was chosen to measure the phylogenetic beta diversity of the total community and each vertical stratification because MPD_beta was the most robust beta diversity metric to the source of the phylogeny (Li et al., 2019). In order to test whether the phylogenetic structure was different from the random expectation, a further comparison of MPD_beta with the null model was required (Miller et al., 2017). Specifically, the null model was constructed by fixing the species richness and occurrence frequency of each quadrat, and the identities of those species were randomly drawn from the whole species pool (Li et al., 2015). After constructing the null model 9,999 times, the standardized effect sizes of MPD_beta (SES.MPD_beta) were calculated as:
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where χobs is the observed value, [image: image] is the mean of the simulated values, and SDnull is the standard deviation of the simulated values. Positive SES.MPD_beta values indicate phylogenetic overdispersion, whereas negative values indicate clustering. If SES.MPD_beta = 0, it indicates that the species between the quadrats are random in the phylogenetic structure.



2.4. Statistical analysis

To examine the dynamic changes in the beta diversity of vertical stratification from 2013 to 2018, we used mixed effects models to fit βbc and SES.MPD_beta as a function of years. The year was treated as a single continuous fixed factor, and the pairwise groups between the quadrats were considered random effects. In addition, to measure the contribution of different vertical stratification to the beta diversity of the whole community, we used the “lmg” method which is a measure of the relative importance of the independent variables (Grömping, 2009).

All analyses were performed in R (version 4.2.2). The Bray-Curtis index and SES.MPD_beta were calculated using the “betapart” package (Baselga and Orme, 2012) and the “pincate” package (Kembel et al., 2010). Construction of the phylogenetic tree (Supplementary Figure 1) was completed through the “V.PhyloMaker” package (Jin and Qian, 2019, 2022). The mixed effects model was built by “lme4” packages (Bates et al., 2014). The “lmg” method was completed through the “relaimpo” package (Groemping, 2006).




3. Results


3.1. Division of vertical stratification

According to the k-means clustering algorithm and TSTRAT algorithm, when the number of classified groups reached four groups, the change of the sum of squares within the group tended to be flat (Figure 1A). The line chart of gap statistics showed that when k was four, it was the optimal number of clusters (Figure 1B). At the same time, the number of classification groups could be divided into four to six strata according to the competition coefficient (Figure 1C). Therefore, the vertical structure of the plot was divided into four strata. Combined with height data of each vertical stratum obtained according to the clustering algorithm, these four strata can be defined as shrub, subcanopy, lower canopy, and upper canopy.
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FIGURE 1
Results of the sum of squares (A), gap statistics (B), and TSTRAT algorithm (C).


Comparing the community characteristics of the four vertical strata in 2013 and 2018 (Table 1), we found that the height of each vertical stratum increased, especially in the lower canopy and upper canopy. Additionally, except for the shrub layer, the average DBH increased for each layer. Lastly, the abundance of the shrub, subcanopy, and lower canopy decreased, and the richness of the shrub and subcanopy decreased.


TABLE 1    Basic information on each vertical stratum in the Dongbaishan forest between 2013 and 2018.

[image: Table 1]



3.2. Temporal beta diversity change across vertical stratification

The taxonomic beta diversity of the secondary Dongbaishan mixed broadleaf-conifer forest decreased significantly (p < 0.001) during succession from 2013 to 2018 (Figure 2A and Supplementary Table 2), indicating that the species composition among the quadrats homogenized over time. On the other hand, phylogenetic beta diversity showed no significant trend (Figure 2B and Supplementary Table 2).
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FIGURE 2
Changes in taxonomic beta diversity (A) and phylogenetic beta diversity (B) in the Dongbaishan forest between 2013 and 2018. nsp > 0.05, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001.


The taxonomic beta diversity of each vertical stratum varied from 2013 to 2018 (Figure 3 and Supplementary Table 2). The taxonomic beta diversity of the subcanopy decreased significantly (p < 0.001), which indicates that the species composition among the quadrats homogenized. The taxonomic beta diversity of the upper canopy and lower canopy increased significantly (p < 0.0001), which means that the species composition among the quadrats heterogenized.
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FIGURE 3
Changes of taxonomic beta diversity in four vertical stratification in the Dongbaishan forest between 2013 and 2018. nsp > 0.05, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001.


The phylogenetic beta diversity of each vertical stratum also varied from 2013 to 2018 (Figure 4 and Supplementary Table 2). In 2013, the phylogenetic distance of the lower canopy was more distant than that of other vertical strata, but by 2018, the vertical stratification with the most distant phylogenetic distance between the quadrats were the upper canopy. Across time periods, the phylogenetic distance of the shrub significantly increased (p < 0.0001) and the upper canopy slightly significantly increased (p = 0.0687), whereas the lower canopy decreased.
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FIGURE 4
Changes of phylogenetic beta diversity in four vertical stratification in the Dongbaishan forest between 2013 and 2018. nsp > 0.05, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001.




3.3. Relative contribution of different vertical stratification to temporal taxonomic and phylogenetic beta diversity

The changes in beta diversity of each vertical stratum had different implications for the changes of beta diversity for the whole community (Figure 5). The changes in beta diversity in the shrub and subcanopy were the main explanatory variables of community beta diversity. Shrub and subcanopy together were responsible for 85.89% of the changes in taxonomic beta diversity. Shrub and upper canopy jointly were responsible for 96.02% of the changes in phylogenetic beta diversity, although, overall, there was no significant increase or decrease with succession.
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FIGURE 5
The relative contribution of different vertical stratification to temporal taxonomic and phylogenetic beta diversity in the Dongbaishan forest.





4. Discussion


4.1. Temporal taxonomic and phylogenetic beta diversity change across vertical stratification

With succession at our site, the height of each vertical stratum gradually increased, highlighting the different growth conditions and environmental adaptability of the species in each stratum. The abundance and frequency of the shrub decreased, especially the dominant species such as Schima superba and other rare species such as Litsea cubeba (Supplementary Tables 3, 4). Nevertheless, the results of partitioning beta diversity showed that there were no significant changes in abundance gradients and abundance balances (Supplementary Figures 2, 3 and Supplementary Table 5) likely because of the decrease of common abundance (concatenation of abundance among quadrats) in dominant species and the decrease of unique abundance (complementary of abundance among quadrats) caused by rare species counteracting each other on the difference of species composition of the whole community. Finally, the results also showed that the taxonomic beta diversity did not change significantly. It is worth noting that the difference in species composition between shrub stratification is determined more by the turnover of species abundance (i.e., the decrease of common abundance), which indicates that shrub species may be more vulnerable to dispersal limitation and environmental filtering (Shi et al., 2021; Hu et al., 2022).

The decrease in abundance of some rare species in the subcanopy and the frequency of some dominant species such as Pinus massoniana and Lithocar pusglaber reduced the change of abundance balances (that is, the turnover of species abundance decreased), which was characterized by a significant decrease in taxonomic beta diversity. The canopy showed an increase in taxonomic beta diversity, indicating that the difference between canopies within the community gradually increased. This result may be related to the increase of the abundance gradients, thereby indicating an influence of selective local extinction/colonization of some species in the canopy (Wang et al., 2010). Unlike the shrub, the difference in species composition among the subcanopy, lower canopy, and upper canopy was determined primarily by abundance gradients, indicating that there may be strong selective local extinction/colonization in these vertical strata. In addition, there were some species in the three higher vertical strata that do not exist in the shrub stratification (Supplementary Table 1), which might inhibit the growth of other species because of the priority effect (Gui et al., 2019; Solarik et al., 2020), thus making the components of the abundance turnover of beta diversity smaller.

Importantly, there were two extreme droughts in Dongbaishan from 2013 to 2018, which significantly inhibited the plant growth of herbs and shrubs (Copeland et al., 2016; Jacobsen and Pratt, 2018). In addition, rare species have rarer numbers of individuals and seed sources, making them more vulnerable to local extinction from strong disturbances such as drought (Tilman and El Haddi, 1992), which may have impacted the shift in community composition in Dongbaishan.

The phylogenetic beta diversity of the shrub and the upper canopy showed a downward trend and were not greater than 0, suggesting that the phylogenetic beta diversity change in the two vertical strata was driven by an increase in relatedness in the community. The phylogenetic beta diversity of the subcanopy did not change significantly, but the values were all less than 0, indicating that the phylogenetic turnover between the subcanopies was also driven by closely related individuals (Chai et al., 2016). On the other hand, the phylogenetic turnover of the lower canopy changed from being driven by randomized individuals to closely related individuals. This may be due to different responses from different vertical stratification to biotic/abiotic factors such as extreme drought and negative density dependence (Fibich et al., 2021; Yan et al., 2022).



4.2. Contribution of each vertical stratification to temporal taxonomic and phylogenetic beta diversity

In this study, we found that the taxonomic beta diversity of the community decreased with succession, indicating that the species composition among the quadrats is becoming homogenized. This can be seen in the decrease in community abundance balances and the decline of the abundance gradients (Supplementary Table 5). Combined with the changes in abundance and frequency (Supplementary Table 1), the decrease in unique abundance is essential for the changes in the taxonomic beta diversity, especially the unique abundance of rare species. From the perspective of vertical structure, this difference is mainly affected by changes in the shrub and subcanopy stratification (although the interannual taxonomic beta diversity of the shrub is only weakly significant). This may be due to the high richness of the shrub and subcanopy stratification, and there are more rare species in a few quadrats than the canopy, but because the trees are relatively small and weakly resistant to disturbance, they are easily affected by external factors (such as fire, drought, and pests) and local extinction (Lang and Knight, 1983; Klesse et al., 2021; Masaki et al., 2021; Yang et al., 2022). At the same time, the dominant species of these two strata are more likely to be affected by negative density dependence restriction and upper stratification (Sercu et al., 2017).

The phylogenetic beta diversity of the community increased, indicating that the phylogenetic turnover in the community is driven by closely related individuals to randomized individuals. This is different from the result of other studies (Purschke et al., 2013; Chai et al., 2016), possibly because the time span of this study was small and involved extreme weather events. The randomization of community phylogenetic turnover was mainly affected by changes in the shrub and the upper canopy stratification, especially the upper canopy. We found that this is because the dominant species in the upper canopy may have a greater relative influence on the species composition and phylogenetic structure of the vertical stratification below the upper canopy (Yuan et al., 2012; Nakamura et al., 2017). For example, the upper canopy may influence competition in the lower stratification, especially in the shrub (Oberle et al., 2009).




