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Editorial on the Research Topic
Flexibility analysis and regulation technology of clean energy system

1 Introduction

Today’s power system is facing various challenges brought by large-scale renewable
energy integration, which puts forward higher requirements for flexibility. Therefore, it is an
effective measure to actively build a clean, low-carbon, safe, and efficient energy system with
renewable energy such as wind energy and solar energy as the core. The research topic
(Flexibility Analysis and Regulation Technology of Clean Energy System) aims to achieve
efficient control of clean energy systems in clean energy scenarios in new power systems and
provide a communication platform.

2 Published papers

The research topic contains a total of 16 articles. Under the basic premise of energy security,
with a strong smart grid as the hub platform, we will establish a clean, low-carbon, controllable,
flexible, and efficient new power system based on renewable energy.The articles included in The
Research aremainly divided into two directions: 1) Optimization control of distribution networks
containing renewable energy generation 2) Power system load forecasting.

For the optimization control of distribution networks, a distribution network scheduling
model is established based on the economic indicators, frequency, voltage, and other aspects
of the power system.

Wang et al. proposed an evaluation method for quantifying the flexibility of distributed
multi energy microgrids in order to effectively utilize their regulatory flexibility. Virtual
establishment of flexible bus and assignment of flexible parameters to reflect flexible
characteristics. To consider the impact of operational uncertainty on multi energy
microgrids, a two-stage adaptive robust optimization model is proposed, which can be
solved using the C&CG algorithm.
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Yu et al. mainly evaluated and analyzed the economic and
technical indicators of distributed power grids, and proposed the
advantages and disadvantages, application scope, and objective
functions of each indicator. By optimizing location and capacity,
voltage quality can be improved, power grid losses can be reduced,
and investment costs can be reduced. In addition, the investment
cost can be recovered by actively participating in demand response
based on the price control mechanism, and the investment cost can
be recovered by appropriately increasing the electricity price.

Luo et al. proposed a cloud edge coordination fast adjustment
strategy based on intelligent transformer power supply area edge
consistency algorithm to address the problem of long-term prediction
bias in distribution networks. The edge transformer power supply area
cluster performs global initial optimal allocation, and then the cluster
performs secondary collaborative optimal allocation for the edge area. A
fast power interaction model within a cluster based on consistency
algorithm was established, and the micro growth rate of scheduling cost
was used as the consistency variable to optimally allocate the cluster
adjustment amount to each transformer power supply area, minimizing
the total scheduling cost of all transformer power supply areas.

Luo et al. designed an auction method to achieve low-carbon
economic scheduling, using blockchain technology to reliably record
the entire process data. According to the regional division of market
entities, the Owen value method is used to allocate carbon emissions
to regions and entities. In order to reduce the expected carbon
emissions of the entity, an additional carbon price is added to the
original quotation by allocating the results. Based on the typical
output characteristics of wind and photovoltaic power generation in
bilateral bidding markets, optimization control is conducted hourly.

Lu et al., established a combined wind energy and solar energy
hydrogen electrolysis system, and assessed the hydrogen production
potential of 31 provincial regions in China in 2050, taking into
account the impact of regional wind energy solar load characteristics
and transmission costs.

Kun et al., based on the external characteristics of photovoltaic
cells, established a mathematical model of the equivalent circuit of
distributed photovoltaic power supply and proposed the control mode
of the distributed power grid when the distribution network fails.

Lv et al., to realize the efficient and economic operation of building
a microgrid, put forward a multi-objective optimization method for
planning and operating a microgrid considering virtual energy storage.

Wang et al. established a frequency regulation model of power
systems including the primary operation dynamics of the wind turbines
and proposed a dynamic integrated inertial control method according
to the relationship between load, wind speed, and frequency.

Zhu et al., comprehensively analyzed the working principle of
the charging process of electric vehicles, analyzed the relevant
factors affecting the failure of power batteries and charging
equipment from multiple perspectives, and summarized the
relationship between power batteries and charging equipment.

Sun et al. proposed an emergency frequency control method based
on deep reinforcement learning to solve the problem of controllable
load-shedding response time. The method evaluates the emergency
control response capability of the controlled load from three aspects:
load response time, controllable load, and controllable load bus.

Su et al., taking the power battery energy storage configuration
cost, voltage fluctuation, and load fluctuation as objectives,
established a multi-objective optimization model for power

battery energy storage configuration and solved it using non
dominated sorting genetic algorithm.

Zhu et al. put forward a method for energy storage capacity
allocation of wind farm groups. A two-layer model of shared energy
storage allocation is established. The upper model optimizes the
shared energy storage configuration of each wind farm group to
minimize the risk of the out-of-limit output of the wind power base;
The lower model calculates the out-of-limit output power of each
wind farm group according to the energy storage capacity distribution
and transfers the out of limit output power value to the upper model.

Hao et al. put forward a mechanism for evaluating the power
balance and power trading potential of the Lancang Mekong countries
and South China under long-term operation simulation. Themechanism
analyzes the energy supply structure, energy utilization form, cross-
border transmission capacity, and multi-regional power trading
potential of LancangMekong countries and China Southern Power Grid.

For power system load forecasting, the included articles establish
a load forecasting model for the power system based on the coupling
relationship between loads.

Yang et al. proposed a multi load forecasting method that
considers the coupling characteristics of multiple loads and the
partitioning of load similar fluctuation sets.

Liu et al. provided a comprehensive review of power information
fusion methods for the first time, providing the framework of power
information fusion methods and the types of power data.

Li et al. proposed a charging demand prediction model based on
real-time data of Baidu Maps. This model can explain the driving
strategy and charging strategy of electric vehicle users based on the
ability to generate strategy learning against imitative learning.

3 Perspectives

To sum up, 16 papers have been published, including the continuous
research results of experts in relatedfields. Thesefindingswill help readers
better understand and learn the latest knowledge in relevant fields.
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Blockchain-based bilateral
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Recently, the interaction between power generation and load has been

continuously strengthened, providing a new method for realizing the

decarbonization of the power system. An auction method that enables a

low-carbon economic dispatch is designed in this study, where blockchain

technology is employed to record the whole process data credibly. According

to the regional division of market entities, carbon emissions are allocated to

regions and entities by using the Owen value method. In order to reduce the

expected carbon emission of entities, an additional carbon price is added to the

original quotation through the allocation results. Case studies are conducted

based on the typical output characteristics of wind and photovoltaic power

generation in the bilateral bidding market hourly. The results have validated that

the proposed method can reduce expected carbon emissions in the power

system by prioritizing zero-carbon and low-carbon generation units.

KEYWORDS

carbon allocation, cooperative game, low carbon electricity, Owen value, blockchain

1 Introduction

Global warming is becoming more obvious with the intensification of greenhouse gas

emissions (Zhongming et al., 2021). Hence, how to reduce carbon is an important topic.

Among the carbon emissions of energy, the power system accounts for about 40% so that

electricity will play an increasingly important role in the future. In building a power

system with a higher proportion of renewable energy, how to realize renewable energy

consumption is also crucial. In the first 5 months of 2022, China’s entire society consumed

3,352.6 billion kWh of electricity. As of the end of May 2022, coal-fired thermal power

accounted for 49.3% of the installed capacity of power plants. At the same time, gas-fired

power generation accounted for 4.8%, and grid-connected wind power and photovoltaic

power generation accounted for only 15.1% and 9.3%, respectively. Currently, China has

established a carbon market to meet the checks and balances on the proportion of

renewable energy and thermal power units through carbon trading(Yue et al., 2021). The
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emission reduction of the power industry is a vital and

challenging task, and people are constantly exploring solutions

(Wang and Feng, 2017; Zhang D et al., 2017; Zhang X et al., 2017;

Zhang Y.-J et al., 2017; Cheng Z et al., 2018). Therefore, in this

study, it is significant to allocate the carbon cost to each entity

and guide each entity to reduce emissions and actively participate

in renewable energy consumption by means of a market

mechanism.

Since the power industry and carbon emissions coexist,

figuring out how to achieve decoupling between power and

carbon emissions is a critical step in evaluating carbon

properties. Some of the methods currently start from the

input–output model to track the emission flow through the

power grid and quantify the pollution, which is reflected in

the power production, exchange, and final consumption of the

corresponding institutions (De Chalendar et al., 2019). Some

studies use input–output analysis (EIOA) to calculate the implied

emission intensity or use a top-down approach to assess the

environmental footprint (Gao et al., 2022), while other studies

convert electricity into emissions by using the EIA factor to

convert fuel into emissions where energy carbon emissions are

imputed (Goldstein et al., 2020). Furthermore, some studies

decouple the two models by introducing the concept of

carbon emission flow attached to the power flow (Kang et al.,

2015; Tian et al., 2015). In addition, relevant operating scenarios

also include quantifying carbon emissions related to energy

transmission (Cheng Y et al., 2018) and conversion processes

in multi-energy systems, coordinating energy generation,

transmission, conversion, and utilization across different

energy sectors, paths, and time scales, and implementing a

hierarchical process (Huang et al., 2020). Some studies start

from the perspective of cooperative games. At first, the

FIGURE 1
Schematic diagram of the change in the bilateral bidding model. (A) Traditional bilateral bidding model. (B) Bilateral bidding model considering
carbon attributes.
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Shapley value method can be used for the benefit distribution of

internal members in the electricity market (Lei et al., 2020). Later

studies regard the whole process of carbon allocation as a cost

allocation process and use the Shapley value to share carbon

emissions on the load and power generation sides (Chen et al.,

2017). However, since the entire system is time-varying and

carbon emissions are spatially and temporally different, a

reasonable distribution cannot be achieved by simply

describing them with fixed parameters.

At present, the existing research hardly allocates the carbon

emissions to the power generations and loads. It changes the

current trading cycle of quotations by considering the allocation

to promote the realization of carbon reduction on both sides of

power generation and loads. At the same time, in the current

ideas of cooperative games, all market entities are regarded as the

same class for cost allocation. However, due to the different

geographical distribution of each entity as well as issues such as

administrative divisions and policies, it does not take into

account the impact of the division of the major leagues. Thus,

they belong to cooperative games with coalition structure

constraints, which is consistent with the characteristics of

Owen’s value method. The research (Fiestras-Janeiro et al.,

2015) proves the hypothesis of the Owen value. Moreover, the

design of a bilateral bidding mechanism considering carbon

allocations on both sides starts from the problems mentioned

previously by adopting the two-level structure of region-entity.

According to the Owen value method and the rules of bilateral

bidding, the carbon allocation is set for the entity in each game.

The carbon allocation result is transmitted as a price signal to

original quotations of entities, and the final transaction is cleared

according to the quotation after considering the change of carbon

allocations.

Due to the process of quotation changing in the middle, in

order to guarantee the traceability of the data, blockchain

technology is used to realize the whole process recording on

the chain. At present, some research studies have designed the

transaction and settlement framework in the electricity market by

blockchain (Xu et al., 2021), as well as simplified the transaction

process and realized mutual trust between users (Zhou et al.,

2021). At the same time, a decentralized trading market is

designed in the distribution market for bilateral energy

trading (Morstyn et al., 2018). Due to the blockchain

consensus mechanism, various information silos are connected

(Hamouda et al., 2020), and the problem of information

tampering in distributed energy transactions is prevented

(Tonev and Nikolaev, 2020). Some studies use private key

encryption to protect the privacy of the auctioneer in the

bidding process (Zhang et al., 2019). At the same time, there

is also a two-level structure of the agent and transaction

settlement in the transaction (Luo et al., 2018). It also

establishes a regional structure for many types of entities and

realizes inter-regional and cross-regional transactions (Li et al.,

2021). In order to fit with the aforementioned region-entity two-

level structure, a two-level blockchain structure with the main

chain of the whole system and sub-chains of each region is

designed. Blockchain technology is used in the overall process,

FIGURE 2
Schematic diagram of the overall framework.
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and cross-chain between multiple blockchains is used. A

blockchain is set up in the overall system to realize the

traceability record of regional data and critical data in the

transaction, and the aforementioned method is written into

the smart contract to transmit the optimal unit output across

the chain to each regional blockchain for scheduling. The

innovations are as follows:

1) The Owen value method is used to allocate carbon emissions

in two levels. The Shapley method is used between regions,

and the improved Shapley method is used for each entity in

the region to achieve a reasonable allocation.

2) The process of carbon allocation is integrated into the

quotations of the current trading bilateral market. In that

case, the factor of carbon allocation can be fully considered

while satisfying social welfare in the final transaction.

3) Blockchain technology is used to record the corresponding

data of the whole process to the chain and realizes the

operability and achievability of the process by adopting a

two-level blockchain structure.

The remaining contents of this article are as follows: Section 2

introduces the operation process of the whole market

mechanism. Section 3 introduces the main models and

methods. Section 4 analyzes the results through simulation.

Section 5 gives the conclusion and summarizes the whole article.

2 Bilateral electricity market
framework with carbon emission
allocation

The article follows the general idea of using carbon emissions

as a price signal to change the auction before the completion of

the current transaction. A cooperative game method is used to

allocate carbon emissions to the power generation and load

entities participating in the market. A new quotation is

formed, taking into account the allocation results and the

original quotation.

As shown in Figure 1, in the traditional bilateral bidding

model in the electricity market, each entity quotes according to

its economic cost while ignoring the environmental value, which

is the impact of greenhouse gas emissions. In bilateral electricity

trading considering carbon attributes, reasonable carbon

allocation should be carried out according to the marginal

effect of carbon emissions caused by the participation of each

FIGURE 3
Bilateral bidding curve.
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entity in the market. Market organizers make revisions based on

the original quotation and the allocation results before the

transaction. It considers not only the physical value of

electricity but also its environmental value, which can

promote the development of low-carbon generation and make

the entire system develop toward the goal of a low-carbon and

economical operation.

The whole framework is divided into four parts, namely,

transaction preparation, modification of quotations, final market

transaction, and transaction data recording. The whole

framework is shown in Figure 2.

In the transaction preparation process, each power

generation entity reports data, including the upper and lower

limits of output P
�
GiPGi, corresponding quotation λGi, the carbon

emission intensity of generation itsi, and regional locations locali.

Each load entity reports data simultaneously, including the upper

and lower limits of the load demand P
�
LiPLi, the corresponding

quotation λLi, and the regional location locali.

In the modification of the quotation process, the Owen

value method is used to allocate carbon emissions to each

market entity by integrating the previously reported data. The

allocation is to divide regional carbon emissions on the basis

that each market entity is divided into regions. Then, the

entities are divided according to the regional division results,

and a ladder carbon price is set according to the allocation

results, so as to make a new quotation. At the same time,

according to the characteristics of the bilateral bidding

market mechanism, in order to promote the low-carbon

economic dispatch of the whole system, the additional

quotation of the load entities should be negatively

correlated with their carbon allocation. The additional

quotation of the power generation entities should have a

positive correlation with their carbon allocation.

In the final market transaction process, the latest

quotation can be obtained based on the quotation of the

market entity in the first step and the revised quotation in the

second step. Based on the latest quotation, clearing is carried

out according to the bilateral bidding model, and the output

of each generation and the consumption of each load are

distributed.

In the transaction data recording process, its aim is to record

the data of the previous three steps, respectively, and realize the

FIGURE 4
Flowchart of the Owen value method calculation process. (A) Calculation of region allocation. (B) Calculation of entity allocation.
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automatic implementation of the process through smart

contracts. This process establishes a two-level blockchain

system. First, the sub-chains in each region are used for the

record of report data of market entities and the settlement after

the final transaction. Then, the main chain for all regions is used

to integrate the report data of each sub-chain to form and record

a new quotation.

3 Model and methodology

In this section, detailed modeling regarding the whole

mechanism is introduced.

3.1 Bilateral bidding market model

The electricity market clearing model based on bilateral

bidding is as follows:

max
PGPD

⎛⎝∑D
i�1
PDi•λDi −∑G

j�1
PGj•λGj⎞⎠,

∑D
i�1
PDi � ∑G

j�1
PGj,

s.t.
�PGj ≤PGj ≤P

�

Gj,

�PDi ≤PDi ≤P
�

Di,

fl ≤f
�

l,

(1)

where PDi represents the actual consumption of load i, the actual

output of generation j, and, respectively, represent the quotations

for load i and generation j, respectively, the minimum and

maximum output of generation j and minimum and

maximum consumption of load i.

Since in the bilateral bidding model, the buyer’s quotations

are sorted from high to low, the buyer can get more advantage in

the auction if his bid is higher. The seller’s quotation is sorted

from low to high, so the lower the seller’s quotation, the more the

transaction will be prioritized, as shown in Figure 3.

FIGURE 5
Schematic diagram of a two-level blockchain.
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3.2 Carbon allocation model based on the
Owen value method

At present, the carbon emission allocation method is

adopted from the perspective of a cooperative game.

Under the premise of considering axiomatic standards, the

Shapley method has good fairness and consistency. At the

same time, considering that each entity is divided according

to administrative regions, it follows the priority alliance’s

structure. Therefore, when allocating carbon emissions, it is

necessary to separate them from the regional level first and

then carry out the allocation of market entities according to

the regional allocation results. In summary, this section

adopts a two-level structure of the Owen value, and each

level is allocated by the Shapley method. Each region can be

treated as a priority alliance, and each market entity can be

treated as a player in the game.

The carbon allocation of the entity is the additionally

expected carbon emissions after the entity joins the bilateral

market trading. However, the transaction is based on the

modified quotations, which consider every allocation of the

entity. The result of carbon allocation can be seen as a factor

in the final transaction.

Assume that all market players form a set

N � {L1, L2, ...Lnl, G1, G2, ...Gng}. Different market players are

located in different positions, thus forming different alliances.

Therefore, the set of all market players can be divided into m

parts according to the alliance structure S,

S � {ζ1, ζ2, ...ζm},
ζk � {Lk1, Lk2, ...Lkl, Gk1, Gk2, ...Gkg}, (2)

where ζk represents the area k, which consists of loads and

generations in the area k, which is the group

{Lk1, Lk2, ...Lkl, Gk1, Gk2, ...Gkg} Therefore, the calculation of the

Owen value method is divided into two steps as follows:

1) First, use the Shapley value method to allocate carbon among

regions, which is a priority alliance. The method is as follows:

xζk � ∑
L⊂(S\{ζk})

P(L)(c(L ∪ {ζk}) − c(L)), (3)

where xζk represents the carbon allocation in the local k, L

represents a subset of the set S with ζk removed, c(A)
represents a function which calculates the carbon

emissions when the market consists of entities in the

alliance structure A , and c(L ∪ {ζk}) − c(L) represents the

FIGURE 6
Schematic diagram of the first step.
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additional carbon emissions caused when joining in the

market.

When considering that all regions are randomly arranged,

the probability of the region L is as follows:

P(L) � nL!(m − nL − 1)!
m!

, (4)

where m represents the number of alliance structures and nL
represents the number of the probability of forming

subset L.

2) According to the idea of the first step, the market players in a

certain regional structure are first considered. The Shapley

value method is used to calculate the marginal effect of

additional allocation to the area when an entity joins the

area. The method is as follows:

xci � ∑
R⊂(ζk/{ci})

P(R) · (s(R ∪ {ci}) − s(R)), (5)

where xci represents the entities ci in the area k alliance structure,

which is the load entity or generation entity; R represents a subset of

the set ζk with ci removed; and s(R) represents carbon allocation in

the area k when the market entities in area k only have all the

elements in R. When considering that all entities are randomly

arranged, the probability of the subset R is as follows:

P(R) � nR!(nk − nR − 1)!
nk!

, (6)

where nk represents the number of entities in the area k and nR
represents the number of the entities in the subset R.

Specifically, the combinations of entities need to be

considered in order to calculate all the marginal effects. When

FIGURE 7
Schematic diagram of the quotation modification step.
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calculating the carbon allocation of the entity Ci, it also needs to

be carried out in two steps by the improved Shapley method as

follows:

1) Since the carbon allocation of the target entity is calculated by

the marginal effect of the region when the entity participates

in each combination, we need to calculate the carbon

allocation of the region ζk in each combination of the

entities. When some combination of set L after removing

ζk is chosen, we can get the total carbon emissions of the

system if a bilateral transaction is carried out in this

combination. When we add the region ζk to the set L, we

can get the total carbon emissions of the system again. In this

way, the marginal effect of one combination case is obtained.

Finally, we can get all the case results and add them to get the

region of the target entity allocation, shown in Figure 4A.

2) When some combination R is chosen, the distribution of

the entities in the region will change. Thus, Eq. 3 is used to

calculate the allocation of the region, which is where the

FIGURE 8
PJM-5 node system.

FIGURE 9
Output characteristic curve of the renewable energy unit.
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target entity is located. Then, since the previous

combinations did not contain the target entity, the

combination R is mixed with the target entity Ci and

the new combination is obtained. Finally, Eq. 3 is used

to calculate the allocation of the region with further

distribution of the combination. In this way, the

marginal effect of a combined case can be obtained.

The final carbon allocation is obtained when we add all

the cases together by Eq. 5. The whole process of this step

is shown in Figure 4B.

In calculating the marginal effect, this method needs to

consider all the combinations of the entities and the marginal

effect of the target entity in each combination. However, in the

calculation steps of the Owen method, it needs to consider

combinations of regions and entities in the region. It means

that minimum supply exceeds maximum demand or minimum

demand exceeds maximum supply. Hence, the improved Shapley

method will exclude the inappropriate combination to reduce

computational complexity. The improved method adds a filter

function of combinations compared with the original method.

FIGURE 10
Consumption or generation of entity and carbon allocation result comparison. (A) Space-time distribution of power consumption. (B) Space-
time distribution of load carbon allocation. (C) Space-time distribution of power generation. (D) Space-time distribution of generation carbon
allocation.
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3.3 Design of auction rules

This subsection introduces a method to add the carbon cost

based on the allocation of the Owen value method on the

quotation in the bilateral market. This mechanism changes

the clearing sequence to make low-carbon generations or

loads preferentially traded. Considering the characteristics of

bilateral auction market clearing, it is necessary to design the

quotations of load and power generation entities accordingly.

Then, considering the carbon emissions of load allocation

and the additional carbon price, there is a negative

correlation, so that the load with more carbon emissions

will be ranked lower in the auction, which is consistent with

the original goal. The expected additional carbon price for the

carbon emissions shared by power generation is positively

correlated, so that the units with fewer carbon emissions will

accumulate less additional carbon price, and the rank will be

relatively high.

The total amount is first calculated through the stepped

carbon price in the extra carbon price setting. The carbon

price is set to transmit the carbon price of the entity’s

allocation to its quotation. In this way, the quotation in the

final transaction includes economic and environmental factors. If

the carbon price is too low, it is impossible to achieve low carbon

by changing the quotation order. Therefore, the setting of carbon

price should satisfy such that the low-allocation entity can gain

an advantage in the quotation. In Section 3.3, the carbon

price(40$/t) is a relatively acceptable empirical value obtained

FIGURE 11
Parameters after considering carbon attributes and the initial market. (A) Comparison of PV utilization. (B) Comparison of WGE utilization. (C)
Comparison of natural gas unit utilization. (D) Comparison of total carbon emissions.
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by many experiments, which is close to the international carbon

price. The detailed method is as follows:

{ c � 5 × (xci − x min), xci ≤ xavg,

c � 5 × (xavg − x min) + 10 × (xci − xavg), x min ≤ xci ≤xavg,

(7)
where c represents the whole cost for the carbon allocation, xci
represents the carbon allocation of generation or load entity,

xmin represents the minimum allocation in generation or load

entities, and xavg represents the average allocation of generation

or load entities. Then, the additional carbon price is set to

λci � c

pci
, (8)

where pci represents the output or load allocated in the

original bilateral bidding scenario. Then, the latest

quotation of the load entity is λDi � λDi0 − λLi, and the

latest quotation of the power generation entity is λGi �
λGi0 + λGi.

3.4 Application of blockchain technology

In the market transaction of the proposed model,

blockchain technology is used in the whole transaction

process. Since the transaction process involves multiple

regions, many transaction entities, steps, and blockchain

technology makes the whole process traceable and simple

while preventing tampering, which is suitable for the

intermediate quotation change step.

Due to the previous calculation of the Owen value

method, the blockchain application is divided into a two-

level structure. The target of the sub-chain is to collect the

quotation information and deliver the transaction results.

Thus, it is aimed at the primary users, such as generation or

load entities. The target of the main chain is to evaluate the

allocation and supervise the performance of the users. Thus,

it is aimed at the market organizers. Meanwhile, it can

FIGURE 12
Schematic diagram of the blockchain network structure.

TABLE 1 Configuration of each node port.

Entity_name Container_name Port

Organizer peer0.org1.example.com 7051

G1 peer1.org1.example.com 7151

G2 peer2.org1.example.com 7251

G3 peer3.org1.example.com 7351

G4 peer4.org1.example.com 7451

G5 peer5.org1.example.com 7551

L1 peer6.org1.example.com 7651

L2 peer7.org1.example.com 7751

L3 peer8.org1.example.com 7851

L4 peer0.org1.example.com 7951
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reduce the risk by setting up a separate sub-chain in each

region when some sub-chain encounters a mistake.

Therefore, when building the blockchain and establishing a

two-level structure, the main chain of the total area and the sub-

chain of a single region are set, respectively, as shown in Figure 5.

The members of the sub-chain consist of load entities, generation

entities, and market organizers in the region, while the members

of the main chain consist of market organizers of all regions.

They all have a set of the ledger separately and, by using a

consensus mechanism, all the members keep the ledgers identical

when the transaction is finished. The Kafka algorithm used in the

Fabric 1.4 version of the consensus mechanism is adopted. After

the peer node requests endorsement, all transaction information

is sorted through the Kafka cluster, and then the block is

packaged through the order node. Finally, each peer node

verifies the correctness of the block (Androulaki et al., 2018).

In the sub-chain of each region, eachmarket entity represents

a node in the blockchain system. At the same time, a super node

is saved, which is the market organizer of every region for the

information interaction with the main chain and the supervision

and management of the sub-chain. The functions in the smart

contract of the sub-chain are as follows:

1) Record the public key of the market organizer on the sub-

chain.

2) Realize the quotations and relevant data of users reporting

and record the information after encrypting the

aforementioned data with the public key.

3) Record the modification quotation and the transaction results

on the chain.

4) Realize query of final results for all users and decoding of

quotations for market organizers through their private key.

The main chain comprises market organizers, mainly used to

record the data interacted through the cross-chain and change

the quotation through the smart contract in themain chain. Since

market organizers join both blockchains, they can be seen as the

bridge between the main chain and sub-chain. Relevant

operations are implemented through smart contracts. The

functions in the smart contract of the main chain are as follows:

FIGURE 13
Schematic diagram of block information. (A) Transaction preparation step. (B) Settlement step.
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1) Record the quotations of all regions on the main chain

through market organizers.

2) Calculate the carbon allocation of all entities according to the

reporting data through the Owen method and modify the

quotation based on allocation.

3) Fulfill the final transaction by the modification quotations.

4) Realize the query of final results for market organizers.

The process is divided into three steps: the quotation report,

the quotation modification, and the transaction settlement.

In the first step as shown in Figure 6, by querying transaction

notifications in the main chain, the information is transmitted to

each market entity in the sub-chain through cross-chain operations

of market organizers. The organizers in each region use the RSA

algorithm to generate a new public and private key and broadcast the

public key to the region by sub-chain. Eachmarket entity reports the

quotation and the maximum andminimum values of its demand or

output according to its situation and encrypts it with the public key

of the super node.

In the second step as shown in Figure 7, the super node of

each regional sub-chain decrypts the reporting data by the

market entity through its private key and uploads it to the

main chain. The smart contract in the main chain uses the

data to modify the quotation and record those in the main chain.

Then, the transaction is carried out according to the new

quotation. Finally, super nodes will transmit the clearing

result and the changed quotation to the sub-chain.

In the last step, the clearing results are transferred from themain

chain to each sub-chain. Each market entity on the sub-chain

finishes the settlement of electricity or funds according to the

final result. Relevant power generation entities are dispatched

according to requirements. The settlement of the final electricity

and the funds’ performance is written into each region’s blockchain.

4 Case study

The example analysis in this section is divided into two

parts. The first part is in the PJM-5 system simulation, using

five nodes to simulate five areas. Then, each power generation

entity and load entity are set up in different groups. Carbon

allocation is carried out through the Owen value method and

transmitted to the quotations of each entity as a price signal.

Considering the typical daily output characteristics of

renewable energy units, the transactions of 24 times a day

are simulated. After adopting this method, the impact on the

overall carbon emissions and the changes in the dispatch of

low-carbon or zero-carbon units are analyzed. The second

part implements the aforementioned process in the

blockchain by using the Hyperledger Fabric and verifies

the practicability of blockchain technology by setting up a

two-level structure of the main chain and sub-chain.

4.1 PJM-5 node example

The network structure of the PJM-5 system is shown in

Figure 8, where each node is regarded as a region. G3 and

G14 are photovoltaic power generation; G4, G9, and G15 are

wind power generation; and G11 and G12 are natural gas

generators. The remaining units are conventional thermal

power units. The AB and ED lines’ capacity is 400 and

240 MW, respectively. There is no capacity limit on other

lines.

The capacity of two photovoltaic power generations is

200 MW; and the capacity of three wind power generations is

200 MW. Their typical day output curves are shown in

Figure 9.

Within 24 h, the load and power generations declare the

quotations separately. If the transaction is formed according to

the bilateral bidding mode, the consumption of each load and the

output of each unit are shown in Figures 10A, C and through the

Owen value method, carbon allocation is carried out on 24 trading

points. The results are shown in Figures 10B, D. It can be seen that

the carbon allocation result is positively correlated with the assumed

original bilateral market clearing result. Loads with higher power

consumption have higher carbon allocation results, and thermal

power units with higher power generation also have higher carbon

allocations. The results show that the hydropower units have a

negative allocation lower than the photovoltaic or wind power. The

reason is that the calculation of carbon allocation is based on the

marginal carbon effect in the hypothetical bilateral bidding scenario.

Due to the lower quotation of hydropower units, hydropower units

are easier to be traded in the bilateral market. The participation of

the hydropower unit will reduce the carbon emissions of the entire

system, so its allocation is lower. However, due to their high

quotations of renewable units, they are not easily traded in the

bilateral market. Its participation will not change the output

distribution of units, so its allocation is higher than that of

hydropower units.

Next, each entity will tier carbon prices based on theOwen value

allocation in each trading period. A ladder carbon price of 40$/t,

20$/t, and 0$/t is set according to the maximum allocation, average

allocation, andminimum allocation among entities of the same type,

respectively. The subsequent clearing is carried out by adding the

ladder carbon price to the original quotation. The change in carbon

emissions of the entire system is shown in Figure 11. It can be seen

that this method can promote the utilization rate of the low-carbon

and zero-carbon units and reduce the carbon emissions of the

system effectively. The results show that calculating the carbon

allocation and considering it as a cost to loads and power

generations. On the one hand, an additional carbon price is

added to the quotation of power generations so that the

environmental value of zero-carbon or low-carbon generators can

be exerted and their priority dispatch can be realized. On the other

hand, after allocating carbon to loads and attaching a carbon price,
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according to the results of their quotations, the expected usage of loads

with excessively allocated carbon emissions will be reduced in the

bilateral market, so as to guide load entities to energy conservation

and emission reduction.

4.2 Implementation based on blockchain
technology

Hyperledger Fabric 1.4 version is used in the process of building

a blockchain. The operating environment is Linux CentOS 7.5.

According to the operation characteristics of the fabric, the smart

contract and ledger in each channel will be shared. Therefore,

different nodes will be grouped into other channels to realize the

construction of different blockchains. As shown in Figure 12,

P1 represents the nodes of the power generation entity,

P2 represents the nodes of the load entity, and the number of

entities determines the number of nodes. P0 represents the

organizational nodes in each region. Channels 1–5 represent the

sub-chains of five regions; Channel 0 represents the total chain for

the entire region. At the same time, because the market organizer in

each region is located in the sub-chain of its region and the general

chain of the whole region, it has not only the account book of its

region but also the account book of the general chain. So it acts as a

bridge between the total chain and the sub-chain.

In the application of the sub-chain, it mainly involves the

transaction information reporting step and the last transaction

step. Therefore, region A was taken as an example to display the

relevant results. In region A, there are five power generation

nodes, four load nodes, and an organizer’s super node. The

simulation method is a single machine with a multi-node

network. Each node port is set as follows in Table 1.

Two blocks representing two steps in the sub-chain are selected,

as shown in Figure 13. A block consists of a header, data, and

metadata in blockchain technology. The relevant hash value and

block number are displayed in the header. The data in the middle

show the signature and value, etc., where the value is parsed by

converting the relevant data into the JSON format. Metadata have

little effect on the application, which is not shown in the figure.

According to the analysis of the results, it can be seen that the

adoption of blockchain technology can automate the entire process.

The process involvesmultiple steps, but it can be finished quickly. In

addition, the data of the whole process are recorded on the

blockchain. This makes the entire quote change process traceable

and credible. Finally, due to the consensus mechanism, all data are

tamper-proof, thus ensuring the secure and smooth operation of the

market.

5 Conclusion

This article proposes a method to allocate the carbon

emissions of the power system to the power generation

entities and load entities according to the Owen value method

region-entity principle and establish a model that can realize the

transaction of the allocation result as a price signal in the bilateral

trading market in this period. Based on the example analysis, the

following conclusions are drawn:

1) The allocation results of the Owen value method show that its

allocation to the power generation and load sides is more

reasonable. For different generation units The allocation

results correspond to the different generation units’ carbon

emissions from electricity generation. For other loads, the

allocations are consistent with their consumption behavior. At

the same time, the difference in carbon emissions caused by

geographical factors caused by line capacity is also considered.

2) In the bilateral bidding scene, the allocation calculated by the

Owen value method is used as a price signal to update entity

quotations, which can realize the combination of policy and

market mechanisms to realize the dispatch of low-carbon and

zero-carbon generators so as to realize the low-carbon

economic operation of the whole system.

3) The two-level blockchain structure can fit with the entire

process. On the one hand, it realizes the contract by a code

during the entire process, thereby simplifying the process. On

the other hand, during changes in the quotation, it realizes the

record of the overall data on the chain to ensure the credibility

and traceability of the entire process.
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1 Introduction

Electric energy has a critical impact on the consumer’s life, which is mostly based on

centralized generation at present. However, the centralized generation has caused high

power transmission and distribution losses. Meanwhile, the high combustion cost of fossil

fuels and the environmental pollution caused by the greenhouse effect has become the

problems that have to face. Reasonable planning sizing and location of distributed

generations (DGs) to the distribution network (DN) may overcome the above

limitations such as reducing power loss and environmental pollution. Therefore,

access to DGs at the DN has been widely adopted (Rana et al., 2017; Ali and Qiang,

2018). Nowadays, due to the ability to maximize the use of renewable energy such as wind,

solar, wave, hydro, and hydrogen the penetration rate of DGs has increased.

The optimal location and capacity of DGs properly may reduce power loss, cost and

enhance the reliability of the power grid. A large number of DG connections have a great

impact on DN such as power flow, voltage profile, power loss, and power grid stability of

the DN. Therefore, it is valuable to quantitatively evaluate the comprehensive impact of

DG connections on the DN (Francisco et al., 2020; Li et al., 2021). In order to evaluate

whether the location and capacity of the DGs connected to the power grid are correct,

various evaluation indexes are proposed mainly including economy, technology, and

environment. Reference (Wang et al., 2019) has defined the voltage stability index based

on the power flow calculation results of the DN and studied the influence of the DG

connection on the voltage stability of the DN. Literature (Su, 2010) has considered the

uncertainty of the operation of the distribution system, including the daily variable load,

the random DG generation, the grid configuration, and the voltage control device, and

analyzes the influence of the distributed power supply connected to the distribution

network on the voltage deviation. Currently, various literatures proposed several methods

for optimal location and capacity of DGs, literature (Koutsoukis et al., 2014; Magadum

and Kulkarni, 2015) separately proposed tabu search (TS), and fuzzy logic to minimize

power loss and cost of DGs. Moreover, artificial neural networks (ANN) have either been

designed to minimize energy loss, and it no need for flow calculations (Semic et al., 2019).
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However, the above literature both ignores the users’ demand

response (DR) about the DGs accessing, and just consider the

DGs’ impact on the grid. Meanwhile, there is no review paper

evaluating and analyzing the index of DGs. Hence, this paper has

mainly evaluated and analyzed the economic index, and

technology index of DGs. Furthermore, the advantages/

limitations, applications, and objective function of each index

have been proposed. Finally, valuable perspectives and challenges

for future researchers are proposed.

2 Analysis of economic indexes

Generally, to decrease the environmental pollution and power

loss caused by the traditional centralized generators, installing DGs

in DN as far as possible is a conventional method to solve.

However, how to not only decrease the investment, operation,

and maintenance cost but enhance the reliability of the power grid

is a critical challenge for the current researchers. Currently, several

approaches have been proposed to solve this problem, as follows:

C By optimizing the location and capacity, the voltage quality

can be improved and the loss of the grid will be reduced

with less investment cost. Moreover, investment costs can

be recovered by actively participating in DN management

based on a price control mechanism, and investment costs

can be recovered by appropriately increasing electricity

prices. Meanwhile, by adding robots to make equipment

intelligent to reduce operation and maintenance costs;
C Establish an incentive scheme to help the company and

government to install DGs. These incentive plans may

include government subsidies on the generator side and

taxes on customers (e.g., environmental taxes);
C Active DN (ADN) mechanism should be more widely used

in the current new power system. Based on the resident DR,

combine the resident and generation to create more ADN.

The cost of theDG is a complex problem, which includes several

uncertain paraments such as the price of the fuel cell, labor cost,

inflation rate, tax, raw material cost, government subsidy, and DGs

types. Literature (Yang et al., 2020) has comprehensively

summarized the types of DGs which are divided into four types

including only active power DGs (type-I), reactive power generators

(type-II), which generate both active and reactive power DGs (type-

III), and generate active power and consume reactive power (type-

VI). A variety of uncertain parameters will lead to a very complex

problem in calculating the investment and operation cost of the

system. In addition to the investment and operation costs, the

environmental benefits generated by installing DGs on the DN

side should also be considered, which not only alleviates the

pollution but better use of renewable energy (Priyanka et al.,

2014). Because of its benefit, several researchers have chosen the

minimized cost of DGs as the objective to optime the capacity and

location. Table 1 comprehensively summarizes the typical economic

indexes and analyzes their application, benefits, and limitations.

Drawn from Table 1, typical economic indexes have been

adopted for various types of DGs, and most of them are tested in

experimental models. However, many researchers ignore the labor

cost, tax, and fuel costs at present. Meanwhile, DGs planning is

based on experimental models and has not been applied to the real

model. Besides, in future research, DGs should be planned based

on user experience. The demand side is extremely important.

Future researchers should consider how to not only meet the users’

power consumption feeling but also reduce the investment and

operation costs. In the small-scale power grid, the load on the user

side and the daily load fluctuation are relatively low, while in the

large-scale power grid, the daily load fluctuation is large and more

DGs are required, so it is difficult to ensure the economy. Hence,

in the large-scale power grid, the reliability index such as load

fluctuation and voltage profile are more important. Moreover, as

the increasing penetration of electric vehicles (EVs) has increased,

it will cause load fluctuation. The design and selection of economic

indexes will face difficulties.

3 Analysis of technology indexes

3.1 Power loss

Before theDGs are connected toDN, the power flowof the DN

simply flows from the substation side to the load side. However,

with the incorporation of the DGs, the direction and magnitude of

the system power flow will be affected, thus changing the power

loss of the DN. Tominimize the power loss, the most ideal method

is to install DGs locally at each power node. However, due to the

investment cost and the limitation of the number of generators

installed, this method is not feasible. In general, the value of DGs

power factor is equal to the total load of the electric power system

network, but there are equality constraints to prevent power flow

reversal. In practice, the power factor of most DGs operates

according to their rated power value, reducing power loss on

the premise of maintaining voltage stability. The value of DGs

power factor will be different in different periods (Quezada et al.,

2006; Hengsritawat and Tayjasanant, 2012). During the peak off

hour, to limit voltage fluctuation and reduce active power loss, the

value of DGs power factor is generally chosen as the leading power

factor. Besides, during the peak hour, to compensate for voltage

drop and enhance reactive power, the value of DGs power factor is

supposed to be chosen for the lagging power factor.

The access of DGs makes the DN change from a simple

radiation network to a multi-power supply system. Before DGs

are connected, the direction of feeder power flow is always

unidirectional. When DN is connected to the DGs, the

unidirectional power flow mode of the system is changed. The

power flow of the system is not necessarily unidirectional, and the

reverse flow of the power flowmay occur. The access to DGs may
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TABLE 1 Summary and analyze the evaluation indexes of DGs.

Evaluation
index

Objective Objective function Type
of DG

Parameters Application Benefits Limitations

Economic index Maximize benefits
(He et al., 2019)

F � fInc − fInv − fOpe Type-I; fInc : income of company; Small-scale power
grid.

Consider three types
of DG.

Ignore the labor cost,
government subsidy, and
environmental impact;
Ignore DR.

Type-III; fInv : investment of DG;

Type-IV. fOpe : operation cost.

Minimize system
cost (Jabr and Pal,
2009)

CDG � ∑n
i�1PDG,i + CL[PL(target ) − PL(actual )] Type-I. CL : incentive penalty; Small-scale power

grid.
Consider the power
loss of DN.

Only single-objective; Ignore
labor cost, environmental
influence and DR.

PDG,i : power output;

PL(target ) : target power loss;

PL(actual ) : actual power loss.

Minimize cost and
maximize the
benefit (Porkar
et al., 2011)

C � (s
h
) � CDG + COM,DG + CSC + COMSC

+CE + Closs + CENS

TSB() � CDGsave + A · ∑8760
t�1

[CEsave (t) + Closssave (t)CENS (t)]

All types. CDG : DG investment cost;
COMDG : DG operation and
maintenance cost; CSC :
synchronous condense (SC)
cost; COMSC : SC operation
and maintenance cost; CE: cost
of fuel cell; Closs : energy loss
cost; CENS : energy is not
supplied cost.

Small-scale power
grid.

Consider many
uncertain parameters;
Not only include cost
but consider profit.

High complexity; Ignore the
resident response; Ignor e
labor cost, government
subsidy, and environmental
influence.

Technology
index

Power loss Sloss − SDGloss � (UG − UL) · IDG Type-III
reduces
power loss
most.

UG : main grid voltage; UL:
load voltage; IDG current
through t DG.

Long distance and
large-scale power
grid.

Reduce power loss
and improve system
reliability.

Related to power factor, types
and location of DGs; Only
install type-IV on DN, the high
penetration may cause greater
power loss.

Voltage profile
Us � ∑K

i�1
|Ui−UR |
UR ·K

Type-III
improves
voltage profile
most.

UR : reference voltage of
electric power system; Ui : ith
node voltage; K : number of
nodes.

Long distance and
large-scale power
grid.

Primary substation
voltage reduced;
Voltage quality
improved.

Shut down DGs during small-
scale power grid.
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lead to the increase or decrease of power flow along the feeder

line. The power flow of DNwill change, and the power loss of DN

will change accordingly. The power loss may increase or

decrease, depending on various factors. Furthermore, in the

large-scale grid, due to the long transmission distance, the

installation of DGs with improper capacity at the end of the

line will reduce the power loss. Generally, the power loss may be

reduced by the penetration level of DGs. Meanwhile, note that

the location of DGs installed on the DN must cause a different

effect on the power loss. The equations of the power loss with

DGs and without DGs are as follows:

Sloss � SG − SL � (UG − UL) · Ilink (1)
SDGloss � SG − SL + SDG � (UG − UL) · (Ilink − IDG) (2)

where SG, SL and SDG separately mean the power of the main grid,

load, and DG;UG andUL denote the voltage of the main grid and

load; Ilink and IDG are the current through the link and DG. The

power loss reduced by DG is as follows:

Sloss − SDGloss � (UG − UL) · IDG (3)

Furthermore, as concluded from the literature (Ufa et al., 2022),

all types of DGs can reduce power loss. However, the power loss

reduced by different types of DGs connected to DN is different.

The installation type of type-III has the most obvious effect on the

reduction of power loss. The types of DGs that reduce power loss

are sorted in the order of type-III, type-I, type-II, and type-IV,

respectively. When DGs can deliver both active and reactive power,

which have the most obvious effect on power loss reduction. In

addition, DGs type-III and type-II can generate reactive power

(improve voltage profile), which also has a great impact on the

reduced power loss. Finally, when there is only type-IV installed on

the DN, the high penetration level of the DGs will cause greater power

loss than that without DGs (Prakash and Lakshminarayana, 2018).

3.2 Voltage profile

The allowable deviation of the three-phase power supply

voltage of 10 kV and below is ± 7% of the nominal voltage (Li

et al., 2021), and the smaller the absolute value, the better.

Therefore, the system voltage profile index is defined as the

average value of the absolute value of the voltage profile of each

node to represent the overall voltage deviation level of the system.

The calculation formula is as follows:

Us � ∑K

i�1
|Ui − UR|
UR ·K (4)

whereUR means the reference voltage of the electric power system;

Ui is the ith node voltage; K denotes the number of the node.

Similar to the power loss, the voltage profile is related to the

power factor, location, capacity, and penetration level of DGs.

However, for small-scale load systems, DG integration may lead

to voltage overrun and other problems. Therefore, before the

DGs have been connected to the power grid, a large number of

experimental analyses should be conducted.

4 Discussion and conclusion

To research the comprehensive impact of DGs access on DN,

this paper comprehensively evaluated and analyzed the economic

indexes and technical indexes of DG, and summarized their

advantages and disadvantages and applicable scenarios in

Table 1. Besides, two valuable conclusions about the DGs

evaluation index have been proposed, as follows:

a) Economic indexes are generally applicable to small-scale grids

because the load fluctuation of residents with low load in small-

scale grids will not be large. Large-scale grids, not only consider

the benefits and investment costs of the power grid but also

consider the demand side response. Meanwhile, in the large-

scale power grid, the load fluctuation is high. The most

significant to configuring DGs is to maintain the stability of

the power grid, so minimizing the cost and maximizing the

benefits are suitable for small-scale power grids.

b) Reasonable access toDGswill reduce the power loss and improve

the voltage profile of the power grid, especially in the large-scale

power grid. The power loss and voltage profile are related to the

power factor and location penetration level of DGs. In small-scale

power grids, it is better not to connect DGs under light load

conditions, otherwise voltage quality may reduce.

Generally speaking, according to the scale of the power grid,

it is very important to flexibly coordinate the grid-source and

reasonably select the evaluation indexes tomaintain the stability of

the power grid and ensure the economy.
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Aiming at the problem of long-timescale prediction deviation in the distribution

network, a fast regulation strategy of cloud-edge coordination based on an

intelligent transformer supply zones edge consistency algorithm is proposed.

The cloud makes the global initial optimal allocation to the edge transformer

supply zone clusters, and then the cluster makes the secondary collaborative

optimal allocation to the edge zones. A fast power interaction model within a

cluster based on a consensus algorithm is established, and the micro-increase

rate of dispatching cost is used as the consistency variable so that the cluster

adjustment amount is optimally allocated to each transformer supply zone, and

the total dispatch cost of all transformer supply zones is minimized. The

simulation example verifies the effectiveness of the cloud-edge collaborative

fast control strategy based on the intelligent station cluster edge consensus

algorithm in this article.

KEYWORDS

transformer supply zone, coordinate the edge sides, power deviation, distributed
dispatch, consensus algorithm

1 Introduction

Under the background of the “double-carbon” goal, China has accelerated the

construction of the new electric power system with new energy as the main body.

The wide access to a high proportion of distributed new energy and the participation of

large-scale resources such as energy storage and flexible load in the regulation and control

of the distribution network have affected the safe and stable operation of the system (Peng

et al., 2022); how to use the abovementioned resources to coordinate and dispatch is one

of the key issues that need to be solved urgently at present (Fang et al., 2019; Zhao et al.,

2019).
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There have been many studies on the scheduling of using

distributed resources. Tofighi-Milani et al. (2022), in order to

promote the distributed scheduling of multi-agent systems,

proposed a P2P resource management scheme considering

network constraints, which can realize that each agent can

independently schedule local resources to maximize its own

interests. Huang et al. (2022), to manage multiple distributed

resources in a microgrid, proposed a two-stage interactive retail

electricity market based on interactive energy, which can

effectively exploit the flexibility potential of each distributed

resource. Huang et al. (2021), in order to promote the free

competition of electric energy retailers with multiple

distributed resources in the retail market, proposed a

transactional retail market mechanism, which reduces the

impact of clean energy uncertainty and improves market

efficiency. Yang et al. (2021), in order to fully coordinate and

utilize flexible resources, proposed a three-timescale coordinated

scheduling framework, which can effectively improve the

economy of active distribution networks.

With the vigorous development of the Internet of energy

(Liu. et al., 2020), he automation and digital transformation of

low-voltage distribution transformer supply zone as a unit is

gradually carried out in China, and a new generation of

intelligent distribution transformer supply zone based on the

concept of cloud-edge collaboration and edge computing of the

distribution Internet of Things has become one of the

construction paths. Cloud-side collaboration can reasonably

allocate complex computing tasks. Edge computing

implements local data collection and analysis on the side near

the data (Gong et al., 2018), and then uploads to the end. The

cloud collects the data transmitted from the edges, makes the

optimization decision of the whole system, and then sends the

control task to each edge. The cloud-edge cooperative

dispatching mode fits the distribution characteristics of new

energy in the distribution network (Li. and Song, 2021), and

is applied to the optimal regulation of the distribution network

(Ren et al., 2019), which can effectively solve the problem of a

large amount of computing and communication data caused by

the access of a high proportion of distributed resources.

There have been some research works on the cloud-edge

cooperative dispatching strategy. Peng et al. (2022) proposed the

dispatching operation mode of two-level fusion of “cloud brain-

edge neuron.” Liu et al. (2020), aiming at the problem of peak

regulation in virtual power plants, constructed a multi-energy

virtual power plant dispatching technical framework of cloud-

edge-end hierarchical cooperation. Si et al. (2020) established the

physical architecture of Power Internet of Things based on cloud-

edge collaboration, built a CPPS unified computing

mathematical model based on edge computing and the idea of

cooperative autonomy among clusters and cloud-edge

collaborative control, and applied the dispatching calculation

of virtual power plants. In order to promote the synergistic

interaction between distributed resources and distribution

network, Zhou et al. (2022) proposed the Power Internet of

Things 5G cloud-edge-end multi-level coordination framework

and a cloud-side-end collaborative resource regulation method

based on semi-distributed artificial intelligence to achieve

collaborative optimization of cloud-side/side-side computing

resource allocation. Zhang and Wang (2022) proposed a real-

time demand response dispatching strategy of cloud-side

collaboration for electric vehicles, and a task unloading

strategy of cloud-side collaboration was proposed. A

dispatching decision model was established with the goal of

minimizing the load difference of the central cloud and

maximizing the response benefit of the edge cloud.

Random fluctuation and unpredictability of new energy

bring power deviation to distribution network regulation

(Bian et al., 2021; Li et al., 2022). Although the cloud-side

cooperative regulation strategy can effectively improve the

problems of computation and communication, it is difficult to

correct the power deviation in time due to the communication

delay in the cloud-edge cooperative control. Therefore, it is

necessary to seek an efficient and fast dispatch decision-

making method (Gong et al., 2018). Compared with remote

computing in the cloud, edge computing performs data analysis

near the device. Compared with cloud-edge information

transmission, it is more convenient and faster to directly

exchange data between adjacent edges.

A consensus algorithm is a distributed optimization algorithm

to solve the task concentration. It only needs the communication

data between local and adjacent units, and completes the iterative

optimization between each unit, which can effectively reduce the

computation and communication burden. At present, the

consensus algorithm has been applied to the coordinated

control of the distribution network (Zeraati et al., 2019). Zhang

et al. (2020) proposed a distributed energy storage optimization

control strategy based on a consensus algorithm for the economic

dispatch of autonomous microgrid clusters, and used the

consensus algorithm to distribute the output power of energy

storage. Pu et al. (2017) proposed a distributed optimization

scheduling method based on consistency theory to solve the

problem of regional autonomous optimal scheduling in an

active distribution network. The incremental cost of distributed

power supply was taken as a consistency variable to realize the

optimization of power generation cost in the autonomous region.

Li et al. (2018), to solve the problem of DCmicro-power grid in the

centralized control, proposed the multi-objective control strategy

based on a consistency algorithm, to realize the voltage stability

and power generation cost minimum. Yang et al. (2020) proposed

a distributed control strategy based on a consensus algorithm to

solve the problem of unbalanced power between photo-voltaic

power generation and load in a DC microgrid composed of

multiple photovoltaic and battery energy storage units. Taking

the control power of batteries as a consistency variable, the

unbalanced power can be distributed among batteries according

to the real-time state of SoC, avoiding the phenomenon of mutual
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charging and discharging between batteries. Lv et al. (2019)

established a dynamic economic dispatching model of an

independent microgrid with energy storage and controllable

loads, and proposed a distributed solution algorithm based on a

consensus algorithm to realize the optimal power distribution of

distributed power and energy storage.

The abovementioned research applies the consensus

algorithm to realize the distributed control of the microgrid or

adopts the completely distributed scheme to realize the

coordinated regulation of the distribution network. However,

due to the lack of coordination of centralized links, the

distributed scheme is generally only suitable for distributed

control with relatively fixed rules, which is difficult to adapt

to changes in the power grid environment, and it is difficult to

convert complex optimization problems into distributed

algorithms. In this article, aiming at correcting the long-term

prediction deviation, combined with the characteristics of the

cloud and the edge, a real-time dispatch strategy for distribution

transformer supply zone cluster based on cloud-edge

collaboration architecture is proposed. Multiple zones with

adjacent communication functions are formed into a

transformer supply zone cluster. The leader of the transformer

supply zone cluster sends the power deviation and dispatching

cost signals of the cluster to the cloud, and the cloud optimizes

the total power deviation of the distribution network to each

cluster based on long-term global control. The study aims to

minimize the deviation amendment cost; a real-time power

interaction model was established based on the consensus

algorithm. The micro-increase rate of the cost was taken as

the consistency variable of the transformer supply zone

cluster, and the consistency iteration was carried out within

the cluster, so the power deviation signal of the cluster was

optimally allocated to each zone cluster. When cloud-side

communication is interrupted, each cluster can independently

implement consistent dispatch according to its own power

deviation within the cluster, with autonomous ability. The

simulation example verifies the effectiveness of the

coordinated control strategy of the transformer supply zone

cluster based on the consensus algorithm of the edge nodes of

the intelligent transformer supply zones.

The main contributions of this article are as follows:

A distributed real-time control scheme of cloud-edge

cooperation is proposed, in which the intelligent terminals of

the zones are used as the edge computing nodes, and the cloud-

edge cooperation is carried out among multiple zones with

adjacent communication functions. The cloud allocates the

total dispatch amount to the transformer supply zone clusters

for the initial allocation. The transformer supply zone cluster

then collaboratively distributes the initial dispatching quantity to

each transformer zone for secondary allocation. When the

communication between the cloud and the edge is

interrupted, the transformer supply zone cluster independently

performs secondary optimal allocation according to the

scheduling amount of the cluster to achieve independent

operation.

A centralized-distributed scheduling method based on a

consensus algorithm is proposed. The cloud optimally

distributes the dispatching volume of the distribution network

to the transformer supply zone clusters. With the micro-increase

rate of dispatching cost as the consistency variable, the

consistency iteration is carried out within the cluster, and the

dispatch quantity of the cluster is optimally allocated to each

transformer supply zone.

2 Distributed fast power regulation
strategy for transformer area clusters
under the cloud-edge collaboration
architecture

2.1 Cloud-side collaborative power
dispatching framework

In the cloud-side collaborative control architecture of a new

energy distribution network, the cloud is the control center

responsible for the global control of the distribution network

system. Its main functions include collecting and processing

information transmitted by the edge side, making

optimization decisions for the whole system, and issuing

control instructions to edge side and assisting edge

computing. The edge side is each transformer supply zone,

equipped with intelligent distribution transformer terminals,

which is mainly responsible for intelligent sensing and

aggregation of distributed power, energy storage and

controllable load in the transformer supply zones,

communication with cloud and adjacent side, executing of

edge calculation, load dispatching ability of evaluation and

control, etc. The information exchange between the cloud

and the side is carried out through the public channel to

realize the cloud-edge cooperation; each transformer supply

zone is equipped with an independent local controller to

exchange information with adjacent stations to realize edge

cooperation.

Based on the flexible load, energy storage, and distributed

generation resources output, the day-ahead dispatching is carried

out with the objective of minimizing the operation cost of the

transformer supply zone. According to the forecast of distributed

generation resources output and flexible load, to determine the

power generation plan of this transformer supply zone cluster,

divide 24 h of a day into T periods, assuming that the power

of the constituent unit remains basically unchanged in each

period. The objective function of the day ahead dispatching is

(Huang et al., 2017)

minF � ∑T
t�1

⎧⎨⎩∑n
i�1
[CDR,i(t) + CESS,i(t) + Cdr,i(t)]⎫⎬⎭ (1)
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where CDR,i(t), CESS,i(t), and Cdr,i(t) are, respectively, the

operating costs of distributed generation resources, energy

storage, and flexible load in transformer i during period t.

In the previous dispatch stage, the cloud performs centralized

optimization calculations with the goal of minimizing the cost

and optimally allocates the regulation amount to each

transformer supply zone cluster because the prediction

accuracy decreases with the increase of timescale, and the day

ahead scheduling often cannot meet the requirements of power

balance. This study takes the optimization value of the long

timescale as the reference value to correct the deviation of

regulation power from the short timescale. In this study,

combined with the characteristics of cloud edge, multiple

transformer supply zones with adjacent communication

functions are formed into transformer supply zone clusters to

form edge nodes, and uses edge computing to adjust and correct

the power deviation in real time on a short timescale. Figure 1

shows the real-time dispatch framework for the distribution

transformer supply zone cluster based on the cloud-edge

collaboration architecture. The “Leader-Follower” distributed

dispatching method is adopted within each transformer

supply zone cluster (Zhang and Chow, 2011), and the

“Leader” of the cluster sends the power deviation and

dispatching cost signal of the cluster to the cloud; the cloud

summarizes the data information uploaded by all leaders, on a

long-term scale; the global centralized dispatch optimization

calculation is carried out with the goal of economical

optimization, and distributes the optimized power deviation

value to the “leaders” of each transformer supply zone cluster

for initial distribution; the transformer supply zone clusters then

cooperatively allocate the scheduling amount obtained from the

initial allocation to each transformer supply zone for secondary

allocation. When the communication between cloud and edges is

interrupted, the transformer supply zone cluster can optimize the

allocation according to the scheduling volume of the cluster to

realize independent operation.

According to the scheduling results of different stages at the

transformer supply zone level, the internal resources of the

transformer supply zone are finely controlled, and then the

ending resources are optimized and managed according to the

target dispatching power of the transformer supply zone. With

the best global cost as the goal, the resources in the transformer

supply zone are classified and participate in the dispatch in

stages. The integrated regulation and control requirements of

end transformer supply zones are realized.

The total power deviation of the distribution network is

ΔP � ∑m
j�1
ΔPj (j � 1, 2, ...m), (2)

ΔP � ∑m
j�1
ΔPj (j � 1, 2, . . .m), (3)

where ΔP refers to the total power deviation of the distribution

network, ΔPj represents the power deviation of the jth power

FIGURE 1
Real-time dispatch framework for distribution transformer supply zone cluster based on cloud-edge collaboration architecture.
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distribution cluster being uploaded to the cloud, and ΔPj,min and

ΔPj,maxare the upper and lower limits of the regulated power of

thejth transformer supply zone cluster, respectively.

According to the power deviation uploaded by the leader of

each transformer supply zone cluster, the cloud performs

optimization calculations based on the slight increase rate of

equal cost. When the equation shown in Eq. 4 is satisfied, the

purpose of optimizing power deviation distribution to each

power transformer supply zone cluster can be achieved with

the goal of economy.

zC1

z(ΔP1) �
zC2

z(ΔP2) � L � zCm

z(ΔPm) (4)

where Cm is the control cost of the mth transformer supply zone

cluster and ΔPm is the power deviation of the mth transformer

supply zone cluster.

When the micro-increase rate of cost of all transformer

supply zone clusters is consistent, the optimal power deviation

value to be corrected for each cluster under the lowest dispatch

cost is obtained; that is, it meets the relationship shown in Eq. 5.

∑m
j�1
ΔPj � ∑m

j�1
ΔP′

j, (5)

where ΔPj represents the power deviation of the jth transformer

supply zone cluster and ΔP′
jrepresents the power deviation of the

jth transformer supply zone cluster after optimization

calculation of the cloud equal incremental rate.

2.2 Distribution zone cluster members and
functions

There are multiple transformer supply zones in the

transformer supply zone cluster, and each transformer supply

zone has the resources that can participate in the dispatch.

Considering that the type and quantity of distributed power

supply, energy storage, and flexible load may be different in each

transformer supply zone, for the convenience of expression, the

units inside the zone are no longer distinguished here; each

transformer supply zone is regarded as an edge node, and in

order to ensure that the distribution transformer supply zones

cluster has high communication reliability (Zhang and Chow,

2012), the transformer supply zone with good communication

and computing capabilities is selected as the “Leader,” and the

rest of the transformer supply zones are selected as “followers.”

Leader: As the most important transformer supply zone in

the transformer supply zone cluster, it is required to have high

communication reliability and good computing capability. It can

interact with the cloud for data and information, upload the

power deviation of the local transformer supply zone cluster to

the cloud, and receive the optimized power deviation value from

the cloud; it can carry out communication exchange with

adjacent transformer supply zones, obtain the information

transmitted by adjacent transformer supply zones, and update

the dispatching information of transformer supply zone in the

cluster based on the consensus algorithm.

Follower: All transformer supply zones except “Leader”; they

do not need to communicate with the cloud, only interact with

adjacent transformer supply zones, and update the dispatching

information of the transformer supply zone based on the

consensus algorithm.

3 Consistent distributed control
method for transformer area cluster

3.1 Consistency theory

3.1.1 Distributed topological graph theory
In this article, optimization is carried out with the goal of

minimizing the dispatch cost of all transformer supply zones. It is

necessary to coordinate control among multiple zones so that the

cost micro-increase rate in the multi-distribution transformer

supply zones system tends to a stable common value, which

belongs to the consistency of the transformer supply zones.

In the problem of real-time dispatching consistency in

transformer supply zones cluster, information is interacted

through the communication network between the transformer

supply zones, forming a distributed topology, so that can be

described by graph theory. The communication relationship

between the transformer supply zones of a transformer supply

zone cluster can be represented by a directed graph G � (V , E),
where V � {1,/, n} is the set of nodes of the directed graph G
and each transformer supply zone can be represented by a node

in the directed graph, and E ⊆ V × V is the set of edges of the

directed graph G. Two connected nodes are said to be

“neighbors” if and only if there is an information

transmission channel between node i and node j. A graph G
is said to be a strongly connected graph if, for any two nodes

i, j(i ≠ j), there exist directed paths from i to j and from j to i.

Define the matrix A � [aij] as the adjacency matrix of G with

diagonal elements of 0 and non-diagonal elements aij as the

number of edges from node i to node j. D � [dij] is a degree

matrix, which is a diagonal matrix of n × n, d1, d2,/, dn is the

number of degrees corresponding to each node, and the degrees

are the number of neighboring nodes of a node. L � D − A � [lij]
is a Laplacian matrix reflecting the topological structure of the

power distribution zone, where lij satisfies the relationship shown

in Eq. 6.

lij �
⎧⎪⎨⎪⎩

∑
j∈Ni

aij, (i � j)
−aij, (i ≠ j) (6)
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3.1.2 Consensus algorithm

In order to effectively reduce the computational and

communication burden of cloud-side coordinated control of

distribution networks, a centralized-distributed dispatch method

based on a consensus algorithm is proposed in this article. In the

day-ahead stage, the centralized optimization calculation is

performed by the cloud, and in the real-time stage, the

coordinated regulation of each transformer supply zone is

transformed into a distributed control in the distribution

transformer supply zones cluster. The consistency algorithm

exchanges information between the local controller and

adjacent controllers, and performs iterative calculations in each

controller to make the selected consistency variables tend to a

common value (Zheng et al., 2022). The calculation process is

distributed computing. Therefore, each distribution transformer

supply zone can be linked by the consensus algorithm so as to

realize the coordinated regulation of the distribution transformer

supply zones cluster. The proposed centralized-distributed

dispatch method based on the consensus algorithm can not

only solve the problem of high computational pressure of the

centralized control method but also overcome the global limitation

of the distributed control method so that the proposed method

combines the advantages of both and overcome the shortcomings

of both.

Considering the transformer supply zone as a node, for node i,

xi(k) represents the consistency state information of node i after k

iterations, where i � 1, 2,/, n and n are the number of nodes,

and k is the number of iterations. In the distributed system, using

the discrete consensus algorithm, the consistency variables of each

node are updated according to the consistency variables of

its neighboring nodes. As the number of iterations gradually

increases, the consistency variables xi(k)、xj(k)of any adjacent

nodes tend to be consistent and satisfy xi(k) � xj(k); at this point,
all nodes in the system are considered to converge to a common

value, and the first-order consensus algorithm is expressed as

xi(k + 1) � ∑n
j�1
dijxj(k), (7)

where xi(k + 1) is the state information of node i after k + 1

iterations, xj(k) is the state information of node j after k

iterations; D(k) is the state transition matrix; if matrix D(k)
satisfies two conditions, D(k) is a non-negative row random

matrix and all the eigenvalues are not greater than 1. All

intelligent bodies of the system will converge to the same

value after enough iterations. dij are the elements of the i row

and j column of the state transfer matrix i ∈ n, j ∈ n determined

by the topology of the communication network, which can be

expressed as

dij � zij(k)
∣∣∣∣lij(k)∣∣∣∣

∑n
j�1
zij(k)

∣∣∣∣lij(k)∣∣∣∣, (8)

where zij represents the gain weight of node i to node j.

3.2 Consistent and distributed control
model for transformer supply zone

3.2.1 Dispatching cost function of zone
For the transformer supply zone, the internal resource

attributes are no longer distinguished. The dispatching target is

to minimize the dispatching cost of each transformer supply zone

in the transformer supply zone cluster, which can be expressed as

minCi(Pi), (9)
where Pi refers to the dispatching power of the ith transformer

supply zone and Ci represents the dispatching cost of the ith

transformer supply zone.

The flexible resources involved in the real-time dispatch of

the transformer supply zone mainly include distributed

generation resources, flexible load, and energy storage. Among

them, the power dispatch cost function of distributed generation

resources can be expressed as (Rahbari-Asr et al., 2014)

CG,i(PG,i) � aiP
2
G,i + biPG,i + ci, (10)

whereCG,i is the dispatching cost of the ith distributed generation

resources; PG,i is the power dispatched by the ith distributed

generation resources; ai, bi, and ci are corresponding cost

coefficients, respectively.

The operating cost function of the energy storage device is

expressed as (Rahbari-Asr et al., 2014)

{CESS(PESS) � acP
2
ESS, PESS < 0

CESS(PESS) � adP
2
ESS, PESS > 0

, (11)

where PESS is the power dispatched by the energy storage device,

PESS < 0 indicates charging the energy storage, PESS > 0 indicates

discharging the energy storage, ac, ad are corresponding cost

coefficients, respectively.

The cost function of flexible load is usually expressed by

quadratic function (Liu et al., 2021):

Cdr(Pdr) � −adrP2
dr + bdrPdr + cdr (12)

where Cdris the control cost of flexible load; Pdris the power

consumed by the flexible load; adr, bdr, cdr are corresponding

coefficients, respectively.

According to Eqs 10–12, the dispatching cost function of the

ith transformer supply zone can be regarded as the linear convex

combination of each component unit in the transformer supply

zone:

Ci(Pi) � ai(Pi)2 + biPi + ci, (13)

where Pi refers to the dispatched power of the ith transformer

supply zone, ai, bi, and, ci are the corresponding cost coefficients,

respectively, which are comprehensively calculated by Eqs 10–12.
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The abovementioned calculation method is suitable for the

case where the number of distributed resources in the

transformer supply zone is small. When the number of

distributed resources in the transformer supply zone is large,

the K-means algorithm is used to cluster resources with the same

response characteristics, which can significantly reduce the

amount of calculation.

The power balance constraint of the distribution network is

expressed as

∑n
i�1
Pi � ∑n

i�1
PL, (14)

where Pi refers to the dispatched power of the distribution

network and PL refers to the actual load demand power.

The upper and lower limit constraints of distribution

network dispatch power are expressed as

Pi,min ≤Pi ≤Pi,max, (15)

where Pi,min and Pi,max represent the upper and lower limits,

respectively, of the regulated power of the distribution network.

3.2.2 Consistent power dispatching
method

According to the principle of the equal cost increment rate,

when the adjustment cost increment rate of all stations tends to

be the same, the total control cost of the station group can be

minimized, and the optimal distribution of the station area

control power can be achieved.

According to the equal micro-increase rate of cost, when the

micro-increase rate of dispatching cost in all zones tends to be the

same, the total control cost of the transformer supply zone cluster

can be minimized, and the optimal distribution of the

transformer supply zones cluster dispatch power can be

achieved. Based on the abovementioned analysis, this article

selects the micro-increase rate of cost of each transformer

supply zone as the consistency variable, and uses the

consistency algorithm to continuously update the consistency

variable and update the dispatching power of the transformer

supply zone at the same time. When the consistency variables of

each transformer supply zone tend to be consistent, the optimal

distribution of dispatching power in each transformer supply

zone will be realized.

λi � zCi

zPi
i � 1, 2, ...n (16)

It can be obtained from Eq. 17:

λi � 2aiPi + bi (17)

The slight increase rate of control cost of station i at k + 1 is

expressed as

λi(k + 1) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n
j�1
dij(k)λj(k) + μΔPd ΔP> 0, Leader

∑n
j�1
dij(k)λj(k) − μΔPd ΔP< 0, Leader

∑n
j�1
dij(k)λj(k) , Follower

(18)

where μ is the power regulation coefficient, ΔP is the power

deviation optimally allocated to the transformer supply zone

cluster by the cloud, ΔPd is the deviation between the control

amount allocated by cloud optimization to the transformer

supply zone and the actual control amount, λj(k) is the

micro-increase rate of cost of the jth station at the k time,

and λi(k + 1) is the micro-increase rate of cost of the ith

transformer at the time.

ΔPd is represented as

ΔPd � ΔP −∑n
i�1
ΔPi. (19)

According to the micro-increase rate of dispatching cost at

k + 1 time in the ith transformer supply zone, the dispatching

power at k + 1 time in the ith transformer supply zone is

obtained.

