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Affective video recommender
systems: A survey
Dandan Wang and Xiaoming Zhao*

Department of Computer Science, Taizhou University, Taizhou, China

Traditional video recommendation provides the viewers with customized

media content according to their historical records (e.g., ratings, reviews).

However, such systems tend to generate terrible results if the data

is insufficient, which leads to a cold-start problem. An affective video

recommender system (AVRS) is a multidiscipline and multimodal human-

robot interaction (HRI) system, and it incorporates physical, physiological,

neuroscience, and computer science subjects and multimedia resources,

including text, audio, and video. As a promising research domain, AVRS

employs advanced affective analysis technologies in video resources;

therefore, it can solve the cold-start problem. In AVRS, the viewers’ emotional

responses can be obtained from various techniques, including physical

signals (e.g., facial expression, gestures, and speech) and internal signals (e.g.,

physiological signals). The changes in these signals can be detected when

the viewers face specific situations. The physiological signals are a response

to central and autonomic nervous systems and are mostly involuntarily

activated, which cannot be easily controlled. Therefore, it is suitable for

reliable emotion analysis. The physical signals can be recorded by a webcam

or recorder. In contrast, the physiological signals can be collected by

various equipment, e.g., psychophysiological heart rate (HR) signals calculated

by echocardiogram (ECG), electro-dermal activity (EDA), and brain activity

(GA) from electroencephalography (EEG) signals, skin conductance response

(SCR) by a galvanic skin response (GSR), and photoplethysmography (PPG)

estimating users’ pulse. This survey aims to provide a comprehensive overview

of the AVRS domain. To analyze the recent efforts in the field of affective video

recommendation, we collected 92 relevant published articles from Google

Scholar and summarized the articles and their key findings. In this survey, we

feature these articles concerning AVRS from different perspectives, including

various traditional recommendation algorithms and advanced deep learning-

based algorithms, the commonly used affective video recommendation

databases, audience response categories, and evaluation methods. Finally,

we conclude the challenge of AVRS and provide the potential future

research directions.

KEYWORDS

video recommendation, affective video recommender system, multidiscipline,
multimodal, neuroscience, affective analysis, physiological signals, deep learning
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Introduction

Emotion or affection is a mental state which is unconscious
and spontaneously arises accompanied by physiological and
psychological status changes in human organs and tissues, e.g.,
heart rate, facial expression, brain, etc. (Shu et al., 2018b).
Emotions are universal and have proved to be a highly
multidisciplinary research field, from psychology, sociology, and
neuroscience to computer science (Baveye et al., 2018). The
emotional state of a consumer determines his behavior and
decision-making process, i.e., click, purchase, or close. However,
the viewer’s emotional state is ignored in the recommendation
process because of the complexity of the mutual interaction
of physiological signals with human emotions. The subtle
emotional expression is straightforward to be misunderstood.
Previous studies have mainly focused on users’ affection
by ratings (Roy and Guntuku, 2016), comments (Orellana-
Rodriguez et al., 2015), helpfulness votes, etc. However,
acquiring this feedback requires users’ cooperation, and some
require plenty of time. Therefore, the amount of such feedback
data is limited and faced with a cold-start problem.

Recent research employs techniques closely related to
neuroscience and human-robot interaction (HRI). The viewers’
emotional states are obtained from analyzing their physical and
internal signal parameters with the help of various equipment.
For example, researchers apply photoplethysmography (PPG)
to estimate users’ pulse by using the fluctuations in skin color
related to blood volume and the proportion of reflected light
(Bohlin et al., 2019). Dabas et al. (2018) studied human emotions
with the help of electroencephalogram (EEG) signals. De
Pessemier et al. (2019) facilitated HRI for users to watch videos
by an automated procedure based on facial recognition. The
automatic feedback is gathered when users play the videos using
a front-facing camera. The viewer’s physiological data is easy to
get and can be obtained by several methods without the user’s
active cooperation in the viewing process. The physiological
data can be achieved by measuring body parameters, including
skin estimated pulse, heart rate, mood, motion, shot change rate,
and sound energy. The viewers’ psychophysiological signals of
heart rate (HR) were calculated from an echocardiogram (ECG),
while electro-dermal activity (EDA) and brain activity (BA) in
EEG signals (Ðord̄ević Čegar et al., 2020). Facial expressions or
features can be obtained by a camera (Tkalčič et al., 2013a).

The affective computing technology promotes the rapid
development of the affective video recommender systems
(AVRSs). An AVRS is a new trending research direction of
recommender families in recent years. Unlike text, image, and
speech emotion recognition (Zhang et al., 2022), AVRS mainly
analyzes the emotional states in videos and detects emotional
reactions according to different scenes. An AVRS recommends
video resources that viewers may be interested in based on

the recognized emotional states. As a new branch of affective
analysis and recommender systems, it is necessary to define
AVRS according to previous literature research.

Definition 1: AVRS: is a multidiscipline and multimodal
HRI system that videos are recommended based on the
reviewers’ emotional responses (implicit or explicit), e.g.,
physical, physiological signals, comments, etc.

The physical data reflect communicative signals, e.g., facial
expressions, speech detection, and eye-tracking while viewing
the video (Lim et al., 2020). In contrast, the physiological signals
record body variations, e.g., heart rate, temperature, and blood
pressure changes. These physical and physiological signals and
comments are recognized and interpreted into emotional states.
The AVRS recommends the videos based on emotion models
according to the viewers’ emotional states.

The differences between this survey
and former studies

An AVRS is a relatively new recommender family branch
that has begun to develop in recent years. At present, there
are few comprehensive reviews related to affective video
recommendations. Most works mainly focus on different
domains of recommender systems, including recommender
systems (Singh et al., 2021), the application of deep learning
in recommender systems (Guo et al., 2017), tourism
recommendation systems based on emotion recognition
(Santamaria-Granados et al., 2021), affective recommender
system techniques (Raheem and Ali, 2020), etc.

As shown in Table 1, we compare different aspects
of our survey and recently existing related reviews, i.e.,
multimodal feature, multimodal data sources, deep learning
methods, affective computing, multidiscipline knowledge,
and video contents. Singh et al. (2021) mainly focused on
different recommendation methods and existing problems
without involving multimodal features, multimodal data
sources, and multidiscipline knowledge. Zhang et al. (2019)
provided a review of deep learning-based recommendations.
However, they failed to supply multimodal data sources,
affective computing, and multidiscipline knowledge. In
Santamaria-Granados et al. (2021), they explored the emotional
recognition of recommender systems in the tourist scenario.
They provided guidelines for establishing emotion-sensitive
tourist recommender systems. Unfortunately, they only
cover a few publications related to multimodal data sources
and video content. The contribution of Raheem and Ali
(2020) is one of very few research works in the field of
affective recommendation; they introduced the application of
recommendation technology based on affective computing.
However, Raheem and Ali (2020) haven’t explored multimodal
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TABLE 1 Comparisons between this survey and existing reviews.

Main concerns Singh et al. (2021) Zhang et al. (2019) Santamaria-Granados
et al. (2021)

Raheem and Ali
(2020)

Our survey

Multimodal feature × X X X X

Multimodal data sources × × Few × X

Deep learning methods X X X X X

Affective computing X × X X X

Multidiscipline knowledge × × X × X

Video content X X Few X X

data sources and multidiscipline knowledge. This survey aims
to provide a comprehensive review of current research on
AVRS, to discuss the open problems and limitations, and point
out future possible directions.

The method of collecting relevant
publications and the distribution

The relevant publications in this survey are obtained
from Google scholar and published by Science Direct,
Springer, IEEE, ACM, etc. The collected publications are from
2009 to 2022; filters are applied to the search engine by
subject (affection, emotion, sentiment, affective computing,
video recommendation, recommender systems). Table 2
illustrates the number of publications and the percentage from
different sources.

We collected 92 non-repeated publications related to AVRS.
Most of the articles are from IEEE, accounting for 38.04%, more
than three times that of ACM and Elsevier. The distribution
of publications from ACM, Elsevier, and Springer is similar,
accounting for about 11–17%. The remaining publications are
from various published websites. It can be seen fromTable 2 that
the number of publications related to AVRS is relatively limited
compared with other fields of recommender systems, and it is
thus in its infancy, which requires a large number of researchers
and their outstanding work.

The distribution of AVRS publications is shown in Figure 1.
The x-axis represents the year of publication, and the y-axis
represents the total number of publications in the corresponding
year. As we can see from Figure 1, the number of research

TABLE 2 Publications from different sources.

Databases Number of publications Percentage

ACM 11 11.96%

IEEE 35 38.04%

Elsevier 11 11.96%

Springer 15 16.30%

Others 20 21.74%

Total 92 100%

works on AVRS is scarce. Since the relevant articles were
published in 2009, there have been no more than ten published
articles every year except in 2018, reaching the peak of 14
in 2018 and showing an apparent downward trend afterward.
The publication distribution in Figure 1 also indicates that
the prosperity of AVRS currently requires a great deal of
academic dedication.

Contributions of this survey

This survey provides a concise, comprehensive
understanding of the latest AVRS research and gives dynamic
guidelines in AVRS for scientific researchers, practitioners, and
developers interested in video recommendations. We define the
internal logic and operating mechanism of various models and
algorithms, the classification of existing technologies and their
characteristics, the databases for affective computing, the types
of audience responses, and the evaluation metrics. The main
contributions of this survey are summarized in the following
three aspects:

(1) We systematically summarize and overview the current
techniques in the affective video recommendation field.

(2) We classified the works of literature related to different
models and algorithms, the possible database resources for
video recommendation, the types of audience responses,
and the evaluation metrics.

(3) We show the current challenges in the video
recommendation field and envision possible future
research directions.

The structure of this survey is arranged in the following:
Section 2 introduces currently-used algorithms and models of
video recommender systems; Section 3 shows the database
resources commonly used in the research of AVRS;
Section 4 classifies the ways to obtain user responses in
publications; Section 5 summarizes the evaluation metrics of
recommendation effect in different publications; Section 6
analyzes the challenges in the current research and discusses
future research directions.
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FIGURE 1

Distribution of publications in AVRS.

The state-of-the-art affective
video recommendation algorithms
and models

Video recommendation is based on video features and the
viewers’ profiles. According to video clips, the viewers’ emotions
are challenging to be captured simultaneously. Therefore,
an AVRS is a more complex domain in recommender
systems. Several researchers tend to solve the AVRS problem
by various methods, traditional models, or algorithms,
including support vector machine/support vector regression
(SVM/SVR) (Arapakis et al., 2009a), clustering (Song and Yang,
2022), AdaBoost (Zhao et al., 2013), matrix-based algorithm
(MA) (Kaklauskas et al., 2018), collaborative filtering (CF)
(Diaz et al., 2018), content-based filtering (CBF) (Deldjoo
et al., 2018), knowledge graph (KG) (Breitfuss et al., 2021),
genetic algorithms (GA) (Wang and Chen, 2020), hybrid
recommendation systems (HRS) (Wakil et al., 2015), the
combination of several traditional recommendation algorithms,
etc. Deep learning (DL) has gradually penetrated the field of
affective computing and promoted the development of video
recommendations. Deep learning-based models applied in
AVRS in recent years include reinforcement learning (RL)
(Leite et al., 2022), convolutional neural network (CNN) (Zhu
et al., 2019), long short-term memory (LSTM) (Cao et al., 2022),

multilayer perception (Ðord̄ević Čegar et al., 2020) (MLP), deep
hybrid models (DHM) (Mishra et al., 2020), etc. The evolution
of AVRS with different algorithms and databases is illustrated in
Figure 2.

Table 3 shows the publications of this survey based on
different techniques. From Table 3, we can infer that the
most general approaches used for video recommendation are
SVM/SVR, MA, CF, and CBF methods. Other models adopted
in AVRS are relatively rare, especially the work of deep learning-
based algorithms.

In this section, we classify the publications according
to the adopted algorithms or models. We first introduce
several commonly-used traditional video recommendation
algorithms, then describe the application of prevalent deep
learning algorithms in AVRS, and analyze the advantages
and disadvantages of both conventional recommendation
algorithms and deep learning algorithms.

Traditional methods

Support vector machine (SVM) or support
vector regression (SVR)

The fundamental idea of implementing SVM and SVR
is classifying the mixed input features to predict the users’
emotional states during their interaction with the robots.
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FIGURE 2

The evolution of AVRS with different algorithms and databases.

An SVM/SVR is one of the most widely-used techniques
in the affective video recommendation domain. Researchers
devoted valuable efforts to promoting the performances of

video recommendations based on SVM/SVR. In Arapakis et al.
(2009a), they trained a two-layer hierarchical SVM model by
using interactive data, context information, and user response
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TABLE 3 Publications based on different techniques.

Categories Algorithm/Model Publications

Traditional methods SVM/SVR Arapakis et al., 2009a,b; Soleymani and Pantic, 2012; Soleymani et al., 2012; Srivastava and Roy, 2014;
Sivakumar et al., 2015; Niu et al., 2017; Dabas et al., 2018; Bohlin et al., 2019

Clustering Niu et al., 2013; Niu et al., 2016

AdaBoost Zhao et al., 2013; Shu et al., 2018a

MA Tkalčič et al., 2013b; Dnodxvndv et al., 2018; Kaklauskas et al., 2018

CF Soleymani et al., 2009; Winoto and Tang, 2010; Tkalčič et al., 2013b; Choi et al., 2016; Diaz et al., 2018

CBF Shi et al., 2013; Tkalčič et al., 2013b; Deldjoo et al., 2018

KG Breitfuss et al., 2021; Qi et al., 2021

GA Yadati et al., 2014

HRS Mugellini et al., 2014; Wakil et al., 2015

Deep learning-based methods RL Tripathi et al., 2018; Leite et al., 2022

CNN Hewitt and Gunes, 2018; Kwon et al., 2018; Yang et al., 2019; Zhu et al., 2019

LSTM Alhagry, 2017; Zhang and Zhang, 2017; Ogawa et al., 2018; Nie et al., 2020; Wang et al., 2020; Cao
et al., 2022

MLP Boughrara et al., 2016; Ðord̄ević Čegar et al., 2020; Krishnamurthy, 2020

DHM Fan et al., 2016; Liu et al., 2017; Yenter, 2017; Zhang et al., 2018; Tripathi et al., 2019; Mishra et al., 2020

to determine whether the user’s unknown video is relevant or
not. In Bohlin et al. (2019), they a support vector classifier was
used to predict the ratings of video viewers and whether they will
watch similar videos.

In Arapakis et al. (2009b), they leveraged a two-layer
hierarchical SVM model to discriminate whether the video is
relevant to a user. The real-time facial expressions were adopted
for constructing a face model and classified into seven emotion
categories. The classification results were forwarded to an SVM
model to determine whether the videos were relevant or not.
In Dabas et al. (2018), the authors classified users’ emotions
when watching musical videos by constructing a 3D emotional
model consisting of several octants including eight emotional
states, i.e., relaxed, peaceful, bored, disgusted, nervous, sad,
surprised, and excited. The human emotions were studied using
EEG signals on the DEAP database (Soleymani et al., 2012).
In Soleymani et al. (2012), they proposed a facial expression
recognition algorithm. In particular, they first extracted frames
from video sequences. Then, the structures were used to locate
the faces, and a feature extractor was employed to extract face
features. Finally, the extracted face features were normalized to
obtain a higher level feature set, followed by training the SVM
classifier to recognize facial expressions in real-time. A modality
fusion strategy with an SVM (Soleymani and Pantic, 2012)
was used to classify arousal and valence into three categories,
respectively. The SVM with RBF kernel was utilized to identify
the samples by discriminative features from two modalities.
However, the problem with employing an SVM in a fusion
scheme is that the output of SVM classifiers is uncalibrated; it
is not directly usable, being a confidence value when combining
results of different classifiers. Therefore, in Soleymani and
Pantic (2012) they used two methods to tackle the problem,
i.e., to model the probability of two classes determining the

output values of SVM and adopting a solution to the extent of
multiple courses.

Although these SVM-based algorithms have made
significant progress in affective video recommendation,
they are facing the problem of ignoring the temporal video
factor and seriously affecting the recommendation quality.
To solve this problem, Niu et al. (2017) studied the temporal
element of emotion, i.e., the characteristics of emotional
fluctuation. They proposed a method based on Grey Relational
Analysis (GRA) to solve the above-mentioned problems. First,
video features were extracted and mapped to Lovheim emotion
space through an SVM. Then, GRA calculated the relationship
between videos based on emotional features. Finally, the Fisher
model was used for video recommendation, and their method
proved effective when recommending temporal video sources.

In Srivastava and Roy (2014), they used an SVR to extract
the connotative features of the movie’s audio to represent user
reaction impressions. The SVR ranked the film according to
the connotative features and then compared the ranking results
with the user preferences and recommended movies to the users.
An affective recommender framework was proposed to provide
personalized movie recommendations (Sivakumar et al., 2015)
using audio-visual descriptors and connotations to offer the
viewers’ emotional state. They adopted an SVR to predict the
connotative values of each movie at the regression stage, and
then the film nearing each other in the created connotative space
were recommended to reviewers.

Clustering algorithms
The basic idea of video recommendations using a clustering

algorithm is to cluster viewers or videos into groups based on
the emotional similarity of viewers or the similarity of video
features. The former recommends videos to users with similar
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emotional states, and the latter recommends unseen videos in
the same cluster. In Niu et al. (2013), they presented a video
browsing system called Affivir that dynamically adjusted session
parameters according to viewers’ current mood by modeling
user-watching behavior. For a given user, Affivir first analyzed
the user’s emotional interest through an interactive process
where user behavior of watching and skipping was recorded.
When the user’s preference was learned, the unseen videos with
similar affective responses based on affective similarities were
recommended. Four affective video features generated identical
videos. To improve the efficiency of video retrieval, videos in
the database were pre-clustered based on video similarities.
Subsequently, Niu et al. (2016) proposed an improved similarity
calculation method, normalized validity—approximate graphs
(NVAG), and adopted the block-based color histogram for
similarity measurement. NVAG significantly improved the
recommendation effect in video sharing compared with the
Affivir algorithm.

AdaBoost learning algorithms
The core idea of adopting AdaBoost learning algorithms

is selecting discriminative features to construct a facial
expression classifier. Unlike the original AdaBoost algorithms
selecting the best features in several rounds and generating
a weak classifier, the AdaBoost algorithms used in facial
expression tend to develop a mid-strong classifier based on
a compositional feature. In Shu et al. (2018a), an AdaBoost
classifier was used based on ECG signals obtained by a
wearable device to analyze the emotional state, whether
positive or negative. In Zhao et al. (2013), they proposed
an improved AdaBoost learning algorithm to classify and
recommend videos. The proposed method was based on facial
expression recognition fused with spatiotemporal features. The
spatial features combined Haar-like elements with training a
mid-classifier and then were embedded into the improved
AdaBoost learning algorithm to achieve spatial characteristics.
For the temporal feature combination process, a time dimension
variable was employed by the hidden dynamic conditional
random fields (HDCRFs), and then the spatial features were
embedded into HDCRFs to recognize facial expressions. The
affective curve reflected the process of emotional changes.
The video affection was classified into affective sections
by psychology-based rules and probability-based scores by
segmenting different emotional states. Finally, the videos were
recommended to the users according to their affection states.
Figure 3 illustrates the framework of the improved AdaBoost
learning algorithm.

Matrix-based algorithms (MA)
The main idea of the matrix-based algorithms is to

compile the multidimensional attributes in the data into a
neural decision matrix (including the user’s emotional state,
physiological parameters, etc.) and then conduct multiple

standard neural analyses based on the neural decision
matrix. To solve the recommendation problem of real estate
advertising, video (Kaklauskas et al., 2018) considered the
emotional state of buyers and proposed a neuro decision
matrix based on house attributes, the emotional conditions of
buyers, and physiological parameters. They selected the most
personalized video alternatives according to the performance
of a multiple criteria neuro analysis. They designed the neuro
advertising property video recommendation system to provide
effective video advertising for real estate buyers for a long
time. In Dnodxvndv et al. (2018), they proposed a video
neuro-advertising recommender model to analyze consumers’
emotions, measure the engagement of relevant ads, and make
advertisements more efficient. The video neuro-advertising
recommender model contained two Video Neuro-advertising
Models and Systems (VINERS) Sub-models. The first Sub-
model was based on the compiled neuro-matrix for assessing
the effectiveness of a recommended advertisement; another Sub-
model was used to generate a large number of variants for every
viewer of an already developed advertisement.

Collaborative filtering (CF)
The general idea of AVRS research based on CF is mainly

realized by measuring similarity, either recommending videos
with similar emotions according to users’ emotional states
or adding affective analysis factors when measuring users’
similarity. The collaborative filtering-based algorithm was one
of recommender families’ most extensively used methods.
In Soleymani et al. (2009), they proposed a collaborative,
personalized affective video retrieval, which can retrieve videos
according to emotional queries, arousal, and valence. Based
on the traditional CF algorithm, Winoto and Tang (2010)
considered the emotional factors and analyzed the impact
between the user’s mood and the ratings of different movies.
For example, whether a user with positive mood scores higher
on romantic comedies or whether the user will score higher on
action movies when he is in a tense mood.

Traditional CF algorithms recommend users based on their
historical behavior similarity. However, new users face the cold-
start problem. Instead of using historical behavior records (Choi
et al., 2016), the changes in users’ facial scales were used
to describe the dynamic preferences of usage. Through this
method, they provided accurate, personalized recommendations
for new and existing users, thus solving the users’ cold-start
problem. In Diaz et al. (2018), they designed a recommender
entirely based on the impression data of viewers. When a user
views a video, the recommender system retrieves the metric data
from user information. The video impression metric was used
to determine which video resembled the metric of the current
video. They tested three categories, i.e., the joy impression,
the fear impression, and the sad impression. This impression-
based recommender system was proved to break the lack of
feature-based recommender systems.
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FIGURE 3

The framework of the improved AdaBoost learning algorithm (Zhao et al., 2013).

Content-based filtering (CBF)
The dominant thought behind the CBF of AVRS is

to incorporate affective video metadata, explicit feedback
information, and user mood as part of an item or user
attributes. In Canini et al. (2013), they believed that emotional
content recommendations could better meet users’ tastes and
preferences, so they extracted video tags and audio-visual
features to combine semantic and affective video information.
This method solved the problem of insufficient individual user

preference space characteristics by processing user logs and
boosting strategies. In Tkalčič et al. (2013b), a new database
named LDOS-PerAff-1 Corpus was collected. To confirm the
value of the new database consisting of emotion tags and the
users’ ratings, they used four recommendation algorithms for
verification: a fusion content-based algorithm, a collaborative
filtering algorithm, an emotion detection algorithm, and matrix
factorization. These four algorithms were tested involving
different values of the used corpus in the recommendation,
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including the effectiveness of affected data improving the
content-based advice, personality information that improves the
cold-start problem, the role of emotion detection methods in
face recognition, and user preferences for items with different
favorite attributes.

Video data on the Internet does not exist alone but co-
exist. For example, multimedia resources can contain video,
audio, images, and other forms of existence at the same time
(Soleymani et al., 2015). The affective analysis of multimedia
content focuses on estimating users’ expected emotional
state. In Deldjoo et al. (2018), they developed a content-
based multimedia recommendation system (CB-MMRS) model
based on CBF according to distinct resources. For video
recommendation, items came from videos, movies, movie clips,
trailers, etc. Items were used to match the user’s emotional state
and obtain clear feedback by stimulating the user’s emotional
state or by analyzing multimedia data.

Knowledge graph (KG)
The central idea behind KG of AVRS is to look for a

particular emotion by KG, which has a similar emotion state
extracted from user movie reviews. In Qi et al. (2021), they
aimed to choose a small set of video frames based on the viewers’
personalized interest for video highlight detection. Specifically,
they extracted the concept representation video clips by a front-
end network, the concepts were used to build an emotion-
related KG, and the relationships in the graph were related to the
external public KGs. The emotional state influences decision-
making when users consume movies. Therefore, a knowledge
graph-based method (Breitfuss et al., 2021) was proposed to
include the emotional state factor in movie recommendations.
They extracted emotions from pre-existing movie reviews to
construct the knowledge graph. To test the efficiency of the
proposed method, they developed a chatbot with a reasoning
mechanism combing users’ emotions analyzed from chat
messages. Figure 4 shows the recommendation process based on
KG. The chat messages of movie reviews between an AI chatbot
and a user was extracted and categorized by a Bayesian classifier
based on emotions. Natural language processing technology
was used to remove emotions. To promote the speed of data
retrieval, a graph database named graph DB API was employed
to store the processing emotions.

Genetic algorithms (GA)
The GA is often used to solve the optimization problem

of multiple objectives with conflicts. In AVRS, the critical idea
of GAs is to balance the imbalance between users’ emotional
preferences and actual business objectives. In Yadati et al. (2014),
they studied the application of emotion analysis in in-stream
video advertising as one of few excellent video recommendation
works based on affective analysis and considering multiple
objectives. They explained that emotion played a vital role in
users’ purchasing behavior, and the consideration of emotional

influence should be added to video advertising. Therefore, they
proposed a method of Computational Affective Video-in-Video
Advertising (CAVVA) strategy, which mainly considered two
factors: identifying candidate advertising insertion points and
the most appropriate advertisement. They modeled the problem
as non-linear integer programming. Due to the conflict between
these two objectives, minimizing the impact of advertising
insertion on users and maximizing users’ participation in
advertising, they adopted a genetic algorithm to solve the above
conflict problems.

Hybrid recommender systems (HRS)
The dominant thought of employing HRS in AVRS is

that combining multiple algorithms involving the viewers’
emotional states can promote recommendation efficiency. The
effect of video recommendation by a single algorithm is limited,
so researchers turned to HRS. In Wakil et al. (2015), they
provided a hybrid model combining CF, CBF, and emotion
detection algorithms. The CF and CBF algorithm was used to
capture users’ preferences, and the emotion detection algorithm
considered the influence of users’ emotion, which the traditional
recommendation algorithms did not consider. An exciting
research direction on video recommendation is temporary
saliency, i.e., detecting the most critical video events, which may
be the most attractive parts for users. A time series of arousal
model (Mugellini et al., 2014) was designed based on audio-
visual features to analyze users’ emotions. The multimodal
system helps extract the parts that users may be interested in
and can combine with various recommendation algorithms.

To summarize, in the last few years, researchers have made
great efforts to video retrieve and recommendation domains
by various traditional recommendation algorithms, including
SVM/SVR, clustering, AdaBoost, MA, CF, CBF, KG, GA, and
HRS. Some of their research works have achieved remarkable
success, promoted the progress of AVRS, and improved the
efficiency and quality of viewers’ access to video information.
However, these algorithms still face the following problems:

1) Although the algorithm is simple and easy to implement,
it cannot make accurate judgments on complex scenarios,
and the recommendation effect is minimal. For
example, Niu et al. (2013) recommended videos by
clustering viewers’ moods, which was not a personalized
recommendation strategy, and thus the recommendations
may not work well.

2) The experiment databases are relatively small and not
diverse. The portability of the recommendation strategy
generated based on such a database is low, significant-good
results on one database, while probably inferior on other
databases. For example, Zhao et al. (2013) relied heavily
on exaggerated and unnatural facial emotion expressions
and lacked direct and intuitive expression, making the
recommendation model unsuitable for the actual situation.
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FIGURE 4

The recommendation process based on KG (Breitfuss et al., 2021).

Deep learning-based methods

Traditional recommendation algorithms, such as
matrix factorization algorithms, are linear models, and the
recommended effect is limited. Compared with conventional
linear recommendation models, deep learning (DL) (Zhang
et al., 2019) can obtain the non-linear characteristics of
user interaction data, thereby capturing more complex
information about user interaction patterns (Dai, 2021). The
sequential modeling of DL also shows promising aspects in
processing speech recognition, text analysis, etc. Therefore, the
recommendation effectiveness of deep learning in recommender
systems has been superior. Deep learning has penetrated a series
of fields; the publication of deep learning algorithms has
grown exponentially in industry and academia. Although
DL has proved its essential role in the recommendation
system, the exploration of the recommendation system in
video recommendation is still limited, which needs to be paid
attention by more scholars and supported by works in more
fields. This subsection introduces several state-of-the-art DL
models for solving affective video recommendations.

Reinforcement learning (RL)
The core idea of adopting RL in AVRS is that DL can

continuously and dynamically learn strategies through the
real-time state changes caused by the impact of users on
the surrounding environment to maximize the cumulative
reward. In Leite et al. (2022), they discussed the role of deep
reinforcement learning (DRL) in video recommendation when
used in a virtual learning environment. They also considered
two different student groups, i.e., common effect and high effect.
They designed a recommender system including five categories,
i.e., the new videos to watch, the students communicating
the current topic with a new tutor, the students displaying
the segment with the current tutor, the corresponding piece
with a new tutor, and the following video to watch. The
type of recommender system was determined by the scores of
students’ tests and the sensor-free participation detection model.
The recommended strategy was based on a DRL algorithm.
It was evaluated by a large field experiment, which showed

the effectiveness of video recommendations during the regular
school period. In Tripathi et al. (2018), they believe that the
cognitive preferences of viewers are dynamic and should track
the behavior of viewers and their cognitive preferences for
different emotions in real-time. Therefore, they proposed an RL
method to learn video recommendation decisions and monitor
the interaction between users and recommended videos in real-
time through the created user interface and webcam. Figure 5
illustrates the RL sequence of states and actions. The St , at , and rt

demonstrate the state, action, and the reward of time t, whereas
rt+1 represents the reward gained by performing action in the
state of st . The learning process continued until state st+n.

Convolutional neural network (CNN)
The basic idea of CNN in affective video analysis is that

the CNNs can be employed for feature extraction from various
types of signals and information. In Hewitt and Gunes (2018),
they deployed a CNN model for facial affective analysis used on
mobile devices. The proposed CNN model incorporates three
variants of CNN architectures (i.e., AlexNet Variant, VGGNet
Variant, and MobileNet Variant), which consider both the high
performance and the low storage requirements. In Kwon et al.
(2018), they designed a CNN architecture for accurate emotional
classification. The CNN model extracts both temporal and
frequency characteristic features from electroencephalogram
signals and the pre-processed galvanic skin response (GSR)
signals. The electroencephalogram signals reflect temporal
characteristics as human emotions are time sequence data.
A wavelet transform represents the frequency feature through
the frequency axis. In Yang et al. (2019), they presented a multi-
column CNN model using EEG signals for emotion recognition.
The decision of the proposed CNN model is generated by a
weighted sum of multiple individual recognizing modules.

Unlike the above method of detecting the viewer’s emotion
change through the device, Zhu et al. (2019) automatically
recognized the viewer’s emotion by acquiring the information
about the protagonist. They used a protagonist-based key
frame selection strategy to extract features from video clips to
alleviate the considerable workload of analyzing a large amount
of video information. Then, the characteristics of keywords
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FIGURE 5

The RL sequence of states and actions (Tripathi et al., 2018).

were fed into a CNN model based on optical flow images,
and the CNN model incorporated temporal information from
video clips. Then all of the features were fused as inputs of
an SVM and SVR model for affective video recognition. The
framework of the proposed method (Zhu et al., 2019) is shown
in Figure 6. The framework is composed of two parts: feature
extraction and feature concatenation. In the first process, they
employed two CNN models to extract features related to hand-
crafted visual and audio elements. The protagonists’ keyframes
(PKFs) were selected from video clips. Then, two parallel
extraction strategies were adopted to collect the matrix and
optical flow images through two CNN models. These features
were finally concatenated to map the affective dimension by
an SVM/SVR model.

Long short-term memory (LSTM)
The dominant thought of adopting LSTM models in

emotional video classification is that LSTMs can consider
temporal, spatial, and frequency characteristics of various
signals and information. In Alhagry (2017), an LSTM is adopted
to learn the EEG features for emotional video recognition.
The LSTM model takes the dense layer to classify the
raw EEG features into low and high arousal, valence, and
predicting the continuous scale between 1 and 9. In Wang
et al. (2020), they established a Bi-LSTM model to extract
emotional features for analyzing danmaku video data and users’
affective characteristics. The Bi-LSTM model classifies the users’
emotions into four dimensions, i.e., pleasure, anger, sorrow,
and joy. In Zhang and Zhang (2017), they studied the inherent
correlations between video content and the viewers’ affective
states by presenting an LSTM model, which simultaneously
predicts the arousal and valance dimensions. The LSTM model
extracts a collection of low-level multimodal features from
videos and projects these features into arousal and valence
value pairs. In Nie et al. (2020), they considered the relations
between the utterances and handled the multimodal feature
fusion problem in the feature learning process with an LSTM-
based model. In Ogawa et al. (2018), they introduced a Bi-LSTM
network, which collaboratively adopts video features and EEG
signals. They first used transfer learning for video classification
as the limited number of video labels which difficult to classify.
Then, a user study was conducted to verify the effective
representation of EEG signals calculated by Bi-LSTM.

In Cao et al. (2022), they proposed the Visual Enhanced
Comments Emotion Recognition Model (VECERM) to analyze
users’ emotions, thereby overcoming the problem of user-
generated comments related to plots. The VECERM model was
composed of four layers.

Input embedding layer

In the input embedding layer, two significant parts are
included: users’ text data comments and the images of
video frames. This layer reduces the dimension of the input
information, VGG processes the video information, and the
Transformer processes the text information. The Transformer
then converts the text representation into embedding vectors.

Context enhancement layer

Since text information and comments are synchronized, the
Context Enhancement Layer mixes video information and text
data through the attention mechanism.

Emotion attention layer

The purpose of the Emotion Attention Layer is to mine
the emotional semantics of the comment text to obtain a good
text representation. Due to the short length of the text, Bi-
directional Long Short-Term Memory (BiLSTM) is adopted for
mining the text data.

Classification layer

The Classification Layer realizes the classification of users’
emotions throughout the whole connection layer. This is
a multi-classification classification problem, including glad,
dismissed, sad, amazed, and afraid.

The VECERM architecture is shown in Figure 7.

Multilayer perception (MLP)
The central idea behind the MLP of AVRS is to extract

features from multimodal data to classify emotional expressions,
e.g., visual, audio, and textual information. Krishnamurthy
(2020) utilized an MLP network to classify user sentiments.
The MLP model analyzes the users’ emotions based on
web recordings from multimodal resources. They employed
a feature-level fusion method to fuse the extracted features
from various modalities, i.e., video, posts, and pictures.
An oppositional grass bee algorithm then chooses the
extracted features to generate the best optimal feature set.
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FIGURE 6

The framework of the proposed method (Zhu et al., 2019).

FIGURE 7

The architecture of VECERM (Cao et al., 2022).

In Boughrara et al. (2016), they proposed an MLP for facial
expression classification. The established MLP model consists of
a single hidden layer, which seeks to find synthesis parameters
in the training stage. They adopted a biological vision-based
facial description in the feature extraction step to extract
face image features.

To predict the emotional state of users when watching a
stereoscopic 3D video, Ðord̄ević Čegar et al. (2020) extracted
features from the volunteers’ psychological data of ECG, EDA,
and EEG signals and then used an emotional state estimator
based on feedforward multilayer perception artificial neural
network to predict the state of viewers when they were viewing
different kinds of stereoscopic 3D video content. The MLP
model is shown in Figure 8. The configuration of MLP based
on HR and EDA selected features were as the input features,
including IIR Median, HR Moving STD, HR Moving PCA, EDA

Median, EDA STD, EDA PCA, and SCR Mean. They adopted the
Levenberg-Marquardt back-propagation algorithm for training
the network. The output of MLP was a linear activation function,
which generated the estimated scores.

Deep hybrid models (DHM)
The fundamental idea of implementing DHM is combining

different DL models (e.g., CNN, RNN, LSTM, RL, etc.). The
fusing mode of multiple DL models can be either the output of
one or several models is used as the input of another model, or
several models simultaneously extract the features of video or
multimodal data or signals. The combination of several models
improves the limited non-linear performance of a single model
(e.g., LSTM has a memory for long-time data processing). In
Zhang et al. (2018), they established an audio-visual emotion
recognition model, which is fused with a CNN, 3D-CNN, and
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FIGURE 8

The MLP model (Ðord̄ević Čegar et al., 2020).

a Deep Believe Networks (DBNs). The designed model is a two-
step procedure. The CNN and 3D-CNN are firstly pre-trained
according to a large-scale of both image and video tasks, which
are fine-tuned to learn audio and visual segment features. Then,
the output of the former step is combined into a fusion network
to build a DBN model, and a linear SVM obtains the final results
of emotional classification. In Fan et al. (2016), they proposed
a hybrid DL model for video-based emotional recognition. The
model is the combination of a recurrent neural network (RNN)
and a 3D CNN. The 3D CNN models the video appearance
and motion concurrently, while the RNN model processes the
appearance features obtained by the CNN model over individual
video frames, which are used for the input features, then
RNN encodes the motion. In Yenter (2017), they produced an
architecture that combined CNN and LSTM models for textual
sentiment analysis. The CNN model is consisted of multiple
branches, whereas the LSTM model is a word-level classification.
The output of CNN branches is transferred to the LSTM and
then concatenated to a fully-connected layer to generate a single
output for sentiment polarity classification.

Mishra et al. (2020) established a fascinating empirical
analysis. Firstly, they used two CNN models (AlexNet and
GoogLeNet) and an LSTM model to classify EEG data into
different emotion categories. The purpose was to recognize
the emotional state of EEG data through the deep learning
model. Using the pre-trained CNN and LSTM models can
reduce the computing cost of the training network through
simple parameter adjustment. Then, these models were used
to verify whether the trained models were universal and
effective in different fields. In Liu et al. (2017), they presented
two attention mechanisms, i.e., LSTM and RNN, for emotion
recognition. These two models integrate temporal attention and
band attention, which are based on untrimmed visual signals
and EEG signals. The LSTM and RNN models take all the
signal data as inputs and then generate representations of each
signal, which are transferred to a multimodal fusion unit for
predicting the emotional labels. Tripathi et al. (2019) designed a
personalized and emotional intelligence video recommendation
engine named EmoWare, which employed reinforcement
learning (RL) and deep-bidirectional recurrent neural networks
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FIGURE 9

The framework of EmoWare (Tripathi et al., 2019).

(DBRNN) models. The framework of EmoWare is shown in
Figure 9.

To summarize, deep learning-based AVRS algorithms can
learn the potential characteristics of audio, text, video, and other
multimedia and obtain representations and abstraction from
multiple levels, resulting in its significant advantages in dealing
with emotional analysis. For example, the CNN can capture
the global and local features and analyze spatial information
changes during short time periods of video clips, remarkably
enhancing efficiency (Fonnegra, 2018). The RNN architecture
is good at processing sequential data by remembering former
computations in loops. Each deep learning algorithm has
its personalized advantages and disadvantages. Therefore,
researchers combine several deep learning models to solve
complex problems. Especially, Tripathi et al. (2019) adopted
RNN and LSTM algorithms concurrently. However, deep
learning is still in its infancy in affective video recommendation.
The research work of exploration is scarce, and the available

databases are also very precious. It still needs a large amount of
research support.

Affective video recommendation
databases

In this section, we introduce the existing 31 valuable
databases which play a vital role in AVRS research. These
databases are composed of multiple modes, including
comments, ratings, videos, films, audio, images, etc. There
are various methods to obtain these data, such as capturing
the changes in the viewer’s facial expressions through
webcams, getting the user’s physiological signals through
EEG, questionnaires, or a combination of these methods. Most
of these databases are manually collected by researchers, which
is time-consuming and error-prone. In Lucey (2012), they
provided an effective way to construct two databases without
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manually scanning the full movies, and the movie labelers only
reviewed video clips recommended by an RS. These video clips
are the most representative. This method can quickly collect
and obtain much-annotated video information. The various
databases and their details are listed in Table 4.

The audience responses

The audience response to a video can be obtained
in various ways, mainly including two categories: explicit
acquisition and implicit acquisition. Standard methods for
explicit acquisition include user interactions (i.e., watching
videos, skipping videos.), questionnaires, surveys, and quizzes.
The questionnaires can be achieved through self-assessment
manikin (SAM) (Dnodxvndv et al., 2018). There is a wide range
of ways to implicitly obtain the emotional characteristics of
viewers, including facial expressions or features, measuring skin
estimated pulse, heart rate, body gestures, reviews, or comments.
The viewers’ psychophysiological signals of heart rate (HR) are
calculated from an echocardiogram (ECG) (Baveye et al., 2015),
while electro-dermal activity (EDA) and brain activity (BA) are
from electroencephalography (EEG) signals (Ðord̄ević Čegar
et al., 2020). The facial expressions or features [e.g., gaze distance
(Soleymani and Pantic, 2012)] can be obtained by a camera
(Tkalčič et al., 2013a). The questionnaire can accurately convey
the emotional state of users. However, it is also faced with the
problem that the amount of data is limited, affecting the viewing
experience, costly for organizations to conduct, and volunteers
sacrifice much time (Mulholland et al., 2017). Therefore, an
implicit acquisition that obtains affective states from face
recognition, heart rate, mood, EDA, BA, and body gestures plays
a significant role and provides more ways for affective video
recommendation. The method of implicit acquisition is more
flexible. Only by recording the physical signs of the viewer can
we obtain the emotional state through the algorithm. Martha
and Larson (2013) provide a unique perspective to analyze the
emotional states, that is, perceived connotative properties, which
prove to be more intersubjectively shared.