5. Conclusion

Analysis of taxonomic and phylogenetic beta diversity in each vertical stratification of the community during succession provides insight into the influence of dynamic vertical distribution patterns on the forest plant community as a whole (Chai et al., 2016; Gui et al., 2019; Magurran et al., 2019). During succession, taxonomic and phylogenetic beta diversity varied across vertical stratification, suggesting that the assessment of community diversity requires data collected across the vertical space. In this subtropical secondary mixed coniferous forest, species composition differences across a successional period were mainly influenced by a decrease in unique abundance in the shrub and subcanopy stratification, while the phylogenetic turnover of the community tended to randomize, mainly driven by stochastic processes in the shrub and upper canopy stratification. We found that temporal beta diversity in this community was driven by the uppermost and lowermost stratification of the vertical structure.
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Pest herbivory regulation is one of the key functions provided by diverse ecosystems, especially when compared to species depauperate agro-ecosystems and in the context of increased pest outbreaks due to global change. The dilution effect of host diversity on insect herbivory suggests that mixed plantations are feasible for regulating pest herbivory in agroecosystems. Dilution effect of increased plant diversity on insect herbivory has been widely observed, yet little is known about how it may change with plant phylogenetic relatedness and herbivore specialization, especially at the community level. Here, we compared herbivore richness, abundance, and degree of herbivory (i.e., the ratio of trees damaged by pest and total trees in a given area) among the two monocultures and the four mixed plantations in Wenchang city, Hainan Province, China. We also respectively assessed the effects of phylogenetically close or distant species on generalist and specialist herbivores in monocultures and mixture. We found that increasing the number of phylogenetically closely-related tree species could dilute generalist herbivore richness, abundance, and degree of herbivory but amplify specialist herbivore richness, abundance, and degree of herbivory. In contrast, increasing the number of phylogenetically distant tree species increased generalist herbivore richness, abundance, and degree of herbivory, while reducing specialist herbivore richness, abundance, and degree of herbivory. Our results suggest that plant phylogenetic relatedness and herbivore specialization can indeed interact to influence pest control efficiency when using mixed plantations to manage pest herbivory in agroecosystems. Thus, both herbivore specialization and plant phylogenetic relatedness should be taken into account in the management of agro-ecosystems and biodiversity conservation with respect to herbivory.
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phylogenetic relatedness, herbivore specialization, plant-insect herbivore interaction amplification effect, dilution effect, generalist, herbivory, specialist


1. Introduction

The anthropogenic acceleration of biodiversity loss (Pimm et al., 2014) and its detrimental effects on ecosystem functions remain one of the major concerns in ecology (Tilman et al., 2014). Pest herbivory regulation is one of the key functions provided by diverse ecosystems, which is especially important for agro-ecosystems in the context of increased pest outbreaks due to global change (Jactel et al., 2012; Klapwijk et al., 2012; Castagneyrol et al., 2014; Andrew and Hill, 2017). Given the widely acknowledged phenomenon that increasing plant diversity can have a dilution effect (i.e., increasing plant diversity results in decreased pest herbivory) on insect herbivory, mixed plantations can potentially provide a key ecosystem service for the regulation of pest herbivory in mono-plantation in agroecosystems (Castagneyrol et al., 2014). However, the magnitude of the dilution effect of plant diversity on pest herbivory is known to vary according to the composition of plant and herbivore communities (Jactel and Brockerhoff, 2007; Vehvilainen et al., 2007; Barbosa et al., 2009). Moreover, evidence refuting this effect (i.e., that increasing plant diversity leads to increased pest herbivory) has also been found in other studies (Schuldt et al., 2015; Zhang et al., 2017; Grossman et al., 2018). As a result, it remains unclear whether increasing plant diversity through mixed plantations can be used to help manage pest herbivory in agroecosystems.

Recent synthesis studies highlight two primary factors that may be responsible for the lack of consensus regarding plant diversity-herbivory relationships (Jactel and Brockerhoff, 2007; Castagneyrol et al., 2014). First, host specificity of herbivores, particularly herbivory by specialist species (feeding on a specific plant genus), is usually reduced in diverse communities compared to monocultures (but see Plath et al., 2012). In contrast, the response of generalist species (feeding on different plant genus) is asynchronous in terms of its direction and magnitude (Schuldt et al., 2015). The second possibility regards the plant diversity being examined. Previous studies have shown that plant functional and phylogenetic diversity of the host community, and the relative abundance of the focal plant species, is more important than plant species richness in regulating the magnitude of herbivory (Mouquet et al., 2012). Moreover, herbivore specificity and plant phylogenetic relatedness interact to regulate the intensity of herbivory (Castagneyrol et al., 2014).

Till now, the associational resistance hypothesis has been recognized as the primary mechanism driving the dilution effect of increased plant diversity on specialist herbivory (Root, 1973; Agrawal et al., 2006; Lewinsohn and Roslin, 2008). This hypothesis claims that specialist herbivores prefer homogeneous neighbors to the same host plants for increase their herbivore loads (Lewinsohn and Roslin, 2008). As such, mixing closely related plant species with a mono-plantation may amplify herbivory caused by specialist herbivores. In contrast, mixing phylogenetically distant plant species with mono-plantations may dilute the effects from specialist herbivores (Figure 1). Likewise, the associational susceptibility hypothesis has been considered key to explaining the dilution effect of increased plant diversity on generalist herbivory (Unsicker et al., 2008; Plath et al., 2012). The hypothesis assumes that generalist herbivores require heterospecific neighbors to a focal plant to increase their herbivore load (Plath et al., 2012). As a result, mixing phylogenetically distant plant species with mono-plantation consumed by generalist herbivores may amplify herbivory due to generalist herbivores. In contrast, mixing closely related plant species with mono-plantations can dilute generalist herbivory (Figure 1). To the best of our knowledge, however, little is known about whether and how herbivore specificity and plant phylogenetic relatedness interact to alter the efficiency of mixed plantation on controlling herbivore in monoculture agroecosystem.


[image: Figure 1]
FIGURE 1
 Hypothesized dilute and amplified effects of mixing closely and distantly related tree species on specialist and generalist pest herbivory respectively.


Current knowledge regarding the effect of plant phylogenetic diversity on generalist vs. specialist herbivores is largely based on comparisons of generalist and specialist herbivore intensity between monoculture and mixed plantations (Castagneyrol et al., 2014). By doing so, however, herbivore-herbivore interactions are largely overlooked. In fact, more complexity and even inverse patterns may emerge when multiple hosts and herbivores are taken into account as in the realty. For instance, phylogenetic relatedness of a host community may have different effect on the mean intensity of herbivory for multiple generalist herbivores and a specific herbivore respectively. An assemblage of phylogenetically distant plants may harbor more generalist herbivore species, and may also suffer from a higher level of herbivory through the sampling effect (i.e., higher possibility of attracting herbivores with high herbivory) (Schuldt et al., 2014). Similarly, phylogenetically similar species can also trigger many new specialist species, which may also lead to higher specialist herbivory via the sampling effect. As a result, pest species diversity (species richness and abundance) and the herbivore intensity by the targeted generalist or specialist herbivores should be compared simultaneously among monocultures and mixed plantations. However, experimental studies addressing the specificity of multiple herbivores and their community composition at the community level remain scarce.

Here, we sampled two monocultures in Wenchang City, Hainan Province, China. One was one subspecies of Cocos nucifera (we called “green Cocos nucifera”) stand and the other is a pure stand of Pinus elliottii. Based on 20 years' pest herbivore survey in this area, “green Cocos nucifera” is attacked by generalist herbivores (e.g., Brontispa longissima, Rhynchophorus ferrugineus, Oryctes rhinoceros, Diocalandra frument, Aspidiotus destucto, and Aleurocanthus spiniferus) (Lin et al., 2010). In contrast, Pinus elliottii is attacked merely by a specialist herbivore (Dendrolimus puntatus) (Xu et al., 2014). We mixed ten tree species which are phylogenetically distant with the two monocultures (Supplementary Figure S1) to simulate the influence of mixture of phylogenetically distant species on generalist and specialist pest herbivory respectively. These ten tree species are Litsea glutinosa, Calophyllum inophyllum, Casuarina equisetifolia, Rapsnea linearis, Rhodomyrtus tomentosa, Psychotria rubra, Clerodendrum cyrtophyllum, Zanthoxylum piperitum, Wikstroemia indica, and Atalantia buxifoli (Supplementary Figure S1). We also mixed another subspecies of Cocos nucifera (we called “red Cocos nucifera”) with the pure “green Cocos nucifera” stand “red Cocos nucifera” is phylogenetically close to “green Cocos nucifera” stand (Supplementary Figure S1), so we use this design to assess the effect of mixing phylogenetically close species on generalist pest herbivory. Similarly, since Pinus caribaea is phylogenetically close to Pinus elliottii (Supplementary Figure S1), we mixed Pinus caribaea with the pure Pinus elliottii stand to assess the impacts of mixing phylogenetically similar species on specialist pest herbivory too. Specifically, we compared herbivore richness, abundance, and degree of herbivory (i.e., the ratio of trees damaged by pest and total trees in a given area) among the two monocultures and the four mixed plantations. This experimental design aims to test: (1) if the addition of distantly related plant species can amplify herbivory by generalist herbivores, but dilute herbivory caused by specialist herbivores in a diverse host community; and (2) if adding closely related species to a host community can dilute herbivory caused by generalist herbivores, but amplify herbivory caused by specialist herbivores.



2. Materials and methods


2.1. Study sites

Our study site included four mixed stands (mixed stand 1, 110°57′34″E, 19°43′58″N; mixed stand 2, 110°56′39″E, 19°44′4″N; mixed stand 3, 110°58′34″E, 19°44′23″N and mixed stand 4: 110°49′24″E, 19°32′29″N), one monoculture pure “green Cocos nucifera” stand (110°51′15″E, 19°34′58″N), and one monoculture pure Pinus elliottii stand (110°43′19″E, 19°34′01″N) in Wenchang City, Hainan Province, China (Supplementary Figure S2). These sites have a mean annual temperature (1978–2010) of 23.9 °C, with a low monthly mean temperature of 16.2°C in January and high of 33°C in August. Average annual precipitation is 1,729 mm, most of which occurs from April to October.

One hundred stems from each of ten species (i.e., Litsea glutinosa, Calophyllum inophyllum, Casuarina equisetifolia, Rapsnea linearis, Rhodomyrtus tomentosa, Psychotria rubra, Clerodendrum cyrtophyllum, Zanthoxylum piperitum, Wikstroemia indica, and Atalantia buxifoli) were randomly mixed with 1,000 individuals of “green Cocos nucifera” in mixed stand 1 and 1,000 individuals of Pinus elliottii in mixed stand 2. Thus, this planting was used to test the influence of mixing phylogenetically distant plant species on generalist and specialist pest herbivory individually. In mixed stand 3, 1,000 individuals of “green Cocos nucifera” and 1,000 individuals of “red Cocos nucifera” were planted to determine the influence of mixing phylogenetically similar plant species on generalist pest herbivory. In mixed stand 4, 1,000 individuals of Pinus elliottii and 1000 individuals of Pinus caribaea were therefore randomly mixed to assess the impact of mixing phylogenetically similar plant species on specialist pest herbivory. Pure “green Cocos nucifera” and Pinus elliottii stands of at least 1000 ha were established in Wenchang for nearly 30 years. Pure “green Cocos nucifera” and Pinus elliottii stands, mixed stand 1, 2, 3, and 4 have been planted for at least 20 years, and their planting densities were all kept at 500 stems per hectare. Since all six stands were very near the ocean, the local government forbids any human management (e.g., pesticide spraying and fertilization), thereby to avoid any potential ocean pollution.


2.1.1. Measurements of degree of herbivory for “green Cocos nucifera” and Pinus elliottii

We randomly selected three 20 × 20 m2 subplots from each of the six stands described above. The subplots within each stand were at least 500 m apart from one another and from the edges of the stands. We then checked all “green Cocos nucifera” and Pinus elliottii trees in the three 20 × 20 m2 subplots from each of the six stands to see how many “green Cocos nucifera” and Pinus elliottii trees were damaged by pests. Examples of different types of pest herbivory in “green Cocos nucifera” and Pinus elliottii stands are shown in Supplementary Figure S3. Then we calculated the degree of herbivory as the ratio of trees damaged by a pest by the total number of trees found in each of the three 20 × 20 m2 subplots within each of the six plantation stands.



2.1.2. Insect species richness and abundance trapping

Following Xue et al. (2021), we used 18 insect nets trap that were 50 cm in diameter and 160 cm in length to collect all flying insects during the day from July 26–28, 2019 in the three 20 × 20 m2 subplots from each of the six stands. We also used 18 mercury lamps (450W) and 18 white cloths (2 × 3 m) (Supplementary Figure S4) to trap nocturnal insects from 8:00 pm to 10:00 pm during the same period. All non-larval herbivore insects were sorted and identified to species, and the abundance of each species was also recorded within each subplot.