Pi(k + 1) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pi,min ,
λi(k + 1) − bi

2ai
≤Pimin

λi(k + 1) − bi
2ai

, Pimin ≤
λi(k + 1) − bi

2ai
≤Pimax

Pi,max ,
λi(k + 1) − bi

2ai
≥Pimax

,

(20)
where Pi(k + 1) is the dispatched power of the ith transformer

supply zone at k + 1 time, and Pi,min and Pi,max are the upper and

lower limits of power dispatch in the ith transformer supply zone,

respectively.

In the iterative calculation process of the consensus

algorithm, ΔPd is taken as the convergence condition. When

|ΔPd|< ε, the consistency calculation reaches convergence, and ε

is the convergence error.

Iteratively updating λi, respectively, untilλitends to the same

valueλ*i , the system reaches uniform convergence, and the

optimal dispatching cost of each transformer supply zone

under this convergence value is obtained. According to the

consensus algorithm, the value of the consistency variable of

each transformer supply zone is obtained; thus, the optimal value

of the active power output of the transformer supply zone under

the minimum control cost is
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Pi � λ*i − bi
2ai

(21)

3.3 Proof of convergence of consistency
algorithm

The proof of the convergence of the consensus algorithm

with the micro-increase rate of cost as the consensus variable is

shown below.

After repeated iterative calculation using the consistency

algorithm, the micro-increase rate of cost of each transformer

supply zone can be achieved:

⎧⎪⎪⎨⎪⎪⎩
zC1(Pk

1)
zP1

� zC2(Pk
2)

zP2
� L � zCn(Pk

n)
zPn

Pk
1 + Pk

2 + L + Pk
n � Pk+1

1 + Pk+1
2 + L + Pk+1

n

, (22)

where k is the number of iterations, Ci(Pi) is the control cost

function of transformer supply zone i, and Pi is the control power

of transformer supply zone i.

The transformer area dispatching cost function Ci(Pi) is a
univariate continuous differentiable convex function; its

definition domain is R � [Pi
min, Pi

max] and meets the

characteristics of convex function in its definition domain:

Ci(Pk+1
i )≥Ci(Pk

i ) + zCi(Pk
i )

Pk
i

(Pk+1
i − Pk

i ). (23)

A Lyapunov multivariate function about the dispatching

power of each transformer supply zone is defined V; its

definition domain is the vector composed of the limit value of

dispatch power in each transformer supply zone, and V can be

expressed as

V(Pk
i ) � V(Pk

1, P
k
2, P

k
3 , L P

k
n) � ∑

i∈v
Ci(Pk

i ), (24)

where Pk
i represents the dispatching power calculated by the kth

iteration of transformer supply zone i.

Assuming that in the kth iteration calculation all transformer

supply zones reach the state shown in Eq. 25, the following

relationship exists:

V(Pk+1
i ) − V(Pk

i ) � ∑
i∈v

Ci(Pk+1
i ) −∑

i∈v
Ci(Pk

i )≤
[C1(Pk+1

1 ) + C2(Pk+1
2 ) + L Cn(Pk+1

n )]−
[C1(Pk+1

1 ) + zC1(Pk+1
1 )

zPk+1
1

(Pk
1 − Pk+1

1 )] − L−

[Cn(Pk+1
n ) + zCn(Pk+1

n )
zPk+1

n

(Pk
n − Pk+1

n )] � 0

(25)

.

That is, V(Pk+1
i ) − V(Pk

i ) → 0; therefore, the cost incremental

rate consistency algorithm is convergent.

The solution process of real-time dispatch of transformer

supply zone cluster

Flowchart of the power dispatch strategy in edge-side

cooperative transformer supply zone based on the consensus

algorithm is shown in Figure 2. The specific steps are as follows:

Step 1: The “Leader” transformer supply zone obtains the

power deviation allocated after cloud optimization calculation

and carries out information interaction with adjacent zones to

calculate the consistent state variable value of each transformer

supply zone;

Step 2: Obtain Laplace matrix L according to the topology of

the transformer supply zone cluster, and then obtain state

transition matrix D;
Step 3: Update the consistency variable of each transformer

supply zone cluster according to Eq. 18 and obtain the dispatched

power of the transformer supply zone in this state according to

Eq. 20;

Step 4: Judge whether the updated dispatch power value

meets the constraint conditions. If not, update the network

topology again, find the state transition matrix again, and

repeat Step 3.

Step 5: Determine whether |ΔPd|< ε is satisfied; if yes, the

dispatched power value of the transformer supply zone will be

output; if not, the power deviation of the transformer supply zone

cluster will be recalculated.

4 Example analysis

4.1 Illustration of the calculation

To verify the effectiveness of the strategy proposed in this

article, a typical active distribution network demonstration

project in a city is used as an example for calculation and

analysis. The network topology of the transformer supply

zone cluster is shown in Figure 3. The transformer supply

zone cluster consists of six zones, with zone 1 as the “Leader”

and zone 2 to zone 6 as the “Followers.” The voltage level of each

transformer zone is 10 kV/380 V and the frequency is 50 Hz in

the model of the transformer supply zone cluster built in this

article.

The categories of constituent units contained in each

transformer supply zone cluster are shown in Table 1; zone

1 contains distributed generation resources, energy storage

devices, and flexible loads; zone 2 contains distributed

generation resources and flexible loads; zone 3 contains

energy storage devices and flexible loads; zone 4 contains only

distributed generation resources; zone 5 contains only energy

storage devices; zone 6 contains only flexible loads.

We have to synthesize the control resources in the

transformer supply zone, and perform linear convex

combination to obtain the total cost parameters of the

transformer supply zone. The parameters for each transformer
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supply zone are set as shown in Table 2, which contains the cost

coefficient for each transformer supply zone and the upper and

lower active output limits.

4.2 Analysis of example results

The real-time power dispatch simulation analysis of the

transformer supply zone cluster is carried out with a dispatch

period of 15 min, and the total duration is 24 h; then a total of

96 dispatch plans are included. The power dispatching coefficient

of the consistency algorithm μ � 0.02, the convergence error

ε � 0.7, the deviation of the power allocated by the cloud

optimization for this transformer supply zone cluster

isΔP � −450 kW, and the weighting coefficient matrix Z � [1].
The whole-day total power deviation curve is obtained from

the predicted value and the actual value of the previous power

regulation, as shown in Figure 4, which shows that the power

imbalance mainly occurs between 11:00–22:00. The maximum

positive power deviation occurs at 14:00, and the power deviation

value is 630 kW. The main reason is that due to the large

photovoltaic output at noon, there is excess electric energy. At

this time, the generated power shall be reduced, energy storage

should be charged, and the load should be increased; the

maximum negative power deviation occurs at 18:00 with a

power deviation value of −450 kW, which is mainly due to the

power shortage caused by the peak load in the evening; at this

time, we should increase the power generation, discharge energy,

and cut the load.

Based on the analysis of historical data in the region, the

controllable active power prediction value of the transformer

supply zone on a long-term scale of a typical day in the zone

obtained from the distribution network management center is

shown in Figure 5.

Applying a cloud-edge collaborative real-time control

strategy based on the edge consistency algorithm of the

intelligent transformer supply zone cluster to this power

transformer supply zones, the simulation results can be

obtained as shown in Figures 6, 7.

It can be seen from Figure 6 that the initial value of the micro-

increase rate of cost of each transformer zone is different. The

value of the micro-increase rate of cost of zone 3 is the highest,

FIGURE 2
Flowchart of the power dispatch strategy in edge-side cooperative distribution transformer supply zone based on the consensus algorithm.
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the value of the micro-increase rate of cost of zone 6 is the lowest,

and its growth rate is the fastest. After the consensus algorithm of

the iterative update calculation, the micro-increase rate of cost

for zone 1 and zone 2 gradually increases after the first decrease,

and the cost incremental rate for zone 3 to zone 6 gradually

increases, and when the number of iterations reaches 40, the

value of cost incremental rate in all zones tends to be the same,

which is 330.57 ¥/kWh.

As can be seen from Figure 7, after the iterative update

calculation of the consensus algorithm, in the initial stage, the

FIGURE 3
Network topology of distribution transformer supply zone cluster.

TABLE 1 Components inside the transformer supply zone.

Zone number Distributed
generation resource

Energy storage device Flexible load

1 √ √ √

2 √ × √

3 × √ √

4 √ × ×

5 × √ ×

6 × × √

TABLE 2 Cost parameters and generation constraints.

Zone number ai bi ci Pi,min/kW Pi,max/kW

1 3.2 2.1 0.0085 10 300

2 2.8 1.8 0.0055 10 250

3 2.3 2.0 0 0 200

4 2.5 2.3 0.0073 20 150

5 2.2 0 0 0 80

6 1.8 2.5 0 10 80
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FIGURE 4
All-day power deviation curve.

FIGURE 5
Adjustable active power prediction value of each distribution transformer supply zone on a long timescale.

FIGURE 6
Consistent convergence process of the micro-increase rate of cost at 18:00.
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active power output of zone 1 and zone 2 first decreases and then

gradually increases; the active power output of zone3 to zone

6 gradually increases. At the 40th iteration, the active power

output of all zones stabilizes. The active power output from

transformer supply zone 1 to transformer supply zone 6 tends to

be stable, respectively: P1 = 53.75 kW, P2 = 68.45 kW, P3 =

168.85 kW, P4 = 102.31 kW, P5 = 74.89 kW, and P6 = -18.25 kW,

which shows that the active power outputs values of all

transformer supply zones are within the operational constraints.

4.3 Comparative analysis of different
control methods

In order to verify the effectiveness and economy of the

dispatching strategy proposed in this article, the following

three control methods are used for the transformer supply

zone cluster for comparative analysis.

Mode 1: No information interaction between transformer

supply zones; each transformer supply zone operates independently.

Mode 2: Information interaction between transformer supply

zones, with each transformer supply zone giving priority to

autonomy and taking the initiative to exchange power with

the cluster to maintain the cluster’s power balance when its

own power command differs from the power command of the

transformer supply zone cluster.

Mode 3: Information interaction between each transformer

supply zone is controlled according to the cloud-edge

collaborative fast control strategy based on the intelligent

transformer supply zone edge consensus algorithm proposed

in this article.

Simulation and analysis of these three control methods were

carried out separately, and the total dispatching cost of the

transformer supply zone cluster and the dispatching cost of

each transformer zone are shown in Table 3.

Table 3 shows that with Mode 3 control, the dispatching cost

of each transformer zone is less than those of Mode 1 and Mode

2 control. The total dispatching cost is “Mode 1 > Mode 2 >
Mode 3,” and the total dispatching cost of Mode 3 is 23.8% lower

than that of Mode 1 and 12.35% lower than that of Mode 2,

indicating that the proposed strategy can achieve the optimal

economic dispatch of the active output.

In Mode 1, each zone operates independently, and when

power deviation occurs, it can only rely on its own internal

regulation to make power balance, which will result in more

abandoned generation and load shedding; in Mode 2, each

transformer zone gives priority to self-governance, and when

FIGURE 7
Iterative process of the active power output of each distribution transformer supply zone at 18:00.

TABLE 3 Dispatching costs of the three control methods.

Zone number Cost of dispatch/million

Mode1 Mode 2 Mode 3

1 1.79 1.19 0.91

2 2.01 1.88 1.65

3 7.24 6.89 6.28

4 3.29 2.76 2.53

5 1.98 1.56 1.20

6 0.26 0.13 0.064

Total 16.57 14.41 12.63
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self-governance still cannot make system power balance, then it

relies on information interaction with neighboring zones for

dispatching; Mode 3 adopts the cloud-edge coordination real-

time control strategy based on the intelligent transformer supply

zone cluster edge consensus algorithm proposed in this study to

control, and for each transformer zone, the active power is

allocated based on the micro-increase rate of cost, which can

achieve real-time and economic power dispatch.

4.4 Experimental results

In this experiment, RT-Lab is used to physically model the

distribution network transformer supply zone cluster in the

example, and the semi-physical simulation of the real-time

dispatching of the distribution transformer supply zone cluster

with cloud-edge coordination is carried out. According to the

distribution network structure in the calculation example, a cloud

center computing data pool and 6 edge computing groups

quantitatively analyze the transmission delay advantage of the

centralized-distributed control method in the scheduling process,

so as to illustrate the establishment and use of the model in this

article , and to verify the rationality and versatility of the model.

Table 4 shows the computing delays on the cloud and edge sides.

Table 5 shows the comparison of model effects of different

control methods.

It can be seen from Table 5 that the computing speed of the

centralized-distributed cooperative control method based on

cloud-side collaboration is not much different from that of

the distributed control method. Compared with the traditional

centralized control method, it has a lower communication time.

The calculation speed is significantly faster than that of the

centralized control method.

5 Conclusion

In order to correct the long-timescale prediction bias in the

distribution network, this article proposes a fast cloud-side

coordinated dispatching strategy based on the edge

consistency algorithm of intelligent transformer areas cluster,

in which the cloud makes the first global optimal allocation and

the transformer area makes the second coordinated optimal

allocation on the edge side. Based on the consensus algorithm,

each area uses the micro-increase rate of dispatching cost as a

consistent variable and performs consistent iterations to achieve

the optimal distribution of the dispatching power in the

transformer area. The main advantages of this article are as

follows:

1) The burden of the cloud is reduced. The cloud is responsible

for optimizing the calculation of the cluster power deviation

information uploaded by the leaders of each cluster and the

dispatching cost, which reduces the calculation amount. The

iterative calculation is distributed in each edge transformer

area, which reduces the communication delay and ensures the

rapid power dispatch of the transformer areas cluster.

2) Only the adjacent distribution station areas in the cluster

exchange information, which reduces the communication

burden of the communication network and improves the

reliability of communication.

3) The cost micro-increase rate is selected as the consistency variable.

When the cost micro-increase rate tends to be consistent, it can

ensure that the power distribution transformer supply zone cluster

can perform power regulation at a lower cost.

There are still some deficiencies in the work done in this

article. This article only considers the cooperative power

TABLE 4 Transmission characteristics of information branch.

Zone number Cloud computing latency/ms Edge computing latency/ms

1 158.84 95.23

2 158.84 87.26

3 158.84 85.49

4 158.84 69.25

5 158.84 67.58

6 158.84 65.69

TABLE 5 Comparison of model effects of different control methods.

Different control method Model size Transmission delay/ms

Centralized control 22×35 87.56

Distributed control 25×36 88.75

Centralized-distributed control 25×42 182.55
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interaction between the distribution stations and does not

consider the information interaction between groups. This

problem will continue to be studied in the next work.
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Dynamic synthetic inertial
control method of wind turbines
considering fatigue load
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This paper proposes a dynamic synthetic inertia control method, considering

the fatigue loads of the wind turbine. The control objectives include reducing

the rate of change of frequency and frequency nadir of the power system and

the fatigue load of the shaft and tower of the wind turbine. A frequency

regulation model of the power system containing the primary operating

dynamics of the wind turbine is established. The dynamic synthetic inertia

control method is proposed according to the relationship between fatigue load,

wind velocity, and frequency. Case studies are conducted with a wind turbine

fatigue load under a synthetic inertia control with different weights for different

wind velocities and system loads. Therefore, the dynamic weights are obtained.

Comparing the rate of change of frequency and frequency nadir and equivalent

damage load, the efficacy of the proposed method is verified.

KEYWORDS

wind turbine, frequency regulation, fatigue load, synthetic inertia, power system

Introduction

In recent years, with the rapid development of renewable energy technology, wind

power constitutes an increasing proportion of the power system (Wu et al., 2021a;

Shamlou et al., 2021; Huang et al., 2022). However, as the wind turbine (WT) does not

contribute to the inertia of the power system, the total equivalent inertia of the power

system will become smaller (Mahish and Pradhan, 2019; Wu et al., 2021b; Lin et al., 2022;

Wu et al., 2022). Therefore, large-scale grid connection of the WT brings considerable

challenges to the frequency stability of the power system (Arani and El-Saadany, 2013;

Mohammad et al., 2017). Although the current WT inertia control methods can improve

the inertia of the power system (Ma et al., 2021), these methods do not focus on the fatigue

load of the WT. Studies show that participating in inertia control will increase the fatigue

load of the WT drivetrain (Ye et al., 2015), which will greatly shorten its service life.

Therefore, studying the inertia control method of the WT, considering the fatigue load,

can not only improve the inertia of the power system but also extend the service life of

the WT.

For a long time, researchers have conducted a series of studies on reducing the

frequency nadir (FN) and the rate of change of frequency (ROCOF) of the power system
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based on the introduction of inertial control (Mandal and

Chatterjee, 2021) (Xu et al., 2019). In order to get rid of the

inherent adverse effects of the inertial control strategy with

constant parameters, Hwang et al. (2016), Pradhan et al.

(2018), Wu et al. (2018), and Yang et al. (2020) proposed an

inertial control method based on dynamic gain to improve the

frequency stability of the system under fixed wind conditions.

Sato et al. (2022) designed a novel virtual inertia control strategy

based on fuzzy logic controller (FLC) to reduce the FN. Lu et al.

(2021) performed a comprehensive analysis of the existing inertia

and droop controllers applicable to offshore WT. However, the

aforementioned references only consider the stability of

frequency of the system itself and completely ignores the

fatigue load of the low-speed shaft and tower of the WT that

participate in the system frequency adjustment, which will pose a

certain threat to the stability of the WT itself.

The fatigue load of the low-speed shaft and tower of WT has

significant influence on its service life (Zhao et al., 2017). The

fatigue load of the low-speed shaft is particularly sensitive to the

change in energy, and the active power reference value of WT

with inertia control will frequently change according to the

change in system frequency, thus aggravating the fatigue load

of the low-speed shaft (Zhang et al., 2020). The study showed the

following: 1) both the droop and virtual inertia methods can

expose the shaft of a wind generator to forces capable of

stimulating its natural resonance frequencies. 2) The

mechanical resonance in a frequency-regulating wind

generator should be studied as a part of the integrated power

system dynamics. The time-domain simulation results verified

the analytical results and discussion (Arani and Mohamed,

2016).

In addition, studies have pointed out that the instantaneous

torque response may stimulate the tower of WT, resulting in

tower resonance (Attya and Dominguez-Garcia, 2018). It can be

seen from the aforementioned analysis that participation in

frequency response may lead to the increase in the WT

fatigue load. However, there is no inertia control method that

considers the WT fatigue load.

It can be seen from the aforementioned analysis that few

studies can take into account the ROCOF, FN, and fatigue load

simultaneously. Therefore, in this study, the main goal of the

control scheme is to minimize these three indicators at the

same time. However, since the WT participating in the

frequency regulation must frequently change the power

reference value to adapt to the frequency change in the

power system, it is not easy to reduce the aforementioned

three control indicators. Therefore, the following two control

results are also acceptable: one is to minimize the ROCOF and

FN of the system without affecting the fatigue load; and the

other is to minimize the fatigue load without affecting the

ROCOF and FN.

Therefore, a WT dynamic synthetic inertia control (DSIC)

method, considering fatigue load, is proposed:

1) The frequency regulation model is established. The model

includes a WT with central operating dynamics, considering

shaft torque and tower bending moment.

2) The WT fatigue load is analyzed under different turbulent

winds and active power reference values.

3) The changes in the ROCOF and FN of the system and fatigue

load under different inertia gains are analyzed.

Based on the analysis result, the dynamic gain range is

determined. By simulating the model and method, the

advantages of the proposed DSIC method are verified.

The main contributions are as follows:

The fatigue loads of the WT drivetrain and tower caused by

frequency response are analyzed, which can help guide the

construction of corresponding methods for WT and frequency

control. The DSIC control method is proposed, which can

simultaneously reduce the ROCOF and FN of the power

system and the fatigue loads of the WT.

General system description

In this section, the power system and WT models are

established, which can be used for the analysis of fatigue load

and the establishment of the inertia control method. The research

mainly focuses on a doubly fed induction generator (DFIG), so

the DFIG is mainly described.

Electrical power system model

Under normal operation of the power system, the load

fluctuates only in a small range. Compared with the dynamic

characteristics of voltage and power angle, the dynamic response

characteristics of system frequency are relatively slow. Therefore,

when studying the long period behavior of the power system

frequency under small disturbances (such as primary frequency

regulation and secondary frequency regulation), the research on

the dynamic characteristics of voltage and power angle is usually

ignored. The frequency of the whole power system is considered

to be uniform. In order to study the relationship between the

frequency change of the power system, the wind turbine inertia,

and fatigue load, the model is established as shown in Figure 1.

The researched system consists of wind power, hydropower, and

thermal power. The selection of the model and parameters refers

to Wang et al. (2020). The penetration rates of thermal,

hydropower, and wind power are 60%, 20%, and 20%,

respectively. Both thermal power and hydropower use power

reserves to participate in the primary frequency regulation and

secondary frequency regulation of the power system.

The main parameters of the power system are shown in

Table 1. The main parameters of the wind turbine are shown in

Table 2.

Frontiers in Energy Research frontiersin.org02

Wang et al. 10.3389/fenrg.2022.1067896

44

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1067896


FIGURE 1
Frequency regulation model of the power system with the WT.

TABLE 1 Parameters for the frequency regulation model.

Parameter Name Value (p.u.)

RH1 Speed droop for the hydropower model 0.05

RT1 Speed droop for the thermal plant model 0.05

H1 Equivalent inertia constant 5.994

D1 Equivalent damping factor of the loads 1

B1 Bias factor 0.425

KT1 Integral controller for the thermal model 3

KH1 Integral controller for the hydropower model 3

TABLE 2 Main parameters of the wind turbine.

Parameter Name Value

Jr Rotor inertia 3.54 × 107 (kg m2)

Jg Generator inertia 5.34 × 102 (kg m2)

ηg Gear box ratio 97

τf Filter time constant of ωg 10

ωg-rated Generator rated speed 122.91 (rad/s)

B Main shaft viscous friction coefficient 6.22 × 106(Nm s/rad)

ρ Air density 1.22 (kg/m3)

Rrotor Length of the blade 63(m)

τg Filter time constant of Tg_ref 0.1
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Wind turbine model

Since this research considers the fatigue load of the low-speed

shaft torque Ms and the tower bending moment Mt of the WT,

the main dynamics need to be considered when modeling the

WT. The WT model used in this paper can be simplified as

shown in Figure 2, which is developed by NREL (Jonkman et al.,

2009). The main dynamics of the wind turbine are simulated by

the FAST (Fatigue, Aerodynamics, Structures, and Turbulence)

Code (Jonkman et al., 2005).

The aerodynamic torque Tr can be expressed by:

Tr � 0.5πR2
rotorρv

3Cp

ωr
, (1)

where ρ is the air density, v is the wind speed, Rrotor is the length

of the blade, Cp is the power coefficient, and ωr is the rotor speed.

The tower thrust force Ft can be expressed by:

Ft � 0.5πR2
rotorρv

2Ct, (2)

where Ct is the thrust coefficient.

The tower bending moment Mt can be calculated by:

Mt � Htower · Ft, (3)
where Htower is the tower height.

In order to more accurately describe the dynamics of Ms, a

dual mass model is used. The model can be expressed by:

_ωr ≈
1
Jr
(Tr −Ms − B(ωr − ωg

ηg
)), (4)

_ωg ≈
1
Jg

( 1
ηg

(Ms + B(ωr − ωg

ηg
)) − Tg), (5)

where ωg is the generator speed, B is the main shaft viscous

friction coefficient,Ms is the shaft torque, Jr is the rotor mass, and

Jg is the generator mass.

The generator model can be expressed by:

Pout ≈ Tg−ref × ωg, (6)

where Tg-ref is the generator torque reference value. The

maximum power of the generator is 5.3 MW, which can

exceed the rated power by 6%.

It should be noted that in this research, the wind power only

provides inertia frequency regulation without the power reserve.

In addition, because the WT fatigue load is lower than the rated

wind speed, this research only focuses on the fatigue load of the

wind turbine higher than the rated wind speed.

Proposed control method of a DFIG

In this section, the fatigue loads caused by inertial response is

discussed. First, the changes in the WT fatigue load under

different wind speeds and power references are analyzed. The

relationship between fatigue load, power reference, and wind

velocity is clarified, which makes it clear that the influence of

fatigue load can be used for the establishment of DSIC. The

corresponding analysis was rarely reported in other research

studies, so it is the first time to be analyzed. Then, the fixed-gain

inertia control method is introduced. Also, the DSIC method is

proposed, considering the wind turbine fatigue load. Finally, a

FIGURE 2
Wind turbine block diagram, considering the low-speed shaft torque Ms and the tower bending moment Mt.

FIGURE 3
Two wind-velocity curves.
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quantitative index that can evaluate the performance of the

control method is proposed.

Effects of wind velocity and reference
power on fatigue load

First, TurbSim is used to generate two wind-velocity curves.

The curves are shown in Figure 3. The average wind velocity

(Vavg) of Wind1 is 17 m/s, and the turbulence intensity (Itur) is

0.11. The Vavg of Wind2 is 15 m/s, and the Itur is 0.04. The

simulation time is 100 s. Since the WT is mainly in the starting

stage during the first 15 s, in order to accurately compare the

results of different control methods, the fatigue load performance

of the WT is mainly studied after 20 s. The dynamic behavior of

the WT in a simulated wind field yields time series of loads or

stresses. Through post-processing, the fatigue cycles based on the

rainflow counting method are derived to evaluate the

performance of the proposed scheme (TonyNickDavidErvin,

2011). In addition, the WT fatigue load is evaluated by DEL.

DEL is calculated according to Miner’s rule. The rule depends on

the material properties specified by the slope of the S-N curve

(Spudi´ c et al., 2011). The DEL calculation is performed using

the MCrunch code.

In the case of Wind2, four different reference powers shown

in Figure 4 are used for this research. Pref2 has a smaller power

change and slower recovery (called small positive changes). Pref3
has a larger power change and faster recovery (called large

positive changes). The total energy of these two reference

power changes is the same. The change of Pref4 is opposite to

Pref3 (called large negative changes).

Figure 5 shows the cumulative rainflow cycle results of the

WT shaft torque and tower bending moment under different

wind velocities and reference power values. In a relatively

stable wind speed, relative to the constant load Pref1, a

variable load will increase the fatigue load of the WT. It

can be seen from the results of Pref2 and Pref3 that the cycles of

Pref3 with large positive changes are larger than those of Pref2
with small positive changes, which implies that the fatigue

load of Pref2 is smaller.

Therefore, under the same stable wind condition, the greater

the load fluctuation, the greater the fatigue load of the shaft.

Compared with Pref3 with large positive changes, Pref4 with

large negative changes would cause the shaft to have a great

fatigue load. The main reason is that the WT controller will

increase the pitch angle to release the obtained air kinetic energy

after reducing the power reference value. Therefore, Ms will

decrease, but its fluctuation is greater. The change curves of

Ms are shown in Figure 6.

Figure 5 also shows the cumulative rainflow cycle results

under Wind1 and Pref1. It can be seen from the figure that under

the same power reference value, the fatigue loads of Ms and Mt

are 200% of those under Wind2. The main reason is that the

fluctuation of Wind1 is greater.

FIGURE 4
Four different reference power values used for testing under
Wind1 and Wind2 conditions.

FIGURE 5
Cumulative rainflow cycle result of the WT shaft and tower under different wind velocity and reference power values.
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Therefore, under the same reference power value, the greater

the average wind speed and turbulence, the greater the fatigue

load. Therefore, it is necessary to pay more attention to the

fatigue loads when the turbulence intensity is higher or wind

velocity is increasing.

As shown in Figure 7, two different power reference values

are used for testing under Wind1 conditions. Figure 8 shows

cumulative rainflow cycle results of the WT shaft and tower

under different reference power and wind velocity values.

The difference from the case of Wind2 is that when the

reference power fluctuates in the reverse direction (decreases

first and then increases), the fatigue loads of the shaft and

tower of the wind turbine both decrease instead of showing

an increase. The reason is that Wind1 also undergoes

significant changes. At this moment, the wind velocity

falls first and then rises, consistent with the power change

trend. If the power reference value increases at this time, it

will cause the air kinetic energy to decrease relative to the

steady wind speed. Therefore, the WT controller will reduce

the pitch angle to obtain more energy, and shaft torque and

tower bending moment will increase and fluctuate more.

Therefore, when the changing trend of the reference power is

the same as the changing trend of the wind velocity, it is

beneficial to reducing the fatigue load of the wind turbine.

Some experience is obtained: 1) when the wind velocity

decreases, the reference power of the WT should be

reduced as much as possible, or the increased power of

the WT should be reduced. 2) Similarly, when the wind

velocity increases, the reference power should be increased,

or the decreased power should be reduced.

FIGURE 6
Change curves of Ms under different reference power values.

FIGURE 7
Two different reference power values used for testing under Wind1 conditions.
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Conventional fixed-gain inertial control of
a DFIG

This partmainly describes the fixed-gain inertia controlmethod,

as shown in Figure 9. In order to regulate the output of the wind

turbine according to the power system frequency, the frequency of

the power systemmust be measured and filtered through a low-pass

filter to reject the measurement noise. Since the derivative of

frequency is used for calculation, sufficient filtering is required.

Differentiation of a noisy signal may lead to large variations in the

value of ΔPin, which is undesired because it may cause heavy torque

pulsations in the WT drivetrain.

The inertial control scheme based on ROCOF and FN

loops is used simultaneously in VDV et al. (2016). As shown in

Figure 9, ΔPref consists of two terms: ΔPdroop and ΔPin. In the

initial stage of the disturbance, the ROCOF loop dominates

and is proportional to the frequency change rate. In contrast,

the FN loop dominates near the frequency nadir. The FN loop

has two functions: 1) to counteract the control effect of MPPT

and 2) to limit the frequency deviation by increasing the WT

power output proportional to the frequency deviation. The

WT should return to the operating point before the

disturbance after the inertial response. Therefore, the

period of overproduction during the inertial response

period should be followed by a period of underproduction

or recovery. To allow recovery of the WT, a high-pass filter,

which prevents a contribution of the droop controller in a

steady state, is added:

lim
t→∞

ΔPdroop t( ) � lim
s→0

s
Ths · ΔfL

Ths + 1
� 0, (7)

where Th is the time constant of the high-pass filter.

The output of the droop loop ΔPdroop can be expressed by:

ΔPdroop � KdroopΔfL
Ths

Ths + 1
, (8)

where Kdroop is the weight coefficient of the FN loop.

The output of the ROCOF loop ΔPin can be expressed by:

FIGURE 8
Cumulative rainflow cycle results of the WT shaft and tower under different reference power and wind velocity values.

FIGURE 9
Conventional fixed-gain inertial control of a DFIG.
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ΔPin � Kin
dΔfL

dt
, (9)

where Kin is the weight coefficient of the ROCOF loop.

The loop gain of these schemes is fixed, so a more significant

gain can ensure that the FN and ROCOF are reduced. However, it

can be known from the analysis of Part 3.1 of this section thatmore

extensive power changes may cause larger fatigue loads. Therefore,

it is necessary to change the gains when the frequency regulation

method has a more significant impact on the fatigue loads of the

WT to minimize the effect of frequency regulation on the fatigue

loads.

The proposed DSIC scheme

This DSIC scheme aims to: 1) reduce the FN and ROCOF;

and 2) mitigate the fatigue loads of a DFIG caused by frequency

regulation. This scheme dynamically adjusts the weight based on

the wind velocity increase or decrease and the frequency

deviation increase or decrease. The main reasons analyzed in

Part 3.1 of this section are the following two points:

1) The fatigue load experienced by the shaft torque of WT is

related to the wind speed and increase or decrease in the

reference power change. The reference power of the WT

participating in frequency regulation is mainly determined by

the change in the power system frequency.

2) Under the exact reference power change, the fatigue load of

the WT is related to the change in wind velocity and its

increase or decrease. When the wind velocity is in the rising

phase, the falling reference wind power should be reduced,

and the increasing reference power should continue to

increase. When the wind velocity decreases, the decreasing

value should continue to decrease, and the increasing value

should be reduced.

FIGURE 10
Proposed DSIC scheme for DFIG participating in the power system frequency regulation. (A) DSIC scheme. (B) Overall scheme.
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The proposed DSIC method is shown in Figure 10.

Figure 10A shows the implementation method of DSIC.

Figure 10B shows an overall block diagram of a control

system. In the actual operation and control of the WT, it is

not easy to accurately sample the wind speed with a shorter step

length. Therefore, the increases or decreases in wind velocity and

frequency are used to change the gains.

The following equation expresses the increase or decrease in

wind velocity:

dVL

dt
� VL t( ) − VL t − 1( )

Δt , (10)

where VL is the filtered wind speed. The main function of the

filter is to eliminate the interference of low-frequency wind

fluctuations to judge the increase or decrease in the wind speed.

The increase or decrease in Δf is expressed by:

dΔfL

dt
� ΔfL t( ) − ΔfL t − 1( )

Δt , (11)

where ΔfL is the filtered frequency deviation.

The weight of K (K is short for Kdroop and Kin) depends on the

increase or decrease in frequency deviation and the increase or

decrease in wind velocity. Since the fatigue load is related to the

speed of the power change, the weight cannot have rapid

fluctuations. In this study, K changes every 1s. Moreover,

different K values cannot differ too much. Otherwise, it would

cause the reference power to change too much and increase the

fatigue load experienced by the WT.

Evaluation method for control scheme
performance

This study has three control objectives: FN, ROCOF, and

fatigue load. A quantitative analysis of these three goals is needed

when comparing controller performance. Since the ROCOF and

FN constantly change during the simulation process, equations

are needed to quantify. DEL mainly compares the fatigue load.

The quantification of ROCOF is mainly shown in Equation

12. The quantification method is to mainly evaluate the ROCOF

integral during the simulation operation cycle to evaluate the

ROCOF situation for a period of time.

ROCOF � ∫∞

0

Δf t( ) − Δf t − 1( )
Δt

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣dt. (12)

The quantization of FN mainly considers the absolute value

of the maximum frequency deviation. Moreover, every time an

extreme value occurs, it will be accumulated.

FN � ∑∞
t�0 Δfext t( )∣∣∣∣ ∣∣∣∣, (13)

where Δfext is the extremum of Δf. Every time an extremum value

appears, it will be accumulated once.

The fatigue load of the tower and shaft is evaluated using

DEL. Following the fatigue load evaluation method in Zhang

et al. (2018), the fatigue loads of the tower and the shaft are

combined, and the calculation method of the total DEL is as

follows:

DELtot � KMsDELMs +KMtDELMt, (14)
whereDELMs represents the equivalent damage load ofMs, which

is used to evaluate the fatigue load of the shaft. DELMt

represents the equivalent damage load of Mt, which is

used to evaluate the fatigue load of the tower. KMs and

KMt are tunable weightings and can be tuned according to

the costs and the designed lifetime of the shaft and the tower.

In this paper, KMt is chosen as 1, and KMs is chosen as 2

(Zhang et al., 2016), since the shaft stress is higher than the

tower stress when participating in frequency regulation.

Since the DEL value of the tower is much larger than the

DEL value of the shaft, the DELs of the tower are normalized

with base 5 × 107, and the DELs of the shaft are normalized

with base 2 × 106. In this way, the DEL values of both series

are all transferred to per unit values.

Case studies

The effects of the controller parameter
change on the system performance with
Wind2

In the Wind2 scenario, the system load increases and decreases

by 5% p. u. at 35 s. The control objectives are given in the following

paragraphs. In the next two sections, we would focus on the

influence of control variables on the WT fatigue load.

The ROCOF and FN of the system are shown in Figure 11.

The same is that ROCOF and FN decrease with the increase in K,

and the decreasing trend is the same. In addition, when the load

increases, the decreasing trend of ROCOF and FN becomes

insignificant after K increases to a certain level (such as (6,

10), (7, 9), and (8, 8)). This is due to the limitation of the

wind power output. In this case, the benefit of continuing to

increase K is not obvious to the system.

Figure 12 shows the results ofDELMs under this condition. It can

be seen from the figure that under stable wind speed, the DELMs

increases nomatter how the frequency changes. Also, the larger theK,

the more obvious the increasing trend, and the maximum increase is

16.9% within the weight range. This is because the fatigue load of the

shaft under this working condition mainly depends on the reference

power fluctuation. The greater theK, the greater the fluctuation of the

reference power under the same frequency fluctuation, which will

cause an increase in the fatigue load.

Figure 13 shows the results of DELMt under this condition.

DELMt shows a slight downward trend when the load
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increases. When K is changed within the range of 11, the

tower DEL is reduced by up to 0.4%. DELMt increases with

the increase in Kdroop when the load decreases. Also, the

more significant the Kdroop, the more pronounced the

increasing trend. Compared with Kdroop, Kin has less

effect on DELMt, which implies that the FN loop has a

more significant impact on tower fatigue than the

ROCOF loop. Figure 14 shows the results of DELtot

under this condition. Under this working condition, the

evaluation result of DELtot shows that DELtot increases with

the increase in K, which implies that the increase in K will

increase the total fatigue load of the WT.

FIGURE 11
ROCOF and FN of the system. (A) ROCOF results under the change in K when the system load increases and decreases by 5% at 35 s. (B) FN
results under the change in K when the system load increases and decreases by 5% at 35 s.

FIGURE 12
DELMs results under the change in K when the system load
increases and decreases by 5% at 35 s.

FIGURE 13
DELMt results under the change in K when the system load
increases and decreases by 5% at 35 s.
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According to the analysis in this part, K should not be too

large or too small. If K is too large, the fatigue load will increase. If

K is too small, the frequency regulation performance will be poor.

Therefore, the range of K is set between 6 and 11 in this research.

The effects of the controller parameter
change on the system performance with
Wind1

In Wind1, the system load increases and decreases by 5% at

60.5 s (that is, the load also changes when the wind velocity is

about to change significantly). In the study of this working

condition, the changing trend of the ROCOF and FN is the

same as in the previous section, so the analysis is not

repeated.

After the load decreases at 60.5 s, the frequency will increase

to a specific value and decrease. The changing frequency trend

will be opposite to the changing trend of wind velocity. At this

time, DELMs and DELMt will decrease as K increases. Consistent

with the results of the previous analysis, the changing trend of

the reference power is the same as the wind speed change trend,

reducing the fatigue load. Similarly, there is almost no effect on

DELMt by Kin after Kdroop reaches a value greater than 8.

Furthermore, DELMt will decrease with the increase in Kdroop.

Under the same Kdroop condition, the changing trend of

DELMs increases with the increase in Kin. The reason is that

Kin mainly limits the frequency change rate. The increase in Kin

will make the power fluctuations become larger, which will cause

the fluctuations in Ms to increase the fatigue load. However, in

the case of the same Kin, DELMs decreases first and then increases

with the increase in Kdroop. Ms under different Kdroop values is

shown in Figure 15.

Between 60.5 s and 65 s, Ms increases with the increase in

Kdroop. However, this does not mean that DELMs increases with

the increase in Kdroop before 65 s. DELMs up to three different

times is shown in Figure 15.

FIGURE 14
DELtot results under the change in K when the system load
increases and decreases by 5% at 35 s.

FIGURE 15
Ms under different Kdroop values when the system load
increases and decreases by 5% at 60.5 s.

TABLE 3 DELMs up to three different times under different Kdroop values
when the system load increases and decreases by 5%.

Time (s) DELMs for different Kdroop values

0 9 11

62.5 1.328 1.339 1.355

63 1.352 1.342 1.358

63.5 1.423 1.351 1.366

FIGURE 16
DELMs results under the change in K when the system load
increases and decreases by 5% at 60.5 s.
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It can be seen from Table 3 that only DELMs values of the

0–62.5 s time period increase with the increase in Kdroop. It shows

that increasing Kdroop leads to the increase in DELMs when the

load changes within 2 s. When Kdroop increases to 9, DELMs

increases by 0.83%. However, due to the inertia of the power

system andWT, it takes time for changes in the system load to be

converted into the output power of WTs. For load changes

exceeding 2 s, the fatigue load of Ms will still decrease first

and then increase as Kdroop increases. This is because the

fluctuation in Ms will increase with the increase in Kdroop after

Kdroop exceeds a certain value.

As shown in Figure 16 and Figure 17A, when the change

trends of wind velocity and frequency are the same, the fatigue

load of the shaft and tower will increase with the increase in

Kdroop. Considering the changing trends of FN and ROCOF,

Kdroop is selected as 8. Since the fatigue load of the shaft and the

tower does not change much when Kin increases, Kin can be

increased as much as possible when the wind speed decreases,

and Kin is selected as 11. This does not increase the fatigue load.

However, when the wind velocity increases, in order to reduce the

burden on the shaft and tower, Kin should not be too large, and

Kin is selected as 7 in this case. When the changing trend of wind

speed is opposite to the changing trend of frequency, Kin should

not be selected too large. So, when the wind speed increases, Kin is

selected as 6. When the wind velocity decreases, Kin can be

increased appropriately, and Kin is selected as 9. When the

frequency increases, Kdroop can be increased as much as

possible, and Kdroop is selected as 11. When the frequency

decreases, Kdroop is selected as 9. The K weights under

different working conditions are shown in Table 4.

System performance for DSIC under
random load fluctuations

In this case, the random system load that changes every 2 s is

applied to Wind1 to verify the advantages of the proposed

method. In addition, the performances of FN and ROCOF,

and DEL under different fixed gains are compared. The

choice of fixed gain mainly considers ROCOF, FN, and DEL,

so values from 7 to 9 are selected, respectively. The load changes

from 25 s to 100 s are shown in Figure 18A, and the K changes for

DSIC are shown in Figure 18B. The ROCOF and FN and the

fatigue loads are compared under the fixed gain and the DSIC

methods, respectively. The results are shown in Table 5 and

Table 6.

It can be seen from Table 5 that DELMs and DELMt under the

DSIC method are lower than those of the inertia control based on

a fixed gain. It can be seen from Table 6 that DELtot under the

DSIC method is lower than that of the inertia control of fixed

gain. The reduction range is about 4%, which can significantly

mitigate the wind turbine drivetrain fatigue load. For the FN, the

reduction ranges from −3.41% to 9.57%. The ROCOF decreases

from 0 to 5.23%. It can be known from the aforementioned data

that the proposed DSIC method can significantly reduce ROCOF

and FNwhile reducing fatigue load. This shows that the proposed

DSIC scheme has good performance in reducing fatigue load and

ROCOF and FN at the same time.

Performance of wind turbine operation
dynamics

In order to further clarify the dynamic behavior of wind

turbine under different parameters, power output, rotor speed,

and torque of drive chain are compared. Figure 19A shows the

output power under different parameters. It can be seen that the

rise in parameters increases the fluctuation of power output. The

increase in output power is beneficial to the stability of system

frequency. The DSIC method can have higher output power, so it

can make the system frequency deviation and rate of change of

frequency smaller.

The rotor speed under different parameters is shown in

Figure 19B. It can be seen that the rotor speed difference is

FIGURE 17
DELMt and DELtot results under the change in K when the
system load increases and decreases by 5% at 60.5 s. (A)DELMt

results under the change in K when the system load increases and
decreases by 5% at 60.5 s. (B)DELtot results under the change
in Kwhen the system load increases and decreases by 5% at 60.5 s.

TABLE 4 Kdroop and Kin weights under different working conditions.

dΔfL

dt dΔVL/dt
>0 ≤0

>0 K1
droop � 8

K1
in � 11

K2
droop � 11

K2
in � 9

≤0 K3
droop � 8

K3
in � 7

K4
droop � 9

K4
in � 7
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small, which indicates that the proposed method will not affect

the stable operation of the wind turbine. Figure 19C shows the

drive chain torque. It can be seen that with the increase in the

parameters of the traditional method, the torque fluctuation of

the transmission chain increases. This is because larger

parameters are easy to cause torsional vibration of the

transmission chain. The proposed DSIC method further

changes the generator torque by dynamically adjusting the

output power, which can restrain the torsional vibration of

the drive chain to a certain extent. Therefore, the proposed

method can reduce the fatigue load of the WT. In conclusion,

the results show that the proposed DSIC method can reduce the

FIGURE 18
Load change from 25 s to 100 s, and K change in the corresponding DSIC scheme. (A) Random system load that changes every 2 seconds. (B)
Kdroop and Kin changes for the DSIC scheme when a random white noise system load appears.

TABLE 5 DELs of shaft torque and tower bending moment under the fixed
gain and DSIC methods.

(Kdroop, Kin) DELMs (MNm) DELMt (MNm)

(7,7) 1.466 50.309

(8,8) 1.472 50.216

(9,9) 1.477 50.131

DSIC 1.463 50.021

TABLE 6 DELtot and ROCOF and FN under the fixed gain and DSIC methods.

(Kdroop, Kin) DELtot ROCOF (Hz/s) FN (Hz)

(7.7) 2.572 0.153 0.094

DSIC 2.464 0.145 0.085

Percentage −4.20% −5.23% −9.57%

(8.8) 2.577 0.149 0.091

DSIC 2.464 0.145 0.085

Percentage −4.39% −2.68% −6.59%

(9.9) 2.579 0.145 0.088

DSIC 2.464 0.145 0.085

Percentage −4.50% 0.00% −3.41%

Frontiers in Energy Research frontiersin.org13

Wang et al. 10.3389/fenrg.2022.1067896

55

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1067896


fatigue load of the wind turbine while improving the frequency

regulation capability of the WT.

Conclusion

A WT DSIC method, considering fatigue load, is proposed.

This method uses two loops of the ROCOF and FN, and the loop

gain would change dynamically according to wind speed and

frequency. This method can simultaneously reduce the system’s

FN and ROCOF and the wind turbine’s fatigue load.

The analysis shows that theKweight under different working

conditions should not be too different to prevent the power

reference value from changing too much and causing the DEL to

increase. For working conditions with significant changes in

wind velocity, the FN loop has a more significant impact on

the DEL than the ROCOF loop. When the changing trend of

wind velocity is opposite to the changing trend of frequency, the

weight of inertia control can be increased, which helps to

reduce the DEL. The results show that compared with the

conventional scheme, the proposed DSIC scheme can

significantly reduce the FN and ROCOF while reducing

the DEL. The reduction in DELtot is about 4%. The

reduction in the ROCOF ranges from -5.23% to 0%. The

reduction in the FN ranges from −9.57% to −3.41%.
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FIGURE 19
Dynamic behavior of the wind turbine. (A) Power output
under different control parameters. (B) Rotor speed under
different control parameters. (C) Shaft torque under different
control parameters.
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A robust flexibility evaluation
method for distributed
multi-energy microgrid in
supporting power distribution
system

Jingxuan Wang, Zhi Wu*, Yating Zhao, Qirun Sun and
Fujue Wang

School of Electrical Engineering, Southeast University, Nanjing, China

Today’s power system is facing various challenges brought by large-scale

renewable energy (RE) integration, which brings higher demand for flexibility.

With the energy network gradually showing its distributed structural

characteristics, multi-energy microgrids (MEMG) become an important

component to effectively utilize distributed energy sources and supplement

the flexibility of power distribution system (PDS). To effectively harness the

operational flexibility of distributed MEMGs, we propose in this paper an

evaluation method to quantify the flexibility capability of MEMG. A virtually

established MG flexibility bus (MG-FB) is endowed with MG flexibility

parameters (MG-FPs), which can reflect the flexibility characteristics of

MEMG. To consider the impact of operational uncertainty on MG-FPs, a

two-stage adaptive robust optimization (ARO) model is proposed, which can

be solved by the C&CG algorithm. The results of a typical test system show the

influence of system configuration, operator’s risk preference, and other factors

on the values of MG-FPs. Besides, we illustrate the effectiveness and

applicability of the proposed framework in modeling and quantifying the

operational flexibility of MEMG to support the operation of the upstream

network.

KEYWORDS

operational flexibility, multi-energy microgrid, system uncertainty, robust
optimization, low-carbon

1 Introduction

In recent years, due to the practical need of alleviating the shortage of fossil fuels and

environmental pollution, renewable energy (RE) generation forms dominated by wind

power and photovoltaics have developed rapidly (Chen et al., 2016). Microgrid (MG), as

an effective carrier of RE access, has been vigorously developed (Wu et al., 2021). MGs

have several capital advantages, such as improving power quality, enhancing energy

supply reliability, improving energy efficiency, etc. Future power grids can be pictured as
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systems of interconnected MGs (Parhizi et al., 2015). However,

uncertainties from the RE and load-side pose some challenges to

system operation. Many studies have focused on methods for

forecasting RE output and load-side demand (Zang et al., 2020;

Zang et al., 2021). In addition to this, increasing the operational

flexibility of MGs is an unavoidable key aspect of dealing with

uncertainties (Wang and Hodge, 2017; Ding et al., 2022). The

application of multi-energy microgrid (MEMG) provides an

important avenue to improve operational flexibility. It is

inevitable to tap the flexibility potential of the MEMG system

and fully plan the flexible resources in the scheduling process

(Holttinen et al., 2013; Ma et al., 2013; Lund et al., 2015; Trovato

et al., 2018), which implies the requirement of formulating a

reasonable method to evaluate the flexibility margin of flexible

resources in the MEMG system.

Flexibility can be explained as the ability of the system to cope

with uncertainty. Some significant researches have been carried

out, evaluating the flexibility level of power system (De Coninck

andHelsen, 2016; Lu et al., 2018; Liu et al., 2021). It is proposed in

(Makarov et al., 2009) the indicators for evaluating the technical

operation flexibility of power system, namely power ramp-rate,

power capacity, energy capacity, and ramp duration. The

meaning of these indicators are further discussed in (Ulbig

and Andersson, 2012). Based on these basic indicators, more

research works have been conducted on evaluating the flexibility

of power system. In (Lannoye et al., 2012, 2015), a probability

metric called insufficient ramping resource expectation is

proposed to evaluate the flexibility of the power system for

use in long-term planning, which is derived from traditional

generation adequacy metrics. A unified flexibility framework is

proposed in (Zhao et al., 2016) to define and quantify power

system flexibility in a systematic way which is based on four

essential elements that are common to various applications of

flexibility. In (Zhao et al., 2015), the concept of the do-not-exceed

limit is introduced, which is the maximum renewable generation

range that the power system can accommodate under the worst

case. These studies focus on the flexibility of power system and

provide basic research ideas for the flexibility evaluation of multi-

energy systems.

The multi-energy coupling operation mode expands the

regulation capacity of the single power system and plays a key

role in emission reduction (Mancarella, 2014; Martinez Cesena

et al., 2019; Wu et al., 2022). However, the complex energy

conversion relationship and non-linear characteristics bring

challenges to the operational flexibility evaluation. There have

been several studies on the integrated operational flexibility of

multi-energy systems from different perspectives. The flexible

conversions of energy forms, large-scale heat and gas storage,

load with different energy consumption characteristics on the

demand side, etc. Are important flexibility resources in multi-

energy systems. In (Wang et al., 2018), flexibility brought by

energy conversion is analyzed and quantitatively evaluated based

on the energy hub (EH) model. Flexibility brought by hybrid

energy storage is researched in (Jiang and Hong, 2013) by

assessing the benefits of smoothing out wind power

fluctuations. Modeling and evaluation of flexible demand in

heat and electricity integrated systems are researched in (Shao

et al., 2018). A novel geometric approach is proposed in (Zhao L.

et al., 2017) to characterize the aggregated flexibility of a

population of thermostatically controlled loads. Besides,

collaborative use of various units in multiple energy carrier

operation can give play to the inherent advantages of various

units’ attributes. Literature (Ulbig and Andersson, 2014)

researches the flexibility of combined equipment by solving

the Minkowski sum. The results show that fast frequency

regulation can be provided by combining the dynamic slow

power plant with the dynamic fast but energy-limited storage

unit. How to obtain the most beneficial aggregated operational

flexibility within a pool of different units is still the content to be

studied in the future. The researches above mainly focus on the

flexibility capacity of a certain component or combination

benefits of some links in the system, however, the synergy of

components in the multi-energy systems is neglected and the

integrated flexibility of multi-energy operation is not elaborately

characterized. Moreover, the transmission constraints of the

networks are not taken into account.

With the large-scale access of various distributed resources

such as wind power and gas turbines (GT) in recent years, load-

side users have gradually transformed into MEMGs that can

operate independently, and their prosumer characteristics have

brought possibilities for flexibility applications in supporting

PDS. In reference (Holjevac et al., 2015), the flexibility of

MEMG is analyzed from two perspectives: independent of the

distribution grid and in interaction with the upstream system. In

reference (Capuder and Mancarella, 2014), the flexibility of

coupled operation of different components in MEMG is

considered. A flexibility-oriented MEMG optimization

scheduling model is proposed in (Majzoobi and Khodaei,

2017) to efficiently schedule MEMG resources to meet the

flexible demand of the distribution network. To address the

day-ahead self-scheduling problem of the MG flexibility

resources, a two-stage stochastic optimization method is

developed in (Bahramara et al., 2022). However, these studies

lack specific modeling and quantification of the flexibility

characteristics of the MEMG. In reference (Chen and Li,

2021), the flexibility of distributed energy resources is

aggregated and characterized by a parameterized set, this

method can be further applied to evaluate the flexibility of

MEMG. However, the significant uncertainties that affect the

operational flexibility are not considered, resulting in inaccurate

assessment.

To address the challenges above, we propose an evaluation

method to quantify the aggregate flexibility of MEMG. We

consider MEMG components of several types to fully explore

the flexibility of the MEMG and the synergy between the

components. Significant operational uncertainties are
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considered in the evaluation process, making the results robust

and capable of being realized by the MEMG in its actual

operation. There is data and energy interaction between

MEMG and PDS, as shown in Figure 1. The quantitative

MEMG flexibility capability in power exchange with the

upstream network in the grid-connected mode is the focus of

this paper. With the proposedmethod in this paper, the flexibility

of the MEMG is represented by a specific set of parameters, and

the power exchange efficiency between the MEMG and the PDS

can be improved. In order to consider operational uncertainties

in evaluating the flexible level of MEMG, the two-stage adaptive

robust optimization (ARO) method is adopted. The ARO

method has been widely applied to power system, such as unit

commitment (Zhang et al., 2019; Dehghan et al., 2021), economic

dispatch (Baringo et al., 2019; Yan et al., 2019), DER capacity

assessment (Zhao J. et al., 2017; Chen et al., 2018), Resilient

dispatch (Xiang and Wang, 2019; Yan et al., 2021), Active/

reactive power coordination (Wu and Conejo, 2020; Huang

et al., 2022), etc., mature ARO solution methods, e.g. the

column-constraint-generation (C&CG) algorithm (Zeng and

Zhao, 2013; Ding et al., 2017), can be directly applied as an

efficient solution.

The major contributions of this paper are threefold:

1) The flexibility-oriented model of MEMG is comprehensively

proposed with consideration of energy generation-,

conversion-, storage- and load-side, as well as the

flexibility utility of gas and heat pipelines’ storage effect.

2) Set virtual MG-FB between MEMG and PDS and specify its

properties, which are recorded as MG-FPs. The flexibility

capability of MEMG is quantified by the MG-FPs which

reflect the energy support effect of MEMG on PDS. This

aggregated flexibility model is developed in the form of

conventional generator model, which incorporates

attributes of various units into simplified parameters.

3) A two-stage ARO method is developed by which the MG-FPs

can be obtained. To ensure the robustness of the results, a

variety of uncertainties are considered, including the

FIGURE 1
MG-PDS interactive structure.
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uncertainty of RE power, load profiles, and dispatch

instructions from the PDS. Besides, the impact of several

factors on the values of MG-FPs is researched based on case

study results.

The remaining part of this paper is organized as follows:

Section 2 proposes the operational flexibility model and

operational uncertainty set of MEMG. Section 3 presents the

detailed ARO model and the C&CG algorithm for obtaining

MG-FPs. Section 4 verifies the effectiveness of the proposed

method for obtaining MG-FPs and researches the impact of

several factors on the values of MG-FPs. Finally, Section 5

concludes the paper.

2 Operational flexibility model of
MEMG

In this paper, the operational flexibility of units or systems is

embodied as power and ramping rate adjustment capability,

specifically, Ωflex: � {�P, �P, RU, RD}. For MEMG, a virtually

established MG flexibility bus (MG-FB) is endowed with these

attributes, which are denoted by MG-FPs. We define the

operational flexibility region in the form of time-decoupled

intervals, which is simple and efficient for model analysis and

practical applications. The typical MEMG structure including

various types of units and multi-energy flow is shown in Figure 2.

Photovoltaic (PV) unit, wind turbine (WT), diesel generator

(DG), gas turbine (GT), power to gas (P2G), electric boiler (EB),

energy storage cell (ESC), gas storage tank (GST) and heat

storage tank (HST) are considered in the MEMG model.

2.1 Flexibility model of MEMG
components

To obtain MG-FPs, we first propose the flexibility models of

the MEMG components.

2.1.1 Renewable energy unit
WT and PV units in the MEMG are considered, and the

related constraints are as follows:

�P
WT
i ≤pWT

i,t ≤min {�PWT
i , uWT

i,t },∀t ∈ T (1)
�P
PV
i ≤pPV

i,t ≤min {�PPV
i , uPV

i,t },∀t ∈ T (2)
vWT
i,t � uWT

i,t − pWT
i,t (3)

vPVi,t � uPV
i,t − pPV

i,t (4)

where pWT
i,t and pPV

i,t are output of WT i and PV unit i at time t,

respectively. �PWT
i , �PWT

i ,�PPV
i and �PPV

i are output limits of WT i

and PV unit i. uWT
i,t and uPVi,t denote the available wind power and

PV power of WT i and PV unit i at time t considering

environmental factors. Curtailment of wind power and PV

power of WT i and PV unit i at time t are denoted by vWT
i,t

and vPVi,t . The output of RE units is restrained by the equipment

properties and the environmental factors, as shown in Eqs.1, 2.

Curtailment of RE are calculated as Eqs.3, 4.

FIGURE 2
Typical MEMG structure incorporated with multiple components.
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2.1.2 Diesel generator
The operation constraints of diesel generator (DG) are as

follows:

�P
DG
i xDG

i,t ≤pDG
i,t ≤ �P

DG
i xDG

i,t ,∀t ∈ T (5)
−RDDG

i ≤pDG
i,t − pDG

i,t−1 ≤RU
DG

i ,∀t ∈ T (6)
xDG
i,τ ≥xDG

i,t − xDG
i,t−1, τ � t + 1, ..., min(t + TDG,on

i − 1, Tm),∀t ∈ T

(7)
where pDG

i,t is the output of DG i at time t, �PDG
i and �PDG

i are the

minimum and maximum output of DG i, and xDG
i,t is the state

variable of DG i at time t. RD
DG
i and RU

DG
i are the maximum

ramp-down rate and ramp-up rate of DG i. TDG,on
i is the

minimum on-time of DG i. Tm is the time horizon of the

optimization. Constraints Eqs. 5, 6 refers to the operating

power constraint and ramping rate constraint of DG.

Constraint Eq. 7 is the start-stop constraint of DG to avoid

frequent startup and shutdown in a short time. It should be noted

that the state variables are binary variables. When the state

variable of DG is 1, the DG is turned on and the output

power is between the maximum and minimum power output.

When the state variable is 0, the DG is turned off and the power

output is 0.

2.1.3 Gas turbine
The operation constraints of gas turbine (GT) are as follows:

pGT
i,t � gGT

i,t η
GT
i ,∀t ∈ T (8)

hGTi,t � pGT
i,t μ

GT
i ,∀t ∈ T (9)

�P
GT
i xGT

i,t ≤pGT
i,t ≤ �P

GT
i xGT

i.t ,∀t ∈ T (10)
−RDGT

i ≤pGT
i,t − pGT

i,t−1 ≤RU
GT

i ,∀t ∈ T (11)
xGT
i,τ ≥xGT

i,t − xGT
i,t−1, τ � t + 1, ..., min(t + TGT,on

i − 1, Tm),∀t ∈ T

(12)
where pGT

i,t ,h
GT
i,t and gGT

i,t are electric power output, heat power

output, and gas input of GT i at time t, respectively.

ηGTi denotes the power efficiency of GT i, μGTi is the

electrothermal ratio of GT i. �PGT
i and �PGT

i are the

minimum and maximum output of GT i, and xGT
i,t is the

state variable of GT i at time t. RD
GT
i and RU

GT
i are the

maximum ramp-down rate and ramp-up rate of GT i. TGT,on
i

is the minimum on-time of GT i. Constraints Eqs. 8, 9 depict

the energy conversion relationship of GT. Constraints Eqs.

10, 11 describe the output power constraint and ramping rate

constraint of GT. The operating state constraint of GT is

presented in (Eq. 12).

2.1.4 Power to gas
The operation constraints of power to gas (P2G) are as

follows:

gP2G
i,t � δP2Gi pP2G

i,t ,∀t ∈ T (13)

�P
P2G
i xP2G

i,t ≤pP2G
i,t ≤ �P

P2G
i xP2G

i.t ,∀t ∈ T (14)
xP2G
i,τ ≥ xP2G

i,t − xP2G
i,t−1, τ � t + 1, ..., min(t + TP2G,on

i − 1, Tm),∀t ∈ T

(15)
wheregP2G

i,t and pP2G
i,t are gas output and power input of P2G i at

time t, respectively. δP2Gi is the conversion efficiency of P2G i.
�PP2G
i and �PP2G

i are the minimum and maximum output of P2G i,

and xP2G
i.t is the state variable of P2G i at time t. TP2G,on

i is the

minimum on-time of P2G i. Constraint (Eq. 13) depicts the

energy conversion relationship of P2G. Constraint (Eq. 14)

describes the output power limit of P2G. The operating state

constraint of P2G is presented in (Eq. 15).

2.1.5 Electric boiler
The constraints of the electric boiler (EB) are as follows:

hEBi,t � μEBi pEB
i,t ,∀t ∈ T (16)

�P
EB
i xEB

i,t ≤p
EB
i,t ≤ �P

EB
i xEB

i,t ,∀t ∈ T (17)
−RDEB

i ≤pEB
i,t − pEB

i,t−1 ≤RU
EB

i ,∀t ∈ T (18)
xEB
i,τ ≥ xEB

i,t − xEB
i,t−1, τ � t + 1, ..., min(t + TEB,on

i − 1, Tm),∀t ∈ T

(19)
where hEBi,t and pEB

i,t are heat output and power input of EB i at

time t, respectively. μEBi is the conversion efficiency of EB i. �PEB
i

and �PEB
i are the minimum and maximum output of EB i, and xEB

i,t

is the state variable of EB i at time t. RD
EB
i and RU

EB
i are the

maximum ramp-down rate and ramp-up rate of EB i. TEB,on
i is

the minimum on-time of EB i. Constraint (Eq. 16) depicts the

energy conversion relationship of EB. Constraints (Eqs. 17, 18)

describe the output power constraint and ramping rate constraint

of EB. The operating state constraint of EB is presented in

(Eq. 19).

2.1.6 Energy storage system
The constraints of the energy storage systems are as follows:

xch,θ
i,t + xdis,θ

i,t ≤ 1,∀t ∈ T (20)
0≤ ech,θi,t ≤ xch,θ

i,t
�E
ch,θ
i ,∀t ∈ T (21)

0≤ edis,θi,t ≤xdis,θ
i,t

�E
dis,θ
i ,∀t ∈ T (22)

Es,θ
i ≤ es,θi,t ≤ �E

s,θ
i ,∀t ∈ T (23)

where θ � {ESC, GST,HST}, denoting electricity storage cell

(ESC), gas storage tank (GST) and heat storage tank (HST),

respectively. xch,θ
i,t and xdis,θ

i,t denote charge and discharge state of

energy storage unit i at time t, respectively. ech,θi,t and edis,θi,t are

charging rate and discharging rate of energy storage unit i at time

t. �Ech,θ
i and �Edis,θ

i are maximum charging and discharging rate of

energy storage unit i. es,θi,t is the current energy storage of energy

storage unit i at time t. Es,θ
i and �Es,θ

i are the minimum and

maximum storage of energy storage unit i. Operating state of

energy storage unit is constrained by (Eq 20). Constraints (Eq. 21,

21) represent the energy storage unit charging and discharging
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bounds, and current storage limit of energy storage unit is

presented in (Eq. 23).

2.1.7 Load model
We consider four types of electric load in the flexibility model

of MEMG, which are represented in (Eqs 24–(27).

1) Fixed load

Lfix,oper
i,t � rfixi ue

i,t,∀t ∈ T (24)

2) Translatable load

Ltrans,oper
i,t+τ � rtransi ue

i,t,∀t ∈ T (25)

3) Shiftable load

∑
t∈T

Lsft,oper
i,t � rsfti ue

i,t,∀t ∈ T (26)

4) Interruptible load

0≤Lint,oper
i,t ≤ rinti ue

i,t,∀t ∈ T (27)

where Lfix,operi,t , Ltrans,operi,t , Lsft,operi,t and Lint,operi,t are fixed load,

translatable load, shiftable load and interruptible load supplied

at bus i at time t, respectively. rfixi , rtransi , rsfti and rinti are the

percentage of the four types of load at node i. uei,t is the value of

electric load at bus i at time t.

rfixi + rtransi + rsfti + rinti � 1,∀i ∈ Ωeload (28)
Le,oper
i,t � Lfix,oper

i,t + Ltrans,oper
i,t + Lsft,oper

i,t + Lint,oper
i,t (29)

veloadi,t � rinti ue
i,t − Lint,oper

i,t (30)

The percentage of the four types of load are constrained by

(Eq. 28) and the collection of them is denoted by

re � {rfix, rtrans, rsft, rint}. Le,operi,t is the load actually supplied

at bus i at time t, which is constrained by (Eq. 29). The

electric load that is not supplied at electric bus i at time t,

denoted by veloadi,t , is calculated as (Eq. 30). Among these four

types of load, 1) is non-adjustable load, b), c), and 4) belong to

adjustable load.

2.2 Model of MEMG network

2.2.1 MEMG electricity network
Model of MEMG electricity network are shown as follow:

pPDS
i,t +∑

u∈i
pDG
u,t +∑

v∈i
pCHP
v,t +∑

w∈i
pPV
w,t +∑

m∈i
pWT
m,t +∑

c∈i
pESC
c,t

� Le,equ
i,t +∑

j∈i
pij,t −∑

j∈i
pji,t,∀t ∈ T

(31)

�Pk ≤pk,t ≤ �Pk,∀t ∈ T (32)

where pPDS
i,t denotes the power from PDS at electric bus i at time t.

pDG
u,t /p

CHP
v,t /pPV

w,t/p
WT
m,t /p

ESC
c,t is the power output of DG/CHP/PV/

WT/ESC at electric bus i at time t. Le,equi,t denotes the equivalent

electric load at electric bus i at time t. pij,t is electric flow of the

lines which start with electric bus i and pji,t is electric flow of the

lines which end with electric bus i. pk,tdenotes the electric flow of

line k at time t. �Pk and �Pk are limits of the electric flow of line k.

MEMG electricity network constraints include nodal power

balance constraint (Eq. 31) and electric power line

transmission capacity constraint (Eq. 32).

2.2.2 MEMG gas network
We adopt Weymouth steady-state model in this paper:

∑
s∈i

gGS
s,t +∑

n∈i
gP2G
n,t +∑

z∈i
gGST
z,t � Lg,equ

i,t +∑
j∈i

gij,t −∑
j∈i

gji,t,∀t ∈ T

(33)
Vk,t

∣∣∣∣Vk,t

∣∣∣∣ � CkΔprek,t,∀t ∈ T (34)
Vk ≤Vk,t ≤ �Vk,∀t ∈ T (35)

pre
i
≤prei,t ≤prei,∀t ∈ T (36)

where gGS
s,t /g

P2G
n,t /gGST

z,t is the gas output of gas source/P2G/GST at

gas bus i at time t. Lg,equi,t denotes the equivalent gas load at gas bus

i at time t. gij,t is gas flow of the pipelines which start with gas bus

i at time t and gji,tis gas flow of the pipelines which end with gas

bus i at time t. Vk,t denotes the gas flow of pipeline k at time t. Ck

is the flow-pressure correlation coefficient. Δprek,t is the pressure
difference between the start and the end of pipeline k. Vk and �Vk

are the minimum and maximum gas flow of pipeline k. prei,t is

the pressure at gas bus i at time t. pre
i
and prei are minimum

and maximum pressure at gas bus i. The nodal gas balance

constraint is presented in (Eq. 33). The relationship between the

gas flow and nodal pressure is shown in (Eq. 34). Constraint (Eqs.

35, 36) depict the gas flow limit and nodal pressure limit,

respectively. It should be noted that constraint (34) is

nonlinear, and it is piecewise linearized in the following

optimization model for efficient solution.

The transmission rate of gas is slow, and the gas has inertia

and compressibility, so the gas transmission pipeline has a certain

storage capacity. This energy storage effect can alleviate the time

and space mismatch between the natural gas supply and the gas

load consumption demand to a certain extent. The more natural

gas stored in the pipeline, the greater the pressure at both ends of

the pipeline, which are constrained by (Eq. 36).

2.2.3 MEMG heating network
We use the steady-state model of the heat supply network in

this paper:

∑
k∈Ωsp,i−

Tsp,out
k,t · qspk � Tsn

i,t ∑
k∈Ωsp,i−

qspk ,∀t ∈ T (37)

∑
k∈Ωrp,i−

Trp,out
k,t · qrpk � Trn

i,t ∑
k∈Ωrp,i−

qrpk ,∀t ∈ T (38)
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Tsp,in
k,t � Tsn

i,t ,∀k ∈ Ωsp,i+,∀t ∈ T (39)
Trp,in
k,t � Trn

i,t ,∀k ∈ Ωrp,i+,∀t ∈ T (40)
Tsp,out
k,t � (Tsp,in

k,t − Ta)e− lk
Rcρfk + Tsp,in

k,t ,∀k ∈ Ωsp,∀t ∈ T (41)

Trp,out
k,t � (Trp,in

k,t − Ta)e− lk
Rcρfk + Trp,in

k,t ,∀k ∈ Ωrp,∀t ∈ T (42)

Tsp,out
k,t � (Ta − Tsp,in

k,t ) lk
Rcρfk

+ Tsp,in
k,t ,∀k ∈ Ωsp,∀t ∈ T (43)

Trp,out
k,t � (Ta − Trp,in

k,t ) lk
Rcρfk

+ Trp,in
k,t ,∀k ∈ Ωrp,∀t ∈ T (44)

Tsp ≤Tsp,in
k,t ≤ �T

sp
,∀k ∈ Ωsp,∀t ∈ T (45)

Tsp ≤Tsp,out
k,t ≤ �T

sp
,∀k ∈ Ωsp,∀t ∈ T (46)

Trp ≤Trp,in
k,t ≤ �T

rp
,∀k ∈ Ωrp,∀t ∈ T (47)

Trp ≤Trp,out
k,t ≤ �T

rp
,∀k ∈ Ωrp,∀t ∈ T (48)

∑
k∈Ωsp,i−

(Chqspk (Tsp,out
k,t − Trp,in

k,t )) � Lh,equ
i,t ,∀t ∈ T (49)

where Ωsp,i− and Ωrp,i− represent the collection of water supply

and return pipelines whose end point is heat bus i.Ωsp,i+ andΩrp,i+
represent the collection of water supply and return pipelines whose

end point is heat bus i. Ωsp and Ωrp represent the collection of

water supply and return pipelines. Tsp,out
k,t and Trp,out

k,t represent the

temperature at the outlet of pipeline k in the water supply and

return network at time t, respectively. qspk and qrpk indicate the

water outflowing from pipeline k in the water supply and return

network, respectively. Tsn
i,t and Trn

i,t are the temperature at node i

within the water supply and return network at time t. Tsp,in
k,t and

Trp,in
k,t are the temperature at the inlet of the pipeline k in the supply

and return network, respectively. The flow of heat medium in the

pipeline will produce heat loss, which is related to ambient

temperature Ta, pipeline length lk, pipeline thermal resistance

R, pipeline flowfk, the specific heat capacity cof heatmedium, and

heat medium density ρ. Tsp, �Tsp, Trp and �T
rpare the temperature

limits of water supply and return pipelines. Ch is the heat capacity

of the water within the pipelines. Lh,equi,t denotes the equivalent heat

load at heat bus i at time t. Eqs. 37, 38 are the node temperature

fusion constraint, which indicates that the node temperature is

equal to the fusion temperature of the incoming heat medium. The

temperature of the heat medium flowing out of the node is equal to

the temperature of the node, as depicted in constraints (Eqs. 39,

40). The temperature relationship of the heat medium at the inlet

and outlet of the pipelines is shown in constraints (Eqs. 41, 42).