Table 5 shows the audience responses in different
publications. It can be inferred that facial expressions/features,
skin-estimated pulse/heart rate, movie reviews/comments, and
questionnaire/survey/quizzes are the most frequently used user
responses in affective video computing. Some researchers also
get users’ emotional feedback on videos from other different
perspectives, such as mood (Winoto and Tang, 2010), EDA
(Ðord̄ević Čegar et al., 2020), BA (Ðord̄ević Čegar et al., 2020),
body gestures (Hassib et al., 2017), and perceived connotative
properties (Martha and Larson, 2013). Some experimental
studies use one of these methods to obtain emotional expression,
but most of the research work uses a combination of multiple
user feedback methods. For example, Bohlin et al. (2019)
and Soni et al. (2019) evaluate the emotional state by facial

expressions/features and skin-estimated pulse/heart rate (Diaz
et al., 2018) adopt the method of combination of skin-estimated
pulse/heart rate and questionnaire.

Evaluation methods

The commonly used performance indicators include mean
accuracy, precision/recall/F1, mean absolute error (MAE), mean
square error (MSE)/root mean square error (RMSE), confusion
matrix, and valence, arousal, and dominance. However, viewers
do not need perfect prediction accuracy but need wise
recommendation strategies. Therefore, in addition to the former
metrics, several researchers also began to pay attention to
the quality of perceived recommendations to evaluate their
models and algorithms. For example, Arapakis et al. (2009a)
adopted Pearson’s ChiSquare test and the Dependent t-test to
analyze the emotion variance and the recommender system’s
performance. Niu et al. (2013, 2016) used CTR, session length,
and points test to evaluate the recommendation performance.
The higher the CTR, the longer the session length, and the
better the recommendation quality. The compiler average causal
effect (CACE) evaluator was employed by Leite et al. (2022) to
test the impact of recommendations offered to the treatment
group. Breitfuss et al. (2021) tested their knowledge graph-
based recommendation strategy by various metrics, including
Sparsity impact, the granularity of emotions, extensibility,
recommendation quality, and additional characteristics. Table 6
lists the evaluation metrics used in different publications.

Challenges and opportunities

In this survey, an overview of traditional recommendation
methods (e.g., SVM, SVR, CF, CBF, AdaBoost, GA, Clustering,
MA, KG, HRS) and deep learning-based technologies (e.g.,
CNN, MLP, RL, RNN, LSTM, DHM) adopted in AVRS has
been depicted. The research of AVRS is challenging since a
tremendous effort involving a multidisciplinary understanding
of human behavior and perception and multimodal approaches
integrating different modalities are required, such as text, audio,
image, and video. Although many scholars have begun to pay
attention to the field of AVRS in recent years and have made
valuable contributions from the perspective of data, models, and
algorithms, AVRS is still in its infancy. The challenges of the
AVRS domain mainly come from the following three aspects:

(1) Insufficient data and data analysis is highly sophisticated.

Much of the existing facial data exists a lot of unnatural
and exaggerated expressions (Zhang et al., 2022). More intuitive,
natural, scalable, and transportable facial expressions are
needed. In addition, the research on emotion analysis in the field
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TABLE 4 The databases for affective computing.

Name Details Publication

The affective feedback database Questionnaires of 24 participants on tasks, search process, and emotional experience of
the information-seeking process

Arapakis et al., 2009a

Cohn–Kanada expression
database

The database has 2105 digitized image sequences of 182 adult subjects, suitable for
comparative studies by multiple tokens of most primary FACS action units.

Zhao et al., 2011

Moviepilot mood track It consists of 4.5M ratings assigned by 105K users on 25K movies. Various contextual
information is provided, i.e., gender, age, production year, the audience of each movie,
movie-mood tag, etc.

Shi et al., 2013

The Hollywood movie video clips
database

Contains 155 video clips from Hollywood movies, annotated by 40 participants with
more than 1,300 annotations.

Soleymani et al., 2009

The Tellyads and YouTube video
clips database

Contains 15 videos of 165 min duration from various genres, e.g., TV shows, movie clips,
and news broadcasts.

Yadati et al., 2014

The affective property movie
database

The database contains more than 2,000 videos; movie affective properties are measured
by arousal and valence.

Niu et al., 2013

Nvidia 3D Vision database The database contains nine stereoscopic sequences of nearly 2 min duration. Ðord̄ević Čegar et al., 2020

The movie profile database It contains an item profile of various attributes describing the movie content. Wakil et al., 2015

The five emotional reactions
database

Two standard webcams are operating in real-time used to capture the users’ facial
expressions and estimate the pulse. The users’ reactions can be classified into five
categories: happiness, sadness, anger, fear, and surprise.

Bohlin et al., 2019; Soni et al.,
2019

Cohn–Kanada database Consists of 100 students of different races, i.e., African–American, Asian, and Latino.
Each subject performs a series of 23 facial displays. The selected sequences are labeled
with six emotions: anger, disgust, fear, happiness, sadness, and surprise.

Zhao et al., 2013

The clicker and emotional
reaction database

It consists of 30 subjects from the age of 18–35. Each subject watches five videos, and two
webcams monitor the behavior. The issues must also be surveyed according to their
watching and rating.

Diaz et al., 2018

DEAP The database is a multimodal database using EEG and physiological signals for emotion
analysis. The database obtains 32 subjects’ 1-min musical physiological video signals.

Soleymani et al., 2012; Dabas
et al., 2018; Mishra et al., 2020

Algebra video field test database The data are collected by a field experiment of 18,925 school students and 152 teachers in
149 schools.

Leite et al., 2022

Cohn Kanade database It contains photos of different emotions, from a neutral state to an explicit one. Leite et al., 2022

The 0-MOOD, 7-MOOD,
16-MOOD

It contains 0, 7, and 16 mood states, respectively. Winoto and Tang, 2010

The user action session database Affivir constantly crawls video data from the Internet, and user preference features are
extracted.

Niu et al., 2013; Niu et al., 2016

The format video database It contains 1,000 format mp4 videos ranging from 30 s to 10 min. The videos are from
various websites, i.e., Youku.com, YouTube.com, etc.

Niu et al., 2017

The footwear advertising videos
database

The user facial features and ratings of 52 subjects record the movement of vital facial
points continuously.

Choi et al., 2016

The NEAR database The NEAR database consists of a wide range of databases, i.e., the Property Video Clip
Ads Database, a text database of video clips.

Kaklauskas et al., 2018

LIRIS-ACCEDE It contains 160 feature films and short films from 9,800 video clips. It is the largest video
database with emotional labels and can be used for video indexing, summarization, and
browsing.

Baveye et al., 2013; Baveye et al.,
2015; Zhu et al., 2019

PM-SZU It is a new database for affective video analysis. It consists of 386 video clips extracted
from 8 films.

Zhu et al., 2019

The metractitic.com and
imdb.com database

It consists of 2,627,476 movie reviews. Breitfuss et al., 2021

Danmu database It contains a large amount of user-generated comments from Bilibili. Cao et al., 2022

LDOS-PerAff-1 Corpus It consists of subjects’ affective responses to video clips, answers are annotated in the
continuous valence-arousal-dominance space, and topics are annotated with personality
information.

Tkalčič et al., 2011a, 2013b

Mechanical Turk setup It contains affective annotations for the corpus to evaluate viewers’ reported boredom. Martha and Larson, 2013;
Soleymani et al., 2014

Multidimensional sentiment
dictionary from Ren CE

It includes 1,487 blogs and many emotional words and is labeled as a vector of 8
dimensions.

Pan et al., 2020

YouTube video clips Containing f 600 videos, 480 had transcripts. Pan et al., 2020

LDOS-CoMoDa It consists of contextual information and ratings on the users’ consumed movies and
personality profiles.

Odic et al., 2014

The IMDB movie scenes Some 240 users are viewing videos on 25 movie scenes on IMDB. The duration is
recorded.

Benini et al., 2011

The AFEW database A dynamic, temporal facial-expression data corpus contains short video clips of facial
expressions close to the real world.

Lucey, 2012

The SFEW database It is a static, harsh conditions database consisting of seven facial expression classes. Lucey, 2012
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TABLE 5 The audience responses in different publications.

Audience responses Publications

Facial expressions/features Soleymani and Pantic, 2012; Zhao et al., 2013; Boughrara et al., 2016; Choi et al., 2016; Kaklauskas et al., 2016; Mahata
et al., 2017; Diaz et al., 2018; Fonnegra, 2018; Hewitt and Gunes, 2018; Kaklauskas et al., 2018; Bohlin et al., 2019; Soni
et al., 2019; De Pessemier et al., 2020; Mishra et al., 2020; Leite et al., 2022

Skin-estimated pulse/heart rate Dabas et al., 2018; Diaz et al., 2018; Shu et al., 2018a; Bohlin et al., 2019; Soni et al., 2019; Ðord̄ević Čegar et al., 2020

Mood Winoto and Tang, 2010

EDA Ðord̄ević Čegar et al., 2020

BA Alhagry, 2017; Liu et al., 2017; Kwon et al., 2018; Ogawa et al., 2018; Yang et al., 2019; Ðord̄ević Čegar et al., 2020

User interactions Niu et al., 2013; Niu et al., 2016

GSR Kwon et al., 2018

Body gestures Hassib et al., 2017

Perceived connotative properties Martha and Larson, 2013; Zhang and Zhang, 2017

Movie reviews/comments/web recordings Mulholland et al., 2017; Yenter, 2017; Tripathi et al., 2019; Krishnamurthy, 2020; Pan et al., 2020; Wang et al., 2020;
Breitfuss et al., 2021; Cao et al., 2022

Questionnaire/survey/quiz Arapakis et al., 2009a; Soleymani and Pantic, 2012; Tkalčič et al., 2013b, 2014; Polignano, 2015; Hassib et al., 2017; Diaz
et al., 2018; Dnodxvndv et al., 2018; Kaklauskas et al., 2018; Bohlin et al., 2019; Zhu et al., 2019; Mishra et al., 2020;
Kaklauskas et al., 2020; Leite et al., 2022

TABLE 6 The evaluation metrics of different publications.

Metrics Related research papers

Pearson’s chi-square test and the dependent t-test Arapakis et al., 2009a

Mean accuracy Zhao et al., 2011, 2013; Tkalčič et al., 2013b; Fan et al., 2016; Alhagry, 2017; Liu et al., 2017; Yenter, 2017;
Zhang and Zhang, 2017; Dabas et al., 2018; Fonnegra, 2018; Hewitt and Gunes, 2018; Kwon et al., 2018;
Shu et al., 2018a; Zhang et al., 2018; Bohlin et al., 2019; Soni et al., 2019; Yang et al., 2019; De Pessemier
et al., 2020; Krishnamurthy, 2020; Mishra et al., 2020; Nie et al., 2020; Wang et al., 2020; Qi et al., 2021;
Leite et al., 2022

Precision/recall/F1 Niu et al., 2013; Shi et al., 2013; Liu et al., 2017; Ogawa et al., 2018; Zhang et al., 2018; Tripathi et al., 2019;
Yang et al., 2019; Krishnamurthy, 2020; Mishra et al., 2020; Wang et al., 2020; Cao et al., 2022

MAE Winoto and Tang, 2010; Choi et al., 2016

MSE/RMSE Boughrara et al., 2016; Hewitt and Gunes, 2018; Tripathi et al., 2019; Zhu et al., 2019; Ðord̄ević Čegar
et al., 2020

ROC Winoto and Tang, 2010

CTR Niu et al., 2013; Niu et al., 2016

Session length Niu et al., 2013; Niu et al., 2016

Confusion matrix Tkalčič et al., 2011b, 2013b; Zhao et al., 2013; Boughrara et al., 2016; Fan et al., 2016

CACE Leite et al., 2022

Sparsity impact, the granularity of emotions,
extensibility, recommendation quality, additional
characteristics

Breitfuss et al., 2021

Valence, arousal Wang and Cheong, 2006; Soleymani et al., 2009; Soleymani and Pantic, 2012; Oliveira et al., 2013; Tkalčič
et al., 2013b; Liu et al., 2017; Kwon et al., 2018; Yang et al., 2019

of recommender systems is not comprehensive. More complex
expressions that are not easily exposed should be paid attention
to, for example, micro-expression recognition (Ben et al., 2021).
Additionally, the EEG signals are difficult to analyze from
which part of the brain the electrical activity originates (Dabas
et al., 2018). This undoubtedly makes it more challenging to
accurately diagnose users’ emotional states on video.

(2) Combining existing models and algorithms with deep
learning-based techniques is insufficient.

The exploration of affective video recommendation
algorithms based on deep learning is currently limited. It only
involves several deep models, such as RL, CNN, RNN, LSTM,

MLP, and hybrid algorithms of several models. More advanced
works and better performance are needed based on emotional
analysis recommendations. The state-of-the-art technologies
emerging in recent years may also be combined with the
AVRS domain, e.g., the self-attention-based transformer
model in sentiment changes detection (Wu et al., 2020), and
the generative adversarial network (GAN) may provide data
augmentation for small-scale video or multimodal databases
(Ma et al., 2022).

(3) The research direction is monotonous.

The current focus is limited to the accuracy of prediction
on video recommendations, and the main problem to be solved
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is the cold-start or long-tail effect (Roy and Guntuku, 2016).
However, other research directions of recommendation
systems are not involved, such as multiobjective recommender
systems (MORS) (Wang and Chen, 2021) or multi-task
recommender systems (MTRS) (Ma et al., 2018) and explainable
recommender systems (ERS) (Zhang and Chen, 2020).
The MORS or MTRS can incorporate more objectives or
tasks into the video recommendation based on affective
computing; these models focus on more extensive aspects
of recommendation quality, such as diversity, novelty, etc.
The ERS is a promising research direction, which provides
the viewers with the recommendation reasoning according
to their facial expressions, body gestures, or other kinds of
emotional responses.
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In this paper, we investigate a challenging but interesting task in the research

of speech emotion recognition (SER), i.e., cross-corpus SER. Unlike the

conventional SER, the training (source) and testing (target) samples in cross-

corpus SER come from di�erent speech corpora, which results in a feature

distribution mismatch between them. Hence, the performance of most

existing SER methods may sharply decrease. To cope with this problem,

we propose a simple yet e�ective deep transfer learning method called

progressive distribution adapted neural networks (PDAN). PDAN employs

convolutional neural networks (CNN) as the backbone and the speech

spectrum as the inputs to achieve an end-to-end learning framework. More

importantly, its basic idea for solving cross-corpus SER is very straightforward,

i.e., enhancing the backbone’s corpus invariant feature learning ability by

incorporating a progressive distribution adapted regularization term into the

original loss function to guide the network training. To evaluate the proposed

PDAN, extensive cross-corpus SER experiments on speech emotion corpora

including EmoDB, eNTERFACE, and CASIA are conducted. Experimental results

showed that the proposed PDAN outperformsmost well-performing deep and

subspace transfer learningmethods in dealingwith the cross-corpus SER tasks.

KEYWORDS

cross-corpus speech emotion recognition, speech emotion recognition, deep transfer

learning, domain adaptation, deep learning

1. Introduction

Speech is one major way human beings communicate in daily life, which carries

abundant emotional information. Consider that if computers were able to understand the

emotional states of human beings’ speech signals, human-computer interaction would

undoubtedly be more natural. Consequently, the research of automatically recognizing

emotional states from speech signals, a. k. a., speech emotion recognition (SER) has

attracted wide attention among the affective computing, human-computer interaction,
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and speech signal processing communities (El Ayadi et al.,

2011; Schuller, 2018). Over the past several decades, many well-

performing SER methods have been proposed and achieved

promising performance onwidely-used publicly available speech

emotion corpora (Zong et al., 2016; Zhang et al., 2017, 2022;

Kwon, 2021; Lu et al., 2022). However, it is noted that most

of them did not consider the realistic scenario where the

training and testing speech signals are possibly recorded by

different microphones or in different environments. In this case,

a feature distribution mismatch may exist between the training

and testing speech samples, and hence the performance of these

originally well-performing SER methods may decrease sharply.

This brings us a meaningful and more challenging task in

SER, i.e., cross-corpus SER. Unlike the conventional SER, the

labeled training and unlabeled testing samples in cross-corpus

SER come from different speech corpora. Following the naming

conventions in cross-corpus SER, we will refer to the training

and testing samples/corpora/feature sets as the source and target

ones throughout this paper in what follows.

In recent years, researchers have been devoted to the

research of cross-corpus SER and proposed many promising

methods. Schuller et al. (2010b) may be the first to have

investigated this problem, and designed three different

normalization methods including speaker normalization (SN),

corpus normalization (CN), and speaker-corpus normalization

(SCN) to alleviate the feature distribution mismatch between

the source and target speech samples. Since that, lots of

transfer learning and domain adaptation methods have been

successively designed to deal with cross-corpus SER tasks.

For example, Hassan et al. (2013) proposed to compensate

for the corpus shift by reweighting the source speech samples

to deal with cross-corpus SER tasks. A new version of the

modified support vector machine (SVM) called importance-

weighted SVM (IW-SVM) was designed by incorporating

three typical transfer learning methods including kernel

mean matching (KMM) (Gretton et al., 2009), unconstrained

least-squares importance fitting (uLSIF) (Kanamori et al.,

2009), and Kullback-Leibler importance estimation procedure

(KLIEP) (Tsuboi et al., 2009) to learn the source sample weights.

In the work of Song et al. (2016), Song et al. presented a

transfer non-negative matrix factorization (TNMF) for the

cross-corpus SER problem. The basic idea of TNMF is to

decompose the source and target speech feature sets into

different non-negative feature matrices under the guidance of

maximum mean discrepancy (MMD) (Borgwardt et al., 2006)

and hence the gap between the source and target speech signals

described by the non-negative matrices can be alleviated (Liu

et al., 2018). Moreover, Liu et al. proposed a domain-adaptive

subspace learning (DoSL) model to handle the cross-corpus SER

problem. This method measures the distribution gap between

the source and the target speech samples through a one-order

moment, i.e., the mean value of speech feature vectors. Then a

subspace learning model enhanced by the one-order moment

regularization term is built to learn a projection matrix to

transform the source and target speech sample from the original

feature space to the labeled one. The transformed source and

target speech samples in such label space would share similar

feature distributions. More recently, Zhang et al. (2021) further

proposed an extended version of DoSL called joint distribution

adaptive regression (JDAR) to align the source and target

speech feature distributions to remove their mismatch by

considering the marginal distribution gap together with the

emotion class aware conditional one. By jointly minimizing

both feature distribution gaps, the JDAR model can achieve a

better performance than DoSL in dealing with the cross-corpus

SER tasks.

On the other hand, deep transfer learning techniques have

also been used to cope with the cross-corpus SER tasks.

Unlike the transfer subspace learning methods, most deep

transfer learning ones try to learn a robust deep neural

network to learn corpus invariant features to describe the

speech signals. For example, Deng et al. (2014, 2017) proposed

a series of unsupervised domain adaptation methods based

on autoencoder (AE) to bridge the gap between the source

and target speech emotion corpora. The basic idea of these

methods is to learn a common subspace through AE instead of

widely used subspace learning such that the source and target

speech signals have the same or similar feature distributions

in the learned subspace. Different from the work of Deng

et al. (2014, 2017), Abdelwahab and Busso (2018) proposed

to use another deep neural network, i.e., deep belief network

(DBN), to investigate the cross-language and cross-corpus SER

problem on five speech emotion corpora and the experimental

results demonstrated more promising performance than sparse

AE and SVM based baseline systems. Recently, adversarial

learning-based methods have also been applied to coping with

cross-corpus SER tasks. Abdelwahab and Busso (2018) made

use of adversarial multi-task training to learn a common

representation for training and testing speech feature sets. Two

tasks were designed to enable the networks to be robust to the

corpus variance. Specifically, one task is to build the relationship

between the emotion classes and acoustic descriptors of speech

signals. The other is to learn the common representation by

enforcing the source and target speech features cannot be

distinguished. More recently, Gideon et al. (2019) presented

an adversarial discriminative domain generalization (ADDoG)

model with the help of domain generalization. Unlike most

deep transfer learning methods, the ADDoG model used the

speech spectrums as the inputs instead of the handcrafted speech

features and simultaneously improved its corpus robustness in

multiple speech corpora. Following the work of Gideon et al.

(2019), Zhao et al. (2022) also used the speech spectrums as

the inputs of the networks to achieve the end-to-end learning

manner for cross-corpus SER tasks and proposed a deep

transductive transfer regression neural network (DTTRN) with

an emotion knowledge guided MMD loss to remove the feature
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distribution mismatch between the source and target speech

corpora.

Inspired by the success of the above deep transfer learning

methods, in this paper we also focus on the research of designing

deep transfer learning methods to deal with the cross-corpus

SER tasks. We propose a novel method called progressive

distribution adapted neural networks (PDAN). The basic idea

of PDAN is very straightforward, i.e., enabling the deep neural

networks to directly learn an emotion discriminative and corpus

invariant representations for both source and target original

speech signals by leveraging the powerful nonlinear mapping

ability and hierarchical structure of deep neural networks.

Specifically, we first make use of convolutional neural networks

to build the relationship between the source emotion label

information and speech spectrums to endow the emotion

discriminant ability to PDAN. Then, three feature distribution

adapted regularization terms are imposed on different fully

connected layers to respectively guide the network to learn

the corpus invariant common representations for both speech

corpora. To evaluate the effectiveness of the PDAN, we conduct

extensive cross-corpus SER experiments on three widely-used

speech emotion corpora, i.e., EmoDB (Burkhardt et al., 2005),

eNTERFACE (Martin et al., 2006), and CASIA (Zhang and

Jia, 2008). Experimental results demonstrate the effectiveness

and superior performance of PDAN over recent state-of-the-

art transfer learning methods in dealing with cross-corpus SER

tasks. In summary, the main contributions of this paper include

three folds:

1. We proposed a novel end-to-end deep transfer learning

model called PDAN to cope with cross-corpus SER tasks.

Unlike most existing methods, PDAN can directly learn the

corpus invariant and emotion discriminative speech features

from the original speech spectrums by resorting to the

nonlinear mapping ability of deep neural networks.

2. We presented a new idea of progressively adapting the feature

distributions between the source and target speech samples

for the proposed PDAN by designing three different derived

MMD loss functions.

3. Extensive cross-corpus SER tasks are designed to evaluate

the proposed PDAN method. By deeply analyzing the

experimental results, several interesting findings and

discussions are given in our paper.

2. Proposed method

2.1. Overall picture and notations

In this section, we address the proposed PDAN model in

detail and also show how to use PDAN to deal with cross-corpus

SER tasks. To this end, we draw a picture shown in Figure 1 to

illustrate the basic idea and overall structure of the proposed

PDAN. To make the readers better understand this paper, we

first introduce some necessary notations which are used in

Figure 1 for formulating PDAN. The speech spectrums of source

and target speech samples are denoted by Ds = {X
s
1 , · · · ,X

s
Ns
}

and Dt = {X
t
1 , · · · ,X

t
Nt
}, respectively, where Ns and Nt are

the source and target sample numbers. According to the task

setting of cross-corpus SER, the source emotion labels are given,

while the target ones are entirely unknown. Hence, we denote

the source emotion labels by Ys = {ys1, · · · , y
s
Ns
}. Note that the

ith sample’s emotion label ysi ∈ R
C×1 is a one-hot vector whose

kth entry would be 1 while the others are all 0 if its corresponding

label was kth of C emotions.

2.2. Formulating PDAN

As described in Sect. Introduction, the basic idea of PDAN

is very straightforward, i.e., building an emotion discriminative

and corpus invariant end-to-end neural network for cross-

corpus SER. To achieve this goal, we first construct a

convolutional neural network (CNN) consisting of a set of

convolutional layers and three fully connected (FC) layers to

serve as the basic structure of PDAN. Then, to achieve the

goal of end-to-end learning, we transform the original speech

signals into spectrums to serve as the inputs of the PDAN.

Note that in PDAN, the source and target speech spectrums

will be simultaneously fed to train the PDAN, which can also

be interpreted as inputting them into two weight-shared CNNs

shown in Figure 1. Subsequently, it is clear to see from Figure 1

that our PDAN has four major loss functions to guide the

network training, i.e., Ls, Lm, Lrc, and Lfc, respectively, which

correspond to the basic idea of the proposed PDAN. The first

loss function is called emotion discriminative loss denoted by

Ls, which is designed for enabling the network to be emotion

discriminative and can be formulated as

Ls =
1

Ns

Ns
∑

i=1

JCE(g3(g2(g1(f (X
s
i )))), y

s
i ), (1)

where JCE is the cross-entropy loss bridging the source speech

spectrums and their corresponding emotion labels, g1, g2, and

g3 are the parameters of fully connected layers, and f denotes

the parameters of the convolutional layers, respectively.

As for the resting loss functions, they aim to improve

the robustness of the speech features learned by PDAN to

the corpus invariance. To this end, based on the MMD

criterion (Borgwardt et al., 2006), we first design marginal

distribution adapted loss Lm and impose it on the first FC layer

in PDAN, which is formulated as follows:

Lm = ‖
1

Ns

Ns
∑

i=1

8(g1(f (X
s
i )))−

1

Nt

Nt
∑

i=1

8(g1(f (X
t
i )))‖

2
H
, (2)
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FIGURE 1

The overview of progressive distribution adapted neural networks (PDAN). The PDAN uses the speech spectrums as the inputs and directly builds

the relationship between the emotion labels and speech signals. It consists of several convolutional layers and three fully connected (FC) layers

and is trained under the guidance of the combination of four loss functions, i.e., emotion discriminative loss Ls, marginal distribution adapted

loss Lm, rough emotion class aware conditional distribution adapted loss Lrc, and fine emotion class aware conditional distribution adapted loss

Lfc.

where Lm is the square of the original MMD function and can

be used to measure the marginal distribution difference between

the source and target feature sets, 8(·) is the kernel mapping

operator, and ‖·‖H means the inner product in such reproduced

kernel Hilbert space (RKHS).

Secondly, we design a fine emotion class aware conditional

distribution adapted loss Lfc, which is added to regularize the

last FC layer and can be expressed as follows:

Lfc =
1

C

C
∑

j=1

‖
1

Nsj

Nsj
∑

i=1

8(g3(g2(g1(f (X
s
i )))))

−
1

Nt

Ntj
∑

i=1

8(g3(g2(g1(f (X
t
i )))))‖

2
H
, (3)

where X
sj
i and X

tj
i correspond to the speech samples belonging

to the jth emotion and Nsj and Ntj denote their sample numbers

satisfying Ns1 + · · · + NsC = Ns and Nt1 + · · · + NtC = Nt ,

respectively. Hence, it is clear that Lfc can be used to measure

the fine emotion class aware conditional feature distribution gap

between the source and target speech features.

Finally, we consider designing a rough emotion class aware

conditional distribution adapted regularization term, i.e., Lrc,

to guide the feature learning in the second FC layer, whose

formulation is as follows:

Lrc =
1

Cr

Cr
∑

j=1

‖
1

Nsj

Nsj
∑

i=1

8(g2(g1(f (X
s
i ))))

−
1

Nt

Ntj
∑

i=1

8(g2(g1(f (X
t
i ))))‖

2
H
, (4)

where Cr < C can be called a rough emotion class number.

Note that Lrc shown in Equation (4) looks like a new

measurement of conditional distribution mismatch between

the source and target speech features, which is so similar to

Lfc in Equation (3). However, they are actually very different.

Specifically, in Lrc, a set of emotion classes involved in cross-

corpus SER will merge together and then the conditional

MMD is calculated. This is motivated by the work of the

valance-arousal emotion wheel proposed by Yang et al. (2022)

shown in Figure 2. As Figure 2 shows, it is clear to see that
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FIGURE 2

The 2D arousal-valence emotion wheel proposed by Yang et al.

(2022). It consists of two dimensions, where the horizontal axis

denotes the degree of valence while the vertical axis

corresponds to the arousal. Each typical discrete emotion can

be mapped to one point in the emotion wheel according to its

corresponding valence and arousal values.

most of the existing typical emotions are all high-arousal

and only a few emotions, e.g., Sad, are low-arousal. It is

also interesting to see that along the valence dimension,

the separability among these emotions would be significantly

improved. For example, we can observe from Figure 2 that

Angry, Disgust, and Fear are low-valence, while Surprise and

Happy are high-valence although they all belong to the high-

arousal ones. Inspired by the above observations, we propose

to align the rough emotion-aware conditional distributions

with respect to the valence dimension in the second FC

layer and hence design Lrc to further improve the corpus

invariance of the proposed PDAN together with the resting

two ones. It should be noticed that since the features in

shallow layers have limited discriminative ability, it may be

a tough task to directly align the fine emotion class aware

conditional distribution gap between the source and target

speech features together with the marginal one in the first

FC layer. Therefore, we assign the fine emotion class aware

conditional distribution term to the last FC layer instead of the

first one because such features in the deepest FC layer would

be more emotion-discriminative. According to the granularity

of the emotion class information used in calculating these three

feature distribution adapted terms, it can be seen that the

feature distribution adaption operations of PDAN are present

in a progressive way. This is why we call the proposed method

PDAN.

Under the above considerations, we are able to arrive

at the optimization problem of the proposed PDAN by

jointly minimizing the four well-designed losses, which can be

expressed as follows:

min
f ,g1,g2,g3

Ltotal = Ls + λ1Lm + λ2Lrc + λ3Lfc, (5)

where λ1, λ2, and λ3 are the trade-off parameters controlling the

balance among the four losses.

2.3. Optimization of PDAN

Since the calculation of two conditional distribution adapted

loss needs the target label information, we optimize the

optimization problem of PDAN by using an alternated direction

method. Specifically, we first randomly initialize the parameters

of PDAN, i.e., f , g1, g2, and g3, and then predict the

pseudo emotion labels of target speech samples denoted by

L
p
t . Subsequently, perform the following two major steps until

convergence:

1. According to L
p
t , calculate the loss functions Ltotal and

update the parameters of PDAN, i.e., f , g1, g2, and g3, by the

typical optimization algorithm, e.g., SGD and Adam.

2. Fix f , g1, g2, and g3, and update the pseudo target emotion

labels L
p
t .

Note that in PDAN, the kernel trick can be used to effectively

calculate three MMD based losses, which can be formulated as

follows:

MMD2(Xs,Xt) = ‖
1

Ns

Ns
∑

i=1

8(xsi )))−
1

Nt

Nt
∑

i=1

8(xti )))‖
2
H
,

=
Ns

Ns(Ns − 1)

Ns
∑

i6=j

k(xsi , x
s
j )+

1

Nt(Nt − 1)

Nt
∑

i6=j

k(xti , x
t
j )−

2

NsNt

Ns,Nt
∑

i,j=1

k(xsi , x
t
j ), (6)

where k(·) is a kernel function replacing the inner product

operation between vectors in RKHS produced by 8(·) with

calculating a predefined function, and xsi and xti are the ith

column in Xs and Xt
i .

Finally, we summarize the detailed procedures for updating

PDAN in Algorithm 1 such that the readers can better

understand how to optimize the proposed PDAN.

3. Experiments

3.1. Speech emotion corpora and
protocol

In this section, we design extensive cross-corpus SER tasks

to evaluate the proposed PDAN method. Three public available

speech emotion corpora including EmoDB (Burkhardt et al.,
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Input: Source Speech Spectrums: Ds = {X
s
1 , · · · ,X

s
Ns
},

Target Speech Spectrums: Dt = {X
t
1 , · · · ,X

s
Nt
},

Learning Rate: α,

Trade-off Parameters: λ1,λ2, and λ3,

Maximal Iterations: Nmax.

Output: Optimal Network Parameters: f = f̂, g1 = ĝ1,

g2 = ĝ2, and g3 = ĝ3.

1: Initialize the network parameters: f̃, g̃1, g̃2, and

g̃3, and iteration indicator: iter = 0.

2: while Ltotal 6= 0 ‖ iter < Nmax do

3: iter = iter + 1;

4: Fix f, g1, g2, and g3, predict the pseudo label

L
p
t ;

5: Fix L
p
t , calculate Ltotal;

6: Update f, g1, g2, and g3:

7: ∇θ ←
∂
(

Ls+λ1Lm+λ2Lrc+λ3Lfc

)

∂θ
, where θ = {f , g1, g2, g3};

8: θ
n+1 ← θ

n − α∇θ;

9: end while

Algorithm 1. The detailed procedures for updating optimization

problem of PDAN in Equation (5).

2005), eNTERFACE (Martin et al., 2006), and CASIA (Zhang

and Jia, 2008), are chosen. EmoDB is one of the most widely-

used German acted speech emotion corpora collected by

Burkhardt et al. from TU Berlin, Germany. Ten participants

consisting of five women and five men were recruited to

simulate seven types of emotions, i.e., Neutral, Angry, Fear,

Happy, Sad,Disgust, and Boredom, respectively. The total sample

number reaches 545 and can be downloaded from the http://

www.expressive-speech.net/emodb/. eNTERFACE is an induced

audio-video bi-modal emotion database. We only adopted its

audio part and the language is English. It consists of 1,257 speech

samples from 41 independent speakers comprising six basic

emotions, i.e., Disgust, Sad, Angry, Happy, Fear, and Surprise,

respectively. CASIA is a Chinese acted speech corpus designed

by the Institute of Automation, Chinese Academy of Science.

It recruited four speakers including two women and two men

to record 1,200 speech samples from six typical emotions, i.e.,

Neutral, Surprise, Angry, Happy, Fear, and Sad.

By alternatively using either two of these three speech

emotion corpora to serve as the source and target domains,

six cross-corpus SER tasks are designed denoted by B → E,

B → E, B → E, B → E, B → E, and B → E,

respectively. Note that B, E, and C are the abbreviations of

EmoDB, eNTERFACE, and CASIA. The left and right corpora

of the arrow denote the source and target ones in such a cross-

corpus SER task. Since these three corpora have inconsistent

emotion labeling information, in each task we select the speech

samples sharing the same emotion label from the corresponding

source and target corpora. To make the readers better know

the detail of the sample information in each cross-corpus SER

task, we summarize the sample statistics of speech corpora

used in all six tasks in Table 1. As for the performance metric,

we choose unweighted average recall (UAR) (Schuller et al.,

2010b) defined as the accuracy per class averaged by the total

emotion class number, which is widely used in evaluating

SER methods. For comparison purpose, five typical transfer

subspace learning methods, i.e., Transfer Component Analysis

(TCA) (Pan et al., 2010), Geodesic Flow Kernel (GFK) (Gong

et al., 2012), Subspace Alignment (SA) (Fernando et al., 2013),

Domain Adaptive Subspace Learning (DoSL) (Liu et al., 2018),

and Joint Distribution Adaptive Regression (JDAR) (Zhang

et al., 2021), respectively, and four deep transfer learning

methods, i.e., Deep Adaptation Networks (DAN) (Long et al.,

2015), Domain-Adversarial Neutral Network (DANN) (Ajakan

et al., 2014), Deep-CORAL (Sun and Saenko, 2016), and Deep

Subdomain Adaptation Network (DSAN) (Zhu et al., 2020),

respectively, are included.

3.2. Implementation details

First, as for the subspace learning comparison methods,

we choose two types of speech feature sets, i.e., IS09 (Schuller

et al., 2009) and IS10 (Schuller et al., 2010a) to describe

speech signals, respectively. The IS09 feature set consists of 384

elements including 16×2 acoustic low-level descriptors (LLDs)

such as fundamental frequency (F0), zero-crossing rate (ZCR),

and Mel-frequency cepstrum coefficient (MFCC), and their first

order difference, and their 12 corresponding functions such

as maximal value, mean value, and minimal value. The IS10

feature set has 1,582 elements which are obtained by applying 21

statistical functions to 38 LLDs and their first order derivatives

plus 2 single features about F0 (the number of onsets and

tern duration) and discarding 16 zero-information features (e.g.,

minimum F0). The detailed information of these two feature sets

are referred to in the works of Schuller et al. (2009) and Schuller

et al. (2010a), respectively. In the experiments, the openSIMLE

toolkit (Eyben et al., 2010) is used to extract the IS09 and IS10

feature sets. The hyper-parameters of all the subspace learning

methods are set as follows:

1. TCA, GFK, and SA: A hyper-parameter, i.e., the reduced

dimension denoted by d, needs to be set for TCA, GFK, and

SA. In the experiments, we search the d from a parameter

interval [5 : 5 : dmax], where dmax is the maximal dimension

reduced by these three methods in each experiment.

2. DoSL and JDAR: There are two hyper-parameters in DoSL

and JDAR methods, i.e., λ and µ. They are used to control

the balance between the original regression loss function

and two regularization terms including feature selection

and feature distribution difference alleviation terms. In the

experiments, they are both searched from the parameter

interval [5 : 5 : 100]. In addition, since the JDAR method
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TABLE 1 The sample statistics of EmoDB (B), eNTERFACE (E), and CASIA (C) corpora used in the designed six cross-corpus SER tasks.

Tasks Speech corpus (# Samples belonging to each emotion) Total

B→ E B (Angry: 127, Sad: 62, Fear: 69, Happy: 71, Disgust: 46) 375

E→ B E (Angry: 211, Sad: 211, Fear: 211, Happy: 208, Disgust: 211) 1,052

B→ C B (Angry: 127, Sad: 62, Fear: 69, Happy: 71, Neutral: 79) 408

C→ B C (Angry: 200, Sad: 200, Fear: 200, Happy: 200, Neutral: 200) 1,000

E→ C E (Angry: 211, Sad: 211, Fear: 211, Happy: 208, Surprise: 211) 1,052

C→ E C (Angry: 200, Sad: 200, Fear: 200, Happy: 200, Surprise: 200) 1,000

needs to iteratively predict the pseudo emotion labels of the

target speech signals and calculate the emotion class aware

conditional distribution gap between the source and target

speech feature sets, we set the iterations as 5 for JDAR in all

the cross-corpus SER tasks.

Second, as for the deep learning methods including our

PDAN, we first transform the original speech signals into speech

spectrums to serve as the inputs of all the methods. Specifically,

for each speech sample from the emotion corpora, we set

the frame size and overlap as 350 and 175 sampling points,

respectively, and then all the speech frames windowed by the

Hamming function were transformed to spectrums by using

Fourier transformation to compose the speech spectrums. Note

that in speech spectrum generation, the sampling frequencies

used for EmoDB, eNTERFACE, and CASIA are 16, 44, and

16 kHz, respectively. In the implementations of all the deep

learning methods, the Adam optimizer is used to train the

model. Its three parameters, i.e., β1, β2, and weight decay λ are

set as 0.9, 0.999, and 0.005, respectively. During the training

stage, the batch size and the initial learning rate are set to 32

and 0.0002, respectively. AlexNet (Krizhevsky et al., 2012) is

served as the CNN backbone of all the deep learning methods

and only the neuron number of the last fully connected layer

is reset as the one involving emotion class number in each

cross-corpus SER task. Moreover, since most of the comparison

methods adopt MMD losses, following the work of Long et al.

(2015) and Zhu et al. (2020), we use themixed Gaussian function

to serve as the kernel function, i.e., K =
∑5

i=1 Ki, where

Ki(u, v; σi) = e

−‖u−v‖2

2σ2i , where σi denotes the bandwidth and

its value range is [2, 4, 8, 16, 32]. Finally, the trade-off parameter

of each comparison methods is set as follows:

1. DAN and DSAN: There is only one trade-off

parameter in DAN and DSAN. We set its interval as

[0.001, 0.005, 0.01, 0.05, 0.1, 0.5].

2. DANN: DANN also has only one trade-off parameter. We set

its searching range as [0.001, 0.003, 0.005, 0.01, 0.05, 0.1, 0.5].

3. Deep-CORAL: Similar to the above deep transfer learning

methods, one trade-off parameter in Deep-CORAL needs to

be set. In the experiments, its interval is [1, 10, 20, 30, 50, 100].

4. PDAN: The proposed PDAN has three trade-off

parameters, i.e., λ1, λ2, and λ3. We search them from

[0.001, 0.005, 0.01, 0.05, 0.1, 0.5] throughout all the tasks.