2.1.3. Constructing phylogenetic tree of the 12 tree species and two subspecies of Cocos nucifera

The chloroplast genome of the 12 tree species and two subspecies of Cocos nucifera (“green Cocos nucifera” and “red Cocos nucifera”) were measured to quantify the phylogenetic relationships of the 12 tree species and two subspecies of Cocos nucifera. The chloroplast genome for Pinus elliottii, Casuarina equisetifolia, Clerodendrum cyrtophyllum, Litsea glutinosa, Rhodomyrtus tomentosa, Zanthoxylum piperitum, and Wikstroemia indica can be directly found in NCBI. Thus, we only sequenced chloroplast genome for “green Cocos nucifera” and “red Cocos nucifera”, Pinus caribaea, Calophyllum inophyllum, Rapsnea linearis, Psychotria rubra, and Atalantia buxifolia. Detail descriptions of the chloroplast genome for these seven tree species or subspecies were described in detail in Supplementary Table S1. A maximum likelihood tree (Supplementary Figure S1) was then constructed using RAxML (Stamatakis, 2014).




2.2. Statistical methods

Since species richness and abundance are discrete random variables (count data here), we used the generalized linear mixed effect model (GLMM) with Poisson error to test whether phylogenetic relatedness, herbivore specialization and their interactive effects can significantly influence degree of herbivory, total insect species richness and abundance, and total herbivore insect species richness and abundance. Specifically, we used a GLMM model [Degree of herbivory or Richness or Abundance ~ herbivore specialization × phylogenetic relatedness + (1|plantation type)]. Here richness and abundance indicate total insect or herbivore species richness and insect or herbivore insect abundance respectively. Herbivore specialization was either generalist or specialist. Phylogenetic relatedness coded phylogenetically close and distant individually. Plantation type indicated the six stands (green Cocos nucifera stand, mixed stand 1, mixed stand 3, Pinus elliottii stand, mixed stand 2, and mixed stand 4).




3. Results

The GLMM model results demonstrated that herbivore specialization, phylogenetic relatedness and their interactive effects all significantly influenced degree of herbivory, total insect species richness and abundance and total herbivore insect species richness and abundance (p of GLMM < 0.05, Supplementary Table S2). Our GLMM model results showed that degree of herbivory of “green Cocos nucifera” in mixed stand 1 was 1.63 times higher than that in the pure “green Cocos nucifera” stand (Figure 2A). The degree of herbivory of Pinus elliottii decreased from 43% in the pure Pinus elliottii stand to 0% in mixed stand 2 (Figure 2C). Degree of herbivory of “green Cocos nucifera” in mixed stand 3 was 1.82 times lower than that in the pure “green Cocos nucifera” stand, while the degree of herbivory of Pinus elliottii in mixed stand 4 was 1.44 times higher than that in the pure Pinus elliottii stand (Figures 2B, D).
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FIGURE 2
 Differences in degree of herbivory [the percentage of trees damaged by a pest (%)] of “green Cocos nucifera” and Pinus elliottii between mixed stand 1 and the pure “green Cocos nucifera” stand (A), mixed stand 2 and the pure Pinus elliottii stand (C), mixed stand 3 and the pure “green Cocos nucifera” stand (B), and mixed stand 4 and the pure Pinus elliottii stand (D), respectively. ***indicates p < 0.05, results from our generalized linear mixed effect model with Poisson error.


We found 25 herbivore species in the pure “green Cocos nucifera” stand, all of which were generalist feeders (Figure 3A, Supplementary Figure S2, Supplementary Table S3). They also emerged in mixed stand 1 (Figure 3C, Supplementary Table S3), but their total abundance in mixed stand 1 increased to 1.4 times higher than that in the pure “green Cocos nucifera” stand (Figures 3B, D). Moreover, 10 generalist herbivore species that were absent from the pure Cocos nucifera stand appeared in mixed stand 1 (Figure 3A, Supplementary Table S3). In contrast, although one new generalist species emerged (Figure 4A, Supplementary Table S3), only 14 out of the 25 generalist herbivore species observed in the pure “green Cocos nucifera” stand were found in mixed stand 3 (Figure 4C, Supplementary Table S3). Moreover, herbivore abundances in mixed stand 3 decreased 2-fold compared with the pure “green Cocos nucifera” stand (Figures 4B, D, Supplementary Table S3).
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FIGURE 3
 Differences in total herbivore insect species richness (A), total herbivore insect abundance (B), total herbivore insect species richness in “green Cocos nucifera” stand (C) and their abundance (D) between mixed stand 1 and “green Cocos nucifera” stand. *** indicates p < 0.05, results from our generalized linear mixed effect model with Poisson error.
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FIGURE 4
 Differences in total herbivore insect species richness (A), total herbivore insect abundance (B), total herbivore insect species richness in “green Cocos nucifera” stand (C) and their abundance (D) between mixed stand 3 and “green Cocos nucifera” stand. ***indicates p < 0.05, results from our generalized linear mixed effect model with Poisson error.


In the Pinus elliottii stand we only found one specialist herbivore species (Dendrolimus puntatus), which was absent from mixed stand 2 (Figure 5C, Supplementary Figure S2, Supplementary Table S3). However, another 24 generalist herbivore species were found in mixed stand 2, leading to both higher total herbivore species richness and total abundance than those found in the Pinus elliottii stand (Figures 5A, B, D, Supplementary Table S3). In contrast, in mixed stand 4, one more new specialist herbivore (Dioryctria splendidella) emerged, except for Dendrolimus puntatus (Figures 6A, C, Supplementary Table S3). Moreover, the abundance of Dendrolimus puntatus increased 2-fold compared to that in the mono-Pinus elliottii stand (Figures 6B, D, Supplementary Table S3).
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FIGURE 5
 Differences in total herbivore insect species richness (A), total herbivore insect abundance (B), total species richness of herbivore insects found in Pinus elliottii stand (C) and their abundance (D) between mixed stand 2 and Pinus elliottii stand. ***indicates p < 0.05, results from our generalized linear mixed effect model with Poisson error.
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FIGURE 6
 Differences in total herbivore insect species richness (A), total herbivore insect abundance (B), total species richness of herbivore insects in Pinus elliottii stand (C) and their abundance (D) between mixed stand 4 and Pinus elliottii stand. *** indicates p < 0.05 and NS (non-significant) indicates p > 0.05, results from our generalized linear mixed effect model with Poisson error.




4. Discussion

Herbivores play key functions in ecosystems across the world, and multiple herbivore species can interact to regulate ecosystem processes and functions (Schemske et al., 2009). Hence, studies focusing on herbivory of a single focal plant species and by a single herbivore species may provide misleading information regarding biodiversity conservation and agroecosystem management. By investigating herbivory from multiple herbivores and across six different plant communities, we found that the addition of phylogenetically distant plants and the mixture of phylogenetically close plants can have opposite effects on herbivory. Specifically, mixing closely related tree species diluted herbivory of generalist pest herbivores, but amplified the impact from specialist pest. In contrast, mixing phylogenetically distant tree species enhanced the herbivory of generalist pest while diluting the herbivory effects from specialist pest. As mixed plantations are widely acknowledged as a useful management strategy, our results highlight the need to carefully consider the combined effects of multiple herbivore types on overall herbivore load and damage. Our results also emphasized the importance of which plants being added into monoculture forests.

By comparing mixed stands 1 and 3 with the pure “green Cocos nucifera” stand, we found that increasing the number of distantly related tree species can increase herbivory from generalist pest (i.e., increasing “green Cocos nucifera” generalist pest degree of herbivory). This is consistent with some previous studies (Schuldt et al., 2010, 2012, 2014) which find that increasing plant diversity can dilute pest herbivore. This finding can be explained, in part, by the widely acknowledged “associational susceptibility hypothesis,” which claims that generalist herbivores need many distantly related plants to increase their herbivore load, thereby increasing herbivore intensity (i.e., increased damage percentage) (Brown and Ewel, 1987; Jactel and Brockerhoff, 2007; Unsicker et al., 2008; Plath et al., 2012). For instance, more distantly related plants in a community may benefit the growth of generalist herbivores via dietary mixing (Bernays et al., 1994). Likewise, high diversity stands may increase damage from non-preferred host species due to spillover effects from preferred hosts (Power and Mitchell, 2004). However, we propose an alternative explanation, which is that phylogenetically distant plant species may support many new generalist herbivore species and increase total abundance of generalists found in monocultures, which may in turn lead to a higher possibility of obtaining high generalist herbivory intensity (i.e., sampling effect). Indeed, in mixed stand 1, the number of generalist herbivores was 1.4 times greater than the pure “green Cocos nucifera” stand. Moreover, 10 new generalist herbivore species were found in mixed stand 1.

We found that increasing the number of closely related tree species can reduce the generalist degree of herbivory in stand of pure “green Cocos nucifera”. This can also be explained by the associational susceptibility hypothesis. Nevertheless, another potential reason is that phylogenetically similar plant species may result in new generalist species for “green Cocos nucifera”, which may in turn compete with or directly prey upon the generalist pest of “green Cocos nucifera”. Indeed, although one new generalist species emerged, 11 generalist pest herbivore species in the pure “green Cocos nucifera” stand disappeared in mixed stand 3. Moreover, herbivore abundance in mixed stand 3 decreased 2-folds compared with the pure “green Cocos nucifera” stand.

By comparing mixed stands 2 and 4 with the pure Pinus elliottii stand, we found the effects of phylogenetic relatedness on herbivory differed for specialist pest herbivores compared with generalist pest herbivores. For Pinus elliottii, the degree of herbivory of the specialist pest, Dendrolimus puntatus, was reduced to zero when it was mixed with ten phylogenetically distant tree species (i.e., mixed stand 2). This result suggests that mixed plantation of phylogenetically distant plant species can have a clear dilution effect on herbivory intensity from specialist pest. This pattern can be explained by the associational resistance hypothesis, which claims that specialist herbivores prefer more homogeneous neighbors to their preferred host plants to increase their loads (Root, 1973; Agrawal et al., 2006; Lewinsohn and Roslin, 2008). Thus, increasing the numbers of phylogenetically distant tree species will dilute specialist herbivores, thereby decreasing the abundance of specialist herbivores (Tahvanainen and Root, 1972; Barbosa et al., 2009). However, another possibility is that phylogenetically distant tree species are favored by generalist herbivores that may compete with or directly prey upon the specialist herbivores (Brown and Ewel, 1987). Indeed, we observed 24 generalist herbivore species in mixed stand 2, but we cannot observe original specialist pest (Dendrolimus puntatus) anymore.

The degree of herbivory of Pinus elliottii by the specialist pest herbivore was 1.44 times greater when it was mixed with phylogenetically close tree species (mixed stand 4), thus providing support for the associational resistance hypothesis. However, it is also highly possible that phylogenetically close tree species (Pinus caribaea) can trigger new specialists, which in turn results in higher specialist degree of herbivory via sampling effects. Indeed, we ended up sampling a new specialist (Dioryctria splendidella) in mixed stand 4.