Considering that the exponential term is close to zero, its linearized

form can be obtained by Taylor expansion and omitting the higher

order terms, as shown in constraints (Eqs. 43, 44). Constraints

(Eqs. 45–48) are the temperature limits of the heat supply and

return pipelines. Heat balance constraint of heat load node is

shown as (Eq. 49).

Since the temperature of the heat pipelines can fluctuate

within a certain range, as shown in (Eqs. 45–(48), the heat

pipelines have a certain heat storage capacity. Heat pipelines

in MEMG are flexible resources with flexible capability that can

be dispatched.

2.2.4 Coupling constraints of MEMG
The coupling constraints of different networks in MEMG are

as follows:

Le,equ
i,t � Le,oper

i,t + ∑
k∈Ωi

ECU

pk,t,∀t ∈ T (50)

Lg,equ
i,t � ug

i,t + ∑
k∈Ωi

GCU

gk,t,∀t ∈ T (51)

Lh,equ
i,t � uh

i,t,∀t ∈ T (52)

where Ωi
ECU/Ωi

GCU is collection of power consuming units/gas

consuming units at bus i, pk,t/gk,t is the power consumption/gas

consumption of unit k at time t. ugi,t and uhi,t are the value of gas

load and heat load at bus i at time t. In the MEMG, in addition to

the conventional user-side load, the input of the multi-energy

coupling equipment is also considered as the load of the

corresponding energy system. Therefore, the equivalent

electric load and the equivalent gas load at node i at time t

are expressed as (Eqs. 50, 51). The equivalent heat load at node i

at time t is shown as (Eq. 52).

2.3 Operational uncertainty set of MEMG

MEMGs face many uncertainties in their operation and it is

risky to reduce these uncertainties to predicted values. To

consider these uncertain factors in evaluating the flexibility of

MEMG, an ARO problem is proposed. In the ARO problem, it is

important to construct a suitable uncertainty set. The uncertainty

model of MEMG operation is given in this section.

2.3.1 RE output and load consumption
A way to capture RE output and load consumption

uncertainty is as follows:

uRE � {uWT, uPV
∣∣∣∣uWT

i,t � ûWT
i,t + ςWT

i dWT
i , ςWT

i ∈ [0, 1], dWT
i /ûWT

i,t ≤ ρWT,

uPV
i,t � ûPV

i,t + ςPVi dPV
i , ςPVi ∈ [0, 1], dPV

i /ûPV
i,t ≤ ρPV,∀t ∈ T} (53)

uload � {uω
∣∣∣∣∣uω

j,t � ûω
j,t + ςωj d

ω
j , ς

ω
j ∈ [0, 1], dω

j /ûω
j,t ≤ ρ

ω,ω

� {e, g, h}} (54)

where ûWT
i,t and ûPVi,t respectively represent the predicted available

power ofWT and PV at node i at time t.ω is a collection of energy

forms in the MEMG system, including the energy form of

electricity, gas and heat. ûej,t, ûgj,t and ûhj,t represent the

predicted electric, gas and heat load consumption at load

node j at time t, respectively. These predicted values are

obtained based on historical data. We use the product of the

maximum deviation dWT
i /dPVi /dL,ωj and the error coefficient

ςWT
i /ςPVi /ςωj to express the prediction deviation of WT output/

PV output/load consumption. ρWT, ρPVand ρωare given
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constants, which are introduced to define the limit of uncertainty

to control the conservative level.

2.3.2 Dispatch instructions from PDS operator
with carbon emission target

The uncertainty set of the dispatch instructions from the PDS

operator is modeled as follows:

uDI ⊃ {PDI
t , RRDI

t

∣∣∣∣�PMG ≤PDI
t ≤ �P

MG
,−RDMG ≤RRDI

t ≤RU
MG

, RRDI
t

� PDI
t+1 − PDI

t ,∀t ∈ T}
(55)

where PDI
t and RRDI

t are instructed power output and ramping

rate at time t from the PDS. When MEMG is providing flexibility

to PDS, the interaction power between MEMG and PDS is

constrained by (Eqs.56, 57).

pPDS
t � PDI

t ,∀t ∈ T (56)
rPDS
t � pPDS

t − pPDS
t−1 � RRDI

t ,∀t ∈ T (57)

where pPDS
t and rPDS

t are power output and ramping rate of

MEMG at the MG-FB at time t.

Besides, based on the carbon reduction trend of the energy

system, we add the carbon emission limits that need to be realized

by MEMG to the uncertainty set of the model:

uDI � {PDI
t , RRDI

t , CEDI
t }. Thus, the energy supply units in the

MEMG can be more preferably configured based on the

environmental protection objectives. The relevant constraints

are shown below.

CEm,t � ψmpm,t,∀m ∈ Ωemi (58)
CEt � ∑

m∈Ωemi

CEm,t (59)

CEt ≤CEDI
t (60)

∑
t∈T

CEDI
t ≤ Γ (61)

CEDI ≤CEDI
t ≤CEDI

(62)

where Ωemi is the collection of units with carbon emission in the

MEMG. CEm,t and pm,t are the carbon emission and energy

output of unitm at time t, respectively. ψm is the carbon emission

factor of unit m. CEt denotes the carbon emission of MEMG at

time t. CEDI
t is the carbon emission limit for MEMG at time t in

dispatch instructions from the PDS. Γ, CEDI and CE
DI

are pre-

given constants. Part of the units in the MEMG produce

pollution when operating, and the carbon emission of the

units is usually proportional to the production, i.e. constraint

(Eq. 58). The carbon emission of the MEMG system is the total

emission of all carbon emission generating units in the system,

i.e. constraint (Eq. 59). To achieve an overall carbon emission

reduction target, the PDS operator will add the carbon emission

constraint (Eq. 60) to MEMG in the dispatch instructions, in

which the boundary is shown as (Eqs. 61, 62), which ensures that

the carbon emission range of the MEMG is always kept within a

reasonable range.

Based on the discussion above, operational uncertainty set of

MEMG is denoted by (Eq. 63).

u � {uRE, uload, uDI} (63)

3 ARO model for obtaining MG-FPs

3.1 ARO model

When considering the operational uncertainty, the

acquisition of MG-FPs has the following steps. In step 1, the

MEMG operator collects the operation parameters of various

local units, and in step 2, solves the initial MG-FPs according to

the MEMG flexibility model and network operation constraints.

In step 3, the MEMG operator searches for possible dispatch

instructions from PDS and possible operation scenarios. In step

4, the MEMG operator tries to track the dispatch instructions

from PDS in different operation scenarios, and judges if these

orders are realizable and whether the MG-FPs need to be

adjusted. If an unrealizable scenario is found, the MEMG

operator adjusts the MG-FPs in step 5. Repeat steps three to

five until no infeasible scenario is found, and the MEMG

operator submits the MG-FPs obtained in the latest iteration

to the PDS operator.

Based on the steps above, we propose a two-stage AROmodel

to obtain the MG-FPs submitted by the MEMG to PDS. The

upper stage problem is solved first to obtain the MG-FPs. The

upper stage problem aims to maximize the MEMG’s flexibility

region, including the feasible range of power, and upward and

downward ramping rate. Subsequently, the lower stage problem

aims to identify the worst-case uncertainty vector that maximizes

the power imbalance at the MG-FB and optimizes the post-

contingency dispatch with the values of MG-FPs. The

convergence speed of the ARO model is accelerated by adding

the worst scenario set to the upper stage problem. In the iteration

process, the scenarios that are difficult to realize in the MEMG

are gradually discovered, and the obtained MEMG’s flexibility

domain is gradually shrinking. When no solution-free scenario

can be found, the MEMG operator obtains the accurate MG-FPs.

By solving this robust problem, the obtained optimal MG-

FPs results can immunize to any uncertainty within a reasonable

range. When the uncertainty u* happens, the deviation caused by

u* is tried to be accommodated by the MEMG post-contingency

dispatch. The compact formulation of the proposed model is

presented in (Eqs. 64–(70):

min
z

{ − cTz +max
u

min
x,y∈Ω(z,u)

dTy} (64)

s.t.Ax ≤ b (65)
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Dy ≤ a (66)
Cy + Ex + Fu + Gz ≤ h (67)

Ω(z, u) � {x, y∣∣∣∣Cy + Ex ≤ h − Fu − Gz} (68)
cTz � κ1 �P

MG + κ2 �P
MG + λ1RU

MG + λ2RD
MG

(69)
κ1 > 0, κ2 < 0, λ1 > 0, λ2 < 0 (70)

where x � {xDG
t , xGT

t , xP2G
t , xEB

t , xch,ESC
t , xdis,ESC

t , xch,GST
t , xdis,GST

t ,

xch,HST
t , xdis,HST

t ,∀t ∈ T}, y � {pWT
t , pPV

t , vWT
t , vPVt , pDG

t , gGT
t , pGT

t , hGTt ,

gP2G
t , pP2G

t , hEBt , pEB
t , ech,θt , edis,θt , es,θt , Lfix,oper

t ,

Ltrans,oper
t , Lsft,oper

t , Lint,oper
t , Le,oper

t , Vt,Δpret, T
sp,in
t , Tsp,out

t , Tsn
t , T

rn
t , T

rp,in
t ,

Trp,out
t , Le,equ

t , Lg,equ
t , Lh,equ

t , t ∈ T}, u � {uWT
t , uPV

t , ue
t , r

e, ug
t , u

h
t ,

PDI
t , RRDI

t , CEDI
t ,∀t ∈ T}

Constraint 65) refers to (7), (12), (15), (19), (20). Constraint

66) represents (6), (8)–(9), (11), (13), (16), (18), (23), (29),

(31)–(50), (58)–(59). Constraint 67) denotes the constraints

(1)–(5), (10), (14), (17), (21)–(22), (24)–(28), (30), (51)–(57),

(60)–(62).

Weight coefficients κ1, κ2, λ1, and λ2 in constraint 69) are

given in advance by the MEMG operators, which could reflect

their decision preferences. When κ1 (|κ2|) is large, a higher power
upper limit (lower power inferior limit) will be obtained, but it will

lead to contraction of the ramping rate adjustable range. When λ1
(|λ2|) is large, MEMG will have a better upward (downward)

ramping rate adjustment ability, but the power adjustment

ability will become worse. By selecting the weight

coefficients, MEMG operator finally obtains MG-FPs of

different operational flexibility characteristics. For PDS,

MEMGs with different MG-FPs are equivalent to different

types of generation units or loads.

3.1.1 Master problem
The primal problem can be decoupled into a master problem

(MP) and a subproblem (SP). The MP is presented in (Eqs.

71–(76), which optimizes the decision variables of MG-FPs.

MP:

min
z

(−cTz) (71)
s.t.Ax ≤ b (72)
Dy ≤ a (73)

Cy + Ex + Gz ≤ h − Fup
l−1,∀l≤ k (74)

cTz � κ1 �P
MG + κ2 �P

MG + λ1RU
MG + λ2RD

MG
(75)

κ1 > 0, κ2 < 0, λ1 > 0, λ2 < 0 (76)

where k denotes the current iteration. upl−1is identified by the SP

in the previous iteration. The optimal result of theMP is recorded

as zp, and is passed to the SP as known parameters.

3.1.2 Max-min subproblem
The SP identifies the most damaging uncertainty set for the

determined MG-FPs obtained by the MP. The unsolvable

scenarios are iteratively generated and added by solving the

feasibility check SP. The compact form of the feasibility check

SP in the kth iteration is formulated as (Eqs. 77–82). We

reformulate the SP as an equivalent maximization problem

(Eqs. 83–(86) using the duality principle for the initial bi-level

model cannot be solved directly.

SP:

max
u

min
x,y∈Ω(z,u)

dTy (77)
s.t. Cy + Ex + Fu≤ h − Gzpk: (λ) (78)

dTy � e1 ∑
t∈T
(χ+ + χ−) + e2 ∑

t∈T
(δ+ + δ−) (79)

PDI
t � pPDS

t + χ+ − χ− (80)
RRDI

t � rPDS
t + δ+ − δ− (81)

χ+ ≥ 0, χ− ≥ 0, δ+ ≥ 0, δ− ≥ 0 (82)
max
u,λ

λT(h − Gzpk − Fu) (83)
s.t.λTC≤ d (84)
λTE≤ 0 (85)
λ≤ 0 (86)

where λ is the dual variable vector of the MEMG dispatch

problem in the inner level of SP. χ+ and χ− denote the

deviation between actual power output pPDS
t and the

instructed PDI
t at time t, δ+ and δ− denotes the deviation

between actual ramping rate rPDS
t and the instructed RRDI

t .

These deviations will be eliminated in the iteration procedure

FIGURE 3
Solving procedures of C&CG algorithm.
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to ensure that the MEMG can track these dispatch instructions

from the PDS operator.

3.2 The detailed solution procedure
of C&CG

The proposed MP and the max-min SP are both MILP

models, which can be solved by several solvers. The two-stage

ARO model is solved by the C&CG Algorithm 1, which is a

cutting-plane-based method. The procedure is conducted

iteratively, as shown in Figure 3. Detailed steps are shown as

follows.

Algorithm 1. Column-and-Constraint Generation Algorithm.

4 Case study

The following cases are performed on a modified network

that operates as a MEMG. Characteristics of the initial network

are available in (Yang et al., 2020). The MEMG is connected to

PDS for data and energy exchange. The MEMG includes

70 buses, 65 lines, and 32 loads. Besides, there are 2 DGs,

2 GTs, 2 P2G, 3 EBs, 1 PV, 1 WT, 1 ESC, 1 GST, and 1 HST.

The main parameters of the units are shown in Tables 1, 2. Daily

load, wind power and PV power are depicted in Figures 4, 5.

All tests are implemented on a computer with eight

processors running at 3.60 GHz with 16 GB of memory.

Programs are coded under MATLAB 2019b environment and

programmed with YALMIP by calling cplex.

4.1 Comparison of MG-FPs’ calculation
methods

We first verify the effectiveness and accuracy of the proposed

ARO model in obtaining MG-FPs. In addition to the proposed ARO

method, we calculate the MG-FPs in a direct way for comparison.

Table 3 shows the results of the optimized MG-FPs with the two

methods. The basic equations of the direct method are as follows:

�P
MG � ∑

k∈Ωsup

�Pk + ∑
r∈Ωco

Δ�Pr − ∑
i∈ΩEL

Li (87)

�P
MG � ∑

k∈Ωsup

�Pk + ∑
r∈Ωco

Δ�Pr − ∑
i∈ΩEL

Li (88)

RU
MG � ∑

k∈Ωr

RUk (89)

TABLE 1 Main parameters of units in MEMG.

Type �P(kW) �P(kW) ΔP(kW) RU (kW/10min) RD (kW/10min) ΔR (kW/10min)

DG1 180 500 320 100 70 170

DG2 150 500 350 100 70 170

GT1 90 300 210 80 50 130

GT2 90 300 210 100 80 180

P2G1 100 300 200 - - -

P2G2 150 500 350 - - -

EB1 100 500 400 55 50 105

EB2 150 500 350 60 40 100

EB3 250 750 500 75 60 135

PV 0 550 550 - - -

WT 0 600 600 - - -

TABLE 2 Main parameters of energy storage units in MEMG.

Type �P (kW)/(m3/h) �P (kW)/(m3/h) ΔP (kW)/(m3/h) Cap (kWh)/(m3) Cap (kWh)/(m3)

ESS 0 100 100 10 300

GST 0 30 30 10 100

HST 0 120 120 50 400
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RD
MG � ∑

k∈Ωr

RDk (90)

where ∑
k∈Ωsup

�Pk and ∑
k∈Ωsup

�Pk denote the sum of maximum and

minimum output of power supply units, ∑
r∈Ωco

Δ�Pr and ∑
r∈Ωco

Δ�Pr

denote the sum of maximum and minimum power output of

the energy coupling units while loads of other energy types meet

their demand. ∑
i∈ΩEL

Lidenotes the sum of electric load. ∑
k∈Ωr

RUk

and ∑
k∈Ωr

RDk represent the sum of the maximum ramp-up rate

and ramp-down rate of units in MEMG.

It is obvious that the MG-FPs obtained from the direct method

have better flexibility benefits than the ARO method. But actually,

these look-better parameters are hard to track forMEMGsbecause the

direct method calculates the MG-FPs without consideration of line

capacity limitation. In other words, the inaccuracy of the direct

method comes mainly from the violation of network constraints

when directly summing up the flexibility parameters of units. There is

a possibility that the MEMG operator cannot realize the committed

parameters in some scenarios without security violation.

When the power of the MEMG is negative, the PDS supplies

electric power to the MEMG, MEMG is equivalent to the load of

the PDS. This minimum power flexibility parameter is constrained by

MEMG’s energy consumption level and energy transmission capacity.

The higher the MEMG energy consumption level and the greater the

line transmission capacity, the greater the absolute value of the

minimum power flexibility parameter, and vice versa. When the

interaction power is positive, the MEMG supplies energy to the PDS

on the basis of meeting its own load demand. The maximum power

flexibility parameter is limited by the energy supply capacity of energy

supply equipment, conversion capacity of energy conversion

equipment, and energy transmission capacity of MEMG.

FIGURE 4
Daily load profiles of MEMG.

FIGURE 5
Daily RE power of MEMG.

TABLE 3 Results of MG-FPs from different methods.

Method �PMG (kW) �PMG (kW) ΔPMG (kW) RU
MG (kW/10min) RD

MG (kW/10min) ΔRMG (kW/10min)

Direct method 646.50 −891.2 1,537.7 669.12 570.00 1,239.12

ARO method 358.88 −838.28 1,197.16 461.10 428.91 890.01
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4.2 Impact of MEMG Operator’s risk
preference and system configuration

Adopting the robust optimization framework proposed in

this paper, we can change the MEMG operator’s risk preference

by changing the uncertainty parameters (UP). The UPs refer to

ρPV, ρWT and ρω in the MEMG operational uncertainty model.

The deterministic optimization (DO), in which the uncertainty

variables take the predicted values, is also solved for comparison.

The results are listed in Table 4.

It is shown that the MEMG operator’s risk preference does

not have much impact on ramping rate flexibility parameters, but

is influential on power flexibility parameters. When the UP is set

to 0, the AROmodel is equal to the DOmodel, the look-best MG-

TABLE 4 Results of MG-FPs with different risk preferences in configuration case 1.

UP �PMG (kW) �PMG (kW) ΔPMG (kW) RU
MG (kW/10min) RD

MG (kW/10min) ΔRMG (kW/10min)

DO 374.00 −843.50 1,217.50 461.56 421.91 883.47

0/0 374.00 −843.50 1,217.50 461.56 421.91 883.47

5%/5% 367.70 −841.33 1,209.03 461.10 421.91 883.01

12%/18% 358.88 −838.28 1,197.16 460.46 421.91 882.37

15%/20% 355.10 −836.98 1,192.08 460.19 421.90 882.09

30%/30% 336.20 −830.45 1,166.65 458.82 421.88 880.70

TABLE 5 Results of MG-FPs in different system configuration cases.

Case �PMG (kW) �PMG (kW) ΔPMG (kW) RU
MG (kW/10min) RD

MG (kW/10min) ΔRMG (kW/10min)

case1 358.88 −838.28 1,197.16 460.46 421.91 882.37

case2 275.39 −748.72 1,024.11 387.76 372.24 760.00

case3 80.48 −546.49 626.97 337.76 322.24 660.00

TABLE 6 Results of MG-FPs from different optimization model.

Model DO

Item �PMG (kW) �PMG (kW) ΔPMG (kW) RU
MG (kW/10min) RD

MG (kW/10min) ΔRMG (kW/10min)
374.00 -843.50 1,217.50 461.56 421.91 883.47

Model ARO

Item �PMG (kW) �PMG (kW) ΔPMG (kW) RU
MG (kW/10min) RD

MG (kW/10min) ΔRMG (kW/10min)
358.88 -838.28 1,197.16 460.46 421.91 882.37

TABLE 7 System operation performance with MG-FPs from different optimization model.

Prediction error (Load/RE) DO ARO

RECR (%) LOL(kWh) RECR (%) LOL(kWh)

6%/9% 98.22 268.05 98.87 0

12%/18% 96.25 563.54 96.92 0

18%/27% 94.21 649.65 95.91 265.4

24%/36% 92.16 735.27 94.68 412.5
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FPs among these contrast sets are obtained. As UPs increase,

MG-FPs tend to get worse to adapt to the worse scenarios. This

indicates that the operators will give more consideration to the

uncertainty they face when determining MG-FPs. Therefore, the

parameters will be more conservative, which means that the MG-

FPs of MEMG get worse. Conversely, when the operators

consider more about the favorable scenarios, the UPs will be

small, resulting in better MG-FPs values.

We can conclude that the evaluated flexibility level of the

MEMG system is related to the risk preference of MEMG

operators. When the MEMG operator is a conservative idea

holder, the submitted MG-FPs are likely to be constrictive.

Otherwise, if the MEMG operator is a risk-taker, the MEMG

appears to be more effective in supporting the flexible operation

of the main network although the actual flexibility capability of

MEMG does not change.

In addition to the risk preference of the MEMG operator, the

system configuration of theMEMG has a more significant impact

on the assessment results. This impact may arise from the

characteristics of the MEMG units and the synergies between

them. The impact of system configuration on MG-FPs is

researched through the following three configuration cases:

Case 1 All units in the MEMG are available in the scheduling.

Case 2 State variables of GT 1 and P2G 1 are set to 0, and

other units in the MEMG are available.

Case 3 Only EB 1 and EB 3 are reserved as heat sources of the

heat supply network, state variables of other units are set to 0.

The optimization results are presented in Table 5. With

the reduction of units in the MEMG system, the flexibility

parameters of MEMG become significantly worse in terms of

power and ramping rate. The configuration of power-

consuming equipment has a significant effect on the

FIGURE 6
MEMG load profiles predicted, and uncertainty intervals.
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minimum power parameter. Because in the MEMG, power-

consuming units are regarded as the equivalent electric load,

and the minimum power flexibility parameter is limited by the

power consumption level. When the power generation

equipment in the MEMG system halt, the maximum power

parameters will be decreased.

4.3 Impact of the prediction error of
MEMG operator

To verify that the MG-FPs obtained by the ARO model in

this paper can withstand the worst scenarios, the optimization

results of the DO model are compared with results of the ARO

model in this section. Results of MG-FPs from the twomodels are

presented in Table 6.

We compare the system’s loss of load (LOL) and RE

curtailment rate (RECR) under different prediction errors, as

shown in Table 7. The prediction error refers to the degree to

which the predicted value of load consumption and available RE

deviate from the actual value. The proposed ARO model in the

following comparative examples have the same risk preference

coefficients of MEMG operator which are 12 and 18% for load

and RE, as shown in Figures 6, 7.

It should be noted that when solving MG-FPs, MEMG

operators do not regard reducible load as a flexible resource

that can be curtailed. Therefore, when the prediction error is

within the risk preference interval, the MEMGs which submit the

MG-FPs of the ARO model will not have load shedding. When

the prediction error exceeds MEMG operators’ anticipation (e.g.

the power consumption level of MEMG is higher than expected

and PDS commands a certain large power output of MEMG, or

the available RE output is lower than the lowest expected level),

the loads will probably be shed to track the scheduling

instructions.

There exists no provision for 100% RE consumption in the

ARO model, thus, although the prediction error is expected, RE

may not be completely absorbed in MEMG. The rejection of RE

power may be due to the constraints of line transmission

capacity, the low energy consumption level of MEMG, etc.

When the prediction error exceeds the risk tolerance, the RE

consumption rate may be further downward constrained by

undesirable PDS orders, which are hard to track without RE

abandonment (e.g. power instructions of certain low negative

values).

The results show that the ARO model has more advantages

when considering the prediction error. With the increase in

prediction error, the results of the DO method get worse,

because the results of DO method are not robust to

operational uncertainties. There may occur load shedding or

RE abandonment in MEMG, to track the scheduling orders from

PDS which are formulated with submitted MG-FPs. The results

indicate that the robust optimization framework we proposed to

obtain MG-FPs possesses preponderance, especially in scenarios

with large prediction error.

5 Conclusion

In this paper, we propose a specific evaluation method for the

operational flexibility of distributed MEMG in supporting power

distribution systems. The method has the following merits.

The flexibility-oriented model of MEMG is introduced, by

systematically considering the flexibility resources of MEMG.

The network constraints are considered as well, making the

proposed evaluation method more applicable. The flexibility

representation way we adopt, namely MG-FPs, determines

that the main network can schedule the MEMGs as

conventional units or loads in the primal scheduling model.

Besides, the privacy problem can be avoided.

FIGURE 7
MEMG available RE power predicted, and uncertainty intervals.
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Several uncertainties are considered when assessing the

flexibility of MEMG, making the assessment result robust. The

MG-FPs obtained through theAROmodel proposed in this paper can

resist the influence of system operational uncertainty to a certain

extent, which depends on the prediction error of the uncertainty set

and the risk preference of theMEMGoperator. The case studies show

the effectiveness of the MG-FPs in representing the flexibility of

MEMG. It can also be summarized that the flexibility capability of

MEMG is related to equipment configuration, line transmission

capacity, and energy consumption level.

Future works include 1) improving the model of MEMG

components to meet the actual needs; 2) developing a reasonable

pricing mechanism for the flexibility of the MEMG to encourage

the MEMG to participate in the operation support of the main

network.
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As the number of urban electric vehicles continues to increase, accurate

prediction of the electric vehicle (EV) spatial and temporal distribution

charging demand is of great importance for safely operating the power grid.

Due to the uncertainty and variability of EV user charging and discharging

strategies, the strategic factors behind user behavior become the key to

influencing whether the charging demand prediction results are reasonable.

As a result, this paper proposes a charging demand prediction model based on

real-time data from Baidu map that can interpret EV user driving strategies and

charging strategies based on the strategy learning capability of generative

adversarial imitation learning. This paper first analyzes the correlation

between strategy factors and SOC in user charging and discharging data,

then describes establishing a 24-hour SOC prediction model for a single

vehicle, and finally discusses building a spatiotemporal model of charging

demand in the region on this basis. The results demonstrate that, while it

can be combined with real-time traffic data, the method has better prediction

accuracy and robustness compared with the current mainstream prediction

methods and high application value.

KEYWORDS

data-driven, charging demand, user strategies, imitative learning, spatiotemporal
models

1 Introduction

In recent years, in order to reduce dependence on oil and fossil fuels, a number of

countries and regions have developed policies to promote the development and market

penetration of electric vehicles. Global electric vehicle sales reached 6.75 million units in

2021, an increase of 108% over 2020, while the global share of electric vehicles in global

light vehicle sales was 8.3% compared to 4.2% in 2020 (EV volumes.com, 2021). The

continued growth of scaled EV charging loads connected to the grid will certainly bring

challenges to urban road traffic, as well as to the stable operation of the grid. Currently,
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research on EVs focuses on charging demand prediction, energy

management and charging guidance, which can help reduce the

negative impacts of EVs on the grid, where EV charging demand

prediction is the basis for conducting an impact analysis of EV

access on the grid, a distribution grid planning and control

operation, a two-way interaction between EVs and the grid,

and charging guidance (Chen and Zhang, 2019). However,

with the increasing penetration of EVs and the increasing

charging demand, the rationality and accuracy of the existing

charging demand prediction methods can no longer meet the

needs of grid dispatch and charging guidance well (Ge et al.,

2020). Therefore, this paper discusses conducting a series of

studies on electric vehicle charging demand prediction.

Contemporary research on EV charging demand prediction

focuses on user behavior analysis and the coupling characteristics

between user behavior, road networks, and EVs (Arias et al.,

2017; Li et al., 2018; Liu et al., 2022). Charging demand is

generated due to the lack of energy of electric vehicles, and

user behavior is the dominant factor of electric vehicle battery

energy change, where user behavior users include charging time

selection, travel mileage selection and driving strategy; thus, user

behavior analysis is the difficulty and key to charging demand

prediction. In recent years, load prediction models based on IoT

big data platforms for obtaining user psychological and

behavioral characteristics to meet real-time charging demand

have been the focus of research (Ge et al., 2020), (Ge et al., 2020)

obtains regenerative feature data by obtaining historical travel

information and using data mining and fusion techniques to

analyze the distribution pattern of residential trips and charging

behavior characteristics. (Xydas et al., 2016) starts with the

analysis of real charging data to establish a framework of

features for EV charging demands. The model uses data

analysis methods to extract the information hidden behind

charging events to characterize EV charging loads. (Arias

et al., 2017) proposes a time-space EV charging-electricity

demand prediction model based on real-time CCTV data in

Seoul, Korea. Traffic data (i.e., arrival rates) and EV battery

information (i.e., SOC levels and charging patterns) are used to

calculate EV charging demands. (Jahangir et al., 2021) proposes a

supervised EV demand prediction method called EVGANS,

which was developed in a 3D environment based on

generative adversarial networks that can represent different

characteristics of EV charging demands. (Zhao et al., 2021)

addresses the problem of prediction accuracy by developing a

new data-driven prediction framework, which improves the

application of charging demand prediction models and

enhances the prediction accuracy in complex real-world

scenarios. (Yang et al., 2020) proposes an analytical

framework for EV charging demand, emphasizing that

charging demand is mainly determined by users’ travel

behavior and bounded rational behavior. (Zang et al., 2020;

Zang et al., 2021) analyze the information of user

consumption behavior from practical load data from

residential customers, and predict regional charging load

based on deep learning algorithm.

Recent research methods show that researchers focus on

individual user charging SOC feature mining and user

charging strategy distribution based on model group

behavior and its impact on charging demand prediction

(Yang et al., 2017; Chaudhari et al., 2018; Calearo et al.,

2019). A Marquardt (LM) training method based on a

rough structure was developed using Levenberg’s

feedforward and recursive artificial neural network (ANN).

The method considers the correlation between arrival time,

departure time and trip length (Jahangir et al., 2019). (Yi et al.,

2020) investigates the spatial and temporal distribution of an

EV charging demand in different urban functional areas and

temperatures. The method describes the variability of

individual users and considers various objective factors,

such as time, location, temperature, and road conditions.

(Lin et al., 2019) establishes an agent-based travel chain

model (ABTCM) to study the distribution of electric vehicle

(EV) charging demand and its dynamic characteristics, where

a large number of EV charging demand differentiation models

are considered. (Majidpour et al., 2014; Yi and Bauer, 2015)

links charging demand to the urgency coefficient of user

charging behavior, which gave a mathematical model to

describe charging demand behavior, but lacked a method to

determine charging demand behavior. (Ge et al., 2020)

predicts the future 24-hour SOC variation curve of a single

EV based on user historical SOC data, but this is only

applicable to the more regular user SOC historical data,

while the method lacks a grasp of user behavior. Based on a

large amount of literature, it is known that user behavior is a

deterministic strategy made by users based on factors, such as

current time and remaining SOC, and there is a lack of

research on accurate mathematical models of user charging

and discharging strategies in current research due to the large

number of factors influencing user behavior.

In this paper, we study two problems. The first problem is

building an accurate mathematical model of user charging and

discharging policies. Currently, generative adversarial imitation

learning (Ho and Ermon, 2016) can express user policies as a

neural network, and thus, neural networks can fit user policies

due to their good strategy learnability (Wang, 2003). Generative

adversarial imitation learning improves on the original inverse

reinforcement learning (Ng and Russell, 2000), which can extract

policies directly from user data, while avoiding the problem of

difficult definition of the reward function in inverse

reinforcement learning. In this paper, user charging and

discharging policies are divided into driving policies, travel

target mileage policies, and charging duration selection

policies, and then these three policies are learned using

generative adversarial imitation learning. The second problem

is perceiving the charging demand behavior on the single vehicle

SOC prediction results. Here, we consider quantifying the
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perception of user charging demand based on the user charging

urgency model and providing the method of determining

charging demand.

In summary, this paper proposes a new EV charging demand

prediction method that fully considers user charging and

discharging strategies, and this paper makes the following

contributions.

1) A user charging and discharging strategy model is established.

Based on the MIC maximum information coefficient to prove

the correlation between EV SOC variation and driving

strategy and charging strategy, combined with the real-

time traffic flow speed of Baidu map, we propose a

strategy learning model based on the generative adversarial

imitation learning (GAIL) hybrid proximal policy

optimization algorithm (PPO).

2) A 24-hour SOC prediction model for a single electric vehicle

is established. Based on the strategy learning model, the

prediction method of single EV SOC is proposed based on

the XGboost algorithm, and it is proven that the prediction

method has good robustness and accuracy.

3) A spatiotemporal model of EV cluster charging demand in

the region is established. Based on the individual EV SOC

prediction curves and combined with the user charging

urgency perception model, a spatiotemporal model of EV

cluster charging demand in the region is established and

demonstrated to describe the spatiotemporal characteristics

of charging demand.

The rest of the paper is organized as follows: Chapter

2 demonstrates that the user charging and discharging

strategy is the main factor in the SOC variation of EVs.

Chapter 3 gives a detailed description of the approach in this

paper, and Chapter 4 presents and discusses the results of the

model simulation. Chapter 5 provides a summary and outlook of

the work in this paper.

2 Analysis of charging and
discharging strategies for EV users

From Chapter 1, it is clear that the core problem of EV

charging demand prediction at this stage is to consider a single-

user SOC prediction model based on the user’s EV charging and

discharging strategy. Since SOC variation is affected by many

factors, including user strategy factors and environmental

factors, it is necessary to demonstrate that charging and

discharging strategies are the main factors of SOC variation.

Thus, this proves the feasibility of a single EV SOC prediction

model, followed by screening the strategy factors that are strongly

related to SOC as the input features of the single vehicle SOC

prediction model, where charging and discharging strategies

include the user driving strategy, the user travel mileage

selection strategy and the user charging duration selection

strategy. Next, the correlation between user charging demand

and user charging starting SOC distribution and user charging

urgency is illustrated.

2.1 Strategic factors analysis of the
charging and discharging process based
on the MIC matrix

MIC is the maximal information coefficient (Zhang et al.,

2014). MIC can measure the degree of correlation between two

variables, and the value of MIC is between 0 and 1. The larger the

value of MIC is, the stronger the correlation between the two.

Meanwhile, MIC has good accuracy and robustness.

The charge-discharge characteristic analysis proves the

correlation between the discharging SOC and the driving

strategy based on the MIC matrix and illustrates the

correlation between the charging SOC and the charging

strategy. The MIC matrix values are distributed from 0 to 1;

the closer to 1 the value is, the stronger the correlation between

the horizontal and vertical factors.

2.1.1 Correlation analysis of discharging
characteristics

The discharging process, i.e., the driving process, is a process

with human factors involved, and its SOC is affected by

numerous factors, not limited to those shown in the figure

below, such as road conditions (slope, bumpiness). This paper

mainly considers the influence of the user’s driving strategy on

the SOC variation. The discharging characteristic MIC matrix is

shown on the left of Figure 1, and the results prove that the

correlation between the discharging SOC and driving distance,

speed and temperature is the strongestamong the subcorrelation

factors of the discharging SOC, the correlation between the

discharging SOC and total voltage and battery voltage is

stronger, therefore, the user driving strategy is the main causal

factor of SOC change in the discharging process. Meanwhile,

temperature is also a major factor affecting SOC, which is due to

the fact that electric vehicles are driven in situations where the

outdoor temperature is low and the low temperature inhibits the

performance of the battery (Qin et al., 2021). Here, a discharging

SOC prediction model based on user driving strategy and real

temperature data is considered.

2.1.2 Correlation analysis of charging
characteristics

The charging stage has no human subjective factors involved,

and each variable changes with the interaction process of EV and

charging pile. The whole process is more regular than the

discharging process, and the charging process is divided into

fast charging and slow charging. The correlation of these two

process features is basically unified. The MIC matrix is shown on
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the right of Figure 1, and the results prove that the charging SOC

and the user charging duration, charging voltage, and

temperature are strongly correlated. As with the discharging

process, a charging SOC prediction model based on user

charging duration and real temperature data is considered here.

2.2 Correlation analysis of charging
urgency and charging demand

The root cause of user charging demand generation is the

reduction of battery energy, which affects the urgency of user

charging, i.e., charging urgency (Yi and Bauer, 2015). The higher

the charging urgency is, the higher the probability of that user

signaling charging demand. Only the charging urgency determined

by the battery SOC is considered here. When the depth of discharge

(DOD) is deep and the remaining charge is less, the higher the

charging probability of the user and the higher the charging urgency

of the user, it becomes more urgent for the user to charge.

Here, we consider the general expression of the charging

urgency function. Let the charging probability density function

be D(x) in Eq. 1, D(x) is a function of depth of discharge DOD.

The integral of D(x) is the charging probability, then the closer

the DOD is to 1, the greater the charging probability. Here,

DOD = 1- SOC, D(x) is determined by the functions h1(x) and
h2(x), where x1, x2 and x3 are determined by the battery

capacity; the larger the battery capacity, the larger x1, x2, and x3.

D(x) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 x≤ x1

h1(x) � k1x +m1, x1 < x≤ x2

h2(x) � k2x +m2, x2 < x≤ x3

0 x3 <x≤ 1
(1)

where h1(x1) � 0, h1(x2) � h2(x2), h2(x3) � 0, k1, m1, k2, and

m2 are calculated from x1, x2, and x3, the charging urgency

function Cu(x) is the integral of D(x) from 0 to x, i.e., charging

probability, giving the following equation.

Cu(x) � ∫x

0
D(t)dt (2)

Here, ∫x3

0
D(t)dt � 1, while we express the charging urgency

function:

Cu(x) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 x≤ x1

f1(x) � a1x
2 + b1x + c1, x1 < x≤ x2

f2(x) � a2x
2 + b2x + c2, x2 < x≤ x3

1 x3 <x≤ 1
(3)

where f1(x1) � 0, f1(x2) � f2(x2), and f2(x3) � 1.

2.3 Correlation analysis of user charging
starting SOC distribution and charging
demand

The user charging starting SOC distribution reflects the

user’s dependence on the action of charging demand on the

selection of starting charging SOC. If a user tends to choose to

charge at a lower SOC, the probability of having a charging

demand at a certain moment will also be lower, conversely, the

probability of generating charging demand will increase. We

consider fitting the charging start SOC distribution of different

users using a normal distribution, and themethod of determining

the charging demand is as follows: when a user’s real-time SOC

approaches this user’s historical charging starting SOC at

moment t, i.e., when the real-time SOC drops to some user’s

charging demand interval, that user will generate charging

demand, which is determined by the distribution of the user’s

charging urgency coefficient and that user’s charging

starting SOC.

FIGURE 1
MIC matrix analysis of charging characteristics and discharging characteristics.
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Here, consider the case that when the charging starting

SOC is smaller, the greater the probability of charging for a

user. In order to obtain the charging start SOC distribution of

a user, i.e. normal distribution N(μ, σ2), we obtain the mean

and variance of a user’s historical charging start SOC data,

which are extracted from the EV operating data introduced in

Section 3.1.1, then draw the starting SOC value X from

N(μ, σ2), and let the user’s SOC at moment t be Xt, at

which time the user’s charging urgency factor is Cu(Xt).
Then, the charging demand interval of that user is

[X, X + Cu(Xt)]. It can be seen that the smaller Xt is and

the larger Cu(Xt) is, the wider the range of the charging

demand interval and the greater the probability of that user

generating charging demand.

3 Spatial and temporal prediction
model for EV cluster charging
demand

The analysis of the strategy factors of the charging and

discharging process in Section 2.1 shows that there is a

correlation between user strategy and SOC variation, as well

as variability in different user behavior strategies, so it is

necessary to establish a single-user 24-hour SOC curve and

finally a regional EV cluster charging demand model. Strategy

learning is performed using generative adversarial imitation

learning (GAIL), and based on strategy learning; individual

vehicle SOC curves are predicted based on the XGboost

algorithm. The spatial and temporal prediction framework for

EV cluster charging demand is shown in Figure 2, and the

prediction process is divided into three steps, which are

described in detail in Sections 3.3, 3.4, 3.5, followed by

experimental data acquisition and algorithm introduction

described in Sections 3.1, 3.2, respectively.

Step 1: Regional scale EV path planning and real-time traffic flow speed

acquisition on the path.

Step 2: 24-hour individual EV SOC prediction.

Step 3: Regional EV cluster charging demand prediction.

3.1 Data acquisition

3.1.1 EV operating data
The experimental data in this paper are obtained from the

Shanghai New Energy Electric Vehicle Monitoring Center for

1,000 tested EVs in a month (Shanghai Electric Vehicle Public

Data Collecting, 2019), which contains the following EV

operation parameters: speed, acceleration, SOC, temperature,

latitudes and longitudes, with data points sampled every 10 s,

with private cars, logistics vehicles, buses, and taxis accounting

for 10%, 12%, 35%, and 43% of the data, and the data points for a

single trip trajectory are approximately 2000. This article states:

all vehicle information has been de-privatized. The data

attributes are shown in Table 1.

3.1.2 Road network node data
The OSMnx library in Python was used to obtain

information on the coordinates of all road nodes in the target

prediction area and the distance between nodes (road nodes are

the intersections of that path and other roads), and a sample road

network is shown in Figure 3.

3.2 Algorithm description

3.2.1 Generative adversarial imitative learning
algorithm

Generative adversarial imitation learning is an effective

combination of imitation learning (Osa et al., 2018) and

adversarial networks (Goodfellow et al., 2014). This paper is

based on GAIL to fit user charging and discharging strategies.

FIGURE 2
Spatial and temporal prediction framework for EV cluster
charging demand.

TABLE 1 Data attributes.

Property name Range of values

Speed 0–220 km/h

Acceleration −2.2305–2.7277 m/s2

SOC 0–100%

Temperature 0–40°C

Longitudes 118.787731–121.962492°

Latitudes 30.698392–32.069602°
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The generator network is the charging and discharging policy,

where the discriminator and generator are multilayer fully

connected neural networks. Here set the label of generated

data by the generator to 1 and the real user data to 0. The

above process is a game process between the discriminator and

the generator. After several iterations of the above process, when

the discriminator cannot distinguish the data generated by the

generator from the real data, i.e., the generator and the

discriminator reach Nash equilibrium, the generated data

successfully matches the real data.

3.2.1.1 Discriminator network

First, we introduce the binary cross-entropy loss function:

H(q) � −∑m
i�1
[yi · log(p(yi)) + (1 − yi) · log(1 − p(yi))] (4)

Eq. 4 is the loss function for training the binary classifier,

p(yi) is the probability of yi, where yi is the data label (0 or 1),

and −∑N
i�1yi · log(p(yi)) is the entropy of the distribution of yi,

while a smaller entropy indicates a closer approximation to the

true distribution q(yi).
According to the principle of generative adversarial model,

the discriminator performs a gradient descent update based on

Eq. 5:

∇θd

1
m
∑m
i�1
[logD(x(i)) + log(1 −D(G(z(i))))] (5)

where D(x(i)) is the discriminator’s probabilistic determination

of the real data andD(G(z(i))) is the probabilistic determination

of the generated data.

3.2.1.2 Generator network

The loss function of the generative network is constructed

using Eq. 4 as follows:

∇θg

1
m
∑m
i�1
log(1 −D(G(z(i)))) (6)

FIGURE 3
Example of a path.
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3.2.2 Proximal policy optimization algorithm
The optimization of the parameters of the generator and

the discriminator is performed by the PPO algorithm. This

algorithm accelerates the convergence of the network

parameters. The PPO algorithm has some of the advantages

of trust region policy optimization (TRPO) (Schulman et al.,

2015). The objective function of PPO is a first-order

approximation taken over TRPO, so they are easier to

implement, more general and have better sample

complexity (Schulman et al., 2017). In this paper, certain

improvements are made based on the original PPO

algorithm as follows.

In order to make the generalization ability of the

generator better, the generated samples collected from the

environment are disrupted here, while the samples are

divided into certain batches and sent to the PPO

algorithm for multiple rounds of parameter updates, which

can make full use of the sample information and also improve

the learning efficiency and convergence speed of the

generator. Here, the sample batches should not be too

many, so as not to reduce the operation speed of the

algorithm.

3.2.3 Extreme gradient boosting algorithm
XGBoost is an optimized distributed gradient

boosting library (Chen and Guestrin, 2016) that performs

well on regression problems. It is a machine learning

algorithm based on the gradient boosting framework.

The basic idea of XGBoost is the same as GBDT (Friedman,

2001).

3.3 Regional scaled EV path planning and
real-time traffic flow speed acquisition on
the path

3.3.1 Intraregional scaled EV pathway planning
Path planning uses the set of real path latitude and

longitude coordinates in the dataset of Section 3.1.2, and all

path latitude and longitude coordinates are processed through

the data. Then, the OSMnx library in Python is used to

visualize the path and extract information about the

coordinates of road nodes and distance from the starting

node (a path node is the intersection of that path and other

roads). Let the dataset of each path node be:

Ωj � {(xj
1, y

j
1, s

j
1), (xj

2, y
j
2, s

j
2), ..., (xj

n, y
j
n, s

j
n)} (7)

where Ωj denotes the j trajectory j � 1, 2, 3, . . . dataset and,

(xj
1, y

j
1) and sj1 are the path node latitude and longitude

coordinates and the distance from the starting node,

respectively. Examples of path visualization are shown in

Figure 3.

3.3.2 Path real-time traffic flow speed
acquisition

Considering that the user’s driving strategy is affected by the

real-time traffic flow speed, it is necessary to obtain the real-time

average speed of each road section based on the Baidu map real-

time information platform (Baidu map open platform, 2022) to

obtain the driving time T of the road section to which the current

vehicle coordinates belong. Let the distance of the adjacent nodes

from the starting node be l1 and l2. Then, the length of the current

road section is L � l1 − l2, the time required to pass the current

road section is Tt, and the real-time average traffic flow speed of

this road section is vt. Its real-time average traffic flow speed can

be calculated according to the following expression:

vt � L

Tt
(8)

3.4 24-hour individual EV SOC prediction
model

The individual EV SOC is predicted on the path-based real-

time traffic flow speed extraction in Section 3.3. The prediction

flow diagram is shown in the dashed part of Figure 4, and the

prediction model is divided into two submodels as follows.

3.4.1 User strategies learning model based on
generative adversarial imitation learning

The dashed part of Figure 4 shows the policy model part,

which consists of three upper-level policies and one lower-

level policy. The state space is the current SOC and the current

moment, and all upper layer strategies share the current state

information and make actions according to the state, where

the charging and discharging strategies make charging action

0 or travel action 1; the charging strategy outputs the single

charging duration; the travel strategy outputs the single travel

target distance; the lower driving strategy executes the output

target of the upper-level strategy and outputs the acceleration,

single mileage, and time of the next moment with an output

interval of 10 s. Thus, the output after executing the policy

network is a single EV 24-hour speed curve and a single

mileage curve. The three policy networks use the same

GAIL structure with a time scale of 24 h. The strategy

learning flow chart is shown in Figure 5. The strategy

learning model consists of a policy generation network, a

discriminator network and a PPO network. The policy

network uses the user history data as the learning sample

and fits the user history policy distribution through the

discriminator. The specific process is as follows.

Step 1: Trajectory sampling

The main program is a nested loop structure. The first layer

loop is an iterative loop, traversing all expert trajectory data for

one generation. The second layer is an expert trajectory loop, first
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generating the sampled trajectory after the policy network and

then calculating the corresponding value function, advantage

function, and the mixed logarithmic density of the sampled

trajectory, before sending the expert strategy trajectory and

sampled trajectory to the discriminator to update the

discriminator parameters, and finally sending the value

function, advantage function, and the mixed logarithmic

density of the sampled trajectories to the PPO algorithm to

update the policy network until all expert trajectories are

traversed and the second level of the loop ends.

Step 2: PPO policy optimization

The structure is a nested two-layer loop; the first layer is an

iterative loop, for each iteration, the order of the collected sample

data (state set, reward value set, advantage estimation set, value

estimation set, return estimation set, state-action mixed

logarithmic probability set) is disordered, divided by certain

batches and sent to the PPO algorithm for a parameter

optimization update together with the policy network, value

network; and the second layer is the network parameter update

layer, traversing all sampled batches, i.e., the cycle is completed.

3.4.2 XGboost-based 24-hour SOC prediction
model for a single EV

Based on the input feature analysis of the SOC prediction

model in Section 2, the speed and mileage curves, as well as the

charging duration curve, are calculated based on the 24-hour user

speed curve generated by the learning strategy in Section 3.4.1,

where the speed and mileage curves predict the discharging SOC

and the charging duration curve predicts the charging SOC.

Therefore, the driving SOC regression prediction model and the

charging SOC regression prediction model are developed.

Here, the prediction algorithm is chosen as XGboost, and the

prediction model flowchart is shown in the lower part of Figure 6,

where the loop is a cross-validation process. The process divides

the training dataset into n subsets and normalizes the training set

by removing the mean and scaling to the unit variance, and each

loop uses one of the subsets as the validation set and the

remaining subsets as the training set until all subsets are

traversed. This method ensures good generalization.

3.5 Regional EV cluster charging demand
prediction model

As shown in Figure 4, based on the individual EV SOC

prediction model in Section 3.4, a regional-scale EV charging

energy demand prediction model is established, where the user

charging urgency and charging starting SOC are used to predict

the charging energy demand without using the user. According

to the definition of the charging demand interval in Section 2.3,

FIGURE 4
Flow chart of EV cluster charging demand spatial and temporal prediction.
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when the user SOC enters within the charging demand interval,

the user is considered to have charging demand, and the charging

energy demand of this user is calculated, labeled on the map, then

finally generated a heatmap for EV cluster charging demand

prediction.

3.6 Hyper parameter optimization of
strategy learning model and SOC
prediction model

In order to make the strategy learning model and SOC

prediction model in Section 3.4 converge in a shorter time to

achieve better performance, the Bayesian optimization algorithm

is utilized here for hyper parameter search. In the curated path

model, the KL scatter of the true and predicted values is used as the

objective function of Bayesian optimization, where the policy

network and the discriminator network consist of multilayer fully

connected neural networks, and the network hyper parameters are

shown in Table 2, with the number of expert trajectories set to 10. In

the SOC prediction model, the mean square error of the true and

predicted values is used as the objective function of Bayesian

FIGURE 5
Flow chart of strategy learning based on the PPO algorithm.

FIGURE 6
Flow chart of single vehicle 24-hour SOCprediction based on
the XGboost algorithm.
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optimization, and the number of search generations is 50. The

XGboost hyperparameters are shown in Table 2, and the

hyperparameters are all accurate to 4 decimal places.

3.7 Evaluation metrics

3.7.1 Regression model metrics
1) Root mean square error (RMSE):

RMSE(yi, ŷi) � ⎡⎣1
n
∑n
i�1
(yi − ŷi)2⎤⎦ 1

2 (9)

2) Mean square error (MSE):

MSE(yi, ŷi) � 1
n
∑n
i�1
(yi − ŷi)2 (10)

3) Coefficient of determination (R-Squared):

R − Squared(yi, ŷi) � 1 −
∑n
i�1
(yi − ŷi)2

∑n
i�1
(yi − �y)2 (11)

The R-squared is between 0 and 1; the closer it is to 1, the

better the performance of the regression model.

4) Mean absolute error (MAE):

MAE(yi, ŷi) � 1
n
∑n
i�1

∣∣∣∣yi − ŷi

∣∣∣∣ (12)

3.7.2 Reinforcement learning metrics
3.7.2.1 Robustness

The size of the expert sample determines the

amount of information that can be learned by the policy

network, which in turn affects the stability of the policy

network. Thus, the robustness of the reinforcement learning

TABLE 2 Parameter settings.

Object Parameter Value or class

Discriminator network Number of neural network layers 3

Set the number of hidden layer dimensions (3,128)

Activation function Hyperbolic tangent function

Policy network Number of neural network layers 3

Set the number of hidden layer dimensions (3,128)

Set the initial action variance 0

Activation function Hyperbolic tangent function

PPO algorithm Optimization iteration number 100

Optimize the number of single samples 128

Discount rate 0.9581

Truncation threshold 0.2234

Main program Operating equipment Tesla P100 GPU

Maximum number of iterations 1,000

Learning rate 9.9234*10–5

XGboost algorithm Learning rate 0.0696

Gamma 2.3287

The maximum depth of the tree 19.8345

Subsample rate 0.8565

L2 regularization 0

L1 regularization 93.1137

Maximum number of nodes 734.9243

The sum of the minimum instance weights required in the child 66.9243

Number of iterations of boosting 716.9243

Bagging_fraction 0.9822
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model is mainly reflected in the effect of the size of the data on

the model’s stability.

3.7.2.2 Kullback-Leibler divergence

KL divergence (Kullback-Leibler divergence), also known as

relative entropy, is a way to describe the difference between two

probability distributions, P and Q, where P denotes the true

distribution and Q denotes the fitted distribution of P. For two

probability distributions, P and Q, of a discrete random variable

or a continuous random variable, the KL divergence is defined as

follows:

D(P‖Q) � log(P(i)
Q(i)) × ∑

i∈X
P(i) (13)

D(P‖Q) � log(P(i)
Q(i)) × ∫

x

P(x) (14)

The KL divergence is between 0 and +∞. The smaller the KL

divergence is, the closer a certain probability distribution is

proven to be to the true distribution.

4 Results and discussion

The model simulation analysis is divided into several parts:

first, the robustness and learnability of the policy network

are evaluated, followed by a speed prediction model based on

the policy model to illustrate the variability of user

policies, comparing the speed prediction results for four

types of users. Then, the single vehicle 24-hour SOC

prediction results are shown and compared with

historical SOC-based prediction methods, and finally, a

spatiotemporal map of charging demand at key moments

throughout the day in the main city of Shanghai is

shown. The algorithm program is fully implemented by

Python 3.7.

4.1 Analysis of the strategy learning model

4.1.1 Policy network robustness analysis
The robustness of the policy network reflects the stability of

the policy network, therefore the stability of the policy network

obtained by different policy optimization algorithms is different;

thus, it is necessary to analyze the robustness of the policy

optimization algorithm (PPO algorithm) based on this paper,

and the comparison algorithm is the TRPO algorithm. As shown

in Figure 7. Here, the total historical travel trajectories are

supplied for 20, and the average returns of TRPO- and PPO-

based policy networks are compared and analyzed under the

conditions of 25%, 50%, 75%, and 100% historical travel

trajectory data, respectively. 3 to 5 simulations are performed

with the same random seeds. The dashed lines indicate the values

of the reward functions corresponding to the expert policies, and

the red color represents the TRPO-based return curves. The

purple color represents the return curve based on PPO. The

TRPO algorithm is less robust when the amount of data is less,

while the average return is lower, and the PPO algorithm is more

robust under each amount of data. Its average return fluctuation

is less than 0.2%, while the average return is higher than the

TRPO algorithm, and the average return value of the PPO

algorithm is close to the expert strategy. Therefore, the

robustness of the method in this paper is better, and the

stability of the policy network is stronger.

4.1.2 Kullback-Leibler divergence analysis of
strategy distribution and real data

In order to prove that the method of this paper has good

strategy learnability, the KL divergence of this paper’s

algorithm (PPO) and TRPO algorithm on strategy learning

is compared and analyzed here, and the magnitude of KL

divergence indicates the difference between the policy network

generated data and the real data. The results are shown in

Table 3. The results based on the PPO algorithm have the

FIGURE 7
Comparison of PPO and TRPO robustness.

TABLE 3 Comparison of KL divergence of strategy learning results and
expert data.

Data distribution PPO TRPO

Charging duration strategy 0.1052 0.8792

Traveling mileage strategy 0.1256 0.8254

Driving strategy 0.1123 0.8648
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lowest KL divergence among the three learning strategy

results, which indicates that the PPO algorithm has better

learnability for the policy path.

4.2 Real-time speed prediction for a single
EV based on the policy model

We illustrate the effect of variability in the charging and

discharging strategies of different users on the time

distribution of charging demand and provide data for the

subsequent prediction of the 24-hour SOC of a single vehicle.

The results of the 24-hour speed prediction for a single vehicle

are shown here. Here, four types of users are considered:

private cars, logistics vehicles, buses, and taxis. Their

respective charging and discharging strategies are learned,

and then the 24-hour speed prediction curve of a single

vehicle is predicted based on the real-time traffic flow

speed, as shown by the red line in Figure 8. Finally, the

single driving mileage is calculated based on the speed

curve, and here, the starting mileage is obtained by

averaging the user’s historical data. As shown by the blue

line in the figure, the following analysis shows the variability of

user charging and discharging strategies.

As shown in Figure 8, taxis and buses travel the longest

single mileage, and due to the functionality of logistics vehicles

and buses, the charging demand for both is distributed between

9:00 p.m. and 8:00 a.m. the following day. Additionally, after

10:00 p.m., the operation basically stops, so both take slow

charging in the evening. There is relatively no substantial

regularity in the discharging time interval for taxis and private

cars. Meanwhile, taxis have obvious charging behavior at

approximately 1:00 p.m. Since taxis need to obtain more travel

orders during the day, they mostly adopt fast charging, so the

charging duration of taxis is approximately 1 h, while the charging

demand of private cars is basically concentrated between 12:00

a.m. and 8:00 a.m., and private car users mostly adopt slow

charging in the evening. Additionally, the driving speed of the

four types of cars is basically positively correlated with the real-

time traffic flow speed, and the learning results of the user’s driving

strategy are relatively substantial. In summary, the variability of

the time distribution of charging demand for different users is

relatively obvious due to different charging and discharging

strategies.

4.3 24-hour SOC prediction for a single EV

Here, the user driving speed and mileage prediction results

based on Section 4.2, i.e., the charging and discharging strategy,

are used as the input features of the XGboost algorithm as a way

to predict the 24-hour SOC curve of a single vehicle to

demonstrate the superiority of the method in this paper. As

shown in Figure 9, four types of EVs are selected by vehicle usage

and compared with the prediction method based on historical

SOC, where the red line represents the real SOC, the blue line

FIGURE 8
Single vehicle 24-hour speed and mileage prediction results.
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represents the prediction result based on historical SOC, and the

sky blue line represents the prediction result based on the

charging and discharging strategy. The prediction results of

both methods for charging SOC are good, the prediction

curves are relatively smooth, and the prediction results are

stable. However, in SOC the prediction results of the

discharging process, the two perform slightly differently. In

the comparison of the prediction results for private car users,

the prediction curves of the two methods are less stable and show

obvious jitter, which may be related to the feature distribution of

the data itself, but both have a good grasp of the overall trend of

the SOC discharging process. In the prediction results for taxi

users, the method in this paper performs well in the prediction

results for taxi users. The method in this paper shows good

stability in the prediction results of the discharging process, but

the prediction results of the historical SOC-based method show

obvious jitters and outliers in the second half of the discharging

process, which is due to the inconspicuous characteristics of the

historical data. In the prediction results of SOC for logistics

vehicle users, both show better robustness and fit.

It also proves the good prediction accuracy of the method in

this paper. According to Table 4, the four evaluation metrics of

regression prediction in Section 3.7 are selected here, and the

prediction accuracy of this paper’s SOC prediction method and

the historical SOC-based prediction method are compared

according to these four indicators. Both methods use the same

FIGURE 9
Single vehicle 24-hour SOC prediction results.

TABLE 4 Evaluation metrics.

Type of
vehicle

Prediction
methodology

MAE RMSE MSE R-Squared

Logistics vehicle Real-time traffic flow speed 1.3761 2.1281 4.5287 0.9924

Historical SOC 1.6585 2.3239 5.3964 0.9923

Taxi Real-time traffic flow speed 1.6732 2.4536 6.0201 0.9725

Historical SOC 2.7492 3.1373 9.8429 0.9496

Bus Real-time traffic flow speed 2.7218 3.3042 10.9176 0.9074

Historical SOC 3.1527 4.4402 19.7158 0.8652

Private car Real-time traffic flow speed 2.0627 2.6167 6.8472 0.9831

Historical SOC 3.1424 3.8717 14.8005 0.8522
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FIGURE 10
Results of 24-hour charging demand prediction in Pudong.
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size training set to train the network, and the training set size is

5,000 data points. From the prediction results of the four types of

vehicle SOCs, each of the prediction methods obtained from this

paper’s average mean square error is reduced by 37% and the

average coefficient of determination is improved by 4%. The

results demonstrate that the two methods perform basically

equivalently for the logistics vehicle SOC prediction problem,

while in the other three types of EV SOC prediction problems,

the prediction accuracy of this paper’s method is considerably

higher than that of the traditional prediction method.

4.4 Regional EV cluster charging demand
prediction

Spatial and temporal prediction of large-scale EV charging

demand is considered here. The individual EV 24-hour SOC

prediction results based on Section 4.3 and the definition of

charging demand intervals in Section 2.3 are combined to predict

the charging demand and energy demand for all users. The

spatiotemporal distribution of charging demand in the region is

then built on this basis. Here, it is specified that when a user

generates charging demand, the difference between the current

battery energy and 100% of the battery capacity is used as the

charging energy demand. Let the charging energy demand beEpc, let

the current battery SOC be SOCt, and let the user battery capacity be

Cp, at which time the charging energy demand of a single user is

calculated as follows:

Epc � (1 − SOCt)Cp (15)

The battery capacity options are as follows: 135 kWh for

buses, 48 kWh for private cars, 40.6 kWh for logistics vehicles,

and 45 kWh for taxis.

Figure 10 selects the prediction area as the core area of

Pudong New Area in Shanghai, which is divided into three

functional areas: the main urban area, containing the central

business district along Lujiazui and three subcenters (Huamu

Road, Jinqiao, and Zhangjiang Town); the high-tech industrial

area, centered on Tang Town and Zhuqiao Town; and the

residential area, centered on Kangqiao and Zhoupu Town.

The spatial distribution characteristics of charging demand for

1,000 tested EVs in a day are shown here, where 8 key time points

in a day (3:00 a.m., 6:00 a.m., 9:00 a.m., 12:00 a.m., 3:00 p.m., 6:

00 p.m., 9:00 p.m., and 12:00 p.m.) are intercepted in kWh, and

only users with charging demand are shown in the figure, where

each dot represents a vehicle with a charging demand, and the

size and color shades of the dots represent the amount of energy

demanded by the user. Figure 11 shows the total charging

demand in each hour of a day. In order to prove the validity

of the model in this paper, the spatiotemporal distribution

characteristics of charging demand are analyzed based on the

prediction results.

4.4.1 Analysis of the temporal characteristics of
the charging demand

As seen in Figure 11, charging requests peak at approximately

12:00 p.m. and 6:00 p.m., reaching approximately 150 and 180,

respectively. Charging energy demand also peaks at approximately

12:00 p.m. and 6:00 p.m., reaching approximately 4,000 kWh and

7000 kWh, respectively, with charging demand entering a trough at

approximately 3:00 a.m. Overall, the temporal distribution of

charging demand is relatively smooth, and the peak period lasts

for a long time. This proves that the charging demand has the

characteristics of time distribution.

4.4.2 Analysis of the spatial characteristics of
charging demand

As shown in Figure 10, from the spatial distribution of charging

demand, the charging load demand is in the low period from 12:00

a.m. to next day 6:00 a.m., and there is no obvious aggregated

demand for charging. After 6:00 a.m., the charging demand

gradually increases in the main urban area due to the emergence

of the morning peak period, with Lujiazui, Zhangjiang town and

Jinqiao town as the center in a radial distribution and less charging

demand in the area of high-tech industrial zone and residential area.

After 6:00 p.m., due to the emergence of the evening peak period, the

charging demand in the high-tech industrial area appears to be

aggregated, and the residential area also has an aggregated

distribution. After 12:00 a.m., the charging demand in the sub

center area and the industrial area decreases substantially. Other

areas show a uniform distribution of a charging demand throughout

the day. In summary, it is proven that the charging demand

distribution is related to the functionality of the area, and

therefore, the charging demand has spatial distribution

characteristics.

From the distribution of charging energy demand

throughout the day, most of the charging demand energy near

the central business district is distributed below 30 kWh, so the

FIGURE 11
Total charging demand and total energy demand statistics by
moment.
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charging users are mainly taxis and private cars, while the

charging energy demand in the high-tech industrial area is

distributed above 60 kWh, which indicates that the charging

users are mainly public transport vehicles. This proves that the

functionality of the vehicle and the charging demand distribution

are related, and in the case of this paper, the users are dominated

by taxis.

5 Conclusion

In this paper, first, to address the problem that the

mathematical model of user charging and discharging

strategies in the current literature is vague, a GAIL hybrid

PPO-based strategy learning model is proposed. Then, a

single-user SOC prediction model is built based on the

strategy model. Second, a mathematical determination

method of charging demand is given based on user

charging urgency, and a regional EV cluster charging

demand model is predicted based on the determination

method. The model analysis demonstrated that the KL

divergence of the policy network obtained based on the

GAIL hybrid PPO algorithm is reduced by 77% compared

to the GAIL hybrid TRPO algorithm. Thus, in strategy

learning, this paper method has better learnability. Finally,

in terms of single vehicle SOC prediction, this paper proposes

that the prediction method using user behavior characteristics

(speed, distance traveled, charging duration) has lower

prediction error, as well as better robustness compared to

the current historical SOC-based prediction methods with a

37% reduction in mean square error. The main contributions

of this paper are as follows.

1) A 24-hour SOC prediction model is established for individual

EVs based on real-time traffic flow rates that can elaborate on

the variability of user policies.

2) A regional charging demand prediction model is established

for charging EV clusters based on user charging urgency.

Future research work will make further improvements

based on the above results. First, since the strategy learning

model in this paper only considers real-time traffic flow speed

information, the vehicle speed in real situations will be

affected by more factors, such as the degree of road

depression, the slope and the distance of the previous

vehicle; thus, more complex driving environments need to

be considered to portray the perfect EV SOC changes. Second,

the charging demand urgency factor directly affects the

reasonableness and accuracy of charging demand. In the

future, more users need to be considered to perceive the

overall charging requirements, and with the rapid

development of telematics technology, more comprehensive

user information can be fully obtained in the future. Finally,

this paper focuses on the charging demand prediction of the

whole urban area. However, it lacks the charging demand

prediction of the charging station because the practical

charging station model of the parking location is the key to

estimating the charging demand, and at the same time, can

provide more accurate data support for charging guidance, so

the application value of the model in this paper needs to be

improved.
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Nomenclature

ε Truncation threshold

γ Reward discount rate

πE Expert strategies

πθ A policy with the parameter θ

∏ Policy space

C Reward function space

τi Collection of sampled trajectories

ρπE State-action probability distribution

Ât Advantage estimation at moment t

c(s, a) Reward functions under status s and action a

DOD Depth of discharge

D(x) Discriminator function

Dω(s, a) The discriminator function with the parameter ω

Dk Trajectory space

dπE State probability distribution

G(x) Policy generation functions

GAIL Generating adversarial imitation learning

H(π) Policy π causal entropy function

IRL Inverse reinforcement learning

KL Kullback-Leibler divergence

MIC Maximal information coefficient

MSE Mean square error

MAE Mean absolute error

PPO Proximal policy optimization

Qπ(s, a) Policy π under the state-action value function

RMSE Root mean square error

R-Squared Coefficient of determination

R̂t Value of reward function at moment t

rt(θ) State-to-action probability ratio at moment t

SOC State of charge

TRPO Trust region policy optimization

Vπ(s) Policy π under the state value function

XGboost Extreme gradient boosting algorithm
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Energy storage in wind farms can stabilize the fluctuation of wind power output.

Shared energy storage can reduce the construction cost of energy storage

devices and stimulate the enthusiasm of wind farms to invest in energy storage.

The wind power base is composed of multiple wind farm groups. Existing

research methods did not consider how to allocate shared energy storage

among wind farm groups in the wind power base. This paper proposes an

energy storage capacity allocation method for wind farm groups. Firstly, a

bilevel model for the shared energy storage allocation is established. The

upper-level model optimizes the shared energy storage allocation of each

wind farm group with the goal of minimizing the over-limit power export risk in

the wind power base; The lower-level model calculates the over-limit power

export of each wind farm group according to the energy storage capacity

allocation and transfers the value of over-limit power export to the upper-level

model. The bilevel model can be converted to a two-stage model that can be

solved sequentially; The wind power base in Belgium is used for numerical

simulation to verify the effectiveness of the proposed model. Finally, the

sensitivity of confidence level, total energy storage capacity, and risk

preference factor are analyzed.

KEYWORDS

shared energy storage, capacity allocation, CVaR, wind volatility, over-limit power

1 Introduction

Integrating renewable energy into the power systemmakes the power systemmore

environmentally friendly (Kong et al., 2019). However, the substantial volatility of

renewable energy is one of the important factors limiting its large-scale grid

connection, which directly affects the stable operation of the power system (Ju

et al., 2019). In order to use large-scale renewable energy more effectively,

researchers all over the world discuss solutions to reduce the threat of large-scale
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renewable energy to the power system. Some researchers

design a dispatching strategy for wind farms with a

multiple-stage hybrid energy storage system (Zhang et al.,

2018), while other researchers discuss the optimal allocation

of energy storage capacity for stabilizing wind power

fluctuations (Zhu et al., 2020). Further, some studies reduce

curtailed wind energy through energy storage and demand

response (Bitaraf and Rahman, 2018). In addition, some

studies propose the capacity allocation method using big

data (Song et al., 2021). Some studies propose a power

smoothing method by using a battery system using the

fuzzy control strategy (Cong et al., 2018). The research

(Zhang et al., 2019) enhances performances on wind power

fluctuations mitigation by optimizing the operation schedule

of battery energy storage systems with considerations of

operation cost. In addition, some studies deal with the

calculation of short and long-term energy storage needs

and their dependence on the installed amount of solar

energy and wind power (Weiss and Schulz., 2013). Later

studies calculate the required energy storage capacity and

charging/discharging power ratings for different desired

operation scenarios (Lu et al., 2009).