Moreover, since the proposed PDAN needs to update the

target labels in the optimization, in the training stage we will

fix the network parameters and update the target labels at

the end of each epoch. In addition, we set the rough class

number Cr = 2 and divide the original emotions into two

rough classes including High-Valence (Happy, Surprise, and

Neutral) and Low-Valence (Angry, Sad, Fear, and Disgust).

Finally, since the target label information in cross-corpus

SER is entirely unknown, it is not possible to use the validation

set to determine the optimal model during the training stage

for the transfer learning methods. Therefore, to offer a fair

comparison, we follow the tradition of transfer learning method

evaluation and report the best results corresponding to the best

trade-off parameters for all the methods in the experiments.

3.3. Results and discussions

Experimental results are given in Table 2. From Table 2,

several interesting observations can be obtained. First, it can be

clearly seen that the proposed PDAN method achieved the best

average UAR reaching 42.83% among all the transfer learning

methods, which has an increase of 1.06% compared with the

second best well-performing method (JDAR + IS10 feature

set). Moreover, among all the six cross-corpus SER tasks, our

PDAN performs better than all the comparison methods in

three others, i.e., E→B, B→C, C→B, respectively. Although

the proposed PDAN did not achieve the best performance in

the resting three tasks, it can be seen from the comparisons

that the results obtained from our method are very competitive

against the best-performing comparison methods, e.g., 36.19%

(PDAN) v.s. 37.95% (JDAR + IS10 feature set) in task B→E.

These observations demonstrated the superiority of the PDAN

over recent state-of-the-art transfer subspace learning and

deep transfer learning methods in dealing with cross-corpus

SER tasks.
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TABLE 2 The experimental results of all the transfer learning methods for six cross-corpus SER tasks, in which the best results are highlighted in

bold.

Method B→ E E→B B→C C→B E→C C→E Average

Subspace Learning

(IS09 Feature Set)

SVM 28.93 23.58 29.60 35.01 26.10 25.14 28.06

TCA 30.52 44.03 33.40 45.07 31.10 32.32 36.07

GFK 32.11 42.48 33.10 48.08 32.80 28.13 36.17

SA 33.50 43.89 35.80 49.03 32.60 28.17 36.33

DoSL 36.12 38.95 34.40 45.75 30.40 31.59 36.20

JDAR 36.33 39.97 31.10 46.29 32.40 31.50 36.27

Subspace Learning

(IS10 Feature Set)

SVM 34.50 28.13 35.30 35.29 24.30 26.81 30.73

TCA 32.60 44.53 40.50 51.47 33.20 29.77 38.68

GFK 36.01 40.11 40.00 45.93 33.00 29.09 37.35

SA 35.65 43.92 37.50 47.06 32.10 30.61 37.80

DoSL 36.82 43.33 36.80 48.45 35.60 33.91 39.15

JDAR 37.95 47.80 42.70 48.97 35.60 37.58 41.76

Deep Learning

AlexNet 29.49 31.03 32.90 42.23 27.59 26.30 31.59

DAN 36.13 40.41 39.00 49.85 29.00 31.47 37.64

DANN 33.38 43.68 39.20 53.71 29.80 29.25 38.05

Deep-CORAL 35.03 43.38 38.30 48.28 31.00 30.89 37.81

DSAN 36.19 46.90 40.30 50.69 29.70 32.61 39.41

PDAN (Ours) 36.19 53.78 42.90 56.88 33.70 33.54 42.83

Second, by comparing the results obtained by the subspace

learning methods with IS09 and IS10 feature sets, it can be

found that most methods would achieve better performance

when using the IS10 feature set to describe speech signals. For

example, JDAR achieved the average UAR of 41.76% when using

the IS10 feature set, while its average UAR would decrease

to 36.27% if the feature set used to describe speech instead

adopted IS09. This may attribute to the limited representation

ability of the IS09 feature set compared to IS10. According to

the works of Schuller et al. (2009, 2010a), it can be known

that the IS10 feature set contains more acoustic LLDs (38) and

introduces more statistical functions (21) than IS09 (32 and 12),

which leads to a greater capacity of IS10 in describing speech

signals. Hence, the transfer subspace learning methods may

learn more discriminative representations from the IS10 feature

set in coping with cross-corpus SER tasks.

Third, it is also interesting to see that several transfer

subspace learning methods using the IS10 feature set, e.g., DoSL

and JDAR, outperformed most deep transfer learning ones. This

may attribute to the more powerful discriminative ability of the

IS10 feature set compared with the features directly learned from

the speech spectrums by the deep neural networks. Note that

besides the corpus invariant ability, the discriminative one is

also an important factor affecting the performance of transfer

learning methods, which can be supported by the comparison

between the results of IS09 and IS10 feature sets. Consequently,

with IS10 as the feature set, several subspace learning methods

may achieve better performance than the deep learning ones in

coping with the cross-corpus SER tasks.

Last but not least, by deeply comparing the results of

all the methods for tasks C→B and B→C and others, it is

interesting to see that most methods usually performed better

in these two tasks. This may be caused by the difference of

emotion-induced methods among these three speech corpora.

Specifically, it can be found from the works of Burkhardt

et al. (2005), Martin et al. (2006), and Zhang and Jia (2008)

that EmoDB and CASIA are both acted speech corpora, while

eNTERFACE is an induced one. In other words, the emotional

speech samples of EmoDB and CASIA are both acted by the

speakers, which are quite different from the ones in eNTEFACE.

In eNTERFACE, several stimulus materials were first used to

induce the speakers’ natural emotions, and then their speech

signals were synchronously recorded.

3.4. Ablation study

As Figure 1 and Equation (5) show, the proposed PDAN

have a set of progressive distribution adapted regularization

terms, which enable the network to learn the corpus invariant

features for cross-corpus SER and are different from other

deep transfer learning methods, e.g., DAN, DANN, and DSAN.

Specifically, the proposed progressive distribution adapted

regularization term designed for our PDAN has two major
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TABLE 3 Experimental results of PDAN with di�erent total loss functions for six cross-corpus SER tasks, in which the best results are highlighted in

bold.

Method B→E E→B B→C C→B E→C C→E Average

Ls +Lm 34.36 43.39 37.50 48.89 30.00 30.12 37.38

Ls +Lm +Lfc 35.16 48.96 41.40 54.96 32.70 32.98 41.03

Ls +Lm +Lrc +Lfc 36.19 53.78 42.90 56.88 33.70 33.54 42.83

advantages. First, besides widely-used marginal and fine class

aware conditional distribution adaptions, we also introduce

a rough emotion class aware conditional one to benefit the

alleviation of feature distribution difference between the source

and target speech emotion corpora. Second, these distribution

adapted terms are added to regularize different FC layers of

CNN to guide the corpus invariant feature learning, which

takes full advantage of the hierarchical structure of deep neural

networks. It is clear to see that the computation of marginal

distribution adapted term does not need the emotion label

information, while the two conditional ones are opposite.

Moreover, the fine class aware conditional one needs more

precise emotion label information of the speech samples

compared with the rough one. Consequently, following the

fact that the features learned in the deeper layers would have

more discriminative ability with respect to the depth of neural

network, we propose a progressive regularization method to

make full use of these three terms, i.e., adding the marginal

one to the first FC layer, the rough conditional one to the

second FC layer, and the fine conditional one to the last FC

layer, respectively.

To see whether the designed progressive adapted

regularization terms are indeed effective, we conduct additional

experiments by removing one or two of the rough emotion

class aware conditional distribution adapted term Lrc and

fine emotion class aware one Lfc to obtain the new total loss

function to train the PDAN. The reduced versions of PDAN

are denoted by Ls + Lm and Ls + Lm + Lfc, respectively.

The experimental results are shown in Table 3. From Table 3,

it can be found that the PDAN trained under the guidance

of Ls + Lm + Lrc + Lfc and Ls + Lm + Lfc performed

promisingly better than the one associated with Ls + Lm in all

six cross-corpus SER tasks. This observation indicates that the

performance of PDAN introducing the conditional distribution

adaptions would be remarkably increased compared with

merely using the marginal distribution adaption. Moreover,

it can also be seen that the results achieved by PDAN under

the guidance of Ls + Lm + Lrc + Lfc are better than

Ls + Lm + Lfc, which demonstrates the effectiveness of

further introducing the rough conditional distribution adaption

and the superiority of the proposed progressive distribution

adaptions used in PDAN for dealing with cross-corpus

SER tasks.

4. Conclusion

In this paper, we have proposed a novel deep transfer

learning method called progressive distribution adapted neural

networks (PDAN) to deal with the problem of cross-corpus SER.

Unlike existing deep transfer learning methods, PDAN absorbs

the knowledge of the emotion wheel and makes full use of the

hierarchical structure of deep neural networks. Specifically, we

design a progressive distribution adapted regularization term

consisting of a marginal distribution adaption and two different

types of conditional distribution adaptions to layer-by-layer

guide the feature learning of PDAN. Hence, PDAN can learn the

emotion discriminative and corpus invariant features for speech

signals and be effective to deal with cross-corpus SER tasks.

Extensive experiments on three widely-used speech emotion

corpora were conducted to evaluate the performance of the

proposed PDAN. Experimental results showed that the proposed

PDAN can achieve a more satisfactory overall performance

than recent state-of-the-art transfer subspace learning and

deep transfer learning methods in coping with cross-corpus

SER tasks.
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Deep learning-based
self-induced emotion
recognition using EEG
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Emotion recognition from electroencephalogram (EEG) signals requires

accurate and e�cient signal processing and feature extraction. Deep learning

technology has enabled the automatic extraction of raw EEG signal features

that contribute to classifying emotions more accurately. Despite such

advances, classification of emotions from EEG signals, especially recorded

during recalling specific memories or imagining emotional situations has

not yet been investigated. In addition, high-density EEG signal classification

using deep neural networks faces challenges, such as high computational

complexity, redundant channels, and low accuracy. To address these problems,

we evaluate the e�ects of using a simple channel selection method for

classifying self-induced emotions based on deep learning. The experiments

demonstrate that selecting key channels based on signal statistics can reduce

the computational complexity by 89% without decreasing the classification

accuracy. The channel selection method with the highest accuracy was the

kurtosis-based method, which achieved accuracies of 79.03% and 79.36% for

the valence and arousal scales, respectively. The experimental results show that

the proposed framework outperforms conventional methods, even though it

uses fewer channels. Our proposed method can be beneficial for the e�ective

use of EEG signals in practical applications.

KEYWORDS

self-induced emotion recognition, high-density EEG, channel selection, deep

learning, convolutional neural network

1. Introduction

Emotion plays a crucial role in human decision-making. Hence, recognition

of different emotions can effectively improve communication between humans and

machines in human-computer interaction (HCI) systems. Human emotions have been

recognized using non-physiological signals, such as facial expressions (Ko, 2018), speech

(Khalil et al., 2019), and gestures (Noroozi et al., 2018). However, non-physiological

signals can be intentionally hidden. In contrast, physiological signals cannot be directly

altered because the human body produces them spontaneously. For this reason, many

researchers have attempted to identify emotions in physiological signals, such as those

detected by electroencephalograms (EEGs), electrocardiograms (ECGs), galvanic skin

responses (GSRs), and electromyograms (EMGs) (Wei, 2013; Goshvarpour et al., 2017;

Katsigiannis and Ramzan, 2017). In this study, we focus on recognizing emotions using

EEG signals.
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Previous EEG-based emotion recognition techniques have

performed well, but most of them focused on externally induced

emotion, using audiovisual materials as emotional stimuli

(Koelstra et al., 2011; Soleymani et al., 2011; Zheng and Lu,

2017). This type of method requires subjects to continually

pay attention to visual or auditory stimuli. External stimuli

may be useful to elicit strong emotions, but because there

are individual differences in emotional sensitivity, the selected

stimuli may not be suitable for all subjects. Accordingly, some

researchers have asked subjects to recall episodic memories or

imagine situations associated with certain emotions (Damasio

et al., 2000; Onton and Makeig, 2009). This enables the subjects

to self-induce emotions based on past experience instead of

audiovisual materials determined by researchers in advance. The

EEG signals produced by this method are more ecologically

valid because they capitalize on individual events that have

personal meaning (Salas et al., 2012). However, subjects may

lose their concentration when they close their eyes and perform

the emotional imagery (EI) task. Therefore, the raw EI signals

obtained through this method have a lower amplitude than

the signals generated by external stimuli (Iacoviello et al.,

2015). This increases the difficulty with which emotions are

classified using EEG signals. For this reason, classifying self-

induced emotions without using external stimuli remains

challenging.

In recent years, deep learning methods have been applied to

automatically classify emotions using raw EEG signals without

handcrafted features (Craik et al., 2019; Huang et al., 2021).

In particular, convolutional neural networks (CNNs) have

produced promising results for EEG-based emotion recognition

because of their ability to automatically extract robust features

(Yang et al., 2018; Hu et al., 2021). However, most CNN-based

studies still rely on complex preprocessing techniques, such as

the conversion of raw EEG signals into other representations

(Kwon et al., 2018; Wang et al., 2020). In this study, we employ

a CNN for end-to-end classification, which utilizes raw EEG

signals as the input and eliminates the need to perform a

complex transformation. Feeding raw EEG signals as input into

deep learning models is suitable for analyzing time-series EEG

signals (Liang et al., 2021). However, this results in a high

computational complexity because of the long training time

required when using a large number of EEG channels (Tong

et al., 2018). In addition, using all channels, including irrelevant

channels, causes the CNN to generate complex features, which

decreases the classification accuracy (Wang et al., 2019; Li et al.,

2020; Zheng et al., 2021). Consequently, EEG channel selection

is advantageous not only for reducing the time required for

computation, but also for improving the accuracy.

The most commonly used EEG channel selection methods

are the wrapper and filtering methods (Shi et al., 2021).

The wrapper method uses recursive techniques to select the

optimal subset of all EEG channel combinations (Lal et al.,

2004). Wrapper-based methods exhibit superior performance

in selecting the optimal channel subset, but they are time-

consuming (González et al., 2019) and are prone to overfitting

(Alotaiby et al., 2015). Two filtering methods are used to solve

this problem. The first involves manually selecting channels

related to emotions, and the second automatically selects a

subset of channels based on certain standards. For example,

many studies have selected EEG channels representing the

frontal lobe to capture emotions (Atkinson and Campos, 2016;

Thammasan et al., 2016; Xu et al., 2019) because previous

results have suggested that the neural activity in the frontal

lobe is related to emotional processing. However, manually

selecting channels based on previous observations does not

necessarily yield better results compared to using all EEG

channels. Therefore, this study proposes a statistical method for

selecting a smaller number of EEG channels in order to robustly

reduce the computational load while simultaneously increasing

performance. In this method, the most suitable channels are

automatically selected by calculating the EEG signal statistics for

each subject before the high-density EEG data are used as input

for the CNN.

In summary, we propose a novel framework for deep

learning-based systems using high-density EEG data. In this

framework, the optimal frequency band is first selected. Then,

after applying a channel selection method using the statistical

characteristics of the raw EEG signal data, a CNN is utilized

for feature extraction and classification. The flow diagram

of the proposed system is shown in Figure 1, and the main

contributions of this study are as follows: (1) To the best of our

knowledge, this is the first work to classify self-induced emotion

in EEG signals using a deep learning model and demonstrate the

efficiency of statistical channel selection methods using signal

amplitudes; (2) Frequency band and channel selection strategies

were applied to pre-select the prominent features of low-

amplitude EEG signals to improve the classification accuracy.

In particular, a signal statistics-based channel selection strategy

that used fewer channels reduced the computational complexity

of the system and improved the efficiency of the brain-computer

interface (BCI) system, and (3) Experiments were conducted on

the publicly available “Imagined Emotion Study” dataset (IESD)

to evaluate the performance of our deep learning-based method

for classifying self-induced emotion.

2. Related work

Many studies have investigated EEG-based emotion

recognition, but only a few have classified self-induced

emotions using internal EEG signals. For example, Kothe

et al. (2013) collected EEG signals of self-induced emotions

produced through the recall of experiences associated with

15 different emotions. They used the filter bank common

spatial pattern (FBCSP) algorithm to extract temporal-

spatial features from 124 channels in the EEG signals and

Frontiers inNeuroscience 02 frontiersin.org

36

https://doi.org/10.3389/fnins.2022.985709
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Ji and Dong 10.3389/fnins.2022.985709

FIGURE 1

Flow diagram of the proposed system for recognition of self-induced emotions.

a linear discriminant analysis (LDA) classifier for valence

level recognition. They reported an average accuracy of

71.3%, but excluded three ambiguous emotions (compassion,

disgust, and excitement). Similarly, Bigirimana et al. (2020)

used common spatial pattern (CSP) features to extract the

temporal-spatial-frequency representations. They obtained

an accuracy of 80% using LDA for imagery induced by

recalling sad and happy events. Iacoviello et al. (2015) proposed

an automatic real-time classification method based on a

discrete wavelet transform (DWT) that used a support vector

machine (SVM). They achieved an accuracy of 90.2% for

the emotion of disgust self-induced by remembering an

unpleasant odor.

Previous studies on self-induced emotions found that

emotion-inducing imagery tasks designed to elicit specific

discrete emotions (e.g., disgust) achieved higher performance

than other methods; however, emotions do not usually occur

in isolation (Mills and D’Mello, 2014). To consider emotions

similar to those that occur in real life, more studies are needed

to classify complex emotions that are mixed with previously

experienced emotions. This can be accomplished by including

a variety of emotions in the imagery task. Therefore, in this

study, we aimed to recognize various self-induced emotions at

the valence and arousal levels. In addition, all existing studies

on self-induced emotion are based on machine learning (ML)

methods. In contrast to these studies, we propose a deep

learning-based system to improve the recognition performance

and system efficiency. Deep learning methods outperform

traditional ML methods in several fields of research (Craik

et al., 2019; Roy et al., 2019), but deep learning techniques

have not been fully utilized in the classification of self-induced

emotion. To the best of our knowledge, this is the first

attempt to detect self-induced emotion in EEG signals using

a CNN.

3. Data description

The EEG dataset we used for training and testing was

the “Imagined Emotion Study” dataset (IESD) (Onton and

Makeig, 2021), which is publicly available on the OpenNeuro.org

platform. To the best of our knowledge, this is the only

publicly available dataset that contains EEG signals collected for

emotion-inducing imagery tasks. In this dataset, all 34 subjects

(with ages ranging from 18 to 35 years) listened to 15- to 30-s

audio clips that induced an emotional experience, which helped

them imagine what they had felt in the past. Next, the subjects

performed EI for an average of 3–5 min for each trial. The EI

trials consisted of 15 self-paced emotional images that reflected

the emotions of anger, awe, compassion, contentedness, disgust,

excitement, fear, frustration, grief, happiness, jealousy, joy, love,

relief, and sadness. While the subjects imagined the emotional

experience, they pressed the “feeling it” button when they felt

the suggested emotion strongly enough. Among the 34 subjects,

five were excluded from future analysis because they pressed the

“feeling it” button only once per emotion or did not press the

button at all. The EEG signals for each subject were collected

using a 250-channel BioSemi ActiveTwo system (Amsterdam,

Netherlands) with a sampling rate of 256 Hz.

4. Preprocessing

4.1. Data processing

The raw EEG signals were preprocessed using MATLAB

(R2021a, MathWorks Inc., Natick, MA, USA) and its EEGLAB

toolbox (EEGLAB, Boston, MA, USA) (Delorme and Makeig,

2004). Four channels (E3, G23, H25, and H26) were not used

in this study at all because they were bad channels for all

subjects (the E3 and G23 channels were located in the right
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TABLE 1 Number of samples for each class of emotion.

Classification scheme Class Number of samples

Valence Low (Negative) 498

High (Positive) 636

Arousal Low (Calm) 489

High (Active) 645

and left temporal regions, respectively, and the H25 and H26

channels were located in the prefrontal region). Thus, the

number of all available channels (C) was 246. Furthermore,

the data produced by electrodes with poor skin contact were

removed from the recorded signals, leaving 134–235 channels

per participant (the number of channels differed for each subject

because different selections of bad channels were removed for

different subjects). Subsequently, artifacts were eliminated by

performing independent component analysis (ICA). After the

channel subset for each subject was determined, we interpolated

across the channels by applying a spherical spline interpolation

(Perrin et al., 1989).

In this study, we only used the periods during which the

subjects felt the 15 emotions listed in Section 3. We did this

because most of the EI trial period covered neutral states

that were not related to emotions (Damasio et al., 2000), and

thus including the entire period for training could have led

to incorrect classification results. Taking this into account, the

continuous EEG signals were preprocessed by excluding periods

that did not contain data produced by EI. This generated 2-s

segments centered on the moment when the subjects pressed the

“feeling it” button. Therefore, the number of segments linked to

each subject was the same as the number of times the subject

pressed the “feeling it” button; this number ranged from 16 to

149 for each subject. The total number of segments used in our

study was 1,134.

4.2. Label processing

Each segment was associated with a label grouped according

to the valence and arousal scales, which are the emotional states

quantified using Russell’s circumplex model (Russell, 1980).

Low valence (LV) indicates “negative” emotions (anger, jealousy,

disgust, etc.), and high valence (HV) indicates “positive”

emotions (love, joy, happiness, etc.). Low arousal (LA) indicates

“calm” emotions (sadness, contentedness, grief, etc.), and high

arousal (HA) indicates “active” emotions (excitement, fear,

anger, etc.). Low and high values were assigned as 0 and 1,

respectively. The labeling results are summarized in Table 1. On

both the valence and arousal scales, the subjects felt the emotions

belonging to the “high” class more easily, which resulted in more

samples being generated for that class.

5. Methods

In this section, we present a novel method that quickly

recognizes self-induced emotions in EEG signals. It employs

a simple technique that selects frequency bands and channels

suitable for classification, and therefore it is computationally

efficient and suitable for real-time recognition of emotions

5.1. Problem formulation

Let Di = (X1, y1), . . ., (XNi , yNi ) denote the dataset and Ni

denote the number of segments for subject i. Given an EEG input

for the k-th segment, Xk, the task is to predict the emotion label

yk corresponding to the k-th segment. The input segment Xk of

the network is the tensor (P × C × Ni), where P denotes the

total number of data points in each segment and C denotes the

number of EEG channels. Furthermore, P = Fs × Ts where

Fs denotes the sampling frequency and Ts denotes the duration

of the segment. In this context, this study proposes a channel

selection method that reduces the number of necessary channels

from C (all available channels) to K without compromising

performance.

5.2. Frequency band selection

EEG signals are typically categorized according to rhythmic

characteristics, resulting in five different sub-bands: delta (δ),

theta (θ), alpha (α), beta (β), and gamma (γ ). In this study, the

EEG signals were band-pass filtered by applying a Butterworth

filter to each frequency band. The extracted frequency bands

included 1–4 Hz (δ), 4–8 Hz (θ), 8–14 Hz (α), 14–30 Hz

(β), 30–50 Hz (γ ), and a combination of all these bands. In

general, previous EEG-based studies that externally induced

emotions using dynamic stimuli, such as video clips, have

reported that high-frequency bands are suitable for classifying

emotions (Zheng and Lu, 2015; Song et al., 2018; Islam et al.,

2021; Rahman et al., 2021). Similarly, the γ band is known

to have more of a connection to emotional states than other

frequency bands, especially for static stimuli such as images (Li

and Lu, 2009; Yang et al., 2020). Accordingly, we hypothesized

that the γ rhythm will exhibit a larger difference with different

emotions compared to other bands.

However, self-induced emotions evoked by imagining

emotional situations in a static environment differ from

externally induced emotions. Because the optimal frequency

bands for classifying self-induced emotions have not been

sufficiently investigated, we investigated all sub-bands in an

effort to find a suitable frequency band that maximizes the

classification performance.
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TABLE 2 EEG signal statistics used for channel selection.

Statistic Equation

Mean µ(c) = 1
N

∑N
i=1 xc(i)

Variance V(c) = 1
N

∑N
i=1(xc(i)− µc)

2

Root mean square RMS(c) =

√

∑N
i=1 |xc(i)|

2

N

Skewness SV(c) = 1
N

∑N
i=1(

xc(i)−x̄c
σ

)3

Kurtosis KV(c) = 1
N

∑N
i=1(

xc(i)−x̄c
σ

)4

In the equations, xc(i) is the i-th data point of the EEG signal for channel c andN denotes

the total number of data points.

5.3. Channel selection

Channel selection removes irrelevant channels; this task

simultaneously reduces the calculation complexity and improves

the classification accuracy. An automatic channel selection

method has not been developed in the field of emotion

recognition, and studies in this field are mainly focused on

manually selecting channels based on experience (Xu et al.,

2019). A simple method for automatically selecting channels is

to use the amplitude statistics of EEG signals as a threshold

(Alotaiby et al., 2015). This selection criterion is based on the

fact that brain activity is most intense when emotional states are

being experienced.

To select channels suitable for classifying self-induced

emotions, we considered the typical statistics used in the

literature, such as the time-domain statistical values (mean,

variance, skewness, and kurtosis) and root mean square

(RMS), which can be derived from EEG time series. The

variance (standard deviation) has been used for channel

selection in epileptic seizure (Duun-Henriksen et al., 2012) and

motor imagery classification (Azalan et al., 2019). However,

appropriate statistics for channel selection in EI classification

have not been reported. Therefore, we propose optimal statistics

for classifying self-induced emotions based on the experiments

we conducted.

Table 2 presents the mathematical formulation of the

statistics used in this study. In these equations, xc(i) is the i-th

data point of the EEG signal for channel c and N denotes the

total number of data points. The signal statistics were calculated

for all channels, and the channels with the highest statistical

values were chosen in the channel selection algorithm. Finally,

the top K channels with the highest classification accuracies

were selected.

5.4. Convolutional neural network

After the frequency bands and channels were selected, a

CNN automatically extracted features from both the temporal

and spatial dimensions of the raw EEG segments. The CNN

TABLE 3 Architecture of ShallowConvNet.

Layer Operation and parameters

L1 40× Conv(3× 1), stride(1× 1)

40× Conv(1× C), stride(1× 1)

BatchNorm

Activation(Square)

AvgPool(30× 1), stride(4× 1)

Activation(Log)

Dropout(0.5)

Output Dense

Softmax classification

architecture used in this study 8was based on the shallow

CNN (ShallowConvNet) proposed in Schirrmeister et al. (2017).

Due to the shallow architecture of ShallowConvNet, a high

accuracy can be achieved without significantly increasing the

computational cost (Schirrmeister et al., 2017). The architecture

of ShallowConvNet is presented in Table 3.

The first convolutional layer was split into two layers,

performing temporal and spatial convolutions. This was

performed because splitting the first convolutional block is

known to yield better results when the number of channels is

large (Schirrmeister et al., 2017). Hence, this setup is suitable

for extracting features from high-density raw EEG signals.

Temporal convolution learns how the amplitude changes over

time for all channels of the input segment. Because temporal

convolution performs computations for all channels, the volume

of computations inevitably depends on the number of channels

C. Therefore, C was reduced to K through the channel selection

method proposed in Section 5.3. Spatial convolution was used

to extract the spatial features of each temporal filter. These steps

are similar to the band-pass and common spatial patterns (CSP)

spatial filter functions in FBCSP (Ang et al., 2008).

The initial convolutional layer was followed by squaring

nonlinearity, an average pooling layer, and a logarithmic

activation function. These steps are similar to the trial log-

variance computations in FBCSP. In the last output layer, the

dense and softmax layers were used for classification.

6. Experimental results

6.1. Implementation details

In this section, we evaluate our proposedmethod for the task

of classifying self-induced emotions in the IESD dataset, using

a CNN as the feature extractor and classifier. As mentioned in

Section 3, the EEG data for 29 subjects (subject numbers 1–8,

10–21, 23–27, and 29–32) out of a total of 34 were utilized in our

experiment. Continuous EEG data were processed into 2-s EEG
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TABLE 4 Hyperparameter values of ShallowConvNet.

Hyper-parameter Value

Optimizer Adam

Learning rate 0.000625

Batch size 8

Epochs 150 [valence]

50 [arousal]

Loss function Negative log likelihood

segments, as described in Section 4.1, and fed as input to the

CNN for training and testing. For each subject, 80% of the 2-s

EEG segments were used for the training set and 20% were used

for the test set. The average values from all fold results using five-

fold cross-validation were calculated. Next, we experimentally

set the appropriate hyperparameters for ShallowConvNet. The

optimized hyperparameters used in this study are listed in

Table 4. The experiment was performed on a computer with an

Intel(R) Core(TM) i7-10700K CPU @ 3.80 GHz 3.79 GHz and

NVIDIA GeForce RTX 3080 graphics processing unit (GPU).

6.2. E�ect of frequency band on
classification performance

In the first set of experiments, the influence of the frequency

band on the classification accuracy of the CNN was investigated.

Prior to channel selection and feature extraction, all 246

channels were used to find sub-bands suitable for classifying the

self-induced emotions. ShallowConvNet was trained separately

for the EEG rhythms of the δ, θ , α, β , and γ bands, as well as

the entire frequency range of all these sub-bands (1-50 Hz). The

average classification results for the 29 subjects on the valence

and arousal scales for each sub-band and for all bands using all

the channels are shown in Table 5.

Among the five EEG frequency bands, the γ and β bands

achieved higher valence and arousal classification results than

did the other frequency bands. This result indicates that the

higher frequency bands are more closely associated with valence

and arousal than the lower frequency bands. The γ band

achieved recognition accuracies of 75.97 and 77.68% on the

valence and arousal scales, respectively; these were the highest

recognition accuracies for each scale. We also considered the F1

score, which is a class-balanced measure of accuracy. Compared

to the F1 score of the lowest frequency band (δ), the F1 score

of the γ band increased by 16.95% on the valence scale and

by 19.09% on the arousal scale. This indicates that the input

signals filtered in the γ band (30–50 Hz) improve the precision

and recall of the system. In addition, a high average recognition

accuracy was achieved for all bands (1–50 Hz). In summary, the

TABLE 5 Average classification performance for di�erent frequency

bands using all channels.

Frequency band Valence Arousal

Accuracy (%) F1 (%) Accuracy (%) F1 (%)

δ band 62.07 56.33 60.81 56.45

θ band 62.80 57.70 60.32 56.43

α band 64.67 59.62 65.30 61.61

β band 73.39 70.60 71.76 69.16

γ band 75.97 73.28 77.68 75.54

All (δ, θ ,α,β , γ ) 72.37 68.93 71.24 68.87

The best results are in bold.

FIGURE 2

Comparison of valence classification accuracies for di�erent

EEG channel selection methods.

CNNperformed the best when learning the features in the 30–50

Hz frequency range (the γ band).

6.3. Performance comparison of di�erent
channel selection methods

Before comparing the results of the channel selection

methods, we first evaluated the influence of the number of

selected channels (K) on the performance of the CNN. The

results produced by varying K from 1 to 123 (half the total

number of channels) for the valence and arousal scales are

presented in Figures 2, 3, respectively. We did not evaluate

the channel selection method using more than 124 channels

because, in that case, the channel selection had no significant

effect on the results. When K was too small (e.g., K =

10), the representation could not be maintained. This led

to a decrease in decoding performance, which degraded the

accuracy of self-induced emotion recognition. However, when

K was too large, similar channels that did not contribute
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FIGURE 3

Comparison of arousal classification accuracies for di�erent

EEG channel selection methods.

to the classification were also included, which limited the

representation capacity of the CNN. Moreover, although there

was a minimal improvement in performance, the computational

cost of the model significantly increased. In Figures 2, 3, the

black horizontal line indicates the accuracy that was achieved

when all the channels were considered. On both scales, the

accuracy of the kurtosis-based channel selection method began

to stabilize after 50 channels. Therefore, in order to determine

the optimal number of channels, it is necessary to include more

than 50 channels.

Table 6 shows the performance of all the channel selection

methods for the γ band. For the kurtosis-based channel

selection method, the self-induced emotion recognition

accuracy reached 79.03% for the valence scale using the top

68 channels and 79.36% for the arousal scale using the top

90 channels. For arousal classification, the skewness-based

channel selection method achieved the highest accuracy (but

only marginally) using the top 119 channels. Overall, therefore,

the kurtosis-based channel selection method performed the best

considering the low number of channels it used.

We also compared the performance of each method using

the same number of channels (K=64). This number of channels

is commonly used in EEG-based emotion recognition studies.

On the valence scale, the kurtosis-based method demonstrated

a higher performance than the other statistics. On the arousal

scale, the skewness-based method demonstrated the highest

accuracy, but it was only 0.08% higher than that of the kurtosis-

based method. This illustrates how selecting the minimum

number of EEG channels that yields the best or required

accuracy can balance the performance and computational

complexity (Arvaneh et al., 2011). Therefore, although there

was a slight difference in accuracy, the kurtosis-based channel

selection method exhibited higher accuracy with fewer channels,

and thus it is the most suitable channel selection method for

self-induced emotion recognition.

TABLE 6 Comparison of the accuracy (%) of di�erent channel

selection methods for the γ band.

Classification Statistic Maximum accuracy K = 64

scheme (K)

Valence Mean 77.13 74.23

(79)

Variance 77.28 75.06

(108)

RMS 78.15 75.22

(87)

Skewness 76.97 75.33

(78)

Kurtosis 79.03 76.50

(68)

Arousal Mean 79.01 75.86

(122)

Variance 78.52 76.38

(70)

RMS 77.78 75.33

(114)

Skewness 79.50 76.88

(119)

Kurtosis 79.36 76.80

(90)

K is the number of selected channels. The best results are in bold.

6.4. E�ect of frequency band on
kurtosis-based channel selection

Figure 4 shows the performance of each frequency band for

the kurtosis-based channel selection method. The classification

accuracies of the γ band were significantly higher than those of

the other frequency bands, regardless of the number of selected

channels. In contrast, the classification accuracies of the δ and

θ bands were the lowest for the valence and arousal scales,

respectively. These results are similar to those obtained using

all the channels, as shown in Table 5. This demonstrates that

using both the optimal frequency band and optimal channel

selection method in our proposed framework improves the EI

classification accuracy.

6.5. E�ect of computational cost
reduction

Table 7 presents a comparison of the overall results of the

experiments performed in this study. The table displays the

average accuracy and standard deviation of the 29 subjects

for the valence and arousal classification tasks in terms of

the classification accuracy and execution time. The execution
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FIGURE 4

Average classification accuracies of di�erent frequency bands

for the kurtosis-based channel selection as a function of the

number of selected channels. (A) Valence scale classification

accuracy. (B) Arousal scale classification accuracy.

time includes the time required for preprocessing, training,

and inference, and it represents the overall computational

complexity of the system. According to the results, the feature

selection (sub-band and channel selection) process significantly

reduced the execution time and improved the accuracy. The

BPF and channel selection methods were both effective in

improving the performance. In particular, the proposed channel

selection method exhibited superior performance in terms

of reducing the execution time. Here, the channel selection

time is less than 0.1-s and accounts for less than 0.01%

of the execution time. This confirms that effective channel

selection reduces the training time without compromising the

accuracy.

6.6. Channel selection results of di�erent
model

The advantage of the proposed method is that it does not

overfit a specificmodel. To validate this fact, we applied kurtosis-

based channel selection to DeepConvNet (Schirrmeister et al.,

2017), which is widely used as a comparison model for

ShallowConvNet. Although the optimal set of channels for

ShallowConvNet was used as the input for DeepConvNet, the

results produced a 79% reduction in execution time without

decreasing the accuracy. Thus, the proposed channel selection

method can be expected to further improve the accuracy by

determining the optimal number of channels for a given CNN.

6.7. Subject-independent evaluation

We also conducted experiments on subject-independent

evaluation to verify the effectiveness of the proposed method.

In this experiment, leave-one-out cross-validation was used for

evaluation. In each fold, the EEG data of 28 subjects are used

for the training, and the remaining 1 subject’s EEG data is used

for the testing. Since the data of all subjects except the target

subject are used for the training, subject-independent channel

selection was performed. Table 8 shows the performance of

ShallowConvNet on IESD in 10 epochs. The overall accuracy is

lower than that of the subject-dependent experiment. However,

after applying BPF and channel selection, performance was

improved by the proposed framework. This demonstrates that

the proposed method can improve performance in both subject-

dependent and subject-independent scenarios.

7. Discussion

In this study, we automatically classified self-induced

emotions via a CNN without using complex preprocessing

techniques. We demonstrated that the proposed kurtosis-based

channel selection method improved the classification accuracy

and significantly reduced the computational complexity. In

particular, selecting channels from the γ band maximized the

overall classification performance.

High-frequency bands have been widely used to study

advanced cognitive functions such as emotions (Yang et al.,

2020). As a result of evaluating different frequency bands in this

study, we also found that the high-frequency bands contributed

more significantly to self-induced emotion classification than

did the low-frequency bands. In particular, our results

demonstrate that the γ band can identify self-induced emotions

more clearly than other bands. However, because CNN-

based studies have not been conducted for EI classification

before, the classification accuracy achieved in this study by

ShallowConvNet for each frequency band can be used as a

suggestion for future studies.

Statistical channel selection is a classifier-independent

(filtering) method. As mentioned in Section 1, filtering methods

do not always find the optimal channel subset or improve

performance. Despite this fact, the proposed kurtosis-based

channel selection method achieved higher performance using

fewer channels. We also applied the proposed method to
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TABLE 7 Performance of the proposed framework in terms of average accuracy (%) and execution time.

Deep learning model Method Valence Arousal

Accuracy Execution time Accuracy Execution time

(K) (for 150 epochs) (K) (for 50 epochs)

ShallowConvNet (Schirrmeister et al., 2017) Baseline (1-50 Hz) 72.37± 15.40 6 m 60 s 71.24± 16.11 2 m 20 s

(246) (246)

BPF (30–50 Hz) 75.97± 16.24 6 m 50 s 77.68± 13.38 2 m 18 s

(246) (246)

BPF + channel selection (Ours) 79.03 ± 15.22 28 s 79.36 ± 12.33 22 s

(68) (90)

DeepConvNet (Schirrmeister et al., 2017) Baseline (1-50 Hz) 69.67± 16.66 30 m 31 s 65.93± 15.15 10 m 17 s

(246) (246)

BPF (30–50 Hz) 73.27± 17.63 30 m 02 s 72.89± 14.59 10 m 11 s

(246) (246)

BPF + channel selection (Ours) 75.29 ± 15.76 5 m 45 s 76.10 ± 13.98 2 m 42 s

(68) (90)

BPF stands for “band-pass filter”, which indicates the frequency band selection process. The best results are in bold.

another model (DeepConvNet) to verify the advantages of

the filtering method. Although we did not use the optimal

channel subset as the input for that model, the computational

complexity was significantly reduced without compromising the

performance. This is the first study to demonstrate the efficiency

of statistical channel selection methods using signal amplitudes,

which is based on the observation that self-induced emotions

have a lower signal amplitude than those induced by external

stimuli.

To the best of our knowledge, no previous study has

attempted to classify emotions using the same IESD dataset. In

a similar study, Hsu et al. (2022) proposed using unsupervised

learning approaches to characterize emotional state changes by

clustering emotional states in terms of EEG activity differences

rather than using subjective labels within the same dataset.

Kothe et al. (2013) used the same experimental paradigm

that we used, and their binary classification results for the

valence scale produced an accuracy of 71.3%. Therefore, our

study outperformed this study in that it yielded a valence

classification accuracy of 79.03% using all 15 emotions (as

opposed to the 12 emotions Kothe et al., 2013 used) and only

68 channels (as opposed to the 124 channels Kothe et al., 2013

used). Moreover, we achieved an accuracy of 79.36% using 90

channels for the arousal scale, which has not been achieved

before in previous studies. Furthermore, the FBCSP algorithm

used in the previous study is not suitable for deep learning-

based systems because it utilizes multiple sub-bands and incurs

high computational costs (Kumar et al., 2017). For this reason,

the proposed method is effective in that it selects channels

based on amplitude statistics without significant computational

demands and reduces the overall computational complexity of

the system.

TABLE 8 Performance of subject-independent classification using

ShallowConvNet.

Method Valence Arousal

Accuracy Execution Accuracy Execution

time time

Baseline (1-50

Hz)

59.95± 8.96 4 m 10 s 57.71± 8.40 4 m 11 s

BPF (30-50

Hz)

62.67± 8.57 4 m 08 s 60.29± 8.33 4 m 10 s

BPF + channel

selection

(Ours)

63.46 ± 8.34 53 s 63.75 ± 7.11 1 m 28 s

The best results are in bold.