5. Conclusions

Our study provides clear evidence that herbivore specialization and plant phylogenetic relatedness interact to influence the efficiency of mixed plantations on the regulation of pest herbivory in agroecosystems. Mixing phylogenetically distant tree species with monocultures enhanced herbivory by generalist herbivores, while simultaneously diluting herbivory by specialist herbivores. In contrast, mixing phylogenetically close tree species with monocultures can give rise to totally opposite influences on generalist and specialist herbivory. Our results may differ with those observed on a single focal plant species attacked by a single herbivore species. Although investigations in other agroecosystems are needed to test the generality of the conclusion, our results suggest that both herbivore specialization and plant phylogenetic relatedness should be taken into account when using mixed plantations to manage pest herbivory in agroecosystems.
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When measuring plant functional traits across geomorphologies, 5–10 healthy individuals of a plant species are commonly sampled. However, whether more individuals should be sampled in habitat-heterogeneous karst vegetation remains unknown. In this study, two dominant tree species (Clausena dunniana and Platycarya strobilacea) in karst evergreen and broadleaved mixed forests in Southwestern China were selected. On the basis of a large quantity of individuals of the two species grown in different peak clumps and slope positions, variations of 10 morphological traits in the two species were statistically analyzed. The suggested sampling number of individuals, which could mostly represent the common trait characteristics, was further explored. All traits showed significant differences between the two species (p < 0.05). The traits of P. strobilacea displayed larger intraspecific variations than those of C. dunniana, except for twig dry matter content. The bark thickness (BT), leaf area (LA), and specific leaf area (SLA) of C. dunniana and the BT, SLA, LA, leaf tissue density, and bark tissue density of P. strobilacea presented large intraspecific variations. Most traits exhibited significant differences between peak clumps and/or among slope positions (p < 0.05). Random sampling analysis indicated that the suggested sampling numbers of individuals for the 10 traits are 6–23 in C. dunniana and 9–29 in P. strobilacea. The common accepted sample size in normal geomorphologies is not sufficiently large in most cases. Larger sample sizes are recommended for traits, such as SLA, BT, and LA, with larger intraspecific variations. Therefore, under sufficient labor, material, and time, more individuals should be sampled when measuring plant functional traits in habitat-heterogeneous karst vegetation.
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 morphological traits, interspecific and intraspecific variations, sampling number, habitat heterogeneity, evergreen and deciduous broadleaved mixed forest, karst geomorphology


1. Introduction

Plant functional traits (PFTs) are the morphological and physiological characters highly connected with the survival, growth, reproduction, and death dynamics of plants (Violle et al., 2007). PFTs, especially the morphological traits such as leaf area (LA), bark thickness (BT), and wood density, are easy to measure and could reveal the relationships between plants and environments; For example, plants grow in harsh environments display small leaves, thick barks, and hard woods (Wright et al., 2004; Liu et al., 2022; Kambach et al., 2023). The study of PFTs offers an alternative approach to comprehend community species coexistence and predict the effects of global environmental changes on plant distribution (Thuiller et al., 2004; Kraft et al., 2008; Cui et al., 2020). Currently, the morphological traits of leaves, barks, and twigs (especially leaves) of various vegetation types in diverse geomorphologies worldwide have been considerably explored (Wright et al., 2010; Auger and Shipley, 2013; Myers-Smith et al., 2019; Jin et al., 2023; Liu et al., 2023).

When measuring PFTs in the field across geomorphologies, 5–10 healthy individuals of a species are commonly selected, and leaf, bark, twig, and root samples are further collected from the selected individuals (Cornelissen et al., 2003; Pérez-Harguindeguy et al., 2013). However, PFTs vary among species (interspecific variation) and individuals within a species (intraspecific variation). Interspecific trait variations are determined by species identity (genetic factors), and intraspecific trait variations are more influenced by environmental factors (Weiher and Keddy, 1995; Westoby et al., 2002; Bolnick et al., 2011). Plant scientists generally agree that PFTs show large interspecific variations among species (Cornelissen et al., 2003; Wright et al., 2004). In the last decade, a growing body of studies suggested that intraspecific trait variations could not be ignored (Albert et al., 2010; Auger and Shipley, 2013; Niu et al., 2020). Climate, soil, altitude, aspect, illumination, and many other environmental factors all cause intraspecific trait variations (Hultine and Marshall, 2000; McDonald et al., 2003; Peppe et al., 2011). Plants of a certain species growing in diverse environments may present large intraspecific trait variations (Liu et al., 2023). A global meta-analysis indicated that intraspecific trait variations occupy an average of 32% of the total trait variations (Siefert et al., 2015). Intraspecific trait variations may even be larger than interspecific trait variations in some studies (Lecerf and Chauvet, 2008; Messier et al., 2010). Thus, the traits of different species and those of individuals within a species growing in different environments vary inevitably. The trait characteristics (especially for traits with large interspecific and intraspecific variations) may be accompanied by much uncertainty on the basis of a unified sample individual number without regard to species identity and environmental conditions.

Karst is a fantastically particular geomorphology formed from the solution of carbonate rocks (such as limestone and dolomite) by underground and surface water. This geomorphology is sporadically distributed over the world, with an area of 22 million km2, occupying approximately 14.8% of the global land area (Jiang et al., 2014). Southwestern China, Southern America, and the Mediterranean coast of Europe are the three major areas with widespread distribution of karst geomorphology (Sweeting, 1972). Due to long-range geologic functions of weathering, denudation, and leaching, the karst geomorphology in Southwestern China is well known for its high habitat heterogeneity. Karst mountain areas have various landforms, such as dissolved gully, stone bud, peak clump, peak forest, isolated peak, doline funnel, and solution depression (Song, 2000). Rock exposure, soil depth and nutrients, light intensity, and water conditions relatively differ among mountains and slope positions within a mountain (Pan, 2003; Peng et al., 2019; Liu et al., 2021). Researchers have studied the PFT characteristics and PFT-based adaptation strategies of karst plants and plant communities in this region and found that PFTs, such as morphological traits and ecological stoichiometry, in karst plants presented large interspecific and intraspecific variations due to highly heterogeneous environments/habitats (Jiang et al., 2016; Geekiyanage et al., 2018; Yang et al., 2020; Liu et al., 2022).

However, most PFT studies conducted in karst geomorphology in Southwestern China sampled a similar small individual number of plants (for example, five plant individuals were sampled) in normal geomorphologies (Pang et al., 2019; Yu et al., 2021; Shui et al., 2022). The results from such sampling method may not indicate the entire trait characteristics in plants, and plant communities grow in considerably heterogeneous environments/habitats. For example, plants grow in stone gullies, on stone surfaces and soil surfaces in a karst forest presented significantly different leaf trait values (Zhou et al., 2022). Thus, researchers may raise a question of whether more individuals should be sampled when measuring PFTs in habitat-heterogeneous karst regions.

In this study, two dominant tree species (an evergreen species and a deciduous species) in habitat-heterogeneous primary forests in peak clump depression karst geomorphology in Southwestern China were used as samples. The morphological traits of leaf, bark, and twig in a large quantity of individuals of the two tree species were measured. Trait differences between peak clumps and among slope positions within a mountain were analyzed. This study aimed to answer whether more individuals should be sampled when measuring PFTs of tree species in habitat-heterogeneous karst forests. It could provide theoretical support for the sampling quantity of PFT measurements in karst regions in future studies.



2. Materials and methods


2.1. Study area

Peak clump depression karst geomorphology is one of the eight karst geomorphological types in Southern China and mainly distributed in Southern Guizhou Province and Northern Guangxi Autonomous Region. Libo County, located in Southern Guizhou, is one of the representative areas of the region, especially its Maolan National Nature Reserve (107°52′–108°05′ E, 25°09′–25°21′ N) with an area of 21,285 km2 (Figure 1). This terrain is located in mid-subtropical China and has a humid monsoon climate. According to records from the Libo meteorological station (107°53′ E, 25°25′ N, 429 m), the mean annual temperature is 18.3°C, with temperatures of 8.5°C and 26.5°C in January and July, respectively. The mean annual precipitation is 1,269 mm, of which 86% falls between April and October. The mean annual sunshine duration is 1,273 h, with a low sunshine percentage of 26%. The altitude of the reserve is between 430 and 1,078 m above sea level, with a relative height of most hills at 100–200 m. Limestone and dolomite (especially the former) are distributed everywhere in the reserve. Black limestone soil is shallow and discontinuous. The continuous evergreen and deciduous broadleaved mixed forests in this reserve are the most widely distributed, best protected, and most original karst forest in the world. The forests here are known as the gene bank of biological resources with the best preserved biodiversity in the subtropical karst geomorphology. Primary evergreen and deciduous broadleaved mixed forests are distributed in the peak clumps, and rice fields are the key land use in the depressions.
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FIGURE 1
 Location of Maolan National Nature Reserve, physiognomy of peak clump depression karst geomorphology and plot setting (left bottom), and interior view of karst forests (right bottom) in the distribution map of karst geomorphology (grey) in Guizhou Province, Southwestern China.




2.2. Vegetation survey and plant functional trait measurements

After a vegetation survey in the reserve was completed, six mountains in two opposite peak clumps (three mountains on each side peak clumps separated by a depression) at Poling site (107°56′ E, 25°17′ N) representing the karst peak clump depression geomorphology, vegetation, and soil of the whole reserve were selected. In each mountain, three plots (each with an area of 20 m × 30 m) at the upper, middle, and lower slopes (18 plots in total) were established (Figure 1). The species identity, diameter at breast height (DBH), and height of each woody plant with DBH ≥ 1 cm were recorded. Clausena dunniana, Platycarya strobilacea, Cyclobalanopsis glauca, Lindera communis, and Swida parviflora are the dominant tree species of the primary forests.

Habitats, such as slope, aspect, rock exposure rate, and soil depth and nutrient, are highly heterogeneous between peak clumps and among slope positions (Pan, 2003; Peng et al., 2019; Liu et al., 2021). Two typical dominant karst tree species, C. dunniana and P. strobilacea, distributed in all plots were selected as samples to explore the effects of highly heterogeneous habitats on PFTs and whether more individuals should be sampled when measuring PFTs of tree species in karst forests. Ten healthy individuals per species in each plot were randomly sampled (180 individuals of each tree species were sampled). Four branches in different positions of the sunlit side of the tree canopy in each sampled individual were cut using a long reach chain saw. Twenty healthy mature leaves and three approximately 20 cm-length terminal twigs were collected from the four branches by using a scissor. Three bark samples at the DBH position of each individual were collected by using a sickle.

Fresh and dry (dried at 85°C for 72 h in an oven) masses of leaf, bark, and twig (peeled) samples were weighed using an electronic balance. Leaf thicknesses (LTs) and BT were measured using an electronic Vernier caliper. LA was scanned using the WinFOLIA multipurpose leaf area meter (Regent Instruments, Canada). The volumes of bark and twig samples were determined using the drainage method, and those of leaf samples were calculated as the product of LA and LT. The values of specific leaf area (SLA), leaf dry matter content (LDMC), leaf tissue density (LTD), bark dry matter content (BDMC), bark tissue density (BTD), twig dry matter content (TDMC), and twig tissue density (TTD) were calculated using their corresponding equations (Cornelissen et al., 2003).



2.3. Data analysis

All statistical analyses were performed using SPSS version 20 and the R software version 3.5.1 (Xue, 2017; R Core Team, 2018). The coefficients of intraspecific variation (standard deviation divided by mean times 100%) were used to characterize the varying degrees of PFTs within a species. Independent sample t-test was conducted to determine trait differences between the two species and between peak clumps. One-way ANOVA was used to analyze trait differences among slope positions. Sampling without replacement (2,000 times of duplicate sampling under each sample size from two to the suggested sample individual number) was conducted for each trait (each trait of each species had 180 values from 180 individuals, Supplementary Table S1) by using the “Sample” package in the R software to determine the suggested individual numbers when measuring the PFTs of tree species in karst forests. Then, independent sample t-test was conducted to determine trait differences between object samples and total samples, and the corresponding p values were obtained (2,000 p values were obtained for each trait). When the number of p > 0.05 exceeded 1,900 of 2,000 times p values (95%), this sample size is the suggested sample individual number for the trait of this tree species (Gao et al., 2018).