The above studies all refer to the use of energy storage devices

in a single wind farm to stabilize volatility, without considering the

sharing of energy storage among wind farms. The operation

efficiency of energy storage devices is low if the wind farm uses

energy storage devices individually. In order to fully tap the

application potential of energy storage, some studies propose

the concept of shared energy storage (Zhao et al., 2020). Some

studies propose a business model for utility-scale shared energy

storage systems (Ben-Idris et al., 2021), while other studies analyze

the complementary and controllable capabilities of energy storage

that promote new energy consumption, and study the multiple

energy storage sharing mechanism (Xv et al., 2022). Further, some

studies use a hybrid storage system for energy sharing within the

prosumers’ community (Mussadiq et al., 2022). In addition, some

studies propose a capacity allocation method for photovoltaic

microgrid energy storage systems based on time-sharing energy

complementarity (Cong et al., 2021). Some studies propose a bi-

level optimization problem aiming to improve the use of the

shared energy storage for distribution system flexibility

(Taşcıkaraoğlu et al., 2018). In addition, some studies propose a

shared energy storage strategy among multiple wind farms based

onwind power forecasting (Zhu et al., 2018). Later studies establish

a cooperative game model in which prosumers and energy storage

operators are themain participants to realize capacity optimization

of renewable energy and energy storage systems (Tian et al., 2021).

Some studies propose a novel shared energy storage planning

method considering the correlation of renewable uncertainties on

the supply side (Wang et al., 2022). However, how to reasonably

allocate the shared energy storage capacity and reduce the over-

limit power export risk of wind farm groups is still a problem to be

solved.

Large-scale wind power base is the main form of wind

power. Under the combined effect of multiple factors such as

large-scale wind power equipment, cost reduction, and

intensified market competition, the wind power base has

entered a new stage of installation growth and expansion.

Due to the large scale of the wind power base, the wind power

base is usually divided into different wind farm groups and

connected to the power grid through collection transformers

as shown in Figure 1.

The fluctuation of wind power is the main limiting factor for

the development of the wind power base. Based on the concept of

shared energy storage, this paper proposes an allocation method

of shared energy storage capacity for wind farm groups from the

perspective of minimizing the over-limit power export risk in the

wind power base. The innovations are as follows:

1) Conditional Value at Risk theory is used to characterize the

over-limit power export risk of each wind farm group.

2) A bilevel optimization model for shared energy storage

capacity allocation in wind farm groups is proposed, which

provides a theoretical basis for the reasonable allocation of

shared energy storage in wind farm groups.

3) A two-stage solution method for the bilevel optimization

model of shared energy storage capacity allocation is

proposed, and its equivalence is proved.

The remaining contents of this article are as follows: Section 2

introduces the shared energy storage for wind farm groups.

Section 3 introduces the energy storage allocation models and

the solution method. Section 4 analyzes the results through

FIGURE 1
Large-scale wind power base.

TABLE 1 Guidelines for wind farm grid connection.

Capacity Maximum output change
(15 min)

<30 MW 10 MW

30–150 MW 1/3 Capacity

>150 MW 50 MW
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simulation. Section 5 gives the conclusion and summarizes the

whole article.

2 Sharing energy storage for wind
farm groups

The fluctuation of wind power is a threat to the power grid

operation. Generally speaking, the long, high-speed, and wide-

range fluctuation process is more likely to pose a threat to the

power grid operation. In order to reduce the impact of wind

power fluctuations, State Grid proposed guidelines for wind

farms connected to the power grid, as shown in Table 1.

The real data of the wind farm group’s output in Belgium is

shown in Figure 2. We can see that the wind farm group’s output

has exceeded the limit 8 times a day, and the most serious over-

limit power is 14.78 MW. If grid connection is not allowed for the

part of over-limit power, 25.5 MWh of wind power will be

abandoned per day.

We define the over-limit power export risk in wind farms as

follows:

R � ∑NS

s�1
ηs ΔPwind

s − Plimit( ) (1)

where, ΔPwind
s represents power export change of adjacent

periods in wind farms. Plimit represents the guideline of power

export change shown in Table 1.NS represents the total number

of possible scenarios of power export in wind farms. ηs represents

the probability of occurrence of scenario s.

Energy storage can effectively reduce the power

fluctuation of wind farm groups so that the power export

can meet the guidelines. In other words, energy storage can

effectively reduce the over-limit power export risk in wind

farm groups and improve wind utilization. Large-scale wind

power base usually contains multiple wind farm groups, and

each wind farm group is composed of multiple wind farms.

We define all wind farms connected to the same collection

substation as one wind farm group. As shown in Figure 3, the

wind farms inside the wind farm group are connected

through the collection station, and then connected to the

power grid. In order to reduce the over-limit power export

risk, wind farm groups install distributed energy storage

independently.

However, the high investment cost of energy storage is the

main obstacle for wind farm groups. Figure 4 shows the

schematic diagram of shared energy storage in the wind

power base. If each wind farm group constructs energy

storage independently in the wind power base, the investment

will be huge and the energy storage operation efficiency will be

low. As wind farm groups belong to the same wind power base,

there is only one single stakeholder in the wind power base. Using

the concept of sharing energy storage, wind farm groups can

jointly invest in energy storage equipment and coordinate

operation, which is a new idea for wind farm groups to

reduce power fluctuation. In the wind power base, the wind

farm groups’ output may vary greatly due to the wake effect. The

wake effect refers to the wake area where wind turbines obtain

FIGURE 2
Wind farm group’s output in Belgium.

FIGURE 3
Distributed energy storage in the wind power base.

FIGURE 4
Shared energy storage in the wind power base.
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energy from the wind and wind speed decreases downstream. If a

downstream wind turbine is located in the wake area, the input

wind speed of the downstream wind turbine will be lower than

that of the upstream wind turbine. Thus, wind farm groups can

jointly use centralized energy storage devices to smooth the wind

power output. By reasonably allocating shared energy storage in

wind power groups, the wind power base canmaximize the use of

shared energy storage devices due to the difference of the output

power in wind power groups.

In this way, the wind power base can reduce the over-limit

power export risk in a more effective way. If we allocate the

shared energy storage to each wind power group, it can be

equivalent to that each wind power group has a distributed

energy storage to reduce the power fluctuation. However, how

to characterize the over-limit power export risk of wind farm

groups, and how to reasonably allocate shared energy storage

capacity among wind farm groups to minimize the over-limit

power export risk of wind farm groups, have become new issues

worth studying.

CVaR is an effective method for risk measurement. It can

help us understand the expected risk of loss that exceeds a certain

value at a certain confidence level. CVaR is widely used in the

power system. Some studies use CVaR to describe the risk loss

when the real wind power output is beyond the predefined

uncertainty set (Zhang et al., 2018). Later studies use CVaR to

help the distribution system operator (DSO) to balance the

condition risk and the power generation dispatch cost in the

power generation dispatch for the lowest total cost (Ren et al.,

2019). The advantage of CVaR is that it is not a point probability

value, but the weighted average expected value of all losses above

the selected probability. In addition, CVaR can be optimized by

using the linear programming algorithm. Thus, CVaR is very

suitable to characterize the over-limit power export risk.

This paper will use CVaR to characterize the over-limit

power export risk of wind farm groups, and allocate the

shared energy storage in each wind farm group with the goal

of minimizing the over-limit power export risk in the wind

power base.

3 Model and methodology

In this section, we introduce a shared energy storage

allocation model for wind farm groups in the wind power

base based on CVaR. The goal of this model is to minimize

the over-limit power export risk in the wind power base. The

model framework is shown in Figure 5. The upper-level model

minimizes over-limit power export risk in the wind power base

with the constraints of energy storage allocation. The upper-level

model optimizes the allocation of shared energy storage capacity

in each wind farm group and obtains the allocation results of

shared energy storage capacity. Then, the upper-level model

transfers the allocation results to the lower-level model. The

lower-level model minimizes the over-limit power export of each

wind farm group according to the allocation results with the

constraints of the energy storage operation. The lower-level

model obtains the over-limit power export of each wind farm

group and transfers it to the upper-level model.

3.1 Bilevel model for energy storage
allocation

3.1.1 Upper-level model
The objective function of the upper-level model based on

CVaR is as follows:

min 1 − μ( )Fc + μCVaR (2)

where, μ represents the risk preference factor, Fc represents the

over-limit power export of wind farm groups, CVaR represents

the over-limit power export risk. The calculation formula of Fc is

as follows,

Fc � 1
NS

∑NS

s�1
∑NI

i�1
∑NT

t�1
Pex,s,i,t (3)

where, Pex,s,i,t represents the over-limit power export of wind

farm i at time t in scenario s. NS represents the number of

scenarios. NI represents the number of wind farm groups. NT

represents the total periods.

The calculation formula of CVaR is as follows,

CVaR � ∑NI

i�1
CVaRi (4)

CVaRi � βi +
1

NS 1 − α( ) ∑
NS

s�1
ϕi,s, ∀i ∈ 1, ..., NI[ ] (5)

ϕi,s ≥wi,s − βi, ∀i ∈ 1, ..., NI[ ]; s ∈ 1, ..., NS[ ] (6)
ϕi,s ≥ 0, ∀i ∈ 1, ..., NI[ ]; s ∈ 1, ..., NS[ ] (7)

where, CVaRi represents the over-limit power export risk of wind

farm i. βi represents the VaR value of wind farm i at α confidence

level. ϕi,s is the auxiliary variable, which represents the over-limit

FIGURE 5
Model framework.
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power export risk over VaR of wind farm i in scenario s. wi,s

represents the over-limit power export of wind farm i in scenario s.

The constrains of upper-level model is as follows:

ecapi ≥ 0.1 × eNi , ∀i ∈ 1, ..., NI[ ] (8)
ecapi ≥ 4 × pcap

i , ∀i ∈ 1, ..., NI[ ] (9)

∑NI

i�1
ecapi ≤Ecap (10)

∑NI

i�1
pcap
i ≤Pcap (11)

where, ecapi represents energy storage capacity allocated to wind

farm i. eNi represents the energy storage capacity of wind farm i.

pcap
i represents max real power output of energy storage allocated

to wind farm i. Ecap represents the shared energy storage

capacity. Pcap represents the max real power output of shared

energy storage.

In order to reduce the impact of wind fluctuations on grid

stability, the wind farm is required to be equipped with 10%

capacity energy storage, and the charging time should not less

than 4 h. To ensure the above requirements, constraints

(8)–(9) are added to the model (10)–(11) represents the

constraints of the allocation of shared energy storage in

wind farm groups.

3.1.2 Lower-level model
The lower-level model minimizes the over-limit power

export of the wind farm groups. The objective function of the

lower-level model is as follows:

min∑NT

t�1
max Ps,i,t − Ps,i,t−1

∣∣∣∣ ∣∣∣∣ − Pi,limit, 0( ) (12)

where, Ps,i,t represents the power export of wind farm i at time t

in scenario s. Pi,limit represents the power export fluctuation limit

value to wind farm i. The specific definition of Pi,limit are as

follows:

Pi,limit �

3 eNi ≤ 30

eNi
10

30< eNi ≤ 100

10 100< eNi

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(13)

There are two nonlinear terms in the objective function,

absolute value and maximum value, which need to be linearized.

Auxiliary variables Pex,s,i,t is introduced to equivalent the

objective function to the following linearized form:

min ∑
t∈NT

Pex,s,i,t (14)

Pex,s,i,t ≥Ps,i,t − Ps,i,t−1 − Pi,limit (15)
Pex,s,i,t ≥Ps,i,t−1 − Ps,i,t − Pi,limit (16)

Pex,s,i,t ≥ 0 (17)

The constraints of the lower-level model are as follows:

Ps,i,t � pN
s,i,t + pD

s,i,t − pC
s,i,t( ) (18)

es,i,t � 1 − si( )es,i,t−1 + ηCi p
C
s,i,t −

pD
s,i,t

ηDi
( ), ∀t ∈ 1, ..., NT[ ] (19)

0≤pC
s,i,t ≤ I

C
s,i,tp

cap
i , ∀t ∈ 1, ..., NT[ ] (20)

0≤pD
s,i,t ≤ I

D
s,i,tp

cap
i , ∀t ∈ 1, ..., NT[ ] (21)

SOC mine
cap
i ≤ es,i,t ≤ SOC maxe

cap
i , ∀t ∈ 1, ..., NT[ ] (22)

ICs,i,t + IDs,i,t ≤ 1, ∀t ∈ 1, ..., NT[ ] (23)
es,i,1 � es,i,T (24)

where, pN
s,i,t represents wind power output of wind farm i at time t

in scenario s. pD
s,i,t represents discharging power of the energy

storage of wind farm i at time t in scenario s. pC
s,i,t represents

charging power of the energy storage of wind farm i at time t in

scenario s. es,i,t represents remaining power of the energy storage

of wind farm i at time t in scenario s. si represents self-loss-rate of

energy storage of wind farm i. ηCi and ηDi represent charging

efficiency and discharging efficiency for energy storage. SOC min

and SOCmax represent minimum and maximum state-of-charge

values for energy storage.

After the wind farm gets the allocated energy storage, its

power export depends not only on the output of wind farm but

also on the output of energy storage. The power balance

constraint can be expressed as constraint (18). Constraints

(19)–(24) are energy storage operation constraints.

Since the lower-level model is nonconvex, neither

Karush–Kuhn–Tucker optimality conditions nor duality

theory can be applied to transform the lower-level model

into a set of constraints so as to convert the original bilevel

model into an equivalent single-level model. Due to the

difficulty in solving the bilevel model, a two-stage solution

method is proposed for this bilevel model, which sequentially

solve two models.

3.2 Equivalent two-stage model

3.2.1 First-stage model
The objective function of the first-stage model is as follows:

min 1 − μ( )Fc + μCVaR (25)

The constraints of the first-stage model are all the constraints

of the upper-level model, that is, constraints (8)–(11). And all

constraints of the lower-level model, that is, constraints

(18)–(24). After solving the first-stage model, we obtain the

optimal value �ecapi and �pcap
i .

3.2.2 Second-stage model
The objective function of the second-stage model is as

follows:
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min ∑
t∈NT

Pex,s,i,t (26)

The constraints of the second-stage model are all the

constraints of the lower-level model, that is, constraints

(18)–(24). In addition, the constraints of the second-stage

model also include (27) and (28):

ecapi � �ecapi (27)
pcap
i � �pcap

i (28)

After solving the first-stage model and the second-stage

model sequentially, the energy storage allocation result and

the optimal value of CVaR are consistent with the results of

the bilevel model in 3.1. The effectiveness of the proposed two-

stage model is proved as follows.

3.3 Proof of effectiveness of two-stage
model

This section will prove the equivalence of the solution results

of the two-stage model and the bilevel model (Li et al., 2016).

Due to all the constraints in the first-stage problem are satisfied

in the original bilevel problem, we can infer that any feasible solution

to the original bilevel problem also corresponds to a feasible solution

to this first-stage problem. The following equation is always true.

f̂
one

two−stage ≤ f̂bilevel (29)

Where f̂
one

two−stage represents the optimal value of objective

function of the first-stage model. f̂bilevel represents the optimal

value of objective function of the bilevel model.

Since the objective function of the lower-level model in the

bilevel model is the power export fluctuation, which is also a

variable in constraint (6) in the upper-level model. The bilevel

model can be converted into the following form:

min 1 − μ( )Fc + μCVaR (30)
s.t. 2( ) − 4( )

6( ) − 10( )
14( ) − 23( )

(31)

ϕi,s ≥min ∑
t∈NT

Pex,s,i,t
⎛⎝ ⎞⎠ − βi, ∀i ∈ 1, ..., NI[ ]; s ∈ 1, ..., NS[ ]

(32)
Since the following inequality is always true:

min ∑
t∈NT

Pex,s,i,t
⎛⎝ ⎞⎠ − βi ≤ ∑

t∈NT

Pex,s,i,t − βi (33)

It can be seen from the above formula that the feasible region

of the bilevel model is not smaller than that of the first-stage

model. We can prove that the following inequality is always true:

f̂
one

two−stage ≥ f̂bilevel (34)

Since (29) and (34) is always true, we can infer that the

following equality is always true:

f̂
one

two−stage � f̂bilevel (35)

The above formula shows that the optimal objective function

value of the two-stagemodel is equal to that of the bilevelmodel. The

over-limit power export risk of wind farm groups is determined by

the results of shared energy storage allocation. Since the optimal

objective function of the first-stage model is the same as that of the

bilevel model, and the over-limit power export risk of wind farm

groups is the same, the results of optimal energy storage allocation of

the first-stage model are also the same as those of the bilevel model.

Finally, after the optimal allocation of energy storage is

obtained from the first-stage model, the second-stage model

optimizes the power fluctuation of wind farm groups

according to the energy storage allocation. Because the

second-stage model and the lower-level model in the bilevel

model have similar structures under the same energy storage

allocation scheme, the optimal decision variable values obtained

by solving the second-stage model and the lower-level model in

the bilevel model must also be the same. This shows that after

solving the first-stage model and the second-stage model in

sequence, the energy storage allocation and the optimal value

of CVaR are completely consistent with the results of the bilevel

model. The proof is over.

4 Case study

The case studies are conducted based on the wind power

base in Belgian. The wind power base contains three wind

FIGURE 6
Historical data of wind power output.
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farm groups with installed capacity of 250, 150, and 100 MW

respectively. Historical wind power output data of the wind

power base in Belgian is used as the scenario in the above

model, and the time interval is 15 min. The energy storage

capacity of three wind farm groups is allocated by using the

proposed energy storage allocation method. We use MATLAB

with the mixed-integer programming solver Gurobi to solve

all the optimization problems (Gurobi Optimizer Reference

Manual, 2020).

Historical data of wind farm groups in Belgian is shown in

Figure 6.

As shown in Figure 7, Wind farm 2 has the highest volatility,

followed by wind farm 1, and wind farm 3 has the lowest

volatility. The confidence level of over-limit power export risk

is 0.9. The total scale of shared energy storage is 100 MWh/

50 MW. The charging and discharging efficiency of energy

storage is 90%. The self-discharging rate is 0.001.

4.1 Energy storage allocation results

The VaR and CVaR values of wind farm groups and the

energy storage allocation results are shown in Table 2.

According to the historical output of the wind farm groups,

wind farm 2 has the largest fluctuation (6 times out of the limit).

If energy storage is allocated only according to the principle of

reducing fluctuation, wind farm 2 should get the largest energy

storage capacity. However, we have the constraint that the wind

farm must be equipped with energy storage with the capacity of

10% of the wind farm installation capacity. The energy storage

capacity allocated to wind farm 1 is more than that of wind farm

2 only because the capacity of wind farm 1 is larger. Figure 8

shows the remaining power of energy storage shared by each

wind farm.

If grid connection is not allowed for the part of power

fluctuation exceeding the limit, the three wind farm groups

can reduce the wind power curtailment of 7.2 MWh,

10.94 MWh, and 8.23 MWh respectively after energy

distribution and storage.

4.2 Sensitivity analysis

4.2.1 Confidence level
The shared energy storage allocation results under

different confidence levels are shown in Table 3. The value

of VaR and CVaR under different confidence levels are shown

in Figure 9.

It can be seen from the figure that, the value of CVaR

increases with the increase of confidence level, and the value of

VaR also increases. VaR is equal to CVaR when the confidence

level is 0.99. This is because the total number of scenarios in

the model is 100. When the value of CVaR exceeds the

expectation of VaR at 99% confidence level, there is only

one scenario representing tail risk, so the value of CVaR is

equal to VaR.

FIGURE 7
Over-limit power export.

TABLE 2 Solution results.

VaR CVAR Energy storage capacity

Wind farm 1 0.00 2.45 25.00 MWh/6.25 MW

Wind farm 2 0.00 14.00 41.44 MWh/10.36 MW

Wind farm 3 2.54 13.85 33.56 MWh/8.39 MW

Total amount 2.54 30.30 100.00 MWh/25.00 MW

FIGURE 8
The remaining power of energy storage allocated to wind
farm groups.
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4.2.2 Capacity of shared energy storage
In order to further investigate the impact of different shared

energy storage capacities on over-limit power export risk,

different shared energy storage capacities are set for

simulation. When other parameters remain unchanged, the

total shared energy storage capacity is taken as 100 MWh to

150 MWh respectively. The value of VaR and CVaR, the energy

storage allocation results, and the average daily power exceeding

are shown in Figure 10.

When the total energy storage capacity reaches 110 MWh, the

value of VaR in wind power base is 0. The power export of three

wind farm groups will be over-limit at 90% confidence level. The

average value of CVaR of the three wind farm groups is less than

20.38. With the increase of the total energy storage capacity, CVaR

value of the three wind farm groups will gradually decrease, but the

rate of reduction will be slower and slower. It can be seen that when

the total energy storage capacity reaches 130MWh, the energy

storage allocated to wind farm 1 will be greater than 25MWh. We

can infer that the energy storage constraint with 10% capacity of the

TABLE 3 Solution results.

Confidence level Energy storage capacity

Wind farm group 1 Wind farm group 2 Wind farm group 3

0.9 25.00 MWh/6.25 MW 18.82 MWh/4.705 MW 16.18 MWh/4.045 MW

0.95 25.00 MWh/6.25 MW 17.94 MWh/4.485 MW 17.06 MWh/4.265 MW

0.99 25.00 MWh/6.25 MW 19.18 MWh/4.795 MW 15.82 MWh/3.955 MW

FIGURE 9
VaR and CVaR under different confidence levels.

FIGURE 10
Solution results under different capacity of shared energy
storage. (A) CVaR and VaR under different capacity of shared
energy storage (B) Capacity allocation under different capacity of
shared energy storage (C) Average over-limit power under
different capacity of shared energy storage.
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wind farm will no longer work when the total energy storage

capacity exceeds 130MWh. We define the daily over-limit power

of the wind farm group as the total amount of over-limit power in a

day. It also can be seen that when the total energy storage capacity

increases, the average daily over-limit power of wind farm groups

will decrease. With the increase of the total shared energy storage

capacity, the average daily over-limit power will decrease more

slowly. If the over-limit power cannot be connected to the grid, the

wind abandonment rate of wind farm groups will decrease with the

increase of the total shared energy storage capacity, but the marginal

benefit of the total shared energy storage capacity will gradually

decrease.

4.2.3 Risk preference factor
Figure 11 shows the value of VaR, CVaR, and daily average

over-limit power of wind farm groups under different risk

preference factors.

Different energy storage allocation methods under different risk

preference factors lead to different values of CVaR. When the risk

preference factor is larger, CVaR value of wind farm groups is

smaller, and the shared energy storage allocation scheme tends to be

more conservative; When the risk preference factor is less than 0.3,

the average over-limit power of wind farm increased significantly

with the increase of risk preference factor; When the risk preference

factor ismore than 0.3, the increase of risk preference factor had little

impact on the average over-limit power of wind farm.

5 Conclusion

This paper proposes a method to allocate energy storage

capacity for wind farm groups based on CVaR. A bilevel model

with the objective function of minimizing the over-limit power

export risk of wind farm groups is established. Then, a two-stage

solution method for the bilevel model is proposed. The

effectiveness of the two-stage method is proved. The model

and solution algorithm proposed in this paper are used to

allocate the energy storage of Belgian wind farm groups. The

sensitivity of confidence level, total energy storage capacity and

risk preference factors on the optimal allocation of shared energy

storage are analyzed. The results show that the proposed method

can significantly reduce the over-limit power export risk of wind

farm groups and improve the utilization rate of wind energy.
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In recent years, with the rapid development of renewable energy, the

penetration rate of renewable energy generation in the active distribution

network (ADN) has increased. Because of the instability of renewable energy

generation, the operation stability of ADN has decreased. Due to the ability to

cut peak load and fill valley load, battery energy storage systems (BESSs) can

enhance the stability of the electric system. However, the placement and

capacity of BESSs connected to ADN are extremely significant, otherwise, it

will lead to a further decline in the stability of ADN. To ensure the effectiveness

of the BESSs connected to the grid, this work uses the fuzzy kernel C-means

(FKCM)method for scene clustering. Meanwhile, a multi-objective optimization

model of BESS configuration is established with the objective of BESS

configuration cost, voltage fluctuation, and load fluctuation, and solved by

non-dominated sorting genetic algorithm-II (NSGA-II). In this work, the grey

target decision method based on the entropy weight method (EWM) is used to

obtain the optimal compromise solution from the Pareto non-dominated set.

Moreover, the proposed method is tested and verified in the extended IEEE-33

node system and the extended IEEE-69 node system. The results show that the

BESSs configuration scheme obtained by NSGA-II can effectively reduce the

fluctuation of voltage and load, and improve the stability of ADN operation.

KEYWORDS

battery energy storage systems, fuzzy kernel C-means, non-dominated sorting genetic
algorithm-II, entropy weight method, active distribution network

1 Introduction

With the continuous development and progress of society and technology, traditional

energy sources based on fossil fuels have become difficult to meet the needs of human

society. Nowadays, thermal power generation is still the main way for people to obtain

electric energy. However, the harmful gases emitted by the combustion of fossil fuels have

become a problem, and the combustion of fossil fuels is aggravating environmental

pollution and global warming (Company, 2021; Zandalinas et al., 2021). At present,
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energy storage and environmental pollution issues have become

two serious challenges to the sustainable development of society.

It is urgent to reduce carbon emissions and build a new type of

power system with renewable energy sources as the main body

(He et al., 2021; Dong et al., 2022).

The new power grid with photovoltaic and wind energy as

the main energy structure has the advantage of a flexible power

supply, so it is a better solution to the power supply problem of

the grid (Bin et al., 2019; Li et al., 2022a). However, photovoltaic,

wind power has obvious characteristics of randomness, volatility,

and intermittency, its intermittency, and volatility will harm the

quality of the power supply. And photovoltaic, wind power needs

to go through the power electronic equipment to achieve energy

control and does not have the power grid frequency, voltage

regulation, and other functions. Renewable energy also has the

characteristics of dispersion, when the renewable energy to a high

penetration rate into the grid will aggravate the impact caused by

the volatility, such as voltage deviation, power loss, etc. (Hu et al.,

2022; Xiao and Pan, 2022).

Distributed generation (DG) and energy storage systems

(ESSs) play an important role in power grids with high

renewable energy generation penetration rates (Wu et al.,

2021a; Shi et al., 2022). On the one hand, as an

independent power supply compatible with the

environment on the user side, DG can meet the peaking

demand of the power system and supply power to remote

users, and commercial and residential areas, it also can save

transmission investment and reduce transmission losses. On

the other hand, because the DG is mostly renewable energy

generation, its output has obvious randomness and

intermittency, which affects the voltage stability of the

active distribution network (ADN), changes the direction of

the ADN power flow, and causes the system power flow to be

random. When large-scale renewable energy generation access

to ADN will cause power flow and voltage over-limit, change

the voltage characteristics, and reduce the stability of ADN.

Furthermore, the role of DG in ADN is mostly used as a

backup power supply, which is easy to cause the voltage and

frequency of the ADN to drop and exceed the limit during the

power switching process. Even so, DG is still considered by

many energy and power system experts as the main way to

increase the utilization of renewable energy and improve the

stability and flexibility of ADN (Yang et al., 2021; Wu et al.,

2022).

ESSs can effectively solve various energy supply and demand

balance problems and improve energy utilization efficiency

through their peak-shaving and flexible energy management

capabilities. Meanwhile, the ESSs can effectively solve serious

problems such as power flow reverse and voltage over-limit

which occur in the ADN after DG access, and ensure the

normal operation of the distribution network (Li et al., 2018).

Battery energy storage systems (BESSs), which use batteries as

energy storage carriers, have become a hot topic of current

research due to their high energy density, fast response time,

and modularity (Das et al., 2018; Wu et al., 2021b). BESS can

effectively solve various supply-demand imbalance and power

quality problems by using high energy density to cut peaks and

fill valleys on the network and using high power density to

smooth out random power fluctuation (Liu et al., 2016; Zheng,

2018; Ren et al., 2019; Yang et al., 2020).

After the ESSs are connected to the ADN, the operating

state of the ADN and the ability of peak cutting are affected by

the access mode, location, and capacity. In recent years, many

scholars have studied the planning of ESSs, however, most of

the research models are single-objective models, and these

models are difficult to consider the stability of the network and

the economics of energy storage at the same time. Reference

(Yan et al., 2013) established an optimal value assessment

model of BESSs with net income as the objective function. The

reference (Su et al., 2016) established a planning model for the

location and capacity of distributed power and energy storage

devices with the cost input of ADN as the objective function.

Literature (Lee and Chen, 1995) constructed an energy storage

planning model with the cost of electricity purchased by

customers as the objective function. Reference (Ghatak

et al., 2019) established an energy storage planning model

with battery storage life as the objective function and

quantified the battery characteristic parameters by

combining three characteristics of battery discharge depth,

discharge rate, and effective discharge volume. In reference

(Chen, 2020), an energy storage planning model has been

established with the objective function of accurately tracking

real-time meteorological conditions, and an improved logistic

regression model was used to evaluate the impact of real-time

numerical meteorological conditions on the device. All the

above research models are single-objective planning models,

which do not consider the coupling problem between ESSs

planning and network operation conditions. The reference

(Fu et al., 2022) established a multi-objective optimal

configuration model with the economic benefits of ESSs

and voltage quality as the optimization objectives.

However, the voltage quality does not fully reflect the real

operating condition of the network after accessing ESSs.

Therefore, building a multi-objective optimal allocation

model for ESSs can not only fully exploit the potential of

ESSs, but also achieve a better balance between the economic

benefits of ESSs and network stability.

In most papers, the multi-objective optimization problem is

weighted into a single objective problem by the weighting method.

However, it is difficult to guarantee the objectivity of the planning

scheme solved by thismethod. In this regard, some studies used a bi-

level planning model to solve the different problems of BESSs

location and capacity sizing (Li et al., 2022b). The reference

(Meng et al., 2021) proposed a bi-layer BESSs planning scheme

considering renewable energy and load uncertainties. The optimal

solution of this model can solve the problem of objectivity in the
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single-objective model, but the two-layer model is complex, and

difficult to obtain the optimal solution. ESSs location and capacity

sizing is a high-dimensional, multi-objective, complex constraints

problem. The solution process of traditional planning methods is

complex and easy to fall into local optimum. Therefore, it is very

important to establish a Pareto-based multi-objective model. This

model can well adjust the balance between various optimization

variables in multi-objective optimization problems and ensure that

the results have good objectivity.

This work is based on the non-dominated sorting genetic

algorithm-II (NSGA-II), which shows a high optimization

performance under several standard function test

environments. The main content of this work is as follows:

(1) Amulti-objective planning optimal location and capacitymodel

based on the Pareto of BESSs is establishedwith three objectives,

and NSGA-II is used to solve this multi-objective model;

(2) The clustering algorithm is used to cluster the daily load,

wind power, and photovoltaic (PV) output curves of the

whole year, and the typical scenarios are obtained based on

the combination of time series characteristics. Simulation

calculations are performed in different typical scenarios to

obtain the sum of each objective function throughout the

year;

(3) The simulation based on the extended IEEE-33 node system

and the extended IEEE-69 node system verifies that the

proposed method can effectively obtain the optimal BESSs

configuration method.

2 Battery energy storage systems
configuration model

2.1 Objective function

In this work, the total investment operating cost of the BESSs,

the total load fluctuation of ADN, the total voltage fluctuation of

ADN, and the BESSs configuration optimization model based on

Pareto can be established as follows:

min F x( ) � min F1,{ F2, F3} (1)
whereF(x) consists of objective functions F1, F2, F3{ }, which are the
total investment operating cost of the BESSs, total load fluctuation of

ADN, and total voltage fluctuation of ADN; x represents the decision
space consisting of the optimal installation node location, capacity,

and hourly power optimization variables of BESSs and HESSs.

2.1.1 Total investment operating cost
The research object of this work is the ADN that has been built,

so the total investment cost of BESS can be described as follow:

minF1 � min cTCC + cOM − Isub + cc + Id( ) + cab + closs + cCE( )
(2)

where cTCC and cOM are the investment cost, operation cost and

maintenance cost of BESS respectively; cc, Id and Isub represent

the electricity purchase cost, electricity sales revenue, and

government subsidies respectively; cab, closs and cCE represent

the wind power and solar power abandonment cost, the cost of

ADN loss, and the cost of carbon emissions from peak shaving of

conventional power sources.

(1) Equivalent investment cost

cTCC � cinv ·NBESS +∑NBESS

n�1 a · PBESSs,n + b · EBESSs,n( )[ ] · r · 1 + r( )y
1 + r( )y − 1

(3)

where cinv represents a fixed investment construction cost of

one BESSs; NBESS represents the number of BESS installed;

EBESSs,n and PBESSs,n represent the configuration rated capacity

and rated power of the n th BESS respectively; a and b

represent the power cost of BESS and the capacity cost

under different charging rates respectively; y represents the

service life of BESSs. In this work y is 15 years; r represents the

discount rate, which value is 6.332%.

(2) Operation and maintenance cost

cOM � ∑NBESS

n�1 a · PBESSs, n + b · EBESSs, n( )[ ] · εOM (4)

where εOM represents the coefficient of operation and

maintenance. εOM takes 5% in this work.

(3) Government subsidies

ccha � ∑Md

m�1Dm · ∑NBESSs

n�1 ∑T

t�1 εp t( ) · Pc,n t( )( )[ ] (5)

Idis � ∑Md

m�1Dm · ∑NBESSs

n�1 ∑T

t�1 εs t( ) · Pd,n t( )( )[ ] (6)

Idis � ∑Md

m�1Dm · ∑NBESSs

n�1 ∑T

t�1 ρ · Pdis,n t( )( )[ ] (7)

whereMd represents the number of scenarios;Dm represents the

number of days corresponding to scenario m; εp(t) and εs(t)
represent the electricity purchase and sale prices of BESSs in

period t, respectively; Pc,n(t) and Pd,n(t) represent the charging
and discharging power of the n th BESSs in period t, respectively;

T represents the dispatching cycle, which is taken 24 h. ρ

represents the operating subsidy given by the government for

the electricity sales of BESSs.

(4) Wind and solar abandonment cost

cab � ∑Md

m�1Dm · ∑T

t�1 Pwind t( ) + PPV t( ) − Pc/d t( )−( ∣∣∣∣Pload t( ) − Ploss(t))] · δ[
(8)
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where Pload(t), Pwind(t) and PPV(t) represent the load demand,

wind power output, and PV output at time t, respectively; Pc/d(t)
represents the charge/discharge power of BESSs in period t;

Ploss(t) represents the line loss of power in t period; δ

represents the cost of wind and solar abandonment on the

renewable energy side of the ADN.

(5) Cost of power loss

closs � ∑Md

m�1Dm · ∑NBESSs

n�1 ∑T

t�1 εs t( ) · Ploss t( )( )[ ] (9)

(6) Cost of carbon emissions from peak shaving of conventional

power sources

cCE � ∑Md

m�1Dm · ∑T

t�1Pgrid t( ) ·∑P

p�1 Up · up( )[ ],
if/Pgrid t( )> 0

(10)

where Pgrid(t) represents the amount of electricity purchased

from the ADN at time t; P represents the number of pollutant

types;Up represents the pollutant p discharge penalty coefficient;

up represents the emission penalty price of pollutant p.

2.1.2 Total load fluctuation of active distribution
network

minF2 � min∑Md

m�1Dm · ∑T

t�1



















FL t( ) − FL t − 1( )( )2

√[ ] (11)

where FL(t) represents the equivalent load power at time t.

2.1.3 Total voltage fluctuation of active
distribution network

minF3 � min∑Md

m�1Dm · ∑Nnodes

j�1 ∑T

t�1 Vj t( ) − VRated

∣∣∣∣ ∣∣∣∣[ ] (12)

whereVj(t) represents the voltage per unit value of j th node at time

t; VRated represents the node-rated voltage, which is 1p.u.

3 Constraints

3.1 Node voltage

Ui
min ≤Ui ≤Ui

max (13)

where Ui
max and Ui

min represent the maximum and minimum of

the node voltage respectively.

EBESSs
min ≤EBESSs ≤EBESSs

max (14)
where,EBESSs

max and EBESSs
min represent the maximum and minimum of

the installed capacity of the BESSs, respectively.

3.2 Installation node

NBESSs
min ≤NBESSs ≤NBESSs

max,/NBESS,1 ≠ NBESS,2 (15)

where NBESSs
max and NBESSs

min represent the maximum and minimum of

the location of the BESSs installation node, respectively.

3.3 Wind and solar abandonment

Ra �
∑Md

m�1Dm · ∑T
t�1 Pwind t( ) + PPV t( ) − Pc/d t( ) − Pload t( ) − Ploss t( )( )[ ]
∑Md

m�1Dm · ∑T
t�1 Pwind t( ) + PPV t( )( )[ ]

(16)
Ra ≤Ra,max (17)

where Ra represents the rate of wind and solar

abandonment, which can be calculated by Eq. 16; Ra,max

represents the maximum rate of wind and solar

abandonment.

4 Non-dominated sorting genetic
algorithm-II for optimal battery
energy storage systems placement
and sizing

4.1 Non-dominated sorting genetic
algorithm-II

NSGA-II has diverse populations and high-accuracy

optimization results. Firstly, the algorithm uses a fast non-

dominated sorting method to classify the population into

different ranking levels. Secondly, the crowding distance

between individuals with the same ranking level is

calculated, and individuals with a larger crowding distance

are selected. The results can be evenly distributed in the

target space, thus maintaining the diversity of the population.

Finally, the optimal solution in the Pareto

solution set is effectively saved by the elite strategy (Wu

et al., 2014).

(1) Non-dominated solution set ranking

The non-dominated solution in the population can be

determined by calculating the value of the objective

function. According to the non-dominated level of each

individual in the population, the whole population is sorted

hierarchically.

(2) Calculate the crowding distance
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To further select individuals at the same non-dominated

level, the crowding distance between individuals needs to be

calculated.

Ld � Ld + fn i + 1( ) − fn i − 1( )[ ]
fn

max − fn
min( ) (18)

where Ld represents the crowding distance; fn(i + 1) and

fn(i − 1) represent the nth fitness value of the (i + 1) th

and (i − 1) th individual at the same level, respectively;

fn
max and fn

min represent the maximum and minimum

value of the nth fitness function.

Then through the binary tournament selection method, two

individuals are randomly selected, and the individuals with

higher non-dominated levels can enter the next population. If

the level is the same, choose the more crowded population.

(3) Elite strategy selection method

The simulated binary method is used to cross and

polynomially mutate the population. Finally, the parent

population and offspring population are combined to form a

new population. The above steps should be repeated until the

maximum number of iterations is reached, and output the Pareto

optimal solution set.

4.2 Pareto solution set processing

In the process of NSGA-II algorithm optimization, the Pareto

solution set will be continuously updated and put into a limited scale

storage pool. When the algorithm iteratively obtains a new non-

dominated solution, it needs to compare it with the non-dominated

solution set in the storage pool, and then determine whether the new

non-dominated solution is liberated into the storage pool. The

judgment process is as follows (Faramarzi et al., 2020):

(1) If the new solution dominates the storage pool, it is replaced

with the new solution;

(2) If the new solution is dominated by at least one solution in

the storage pool, the new solution is discarded;

(3) If there is no dominant relationship between the new

solution and the storage pool, the new solution is

liberated into the storage pool.

TABLE 1 The basic principles and procedures of NSGA-II.

1: Input the real-time electric power system data;

2: Initialize the parameters and population;

3: Calculate the objective function value f(k) of all the searching individuals by Eqs 2,
3, 4, 5, 6, 7, 8, 9, 10, 11, 12;

4: Determine the non-dominated solution

5: IF pop(i).DominatedCount = 0;

6: ELSE q.Rank = k+1;

7: END;

8: Calculate the crowding distance;

9: Updating the Pareto front;

10: [~, RSO] = sort ([pop.Rank]);

11: [~, CDSO] = sort ([pop.CrowdingDistance],’descend’);

12: For Gen = 1: Genmax;

13: the population crossover, mutation operation to produce offspring
populations;

14: Merger of parent and offspring populations;

15: According to steps (4)–(12), the non-dominated solutions are selected
for the merged population, the crowding degree is calculated, and the Pareto front is
updated;

16: Select the appropriate individuals to form the new population;

17: End

18: Judge whether the decision variables exceed the upper and lower bounds,
and verify the energy storage charging and discharging power;

19: Output the location and capacity of BESSs.

FIGURE 1
The flowchart diagram of the NSGA-II used for BESSs.
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To increase the diversity of solutions, when the number of

non-dominated solutions in the archive set is higher than the

upper limit, the redundant solutions must be removed. In this

work, we use the crowded distance ranking method to select a

densely distributed set of non-dominated solutions and eliminate

redundant solutions by the roulette wheel method.

4.3 Multi-objective gray target decision
based on entropy weight method

A multi-objective gray target decision based on the

entropy weight method (EWM) is designed. Firstly, the

evaluation indexes of each solution are set to build the

sample matrix, and the decision matrix can be built by

normalizing the sample matrix. Then, the weights of

evaluation indexes of all Pareto non-dominated solutions

and their distances from the target are obtained based on

EWM and their distances from the target, and the solution

with the closest distance to the target is determined as the best

compromise solution for the BESS optimal allocation scheme

(He et al., 2021).

(1) Establishing the sample matrix

FIGURE 2
Typical diurnal curves of load, wind and PV power. (A) Spring. (B) Summer. (C) Autumn. (D) Winter.

TABLE 2 Main parameters of ADN.

ADN parameters Value

ADN base capacity 10MVA

Total load power (3.715 + j2.3) MVA

Wind power No. 1, No. 2, and No. 3 active power 0.75 MW

Photovoltaic No.1 Active Power 2.5 MW
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To evaluate the similarity and equilibrium of each solution,

this method adds two indicators in the sample matrix. One is the

Euclidean distance (ED) between each solution and the ideal point,

and the other is the Mahalanobis distance (MD) between each

solution and the equilibrium point. Therefore, the sample matrix

of effects containing five evaluation metrics can be expressed as:
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where E and M denote the ideal point distance matrix and

equilibrium point distance matrix of all solutions, respectively.

The ED between the k th solution and the ideal point can be

calculated by Eq. 20, and the MD between the k th solution and

the equilibrium point can be calculated by Eq. 21.
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where Pg denotes the ideal point of the g th objective; ug
represents the average of all solutions under the g th

objective; ∑−1 is the covariance matrix.

(2) Design of decision matrix

According to the principle of rewarding good and punishing

bad, the following operator is designed:

qg � 1
n
∑n

g�1X
k
g (22)

where Xk
g represents the evaluation index of the k th solution at

the g th objective.

Then the decision matrix is established, as follows:

V � vkg( )
n× m+2( ) �

qg − Fk
g

max max
1≤ k≤ n

Fk
g{ } − qg, qg − min

1≤ k≤ n
Fk
g{ }{ }

(23)
The target is identified in the gray decision region formed by

the decision matrix as follows:

v0g � max {vkg 1≤ k≤ n| } (24)

(3) Grey target decision based on EWM

First, the target weight of the k th scenario under the g th

objective can be calculated by Eq. 25

FIGURE 3
Topology of the extended IEEE-33 node test system.

TABLE 3 BESSs optimal configuration scheme.

BESS No.1 BESS No.2

Node number Rated capacity/MW·h Rated power/MW Node number Rated capacity/MW·h Rated power/MW

17 0.1 0.51 16 0.1 0.67

TABLE 4 Comparison before and after BESSs configuration.

Before BESSs
configuration

After BESSs
configuration

Daily voltage fluctuation/p.u 12.58 7.7316

Daily load fluctuation/MW 6.604 4.1099

The total cost of BESSs/$ −1.92e+03
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wk
g �

Fk
g∑n

k�1Zk
g

, if Fk
g ≥ 0 (25)

Next, the entropy values of the g targets can be calculated as

follows:
EVg � 1

ln n
∑n

k�1 wk
g · lnwk

g( ), if EVg > 0 (26)

Among them, the smaller the entropy value of the indicator

tends to contain more information, so the entropy weight is larger.

The entropy weight of the g th target is calculated as follows.

wg � 1 − EVg∑m+2
g�1 1 − EVg( ) (27)

Then, the distance of each solution to the target can be

calculated as follows:

MDBk � vk − v0
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(28)

Finally, the target distance of each solution is sorted, and the

solution closest to the target is selected as the best decision. The

specific process of Table 1 NSGA-II solving the optimization

problem of BESSs is shown in Figure 1. The basic principles and

procedures of NSGA-II are as follows:

5 Fuzzy kernel C-means-based scene
clustering

Themost well-known and commonly used clusteringmethods

are the K-means (Kanungo et al., 2002) clustering algorithm and

FIGURE 4
Optimization results of network obtained by NSGA-II in the
extended IEEE-33 node test system. (A) Node voltage level. (B)
Average node voltage. (C) Load level.

FIGURE 5
BESSs charge and discharge power in a day under IEEE-33
node system.
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the fuzzy C-means (FCM) clustering algorithm (Pal and Bezdek,

1995), (Askari, 2021). The K-means is simpler and more efficient,

with the advantages of fast convergence and low linear complexity,

but it is not applicable when the data set size is large and is sensitive

to the initial clustering center. Moreover, its membership degree is

either 0 or 1, which is a hard classification. In contrast, the

membership degree of the FCM takes any value in the range of

[0,1], and the criterion function is differentiable, which can The

FCM clustering algorithm has any value in the range of [0, 1], and

the criterion function is differentiable so that it can accurately

cluster data with the non-convex distribution. To avoid the

influence of non-uniform sample distribution on clustering

results, this work uses a fuzzy kernel C-means (FKCM)

clustering algorithm based on the Mercer kernel function to

cluster ADN source-load scenarios.

The clustering principle of the FKCM clustering algorithm in

the feature space is to minimize the weighted distance squared

between a sample and its clustering center squared sum, which is

described as follows:

Jm U, v( ) � ∑c

i�1 ∑n

k�1 u
m
ik‖ Φ xk( ) −Φ vi( ) ‖2,/i � 1, 2, . . . , c;

k � 1, 2, . . . , n

(29)
where m represents a constant whose value is greater than 1; c

and n are the numbers of clusters and the number of samples;

xk represents the k th sample; vi represents the center of the i

th cluster; umik represents the membership degree function of

the k th sample in the i th cluster, which satisfies the 0≤ umik ≤ 1
and 0<∑n

k�1uik < 1; U represents the membership degree

matrix.

The typical days of wind power and photovoltaic in each

season can be obtained by the FKCM clustering algorithm,

and then the clustering results of typical days in each season

are combined. Therefore, there are a total of 36 source-load

combination scenario sets in the four seasons (for example,

spring wind power output 1, spring photovoltaic output 2,

and spring load can be combined into one scenario set).

Although various ADN operation scenarios can make the

planning results more reasonable, it will significantly

increase the solution time of the configuration model.

FIGURE 6
Topology of the extended IEEE-69 bus system.

TABLE 5 BESSs optimal configuration scheme.

BESS No.1 BESS No.2

Node number Rated capacity/MW·h Rated power/MW Node number Rated capacity/MW·h Rated power/MW

60 0.1 0.44049 62 0.1 0.54119

TABLE 6 Comparison before and after BESSs configuration.

Before BESSs
configuration

After BESSs
configuration

Daily voltage
fluctuation/p.u

36.7 28.605

Daily load
fluctuation/MW

6.604 4.1559

The total cost of BESSs/$ −1.2e+03
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FIGURE 7
Optimization results of network obtained by NSGA-II under the extended IEEE-69 node test system. (A) Node voltage level. (B) Average node
voltage. (C) Load level.
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Therefore, this paper uses the probability distribution

method to reduce the large number of operation scenarios

generated based on the FKCM clustering algorithm, and

finally fits out the source-load scenarios of four seasons.

First, the probability of each scenario in each season can be

calculated as follows:

ρm � Dm∑M
m�1Dm

(30)

whereM represents the total number of all scenes in each season;Dm

represents the number of days the m th scenario occurs during the

season.

Then, based on the probability distribution of each scenario, the

typical scenarios of each season are fitted to obtain four scenarios of

spring, summer, autumn, and winter considering source-load

uncertainty. The scenario fitting for each season is as follows:

PF � Pwind,F, PPV,F, Pload,F[ ] � ∑M

m�1ρm · Pm

Pm � Pwind,m, PPV,m, Pload,m[ ]{ (31)

where PF represents the fitted source-load timing power set;

Pwind,F, PPV,F and Pload,F represent the wind power, photovoltaic

output, and load power of the season after fitting, respectively. Pm

represents the source-load sequential power set for scenario m;

Pwind,m, PPV,m, Pload,m represent the wind power, PV output, and

load power in m scenarios, respectively.

FIGURE 8
BESSs charge and discharge power in a day under the
extended IEEE-69 node test system.

TABLE 7 Pareto optimization results of the model obtained by two algorithms.

Test system Objective function Value NSGA-II MOPSO

IEEE-33 The total cost of BESSs/$ Maximum −1.72e+03 −22.63

Minimum −1.97e+03 −4.45e+03

Mean −1.87e+03 −2.34e+03

Best compromise solution −1.92e+03 −2.41e+03

Daily voltage fluctuation/p.u Maximum 7.8422 11.9381

Minimum 7.6614 7.7188

Mean 7.7310 9.6892

Best compromise solution 7.7316 9.8524

Daily load fluctuation/MW Maximum 4.8069 15.4393

Minimum 3.4900 4.6473

Mean 3.9242 8.9457

Best compromise solution 4.1099 6.3323

IEEE-69 The total cost of BESSs/$ Maximum −841.37 −25.07

Minimum −1.35e+03 −1.74e+03

Mean −1.11e+03 −1.13e+03

Best compromise solution −1.20e+03 −1.63e+03

Daily voltage fluctuation/p.u Maximum 32.6083 34.1636

Minimum 26.6522 29.1366

Mean 28.4256 31.3895

Best compromise solution 28.605 30.417

Daily load fluctuation/MW Maximum 5.2573 14.2594

Minimum 3.9684 8.6910

Mean 4.3019 10.9530

Best compromise solution 4.1559 11.0400

The bold values represents a better result.
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The fitted wind, photovoltaic, and load curves of four typical

scenarios in spring, summer, autumn, and winter are shown in

Figure 2.

6 Case studies

In this work, the extended IEEE-33 node test system and the

extended IEEE-69 node test system are used to prove thatNSGA-II

can get the correct BESSs configuration scheme. And this scheme

can effectively improve the voltage quality problem in ADN caused

by the high renewable energy generation penetration rate. Table 2

shows the main parameters of the ADN.

6.1 IEEE-33 node test system

The extended IEEE-33 node test system topology is shown in

Figure 3. Wind power No. 1, No. 2, and No. 3 are connected at

nodes 8, 24, and 17, respectively, and PV is connected at node 31.

Table 1 shows the main parameters of ADN.

Table 3 shows the specific configuration scheme of BESSs.

Table 4 shows the numerical changes of specific indicators in

ADN before and after the access of the BESSs configuration

scheme obtained by NSGA-II. By comparing the data in

Table 4, after accessing BESSs, specifically, daily

voltage fluctuation decreased by 4.8484 p. u. (the

improvement rate is 38.54%), and the load fluctuation

decreased by 2.4941 MW (the improvement rate is

37.77%). The total cost of BESSs is $-1.92e+03,

which means a profit of $ 1.92e+03 a year after BESSs

configuration. Moreover, Figure 4 compares the changes of

three technical indicators of the ADN before and after

the access of BESSs. As shown in Figure 4A, after BESSs is

connected to the active distribution network, the

node voltage level generally has an upward trend (at 1p.u.

nearby). Meanwhile, it can be seen from Figure 4B that

the average voltage fluctuation of nodes in the

FIGURE 9
The Pareto front distribution obtained by NSGA-II. (A) The Pareto front distribution based on the extended IEEE-33-node test system. (B) The
Pareto front distribution based on the extended IEEE-69-node test system.
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ADN decreases in 1 day. This means that BESSs can

effectively improve the voltage quality of ADN. At last

Figure 5 shows the charge and discharge power of BESSs

in a day.

6.2 IEEE-69 node test system

The extended IEEE-69 node test system topology is shown in

Figure 6. Wind power No. 1, No. 2, and No. 3 are connected at

nodes 24, 34, and 44, respectively, and PV is connected at

node 64.

Table 5 shows the specific configuration scheme of BESSs.

By comparing the data in Table 6, after accessing BESSs,

specifically, the daily voltage fluctuation decreased by

8.095 p. u. (the improvement rate is 22.058%), and the

load fluctuation decreased by 2.4481 MW (the

improvement rate is 37.07%). Moreover, Figure 7

compares the changes in three technical indicators of the

ADN before and after the access of BESSs. The total cost of

BESSs is $ -1.2e+03. Figure 7 shows the three technical

indicators before and after the access of BESSs. In

Figure 7A, the node voltage level of node 57-node 65 has

been greatly improved, and the curve in Figure 7B also shows

that the voltage fluctuation of ADN has been effectively

reduced after BESSs access. It can be concluded that by

installing BESSs in the ADN, the power quality in the

ADN has been improved, and the revenue can be

$1.2e+03. And Figure 8 shows the charge and discharge

power in a day under the extended IEEE-69 node system.

6.3 Comparison of algorithms

In this section, we use multi-objective particle swarm

optimization (MOPSO) as a comparison algorithm to verify

the superiority of NSGA-II. Table 7 shows the result obtained

by two algorithms.

By comparing the results in Table 7, it can be seen that

NSGA-II has the smallest daily voltage fluctuation and

daily load fluctuation except for the total cost of BESSs.

Meanwhile, the cost results obtained by the two algorithms

are not much different. Therefore, it can be concluded that

NSGA-II can obtain a more reasonable Pareto non-dominated

solution set and provide the best candidate for decision

makers.

6.4 Discussion

Figure 9 shows the Pareto front distribution obtained by

NSGA-II in the simulation experiments based on the extended

IEEE-33 node test system and the extended IEEE-69 node test

system. It can be seen from Figure 9 that the NSGA-II can obtain

a widely distributed Pareto front. This proves the effectiveness

and powerful optimizing ability of NSGA-II algorithm.

To verify the rationality of the EWM-based grey

target decision, this work uses the method in Reference

(Hu et al., 2014) to map the a th objective function

corresponding to the b th non-dominated solution to

the two-dimensional plane of (a ×i). The equation is as

follows:

FIGURE 10
The Pareto front of the parallel coordinate system under the extended IEEE-33 node system and the extended IEEE-69 node system. (A) Pareto
front after mapping under the extended IEEE-33 node system. (B) Pareto front after mapping under the extended IEEE-69 node system.
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Li,a � K
fb,a − fa

min

fa
max − fa

min
(32)

whereK is a random parameter; fb,a represents the a th objective

function of the b th non-dominated solution.

Figure 10 shows a two-dimensional plane (a ×i) mapped

the Pareto front of the extend IEEE-33 node system and the

extended IEEE-69 node system through the high-

dimensional Cartesian coordinates. The abscissa is the

optimized objective function, and the ordinate is the

mapped objective function value. The objective functions

are connected by a virtual line. The optimal compromise

solution of the grey target decision based on EWM is

represented by the red solid line. It can be seen that the

compromise solution is in a reasonable range, which can

avoid a greater preference for a certain goal due to

subjective weight. And the distribution of the non-

dominated solution set is more extensive, which

indicates that NSGA-II algorithm has excellent

optimization ability.

It should be noted that at 1 p.m. of Figure 4C and 1 and

2 p.m. of Figure 7C, the load level of the ADN with BESS

drops to a very low level. This is because when configuring

BESSs, the cost of configuring BESSs is considered an

important factor. At 1 and 2 p.m. every day, it is in the

peak load period. At this time, the load of the ADN increases,

and the BESSs will deliver more electricity to the ADN to

obtain more benefits while ensuring the stability of the ADN.

The net load PL of the ADN can be calculated by Eq. 33. As

shown in Eq. 33, the increase of electric energy transmitted by

BESSs to ADN will lead to a decrease in the net load level of

the ADN.

PL � Pload − Pwind − PPV + PBESSs (33)

where Pload, Pwind and PPV represent the load demand, wind

poaxwer output, and PV output; PBESSs represents the power of

BESSs, and its value is negative when it outputs electricity to

the ADN.

7 Conclusion

To deal with the low stability of the ADN caused by the high

proportion of renewable energy generations, this work proposes a

configuration method of a Pareto multi-objective battery ESSs

based on NSGA-II to improve the stability of the ADN. The main

contributions of this work are:

(1) The clustering algorithm based on FKCM is used to cluster

the load and wind-solar output, and four clustering scenarios

are obtained.

(2) The grey target decision based on EWM is used to obtain the

optimal compromise solution from the Pareto front, to get

rid of the unreasonable favoritism caused by weighting

multiple objectives with subjective weights.

(3) The extended IEEE-33 node system and the extended IEEE-

69 node system are used for simulation experiments. The

experimental results show that NSGA-II can balance the

economy of BESSs configuration and stabilize the power and

voltage levels of the ADN. Therefore, the BESSs

configuration scheme obtained by the method described

in this work is effective and can improve the stability of

ADN operation.

In practice, the scale of ADN is large and more constraints

need to be considered, which is a great challenge to the

performance of the algorithm. At the same time, the

heuristic algorithm has strong randomness, and the best

compromise solution obtained each time is different.

Therefore, it is more subjective to select the final solution

from multiple optimal compromise solutions. However,

compared with traditional optimization methods, heuristic

algorithms do not require accurate models and a large

amount of data. The algorithm structure is simple and

efficient, which greatly improves the calculation speed and

efficiency, and it is easier to obtain the global optimal

solution, making the configuration of ESSs more reasonable.

Therefore, considering the accuracy, effectiveness and time cost

of the algorithm, the heuristic algorithm has more advantages

than other traditional methods.

In future research, the NSGA-II algorithm will be applied to

the BESSs planning problem considering the demand side

response and the optimization problem of the electricity-

hydrogen hybrid ESSs.

Data availability statement

The original contributions presented in the study are

included in the article/supplementary material, further

inquiries can be directed to the corresponding author.

Author contributions

RS: writing the manuscript; GH: discussion of the objective

functions; SS: discussion of the constrains; YD: discussion of the

algorithm; JC and HC: completion of the experimental test; KW:

editing; CZ: discussion of the topic.

Acknowledgments

The authors gratefully acknowledge the support of

Enhancement Strategy of Multi-type Energy Integration of

Active Distribution Network (YNKJXM20220113).

Frontiers in Energy Research frontiersin.org14

Su et al. 10.3389/fenrg.2022.1073194

115

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1073194


Conflict of interest

RS, GH, SS, YD, JC, HC, KW, and CZ were employed by

Dali Power Supply Bureau of Yunnan Power Grid Co., Ltd.,

Electric Power Research Institute of Yunnan Power Grid Co.,

Ltd., Grid Planning Research Center of Yunnan Power Grid

Co., Ltd.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.

References

Askari, S. (2021). Fuzzy C-Means clustering algorithm for data with unequal
cluster sizes and contaminated with noise and outliers: Review and development.
Expert Syst. Appl. 165, 113856. doi:10.1016/j.eswa.2020.113856

Bin, Y., Xu, L., Wang, J., Zhu, S. Y., Qiu, X. F., Yin, C. X., et al. (2019). Research on
investment input-output benefit of distribution network planning considering
micro-grid and multi-load development under the new power reform. IOP
Conf. Ser. Earth Environ. Sci. 237 (6), 062013–62013. doi:10.1088/1755-1315/
237/6/062013

Chen, X. L. (2020). Operational reliability evaluation of power generation and
transmission combined system considering multiple meteorological elements and
retired battery energy storage. Chongqin, China: Chongqing University, doi:10.
27670/d.cnki.gcqdu.2020.000145

Company, B. P. (2021). Statistical review of world energy 2021. https://www.bp.
com/en/global/corporate/energy-economics/statistical-review-of-world energy.
html.[R/OL]. [2021-07-09]

Das, C. K., Bass, O., Kothapalli, G., Mahmoud, T. S., Habibi, D., Hu, D. C., et al.
(2018). Overview of energy storage systems in distribution networks: Placement,
sizing, operation, and power quality. Renew. Sustain. Energy Rev. 91, 1205–1230.
doi:10.1016/J.RSER.2018.03.068

Dong, X., Wu, J., Xu, Z. B., Liu, K., and Guan, X. (2022). Optimal coordination of
hydrogen-based integrated energy systems with combination of hydrogen and
water storage. Appl. energy 308, 118274. doi:10.1016/j.apenergy.2021.118274

Faramarzi, A., Heidarinejad, M., Stephens, B., and Mirjalili, S. (2020).
Equilibrium optimizer: A novel optimization algorithm. Knowl. Based. Syst. 191,
105190. doi:10.1016/j.knosys.2019.105190

Fu, L., Dong, L. T., and Zhang, Y. (2022). Research on optimal configuration of
energy storage system in distribution network considering voltage quality. Electr.
Autom. 44 (1), 24–26. doi:10.3969/j.issn.1000-3886.2022.01.008

Ghatak, S. R., Sannigrahi, S., and Acharjee, P. (2019). Multi-objective approach
for strategic incorporation of solar energy source, battery storage system, and
DSTATCOM in a smart grid environment. IEEE Syst. J. 13, 3038–3049. doi:10.1109/
JSYST.2018.2875177

He, T. Y., Li, S. N., Wu, S. J., Li, C., and Xu, B. (2021). Biobjective optimization-
based frequency regulation of power grids with highparticipated renewable energy
and energy storage systems. Math. Problems Eng. 2021, 1–16. doi:10.1155/2021/
5526492

Hu, D. C., Zhang, S., Han, T., et al. (2022). Low-carbon transition path of power
generation sector under carbon neutral target. Clean. Coal Technol. 28, 23–33.
doi:10.13226/j.issn.1006-6772.cn22032102

Hu, W., Yen, G. G., and Zhang, X. (2014). Multiobjective particle swarm
optimization based on Pareto entropy. J. Softw. 25 (5), 1025–1050. doi:10.13328/
j.cnki.jos.004496

Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C., Silverman, R., and Wu,
A. (2002). An efficient k-means clustering algorithm: Analysis and implementation.
IEEE Trans. Pattern Anal. Mach. Intell. 24 (7), 881–892. doi:10.1109/TPAMI.2002.
1017616

Lee, T. Y., and Chen, N. M. (1995). Determination of optimal contract
capacities and optimal sizes of battery energy storage systems for time-of-use
rates industrial customers. IEEE Trans. energy Convers. 10 (3), 562–568. doi:10.
1109/60.464883

Li, J. L., Guo, Z. D., Ma, S. L., et al. (2022). Summary of "Source-Network-Load
Storage" architecture and evaluation system in new power system. High. Volt. Eng.,
1003–6520. doi:10.13336/j.1003-6520.hve.20220532

Li, Y., Feng, B., Li, G. Q., Qi, J., Zhao, D., and Mu, Y. (2018). Optimal distributed
generation planning in active distribution networks considering integration of
energy storage. Appl. Energy 210, 1073–1081. doi:10.1016/j.apenergy.2017.08.008

Li, Y., Feng, B., Wang, B., and Sun, S. (2022). Joint planning of distributed
generations and energy storage in active distribution networks: A Bi-level
programming approach. Energy 245, 123226. doi:10.1016/j.energy.2022.123226

Liu, M. J., Li, W. R., and Wang, S. C. (2016). Reliability evaluation of microgrid
with tidal power generation and battery storage in islanded mode. Power Autom.
Equip. 36 (11), 33–39. doi:10.16081/j.issn.1006-6047.2016.11.005

Meng, Q. Q., Li, X. Q., Yu, H. F., et al. (2021). Optimal planning of energy storage
power station considering source-charge uncertainty. Acta Energiae Solaris Sin. 42
(10), 415–423. doi:10.19912/j.0254-0096.tynxb.2019-1023

Pal, N. R., and Bezdek, J. C. (1995). On cluster validity for the fuzzy c-means
model. IEEE Trans. Fuzzy Syst. 3 (3), 370–379. doi:10.1109/91.413225

Ren, Z. P., Lu, B. C., Zhao, Y. L., et al. (2019). Modeling and simulation of
photovoltaic virtual synchronous generator. Power Syst. Prot. Control 47 (13),
92–99. doi:10.19783/j.cnki.pspc.180963

Shi, W. H., Qu, J. X., Luo, K., et al. Grid-integration and operation of high-
proportioned new energy. Strategic Study CAE 2022, 1–12. doi:10.15302/J-SSCAE-
2022.07.006

Su, H. F., Hu, M. J., and Liang, Z. R. (2016). Distributed power planning with
energy storage device based on timing characteristics. Power Autom. Equip. 36 (6),
56–63. doi:10.16081/j.issn.1006-6047.2016.06.009

Wu, Q., Luo, J., and Lin, J. (2014). Production job multi-objective scheduling
optimization based on set pair analysis and NSGA-II. Appl. Res. Comput. 31 (5),
1414–1417. doi:10.3969/j.issn.1001-3695.2014.05.031

Wu, Y. J., Liang, X. Y., Huang, T., Lin, Z., Li, Z., and Hossain, M. F. (2021). A
hierarchical framework for renewable energy sources consumption promotion
among microgrids through two-layer electricity prices. Renew. Sustain. Energy
Rev. 145, 111140. doi:10.1016/j.rser.2021.111140

Wu, Y. J., Lin, Z. W., Liu, C. J., Chen, Y., and Uddin, N. (2021). A demand
response trade model considering cost and benefit allocation game and hydrogen to
electricity conversion. IEEE Trans. Ind. Appl. 58, 2909–2920. doi:10.1109/TIA.2021.
3088769

Wu, Y. J., Lin, Z. W., Liu, C. J., Huang, T., Chen, Y., Ru, Y., et al. (2022). Resilience
enhancement for urban distribution network via risk-based emergency response
plan amendment for ice disasters. Int. J. Electr. Power & Energy Syst. 141, 108183.
doi:10.1016/j.ijepes.2022.108183

Xiao, L. Y., and Pan, J. F. Suggestions on building a wide area virtual power
plant based on photovoltaic power generation and physical energy storage.
Bull. Chin. Acad. Sci. 2022, 549–558. doi:10.16418/j.issn.1000-3045.
20220120001

Yan, Z. M., Wang, C. M., Zheng, J., et al. (2013). Value assessment model of
battery energy storage system in distribution network. Electr. Power Autom. Equip.
33 (2), 57–61. doi:10.3969/j.issn.1006-6047.2013.02.010

Yang, B.,Wang, J. T., Chen, Y. X., Li, D., Zeng, C., et al. (2020). Optimal sizing and
placement of energy storage system in power grids: A state-of-the-art one-stop
handbook. J. Energy Storage 32, 101814. doi:10.1016/j.est.2020.101814

Yang, B., Yu, L., Chen, Y. H., Ye, H., Shao, R., Shu, H., et al. (2021). Modelling,
applications, and evaluations of optimal sizing and placement of distributed
generations: A critical state-of-the-art survey. Int. J. Energy Res. 45 (3),
3615–3642. doi:10.1002/er.6104

Zandalinas, S. I., Fritschi, F. B., and Mittler, R. (2021). Global warming, climate change,
and environmental pollution: Recipe for a multifactorial stress combination disaster.
Trends Plant Sci. 26 (6), 588–599. doi:10.1016/j.tplants.2021.02.011

Zheng, Z. D. (2018). Analysis of application mode and control strategy of battery
energy storage system to reduce light abandonment in photovoltaic power station.
Electr. Energy Effic. Manag. Technol. 23, 58–61–78. doi:10.16628/j.cnki.2095-8188.
2018.23.011

Frontiers in Energy Research frontiersin.org15

Su et al. 10.3389/fenrg.2022.1073194

116

https://doi.org/10.1016/j.eswa.2020.113856
https://doi.org/10.1088/1755-1315/237/6/062013
https://doi.org/10.1088/1755-1315/237/6/062013
https://doi.org/10.27670/d.cnki.gcqdu.2020.000145
https://doi.org/10.27670/d.cnki.gcqdu.2020.000145
https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world%20energy.%20html
https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world%20energy.%20html
https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world%20energy.%20html
https://doi.org/10.1016/J.RSER.2018.03.068
https://doi.org/10.1016/j.apenergy.2021.118274
https://doi.org/10.1016/j.knosys.2019.105190
https://doi.org/10.3969/j.issn.1000-3886.2022.01.008
https://doi.org/10.1109/JSYST.2018.2875177
https://doi.org/10.1109/JSYST.2018.2875177
https://doi.org/10.1155/2021/5526492
https://doi.org/10.1155/2021/5526492
https://doi.org/10.13226/j.issn.1006-6772.cn22032102
https://doi.org/10.13328/j.cnki.jos.004496
https://doi.org/10.13328/j.cnki.jos.004496
https://doi.org/10.1109/TPAMI.2002.1017616
https://doi.org/10.1109/TPAMI.2002.1017616
https://doi.org/10.1109/60.464883
https://doi.org/10.1109/60.464883
https://doi.org/10.13336/j.1003-6520.hve.20220532
https://doi.org/10.1016/j.apenergy.2017.08.008
https://doi.org/10.1016/j.energy.2022.123226
https://doi.org/10.16081/j.issn.1006-6047.2016.11.005
https://doi.org/10.19912/j.0254-0096.tynxb.2019-1023
https://doi.org/10.1109/91.413225
https://doi.org/10.19783/j.cnki.pspc.180963
https://doi.org/10.15302/J-SSCAE-2022.07.006
https://doi.org/10.15302/J-SSCAE-2022.07.006
https://doi.org/10.16081/j.issn.1006-6047.2016.06.009
https://doi.org/10.3969/j.issn.1001-3695.2014.05.031
https://doi.org/10.1016/j.rser.2021.111140
https://doi.org/10.1109/TIA.2021.3088769
https://doi.org/10.1109/TIA.2021.3088769
https://doi.org/10.1016/j.ijepes.2022.108183
https://doi.org/10.16418/j.issn.1000-3045.20220120001
https://doi.org/10.16418/j.issn.1000-3045.20220120001
https://doi.org/10.3969/j.issn.1006-6047.2013.02.010
https://doi.org/10.1016/j.est.2020.101814
https://doi.org/10.1002/er.6104
https://doi.org/10.1016/j.tplants.2021.02.011
https://doi.org/10.16628/j.cnki.2095-8188.2018.23.011
https://doi.org/10.16628/j.cnki.2095-8188.2018.23.011
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1073194


Analysis of current protection in
distribution networks with clean
energy access

Huang Kun1,2*, Cai Rong3, Zhao Jingtao2, Gong Xundong3 and
Huang Guodong3

1School of Electronic Science and Engineering, Southeast University, Nanjing, China, 2NARI
Technology Co., Ltd., NARI Group Corporation, Nanjing, China, 3Suzhou Power Supply Company,
State Grid Jiangsu Electric Power Co., Ltd., Suzhou, China

With the rapid development of the new energy industry, distributed generation

(DG) is connected to the power grid on a large scale, and the traditional relay

protection scheme is no longer suitable for modern power systems. In order to

solve this problem, this paper establishes a mathematical model of the

equivalent circuit of distributed photovoltaic power supply according to the

external characteristics of photovoltaic cells, and analyzes its volt-ampmeter

characteristics and voltage output characteristics of power supply. On this basis,

it analyzes and puts forward the control mode of DG when the distribution

network is faulty. On the basis of the study, this article has double feeder

distribution network as an example, the analysis when the line fault occurring at

different extents of DG connected to different position on the influence of the

distribution network current protection, the results show that when answering

DG side in the feeder bus for distribution network of current protection, pick a

smaller effect on both ends of feeder, has a certain symmetry. Finally, the

accuracy of theoretical analysis is verified by establishing a simulation model in

PSCAD.