Like other studies, this study has limitations. Based on the

fact that the optimal channel subset varies from individual to

individual (Almarri et al., 2021), we performed a subject-specific

channel selection, but we did not analyze the selected channels

themselves. Therefore, our results did not show the relationship

between self-induced emotion and selected channels. Further

studies need to be done to investigate the relationship between

the channels selected by the kurtosis-based channel selection

method and channels that are active in the EI tasks. In

addition, this study used only EEG signals collected from

29 subjects in the IESD dataset. Therefore, further work will

verify our findings and improve classification accuracy by using

larger datasets and data augmentation techniques. Furthermore,

fusion with other modalities, such as facial expressions, speech,
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and ECGs, will be considered to improve the classification

accuracy.

8. Conclusion

This paper presented a new deep learning-based framework

for self-induced emotion recognition using high-density EEG

signals. We proposed a channel selection method based

on signal amplitude statistics to improve the performance

by removing irrelevant channels, which avoided the large

computational load required by high-density EEG signals. The

kurtosis-based channel selection method was the most effective

method for maximizing the accuracy of self-induced emotion

classification. It achieved average classification accuracies

of 79.03 and 79.36% for the valence and arousal scales,

respectively, using the IESD dataset. We used only 68

channels for valence scale and 90 channels for arousal scale

instead of using all 246 channels in the gamma band.

This channel selection method reduced the computational

complexity of the system by approximately 89% without

causing a decrease in accuracy. In addition, we found

that selecting channels from only the γ band generated

the highest overall classification accuracy. The experimental

results demonstrate that appropriate sub-band and channel

selection improve the CNN’s ability to learn and extract

meaningful features. The selected channel combinations were

also applied to other models to evaluate the generalization

capability of the channel selection method. This analysis

shows that our proposed framework can be applied in

future CNN-based emotion recognition studies that use

high-density EEG signals. The results of this study may

contribute to the efficiency and real-time performance of BCI

systems.

Data availability statement

Publicly available datasets were analyzed in this study.

This data can be found at: https://doi.org/10.18112/openneuro.

ds003004.v1.1.0.

Author contributions

YJ designed the methods, performed the experiments,

analyzed the results, and wrote the manuscript. S-YD designed

the methods, discussed the results, and extensive revisions to the

paper. Both authors contributed to the article and approved the

submitted version.

Funding

This work was supported by the National Research

Foundation of Korea (NRF) grant funded by the Korea

Government (Ministry of Science and ICT, MSIT) (No. NRF-

2021R1F1A1052389), by the Commercialization Promotion

Agency for R&D Outcomes (COMPA) funded by the

Ministry of Science and ICT (MSIT) [Commercialization

of health functional foods by verifying the efficacy of

functional ingredients and developing the selection

method of appropriate content based on AI], and by

the MSIT, Korea, under the ICAN (ICT Challenge and

Advanced Network of HRD) Program (IITP-2022-RS-

2022-00156299) supervised by the IITP (Institute of

Information and Communications Technology Planning

and Evaluation).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

References

Almarri, B., Rajasekaran, S., and Huang, C.-H. (2021). Automatic subject-
specific spatiotemporal feature selection for subject-independent affective BCI.
PLoS ONE 16, e0253383. doi: 10.1371/journal.pone.0253383

Alotaiby, T., Abd El-Samie, F. E., Alshebeili, S. A., and Ahmad, I.
(2015). A review of channel selection algorithms for EEG signal processing.
EURASIP J. Adv. Signal Process. 2015, 1–21. doi: 10.1186/s13634-015-
0251-9

Ang, K. K., Chin, Z. Y., Zhang, H., and Guan, C. (2008). “Filter bank common
spatial pattern (FBCSP) in brain-computer interface,” in 2008 IEEE International
Joint Conference on Neural Networks (IEEE World Congress on Computational
Intelligence) (Hong Kong: IEEE), 2390–2397.

Arvaneh, M., Guan, C., Ang, K. K., and Quek, C. (2011). Optimizing the channel
selection and classification accuracy in EEG-based bci. IEEE Trans. Biomed Eng. 58,
1865–1873. doi: 10.1109/TBME.2011.2131142

Frontiers inNeuroscience 10 frontiersin.org

44

https://doi.org/10.3389/fnins.2022.985709
https://doi.org/10.18112/openneuro.ds003004.v1.1.0
https://doi.org/10.18112/openneuro.ds003004.v1.1.0
https://doi.org/10.1371/journal.pone.0253383
https://doi.org/10.1186/s13634-015-0251-9
https://doi.org/10.1109/TBME.2011.2131142
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Ji and Dong 10.3389/fnins.2022.985709

Atkinson, J., and Campos, D. (2016). Improving bci-based emotion recognition
by combining EEG feature selection and kernel classifiers. Expert Syst. Appl. 47,
35–41. doi: 10.1016/j.eswa.2015.10.049

Azalan, M. S. Z., Paulraj, M., and Adom, A. H. (2019). “Enhancement
of motor imagery brain computer interface performance using channel
reduction method based on statistical parameters,” in IOP Conference
Series: Materials Science and Engineering, Vol. 557 (Bogor: IOP Publishing),
012016.

Bigirimana, A. D., Siddique, N., and Coyle, D. (2020). Emotion-inducing
imagery versus motor imagery for a brain-computer interface. IEEE
Trans. Neural Syst. Rehabil. Eng. 28, 850–859. doi: 10.1109/TNSRE.2020.
2978951

Craik, A., He, Y., and Contreras-Vidal, J. L. (2019). Deep learning for
electroencephalogram (EEG) classification tasks: a review. J. Neural Eng. 16,
031001. doi: 10.1088/1741-2552/ab0ab5

Damasio, A. R., Grabowski, T. J., Bechara, A., Damasio, H., Ponto, L.
L., Parvizi, J., et al. (2000). Subcortical and cortical brain activity during the
feeling of self-generated emotions. Nat. Neurosci 3, 1049–1056. doi: 10.1038/
79871

Delorme, A., and Makeig, S. (2004). Eeglab: an open source toolbox for
analysis of single-trial EEG dynamics including independent component analysis.
J. Neurosci. Methods 134, 9–21. doi: 10.1016/j.jneumeth.2003.10.009

Duun-Henriksen, J., Kjaer, T. W., Madsen, R. E., Remvig, L. S., Thomsen, C. E.,
and Sorensen, H. B. D. (2012). Channel selection for automatic seizure detection.
Clin. Neurophysiol. 123, 84–92. doi: 10.1016/j.clinph.2011.06.001

González, J., Ortega, J., Damas, M., Martín-Smith, P., and Gan, J. Q. (2019). A
new multi-objective wrapper method for feature selection-accuracy and stability
analysis for bci.Neurocomputing 333, 407–418. doi: 10.1016/j.neucom.2019.01.017

Goshvarpour, A., Abbasi, A., and Goshvarpour, A. (2017). An accurate emotion
recognition system using ecg and gsr signals and matching pursuit method.
Biomed. J. 40, 355–368. doi: 10.1016/j.bj.2017.11.001

Hsu, S.-H., Lin, Y., Onton, J., Jung, T.-P., and Makeig, S. (2022). Unsupervised
learning of brain state dynamics during emotion imagination using high-density
EEG. Neuroimage 249, 118873. doi: 10.1016/j.neuroimage.2022.118873

Hu, J., Wang, C., Jia, Q., Bu, Q., Sutcliffe, R., and Feng, J. (2021). Scalingnet:
extracting features from raw EEG data for emotion recognition. Neurocomputing
463, 177–184. doi: 10.1016/j.neucom.2021.08.018

Huang, D., Chen, S., Liu, C., Zheng, L., Tian, Z., and Jiang, D. (2021).
Differences first in asymmetric brain: a bi-hemisphere discrepancy convolutional
neural network for EEG emotion recognition. Neurocomputing 448, 140–151.
doi: 10.1016/j.neucom.2021.03.105

Iacoviello, D., Petracca, A., Spezialetti, M., and Placidi, G. (2015).
A real-time classification algorithm for EEG-based bci driven by self-
induced emotions. Comput. Methods Programs Biomed. 122, 293–303.
doi: 10.1016/j.cmpb.2015.08.011

Islam, M. R., Islam, M. M., Rahman, M. M., Mondal, C., Singha,
S. K., Ahmad, M., et al. (2021). EEG channel correlation based model
for emotion recognition. Comput. Methods Programs Biomed. 136, 104757.
doi: 10.1016/j.compbiomed.2021.104757

Katsigiannis, S., and Ramzan, N. (2017). Dreamer: A database for
emotion recognition through EEG and ecg signals from wireless low-
cost off-the-shelf devices. IEEE J. Biomed. Health Inform. 22, 98–107.
doi: 10.1109/JBHI.2017.2688239

Khalil, R. A., Jones, E., Babar, M. I., Jan, T., Zafar, M. H., and Alhussain, T.
(2019). Speech emotion recognition using deep learning techniques: a review. IEEE
Access 7, 117327–117345. doi: 10.1109/ACCESS.2019.2936124

Ko, B. C. (2018). A brief review of facial emotion recognition based on visual
information. Sensors 18, 401. doi: 10.3390/s18020401

Koelstra, S., Muhl, C., Soleymani, M., Lee, J.-S., Yazdani, A., Ebrahimi, T., et al.
(2011). Deap: A database for emotion analysis; using physiological signals. IEEE
Trans. Affective Comput. 3, 18–31. doi: 10.1109/T-AFFC.2011.15

Kothe, C. A., Makeig, S., and Onton, J. A. (2013). “Emotion recognition
from EEG during self-paced emotional imagery,” in 2013 Humaine Association
Conference on Affective Computing and Intelligent Interaction (Geneva: IEEE),
855–858.

Kumar, S., Sharma, A., and Tsunoda, T. (2017). An improved
discriminative filter bank selection approach for motor imagery EEG signal
classification using mutual information. BMC Bioinformatics 18, 125–137.
doi: 10.1186/s12859-017-1964-6

Kwon, Y.-H., Shin, S.-B., and Kim, S.-D. (2018). Electroencephalography
based fusion two-dimensional (2d)-convolution neural networks (cnn) model for
emotion recognition system. Sensors 18, 1383. doi: 10.3390/s18051383

Lal, T. N., Schroder, M., Hinterberger, T., Weston, J., Bogdan, M., Birbaumer,
N., et al. (2004). Support vector channel selection in bci. IEEE Trans. Biomed Eng.
51, 1003–1010. doi: 10.1109/TBME.2004.827827

Li, M., and Lu, B.-L. (2009). “Emotion classification based on gamma-band
EEG,” in 2009 Annual International Conference of the IEEE Engineering inMedicine
and Biology Society (Minneapolis, MN: IEEE), 1223–1226.

Li, Y., Yang, H., Li, J., Chen, D., and Du, M. (2020). EEG-based
intention recognition with deep recurrent-convolution neural network:
performance and channel selection by grad-cam. Neurocomputing 415, 225–233.
doi: 10.1016/j.neucom.2020.07.072

Liang, Z., Zhou, R., Zhang, L., Li, L., Huang, G., Zhang, Z., et al.
(2021). Eegfusenet: Hybrid unsupervised deep feature characterization and fusion
for high-dimensional EEG with an application to emotion recognition. IEEE
Trans. Neural Syst. Rehabil. Eng. 29, 1913–1925. doi: 10.1109/TNSRE.2021.
3111689

Mills, C., and D’Mello, S. (2014). On the validity of the autobiographical
emotional memory task for emotion induction. PLoS ONE 9, e95837.
doi: 10.1371/journal.pone.0095837
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Micro-expression (ME) is an extremely quick and uncontrollable facial

movement that lasts for 40–200 ms and reveals thoughts and feelings that

an individual attempts to cover up. Though much more di�cult to detect

and recognize, ME recognition is similar to macro-expression recognition

in that it is influenced by facial features. Previous studies suggested that

facial attractiveness could influence facial expression recognition processing.

However, it remains unclear whether facial attractiveness could also influence

ME recognition. Addressing this issue, this study tested 38 participants

with two ME recognition tasks in a static condition or dynamically. Three

di�erent MEs (positive, neutral, and negative) at two attractiveness levels

(attractive, unattractive). The results showed that participants recognized MEs

on attractive faces much quicker than on unattractive ones, and there was

a significant interaction between ME and facial attractiveness. Furthermore,

attractive happy faces were recognized faster in both the static and the

dynamic conditions, highlighting the happiness superiority e�ect. Therefore,

our results provided the first evidence that facial attractiveness could influence

ME recognition in a static condition or dynamically.

KEYWORDS

facial attractiveness, micro-expression, micro-expression recognition, emotion

recognition, happy-face-advantage

1. Introduction

Micro-expression (ME) is an instinctive facial movement that expresses emotion and

cognition. It is difficult for individuals to identifyMEs since they are rapid (usually lasting

for 40–200 ms), local, low-intensity facial responses (Liang et al., 2013). On the contrary,

macro-expression is easily identifiable and lasts between 500 ms and 4 s (Takalkar et al.,

2021). Ekman and Friesen (1969) indicated that the only difference between ME and

macro-expression is their duration. According to Shen et al. (2012), the duration of

the expressions influences the accuracy of ME recognition, the proper upper limit of

duration of ME may be 200 ms or less. Shen et al. (2016) utilized electroencephalogram

(EEG) and event-related potentials (ERPs) and found that the EEG/ERPs neural

mechanisms for recognizing MEs differ from those for recognizing macro-expressions.

From their findings, the vertex positive potential (VPP) at the electrodes Cz and CPz
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were significantly different between MEs (duration of less than

200 ms) and macro-expressions (duration of greater than 200

ms), and the VPP amplitude of negative expression was larger

than that of positive and neutral expression with the duration

of less than 200 ms, while when the duration was greater than

200 ms, there was no difference in VPP amplitude induced

by different emotional expressions.Previous studies discovered

that emotional contexts influence ME processing at an early

stage. Zhang et al. (2018) found that early ERP differences

in emotional contexts on ME processing, more positive P1

(an early component related to the visual processing of faces,

peaking at approximately 100 ms) and N170 (peaking at

around 160 ms) elicited by targeting ME followed negative

and positive contexts rather than neutral contexts. Previous

functional magnetic resonance imaging (fMRI) research found

that emotional contexts reduce the accuracy of ME recognition

while increasing context-related activation in some emotional

and attentional regions (Zhang et al., 2020). Due to the

additional monitoring and attention required for emotional

context inhibition, the increased perceptual load of negative

and positive contexts results in increased brain activation as

well as decreased behavioral performance (Siciliano et al., 2017).

Studies of emotion perception have demonstrated that ME

recognition is similar to macro-expression recognition and that

it is affected by variety of factors, such as gender (Abbruzzese

et al., 2019), age (Abbruzzese et al., 2019), occupation (Hurley,

2012), culture (Iria et al., 2019), and individual psychological

characteristics (Zhang et al., 2017). ME recognition is widely

used in the fields of national security, judicial interrogation,

and clinical fields as an effective clue for detecting deceptions

(Ekman, 2009), as MEs occurred too quickly and are very

difficult to detect, scholars have long endeavored to explore and

improve individuals’ ability to recognize MEs. Previous studies

have typically focused on how facial attractiveness moderates

macro-expression recognition. To the best of our knowledge,

no previous study on macro-expressions has employed facial

expressions of 200 ms or less as their stimuli, it remains

unclear whether the durations of facial expressions are able to

modulate the effects of facial attractiveness on facial emotion

recognition (FER).

Facial attractiveness is the extent to which a face makes

an individual feel good and happy, and how much it makes

them want to get closer to it (Rhodes, 2006). Attractiveness

is a strong signal of social interaction, reflecting all facial

features (Rhodes, 2006; Li et al., 2019). Attractive faces are

commonly connected with good features such as personal

attributes (Eagly et al., 1991; Lindeberg et al., 2019) and higher

intelligence levels (Jackson et al., 1995; Mertens et al., 2021).

Abundant evidence showed that facial attractiveness affects the

ability to recognize facial expressions (e.g., Dion et al., 1972;

Cunningham, 1986; Otta et al., 1996; Hugenberg and Sczesny,

2006; Krumhuber et al., 2007; Zhang et al., 2016). For example,

Lindeberg et al. (2019) asked participants to recognize happy

or angry expressions and rate the level of attractiveness of

their faces, the results show that attractiveness has a strong

influence on emotion perception. According to Lindeberg et al.

(2019) facial attractiveness moderates expressions recognition,

participants showed the happiness superiority effect for the faces

with higher attractiveness levels but not for the unattractive

ones, i.e., people tend to recognize happiness faster in attractive

faces than in unattractive faces, while there is no such effect

in other emotions recognition (i.e., anger, sadness, surprise,

Leppänen and Hietanen, 2004). Li et al. (2019) also observed

that facial attractiveness moderates the happiness superiority

effect, participants could identify the happy expression faster

in higher attractive faces, which is consistent with the findings

of Lindeberg et al. (2019). Furthermore, in the study by

Golle et al. (2014), the authors utilized two-alternative-forced

choice paradigms, which required participants to choose one

stimulus above the other. The result revealed that facial

attractiveness affects happy expression recognition.When happy

faces were likewise more attractive, identifying them was easier.

Mertens et al. (2021) employ the mood-of-the-crowd task to

compare attractive and unattractive crowds. According to the

research, participants were more quick and accurate when

rating happy crowds. Attractive crowds were perceived as

happier than unattractive crowds, that is, people in crowds with

unattractive faces were regarded to be in a negative mood, which

supports the assumption that attractiveness could moderate

emotion perception.

However, a few studies failed to demonstrate that facial

attractiveness influences facial emotion recognition (e.g.,

Jaensch et al., 2014). For example, Taylor and Bryant (2016)

asked participants to classify happiness, neutral, or anger

emotions at two attractiveness levels (attractive, unattractive),

according to the findings of their study, the detection of

happiness or anger is not significantly influenced by facial

attractiveness. It should be noted that Taylor and Bryant

(2016) used anger as the negative expression, however, anger

is often mistaken for those other emotions (Taylor and Jose,

2014), which may have contributed to the masculinization of

attractive female faces that made them seem less attractive

(Jaensch et al., 2014) and lead to unreliable results. Thus, this

study used disgust expression as experimental material which

extends the existing research. Furthermore, previous research

on recognizing facial expressions has employed static stimuli,

while human faces in real life are not static. As humans

utilize dynamic facial expressions in everyday conversation, the

ability to accurately recognize dynamic expressions makes more

sense (Li et al., 2019). In contrast to static facial expressions,

previous studies show that dynamic facial expressions are more

ecologically valid and could induce more obvious behavioral

responses, such as emotion perception (Recio et al., 2011),

emotion elicitation (Scherer et al., 2019), and imitation of facial

expressions (Sato and Yoshikawa, 2007). This evidence suggests

that dynamic stimuli are better identified than static ones,
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according to face processing literature (Zhang et al., 2015). In

this study, we showed participants static and dynamic stimuli to

recognize MEs.

To this end, we aimed to explore whether facial

attractiveness moderates ME recognition processing. In

Experiment 1, static expressions of disgust, neutral, and

happiness were presented. Furthermore, Experiment 2

replicated and extended Experiment 1’s results by using

dynamic stimuli (happy, disgust). We hypothesized that

attractive faces could be judged faster overall in a static condition

or dynamically; participants could recognize happiness more

accurately in attractive faces than in unattractive faces.

2. Experiment 1

We adopted a recognition task modified from the Brief

Affect Recognition Test (BART) to simulate a ME (Shen

et al., 2012). In the BART paradigm (Ekman and Friesen,

1974), one of the six emotions (happiness, disgust, anger, fear,

surprise, and sadness) was presented for 10 ms to 250 ms. In

Experiment 1 we presented static stimuli with a duration of

200 ms (happiness as positive ME, disgust as negative ME, and

neutral as a control condition) to investigate the effects of facial

attractiveness on the processing of MEs. We hypothesized that

participants could judge attractive faces faster in static faces, and

facial attractiveness moderates the happiness superiority effect,

participants could identify the happy expression faster in higher

attractive faces but not for the unattractive ones.

2.1. Methods

2.1.1. Participants

The number of participants was similar to or larger than

previous research examining the effect of facial attractiveness on

expression recognition (e.g., Taylor and Bryant, 2016; Li et al.,

2019). Based on a post hoc power analysis by using G∗Power 3.1

(Faul et al., 2007) and calculating power analysis for the main

effect of ME (a partial η2 equal to 0.349, an alpha of 0.05, and

a total sample size of 38) and attractiveness (a partial η2 equal

to 0.535, an alpha of 0.05, and a total sample size of 38), we

observed that this sample size generated a high power of 1-β

equal to 0.978 and 0.999 separately. Thus, thirty-eight right-

handed participants from Beijing Normal University, Zhuhai (M

= 20.24 years, SD = 0.675 years, 20 women) were recruited

and received remuneration for completing the experiment. All

participants had a normal or corrected-to-normal vision and

no psychiatric history. This study adhered to the Declaration

of Helsinki and was approved by the Institutional Review

Board of the Institute of Psychology, Chinese Academy of

Sciences.

2.1.2. Design

Experiment 1 adopted a 3 (ME: happy, neutral, disgust) ×2

(Attractiveness: attractive, unattractive) within-subject factors

design. The dependent variables were the participants’ mean

accuracy score (%) and the mean reaction times (ms) for

participants to accurately detect MEs.

2.1.3. Materials

The Extended Cohn-Kanade Dataset (CK+) face database

was used to choose images of faces (Lucey et al., 2010). CK+ is

the most frequently used laboratory-controlled facial expression

classification database that conforms to the Facial Action Coding

System (Ekman and Friesen, 1978). At the individual (within-

culture) level, Matsumoto et al. (2007) observed consistent and

dependable positive connections among the response systems

across all seven emotions (happiness, disgust, sadness, contempt,

fear, anger, and surprise). These associations indicated that the

response systems were coherent with one another. According to

Ekman (1992), the response systems for anger, fear, happiness,

sadness, and disgust are coherent across cultures which are based

not only on a high level of agreement in the labeling of what these

expressions signal across literate and preliterate cultures, but also

on studies of the actual expression of emotions, both deliberately

and spontaneously, as well as the association of expressions

with social interactive contexts. Therefore, Caucasian faces

can be used to measure Chinese college students (Zhang

et al., 2017). From the CK+ face database, we picked 120

pictures of 40 different models whose facial expressions included

disgust, happiness, and neutral. Twenty-two additional Chinese

participants rated each neutral expression’s level of attractiveness

on a 7-point Likert scale (1 = very unattractive, 7 = very

attractive). A paired sample t-test confirmed that the attractive

faces (M = 4.18, SD = 0.152) were significantly higher than

unattractive faces (M = 2.23, SD = 0.148), t(4) = 15.764, p

< 0.001. The five faces with the highest and lowest average

attractiveness ratings were chosen for the research, resulting

in a total of 60 trials. In these trials, ten different model faces

were used for each emotion: five attractive models representing

the three emotions (happiness, neutral, and disgust) and five

unattractive models expressing the same emotions. All photos

were 350×418 pixels in size and shown on a white background.

A Lenovo computer (23.8-inch CRT monitor, resolution 1,920

× 1,080 pixels) and E-Prime (version 2.0) were used to present

the stimuli and collect the data.

2.1.4. Procedure

In a quiet environment, participants were tested

individually. First, they were given a practice block consisting of

nine trials, to begin with, so that they could get familiar with the

task. It was requested of the participants that they maintain their

gaze on a center fixation cross that was shown on the screen for
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a duration of 500 ms, then one of the three basic expressions was

shown for the duration of 200 ms in the middle of the screen.

Participants were told to press the appropriate key according to

the micro-expression they considered the face revealed (the “J”

key for happy, “K” key for neutral, or the “L” key for disgust) and

rate each face on attractiveness using a 7-point Likert scale (1 =

very unattractive, 7 = very attractive), each trial only displayed

a single image. After 2,000 ms, the reaction screen vanished

automatically. The participants were instructed to complete the

task in as little time as possible while maintaining the highest

level of accuracy. The experimental blocks didn’t utilize the

practice block’s images. Each experimental block included all 30

photographs, one of each face shown twice in random order.

Testing took about 15 min (refer to Figure 1).

2.2. Data processing

The average accuracy and mean reaction times for each

combination were calculated in both experiments. To deal with

the reaction time outliers, we adopted an approach suggested

in Ratcliff (1993) and set up a cut-off point of 1.5 SDs above

the mean. After that, the reaction time was processed in the

same way as the accuracy. We utilized Greenhouse- Geisser

correction for heterogeneity of covariances (if sphericity could

not be assumed) and Bonferroni correction for post-hoc pairwise

comparisons. SPSS 26.0 program was used for the data analysis.

2.3. Results and discussion

We launched a 3 × 2 repeated measures ANOVA with

ME (happy, neutral, disgust) and Attractiveness (attractive,

unattractive) as within-subject factors, and with mean accuracy

as dependent variables. The mean accuracy of the three MEs is

shown in Figure 2. The results revealed a significant main effect

of ME, [F(2, 74) = 19.823, p < 0.001,η2p = 0.349], a significant

main effect of attractiveness, [F(1, 37) = 42.519, p < 0.001,

η2p = 0.535]. The interactions between ME and attractiveness

were significant, [F(1.580, 2.019) = 41.447, p < 0.001, η2p =

0.528]. Pairwise comparisons with Bonferroni correction show

that for ME, mean accuracy were significantly higher when

responding to happiness compared to disgust (p = 0.011, 95%

CI [0.024, 0.228]) neutral identified higher recognition accuracy

than happiness (p = 0.002, 95% CI [0.041, 0.209]), and disgust

(p < 0.001, 95% CI [0.139, 0.364]). A simple main effect of ME

was analyzed to examine the interaction between attractiveness

and ME. The results revealed a significant simple main effect

FIGURE 1

The procedure of the micro-expression recognition task and 7-point Likert rating task.
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FIGURE 2

Participants’ mean accuracy of the static micro-expression recognition task in two facial attractiveness levels (attractive, unattractive). Error bars

reflect the 95% CIs for the mean accuracy.

TABLE 1 Mean accuracy of recognition of each Micro-expression in

Experience 1.

Accuracy of recognition (%)

Attractive Unattractive

Micro-expression M ± SD M ± SD

Happy 0.775± 0.184 0.361± 0.199

Disgust 0.421± 0.259 0.442± 0.223

Neutral 0.665± 0.159 0.700± 0.156

of ME under the attractive faces condition, [F(2, 36) = 27.777,

p < 0.001, η2p = 0.607], and a significant simple main effect of

ME under the unattractive faces condition, [F(2, 36) = 38.731,

p < 0.001, η2p = 0.683]. Under the attractive faces condition,

happiness (M= 0.755, SD= 0.030) identified higher recognition

accuracy than disgust [M = 0.666, SD = 0.026, t(36) = 2.34,

p = 0.023, d = 0.780, 95% CI [0.013, 0.166]], and neutral [M

= 0.442, SD = 0.036, t(36) = 7.45, p < 0.001, d = 2.48, 95%

CI [0.229, 0.397]], disgust identified higher recognition accuracy

than neutral [t(36) = 4.571, p < 0.001, d= 1.524, 95% CI [0.125,

0.322]]. Furthermore, neutral (M= 0.700, SD= 0.025) identified

higher recognition accuracy than happiness [M = 0.421, SD =

0.042, t(36) = 5.167, p< 0.001, d= 1.722, 95% CI [0.169, 0.389]]

and disgust [M = 0.361, SD = 0.032, t(36) = 8.692, p < 0.001,

d = 2.897, 95% CI [0.261, 0.418]] under the unattractive faces

condition, but no significant differences between happiness and

disgust (p= 0.242, 95% CI [−0.043, 0.164]) (refer to Table 1).

Mean reaction times were submitted to a second repeated

measures ANOVA with the same factors described above,

outliers (reaction times exceeding the mean of each participant

by 1.5 SD) were not included in the analysis. There was no

significant main effect of ME, [F(2, 56) = 1.661, p = 0.199],

and attractiveness, [F(1, 28) = 0.453, p = 0.507], no significant

interactions between ME and attractiveness, [F(2, 56) = 1.363,

p= 0.264].

Attractiveness ratings were submitted to a third repeated

measures ANOVA with the same factors described above. The

results revealed a significant main effect of ME, [F(2, 74) =

62.595, p < 0.001, η2p = 0.628], a significant main effect of

attractiveness, [F(1, 37) = 64.526, p < 0.001, η2p = 0.636]. The

interactions between ME and attractiveness were significant,

[F(2, 74) = 7.786, p = 0.001, η2p = 0.174], indicating that the

attractivemanipulation of the stimuli used in the current study is

effective. Pairwise comparisons with Bonferroni correction show

that for ME, the score of attractiveness ratings was significantly

higher when responding to happiness compared to disgust (p <

0.001, 95% CI [0.500, 0.939]), and neutral (p < 0.001, 95% CI

[0.427, 0.737]), neutral were rated asmore attractive than disgust

(p = 0.027, 95% CI [0.013, 0.264]). Further analysis revealed a

significant simple main effect of ME under the attractive faces

condition, [F(2, 36) = 30.378, p < 0.001, η2p = 0.628], and a

significant simple main effect of ME under the unattractive faces

condition, [F(2,36) = 23.264, p < 0.001, η2p = 0.564]. Under the

attractive faces condition, happiness (M = 4.337, SD = 0.164)

were rated with a higher score than disgust [M = 3.421, SD =

0.135, t(36) = 7.508, p< 0.001, d= 2.503, 95%CI [0.668, 1.164]],

and neutral [M = 3.582, SD = 0.123, t(36) = 7.704, p < 0.001,

d = 2.568, 95% CI [556, 0.954]], disgust were rated with lower

score than neutral [t(36) = 2.439, p = 0.020, d = 0.813, 95%

CI [−0.294, −0.027]]. Under the unattractive faces condition,
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happiness (M = 3.361, SD= 0.163) were rated with higher score

than disgust [M = 2.837, SD = 0.143, t(36) = 6.39, p < 0.001,

d = 2.13, 95% CI [0.358, 0.690]] and neutral [M = 2.953, SD =

0.163, t(36) = 5.826, p< 0.001, d= 1.942, 95%CI [0.266, 0.550]],

no significant differences between disgust and neutral [t(36) =

1.634, p= 0.112, d = 0.545, 95% CI [−0.260, 0.029]].

In this study, we examine how facial attractiveness influences

the processing of ME recognition in static conditions. Analysis

of accuracy indicated that the recognition of ME is influenced

by attractiveness. Participants categorized attractive faces more

accurately than unattractive faces. Specifically, participants

showed the happiness superiority effect for the faces with

higher attractiveness levels but not for the unattractive ones, the

expression of happiness on the attractive faces was the easiest to

recognize, followed by neutral, and then disgust.

3. Experiment 2

In Experiment 2, we presented dynamic stimuli to

investigate the effects of facial attractiveness on the processing

ofMEs.We hypothesized that participants could judge attractive

faces faster overall in a dynamic context; participants showed

the happiness superiority effect for the faces with higher

attractiveness levels but not for the unattractive ones.

3.1. Methods

Experiment 2 employed a 2 (ME: happy, disgust) ×2

(Attractiveness: attractive, unattractive) within-subject factors

design. The dependent variables were the participants’ mean

accuracy score (%) and the mean reaction times (ms)

for participants to accurately detect MEs. Participants and

procedure were the same as in Experiment 1. Based on a post-

hoc power analysis by using G*Power 3.1 (Faul et al., 2007) and

calculating power analysis for the main effect of attractiveness

(a partial η2 equal to 0.436, an alpha of 0.05, and a total

sample size of 38), we observed that this sample size generated a

high power of 1-β equal to 0.999. To exclude practice effects,

we balanced the order of Experiment 1 and Experiment 2

between participants. Thirty-eight participants were randomly

divided into two groups (Group A and B), each comprised of

19 participants. Group A completed Experiment 1 follow by

Experiment 2, and Group B did the opposite. Also, we used

the materials from Experiment 1 to create short video clips.

Shen et al. (2012) found a significant difference in recognition

accuracy with durations of 40 ms and 120 ms under the METT

paradigm condition; however, when the duration was greater

than 120 ms, there was no difference in accuracy rate. Thus,

we employ the intermediate values with a duration of 80 ms

as the target stimulus. Based on the neutral-emotional-neutral

paradigm (Zhang et al., 2014), we used neutral as the context

expression in this experiment. Zhang et al. (2014) indicated

that MEs are contained in the flow of expressions including

both neutral and other emotional MEs, considering that a

ME is occurred very fast and is always submerged in other

MEs, the neutral faces before and after the target ME were

presented for 60 ms in order to simulate the real situation

in which the ME happened, with happiness or disgust flashed

briefly for 80 ms, resulting in a total of 200 ms. Thus, the

dynamic stimuli consisted of 20 clips (each clip lasting for 200

ms and showing the same model), comprised of two levels of

Attractiveness (attractive and unattractive) and presented as two

stimulus types (neutral-happiness-neutral and neutral-disgust-

neutral) for each of the 10 models, each clip was shown twice

in random order. E-Prime (version 3.0) was used to show the

stimuli and collect the data.

3.2. Results and discussion

We launched a 2×2 repeated measures ANOVA with ME

(happy, disgust) and Attractiveness (attractive, unattractive) as

within-subject factors, and with mean accuracy as dependent

variables. The mean accuracy of the two MEs is shown in

Figure 3. The results revealed a significant main effect of

attractiveness, [F(1, 37) = 28.560, p < 0.001, η2p = 0.436]. The

main effect of ME was not significant, [F(1, 37) = 0.062, p =

0.805]. The interactions between ME and attractiveness were

significant, [F(1, 37) = 14.637, p < 0.001, η2p = 0.283]. A simple

main effect of ME was analyzed to examine the interaction

between attractiveness andME. The results revealed a significant

simple main effect of ME under the attractive faces condition,

[F(1, 37) = 5.512, p = 0.024, η2p = 0.130], and a significant

simple main effect of ME under the unattractive faces condition,

[F(1, 37) = 9.294, p= 0.004, η2p = 0.201]. Furthermore, happiness

(M = 0.942, SD = 0.022) identified higher recognition accuracy

than disgust [M = 0.732, SD = 0.036, t(37) = 2.362, p = 0.024,

d = 0.777, 95% CI [0.015, 0.206]] under the attractive faces

condition, happiness (M = 0.832, SD = 0.040) identified lower

recognition accuracy than disgust [M = 0.858, SD= 0.021, t(37)
= 3.073, p = 0.004, d = 1.010, 95% CI [−0.210, −0.042]] under

the unattractive faces condition (refer to Table 2).

Mean reaction times were submitted to a second repeated

measures ANOVA with the same factors described above,

outliers (reaction times exceeding the mean of each participant

by 1.5 SD) were not included in the analysis. There was

no significant main effect of ME, [F(1,35) = 0.218, p =

0.644], or a significant main effect of attractiveness, [F(1,35)
=2.492, p = 0.123]. Remarkably, the interaction of ME ×

Attractiveness was significant, [F(1,35) = 21.245, p < 0.001, η2p
= 0.378]. A follow-up simple effect analysis was employed to

investigate the effect of ME within each level of attractiveness.
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FIGURE 3

Participants’ mean accuracy of the dynamic micro-expression recognition task in two facial attractiveness levels (attractive, unattractive). Error

bars reflect the 95% CIs for the mean accuracy.

TABLE 2 Mean accuracy of recognition of each Micro-expression in

Experience 2.

Accuracy of recognition (%)

Attractive Unattractive

Micro-expression M ± SD M ± SD

Happy 0.942± 0.136 0.731± 0.221

Disgust 0.731± 0.221 0.857± 0.127

The results revealed a significant simple main effect of ME

under the attractive faces condition, [F(1,37) = 9.267, p =

0.004, η2p = 0.200], and a significant simple main effect of

ME under the unattractive faces condition, [F(1,37) = 21.773,

p < 0.001, η2p = 0.370]. Happiness (M = 758.280, SD =

55.873) identified faster than disgust (M = 919.013, SD =

79.390) under the attractive faces condition [t(37) = 3.044, p =

0.004, d = 1.001, 95% CI [–267.715, –53.752]], disgust (M =

821.605, SD = 66.602) identified faster than happiness (M =

982.400, SD = 76.192) under the unattractive faces condition

[t(37) = 4.666, p < 0.001, d = 1.534, 95% CI [–230.616, –

90.973]].

Attractiveness ratings were submitted to a third repeated

measures ANOVA with the same factors described above. The

results revealed a significant main effect of ME, [F(1, 37) =

62.947, p < 0.001, η2p = 0.630], a significant main effect of

attractiveness, [F(1, 37) = 101.369, p < 0.001, η2p = 0.733]. The

interactions between ME and attractiveness were significant,

[F(1, 37) = 20.428, p < 0.001, η2p = 0.356], indicating that the

attractive manipulation of the stimuli used in the current study

is effective. Further analysis revealed a significant simple main

effect of ME under the attractive faces condition, [F(1, 37) =

143.607, p < 0.001, η2p = 0.795], and a significant simple main

effect of ME under the unattractive faces condition, [F(1, 37)
= 29.711, p < 0.001, η2p = 0.445]. Under the attractive faces

condition, happiness (M = 4.471, SD = 0.173) was rated with

a higher score than disgust [M = 3.195, SD = 0.167, t(37) =

11.925, p < 0.001, d = 3.921, 95% CI [1.061, 1.492]]. Under

the unattractive faces condition, happiness (M = 3.374, SD =

0.132) was rated with a higher score than disgust [M = 2.682,

SD = 0.146, t(37) = 5.449, p < 0.001, d = 1.792, 95% CI [0.435,

0.949]].

In this study, we examine how facial attractiveness influences

the processing of ME recognition in dynamic conditions.

Analysis of accuracy indicated that attractiveness affects ME

recognition. Participants could recognize attractive faces

more accurately. Specifically, we observed a higher accuracy

rate for happiness than disgust under the attractive faces

condition, which supports the assumption that attractiveness

could moderate the happiness superiority effect. For the

response times, the interaction of Attractiveness × ME

was significant, attractive faces were recognized faster

than unattractive faces, and happiness was categorized

faster than disgust under the attractive face condition

whereas this happiness superiority effect did not apply to

unattractive faces. According to the results of attractiveness

ratings, the advantage of happy faces may be caused by

their attractiveness. Overall, participants could identify

the happy expression faster and more accurately in higher

attractive faces, demonstrating that participants have a

stronger ability to identify dynamic expressions that are very

attractive.
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4. General discussion

Across two experiments, we showed participants static

and dynamic faces to recognize MEs. We revealed evidence

of the effect of attractiveness on the recognition of ME in

either static conditions or dynamically. The results suggest

that these two attributes (Attractiveness × ME) are strongly

interconnected. Participants showed the happiness superiority

effect for the faces with higher attractiveness levels but not

for the unattractive ones in both experiments. These findings

are in line with the attractiveness stereotype, which defines the

phenomena in which individuals correlate physical appearance

with a variety of beneficial qualities (Eagly et al. 1991). For

instance, attractiveness could boost job interview chances

(Watkins and Johnston, 2000). According to the attractiveness

stereotype, attractive appearance and good qualities have a

strong association with the thoughts of people. Therefore, the

identification of attractive faces and positive emotions may be

rewarded with an advantage, enhancing their speedy recognition

(Golle et al., 2014).

The happiness superiority effect was strengthened by

neuroimaging evidence indicating that the medial frontal cortex

plays an important role in happy face recognition (Kesler

et al., 2001). Ihme et al. (2013) used functional magnetic

resonance imaging (fMRI) for the first time to explore the brain

mechanism of JACBART and revealed increasing activation with

higher performance in the basal ganglia for the negative faces

and orbitofrontal areas for happiness and anger. Furthermore,

previous research implicated that basal ganglia and orbitofrontal

cortex are both involved in the processing of emotional facial

expressions. According to O’Doherty et al. (2003), the medial

orbitofrontal cortex (OFC) is a region that is known involved

in representing stimulus reward value and was shown to be

more active when an attractive face was associated with a

happy expression, rather than a neutral one. Further studies

should find out whether facial attractiveness that correlates with

the detection performance of MEs predicts activation in basal

ganglia and orbitofrontal cortex.

In general, this study aimed to explore the effects of facial

attractiveness on the processing of MEs in static and dynamic

experimental conditions. The findings of our study verified

and represent an extension of previous research. On one hand,

the results show that participants could identify the happy

expression quicker in higher attractive faces, which supports

the happiness superiority effect and strengthens this theory with

more evidence. On the other hand, this research suggests that the

moderation of ME recognition is not limited to invariant facial

attributes (such as gender and race) but also applies to variable

face features such as facial attractiveness. Furthermore, previous

studies suggest that ME recognition training has significant

effects on the recognition of MEs (Matsumoto and Hwang,

2011). However, the selection of stimulus material in prior

research may not address the variations in the attractiveness of

the faces representing the various groups. The current findings

demonstrate that facial attractiveness is processed quickly

enough to influence ME recognition; hence, facial attractiveness

should be considered when selecting faces as stimuli for ME

recognition training. Also, since individuals can be trained to

recognize MEs more accurately and quickly in as little as a few

hours, the effects of facial attractiveness on ME recognition may

be reduced when individuals receive ME training.