3. Results

All traits showed significant differences between the two species (p < 0.05). C. dunniana presented significantly higher LT, LA, BDMC, BTD, TDMC, and TTD values and significantly lower SLA, LDMC, LTD, and BT values than P. strobilacea (p < 0.05). The coefficients of intraspecific trait variation of C. dunniana ranged from 6.32% to 35.95%. The BT, LA, and SLA of C. dunniana showed large intraspecific variations, indicated by large coefficients of intraspecific variation (Figure 2). The coefficients of intraspecific trait variation of P. strobilacea ranged from 8.13% to 45.62%. The BT, SLA, LA, LTD, and BTD of P. strobilacea displayed large intraspecific variations, indicated by large coefficients of intraspecific variation (Figure 2). In general, the traits of P. strobilacea displayed larger intraspecific variations than those of C. dunniana, except for TDMC (Figure 2).
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FIGURE 2
 Plant functional traits and their intraspecific variations in two tree species in karst forests in Guizhou Province, Southwestern China. The circles in the box plots indicate abnormal values. The percentages of data in the box plots are the coefficients of intraspecific trait variation. LT, leaf thickness; LA, leaf area; SLA, specific leaf area; LDMC, leaf dry matter content; LTD, leaf tissue density; BT, bark thickness, BDMC, bark dry matter content; BTD, bark tissue density; TDMC, twig dry matter content; TTD, twig tissue density.


The LA and LTD of C. dunniana showed no differences between peak clumps and among slope positions (p > 0.05). The SLA, BT, and BTD of P. strobilacea also displayed no differences between peak clumps (p > 0.05). Other traits presented significant differences between peak clumps and/or among slope positions (p < 0.05) (Figure 3). The LTD, BT, BDMC, and TDMC of C. dunniana and the LDMC, LTD, BT, BDMC, and BTD of P. strobilacea increased with increasing slope position. The SLA of the two tree species decreased with increasing slope position (Figure 3).
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FIGURE 3
 Plant functional trait differences between peak clumps and among slope positions in two tree species in karst forests in Guizhou Province, Southwestern China. Trait values with different capital letters between peak clumps in the same slope position are significantly different (independent sample t-test, p < 0.05). Trait values with different small letters among slope positions in a peak clump are significantly different (one-way ANOVA, p < 0.05). LT, leaf thickness; LA, leaf area; SLA, specific leaf area; LDMC, leaf dry matter content; LTD, leaf tissue density; BT, bark thickness, BDMC, bark dry matter content; BTD, bark tissue density; TDMC, twig dry matter content; TTD, twig tissue density.


Based on the results of sampling without replacement and independent sample t-test, the average LT values of object samples and total samples showed no significant differences when the sample sizes for the LT of C. dunniana and P. strobilacea exceeded 18 and 14, respectively. That is, the suggested sample individual numbers for the LT of C. dunniana and P. strobilacea are 18 and 14, respectively (Figure 4). The corresponding suggested sample individual numbers for the LA, SLA, LDMC, LTD, BT, BDMC, BTD, TDMC, and TTD of C. dunniana were 12, 8, 10, 13, 23, 9, 6, 12, and 15, respectively (Figure 4), and those for P. strobilacea were 20, 29, 12, 13, 22, 23, 11, 15, and 9, respectively. In general, more individuals of P. strobilacea should be sampled than C. dunniana, and more individuals should be sampled when measuring traits with larger intraspecific variations.
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FIGURE 4
 Mean of random sampling, frequency, and significant test of plant functional traits in two tree species in karst forests in Guizhou Province, Southwestern China. The solid line indicates the mean trait value of random sampling. The dots indicate frequencies of p > 0.05. The grey blocks are the areas of significant differences between object samples and total samples, indicating that the sample size of the right position of the block is the suggested sampling number of individuals. LT, leaf thickness; LA, leaf area; SLA, specific leaf area; LDMC, leaf dry matter content; LTD, leaf tissue density; BT, bark thickness, BDMC, bark dry matter content; BTD, bark tissue density; TDMC, twig dry matter content; TTD, twig tissue density.




4. Discussion

The PFTs of various vegetation types worldwide across geomorphologies have been considerably measured with reference to the handbooks for standardized measurements of PFTs (Cornelissen et al., 2003; Pérez-Harguindeguy et al., 2013). However, the PFT characteristics of some vegetation in remote or certain topographical areas have not been fully determined yet, such as those of the karst vegetation in Southwestern China. Most of the existing studies adopted the same sampling method as conducted in normal geomorphology (Geekiyanage et al., 2018; Pang et al., 2019; Yu et al., 2021; Shui et al., 2022). With regard to the effects of highly heterogeneous habitats on PFTs in karst geomorphology, in the present study, whether more individual numbers should be sampled when measuring PFTs in karst vegetation was explored for the first time. This study could provide not only basic data to the TRY and the China plant trait databases but also methodology for future detailed PFT measurements (especially for intraspecific trait variation measurements) in vegetation types grow in highly heterogeneous environments/habitats worldwide other than in karst vegetation in Southwestern China (He et al., 2019; Kattge et al., 2020).

Taxonomic status (genetic factors) and environmental conditions codetermine PFT characteristics (Weiher and Keddy, 1995; Westoby et al., 2002; Bolnick et al., 2011). In the present study, considerably different trait values between two karst tree species, and among individuals within a species but under different habitats were observed. Thus, the sampling quantities are supposed to be different when measuring PFTs in different species and within a species, but individuals grow in different environments/habitats. Besides, traits in different organs vary to some degree (Liu et al., 2022). The sampling quantities should also differ when measuring PFTs in different organs.

The common accepted practice considers that the number of individuals is often 5–10 when measuring PFTs across geomorphologies. In the present study, the suggested sampling quantities for 10 morphological traits in two tree species (C. dunniana and P. strobilacea) in karst forests in Southwestern China are 6–23 and 9–29, respectively. The common accepted sample size across geomorphologies is not sufficiently large in most cases. Therefore, more individuals should be sampled when measuring PFTs in habitat-heterogeneous karst vegetation, and the traits in different organs and species should be treated differently. C. dunniana is an evergreen species with long leaf life. It increases resource investments for survival. Large intraspecific variations in PFTs are not conducive for evergreen species to adapt to environments. P. strobilacea is a deciduous species with short leaf life. It increases resource investments for growth (Aerts, 1995; Givnish, 2002). Thus, more individuals should be sampled when measuring PFTs in deciduous species than evergreen ones. Larger sample sizes are also recommended for traits with larger intraspecific variations (such as LA, SLA, and BT) than smaller intraspecific variations (such as LDMC, LTD, and BTD).

Other PFTs, such as root specific length, C:N:P stoichiometry, leaf net photosynthetic rate, and water use efficiency, of tree species, shrubs, and herbs in karst vegetation also displayed large interspecific and intraspecific variations (Zhong et al., 2018; Zhang et al., 2020, 2021; Jing et al., 2021; Liu et al., 2022; Dong et al., 2023). The same method is also recommended to explore the sample sizes of those PFTs. In conclusion, when measuring PFTs in habitat-heterogeneous karst vegetation, the sample size should not be limited to 5–10. More plant individuals should be sampled under sufficient labor, material, and time.



Data availability statement

The original contributions presented in the study are included in the article/Supplementary material, further inquiries can be directed to the corresponding author.



Author contributions

LL and JN conceived and designed the research. CW, XL, LL, TY, YZ, and LC contributed to the field work. CW and LL analyzed the data and wrote the first draft with substantial input from JN. All authors contributed to the article and approved the submitted version.



Funding

This study was funded by the Zhejiang Provincial Natural Science Foundation of China (LQ20C030003).



Acknowledgments

The authors thank the Management Department of Maolan National Nature Reserve for assistance in all field work.



Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.



Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.



Supplementary material

The Supplementary material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fevo.2023.1175031/full#supplementary-material



References

 Aerts, R. (1995). The advantages of being evergreen. Trends Ecol. Evol. 10, 402–407. doi: 10.1016/S0169-5347(00)89156-9

 Albert, C. H., Thuiller, W., and Yoccoz, N. G. (2010). Intraspecific functional variability: extent, structure and sources of variation. J. Ecol. 98, 604–613. doi: 10.1111/j.1365-2745.2010.01651.x

 Auger, S., and Shipley, B. (2013). Inter-specific and intra-specific trait variation along short environmental gradients in old-growth temperate forest. J. Veg. Sci. 24, 419–428. doi: 10.1111/j.1654-1103.2012.01473.x

 Bolnick, D. I., Amarasekare, P., Araojo, M. S., Burger, R., Levine, J. M., Novak, M., et al. (2011). Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192. doi: 10.1016/j.tree.2011.01.009 

 Cornelissen, J. H. C., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N., Gurvich, D. E., et al. (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335–380. doi: 10.1071/BT02124

 Cui, E. Q., Weng, E. S., Yan, E. R., and Xia, J. Y. (2020). Robust leaf trait relationships across species under global environmental changes. Nat. Commun. 11:2999. doi: 10.1038/s41467-020-16839-9 

 Dong, Y. P., Wang, B., Wei, Y. L., He, F., Lu, F., Li, D. X., et al. (2023). Leaf micromorphological, photosynthetic characteristics and their ecological adaptability of dominant tree species in a karst seasonal rain forest in Guangxi, China. Guihaia 42, 415–428. doi: 10.11931/guihaia.gxzw202203031

 Gao, S. H., Ge, Y. X., Zhou, L. Y., Zhu, B. L., Ge, X. Y., Li, K., et al. (2018). What is the optimal number of leaves when measuring leaf area of tree species in a forest community? Chin. J. Plant Ecol. 42, 917–925. doi: 10.17521/cjpe.2018.0087

 Geekiyanage, N., Goodale, U. M., Cao, K. F., and Kitajima, K. (2018). Leaf trait variations associated with habitat affinity of tropical karst tree species. Ecol. Evol. 8, 286–295. doi: 10.1002/ece3.3611 

 Givnish, T. J. (2002). Adaptive significance of evergreen vs. deciduous leaves: solving the triple paradox. Silva Fenn. 36, 703–743. doi: 10.14214/sf.535

 He, N. P., Liu, C. C., Piao, S. L., Sack, L., Xu, L., Luo, Y. Q., et al. (2019). Ecosystem traits linking functional traits to macroecology. Trends Ecol. Evol. 34, 200–210. doi: 10.1016/j.tree.2018.11.004 

 Hultine, K. R., and Marshall, J. D. (2000). Altitude trends in conifer leaf morphology and stable carbon isotope composition. Oecologia 123, 32–40. doi: 10.1007/s004420050986 

 Jiang, Y., Chen, X. B., Ma, J. M., Liang, S. C., Huang, J., Liu, R. H., et al. (2016). Interspecific and intraspecific variation in functional traits of subtropical evergreen and deciduous broadleaved mixed forests in karst topography, Guilin, Southwest China. Trop. Conserv. Sci. 9, 194008291668021–194008291668029. doi: 10.1177/1940082916680211

 Jiang, Z. C., Lian, Y. Q., and Qin, X. Q. (2014). Rocky desertification in Southwest China: impacts, causes, and restoration. Earth-Sci. Rev. 132, 1–12. doi: 10.1016/j.earscirev.2014.01.005

 Jin, Y. L., Wang, H. Y., Xia, J., Ni, J., Li, K., Hou, Y., et al. (2023). TiP-leaf: a dataset of leaf traits across vegetation types on the Tibetan plateau. Earth Syst. Sci. Data 15, 25–39. doi: 10.5194/essd-15-25-2023