KEYWORDS

renewable energy sources, modern power system, distributed power supply,
photovoltaic (pv) power supply, distribution network failure, current protection

1 Introduction

With the rapid development of society, economy and technology, the global ecological

environment has been seriously damaged, and the climate issue has attracted great

attention from all sides of society. Vigorously developing clean energy and improving

energy use structure is one of the important ways to deal with environmental and climate

problems. In 2021, China’s photovoltaic power generation was 325.9 billion KWH, an

increase of 64.8 billion KWH over the previous year, a year-on-year growth of 24.8%,

accounting for about 4.0% of the country’s total annual electricity generation. In 2021,

China’s cumulative installed capacity of photovoltaic power generation was

306.56 million kW, a year-on-year growth of 21%; China’s newly installed PV

capacity was 54.93 GW, up 14 percent year on year (Energy and the Environment,

2021). In the same time other clean energy technologies in our country have also been

OPEN ACCESS

EDITED BY

Yingjun Wu,
Hohai University, China

REVIEWED BY

Cheng Chi,
Hong Kong University of Science and
Technology, Hong Kong SAR, China
Qiang Xing,
Southeast University, China

*CORRESPONDENCE

Huang Kun,
634596964@qq.com

SPECIALTY SECTION

This article was submitted to Smart
Grids, a section of the journal
Frontiers in Energy Research

RECEIVED 03 September 2022
ACCEPTED 30 September 2022
PUBLISHED 11 January 2023

CITATION

Kun H, Rong C, Jingtao Z, Xundong G
and Guodong H (2023), Analysis of
current protection in distribution
networks with clean energy access.
Front. Energy Res. 10:1035781.
doi: 10.3389/fenrg.2022.1035781

COPYRIGHT

© 2023 Kun, Rong, Jingtao, Xundong
and Guodong. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Energy Research frontiersin.org01

TYPE Original Research
PUBLISHED 11 January 2023
DOI 10.3389/fenrg.2022.1035781

117

https://www.frontiersin.org/articles/10.3389/fenrg.2022.1035781/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.1035781/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.1035781/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2022.1035781&domain=pdf&date_stamp=2023-01-11
mailto:634596964@qq.com
https://doi.org/10.3389/fenrg.2022.1035781
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2022.1035781


expanded and applied massively. Continuing to develop clean

energy in the future will be an important contribution to

optimizing energy structure, realizing “double carbon” target

and promoting global environmental construction (Ming et al.,

2014).

But as clean power sources, mainly photovoltaic, are

connected to the distribution grid on a large scale, the

structure of the distribution network has changed from the

original single power supply radiant network to bidirectional

multi-power network (Wu et al., 2021a), and the power flow and

system short-circuit current of the power grid have changed.

Therefore, the original protection scheme applicable to the

traditional distribution network cannot be directly applied to

the distribution network with distributed power access, so it is

very necessary to analyze the influence of distributed power

access on the protection device of distribution network.

In view of the above problems, researchers at home and abroad

have carried out research and analysis from different aspects, and

achieved good results. Literature (Calderaro et al., 2009; Liqun et al.,

2020; Yin et al., 2020) takes the distribution system with a single

distributed power supply as an example. By exploring the

characteristics of photovoltaic output, voltage and current changes

at the grid-connected end of photovoltaic are controlled based on

island detection, so as to achieve the relay protection goal of

distribution network. In literature (Alcala-Gonzalez et al., 2021;

Ni et al., 2022), the equivalent model of photovoltaic power

station was established and its short-circuit fault characteristics

were simulated and analyzed to study the influence of different

photovoltaic access capacity on the short-circuit level of regional

power grid. Literature (Luning, 2019; Wu et al., 2022) proposed a

new distributed power consumption model based on the dynamic

reconstruction of distribution network. The model comprehensively

considered the load demand change in each period, the uncertainty

of distributed power output and the switching times, and established

the optimization objective ofmaximizing the photovoltaic absorption

ratio and minimizing the switching times. Literature (Yongfei et al.,

2016; Xuekai et al., 2019) analyzes the transient process of inverter

and the output characteristics of distributed power supply during

reclosing operation based on the dynamic characteristics of

distributed power lock loop during reclosing operation, and

discusses the influence of photovoltaic access on reclosing. Finally,

the reclosing configuration method considering distributed

power supply access is given, which has good practical value.

Based on the definition and characteristics of distributed power

generation, literature (Yongfei et al., 2016; Xiao, 2018) explores

the influence of distributed power access on relay protection of

distribution network, but the content is theoretical and no

specific simulation is used to verify the applicability of the

proposed scheme. Literature (Azeroual et al., 2022) proposed a

new method for fault location and autonomous recovery of

distributed distribution system based on multi-agent system,

and tested the proposed protection method by using the open-

loop feeder distribution system in Kenitra, Morocco. In

addition, the impact of DG integration on fault location and

multiple faults is addressed. In this study, with suitable backup

protection given via agent coordination.

Through the above analysis we is not hard to find, after the

DG interconnection of traditional relay protection scheme is not

fully used and difficult to meet the requirements of the safe and

stable operation of power grid, the current due to a variety of

proposed methods in our study is limited by its own limitations,

lack of strong general protection scheme is one of the important

reasons, limit development of DG interconnection large-scale

Therefore, it is very important to study the protection method of

distribution network with DG access.

2 Modeling and operating
characteristic analysis of distributed
photovoltaic power generation

2.1 Structure modeling of distributed
photovoltaic power generation

The smallest component unit of photovoltaic array of

distributed photovoltaic power generation is photovoltaic cell,

which generates current through photogenerating volt effect

FIGURE 1
Equivalent circuit model of photovoltaic cell.

FIGURE 2
Simplified model of equivalent circuit of photovoltaic cell.
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(Mingjun, 2018; Hong and Hongbo, 2020). The equivalent circuit

model of photovoltaic cell is established according to the external

characteristics of photovoltaic cell, as shown in Figure 1.

Figure 1 shows that the equivalent circuit of photovoltaic cell

consists of a current source in parallel with an ideal diode, and is

connected with a series resistor and a parallel resistor. According

to the characteristics of PN junction of the diode, the

mathematical model of photovoltaic cell can be obtained as

shown in Eqs 1–6:

IL � Iph − ID − Ish (1)
ID � I0[exp(qUD

AkT
) − 1] (2)

IL � Iph − I0[exp(qUD

AkT
) − 1] − UD

Rsh
(3)

UD � Uoc + ILRs (4)
Isc � I0[exp(qUoc

AkT
) − 1] (5)

Uoc � AkT
q

ln(Isc
I0

+ 1) (6)

Where, IL is the external output current of photovoltaic cell, Iph is

the current generated by photovoltaic cell through

photogenerating volt effect, ID is the internal dark current that

photovoltaic cell flows through the diode, Ish is the current that

flows through the parallel resistor Rsh, I0 is the reverse saturation

current of the diode, q is the electronic load, q = 1.6 × 10−19C, UD

is the voltage at both ends of the diode, A is the fitting coefficient

of the characteristic curve of the PN junction of the diode, k is the

Boltzmann constant, k = 1.38 × 10−23 J/K, T is the absolute

temperature of the operating environment, Rsh is the

equivalent parallel resistance of the photovoltaic cell, Uoc is

the open circuit voltage of the photovoltaic cell, RL is the

external load resistance of the photovoltaic cell, Rs is the

equivalent series resistance of photovoltaic cells, and Isc is the

internal short-circuit current of photovoltaic cells.

Since the internal equivalent series resistance of photovoltaic

cells is small (generally less than 1Ω), while the resistance value
of parallel resistance is large, the above resistance can be ignored

under ideal conditions, and the equivalent circuit of photovoltaic

cells can be further simplified into the model shown in Figure 2.

According to the simplified equivalent circuit model of

photovoltaic cell, Eqs 1–6 are simplified, and the simplified

mathematical model of photovoltaic cell can be obtained as

follows:

IL � Iph − ID (7)
P � ULIL � ULIph − ULI0[exp(qUL

AkT
) − 1] (8)

Where UL is the external output DC voltage of the photovoltaic

cell, and P is the output power of the photovoltaic cell.

2.2 Operating characteristics of
distributed photovoltaic power
generation

Voltammetric characteristics of photovoltaic cells are shown

in Figure 3. The intersection point of the curve with the current

axis is the circuit current Isc of photovoltaic cells, and the

intersection point with the electric voltage axis is the open

circuit voltage Uoc. The point M in the curve enables

photovoltaic cells to output the maximum power when

operating with the current and voltage at this point, which is

called the maximum power point. The photovoltaic cell output

current Im is the best output current, and the voltage at this point

FIGURE 3
Voltammetric characteristic curve of photovoltaic cell.

FIGURE 4
Pv cell power-voltage output characteristic curve.
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Um is the best output voltage. From the origin, several lines can be

drawn that intersect the I-U curve. These lines are called load

lines with a slope of 1/RL. Among several load lines, there is only

one line that intersects point M. The load line is called the

optimal load line, and its slope is 1/Rm. In this case, the external

load resistance of the photovoltaic cell RL = Rm.

The power-voltage output characteristics of photovoltaic

cells are shown in Figure 4 (Yongfei et al., 2016). According

to the figure, the output power and voltage transmission of

photovoltaic cells have nonlinear characteristics. When the

voltage is less than the maximum power point voltage, the

output characteristics of photovoltaic cells are similar to

current sources. When the voltage is greater than the

maximum power point voltage, the photovoltaic cell output

characteristics are similar to the voltage source.

To sum up, the maximum output power Pm of photovoltaic

cells is expressed as:

Pm � ImUm (9)

Photovoltaic cells are easily affected by various external factors

in actual operation, among which the solar illumination intensity

and working environment temperature have a particularly

significant impact on their output characteristics. Figure 5 for

the different light intensity on pv cells at the same temperature

volt-ampere characteristic and power—voltage output

characteristic influence diagram, the output voltage is equal,

with the increasing of light intensity, the photovoltaic battery

output power and output current increase, at the same time,

the light intensity has significant effects on short circuit current

and open circuit voltage effect is relatively small.

Figure 6 for the same light intensity under different

temperature on the pv cells volt-ampere characteristic and

power—the influence of the voltage output characteristics,

along with the temperature rising, the photovoltaic battery

output power and output current showed a trend of decrease,

but the overall degree of change is small, at the same time, the

temperature has significant effects on the open circuit voltage and

short circuit current effect is relatively small.

Through the above analysis shows that works in different

light intensity and environment temperature the volt-ampere

characteristic and power of the photovoltaic cells—voltage

characteristic each are not identical, location of maximum

power point is different also, in order to keep the pv cells can

under different light and temperature can be maximum power

output, you need to use the maximum power point tracking

technology to control the pv cells.

2.3 Distributed photovoltaic grid-
connected control mode

Because photovoltaic power generation outputs direct

current by using the photogenerated volt effect of photovoltaic

array solar cells, it must be converted into alternating current by

inverters before it can be incorporated into the power grid. There

are various control methods in the grid-connected inverter

process of distributed photovoltaic power generation. In this

paper, the PQ control method is adopted. The voltage and

frequency are given by the grid, and the output power is

guaranteed to be given by controlling the current. Therefore,

in essence, PQ control is a kind of current control. Figure 7 shows

the droop characteristics of system frequency and voltage under

the PQ control mode. It can be seen that the active and reactive

power of DG can be kept constant within the dynamic variation

range of frequency and output voltage by using the PQ control

mode. When the DG is connected to the power grid, the

FIGURE 5
Output characteristics of photovoltaic cells under the same temperature and different light intensities. (A) Voltammetry characteristic curve.
(B) Power voltage characteristic curve.
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frequency and voltage are maintained stable by the distribution

network system itself.

The process of distributed photovoltaic grid-connected

control using PQ control is shown in Figure 8. In Figure 8,

the photovoltaic array first generates DC through the

photovoltaic effect, and then converts DC to AC through the

three-phase inverter after the voltage is raised by the Boost

circuit. After the filtering is completed, it meets the power

quality requirements of photovoltaic grid-connected, and then

it is connected to the distribution network for operation. Among

them, the inverter adopts PQ control strategy to make the active

power and reactive power output of DG equal to the reference

value given by the system. The instantaneous current iabc and the

instantaneous voltage eabc of the common connection point are

respectively subjected to Parker transform to obtain id, iq, ed, and

eq. The outer loop control is compared with the given reference

power and PI is used to control the error, and then the reference

currents idref and iqref are obtained. Similarly, by comparing the

inner loop control of the current with id and iq, The difference is

controlled by PI, and the output reference voltages udref and uqref
are obtained through Parker inverse transformation to obtain the

three-phase component in the abc coordinate system. Finally, the

three-phase inverter is controlled through PWM pulse width

modulation.

FIGURE 6
Output characteristics of photovoltaic cells at different temperatures under the same light intensity. (A) Voltammetry characteristic curve.
(B) Power voltage characteristic curve.

FIGURE 7
System frequency and voltage droop characteristics under PQ control. (A) Frequency droop characteristic. (B) Voltage droop characteristic.

Frontiers in Energy Research frontiersin.org05

Kun et al. 10.3389/fenrg.2022.1035781

121

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1035781


2.4 Operating characteristics of
distributed photovoltaic power
generation

In case of distribution network failure, the distributed

generation is required to have low-voltage crossing capability,

that is, when the grid failure or disturbance leads to voltage sag of

the distributed generation junction point, the distributed

generation should be able to maintain the grid-connected

state and continue to operate within the specified range and

time of voltage sag. The low-voltage crossing capacity of DG

should meet the requirements as shown in Figure 9. Specifically,

when the voltage of the DG connection point drops to 0, the DG

should be able to run continuously for 0.15 s without

disconnecting from the grid, and when the voltage drops

below curve 1, the DG can be cut off from the grid.

The reactive current output by DG during fault crossing

satisfies Eq. 10. When the voltage of the connection point is too

low, the DG is required to provide reactive current to the system to

maintain the voltage level of the grid. Specifically, when the

junction voltage is greater than 0.9 PU, no reactive current is

output;When the junction point voltage is 0.2–0.9 PU, the reactive

current is determined by the rated DG current and the junction

point voltage. When the junction voltage is less than 0.2 PU, the

output reactive current is 1.05 times of the rated current of DG.

⎧⎪⎨⎪⎩
iq � 0,U*> 0.9

iq ≥ 1.5(0.9 − U*)IN , 0.2≤U*≤ 0.9
iq ≥ 1.05IN ,U*< 0.2

(10)

Where,U* is the nominal voltage of DG connection point, and IN
is the rated current of DG.

DG should have certain operation adaptability, and it is required

to run under the specified operating time requirements when the

voltage and frequency of the distribution network connection point

change. The specific requirements for the running time of DGwithin

the voltage range of different connection points are shown in Table 1.

FIGURE 8
Schematic diagram of grid-connected operation control of distributed PV.

FIGURE 9
Low voltage traversal capability of distributed power supply.
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3 Analysis of the influence of
distributed generation access on
distribution network current
protection

After the DG is connected to the distribution network, the

system is transformed from the original simple single power

supply network to the complex multi-power supply network. In

case of short circuit fault, the direction of current is difficult to

determine, and the influence of DG access to the distribution

network varies with different capacity, quantity, location, (GB/T

19964-2012, 2012) type and other conditions (Chunlan et al.,

2018; Wu et al., 2021b; Hongjuan et al., 2021).

In this paper, the dual-feeder distribution network is taken as an

example to analyze the influence of DG on current protection when

it is connected to the end busbar, middle busbar and head busbar of

the feeder of the distribution network when faults occur in different

sections of the line. In the fault analysis, DG is equivalent to the

voltage controlled current source. Figure 10 shows the topological

structure of DG connected to the terminal bus D of feeder 1.

3.1 Distributed power supply mode when
distribution network failure

3.1.1 Distributed generation is connected to the
head of the feeder

Figure 11 shows the schematic diagram of DG connected to

bus A at the first end of feeder 1. The influence caused by DG

access is discussed by analyzing the short circuit fault occurring

at F1 and F2 at AE end of line AB, respectively.

Head end when DG in the feeder bus, DG and original power

supply system for line power supply, equivalent to increase the

capacity of the power system, both when the end of the line AB

f1 or f2 fault line AE end, compared to before the DG access,

short circuit current changed little, the influence of various

protection are in line of smaller.

3.1.2 Distributed generation is connected to the
middle end of the feeder

Figure 12 shows the schematic diagram of DG connected to

bus C in the middle section of feeder 1. The influence caused by

DGaccess is discussed by analyzing the short circuit fault occurring

at F1 of AB end, F2 of CD end and F3 of AE end, respectively.

3.1.2.1 A fault occurs at the end of AB upstream of DG

When a fault occurs at f1 of AB terminal, the fault line is equivalent

to the circuit diagram shown in Figure 13 for analysis in order tomore

intuitively analyze the current flowing through each protection.

I1 � US

ZS + ZAf 1

(11)

( 1
ZCD

+ 1
ZBf 1 + ZBC

)UDG � P
UDG

(12)

TABLE 1Operating time requirements of photovoltaic power supply in
different voltage range of junction points.

Voltage range Operation requirements

Less than 0.9 pu Meet the requirements of low voltage traversal

0.9–1.1 pu The normal operation

1.1–1.2 pu Run for at least 10 s

1.2–1.3 pu Run continuously for at least 0.5 s

FIGURE 10
DG is connected to bus D at the end of feeder.

FIGURE 11
DG is connected to bus A at the beginning of feeder.

FIGURE 12
DG is connected to the terminal bus C of BC.
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UDG �

�����������������
P · ZCD(ZBf 1 + ZBC)
ZCD + ZBf 1 + ZBC

√√
(13)

I2 � UDG

ZBf 1 + ZBC
�

����������������������������
P · ZCD(ZCD + ZBf 1 + ZBC) · (ZBf 1 + ZBC)

√
(14)

Where, I1 is the current flowing through protection 1, I2 is the reverse

current output fromDG to fault point f1,Us is the reference voltage of

the system,Zs is the systempower supply impedance, is the equivalent

impedance from bus A to fault point f1, ZBC is the equivalent

impedance from bus B to bus C, ZCD is the equivalent impedance

from bus C to bus D, Is the equivalent impedance from bus B to the

fault point f1, UDG is the voltage of DG, P is the power of DG. UDG is

solved through Eq. 12, and the calculation result is shown in Eq. 13.

According to Eqs 11–14, when a short-circuit fault occurs at

f1 of AB terminal, DG provides fault current to the fault, and the

short-circuit current flowing through protection 2 increases.When

the short-circuit current is greater than the action value, protection

2 will misoperate, resulting in the extension of line outage range,

while the current of protection 1 is not affected by DG access.

3.1.2.2 A fault occurs at the end of the downstream line

CD of DG

When a fault occurs at f2 at the end of line CD, the line can be

equivalent to the simplified circuit model shown in Figure 14.

According to the simplified circuit model diagram, the

current I1, I2, and I3 flowing through protection 1, protection

2 and protection 3 can be obtained.

I1 � I2 � US − UDG

|ZS + ZAC| (15)

I3 � UDG∣∣∣∣ZCf 2

∣∣∣∣ (16)

Where, Us is the system reference voltage, Zs is the system

power supply impedance, ZAC is the impedance of line AC,

is the equivalent impedance of the distance between bus A

and fault point f2, and UDG is the voltage of DG. UDG is

solved through Eq. 17, and the calculation result is shown in

Eq. 18.

( 1
ZS + ZAC

+ 1
ZCf 2

)UDG � US

ZS + ZAC
+ P
UDG

(17)

UDG �
USZCf 2+

������������������������������������
U2

SZ
2
Cf 2

+4(ZCf 2 +ZS +ZAC)PZCf 2(ZS +ZAC)
√

2(ZS +ZAC +ZCf 2)
(18)

So, failure occurs when the end of the CD f2, by protecting 3 I

period of action to remove the fault, protect 2 as line CD backup

protection, DG on bus C, increase of short circuit current

protection 3, protection to improve sensitivity, of short circuit

current protection 2 decreases, and protect the protection range

of the two and lower sensitivity.

3.1.2.3 AE ends of adjacent feeders are faulty

When a fault occurs at f3 of AE end, the fault line can be

equivalent to the circuit diagram shown in Figure 15 for

analysis.

( 1
ZCD

+ 1
ZS + ZAC

)UDG � P
UDG

+ US

ZS + ZAC
(19)

UDG �
USZCD +

����������������������������������������
U2

SZ
2
CD + 4(ZS + ZAC + ZCD)(ZS + ZAC) · ZCD · P

√
2(ZS + ZAC + ZCD)

(20)

FIGURE 13
Equivalent circuit diagram of a fault at the end of line AB.

FIGURE 14
Equivalent circuit diagram of a fault at the end of line AB.

FIGURE 15
Equivalent circuit diagram of AE terminal fault.
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I1 � I2 � US − UDG

ZS + ZAC

� (ZS + ZAC)US + USZCD

(ZS + ZAC + ZCD)(ZS + ZAC)

−
���������������������������������������
U2

SZ
2
CD + 4(ZS + ZAC + ZCD)(ZS + ZAC) · ZCD · P

√
2(ZS + ZAC + ZCD)(ZS + ZAC)

(21)
Where, Us is the system reference voltage, Zs is the system power

supply impedance, ZAC is the impedance of line AC, ZCD is the

impedance of line CD, ZAf3 is the equivalent impedance of the

distance between bus A and fault point f3, UDG is the voltage of

DG, I1 is the reverse current output by DG through protection 1,

I2 is the reverse current output by DG through protection 2.

When a fault occurs at f3 of AE terminal, the fault can be

removed by the action of protection 4 before DG access. When

DG access, the DG outputs reverse fault current to the fault point,

and both protection 1 and protection 2 may misoperate.

However, if DG is far enough away from the fault point, the

fault current provided is not enough to cause the misoperation of

protection.

3.1.3 Distributed generation is connected to the
end of the feeder

Figure 16 shows the schematic diagram of DG connected to

bus D at the end of feeder 1. The influence caused by DG access is

discussed by analyzing the short circuit fault occurring at f1 and

F2 at AE end of line AB, respectively.

When a short circuit fault occurs at f1 at the end of line AB, if

the distribution network is not connected to DG, protection

device one starts normally and the fault is removed. When DG is

connected to the grid, f1 has a short-circuit fault, and the fault

current flowing through protection 2 and protection 3 becomes

larger. When the short-circuit current exceeds the setting value of

the operation, protection 2 and protection 3 misoperate. When a

short circuit fault occurs at f2 of AE end of line, the distance

between DG position and fault point f2 is far away, so the

influence on protection 4 is small.

From the above theoretical analysis, we can figure out that

when the distributed power supply is connected to the bus at the

head of the feeder, it becomes a part of the overall power supply

system because it is close to the power supply side of the line, and

will not cause misoperation of protection basically when the fault

occurs. When the distributed power supply is connected to the

bus at the end of the feeder, if it is far enough away from the fault

point, the influence on the fault point current is relatively small.

However, when the distributed power supply is connected to the

bus at the middle end of the feeder, different from the above two

cases, the distributed power supply will have more or less

influence on the current of the guard point, which is easy to

lead to the misoperation of the guard device. The following is to

verify the correctness of the conclusion by combining simulation

analysis.

4 The simulation analysis

The simulation model as shown in Figure 13 is established on

the PSCAD platform, and the specific parameters of the

simulation are as follows:

(1) Power parameters on the system side

The reference voltage value of the distribution network

system is 10.5 kV, the reference capacity is 100 MVA, and the

impedance value of the system side is j0.35 Ω.

(2) Line parameters

The lines AB, BC, CD, and AF of the distribution network all

adopt overhead lines, and the unit resistance and reactance are

set as R = 0.26Ω/km and X = 0.355Ω/km. It can be seen from

FIGURE 16
Equivalent circuit diagram of AE terminal fault.

FIGURE 17
Equivalent circuit diagram of AE terminal fault.
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Figure 17 that the distribution network is a double-feeder system,

and the specific parameters are set as follows:

Feeder 1: the length of AB is 3 km, and the impedance value is

ZAB = 0.78 + j1.065 Ω; The length of BC is 3 km, and the

impedance value is ZBC = 0.78 + j1.065 Ω; The length of CD is

10 km, and the impedance is ZCD = 2.6 + j3.55 Ω.

Feeder 2: the length of AF is 4 km, and the impedance value is

ZAF = 1.04 + j1.42Ω.

The load capacity of feeder 1 and feeder 2 ends is 6 MVA, and

the power factor is 0.85.

DG output power range is adjustable in 0–10 MW.

The output power of DG is set as 5 MW, the simulation time

is 3 s, and the time step of solution is set as 2 μs. Three-phase

short-circuit fault is set at the end of AB, BC, CD, and AE,

respectively, and it is permanent fault. The fault occurs when the

simulation runs for 1 s. Record the current at the fault point when

the fault occurs and the maximum short-circuit current flowing

through each line protection as shown in Table 2.

The short circuit current and action changes before and after

DG access are discussed respectively in the case of three-phase

short circuit at the end of lines AB, BC, CD, and AE.

4.1 The upstream line of the distributed
generation access point is faulty

Figures 18, 19 respectively show the simulation results of

current size and protection action logic at each position of three-

phase short-circuit fault of AB terminal.

According to the simulation results, when three-phase short-

circuit fault occurs at the AB end of the line, the maximum a-phase

current of the DG flowing through protection 1 (P1), protection 2

(P2), protection 3 (P3) and protection 4 (P4) before access is 4.39, 0,

0, 0.347 kA, respectively, and the current at the fault point is

4.438 kA. After DG access, the maximum a-phase currents

flowing through P1, P2, P3, and P4 were 4.388, 0.36, 0.293, and

0.347 kA, respectively, and the current at the fault point was

4.438 kA. Compared with before DG access, P1 and P4 had little

influence, while P2 and P3 currents increased. Before DG access,

section ⅰ of P1 cannot protect the full length of the line, and the fault
is removed by the protection of section ⅱ of P1, while the other

protection does not misoperate and the protection selectivity is

correct. After DG is connected, P2’s ⅲ segment will act and P2 will

misoperate. This is because when the end of AB line fails, DG will

reverse current to the fault point, resulting in P2 misoperation.

When the BC terminal three-phase short-circuit fault occurs,

the maximum a-phase current flowing through P1, P2, P3, and

P4 before DG access is 2.364, 2.364, 0, 0.347 kA, respectively, and

the current at the fault point is 2.41 kA. After DG access, the

maximum a-phase current flowing through P1, P2, P3, and P4 was

2.363, 2.363, 0.295, and 0.347 kA, respectively, and the fault point

current was 2.479 kA. Compared with DG access before, P1, P2,

and P4 had little influence, while P3 current increased.

4.2 The downstream line of the distributed
generation access point is faulty

Figures 20, 21 respectively show the simulation results of

current size and protection action logic at each position of CD

terminal three-phase short circuit fault.

According to the simulation results, when CD terminal three-

phase short-circuit fault occurs, the maximum a-phase current

flowing through P1, P2, P3, and P4 before DG access is 0.919,

0.919, 0.919, and 0.347 kA, respectively, and the fault point current

is 0.973 kA. After DG access, the maximum a-phase currents

flowing through P1, P2, P3, and P4 were 0.842, 0.842, 0.978,

and 0.347 kA, respectively, and the current at the fault point was

1.031 kA. Compared with the current before DG access, P1 and

P2 currents decreased, P3 currents increased, and P4 did not

change, and all protection actions were normal.

4.3 The feeder adjacent to the distributed
generation access point is faulty

Figures 22, 23 respectively show the simulation results of

current size and protection action logic at each position of AE

terminal three-phase short circuit fault.

According to the simulation results, when the AE terminal

three-phase short-circuit fault occurs, the maximum a-phase

current flowing through P1, P2, P3, and P4 before DG access is

TABLE 2 Maximum short-circuit current at different positions when a three-phase short-circuit fault occurs.

Fault location Current size (kA)

Protection of 1 Protection of 2 Protection of 3 Protection of 4 Fault current

The ends of AB 4.388 0.360 0.293 0.347 4.438

The ends of BC 2.363 2.363 0.295 0.347 2.479

The ends of CD 0.842 0.842 0.978 0.347 1.031

The ends of AE 0.204 0.204 0.287 3.419 3.475
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FIGURE 18
Current at each position of the AB terminal three-phase short-circuit fault. (A) Simulation results before DG access (B) Simulation results after
DG access.

FIGURE 19
Three-stage protection action logic when three-phase short-circuit fault occurs at the AB terminal. (A) Simulation results before DG access (B)
Simulation results after DG access.

FIGURE 20
Current at each position of a CD terminal three-phase short-circuit fault. (A) Simulation results before DG access (B) simulation results after DG
access.
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FIGURE 21
Three-stage protection action logic when three-phase short circuit fault occurs at the end of line CD. (A) Simulation results before DG access
(B) simulation results after DG access.

FIGURE 22
Current size at each position of AE terminal three-phase short-circuit fault. (A) Simulation results before DG access (B) simulation results after
DG access.

FIGURE 23
Three-stage protection action logic when AE terminal three-phase short circuit fault occurs. (A) Simulation results before DG access (B)
simulation results after DG access.
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0.27, 0.27, 0.27, and 3.418 kA, respectively, and the fault point

current is 3.475 kA. After DG access, the maximum a-phase

current flowing through P1, P2, P3, and P4 was 0.204, 0.204,

0.287, and 3.419 kA, respectively, and the fault point current was

3.475 kA. Compared with before DG access, P1 and P2 currents

decreased, while P3 and P4 had little influence. P4 works normally

before DG access, and other protections do not misoperate. In the

system with DG, because the access position of DG is far away

from the fault point, the short circuit current of the reverse

transmission is small, so the current protection of the

distribution network is not affected.

Through the above theoretical analysis and simulation results

verification, the influence of single DG access on the short-circuit

fault current of each line in distribution network is shown in Table 3.

To sum up, the influence of single DG access on distribution

network is related to the location of the fault. When the short-

circuit fault occurs upstream of the DG access point, the protection

three-phase short-circuit current downstream of the fault point

will increase. When a short circuit fault occurs downstream of the

DG access point, the short circuit current of the protection line

located downstream of the DG increases, while the short circuit

current of the protection line located upstream of the DG

decreases. When short circuit fault occurs in adjacent feeder

line of DG access point, it has little influence on each protection.

5 Conclusion

When clean energy is connected to the distribution network

in the form of distributed power supply, if short-circuit fault

occurs in the line, the fault direction is not easy to determine due

to the transformation of the grid flow direction, so the

formulation of relay protection scheme is different from that

of traditional distribution network. In this paper, an equivalent

circuit mathematical model with photovoltaic power supply as an

example is established to analyze its volt-ampmeter

characteristics and power-voltage output characteristics. At the

same time, the control mode of distributed power supply is

analyzed when the distribution network is faulty. Taking the

dual-feeder distribution network with distributed power supply

as the research object, when faults occur in different sections of

the line, Influence on fault current and current protection when

DG is connected to terminal bus, non-terminal bus and primary

bus of distribution network feeder, respectively; It is concluded

that when DG is connected in the middle of the feeder, it has the

greatest influence on the protection device of the power grid,

while when DG is connected in the head and end of the feeder,

the influence is small. Finally, a simulation model is built in

PSCAD to verify the accuracy of the theoretical analysis results.
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TABLE 3 Influence of single DG access on three-phase short-circuit fault current.

The fault location Protection type

Protection of 1 Protection of 1 Protection of 1 Protection of 1

The ends of AB Less affected Current increase Current increase Less affected

The ends of CD Current decreases Current decreases Current increase Less affected

The ends of AE Less affected Less affected Less affected Less affected
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In order to further promote the interconnection development and construction of
the power grids between the Lancang-Mekong countries and Southern China region
and facilitatemultilateral energy interaction, an assessmentmechanism of the power
balance and power trade potential between the two areas under long-term
operation simulation is proposed. The mechanism first analyzes the energy
supply structure, energy use forms, cross-border transmission capacity, and
multi-area power trade potential of the power grids of the Lancang-Mekong
countries and Southern China. Secondly, a power and electricity optimization
model considering the long-period operation characteristics of generating units
and regional interconnection transmission constraints is constructed, which can
optimize the solution of a typical time-series operation scenario of 8760 h a year and
improve the accuracy of regional power trade potential analysis. The results show
that the Lancang-Mekong countries and the southern region of China have a
significant potential for power trading, and the construction of a unified power
trading market is vital for promoting the optimal allocation of power resources,
achieving power balance, increasing the proportion of energy consumption, and
reducing the cost of electricity consumption.

KEYWORDS

power trade potential, long-term operation simulation, power balance analysis, regional
power system operation, joint optimization

1 Introduction

Cross-border cooperation and trade in energy have become an important grip for
implementing the “Belt and Road” initiative. Southeast Asia is the world’s third most
populous region, China’s third-largest trading partner, and the southern route of the “One
Belt and One Road”. With the development of “China-Vietnam-Myanmar-Lao” economic
cooperation, the contradiction between the fast-growing energy demand and the local
energy infrastructure in the border areas and cities in the Lancang-Mekong countries has
become more obvious. As the first domestic power grid enterprise to “go global” and the
Chinese implementation unit of the Greater Mekong Sub-region (GMS) power
cooperation authorized by the State Council, Southern Power Grid is responsible for
promoting cross-border power interconnection and sharing the benefits of green energy
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among bilateral people (She et al., 2021). With the development
and promotion of Vietnam’s Vinh Tan coal-fired power plant
Phase I BOT project, Laos’ Namtha River No. 1 hydropower plant
project, Chile’s ETC equity acquisition project, and Laos’ 230 kV
northern power grid EPC project (Wu et al., 2020), while
deepening the power trading between the two sides, many
problems such as different energy market mechanisms for
cross-border trading cooperation and difficulties in bilateral
coordination and scheduling have also been revealed.

The Lancang-Mekong region is rich in hydropower resources.
However, the degree of hydropower development is generally low, the
scale of cross-border power transactions is small, and the potential for
optimal allocation of power resources can be huge (Xing, 2017).
Suppose the optimal allocation of power resources in the Lancang-
Mekong region can be further promoted through cooperation to
improve energy utilization efficiency. In that case, it will greatly
ease the contradiction between the large power demand and scarce
energy resources in the southern region of China, improve the
proportion of energy consumption and reduce power consumption
costs at the same time.

Europe, North America, and other regions have built a unified
regional electricity market to solve the conflict between regional
energy demand and shortage. Their market reform, trading scope
integration, and expansion of relevant experience and practices
can bring some inspiration and reference to constructing a unified
electricity market in the southern region of China and the Mekong
countries (Ngan, 2010). Taking European countries as an example
(Amundsen and Bergman, 2006; Le et al., 2019; Zhang, 2019),
Germany has achieved interconnection with seven neighboring
countries, and the interconnection capacity exceeds 25% of the
maximum system load and 33% of the installed landscape
capacity. The complete interconnection with neighboring
countries provides essential support for Germany’s high
proportion of new energy consumption. Portugal is connected
to the Spanish grid with a maximum power exchange capacity of
3.1 million kilowatts, 59% of Portugal’s installed landscape
capacity. Spain is connected to France, Portugal, and Morocco
grids, with a maximum power exchange capacity of 6.85 million
kilowatts and 23.2% of Spain’s installed landscape capacity. The
Danish grid is interconnected with Norway, Sweden, and
Germany through 14 liaison lines, with a connected capacity of
more than 5 GW, close to the total installed capacity of scenery at
the end of 2015, using the rich hydropower resources in Northern
Europe to play a good regulating role in the consumption of wind
power in Denmark. As an Independent System Operator ISO
(Independent System Operator), the three main functions of the
U.S. PJM power market are grid operation and management,
market operation and management, and regional grid planning
(Bushnell et al., 2007), which achieves resource complementarity
while meeting power demand, improves power system efficiency
and promotes the development and consumption of clean, low-
carbon energy.

The source and load complement each other in the southern
region of China, forming a closely connected grid system based on
the hybrid AC/DC grid. From the perspective of the source-load
complementary relationship, there is a continuous demand for a
“west-east power supply”. Guangdong and Guangxi have a strong
electricity demand. At the same time, Yunnan and Guizhou in the
west are important power bases, thus creating a stable demand for

electricity from the west to the east. From the grid connection, the
southern region has formed a 500 kV and above voltage level’s
primary grid of the west-east power transmission channel; the
capacity of the west-east power transmission channel reached
58 million kilowatts, the annual scale of power transmission of
more than 230 Terawatt hours, which also for the better
realization of the optimal scheduling of resources, promote the
construction of regional markets, especially to meet the
fluctuation characteristics of new energy. In particular, it
provides strong support for constructing a regional spot
market that adapts to the volatile characteristics of new energy
(Zhu et al., 2021).

This paper proposes a mechanism to evaluate the multi-stage
power trading potential of the Lancang-Mekong countries and the
Southern China region by setting different boundary conditions
and considering different boundaries, such as whether the region
is jointly optimized and whether the capacity constraints of the
contact lines are taken into account, respectively. On this basis, a
regional power balance analysis mechanism based on 8760 h of
annual operation simulation is proposed, and power balance
indexes and calculation methods reflecting power balance and
power balance of all typical annual operation scenarios are
designed to improve the accuracy of power balance analysis.
Based on the actual data of Yunnan Power Grid and the five
Lancang-Mekong countries, a long-period operation scenario for
joint optimization of the regional power system is constructed.
The simulation results show that the Lancang-Mekong countries
and the southern region of China have a large potential for power
trading, and the construction of a unified power trading market
plays an important role in promoting the optimal allocation of
power resources, achieving power balance, improving the
proportion of energy consumption, and reducing the cost of
electricity consumption.

2 Analysis of the characteristics of power
coupling and complementary
transactions between the Mekong
countries and the southern China region

2.1 Power supply structure development
status

In terms of power supply, the hydropower resources in the
Lancang-Mekong countries are very abundant. However, the
degree of hydropower development is generally low and the
scale of cross-border power transactions is small. If a unified
regional power market is established, the construction level of
the power grids in the Lancang-Mekong countries can be
significantly improved, and at the same time ease the power
demand in the southern region of China with unexploited
surplus water resources. The power supply structure of
Lancang-Mekong countries is shown in Figure 1.

The five provinces of Southern China have apparent differences
in power supply structures which can be seen in Figure 2, and have
started to invest in the development of clean energy on a large scale.
Facing the problem of energy consumption, the southern region
has a large demand for electricity. Establishing a unified regional
electricity market can help alleviate the contradiction between the
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great demand for electricity and the scarcity of energy resources in
the southern region of China, improve the proportion of energy
consumption and reduce the cost of electricity.

2.2 Status of load structure development

In terms of load, the five Lancang-Mekong countries have been
increasing the load level with social development. However, with the
outbreak of the new crown epidemic, the degree of impact of the
epidemic varies from country to country. The load forecast results
shown in Figure 3 and Figure 4 are revised according to the degree of
impact (Zhao, 2020).

The regional load level in southern China shows more stable
growth; taking Yunnan as an example, the forecast results are
shown in Table 1 as follows.

2.3 Multilateral complementary properties

The net load curves of Yunnan and the five Lancang-Mekong
countries are shown in Figure 5 below. Net load is the rest part after
subtracting photovoltaic and wind power from load. If sunshine or
wind is abundant, then the net load can decrease. From April to
September, the net load of Mekong continues to decline, while the
net load of Yunnan shows an upward trend and reaches its peak in

FIGURE 1
Power supply structure of Lancang- Mekong countries.

FIGURE 2
Regional power supply structure in southern China.
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August and September, during which time the Lancang-Mekong
countries can send electricity to Yunnan; from September to
March, the net load of Yunnan shows a downward trend, while
the net load of Lancang-Mekong countries shows a peak so that
Yunnan can send electricity back to the Lancang-Mekong countries.
The curve shows that Yunnan and the Lancang-Mekong countries have

great potential to complement each other and have the first conditions to
build a unified power trading market.

3 Model for assessing the
complementary potential of the
lancang-mekong countries and the
southern China region

3.1 Assessment mechanism characteristics

The assessment mechanism of the power trading potential
between the Mekong countries and the Southern China Power
Grid under the long-period operation simulation takes into account

FIGURE 3
Revised load forecast results for Lancang- Mekong countries.

FIGURE 4
Revised electricity forecast results for Lancang- Mekong countries.

TABLE 1 Electricity demand of Yunnan in 2025 and 2030 (Unit: TWh/GW).

Projects 2025 2030

Electricity consumption 340 400

Maximum load 540 640
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the energy supply structure, energy use form, cross-border
transmission capacity, and multi-area complementary potential of
the Mekong countries and the Southern China Power Grid (Xiao et al.,
2016), and realizes the assessment of the multi-stage power
complementary potential between the Mekong countries and the
Southern China Power Grid by setting different boundary conditions.

Its features are: 1) providing a variety of optimization objectives to
meet different simulation needs; 2) considering long-term continuous
unit combination models; 3) applicable to multi-area DC interconnection
systems; 4) fully considering the supply structure and energy use forms of
each country; 5) setting different boundary conditions to realize multi-
stage power complementary potential assessment.

3.2 Mathematical model of the evaluation
mechanism

1) Optimization objectives

The lowest operating cost is used as the objective function for the
analysis. This objective function is a scheduling decision that
integrates system generation economics, load shedding costs, and
removal of new energy, and is expressed as

minC � minC1 +minC2

� λs1Cs1 + λp1Cp1

+∑
t∈T

Cc1(Pc1
t)+( Cf1 Pf1

t( ) + Ch1 Ph1
t( )

+Cn1(Pn1
t) + αCcn1Pcn1

t + θLd1Dc1
t)

+∑
l∈L

Ml1pPl1 + λs2Cs2 + λp2Cp2

+∑
t∈T

Cc2(Pc2
t)+( Cf2 Pf2

t( ) + Ch2 Ph2
t( )

+Cn2(Pn2
t) + αCcn2Pcn2

t + θLd2Dc2
t)

(1)

where: C is the lowest cost of the combined grid, C1 is the lowest
cost of the China Southern Power Grid, and C2 is the lowest cost of
the Lancang-Mekong Power Grid. Subscript 1 and 2 denote China
Southern Power Grid and Lancang-Mekong Power Grid

respectively. T is the number of optimization time periods, and
Cx(Pt

x) is the operating cost of each type of unit at time period t
when the output power is P. The subscripts c, f, h, and n denote
thermal power units which are not participating in intraday start-
stop management, thermal power units which are participating in
intraday start-stop management, hydropower units, and new
energy units, respectively. Ccn is the cost of removing new
energy. Pt

cn is the power of curtailing new energy in time period
t. Dt

c is the power of load shedding in time period t. Ld is the cost of
load shedding at each node. Cs、 Cp are the cost of start-stop
management; and θ、α、 λ are the weighting factors, which are
usually 1 and can be adjusted as needed. Ml is the power line l’s
unit transmission price. Pl is the transmission power of the power
line l. L is the set of power lines.

2) Constraints

To simplify the process, we divide the units in the Lancang-Mekong
countries into thermal power units which are not participating in
intraday start-stop management, thermal power units which are
participating in intraday start-stop management, hydropower units,
wind power units, and photovoltaic power units. Among them, wind
turbines and PV units are introduced with a removal mechanism, so
that the model removes part of the output when the system cannot
achieve load balancing under extreme output conditions or when wind
power or PV delivery is blocked. For the hydropower units, the short-
term economic dispatch model of stepped hydropower is considered,
and the operating constraints of hydropower units, reservoir operating
constraints, and upstream and downstream reservoir water balance
constraints are introduced in the model to precisely describe the
operation process of hydropower units in detail.

1) Thermal power unit constraints

The thermal power unit constraints mainly include upper and
lower thermal power unit output limits as well as creep constraints,
denoted as

FIGURE 5
Complementary characteristics of net load in Lancang- Mekong countries and Yunnan.
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Pc1minIc1 ≤Pc1 ≤Pc1maxIc1 (2)
Pf1minIf1

t ≤Pf1
t ≤Pf1maxIf1

t (3)
−ΔPc1

down ≤ΔPc1
Δt ≤ΔPc1

up (4)
−ΔPf1

down ≤ΔPf1
Δt ≤ΔPf1

up (5)
Pc1

t, Pf1
t, Ic1, If1

t ≥ 0 (6)
Pc2minIc2 ≤Pc2 ≤Pc2maxIc2 (7)

Pf2minIf2
t ≤Pf2

t ≤Pf2maxIf2
t (8)

−ΔPc2
down ≤ΔPc2

Δt ≤ΔPc2
up (9)

−ΔPf2
down ≤ΔPf2

Δt ≤ΔPf2
up (10)

Pc2
t, Pf2

t, Ic2, If2
t ≥ 0 (11)

∀t ∈ T (12)
where: Subscript 1 and 2 denotes China Southern Power Grid and
Lancang-Mekong Power Grid respectively. Pcmax, Pcmin are the
maximum output and minimum output of the thermal power units
which are not participating in intraday start-stop management, and
Pfmax, Pfmin are the maximum output and minimum output of
thermal power units which are participating in intraday start-stop
management. ΔPdown

c ,ΔPup
c , ΔPdown

f ,ΔPup
f are the downward and

upward climbing rates of the unit, respectively. Ic is the state variable
of thermal power units which are not participating in intraday start-
stop management during the day, and Itf is the state variable of
thermal power units which are participating in intraday start-stop
management at time t during the day.

Ph1
t � f qh1

t, VR1
t( ) (13)

QR1
t � Ah1qh1

t + QR1
t,d (14)

R1min ≤R1
t ≤R1max (15)

R1
0 � R1

begin (16)
R1

T � R1
end (17)

QR1min ≤QR1
t ≤QR1max (18)

−ΔQR1 ≤QR1
Δt ≤ΔQR1 (19)

QR1
t,d ≥ 0 (20)

R1
t � R1

t−1 + Qin1
t + Irain1

t − QR1
t (21)

yh1
t ≤ Ih1t (22)

yh1
t ≥ Ih1t − Ih1

t−1 (23)
∑yh1

t ≤ τ (24)
Ph2

t � f qh2
t, VR2

t( ) (25)
QR2

t � Ah2qh2
t + QR2

t,d (26)
R2min ≤R2

t ≤R2max (27)
R2

0 � R2
begin (28)

R2
T � R2

end (29)
QR2min ≤QR2

t ≤QR2max (30)
−ΔQR2 ≤QR2

Δt ≤ΔQR2 (31)
QR2

t,d ≥ 0 (32)
R2

t � R2
t−1 + Qin2

t + Irain2
t − QR2

t (33)
yh2

t ≤ Ih2t (34)
yh2

t ≥ Ih2t − Ih2
t−1 (35)

∑yh2
t ≤ τ (36)

where: Subscript 1 and 2 denote China Southern Power Grid and
Lancang-Mekong Power Grid respectively. Qt

R is the column vector of

water consumption in the reservoir for the time t period. Ahqth is the
water consumption of all hydropower units in the reservoir. Qt,d

R is the
column vector of the surplus water quantity in the reservoir at time t.
Rt is the vector of reservoir capacity at time t. Rmax, R min are the
upper and lower limits of the reservoir capacity. ΔQR is the creep rate
of the unit. QRmin depends mainly on the normal water supply and the
limitation of downstream shipping. QRmax depends mainly on the
flood discharge capacity of the reservoir; Qt

in represents the vector of
water coming from the upstream reservoir at time t. Itrain denotes the
column vector of incoming water from the reservoir at time period t.
yt
h denotes the column vector of hydropower unit start-up decision

variables at time t. Ith is a vector of start-stop state variables for the time
period t. τ is the allowed number of starts and stops.

2) Hydropower unit constraints
3) Renewable energy unit constraints (Li et al., 2019)

Since the renewable energy output is random, variable, and
uncontrollable, the output of renewable energy is controlled to operate
within the predicted value in the dispatching operation. At the same time,
according to the requirement of energy conservation and environmental
protection in the grid operation, the renewable energy generates asmuch as
possible. The model proposed in this paper introduces a balance
mechanism to curtail part of the output when the system cannot
achieve load balancing under extreme output conditions or the
renewable energy delivery is blocked. It is expressed as follows:

Pn1
t + Pnc1

t � Pnf1
t,∀t ∈ T (37)

0≤Pn1
t, 0≤Pnc1

t,∀t ∈ T (38)
Pn2

t + Pnc2
t � Pnf2

t,∀t ∈ T (39)
0≤Pn2

t, 0≤Pnc2
t,∀t ∈ T (40)

where: Subscript 1 and 2 denote China Southern PowerGrid and Lancang-
Mekong Power Grid respectively. Pt

n is the new energy output power in
time period t.Pt

nc is the curtailing new energy power in time period t.Pt
nf is

the predicted renewable energy output for time period t.

4) Load balance constraints

The balance constraint between load and generation is
expressed as

∑
t∈T

D1
t �∑

t∈T
Pc1

t +∑
t∈T

Pf1
t +∑

t∈T
Ph1

t

+∑
t∈T

Pn1
t +∑

t∈T
Dc1

t,∀t ∈ T
(41)

∑
t∈T

D2
t �∑

t∈T
Pc2

t +∑
t∈T

Pf2
t +∑

t∈T
Ph2

t

+∑
t∈T

Pn2
t +∑

t∈T
Dc2

t,∀t ∈ T
(42)

5) Power line constraints

In performing the regional joint operation simulation, the regional
power line transmission capacity constraint is expressed as

−L1i,max ≤L1i t( )≤ L1i,max (43)
−L2i,max ≤L2i t( )≤ L2i,max (44)

where: Subscript 1 and 2 denote China Southern Power Grid and
Lancang-Mekong Power Grid respectively. Li,max,−Li,max are the
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upper and lower limits of the transmission capacity of the power line i,
respectively. The current reference direction is set to be positive for the
inflow region and negative for the outflow region.

6) Spinning Reserve constraints

The positive and negative reserve constraints of the system are
expressed as

∑
t∈T

D1
t + ru1

t ∑
t∈T

D1
t ≤ ∑

t∈T
Pc1max

tIc1 +∑
t∈T

Pf1min
tIf1

t

+∑
t∈T

Ph1min
t+∑

t∈T
Pnf1

t+∑
t∈T

Dc1
t,∀t ∈ T

(45)

∑
t∈T

D2
t + ru2

t ∑
t∈T

D2
t ≤ ∑

t∈T
Pc2max

tIc2 +∑
t∈T

Pf2min
tIf2

t

+∑
t∈T

Ph2min
t+∑

t∈T
Pnf2

t+∑
t∈T

Dc2
t,∀t ∈ T

(46)

where: Subscript 1 and 2 denote China Southern Power Grid and
Lancang-Mekong Power Grid respectively. rtu is the positive reserve
rate required for time period t.

∑
t∈T

D1
t − rd1

t ∑
t∈T

D1
t ≥ ∑

t∈T
Pc1min

tIc1

+∑
t∈T

Pf1min
tIf1

t +∑
t∈T

Ph1min
t+∑

t∈T
Dc1

t,∀t ∈ T
(47)

∑
t∈T

D2
t − rd2

t ∑
t∈T

D2
t ≥ ∑

t∈T
Pc2min

tIc2

+∑
t∈T

Pf2min
tIf2

t +∑
t∈T

Ph2min
t+∑

t∈T
Dc2

t,∀t ∈ T
(48)

where: Subscript 1 and 2 denote China Southern Power Grid and
Lancang-Mekong Power Grid respectively. rtd is the negative reserve
rate required for time period t.

In the calculation of the positive reserve rate, even if the output of
new energy is curtailed, the curtailed portion is included in the reserve
capacity. In the negative reserve rate calculation, new energy can be
curtailed anytime, so it is not counted as reserve capacity.

In this paper, the values beyond the transmission capacity range are
corrected. The corrected transmission curves are used as the designated
output of the delivery units to conduct internal simulation runs in the
Laos and Myanmar regions as well as the Yunnan region, respectively.
According to the results, we obtain the power planning results for
2025 in both Laos and Myanmar as well as the Yunnan region.

4 Calculation method of regional power
balance and trading potential
assessment index

4.1 Power balance index and calculation
method

The continuous, rapid, and uneven power demand growth and
the rapid development of renewable energy sources have put
forward higher requirements for achieving power balance in the
regional unified power market. In order to achieve power balance
and ensure regular regional power trading, this paper designs a
calculation method for regional power balance and trading
potential assessment, which not only gives the deterministic
abandonment amount of wind power and photovoltaic power
but also improves the accuracy of power balance analysis
compared with the traditional power balance method (Hu et al.,

2021), and provides a guarantee for regular trading in the power
market (Zeng et al., 2017; Ji et al., 2021; Wang et al., 2021; Xu et al.,
2022).

Power balance is the primary security issue of power system,
which means that the power generation and load should be
balanced in real time, otherwise the whole power system may
oscillate or even collapse. By calculating the power surplus
through our cases, it can be found that the power surplus level
of the regional joint optimization is higher than that of the
separate optimization, which indicates that the construction of
a unified power market can alleviate the situation of insufficient
power surplus and ensure the reliability and stability of power
supply.

The specific calculation expression for power balance is as follows,

Psys � Pload + Protate + Pcease + Ps + PA (49)
Pavail � Pthermal + Ppneumo + Phydro + Pnuclear

+Ppump + Pstored + Pwind + Pphoto (50)

Gpower � MIN Pavail − Psys, 0( ) (51)

where:Psys isthesystempowerdemand,and Pload referstotheload.Protate

is the spinning reserve, andPcease is the shutdownreserve.PS is the power
delivered outside, PA is the external power delivered inside, and Pavail is
the available capacity of the power source. Pthermal is the thermal
generation power, Ppneumo is the gas power generation, Phydro is the
hydroelectric power generation, and Pnuclear is the nuclear power
generation. Ppump refers to the pumped storage availability, and Pstored

refers totheenergystorage .Pwind is thewindpowergeneration,andPphoto

is thephotovoltaic powergeneration. Gpower refers to thepower shortage.

4.2 Energy balance index and calculation
method

The energy balance is specifically expressed as follows,

Genergy � ∑
t∈T

Gpowerpt,∀t ∈ T (52)

where: Genergy is the electric quantity shortage.

4.3 Peaking balance index and calculation
method

The grid is often overloaded during peak consumption. At this
time, it is necessary to put in the generator set outside the normal
operation to meet the demand. These generating units are called peak
shaving units, which is used to regulate the peak of electricity.

The peaking balance is expressed as follows [19]

Gload � MIN Pload + PS − Pavail − Psys, 0( ) (53)
where: Gload is the load shortage.

4.4 Electricity trading indicators and
calculation methods

Electricity transaction costs are specifically expressed as follows.

C � PSpCS − PApCA (54)
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where: C is the transaction cost, the CS is the purchase price of
electricity, and CA is the price of electricity sold.

5 Case study

The daily operation curves derived from the operation
simulations evaluate the trading potential and power balance
analysis. Among them, the load 8760 curve is generated by
planning the maximum annual power, annual electric quantity,
historical load characteristics, and other parameters. The new
energy 8760 curve is generated by using historical power output
data and equal scaling of renewable energy planning installations.
The reserve capacity in the simulation is taken as 12% of the
highest load for the whole society, including 7% for spinning
reserve and 5% for non-spinning reserve.

5.1 Operational simulation boundary
conditions

Scenario 1(Benchmark Scenario): Without considering power
trading, the existing interconnection Scenario between the
Mekong countries and the southern region of China treats
Laos and Myanmar as a whole and optimizes the power
generation in the two regions of Laos and Myanmar and
Yunnan, respectively according to the power and load
characteristics in 2025, and obtains the power generation
situation without power trading.

Scenario 2: Take Yunnan as the optimization subject, equate
each of Laos and Myanmar into one out-of-area unit according to
the existing interconnection Scenario between the Mekong
countries and the southern region of China, set the maximum

output constraint and generation capacity constraint, and
simulate the power interconnection capacity of Laos,
Myanmar, and Yunnan in 2025 under the state of constrained
power lines.

Scenario 3: Take theMekong countries as the optimization subject,
equate Yunnan into an out-of-area unit according to the existing
interconnection Scenario, set the maximum output constraint and
generation capacity constraint, and simulate the power
interconnection capacity of Yunnan and Mekong countries in
2025 under the state of constrained power lines.

Scenario 4: Set the installed capacity and load parameters of
various power sources in Laos and Myanmar in 2025, and run them
jointly with units and loads in Yunnan to simulate the
interconnection capacity of Laos, Myanmar, and Yunnan under
the ideal scenario of no power line constraint and “same unit
bidding".

Scenario 5: Set the installed power and load parameters of various
power sources in the five Mekong countries in 2025, and run them
jointly with units and loads in Yunnan to simulate the power
interconnection potential of the five Lancang-Mekong countries
and Yunnan under the long-term plan.

All scenarios are concluded in Figure 6.
In non-joint operation cases, the calculation time for Yunnan and

Lancang-Mekong countries operation are 401.45 s and 40.21 s
separately, while in joint operation cases, the calculation time are
422.36 s and 56.31 s. Although joint operation seems more complex,
its calculation time is acceptable.

In this paper, the transmission price between regions is a fixed
parameter set manually. In the case of sufficient transmission capacity,
the price difference between regions should be equal to the
transmission price between those regions. If the transmission price
is set reasonably, the price difference between regions will not be too
large or too small.

FIGURE 6
Boundary conditions under different scenarios.
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5.2 Electricity balance analysis

The power surplus of Yunnan, Laos, andMyanmar under different
scenarios is obtained using the power balance index calculation
method in 4.1. In the benchmark scenario, Yunnan’s power surplus
is positive throughout the year and is greater than 3 GW per month
with fluctuating values. It achieves a maximum value of 11.7 GW in
July and a minimum value of 3.5 GW in October. From Yunnan’s
aspect, the power surplus curve is always above the power surplus
curve of the benchmark scenario. The monthly power surplus
increases, and the reliability of the power supply improves after
trading. The minimum value of power surplus is 5.2 GW in
October, which is 1.7 GW higher than Scenario 1. However, the
maximum value of power surplus appears in December, reaching

13.1 GW, which is 1.8 GW higher than Scenario 1. Standing in the
Lancang-Mekong perspective for power trading, the power surplus
curve of Yunnan always lies below the power surplus curve of the
benchmark Scenario because its delivery units deliver full power to
both Lao and Myanmar. The power surplus appears at a minimum
value of 1.7 GW in October, which is 1.8 GW less than Scenario 1, and
at a maximum value of 10.2 GW in July, which is 1.4 GW less than
Scenario 1. Results are shown in Figure 7.

In the benchmark scenario, Laos has a power surplus of more than
3 GW, which stays stable with high values from January to March,
drops sharply from April to June, and gets a minimum power surplus
of 10.5 GW in June. It has a small increase from July to September, and
a larger increase from September to October, and then stays stable.
The benchmark scenario has a maximum value of 13.3 GW in January.

FIGURE 7
Comparison of Yunnan’s annual power surplus under different scenarios.

FIGURE 8
Comparison of Lao’s annual power surplus under different scenarios.
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Scenario 2’s and Scenario 3’s trends are roughly the same as the
benchmark. When seeing power trading from the Lancang-Mekong
perspective, the power surplus also has a minimum value of 3.4 GW in
February and a maximum value of 13.7 GW in January. From the
Yunnan perspective, the power surplus shows a minimum value of
4.5 GW in June and a maximum value of 12.5 GW in January. Results
are shown in Figure 8.

In the benchmark scenario, the power surplus in Myanmar is less
than 0. The power surplus is seriously insufficient, with a minimum
value of -13.9 GW in February, after which the power surplus starts to
increase, approaching -5 GW in the flood season from June to
September, with a maximum value of -4.82 GW in July. After
September, the power surplus starts to decline significantly again.
Scenarios 2 and 3 show roughly the same trend as the benchmark

scenario. The overall curve is highest when power trading from the
Lancang-Mekong perspective, as Yunnan’s delivery units deliver full
power to Myanmar. The power surplus also shows a minimum value
of -12.1 GW in February and a maximum value of 13.7 GW in June.
When seeing from Yunnan’s perspective, the power surplus shows a
minimum value of -14.2 GW in February and a maximum value of
-1.24 GW in June. Results are shown in Figure 9.

Separately analyze Scenario 4 and Scenario 5, and show the results
in Figure 10. Scenario 4 considers the power transactions between
Yunnan and Lao-Myanmar without power line constraints. The
minimum value occurs in February at 6.2 GW, which is larger than
the sum of the power surpluses under Scenario 1 when Yunnan and
Lao-Myanmar are optimized separately. The maximum value occurs
in August, at 16.3 GW, which can maintain a surplus of more than

FIGURE 9
Comparison of Myanmar’s annual power surplus under different scenarios.

FIGURE 10
Annual power surplus under the overall optimization of Yunnan and Lancang- Mekong countries.
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10 GW during the summer flood season. Scenario 5 considers the
long-term power transactions between Yunnan and the five Lancang-
Mekong countries. Its minimum value occurs in September at
34.4 GW, and the maximum value occurs in June at 52 GW, with
an average power surplus of 43.2 GW. The curve proves that
conducting long-term power interconnection is beneficial to
increasing the regional power surplus and maintaining the stability
of the power supply.

5.3 Energy balance analysis

Compare the month-by-month thermal power generation in
Yunnan under different scenarios. In the benchmark scenario, the

thermal power generation in Yunnan troughs during the summer
hydro generation period, reaching a minimum of 0.9 TWh in July.
January, May, and November witness three peaks concerning thermal
power generation, reaching 5.1 TWh, 5.1 TWh, and 4.9 TWh,
respectively. The thermal power generation in each month of
Scenario 2 is lower than the benchmark scenario, proving that
conducting power interconnection benefits the consumption of
clean energy and reduces thermal power generation. It obtains a
minimum value of 0.5 TWh in July and a maximum value of
3.9 TWh in January. Scenario 3 has a higher monthly thermal
generation than the benchmark scenario due to the need for
outbound transmission, obtaining a maximum value of 6.2 TWh in
January and a minimum value of 1.6 TWh in July. Scenario 4 has
thermal power output close to zero from June to September, but the

FIGURE 11
Yunnan’s thermal power generation under different scenarios.

FIGURE 12
Yunnan’s hydropower generation under different scenarios.
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thermal power generation value is greater than the benchmark
scenario during December and March. The trend of the generation
curve of Scenario 5 tends to be consistent with the above four
scenarios, obtaining a minimum value of 1.9 TWh in September
and a maximum value of 7.5 TWh in January. Results are shown
as Figure 11.

The following Figure 12 shows the level of hydropower generation
in Yunnan. The curves of the five scenarios follow the same trend, with
the minimum value of hydropower generation obtained in February,
and the power generation has been on an upward trend since
February, with the most obvious magnitude from May to July, all
reaching the maximum value in August, and then starting to decline
continuously in September. The curves from top to bottom are
arranged in the order of Scenario 5, Scenario 3, Scenario 1,
Scenario 2, and Scenario 4.

The power utilization hours for different scenarios in Yunnan
shown as Figure 13 are obtained by counting the generation capacity of
the units and the installed capacity. For thermal power, Scenario 2 has
596 fewer thermal power utilization hours than the benchmark
scenario, i.e., a 25.9% decrease; Scenario 3 has 482 more thermal
power utilization hours than the benchmark scenario, an increase of
21%; Scenario 4 has 624 less thermal power utilization hours than the
benchmark scenario, a decrease of 27.1%. Scenario 5 has more thermal
power utilization hours than the benchmark scenario at 3,025 h due to

its vast area and heavy load. For hydropower, Scenario 2 has 89 h less
than the benchmark scenario, a decrease of 2.1%; Scenario 3 has 30 h
more than the benchmark scenario, an increase of 0.7%; Scenario 4 has
210 h less than the benchmark scenario, a decrease of 4.9%; and
Scenario 5 has 30 h more than the benchmark scenario, an increase of
0.7%. Scenario 2 has the same number of wind power utilization hours
for wind power as Scenarios 3, 4, and 5, all 203 h more than the
benchmark scenario, i.e., an increase of 7.89%. For PV, Scenario 2 has
the same wind power utilization hours as Scenarios 3, 4, and 5, which
are 16 h more than the benchmark scenario, i.e., an increase of 1.43%.
Except for the benchmark scenario, all other scenarios in Yunnan have
no wind and light abandonment. Detailed data are shown in Table 2.

5.4 Complementary potential assessment

The curves of power delivered outside for Yunnan, Laos, and
Myanmar under different scenarios are obtained by counting the
output of the delivery units and the difference between the generation
and load of each region.

Scenario 2 stands for power interconnection from Yunnan’s
perspective, where Yunnan gets full power from Lao and Myanmar
units. Scenario 3 stands for power interconnection from Lancang-
Mekong’s perspective, where Yunnan’s units send full power to Lao

FIGURE 13
Comparison of power utilization hours of different scenarios in Yunnan.

TABLE 2 Power utilization hours of different scenarios in Yunnan (Unit: Hour).

Yunnan Thermal power Hydropower Photovoltaic power Wind power

Scenario 1 2300.46 4286.285 1127.629 2578.848

Scenario 2 1704.465 4197.528 1143.716 2782.334

Scenario 3 2782.334 4316.143 1143.716 2782.334

Scenario 4 1676.472 4075.702 1143.716 2782.334

Scenario 5 3025.138 4316.06 1143.716 2782.334
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and Myanmar units. Hence, the curves of Scenarios 2 and 3 are
basically in the form of straight lines opposite each other. The total
amount of incoming power sold in Scenario 4 is 25.9 TWh. Yunnan
sends power to Lancang-Mekong from January to March and
December, gets power from Lancang-Mekong countries from April
to November, and gets the maximum amount of incoming power sold
in August of 5.9 TWh. The total power sent out from Scenario 5 is
17.7 TWh. Yunnan only needs power from Lancang-Mekong
countries in August and November and can supply power to
Lancang-Mekong countries in the rest of the months. The
maximum amount of power available is 3.1 TWh in July. The
delivery curves in Yunnan are shown in Figure 14.

Scenario 2 stands for power interconnection from Yunnan’s
perspective, with Myanmar’s delivery units sending full power to

Yunnan with a total of 8.8 TWh. Scenario 3 stands for power
interconnection from Lancang-Mekong’s perspective, with
Yunnan’s delivery units returning full power to Myanmar, with an
opposite curve to Scenario 2. Scenario 4 sells 11.4 TWh of electric
quantity, requiring monthly incoming power sales of more than
0.6 TWh, reaching a maximum of 1.4 TWh in March. Scenario
5 allows Myanmar to supply power to Yunnan from May to
November, reaching a maximum of 1.5 TWh, and requires Yunnan
to return power to Myanmar in other months. The delivery curves in
Myanmar are shown in Figure 15.

Scenario 2 stands for power interconnection from the Yunnan
perspective, where the Lao’s delivery units send full power to Yunnan
with a total delivery of 7.0 TWh. Scenario 3 stands for power
interconnection from the Lancang-Mekong perspective, where the

FIGURE 14
Delivery curves under different scenarios in Yunnan.

FIGURE 15
Delivery curves under different scenarios in Myanmar.
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Yunnan’s delivery units return full power to Laos with an opposite
curve to Scenario 2. Scenarios 4 and 5 have Laos returning power to
Yunnan every month, reaching a maximum in the summer. The total
amount of power delivered outside is 36.7 TWh for Scenario 4 and
43.4 TWh for Scenario 5, an increase of 18.2% over Scenario 4.
Scenario 4 reached a maximum of 6.7 TWh in August, while
Scenario 5 also reached a maximum of 7.2 TWh in August, an
increase of 7.74% over Scenario 4.

The following Table 3 shows each country’s electricity
interconnection and transaction amount under different
scenarios. The transaction price is determined with reference
to the average level of inter-provincial transmission prices in
the China southern region. When conducting the near-term
transmission line interconnection, Yunnan, Myanmar, and
Laos can receive roughly 4.7 billion yuan, 2.6 billion yuan, and
2.1 billion yuan, respectively. This transaction is essential to
support the development of the Lancang-Mekong countries and
also increases the revenue of the China Southern Power Grid.
Under medium and long-term regional integration, each country
can sell out more electricity, with Laos sending out a more
significant proportion of its electricity, generating up to
13 billion yuan in revenue. Yunnan also has a corresponding
revenue of 5.3 billion yuan. It can be seen that building a regional
unified power market and improving market conditions have a
positive impact on promoting power interconnection among
countries.

6 Conclusion

This paper proposes a mechanism to evaluate the power balance
and complementary potential of the regional power grids of the
Lancang-Mekong countries and Southern China under long-period
operation simulation. The mechanism takes into account the energy
supply structure, energy use form, cross-border transmission capacity,
and multi-area complementary potential of the power grids of the
Lancang-Mekong countries and Southern China. It also assesses the
multi-stage power balance and complementary potential of the power
grids of the Lancang-Mekong countries and Southern China by setting
different boundary conditions. The following conclusions are drawn
from the case study.

1) Conducting power trading between the southern region of
China and the Lancang-Mekong countries can reduce fossil

energy generation and increase the rate of clean energy
consumption, which is green and environmentally friendly.
From Yunnan’s perspective for power trading, Yunnan’s
thermal power utilization hours are reduced by 25.9%, and
thermal power generation per month is lower than the
benchmark scenario.

2) Electricity interconnection can alleviate the power surplus shortage
and ensure the power supply’s reliability and stability. The power
trading scenarios have a higher overall surplus than the benchmark
scenario. Myanmar has a negative surplus in the absence of trading,
and the minimum monthly surplus shortfall is substantially
improved after trading.