The present experiments entailed several limitations. First,

this research only used two basic expressions as experimental

materials. It remains unclear whether facial attractiveness

affects other MEs (such as a sadness expression) as much as

in our research, a wider range of facial expressions should

be examined in future research. Second, we used synthetic

MEs in the experiences, while natural MEs may be shorter,

asymmetrical, and weaker than synthetic MEs, future research

could use natural MEs with more ecological validity as research

materials. However, this would require a ME database with

a rich sample. Third, we employed the Caucasian faces as

experimental materials, which were outgroup members to the

participants of the current study. However, evidence from cross-

cultural studies suggests that the ME recognition process might

differ between the ingroup members and outgroup members.

For example, Elfenbein and Ambady (2002) suggested that

individuals are more accurate at identifying ingroup emotions

since they are more familiar with their own race expressions

and faces. Therefore, it may be useful to use a wider variety of

face types in future studies to evaluate the ingroup advantage

in ME recognition-related facial attractiveness in a context of

stimulus equivalence. Finally, since a ME is often embedded in

the flow of other MEs, we employed 80 ms for target MEs, and

the neutral MEs before and after the emotional MEs were only

presented for 60 ms to simulate the actual situation in which

the ME occurred. This led to the neutral expressions and target

ME being combined and the entire duration was examined.

Future studies could employ an ERP experiment to investigate

the modulation of early visual processing (e.g., P1 and N170) by

using natural MEs in order to investigate the neural mechanism

for the effect of facial attractiveness on ME. Moreover, this

research only examined the presentation time of MEs at 200 ms.

Shen et al. (2012) showed that the accuracy of MEs recognition

depends on how long they last and reaches a turning point at

200 ms or maybe even less than 200 ms before leveling off.

This suggests that the critical time point that differentiates MEs

may be 1/5 of a second. Does facial attractiveness have different

effects on ME recognition with longer and shorter presentation

times? These questions need to be further explored.

5. Conclusion

In conclusion, the current research provides objective

evidence that facial attractiveness influences the processing
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of MEs. Specifically, we observed that attractive happy faces

can be recognized faster and more accurately, emphasizing

the happiness superiority effect whether in a static condition

or dynamically. Moreover, these new results support the

assumption that facial attractiveness could moderate emotion

perception. Further studies should employ eye tracker

technology to detect visual attention mechanisms in MEs

processing that is influenced by facial attractiveness.
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Video emotion recognition aims to infer human emotional states from the

audio, visual, and text modalities. Previous approaches are centered around

designing sophisticated fusion mechanisms, but usually ignore the fact that

text contains global semantic information, while speech and face video show

more fine-grained temporal dynamics of emotion. From the perspective of

cognitive sciences, the process of emotion expression, either through facial

expression or speech, is implicitly regulated by high-level semantics. Inspired

by this fact, we propose a multimodal interaction enhanced representation

learning framework for emotion recognition from face video, where a

semantic enhancement module is first designed to guide the audio/visual

encoder using the semantic information from text, then the multimodal

bottleneck Transformer is adopted to further reinforce the audio and visual

representations by modeling the cross-modal dynamic interactions between

the two feature sequences. Experimental results on two benchmark emotion

databases indicate the superiority of our proposed method. With the semantic

enhanced audio and visual features, it outperforms the state-of-the-artmodels

which fuse the features or decisions from the audio, visual and text modalities.

KEYWORDS

emotion recognition, representation learning, cross-modal interaction,

cross-attention, semantic enhancement

1. Introduction

Automatic emotion recognition, as the first step to enable machines to have

emotional intelligence, has been an active research area for the past two decades.

Video emotion recognition (VER) refers to predicting the emotional states of the target

person by analyzing information from different cues such as facial actions, acoustic

characteristics and spoken language (Rouast et al., 2019; Wang et al., 2022). At the heart

of this task is how to effectively learn emotional salient representations from multiple

modalities including audio, visual, and text.
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Previous works usually extract modality-specific features,

such as the word-level embeddings from text (Pennington et al.,

2014), and frame-level acoustic features from speech (Degottex

et al., 2014) or appearance descriptors from face images

(Baltrusaitis et al., 2018), then use various fusion strategies to

explore the temporal dependencies among the feature sequences

of different modalities. For instance, the bidirectional cross-

attention proposed by Tsai et al. (2019) to attend interactions

between any two pair-wise feature sequences, was extended by

Zheng et al. (2022) to implement interactions between three

modalities by connecting the cross-attention modules in series.

In He et al. (2021), the time squeeze fusion was proposed

to model the time-dependent modality-specific interactions. In

these works (Tsai et al., 2019; He et al., 2021; Zheng et al.,

2022), the audio, visual, and text modalities were treated as

three time-series that play the same role. Several works proposed

to first fuse the audio and visual feature sequences into a

higher level space, then fuse this bimodal feature sequence

with the textual feature sequence (Fu et al., 2022; Zhang et al.,

2022). Alternatively, text-centered frameworks were designed

to explore the cross-modal interactions between textual and

non-textual feature sequences (Han et al., 2021; He and Hu,

2021; Wu et al., 2021). In the works above, the textual features

are feature sequences composed of the word-level embeddings.

In fact, the whole sentence contains more accurate semantics

than the word-level embeddings. Accordingly, the challenge is

how to effectively leverage textual emotion information while

preserving the high-level global semantics. Facing this challenge,

Sun et al. (2020) adopted the pre-trained BERT model (Devlin

et al., 2019) to obtain global text embeddings and two long-

short term memory (LSTM) models to extract sentence-level

audio and visual features independently, then modeled the

correlations between the outer-product matrices of text-audio

and text-visual features to learn the multimodal representations.

In Dai et al. (2020), three LSTMs were used to get the global

representations of audio, visual, and text modality, respectively.

Meanwhile, a set of emotion embeddings was constructed

for each modality, representing the semantic meanings for

the emotion categories to be recognized. Specifically, the

pre-trained GloVe (Pennington et al., 2014) embeddings of

emotion category words (happy, sad, etc) were used as textual

emotion embeddings, which were mapped to obtain the audio

and visual emotion embeddings, respectively, through two

learnable mapping functions. Then, the similarity score between

the emotion embeddings and the global representation was

calculated for each modality separately, and finally fused to get

the emotion prediction. This work leveraged the global semantic

information, however, the semantics contained in the emotion

category words are less goal-oriented toward the target emotion

and the important cross-modal feature interactions are ignored.

In fact, as a complex psychological and physiological

phenomenon, emotion can be pre- and post-cognitive: initial

emotional responses produce thoughts, which produce affect

(Lerner and Keltner, 2000). From this perspective, the process

of emotional expression, either through facial expression or

the way of speaking, is implicitly regulated by the semantic

information. Therefore, in this work, we propose a semantically

enhanced module for audio or visual encoders, striving to learn

more emotion-relevant features from individual video frames

or speech segments with the guidance of high-level semantic

information from text.

Additionally, in order to capture the temporal dynamics

in audio and video signals, sequential learning is usually

performed over the unimodal or concatenated features (Dai

et al., 2021; Nguyen et al., 2021). However, such approach lacks

information exchanging between the audio and visual sequential

features. A classical solution is based on the bidirectional

cross-attention between the pair-wise modalities (Tsai et al.,

2019). Nevertheless, the redundancy that exists in audio and

video signals is ignored, moreover, the bidirectional cross-

attention leads to additional computational complexity. In

the field of video understanding, the Multimodal Bottleneck

Transformer (Nagrani et al., 2021; Liu et al., 2022) was

recently proposed for audiovisual fusion with the advantage

of condensing relevant unimodal information and meanwhile

reducing the computational cost. Inspired by this, we adopt

the bottleneck Transformer to reinforce the audio and visual

features, by leveraging attention bottlenecks as a bridge to

explore the temporal interactions between the two modalities.

By doing so, our model can simultaneously consider exchanging

complementary information and reducing redundancy during

the coordinate representation learning process of audio and

visual modalities.

Overall, we propose a representation learning approach

for video emotion recognition that achieves dual-enhancement

through multimodal interactions. First, the encoders of audio

and visual modalities are enhanced by the global semantic

information in text. Then, the audio and visual feature sequences

are reinforced again with the complementary information of

each other. Finally, the attentive decision fusion is performed

to obtain the final emotion prediction. The effectiveness of the

proposed method is verified by extensive experiments on two

widely used emotion datasets, i.e., IEMOCAP (Busso et al.,

2008) and CMU-MOSEI (Zadeh and Pu, 2018). In summary, the

contributions are summarized as follows:

• We propose a semantic enhancement module for the audio

and visual feature encoder to enhance the audio and visual

features under the guidance of global semantics from the

text modality. The enhanced audio and visual features

contain more emotion-relevant information.

• To achieve efficient cross-modal interaction between

temporal audio and visual feature sequences, the bottleneck

Transformer is adopted as the cross-modal encoder.

Specifically, the bottleneck Transformer reinforces audio

and visual representations by modeling their dynamic
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interactions and meanwhile reducing redundancy in the

temporal sequences.

• We conduct extensive experiments on two benchmarks and

the results demonstrate the superiority of our proposed

method for video emotion recognition.

The remainder of this paper is organized as follows.

Section 2 reviews the previous related works on video emotion

recognition. Section 3 explains our proposed framework in

detail. Section 4 reports the experiment results, followed by the

conclusions and future work in Section 5.

2. Related works

2.1. Feature representations for video
emotion recognition

Extracting effective feature representations is the first and

foremost step in video emotion recognition. By considering

the heterogeneity of different modalities in the video, separate

models are used to extract unimodal features from the raw

data of each modality. For text modality, with the advances

in natural language processing, pre-trained models such as

Word2Vec (Mikolov et al., 2013) and BERT (Devlin et al., 2019)

are commonly used for word embedding. As for audio and visual

modalities, various hand-crafted features have been designed

based on corresponding domain knowledge, such as acoustic

descriptors including prosodic and spectral related parameters

(Degottex et al., 2014) and visual features based on facial

landmarks, facial action units, etc. (Baltrusaitis et al., 2018).

Alternatively, benefiting from the development of deep learning,

deep-learned feature representations based on the large-scale

pre-trained convolutional neural networks (CNN) such as

ResNet (He et al., 2016) and VGGish (Hershey et al., 2017) also

have been widely used for emotion recognition (Alisamir and

Ringeval, 2021; Li and Deng, 2022). Compared with those hand-

crafted features, the pre-trained CNN encoders can extract more

powerful visual/audio features. However, the general encoding

of versatile CNNs does not consider the speciality of emotion

and may further limit the emotional representation ability of

extracted deep features.

Recently, Nguyen et al. (2021) proposed a two-stream auto-

encoder architecture to learn compact yet representative features

from audio and visual raw data individually. Then the learned

audio and visual features are concatenated and fed into an LSTM

for sequential learning and predicting the dimensional emotion

scores. In Hazarika et al. (2020), shared-private representations

were learned through two separate encoders by projecting each

modality to modality-invariant and -specific subspaces, then

a Transformer was used to fuse these features into a joint

vector for final prediction. By decoupling the common and

specific patterns in audio, visual, and text modalities, the learned

shared-private representations were highly effective in reducing

the modality gap and contributed to significant gains. Self-

supervised representation learning also has been adopted for

emotion recognition. For instance, Yu et al. (2021) leveraged

self-supervised multi-task learning strategy to learn modality-

specific representations. Through joint training the multimodal

and uni-modal tasks, this model learned the consistency and

difference between different modalities simultaneously.

Our work aims at representation learning enhanced with

multimodal interactions. Different from previous work, we

leverage the high-level global semantics extracted from text

modality to guide the representation learning of audio and visual

encoders, and therefore the learned audio/visual features could

contain more emotion-related information.

2.2. Multimodal fusion for video emotion
recognition

Multimodal fusion is another core challenge for video

emotion recognition. Early works usually adopted the traditional

feature-level or decision-level fusion methods (Ma et al., 2019;

Zhang et al., 2019, 2021b; Sharma and Dhall, 2021). With the

rise of attention mechanisms, recent works are mostly focusing

on cross-modal interactions to explore more effective fusion

strategies.

In Tsai et al. (2019), the powerful Transformer network

was introduced to multimodal emotion recognition task, to

take its advantage of modeling long-term dependencies across

modalities. The authors adopted the Transformer decoder-like

module to fuse cross-modal information between any two paired

modalities by latently adapting one modality to another. To

further mine the cross-modal interactions between two or three

modalities simultaneously, Zheng et al. (2022) proposed cascade

multi-head attention for full fusion of multimodal features by

connecting attention modules in series and regarding different

modality features as query for different attention modules.

The above-mentioned works focus on exploring the

interactions between different modalities by treating

audio, visual, and text modalities equally. Another type of

representative works argues that text plays a more important

role than audio and visual modalities and designs diverse

text-centered frameworks for multimodal emotion recognition.

In Han et al. (2021), the authors proposed a Transformer-based

bi-bimodal fusion network, consisting of two text-related

complementing modules, to separately fuse textual feature

sequence with audio and visual feature sequences. In Wu et al.

(2021), two cross-modal prediction modules, i.e., text-to-visual

and text-to-audio models, were designed to decouple the shared

and private information of non-textual modalities compared to

the textual modality. The shared non-textual information was

used to enrich the semantics of textual features and the private
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non-textual features were later fused with the enhanced textual

features through a regression layer for final prediction.

Apart from regarding text as the central modality that plays

the most important role among the three modalities, several

researchers take into account the difference between audio-

visual and text modalities in terms of information granularity.

For instance, Fu et al. (2022) proposed a non-homogeneous

fusion network by first fusing audio and visual feature sequences

through an attention aggregation module and then fusing

audio-visual features with textual feature sequence via cross-

modal attention. Similarly, Zhang et al. (2022) proposed a

hierarchical cross-modal encoder module to gradually fuse

the modality features. Specifically, an adversarial multimodal

refinement module was designed to decompose each modality-

specific features to common and private representations. The

audio and visual private features were first fused, then this

joint audio-visual feature sequence was fused with the textual

feature sequence, and finally the fused private features were

fused with the common features, resulting in the final joint

multimodal representation.

Different from these related works, we are inspired by the

emotion expression process that both facial expressions and

intonations are implicitly regulated by high-level semantics,

and propose a semantic enhancement module to leverage

the textual high-level semantics to guide audio and visual

representations. In addition, these semantically enhanced audio

and visual representations are further reinforced through a

multimodal bottleneck Transformer module to exchange their

complementary information while reducing redundancy.

3. Proposed method

Figure 1 depicts the architecture of the proposedmultimodal

emotion recognition (MER) framework with the semantic

enhancement module (SEM) and multimodal bottleneck

Transformer (MBT), denoted as MER-SEM-MBT. Specifically,

we first extract global textual features via the textual encoder

to represent the high-level semantics, which is used in the SEM

to guide the audio/visual encoder to learn emotionally relevant

audio/visual features. These semantically enhanced audio and

visual feature sequences are sent into the cross-modal encoder

to mutually reinforce their representations through cross-modal

interaction via a bottleneck Transformer. The reinforced audio

and visual features are then separately input into a global

average pooling (GAP) layer which is followed by a multi-

layer perceptron (MLP) to output unimodal decisions. In the

meanwhile, the global textual features are fed into another MLP

to get the textual decision. Finally, attention-based decision

fusion is adopted for the final emotion prediction.

The details are explained in the following subsections.

3.1. Unimodal encoder

For emotion recognition from text, one must analyze the

affective state from the complete sentence rather than individual

words or phrases. In contrast, regarding the audio and visual

modalities, a single video frame or a speech segment longer

than 250 ms (Provost, 2013) may contain meaningful emotion

information. Therefore, when designing the unimodal encoders,

the global semantic features are extracted from the transcripts of

the sentences, the audio feature sequence is extracted from the

temporal segments, and the visual feature sequence is extracted

at the frame level.

3.1.1. Textual encoder

With the advent of Transformer, pre-trained large models

such as BERT provided a new paradigm for dynamic text feature

encoding based on contextual information with the help of

the self-attention mechanism. Therefore, we use the pre-trained

BERT model provided in the HuggingFace library (Wolf et al.,

2020) as textual encoder. Specifically, the class token (“CLS”) of

the output layer is adopted as the high-level semantic features

It ∈ R
dt , where dt = 768.

3.1.2. Audio encoder

We first calculate the log mel-spectrogram by utilizing 64

Mel filters on the spectrum obtained from the Short-Time

Fourier Transform, with a window size of 25 ms and a hop

of 10 ms. Then the log mel-spectrogram is split into segments

of 960 ms, each of which is fed into the pre-trained VGGish

(Hershey et al., 2017) network, outputting a 128-dimensional

feature vector from the last fully-connected layer. Therefore, for

an audio clip of l s, the audio feature sequence Ia ∈ R
Nt×da is

obtained, with the sequence length Nt = l/0.96 and da = 128.

3.1.3. Visual encoder

The input of visual encoder is a facial image sequence after

face alignment. Considering the redundancy between adjacent

frames in the face video, we keep consistent with the rate of

audio features and randomly sample one frame every 960 ms,

forming a face image sequence as input to the visual encoder.

For each image, the ResNet18 (He et al., 2016) pre-trained on the

AffectNet emotion dataset (Mollahosseini et al., 2017) is adopted

as backbone to extract a 512-dimensional spatial feature vector.

Correspondingly, for a face video, the visual feature sequence

Iv ∈ R
Nt×dv is obtained, with dv = 512.
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FIGURE 1

The proposed end-to-end multimodal emotion recognition (MER) framework with the semantic enhancement module (SEM) and multimodal

bottleneck Transformer (MBT), is denoted as MER-SEM-MBT. Given a facial video clip, the global semantic feature is first extracted through the

textual encoder, which is used to guide the audio and visual representation learning through the semantic enhancement module. Then the

cross-modal encoder is adopted to reinforce audio and visual representations through temporal cross-modal interaction via a multimodal

bottleneck Transformer. Lastly, three separate multi-layer perceptrons (MLPs) are implemented to get unimodal decisions from audio, visual, and

text modalities, respectively. Attentive fusion is performed to aggregate these decisions for final emotion prediction. The example facial video is

from IEMOCAP dataset (Busso et al., 2008).

3.1.4. Semantic enhancement module in
audio/visual encoder

In order to guide the audio and visual representation

learning, a semantic enhancement module (SEM) is designed to

infuse high-level semantic information during audio and visual

feature encoding. The implementation of SEM is based on the

cross-attention mechanism. As shown in Figure 2, each SEM

takes the feature map Fi ∈ R
Ci×Hi×Wi from the middle layer

of the audio/visual encoder, as well as the semantic features

It ∈ R
dt from the textual encoder as inputs, then outputs the

enriched audio/visual feature map F′i ∈ R
Ci×Hi×Wi with high-

level semantic information. Here, Ci, Hi, and Wi represent the

number of channels, the height and width of the feature map

after the ith convolution group, respectively.

To retrieve emotion-relevant information from the semantic

features to guide audio/visual representation learning, we use

the input audio/visual feature map Fi as query Qf and the input

semantic features It as key Kt and value Vt during the cross-

attention computation, implying a latent adaption from text to

audio/visual modality. Formally, the query, key, and value are

computed as follows:

Qf = Convq(Fi) ∈ R
Ci×Hi×Wi ; Kt = Convk(It) ∈ R

Ci ;

Vt = Convv(It) ∈ R
Ci

(1)

where Convq, Convk, and Convv are projection functions with

1× 1 convolution operation. Next we compute the dot products

of Qf with Kt , divided by
√
Ci, and then apply a softmax

operator to obtain the weights on Vt . Note that Qf is first

flattened to unroll the spatial dimensions of feature map for

proper calculation, yielding Q′
f
∈ R

Ci×HiWi . The output matrix

is formulated as:

Eatt = softmax





Q′
f
T
Kt

√
C



Vt
T ∈ R

HiWi×Ci (2)

Then, the attention map Eatt is reshaped to the same size

of the input audio/visual feature map through the unflatten

and transpose operations, yielding E′att ∈ R
Ci×Hi×Wi . Finally,

the enriched feature map F′i is output with semantic guided

information as follows:

F′i = ReLU
(

Convo
(

Fi + LN(E′att)
))

∈ R
Ci×Hi×Wi (3)

whereConvo denotes 1×1 convolution operation, LN represents

layer normalization (Ba et al., 2016), and ReLU is the nonlinear

activation function.

Conventionally, the audio encoder backbone VGGish

contains four convolution groups, and the visual backbone

ResNet18 contains five convolution groups, as shown in

Figure 1. We empirically insert the semantic enhancement

module after the second and last convolution group (conv2 and

conv4) of VGGish, and the third and last convolution group

(conv3_x and conv5_x) of ResNet18, respectively. The effect of

the numbers of SEM in audio/visual encoder will be discussed in

the Section 4.

Equipped with SEM, the feature sequences output from

the audio and visual encoders are enhanced by the high-level

semantic information from the text modality, denoted as Ita and

Itv, respectively.
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FIGURE 2

The semantic enhancement module (SEM) in audio/visual encoder.

3.2. Cross-modal encoder

After obtaining the semantically enhanced audio and visual

feature sequences through the above-mentioned unimodal

encoders, a cross-modal encoder is required to model the cross-

modality relationship between audio and visual modalities.

The classical approach is to apply the pair-wise bidirectional

cross-attention (Tsai et al., 2019). In the case of considering

two modalities (audio and visual), this approach needs four

cross-modal Transformer branches, which greatly increases

the computational cost. Therefore, we borrow the solution of

multimodal bottleneck Transformer (MBT) (Liu et al., 2022)

from the field of video understanding, to implement the cross-

modal encoder with efficient interactions between audio and

visual feature sequences.

As shown in Figure 3, the MBT architecture contains two

parallel Transformer branches, serving audio and visual feature

sequences for temporal modeling, respectively. The attention

bottlenecks are used as the information bridge to exchange

complementary information and remove redundancy between

audio and visual modalities. Accordingly, the audio and visual

feature sequences are mutually reinforced through audio-visual

temporal interaction.

Specifically, linear projection is first performed to map the

audio/visual features into the identical dimension dm. Then, a

set of bottleneck tokens
{

bi
}Nb
i=1 are introduced to aggregate

audiovisual temporal information. Following Liu et al. (2022),

we use the same two-stage cross-modal interaction through

feature compression and expansion.

The first interaction stage implies a process of feature

compression using a multi-head attention (MHA) layer in the

audio and visual Transformer branch, respectively. By treating

bottleneck tokens as query and audio/visual tokens as key−value

pairs, the emotional-relevant multimodal information is

condensed into the corresponding audio/visual/bottleneck

tokens. Through summing up these three tokens, the

multimodal information is aggregated into
{

b′i
}Nb
i=1

.

Subsequently, the second interaction stage is propagating

the aggregated multimodal emotional information to the target

audio/visual modality through another multi-head attention

layer in the audio and visual Transformer branch, respectively.

Different from feature compression, the bottleneck tokens are

treated as key − value and audio/visual tokens as query during

this process of feature expansion. Through this two-stage cross-

modal attention, audio and visual representations are reinforced

with complementary information through interaction with

another modality and different time stamps.

Next, the audio and visual features are separately fed into

a feed-forward network (FFN) layer to further increase non-

linearity, resulting in the reinforced audio and visual feature

sequences, denoted as Itva and Itav , respectively.

3.3. Attentive decision fusion

Finally, the mutually enhanced audio and visual feature

sequences are separately input into a global average pooling

(GAP) layer and anMLP to obtain unimodal decisions Sx ∈ R
M ,

where M represents the number of emotion categories and x ∈

{a, v} represents the audio or visual modality. Meanwhile, the

semantic feature vector It is input into another MLP to get the

textual decision St ∈ R
M .

When fusing these unimodal emotion decisions, we perform

attention-based decision fusion to assign higher weights to

emotionally salient modality. The unimodal decisions are first

concatenated as Scon = [Sa; Sv; St] ∈ R
M×3. Then, the

attention weights are calculated as:

S′ = tanh (W1Scon) (4)

αatt = softmax
(

WT
2 S

′
)

(5)
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FIGURE 3

The multimodal bottleneck transformer (MBT) architecture (Liu et al., 2022).

where W1 ∈ R
M×M and W2 ∈ R

M×3 are both trainable

parameters, and the attention weight αatt ∈ R
1×3. Finally, the

emotion prediction is output after attentive weighted fusion:

output = Sconα
T
att (6)

4. Experiments

4.1. Datasets

To validate the effectiveness of our proposed method,

we conduct experiments on two popular video emotion

recognition benchmarks, including the Interactive Emotional

Dyadic Motion Capture dataset (IEMOCAP) (Busso et al., 2008)

and the CMU Multimodal Opinion Sentiment and Emotion

Intensity dataset (CMU-MOSEI) (Zadeh and Pu, 2018):

• IEMOCAP consists of 10 performers, five males and five

females, who conduct dialogues in pairs to record 151

videos. These videos are segmented into 10,039 utterances

and annotated at the utterance level. Six categorical

emotions are considered in this work, namely happiness,

sadness, angry, frustrated, excited and neutral.

• CMU-MOSEI contains 3,228 video monologs of 1,000

speakers collected from the YouTube website. Annotation

of discrete emotion is performed on 23,453 video clips

with a total of six emotion categories: anger, disgust, fear,

happiness, sadness, and surprise.

For a fair comparison, we use the raw data reorganized

by Dai et al. (2021) to implement fully end-to-end training.

Specifically, the train/valid/test set of IEMOCAP includes 5,162,

737, and 1,481 samples, respectively, and the train/valid/test

split of CMU-MOSEI dataset corresponds to 14,524, 1,765,

and 4,188 video clips, respectively. Note that both datasets are

multi-labeled at the utterance level and the statistics are shown

in Table 1.

4.2. Evaluation metrics

We use the same metrics adopted in Dai et al. (2021): the

average binary accuracy (Avg. Acc) and the average F1 (Avg. F1)

for IEMOCAP, and the average binary weighted accuracy (Avg.

WA) and the average F1 for CMU-MOSEI. These metrics can be

formulated as follows:

Avg. Acc =
1

C

C
∑

i=1

Acci (7)

Avg. WA =
1

C

C
∑

i=1

WAi (8)

Avg.F1 =
1

C

C
∑

i=1

F1i (9)

where C is the number of emotion categories, Acci, WAi, and

F1i denotes the binary accuracy, binary weighted accuracy and

F1 score of the i
th emotion category, respectively:

Acci =
TP

P + N
(10)

WAi =
TP × N/P + TN

2N
(11)
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TABLE 1 Statistics of the IEMOCAP and CMU-MOSEI datasets used in this work.

IEMOCAP

Happiness Anger Excited Frustrated Sadness Neutral

Train 398 757 736 1,298 759 1,214

Valid 62 112 92 180 118 173

Test 135 234 213 371 207 321

CMU-MOSEI

Happiness Anger Disgust Surprise Sadness Fear

Train 7,587 3,267 2,738 1,465 4,026 1,263

Valid 945 318 273 197 509 169

Test 2,220 1,015 744 393 1,066 371

F1i =
2TP

2TP + FP + FN
(12)

In which P and N denote the total number of positive

and negative samples, respectively, TP/TN denotes the number

of positive/negative samples that are correctly predicted,

FP/FN is the number of negative/positive samples that are

incorrectly predicted.

Considering the unbalanced distribution of emotion

categories, the Avg. F1 is used as the main evaluation indicator

during the training process.

4.3. Implementation details

Data preprocessing: For the input audio, log mel-

spectrogram is first calculated by using 64 mel-spaced frequency

bins on the spectrum obtained from a short-time Fourier

transform applying 25 ms windows every 10 ms. The log mel-

spectrogram is divided into non-overlapping 960 ms segments

that form the input to the audio encoder. The OpenFace

(Baltrusaitis et al., 2018) toolkit is utilized to perform face

detection and alignment from original videos. After obtaining

the facial image sequence from OpenFace, we consider the

redundancy between adjacent frames and randomly sample one

frame within every 960ms-long duration for each video, yielding

the input to the visual encoder. In addition, this sampling

operation enables audio and visual features to be temporally

aligned at the video level.

Network parameters: For the audio encoder backbone

VGGish, the output feature dimension is da = 128. The

output feature dimension of visual encoder backbone ResNet18

is dv = 512. The pre-trained BERT (bert-base-uncased) provided

in the HuggingFace library (Wolf et al., 2020) is used as textual

encoder. The base BERT model contains 12 layers with a hidden

dimension of 768, therefore the semantic feature It (i.e., the class

token “CLS” of the output layer) is a 768-dimensional vector. For

cross-modal encoder, the number of bottleneck tokens of MBT

is insensitive and set to Nb = 4 according to the conclusions

in Liu et al. (2022), the number of attention heads in multi-

head attention layers is 8, the hidden dimension is dm = 64 and

sine-cosine positional encoding is used to preserve the temporal

information in the audio/visual feature sequence. The number

of floating point operations per second (FLOPs) is 7.22 × 109,

the number of parameters is 173M, and the recognition time of

one video is around 0.2 s.

Training parameters: Regarding the loss function, since

both IEMOCAP and CMU-MOSEI datasets are multi-labeled,

video emotion recognition is regarded as a multi-label binary

classification task in this work, and the binary cross-entropy loss

is adopted and weighted by the ratio of the number of positive

and negative samples to alleviate the problem of unbalanced

sample distribution. Adam optimizer is adopted with a mini-

batch size of 8 and the initial learning rate is 1e-4 with early-

stopping to prevent overfitting. For the audio and visual encoder

backbones, we freeze the first two convolution groups of VGGish

and the first three convolution groups of ResNet18, and use

a smaller learning rate 1e-5 to fine-tune the rest parameters.

The whole framework is implemented using PyTorch on one

NVIDIA TITAN RTX GPU.

4.4. Results and analysis

4.4.1. Comparison with the state-of-the-art

We compare our model with the following state of the

art (SOTA) works where the audio, visual and text modalities

are considered: (1) Late Fusion LSTM (LF-LSTM), where

each modality uses an individual LSTM to extract global

features followed by an MLP for unimodal decision, and

the final prediction is obtained by weighted fusion; (2) Late

Fusion Transformer (LF-TRANS) which is similar to LF-

LSTM except that the Transformer models are used instead of

LSTMs to model the temporal dependency for each modality;

(3) EmoEmbs (Dai et al., 2020) where three LSTMs are
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FIGURE 4

Comparison with state-of-the-art methods on two benchmark datasets. (A) Comparison results on IEMOCAP. (B) Comparison results on

CMU-MOSEI.

adopted to obtain the global features for each modality

and generates modality-specific emotion embeddings through

mapping the GloVe textual emotion embeddings to the non-

textual modalities respectively, and finally the similarity scores

between the emotion embedding and the global features are

calculated and fused to get the final prediction; (4) MulT (Tsai

et al., 2019) that employs six cross-modal attention modules

for any two pairs of the three modalities, and then three self-

attention modules to collect temporal information within each

modality. Finally the concatenated features are passed through

the fully-connected layers to make predictions; (5) BIMHA (Wu

et al., 2022) mainly consists of two parts: inter-modal interaction

and inter-bimodal interaction, where the outer product is first

used to represent three pairs of bimodal global features and then

the bimodal attention is calculated via an extended multi-head

attention mechanism; (6) CMHA (Zheng et al., 2022) where

the core is connecting multiple multi-head attention modules in

series, to model the interactions between two unimodal feature

sequences first and then with the third one. Additionally, the

sequential order of modality fusion is considered, resulting in

three similar fusionmodules but in different orders of fusion; (7)

FE2E (Dai et al., 2021) which is a fully end-to-end framework,

where the textual features are extracted from a pre-trained

ALBERT model and the audio and visual features are extracted

from two pre-trained CNNs, each followed by a Transformer

to encode the sequential representations, and then three MLPs

are adopted to make unimodal decision and weighted fusion is

performed to output predictions; (8) MESM (Dai et al., 2021)

which is similar to FE2E, except that the original CNN layers

are replaced with cross-modal sparse CNN blocks to reduce the

computational overhead.

The results are shown in Figure 4. Note that all the SOTA

results are based on tri-modal decisions from audio, visual and

text. It should also be mentioned that, the first five methods (LF-

LSTM, LF-TRANS, EmoEmbs, MulT, and BIMHA) are based

on hand-crafted features, where 142-dimensional audio features

are extracted using the DisVoice toolkit (Vasquez-Correa et al.,

2019), 35-dimensional visual features are extracted via the

OpenFace toolkit (Baltrusaitis et al., 2018), and 300-dimensional

word embeddings are extracted using the pre-trained GloVe

Pennington et al. (2014). To evaluate the significance of our

experimental results, following (Zhang et al., 2021a), the paired

t-test is performed with a default significance level of 0.05.

As it can be seen, our proposed model outperforms all the

SOTA works on both IEMOCAP and CMU-MOSEI datasets.

The average accuracy reaches 0.874 and the average F1 is

0.646 on IEMOCAP dataset. On CMU-MOSEI dataset, our

model also achieves the highest average weighted accuracy of

0.696 and an average F1 of 0.509. In addition, the end-to-end

methods achieve superior recognition results compared to the

two-stage methods based on hand-crafted features, indicating

that joint optimization of unimodal feature extraction and

multimodal fusion helps improve the performance of video

emotion recognition. It should also be mentioned that MESM
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(Dai et al., 2021) was equipped with cross-modal attention

in the feature encoding stage with the aim to make CNN

encoders sparse, however, modeling the emotion dependency

between audio-video sequences, as a key for multimodal

emotional representation learning, was neglected in their whole

framework. Compared with MESM, our proposed MER-SEM-

MBT obtains better performance due to additional audio-visual

temporal interaction.

We also list the binary classification results regarding each

emotion category to make a deeper comparison. The detailed

results are listed in Table 2, and the best results are bolded. One

can notice that our proposed MER-SEM-MBT model achieves

the best results on majority emotion category. In addition, we

verify a variation of the proposed model by removing the textual

decision and the corresponding results are listed in the last row.

Under this circumstance, our proposed method, equipped with

SEM andMBTmodules, still obtains a comparative performance

without a textual decision.

4.4.2. Ablation study

4.4.2.1. E�ect of SEM and MBT

To evaluate the contribution of each design module, we

further carry out experiments on different model variants by

ablating either SEM or MBT, corresponding to MER-MBT

(without SEM in unimodal audio/visual encoder) and MER-

SEM (without MBT as the cross-modal encoder) respectively.

The results are shown in Table 3, where MER stands for a

baselinemodel with unimodal encoders and late attentive fusion.

As we can see, either MER-SEM or MER-MBT yields a sub-

optimal performance on both IEMOCAP and CMU-MOSEI

datasets. Specifically, when MBT is removed, meaning there

is no temporal interactions between audio and visual feature

sequences, the modal variant MER-SEM obtains an average F1

of 0.636 on IEMOCAP dataset with a decrease of 1% compared

with our full model MER-SEM-MBT, but still 2.2% better than

the baseline MER model benefiting from the semantic guidance

from SEM. Similarly, when SEM is removed, the model variant

MER-MBT achieves an average F1 of 0.633 on IEMOCAP, which

is 1.3% lower than the full model. Furthermore, if both SEM

and MBT modules are removed, i.e., the baseline MER model,

the average F1 only reaches 0.614 on IEMOCAP, which is 3.2%

lower than our proposed full model MER-SEM-MBT. This may

be due to the fact that the baseline model MER only adopts

attentive fusion to aggregate the individual audio and visual

decisions without interaction across different modalities. Similar

conclusions can also be drawn from the reuslts on the CMU-

MOSEI dataset.

4.4.2.2. E�ectiveness of SEM in audio/visual encoder

We further analyze the effectiveness of SEM on audio and

visual representation learning for audio and visual emotion

recognition, respectively. For convenience, we denote the audio

emotion recognition as SER and visual emotion recognition

as FER. Note that the textual decision is not used in the

following experiments. As listed in Table 4, the first/third row

represents the SER/FER results from the CNN-Transformer-

MLP framework without SEM, where the CNN encoder

(VGGish for audio and ResNet18 for video) is for feature

extraction from raw data, Transformer is for temporal modeling,

and MLP is for classification. The second/fourth row shows the

results of SEM being inserted in the unimodal CNN encoder for

SER/FER. It can be seen that when SEM is inserted to guide the

audio/visual encoder to learn the emotional representation from

the semantics, the performances are greatly improved. For SER,

the average Acc improves from 0.752 to 0.839 on IEMOCAP

dataset with a gain of 8.7% after SEM is used to enhance the

representation learning of audio encoder. For FER, the average

Acc also achieves a gain of 4.4% in terms of Avg. WA on

CMU-MOSEI dataset.

4.4.2.3. E�ect of the number of SEMs

As described in Section 3.1.4, SEM is empirically inserted

after the second and last (fourth) convolution group for audio

encoder backbone VGGish, and the third and last (fifth)

convolution group for visual encoder backbone ResNet18,

respectively. Here, we conduct experiments on IEMOCAP

dataset to explore the effect of different numbers of SEMs in

audio/visual encoder, the results are shown in Figure 5. Taking

SER for example, the default setting is inserting two SEMs after

the second and the fourth convolutional group, respectively.

From Figure 5A, we can see that when adding another SEM

after the third convolution group of VGGish, the result is close

to that of the default setting, and further adding another SEM

after the first convolution group results in a significant drop in

performance. Similar conclusion can be drawn from Figure 5B

for visual encoder. This is probably because the feature maps

output from the earlier convolution group mainly contain low-

level information, while those from the deeper layers with high-

order features are more relevant to emotions, therefore the

semantics can better adapt the high-level audio/visual feature

maps with emotion-related information.

4.4.2.4. Performance comparison of di�erent

cross-modal encoders

To validate the effectiveness of adopting MBT as cross-

modal encoder in our proposed framework, we perform audio-

visual multi-modal emotion recognition (MER) experiments

using different cross-modal encoders. Note that all the methods

in this comparative experiment use the same audio and visual

encoders, i.e., VGGish for audio and ResNet18 for video

(without using semantic information for enhancement), and the

same attentive decision fusion as described in Section 3.3. The

results are shown in Table 5.

Concretely, three typical attention-based solutions are

compared: (1) joint attention (JointAtt), where the audio and
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TABLE 2 Binary classification results of each emotion category on IEMOCAP and CMU-MOSEI datasets.

IEMOCAP

Models Happiness Anger Sadness Excited Frustrated Neutral

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

LF-LSTM† 0.672 0.376 0.712 0.494 0.782 0.540 0.793 0.572 0.682 0.515 0.665 0.470

LF-TRANS† 0.852 0.376 0.819 0.507 0.874 0.574 0.853 0.573 0.605 0.493 0.724 0.497

EmoEmbs (Dai et al., 2020)† 0.696 0.383 0.659 0.489 0.808 0.530 0.735 0.583 0.685 0.520 0.736 0.487

MulT (Tsai et al., 2019)† 0.800 0.468 0.779 0.607 0.835 0.654 0.769 0.580 0.724 0.570 0.749 0.537

BIMHA (Wu et al., 2022)†† 0.834 0.432 0.772 0.576 0.838 0.637 0.783 0.561 0.739 0.542 0.764 0.509

CMHA (Zheng et al., 2022)†† 0.890 0.458 0.886 0.611 0.883 0.616 0.879 0.605 0.751 0.563 0.765 0.512

MESM (Dai et al., 2021)† 0.895 0.473 0.882 0.628 0.886 0.622 0.883 0.612 0.749 0.584 0.770 0.520

FE2E (Dai et al., 2021)† 0.900 0.448 0.887 0.639 0.891 0.657 0.891 0.619 0.712 0.578 0.791 0.584

MER-SEM-MBT (Our full model) 0.891 0.577 0.894 0.665 0.924 0.721 0.905 0.677 0.797 0.613 0.832 0.623

MER-SEM-MBT (Ours w/o textual

decision)

0.889 0.546 0.893 0.662 0.918 0.701 0.892 0.643 0.794 0.602 0.827 0.613

CMU-MOSEI

Models
Happiness Sadness Anger Surprise Fear Disgust

WA F1 WA F1 WA F1 WA F1 WA F1 WA F1

LF-LSTM† 0.613 0.732 0.634 0.472 0.645 0.471 0.571 0.206 0.617 0.222 0.705 0.498

LF-TRANS† 0.606 0.729 0.601 0.455 0.653 0.477 0.621 0.242 0.621 0.240 0.744 0.519

EmoEmbs (Dai et al., 2020)† 0.612 0.719 0.605 0.475 0.668 0.494 0.633 0.240 0.638 0.234 0.696 0.487

MulT (Tsai et al., 2019)† 0.672 0.754 0.640 0.483 0.649 0.475 0.614 0.256 0.629 0.253 0.716 0.493

BIMHA (Wu et al., 2022)†† 0.658 0.721 0.626 0.479 0.653 0.474 0.625 0.249 0.618 0.247 0.705 0.489

CMHA (Zheng et al., 2022)†† 0.652 0.721 0.642 0.467 0.659 0.491 0.645 0.266 0.634 0.273 0.736 0.532

MESM (Dai et al., 2021)† 0.641 0.723 0.630 0.466 0.668 0.493 0.657 0.272 0.658 0.289 0.756 0.564

FE2E (Dai et al., 2021)† 0.654 0.726 0.652 0.490 0.670 0.496 0.667 0.291 0.638 0.268 0.777 0.571

MER-SEM-MBT (Our full model) 0.673 0.753 0.668 0.538 0.687 0.495 0.676 0.330 0.672 0.319 0.802 0.616

MER-SEM-MBT (Ours w/o textual

decision)

0.672 0.749 0.655 0.531 0.673 0.491 0.660 0.328 0.659 0.312 0.787 0.612

P < 0.05 for paired t-test. † denotes the results are from Dai et al. (2021), and †† means our reproduction using the same data split as other experiments. The bold values are indicated to highlight the best results.
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TABLE 3 Ablation study results on IEMOCAP and CMU-MOSEI datasets.