 Jing, H. X., Sun, N. X., Umair, M., Liu, C. J., and Du, H. M. (2021). Leaf stoichiometric response of two typical herbaceous plants to water additions in degraded karst areas in southern Yunnan, China. J. Yunnan Univ. Nat. Sci. Ed. 43, 1254–1263. doi: 10.7540/j.ynu.20200450

 Kambach, S., Sabatini, F. M., Attorre, F., Biurrun, I., Boenisch, G., Čarni, A., et al. (2023). Climate-trait relationships exhibit strong habitat specificity in plant communities across Europe. Nat. Commun. 14:712. doi: 10.1038/s41467-023-36240-6 

 Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I. C., and Wirth, C. (2020). TRY plant trait database-enhanced coverage and open access. Glob. Chang. Biol. 26, 119–188. doi: 10.1111/gcb.14904 

 Kraft, N. J. B., Valencia, R., and Ackerly, D. D. (2008). Functional traits and niche-based tree community assembly in an Amazonian forest. Science 322, 580–582. doi: 10.1126/science.1160662 

 Lecerf, A., and Chauvet, E. (2008). Intraspecific variability in leaf traits strongly affects alder leaf decomposition in a stream. Basic Appl. Ecol. 9, 598–605. doi: 10.1016/j.baae.2007.11.003

 Liu, L. B., Hu, J., Chen, X. Y., Xu, X., Yang, Y., and Ni, J. (2022). Adaptation strategy of karst forests: evidence from the community-weighted mean of plant functional traits. Ecol. Evol. 12:e8680. doi: 10.1002/ece3.8680

 Liu, L. B., Wu, Y. N., Zhong, Q. L., Guo, Y. M., Xu, X., Yang, Y., et al. (2021). Tree species influences soil microbial community diversity but not biomass in a karst forest in southwestern China. J. Plant Ecol. 14, 280–290. doi: 10.1093/jpe/rtaa096

 Liu, L. B., Xia, H. J., Quan, X. H., and Wang, Y. Q. (2023). Plant trait-based life strategies of overlapping species vary in different succession stages of subtropical forests. Eastern China. Front. Ecol. Evol. 10:1103937. doi: 10.3389/fevo.2022.1103937

 McDonald, P. G., Fonseca, C. R., Overton, J., and Westoby, M. (2003). Leaf-size divergence along rainfall and soil-nutrient gradients: is the method of size reduction common among clades? Funct. Ecol. 17, 50–57. doi: 10.1046/j.1365-2435.2003.00698.x

 Messier, J., McGill, B. J., and Lechowica, M. J. (2010). How do traits vary across ecological scales? A case for trait-based ecology. Ecol. Lett. 13, 838–848. doi: 10.1111/j.1461-0248.2010.01476.x 

 Myers-Smith, I. H., Thomas, H. J. D., and Bjorkman, A. D. (2019). Plant traits inform predictions of tundra responses to global change. New Phytol. 221, 1742–1748. doi: 10.1111/nph.15592 

 Niu, K. C., Zhang, S., and Lechowicz, M. (2020). Harsh environmental regimes increase the functional significance of intraspecific variation in plant communities. Funct. Ecol. 34, 1666–1677. doi: 10.1111/1365-2435.13582

 Pan, Z. (2003). Habitat Heterogeneity of Karst Ecological System and Plant Adaptability. Ph.D. thesis. Guilin: Guangxi Normal University.

 Pang, Z. Q., Lu, W. L., Jiang, L. S., Jin, K., and Qi, Z. (2019). Leaf traits of different growing plants in karst area of Shilin, China. Guihaia 39, 1126–1138. doi: 10.11931/guihaia.gxzw201810009

 Peng, X., Dai, Q., Ding, G., and Li, C. (2019). Role of underground leakage in soil, water and nutrient loss from a rock-mantled slope in the karst rocky desertification area. J. Hydrol. 578:124086. doi: 10.1016/j.jhydrol.2019.124086

 Peppe, D. J., Royer, D. L., Cariglino, B., Oliver, S. Y., Newman, S., Leight, E., et al. (2011). Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytol. 190, 724–739. doi: 10.1111/j.1469-8137.2010.03615.x 

 Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., et al. (2013). New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 61, 167–234. doi: 10.1071/BT12225

 R Core Team. (2018). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna.

 Shui, W., Guo, P. P., Zhu, S. F., Feng, J., Sun, X., and Li, H. (2022). Variation of plant functional traits and adaptive strategy of woody species in degraded karst tiankeng of Yunnan Province. Sci. Geogr. Sin. 42, 1295–1306. doi: 10.13249/j.cnki.sgs.2022.07.016

 Siefert, A., Violle, C., Chalmandrier, L., Albert, C. H., Taudiere, A., Fajardo, A., et al. (2015). A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecol. Lett. 18, 1406–1419. doi: 10.1111/ele.12508 

 Song, L. H. (2000). Progress and trend of karst geomorphology study. Prog. Geogr. 19, 193–202. doi: 10.11820/dlkxjz.2000.03.001

 Sweeting, M. M. (1972). Karst Landforms. Macmillan: London.

 Thuiller, W., Lavorel, S., Midgley, G., Lavergne, S., and Rebelo, T. (2004). Relating plant traits and species distributions along bioclimatic gradients for 88 Leucadendron taxa. Ecology 85, 1688–1699. doi: 10.1890/03-0148

 Violle, C., Navas, M. L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., et al. (2007). Let the concept of trait be functional! Oikos 116, 882–892. doi: 10.1111/j.0030-1299.2007.15559.x

 Weiher, E., and Keddy, P. A. (1995). Assembly rules, null models, and trait dispersion: new question front old patterns. Oikos 74, 159–164. doi: 10.2307/3545686

 Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A., and Wright, I. J. (2002). Plant ecological strategies: some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 33, 125–159. doi: 10.1146/annurev.ecolsys.33.010802.150452

 Wright, S. J., Kitajima, K., Kraft, N. J. B., Reich, P. B., Wright, I. J., Bunker, D. E., et al. (2010). Functional traits and the growth-mortality trade-off in tropical trees. Ecology 91, 3664–3674. doi: 10.1890/09-2335.1 

 Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., et al. (2004). The worldwide leaf economics spectrum. Nature 428, 821–827. doi: 10.1038/nature02403

 Xue, W. (2017). Statistical Analysis and SPSS Application. Beijing: China Renmin University Press.

 Yang, Y., Xu, X., Xu, Y., and Ni, J. (2020). Adaptation strategies of three dominant plants in the trough-valley karst region of northern Guizhou Province, southwestern China, evidence from associated plant functional traits and ecostoichiometry. Earth Environ. 48, 413–423. doi: 10.14050/j.cnki.1672-9250.2020.48.061

 Yu, Y. H., Zhong, X. P., Zheng, W., Chen, Z. X., and Wang, J. X. (2021). Species diversity, functional traits, stoichiometry and correlation of plant community in different succession stages of karst forest. Acta Ecol. Sin. 41, 2408–2417. doi: 10.5846/stxb202005031089

 Zhang, S. H., Zhang, Y., Xiong, K. N., Yu, Y. H., and Min, X. Y. (2020). Changes of leaf functional traits in karst rocky desertification ecological environment and the driving factors. Glob. Ecol. Conserv. 24:e01381. doi: 10.1016/j.gecco.2020.e01381

 Zhang, Q. W., Zhu, S. D., Jansen, S., and Cao, K. F. (2021). Topography strongly affects drought stress and xylem embolism resistance in woody plants from a karst forest in Southwest China. Funct. Ecol. 35, 566–577. doi: 10.1111/1365-2435.13731

 Zhong, Q. L., Liu, L. B., Xu, X., Yang, Y., Guo, Y. M., Xu, H. Y., et al. (2018). Variations of plant functional traits and adaptive strategy of woody species in a karst forest of Central Guizhou Province, southwestern China. Chin. J. Plant Ecol. 42, 562–572. doi: 10.17521/cjpe.2017.0270

 Zhou, T., Cui, Y. C., Ye, Y. Y., Zhao, W. J., Hou, Y. J., Wu, P., et al. (2022). Leaf functional traits of typical karst forest plants under different niches. J. Cent. South Univ. Forestry Technol. 42, 129–140. doi: 10.14067/j.cnki.1673-923x.2022.10.015




ORIGINAL RESEARCH

published: 18 August 2023

doi: 10.3389/fevo.2023.1198085

[image: image2]


Patterns and consequences of invasion of tropical montane forests by Cestrum aurantiacum Lindl. in the Western Ghats


Arundhati A. Das 1*, Jayashree Ratnam 1‡ and Devcharan Jathanna 2


1 Wildlife Biology and Conservation Program, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India, 2 Carnivore & Herbivore Ecology & Conservation Programme, Wildlife Conservation Society-India, Kodigehalli, Bangalore, Karnataka, India




Edited by: 

Xiang Liu, Lanzhou University, China

Reviewed by: 

Yunquan Wang, Zhejiang Normal University, China

David Gorchov, Miami University, United States

*Correspondence: 

Arundhati A. Das, arundhatid74@gmail.com

‡ORCID: 

Jayashree Ratnam
 orcid.org/0000-0002-6568-8374


Received: 31 March 2023

Accepted: 01 August 2023

Published: 18 August 2023

Citation:
Das AA, Ratnam J and Jathanna D (2023) Patterns and consequences of invasion of tropical montane forests by Cestrum aurantiacum Lindl. in the Western Ghats. Front. Ecol. Evol. 11:1198085. doi: 10.3389/fevo.2023.1198085



In the montane forest-grassland mosaics of the Western Ghats, land cover conversion to silviculture and agriculture over the last five decades has resulted in both loss of natural habitats and widespread invasion of remnant habitat patches. While invasion of the grassland habitats of the mosaic has been relatively well studied, there have been few attempts to understand the extent to which forest habitats (locally known as sholas) have been affected by the spread of exotic species. Here we examine the patterns and impacts of invasion of shola forest understoreys by Cestrum aurantiacum Lindl., an exotic shrub species. At the landscape scale, we demonstrate that the presence and abundance of this invasive in shola understories is negatively related to distance from tea plantations. Further, the intensity of invasion is higher in areas with greater seasonality of temperature and lower mean annual precipitation. At the patch scale, invasion is greatest at shola edges and away from stream courses. We find that C. aurantiacum abundance has negatively affected the regeneration of native shola tree species as well as the abundance of native shola understorey shrubs. Fifty three percent of invaded plots had no native shrubs present. In plots where both C. aurantiacum and native shrubs were present in large enough numbers, we found evidence of negative spatial dependence between stem locations of C. aurantiacum and native shrubs. Our findings have important implications for the management and conservation of these mosaics.




Keywords: tropical montane forest, Western Ghats, shola, land cover change, invasion, Cestrum aurantiacum Lindl., multitype point pattern analysis




1 Introduction

Tropical montane ecosystems occur on all continents across the globe, and are thought to be especially vulnerable to multiple drivers of global change (Loeffler et al., 2011; Salinas et al., 2021). These include climatic changes such as warming and altered precipitation regimes, but also pervasive land-use changes such as the intensification of agriculture, expansion of silviculture and built-up areas for human habitation (He et al., 2023). With complex topographies that support a diversity of natural vegetation types and multiple interacting change drivers, the responses of these ecosystems to ongoing and future global change are complex and difficult to predict (Loeffler et al., 2011; Salinas et al., 2021). For example, rates of invasion of montane ecosystems have been increasing rapidly across the globe, but the reasons for this remain poorly understood (Iseli et al., 2023), and are likely to vary across regions.