3) Long-term power interconnection has excellent economic
benefits. Under medium and long-term regional integration,
countries can send out more electricity, of which Laos sends
out a larger proportion of electricity, with up to 13 billion yuan
in revenue. Yunnan also has a corresponding revenue of
5.3 billion yuan. It can be seen that building a regional
unified power market and improving market conditions
have a positive impact on promoting power interconnection
among countries.
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With the development of modern communication technology and the large

number of new controllable loads connected to the power grid, the new

controllable loads with flexible regulation characteristics can participate in

the emergency frequency stability control. However, the communication state

differences and spatial distribution characteristics of controllable load will

affect the actual effect of frequency control. In this paper, an emergency

frequency control method based on deep reinforcement learning is proposed

considering the response time of controllable load shedding. The proposed

method evaluates response ability for emergency control of controlled loads

through load response time, controllable load amount and controllable load

buses. Then, the controllable load with smaller response time is cut out

preferentially to ensure rapid control, and the Markov Decision Process (MDP)

is used to model the emergency frequency control problem. Finally, Rainbow

algorithm of Deep Reinforcement Learning (DRL) is used to optimize the

emergency frequency stability control strategy involving controllable load

resources. The formation of emergency load shedding instruction is directly

driven by high-dimensional operation state data after power grid failure, so

that, the aim ofminimizing the economic cost is achieved under the constraint

of system stability. The effectiveness of the proposed method is verified in the

IEEE 39-bus system.

KEYWORDS

new controllable load, load delay characteristics, emergency frequency control, deep

reinforcement learning, rainbow algorithm

1 Introduction

With the massive access of renewable energy and the interconnection of large-scale
systems, the power grid has changed into a complex dynamic system, and it is difficult
to establish accurate mathematical models for it (Fan et al., 2022; Ren et al., 2022). The
increase of new energy penetration and the access of more electronic power equipment
have brought new risks to the stability of frequency. When the power imbalance between
the source and load occurs, it may lead to regional power outage and system collapse
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(Cao et al., 2021b,a; Wen et al., 2020). On the other hand,
there are massive flexible loads on the load side, such as
electric vehicles and temperature-controlled air conditioners
(Zhang et al., 2022), which, in combination with modern
communication technology, can be controlled when the system
is in an emergency state. It can improve the flexibility and
economy of the emergency frequency control of the power
system. Therefore, it is of great significance for the stability of
power grid that the new controllable load participates in the
emergency frequency stability control.

At present, controllable load participation in the emergency
frequency stability control has become one of the hot research
topics in power system. Reference (Xu et al., 2018) proposed
the comprehensive contribution index of interruptible load
according to the total amount of load excision and the user
excision, and obtained the load reduction strategy through
optimization. In addition, the large proportion of controllable
load and rapid continuous regulation capacity are used
to improve the refinement of emergency control on the
premise of ensuring safety and stability (Li and Hou, 2016).
Some researchers cooperatively optimized the decentralized
emergency demand response to obtain the optimal emergency
frequency stability control strategy (Wang et al., 2020). However,
the above research on the participation of controllable load in
emergency frequency control only considers the basic indicators
such as the total amount of the load shedding, the controllable
load bus and the cost, and considers that the load removal is
instantaneous. However, in practice, due to the differences in
communication states and response speeds of controllable loads,
different loads have different delay characteristics, which will
produce different control effects. However, the influence of load
delay characteristics on emergency frequency control is not
considered in the above conferences.

In order to solve the problem of emergency frequency
control in power system, current research methods mainly
include response driven and event driven.The former calculated
the load shedding amount and its action rounds offline/online
according to the frequency deviation and frequency change
rate of the inertia center. The latter usually carries out pre-
control after monitoring the fault event to prevent the further
expansion of the impact. The response-driven emergency
frequency control will adjust the load reduction and action
rounds in advance according to a certain operation scenario
of the system (Terzija, 2006; Banijamali and Amraee, 2019;
Li et al., 2020), which may be deviated from the actual operation
scenario and affect the control effect. Most of the studies on
event-driven load shedding are based on the optimization of
the mathematical model of the power system (Xu et al., 2017,
2016), and the effect of load shedding strategy is closely
related to the accuracy of the system model. The new power
system has a high degree of nonlinearity and uncertainty, and
it is difficult to establish an accurate mathematical model,

which poses a challenge to obtain an accurate load shedding
strategy.

In recent years, Machine Learning (ML) has been applied
to power system stability control. It does feature mining based
on data and does not need accurate mathematical model. In
reference (Singh and Fozdar, 2019), support vector machine was
used to evaluate the stability of the power system, and the optimal
load shedding scheme was obtained according to the evaluation
results. The extreme learning machine can also be used to train
the load shedding predictionmodel offline and predict the actual
load shedding online (Dai et al., 2012). The above traditional
ML algorithm model is simple and relies too much on expert
experience. Its control effect is affected by the size and quality of
knowledge database, resulting in poor adaptability of the control
effect of the model.

Combined with deep learning technology, DRL can
realize high-dimensional feature extraction and direct learning
of complex action space. Meanwhile, Deep Learning Q
Network (DQN) and other algorithms improve the scalability
and robustness of DRL, making it suitable for solving
control problems of large-scale systems (Mnih et al., 2015;
Schulman et al., 2017). Double DQN algorithm is used to
effectively screen out the line breaking faults which can
easily lead to power grid instability, and formulate emergency
stability control measures (Zeng et al., 2020). In conference
(Liu et al., 2018), it obtained the optimal shedding strategy to
ensure the transient stability of power grid throughDoubleDQN
and Dueling DQN model analysis. In addition, DRL algorithm
was also used to optimize the emergency frequency control
strategy, and a variety of regulation methods were aggregated to
reduce the stable frequency fluctuation (Chen et al., 2021). The
above emergency control strategy is used to shed the whole line
directly from the substation, without considering the influence
of the new controlled load and its delay characteristics on the
emergency control effect. At the same time, the stability and
robustness of some algorithms are poor, and it is difficult to
ensure the control effect of the model. Rainbow algorithm
is based on DQN and it integrates a variety of improved
algorithms. The model has superior stability and robustness,
and has been widely used in the field of control and decision
making (Hessel et al., 2017). Therefore, Rainbow algorithm
is adopted in this paper to optimize the control strategy for
emergency control involving controllable load considering delay
characteristics.

In order to solve the above problems, this paper proposes
an emergency frequency control method based on deep
reinforcement learning Rainbow algorithm that considers the
delay characteristics of the controlled load. According to
the different delay characteristics, the new controllable load
resources are modeled and aggregated to form an emergency
control process in which the new controllable load is graded, and
the load with smaller control delay is preferentially removed to
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ensure rapid removal. Finally, the deep reinforcement learning
Rainbow algorithm model is used to optimize the emergency
frequency control strategy, suppress the frequency drop depth
of the system, reduce the deviation of the stable frequency, and
reduce the control cost as much as possible.

2 Emergency frequency control with
new controllable load participation

2.1 Mathematical description of power
grid emergency frequency stability
control

In frequency stability analysis of power systems, the
frequency of each generator oscillates around the inertial center
of the system. When the system is stable, the frequency of each
generatorwill eventually approach the center of inertia frequency
of the system. The center of frequency inertia fCOI is defined as
follows:

fCOI =
m

∑
j=1
(Hj fj)/

m

∑
j=1

Hj (1)

wherem is the number of generators,Hj and fj are the inertia
time constant and frequency of generator bus j.

Due to the complexity of components in large power
systems, the emergency frequency control problem is the highly
nonlinear optimal decision problem.The mathematical model is
adopted:

min F = |ftem − ftem.set| + λ
m

∑
j=1

Pslj (2)

xt = g(xt,yt,dt,at) (3)

0 = h(xt,yt,dt,at) (4)

xmin
t ≤ xt ≤ x

max
t (5)

ymin
t ≤ yt ≤ y

max
t (6)

amin
t ≤ at ≤ a

max
t (7)

where ftem is the center stable value of the frequency inertia,
ftem. set is the preset frequency inertia of the center steady-state
threshold,Pslj is the load shedding amount of bus j, λ is theweight
coefficient, xt is the state variable of the power grid, such as the
angle and angular velocity of the generator rotor, yt is the output
variable of the power grid, such as the voltage of each bus, at is the
control variable of the power grid, such as the emergency control
to cut off generators or loads, dt is a disturbance or fault that may
occur in the power grid.

2.2 The aggregate modeling of new
controllable load with delay
characteristics

New power loads are constantly being integrated into new
power systems, and demand-side loads are becoming more and
more diversified, such as typical new loads such as electric
vehicles, temperature-controlled air conditioning and intelligent
buildings. These new loads have strong controllability, large
volume and obvious time and space distribution characteristics,
which can participate in emergency frequency stabilization
control.

For different loads, the load amount is different, and their
delay characteristics are different. In this paper, delay time refers
to the time required from the decision of the control center to cut
off the load from the main network, including the decision time
of the control center, communication time and load response
time. The delay time ti of load bus i can be described as:

ti = ti,dec + ti,down + ti,res (8)

where ti,dec is the decision time shedding the load i for the control
center, ti,down is the time required for the communicationmodule
to send the command to load i, ti,res is the response time of load
i.

The difference of the delay characteristics of controllable
loads affects the effect of emergency frequency control, which is
one of the important factors for the participation of controllable
loads. Different from the traditional load, the time and space
distribution characteristics of the controllable load slows down
its control speed. Then, the drop depth of system frequency
is increased. The spatial location of the load is dispersed, and
the load granularity is small, so it is difficult to adjust by the
traditionalmethod. For different loads, it is necessary to establish
models according to the location, the amount and the delay
time of controllable loads. The modeling results are shown
in Table 1.

In actual control, because the single load amount of the new
load is small and the loads is numerous, modeling only the single

TABLE 1 Modeling results of controllable load with delay
characteristics.

Controllable load location Load amount Delay

Electric vehicle 1 1− 1 P1−1 t1−1
Electric vehicle 2 1− 2 P1−2 t1−2
… … … …
Electric vehicle n 1− n P1−n t1−n
Smart Building 1 2− 1 P2−1 t2−1
Smart Building 2 2− 2 P2−2 t2−2
… … … …
Smart building m 2−m P2−m t2−m
Other loads other other other
… … … …
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load with delay characteristics will lead to too large amount of
resource data, which is difficult to deal with. In order to optimize
the strategy more conveniently, the modeled controllable loads
should be aggregated, that is, it should be graded according to the
control delay, and the controllable loads of the same level should
be aggregated. At the same time, in order to ensure the security,
the delay time of this stage is taken as the maximal actual control
delay of this stage of load. Although thismethod has some errors,
it can reduce the difficulty ofmodel building under the premise of
considering the influence of load delay characteristics.Therefore,
the aggregate modeling process of controllable load is shown in
Figure 1.

After aggregation, a hierarchical aggregate controllable load
of multiple buses is formed. The model is also composed of load
location, load amount and load delay time. The result is shown
in Table 2.

2.3 The process of emergency frequency
control with new controllable load
participation

In order to uniformly control the new controllable load with
spatial distribution and delay characteristics, the controllable
resource control process should be divided into uplink and

TABLE 2 Results of controlled load aggregation.

location Aggregate controllable
loads

Load amount Delay

Bus 1

level 1 controllable load P11 t11
level 2 controllable load P12 t12
… … …
level n controllable load P1n t1n

Bus 2

level 1 controllable load P21 t21
level 2 controllable load P22 t22
…… …… ……
level n controllable load P2n t2n

… … … …

downlink parts, and the control center and controllable load
resources should be connected.The controllable resource control
process starts with the control center, including the upstream
controllable load aggregation modeling results, power grid
fault perception and downlink control instructions. The control
process is shown in Figure 2.

After modeling the new controllable loads of different buses
with delay characteristics, the modeling results are sent to the
control center. According to the information of controllable load
resources, the control center is trained off-line to obtain the
emergency frequency stability control model which can adapt to
the current load state.

FIGURE 1
Controllable load aggregation modeling process.
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FIGURE 2
Emergency control process diagram of controllable load
resources.

The control center monitors the power grid operation data
in real time through the power grid fault perception. Once fault
information or abnormal operation state of the power grid is
found, the power grid operation state data will be put into
the off-line training model to obtain the load shedding control
instruction. After that, it transmits information through the
control instruction deliverymodule to issue control actions to the
controllable load resources on the demand side.The controllable
load resources in each area complete the load shedding action
response through the corresponding control components.

Thenew emergency control considering the controllable load
resources is to implement cluster control on the controllable
load before the traditional load shedding initial action, so as to
avoid the whole line shedding caused by the traditional UFLS
device. Therefore, the initial action of the new controllable load
should take precedence over the traditional load shedding device,
that is, the action frequency threshold of the controllable load
control should be greater than the traditional initial action
frequency threshold. When the system has power shortage,
the method can quickly remove part of the new controllable
load, achieve the purpose of load shedding in advance to
restore the system frequency, without touching the traditional
load shedding device. By controlling the aggregated new
controllable load resources, the frequency recovery goal is
achieved and the economy is higher than that of the traditional
UFLS.

3 Deep reinforcement learning
rainbow algorithm

The basic framework of Rainbow algorithm is the DQN
algorithm. Therefore, this section first briefly introduces the

DQN algorithm, and then explains the improvements and
advantages of the Rainbow algorithm used in this article on its
basis.

3.1 Deep learning Q network algorithm

TheDQN algorithm uses deep neural networks to effectively
extend the traditional tabular Q learning algorithm, which is a
typical deep reinforcement learning algorithm. When training
with the traditional Q learning method, it is necessary to use
the Q table to record the status, action and corresponding Q
value of each training sample, and the high-dimensional state
and control action will cause the Q table to be too large and
difficult to save. In order to solve the problem that it is difficult to
deal with high-dimensional state space and control action set, the
neural network is used to achieve direct prediction of Q values
in the DQN method. This enables Q function to directly use the
observed continuous states as input variables, which improves
the ability of DQN to deal with complex problems. The process
of using neural network to update Q value in DQN method can
be described as:

Q(st,at;θt) = Q(st,at;θt) + α(rt + γmaxat+1Q(st+1,at+1;θ
−)

−Q(st,at;θt)) (9)

where Q (st ,at ; qt) is the Q value function for evaluating the
action at taken by the neural network under state st , θt is the
neural network parameter of the evaluation network, rt is the
immediate reward value of the action, θ− is the neural network
parameters of the target network, α is the learning rates, γ is the
attenuation coefficient.

The target network is the stage replica of the evaluation
network in the learning process. The two neural networks
complete the iteration of Q value together, which makes the
iteration process more stable and improves the convergence of
the algorithm. After the iteration of Q value, DQN trains the
evaluation network according to the difference of Q value before
and after the iteration, which is called time difference deviation,
and the expression is shown as follows:

H = rt + γmaxat+1Q(st+1,at+1;θ
−) −Q(st,at;θt) (10)

The loss function L (θt) during the training of evaluation
network is:

L(θt) =H
2 (11)

In order to improve the learning efficiency of DQN, two
methods are usually adopted: experience replay and regular
target network correction. First of all, neural network training
requires independent input samples, while Markov decision
process can only produce continuous procedural samples. To
this end, DQN sets up an experience playback mechanism to
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shuffle the procedural samples, and specially stores the historical
experience data and learns from it repeatedly, so as to update
the policy. In addition, in order to avoid the divergence of
neural network caused by unstable training, DQN adopts the
method of target network, that is, it sets two independent neural
network models: target network and evaluation network, which
have the same structure but different parameters. The evaluation
network constantly learns new samples to update parameters,
which is fast, while the target network parameters are updated
periodically by replication evaluationnetwork parameters, which
is slow.This method can effectively improve the stability of DQN
algorithm training.

3.2 Rainbow algorithm

Although the traditional DQN algorithm can also solve the
problem of emergency frequency control strategy, sometimes
there are some problems such as poor generalization effect
and difficult convergence of the model. These problems are
mainly caused by the shortcomings of the algorithm itself,
which is difficult to be improved by adjusting parameters
and model design. Using its improved Rainbow algorithm
can effectively accelerate the training process, and make the
emergency frequency control strategy more stable and effective,
so as to solve the above problems.

The Rainbow algorithm used in this paper is based on
DQN and integrates three types of improved algorithms:
priority playback cachingmechanism,DoubleDQNandDueling
DQN.

3.2.1 Priority playback caching mechanism
In the DQN algorithm, the playback cache mechanism

uniformly filters data from the cache pool and is used to
evaluate the training of the network. However, it fails to measure
the quality of samples, resulting in some important data not
being selected quickly, which makes the training efficiency of
the evaluation network low. There is a large gap between the
output value of some data and the target value, which makes it
difficult to train the network successfully. Therefore, the priority
of its filtering should be increased. The priority playback cache
mechanism determines the probability of sampling according to
the time difference deviation of each sample. In order tomake the
sample access more efficient, the algorithm also introduces sum-
tree structure to store the sample and its corresponding priority,
which is shown as:

Psum,t ∝ |rt + γmaxat+1Q(st+1,at+1;θ
−) −Q(st,at;θt)|

ω (12)

where Psum,t is the probability that the sample will be sampled,
ω the influence degree of time difference deviation on sampling
probability.

In the priority playback cache mechanism, M experience
samples are selected from the experience pool according to the

priority to train the neural network. The loss value is used
to determine the degree of priority learning. The larger the
error is, the larger the space for the prediction accuracy to
rise, and the higher the priority of the sample is, as shown in
Figure 3.

In fact, using a priority playback cache mechanism not
only changes the process of filtering data, but also changes the
method of parameter update. Therefore, it not only changes
the distribution of selected data, but also changes the training
method of the network. The priority playback cache mechanism
extracts samples with larger time difference deviation more
frequently, reduces the number of samples needed to evaluate
the convergence of the network, significantly speeds up the
convergence speed of the algorithm, and improves the learning
efficiency of training.

3.2.2 Double deep learning Q network
Since the argmax function is included in the calculation

formula of Q value, the estimation of Q value of DQN algorithm
is often higher than the real value. If such overestimation is
uniform, it will not affect the final optimal decision. However, the
distribution of such overestimation in the environment is often
complex and uneven, so different degrees of overestimation will
lead to the final decision can only converge to the suboptimal
solution instead of the optimal solution.The algorithm ofDouble
DQN is proposed to solve this overestimation problem, which is
an extension of DQN.

The difference between Double DQN and traditional DQN
algorithms is mainly reflected in the estimation of the value of
the next state. In DQN, the value estimation of the next state
is done independently by the target Q network, and the target
network outputs theQ value obtained by each action, and applies
the action with the largest Q value to update formula. Double
DQN uses two existing neural networks to improve the iterative

FIGURE 3
Schematic diagram of priority playback caching mechanism.
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FIGURE 4
Schematic diagram of Dueling DDQN.

rules for Q values, with the time difference bias H expression:

H = rt+1 + γt+1Q(st+1,argmaxat+1Qθ (st+1,at+1) ;θ−)

−Q(st,at;θt) (13)

3.2.3 Dueling deep learning Q network
DuelingDQNmakes a change in the upper layer of the neural

network output layer and divides the original output Q value
into two parts, one is the value evaluation of the state and the
other is the value evaluation of different actions. Two parts share
parameters at the front end of the neural network, and only
perform shunt when calculating their respective values.The state
valueV(st) in the first part represents the value of the state, while
the action dominance value A(st,at) in the second part removes
the influence of the state and calculates the value of each action
separately. The final output Q value can be calculated as:

Q(st,at) = V(st) +A(st,at) (14)

Dueling DQN provides a more accurate grasp of the
environment by assessing the state and action separately, making
decisions more realistic, as shown in Figure 4.

4 Emergency frequency control
model based on deep reinforcement
learning

When Rainbow algorithm is applied to the emergency
frequency control of the power system, the emergency
load shedding instructions can be directly generated by
high-dimensional state data of power system, which avoids
the disadvantages of traditional methods such as complex

optimization and poor application effect. The power system
emergency frequency control problem is formulated as MDP
process, which has the elements of state, action and reward.
In the process of MDP, the agent perceives the current system
state and performs actions on the environment according to
strategies, so as to change the state of the environment and get
instant payoff. The accumulation of instant payoff over time is
called reward. Thus, the MDP process combines the state space,
action space and reward function of the emergency frequency
control problem into a closed-loop whole. The MDP process of
deep reinforcement learning algorithm is designed according
to the mathematical model of the problem. The state control,
action space and reward function correspond to each part of the
mathematical model of the emergency control. Therefore, this
paper introduces the mathematical description of emergency
frequency stability control.

4.1 State space

In MDP, the state st represents the feedback of the
environment to the agent, that is, the impact of the action of the
previous step on the environment. This paper believes that the
frequency stability of the power system is closely related to the
active power of the generator, the load power and other factors,
so the state space st is defined as:

st = s
t
1 ∪ s

t
2 ∪ s

t
3 ∪ s

t
4 (15)

{{{{{{
{{{{{{
{

st1 = {f
t
1 f t2 ⋯ f tm }

st2 = {(df/dt)
t
1 (df/dt)

t
2 ⋯ (df/dt)

t
m}

st3 = {P
t
e1 Pte2 ⋯ Ptem}

st4 = {P
t
l1 Ptl2 ⋯ Ptln}

(16)

where fi
t is the frequency of generator bus i at time t, (df/dt)i

t

is the frequency change rate of generator bus i at time t, Pei
t is

the electromagnetic power of generator bus i at time t, Plj
t is the

active load of the load bus j at time t.

4.2 Action space

For power system emergency frequency stabilization
problems, the action is defined as removing a certain amount
of load on multiple controllable load buses. At each action
moment, the control action on each controllable load bus is
defined as 0 (the controlled load is not shed) or 1 (a controlled
load of σ amount is shed). Therefore, the action space is discrete,
the dimensionality is 2n, where n is the number of load buses
participating in emergency control.
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4.3 Reward function

After an action is performed in a power system simulation
environment, the model receives an immediate reward value to
evaluate the corresponding state-action group at this time. For
emergency frequency control problems, a larger reward value
should be given if the action performed stabilizes the system
frequency within the allowable range, keeps the system transient
frequency nadir above the threshold, and shed less controllable
load.

In order to quickly restore the system frequency to the
allowable range, if the value of the frequency inertia center is
still lower than the specified threshold in a certain period before
the end of the simulation process, a large penalty value can be
obtained. If the time does not reach the above moment, in order
to keep the minimum frequency of the system higher than the
threshold and remove less controllable load, the reward function
consists of the following four parts:

1) The frequency inertia center deviation value of the system
after the action;

2) The controllable load amount of shedding;
3) The penalty for crossing the threshold at the lowest point of

the center of frequency inertia;
4) Invalid action penalty for removing unloaded buses.

Thus, the reward function rt at time t can be defined as:

rt =
{{
{{
{

−200, if(t > Ttem) and (f (t) < ftem.set)

λ1Δf (t) − λ2
n

∑
j=1

Pslj −H1 −H2, otherwise
(17)

H1 = {
−100, if(f (t) < fmin.set)
0, otherwise

(18)

H2 = {
−100, if(Pljt = 0) and (Pslj ∈ at)
0, otherwise

(19)

where Ttem is the value at a certain moment before the end of
the simulation process, ftem. set is the steady-state threshold of
the frequency inertia center, Δf (t) is the deviation value of the
frequency inertia center at time t, Pslj is the excision amount
of load bus j, λ1 and λ2 are the coefficients of each part of the
reward function, fmin. set is the threshold of the lowest point of
the transient process frequency inertia center, H1 is the penalty
when the lowest point of the system frequency inertia center is
less than the preset threshold, H2 is the penalty when the load
bus has been reduced to zero in the previous time step, and it still
chooses the load shedding action.

The reward function design of deep reinforcement learning
should combine the priori experience knowledge and automatic
parameter search. Firstly, the priori experience about the
emergency control problem is used to determine the approximate
range of the coefficients of each part of the reward function.

Secondly, once its rough range is determined, the model is
automatically selected randomly in the range. The combination
of selected parameters is used to train the model, and the
combination with the best performance is selected as the
coefficient of the reward function.

This reward function can quickly restore the system
frequency to the allowable range, and the lowest frequency in the
recovery process should not be lower than the threshold at the
same time. It also ensures that the total amount of load shedding
is small, and improve the economy.

5 Case study

In order to verify the effectiveness of the proposed method,
Python and BPA simulation software are used to jointly build
a deep reinforcement learning environment of IEEE 39-bus
system, and Rainbow algorithm is used to solve the example.
Tensorflow1.15 is used to build deep neural network in Python.
The operating platform is Intel Core I5-11400H CPU, 16.00GB
RAM, and RTX 3050.

5.1 Case data

In this paper, BPA is used to generate the failure scenario
of IEEE 39-bus system. The generator model adopts the 6-order
model. The load model is a mixed load model composed of
constant impedance model and induction motor, both of which
account for 50%. The failure scenario is that a generator loses
part of the power, resulting in a certain power difference in the
power system. The total simulation time is 40 s, and each cycle
wave is a sampling point. In order to simulate fault states of
different system and get enough samples, at the beginning of the
simulation, one of the 10 generators is randomly selected to lose
0.5 p.u to 1 p.u of active power output. This random selection of
fault location and fault size can improve the generalization ability
of model. IEEE 39-bus topology is shown in Figure 5. In this
paper, bus 3, 8, and 20 are considered as controllable load bus
participating in emergency frequency control.

In IEEE 39-bus system, the deep reinforcement learning state
space is composed of the frequency deviation, frequency change
rate, active power output of 10 generators and the remaining
controllable load buses participating in load shedding, with a size
of 33 dimensions.The action space is composed of the combined
excision actions of three loads. The control action at each load
bus is defined as 0 (the controlled load is not shed) or 1 (the
controlled load of 50 MW amount is shed), and the size of the
action space is 8 dimensions.

5.1.1 Two-stage action
Emergency frequency control is divided into two stages:

emergency control action process and recovery action process.

Frontiers in Energy Research 08 frontiersin.org

153

https://doi.org/10.3389/fenrg.2022.1065405
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Sun et al. 10.3389/fenrg.2022.1065405

FIGURE 5
Topology of IEEE 39-bus.

When the center of inertia of the system frequency is lower
than 49.5Hz, the initial emergency control action starts, and
then the time interval of each action is 0.5 s. Continuing operate
until the frequency change rate of the center of inertia of the
system is positive, that is, when the center of frequency inertia
begins to rise, enter the second stage. In the second stage,
the recovery action is performed with an interval of 5 s each
time, and the action is continued until the frequency stability is
reached.

5.1.2 Graded shedding polymerization load
Considering the different delay characteristics of the new

controllable load, the load is divided into three levels according
to the delay time.The delay time within 100 ms is level 1 load, the
delay time between 100 and 200 ms is level 2 load, and the delay
time between 200 and 300 ms is level 3 load. After aggregation
modeling, the controllable load ratio of each bus and the load
ratio of different delay levels are shown in Table 3.

For loads of the same delay level, the actual control delay is
calculated according to the maximum value, so as to ensure that
the actual frequency drop depth is less than or equal to the ideal

TABLE 3 Proportion of different grades of load.

Load bus
number

Controllable
load ratio

Level 1
load ratio

Level 2
load ratio

Level 3
load ratio

3 0.82 0.35 0.4 0.25
8 0.91 0.35 0.35 0.3
20 0.77 0.4 0.3 0.3

frequency drop depth and avoid frequency instability. Therefore,
after aggregation, it is considered that the actual delay of level 1
load is 100 ms, level 2 load is 200 ms, and level 3 load is 300 ms.
In each bus, the delay is shed in ascending order.

In this paper, the delay difference of less than 100 ms is small,
and the influence on the control effect can be ignored.Therefore,
the load delay is divided into three levels. If the delay level is
too coarse, the delay difference within the same level cannot be
ignored. If the delay level is too fine, the strategy optimization is
too complicated and unnecessary.

5.2 Model training process

In this paper, different experimental scenarios are set to train
the proposed Rainbow algorithm. The size of the input layer of
the neural network is 33 dimensions, which is the same as the
dimension of the state space, and there are two 64-dimension
hidden layers in the middle. The size of the output layer is 8
dimensions, which is the same as the dimension of the action
space, and the activation function adopts ReLU.

During training, the strategy of ɛ-greedy search action is
adopted to balance the relationship between exploration and
utilization. It can prevent the agent from falling into the local
optimal solution or not getting the optimal solution. Policy
selection is defined as:

a = {
argmaxaQ (s,a) , ε ≤ ε0

random, ε > ε0
(20)

Where ɛ is the random number evenly distributed within the
interval [0,1], ɛ0 is the fixed value of the specified greedy policy,
satisfying 0 ≤ ɛ0 ≤ 1.

The ɛ0 is small in the initial stage, which encourages DQN
to explore more different load increase situations in the early
stage of training, so as to avoid the problem of local optimum
caused by insufficient exploration. With the progress of training,
the value of ɛ0 increases continuously and stabilizes at 0.95 finally,
which requires DQN to learn and utilize the explored excellent
strategies more in the later training period.

The training process of reinforcement learning model is the
process of learning to obtain the maximum reward value. The
reward change process in the training of this paper is shown in
Figure 6.

As can be seen from Figure 6, at the beginning of training,
the agent randomly selects actions to explore the environment,
because the data cache pool is not full and the ɛ0 is small.
Therefore, the reward value at this stage is low and there is
obvious oscillation. When the data cache pool is full, the model
starts to train, the reward increases with the training, and the
effect of load shedding strategy gradually becomes better. After
about 700 rounds of training, the reward reaches a high value,
and then the change is small, and the model is basically trained.
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FIGURE 6
Change of reward value during training.

In order to further show the process of model
training, it is shown in Figure 7 that the change process
of each round of shedding action step in the training
process.

As can be seen from Figure 7, at the early stage of training,
the effect of load shedding is not ideal because the optimal
strategy is not explored, so there are many action steps in
each round. After training, the well-trained agent only needs
to take a few actions in each round to achieve the stability
condition.

5.3 Rainbow model test results

After the training, in order to test the robustness and
adaptability of the Rainbow agent, it was tested in different
scenarios. The test scenario is that one of the 10 generators
loses 0.5 p.u to 1 p.u of active power output, and the load level
is randomly selected as 90%, 95%, 100%, 105%, or 110%. The
frequency control strategies for the three scenarios are shown in
Table 4.

As can be seen from Table 4, for various scenarios tested,
the amount of load shedding is basically equal to the amount

FIGURE 7
The number of excised movements in each training round.

of power gaps, and the well-trained model can basically
avoid overcutting or undercutting of load when applied
online.

In order to further verify the superiority of the method, this
paper compares the load shedding scheme obtained by the deep
reinforcement learning Rainbow algorithm and the traditional
UFLS algorithm, and Figure 8 shows the dynamic recovery
process of frequency inertia center after the action of the two
algorithms in scenario 2.

As can be seen from Figure 8, traditional UFLS is driven
by multiple frequency stages, and the shedding action starts
too slowly and is fixed, resulting in slow frequency recovery.
However, Rainbow algorithm can effectively reduce the system
frequency drop depth and speed up the process of frequency
recovery. Within 10–60 s, the system frequency using Rainbow
algorithm is much higher than that using UFLS, and the
frequency recovery speed is accelerated. At the same time,
when Rainbow algorithm is used, the lowest frequency of the
system is around 49.4Hz, while the lowest frequency of the
traditional UFLS algorithm is 49.3 Hz. It can be seen that the
load shedding strategy in this paper can effectively improve
the dynamic frequency nadir of the system and improve the
frequency stability of the system.

TABLE 4 Frequency control strategy in three scenarios.

Scenario
number

Load
level (%)

Failed
bus

Power
gaps (MW)

Total amount of
load shedding (MW)

Stage 1 load
shedding (MW)

Stage 2 load
shedding (MW)

Stage 3 load
shedding (MW)

1 95 31 380 350 50 150 150
2 100 33 535 550 200 200 150
3 110 31 440 450 100 200 150
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FIGURE 8
Curve of frequency inertia center after action of UFLS and
Rainbow algorithm.

5.4 Effect comparison of different deep
reinforcement learning algorithms

In order to comprehensively compare the effect of the
proposed algorithm with other DRL algorithms, Rainbow
algorithm is compared with various improved DQN algorithms.
Figure 9 shows the reward change process during training of
different DRL algorithms.

As can be seen fromFigure 9, the traditional DQNalgorithm
is basically stable after 600 rounds of training, but its algorithm
has poor optimization ability, and the reward value obtained

FIGURE 9
Reward value for DQN and its improved algorithm.

is lower than that of its improved algorithm. After using the
improved Double DQN and D3QN algorithms, the model
converges after 700 rounds, and the training effect is improved
compared with the DQN algorithm, and a better control
strategy can be calculated. The Rainbow algorithm in this paper
converges after about 800 rounds of training, at which point
the model reward value exceeds that of other algorithms. As a
result, the Rainbow algorithm is able to obtain higher reward
values than other algorithms, and although the training time
is longer, it obtains a better control strategy at the expense of
this.

Meanwhile, in order to verify whether Rainbow algorithm
maintains its superior performance in the test scenario,
this paper randomly tests four different algorithms for 100
times, and the test scenario is the same as that in 5.3. The
distribution of reward value obtained in the test is shown
in Figure 10.

As can be seen from Figure 10, the reward value obtained
by DQN and Double DQN fluctuates greatly in the random
test scenario, and the overall reward is low. It indicates that the
model fails to find the optimal strategy at this time, and the
generalization ability is poor, and the effect is poor for some test
scenarios. The reward value of D3QN algorithm in the test is
significantly higher than that of the previous two, but there is still
a certain gap compared with Rainbow algorithm in this paper.
Rainbow algorithm with successful training can obtain good
reward values in various test scenarios and obtain the optimal
action strategy.

Compared with other DRL algorithms, Rainbow algorithm
can make the system frequency return to stable state faster, and
minimize the total load shedding amount at the same time.
In order to show the test improvement effect more intuitively,

FIGURE 10
The distribution of reward values of different algorithms.
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FIGURE 11
Frequency distribution at the time of system stability in different
test scenarios.

Figure 11 shows the distribution of frequency inertia center
values of system at a certain time before the end of simulation
process after the implementation of random test strategy.

As can be seen from Figure 11, the model trained by the
deep reinforcement learning algorithm can basically restore the
system frequency above 49.8 Hz under various test scenarios,
ensuring the stability of the system. However, compared with
other traditional DQN algorithms, Rainbow algorithm can
make the stable frequency deviation smaller, which reflects the
superiority of Rainbow algorithm.

6 Conclusion

Considering the complexity and uncertainty of frequency
stability of the new power system, and the feasibility of the
new controllable load participating in the emergency control,
this paper established a new controllable load participating in
the emergency frequency stability control method based on
Rainbow algorithm. Through the design of different operation
scenarios for experimental verification, the conclusion is as
follows.

1) In this paper, it comprehensively evaluates the response
delay time of the new controllable load, and classifies and
aggregates the controllable load according to the different
delay time. At the same time, the simplified model makes
the controllable load more accurate and effective when
participating in the emergency control, and avoids the error
of shedding effect due to the communication difference and
spatial distribution of the controllable resources.

2) The emergency frequency control algorithm based on deep
reinforcement learning can effectively maintain the balance
between the system frequency stability and the emergency
control cost. By designing the reward function, the model
can learn the effective control strategy with the minimum
control cost. It avoids the shortcomings of the traditional
algorithm such as easy over-cutting, under-cutting and poor
economy. In this paper, Rainbow algorithm improved by
DQN algorithm is adopted to avoid the shortcomings of
traditional UFLS method, such as slow control speed, slow
frequency recovery and excessive frequency drop. At the
same time, comparedwith otherDRL algorithms, the strategy
obtained by the proposed algorithm ismore excellent and the
stable frequency deviation is smaller.

3) In the subsequent study, the random fluctuation of system
load will be added to simulate a more realistic power
system environment and test the generalization ability of
this method. In addition, Rainbow algorithm adopted in this
paper can only deal with discrete action space. It is hoped
that deep reinforcement learning algorithm based on policy
gradient can be applied to emergency frequency control in
subsequent studies, and its ability to deal with continuous
action space can enablemore controllable loads to participate
in emergency control.
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Ultra-short-term load prediction
of integrated energy system
based on load similar fluctuation
set classification

Mao Yang, Dongxu Liu*, Xin Su, Jinxin Wang and Yu Cui

Key Laboratory of Modern Power System Simulation and Control and Renewable Energy Technology,
Ministry of Education, Northeast Electric Power University, Jilin, China

Due to the strong coupling characteristics and daily correlation characteristics

of multiple load sequences, the prediction method based on time series

extrapolation and combined with multiple load meteorological data has

limited accuracy improvement, which is tested by the fluctuation of load

sequences and the accuracy of Numerical Weather Prediction (NWP). This

paper proposes a multiple load prediction method considering the coupling

characteristics of multiple loads and the division of load similar fluctuation sets.

Firstly, the coupling characteristics of multivariate loads are studied to explore

the interaction relationship between multivariate loads and find out the priority

of multivariate load prediction. Secondly, the similar fluctuating sets of loads are

divided considering the similarity and fluctuation of load sequences. Thirdly, the

load scenarios are divided by k-means clustering for the inter-set sequences of

similar fluctuating sets, and the Bi-directional Long Short-Term Memory (BI-

LSTM) models are trained separately for the sub-set of scenarios and prioritized

by prediction. Finally, the effectiveness of the proposed method was verified by

combining the multivariate load data provided by the Campus Metabolism

system of Arizona State University.

KEYWORDS

load prediction, scenario set partitioning, Bi-LSTM, integrated energy system,
meteorological factors

1 Introduction

Intergrated Energy System (IES) is a new energy system that integrates electricity,

natural gas, heating and cooling energy supply, including various forms of energy

production, energy conversion, energy distribution, energy storage and energy

utilization, etc. (Valery et al., 2022). Compared with the traditional energy utilization

system, IES can realize the coupling of different types of energy in different links such as

source, network and load side, effectively improving the comprehensive utilization rate of

energy (Wei et al., 2022). At present, as the basis for guiding the optimal scheduling of the

system, IES load prediction is important for the accurate prediction of multivariate loads,

considering the interaction of various relevant factors in IES and the complex mechanism

(Wang et al., 2021; Jizhong et al., 2022).
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On the energy supply side of the IES, the main focus is on

wind power and PV power prediction. Among them, In Mao

et al. (2022), proposed a composite prediction framework DC

(DWT-DAE)-CNN consisting of dual clustering and

convolutional neural network. Firstly, discrete wavelet

transform (DWT) and deep self-encoder (DAE) are

performed on the original data respectively to reduce data

redundancy. Secondly, a pairwise clustering model based on

dynamic time-bending distance clustering and fuzzy C-mean

(FCM) clustering is proposed to gradually realize the dynamic

characteristics of power curves and numerical clustering of

weather information data. Finally, it is verified by arithmetic

case analysis. In Mao et al. (2020), proposed an improved fuzzy

(FCM) clustering algorithm, which can obtain better prediction

results by using the principle of minimum distance to select

relatively coarse initial cluster centers, and by dividing wind

turbines with similar power output characteristics into several

classes and selecting representative power curves as the

equivalent curves of wind farms. The shortest distance

method clustering is proposed to provide the initial clustering

center for FCM, the use of validity analysis of the degree of

similarity of samples within classes and the degree of

independence between different classes to discriminate the

superiority of clustering results, and the identification and

elimination of noise points by data density are proposed to

improve the performance of FCM clustering algorithm (Kai et

al., 2022). In Yang et al. (2019), used set-pair analysis to assess the

correlation between the power fluctuations of individual wind

turbines and the power fluctuations of all aggregated wind

turbines, and between the smoothing effect of aggregated

wind farms and the prediction accuracy of the corresponding

aggregated power output. The experimental results show that the

wind power prediction accuracy varies with the smoothing effect

index, which is influenced by the number of wind farms. In Wu

et al. (2022a), proposed a multi-stage urban distribution network

(UDN) resilience enhancement framework to cope with the

substantial loss of UDN critical loads caused by high impact

low probability events (HILP) in UDN. In the first stage, the

distribution system operator forms typical failure scenarios based

on historical data of electrical component damage under ice

events and sets up specific response plans in each scenario to

reduce the lost load and associated costs, in the second stage, the

operator performs a risk assessment of the corresponding plans,

and in the third stage, the operator revises the response plans to

reduce the “second stage” impact. In Wu et al. (2021a), promotes

distributed renewable energy consumption through a specially

set price mechanism that incorporates supply and demand ratios

into the dynamic price formation process to better accommodate

highly penetrated renewable energy sources and small-scale

energy markets. A two-way auction model is proposed in Wu

et al. (2021b), first, to establish a participant-driven framework

for distributed trading of electricity demand response, followed

by a bargaining game for cost and benefit allocation, and finally,

to form a co-optimization model for electricity and hydrogen

considering production constraints to improve system capacity

and economics. In Nantian et al. (2022), a multi-node charging

load joint adversarial generation interval prediction method

considering the charging load correlation between nodes is

proposed to effectively predict the spatio-temporal distribution

of EV charging load with respect to the time-space progressivity

of EV charging load.

On the energy consumption side of the IES, the main focus is

on multi-energy load prediction. Among them, a novel

decomposition-ensemble model for short-term load prediction

is proposed in Yang et al. (2019). (Xiaobo and Jianzhou, 2018)

The singular spectrum analysis (SSA) decomposition and

reconstruction strategy is introduced in the proposed model,

and the cuckoo search algorithm is used to generate the ensemble

results and thus improve the model prediction accuracy. In

Abhishek et al. (2022), a seasonal partitioning method is

proposed for day-ahead prediction of electrical loads, and

corresponding prediction models are established for the

transition season and the regular season, and in the transition

season, the weighted output method of multiple seasonal

prediction models is used to improve the prediction accuracy.

In Mukhopadhyay et al. (2017), explore how to reasonably use

meteorological factors for load prediction, use the meteorological

factors of the day to determine the magnitude of load, and

consider day type information to appropriately scale the

forecast results for rest days to better approximate the actual

load. In Luiz and Afshin (2015), a transfer function (TF) model

was developed using measured hourly weather variables for the

simulation and prediction of electric loads and compared with an

autoregressive integrated moving average model (ARIMA) and

an artificial neural network (ANN) based on exogenous variables,

and finally, an arithmetic analysis concluded that the accuracy of

the proposed method has good stability with the extension of the

time series. The above research methods mainly focus on some

single load type for prediction, compared to single load

prediction, the research on multivariate load prediction is

relatively new, and the multi-task structure is commonly used

to accommodate multivariate output requirements. For example,

a short-term prediction method for electricity and gas demand

based on a radial basis function neural network (RBF-NN) model

was proposed (Tang et al., 2019). A multivariate load prediction

model based on kernel principal component analysis, quadratic

modal decomposition, two-way LSTM and multiple linear

regression was proposed (Jinpeng et al., 2021; Yingjun et al.,

2022). In Ref. (Qingkai et al., 2021), a multi-task learning load

prediction model with Long-Short-Term Memory (LSTM) as a

shared layer is constructed, where the learning of single load

features is first performed separately, and then the auxiliary

coupling information is learned using the shared layer. In Ref.

(Jixiang et al., 2019), a mixed-model short-term load prediction

method based on convolutional neural networks and LSTM is

proposed, in which a large amount of historical load data,
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meteorological data, date information, and peak and valley tariff

data are used as inputs to construct a continuous fluctuation map

by time-sliding windows, the eigenvectors are first extracted

using convolutional neural networks. The eigenvectors are

constructed in a time-series manner and used as input data

for the LSTM network, and then the LSTM network is used for

short-term load prediction. The method proposed in Ref.

(Haohan et al., 2021), fails to explicitly consider the complex

coupling interaction features between multi-energy loads, where

LSTM as a recurrent neural network has its own limitations, and

although it can better mine the data temporal features, it cannot

fully explore the interaction coupling relationship betweenmulti-

energy loads. The key idea of load prediction is to exploit the

cyclical nature of load demand behavior and its dependence on

other influencing factors, such as multi-energy coupling and

weather information. However, the analysis of historical data

shows that some of these influences do not have a uniform

impact on load demand throughout the year.

To sum up, this paper proposes a multivariate load ultra-

short-term prediction method based on load similar fluctuation

set division combined with multivariate load coupling

characteristics. First, a gray correlation analysis is performed

on the multivariate load series to explore the coupling

characteristics of the multivariate load data. Secondly, based

on the historical load data, the actual load sequence of the

highest priority is divided into correlation and volatility to

obtain the set of load similar fluctuations. Thirdly, the NWP

strongly correlated features of inter-set load sequences are used

as input for k-means clustering to classify load scenes and train

BI-LSTM network by load scenes; Finally, the final prediction

results are obtained by ranking the multivariate load prediction

priorities one by one.

2 Coupling characteristics mining of
multiple loads

Before carrying out the research work of IES multiple load

prediction, the energy use characteristics of the system should be

analyzed, i.e., starting from the mechanism of load composition

and revealing the inherent change law of the system load itself.

Multi-class energy coupling mechanism is the theoretical basis of

IES, and all kinds of energy sources are interactively coupled with

each other, so the coupling characteristics between all kinds of

energy sources need to be considered in the process of multiple

load prediction (Jizhong et al., 2021). Multi-Task Learning

(MTL) is often used for joint prediction of multivariate loads.

The idea is to use multiple types of loads as the object of study

and other influencing factors as fluctuation data to predict

multiple types of loads simultaneously, which is a method of

multiple inputs accompanied by multiple outputs at the same

time (Wang et al., 2021). Although this method is able to take

into account the coupling characteristics between multiple types

of energy sources, the output side of the method outputs the

multivariate load forecasts simultaneously, and the coupling

strengths between the various types of energy sources may be

different.

Therefore, this paper takes the lead in exploring the coupling

strength between multiple types of energy sources and analyzes the

correlation between multiple load series by Grey Relation Analysis

(GRA) method to portray the coupling strength between multiple

loads by correlation degree (Xuexiang et al., 2022). The sum of the

correlations between any two selected loads and the third load is set

as a parameter indicator φi (cumulative correlation coefficient) that

weighs the strength of the coupling of the two loads to the third load,

i � 1, 2,/, i is the load type. The larger the value of φi, the greater

the coupling strength of other kinds of loads to the i species load, and

the more backward the prediction order, conversely, the smaller φi

indicates that the coupling strength of other kinds of loads to that

kind of load is smaller, then the prediction order is advanced. As a

result, themagnitude of the cumulative correlation coefficient φi can

be used to prioritize the prediction of multiple loads in an integrated

energy system.

3 Load similar fluctuation set division

The average daily load distribution within a season follows

almost a similar pattern. However, the classification of load

characteristics by season alone is too subjective and is likely to

ignore the load characteristics between non-contiguous months.

Based on the above multiple load coupling characteristics mining,

this paper divides the highest priority electrical loads into load

similar fluctuation sets and analyzes the monthly average electrical

load distribution of the integrated energy system under the complete

seasonal sequence as shown in Figure 1. It can be seen that similar

fluctuations exist between different seasons.

Firstly, the average monthly electric load distribution series

under different months is obtained by taking the average value of

parallel load points of the load series under different load days in

the same month. Secondly, the obtained daily average electric

load distribution series are then compared two by two using grey

correlation analysis to form a correlation coefficient matrix Dα

between different months of the same load with correlation

coefficient ξα(i, j), where i and j are the number of sample

series. The variance is used to portray the degree of volatility of

the series, and the correlation coefficient is used to portray the

similarity between the series. The variance of the daily average

load series of different months is used to make the first-order

difference, forming the variance first-order difference matrixDβ,

and the correlation coefficient is ξβ(i, j). The smaller the value in

the matrix, the more similar the degree of volatility between the

two series is. Finally, the correlation thresholds of the parameters

in the above matrix are selected separately to classify the

multivariate load similar fluctuation fluctuation set, and the

solution flow chart is shown in Figure 2.
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The correlation threshold ξo(j) is actually the final

criterion for the attribution of the sample to be examined.

If the value of ξo(j) is low, association misclassification will

occur, i.e., sequences that are not originally part of the

fluctuation set are classified, and the lower the value of

ξo(j), the higher the probability of misclassification.

Conversely, if the value of ξo(j) is high, the higher the

probability of fault omission, the sequence that should have

been classified into the fluctuation set is not classified in, and

the higher the value of ξo(j), the higher the probability of

omission. We write down the minimum correlation threshold

corresponding to the smallest correlation of the sequence as

min ξo(j). Therefore, the maximum correlation threshold

corresponding to the largest correlation is written down as

max ξo(j). The best value of the correlation threshold ξo(j)op
should satisfy the following conditions.

min ξo(j)< ξo(j)op<max ξo(j), min ξo(j)<max ξo(j) (1)
min ξo(j) � ξo(j)op � max ξo(j), min ξo(j) � max ξo(j) (2)

ξo(j)op � α(j)min ξo(j)
+ β(j)max ξo(j), min ξo(j)>max ξo(j) (3)

Where α(j) and β(j) are weighting factors, 0≤ α(j)≤ 1,

0≤ β(j)≤ 1, α(j) + β(j) � 1.

FIGURE 1
Monthly average electric daily load distribution chart.

FIGURE 2
Flow chart of correlation coefficient threshold selection.
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Let the minimum correlation of the sequence j be Ew(j) and
the maximum correlation be El(j). Establish the objective

function on the sequence.

E(α(j), β(j)) � Ew(j) + El(j) (4)

Search for α(j) and β(j) when this objective function is

minimized, and find the corresponding correlation threshold,

which we call the best correlation threshold at this time, and

denote as ξo(j)op.

4 K-means clustering method for
each fluctuation set sequence

4.1 Gray correlation analysis method

Electricity, heat and cold loads in IES have strong correlation

for meteorological factors, and the usual prediction method is to

artificially and subjectively select several meteorological factors as

inputs, which does not seem to be logically sufficiently justified.

Therefore, before carrying out multi load prediction of the

regional integrated energy system, the various types of loads

and the correlation strength between them and meteorological

factors should be analyzed and screened, so as to analyze the

coupling characteristics among electric, heat and cold loads, as

well as the impact of each influencing factor on the multi loads.

GRA compensates for the shortcomings caused by the use of

mathematical and statistical methods for systematic analysis.

GRA is a multi-factor statistical analysis method, and its basic

idea is to determine whether the association is strong or not based

on the similarity of the geometry of the series curves. The closer

the curves are to the response series, the greater the degree of

association between them, and vice versa. The GRA method is

suitable for analyzing the nonlinear relationship between

multiple loads and influencing factors, which can largely

reduce the loss due to information asymmetry, and this

method does not need a large number of data sets as the

basis, the calculation is small and fast, and there is no

discrepancy between quantitative results and qualitative

analysis results. Therefore, in this paper, GRA is selected to

quantitatively analyze the degree of influence of meteorological

factors on the multiplicative load, and the meteorological factors

that have the greatest influence on the multiplicative load are

selected as the influence factors to analyze the correlation

between each influence factor and the multiplicative load.

4.2 Multivariate load and meteorological
factor correlation analysis

The correlation coefficient and the correlation degree of the

GRA method are two key parameters used to measure the

correlation, and the magnitude of the correlation degree can

visually reflect the degree of association between two factors,

which are calculated by the following equations.

ξ i �
min

i
min

k
|x0(k) − xi(k)| + ρmax

i
max

k
|x0(k) − xi(k)|

|x0(k) − xi(k)| + ρmax
i

max
k

|x0(k) − xi(k)| (5)

γi �
1
n
∑n
k�1

ξ i(k) (6)

Where x0 is the normalized weather factor sequence, xi is the

normalized load sequence, ρ is the resolution coefficient,

generally taken as 0.5, n is the length of the sequence.

The correlation between the multiple loads of the integrated

regional energy system and each meteorological influencing

factor is analyzed. Let the sequence of electrical, heat and cold

loads and each meteorological influence form the following

matrix.

Based on the load prediction priorities derived from the

above correlation analysis for multivariate loads, the NWP

strongly correlated features are used as input for k-means

clustering to classify load scenarios, and the BI-LSTM network

is trained separately for each load scenario set for sub-scenario set

prediction modeling.

Xs �
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T

�
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xE(1) xE(2) / xE(n)
xH(1) xH(2) / xH(n)
xC(1) xC(2) / xC(n)

xTemp(1) xTemp(2) / xTemp(n)
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xPW(1) xPW(2) / xPW(n)
xDp(1) xDp(2) / xDp(n)
xatm(1) xatm(2) / xatm(n)
xCT(1) xCT(2) / xCT(n)
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T

(7)
Where xE is electrical load, xH is heat load, xC is cold load, xTemp

is temperature, xHUM is relative humidity, xWVEL is wind speed,

xWD is wind direction, xGHI is irradiance, xPW is rainfall

availability, xDp is dew point, xatm is atmospheric pressure,

and xCT is cloud type.

5 Multivariate load prediction model

5.1 LSTM neural network predictionmodel

LSTM is an improved model of Recurrent Neural Network

(RNN), which solves the gradient disappearance and explosion

problems of RNN, enabling the network to effectively handle

long-term time series data, improving the ability to handle

samples with long time series intervals or delays, as well as the

ability to handle non-linear data (Hongbo et al., 2022). The network
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structure of a typical RNN is shown in Figure 3. xt is the input, ht is

the output, ct is the memory state, A is the neural network module.

The key is that it can be used to connect previous information to the

current task, and to interact with information by stacking multiple

neural networks, passing each neural network module

corresponding information to the next one. However, the

disadvantage is that as the network is extended, the distance

between the relevant information and the current predicted

location gradually increases, which makes the RNN lose the

ability to learn information that is connected so far.

LSTM can learn long-term dependent information, the key of

which is the transfer of cell states, and it has the same repetitive way

as RNN, but redesigned memory units while retaining the original

structure of RNN, The LSTM sets up three control gates, input gate

it, output gate ot, and forgetting gate ft, which are used to select the

correction parameters of the error function of the memory feedback

with gradient descent, optimizing the weights of the self-loop and

keeping the dynamic change of the weights (Fulong et al., 2022), the

architecture is shown in Figure 4.

As shown in Figure 3, the output value ht−1 and the current
moment input value xt passed through the forgetting gate

from the implicit layer of the previous moment, the forgetting

gate reads the above information and outputs a value between

0 and 1 to each of the data in the cell state ct−1. 1 means

“complete retention” and 0 means “complete forgetting.”

Therefore, the forgetting gate can filter the previous data

and discard the useless information. The calculation

formula is as follows.

ft � σ(Wf · [ht−1, xt] + bf) (8)

Where Wf and bf are the weight matrix and bias vector in the

forgetting gate, respectively, σ is the activation function, and the

sigmoid function is used.

FIGURE 3
Single RNN hidden layer unit expansion structure diagram.

FIGURE 4
LSTM architecture.
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The new information is then subjected to a sigmoid function

to determine the data that needs to be input into the memory cell,

while a new candidate state ~ct is constructed through A. The

calculation formula is as follows.

it � σ(Wi · [ht−1, xt] + bi) (9)
~ct � tanh(Wc · [ht−1, xt] + bc) (10)

Where Wi and bi are the weight matrix and bias vector in the

input gate, respectively,Wc and bc are the weight matrix and bias

vector in the cell state, respectively.

Then, update the cell state, first multiply the old state ct−1 and
ft to complete the screening of useless information to delete, and

then sum up the product of the calculated result it and the new

cell state value ~ct with the input gate, then get the current

moment cell state value, the calculation formula is as follows.

ct � ftct−1 + it~ct (11)

In addition, the implied layer data values ht passed to the next

moment are obtained using the new cell states ~ct processed by the

tanh function and the data ot classified by the sigmoid function,

the calculation formula is as follows.

ot � σ(Wo[ht−1, xt] + bo) (12)
ht � ot*tanh(ct) (13)

Where Wo and bo are the weight matrix and bias vector in the

output gate, respectively.

5.2 BI-LSTM prediction model

Both RNN and LSTM can only predict the output of the next

moment based on the temporal information of the previous

moment, but the output of the current moment is not only

related to the previous state, but also may be related to the future

state. BI-LSTM is a combination of a forward LSTM and a

backward LSTM, and its architecture is shown in Figure 5. It

can be viewed as a two-layer neural network, with the first layer

serving as the starting input for the series from the direction of

the input, and the second layer serving as the starting input from

the direction of the output.

To splice and combine the backward-conducted information

vector [S0′, S1′,/, S′t] with the forward-conducted information

vector [S0, S1,/, St], so that the whole prediction process can

take into account the bi-directional information, deepen the

understanding of data features, and thus improve the

prediction accuracy, and its splicing and combination

structure is shown in Figure 6.

5.3 Step-by-step prediction of multiple
loads

The prediction priority of the multiple loads in the IES

can be determined based on the cumulative correlation

coefficient φi. Take electric load as an example, select

electric load as the benchmark, sum up the correlations of

heat, cold and two loads for electric load to get the

cumulative correlation coefficients φ1 of hot and cold

loads for electric load, and then select heat and cold loads

as the benchmark respectively to get the cumulative

correlation coefficients φ2 and φ3 of the selected loads

relative to the other two loads. The smaller the value of

cumulative correlation, the less coupling with other loads,

and vice versa. Then, the priority of multiple load prediction

can be determined according to the increasing order of the

cumulative correlation coefficients.

On the basis of the load prediction method of the above

priority, the idea of prioritized step-by-step prediction is

adopted, as the electrical and cold loads have the weakest

FIGURE 5
BI-LSTM architecture.
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correlation for heat loads, followed by electrical and heat

loads for cold loads, and again by heat and cold loads for

electrical loads. Accordingly, the predicted heat load can be

considered first, and the predicted heat load is first used as

input combined with the NWP characteristics of the strong

correlation of the cold load and the load mean value series of

the first 16 time points of the prediction period for the

prediction of the cold load in the set of sub-load sc.

Secondly, the predicted hot load and cold load are used as

the input combined with the strong correlation NWP

characteristics of the electric load and the load mean value

series of the first 16 time points of the prediction period to

predict the electric load. Finally the overall prediction results

of the multiple loads are obtained, where the overall

prediction process is shown in Figure 7.

6 Example analysis

6.1 Data source

Example load data from Campus Metabolism for the Temp

campus of Arizona State University from 1 January 2019 at 00:

00 h to 31 December 2019 at 24:00 h for electricity, heat and cold

(Arizona State University, 2022), Meteorological data were

obtained from the National Climatic Resources website for the

Tempe campus location (U.S. Department of Energy, 2022),

including temperature, relative humidity, wind speed, wind

direction, irradiance, rainfall availability, dew point,

atmospheric pressure, and cloud type, at 15-min sampling

intervals.

6.2 Model evaluation metrics

In this paper, Root Mean Square Error (RMSE), Mean

Absolute Percentage Error (MAPE) and Mean Absolute Error

(MAE) are selected as the evaluation indexes, and the expressions

of the specific evaluation indexes are as follows.

RMSE �


1
N

∑N
t�1
(yt − y′

t)2
√√

(14)

MAPE � 1
N

∑N
t�1

∣∣∣∣∣∣∣∣y
′
t − yt

yt

∣∣∣∣∣∣∣∣ × 100% (15)

MAE � 1
N

∑N
t�1

∣∣∣∣y′
t − yt

∣∣∣∣ (16)

Where yt is the actual value, y′
t is the predicted value, t is the

sampling moment, N is the sample size.

6.3 Load scenario set division results

Based on the results of gray correlation degree analysis in this

paper, the highest priority electric load is used as the basis for the

division of load scenarios, and the similar fluctuating sets of load

for 12 months of a year are obtained according to the similarity

and fluctuation division of load sequences. Among them, the load

of a year is divided into four sets by month as shown in Table 1.

The correlation degree analysis of the strongly correlated

NWP features of the multivariate loads is required before the load

scenario set division, based on the results of the gray correlation

degree analysis, as shown in Table 2. The results show that the

FIGURE 6
BI-LSTM bi-directional conductive splicing combinatorial architecture.
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strength of the correlation between eachmeteorological influence

factor and the electric, heat and cold loads varies, so it is

necessary to correspond the meteorological influence factors

to the load types in a reasonable way when prediction.

Based on the results of the strong correlation NWP

fluctuation analysis of multiple loads, the NWP features of

each load are input into the k-means clustering model to

obtain the clustering cluster division of each load under each

fluctuation set and train the BI-LSTM model separately for each

cluster to realize the sub-load scenario set prediction.

6.4 Multiple load prediction priorities

Since the paper is mainly based on the coupling

characteristics of multiple loads to prioritize the single load

sequence for load prediction, the coupling relationship of

multiple loads obtained based on gray correlation analysis is

shown in Table 3. The influence of day type information and

meteorological influences on the degree of load coupling is taken

into account. For the first predicted heat load, six meteorological

factors with the highest correlation are selected for prediction,

and then the cold load is predicted iteratively using the predicted

heat load data and the corresponding meteorological influences

on the cold load. And so on, ensuring that each load forecast from

the second priority load forecast onwards iterates over the

previous load forecast results and the newly added

meteorological impact factors. The following results can be

obtained from Table 3: φ1 = 1.4255、 φ2 = 1.3561、 φ3 = 1.3596.

6.5 Analysis of experimental results

6.5.1 Prediction results for load scenario set
partitioning

According to the idea of differentiated priority prediction, the

heat load is first predicted. Prediction method 1: A sequence of

meteorological factors strongly correlated with the heat load and

a sequence of heat load history data are used as inputs, where the

input meteorological factors are forecast data for the forecast

period and the heat load history data are measured data for the

4 hours before the forecast period. Prediction method 2: Extract

the strongly correlated meteorological element sequences within

the similar fluctuation set with time interval of 1 hour by day as

the input of k-means clustering model for load scenario set

division, and train the model separately for prediction by load

scenario set according to the division result, at which time the

input is the same as predictionmethod 1. In order to highlight the

FIGURE 7
Flow chart of multivariate load data prediction.
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effect of clustering division, 2 days per month are selected for

load prediction for similar fluctuation concentration at this time,

and the load prediction results for 6 days are obtained, as shown

in Figure 8, which shows that the prediction curve of the

proposed prediction method in this paper is closer to the

actual value curve.

Among them, the error evaluation indexes of the prediction

results are shown in Table 4. The errors obtained by prediction

method two based on load scenario set division are smaller

compared with those obtained by prediction method 1, in

which MAPE is reduced by 1.59% on average, RMSE is

reduced by 0.14 MMBtu·h−1 on average, and MAE is reduced

by 0.11 MMBtu·h−1 on average.

6.5.2 Prediction results for load scenario set
partitioning

Prediction results base on heat load, the coupling

characteristics are considered for the prediction of cold load

taking into account the priority of multiple load prediction. In

this case, due to the consideration of the coupling characteristics,

the prediction results of the heat load, as well as the strongly

correlated meteorological characteristic series and the actual cold

load series of the first 4 hours of the prediction period are used as

inputs. The prediction method 1 that directly predicts

considering the coupling characteristics, the prediction

method 2 that divides the set of load scenes without

considering the coupling characteristics, and the prediction

method 3 that considers both the coupling characteristics and

the division of the set of load scenes are obtained. The prediction

results are shown in Figure 9.

A comparison of the results of multiple prediction methods is

shown in Table 5, where the prediction method 2 without

considering the coupling characteristics is less effective, with

the highest average absolute percentage error reaching 10.26%,

prediction method 3 has the smallest prediction error because it

considers the coupling characteristics of multiple loads and

divides the set of load scenarios. Compared with the

prediction method 1, the MAPE was reduced by 2.06%, RMSE

by 278.93 Ton, and MAE by 188.82 Ton on average, compared to

prediction Method 2, MAPE is reduced by 2.98% on average,

RMSE by 219.30 Ton on average, and MAE by 389.47 Ton on

average.

According to the above obtained heat and cold load

prediction values, the electric load is predicted by

considering the coupling characteristics. In this case, the

electrical load forecast inputs include the forecasted hot

and cold loads as well as strongly correlated meteorological

characteristics and measured electrical load data for the first

4 hours of the forecast period. As the coupling characteristics

and load scenario set division are considered, the same three

prediction modes as the cold load are obtained, and the

prediction results are shown in Figure 10. It can be seen

that the average absolute percentage error of prediction

method 3 decreases by 0.55% and 0.66% on average

compared with prediction method 1 and prediction method

2. Respectively, which is due to the fact that prediction method

3 takes into account the characteristics of multi-energy

TABLE 1 Results of load similar fluctuation set division.

Fluctuation set Fluctuation set 1 Fluctuation set 2 Fluctuation set 3 Fluctuation set 4

Month Jan Apr Jun Feb Mar May Jul Aug Sep Oct Nov Dec

TABLE 2 Correlation analysis between multivariate load and NWP characteristics.

Meteorological factors Data correlation

Temp HUM WVEL WD GHI PW Dp atm

Electrical load 0.9468 0.8814 0.8963 0.9171 0.7887 0.9030 0.6315 0.9572

Heat load 0.8729 0.8975 0.8930 0.8811 0.7866 0.8587 0.6304 0.9339

Cold load 0.9522 0.8442 0.8707 0.8999 0.8010 0.9116 0.6362 0.8899

TABLE 3 Correlation analysis between multiple loads.

Load type Data correlation

Electrical load Heat load Cold load

Electrical load 1.00 0.7110 0.7145

Heat load 0.7110 1.00 0.6451

Cold load 0.7145 0.6451 1.00
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coupling in IES and uses the remaining two loads as

references, which in turn improves its prediction accuracy.

Due to the consideration of multivariate load coupling

characteristics and the division method of load scenario set,

the prediction results of prediction method 3 have less

prediction error than the other two prediction methods,

This is mainly reflected in the peak and valley hours of the

load, and the prediction method 3 is more reflective of the

actual load variation, which reflects that the prediction

method considering the division of load scenarios and

taking into account the coupling characteristics is more

practical for IES multi load prediction. The electrical load

FIGURE 8
Heat load prediction results.

TABLE 4 Comparison of heat load prediction results.

Predictive
models

MAPE% RMSE/MMBtu·h−1 MAE/MMBtu·h−1

Set 1 Set 2 Set 3 Set 4 Set 1 Set 2 Set 3 Set 4 Set 1 Set 2 Set 3 Set 4

Prediction method 1 8.30 6.45 5.42 7.06 0.56 0.51 0.37 1.20 0.45 0.40 0.30 0.91

Prediction method 2 5.99 5.53 4.02 5.32 0.41 0.44 0.32 0.93 0.32 0.34 0.23 0.70

TABLE 5 Comparison of cold load prediction results.

Predictive
models

MAPE/% RMSE/Ton MAE/Ton

Set 1 Set 2 Set 3 Set 4 Set 1 Set 2 Set 3 Set 4 Set 1 Set 2 Set 3 Set 4

Prediction method 1 10.25 4.96 2.91 6.38 1,588.35 507.95 405.03 182.63 1,098.61 387.25 298.79 137.25

Prediction method 2 5.65 6.30 5.97 10.26 807.49 602.23 729.67 294.12 601.08 445.95 581.71 218.56

Prediction method 3 4.22 4.07 2.96 5.00 623.17 411.43 391.35 142.28 454.17 294.21 302.75 115.49
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forecast errors are shown in Table 6. Although the electric

load prediction errors obtained by the three prediction

methods are not significantly different, the prediction

errors obtained by the prediction method considering

coupling characteristics and load scenario set division are

smaller.

FIGURE 9
Cold load prediction results.

FIGURE 10
Electrical load prediction results.
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7 Conclusion

1) In order to improve the accuracy of multivariate load

prediction, this paper proposes a similar fluctuation

feature set partitioning method considering the coupling

characteristics of multivariate loads. By studying the

coupling strength between multiple types of energy in

IES to determine the prediction priority of multiple

loads, the interactive coupling between electric, heat and

cold loads is fully considered. The NWP features with

strong correlation with multiple loads are obtained by

gray correlation analysis, and k-means clustering is

performed using the inter-set NWP as input, and fine-

grained modeling is performed for each cluster. The

analysis of the arithmetic examples leads to the

following main conclusions.

2) Based on the load similar fluctuation set division method

proposed in this paper, four fluctuation sets are

obtained. The load fluctuation types within each

fluctuation set are similar, and the load scenario set is

divided based on the k-means clustering model for each

load similar fluctuation set. And according to the results

of the above analysis, the priority of load forecasting is

considered, and the heat load, cold load and electric load

are predicted step by step according to the fluctuation set

and load scenario set respectively.

3) The prediction results based on multiple prediction

methods show that the average absolute percentage

errors of electric, heat, and cold loads are 2.85%,

5.22%, and 4.06% for the prediction methods

considering the division of load scenario sets and

coupling characteristics in the overall prediction

results of four load similar fluctuation sets. The

average absolute percentage error is reduced by

0.66%, 1.53% and 2.99% respectively compared to the

prediction method considering only load scenarios,

compared with the prediction method without

considering load scenes, its average absolute

percentage errors are reduced by 0.55%, 1.53%, and

2.07%, respectively, which verifies the effectiveness of

the prediction method considering the division of load

scenes set and coupling characteristics.

With the popularity of IES and the development of

interconnected IES, the division of IES types can be

considered in the subsequent study so as to realize the

collaborative prediction among multiple IESs.
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In recent years, with the development of new energy technology and the

country’s strong support for electric vehicles, there is a lack of effective

electric vehicle charging fault analysis and diagnosis methods at this stage.

A comprehensive analysis of the working principle of the charging process

of electric vehicles, based on the clarification of the failure mechanism of

the power battery and charging equipment, analyzes the fault-related

factors affecting the power battery and charging equipment from

multiple angles, and summarizes the relationship between the power

battery and charging equipment. The feature parameters related to

equipment failure are discretized by the k-means clustering algorithm.

Using the optimized FP-Growth algorithm based on weights, the

association rules between the power battery and charging equipment

failures and the characteristic parameters of the failure factors are

mined, and the correlation of the failures is analyzed based on the

association rules, and the correlation between the failure factors and

the failures is obtained relevant level.
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1 Introduction

1.1 Motivation and incitement

With the rapid development of social economy and science

and technology, China has done a lot of work in the construction

of transportation infrastructure. The developed transportation

industry and the increasing living standards of residents have led

to a gradual increase in residents’ demand for automobiles as a

means of transportation. However, the increasing number of

motor vehicles means an increase in energy consumption, and at

the same time it will cause continued environmental degradation.

In this context, the country vigorously promotes the use of clean

energy electric vehicles to replace traditional fuel vehicles in the

field of transportation. At the same time, it has also issued a large

number of preferential policies for electric vehicles to encourage

residents to purchase and use electric vehicles as a means of

family transportation (Zhu et al., 2021). In the charging process

of electric vehicles, due to the operation of a large number of

power electronic devices, various failures will occur, and in

serious cases, safety accidents may even occur, threatening the

personal and property safety of users (Tang and Cao, 2020).

1.2 Literature review

Research on the charging failure of electric vehicles is still in

the preliminary stage, and the standards issued by the state and

enterprises for the safety of electric vehicle charging also need to

be improved. Wu Chao (Wu, 2019) designed an abuse

experiment for lithium iron phosphate power batteries,

summarized the failure mechanism of each component of the

lithium battery, and proposed diagnostic methods and diagnostic

strategies for typical failures of lithium iron phosphate batteries.