Models SEM MBT LF IEMOCAP CMU-MOSEI

Avg. Acc Avg. F1 Avg. WA Avg. F1

MER - - X 0.855 0.614 0.682 0.496

MER-SEM X - X 0.871 0.636 0.691 0.506

MER-MBT - X X 0.868 0.633 0.688 0.504

MER-SEM-MBT X X X 0.874 0.646 0.696 0.509

The bold values are indicated to highlight the best results.

TABLE 4 Unimodal audio/visual emotion recognition results with and without SEM.

Methods IEMOCAP CMU-MOSEI

Avg. Acc Avg. F1 Avg. WA Avg. F1

SER w/o SEM 0.752 0.463 0.628 0.424

w/ SEM 0.839 0.560 0.659 0.450

FER w/o SEM 0.796 0.512 0.631 0.429

w/ SEM 0.828 0.553 0.675 0.456

SER refers to speech emotion recognition, and FER denotes facial expression recognition. All frameworks follow the CNN-Transformer-MLP architecture, the difference is whether SEM

is used in the CNN encoder. The bold values are indicated to highlight the best results.

FIGURE 5

The e�ect of di�erent numbers of SEMs in audio and visual encoder, respectively. The results are shown in terms of Avg. F1 on IEMOCAP

dataset. (A) Audio encoder (VGGish with SEM). (B) Visual encoder (ResNet18 with SEM).

TABLE 5 Audio-visual emotion recognition results using di�erent cross-modal encoders.

Cross-modal Encoder IEMOCAP CMU-MOSEI

Avg. Acc Avg. F1 Avg. WA Avg. F1

JointAtt (Vaswani et al., 2017) 0.846 0.582 0.667 0.487

Bi-CrossAtt (Tsai et al., 2019) 0.842 0.571 0.671 0.473

MBT (Liu et al., 2022) 0.859 0.592 0.676 0.491

The bold values are indicated to highlight the best results.

visual feature sequences are temporally concatenated and then

input into a vanilla Transformer (Vaswani et al., 2017), therefore

the information within these two modalities can be fully

communicated; (2) bidirectional cross-attention (Bi-CrossAtt)

(Tsai et al., 2019), where two cross-modal Transformer branches

are employed, each serves to reinforce a target modality with

the features from the other modality via learning the attention

across the audio and visual feature sequences; (3) multimodal
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FIGURE 6

Visualization of audio and visual feature distribution on IEMOCAP. (A) SER w/o SEM, w/o MBT. (B) SER w/SEM, w/o MBT. (C) MER w/SEM, w/MBT.

(D) FER w/o SEM, w/o MBT. (E) FER w/SEM, w/o MBT. (F) MER w/SEM, w/o MBT.

bottleneck attention (MBT) (Liu et al., 2022), which introduces

bottleneck tokens as the bridge connecting two Transformer

branches, to exchange essential information from one modality

to the other through a two-stage cross-modal interaction.

It can be seen that the cross-modal interaction with MBT

achieves the highest recognition results on both datasets,

indicating that attention bottlenecks, with the advantage

of exchanging audio-visual complementary information and

reducing redundancy, further enhance the representation

learning of audio/visual modalities.

4.4.3. Visualization

We also perform t-SNE (Van der Maaten and Hinton,

2008) to visualize the learned audio and visual features, under

three different settings, from the penultimate layer of their

MLPs, respectively. Note that the textual decision is not used

in the involved models here. Figures 6A, D represents the

audio/visual features learned by the unimodal SER/FER model

without SEM and MBT, which corresponds to the results in

the first/third row of Table 4. As we can see, the learned

audio/visual features can not distinguish different emotions

well in the absence of additional information from other

modalities. When SEM is added in the audio/visual encoder

for SER/FER, the enhanced audio/visual features of different

emotion categories, as shown in Figures 6B, E, are more

discriminatively distributed, which help to improve the emotion

recognition performance as compared in Table 4. In addition,

when MBT is further added, achieving cross-modal interaction

between audio and visual representations, the dually reinforced

audio/visual features (corresponds to Figures 6C, F) are more

distinguishable, contributing to the best performance.

5. Conclusions

In this work, we proposed a multimodal interaction

enhanced representation learning method targeting video

emotion recognition. The high-level semantic information

extracted from the text modality is utilized to enhance audio

and visual feature encoding, and the bottleneck Transformer

is adopted to further reinforce audio and visual feature

sequences through exchanging complementary information

while reducing redundancy. Finally, audio, visual, and textual

unimodal decisions are fused using attention weights to output

the final emotion prediction. Experiments and visualization

show that the proposed method achieves state-of-the-art video

emotion recognition results. In the future, we are interested

to leverage self-supervised learning methods to learn better

emotional-salient representations by exploring the correlations

among audio, visual, and text modalities.
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Recently, personality trait recognition, which aims to identify people’s first

impression behavior data and analyze people’s psychological characteristics,

has been an interesting and active topic in psychology, affective neuroscience

and artificial intelligence. To effectively take advantage of spatio-temporal

cues in audio-visual modalities, this paper proposes a new method of

multimodal personality trait recognition integrating audio-visual modalities

based on a hybrid deep learning framework, which is comprised of

convolutional neural networks (CNN), bi-directional long short-term memory

network (Bi-LSTM), and the Transformer network. In particular, a pre-trained

deep audio CNN model is used to learn high-level segment-level audio

features. A pre-trained deep face CNN model is leveraged to separately

learn high-level frame-level global scene features and local face features

from each frame in dynamic video sequences. Then, these extracted deep

audio-visual features are fed into a Bi-LSTM and a Transformer network to

individually capture long-term temporal dependency, thereby producing the

final global audio and visual features for downstream tasks. Finally, a linear

regression method is employed to conduct the single audio-based and visual-

based personality trait recognition tasks, followed by a decision-level fusion

strategy used for producing the final Big-Five personality scores and interview

scores. Experimental results on the public ChaLearn First Impression-V2

personality dataset show the effectiveness of our method, outperforming

other used methods.

KEYWORDS

multimodal personality trait recognition, hybrid deep learning, convolutional
neural networks, bi-directional long short-term memory network, Transformer,
spatiotemporal
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1. Introduction

In personality psychology, researchers believe that human
personality is innate, and have developed various theoretical
methods to understand and measure a person’s personality.
Costa and McCrae (1998) proposed a personality trait theory,
in which personality characteristic were referred to as the main
factors affecting the characteristics of individual behaviors, the
critical factor in forming personality traits, and the basic unit
for measuring personality traits. In Vinciarelli and Mohammadi
(2014) personality is defined as: “personality is a psychological
construct that can explain the diversity of human behaviors
on the basis of a few, stable and measurable individual
characteristics.” At present, researchers have used psychological
scales to establish various personality traits models, including
Big-Five (McCrae and John, 1992), Cattell sixteen personality
factor (16PF) (Karson and O’Dell, 1976), Myers-Briggs type
indicators (MBTI) (Furnham, 1996), Minnesota multiple
personality inventory (MMPI) (Bathurst et al., 1997), and so
on. Among them, the Big-Five model has become the most
fashionable measure model for automatic personality trait
recognition. In particular, the Big-Five model, also known as
the OCEAN model, aims to measure a person’s personality
through five dipolar scales: openness (O), conscientiousness
(C), extroversion (E), agreeableness (A), and neuroticism (N).
In affective neuroscience, the neural mechanisms of emotion
expression are investigated by means of combining neuroscience
with the psychological study of personality, emotion, and mood
(Montag and Davis, 2018; Wang and Zhao, 2022; Zhang et al.,
2022).

In recent years, researchers have employed computational
techniques such as machine learning and deep learning methods
(Gao et al., 2020; Liang et al., 2021; Wang and Deng, 2021;
Yan et al., 2021; Ye et al., 2021) to model and measure human
personality from the first impression behavior data, which is
called personality computing (Junior et al., 2019). One of the
most important research subject in personality computing is
automatic personality trait recognition, which aims to identify
people’s first impression behavior data by computer and then
analyze people’s psychological characteristics (Zhao et al.,
2022). Personality trait recognition has significant applications
to human emotional behavior analysis, human-computer
interaction, and interview recommendation. For example, Zhao
et al. (2019) explored the influence of personality on emotional
behavior by means of a hypergraph learning framework. When
an enterprise recruits, human resource department can leverage
personality trait recognition techniques to analyze personality
characteristics of the job seekers by collecting their first-
impression behavior data, and then select employees who
can better meet the needs of the enterprise. To advance
the development of personality trait recognition, the 2016
European Conference on Computer Vision (ECCV) released
a publicly available personality dataset, i.e., ChaLearn-2016,

and organized an academic competition of personality trait
recognition (Ponce-López et al., 2016). Since 2016, personality
trait recognition has become a hot research topic in psychology,
affective neuroscience, and artificial intelligence.

In a basic personality trait recognition system, two
important steps are involved: feature extraction and personality
trait classification or prediction (Zhao et al., 2022). Feature
extraction aims to derive appropriate feature parameters
related to the expression of personality traits from the
acquired first impression behavioral data. Personality trait
classification or prediction aims to employ machine learning
methods to conduct personality classification or prediction. The
conventional classifiers or regressors such as support vector
machines (SVM) and linear regressors can be adopted for
personality trait classification or prediction. This paper will
focus on feature extraction in a personality trait recognition
system.

According to the types of extracted features characterizing
personality traits, personality trait recognition techniques can
be divided into hand-crafted based methods and deep learning
based methods. Based on the extracted hand-crafted or deep
learning features, previous works (Zhao et al., 2022) focus on
performing personality trait recognition from single modality,
such as audio-based personality trait recognition (Mohammadi
and Vinciarelli, 2012), visual-based personality trait recognition
(Gürpınar et al., 2016), etc. Although these works based on
single modality have achieved good performance, there are still
two limitations for them. First, the people’s first impression
behavior data in real-world scenery are often multimodal
rather than single-modal for characterizing personality traits.
For instance, both verbal and non-verbal information such as
audio and visual modality are highly correlated with personality
traits. In this case, it is thus necessary to adopt multiple
input modalities for personality trait recognition. Second,
although deep learning methods have been fashionable for
personality trait recognition, each of them has its advantages and
disadvantages. Therefore, integrating the advantages of different
deep learning methods may further improve the performance of
personality trait recognition, which will be investigated in this
work.

To address these two issues above-mentioned, this paper
proposes a multimodal personality trait recognition method
integrating audio and visual modalities based on a hybrid deep
learning framework. As depicted in Figure 1, the proposed
method combines three different deep models, including
convolutional neural networks (CNN) (LeCun et al., 1998;
Krizhevsky et al., 2012), bi-directional long short-term memory
network (Bi-LSTM) (Schuster and Paliwal, 1997), recently
emerged Transformer (Vaswani et al., 2017), to learn high-level
audio-visual feature representations, followed by a decision-
level fusion strategy for final personality trait recognition. In
particular, for audio feature extraction, the pre-trained deep
audio CNN model called VGGish (Hershey et al., 2017) is
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used to learn high-level segment-level audio features. For
visual feature extraction, the pre-trained deep face CNN model
called VGG-Face (Parkhi et al., 2015) is leveraged to separately
learn high-level frame-level global scene image features and
local facial image features from each frame in dynamic video
sequences. Then, these extracted deep audio-visual features are
fed into a Bi-LSTM and a Transformer network (Vaswani et al.,
2017) to individually capture long-term temporal dependency,
thereby producing the final global audio and visual features
for downstream tasks. Finally, a linear regression method is
employed to conduct the single audio-based and visual-based
personality trait recognition tasks, and yield six independent
personality trait prediction scores. A decision-level fusion
strategy is adopted to merge these personality trait prediction
scores and output the final Big-Five personality scores and
interview scores. Extensive experiments is conducted on the
public ChaLearn First Impressions-V2 dataset (Escalante et al.,
2017), and demonstrate the effectiveness of the proposed
method on personality trait recognition tasks.

The main contributions of this paper are summarized as
follows:

(1) This paper proposes a multimodal personality trait
recognition method integrating audio and visual modalities
based on a hybrid deep learning framework, in which CNN,
Bi-LSTM, and Transformer are combined to capture high-
level audio-visual spatio-temporal feature representations
for personality trait recognition.

(2) Extensive experiments are performed on the public
ChaLearn First Impressions-V2 dataset and experimental
results show that the proposed method outperforms other
comparing methods on personality trait recognition tasks.

2. Related work

The majority of prior works for personality trait recognition
concentrates on single modality such as audio or visual cues, as
described below.

2.1. Audio-based personality trait
recognition

In early works, the conventional extracted hand-crafted
audio features are low-level descriptor (LLD) features
including intensity, pitch, formants, Mel-Frequency Cepstrum
Coefficients (MFCCs), and so on. Mohammadi and Vinciarelli
(2012) derived the LLD features like intensity, pitch, and
formants, and then employed a logistic regression to predict
the Big-five personality traits in audio clips. An et al. (2016)
extracted the typical Interspeech-2013 ComParE feature set

(Schuller et al., 2013) and fed them into a SVM classifier to
conduct the Big-Five personality trait recognition.

In recent years, researchers have tried to leverage deep
learning (LeCun et al., 2015) models with a multilayer network
structure to learn high-level audio feature representations for
promoting the performance of personality trait recognition.
Among them, the representative deep learning methods are
CNN (LeCun et al., 1998; Krizhevsky et al., 2012), recurrent
neural networks (RNN) (Elman, 1990) and its variants
called long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997), etc. Hayat et al. (2019) proposed an audio
personality feature extraction method based on CNN. They
fine-tuned the pre-trained CNN model called AudioSet in the
first-impression behavior dataset and extracted high-level audio
features for Big-Five personality prediction, demonstrating the
advantages of CNN-based learned features compared with
hand-crafted features. Zhu et al. (2018) presented a method of
automatic perception of speakers’ personality from speech in
Mandarin. They developed a new skip-frame LSTM system to
learn personality information from frame-level descriptor like
MFCCs instead of hand-crafted prosodic features.

2.2. Visual-based personality trait
recognition

In terms of the input type of visual data, visual-
based personality trait recognition can be divided into two
groups: static images-based and dynamic video sequences-based
personality trait recognition.

For static images-based personality trait recognition, the
extracted visual features mainly come from facial features,
since facial morphology provides explicit cues for personality
trait recognition. In early works, the commonly used hand-
crafted facial features are color histograms, local binary patterns
(LBP), global descriptor, aesthetic features, etc. Guntuku et al.
(2015) extracted low-level hand-crafted features of facial images,
including color histograms, LBP, global descriptor, and aesthetic
features, and then employed the lasso regressor to predict
the Big-five personality traits of users in self-portrait images.
Recently, deep learning methods have been applied for static
images-based personality trait recognition. Xu et al. (2021)
explored the relationship between self-reported personality
characteristics and static facial images. They investigated the
performance of several deep learning models pre-trained on
the ImageNet data, such as MobileNetv2, ResNeSt50, and
the designed personality prediction neural network based on
soft thresholding (S-NNPP) by means of fine-tuning them on
the self-constructed dataset composed of facial images and
personality characteristics.

For dynamic video sequences-based personality trait
recognition, dynamic video sequences contain temporal
information related to facial activity statistics, thereby providing
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FIGURE 1

The flowchart of the proposed multimodal personality trait recognition method integrating audio and visual modalities based on a hybrid deep
learning framework.

useful and complementary cues for personality trait recognition
(Junior et al., 2019). In early works, the hand-crafted video
features related to facial activity statistics were usually adopted
for personality trait recognition. Teijeiro-Mosquera et al.
(2014) exploited the relationships between facial expressions
in dynamic video sequences and personality impressions of
the Big-Five traits. To characterize facial activity statistics,
they extracted four kinds of behavioral cues for personality
trait recognition, including statistic-based cues, Threshold
(THR) cues, Hidden Markov Models (HMM) cues, and Winner
Takes All (WTA) cues. Likewise, several recently developed
deep learning methods have been employed for dynamic video
sequences-based personality trait recognition. Gürpınar et al.
(2016) extracted deep facial and scene feature representations in
dynamic video sequences by fine-tuning a pre-trained VGG-19
model, and then input them into a kernel extreme learning
machine to perform the prediction of Big-Five personality
traits. Beyan et al. (2021) presented a classification method of
perceived personality traits on the basis of novel deep visual
activity (VA)-based features derived only from key-dynamic
images in dynamic video sequences. They adopted a dynamic
image construction, which aimed to learn long-term VA with
CNN + LSTM, and detect spatiotemporal saliency to decide
key-dynamic images.

3. The proposed method

To alleviate the problem of single modality based personality
trait recognition, this paper proposes a multimodal personality

trait recognition method integrating audio and visual modalities
based on a hybrid deep learning framework. Figure 1 depicts the
flowchart of the proposed method. As depicted in Figure 1, the
proposed method adopts two modalities as its input: one is the
audio signals, the other is the visual signals including the global
scene images and facial images. The used hybrid deep learning
framework comprises of three different deep learning models
like CNN, Bi-LSTM, and Transformer, which are used for high-
level feature learning tasks. The proposed method consists of
three key steps: video data preprocessing, audio-visual feature
extraction, and decision-level fusion, as described below.

3.1. Video data preprocessing

For audio signals in the video data, we use the pre-trained
VGGish model (Hershey et al., 2017) to extract high-level audio
segment-level features. It is noted that the length of speech
segments as input of VGGish is required to be 0.96 s. To this end,
the original audio signals in the video data are divided into to a
certain number of adjacent segments which last a time period of
0.96 s.

For visual signals in the video data, two preprocessing tasks
are implemented. For global scene images in a video, 100 scene
images are selected at equal intervals form each original video
sample. Then, the resolution of each global scene image is
resampled from the original 1280× 720 pixels to 224× 224
as inputs of VGG-Face model (Parkhi et al., 2015). For local
face images in a video, we employ the popular Multi-Task
Convolutional Neural Network (MTCNN) (Zhang et al., 2016)
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to conduct face detection tasks. The resolution of face
image detected in each frame is sampled to 224× 224. Since
some videos are affected by environmental factors such as
illumination, MTCNN may detect face images with a low
accuracy. As a tradeoff, 30 frames of detected face images are
selected at equal intervals from the original video. For the video
with less than 30 frames of detected face images, the first and
last face images are repeatedly until the frame number of face
video is 30.

3.2. Audio-visual feature extraction

Audio-visual feature extraction aims to learn the local
and global feature representations from original audio and
visual signals in a video for personality trait recognition, as
described below.

3.2.1. Audio-visual local feature extraction
For the divided audio segment with 0.96 s, we leverage

the VGGish model (Hershey et al., 2017) pre-trained on
the AudioSet dataset (Gemmeke et al., 2017) to capture
high-level segment-level deep audio features. The used
VGGish model consists of 6 convolutional layers, 4
pooling layers, and 3 fully connected layers. The kernel
size of convolutional layers and pooling layers is 3× 3
and 2× 2, respectively. Since the neuron number of
the last fully connected layer in the VGGish network is
128, the learned audio features by the VGGish model are
128-dimension.

For each scene and face image in a video, we employ
the VGG-Face model (Parkhi et al., 2015) pre-trained on
the ImageNet dataset (Deng et al., 2009) to learn high-
level frame-level deep visual feature representations for
downstream scene and face global feature learning tasks,
respectively. The VGG-Face model includes 13 convolution
layers, 5 pooling layers, and 2 fully connected layers. Since
the neuron number of the last full connection layer in
the VGG-Face network is 4096, the dimension of visual
frame-level features obtained by VGG-Face network is
4096.

Given i-th input video clip ai (i = 1, 2, · · ·N) and its
corresponding Big-Five personality score yi, we fine-tune the
pre-trained VGGish network (Hershey et al., 2017) to obtain
deep segment-level audio feature representations, as described
below:

min
WVG,θVG

N∑
i=1

L(sigmoid(WVGηVG(ai; θ
VG)), yi) (1)

where ηVG(ai; θ
VG) represents the output of the last full

connected layer in the VGGish network. θVG and WVG

separately denotes the network parameters of the VGGish

network and the weights of the sigmoid layer. The cross-entropy
loss function L is defined as:

L(VG, y) = −
N∑

j=1

yj log(yp
j ) (2)

where yj is the j-th ground-truth Big-Five personality score, and
yp

j is represented by the predicted Big-Five personality score.
For deep visual scene and face feature extraction on

each frame of video, we fine-tune the pre-trained VGG-Face
network (Parkhi et al., 2015) to learn high-level visual feature
representations. The process of fine-tuning the pre-trained
VGG-Face network is similar to the above-mentioned Eqs 1, 2.

3.2.2. Audio-visual global feature extraction
After completing the local audio and visual feature

extraction tasks, it is necessary to individually learn the global
audio features, visual scene features, and visual face features
from the entire videos so as to conduct personality trait
prediction tasks. To this end, we adopt the Bi-LSTM (Schuster
and Paliwal, 1997) and recently emerged Transformer (Vaswani
et al., 2017) to independently model long-term dependencies of
temporal dynamics in video sequences, as described below.

Given an input sequence et , the learning process of the Bi-
LSTM network is:

E = Bi− LSTM(WBi−LSTM, et) (3)

where E ∈ R1×d is the learned temporal features, and WBi−LSTM

is weight parameters of Bi-LSTM.
The original Transformer (Vaswani et al., 2017) is developed

based on self-attention mechanisms like a Multi-Head attention
without any recurrent structures and convolutions. A Multi-
Head attention module consists of several Scaled Dot-Product
Attention (SDPA) modules in parallel and then their outputs are
concatenated as an input of a linear layer. Given the input query
(Q), key (K), and value (V), the output of each SDPA module is
defined as:

Attention (Q,K,V) = soft max

(
QKT√

dk

)
V (4)

where dk is the feature dimension of the key matrix K.

3.3. Decision-level fusion

After obtaining audio-visual global features extracted by a
Bi-LSTM model and a Transformer model, we adopt a linear
regression layer to predict the Big-Five personality and interview
scores. The linear regression layer is calculated as follows:

fi(x) = xiwi + b (5)

where xi, wi, and b represent the i-th input sample, the
corresponding weight value, and bias, respectively. fi(x) is the
i-th prediction score value.
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As shown in Figure 1, when using the learned audio
features, visual scene features, and visual face features as
inputs of a linear regression layer, we can obtain six different
recognition results. To effectively fuse these six different
recognition results, a weighted decision-level fusion strategy is
employed, as described below:

∼

f (x) =
6∑

i=1

αifi(x) (6)

where αi is the weight value, fi (x) is the predicted value of
each type of features, and

∑6
i=1 αi = 1. The mean squared error

(MSE) loss is computed as follows:

MSE(
∼

f (X)) = E[(
∼

f (X)− Y)2] = E

( 6∑
i=1

αi(fi(X)− Y)

)2
(7)

where Y is the ground-truth score. Our goal is to minimize the
MSE loss subject to

∑6
i=1 αi = 1. To this end, the Lagrangian

expression of this problem is expressed as:

L(X, λ) = MSE(
∼

f (X))− λ

( 6∑
i=1

αi − 1

)
(8)

where λ is the Lagrange multiplier.
Then, we calculate the partial derivation of Eq. 8 based on

αm for m = 1, 2, · · · 6, as defined as:

∂L(X, λ)
∂αm

= E

[
2

6∑
i=1

αi(fi(X)− Y)(fm(X)− Y)

]
− λ (9)

We set the gradient to be 0, and get:

2
6∑

i=1

αiE[(fi(X)− Y)(fm(X)− Y)] − λ = 0,m = 1, 2, · · · 6

(10)
Let α = [α1, α2, α3, α4, α5, α6]

T , � = [wij] = E[(fi(X)−
Y)(fj(X)− Y)], Eq. 10 can be transformed as:

�α =
λ

2
1 (11)

Then, the optimal weight vector α can be obtained by:

α =
�−11

1T�−11
(12)

4. Experiments

4.1. Dataset

To verify the effectiveness of the proposed method, the
public ChaLearn First Impression-V2 (Escalante et al., 2017)
is employed for personality and interview prediction. This
dataset contains 10,000 video clips collected from more than

3,000 different YouTube videos. The language involved in
video participants is English. The resolution of the video is
1280× 720, and the duration of each video clip is about
15 s. This dataset annotates the “Interview” scene labels for
interview analysis. The divided training set, testing set and
validation set in this dataset contain 6,000, 2,000, 2,000 video
clips, respectively. In this work, we use the training and
validation sets for experiments because the testing set is only
open to competitors. Each video in this dataset is labeled
by using the Big-Five personality score [0,1]. Figure 2 shows
several image samples from the ChaLearn First Impression-V2
dataset.

4.2. Implementation details

When training all used deep learning models, the batch
size is set to 32, and the initial learning rate is 1× e−4. After
each epoch, the learning rate will become a half of the original
learning rate. The maximum epoch number of is 30, and the
Adam optimizer is used. The MSE loss function is adopted.
The experimental platform is NVIDIA GPU Quadro M6000
with 24 GB memory. In order to improve the generalization
performance of trained deep learning models and avoid
overfitting, the early stopping strategy (Prechelt, 1998) is used.

In this work, we choose a two-layer Bi-LSTM to capture
temporal dynamics related to video sequences. The number
of neurons in each layer of Bi-LSTM is 2048. The number
of encoding layer in the Transformer model is 6 for its
best performance, and its last layer output 1024-dimension
features. To compare with these deep learning models, several
classical regression models such as Support Vector Regression
(SVR) with polynomial (poly), radial basis function (RBF),
and linear kernel functions, Decision Tree Regression (DTR)
are employed. In the SVR model, the degree of polynomial
kernel function is 3, the penalty factor “C” of radial basis
kernel function is 2, and the parameter “gamma” is 0.5.
The DTR model is implemented for its default parameters,
such as the splitting policy “split = best” at each node,
“min _ samples _ split = 2” for splitting an internal node.
For these classical regression models, a simple average-
pooling strategy is conducted on these extracted audio-
visual local features so as to produce the global features
as their inputs.

The evaluation metric for evaluating the predicted
personality trait or interview scores is defined as:

S = 1−
N∑

j=1

∣∣∣yp
j − yj

∣∣∣
N

(13)

where N is the number of samples, yp
j is the predicted value,

and yj is the ground-truth value. The higher the value S is, the
better the obtained performance on personality or interview
prediction tasks is.
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FIGURE 2

Image samples with the labeled Big-Five personality score from the ChaLearn First Impression-V2 dataset.

TABLE 1 Prediction results of deep audio features extracted by the pre-trained VGGish for different methods.

Models O C E A N Average
score

Interview
score

SVR (poly) 0.8540 0.8329 0.8624 0.8402 0.8744 0.8528 0.8319

SVR (rbf) 0.8967 0.8844 0.8932 0.9012 0.8906 0.8932 0.8920

SVR (linear) 0.8980 0.8846 0.8935 0.9025 0.8920 0.8941 0.8945

DTR 0.8541 0.8411 0.8542 0.8610 0.8453 0.8511 0.8511

Transformer 0.8972 0.8814 0.8920 0.9035 0.8907 0.8930 0.8915

Bi-LSTM 0.8986 0.8834 0.8932 0.9045 0.8928 0.8945 0.8947

Transformer + Bi-LSTM 0.8989 0.8847 0.8938 0.9048 0.8935 0.8952 0.8953

Bold values denote the highest performance.

4.3. Experimental results and analysis

In this section, two groups of experiments are carried
out on the ChaLearn First Impression-V2 data set to verify
the effectiveness of all used methods. One is the single-
modal personality trait recognition, the other is multi-modal
personality trait recognition.

4.3.1. Results of single-modal personality trait
recognition

For single-modal personality recognition, we present the
experiment results and analysis based on the single extracted
audio features, visual scene features, and visual face features by
using the pre-trained deep models.

Table 1 shows the prediction results of deep audio features
extracted by the pre-trained VGGish for different methods.
“Transformer + Bi-LSTM” denotes that the learned features
with Transformer and Bi-LSTM are directly concatenated to
form a whole feature vector as inputs of the latter linear
regression layer for prediction. It can be seen from Table 1
that Transformer + Bi-LSTM performs best based on deep
audio features. More specially, the average Big-Five personality
prediction score is 0.8952 and the corresponding interview
prediction score of 0.8953, thereby outperforming other used

methods. The ranking order for other used methods is Bi-
LSTM, SVR (linear), SVR (rbf), Transformer, SVR (poly), and
DTR. This shows the advantages of Transformer + Bi-LSTM
on audio personality trait recognition tasks. It is noted that
Transformer + Bi-LSTM performs better than Transformer and
Bi-LSTM, indicating that there is a certain complementarity
between Transformer and Bi-LSTM.

Tables 2, 3 separately present personality prediction results
of deep visual scene features and deep visual face features
extracted by the pre-trained VGG-Face for different methods.
It can be observed from Tables 2, 3 that Transformer + Bi-
LSTM still obtains better performance other methods. In
particular, Transformer + Bi-LSTM employs deep visual scene
features and face features to produce the average Big-Five
personality prediction scores of 0.9039 and 0.9124, respectively,
and the interview prediction scores of 0.9057 and 0.9163,
respectively. The ranking order for other used methods is Bi-
LSTM, Transformer, SVR (poly), SVR (linear), SVR (rbf), and
DTR. This shows the superiority of Transformer + Bi-LSTM on
deep visual (scene and face) personality trait recognition tasks.
The visual face images outperforms the visual scene images
on personality trait recognition tasks. This may be because
face images are more correlated with personality traits than
scene images.
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TABLE 2 Prediction results of deep visual scene features extracted by the pre-trained VGG-Face for different methods.

Models O C E A N Average
score

Interview
score

SVR (poly) 0.8921 0.8896 0.8896 0.8962 0.8850 0.8905 0.8890

SVR (rbf) 0.8841 0.8736 0.8804 0.8963 0.8780 0.8825 0.8818

SVR (linear) 0.8896 0.8872 0.8867 0.8922 0.8809 0.8873 0.8865

DTR 0.8636 0.8607 0.8627 0.8711 0.8586 0.8633 0.8639

Transformer 0.8941 0.8844 0.8909 0.9021 0.8884 0.8920 0.8920

Bi-LSTM 0.9042 0.9013 0.9012 0.9091 0.8993 0.9030 0.9050

Transformer + Bi-LSTM 0.9043 0.9025 0.9035 0.9093 0.9000 0.9039 0.9057

Bold values denote the highest performance.

TABLE 3 Prediction results of deep visual face features extracted by the pre-trained VGG-Face for different methods.

Models O C E A N Average
score

Interview
score

SVR (poly) 0.8871 0.8922 0.8923 0.8980 0.8855 0.8910 0.8963

SVR (rbf) 0.8841 0.8736 0.8804 0.8963 0.8780 0.8825 0.8818

SVR (linear) 0.8953 0.8922 0.8986 0.8974 0.8913 0.8950 0.8960

DTR 0.8714 0.8683 0.8702 0.8760 0.8674 0.8706 0.8721

Transformer 0.9023 0.9000 0.9029 0.9068 0.8968 0.9017 0.9017

Bi-LSTM 0.9103 0.9155 0.9129 0.9135 0.9085 0.9121 0.9161

Transformer + Bi-LSTM 0.9110 0.9148 0.9130 0.9143 0.9087 0.9124 0.9163

Bold values denote the highest performance.

TABLE 4 Comparisons of recognition results obtained by different methods.

Modality O C E A N Average
score

Interview
score

A 0.8989 0.8847 0.8938 0.9048 0.8935 0.8952 0.8953

S 0.9043 0.9025 0.9035 0.9093 0.9000 0.9039 0.9057

F 0.9110 0.9148 0.9130 0.9143 0.9087 0.9124 0.9153

A + S + F (EF) 0.9145 0.9176 0.9171 0.9158 0.9121 0.9154 0.9178

A + S + F (MF) 0.9151 0.9172 0.9156 0.9150 0.9123 0.9150 0.9180

A + S + F (LF) 0.9167 0.9163 0.9176 0.9177 0.9150 0.9167 0.9200

A, audio; S, scene; F, face; EF, early fusion; MF, model-level fusion; LF, late fusion. Bold values denote the highest performance.

In summary, the results in Tables 1–3 demonstrate that
for single-modal personality recognition the visual face features
perform best on personality trait and interview prediction tasks,
followed by deep visual scene features and deep audio features.
This shows that the facial images related to facial expression
contain more discriminant information for personality trait
recognition.

4.3.2. Results of multimodal personality trait
recognition

For multimodal personality recognition tasks, we compare
the performance of three typical multimodal information fusion
methods, such as feature-level fusion, decision-level fusion,

and model-level fusion. In feature-level fusion, the audio-visual
global features learned by Bi-LSTM and Transformer networks,
are concatenated into a whole feature vector as input of the
linear regression layer for personality trait prediction. In this
case, feature-level fusion is also called early fusion (EF). In
model-level fusion (MF), the concatenated audio-visual global
features are fed into a 4-layer full-collection layer network
(1024-512-256-128) for personality trait prediction. In decision-
level fusion, we adopt Eq. 12 to obtain the analytical solution of
the optimal weight values in Eq. 6. In this case, decision-level
fusion is also called late fusion (LF).

Table 4 presents the comparisons of recognition results
obtained by different fusion methods such as EF, MF, and LF, as
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TABLE 5 Comparisons with other existing methods.

References Modality Feature
extraction

Fusion
methods

Average
score

Güçlütürk
et al., 2016

Audio,
visual

Audio:ResNet-17
Visual:ResNet-17

EF 0.9109

Güçlütürk
et al., 2017

Audio,
visual, text

Audio:ResNet-17
Visual:ResNet-17
Text:skip-thought
vectors

EF 0.9118

Wei et al., 2017 Audio,
visual

Audio:MFCCs
Visual:DAN

LF 0.9130

Principi et al.,
2021

Audio,
visual

Audio:1D CNN
Visual:ResNet-50

MF 0.9160

Escalante et al.,
2022

Audio,
visual, text

Audio:ResNet-18
Visual:ResNet-18
Text: skip-thought
vectors

LF 0.9161

Ours Audio,
visual

Audio:VGGish
Visual:VGG-Face

LF 0.9167

EF, early fusion; MF, model-level fusion; LF, late fusion. Bold values denote the highest
performance.

well as the single modality methods. From the results in Table 4,
we can see that: (1) among three used fusion methods, the used
LF method combining audio, scene, and face obtains the best
performance with an average score of 0.9167 on personality trait
recognition tasks, and an average score of 0.9200 on interview
prediction tasks. For personality trait recognition, the used
EF method slightly outperforms the MF method, yielding an
average score of 0.9154. By contrast, the used MF method
slightly outperforms the EF method on interview prediction
tasks. In particular, the MF method gives an average interview
score of 0.9180. (2) All used fusion methods such as LF, MF,
and EF provide superior performance to the single modality
methods. This indicates the complementarity to some extent
among audio, scene, and face modality on target recognition
tasks.

4.3.3. Comparisons with other existing
methods

To further verify the effectiveness of the proposed
method, Table 5 presents the comparisons of different used
methods. Table 5 shows that the proposed method obtains an
average score of 0.9167, which is better than other reported
results obtained by audio, visual, and text modalities. This
demonstrates the advantage of our method on personality trait
recognition tasks. These comparing works are described as
follows.

Güçlütürk et al. (2016) provided an audio-visual personality
trait recognition based on 17-layer deep residual networks
(ResNet-17). They concatenated the learned features of audio-
visual streams at feature-level as an input of a fully connected
layer and reported an average score of 0.9109 for final
personality trait prediction. In this case, the used network
does not need any feature engineering or visual analysis like

face detection, face landmark alignment. Similarly, they also
presented an multimodal personality trait analysis integrating
audio, visual, and text modalities by using the 17-layer
deep residual networks (Güçlütürk et al., 2017). Here, they
extracted skip-thought vectors as text features. They fused these
modalities at feature-level and reported an average score of
0.9118. Wei et al. (2017) presented a deep bimodal regression
method of personality traits on short video sequences. For
audio modality, they extracted MFCCs and logfbank features.
For visual modality, they employed a modified CNN model
called Descriptor Aggregation Network (DAN) to extract visual
features. Finally, they fused these predicted regression scores
of audio-visual modalities at decision-level, and reported an
average score of 0.9130. Principi et al. (2021) presented a
multimodal deep learning method integrating the raw audio
and visual modalities for personality trait prediction. For audio
modality, a 14-layer 1D CNN was used for audio feature
extraction. For visual modality, they employed a pre-trained
ResNet-50 network for visual feature extraction. Finally, they
employed a fully connected layer to jointly learn audio-visual
feature representations at model-level for final personality trait
recognition, and achieved an average score of 0.9160. Escalante
et al. (2022) proposed a multimodal deep personality trait
recognition method based on audio, visual, and text modalities.
They adopted a ResNet-18 to extract audio and visual features,
and skip-thought vectors as text features. Then, a late fusion
strategy was utilized to fuse all three modalities, and yielded an
average score of 0.9161.

5. Conclusion

This paper presents a multimodal personality trait
recognition method based on CNN + Bi-LSTM + Transformer
network. In this work, CNN, Bi-LSTM, and Transformer are
combined to capture high-level audio-visual spatio-temporal
feature representations for personality trait recognition. Finally,
we compare multimodal personality prediction results based
on three different fusion methods such as feature-level fusion,
model-level fusion, and decision-level fusion. Experiments on
the public ChaLearn First Impression-V2 dataset show that
decision-level fusion achieves the best multimodal personality
trait recognition results with an average score of 0.9167,
outperforming other existing methods.

It is noted that this work only focuses on integrating
audio and visual modalities for multimodal personality trait
recognition. Considering the diversity of modal information
related to the expression of personality traits, it is interesting to
combine current audio-visual modalities with other modalities
such as physiological signals, text cues, etc., to further
improve the performance of personality trait recognition. In
addition, exploring a more advanced deep learning model for
personality trait recognition is also an important direction in
our future work.
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Speech emotion recognition 
based on improved masking 
EMD and convolutional recurrent 
neural network
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Speech emotion recognition (SER) is the key to human-computer emotion 

interaction. However, the nonlinear characteristics of speech emotion are variable, 

complex, and subtly changing. Therefore, accurate recognition of emotions 

from speech remains a challenge. Empirical mode decomposition (EMD), as an 

effective decomposition method for nonlinear non-stationary signals, has been 

successfully used to analyze emotional speech signals. However, the mode 

mixing problem of EMD affects the performance of EMD-based methods for SER. 

Various improved methods for EMD have been proposed to alleviate the mode 

mixing problem. These improved methods still suffer from the problems of mode 

mixing, residual noise, and long computation time, and their main parameters 

cannot be set adaptively. To overcome these problems, we propose a novel SER 

framework, named IMEMD-CRNN, based on the combination of an improved 

version of the masking signal-based EMD (IMEMD) and convolutional recurrent 

neural network (CRNN). First, IMEMD is proposed to decompose speech. IMEMD 

is a novel disturbance-assisted EMD method and can determine the parameters of 

masking signals to the nature of signals. Second, we extract the 43-dimensional 

time-frequency features that can characterize the emotion from the intrinsic 

mode functions (IMFs) obtained by IMEMD. Finally, we input these features into 

a CRNN network to recognize emotions. In the CRNN, 2D convolutional neural 

networks (CNN) layers are used to capture nonlinear local temporal and frequency 

information of the emotional speech. Bidirectional gated recurrent units (BiGRU) 

layers are used to learn the temporal context information further. Experiments 

on the publicly available TESS dataset and Emo-DB dataset demonstrate the 

effectiveness of our proposed IMEMD-CRNN framework. The TESS dataset 

consists of 2,800 utterances containing seven emotions recorded by two native 

English speakers. The Emo-DB dataset consists of 535 utterances containing 

seven emotions recorded by ten native German speakers. The proposed IMEMD-

CRNN framework achieves a state-of-the-art overall accuracy of 100% for the 

TESS dataset over seven emotions and 93.54% for the Emo-DB dataset over seven 

emotions. The IMEMD alleviates the mode mixing and obtains IMFs with less noise 

and more physical meaning with significantly improved efficiency. Our IMEMD-

CRNN framework significantly improves the performance of emotion recognition.