The “sky-islands” of the mountain tops of the Western Ghats in southern India, a global biodiversity hotspot, are a tropical montane ecosystem that typifies the above scenario. These forest–grassland mosaics consist of distinctive stunted evergreen forests (locally known as sholas) set in a matrix of grasslands. They are rich in endemic biodiversity and hold great significance, not only from an evolutionary perspective, but also for their provision of critical ecosystem services including climate and hydrological regulation for the entire southern peninsular region (Sukumar et al., 1995; Bose et al., 2016; Joshi et al., 2018). Over the course of the past hundred and fifty years, but accelerating over the past five decades, large sections of these mosaic habitats have been converted to other land uses such as agricultural and silvicultural plantations, mainly at the expense of grasslands (Prabhakar, 1994; Joshi et al., 2018). This has resulted in extensive land-cover change across the region, with more than sixty percent of the grassland habitats converted to exotic tree plantations, and also the widespread invasion of remnant patches of natural habitats (Joshi et al., 2018; Arasumani et al., 2019; Sriramamurthy et al., 2022).

One visible and widely acknowledged effect of the conversion of grasslands to exotic tree plantations has been the increase in invasive alien species in the remnant grasslands (Thomas and Palmer, 2007, pers. obs.). While one of main species of exotic plantation trees, Acacia mearnsii, itself is a dominant and aggressive invader of the remnant natural grasslands (Thomas and Palmer, 2007; Arasumani et al., 2019), other woody invasive shrubs, including scotch broom Cytisus scoparius and common gorse Ulex europaeus have also invaded the grasslands extensively in recent years (Sriramamurthy et al., 2022). While these woody invasions of the grasslands have received lot of research attention (Joshi et al., 2018; Arasumani et al., 2019; Sriramamurthy et al., 2020), far less research attention has been paid to the less visible invasions, often in the understoreys, of shola forest patches. This is an important knowledge gap, as the patterns and consequences of invasions within shola forests are likely to differ from those in grasslands, such that the management of invasives in the sholas versus the grasslands, will require different strategies.

Over the past few decades, shola forests have witnessed the spread of an exotic woody invader, Cestrum aurantiacum Lindl. The genus Cestrum is native to Central and South America where it thrives in montane forests (Monro, 2012). The abundant, attractive and fragrant flowers of this genus are the reason it has been introduced as an ornamental plant in many regions, where it has subsequently become naturalized, and in several cases, turned invasive, including in parts of Africa, Asia, Australia and multiple oceanic islands (Henderson, 2007; Harvey et al., 2012; Junaedi, 2012; Gardener et al., 2013; Padmanaba et al., 2017; Makokha, 2018). In the Indian subcontinent, C. aurantiacum has been reported across many montane regions including the Himalaya, the Western Ghats and in Sri Lanka (Kunwar, 2003; Sajeev et al., 2012; Wijesundara, 2012; Moktan and Das, 2013; Mandal and Joshi, 2015; Nayak et al., 2020). In general, Cestrum spp. are fast-growing and capable of vegetative reproduction (Symon, 1981). C. aurantiacum tends to form dense mats which can suppress the regeneration of other plant species (USDA, 2013; Witt and Luke, 2017). However, few studies have investigated the impacts of invasion by C. aurantiacum on native forest communities, and there is little primary data on the ecology and impacts of this particular species.

Here, we investigated the correlates and consequences of the invasion of shola forest communities by C. aurantiacum. Because C. aurantiacum was introduced as an ornamental plant in tea plantations, we hypothesized that sholas near tea plantations would be more heavily invaded by C. aurantiacum than sholas further away. We also expected that C. aurantiacum abundance within sholas would be related to other climatic and habitat factors such as rainfall and local topography, which influence stand structure and soil moisture, and thereby the optimal conditions for this species. Finally, we expected that C. aurantiacum invasion has led to reduced native shola tree regeneration, as well as reduced abundances of native shola understorey shrubs, possibly through negative competitive interactions.




2 Methods



2.1 Study area

The study was conducted across 60 km2 in the western and southern parts of the Upper Nilgiris Plateau (11.17°N,76.77°E and 11.50°N, 76.43°E), that still hold large areas of natural shola–grassland mosaics, dating to at least 40,000 years ago (Caner et al., 2007). Please see Supplementary Figure S1 for a map of the study area. Other dominant land cover types in the region, such as non-native tree plantations and commercial tea plantations, were established relatively recently (Prabhakar, 1994), predominantly through the conversion of natural grasslands (Joshi et al., 2018). The region is rich in endemic plants (Blasco, 1971) and has extraordinary vertical and horizontal physiographic differentiation. Mean annual rainfall ranges from above 2500 mm on the Western side to 1200 mm towards the east (Von Lengerke, 1977; Caner et al., 2007). The dry season lasts for 3–4 months mainly between December and March. Temperature ranges from a mean maximum of 24 °C in April to a mean minimum of 5 °C in December. Frost occurs between November and March and mainly in the valleys rather than the higher hill slopes (Von Lengerke, 1977; Caner et al., 2007). The elevation range covered in this study extends from 1750–2400 m ASL.




2.2 Cestrum: a montane forest invasive in the Upper Nilgiris

The genus Cestrum in the family Solanaceae has 175 known species of shrubs, vines and small trees (de Rojas and D’Arcy, 1998; Monro, 2012). The native range for this genus is Central and South America (Monro, 2012). Here most Cestrum species occur in montane areas, above 800 m elevation, in cloud forests and conifer and oak forests (de Rojas and D’Arcy, 1998; Monro, 2012). Introduced as ornamentals in various parts of the world, many species of this genus have now become invasive. Most Cestrum spp. bear berries with small seeds that remain viable in the seed bank and are bird-dispersed (Marambe et al., 2001; Geldenhuys, 2004; Gardener et al., 2013). They are also shade-tolerant (Geldenhuys, 2004), drought-tolerant, capable of growing on poor soils and have invaded a range of habitats from coastal dunes to savannahs, grasslands, plantations and closed forest (Henderson, 2007). Most are quite toxic to livestock, native mammals and humans (de Rojas and D’Arcy, 1998; Makokha, 2018). For these reasons, they are labelled as noxious weeds with moderate to high invasive potential (Nel et al., 2004; Henderson, 2007). In South Africa and Australia, extensive programs have been undertaken to clear areas of Cestrum species (Macdonald and Jarman, 1985; Stockard, 1996; Marais and Wannenburgh, 2008).

C. aurantiacum is an evergreen climbing shrub 1–6 m tall, with thin, unpleasant smelling leaves that are toxic to livestock. It is native to central America (Costa Rica, Guatemala, Honduras, Mexico and Nicaragua; CABI, 2023). In many parts of its invaded range, C. aurantiacum occurs in montane forests, between 1500 to above 2000m (Junaedi, 2012; Sajeev et al., 2012; Wijesundara, 2012; Moktan and Das, 2013; Makokha, 2018; Witt et al., 2018). In the Nilgiris, it has successfully invaded native forest fragments and the understorey of tree plantations above 2000 m (Saravanan et al., 2014, Figure 1). It appears to have spread from settled areas and tea plantations, where its abundance is highest (AAD pers. obs) and was likely imported as an ornamental plant for the estate managers’ bungalows. In its native range, it appears to be well adapted to the cloud forest environment (de Rojas and D’Arcy, 1998; Monro, 2012), which would allow it to thrive in the dense shade of sholas.




Figure 1 | (A) Shola understorey with native shrubs (Psychotria spp.) present. (B) Shola understorey invaded by Cestrum aurantiacum with no native shrubs visible.






2.3 Data collection

Shola woody communities were sampled using 0.04 ha plots (n = 87), that were located using a stratified random sampling design based on topography and surrounding land cover. Field data were collected between 2010–2012 (Das et al., 2017). We sampled a total of 52 shola forest patches in varying landscape contexts (i.e., natural grassland, tea plantation and non-native tree plantations). Within forest patches, plots were spaced at least 50 m apart. Species identity, height and diameter at breast height (dbh) were recorded for individuals >1 cm dbh. We also recorded the position of individual trees and shrubs within the plot by dividing it into 5m blocks and mapping the location of each stem within each block. Two transects of four 1 × 1 m seedling plots each were laid across each vegetation plot. Seedlings (individuals <50 cm height) of all woody species within these plots were censused. Distance to the nearest forest edge, GPS location of the plot corner, elevation, slope and aspect were also recorded in the field. We confirmed species identities using published flora (Gamble, 1923; Ramesh et al., 2008) and the help of an experienced taxonomist.




2.4 Data analysis

We modelled C. aurantiacum presence as a function of distance to the closest tea plantation edge using a GLM with binomial error and a logit link function (McCullach and Nelder, 1989). The results were used to find a threshold distance from tea plantations beyond which the probability of C. aurantiacum occurrence approached zero. We used this threshold to identify a subset of study plots within which C. aurantiacum presence was likely based on their distance from a tea plantation edge (n = 54). This was done to ensure that subsequent analysis of the correlates of C. aurantiacum abundance was free from the issue of zero-inflation (Martin et al., 2005). We used data from these plots to model C. aurantiacum abundance as a function of bio-climatic and habitat variables listed as follows: temperature seasonality (standard deviation of monthly temperature averages), mean annual precipitation, CV of precipitation (i.e., variation in monthly precipitation within a year), distance to tea plantation, distance to nearest shola edge, distance to stream. Bioclimatic predictors were sourced from Hijmans et al. (2005). This data is derived from interpolations of existing weather station data at a 1 km2 spatial resolution. The values represent long term averages between 1950 and 2000. Distance from tea plantation was measured using high resolution imagery in Google Earth (Google Earth, 2013). Distance from nearest forest edge was recorded in the field and distance to stream was calculated in QGIS after deriving a stream network from a DEM with 30m resolution (METI and NASA, 2011). All predictors were checked for collinearity and standardized prior to running the models. A set of competing models using these predictors were compared using Akaike Information Criteria to identify the model that best predicted C. aurantiacum abundance.

To assess impacts of C. aurantiacum invasion on native woody plants, we tested whether the number of shola tree seedlings and native shrubs in the plot were related to C. aurantiacum abundance using GLMs with a Poisson error term and a log link function. Analysis of spatial point patterns has been used to assess the presence of competitive interactions between plants (Gray and He, 2009; Pescador et al., 2020). Here, we assessed evidence for competitive interactions between C. aurantiacum and native shrub species by testing whether native shrubs (individuals belonging to three genera: Psychotria, Lasianthus and Tarenna) were located farther from C. aurantiacum individuals than what would be expected if their distributions were independent at the plot level. As most of the plots invaded by C. aurantiacum had no native shrubs present in the understorey, this test was run on only three plots which had sufficient sample size for both C. aurantiacum as well as native shrubs. We first tested whether the point pattern of C. aurantiacum and native shrubs within the plot conformed to a homogenous Poisson point process by dividing each of the three plots into nine sub plots and conducting a x2 test to assess whether the point pattern departed from complete spatial randomness. After confirming homogeneity of the observed point pattern, we used the cross-type L-function (Lcross), a linearized version of Ripley’s K function for multitype point patterns (Baddeley et al., 2016), to assess whether the point locations of native shrubs showed evidence of competitive inhibition relative to a null hypothesis in which their locations were independent of those of C. aurantiacum within each plot. The Ripley’s K function for multitype points quantifies spatial aggregation between points of different types within a circle of radius r around a given focal point (Baddeley et al., 2016). The null hypothesis was modelled by splitting the data into the sub-patterns of points of each type and randomly shifting each of these sub-patterns, independently of the other using a toroidal shift and then calculating Lcross for the plot (Baddeley et al., 2016). As we had a square plot (20 × 20 m), we also used a toroidal shift to correct for edge effects while estimating Lcross (Baddeley et al., 2016). We used Monte Carlo simulations to test the significance of Lcross at the α = 0.05 level (Baddeley et al., 2016). All analyses were conducted in QGIS v.3.22 (QGIS Development Team, 2022) and statistical software R v.4.2.1 (R Core Team, 2022) using the packages: ‘spatstat’ (Baddeley et al., 2016), ‘maptools’ (Bivand and Lewin-Koh 2022).