However, the impact of charging facilities is not taken into

consideration. Ma et al. (2020) constructed characteristic

parameters that can characterize the characteristics of power

batteries, and extracted the characteristic parameter thresholds

for safe charging of power batteries by analyzing the changes of

characteristic parameters, providing a basis for power battery

failure mode identification. In this paper, the characteristic

parameters of power battery characteristics and the

characteristic parameters of charging facility operation

characteristics are combined and analyzed to study their fault

correlation and dig out the causes of charging faults of electric

vehicles. Wilhelmiina Hämäläinen (Hämäläinen., 2016) used

Fisher’s exact test method to solve the problem of unreliable

results in dependency rule mining. At the same time, the new

solution-Fisher’s exact test, has lower time complexity and higher

accuracy. V. J. Rayward-Smith (Rayward-Smith, 2007) proposed

a new technology to measure the correlation between real value

data and nominal data, which relies on the definition of assigning

nominal value to actual value. The proposed assignment is

defined to be the most favourable of all such assignments and

can be efficiently computed. Wu et al. (2020) applied the time

series model to the fault diagnosis of the power battery of electric

vehicles, using the principle of moving window deviation as an

evaluation index for monitoring battery faults, and established a

battery fault model on the MATLAB platform to conduct

experiments. In order to adapt to the rapid increase in the

number of electric vehicles, Western countries have begun to

establish electric vehicle charging networks in the form of

cooperation between traditional car companies and energy

companies. At present, a series of standards have been

formulated for the safety of charging equipment (IEC 62196-

1-2014, 2014), which stipulate electric vehicles. Equipment

related parameters and safety features involved in the process

of car charging and discharging. Ru et al. (2017) conducted a

safety evaluation on the electrical safety protection measures of

electric vehicle charging equipment, established an evaluation

index system for electrical safety, and verified the effectiveness of

the evaluation method through experiments. Meng Jianzhong

(Meng, 2018) designed the DC charging device and AC charging

device of electric vehicles, and formulated the fault diagnosis

strategy of the charging equipment using the finite state machine

method, and verified the charging equipment’s charging

overvoltage fault, insulation fault, and insulation fault through

experimental tests. Successfully realize fault diagnosis when

communication faults and emergency stop faults occur.

However, the correlation between faults is not deeply explored

and the internal factors of faults cannot be accurately identified.

Yu Chang (Yu, 2020) analyzed the safety influencing factors of

electric vehicle charging equipment, developed an index system

for evaluating the health of charging equipment from two

aspects: electrical performance and safety performance, and

designed the health of charging equipment based on the

uncertainty analytic hierarchy process. Comprehensive

evaluation method of state. In terms of artificial intelligence,

the main idea is to make intelligent machines think and react in

an artificial manner. In the field of equipment failure analysis,

artificial intelligence technologies such as expert systems, neural

networks, and data mining have also begun to have a large

number of applications. It provides a thought for the analysis of

fault correlation factors in this paper, but does not investigate the

fault cause and mechanism. Zhao et al. (Zhao and Jiang, 2020)

designed a fault diagnosis method for vehicle electronic

accelerator pedal based on PNN and BP neural network

methods, and verified the effectiveness of the method through

experiments. Hu Jun (Hu et al., 2017) and others discovered the

law of the state recording data of power transmission and

transformation equipment through big data mining

technology, and realized the fault diagnosis of power

transmission and transformation equipment based on this.

Qiu. (2020) analyzed EMU fault alarm data through data

mining technology, and obtained the knowledge of EMU fault

alarm correlation, which provided a basis for EMU fault location.
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Zhang X C et al. proposed a fault analysis method for power

distribution terminal units based on association rule mining

algorithms, which can objectively and comprehensively

analyze and diagnose faults (Zhang et al., 2021). Zhang Y L

et al. (Zhang et al., 2020) proposed a Right-Hand Side Expanding

Algorithm suitable for association rule mining, which can quickly

and accurately process frequent itemsets and accurately find all

maximal frequent itemsets. However, this method has some

limitations. Inspired by this, we propose an FP-growth

algorithm based on weighted optimization, which solves the

problem that high-level faults may be missed if the minimum

support is set too small.

1.3 Contribution and paper organization

In summary, it is important to make full use of the

advantages of artificial intelligence technology, improve the

research on the correlation analysis of electric vehicle charging

faults, and obtain the correlation knowledge between different

faults in the charging process of electric vehicles. This article first

analyzes the working principles of power batteries and DC

charging piles. Based on this, the fault-related factors are

analyzed and the fault-related characteristic parameters are

designed. The clustering method is used to discretize the

fault-related characteristic parameter data, and the application

is obtained. Transaction data set for mining association rules.

Finally, the weighted optimized FP-Growth algorithm is used to

mine the association rules between the power battery and

charging equipment faults and their characteristic parameters,

and the correlation between the power battery and charging

equipment faults is analyzed based on the association rules, and

the optimization is verified by experiments. Compared with the

original FP-Growth algorithm, the method has superiority in

algorithm performance.

The rest of this article is arranged as follows. Section 2

discusses the working principle of electric vehicle charging.

Section 3 discusses the fault factor correlation model and

proposes the FP-growth algorithm based on weighting, and

then establishes the charging fault data mining model. Section

4 tests the data mining model and shows some fault association

rules mined by the algorithm. Section 5 is the conclusion.

2Working principle of electric vehicle
charging

2.1 Working principle of power battery

2.1.1 Analysis of the working principle of lithium
iron phosphate battery

The lithium iron phosphate battery relies on the transfer of

lithium ions inside the battery to form current in the external

circuit. Figure 1 shows the internal structure of the lithium iron

phosphate battery. The internal structure of the lithium iron

phosphate battery mainly has the following parts (Chang et al.,

2020): First is the positive and negative electrodes of the battery.

The lithium-ions inside the battery complete the deintercalation

and intercalation reactions on the positive and negative

electrodes. The main material of the positive electrode of the

lithium-iron phosphate battery is lithium iron phosphate, and

the negative electrode material is often graphite. Second is the

FIGURE 1
Internal structure of lithium iron phosphate battery.
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positive and negative current collectors. The function of the

positive and negative electrode current collectors of the battery is

mainly to collect the current generated by the active material of

the battery and output it to the outside. The positive electrode

current collector material often uses aluminium foil, and the

negative electrode current collector often uses copper foil. Third

is the electrolyte. The migration of lithium ions inside a lithium

iron phosphate battery requires electrolyte as a medium. Fourth

is the diaphragm. In the lithium iron phosphate battery, it plays a

role of isolating the positive and negative electrodes to prevent

the internal short circuit of the battery.

When a lithium iron phosphate battery is charged, positively

charged lithium ions are extracted from the positive electrode

material of the battery into the electrolyte inside the battery, and

are inserted into the negative electrode after passing through the

diaphragm. Negatively charged electrons flow from the positive

pole of the battery to the negative pole through an external

circuit, so that the charge state of the positive and negative poles

of the battery reaches a balance.

2.1.2 The working principle of ternary lithium
battery

The composition structure of the ternary lithium battery is

basically the same as that of the lithium iron phosphate battery. It

is mainly composed of positive and negative electrodes, current

collectors, separators, and electrolyte. The positive electrode

material of the lithium battery is composed of three materials

of lithium nickelate, lithium-cobaltate, and lithium manganate

mixed in a certain proportion. The ternary lithium battery has a

higher energy density, and more car companies apply it to their

flagship models to obtain a higher cruising range.

When a ternary lithium battery is charged, positively charged

lithium ions are extracted from the positive electrode material of

the battery into the electrolyte inside the battery, and are inserted

into the negative electrode after passing through the diaphragm.

Negatively charged electrons flow from the positive pole of the

battery to the negative pole through an external circuit, so that

the charge state of the positive and negative poles of the battery

reaches a balance.

2.1.3 Power battery charging characteristics
The electric vehicle power battery pack is composed of a

certain number of single cells combined in series and parallel.

The main performance parameters of the single power battery

include nominal capacity, nominal voltage, internal resistance,

charging voltage range, etc. The performance parameters of

single power batteries produced by different manufacturers

also have certain differences. This article selects a single

battery with a nominal voltage of 3.2 V and a charging voltage

range of 2.5V–3.65 V to show its own parameter changes and

charging characteristics during charging.

Generally, the charging of lithium-ion batteries is a dynamic

process of constant current, then constant voltage and then constant

current (Guo, 2020). At the beginning of the charging process, the

voltage of the battery is quickly raised to the cut-off voltage with a

constant current, and then the battery is chargedwith a constant cut-

off voltage until the charging current drops to a certain level (Li,

2015). After this process is completed, the battery has completed

most of the charge, and then keeps a small current constant current

charge to continue to replenish the power (Tan, 2020). Figure 2

shows the change curve of battery voltage with time during the

charging process of a single lithium-ion battery at different charging

rates.

2.1.4 Working principle of DC charger
The DC charger can output DC power to directly charge

the power battery of the electric vehicle. Its charging power is

large, also called a fast-charging pile. Since the fast-charging

speed of DC chargers can meet the charging needs of more

users, DC chargers have begun to become the mainstream of

electric vehicle charging methods. The National Energy

Administration has formulated an industry standard for

DC chargers (NB/T 33001-2010, 2010), which stipulates

that the DC charger is composed of the following parts.

Figure 3 shows the composition and electrical structure of

the DC charger.

The DC charging pile includes four modules: power unit,

control unit, metering unit and human-computer interaction

interface. Among them, the power unit realizes the rectification

and power factor correction of the AC power of the grid and then

converts it into charging DC. The control unit can receive the user’s

operation instructions to control the power unit, and then complete

the charging start and stop control of the charging pile, power unit

output control and other functions. The metering unit can record

the electrical energy output by the DC charger to the power battery.

The human-computer interaction interface can monitor the

operating data of the charging process in real time and display

FIGURE 2
Changes in battery voltage and charging current under
different charging rates.
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the information on the screen to the user. At the same time, it

supports the user’s operation instruction input and parameter

setting, and informs the control. The unit completes the control

of the start and stop of the charging process and the charging state.

Themost critical part of the structure of the DC charger is the

power unit, which can realize the rectification function from

alternating current to direct current. The basic structure of the

power unit is shown in Figure 4. The front part of the power unit

has a rectification function to rectify the AC power of the grid

into a direct current. The latter part has a DC

conversion function to achieve electrical isolation and voltage

conversion.

At present, the pre-stage circuit of the DC charger power

unit is mainly selected as the VIENNA rectifier circuit. The

FIGURE 3
Electrical structure diagram of DC charger.

FIGURE 4
Basic structure diagram of DC charger power unit.
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voltage stress of the switch tube is half of the DC side bus

voltage, which is suitable for high-voltage environments. The

topological structure of VIENNA rectifier circuit of the front

stage circuit is shown as in Figure 5.

The back-stage circuit of the DC charger power unit

mainly adopts a phase-shifted full-bridge converter, which

can realize electrical isolation and voltage conversion at the

same time to realize soft switching of the circuit, thereby

improving the transmission efficiency of electric energy.

The circuit topological structure of the phase-shifted full-

bridge converter of the latter stage circuit is shown as in

Figure 6.

2.2 Analysis of failure mechanism and
correlation factors of electric vehicle
charging process

2.2.1 Analysis of power battery failure
mechanism and related factors

Lithium-ion battery cathode material is lithium alloy metal

oxide. The temperature at which the positive electrode of the

lithium iron phosphate battery reacts with the electrolyte is

around 230°C, and the temperature at which the other

positive electrode materials react with the electrolyte is lower

than this level. Therefore, the lithium iron phosphate battery has

FIGURE 5
Topological structure of VIENNA rectifier circuit of front-end circuit.

FIGURE 6
The circuit topology structure of the phase-shifted full-bridge converter of the back-stage circuit.
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a higher temperature and thermal stability than other types of

lithium-ion batteries. The excessive intercalation and

deintercalation of lithium ions in the positive electrode, that

is, overcharge will damage the lattice of the positive electrode

material to accommodate the lithium ions, thereby reducing the

capacity of the lithium-ion battery.

The anode material of lithium-ion battery is mainly

graphite. In the pre-charging stage of the lithium-ion

battery, the graphite of the negative electrode of the battery

can react with the electrolyte to form a solid electrolyte interface

(SEI) film on the surface. The SEI film can prevent the battery

performance due to the continuous decomposition of the

electrolyte in the battery. Decreases, but the formation of the

SEI film consumes lithium-ions. During the charging process of

a lithium-ion battery, the negative electrode of the battery will

continuously insert lithium ions. If the speed of lithium-ion

insertion into the negative electrode material is lower than the

speed at which the negative electrode receives lithium-ions, this

part of the lithium metal will be permanently withdrawn from

the lithium cycle inside the battery, and decrease lithium-ion

battery capacity.

The speed at which lithium ions are inserted into the negative

electrode material is lower than the speed at which the negative

electrode receives lithium-ions, which often occurs in the low-

temperature charging and overcurrent charging conditions of

lithium-ion batteries. It is necessary to strictly control the

charging rate of lithium-ion batteries and reduce the charging

current. Table 1 shows the phenomena and causes of power

battery failure.

In summary, the factors related to the failure of the power

battery pack can be summarized as battery overcharge, ambient

temperature, and charge rate.

2.2.2 Analysis of DC charger failure mechanism
and related factors

Under the strong power input of the power distribution

system, the insulating material of the charging equipment may

break down, which will lead to the loss of insulation of the

charging equipment. The insulation fault of the charging

equipment is a serious fault, which may endanger personal

safety. Once the insulation fault of the charging pile occurs,

the charging pile will be shut down immediately and wait for

professional maintenance personnel to repair.

The same environment will have different effects on the

working conditions of the charging equipment such as excessive

ambient temperature may cause over-temperature failure of

charging equipment under normal use, higher humidity can

affect the electrical insulation of charging equipment, the

smoke and dust environment will affect the heat dissipation

function of the charging and discharging equipment, etc. During

the working process of the charging equipment, it is inevitable

that abnormality will occur. For example, the failure of the

temperature sensor may cause the charging and discharging

equipment to generate an over-temperature false alarm. If the

output current threshold of the charging and discharging

equipment is set too small, it may cause an output over-

current alarm. The circuit breaker of the charging and

discharging equipment, contactor and other devices will

trigger the protection of charging and discharging equipment

to stop working when there is a failure.

The protection measures of charging equipment include

equipment detection function, which can monitor the real-

time operation status of the pile during the charging and

discharging process, and also need to have protection against

problems such as over-temperature of the pile, abnormal

input and output, and short circuit. Insufficient protection

measures for charging and discharging equipment will lead to

equipment failures of different severity. Table 2 shows the

fault phenomena and causes of DC charger.

In summary, the fault factors related to charging equipment

are summarized as electrical insulation of charging and

discharging equipment, environmental factors Charging and

discharging equipment itself factors and pile protection

measures.

TABLE 1 Failure phenomena and causes of power battery.

Fault phenomenon Cause of failure

Battery pack capacity reduced Inconsistent voltage of single battery

Battery pack temperature protection

High energy consumption load in peripheral circuit

Long term shallow charging and discharging of battery, with memory effect

Charging voltage is too high Battery cell overcharged

Low battery or charging ambient temperature

At the end of battery life, the internal resistance increases

Charging at the original rate after capacity attenuation

The charge of the battery pack is already very high

Charger fault, high charging current
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3 Data mining model of electric
vehicle charging failure

3.1 Page layout

In the field of electric vehicle charging, my country has

initially formed a systematic standard and system. With

reference to various national standards, industry standards,

and related engineering and scientific research materials, we

determine the temperature change rate of power battery

packs, ambient temperature, battery charging overvoltage rate.

The parameters of battery internal resistance, battery pack

historical failure times, battery state of charge SOC, battery

internal resistance change rate, charging voltage error rate and

charging current error rate are used as characteristic parameters

to characterize the correlation factors of charging equipment

failures. Among them, the calculation formulas for battery

charging overvoltage rate, charging voltage error rate and

charging current error rate are expressed as follows:

3.1.1 Battery charging overvoltage rate
The normal power battery charging process has a specified

charging voltage. Charging the power battery with a voltage

exceeding the specified charging voltage will affect the battery.

The charging overvoltage rate is calculated by the following

formula.

ξBU � UB − UB0

UB0
× 100% (1)

3.1.2 Charge voltage error rate
The charging output error rate reflects the electrical

performance of the charging equipment. Normal charging

equipment requires that the charging output voltage error

should not exceed ± 5%, and it indicates that the charging

equipment may be abnormal. The charging output error rate

is calculated by the following formula.

ξZU � |UZ − UZ0|
UZ0

(2)

UZ >UZ0 indicates that the charging output of the charging

device is over-voltage, and UZ <UZ0 indicates that the charging

output of the charging device is under-voltage.

3.1.3 Charging current error rate
The charging output current error rate also reflects the

electrical performance of the charging equipment. Normal

charging equipment requires that the charging output current

error should not exceed ± 5%, and it indicates that the charging

equipment may be abnormal. The charge output current error

rate is calculated by the following formula.

ξZI � |IZ − IZ0|
IZ0

(3)

IZ > IZ0 indicates that the charging output of the charging device
is overcurrent, and IZ < IZ0 indicates that the charging output of
the charging device is undercurrent.

Electric vehicle charging data is measured by sensor

equipment, and various abnormalities will inevitably occur

during the actual operation of the sensor. In view of this

situation, this article deals with the data in consideration of

the integrity and accuracy of the data.

First of all, from the perspective of data integrity, we

should focus on checking for data lack of value. For

missing data, calculate the mean of the two data points

before and after the missing data point, and replace the

missing data with the mean. Secondly, considering the

accuracy of the data, selectively find out the wrong data

points in the original data. This paper uses the calculation

of the forward and backward third-order difference of the

TABLE 2 Fault phenomenon and cause of DC charger.

Fault phenomenon Cause of failure

Charging output overvoltage Low control accuracy of charging module

Damaged charging module

Charge output undervoltage Overload

Damaged charging module

Charge output overcurrent Abnormal battery

Damaged charging and discharging module

Insulation monitoring failure The insulation of the charging output circuit to the ground is damaged

Damaged insulation monitoring module

Charge input overvoltage Power distribution system failure

Charge input undervoltage Power distribution system failure

Charging module over temperature Too much dirt inside the charger pile

The charger runs at high power for a long time
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power battery SOC to determine whether the current data is

wrong. The specific process is as follows:

Calculate the forward and backward third-order differences

of all SOC data in turn:

SOCdb1(t) � SOC(t) − SOC(t − 1) (4)
SOCdb2(t) � SOC(t) − SOC(t − 2) (5)
SOCdb3(t) � SOC(t) − SOC(t − 3) (6)
SOCda1(t) � SOC(t) − SOC(t + 1) (7)
SOCda2(t) � SOC(t) − SOC(t + 2) (8)
SOCda3(t) � SOC(t) − SOC(t + 3) (9)

The SOCda1(t), SOCda2(t), and SOCda3(t) respectively

represent the backward one of the tth value in the battery

SOC data sequence, second and third order difference.

For the data of the charging process, the following judgments

are made:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

SOCdb1(t)≥ 0
SOCda1(t)≤ 0
SOCdb2(t)≥ 0
SOCda2(t)≤ 0
SOCdb3(t)≥ 0
SOCda3(t)≤ 0

(10)

If the current SOC data meets this condition, it is judged to be

normal data, otherwise it is wrong data. For the SOC data judged

to be wrong, the average value method is used for all the data

collected this time, that is, the average value of the preceding and

following items replaces this data point.

3.2 Association rule model

Life Science Identifiers (LSIDs) for ZOOBANK registered

names or nomenclatural acts should be listed

in the manuscript before the keywords with the following

format:

Association rule mining is based on a large amount of data.

By analyzing which data items appear together frequently, a

collection of data items with many frequent items appearing

together can be obtained (Nalini, 2016). In a transaction set, the

frequency of the data item set can be represented by the concept

of support. Suppose there is an item set X in the transaction set T.

Define the number of occurrences of the item set X in the

transaction set T as σ(X). Suppose the total number of

transactions in transaction set T is N, then the support of

item set X is defined as:

sup(X) � σ(X)
N

(11)

With the definition of support, we can show how frequently the

itemset X appears in the transaction set T. Here we introduce a

definition of minimum support min sup. The criterion for item

set X as a frequent item set is that its support is not less than

min sup.

Use expressions A → B to represent association rules.

Support for association rules:

sup(A → B) � σ(A ∪ B)
N

(12)

Both non-empty subsets A ⊂ X and B � X − A of frequent

itemset X constitute association rule A → B, and then the

association rule of interest is determined based on the

confidence of another index that measures the association rule.

con(A → B) � σ(A ∪ B)
σ(A) (13)

FIGURE 7
Process of discretizing feature data using K-means clustering
algorithm.
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After setting a minimum degree of confidence, the

association rules can be filtered through the minimum

support and minimum confidence. When applying the

association rule model to fault correlation analysis, you

can choose the preceding item of the association rule as a

symptom, and the latter item of the association rule as the

failure phenomenon. Such an association rule can reflect the

correlation between the symptom and the failure

phenomenon, and the confidence level reflects. The

credibility of fault association rules (Peng et al., 2019;

Wang, 2020; Zhao and Su, 2021). In this paper, the

association rule model is used in the analysis of the

relevance of electric vehicle charging failures. The first

item of the association rule is the characteristic parameter

obtained after the K-means clustering algorithm is used to

discretize the characteristic parameter data. It can be reflected

by using the association rule mining algorithm. Fault

association rules for the correlation between characteristic

parameters and fault phenomena in the charging process of

electric vehicles. The specific process of discretization is

shown in Figure 7.

3.3 Optimized FP-growth algorithm
model based on weight

3.3.1 FP-growth algorithm model
FP-Growth uses frequent itemset growth to conduct

correlation mining. By recursively searching for frequent

patterns on the FP tree, add a suffix to each frequently mined

pattern to obtain all frequent patterns suffixed with a frequent

item (Zeng et al., 2019). FP-Growth algorithm has better

efficiency when mining a large amount of data, so it is

suitable for complex charging fault data mining. The flow of

the FP-Growth algorithm is shown in Figure 8.

Take the transaction set in Table 3 as an example to introduce

the principle of the FP-Growth algorithm.

Set the minimum support to 3, the first step of the algorithm

is to scan the transaction set to obtain frequent 1-itemsets, and

arrange the itemsets according to the support to form the item

header table F = {{F:5}, {H:5}, {D:4}, {E:4}, {A:4}, {C:3}, {I:3}}.

Scan all transactions in the transaction set T, access each item in

the order in F, and do not deal with infrequent items. The sorted

transaction set is shown in Table 4.

The root node of FP-Tree is marked as Null, and each sorted

transaction record is scanned in turn to form each branch of FP-

Tree. The final FP-Tree is shown in Figure 9. It can be seen that

FP-Tree contains all the information needed to mine frequent

itemsets in the transaction set T.

The item header table has been arranged according to item

support, so in each frequent pattern, the item with high support

FIGURE 8
FP-Growth algorithm flow chart.

TABLE 3 Example table.

Transaction ID Item set

1 A, B, C, D, E, F

2 D, E, F, G, H, C

3 I, H, J, D, F, K

4 I, H, A, B, D, F

5 I, H, A, C

6 A, H, K, D, E, F

TABLE 4 Transaction set in descending order of support.

Transaction ID Item set

1 F, D, E, A, C

2 F, H, D, E, C

3 F, H, D, I

4 F, H, E, A, I

5 H, A, C, I

6 F, H, D, E, A
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must be in front of the item with low support, so that the divide and

conquer strategy can be used to mine all frequent items. First, mine

the frequent patterns suffixedwith I to obtain the conditional pattern

library of I. After removing the infrequent items from the

conditional pattern library, the database and its corresponding

conditional FP-Tree are shown in Table 5; Figure 10.

FP-Tree is composed of a path. The combination mode of all

nodes on the path is only {H:3}. After adding the conditional

FIGURE 9
Complete FP-Tree.

TABLE 5 Conditional pattern library.

Transaction ID Conditional mode Conditional mode for
removing infrequent items

1 F, H, D:1 H:1

2 F, H, E, A:1 H:1

3 H, A, C:1 H:1

FIGURE 10
I’s condition FP-Tree.
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FIGURE 11
Cluster structure diagram.

TABLE 6 Power battery failure association rules.

Pre-rule Rule post Weighted support (%) Weighted confidence (%)

The internal resistance change rate is greater than 0.2 mΩ/s Battery pack is over
temperature

2.7 94

The temperature change rate is greater than 0.2 ℃/s Battery pack is over
temperature

3.1 88

Battery charging overvoltage rate is greater than 12% Battery pack is over
temperature

1.7 74

The battery charging overvoltage rate is greater than 12%, and the ambient
temperature is greater than 38.5°C

Battery pack is over
temperature

1.5 81

The ambient temperature is less than −5°C High charging voltage 1.2 62

The internal resistance of the battery is greater than 5 mΩ High charging voltage 2.3 79

The internal resistance of the battery is greater than 5 mΩ Reduced battery pack
capacity

2.3 91

The ambient temperature is less than −5°C, and the number of historical
failures of the battery pack is greater than 3

Reduced battery pack
capacity

2.5 81
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suffix I and outputting, all frequent patterns {H, I:3} with I as the

suffix can be obtained, which is the association rule H → I.

Continue to mine frequent patterns with the remaining items

as suffixes, and finally get all the association rules H → I,

F, E → A, F → A, H → A, E → A, F,D → E, F,H → E,

F → E, D → E, H → E, F,H → D, F → D, H → D, F → H.

3.3.2 Optimization of FP-growth algorithm
based on weight

Electric vehicle charging faults are divided into levels. The

national standard divides electric vehicle charging faults into

three levels: personal safety level faults, equipment safety level

faults, alarm prompt level faults (GB/T 27930, 2015), the higher

the level of faults charging electric vehicles, the greater the impact

of normal progress. In the actual working conditions of the

equipment, the number of high-level faults is often very small,

which will lead to the failure of the FP-Growth algorithm to mine

fault association rules. If the minimum support is set too small,

high-level faults may be missed. To solve this problem, this paper

uses the idea of weighting to optimize the FP growth algorithm,

comprehensively considering the weight of the characteristic data

of fault correlation factors, which can increase the support of

fault factors with large weight to a certain extent, avoid the

omission of association rules, and reduce the support of fault

factors with low weight. In this way, some useless feature data

with high degree of occurrence may be deleted, so as to reduce the

useless association rules mined by the algorithm.

Aiming at the shortcomings of the original FP-Growth

algorithm, this paper uses the weighting idea to optimize the

algorithm. With feature parameter data set D � {x1, x2,/, xn},
and all discretized feature parameter transaction item sets

I � {i1, i2,/, im}, the feature parameter types contained in

each fault correlation factor feature data xn belong to I, that

is, each fault factor characteristic data xn is a subset of I.

Define the discretized feature parameter type. All feature

parameter types in the transaction item set I have a

TABLE 7 Correlation level of power battery failure factors.

Failure related factors Correlation level (%)

Temperature change rate in battery 86

Ambient temperature 67

Battery charging overvoltage rate 83

Battery internal resistance 81

Change rate of battery internal resistance 89

Battery state of charge SOC 73

The number of historical failures of the battery pack 84

FIGURE 12
Correlation level of power battery failure factors.
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corresponding weight, and the weight set corresponding to I is

W � {ω1,ω2,/,ωm}.
Each piece of feature data is composed of k-dimensional feature

parameters, and the weight of each piece of feature data is defined as

the average value of all parameter weights under that piece of data:

ω(xn) � 1
k

∑
Im∈xn

ωIm (14)

Define the weighted support degree of the characteristic

parameter transaction item:

Wsup(im) � sup(im) × ωim (15)

Define the weighted support of feature parameter data xn:

Wsup(xn) � sup(xn) × 1
k

∑
Im∈xn

ωIm (16)

Define the weighted support of association rule A → B,

suppose A contains a feature parameter type, B contains b

feature parameter types, and the weighted support of

association rule A → B is:

Wsup(A → B) � sup(A ∪ B) × 1
a + b

∑
Im∈A∪B

ωIm (17)

Define the weighted confidence of association rule A → B as:

Wcon(A → B) � Wsup(A ∪ B)
Wsup(A) (18)

After defining the weighted support and weighted

confidence, replace all support and confidence calculations

with weighted support and weighted confidence in FP growth

algorithm, so as to increase the support of fault correlation factor

characteristic data with large weight to a certain extent and avoid

the omission of association rules due to too small minimum

support setting. At the same time, it can reduce the support of

feature data with low weight, which may delete some feature data

with high degree of occurrence but useless, so as to reduce the

useless association rules mined by the algorithm.

4 Example analysis

4.1 Examples

This paper uses the Hadoop distributed computing

platform as the basic platform of this experiment to build

an experimental environment for the correlation analysis of

electric vehicle charging failures. Hadoop is a distributed

system infrastructure, which is currently widely used in

various academic research and industrial applications

(Ragaventhiran and Kavithadevi, 2020). Its core

components are the Hadoop Distributed File System

(HDFS) and the MapReduce engine. Using the operating

TABLE 8 DC charger fault association rules.

Pre-rule Rule post Weighted support (%) Weighted confidence (%)

The ambient temperature is greater than 38°C, and the continuous
working time exceeds 300 min

Charger over temperature
fault

1.9 79

The number of historical failures exceeds 4 Charger over temperature
fault

1.5 66

The charging voltage error rate is greater than 4.3% DC output overvoltage fault 1.7 83

BMS response rate is less than 94% DC output overvoltage fault 1.2 76

The charging voltage error rate is less than −4.5% DC output undervoltage
fault

1.6 82

The number of historical failures exceeds 4 DC output undervoltage
fault

1.5 62

Charging current error rate is greater than 4.1% DC output overcurrent fault 1.5 77

BMS response rate is less than 94% DC output overcurrent fault 1.4 83

The number of historical failures exceeds 4 The charging module is
damaged

1.1 61

The ambient temperature is greater than 38°C, and the continuous
working time exceeds 300 min

Charging module over
temperature

2.1 74

TABLE 9 Correlation level of DC charger failure factors.

Failure related factors Correlation level (%)

Charging current error rate 84

Charge voltage error rate 85

Ambient temperature 68

Charger and BMS response rate 91

Continuous working time of charger 74

The number of historical failures of the charger 66
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data provided by a company in Nanjing, Jiangsu Province

when the charging of electric vehicles failed, the characteristic

data was extracted and processed to obtain characteristic data

that can reflect the factors related to the failure of the power

battery and the charging equipment.

This experiment uses three computers to form a cluster to

build a three-node distributed computing environment. One

of the master nodes is used as the name node, the NameNode

is responsible for cluster scheduling and data storage and

calculation, and the two slave nodes are used as the data nodes,

and the DataNode is responsible for data storage. And

computing, the cluster structure is shown in Figure 11.

4.1.1 Fault association rules and correlation
analysis

The weighted optimized FP growth algorithm is applied to

mine association rules for the characteristic data of power battery

fault correlation factors of electric vehicles. The minimum

weighted support is set to minWsup � 1% and the minimum

weighted confidence is set to minWcon � 60% to obtain power

battery fault association rules. Some representative association

rules are selected, as shown in Table 6, and the correlation

analysis of power battery fault is carried out.

Table 6 shows some strong association rules based on power

battery charging fault data mining. They describe the relationship

FIGURE 13
Correlation level of DC charger failure factors.

FIGURE 14
Variation of algorithm running time with minimum support.

FIGURE 15
The number of association rules changes with the minimum
support.
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between power battery fault related factors and fault forms. For

example, the first association rule indicates that when the internal

resistance conversion rate of the battery is greater than 0.2 mΩ/s,

there is a 94% chance that the battery pack may cause over-

temperature failure. The second association rule indicates that

when the temperature change rate in the battery is greater than

0.2 ℃/s, there is an 88% chance that the battery pack may cause

over-temperature failure, and so on.

These association rules are only a small part of the mining

results. All the association rules obtained are counted, and the

temperature change rate in the battery, the ambient temperature,

the battery charging overvoltage rate, the battery charging

overcurrent rate, and the battery internal resistance, battery

internal resistance change rate, battery state of charge SOC,

battery pack failure history related to the average level of

confidence in association rules to evaluate the correlation level

of factors and failures. The results are shown in Table 7, and the

radar chart of the correlation level is shown in Figure 12.

The weighted optimized FP growth algorithm is applied to mine

the association rules of the characteristic data of DC charger fault

correlation factors, and the minimum weighted support is set to

minWsup � 1% and the minimum weighted confidence is set to

minWcon � 60% to obtain theDC charger fault association rules. In

this section, some representative association rules are selected as

shown in Table 8 below, and the DC charger fault correlation analysis

is carried out.

Table 8 shows some strong association rules based on DC

charger charging fault data mining, which describe the association

relationship between DC charger fault correlation factors and fault

forms. For example, the first association rule indicates that when the

ambient temperature is greater than 38 °C and the continuous

working time of the charging pile exceeds 300 min, 79%may lead to

the over temperature fault of the charger. The second association

rule indicates that when the number of historical faults exceeds 4,

66% may lead to over temperature fault of charger, and so on.

All the obtained association rules are counted, and the correlation

level between factors and faults is evaluated by calculating the average

confidence level of association rules related to DC charger fault

related factors, such as charging voltage error rate, charging current

error rate, ambient temperature, charger and BMS response rate,

charger continuous working time and charger historical fault times.

The results are shown in Table 9, and the correlation level values are

drawn into the radar diagram, as shown in Figure 13.

In order to verify the optimization effect of the proposed

weighted FP-Growth algorithm, this paper conducts experiments

on both the optimized FP-Growth algorithm and the original FP-

Growth algorithm.

Figure 14 shows the changes in the running time of the

original FP-Growth algorithm and the optimized FP-Growth

algorithm under different minimum support degrees. It can be

seen that when the minimum support setting is small, the

running time of the algorithm is relatively long due to the

large number of transactions that need to be calculated. With

the increase of the minimum support degree, the running time of

the two algorithms is decreasing. However, when the minimum

support is the same, the weighted optimized FP-Growth

algorithm has a significant computational time advantage

compared to the original FP-Growth algorithm, which shows

that the weighted optimized FP-Growth algorithm improves the

efficiency of association rule mining.

Figure 15 shows the changes in the number of association rules

mined by the original FP-Growth algorithm and the optimized FP-

Growth algorithm under different minimum support degrees. It can

be seen that when theminimum support setting is small, the number

of association rules mined by the algorithm is relatively large, and

there may bemore invalid rules and duplicate rules among them. As

the minimum support increases, the number of association rules

mined by the two algorithms is decreasing. However, when the

minimum support is the same, the number of association rules

mined by the weighted optimized FP-Growth algorithm is

significantly smaller than that of the original FP-Growth

algorithm, which shows that the weighted optimized FP-Growth

algorithm has achieved the expected reduction. The support of

feature data with lower weight can reduce the useless association

rules mined by the algorithm and avoid the omission of association

rules due to the too small minimum support setting.

5 Conclusion

Aiming at the problems that the failure forms of power battery

and charging and discharging equipment involved in the charging

process of electric vehicles are diverse, and the failure mechanism

load is difficult to analyze and diagnose, this paper analyzes and

summarizes the common failure forms and failure mechanisms of

power battery and charging equipment based on the working

principle and failure mechanism of power battery and charging

equipment, The correlation factors thatmay affect the failure of EV

charging are analyzed at the two levels of EV power battery and

charging equipment, and the characteristic parameters that can

reflect the failure correlation of EV power battery and charging

equipment are extracted. Discretize the characteristic parameter

data of the K-means clustering algorithm, and then use the weight-

based optimized FP-growth algorithm to mine the association

rules of the discretized data, and obtain the fault association rules

for the charging process of electric vehicles. The association rule

analysis obtains the correlation level of the correlation factor to the

failure, which provides certain technical support for realizing the

intelligent diagnosis of the charging process of electric vehicles.
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Hydrogen production by electrolysis is considered an essential means of

consuming renewable energy in the future. However, the current

assessment of the potential of renewable energy electrolysis for

hydrogen production is relatively simple, and the perspective is not

comprehensive. Here, we established a Combined Wind and Solar

Electrolytic Hydrogen system, considering the influence of regional

wind-solar-load characteristics and transmission costs to evaluate the

hydrogen production potential of 31 provincial-level regions in China in

2050. The results show that in 2050, the levelized cost of hydrogen

(LCOH) in China’s provincial regions will still be higher than 10 ¥/kg,

which is not cost-competitive compared to the current hydrogen

production from fossil fuels. It is more cost-effective to deploy wind

turbines than photovoltaic in areas with similar wind and solar

resources or rich in wind resources. Wind-solar differences impact

LCOH, equipment capacity configuration, and transmission cost

composition, while load fluctuation significantly impacts LCOH and

electricity storage configuration. In addition, the sensitivity analysis of

11 technical and economic parameters showed differences in the

response performance of LCOH changes to different parameters, and

the electrolyzer conversion efficiency had the most severe impact. The

analysis of subsidy policy shows that for most regions (except Chongqing

and Xizang), subsidizing the unit investment cost of wind turbines can

minimize LCOH. Nevertheless, from the perspective of comprehensive

subsidy effect, subsidy cost, and hydrogen energy development, it is more

cost-effective to take subsidies for electrolysis equipment with the

popularization of hydrogen.

OPEN ACCESS

EDITED BY

Yingjun Wu,
Hohai University, China

REVIEWED BY

Kaiqi Sun,
Shandong University, China
Haiyang Lin,
Harvard University, United States

*CORRESPONDENCE

Zhongfan Gu,
gzf2206@163.com

SPECIALTY SECTION

This article was submitted to Smart
Grids, a section of the
journal
Frontiers in Energy Research

RECEIVED 16 September 2022
ACCEPTED 31 October 2022
PUBLISHED 16 January 2023

CITATION

Lu G, Yuan B, Gu Z, Chen H, Wu C and
Xia P (2023), Techno-economic
assessment of electrolytic hydrogen in
China considering wind-solar-
load characteristics.
Front. Energy Res. 10:1046140.
doi: 10.3389/fenrg.2022.1046140

COPYRIGHT

© 2023 Lu, Yuan, Gu, Chen, Wu and Xia.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Abbreviations: CWSEHs, Combined wind and solar electrolytic hydrogen system; LCOH, Levelized
cost of hydrogen; CF, Capacity factor; WT, Wind turbine; PV, Photovoltaic; ES, Electricity storage; ELY,
Electrolysis; OM, Operation and maintenance; P2H, Power to hydrogen.

Frontiers in Energy Research frontiersin.org01

TYPE Original Research
PUBLISHED 16 January 2023
DOI 10.3389/fenrg.2022.1046140

190

https://www.frontiersin.org/articles/10.3389/fenrg.2022.1046140/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.1046140/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.1046140/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.1046140/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2022.1046140&domain=pdf&date_stamp=2023-01-16
mailto:gzf2206@163.com
https://doi.org/10.3389/fenrg.2022.1046140
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2022.1046140


KEYWORDS

electrolytic hydrogen, renewable energy, transmission cost, wind-solar-load
characteristics, techno-economic assessment (TEA), sensitivity analysis A(t), subsidy
policy analysis

1 Introduction

With the depletion of traditional fossil energy and the

increasingly severe environmental problems it brings,

countries worldwide are gradually falling into the dilemma

of traditional fossil energy, and it is imminent to promote the

reform of traditional energy structure (Pan et al., 2021a;

Bertram et al., 2021; Wu et al., 2022). Countries have

promulgated regulations and policies to promote the

vigorous development of renewable energy sources such as

wind and solar to achieve the goal of carbon neutrality

(Holdmann et al., 2019; O’Malley et al., 2020; Yang et al.,

2021). The International Energy Agency (IEA) states that

renewable energy generation needs to grow at an annual

rate of nearly 12% over the 2021–2030 period to put the

world on track for net-zero emissions by 2050

(International Energy Agency, 2021). How to absorb a high

proportion of renewable energy power generation will become

a fundamental research problem (Yang et al., 2018; Wu Y

et al., 2021).

As one of the essential means of consuming renewable

energy, electrolytic hydrogen has received extensive

attention worldwide in recent years (Wang et al., 2021;

Wu Y J et al., 2021). Compared with electricity, the

advantage of hydrogen energy is that it can be used as

long-term energy storage to achieve cross-regional and

cross-season energy mutual assistance (Pan et al., 2020;

Zhang et al., 2021). Currently, the research on hydrogen

production from renewable energy focuses on feasibility

(Fereidooni et al., 2018; Lin et al., 2021; Lucas et al.,

2022) and cost analysis (Glenk and Reichelstein, 2019;

Guerra et al., 2019; Pan et al., 2021b), multi-subject

cooperation (Wu et al., 2020; Ma et al., 2021), and the

operation planning and marketization of systems such as

electric-hydrogen hybrid energy storage and hydrogen-

mixed natural gas (Xiao et al., 2017; Tao et al., 2020).

However, at present, the evaluation of hydrogen

production potential from renewable energy is mainly

based on specific regions, and only independent

evaluation of hydrogen production from wind power or

photovoltaic hydrogen production is conducted. For

example, Lucas et al. (2022) and Lin et al. (2021) analyzed

the feasibility of hydrogen production from wind power.

Fereidooni et al. (2018) analyzed the feasibility of solar

hydrogen production and evaluated the potential of

photovoltaic hydrogen production in Iran. Pan et al.,

2021a) analyzes China’s cost and low-carbon

competitiveness of hydrogen production from grids and

photovoltaics. (Guerra et al. (2019). and (Glenk and

Reichelstein, 2019) focus on the economics and cost

competitiveness of hydrogen production from renewable

energy sources. In addition, the current research is

relatively simple in considering the electrolytic hydrogen

model, lacks comprehensive system modeling, and lacks the

analysis of the wind-solar combination and regional load

characteristics.

Because of the above shortcomings, this paper predicts and

evaluates the levelized hydrogen production cost of

31 provincial-level regions in China in 2050 and establishes a

Combined Wind and Solar Electrolytic Hydrogen system

(CWSEHs). On this basis, we thoroughly evaluate the impact

of the combination of wind and solar and the energy

consumption characteristics of each provincial region on the

CWSWHs and give a system sensitivity analysis and a variety of

subsidy policy evaluations. In particular, based on the

characteristics of future marketization and the

consideration of promoting the development of hydrogen

production from renewable energy, wind and solar power

generation is expected to use the existing power network to

transmit and supply electricity to the hydrogen production

system by paying a transmission fee, which can not only

promote the process of marketization but also significantly

reduce the investment cost of the line. Therefore, we have

established a more refined model for the CWSEHs and fully

consider the influence of factors such as transmission fee

and inflation rate in the calculation of levelized cost of

hydrogen (LCOH), hoping to provide a helpful reference

and thinking for hydrogen production from renewable

energy in 2050.

2 Materials and methods

2.1 Wind and solar capacity factor and
electrical load data

To obtain the capacity factor (CF) of wind and solar power

generation in each provincial region, we simulated through the

renewables. ninja platform jointly developed by ETH Zurich and

Imperial College of Technology (Pfenninger and Staffell, 2016),

and obtained 8760 h of wind and solar power generation CF in

each provincial region throughout the year, as the upper limit of

wind turbine (WT) and photovoltaic (PV) power generation

output. Specifically, for different provincial-level regions, we

select five cities distributed in five directions to calculate the

CF of wind energy and solar energy, respectively, and take the
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average value as the CF of wind energy and solar power

generation in the provincial-level region. Similarly, the

national average wind and solar CFs were averaged across

31 provincial-level regions. Due to data limitations, hourly

provincial electric loads were obtained from provincial power

grid companies or fitted based on typical provincial daily and

annual load curves (National Energy Administration, 2020).

In addition, in order to make the article easy to understand

and without losing rigor, we use abbreviated form for the names

of 31 provincial-level regions in China. The specific

correspondence is shown in Table 1 below.

2.2 Optimization model of CWSEHs

2.2.1 Objective function
In this paper, we define LCOH as the hydrogen production

cost obtained after the cost of wind and solar power generation

equipment, electrolysis-related equipment investment, operation

andmaintenance, and transmission fee and hydrogen production

amount are levelized. A series of factors such as investment,

operation, and maintenance costs, transmission fees, equipment

life, wind and solar power generation CF, electrolyzer conversion

efficiency, discount rate, inflation rate, and electrical load in the

system will affect LCOH. Among the above parameters, the

parameters with regional differences are the CF of wind and

solar power generation and the regional electricity load. The

following optimization model can be established based on this,

with the objective function of minimizing LCOH.

Min LCOH �
Cinv + ∑N

n�1
(Com+Ctp)(1+i)n

(1+r)n

∑N
n�1

ηELY∑T
t�1

PELY
t (1+i)n

LHV(1+r)n

(1)

Cinv � λ

1 + λ
(cPVinvCPV+cWT

inv C
WT+cESinvCES) + cELYinv C

ELY (2)

Com � λ

1 + λ
(cPVomCPV+cWT

om CWT+cESomCES) + cELYom CELY (3)

Ctp � λ

1 + λ
⎛⎝σPV∑T

t�1
PPV
t + σWT∑T

t�1
PWT
t

⎞⎠ (4)

As shown in Eq. 1, the established optimization model

aims to minimize the LCOH of the system, where Cinv is the

annual investment cost of PV, WT, electricity storage (ES),

and electrolysis (ELY) equipment. Com is the annual

operation and maintenance cost of the system. Ctp is the

transmission fee paid for transmitting photovoltaic and

wind turbine power generation through the grid. N is the

system’s life, i is the inflation rate, r is the discount rate,

ηELY is the conversion efficiency of ELY, PELY t is the

electric power consumed by electrolysis at time t, and

LHV is the low calorific value of hydrogen.

Cinv, Com and Ctp are given by Eqs 2–4, where λ is the

hydrogen to electricity ratio and represents the power

consumed by hydrogen production to the power

consumed by the electrical load. CPV, CWT, CES and CELY

are PV, WT, ES, and ELY’s optimal configuration capacities.

cPV inv, cWT inv, cES inv and cELY inv are the unit

investment costs of PV, WT, ES, and ELY, respectively.

cPV om, cWT om, cES om and cELY om are the unit

annual fixed operation and maintenance costs of PV, WT,

ES, and ELY, respectively. σPV and σWT are the unit power

transmission fees paid by PV and WT, respectively, and PPV

t and PWT t are the actual power generated by PV and WT at

time t.

2.2.2 Constraints
The optimization model also needs to satisfy the investment

and equipment operation constraints of Eqs 5–17:

TABLE 1 China’s 31 provincial-level regions and their abbreviations.

Provincial area Abbreviation Provincial area Abbreviation Provincial area Abbreviation

Beijing BJ Shaanxi SA Fujian FJ

Tianjin TJ Ningxia NX Zhejiang ZJ

Shanghai SH Gansu GS Jiangxi JX

Chongqing CQ Qinghai QH Anhui AH

Liaoning LN Xinjiang XJ Jiangsu JS

Jilin JL Sichuan SC Hubei HB

Heilongjiang HL Yunnan YN Henan HY

Inner Mongolia IM Guangxi GX Hainan HI

Shanxi SX Guizhou GZ Xizang XZ

Hebei HZ Hunan HN

Shandong SD Guangdong GD
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2.2.2.1 Electric power balance constraint

PPV
t + PWT

t − PES+
t + PES−

t � PLOAD
t + PELY

t ,∀t ∈ ΦT (5)

Equation 5 ensures the hour-level electric power balance

of the CWSEHs, where PES+ t and PES- t respectively

represent ES’s charge and discharge power at time t,

and PLOAD t represents the regional electrical load at

time t. PELY t represents the electrical power

consumed by ELY at time t, ΦT is the time series set, ΦT =

{1,2,3,. . .,8760}.

2.2.3 Hydrogen production power constraint

∑T
t�1
PELY
t � λ∑T

t�1
PLOAD
t ,∀t ∈ ΦT (6)

Equation 6 ensures that ELY’s electricity consumed is λ

times the electric load daily. According to Hydrogen

Council (2017) and Institute of Climate Change and

Sustainable Development, Tsinghua University (2021), it

is estimated that hydrogen energy and electric energy will

account for 18% and 55% of the final energy demand in

2050, respectively. Based on this, we calculated the value

of λ.

2.2.4 Equipment investment capacity constraints

0≤CPV (7)
0≤CWT (8)
0≤CES (9)
0≤CELY (10)

Equations 7–10 ensure that the investment capacity of PV,

WT, ES and ELY equipment is non-negative.

2.2.5 PV and WT operating constraints

0≤PPV
t ≤pPV

t CPV,∀t ∈ ΦT (11)
0≤PWT

t ≤pWT
t CWT,∀t ∈ ΦT (12)

Equations 11 and 12 and ensure that the output electric

power of PV and WT is non-negative and not greater than the

upper limit of output power, where pPV t and pWT t are the

upper limits of output electric power of unit capacity PV and unit

WT at time t, respectively.

2.2.6 ES operating constraints

0≤PES+
t ≤CES,∀t ∈ ΦT (13)

0≤PES−
t ≤CES,∀t ∈ ΦT (14)

0≤ SESt ≤CES,∀t ∈ ΦT (15)

SES0 � SEST � CES

2
, SESt � SESt−1 + ηES+PES+

t − PES−
t

ηES−
,∀t ∈ ΦT (16)

Equations 13 and 14 respectively ensure that the ES charge

and discharge power is non-negative and not greater than the

ES configuration capacity. Eq. 15 ensures that the actual

storage capacity of the ES is not greater than the upper

limit of the storage capacity, where SES t is the actual

storage capacity of the ES at time t. Eq. 16 simulates ES’s

charging and discharging process and ensures the same

storage capacity at the beginning and end of ES, where ηES+

and ηES- are ES’s charging and discharging efficiencies,

respectively.

2.2.7 ELY operating constraint

0.1εELYt CELY ≤PELY
t ≤ εELYt CELY,∀t ∈ ΦT (17)

Equation 17 is the ELY operating constraint, which limits the

minimum operating power of ELY, where εELY t is the operating

state of ELY at time t, its value 1 means ELY is working, and

0 means ELY is not working.

2.3 Model parameters

In this model, the relevant techno-economic parameters

of CWSEHs are unified in 2050, and the specific data are

given in Table 2 below. Among them, the annual operation

and maintenance (OM) cost of PV, WT, and ES are 0.01 of

the unit investment cost of each piece of equipment, and the

annual OM cost of ELY is 0.04 of the unit investment cost

of it.

3 Results

3.1 System structure

Figure 1 shows the schematic diagram of the CWSEHs

structure. On the energy supply side, renewable energy power

generation, such as wind and solar energy, and electric energy

storage modules are considered dispatchable electric power to

compensate for the imbalance between supply and demand.

The network side considers wind and solar power generation

through the existing power network for transmission and pays

a certain transmission fee. On the load side, we consider that

electric energy can be used to simultaneously meet the

electrical load and the operation of power to hydrogen

(P2H) equipment. The produced hydrogen energy can be
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used as fuel in transportation, power generation, and heating

and can also be used as raw materials for oil refining and steel

production.

3.2 LCOH assessment of wind solar
electrolytic hydrogen in China

Figure 2 shows the LCOH of wind-solar combined

hydrogen production in 31 provincial-level regions in

China. The darker the background color of each region, the

higher the LCOH (See Supplementary Figure S1 in

Supplementary Material for the composition of LCOH in

each provincial region). Overall, there are significant

regional differences in the LCOH of wind-solar combined

hydrogen production in 31 provincial-level regions. It is

estimated that in 2050, the highest provincial LCOH in

China will be CQ and the lowest is Inner Mongolia, and

the span between the two can reach 16 ¥/kg. The eight

provinces with the highest LCOH are CQ, ZJ, HB, SC, XJ,

GD, YN, and FJ, all of which are greater than 15 ¥/kg, and the

main parts are located in the eastern coastal areas and central

areas. While northern regions such as HL, LN, JL, and IM have

lower LCOH, it can be found that the LCOH of different

provincial regions has significant geographic differences,

which are essentially related to the level of wind and solar

resources and power generation in each region.

The above results show that the differences between LCOH

and wind and solar resources are significantly correlated. In

order to further study the impact of the two on LCOH, Figure 3

shows the relationship between LCOH and the proportion of

PV and WT configuration capacity in each provincial region.

The definition of PV and WT capacity ratio is shown in Eq. 18.

It can be found that compared with WT, there is a higher

correlation between the PV capacity ratio and LCOH.

Moreover, regions with higher PV capacity ratios have

higher LCOH. The results show that from the perspective of

reducing LCOH to a certain extent, the configuration of WT is

more cost-effective than the configuration of PV. Of course, this

is also related to the wind and solar CF in each provincial area,

and the configuration of WT in areas with low wind power CF

will be of limited significance.

Capacity ratio(i) � Ci

CPV + CWT
, i ∈ {PV,WT} (18)

3.3 The influence of wind and solar
characteristics on CWSEHs

In order to compare the impact of wind and solar characteristics

on the system, we selected four representative provinces for typical

analysis to ensure that they are under similar load fluctuations, as

shown in the first four rows in Table 3.

Figure 4A shows that HB has the highest LCOH of

17.38 ¥/kg, SH has the lowest LCOH of only 8.48 ¥/kg, the

difference is nearly 10 ¥/kg, and the LCOH of TJ and XZ are

in the middle. Comparing the data in Table 3, we can see that HB

has the lowest wind and solar CF, SH has the highest wind and

wind CF, and TJ and XZ have higher wind and photovoltaic CF,

respectively has a significant correlation with their LCOH. In

addition, comparing TJ and XZ again shows that wind resources

can reduce LCOH more than solar resources.

Figure 4B shows the configuration capacity of PV and WT in

four regions. The configuration capacity of PV andWThas a positive

relationship with the CF of PV andWT. The CF of TJ wind power is

higher, so its WT configuration capacity is larger, XZ can configure

TABLE 2 Predicted values of system-related technical and economic
parameters in 2050.

Parameters Symbols Values

Unit Investment Cost of
PV (¥/kW)

cPVinv 1900 State Grid Energy Research
Institution. (2019)

Unit Operation and
Maintenance Cost of
PV (¥/kW)

cPVom 19

Unit Investment Cost of
WT (¥/kW)

cWT
inv 4000 State Grid Energy Research

Institution. (2019)

Unit Operation and
Maintenance Cost of
WT (¥/kW)

cWT
om 40

Unit Investment Cost of
ES (¥/kW)

cESinv 1000 State Grid Energy Research
Institution. (2019)

Unit Operation and
Maintenance Cost of
ES (¥/kW)

cESom 10

Unit Investment Cost of
ELY (¥/kW)

cELYinv 1273.4 Pan et al. (2021b)

Unit Operation and
Maintenance Cost of
ELY (¥/kW)

cELYom 50.93

System Lifetime (years) N 20 Pan et al. (2021a)

Low Heating Value of
Hydrogen (kWh/kg)

LHV 33.3

Hydrogen to Electricity
Ratio

λ 18/55 Hydrogen Council. (2017);
Institute of Climate Change and
Sustainable Development, Tsinghua
University. (2021)

Conversion Efficiency
of ELY

ηELY 74% International Renewable
Energy Agency. (2020)

Discount Rate r 7% Gu et al. (2022)

Inflation Rate i 1.9% Kempler et al. (2022)

Transmission Cost of
PV (¥/kWh)

σPV 0.028 Qiu (2022)

Transmission Cost of
WT (¥/kWh)

σWT 0.028 Qiu (2022)

Charge Efficiency of ES ηES+ 95% Gu et al. (2022)

Discharge Efficiency of ES ηES- 95% Gu et al. (2022)
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more PV because of higher PV power generation CF. It is worth

noting that the CF of wind and solar power generation of HB and SH

are both higher or lower, and the system ismore inclined to configure

WT instead of PV at this time, which is consistent with the above

analysis. The PV andWT transmission cost in Figure 4C is similar to

the equipment configuration capacity in Figure 4B. Because themore

WT or PV equipment capacity is equipped, the greater the power

generation and the higher the transmission cost. Wind and solar

differences significantly impact LCOH, WT, and PV capacity

allocation and transmission costs. In areas with similar wind and

solar resources, prioritizing WT equipment can further reduce

LCOH, making it more competitive than PV equipment.

3.4 The influence of power load volatility
on CWSEHs

When studying the influence of regional electrical load

fluctuations on system parameters, in order to avoid the

influence of dimensions, we have normalized the electrical

loads in different regions and selected two regions with similar

wind and solar resources and significant differences in electrical

load fluctuations as shown in the last two rows in Table 3.

The left panel in Figure 5A shows that the LCOH of XJ is

higher than that of SA, but in Figure 5B, it is shown that the ES

configuration capacity of SA is significantly higher than that of

XJ, even more than two times that of XJ, which is due to the

electrical load fluctuation of SA is bigger than XJ. Specifically,

when the electrical load is low, the PV and WT power

generation can meet the electrical load and the P2H

system, and only a small amount or no ES is needed for

compensation. While at a high electrical load, most or all of

the PV and WT power generation is absorbed by the electrical

load, and the P2H system needs to be compensated by ES. In

addition, regardless of the fluctuation of the electrical load, the

WT configuration capacity is higher than the PV

configuration capacity (Figure 5B), and WT also occupies

an absolute advantage in the transmission fee (Figure 5A),

which highlighted that the configuration of WT has significant

advantages and universality compared to PV again.

3.5 LCOH sensitivity analysis

Figure 6 presents the LCOH sensitivity analysis of CWSEHs

under different parameters. We calculated the LCOH at this time by

making each parameter ±25% based on the benchmark scenario. It

can be seen from Figure 6 that the average LCOH in China under

the benchmark scenario is 9.82 ¥/kg, and the change in electrolyzer

FIGURE 2
LCOH of wind-solar electrolytic hydrogen in 31 provincial-
level regions in China.

FIGURE 1
Structure diagram of CWSEHs.
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conversion efficiency has themost significant impact on LCOH, and

a ±25% fluctuation will cause LCOH to change from 7.86 ¥/kg to

13.10 ¥/kg. The impact of the unit investment cost of WT, system

lifetime, and discount rate on LCOH is gradually reduced but still

has a significant impact. Changes in other parameters have a limited

impact on LCOH, especially the unit investment cost of PV, and the

transmission costs of PV can hardly make LCOH change, which is

also related to the low PV configuration capacity. It is worth noting

that as λ increases, the LCOH will gradually decrease, which means

that when the hydrogen demand (electric power consumed by

hydrogen production) increases, the LCOH will further decrease,

which is consistent with the scale effect of system development. In

addition, system lifetime, electrolyzer conversion efficiency, inflation

rate, and λ remain negatively correlated with LCOH changes, which

is also consistent with common sense.

3.6 Subsidy policy analysis

Currently, the LCOH of hydrogen production using

traditional fossil energy (such as coal and natural gas) is about

10 ¥/kg (National Alliance of Hydrogen and Fuel Cell, 2019), and

according to our prediction in 2050, 27 of China’s 31 provincial-

level regions have LCOH higher than 10 ¥/kg. It means that even

by 2050, the competitiveness of renewable energy electrolysis

hydrogen production is still limited compared with traditional

fossil energy hydrogen production. Therefore, we considered six

different subsidy policies, adopting a 50% investment cost subsidy

for PV, WT, ELY, ES, and a 50% cost subsidy for PV and WT

transmission costs. The subsidy effect is shown in Figure 7. The

results show that, except for the two regions of CQ and XZ,

subsidizing WT can reduce LCOH to the greatest extent, so that

the LCOH in most regions is reduced to less than 10 ¥/kg, while

CQ and XZ have the best subsidy effect on PV, which is mainly

closely related to the landscape resources in different regions.

Generally, the effect of subsidizing ES and PV is better than the

other three subsidy policies except for the WT subsidy, which can

significantly reduce LCOH. The ELY subsidy and the PV andWT

transmission cost subsidy have the worst effect on reducing LCOH,

which can only reduce about 0.5 ¥/kg.

Further, Figure 8 (the upper part) shows the annual cost of

the six subsidy policies. Overall, the annual cost of various

TABLE 3 Wind, solar and load characteristics of representative provinces.

Province Wind
capacity factor (%)

Solar
capacity factor (%)

Load peak-valley difference

HB 17.72 11.07 0.6013

TJ 35.97 13.07 0.6565

XZ 28.86 18.10 0.7073

SH 45.70 14.18 0.7130

XJ 20.14 15.78 0.2468

SA 21.69 14.71 0.5648

FIGURE 3
The relationship between LCOH and PV, WT configuration capacity ratio.
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subsidy policies is proportional to the subsidy effect. The better

the subsidy effect, the higher the annual subsidy cost. It is worth

noting that CQ subsidizes PV with the best effect, but the annual

cost of PV subsidy is less than that of WT subsidy, which is a very

shocking situation because it shows that adopting PV subsidy in

CQ can not only minimize LCOH, but also it can ensure that the

annual subsidy cost is not the highest, which is a very cost-

effective subsidy policy.

FIGURE 4
Comparison of (A) LCOH (B) PV and WT configuration capacity (C) PV and WT transmission costs in four representative regions.

FIGURE 5
Comparison of (A) LCOH and PV and WT transmission costs (B) PV, WT and ES configuration capacity for two representative regions.
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In response to the particular situation of CQ, we

comprehensively considered the subsidy effect of various

policies and the annual subsidy cost and proposed the concept

of unit LCOH decrease cost, whose definition is shown in Eq. 19.

In the equation, UM,i LCOH, CostM,i, and ΔLCOHM,i are the unit

LCOH decrease cost, annual subsidy cost, and LCOH decrease of

the ith provincial region under the Mth subsidy policy,

respectively, ΦCOMP and ΦPRO are the subsidy policy set and

the provincial set, respectively. Figure 8 (the lower part) shows

each provincial region’s unit LCOH decrease cost. It can be

found that PV, WT, and ES subsidies have their advantages

and disadvantages in different regions, but generally, the

ULCOH subsidized by PV, WT, and ES will be higher than

that subsidized by ELY and transmission costs. In particular,

although subsidizing ELY can obtain lower ULCOH, it still has a

limited effect on reducing LCOH because the predicted

terminal hydrogen demand in 2050 is still small, and the

required ELY equipment configuration capacity is limited.

However, in the long run, there is excellent potential to

subsidize ELY after the terminal hydrogen demand

increases in the future. In addition, if the PV and WT

transmission costs can be further reduced, this will benefit

LCOH.

UM,i
LCOH � Cos tM,i

ΔLCOHM,i,∀M ∈ ΦCOMP, i ∈ ΦPRO (19)

FIGURE 7
LCOH in provincial-level regions under six subsidy policies.

FIGURE 6
Sensitivity analysis of the LCOH under the different parameters.
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4 Discussion

In the context of emission reduction, hydrogen production

from renewable energy electrolysis has received extensive

attention from countries worldwide. In this paper, we build

CWESHs, evaluate the LCOH of 31 provincial-level regions in

China in 2050, and analyze the advantages and disadvantages of

using PV or WT power generation in detail. Starting from

regional wind and solar energy characteristics and load

characteristics, we evaluate the impact of regionally

differentiated resource characteristics and load characteristics

on CWESHs. Finally, the system sensitivity is analyzed, and the

differences between the six subsidy policies are compared from

different aspects, which is expected to provide helpful guidance

for developing and popularizing hydrogen energy.

In China’s provincial-level LCOH assessment, 27 of the

31 provincial-level regions are expected to have still LCOH

higher than 10 ¥/kg in 2050, which is limited compared to

traditional fossil energy hydrogen production. In this context,

if a specific carbon tax is charged for hydrogen production from

fossil energy at the policy level, it will further enhance the cost

competitiveness of hydrogen production from renewable energy.

In addition, we also found that deploying WT is more cost-

effective than deploying PV and can widely promote wind power

development in areas with abundant wind resources. In

particular, when analyzing the influence of wind and solar

characteristics and regional electrical load characteristics on

the system, it was once again found that the configuration of

WT in areas with similar wind and solar resources or areas with

abundant wind resources is more cost-effective than PV, and the

analysis of 31 provincial-level regions shows that the results are

generalizable.

Finally, in the analysis of the system’s sensitivity, it is pointed

out that the conversion efficiency of the electrolyzer, the unit

investment cost of WT, the system lifetime, and the discount rate

are the four most critical factors affecting LCOH. With the

further development of electrolyzer-related technologies in the

future, even a slight increase in electrolysis efficiency can

significantly impact reducing LCOH. Subsidy policy analysis

shows that WT subsidies can reduce LCOH to the greatest

extent in most provinces, but the annual cost is also the

highest, but CQ and XZ are exceptional cases. With the

further development of hydrogen energy in the future,

subsidies for ELY equipment will have more tremendous

application potential.

The above research has comprehensively assessed China’s

future renewable energy electrolysis hydrogen business,

which is of great significance for promoting the

development and popularization of hydrogen energy. In

the future, we will further explore the unique role of

hydrogen energy in carbon reduction from the perspective

of deep coupling between the power system and the hydrogen

energy system.
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FIGURE 8
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With the vigorous development of the global economy, the demand for

electricity quality from all walks of life is also increasing, so it is essential to

ensure the electric power grid’s safe, stable, and efficient operation. Multi-

source electric power information fusion, as the core technology of electric

power grid data processing, has become the foundation to promote the

intelligent and automatic development of the electric power grid. This paper

presents the first work on the survey of the methods of electricity

information fusion. It first gives an overview of the process of electricity

information fusion and shows the types of electricity data. Then, we provide

different classifications of existing methods in view of communication

annotation and electric power data, and conduct a thorough comparison

and analysis of them. Moreover, we introduce the relevant data sets and

evaluation criteria of electric power information and summarize the

corresponding evaluation scenarios. Finally, we conclude the maturity of

existing works and provide an outlook on future multi-source electric power

information fusion methods.

KEYWORDS

smart grid, electricity information, communication standard fusion, electricity data
fusion, representation learning

1 Introduction

Electricity is an essential foundation for social development. As the global energy

situation is becoming increasingly severe, every country has devoted itself to developing

and practicing smart grids (Yao and Lai, 2010; Zhang et al., 2013). With the rapid

development of the global economy, the demand for quality electricity in all walks of life is

also increasing. Therefore, it is essential to ensure the electric power grid’s safe, stable, and

efficient operation.

There are many kinds of electric power data, including structural attributes (e.g.,

signal indicators, charging equipment, and external environment), unstructured text

descriptions (e.g., operating instructions, operating mechanisms, and principles),

and various topological graphs (e.g., electric power station topological information
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and internal lines of equipment). Therefore, the challenges

faced by data processing technology in data storage,

processing, and display of smart grids have become the

constraints of the intellectual development of smart grid

(Xue and Lai, 2016), in which the method of multi-source

electric power information fusion has become the core

research topic in this field.

Several fusion methods for multi-source electric power

information have been proposed and achieved some

encouraging results. For example, Han et al. (2019)

formulated a series of standards for substation communication

networks and systems according to the International

Electrotechnical Commission (IEC), called the IEC

61850 communication protocol, by which the standardization

of electric power data in related systems was established.

Furthermore, researchers explored the fusion methods in the

view of the physical topology node (Han et al., 2019; Wang et al.,

2020) and external protocol (He et al., 2019; Kong et al., 2021)

based on IEC 61850. Benefiting from these fusion methods, fault

detection, and information interconnection requirements could

be solved to some extent. On the other hand, several intelligent

algorithms have been employed to integrate and optimize

information from the electric power data level to meet

business needs for electricity, such as badness data

identification (Pan et al., 2022), fusion efficiency improvement

(Xia et al., 2022), and electric power consumption prediction

(Shao et al., 2020).

Although current works of multi-source electric power

information fusion have obtained significant progress, the

complexity of electric power system not only lies in its

massive data rules and attributes, the non-linearity of the

topological electric power grid structure but also depends on

temperature, humidity, time, space and many physical

quantities collected in the environment (Xue and Lai,

2016). Therefore, no single fusion method can flexibly

satisfy all the practical needs and overcome the challenges

of smart grid data processing.

In this paper, we comprehensively survey the research

works of electric power information fusion methods,

especially the research progress of machine learning and

deep learning for multi-source electric power information

fusion in recent years. Precisely, we first present the

overview of the fusion process for electric power

information and list the related data types. Then, we

provide two classifications of existing methods in view of

communication annotation and electric power data, further

introduce their critical ideas, and thoroughly compare them.

Moreover, we introduce the relevant data sets and evaluation

metrics of electric power information and summarize the

corresponding evaluation scenarios. Finally, we conclude

the maturity of existing works and give an outlook to

future methods for multi-source electric power information

fusion.

2 Background knowledge of electric
power information fusion

2.1 Electric power information fusion
process

Currently, electric power grid enterprises worldwide are

starting to build integrated data platforms, and digital electric

power grids as lots of measurement data can be immediately

acquired and quickly shared, which can provide multi-source and

heterogeneous information sources for fault diagnosis and other

applications. In electric power systems, tedious data and a large

amount of information are inconvenient for dispatchers to

analyze and operate, so it is important to employ data fusion

method to solve these issues. When some failures happen in the

electric power grid, its data information reflects the abnormal

changes in electrical quantity, protection, and circuit breaker,

which can provide valid data information for electric power grid

fault diagnosis. The reason is that the methods based on multi-

source information fusion can make a comprehensive diagnosis

according to the switching information and electrical

information provided by different data sources, which can

overcome the problem of fault diagnosis error caused by the

uncertainty of fault information compared to employing a single

data source. In addition, effective integration of multi-source can

not only realize the standardization and unification of interfaces

and real-time data-sharing requirements under the inter-

operability of different devices and systems but also aggregate

distributed energy storage with similar controllable potential and

functional space. Benefiting from the fusion methods, the

demand response capability of distributed energy storage can

be fully dispatched in the scheduling process. Although the fault

diagnosis algorithms of electric power grid based onmulti-source

information fusion are still in the stage of rapid development,

they still have several limitations in practical application

scenarios.

Shui et al. (2013) applied the information fusion method to

the intelligent warning system of electric power, in which three

data fusion architectures are proposed. According to the

information sharing, interactivity, and high efficiency of the

electric power system, the general integration framework is

constructed, by which the electric power system can map data

three-tier structure to one of the electric power systems. The data

layer corresponds to the sensing measurement layer, the

characteristic layer corresponds to the electric power data

management layer, and the decision layer corresponds to the

electric power system application layer. Moreover, Li et al. (2016)

employed the three-layer structure for the massive monitoring

data of the energy Internet. They further proposed a data fusion

schema based on a multi-layer mode.

As shown in Figure 1, we give a flow chart of electric power

information fusion. We combine the electric power system to map

the unique three-layer data fusion structure to the electric power
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system’s three-layer structure. The fusion process has three levels,

including data level, information level, and decision level. The data-

level fusion is employed to the sensor measurement layer, and the

electric power datameasured by the sensor is transmitted to the data

fusion center through the network line to complete the analysis,

processing, and storage. The information-level fusion is utilized to

the electric power data management layer, which extracts the state

feature phasor from the original data source and then performs

correlation analysis and similarity matching with the primary fusion

feature extracted by the previous layer. The decision-level fusion is

used to the electric power system application layer. The obtained

decision vector can be combined with related algorithms to make

classification, reasoning, identification, judgment, and other

applications.