KEYWORDS

speech emotion recognition, empirical mode decomposition, mode mixing, 
convolutional neural networks, bidirectional gated recurrent units
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1. Introduction

Emotion is a kind of physiological and psychological state (Liu 
Z. et al., 2022). Physiological stimulation, subjective experience, 
and facial and behavioral expression all work together to form a 
complete emotional process (Nitsche et al., 2012; Lu et al., 2021). 
Basic emotional states comprise anger, disgust, fear, happiness, 
sadness, and surprise (Ekman and Friesen, 1971). The remaining 
emotions are combinations of these basic emotions, such as 
excitement, embarrassment, and contempt (Krishnan et al., 2021). 
Reliable analysis, recognition, understanding, and expression of 
emotions are significant for communicating and understanding 
information between humans and computers.

Attempts utilizing separate modalities have been made to 
recognize emotions (Aydın et al., 2018; Dominguez-Jimenez et al., 
2020; Li et al., 2020a,b). Accumulating evidence have proved the 
efficiencies of EEG and other physiological signals (such as 
electrocardiograph, galvanic skin response, and respiration) in 
emotion recognition (Quan et al., 2021; Chen et al., 2022). In these 
experiments, physiological signals were simultaneously recorded 
while subjects were presented with diversified emotional stimulus 
materials (such as static pictures, facial expressions, video film 
clips, and acoustic music clips) that induced specific emotions, 
among which the parameters of these stimulus materials would 
also influence the intensity of induced emotions (Kılıç and Aydın, 
2022). For emotion recognition, emotional features of EEG signals 
usually include power spectrum density (PSD), differential 
entropy (DE), rational asymmetry (RASM), differential entropy 
asymmetry (DASM), phase locking value (PLV), and phase lag 
index (PLI; Lu et al., 2021). For other physiological signals, some 
statistical features based on temporal or frequency-domain 
information are usually extracted for emotion recognition (Picard 
et al., 2001; Goshvarpour et al., 2017).

Speech is one of the most natural and intuitive ways of 
emotional communication, which contains rich emotions while 
conveying information (Li et  al., 2020a). Speech emotion 
recognition (SER) is a computer simulation of human speech 
emotion perception and understanding, a key prerequisite for 
human-computer interaction. There are three main methods for 
emotional corpora collection: collecting natural speech from the 
real world (natural speech database), collecting audio recordings 
of subjects acting based on pre-decided affect-related scripts 
(actor-based speech database), and collecting corpora from the 
speaker by creating an artificial emotional situation (elicited 
emotional speech database; Basu et al., 2017). Emotional features 
of speech signals include prosody features, spectral features, and 
timbre features (Li et  al., 2020b). The current SER is mainly 
supervised pattern recognition. Commonly used machine 
learning algorithms include k-nearest neighbor (KNN), support 
vector machine (SVM), linear discriminative analysis (LDA), 
Gaussian naive Bayes, and artificial neural network (ANN).

With the development of deep learning, SER based on deep 
neural networks (DNNs) has begun to attract attention. These 
methods train deep-learning models for speech emotion 

recognition by taking the original emotional speech or hand-
crafted features as the inputs and have achieved fruitful results 
(Anvarjon et al., 2020). Sarma et al. (2018) identified emotions 
from raw speech signals using an interleaving time-delay neural 
network (TDNN) with unidirectional long short-term memory 
(LSTM) and time-restricted attention mechanisms (TDNN-
LSTM-attention). The results outperformed previously reported 
results on the IEMOCAP dataset (Busso et al., 2008). Wang et al. 
(2021) proposed a novel end-to-end SER architecture that stacked 
multiple transformer layers and used log Mel-filterbank energy 
features as the input. This method outperformed prior methods 
by a relatively 20% improvement on the IEMOCAP dataset. 
Deschamps-Berger et al. (2021) presented an end-to-end temporal 
CNN-BiLSTM network and extracted the spectrogram by short-
term Fourier transform (STFT) as the input of the network. This 
method was evaluated on the IEMOCAP and CEMO datasets and 
obtained good results. Kim and Saurous (2018) used two CNN 
layers for local and global convolution, two LSTM layers for 
sequence learning, and 20 features from eGeMAPs (containing 
rhythmic, spectral, and timbre features) as inputs to the model. 
On the Emo-DB dataset, an unweighted accuracy of 88.9% was 
achieved. Wang et al. (2022) extracted traditional hand-crafted 
features from GeMAPS and deep automatic features from the 
VGGish model. Then, they proposed a multi-feature fusion and 
Multi-lingual fusion speech emotion recognition algorithm based 
on the recurrent neural network (RNN) with an improved local 
attention mechanism. The speech emotion recognition accuracy 
is improved when the dataset is small. Hou et al. (2022) proposed 
a collective multi-view relation network (CMRN) based on 
bidirectional gate recurrent units (Bi-GRU) and the attention 
mechanism. In the CMRN, Mel-frequency cepstral coefficients 
(MFCCs), log Mel-frequency spectral coefficients (MFSCs), and 
prosody features are collected as multi-view representations. The 
proposed method performs better than the state-of-the-art 
methods on Emo-DB and IEMOCAP datasets.

For actual voice, automatic feature learning methods using 
deep networks can effectively learn the underlying patterns in the 
data. However, it is not easy to interpret the information obtained 
from these deep networks (Bhattacharjee et al., 2020). On the 
other hand, hand-crafted features used in deep-learning methods 
are mainly extracted based on the STFT. In practical applications, 
speech signals are non-stationary amplitude modulated-frequency 
modulated (AM-FM) signals with rich frequency components and 
temporal rhythm variations (Hsieh and Liu, 2019). The nonlinear 
features of speech emotion are variable, complex, and subtly 
changing (Kerkeni et  al., 2019). However, limited by the 
fundamental uncertainty principle, the STFT cannot get good 
resolution in both time and frequency, and the non-linearity issue 
remains problematic (Kerkeni et al., 2019). Meanwhile, the STFT 
method requires pre-set basis functions and lacks adaptiveness in 
analyzing non-stationary speech (Yang et al., 2018). Therefore, 
reliable recognition of emotions from speech remains challenging.

More recently, empirical mode decomposition (EMD), a 
decomposition method for non-stationary AM-FM signals, has 
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been used to analyze emotional speech signals. EMD adaptively 
decomposes a non-stationary signal into a finite number of 
intrinsic mode functions (IMFs) without losing the original 
properties of signals (Huang et al., 1998). IMFs have been shown 
to manifest the vocal tract structure and the glottal source 
information (Sharma et al., 2018; Karan et al., 2020). At the same 
time, experimental studies have shown that variations in the 
physiological properties of the vocal folds vary significantly across 
emotional patterns (Yao et al., 2020). Therefore, good results are 
obtained for speech emotion recognition based on EMD. Based 
on empirical mode decomposition (EMD) and Teager-Kaiser 
energy operator (TKEO), Kerkeni et al. (2019) extracted two new 
types of features. Combining these two feature sets with cepstral 
features, the unweighted accuracy using the support vector 
machine (SVM) on the Emo-DB dataset is 86.22%. Vieira et al. 
(2020) presented a novel Hilbert–Huang–Hurst coefficient 
(HHHC) feature based on the ensemble EMD (EEMD) to 
represent the emotional states. Experiments on different emotional 
datasets showed that HHHC led to significant classification 
improvements compared to the baseline acoustic features. 
Krishnan et al. (2021) extracted entropy features from principal 
IMFs based on EMD for recognizing emotions on the TESS 
dataset and the linear discriminant analysis (LDA) classifier 
presented a peak balanced accuracy of 93.3%. However, EMD and 
EEMD suffer from the mode mixing problem, which makes the 
physical meaning of IMF unclear (Rilling and Flandrin, 2008), 
thus reducing the performance of EMD-based methods for speech 
emotion recognition. Researchers have proposed several 
improvement methods for the mode mixing problem, such as the 
masking signal-based EMD (MSEMD; Deering and Kaiser, 2005), 
improved complete ensemble EMD with adaptive noise 
(ICEEMDAN; Colominas et  al., 2014), uniform phase EMD 
(UPEMD; Wang et  al., 2018), and robust EMD (REMD; Liu 
P. et  al., 2022). Although these methods alleviate the modal 
aliasing problem to some extent, there are still problems in that 
the method parameters cannot be determined adaptively, there is 
residual noise in the IMFs, and the time complexity of the 
algorithm is high.

It is still challenging for computers to accurately capture 
emotional information in speech (Anvarjon et  al., 2020). 
Therefore, this paper focuses on exploring and proposing an 
effective SER method to help computers develop advanced 
emotional intelligence. In this paper, we  present a novel 
framework, named IMEMD-CRNN, to address the above 
challenges and improve speech-based emotion recognition  
performance.

The contributions of this work are three-fold: (i) 
We propose an improved version of the masking signal-based 
EMD (IMEMD). In the IMEMD, the parameters of masking 
signals are adaptively derived from the natures of the original 
signals. IMEMD obtains IMFs with less noise and more 
physical meaning with significantly improved efficiency. (ii) 
We use IMEMD to extract the timbre features proposed in 
our previous work (Li et  al., 2020b) and Mel-frequency 

cepstral coefficients based on the reconstructed signal 
(SMFCC; Kerkeni et  al., 2019) as the features used in the 
IMEMD-CRNN to characterize speech emotions. These are 
important speech emotion features (Guidi et  al., 2019; 
Kerkeni et al., 2019). (iii) We feed the timbre features based 
on IMEMD into a convolutional recurrent neural network 
(CRNN) to recognize emotions. In the CRNN, we first use 2D 
CNN layers to capture nonlinear local temporal and frequency 
information of the emotional speech. Then, the outputs of the 
CNN module are fed to bidirectional gated recurrent units 
(BiGRU) layers to learn the temporal context information 
further. In the experimental part, we first demonstrated the 
advantages of IMEMD for decomposing non-stationary 
signals through the performance of the different improved 
algorithms for EMD in simulated and real speech emotion 
signals. Then experiments on two popular standard speech 
emotion datasets showed the significance and the robustness 
of our proposed IMEMD-CRNN framework for speech 
emotion recognition.

2. Materials and methods

In this section, our proposed IMEMD-CRNN to predict 
emotion is introduced. Figure 1 shows the framework of IMEMD-
CRNN. As illustrated, IMEMD-CRNN consists of three modules: 
IMEMD-based emotional speech signal decomposition, 
extraction of time-frequency features from IMFs, and speech 
emotion recognition based on CRNN. Arano et al. (2021) show 
that effective hand-crafted features, compared to sophisticated 
deep-learning feature sets, can still have better performance. 
Therefore, we  combine IMEMD-based features with CRNN 
network in order to improve the robustness and accuracy of the 
speech emotion recognition system. The framework of IMEMD-
CRNN is shown in Figure 1. Design details of the three modules 
are introduced below.

2.1. Improved masking empirical mode 
decomposition

This part begins with a brief introduction to EMD and 
MSEMD, and the causes of mode mixing problems are analyzed. 
Then, we describe our proposed IMEMD.

2.1.1. The masking signal-based EMD
The EMD decomposes a non-stationary signal into a finite 

and often small number of IMFs and a residue (Huang et  al., 
1998). The IMFs contain progressively lower frequency 
components of the signal. The given signal x(t) can 
be reconstructed as:

 
x t c t r tkk

n
es

imf( ) = ( ) + ( )=∑ 1  (1)
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where ck(t) (k = 1, …, nimf) represents the kth IMF and res(t) 
indicates the residue of the signal x(t). The sifting process of EMD 
to obtain an IMF from x(t) is as follows (Huang et al., 1998):

Step 1. Initialize r(t) = x(t).
Step 2. Compute all local maxima and minima of r(t).
Step 3. Interpolating the local maxima (minima) by the cubic 

spline to obtain the upper (lower) envelope eu(t) (el(t)) of r(t).
Step 4. Compute the local mean envelope e(t) = [eu(t) + el(t)]/2.
Step 5. Subtract e(t) from r(t) and update r(t) = r(t) − e(t).
Step 6. Repeat steps 2 to 5 until r(t) meets the conditions of IMF.

The mode mixing is that the IMF may contain widely 
distributed scales (Wu and Huang, 2009). Figures 2C–F show the 
mode mixing. The mode mixing is mainly caused by the following 
two situations: (i) intermittency caused by intermittent signal, 
pulse interference, and noise and (ii) different frequency 
components of the signal lying within an octave (Deering and 
Kaiser, 2005; Rilling and Flandrin, 2008). Therefore, many 
improved algorithms for EMD have been proposed to solve the 
mode mixing problem. Deering et al. first proposed using masking 
signals to resolve the mode mixing in EMD (Deering and Kaiser, 
2005). The method is called the masking signal-based EMD 
(MSEMD), which uses a sinusoid signal xm(t) as the masking 
signal. The process of obtaining an IMF by MSEMD is shown in 
Algorithm 1 (Shown in Table 1). Let EMDk (∙) be the operator, 
which produces the kth IMF using EMD. The β, fw, and θ represent 
the amplitude, frequency, and phase of the masking signal, 

respectively. Their detailed computational process is shown in 
reference (Deering and Kaiser, 2005). MSEMD has high 
computational efficiency and can solve mode mixing to some 
extent, but the parameter selection methods of the masking signal 
need to be further improved.

2.1.2. The proposed IMEMD
In this section, we propose a novel method to construct masking 

signals to alleviate mode mixing. Since our proposed method is an 
improved version of the MSEMD, it is called improved masking 
EMD (IMEMD). In IMEMD, obtaining the highest frequency 
component of the original signal is as follows: First, a masking signal 
whose frequency is higher than the highest frequency component of 
the original signal is added to the original signal. Next, the signal is 
decomposed by EMD, and the first IMF obtained contains the 
highest frequency component and the masking signal. Then, the 
masking signal is removed from this IMF to obtain the highest 
frequency component. The proposed IMEMD is given in Algorithm 
2 (Table 2). The value of ε1 (ε1 = 30 dB) is referred to as reference (Liu 
et al., 2017), where ε1 is the decomposition stop threshold.

In Section 2.1.1, we  analyze two main reasons for mode 
mixing: the intermittent components in the signal and the 
components whose frequencies are within an octave. By adding 
an appropriate sinusoidal signal (The duration is equal to the 
original signal) to the original signal, the extrema of the new 
signal are more uniformly distributed. Thus, the mode mixing due 
to intermittent components can be alleviated (Wang et al., 2018). 
At the same time, adding the sinusoidal signal improves the 

FIGURE 1

Overall scheme of the IMEMD-CRNN. In the figure, every 2D CNN block (2D CNN) has 4 parts: a 2D CNN layer, a batch normalization layer (BN), a 
ReLU layer (ReLU), and a 2D max pooling layer (MaxPooling).
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filtering characteristics of the EMD for separating components 
whose frequencies lie in an octave (Xu et  al., 2009). How to 
construct an appropriate masking signal is shown below:

Our proposed masking signal vki(t) is represented as follows:

 
( ) 1sin 2 2ki k k

p

iv t f t
n

ξ π π
 −

= +  
   

(2)

where ξk and fk  are the amplitude and frequency of the kth 
masking signal vk(t), respectively. The parameter np is the number 
of phases (np∈N, np > 1) and i = 1, 2, …, np.

In the proposed IMEMD, ξk and fk  are determined 
adaptively according to the nature of the signal, and they are 
calculated as follows:

A B C

FD E

FIGURE 2

Decomposition of the synthetic signal by five methods. (A) The waveforms of synthetic signals. (B) IMEMD. (C) UPEMD. (D) EEMD. (E) ICEEMDAN. 
(F) REMD. In each subgraph of (B–F), the left is waveforms of IMFs, the right is power spectra of IMFs.

TABLE 1 The algorithm to obtain an IMF by MSEMD.

Algorithm 1 Obtaining an IMF by MSEMD

Function: c(t) = MSEMD (x(t))

Input: x(t)

Output: c(t)

1: Construct a masking signal xms(t) = β sin (2πfwt + θ)

2: Compute c+(t) = EMD1(x(t) + xms (t))

3: Compute c−(t) = EMD1(x(t) − xms (t))

4: c(t) = (c+(t) + c−(t))/2

TABLE 2 The algorithm of IMEMD.

Algorithm 2 IMEMD

Function: {ck(t)} = IMEMD (x(t))

Input: x(t)

Output: {ck(t)}

1: Initialize: np is the number of phases, r0(t) = x(t), k = 1

2:
While ( ) ( )/2 2

1 1x t dt r t dtk ε∫ ∫ <− and rk-1(t) is not 

monotonic Do

3:

( ) ( ) ( )( )EMD /1 1
1

p

c t r t v t n
n

k k ki p
i

 
 = +  
 

−
=
∑

4: rk(t) = rk-1(t) − ck(t)

5: k ← k + 1

6: End while

7: res(t) = rk-1(t)
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TABLE 3 The feature sets extracted by IMEMD for SER.

Category Feature name Dimensions

Timbre features Hilbert spectrum distribution features (SC, SP, SK, SU) 4

Hilbert contour features (SE, ∆SE, ∆2SE) 3

Spectral features SMFCC 12

First derivative of SMFCC (∆SMFCC) 12

Second derivative of SMFCC (∆2SMFCC) 12
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where Ak(t) and Fk(t) are the instantaneous amplitude and 
frequency of the IMF obtained by EMD1(rk-1(t)), respectively. T is 
the duration of the signal and f fk k− >1 . Following Huang et al. 
(1998), Ak(t) and Fk(t) are defined as
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where P indicates the Cauchy principal value integral, and 
yk(t) is the Hilbert transform (HT) of the kth IMF, ck(t).

Equations 2–8 describe the calculation of the frequency, 
amplitude, and phase of the mask signal in the proposed 
IMEMD. For the masking frequency, studies have shown that two 
components with a frequency ratio between 0.5 and 2 can 
be separated when the frequency of the mask signal is higher than 
the frequency of the high-frequency component (Senroy et al., 
2007; Rilling and Flandrin, 2008). For signal x(t), when its two 
adjacent frequency components ftr,k and ftr,k + 1 satisfy

 
1 2

1

< <
+

f
f
tr k

tr k

,

,  
(9)

and the mode mixing occurs after the EMD1(x(t)) operation, 
f f kk tr k> =( )+, 1 1 , hence f ftr k k, < 2 . When k > 1 and the mode 

mixing occurs after the EMD1(rk-1(t)) operation, f fk tr k− >1 ,  (k > 1), 
hence f f ftr k k k, < + −1 . So, the masking frequency fk  in Equation 
5 still satisfies that the frequency of the mask signal is higher than the 
frequency of the high-frequency component. Wang et al. (2018) 
prove that the residual noise can be reduced by using a few sinusoidal 
signals with uniform phase distribution as masking signals. 
Therefore, in obtaining the kth IMF by IMEMD, we construct np 
mask signals whose phases are uniformly distributed over the 2π 
space. Then, the new signals after adding these np mask signals are 
decomposed by EMD, respectively, to obtain np IMFs. The mean of 
these np IMFs is used as the final kth IMF, which can reduce the 
residual of the mask signals in the decomposition results and decrease 
the decomposition error. The effect of the different number of phases 
on the signal reconstruction error is experimentally analyzed in 
Section 3.3.1. In the power quality detection task, the appropriate 
masking amplitude can be determined based on the amplitude of the 
frequency component obtained by fast Fourier transform (FFT) (Wu 
et  al., 2014). Inspired by this, we  use instantaneous amplitudes 
obtained based on the HT to construct masking amplitude. Since the 
HT-based instantaneous amplitudes are time-varying, we average all 
instantaneous amplitudes during T. In Equations 2, 3, the values of 
np (np = 64) and ξ0  (ξ0 = 1.5) are empirical. In Section 3.3, we test 
the effect of different values of np and ξ0  on the IMF estimation.

2.2. Feature extraction based on IMEMD

In this section, we  extract two feature sets for SER using 
IMEMD. The first feature set is the timbre features proposed in 
our previous work (Li et al., 2020b). Timbre features are proven 
to be essential features for SER (Guidi et al., 2019). The other 
feature set is the Mel-frequency cepstral coefficients based on the 
reconstructed signal (SMFCC), which has been proven effective 
in distinguishing different speech emotions (Kerkeni et al., 2019). 
The following are details of two feature sets used in IMEMD-
CRNN. Table 3 shows the details of these two feature sets.

2.2.1. Timbre features based on IMEMD
IMEMD method is first adopted in this section to extract the 

intrinsic mode functions of speech. Then, the timbre feature sets, 
including the Hilbert spectrum distribution features and Hilbert 
contour features, are extracted.
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For each frame of the signal, Hilbert spectrum distribution 
features are calculated as follows
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where Fce[k] is the centroid frequency calculated for the 
instantaneous frequency of one frame in the kth IMF. Eme[k] is the 
mean value of the instantaneous amplitude of one frame in the 
kth IMF.

For each frame of the signal, Hilbert contour features are 
calculated as follows:
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where Φ  is the total number of frames of the signal. The 
second derivative ∆2SE can be solved by replacing the SE in the 
above equation with ∆SE where Q is the time difference of the first 
derivative, which is usually taken as 2.

2.2.2. Spectral features based on IMEMD
We extract the Mel-frequency cepstral coefficients based 

on the reconstructed signal (SMFCC) (Kerkeni et al., 2019) as 
the features to characterize speech emotions. The 
reconstructed signal is obtained by IMEMD. In order to 
improve the accuracy of speech emotion recognition, we also 
extract the first derivative of SMFCC (∆SMFCC) and the 
second derivative of SMFCC (∆2SMFCC). Because derivative 

features contain some temporal information, research show 
that this information is essential for speech emotion 
recognition (Kerkeni et al., 2019).

First, we use the zero-crossing rate detection method to find 
the signal trend xtr(t), as shown in Equation 16.
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where ZeroCrossc tk ( )  is the zero-crossing rate. Then, xtr(t) is 
subtracted from the original signal, and the rest of the signal is 
used to reconstruct the original signal. The SMFCC is obtained by 
calculating the MFCCs with 12 orders of the reconstructed signal. 
Thus, for the reconstructed signal, the number of SMFCC 
coefficients returned per frame is 12; that is, the dimension of 
SMFCC features is 12.

The ∆SMFCC and ∆2SMFCC describe the trajectories of 
SMFCC over time. When the number of frames of the 
reconstructed signal is Φ , the first derivative of ϕ th frame 

( )SMFCC ϕ∆ is calculated as follows:
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(17)

where Q is the time difference of the first derivative, which is 
usually taken as 2. The second derivative is calculated in the same 
way, but it is calculated from ∆ ( )SMFCC ϕ , not SMFCC. Thus, 
the number of dimensions of ∆SMFCC and ∆2SMFCC features is 
also 12.

2.3. Convolutional recurrent neural 
network

The architecture of CRNN in this paper is based on 
Adavanne et  al. (2019) and Cao et  al. (2019). The CRNN 
contains three parts. The first part includes four 2D CNN 
blocks and a reshape layer. Each of these 2D CNN blocks 
consists of a batch normalization layer (BN), a ReLU layer 
(ReLU), and a 2D max pooling layer (MaxPooling). The 
second part has three bidirectional GRUs. The third part has 
three fully connected layers. The output layer uses the 
softmax activation function. The cross-entropy loss is used to 
train the network and is optimized using an Adam optimizer. 
We train the network for 60 epochs with a mini-batch size of 
512. The initial learning rate η0  is 0.001. The architectural 
details of CRNN are shown in Figure 1.
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3. Results and discussion

3.1. Datasets

3.1.1. Synthetic signals
The synthetic signals to evaluate the performance of our 

IMEMD is a classical mode mixing example (shown in Figure 2). 
The synthetic signal xs(t) consists of a sustained pure tone xs1(t) 
and a gapped one xs2(t) with a higher frequency, where their 
frequencies lie within an octave. The data xs(t) = xs1(t) + xs2(t) is 
sampled at 1 Hz rate, 0 500t≤ ≤ , with
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3.1.2. Public datasets
The IMEMD-CRNN system is validated on the Berlin 

Emotional Database (Emo-DB; Burkhardt et  al., 2005) and 
Toronto Emotional Speech Set (TESS; Pichora-Fuller and Dupuis, 
2020). They are the most popularly used databases for emotion 
recognition (Deb and Dandapat, 2019). Both datasets were 
approved by ethical committees. The Emo-DB dataset includes 
535 audio files simulated by 10 actors on 10 German utterances. 
All files are in 16-bit stereo wave sampled at 16 kHz and labeled 
with one of the 7 emotions. The average duration of the utterances 
in this dataset is 3.5 s, and the approximate duration of the 
utterances is 3 s to 5 s. The number of emotional labels across the 
dataset is anger (127), anxiety/fear (69), boredom (81), disgust 
(46), happiness (71), neutral (79), and sadness (62). Audio files in 
the Emo-DB are single-channel audio.

The TESS database is recorded by two actresses aged 26 and 
64. Both actresses speak English as their first language. There are 
2,800 audio samples in the database, including seven different 
emotions: anger, disgust, fear, happiness, pleasant surprise, 
sadness, and neutral. There are 400 data samples for each emotion. 
The sampling rate is 24.414 kHz and is saved in WAV format with 
all audio samples between 2 s and 3 s in length. Audio files in the 
TESS are single-channel audio.

3.2. Preprocessing and evaluation 
metrics

Utterances in TESS and Emo-DB datasets are recorded in a 
noise-less environment; therefore, there is no need to filter and 
denoise the data (Krishnan et al., 2021). Utterances in the two 
datasets are split into equal-length segments of 3 s, and zero 
padding is used for utterances with a duration of less than 3 s 
(Chen et al., 2018). Each utterance is normalized by dividing the 

time-domain signal by its maximum value. For each utterance 
(sampling rate: 16 kHz for Emo-DB, 24.414 kHz for TESS), the 
frame size is uniformly set to 25 ms, and the hop size is 10 ms. To 
improve the performance of our IMEMD-CRNN architecture, 
we use data augmentation techniques to enlarge the size of the 
Emo-DB dataset, and every file is enlarged to 60 augmentations. 
We enlarge the Emo-DB dataset with three data enhancement 
methods: pitch shifting, time shifting, and noise addition. For 
pitch shifting, the range of pitch shift in semitones is [−2, 2]. The 
range of time shift in seconds is [−0.4, 0.4]. We use the Gaussian 
white noise addition, and the range of noise SNR in dB is [−20, 
40]. Each audio is normalized by dividing the time-domain signal 
by its maximum value.

When evaluating our proposed IMEMD, the reconstruction 
error of the reconstructed signal x  relative to the original signal 
x is measured by the relative root mean square error (RRMSE), 
and the calculation formula is as follows:
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To compare with the state-of-the-art SER methods, we use 
unweighted accuracy (UA) to evaluate the performance of 
different SER methods (Zhong et al., 2020).

3.3. Performance of IMEMD

3.3.1. Simulations and comparisons
We compare the results of IMEMD with those of EEMD, 

UPEMD, ICEEMDAN, and REMD in Figure  2 through the 
decomposition of the artificial signal. We only show the first two 
IMFs of these methods as the mode mixing mainly occurs in the 
first two modes of the artificial signal. We set the noise standard 
deviation to 0.4, the ensemble size to 100, and phase number to 16 
for EEMD, UPEMD, and ICEEMDAN, which are similar to those 
in Colominas et al. (2014) and Wang et al. (2018). For IMEMD, 
we set np = 64 and ξ0 = 1.5 through experiments. The number of 
IMF obtained by IMEMD, REMD, UPEMD, ICEEMDAN, EEMD, 
and EMD is 2, 3, 8, 12, 14, and 14, respectively. In Figure 2, when 
separating components whose frequencies lie within an octave, 
the separation degree of each method from high to low is IMEMD 
> UPEMD > ICEEMDAN > EEMD > REMD> EMD. IMEMD 
substantially reduces the mode mixing. The proper value of ξ0 
greatly impacts the performance of IMEMD and in this work, ξ0 
is empirical. In Figure 3, three case studies are performed to show 
the effect of ξ0 on mode estimation by IMEMD. The values of 
other parameters are the same as in Figure 2. Figures 3A–C show 
the decomposition of the synthetic signal by IMEMD when ξ0 is 
taken as the most appropriate value, ξ0 increase to a large value, 
and ξ0 increase to a small value, respectively. As shown in 
Figure 3B, when the value of ξ0 is too small, there are xs1(t) and 
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xs2(t) in IMF1. In Figure 3C, when the value of ξ0 is too large, xs2(t) 
appears in IMF2 and IMF3. The results in Figures 3B,C are mode 
mixing. These mean that inappropriate values of ξ0 can cause 
mode mixing problems.

In order to better compare the reconstruction errors of 
different methods in a different number of trials (the results are 
shown in Figure 4), we set the frequency of xs2(t) to 0.07. So, 
frequencies of xs1(t) and xs2(t) do not lie within an octave. 
Assisted signals with an amplitude of 0.2 are utilized for EEMD, 
ICEEMD, and UPEMD (Wang et al., 2018). Ensemble sizes of 
EEMD and ICEEMDAN are set to I = 50, 100, 200, 400, 600, 
and 800 (Wu and Huang, 2009; Colominas et  al., 2014). 
Masking signals with phase numbers np = 2, 4, 8, 16, 32, and 64 
are used in UPEMD and IMPEMD (Wang et  al., 2018) to 
explore the effect of phase numbers on the decomposition 
results of the algorithms. Moreover, 10 sifting iterations are 
used to extract IMFs for all methods. In order to quantify the 
performance of the methods, all methods are decomposed 100 
times to obtain the statistical average results (shown in 
Figure 4). Figure 4 shows that when np > 32, reconstruction 
errors (the value is 7.25 × 10−17) of xs(t) by IMEMD are smaller 
than those of ICEEMDAN (the value is 7.38 × 10−17). For all 
values of np, reconstruction errors of xs(t) by IMEMD are about 
one-tenth of the reconstruction errors of xs(t) by 
UPEMD. When the number of phases np ranges from 2 to 64, 
the reconstruction errors of xs1(t) and xs2(t) reconstructed by 
IMEMD have little changes, and the reconstruction errors of 
xs(t) reconstructed by IMEMD decrease. When np  = 64, the 
reconstruction errors of these signals decomposed by IMEMD 
are small enough and smaller than these of the compared 
algorithms. Moreover, the time complexity of IMEMD is 
increasing as np increases, so we  set the value of np in the 
IMEMD to 64. Reconstruction errors of xs(t) using EEMD are 
greater than 0.07. This may be because the signal contains a lot 
of residual noise. Therefore, the results of EEMD are not drawn 
in Figure 4A. Figures 4B,C plot errors of recovering xs1(t) and 
xs2(t), respectively. As shown in Figure 4, IMEMD is better than 

A B C

FIGURE 3

Decomposition of the synthetic signal by IMEMD. (A) The 0ξ =1.5. (B) The 0ξ =0.1. (C) The 0ξ =3.

A

B

C

FIGURE 4

Performances of recovering known components on synthetic 
signal xs(t). All five methods are decomposed 100 times to obtain 
the statistical average results and shown using boxplots. 
(A) Reconstruction errors of synthetic signal xs(t). 
(B) Performances of recovering xs1(t). (C) Performances of 
recovering xs2(t). In each subgraph of (A–C), the symbol “*” 
represents the mean value of the corresponding 100 
decomposition results.
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A B C

FIGURE 5

The power spectra of the first 9 IMFs obtained by decomposing the emotional speech signal by different methods. (A) IMEMD. (B) ICEEMDAN. 
(C) UPEMD.

the other methods. The reconstruction error of xs1(t) and xs2(t) 
obtained by REMD is the largest among all the compared 
algorithms. For xs1(t), the reconstruction error obtained by 
REMD is more than 12 times higher than that of EEMD, which 
has the second-highest reconstruction error. For xs2(t), the 
reconstruction error obtained by REMD is more than 1.2 times 
higher than that of UPEMD, which has the second-highest 
reconstruction error. Therefore, the results of REMD are not 
drawn in Figures 4B, 3C. The boxplots in Figure 4 show that the 
distribution of results obtained by IMEMD and UPEMD is 
more concentrated than that obtained by ICEEMDAN and 
EEMD. This is because perturbations used by IMPEMD and 
UPEMD are deterministic, while ICEEMDAN and EMD use 
random noise. So IMEMD and UPEMD can obtain 
reproducible decompositions. In conclusion, the IMEMD 
proposed in this paper reduces the mode mixing effect, 

provides reproducible decompositions, and has less 
computational time.

3.3.2. Emotional speech and comparisons
IMEMD is applied to real emotional speech (from the 

Emo-DB dataset) shown in Figure 5. Figure 5 shows the power 
spectra of the first 9 IMFs. The spectra of IMFs by each algorithm 
are normalized by dividing the spectra by their maximum 
magnitudes. As shown in Section 3.3.1, the reconstruction errors 
of EEMD and REMD are large. Therefore, IMEMD is only 
compared with UPEMD and ICEEMDAN. The phase number of 
np = 64 is used in IMEMD and UPEMD. The ensemble size of 
ICEEMDAN is I = 100. We  set ξ0 = 1.5 for IMEMD and the 
amplitude of assisted signals to 0.2 for UPEMD and ICEEMDAN.

In Figure 5, the mode mixing of IMEMD is less than that of 
other methods. For ICEEMDAN and UPEMD, there is mode 
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mixing between IMF2 and IMF3, and between IMF4 and IMF5. The 
number of IMFs obtained by IMEMD, UPEMD, and ICEEMDAN 
is 14, 15, and 23, respectively, which proves that IMEMD can return 
a more compact representation than other methods. Noise residuals 
and mode mixing effects have bad effects on the frequency 
distribution of the IMFs, resulting in the spectrum becoming blurry 
(Sandoval and De Leon, 2017). So, the performance of IMEMD is 
better than that of UPEMD and ICEEMDAN.

3.4. Performance analysis of 
IMEMD-CRNN system

In this section, the proposed IMEMD-CRNN method is 
applied to the two publicly available Emo-DB and TESS datasets for 
speech emotion recognition experiments to show the significance 
and the robustness of the IMEMD-CRNN method. In the upcoming 
subsections, the experimental results will be described in detail.

3.4.1. Performance on the Emo-DB dataset
The utterances on the Emo-DB dataset are spoken by 10 actors 

intended to convey one of seven emotions. These seven emotion 
labels are anger, anxiety/fear, boredom, disgust, happiness, neutral, 
and sadness. We first preprocess each utterance (The preprocessing 
method is shown in Section 3.2). Secondly, the signal is decomposed 
by IMEMD to obtain IMFs. Then, we extract Hilbert spectrum 
distribution features, Hilbert contour features, SMFCC features, the 
first derivative of SMFCC, and the second derivative of SMFCC 
from IMFs (The feature extraction method is shown in Section 2). 
The dimension of features is 43. We use leave-one-speaker-out 
(LOSO) 10-fold cross-validation to provide an accurate assessment 
of the proposed IMEMD-CRNN model (Hou et al., 2022). In the 
LOSO 10-fold cross-validation method, utterances of 8 speakers are 
used as training set, one speaker is selected as the validation data, 
and utterances of the left-out speaker are used as the testing set. 
We repeat this procedure 10 times. The final classification accuracy 
is the average of the 10 folds. The initial values of hyperparameters 
of the CRNN model are referred to Adavanne et al. (2019) and Cao 

et al. (2019). We  further utilize the validation set to debug the 
hyperparameters to obtain optimal hyperparameters.

Table 4 shows the recognition results of the proposed method 
with state-of-the-art (SOTA) methods. The unweighted accuracy of 
our method reaches 93.54%, greater than the SOTA method by 
1.03%. To verify that the improvement in accuracy of the proposed 
method is statistically significant compared to the SOTA method 
(the method proposed by Hou et al. (2022)), a paired-sample t-test 
is used. The null hypothesis is that the pairwise difference between 
the UA of the two methods has a mean equal to zero. The significance 
level α of the hypothesis test is set to 0.05. The value of p of the 
paired-sample t-test is 0.01 (p < 0.05). Therefore, the improvement 
in the accuracy of IMEMD-CRNN compared with SOTA method is 
statistically significant. As shown in Table 4, combining hand-crafted 
features with deep learning is higher than the methods where the 
original signals are directly fed into the deep networks. The results 
demonstrate that effective hand-crafted features combined with 
deep-learning networks can build a more accurate and robust speech 
emotion recognition system. The accuracies obtained using our 
method for each emotion are anger (90.9%), anxiety/fear (96%), 
boredom (92.4%), disgust (97.6%), happiness (90%), neutral (92.8%), 
and sadness (95.1%). The results indicate that our proposed 
IMEMD-CRNN framework has the best performance for disgust 
and the worst performance for anger and happiness. Some angry 
samples are identified as happiness and anxiety. A part of happy 
samples is recognized as angry and anxious. This may be because all 
three emotions are relatively strong and, therefore, easily misclassified.

3.4.2. Performance on the TESS dataset
To compare with other SER methods, we use randomized 

10-fold cross-validation to train and validate our method on the 
TESS dataset. The final performance is the averaged results of the 
10 folds. The preprocessing and feature extraction steps are the 
same as the Emo-DB database. The initial values of 
hyperparameters of the CRNN model are referred to Adavanne 
et al. (2019) and Cao et al. (2019). We further utilize the validation 
set to debug the hyperparameters to obtain optimal 
hyperparameters. Table 5 shows the results of comparing the 

TABLE 4 Comparison of different SER methods on the EMO-DB dataset.

Methods Input feature UA (%)

Deb and Dandapat (2019) MFCCs and their first- and second-order difference 85.10

Suganya and Charles (2019) Raw audio recording 85.62

Kerkeni et al. (2019) Modulation spectral and modulation frequency features based on EMD and TKEO, and cepstral features. 86.22

Chen et al. (2018) Log Mel-spectrogram 87.81

Muppidi and Radfar (2021) RGB Mel-spectrogram 88.78

Kim et al. (2018) 20 features in the eGeMAPS 88.90

Mustaqeem and Kwon (2021) Raw audio recording 89.37

Zhong et al. (2020) Log Mel-spectrogram 90.67

Hou et al. (2022) Prosody features, MFCCs, MFSCs 92.51

Proposed Timbre features, spectral features 93.54
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proposed method with the state-of-the-art method on the TESS 
dataset. From Table 5, it can be seen that the proposed method 
achieves a UA value of 100% in the TESS database; the UA value 
is improved by 4.21% compared to the best comparison method. 
We also use the paired-sample t-test to compare the results of 
IMEMD-CRNN and the method proposed by Chatterjee et al. 
(2021). The significance level α of the hypothesis test is set to 0.05. 
The value of p of the paired-sample t-test is 6.24 × 10−7 (p < 0.05). 
Therefore, the improvement in the accuracy of IMEMD-CRNN 
compared with the SOTA method is statistically significant.

4. Conclusion

This paper proposes a novel framework named IMEMD-
CRNN to accurately extract emotional information from speech 
and effectively identify different emotions. The IMEMD-CRNN 
contains three parts. IMEMD is first used to extract physically 
meaningful IMFs from speech signals. Then, we extracted time-
frequency features from the IMFs that can effectively express speech 
emotions. Finally, CRNN is employed to further model the speech 
emotion information in the time-frequency features to realize the 
recognition of emotion. Comprehensive experiments on the 
synthetic signals, the Emo-DB dataset, and TESS dataset verify the 
effectiveness of the proposed scheme. Simultaneously, simulations 
and emotional speech experiments indicate that our IMEMD 
mitigates mode mixing and improves decomposition accuracy 
under low computational cost. More importantly, we compare our 
proposed scheme with some state-of-the-art SER methods. The 
results show that our method can accurately extract speech emotion 
features and significantly improves the performance of SER. The 
proposed IMEMD-CRNN framework has potential applications in 
psychology, physiology, signal processing, and pattern recognition 
involving speech-based affective computing. In future work, to 
further reduce the mode mixing and improve the ability of IMEMD 
to decompose signals, the addition of optimization algorithms to 
the IMEMD will be investigated.
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In order to improve the recognition speed and accuracy of face expression

recognition, we propose a face expression recognition method based on PSA—YOLO

(Pyramids Squeeze Attention—You Only Look Once). Based on CSPDarknet53,

the Focus structure and pyramid compression channel attention mechanism are

integrated, and the network depth reduction strategy is adopted to build a

PSA-CSPDarknet-1 lightweight backbone network with small parameters and high

accuracy, which improves the speed of face expression recognition. Secondly, in the

neck of the network, a spatial pyramid convolutional pooling module is built, which

enhances the spatial information extraction ability of deep feature maps with a very

small computational cost, and uses the α—CIoU loss function as the bounding box

loss function to improve the recognition accuracy of the network for targets under

high IoU threshold and improve the accuracy of face expression recognition. The

proposed method is validated on the JAFFE, CK+, and Cohn-Kanade datasets. The

experimental results show that the running time of the proposed method and the

comparison method is reduced from 1,800 to 200ms, and the recognition accuracy

is increased by 3.11, 2.58, and 3.91%, respectively, so the method proposed in this

paper has good applicability.