3 Results



3.1 Correlates of C. aurantiacum abundance

C. aurantiacum was present in 17 of the 87 (19.5%) study plots. In these plots, the number of mature individual C. aurantiacum stems ranged from 1–54 (mean of 17.6). The probability of C. aurantiacum presence was greatest between 0–2 km from a tea plantation edge and fell to near zero beyond 4 km from a tea plantation edge (Figure 2). Within plots ≤ 4 km from a tea plantation edge (n = 54), C. aurantiacum abundance was influenced by both bio-climatic (temperature seasonality and annual precipitation) and habitat factors (i.e., distance to tea edge, distance to shola fragment edge, distance to stream; Table 1). The β for seasonality of temperature (0.015 [0.0009]) indicates that C. aurantiacum abundance is higher in areas with greater seasonality of temperature. Cestrum abundance decreases with mean annual precipitation (−0.004 [0.0005]). Abundance decreases with distance from the shola edge (−0.014 [0.002]) and tea plantations (−0.0001 [0.0001]) and increases with distance from stream (0.0003 [0.0007]) (Figure 3).




Figure 2 | Probability of Cestrum aurantiacum presence in shola forest patches in the Upper Nilgiris modelled as a function of distance from tea plantation edge in meters. Modelled as a GLM with binomial error.




Table 1 | Results of model selection using GLMs with Poisson error to model Cestrum aurantiacum abundance in sholas as a function of bio-climatic and distance variables.






Figure 3 | Cestrum aurantiacum abundance in sholas modelled as a function of distance to tea plantation edge, distance to nearest shola fragment edge and distance to stream, modelled using GLMs with Poisson errors.






3.2 Relationship between C. aurantiacum abundance and native shrubs and regeneration of native trees

Most of the plots (53%) where C. aurantiacum was present did not have any individuals belonging to native shrub genera. The number of individuals of native shrub species in the plot was significantly negatively related to Cestrum abundance (β = −0.07 [0.005], P < 0.001). Cestrum abundance had a significant but weak negative relationship with the number of native shola tree seedlings in a plot (−0.009 [0.002], P < 0.001; Figure S2). However, the number of shola tree saplings in a plot did not show a significant relationship to C. aurantiacum abundance (0.00006 [0.0007], P > 0.1).

The results of the point pattern analysis indicate support for competitive inhibition of native shrubs by C. aurantiacum. The Lcross metric indicates greater separation between native shrub locations and C. aurantiacum locations than expected under spatial independence, at scales of approximately 1–5 meters in two of the three plots, and some evidence in support of spatial dependence at the 0.5–1.5 m scale in the third plot (Figure 4).




Figure 4 | Lcross function for point locations of Cestrum aurantiacum (CA) and native shrub species (NS) in three plots in the Upper Nilgiris shola forests. In each case, the black solid line shows observed value while the red dashed line represents the expectation under complete spatial independence between the locations of CA and NS. Values of L (CA, NS) r > r indicate spatial aggregation, while L (CA, NS) r < r indicates spatial regularity. The grey shaded area represents the 95% confidence envelope of the Lcross function under the null expectation of spatial independence, calculated using Monte Carlo simulations.







4 Discussion

More than half (53%) of the woody species encountered in this study are endemic to the Western Ghats (Ramesh and Pascal, 1997). Woody invasive shrubs such as Lantana camara (< 2000 m; Najar et al., 2019) and C. aurantiacum (> 2000m) threaten this unique biodiversity. Here we show that the invasive spread of C. aurantiacum in the Upper Nilgiris is associated with the presence of tea plantations, as native shola forests embedded within a matrix of tea estates or within 4 km from a tea plantation edge, were more likely to have this species in the understorey, with its abundance increasing in sholas closer to tea plantations. Further, we found that increasing C. aurantiacum abundance appeared to negatively impact the presence and abundance of dominant native shrub genera Psychotria, Lasianthus and Tarenna as well as shola seedling regeneration. A number of studies including Bartuszevige et al. (2006); González-Moreno et al. (2013); Chen et al. (2017); Shiferaw et al. (2019), and the synthetic review by Vilà and Ibáñez (2011) have similarly found that landscape attributes play an important role (or a more important role than local site factors) in driving the presence of invasive species or the variation in invasion risk across space, while Milbau et al. (2009) outline a hierarchical framework where “…factors operating at a smaller scale are subordinate to factors operating at a larger scale, but if conditions at higher levels are satisfied, the small-scale factors may become indispensable for making accurate predictions”.



4.1 Bioclimatic and site-level factors influencing the spread of C. arurantiacum and their links to land cover change

C. aurantiacum abundance was positively related to annual temperature seasonality – which in turn is highly negatively correlated to the elevation gradient in this study, indicating lower bio-climatic suitability at the highest part of the elevation gradient in this study (2200–2400 m). This species is susceptible to frost damage (AAD pers. obs.), which could explain why it does not occur in open grasslands (where frost occurs; Joshi et al., 2020) but rather along roads (Nayak et al., 2020) and other edges where some shrub or tree cover is present (Jobin et al., 2023). The conversion of large expanses of native grasslands to timber plantations, tea and other landuses (Prabhakar, 1994; Joshi et al., 2018) may thus have facilitated the spread of this species, by creating connected edge habitats with suitable microclimatic conditions (reduced extent and intensity of frost; Von Lengerke, 1977) across the landscape.

Land cover changes and associated changes in anthropogenic disturbances may also favour the spread of this invasive species through the opening of canopies that increase light availability in the understory (Lozano and MacIsaac, 1997; Iseli et al., 2023). Junaedi (2012) found that C. aurantiacum presence was positively related to light intensity. Wijesundara (2012) reports it spreading in montane forest die-back gaps in Sri Lanka. Here we found the species to be more abundant in plots close to shola–tea plantation edges, which are more likely to have greater light penetration due to human disturbance. Finally, land cover changes are often associated with changes in the composition of pollinator and disperser communities (Raman, 2006), which in turn can facilitate invasive spread. In the Nilgiris, C. aurantiacum seeds are dispersed by common bird species that thrive in anthropogenic habitats, like the red-whiskered bulbul (AAD pers. obs.). In Sri Lanka, its seeds are dispersed by the yellow-eared bulbul (Wijesundara, 2012), while flowers are reported to be pollinated by the Sri Lankan white-eye (Zosterops ceylonensis; Wijesundara, 2012).




4.2 Impacts of C. aurantiacum on native shola woody plant communities

Shola seedling regeneration was found to be lower in C. aurantiacum invaded sites. A similar finding has been reported for Lantana invaded sites in the Upper Nilgiris (Najar et al., 2019). The negative relationship between C. aurantiacum and native seedling regeneration could be due to either direct competitive effects or allelopathic interactions (Callaway and Ridenour, 2004). Cestrum spp. are reported to have anti-microbial properties (Prasad et al., 2013), which may lead to altered soil microbial communities in invaded sites (Elgersma and Ehrenfeld, 2011), thereby affecting native seedling regeneration. Alternatively, this association could also arise due to greater human disturbance in sholas near tea plantations, leading to lower levels of native species regeneration, while also allowing C. aurantiacum to spread faster (Lozano and MacIsaac, 1997). Further research is needed to elucidate the mechanisms behind this observation.

We found a strong negative relationship between C. aurantiacum abundance and the dominant native shrubs of the shola understorey, with some evidence in support of negative spatial interactions within the plot. There are several factors that could contribute to the impact of C. aurantiacum on native shrub populations. For instance, C. aurantiacum is native to cloud forest understoreys of central America and may therefore be well adapted to the microclimatic conditions of shola forest understoreys. This could enhance its impact within the context of this habitat (Kestrup and Ricciardi, 2009). It also grows in denser stands than native species, which has been associated with stronger impacts (Hejda et al., 2009). The combination of such environmental matching and greater fecundity (discussed below), could lead to large increases in abundance of C. aurantiacum in shola understories, sufficient to exclude native shrubs in parts of their range (MacDougall et al., 2009; Ricciardi et al., 2013).

While C. aurantiacum and native shrubs share common abiotic habitat requirements, they differ phylogenetically and also in key traits linked to growth and resource acquisition (trait divergence or phylogenetic distinctiveness; Ricciardi and Atkinson, 2004). Native shola understorey dominants all belong to the family Rubiaceae, while C. aurantiacum is a member of Solanaceae. Further, it displays traits associated with fast growth and rapid resource capture in comparison to native shrubs (high specific leaf area (SLA) – thinner, larger, more easily bruised leaves, low stem specific density; AAD pers. obsv.). Therefore, C. aurantiacum may avoid the effects of competitive interactions with native shrub species (Levine et al., 2003) by being sufficiently different from them in terms of phylogeny and key traits (Sofaer et al., 2018; Pearse et al., 2019).

Finally, C. aurantiacum exhibits characteristics associated with greater fecundity compared to native shrubs, i.e., more frequent and profuse flowering and fruiting (AAD pers. obs.). A South African study found it had comparable levels of fruit set to Lantana (Rambuda, 2001). Further research is required to assess the presence and relative contribution of each of the factors discussed above to the magnitude of C. aurantiacum impact on native shrubs.




4.3 Implications for conservation and management of shola habitats

Upper montane forests in the tropics and subtropics, like the sholas, often occur as relatively small patches (<10 ha), that are separated by native grasslands, tea plantations or non-native timber stands (Wijesundara, 2012; Das et al., 2017). Hence, these habitats may be more vulnerable to impacts of invasion in the same way that islands are, due to their restricted area and isolation (Pyšek et al., 2012). In particular, they may exhibit a different form of the relationship between invader abundance and per capita impact compared to continuous forest ecosystems, with associated implications for the timing and nature of management interventions (Sofaer et al., 2018; Strayer, 2020).

Tea estates constitute approximately 26% of the Upper Nilgiris Plateau above 1400 m ASL (Arasumani et al., 2019) and therefore potentially pose a serious threat to native forests through propagule rain from invasive plants. We observed wide variation in the quality of tea estate (holdings >100 ha) management across the landscape, ranging from abandonment of large areas planted with tea to intensely managed tea plantations. Shola patches in Korakundah tea estate, which has numerous certifications for ecological sustainability and fair trade, did not have C. aurantiacum in the understorey, indicating that estate management based on best practices could be effective in controlling the spread of this species. The COVID pandemic and related restrictions have probably hampered estate upkeep and management through shortages of tea estate labour and management personnel in areas important for conservation (Bates et al., 2021).

More recent work (Jobin et al., 2023) indicates that C. aurantiacum is also growing in the understorey of non-native timber plantations. It is also common in settlements and along road margins (AAD pers obs),. Together these landcover types probably contribute massive amounts of seed rain from C. aurantiacum across the Upper Nilgiris. Therefore, urgent attention to control of this species (particularly along road margins) in production and forestry landscapes surrounding natural shola forests – specifically targeting the interface between sholas and the surrounding land cover – is critical to mitigate the impacts of invasion. Experimental studies comparing the relative effectiveness of control methods for this species at different levels of invasion should be prioritized along with the restoration of native shola species (Mohandass et al., 2016; Najar et al., 2019).
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