2.2 The flow chart of electric power
information fusion the data type of electric
power fusion

The data collected by the system has the characteristics of a

diversified structure due to the distribution network’s different types

of power equipment. It is the basis of data fusion to understand the

distribution of heterogeneous data in the electric power system.

According to the internal structure type, the types of electric power

data can be divided into structured, unstructured, and topological

data. More precisely, the structured data includes photovoltaic,

energy storage, voltage, electric power, electricity, illuminance,

temperature, and other structural attributes of charging piles, as

well as monitoring data of action signal switches. Unstructured data

mainly contains unstructured text descriptions such as user

manuals, operation introductions, maintenance records, operation

mechanisms, and principles. Topological data mainly includes

topological information on plants and stations and wiring

diagrams of internal equipment, as shown in Table 1.

3 The methods of multi-source
electric power information fusion

According to the characteristics and applications of existing

methods, we mainly divide them into communication standard-

based fusion methods and electric power data-based fusion

methods, as shown in Figure 2.

In the upper classification of Figure 2, electric power information

fusion methods are divided based on communication standards,

which can be divided into the ones based on physical topology nodes,

fusion the ones based on external protocol standards, and the ones

based on model feature extraction as follow.

Fusion methods based on physical topology nodes: It models

the topological structure of physical nodes with IEC 61850–90-6

protocol. These logical nodes are employed for fault location.

Fusion methods based on external protocol standards: It

establishes a unified information model from the standard model

level and the data type level.

Fusion methods based on model feature extraction: It

integrates the related data from the electric power platform to

extract the critical features of electrical equipment.

From another point of view in Figure 2, existing fusion

methods can also be classified based on electric power data,

FIGURE 1
The flow chart of electric power information fusion.
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including the ones based on association rules, the ones based on

communication filtering, the ones based on uncertainty

reasoning, the ones based on traditional machine learning and

the ones based on deep learning.

Fusion method based on association rules: It employs the

clustering method to convert data into the one that is suitable for

association rules, and the periodic association among converted

data will be obtained, and then the data will be fused through

ensemble methods (e.g., random forest).

Fusion methods based on communication filtering: It

compresses multi-global information so that the error of

heterogeneous data fusion and delay time can be reduced.

Fusion methods based on uncertainty reasoning: It

employs Dempster-Shafer to converge the components’

physical model and fault characteristics so that

the influence of information quality changes can be

overcome.

Fusion methods based on traditional machine learning: It

uses machine learning methods (e.g., Bayesian-based method) to

learn the feature from the limited annotation, which can ensure

the reliability and fusion efficiency of the results.

Fusion methods based on deep learning: It employs deep

learning to integrate and learn the features from the platform

data, by which the learning features are more robust for fusion.

Next, we will introduce these methods because of

communication annotation and electric power data.

3.1 The fusion methods based on a
communication standard

Data mapping is the foundation of communication mapping.

Information fusion needs to ensure the safe transmission of

information under specific criteria. To promote the

TABLE 1 Data type of electric power fusion.

Types The list of electric power data type

Structural data Voltage, electric power, electric quantity, irradiance, temperature, and other data of photovoltaic, energy storage, charging pile, etc.,
electric quantity information, operation state monitoring data such as protection action signal and switch tripping information,
control data such as control instruction etc.

Unstructured data Various text data include report data, video/audio data, image data, sensor flow data, instructions for use, technical documents,
operation and maintenance records, operation mechanisms and principles etc.

Topological data Plant topology information diagram, equipment internal wiring diagram etc.

FIGURE 2
The classification of the fusion method for multi-source electric power information.
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standardization of intelligent substations, IEC TC57 has

formulated standards for substation communication networks

and systems-IEC 61850. The release of the IEC 61850 standard

solves the problem that the traditional telecontrol

communication protocol is complicated to realize

interconnection and interoperability, which needs the heavy

workload of installation and debugging between the

distribution terminals of different manufacturers. It realizes

the standardization of the distribution automation

information model (Han et al., 2019). IEC 61850 series

standards play an essential role in substation automation

informatization, whose goal is realizing unified modeling and

seamless communication of electric power systems. With the

migration of public utilities to substations and other network

solutions, IEC61850 has become the preferred protocol which is

the first standardization work to solve the communication

problems of intelligent electronic devices (IEDs) (Xyngi and

Popov., 2010).

At present, there are lots of studies related to the application

of the IEC 61850 standard. Liu D et al. (2020) studied the source-

side maintenance technology of substation autonomous systems

according to the IEC 61850 standard to improve the real-time

information exchange between the electric power grid. Shantanu

et al. (2021) evaluated the feasibility of applying unconventional

high-voltage transformers in future digital substations under the

IEC 61850 standard. The simulation results showed that

unconventional high-voltage transformers were better than

conventional transformers in key performance indicators such

as ETE, time delay, DC offset, and frequency response. With the

introduction of the substation automation system and advanced

network and communication technology, the complexity of the

electric power system increases dramatically, which may make

the whole electric power grid vulnerable to hackers. To solve this

problem, Suleman et al. (2021) proposed a network model

developed in OPNET, demonstrating the results of various

denial of service (DoS) attacks on digital substations based on

IEC 61850. It was of great significance to understand the

influence of these factors on the performance of digital

substations.

Zhu et al. (2017) aimed at the configuration problem of a

distributed intelligent application using the IEC 6185 standard in

a distribution automation system. The authors presented a

configuration solution from two aspects: the semantic model

and the processing method. Taha and Suhail. (2020) proposed a

communication technology based on IEC 61850 and XMPP.

They developed the IEC 61850 information model of the UPFC

controller to coordinate the stable operation of UPFC and DERs

in the microgrid. With the international standard IEC 61850 and

IEEE 2030 reference models, Leitea et al. (2016) proposed a

voltage regulation optimization method based on the

communication architecture model that coordinated the

interaction between DGPV units to meet the connectivity and

interoperability requirements.

Therefore, studying electric power information fusion

technology based on communication standards is imperative.

We divide the electric power information fusion technology

based on communication standards into three categories:

fusion based on physical topology nodes, fusion based on

external protocol standards, and fusion based on model

feature extraction.

Fusion methods based on physical topology nodes: Han et al.

(2019) employed the IEC 61850–90-6 standard to divide the fault

indication into two parts according to the mapping of logical

nodes: fault detection and fault indication. The release of the IEC

61850 standard solved the problem that the traditional

telecontrol communication protocol is hard to realize the

interconnection, interoperability, and heavy workload of

installation and debugging between distribution terminals of

different manufacturers and the central station and

distribution terminals so that the standardization of

distribution automation information model is realized. Taking

fault indication, fault location isolation, and electric power

supply restoration as examples, the author analyzed the

establishment process of fault detection and protection

information model of the distribution network. Fault

indication information was needed to convert the transient

impulse control signal output by fault detection information

into a continuous position indication signal. New logic nodes

needed to be added to a unique distribution automation function.

The new logical nodes added in IEC 61850–90-6 are shown in

Table 2.

Wang et al. (2020), aimed at the problem that there was no

physical link model in the IEC 61850 protocol, modeled the

corresponding physical information nodes in the secondary

communication of the process layer and constructed the

physical topology of the secondary device communication.

The authors put forward an intelligent warning and fault

diagnosis schema for the secondary circuit of the smart

substation and established a fault diagnosis method that

combined a virtual circuit with an actual physical link

according to the information flow characteristics in the smart

substation. Through comprehensive analysis of configuration file

information in the substation, link alarm information of

protection measurement, and status information, of the

control device, the probability of all the possible fault points

would be calculated when the communication abnormality

occurs is given. According to the failure point probability

given by the system, the operation and maintenance engineer

can find out the failure point by troubleshooting the

corresponding equipment in turn, which could improve the

operation and maintenance efficiency. This method makes full

use of the state information given by each piece of equipment in

the station and various data flowing on the network and

automatically and intelligently analyzes and judges the fault

points in the secondary circuit by relying on the correlation

and coupling characteristics in each virtual circuit. It satisfied the
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requirement of standardized information transmission and

sharing in intelligent substations, and the developed system

could achieve good results in real applications.

Fusion methods based on external protocol standards: He

et al. (2019) analyzed the hybrid measurement architecture of an

intelligent distribution network and compared the differences

between D-PMU data, AMI data, and SCADA data in data

composition, data accuracy, and time scale information. Based

on the IEC 61850 standard and IEC 61968–301 (CIM) static

mapping and dynamic mapping of SCADA interaction with new

systems, the authors put forward a unified information model,

which unified the equipment descriptions of IEC 61850 standard

and IEC 61968–301 (CIM) standard, made up for the defect that

the modeling standards followed by the wide-area measurement

and control systems of smart distribution networks were not

uniform in construction, and realized the data exchange among

all systems. Kong et al. (2021) proposed an external protocol

standard of IEC 61850 communication protocol called MQTT,

which could be adopted in the cloud edge communication of

distribution Internet of Things. The MQTT protocol is regarded

as the application layer communication protocol for the

information interaction between the cloud master station and

edge devices, which could enhance interoperability and solve the

problems of standardization of data transmission and data

description model between the cloud master station and the

edge devices of distribution Internet of Things. The

communication mapping methods from the communication

service subset to the MQTT protocol are summarized,

including the direct and indirect mapping methods. The

authors concluded that the direct mapping method was more

applicable and economical than complex ones on cloud-side

communication of distribution Internet of Things.

Fusion methods based on model feature extraction: Zhao

et al. (2021) proposed a fault diagnosis method based on the

confidence fusion of the Dempster-Shafer theory, which could

effectively and comprehensively utilize the redundant features of

multi-source data information and thoroughly mined the fault

features of related switching information and electrical

information. The authors implemented the effective

integration of multi-source alarm information, which was of

great help in improving the accuracy of fault diagnosis and

quickly identifying fault components. Lu et al. (2020)

constructed the fault optimization detection model of

substation equipment, combined with the collaborative fault

TABLE 2 New logical nodes for fault indication in IEC 61850–90-6.

Functional requirements Logical node

Error indication SFPI

Voltage indication generates a persistent “presence” signal and a “non-presence” signal according to the input from PTOV and
PTUV

SVPI

Current indication generates a persistent “presence” signal and a “non-presence” signal according to the input from PTOC and
PTUC

heSCPI

Calculation and statistics of faults in a given period SFST

IEC, 61850–90-6 mainly solves the problems of fault location and isolation of distribution lines (feeders) and the establishment of electric power supply recovery logic nodes in non-fault

sections in distribution automation. The logic nodes added for electric power supply restoration in IEC, 61850–90-6 are shown in Table 3.

TABLE 3 New logic nodes for electric power supply restoration in IEC 61850–90-6.

Functional requirements Logical node

Detect the faults on the feeder based on overcurrent or Undervoltage ASWI

Detects that the voltage on one side disappears and closes AATS

Error indication SFPI

Voltage presence indication SVPI

When no voltage is detected on both sides of the segmentary, turn on the segmentary. After a voltage is detected on one side, the
segmentary is closed after a specified delay

If the voltage is not detected within the predetermined blocking time, it will block the segmentary and not close it again RRFV

Current presence indication SCPI

Fault status AFSL

Fault isolation after indication completed AFSI

Control of the electric power during the recovery process ASRC
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method, to improve the fault optimization diagnosis ability of

substation equipment. They put forward the collaborative fault

diagnosis method of substation equipment based on the

information fusion technology of the sampling and feature

extraction model. The experimental analysis showed that this

method could obtain good synergies in fault diagnosis of

substation equipment operation and own a high precision of

detecting fault features. GOOSE message is a vital part of the IEC

61850 protocol, which embeds selection logic and simulation

data. Li J et al. (2021) studied the measurement method based on

the specification part of the IEC 61850 protocol. They analyzed

the behavior characteristics of CPS from many GOOSE and

manufacturing message specifications based on a digital

substation network and system management scheme. To solve

the problem of low accuracy of existing detection methods, the

authors proposed an anomaly detection method based on

difference sequence variance combined with the message

characteristics of a digital substation, including the

determination of membership function of traffic anomaly and

CPS parameters of fusion.

3.2 The fusion methods based on electric
power data

With the development and maturity of global electric power

big data multi-source information fusion technology, fusion

algorithms are gradually diversified. The multi-modal data

fusion is an effective way to implement the collaborative

analysis of multiple heterogeneous networks that pushes

forward observable and controllable power grids (Wang B

et al., 2022). We divide the electric power information fusion

methods based on electric power data into five categories: the

ones based on association rules, the ones based on

communication filtering, the ones based on uncertainty

reasoning, the ones based on traditional machine learning,

and the ones based on deep learning.

Fusion methods based on association rules: Pan et al. (2022)

applied the data mining method of association rules to the energy

system and employed random forest to establish the training

network of big energy data for data fusion. Inspired by

incremental learning and offline learning, the authors

proposed the MCS-RF framework of energy big data. By

converting discrete data into data suitable for association

rules, the accuracy of wrong data identification and energy

data state estimation was improved. Compared with the

traditional algorithms based on residual error, the proposed

method can save time in identifying lousy energy data and

obtain higher accuracy. Similarly, Liu B et al. (2021) adopted

the extensive data analysis method based on random forest. The

authors proposed a regional priority business screening model

for the multi-station fusion project that could satisfy the concept

of sustainable development and reliability.

Fusion methods based on communication filtering: Wen and

Li (2018) proposed an information fusion method combining

compressed sensing with global forwarding data. According to

the communication range of network nodes, the clusters are

divided into multiple areas. Each node selects the

communication mode to transmit global information to the

communication cluster head according to its location to

reduce the global information fusion delay. In the process of

global information collection in the multi-source

communication network, the model employed the compressed

sensing model to compress the global information and forward

the global information according to the number of sub-nodes of

network nodes. The fusion of global information in a multi-

source communication network effectively improves its

transmission efficiency.

As the traditional methods do not register the time during the

collection of multi-source heterogeneous data in the distribution

network, it leads to significant errors and low efficiency for the

fusion of multi-source heterogeneous data. Xia et al. (2022)

proposed a multi-source heterogeneous data fusion method in

a distribution network based on a joint Kalman filter to solve this

issue. The authors employed the joint Kalman filtering algorithm

to implement heterogeneous data fusion. The structure diagram

of the joint Kalman filtering algorithm is shown in Figure 3. We

can observe that the data process of joint Kalman filtering

algorithm is mainly divided into two ones: the primary filter

and the local sub-filter. In the calculation, each sub-filter works

independently. That is, the time update and the measured value

update run separately. This method can improve data fusion

efficiency and reduce data fusion error compared with traditional

methods.

3.3 Structure diagram of joint kalman filter
algorithm

Fusion methods based on uncertainty reasoning: Zhao et al.

(2021) proposed a multi-layer fault diagnosis model of the

electric power grid and used the Dempster-Shafer theory to

FIGURE 3
Structure diagram of joint Kalman filter algorithm.
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analyze the data information in the multi-source information

fusion diagnosis layer. The authors considered various

information, such as switching value and electrical quantity,

which provided the basis for fault diagnosis to obtain the

probability value of the possible fault components for each

fault component. In addition, they further analyzed the

related protection and the action of circuit breakers.

Traditional fusion methods for fault diagnosis may reduce the

confidence of fault components and affect the fault diagnosis

results. Therefore, the author improved the multi-source

information fusion diagnosis method based on the Dempster-

Shafer theory. It could solve the problem that the uncertain

factors (e.g., misoperation, refusal of protection, circuit breaker,

transmission error of alarm information) could affect the

accuracy of fault diagnosis results.

Fusion methods based on traditional machine learning:

Electricity data fusion methods have broad applications in

electric vehicles and the grid. Rik and Willett (2008) put

forward a model of electric vehicles with three control types.

The authors added electric and V2G vehicles into the energy

system to integrate higher-level wind electric power without

generating excess electric power and significantly reduce

carbon dioxide emissions. Wang Y et al. (2022) employed the

entity alignment of the Bayesian model to implement the fusion

method for related attribute mapping. It was a highly reliable and

low-complexity knowledge fusion method that combined a

concept drift detection algorithm with an unsupervised reverse

verification algorithm. The experiments showed that the

proposed method was superior to the conventional machine

learning algorithm regarding knowledge fusion efficiency and

algorithm complexity.

Fusion methods based on deep learning: The forecast of

electric power consumption is an essential task of smart grid

construction. Related works pay attention to weather, holidays,

and temperature for electric power forecasts. It is necessary to use

lots of sensors to collect these data, which increases the cost of

time and resources. Darudi et al. (2015) proposed a new data

fusion algorithm based on an artificial neural network and

adaptive neuro-fuzzy inference system, modified ordered

weighted average (OWA). Shaxiaorui et al. (2020) proposed a

hybrid depth prediction model based on CNN and LSTM, which

could learn fusion features in parallel. As corresponding statistics

were considered, the method could obtain more robust features

even if some original information was lost. To predict electric

power consumption, the authors incorporated the advantages of

each model. Similarly, Liu and Meng (2020) adopted the depth-

limited Boltzmann machine to encode all data into the same

vector space. They applied the time series method to implement

the effective fusion of power network communication service

data and improve the accuracy of fusion results. Wang et al.

(2021) proposed a universal fusion framework suitable for

structured multiple time series and unstructured images,

which could achieve the deep fusion for heterogeneous multi-

parameter under the power Internet of Things. Li G et al. (2021)

proposed a multi-source log comprehensive feature extraction

method based on Restricted Boltzmann Machine (RBM) to

excavate security threats in the electric power grid by entirely

using heterogeneous data sources in the electric power

information system.

3.4 Method review

This section summarizes the fusion methods of multi-source

electric power information listed in Table 4, including the core

models, characteristics, and limitations.

For the fusionmethods of electric power information based on a

communication standard, the methods based on physical topology

mainly depend on IEC 61850. These methods establish new logical

and line nodes so that loops can be detected for the equipment in the

station (Han et al., 2019;Wang et al., 2020). Although thesemethods

have strong engineering, the hardware and maintenance costs for

establishing physical topology nodes are high in the early stage. The

fusion methods based on external protocol standards mainly

construct the unified information model from the levels of a

standard model and the data type. For these methods, the

communication protocol standards are layered, and different

mapping strategies are formulated according to the characteristics

of protocol files (He et al., 2019; Kong et al., 2021). However, these

methods lack scalability and depend on manual construction and

maintenance. For the methods based on model feature extraction,

the associated data in the data platform are integrated to extract the

critical feature quantities of electrical equipment. The statistical

probability is automatically calculated for the fault diagnosis or

abnormal electrical equipment data (Lu et al., 2020; Li Y et al., 2021;

Zhao et al., 2021). Although the methods are automatic and real-

time, they are only suitable for single-task scenarios.

For the fusion methods of electric power information based

on electric power data, the methods based on association rules

are inspired by unsupervised learning, in which the clustering

method is employed to transform the data to mine the

association rules. Then, the periodic correlations among data

are obtained. This way, random forest can further fuse the

transformed data (Pan et al., 2022). Although the accuracy of

related tasks is high, these methods can only deal with discrete

data, and the subjective factors might influence the clustering

results. The fusion methods based on communication filtering

employ collaborative Kalman filtering (Wen and Li, 2018) and

compressed sensing (Xia et al., 2022). These methods can

effectively compress global information and reduce errors and

delays during the process of heterogeneous data fusion.

Therefore, they can improve the efficiency of signal fusion

and forwarding. However, high requirements exist for the

hardware storage space of network acquisition nodes, which

sacrifice the fusion accuracy. The methods based on uncertain

reasoning employed the Dempster-Shafer theory to model the
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components’ physical model and fault characteristics, which can

overcome information quality change and realize uncertain

reasoning (Zhao et al., 2021). Nevertheless, these methods are

limited by how objects are fused pairwise, so their time

complexity is extensive. Traditional machine learning of

fusion methods is represented by Bayesian estimation (Wang

B et al., 2022). Although these methods can ensure the reliability

and fusion efficiency of results with limited labeled data, they

cannot realize the effective combination of features and further

mine the hidden feature association between data. Therefore,

there exists a bottleneck to improving the accuracy of specific

tasks such as fault detection. Themethods based on deep learning

mainly utilize the recurrent neural network. This kind of method

makes the fusion features obtained by representation learning

more robust and perform better. Nevertheless, these methods

heavily rely on lots of labeled data and the actual hardware.

After a comprehensive comparison of the above existing

methods, we discover that the fusion method of electric power

information based on a communication standard is a well-

established methodology because the IEC 61850 standard has

been published for nearly 20 years. The requirement of

information interconnection for fault detection and electric

power consumption prediction is still a hot research topic.

This kind of research works already accounts for about 30%

of the fusion works. One of the main reasons is the business’s

need for electricity. In recent years, more than half of fusion

works have been devoted to exploring machine learning and deep

learning to learn rich features and meet the requirements of

smart grid. Nevertheless, there is room for making progress in

optimizing existing solutions. We conclude the test datasets of

electric power information fusion and their data processing

methods listed in Table 5.

TABLE 4 Comparison of multi-source electric power information fusion methods.

Method name Core ideas/models Method characteristics Limitations Representative
literature

Fusion methods based
on physical topology
nodes

Logical nodes in fault location,
isolation, and non-fault areas are
established based on IEC 61850–90-
6 protocol, and the topological
structure of physical nodes is
modeled

Detecting the equipment in the station
from the line nodes and loops has
strong engineering practicability

The hardware and maintenance
costs for establishing physical
topology nodes are high in the
early stages

Han et al., (2019); Wang
et al., (2020)

Fusion methods based
on external protocol
standards

Establish a unified information
model from the levels of the
standard model and the data type

The communication protocol
standards are layered, and different
mapping strategies are drawn up
according to the characteristics of
protocol files

The scalability of the method is
weak, and they depend on manual
construction and maintenance

He et al., (2019); Kong
et al., (2021)

Fusion methods based
on model feature
extraction

Integrate the related data of the data
platform to extract the critical
characteristic quantities of electrical
equipment

The statistical probability can be
automatically calculated for fault
diagnosis or abnormal electrical
equipment data

They are only suitable for the of
single-scenarios

Zhao et al., (2021); Lu et al.,
(2020); Li Y et al., (2021)

Fusion methods based
on association rules

K-Means Periodic Association Rule
Random Forest Model

The clustering method transforms the
data for mining the association rules.
Data fusion is carried out through the
periodic association rule and the
random forest

Only discrete data can be
processed, and subjective factors
might influence clustering results

Pan et al., (2022)

Fusion methods based
on communication
filtering

Joint Kalman Filtering Compressed
Sensing

The global information can be
effectively compressed, and the
efficiency and real-time performance of
signal fusion and forwarding can be
improved

High requirements for the
hardware storage space of network
acquisition nodes sacrifice the
fusion accuracy

Wen and Li, (2018); Xia
et al., (2022)

Fusion methods based
on uncertainty
reasoning

Dempster-Shafer theory Modeling the physical model and fault
characteristics of components based on
Dempster-Shafer. It can overcome the
influence of information quality
change and realize uncertain reasoning

Limited by how objects are fused
pairwise, their time complexity is
extensive

Zhao et al., (2021)

Fusion methods based
on traditional machine
learning

Bayesian Estimation It can ensure results’ reliability and
fusion efficiency with limited labeled
data

They cannot realize the effective
combination of features and
further mine the hidden feature
association between data

Wang B et al., (2022)

Fusion methods based
on deep learning

Recurrent Neural Network
Convolutional Neural Networks
Boltzmann Machine

They can make the fusion features
obtained by representation learning
more robust and perform better

They heavily rely on lots of labeled
data and the actual hardware

Jiang et al., (2019); Lin
et al., (2020)
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4 Evaluation of electric power
information fusion methods

4.1 Test dataset for electric power
information fusion method

This section will introduce the test1 datasets of electric power

information fusion in detail. First, the standard pre-processing

techniques for datasets are introduced in this paper2. Then, we

list the statistic of corresponding datasets for electric power

information fusion.

There are several kinds and quantities of electric power data, but

their interrelated relationships are vague as the initially collected data

has high redundancy and noise content. Therefore, preliminary

signal processing and data classification are essential. The function

of data fusion is to ensure that the electric power information

acquisition equipment can accurately provide feedback on the

current electric power network data and store3 the historical data

completely. In this way, the original data of heterogeneous electric

power information systems can be processed by eliminating

invalidity, filtering redundancy, and data interpolation.

Afterward, the researchers could carry out the operations of

feature extraction and feature matching operations among

heterogeneous datasets, which facilitate the next big data fusion

TABLE 5 Datasets and data processing methods.

Datasets Dataset size Data processing method

Electric power flow Dataset system (Pan et al., 2022) 1,440 samples The clustering method is employed discretization

Phasor Measurement Unit (PMU) Dataset (Xia et al.,
2022)

Thousands of meteorological data, equipment data, and
photovoltaic data

The original data is stored in a temporary table, and a
processing thread corresponding to the data type is
established

American Electric Company (AEP) Dataset1 (Shao
et al., 2020)

121,273 pieces of data from December 2004 to January
2018

Normalization processing

Commonwealth Edison (COMED) Dataset2 (Shao
et al., 2020)

66,497 data from December 2011 to January 2018 Normalization processing

Dayton Electric power and Light Company
(DAYTON) Dataset3 (Shao et al., 2020)

121,275 pieces of data from December 2004 to January
2018

Normalization processing

Public Data Set of University of California Machine
Learning and Intelligent Systems Center (Wang Y
et al., 2022)

Environmental data of 12 areas of Beijing from 2014 to
2017 including air quality, temperature/dew point
temperature, wind direction/speed, air pressure,
rainfalletc.

Ontology association

A data set composed of defective texts of an electric
power company in a China province (Jiang et al., 2019)

23,409 data from 2015 to 2017, all from the operation and
maintenance records of AC 220 kV oil-immersed
transformers

Convert original text data into continued vectors

Evaluation metrics of electric power information fusion method.

FIGURE 4
The workflow for pre-processing multi-source heterogeneous data.

1 https://www.kaggle.com/datasets/robikscube/hourly-energy-
consumption?select=AEP_hourly.csv

2 https://www.kaggle.com/datasets/robikscube/hourly-energy-
consumption?select=COMED_hourly.csv

3 https://www.kaggle.com/datasets/robikscube/hourly-energy-
consumption?select=DAYTON_hourly.csv
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and decision analysis. Figure 4 shows the concrete workflow for pre-

processing multi-source heterogeneous data.

4.2 The workflow for pre-processing
multi-source heterogeneous data

Several pre-processing methods exist for electric

power data, such as the average, the least square methods,

and so on.

Dai et al. (2017) proposed a non-parametric method (kernel

density-mean). By comparing the average and the least square

methods, the calculation results show that the kernel density-

mean method could obtain better results in terms of the

robustness of sampling frequency.

Pan et al. (2022) regarded the electric power flow data in the

SCADA system as the samples, for which the standard deviation

of the measured value was set to 0.02 and the standard deviation

of the phase angle was set to 0.005. The authors simulated and

analyzed the electric power flow data change from April to June.

These data were discretized by the clustering method to obtain

the discrete level of active electric power.

Xia et al. (2022) synchronized the dataset with Phasor

Measurement Unit data, meteorological data, equipment data,

and photovoltaic data. The pre-processing of data contains two

steps. Firstly, extracted data from the data source and stored the

original data in the corresponding temporary table. Therefore, it

must establish a processing thread corresponding to the data

type. Then, traverse the acquired data from the temporary table,

and judge whether there is any abnormal situation in the data

according to the rectification rules. If any abnormal situation

exists, it needs to process the data and generate rectification

records.

Zhao et al. (2021) employed electrical data and switching

records as samples. Furthermore, the authors measured the

confidence of samples after data and records were

normalized.

Lin et al. (2020) analyzed that the same type of multi-

source heterogeneous data fusion is meaningful for

correlation analysis. Therefore, the authors concluded that

Euclidean distance and Pearson correlation coefficient were

the most common metrics methods for correlation analysis.

The Euclidean distance of any two points xi , xj in

m-dimensional space was defined in Eq. 1:

d(xi, xj) �
��������������∑m

k�1(xik − xjk)2
√

(1)

where xik, xjk are the coordinates of two points inm-dimensional

space.

Zhao et al. (2021) employed a local electric power system for

simulation analysis. The confidence was calculated by

synthesizing evidence based on the Dempster-Shafer theory.

Then, the effectiveness of the proposed method was verified

by comparing the confidence levels as shown in Eq. 2, where p is

the probability value of the i-th possible faulty element, and the

fault confidence value of the possible faulty element p*i is

calculated in Eq. 3. After then, the authors would set a

confidence threshold and compare the predicted results with

the real samples.

∑
Fault,end

� {p1, p2, . . . , pn} (2)

p*i � pi/max {pi∣∣∣∣∣pi ∈ ∑
Fault,end

} (3)

To fairly evaluate the effectiveness of the proposed models

based on deep learning, Shao et al. (2020) adopted Root Mean

Square Error (RMSE), Mean Absolute Error (MAE), and Mean

Absolute Percentage Error (MAPE) composed of multiple

evaluation indicators for evaluation. The specific formulas are

as follows Eqs 4–6:

RMSE �
���������������������∑N

n�1(f orecastn − realn)2
N

√
(4)

MAE � ∑N
n�1

∣∣∣∣f orecastn − realn
∣∣∣∣

N
(5)

MAPE � 100%
n

∑N
n�1

∣∣∣∣∣∣∣f orecastn − realn
realn

∣∣∣∣∣∣∣ (6)

Where N is the number of test samples, f is the predicted value,

and real is the ground truth. RMSE evaluated the model by the

standard deviation of the residuals between the ground truth

and predicted values; MAE is the average vertical distance

between the ground truth and predicted values, which is

more robust to more significant errors than RMSE. RMSE

and MAE increase significantly and rapidly when using

extensive data for model training and evaluation. Hence, the

authors employ MAPE to evaluate the fusion methods

comprehensively.

Wang Y et al. (2022) used the calculation of Precision, Recall,

and F1 to verify the feasibility of the proposed method for the

evaluation of heterogeneous datasets. The calculation formula is

shown in Eqs 7–9:

Precision � TP
TP + FP

(7)

Recall � TP
FP + FN

(8)

F1 � 2 ×
Precision × Recall
Precision + Recall

(9)

where TP (True Positive), FP (False Positive), and FN (False

Negative) represent the entity alignment indicators of the fused

ontology.

In addition, Jiang et al. (2019) found that there are three types

of fault defect include general defects, severe defects, and critical

defects, and they used macro-P macro precision (represented by

Amacro−P), macro-R macro recall (represented by Amacro−R),
macro-F1 macro comprehensive index (represented by
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Amacro−F1) to evaluate. Eq. 10 lists their expression, where the

precision rate p and recall rate R are the two-class evaluation

indexes. Their definitions of p and R are shown in Eq. 11, where

PT represents the number of positive cases that are correctly

judged as positive cases; NF indicates the number of positive

examples that are wrongly judged as counterexamples; PF

represents the number of negative examples that are wrongly

judged as positive examples. For the three-classification problem,

there exist three different positive examples and three values that

correspond to p and R.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Amacro−P � 1
n
∑n

i�1Pi

Amacro−R � 1
n
∑n

i�1Ri

Amacro−F1 � 2Amacro−R × Amacro−R
Amacro−R + Amacro−R

(10)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P � PT

PT + PF

R � PT

PT + NF

(11)

Wen and Li (2018) utilized the global information

reconstruction error ε to evaluate the feasibility of the

proposed methods. The defined formula is as follows:

ε � �����f − f
����2/����f ����2 (12)

f and �f represent the original and restored global information

sequences, respectively.

4.3 Evaluation scenarios of electric power
information fusion method

For the above test data sets and evaluation metrics, we

summarize three types of test scenarios listed as follows:

Information interconnection of Electric power grid: It is

suitable to evaluate the fusion methods based on

communication standards. Through the mapping operation

and standard specification between different protocols, the

multi-type protocol signal transmission can be employed to

verify the proposed model’s compatibility and delay of signal

transmission (Han et al., 2019; He et al., 2019; Kong et al., 2021).

Anomaly detection of substation data: It is also suitable for

evaluating the fusion methods based on communication

standards, which can verify the performances of the model in

terms of accuracy, and missed detection rate by labeled signal

datasets based on specific standard protocol (Wang et al., 2020; Li

Y et al., 2021).

Fault detection of charging equipment: It is suitable for

evaluating fusion methods based on electric power data. On

the one hand, the effect of the models can be verified from the

waveform of the running equipment (Lu et al., 2020). On the

other hand, this scenario can be modeled as a classification

problem given machine learning. The methods can be verified

by precision, recall, and F1 value and the corresponding variants

of these metrics (Wang et al., 2022).

5 Conclusion and future work

Multi-source electric power information fusion, as the core

technology of electric power grid data processing, has become the

foundation to promote the intelligent and automatic

development of the electric power grid. However, there does

not exist survey of existing methods to discuss their limitation for

this topic. This paper overviewed information fusionmethods for

multi-source electricity information. We thoroughly reviewed

current methods regarding communication annotation and

electric power data and further introduced their critical ideas.

Then, we introduced the relevant datasets and evaluation criteria

of electric power information and summarized the

corresponding evaluation scenarios. We further evaluated the

maturity of existing fusion methods and analyzed that the fusion

method of electric power information based on a communication

standard was a well-established methodology. Relatively, there is

room for making progress on optimizing fusion methods of

electric power information based on machine learning and deep

learning, which could achieve the goal of information

interconnection for satisfying the requirements in smart grid

(e.g., fault detection, electric power consumption prediction). We

believe that future research for multi-source electric power

information fusion can be carried out from the following four

aspects:

The fusion methods are based on multi-modal. Currently,

the existing models mainly refine the features from the

properties of electric systems or communication standards.

However, these methods are not mature enough to contain

text information and image data such as fault descriptions

recorded by engineers and equipment pictures. The methods

based on multi-modal are helpful to improve further the

accuracy of electric power information fusion and other

related tasks (Yang et al., 2021). On the one hand, the

relation extraction models can extract more useful

information from the textual descriptions, which can assist

the electric power information fusion method; on the other

hand, the image recognition technology can be used to

improve the granularity for equipment fault type

identification. Then, the performances of electric power

information fusion can be further enhanced.

The fusion methods are based on federated learning. As

the system data associated with charging piles and

photovoltaic equipment has a certain degree of privacy, a

set of electric power specification systems can be formed based

on all levels through consultation among various electric
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power companies and related platforms. Then, the high-

quality data in electric power companies can be encrypted

and shared using federal learning (Liu & Meng, 2020). Finally,

a high-quality mapping relationship is constructed among

electric power grid systems to satisfy more smart grid

requirements.

The incremental dynamic information fusion strategy. As

too many standards and attributes are increasing in the

electric power grid system, it is hard for existing methods

to immediately respond to the requirements for updating and

iterating electric power systems because the cost of training

and fusion of these models is high. In addition, it may not

better satisfy the real-time tasks of electric power

information. Therefore, incremental dynamic fusion

technology (Yu et al., 2020) can be explored to reduce the

cost of information fusion and ensure the real-time

performance of the system.

The fusion methods are based on an interactive strategy.

Considering application scenarios such as equipment fault

monitoring requiring high precision, follow-up correction by

domain experts is indispensable. Therefore, the interactive

fusion strategy (Liu F et al., 2021c; Liu Q et al., 2021) could

be adopted so that domain experts can screen the results of

fusion methods in each iteration. This way, experts could mark

the results that can be reused as training samples for feeding the

models. It can not only ensure the reliability of the model results

but also improve the fusion accuracy of the electric power

information.
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microgrid energy system based
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With the continuous development of building microgrids, it is crucial to explore

and study the energy-saving potential of buildings to resolve energy shortages

and environmental protection problems. Therefore, to realize the efficient and

economical operation of a building microgrid, a new multi-objective

optimization method is proposed for the planning and operation of building

microgrid considering virtual energy storage. First, virtual energy storage model

of the building microgrid is established based on the heat storage

characteristics of the building itself. Second, a multi-objective optimization

model of the building microgrid considering virtual energy storage is

constructed by considering the investment cost and the comprehensive

operation benefits as the objectives as well as the constraints of cooling,

heating, power balance. Finally, based on the original gray wolf swarm

algorithm, the niche processing mechanism and gray weighted correlation

method are introduced to optimize the configuration and operation of the

building microgrid. For a typical building microgrid in summer and winter, the

simulation results reveal that the proposed method improves the overall

economy of planning the building microgrid system and its operation and

user experience via virtual energy charge and discharge management.

KEYWORDS

building heat storage characteristics, building microgrid, gray weighted correlation
degree, multi-objective optimization, virtual energy storage

1 Introduction

Promoting the development of clean energy systems based on distributed energy is a

major strategic choice worldwide. At present, research has shown that the proportion of

energy consumption in the end-use energy systems of buildings is increasing annually,

which has significant potential for energy conservation and emission reduction.

Therefore, energy-saving solutions for mining buildings have become crucial

approaches to solve the shortage of energy demand and achieve the double carbon

goal (Dounis et al., 2009; Zhao et al., 2015).

A building microgrid system is a multi-energy joint energy supply system formed by

integrating natural gas, heating, energy storage, and distributed energy systems along with
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related technologies into the building energy supply system. To

ensure the safe and reliable operation of the system, it is effective

to use the diversity of energy supply modes to satisfy the

diversified needs of users and use the energy storage system

and related control technologies to reduce the impact of

fluctuations in the output of clean energy (Guan et al., 2010;

Hca et al., 2021). Owing to the integration of supply side energy

supply, renewable energy, and demand side cold/heat/electricity

load demand, and other elements in the system, new

requirements are proposed as follows: 1) ensure the

consumption of renewable energy. 2) realize the

complementary advantages of various forms of energy on the

supply side and cooperative configuration operation to reduce

the operation cost of the microgrid. 3) and ensure the energy

optimization management for safe and economic operation of

the building microgrid system (Wang et al., 2021; Chang et al.,

2022).

At present, there has been research progress on the optimal

configuration strategy of microgrid energy systems. Liu et al.

(2019) proposed a comprehensive energy planning strategy

based on the improved kriging model, which rapidly and

accurately obtained the optimal capacity allocation scheme

of the system. Bahmani et al. (2021) established a

cooperative method in which a network of energy hubs

collaborates to share adjustable energy. Each hub comprises

a combined heat and power unit, electrical chiller, renewable

sources, absorption chiller, and boiler. Mixed integer linear

programming was used to determine the optimal

comprehensive economic cost of the system. Li et al. (2020)

considered the uncertainty of wind power and proposed a

comprehensive energy system planning strategy based on a

scenario method, aiming at investment and wind curtailment

costs. Qiu et al. (2015) developed a microgrid energy system

planning model to minimize the total investment cost based on

the electrical-pneumatic coupling phenomenon. To obtain both

the optimal structural configuration and energy management

dispatch for multi-energy systems, a generic optimal planning

framework was proposed in (Ma et al., 2018) and mixed-integer

linear programming was employed to minimize the overall cost.

Han et al. (2018) considered the volatility of distributed energy

resources, net income of the entire operation cycle, penetration

of renewable energy, and reliability of the power supply, and

established a three-objective two-stage planning model. Lin

et al. (2021) considered the economy and reliability of an

integrated energy system and proposed a planning model

based on an improved collaborative algorithm to coordinate

the complex relationship between the two performance indexes,

and they verified the effectiveness of the model using a practical

example. Based on the above literature, it is evident that for

integrated energy system research, the minimum operating cost

of the system is usually selected as the optimization objective,

and there are several deterministic constraints, such as power

balance and equipment output. However, load changes caused

by environmental costs and temperature constraints is given

less priority.

Simultaneously, by exploiting the complementary

characteristics of various power sources in the building

microgrid energy system, peak shaving and valley filling can

be realized and the energy utilization rate can be improved

through the charge and discharge regulation of the energy

storage system. However, the initial investment in configuring

energy storage equipment is high, and virtual energy storage

technology provides a potential solution to the problem. Wang

et al. (2020) conducted a detailed study on the virtual energy

storage technology of an air conditioning load, established a

virtual energy storage energy model, and verified the feasibility of

using the virtual energy storage of an air conditioning load for

power grid regulation. Zhu et al. (2019) considered virtual energy

storage on the user side and established a comprehensive energy

system scheduling model including the temperature control load

and electric vehicle with consideration of the uncertainty of

weather. The simulation results reveal that virtual energy

storage has a positive significance in reducing the capacity of

energy storage equipment. Jin et al. (2017) considered the

characteristics of virtual energy storage and battery-

coordinated operation and proposed a control strategy for

stabilizing the power fluctuation of a microgrid tie line.

Currently, research on the joint optimization of the energy

storage optimization link and other energy supply equipment

in building microgrid energy systems needs more in-depth

analysis.

In summary, this paper proposes a method for capacity

configuration and operation optimization of building

microgrid systems considering virtual energy storage through

the optimal adjustment of temperature. The main contributions

of this study are the following.

1) Based on the thermal storage characteristics of buildings, a

virtual energy storage systemmodel of the building microgrid

is constructed. The charge and discharge management of

virtual energy storage is realized to achieve low-carbon

operation of building microgrid systems.

2) The proposed strategy considers the principle of virtual

energy storage to construct a multi-objective optimization

model to improve the operation economy of the building

microgrid.

3) The comprehensive benefits and user satisfaction are

introduced as the objectives. Under meeting customer

satisfaction index, the proposed strategy increases

comprehensive benefits through virtual energy storage

charging and discharging management.

4) The gray wolf algorithm based on niche technology was

employed to solve the optimization problem. Based on the

non-dominated solution set, the optimal solution of the

system configuration and operation was obtained using the

gray-weighted correlation degree evaluation index.
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5) Structure and mathematical model of building microgrid

system

2 Structure of building microgrid
system

With the continuous development of distributed energy

technology, various energy equipment, such as refrigeration

units, gas turbines, heat storage tanks, energy storage

equipment, and PV equipment, are connected to buildings.

This energy equipment can realize complementary and

cooperative effects among energy sources to satisfy the

diversified needs of users and improve the overall operational

efficiency of the system (Favre-Perrod, 2005; Pazouki et al.,

2014).

In this study, a variety of energy devices were applied to a

building microgrid system, the structure of which is illustrated

in Figure 1. Absorption chillers and electric chillers satisfy the

cooling demand of buildings, and the cooling power of

absorption chillers originates from gas turbines. The

thermal power demand originates from the gas turbine,

thermal storage system, and virtual energy storage system

in the building. The virtual thermal energy storage is the

indoor energy change caused by the temperature change. The

electric load power originates from photovoltaics, energy

storage equipment, and the external power grid. From the

above process, it is evident that the building microgrid system

formed by the cold thermal–electrical structure and the

external power grid are interconnected.

3 System modeling

3.1 Photovoltaic device

Photovoltaic equipment can convert solar radiation

energy into electrical energy via photovoltaics, and the

conversion efficiency primarily depends on the illumination

and ambient temperature, which can be expressed as follows

(Ma et al., 2016):

Ppv,t � η × Ypv
IT t( )
IS

( ), (1)

where η represents the energy conversion efficiency (%), Ypv

indicates the capacity of the photovoltaic panel (kW), IT(t)

FIGURE 1
Schematic of the building microgrid system.
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represents the solar radiation intensity (kW/m2) received by the

photovoltaic panel at time t, and Is = 1 kW/m2.

3.2 Electric refrigerator

The refrigerator was cooled by consuming electric energy,

and its cooling power was as follows:

QEC,t � PEC,tI
EC
COP, (2)

where IECCOP indicates the ratio of the rated cooling capacity to the

rated power of the electric refrigerator, QEC,t corresponds to the

refrigeration power (kW), and PEC,t denotes the electric power

consumed (kW).

3.3 Micro gas turbine

The active power output of the micro gas turbine is as

follows:

Pmt,t � ηmtPgas, (3)

where ηmt indicates the power generation efficiency of the micro

gas turbine, Pmt,t denotes the active output (kW), and Pgas
represents the natural gas power consumed (kW).

3.4 Absorption chiller

The small gas turbine drives the absorption chiller through

the residual energy in the industrial production process, and its

cooling power is as follows:

QAC,t � HAC,tI
AC
COP, (4)

where HAC,t indicates the heat consumption power (kW), IACCOP
denotes the ratio of the rated cooling capacity to the rated power

of the absorption chiller, and QAC,t represents the cooling

power (kW).

3.5 Energy storage device

We adopted the conventional battery model, and the change

relationship of the state of charge is as follows:

SOCbt t( ) � SOCbt t − 1( )
+ Sch t( )Pch t( )ηch − Sdis t( )Pdis t( )/ηdis( )[ ]Δt

Smax
bt

, (5)

where SOCbt(t) represents the state of charge of the battery, Pch
and Pdis denote the charging and discharging powers of the

battery (kW), respectively, ηch and ηdis denote the charging and

discharging efficiencies, respectively, and Ssh(t) and Sdis(t)

represent the charge and discharge states of the battery,

respectively.

3.6 Heat storage device

The heat-storage model is similar to the energy-storage

battery model, and the relationship between the state of

charge and heat power is as follows (Lu et al., 2015):

SOCH t( ) � SOCH t − 1( ) + Pch,H t( )ηch,H − Pdis,H t( )/ηdis,H( )[ ]Δt
Smax
H

,

(6)
where SOCH(t) indicates the state of charge, Pch,H and Pdis,H
denote the heat charging and discharging power (kW),

respectively, and ηch,H and ηdis,H refer to the heat charging

and discharging efficiencies, respectively, SH max denotes the

capacity of the heat storage device (kW).

3.7 Building virtual energy storage system

A building can be regarded as a heat storage body because of

its thermal inertia and heat storage characteristics of indoor air.

Thus, when the indoor temperature changes within a certain

range are compared with the constant set temperature, the

heating or cooling capacity of the building also changes

correspondingly relative to the cooling and heating capacity at

a constant set temperature. This change can be regarded as the

characteristics of the virtual energy storage of the building, and

the difference in the value of this heat change can be regarded as

the storage and discharge power of the virtual energy storage (the

heat change caused by the difference between the set value and

the actual value of the temperature).

The relationship between heat inside and outside the building

and temperature is:

QH − Qd � C × ρ × V ×
d Tout − Tin( )

dt
,

Qd − QAC � C × ρ × V ×
d Tin − Tout( )

dt
.

(7)

Eq. 7 represents the two operating conditions of heating in

winter and cooling in summer: where QH indicates the heating

power in winter (kW), Qd denotes the heat dissipation power of

the building (kW), QAC corresponds to the cooling power in

summer (kW), ρ symbolizes the air density (kg/m3), C denotes

the specific heat capacity of the air (J/(kg.˚C)), V refers to the

indoor volume (m3), and Tout and Tin are the indoor and outdoor

temperatures (˚C), respectively.

Taking summer cooling as an example, the key factors

affecting the heat change in the building include three parts:
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the indoor heat change caused by solar radiation, difference

between the heating power, and the cooling equipment power in

the building, as shown below:

Kwa Swa Tout − Tin( ) +Kwi Swi Tout − Tin( )
+ISwi SC + Qin − Qcl � ΔQ,

(8)

where ΔQ indicates the indoor heat change value of the

building (kW), Kwa and Kwi denote the heat transfer

coefficients of the outer wall and the outer window (W/(m2

K)), respectively, Swa and Swi denote the area of outer wall and

outer window (m2), respectively, I indicates the solar radiation

intensity (kW/m2), SC denotes the shading coefficient, Qin

denotes the heating power in the building (kW), and Qcl

indicates the cooling power (kW).

4 Operation model of building
optimal configuration

4.1 Objective function

In the capacity allocation process, with the goal of

minimizing the comprehensive benefit of building equipment

and equipment investment costs, a multi-objective optimization

function is constructed as follows:

min
F1 � 1

C1 + C3 − C2
,

F2 � C4,

⎧⎪⎪⎨⎪⎪⎩ (9)

where F1 indicates the comprehensive income of the building

micro network (1/yuan), C1 represents the operation and

maintenance cost of the equipment in the building (yuan), C2

represents the comprehensive income and user satisfaction of the

building (yuan), C3 represents the environmental and fuel costs

of the building microgrid system (yuan), and F2 refers to the

investment cost of each piece of equipment of the building

microgrid system (yuan), expressed by C4.

4.2 Objective function F1

4.2.1 Operation and maintenance cost

C1 � ∑N
t�1

CpvPpv,t + CbtPbt,t + CecPec,t + CgasPgas,t(
+CHPH,t + CacPac,t + Cph,tPex,t)Δt, (10)

where Cpv, Cbt, Cec, Cgas, CH, and Cac denote the unit time

operation and maintenance costs (yuan/kWh) of photovoltaic

devices, batteries, electric refrigerators, micro gas turbines, heat

storage tanks, and absorption chillers, respectively, Pex,t indicates

the electric power exchanged between the building microgrid and

the external power grid (kW); Cph,t denotes the unit power

purchase cost at t (yuan/kWh), which adopts the time-of-use

price to guide the user’s power consumption behavior, Ppv,t, Pbt,t,

Pec,t, Pmt,t, PH,t, and Pac,t refer to the outputs (kW) of photovoltaic

device, storage battery, electric refrigerator, micro gas turbine,

heat storage tank, and absorption refrigerator, respectively, at

time t; N = 24, Δt = 1.

4.2.2 Comprehensive income and user
satisfaction

C2 � ∑N
t�1

CpvsuPpv,t + CbtsuPbt.t( )Δt + λ Tin,t − Tset

∣∣∣∣ ∣∣∣∣( ), (11)

where the first item indicates the photovoltaic consumption

income, and Cpvsu denotes the photovoltaic subsidy price

(yuan/kWh). The second item corresponds to the peak-

shaving income from energy storage, and Cbtsu refers to the

peak-shaving auxiliary service price, Pbt,t indicates the battery

power participating in the peak-shaving period t (kW). The

energy storage device was charged at the low-load valley and

discharged at a high load peak. Through the low storage and high

discharge mechanism, it can fill the valley and cut the peak, and

increase the peak regulation income of the system. The third item

is user satisfaction; λ denotes the energy penalty factor, Tin,t

indicates the actual temperature in the building, and Tset

represents the set temperature (˚C).

4.2.3 Environmental cost and fuel cost

C3 � ∑N
t�1

KSPCS +KNPCN + KCPCC( )Pmt,tΔt +∑N
t�1
CmtPmt,tΔt,

(12)
where the first term indicates the environmental cost, and Ksp, Knp,

and Kcp denote the emission intensities of SO2, NOx, and CO2,

respectively, produced by the gas turbine, which are 0.01026, 0.01702,

and 0.000928 kg/kWh, respectively (Zhang et al., 2017; EPA et al.,

2021). Pmt,t indicates the output (kW) of the gas turbine at time t, and

Cs, Cn, and Cc represent the unit treatment costs of SO2, NOx, and

CO2 produced by the gas turbine, which are 0.21, 0.13, and

14.824 yuan/kg, respectively (Zhang et al., 2017; EPA et al., 2021).

The second item indicates the fuel cost; Cmt denotes the fuel cost per

hour of the unit gas turbine, which is 0.3894 yuan/kWh.

4.2.4 Objective function F2

C4 � Smtcmt + Sbtcbt + Seccec + Spvcpv + Saccac + SHcH( ), (13)

where Smt, Sbt, Sec, Spv, Sac, and SH denote the installation

capacities (kW) of the micro gas turbine, battery, electric
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refrigerator, photovoltaic device, absorption refrigerator, and

heat storage tank, respectively, and cmt, cbt, cec, cpv, cac, and cH
denote the unit capacity installation costs (yuan/kW) of the

micro gas turbine, battery, electric refrigerator, photovoltaic

device, absorption chiller, and heat storage tank, respectively.

4.3 Constraints

4.3.1 Electric power balance constraint

Pex,t + PPV,t + Pbt,t � Pel,t + PEC,t, (14)
where Pel,t indicates the electric power load (kW) at time t and

Pex,t represents the power (kW) of the connecting line; that is, the

electric power exchanged between the building microgrid and the

external power grid.

4.3.2 Cooling power constraint

QAC,t + QEC,t � Qcool, t, (15)

where Qcool,t is the cooling power load (kW) at time t.

4.3.4 Thermal power balance constraint

Qheat,t − Qout,t − ηehPmt,t � ΔQ, (16)

where Qheat,t denotes the thermal power load (kW) at time t,

Qout,t represents the thermal power output (kW) of the thermal

storage device at time t, and ηeh denotes the electric heating ratio

of the micro-gas turbine.

4.3.5 Equipment configuration and operating
output upper and lower limit constraints

SEC
min ≤ SEC ≤ SECmin,
Smt
min ≤ Smt ≤ Smt

max,
Pex

min ≤Pex ≤Pex
max,

PEC
min ≤PEC ≤PEC

min,
Pmt
min ≤Pmt ≤Pmt

max,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(17)

where Smin * and Smax * represent the lower and upper capacity

limits of each device (kW), respectively, and Pmin * and Pmax *

denote the lower and upper output limits of each device (kW),

respectively.

4.3.6 Constraints related to energy storage
system

Charging and discharging power constraint:

0≤Pdis t( )≤Pdis
maxSdis t( ),

0≤Pch t( )≤Pch
maxSch t( ).{ (18)

Charging and discharging state transition constraint:

Sch t( ) + Sdis t( ) � 1. (19)

Power storage constraints:

SOCbt
min ≤ SOCbt t( )≤ SOCbt

max. (20)

Configure capacity constraints:

Sbt
min ≤ Sbt t( )≤ Sbt

max, (21)

where Pch max and Pdis max denote the maximum power (kW) of

the charge and discharge, respectively; SOCbt
max and SOCbt

min

represent the upper and lower limits of the state of charge of

the battery, respectively; and Sbtmax and Sbtmin represent the upper

and lower limits of the configuration capacity (kW), respectively.

4.3.7 Indoor temperature expectation interval
constraint

Tmin
in ≤Tin ≤Tmax

in , (22)

where Tmax and Tmin denote the expected upper and lower

limits of the indoor temperature (˚C), respectively.

5 Multi-objective solution strategy

We optimize the configuration of various types of equipment

in a building based on virtual energy storage. The optimal

mathematical model is established with the state of charge of

the battery, output of the refrigerator, input and output power of

the heat storage system, and indoor temperature of the building

as the decision variables. The constraints include the power

balance of the cooling, heating, and power loads; the upper

and lower limits of the equipment; and the constraints of the

equations and inequalities related to the energy storage system. It

is difficult to solve complex problems with many variables and

constraints using traditional algorithm strategies; therefore, this

study introduces an improved multiparticle swarm wolf

optimization (MPSWO) to optimize the solution. Based on

the original swarm wolf algorithm, the niche processing

mechanism and gray weighted correlation index are

introduced, and the population diversity and self-regulation

ability are introduced into the PSWO algorithm (Mirjalili

et al., 2014).

5.1 Niche technology

Niche technology forms a niche for each wolf based on the

distance between wolves. Using the update iteration principle

of particle swarm optimization algorithm, the wolves in the

wolf group are also regarded as a group of particles.
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Subsequently, the PSO algorithm is employed to update each

group of particles once in speed and position. For the updated

particle swarm returning to the wolf swarm, a sharing

mechanism is employed to improve the hunting ability of

the wolves and provide the best location according to the

distance between the wolves. The crowding distance of the

gray wolf is improved based on the notion of particle swarm

optimization and can be expressed as

dij � xi − xj

���� ���� �
������������
∑N
k�1

xik − xjk( )2
√√

, (23)

where xi and xj represent any 2 Gy wolves. For a given parameter,

the fitness can be expressed as

f1
i �

fi

∑N
j�1
S dij( ), (24)

where fi represents the original fitness and S (dij) represents the

sharing function. When the distance between the gray wolves is

less than the radius R of the small mirror, the sharing function

can be calculated as follows:

S dij( ) � 1 − dij

R
( )λ

, (25)

where λ symbolizes the shape parameter.

5.2 Non-dominated sorting selection
strategy based on gray weighted
correlation degree

The gray correlation degree analysis method is based on the

similarity between the obtained non-dominated solution set

curve and optimal dominated curve. The closer the curve, the

higher the degree of correlation between the corresponding

sequences and the higher the ranking priority. The gray

weighted correlation degree was obtained by combining the

analytic hierarchy process to select the optimal solution. The

steps are as follows (Si et al., 2019).

5.2.1 Preprocessing of objective function matrix
The objective function data matrix is calculated. Because the

dimensions of each objective of the proposed optimization strategy

are inconsistent, it is necessary to conduct dimensionless processing;

thus, the following matrix can be obtained:

F � fi k( )[ ]N×m, (26)

where fi(k) � (~fi(k)/fi(1))(k � 1, 2, . . .m, i � 1, 2, . . .N),
~fi(k) indicates the original value, and fi(1) the first element

of the vector fi.

5.2.2 Calculating the gray relational degree
First, the intermediate difference matrix is obtained to

obtain the minimum difference a and maximum difference b.

Then, according to the correlation coefficient formula, the

correlation coefficient matrix is calculated as follows:

a � min imin k f0 k( ) − fi k( )∣∣∣∣ ∣∣∣∣,
b � max imax k f0 k( ) − fi k( ) ∣∣∣∣∣∣∣∣ ,

Y � yi k( )[ ]N×m,

y f0 k( ), fi k( )( ) � a + μb

f0 k( ) − fi k( )∣∣∣∣ ∣∣∣∣ + μb
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(27)

where μ is the resolution coefficient, usually taken as 0.5.

1) Determining the corresponding weight of each optimization

objective

The corresponding weight ωk of the kth optimization index is

determined based on the analytic hierarchy process, as shown in

Eqs 28, 29:

R �
r11 r12 / r1m
r21 r22 / r2m
..
. ..

.
1 ..

.

rm1 rm2 / rmm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (28)

ωk � 1
m
∑m
j�1

rkj

∑m
l�1

rlj

k � 1, 2, . . . , m( ), (29)

where rij indicates the relative importance of optimization

objectives i and j.

5.2.3 Determining the gray weighted correlation
degree

The gray weighted correlation degree of the ith optimal

solution of the Pareto solution set is calculated using Eq. 30

ξ i � ∑n
k�1

ωiy x0 k( ), xi k( )( ). (30)

According to the size of the gray weighted correlation degree,

the solution set is sorted, and a compromise solution is selected.

The higher the degree of correlation, the higher is the ranking

priority.

5.3 Solution procedure

Initialization algorithm parameters: The population size

of the gray wolf was N = 50, and the maximum iteration

number was iterax = 100. The initial populations that meet

the upper and lower limit constraints of each equipment

inequality in the building were randomly generated. Each

individual is represented as the feasible value of all control
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variables and coded according to real numbers. Vector uij
represents the jth equipment control variable of the ith

individual, and uij
max and uij

min represent their upper and

lower limits, respectively.

1) Calculate the fitness value of each wolf in the population, and

select the first three best wolves to save them as α, β, and γ.

2) According to the four steps of the gray wolf algorithm,

including encirclement, hunting, attack, and search, update

the current gray wolf individual position and relevant

algorithm parameters.

3) Randomly add M new gray wolves to maintain population

diversity.

4) According to niche technology and fitness-sharing

mechanisms (23)–(25), adjust the fitness of individuals in

the niche.

5) Adopt roulette strategy to select N excellent gray wolves to

enter the next-generation and calculate the fitness to obtain

the global optimal value.

6) Determine whether the number of iterations is satisfied; if the

number of iterations iter is greater than the maximum

number of iterations itermax, end the loop and output the

result, and obtain the compromise solution by sorting

according to the gray weighted correlation degree;

otherwise, proceed to step 2).

6 Case study

6.1 Input data and assumptions

The commercial complex is located at 37°54′N, 112°33′E.
The building is a single-family building with a length of 70 m,

width of 50 m, a 3-storey height, and a total of 33 floors. The

exterior walls of the building are made of cement bricks, the

windows are made of PVC material and plastic, and double-

layer sound insulation vacuum glass is used. The location of

the commercial complex is a provincial capital city facing

north. Based on the survey data and the relationship between

the building windows and the direct angle of the Sun, this

study approximately takes ISwinSC as 0.45ISwin, and the air

density ρ and air specific heat capacity C are respectively

considered as 1.2 kg/m3 and 1000 J/kg°C; centralized office

hours are from 8:00 to 20:00.

When the time-of-use electricity price is adopted, the

electricity price and load changes can be effectively

transmitted to the user side to guide and change the

electricity consumption behavior of users, thereby

improving the economic level of the building microgrid

operation. In this study, the time-of-use electricity price is

utilized to purchase the electricity shortage of the microgrid

from the external power grid to guide the electricity

consumption behavior of users in the building. The

electricity price is 0.65 yuan/kWh from 10 to 20 h, and the

electricity price is 0.45 yuan/kWh from 0 to 9 h and 21–24 h.

The price of natural gas is 2.68 yuan/m3, and the price of its

equivalent unit calorific value is 0.45 yuan/kWh. The upper

limit of the tie line power between the building microgrid and

the external grid is set to 400 kW, while the other simulation-

related parameters are listed in Table 1.

6.2 Simulation example and result analysis

To verify the effectiveness of the building comprehensive

energy optimizationmodel and optimization algorithm proposed

in this study, the initial values of the optimization variables are

obtained according to a uniform distribution within the

constraint range, and the following two scenarios are set for

calculation and analysis:

Case 1. Optimization of a single scene in winter (December);

Case 2: Optimization of a single scene in summer (June);

6.3 Typical scenarios in winter

For the Case 1 scenario, December is winter in the north,

the solar light intensity is low, and the temperature difference

between day and night is large. To improve the energy-saving

TABLE 1 Equipment electrical parameters.

Parameter Value

Micro-turbine efficiency 0.3

Micro gas turbine thermoelectric ratio 1.47

Micro gas turbine power upper and lower limit (kW) 650/0

Electric refrigerator energy efficiency ratio 4

Upper and lower limit of state of charge (pu) 0.9/0.1

Upper and lower limit of battery configuration capacity (kWh) 850/0

Maximum charge and discharge power (kW) 300

Battery charging efficiency 0.95

Battery discharge efficiency 0.95

Photovoltaic use and maintenance cost (yuan/kWh) 0.06

Battery maintenance cost (yuan/kWh) 0.03

Maintenance cost of electric refrigerator (yuan/kWh) 0.01

Maintenance cost of micro gas turbine (yuan/kWh) 0.04

Photovoltaic subsidy electricity price (yuan/kWh) 0.45

Electricity price for peak shaving auxiliary services (yuan/kWh) 0.35

Use energy penalty factor 0.5

Set temperature (˚C) 22.5–25
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level of the building microgrid system, based on the principle

of virtual energy storage in buildings, the temperature in the

building is actively reduced in winter, forming a virtual energy

storage thermal load response of the building, as illustrated in

Figure 2. Based on the virtual energy storage of this building,

the optimal configuration calculation in the typical scenario of

Case 1 is performed, and the typical daily operation results are

listed in Table 2.

It is evident from the results in Table 2 that solar energy

resources are not particularly abundant in winter, and the

photovoltaic configuration capacity is small, as presented in

Figure 3. The primary function of the electric energy storage

system is to cooperate with the photovoltaic system to enhance

the utilization rate of photovoltaics simultaneously, play the role

of peak shaving and valley filling and emergency load support,

and improve the economic level of the comprehensive energy

system of the building. The capacity of the battery energy storage

system is configured to 375 kWh.

As the main energy supply equipment of the building system,

the gas turbine provides electricity and thermal power to the

building system, and is the main adjustment method for the

building microgrid integrated energy system. Ensuring a reliable

supply of heat load is also one of the reasons for the larger

configuration of gas turbines.

The absorption refrigeration unit converts the heat

generated by the gas turbine power generation into the

FIGURE 2
Building virtual energy storage and temperature change.

TABLE 2 Optimization results of building microgrid system for Case 1.

Equipment name Capacity Investment cost/yuan Operation and maintenance cost/yuan

Battery 375/kWh 562,500 180

Gas Turbine 650/kW 130,000 468

Photovoltaic 60/kW 60,000 115.2

Heat storage tank 200/kW 14,400 57.6

Electric refrigerator 50/kW 20,000 48

Absorption chiller 200/kW 16,000 120

Frontiers in Energy Research frontiersin.org09

Lv et al. 10.3389/fenrg.2022.1053498

224

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1053498


FIGURE 3
Photovoltaic output and light curve under Case 1.

FIGURE 4
Optimization results of the heat load under Case 1.
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FIGURE 5
Optimization results of cooling load under Case 1.

FIGURE 6
Optimization results of power load under Case 1.
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cooling load; however, it needs to effectively cooperate with

the heat storage tank to ensure reliable operation of the heat

load system of the building integrated system. Therefore,

under the conditions of a typical winter day, the facility

configuration capacity in relation to the heat load is higher.

In contrast, the cooling load of electric refrigeration and air

conditioners is low in winter, and refrigeration equipment is

configured according to the lower limit in typical winter

scenarios.

Under the calculation conditions of Case 1, to make the

configuration capacity of the building microgrid system more

reasonable, the optimal scheduling of each piece of equipment on

a typical day is performed. The results are presented in Figures

4–6, and the cost-effectiveness of the economical operation is as

follows: the environmental cost, fuel cost, photovoltaic

consumption benefit, and building virtual energy storage

benefit are 309, 2,360, 137, and 189 yuan, respectively. As

shown in the figure, owing to the active reduction in indoor

temperature in winter, the virtual energy storage of the building

has a charging effect to reduce the operating cost of the system.

However, in winter, owing to the small amount of heat

transferred by sunlight, the operation mode of heat storage

and heat storage systems is relatively simple. To ensure a heat

supply, gas turbines make the operation mode of the entire

integrated energy system inflexible, and the unbalanced power

in the microgrid is adjusted by the external grid.

FIGURE 7
Photovoltaic output and light curve under Case 2.

TABLE 3 Optimization results of the building microgrid system under Case 2.

Equipment name Capacity Investment cost/yuan Operation and maintenance cost/yuan

Battery 800/kWh 1200000 384

Gas Turbine 350/kW 70,000 252

Photovoltaic 80/kW 80,000 153.6

Heat storage tank 80/kW 5,760 23.04

Electric refrigerator 150/kW 60,000 144

Absorption chiller 250/kW 20,000 150
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6.4 Typical scenarios in summer

For the Case 2 scenario, June is summer in the north, the

solar light intensity is high, and the temperature difference

between day and night is small. To enhance the energy-saving

level of the building microgrid system, based on the principle of

virtual energy storage in the building, the temperature in the

building is actively increased in summer, and the virtual energy

storage and cooling load response of the building is formed, as

illustrated in Figure 7. Based on the virtual energy storage of the

building, the optimization calculation is performed under the

typical scenario of Case 2, and the typical daily operation results

are listed in Table 3.

As indicated in Table3, considering that solar energy

resources are particularly abundant in summer, the

photovoltaic capacity configuration is relatively high, as

depicted in Figure 8. The primary function of an electric

energy storage system is to cooperate with the photovoltaic

system to improve the utilization rate of photovoltaics.

Simultaneously, the economic level of the building’s

comprehensive energy system can be improved as much as

possible through the strategy of low storage and high

discharge. The capacity configuration is 800 kWh. In summer,

the cooling load demand is primarily considered, and the heating

load is small. The gas turbine supplies a small amount of cooling

load to the system via the absorption chiller; therefore, the gas

turbine is configured to 350 kW in a typical summer scenario. In

contrast, cooling load-related facilities have a higher

configuration capacity to ensure a reliable supply of the

cooling load of the building integrated system.

Under the calculation conditions of Case 2, the optimal

scheduling results for the building microgrid system are

presented in Figures 9–11, and the cost-effectiveness of the

economical operation is as follows: the environmental cost,

fuel cost, photovoltaic consumption benefit, and building

virtual energy storage benefit are 259, 1,640, 337 and

209 yuan, respectively. It is evident from the figure that,

owing to the strong sunlight in summer and the small heating

load of the gas turbine, the electric energy storage system

participates in the energy storage adjustment, which makes

the operation mode of the entire integrated energy system

more flexible, and the balance of the electric heating and

cooling load does not depend on the external power grid.

Therefore, in a typical summer scenario, the time-of-use

electricity price mechanism of the external power grid can

maximize the effect of low storage and high discharge in the

building microgrid system to maximize the economic benefit of

the building microgrid.

6.5 Algorithm convergence analysis

We proposed an improved multi-objective gray wolf

optimization algorithm based on niche technology, and the

FIGURE 8
Building virtual energy storage and temperature change.
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FIGURE 9
Optimization results of heat load under Case 2.

FIGURE 10
Optimization results of cooling load under Case 2.
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FIGURE 11
Optimization results of power load under Case 2.

FIGURE 12
Pareto Frontier solution set under Case 1.
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gray weighted correlation index was employed to evaluate

and analyze the optimization results. Figure 12 illustrates the

multi-objective convergence curve of a typical winter day.

The convergence curve was relatively smooth and stable. The

100 fitness function values (non-dominated solutions)

obtained by optimization were closely distributed around

the gray wolf population (dominated solution set),

indicating that the niche technique used in this study

effectively improved the ability of non-dominated

solutions to approach optimal solutions. Simultaneously,

multiple non-dominated solutions improved the selectivity

of users and obtained the optimal proportion of investment

costs and comprehensive benefits through the gray-weighted

correlation value. In summary, the multi-objective gray wolf

optimization algorithm based on niche technology proposed

in this paper exhibits good convergence in the optimization

and solution of a building microgrid system.

7 Conclusion

In this study, we constructed a virtual energy storage system

model based on the thermal storage characteristics of a building. On

this basis, a capacity configuration and operation optimization

method for a building microgrid integrated energy system that

considers virtual energy storage was proposed. Through theoretical

analysis and simulation, the following conclusions were drawn:

1) Virtual energy storage technology was integrated into the

optimization model of the building microgrid energy system.

By adjusting the indoor temperature of the building to satisfy

user requirements, energy management based on virtual

energy storage improved the operating economy of the

building microgrid system.

2) User satisfaction reflected the control effect of virtual energy

storage to a certain extent. The larger the indoor temperature

control range, the more obvious the virtual energy storage control

effect, which indicated that the systemhad general requirements for

user satisfaction and lower operating costs. In contrast, the system

had higher requirements for user satisfaction and higher operating

costs.

3) The improved multi-objective gray wolf optimization algorithm

based on niche technology effectively coordinated the

optimization relationship between comprehensive benefits and

investment costs, improving the ability of non-dominated

solutions to approach the optimal solution, and effectively

determining the optimal solution through the gray-weighted

correlation degree evaluation method, reducing the investment

cost of the building microgrid system, and enhancing the

comprehensive operation benefit of the building system.

The virtual energy storage system can better respond to the

power system to fill valleys and cut peaks, and reduce operating

costs of integrated energy systems. At the same time, it improves

new energy digestion capacity to reduce carbon emissions. These

provide new ideas for green and low-carbon operation of

integrated energy system.
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