KEYWORDS

YOLOv4 network, PSA—YOLO network, facial expression recognition, channel attention

mechanism, operation e�ciency

1. Introduction

Nowadays, with the rapid development of computer technology, automatic facial expression

recognition technology has been widely applied in networked learning, medical treatment,

transportation, and social security fields (Yao et al., 2018; Zhang and He, 2021). Most methods

perform expression recognition when the user’s head is in the front or near the front state, and

the face is basically unaffected by occlusion (Zhang and Xu, 2020). However, this restriction

significantly reduces the robustness of the expression recognition algorithm. In addition, there

are also some methods to learn user-related facial features by directly constraining users.

This feature is particularly sensitive to the identity information of users, so the identification

robustness of unknown users’ needs to be improved (Lin et al., 2020).

At present, facial expression recognition is mainly divided into two methods: one is a single

frame image, and the other is a video image. The former mainly extracts feature images from

the input, while the latter can extract the temporal information of the image sequence and the

features of each static image (Chen et al., 2018; Tan et al., 2019; Lin et al., 2020). Some facial

expression recognition systems may have good performance in some image datasets but poor

performance in others, and there is still room to improve the robustness of facial expression

recognition (Li et al., 2020; Liu and Xin, 2020). Based on the above analysis, a facial expression

recognition method based on PSA—YOLO network is proposed to solve the problems of facial

expression recognition accuracy and data set universality.
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Facial expressions correspond to a person’s internal emotional

state, intention, or social information. Literature Jan et al. (2018)

defines six basic terms of “anger,” “disgust,” “fear,” “happiness,”

“sadness,” and “surprise,” followed by the expression of “contempt.”

Facial expression recognition is a traditional problem in computer

vision and an essential part of artificial intelligence technology. It

has gradually attracted more and more attention, and scholars have

proposed a large number of new methods (Islam and Hossain, 2019).

For example, reference Li et al. (2018) proposed a facial

expression recognition algorithm combining HOG features and

improving KC—FDDL (K-means Cluster and Fisher Discrimination

Dictionary Learning) Dictionary Learning sparse representation. The

HOG features of the normalized expression images were extracted to

form the training set, the Fisher discriminant dictionary learning of

the improved K-means clustering was carried out, and the expression

classification was carried out with the sparse representation weighted

by the residuals, which overcame the influence of illumination and

occlusion in the process of facial expression recognition. However,

this method cannot recover sufficient expression information for

occluded regions. Literature Tamfous et al. (2020) used sparse coding

and dictionary learning methods to study the time-varying shapes in

Kendall shape space of 2D and 3D landmarks and studied intrinsic

and non-intrinsic solutions to overcome the non-linearity of shape

space on facial expression recognition, including action trajectory

recognition. However, this method is highly dependent on data sets,

and different data sets greatly impact the recognition results (Liu

et al., 2020).

In recent years, CNN (Convolutional Neural Networks) hasmade

great contributions to the image classification neighborhood. Many

expression recognition methods based on CNN have emerged, which

make up for the poor robustness of traditional methods (Wang

et al., 2020). For example, a FER (Facial Expression Recognition)

method based on a variant feature reduction model and iterative

optimization classification strategy was proposed in the literature

Du and Hu (2019). WPLBP (Weighted patch-based Local Binary

Patterns) is used for feature extraction and expression classification,

improving expression recognition accuracy. However, the accuracy of

the feature extraction process should be further enhanced. Reference

Keyu et al. (2018) proposes a UDADL (Unsupervised Domain

Adaptive Dictionary Learning) model, which Bridges the source

Domain and target Domain by Learning a shared Dictionary. The

analytical dictionary finds approximate solutions as latent variables

to simplify the identification process. Literature Liang et al. (2020)

proposes a framework for co-learning FER’s spatial characteristics

and temporal dynamics. The deep network is used to extract

spatial features from each frame, the convolution network is used

to model the temporal dynamics, and BiLSTM (directional Long

Short-Term Memory) network is used to collect clues from the

fused functions to complete facial expression recognition. However,

the user identity in practice is difficult to define. Literature Chen

et al. (2020) proposes a method of facial expression recognition

using GAN (Generative Adversarial Network), which focuses on

the recognition of facial expressions with a large intra—class

gap in the process of facial expression recognition in the real

environment so as to better adapt to the tasks with significant

intra—class differences.

At present, deep learning-based facial expression target facial

expression recognition algorithms are mainly single-stage algorithms

with YOLO (You Only Look Once) series as the core and two-

stage algorithms with RCNN (Region CNN) as the core (Muhammad

et al., 2018). Studies in literature Jin et al. (2019) mainly replace

or improve the backbone network in YOLO network to improve

the facial expression recognition performance of the algorithm.

However, the improved network still has shortcomings, such as

insufficient attention to the details of expression images and

insufficient utilization of semantic information contained in deep

features, affecting the performance of facial expression recognition.

Therefore, these factors should be fully considered and utilized to

improve the performance of the YOLO network in facial expression

and facial expression recognition.

To solve the above problems, Ours takes the YOLOv4 target

facial expression recognition network as the basis, aiming at the

task of facial expression, facial expression recognition, and aiming

at improving the accuracy and speed of facial expression, facial

expression recognition by the network, builds PSA—YOLO target

facial expression recognition network with the characteristics of

high facial expression recognition accuracy, fast facial expression

recognition speed, and high facial expression recognition rate of

small targets.

2. PSA—YOLO recognition algorithm

2.1. PSA—YOLO network structure

Ours proposes a PSA—YOLO network based on the YOLOv4

target facial expression recognition network, in which CBM

represents “convolution—batch normalization—Mish activation

function module” and BN (Batch Normalization), as shown

in Figure 1. First, the Focus structure (Glenn, 2021) and PSA

mechanism (Zhang et al., 2021) were added to the CSPDarknet53

backbone network, and residual blocks were stacked in the

pattern of “1-1-4-4-2” to simplify the number of network layers.

Second, SPC (Squeeze and Concat) module and SPP (Spatial

Pyramid Pooling) module (He et al., 2014) are fused into SPCSP

(Spatial Pyramid Convolution and Pooling) replaces the original

SPP module. Finally, the k-means clustering method and α-

CIOU loss function are used to perform dimension analysis

and bounding box regression on the training image, and the

facial expression recognition head part remains unchanged.

These parts together constitute the basic structure of the

PSA—YOLO network.

2.2. PSA—CSPDarknet feature extraction
network

To pay more attention to the channels important to target facial

expression recognition information in the initial stage of network

forward propagation and fully extract the underlying features of

facial expression edge texture to improve the accuracy of facial

expression recognition, PSA—CSPDarknet network only retains

residual blocks in CSP1-1 layer of CSP1-53 network and adds Focus

structure and PSA module in front of residual blocks. The PSA—

CSPDarkNet network structure is shown in Figure 2. The Focus

structure has been used in the YOLOv5 (Hu et al., 2018) target facial
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FIGURE 1

Structure of PSA YOLO.

FIGURE 2

Structure of original CSP 1 1 and improved structure.

expression recognition network to replace the backbone network for

the first downsampling, showing good facial expression recognition

performance in the COCO dataset. The input image is cut into four

similar feature maps by tensor slicing operation, and then the four

feature maps are fused in the channel dimension to transform the

spatial features into channel features without information loss to

replace the first down-sampling in the original network.

The PSA module is divided into four parts, as shown in

Figure 3 (K represents the convolution kernel size, G represents

the convolution kernel grouping size, and FC represents the fully

connected layer). Firstly, the SPC module effectively extracts and

integrates the spatial information of different scales of the input

feature map. For the spatial dimension of the input feature map, the

SPC module uses convolution kernels of four sizes (3, 5, 7, and 9)

to perform grouped convolution. The sizes of the grouped kernels

of each size are 2, 4, 8, and 16, respectively, to realize grouped

convolution and channel compression of the feature map. Then, the

SEWeight module (He et al., 2016) is used to learn the weight of

the feature map processed by the SPC module, coordinate the local

and global attention, and assign different weights according to the

importance of the feature channel to the classification task. Softmax

normalizes the weight of the included channel. The interaction

FIGURE 3

Structure of the PSA mechanism.

between attention weight and the channel is realized by multiplying

the normalized weight with the feature map processed by the SPC

module so that the channel, which is more important for expression

facial expression recognition in the feature map, is assigned with

higher weight.

In order to balance the speed and accuracy of the backbone

network, based on CSPDarknet53 after the fusion of Focus

structure and PSA module, the number of residual blocks is

readjusted to simplify the number of network layers and reduce

the network parameters and computation burden. Three models

were constructed, PSA-CSPDarknet-1, PSA-CSPDarknet-2, and

PSA-CSPDarknet-3. Among them, PSA-CSPDarknet-1 halved the

number of residual blocks in CSP layer of CSPDarknet53 network
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and set it as “1-1-4-4-2.” Inspired by the network structures of

Resnet-18 and Resnet-34 in literature Liu et al. (2018), PSA-

CSPDarknet-2 and PSA-CSPDarknet-3 residual arrangements were

set as “1-2-2-2-2” and “1-3-4-6-3,” respectively.

2.3. SPCP module

To further extract the multi-scale semantic information of

spatial dimensions in the deep backbone network, a spatial pyramid

convolution pooling module is constructed to replace the original

spatial pyramid pooling module. In YOLOv4, the neck mainly

consists of two parts: spatial pyramid pooling and PANet (Path

Aggregation Network; Rezatofigh et al., 2019). Spatial pyramid

pooling is a particular pooling method, which adopts the maximum

pooling with a step size of 1 and convolution kernel size of 5× 5, 9×

9, and 13× 13, which is closely integrated with the feature map of the

deepest layer of the backbone network to expand the receptive field

and integrate multi-scale spatial information. In PSA—YOLO target

recognition network, the backbone network extracts local texture and

pattern information to construct the semantic information required

by the subsequent layer. However, with the increase in complexity,

the width of the network will become larger, especially after the SPP

module, the number of convolution kernels reaches 2,048, which

increases the number of network parameters and computations. The

SPC module is inserted before the SPP module, and the number

of convolution kernels entering the SPP module is reduced by half

by the method of grouping multi-scale convolution followed by

recompression. The network computation is further balanced while

the extraction of multi-scale spatial information is strengthened.

As shown in Figure 4, before the SPC module is added to the

SPP module, the number of channels entering the SPP module is

compressed to 1,024 to build the SPCPmodule. On the premise of not

affecting the speed of data propagation in the network, the efficiency

of using local feature information and global feature information

is improved. The bottom-up path enhancement is used in the path

aggregation network to shorten the high-low fusion path of themulti-

scale feature pyramid. The featuremap information of the CSP4 layer,

CSP2 layer, and three scales output by the SPCP module is fused

in PSA—CSPDarknet. The feature information of shallow networks

(CSP4 layer and CSP2 layer) can be used effectively.

2.4. Bounding box loss function

The commonly used bounding box loss functions are evolved

based on the IoU loss, such as GIoU (Generalized IoU; Zheng

et al., 2020), DIoU (Distance IoU), and CIoU (Complete IoU; He

et al., 2021). The α-IoU series loss (Liliana et al., 2019) applies

power transformation to summarize the above IOU-based loss.When

the noise box with low IoU value appears, the α-IoU loss can

adaptively increase the bounding box regression loss value so that

the reduction of bounding box loss can be suppressed and the

overfitting phenomenon can be avoided when the prediction box

with controversy is trained. On the contrary, when the prediction

box with high IoU value appears, the α-IoU loss will get lower

bounding box loss than the noise box so that the network can

predict more objects with high IoU value, and the average accuracy of

facial expression recognition at high IoU threshold can be improved.

Under the action of the above two factors, the facial expression

recognition performance of the network with high IoU threshold will

be enhanced.

3. Experimental results and analysis

This experiment is based on python1.2 simulation platform,

and the hardware environment is: Microsoft Windows 10 operating

system, the CPU model is E5-1620 V4, the clock frequency is 3.5

GHz, the graphics card is NVIDIA TITAN V, the video memory

size is 12 GB. In this experiment, PSA—YOLO network model

was trained for 250 cycles, the minimum batch was 64, and its

initial learning rate and learning rate change factor were 0.01 and

0.96, respectively. After each step, the learning rate was reduced.

The maximum number of iterations, momentum, and weight decay

are 2,000, 0.9, and 0.0002, respectively. After 1,600 iterations, the

connections between PSA—YOLO networks have been formed, and

the subsequent iterations are trained to enhance correlation and

eliminate noise.

3.1. JAFFE dataset experiment

JAFFE is a database of facial expressions with just 213 still

images. JAFFE dataset is used to test the effect of a small number

of images on system training by different training methods. From

the JAFFE dataset, 202 images were selected that were processed

using image preprocessing techniques (the JAFFE dataset contains

some mislabeled facial expressions that were later removed). This

dataset has seven different facial expressions: angry, happy, neutral,

surprised, sad, afraid and disgusted. A partial image example of the

JAFFE dataset is shown in Figure 5.

In each test, 70% of the images were randomly selected as

training images, and the remaining images were used as test images.

The recognition effect of the proposed method is experimentally

demonstrated on the JAFFE dataset. The confusion matrix of seven

expressions is shown in Figure 6.

It can be seen from Figure 6 that the recognition accuracy of the

proposed method in seven types of facial expressions is all higher

than 60%, among which the recognition accuracy of happy, sad

and surprised expressions is all higher than 85%, and the happy

expression is the easiest to recognize with an accuracy of 89%.

Confusion is often caused by the fact that angry and disgusted

expressions are similar to each other in some cases, causing them

to be indistinguishable in pixel space. In addition, the JAFFE dataset

has a small number of images and is suitable for the PSA—YOLO

network, so the overall recognition effect is satisfactory. In addition,

in the JAFFE data set, the recognition accuracy of each emotion

and the overall recognition accuracy obtained by the proposed

method and other comparison methods (methods in literature Du

and Hu, 2019; Chen et al., 2020; Liang et al., 2020) are shown in

Table 1.

As can be seen from Table 1, both the recognition accuracy of

each expression and the overall recognition accuracy, the results

obtained by the proposed method are higher than other comparison

methods, and the overall recognition accuracy is 83.84%. In literature

Du and Hu (2019), WPLBP is used to extract expression features
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FIGURE 4

Structure of the SPCP module.

FIGURE 5

Some image examples of the JAFFE dataset.

and iterative optimization classification strategy is used to realize

expression recognition. However, this method is greatly affected

by the extraction accuracy, so the classification accuracy is low,

and the overall recognition accuracy is 74.19%. In literature Liang

et al. (2020), deep network is used to extract spatial features from

each video frame, and facial expression recognition is completed

through the BiLSTM network. Face recognition is completed

from two perspectives of time and space, with many constraints,

and the recognition accuracy is limited to a certain extent. The

overall recognition accuracy is 78.56%. In literature Chen et al.

(2020), GAN is used to realize facial expression recognition. This

method is used primarily to recognize expressions with large

intra-class gaps. Therefore, for expressions with small intra-class

gaps, the recognition effect is insignificant, such as neutral and

fearful expressions.

3.2. CK+ dataset experiment

The CK+ dataset contains 593 facial expression sequences,

each of which can be viewed as several consecutive video

frames, with ∼10,000 facial expression images from 123 models.

Since these image sequences are continuous, there are many

similar images. In the experiment, 693 images were selected and

processed by image preprocessing technology after removing the

similar images. Images with seven expressions were selected from

the dataset: angry, happy, neutral, surprised, sad, afraid, and

disgusted. A partial image example of the CK+ dataset is shown

in Figure 7.

In each test, 70% of the images were randomly selected as

training images, and the remaining images were used as test images.

The recognition effect of the proposed method is experimentally
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FIGURE 6

Expression recognition confusion matrixbased on JAFFE dataset.

TABLE 1 Expression recognition accuracy obtained by di�erent methods in

JAFFE dataset.

Expression Reference
Du and
Hu

(2019)

Reference
Keyu
et al.
(2018)

Reference
Liang
et al.
(2020)

Ours

Angry 75.02% 77.38% 79.94% 81.02%

Hate 76.39% 78.26% 80.07% 81.95%

Fear 71.88% 73.59% 74.63% 75.78%

Happy 84.39% 86.47% 88.16% 89.01%

Neutral 57.84% 58.91% 60.03% 61.56%

Sad 82.63% 84.19% 86.25% 87.34%

Surprised 83.68% 85.97% 87.35% 88.29%

Average 74.19% 78.56% 80.73% 83.84%

demonstrated on the CK+ dataset. The confusion matrix of seven

expressions is shown in Figure 8.

As can be seen from Figure 8, the recognition accuracy of the

proposed method is higher than 60% in all seven types of facial

expressions, among which the recognition accuracy of happy and

sad expressions is 94 and 93%, respectively, and the recognition

accuracy of surprised, afraid and disgusted expressions is over 80%.

Because angry and disgusted expressions are similar to each other in

some cases, they are indistinguishable in pixel space, thus confusing.

In addition, the large number of images in the CK+ dataset is

conducive to model training, so the overall recognition accuracy is

high. In addition, in the CK+ data set, the recognition accuracy

of each emotion and the overall recognition accuracy obtained by

the proposed method and other comparison methods (methods in

literature Du and Hu, 2019; Chen et al., 2020; Liang et al., 2020) are

shown in Table 2.

As can be seen from Table 2, the results obtained by the proposed

method are higher than other methods in terms of both the

recognition accuracy of each emotion and the overall recognition

accuracy, with an overall recognition accuracy of 85.09%. Literature

Du and Hu (2019) used WPLBP to extract expression features and

iteratively optimized the classification strategy to realize expression

recognition. Literature Liang et al. (2020) used BiLSTM network

combined with deep network to extract spatial and temporal features

to complete face recognition. In literature Chen et al. (2020),

GAN was used to realize facial expression recognition. Compared

with the other three methods, the overall recognition accuracy

of the proposed method is improved by 7.32, 4.87, and 3.12%,

respectively, which proves the superiority of the facial expression

recognition performance.

3.3. Cohn-Kanade dataset experiment

The Cohn-Kanade Facial Expression Database was created in

2000 by the Robotics Institute and the Department of Psychology

at CMU. The dataset consists of about 500 sequences of multiple

expressions from 100 female adults, including African Americans,

Latinos, Asians and others. In the experiment, images need to be

normalized to obtain images with sizes of 64 × 64. Some images are

shown in Figure 9.

In Cohn-Kanade data set on the experiment, the effect of the

method inOurs to identify randomly selected 20 research objects,

each object contains six different images of the expression, randomly

selected 10 object used in the training, the remaining 10 object is used

to test, 30 times to experiment on average, six kinds of expression of

the confusion matrix is shown in Figure 10.

As can be seen from Figure 10, the recognition accuracy of each

expression of the proposed method is higher than 75%. Since there

is no neutral expression in this data set, expressions such as fear

and disgust will not be confused with neutral expressions, so the

accuracy has been improved to a certain extent. Similarly, happy and

sad expressions were easy to recognize, with a recognition accuracy

of 92 and 91%, respectively, both higher than 90%. In addition, in the

Cohn-Kanade dataset, the recognition accuracy of each emotion and

the overall recognition accuracy obtained by the proposed method

and other comparison methods (methods in references Du and Hu,

2019; Chen et al., 2020; Liang et al., 2020) are shown in Table 3.

As can be seen from Table 3, consistent with the recognition

structure of JAFFE and CK+ datasets, the proposed method has

higher recognition accuracy than other comparison methods in

each expression and overall recognition, with an overall recognition

accuracy of 84.87%. The recognition accuracy of literature Du and

Hu (2019) is greatly affected by the feature extraction accuracy

of WPLBP method, so the classification accuracy is not high, and

the overall recognition accuracy is 78.85%. Literature Liang et al.

(2020) combines the spatiotemporal features of facial expressions

and uses convolutional network to model the temporal dynamics,

which makes it difficult to extract features. In reference Chen

et al. (2020), GAN is used to realize facial expression recognition

for expressions with large intra-class gap in the process of facial

expression recognition. The application scenario is relatively single,

and the recognition effect needs to be improved.

3.4. Identify error rates

In order to demonstrate the facial expression recognition

performance of the proposed method in the JAFFE data set, CK+

data set and Cohn-Kanade data set, it is compared with the methods

in literatures Du and Hu (2019), Chen et al. (2020), and Liang et al.
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FIGURE 7

Some image examples of the CK+ dataset.

FIGURE 8

Expression recognition confusion matrix of CK+ dataset.

(2020), and the error rate of 5-fold cross-validation is shown in

Table 4.

As can be seen from Table 4, the proposed method has the

lowest error rate, which is 8.91%. Because the number of images in

JAFFE database is very small, deep PSA—YOLO has not yet shown

the best performance, so the performance of PSA—YOLO network

is close to the recognition effect of GAN used in literature Chen

et al. (2020). However, the proposed method adopts PSA—YOLO

network model and spatial pyramid convolution pooling module to

enhance the spatial information extraction ability of deep feature

maps withminimal computational cost, so the expression recognition

effect is better. The CK+ dataset, two images were selected for each

expression for each subject, one of which was the frame at the

beginning of the expression of the emotion, while the other was the

frame in the image sequence when the emotion reached its expression

peak. The combined classification of the two images can reduce

the error rate, so the error rate of the proposed method is reduced

compared with the JAFFE dataset. As can be seen from Table 4, the

proposed method achieves the lowest error rate of 6.92%. Due to the

TABLE 2 Expression recognition accuracy obtained by di�erent methods in

the CK+ dataset.

Expression Reference
Du and
Hu

(2019)

Reference
Keyu
et al.
(2018)

Reference
Liang
et al.
(2020)

Ours

Angry 71.24% 72.38% 73.41% 74.17%

Hate 77.45% 78.37% 79.94% 81.23%

Fear 81.86% 82.59% 83.63% 84.58%

Happy 86.91% 88.73% 90.67% 94.49%

Neutral 65.29% 67.67% 68.35% 69.81%

Sad 85.78% 87.56% 89.49% 93.04%

Surprised 85.68% 86.97% 87.35% 89.96%

Average 79.26% 81.14% 82.51% 85.09%

limited number of images and limited network learning, the error rate

of this dataset is higher than that of CK+ dataset, but lower than that

of JAFFE dataset due to the lack of neutral expression, which avoids

expression confusion.

3.5. Other factors a�ecting the average
recognition rate

In order to further evaluate the performance of the proposed

method, it is compared with the methods in literatures Du and Hu

(2019), Chen et al. (2020), and Liang et al. (2020) in terms of the

running time of the training network and the accuracy of facial

expression recognition. The recognition accuracy and running time

of different methods on the JAFFE, CK+, and Cohn-Kanade datasets

are shown in Figure 11.

As can be seen from Figure 11, on JAFFE, CK+, and Cohn-

Kanade datasets, compared with other methods, ours integrates

Focus structure and PSA mechanism on the basis of CSPDarknet53,

and adopts network depth reduction strategy. A lightweight PSA
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FIGURE 9

Some image examples of Cohn-Kanade dataset.

FIGURE 10

Expression recognition confusion matrix of Cohn-Kanade dataset.

TABLE 3 Expression recognition accuracy obtained by di�erent methods in

Cohn-Kanade dataset.

Expression Reference
Du and
Hu

(2019)

Reference
Keyu
et al.
(2018)

Reference
Liang
et al.
(2020)

Ours

Angry 78.35% 79.81% 80.41% 82.02%

Hate 72.91% 74.62% 75.49% 76.13%

Fear 81.66% 82.57% 83.36% 84.47%

Happy 87.16% 89.98% 91.74% 92.61%

Sad 86.78% 87.65% 89.49% 91.08%

Surprised 75.02% 76.72% 77.35% 78.25%

Average 78.85% 80.04% 81.68% 84.87%

CSPDarknet 1 backbone network with a small number of parameters

and high accuracy was constructed. Secondly, in the neck of the

network, a spatial pyramid convolution pooling module is built

to enhance the spatial information extraction ability of the deep

TABLE 4 Error rates in di�erent datasets and di�erent methods.

Algorithm
data set

Reference
Du and
Hu

(2019)

Reference
Keyu
et al.
(2018)

Reference
Liang
et al.
(2020)

Ours

JAFFE (error

rate)

26.72% 18.86% 11.08% 8.91%

CK+ (error

rate)

21.19% 16.83% 10.95% 5.37%

Cohn-Kanade

(error rate)

23.08% 18.15% 10.37% 6.92%

FIGURE 11

Comparison of running time and recognition accuracy.

feature map with minimal computational cost, and the α-CIO U

loss function is used as the bounding box loss function to obtain

high recognition accuracy. In literature Liang et al. (2020), BiLSTM

network combined with spatial and temporal features extracted from

deep network is used to complete face recognition and recognize the

amount of system data. Therefore, the running time is the longest,

which is close to 1,800ms on CK+ dataset. The WPLBP method

in reference Du and Hu (2019) and the GAN model system in

reference Chen et al. (2020) are simple in composition, so the running

time is reduced compared with that in reference Liang et al. (2020),

but the recognition accuracy is lower than that of the proposed

method. In addition, the ratio of training images to the images used

in the test evaluation enables to evaluate the impact of the ratio

of training images of different methods on the selected dataset. In

the experiment, 70% of the images in the data set are used as the

training set, and the rest are used as the test set. Taking JAFFE

database as an example, different proportions of training images

using different methods and the resulting recognition accuracies are

shown in Figure 12.

As can be seen from Figure 12, when the ratio of training images

increases, the recognition accuracy of all methods will improve, and

the proposed method shows the best performance regardless of the
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FIGURE 12

Influence of training image proportion on recognition accuracy of

di�erent methods.

TABLE 5 Ablation experimental results in CK+ dataset.

Ablation experiment entries Average recognition rate

None feature extraction module 51.72%

None PSA module 59.07%

None CSPDdrknet53 module 75.12%

Complete network 83.84%

ratio of training images tested. In fact, when 90% of the images were

randomly selected from the JAFFE database as training images and

the remaining images were used as the test dataset, the recognition

accuracy of the method reached 96.0%.

3.6. Ablation experiments

In order to clarify the influence of each network component

on classification performance and operational efficiency, an ablation

experiment was conducted using the CK+ dataset as an example to

test the average accuracy of six expressions of happiness, sadness,

anger, surprise, fear and disgust. The proposed method includes four

main parts: feature extraction module, PAS module, CSPDdrknet53

module and classification module. Since the classification module

is necessary for classification in the network in this paper, the

classification module is retained, and the feature extraction module,

PASmodule, and CSPDdrknet53module are deleted respectively, and

then different experiments are performed, and the results are shown

in Table 5. It can be seen that when one of the modules is deleted, the

average recognition rate decreases to a certain extent compared to the

complete network. Especially in the absence of the feature extraction

module, the recognition rate decreased the most, only 51.72%.

Generally, the initial features obtained are too coarse, and direct

entry into subsequent processing will seriously affect the subsequent

results. Therefore, the feature extraction module is required in the

network. The PSA module is the core module of the proposed

method, and the lack of this module also leads to a serious decrease in

the recognition rate, which proves the importance of the PSAmodule.

It can also be seen from Table 5 that without CSPDdrknet53 module,

the average recognition rate is 75.12%. Therefore, each module has a

certain boost in the final output.

4. Conclusion

In order to improve the recognition speed and accuracy of face

expression recognition, ours propose a face expression recognition

method based on PSA-YOLO. Based on the YOLOv4 network,

comparative experiments were carried out on the backbone network,

neck, and bounding box loss function. Based on CSPDarknet53, the

Focus structure and pyramid compression attention mechanism are

added, and the lightweight processing is carried out to build the

PSA CSPDarknet backbone network. Secondly, the spatial pyramid

convolution pooling module is used in the neck, and the α-CIoU

loss is optimized as the bounding box loss function of the expression

recognition network. Eventually, the PSA—YOLO network was built.

Ablation validation of the proposed method was performed on

the JAFFE, CK+, and Cohn-Kanade datasets. The experimental

results show that the running time of the proposed method and

the comparison method is reduced from 1,800 to 200ms, and

the recognition accuracy is increased by 3.11, 2.58, and 3.91%,

respectively, which has obvious recognition advantages.
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Wireless sensing-based human-vehicle recognition (WiHVR) methods have become

a hot spot for research due to its non-invasiveness and cost-effective advantages.

However, existing WiHVR methods shows limited performance and slow execution

time on human-vehicle classification task. To address this issue, a lightweight

wireless sensing attention-based deep learning model (LW-WADL) is proposed,

which consists of a CBAM module and several depthwise separable convolution

blocks in series. LW-WADL takes raw channel state information (CSI) as input,

and extracts the advanced features of CSI by jointly using depthwise separable

convolution and convolutional block attention mechanism (CBAM). Experimental

results show that the proposed model achieves 96.26% accuracy on the constructed

CSI-based dataset, and the model size is only 5.89% of the state of the art

(SOTA) model. The results demonstrate that the proposed model achieves better

performance on WiHVR tasks while reducing the model size compared to SOTA

model.

KEYWORDS

human-vehicle recognition, channel status information, attention mechanism, depthwise
separable convolution, wireless sensing

1. Introduction

INTELLIGENT Traffic Systems (ITS) is an important part of smart city (Santos et al., 2018;
Jin and Ma, 2019; Zhao et al., 2019; Choy et al., 2020; de Oliveira et al., 2020), providing reliable,
safe, and convenient services for road users (e.g., cars, motorcycle, pedestrians, etc.). As the
number of road users continues to increase, a large number of existing ITSs are approaching
their limits. In order to improve the performance of ITSs and relieve traffic pressure, the
measurement of traffic parameters including road user behavior has become a research hotspot
(Jiang et al., 2021; Park et al., 2021; Zhao and Huang, 2021). Generally, the behavior of road users
includes human-vehicle recognition (HVR), traffic flow statistics, vehicle speed, and direction
measurement, etc. As the foundation of road user behavior detection, the accuracy of human-
vehicle recognition determines the performance of traffic parameter measurement (Won et al.,
2017; Sliwa et al., 2020).

With the rapid development of artificial intelligence and deep learning techniques, image-
based HVR methods (Huang et al., 2020; Du et al., 2021) have been widely used in ITSs. Such
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HVR methods not only achieve excellent recognition performance,
but also provide rich traffic image information for city managers.
However, image-based HVR methods are susceptible to light so that
their performance can be degraded rapidly in the case of low-light
conditions such as night, cloudy, haze, etc. To alleviate the limitations
of image-based HVR methods in low-light scenes, the microwave
radar-based HVR method is proposed (Park et al., 2021; Singh et al.,
2021; Tavanti et al., 2021). However, high-performance frequency-
modulated continuous-wave (FMCW) radars come at a higher cost.
In addition, the microwave radar has the problem of installation
viewing angle, which leads to the high construction cost of the
microwave radar-based HVR method.

Generally, the purpose of wireless sensing-based HVR (WiHVR)
methods is to extract the energy information of surrounding wireless
signals for target recognition. Since the propagation of wireless
signals has no directionality, the WiHVR method does not have
the problem with the above-mentioned viewing angle (Ma et al.,
2019; Pan et al., 2019; Zhang et al., 2021). In recent years, the
WiHVR methods based on extracted receiving signal strength (RSS)
or channel state information (CSI) signatures from the wireless
transceivers on 2.4 GHz band, such as Bluetooth (Sliwa et al., 2020;
Wilby et al., 2020), ZigBee (Wang et al., 2017; Jiang et al., 2021), and
WiFi (Chen et al., 2018; Wang F. et al., 2018), etc., have been widely
employed to detect road users in ITSs.

1.1. CSI-based HVR methods

Wang W. et al. (2016) converted CSI signals to spectrograms,
thereby describing human motion. Won et al. (2017) proposed a
WiFi-based traffic monitoring system, in which the features of root
mean square, median absolute deviation, mean, first quartile, and
third quartile of the CSI signals were extracted, followed by a support
vector machine for vehicle classification. Liu et al. (2017) showed
a human motion detection method based on CSI phase difference.
They discussed the situation of line of sight (LOS) and non-line of
sight (NLOS). Arshad et al. (2018) proposed a WiFi-based device-free
dangerous driving recognition system. This system extracted multi-
domain features for both magnitude and phase of CSI signals. Wang
J. et al. (2018) presented a new general device-free identification
framework via empirical mode decomposition. They decomposed
CSI signals into intrinsic mode functions (IMF) and extracted the
time domain and frequency domain features from IMF components.

1.2. RSS-based HVR methods

Jiang et al. (2021) calculated the amplitude and mean information
of RSS signals. They designed a HVR algorithm for WiHVR based
on the calculated RSS features. Sliwa et al. (2020) provided a vehicle
detection and classification method on the basis of the extracted RSS
from transceivers on 2.4 GHz band. They used mean, minimum,
standard deviation, and other characteristics of RSS signals to address
the challenges of accuracy, robustness, and privacy. Abdelnasser et al.
(2018) exploited a gesture recognition system in which the edge,
frequency, and magnitude features of RSS signals were extracted for
gesture recognition. Bhat et al. (2020) extracted the RSS power levels
for human locomotion walking pattern recognition.

However, the above-mentioned WiHVR methods based on
extracted RSS or CSI signatures from 2.4 GHz wireless transceivers
like Bluetooth, ZigBee, and WiFi have the following drawbacks:

1) RSS is a coarse-grained signal, which leads to limited accuracy
of HVR tasks based on RSS signals.

2) The effects of CSI or RSS on the performance of WiHVR in
different application scenarios are not explored.

Recently, deep learning techniques (LeCun et al., 2015) consisting
of a multi-layer network architecture have attracted much interest.
One of the representative deep learning techniques is convolutional
neural network (CNN) (Krizhevsky et al., 2012). Up to now, due to
the powerful feature learning ability, CNNs have exhibited promising
performance on various tasks such computer vision (Szegedy et al.,
2016), speech signal processing (Zhang et al., 2017), natural language
processing (Otter et al., 2020), and so on. However, few works have
attempted to exploit the application of CNNs on WiHVR tasks.

To address the above-mentioned issues, this paper presents a
novel WiHVR method based on the designed lightweight wireless
sensing attention-based deep learning model (LW-WADL). Inspired
by the recent-emerged convolutional block attention mechanism
(Woo et al., 2018) (CBAM) and depthwise separable convolutions
(Chollet, 2017), we propose a new deep model, which consists of a
CBAM module and three depthwise separable convolution blocks in
series to learn high-level features from preprocessing CSI signals for
WiHVR. Compared with ordinary convolutions, depthwise separable
convolutions have relatively low parameters and operations. Besides,
we propose a novel CSI data enhancement method and a new
subcarrier selection method. In particular, a new CSI-based dataset
relates to road user behavior is constructed. In order to explore the
effects of CSI on the performance of WiHVR in different application
scenarios, the CSI dataset is divided into three taxonomies according
to the number of categories, namely, two-category dataset, three-
category dataset, and four-category dataset. Experimental results
show that the accuracy of CSI-based methods decreases as the
number of classification categories increases. For four-classification
experiments, the proposed model achieves 96.26% accuracy and the
model size is only 5.89% of the state of the art model.

To summarize, the main contributions of this paper are as
follows:

1) This paper proposes a CSI data enhancement method, which
preprocess the change trend of CSI data to one direction,
thereby enhancing CSI data.

2) This paper provides a subcarrier selection method, which selects
several subcarriers with large signal-to-noise ratios (SNR) as
benchmarks and integrates them into a new CSI data.

3) This paper has proposed a lightweight wireless sensing
attention-based deep learning model, and attempts to explore
the effects of CSI on the performance of WiHVR in different
application scenarios.

The remainder of this paper is organized as follows. Section
“2. Preliminaries” introduces the CSI extraction and the theoretical
analysis of WiHVR. Section “3. Proposed method” elaborates the
proposed LW-WADL for WiHVR. Section “4. Experiment study”
shows experimental results and analysis. Section “5. Conclusion and
future work” gives the conclusions and future work.
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2. Preliminaries

This paper aims to establish a lightweight and efficient WiHVR
method to explore the effects of CSI on the performance of WiHVR
in different application scenarios. The system architecture of the
proposed WiHVR method is shown in Figure 1.

From Figure 1, it can be found that wireless transceiver prototype
(WTP) is built and placed on both sides of the road. The WTP is
mastered by the ESP32 chip for generating and receiving wireless
signals. Once a road user appears in the WTP sensing area, the
CSI signal collected by the WTP will be attenuated due to the road
user. Therefore, WTP can extract CSI signals related to the road user
information.

2.1. CSI extraction

This paper uses the designed WTP to extract CSI data related
to road users. CSI represents the fine-grained channel features of
wireless communication links between transmitters and receivers
based on orthogonal frequency division multiplexing (OFDM)
technology. Besides, CSI describes the changes of phase and
amplitude caused by multipath effect and transmission loss in
wireless signal transmission. The CSI channel gain matrix is
expressed as:

Mcsi =


h11 . . . h1n
...

. . .
...

hm1 · · · hmn

 (1)

where hmn represents the different subcarriers. m and nrepresent the
transmitting and receiving antennas, respectively. Each sub-element
hmn represents:

hmn = ||hmn||ejηmn (2)

where ||hmn|| is the amplitude of the sub-carrier hmn, and ejηmn

represent the phase of hmn . From Eqs 1, 2, it can be known that CSI
is not a supersession of all subcarrier signals, it describes a multipath
signal with more characteristics. In this case, the CSI extracted by
WTP contains multiple subcarrier information. These subcarriers
have different sensitivities to road users, so it is necessary to filter

out the subcarriers with lower sensitivity. The specific method will
be elaborated in Section “3. Proposed method.”

The specific process of CSI signal extraction is shown in Figure 2.
The acquisition of CSI signal needs to be operated by inverse OFDM.
In order to eliminate inter-symbol interference and inter-channel
interference, OFDM will use cyclic prefix (C/P), but this part is not
real data, so this part needs to be removed in inverse OFDM. After
that, it is necessary to convert the series signal to the parallel signal
(S/P), and perform discrete Fourier transform (DFT) or fast Fourier
transform (FFT) to obtain the required CSI signal.

2.2. Theoretical analysis of WiHVR

The idea of WiHVR is based on the fact that road users of
existence and movement affect the wireless propagation paths. To
understand the relation of road users movement with received CSI,
the wireless propagation model should be first studied. In a typical
wireless environment, there is one main path line-of-sight (LOS) and
several reflected paths by the surroundings. As shown in Figure 1, if
a road user is present in the WTP sensing area, it will cause multipath
propagation of the wireless signal. In this case, according to the
free space model, the received power by a receiver antenna which
is separated from a radiating transmitter antenna by a distance d, is
given by the Friis free space equation,

Pr =
PtGtGrλ

2

(4π)2d2 (3)

where Pr and Pt are the receiving and transmitting power,
respectively. Gr and Gt are the receiving and transmitting antenna
gains, respectively. λ is the wavelength in meters. d is the distance
between the transmitter and receiver in meters, that is, the
propagation path length. When a road user exists in the wireless
environment, several scattered paths are produced by road user.
Those scattered power should also be added in the final received
power.

Pr =
PtGtGrλ

2

(4π)2(d2 + δ2)
(4)

where δ is a brief representation of path length caused by road user. If
a road user is static in the environment, Pr is almost stable. However,
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FIGURE 1

System architecture of the proposed WiHVR method. (A) Wireless transceiver prototype (WTP). (B) Road equipment deployment diagram.
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along with the move of a road user, the scattered paths change in a
fast speed, resulting in the variance in received signal power.

According to Eq. 4, the differences in size and speed of road
users lead to different attenuation of wireless signals. Hence, the CSI
readings measured by the WTP prototype are various.

3. Proposed method

According to the above analysis, since the differences in the
size and speed of humans or vehicles moving on the road, the
attributes of energy attenuation caused by two targets are various.
In this case, it is feasible to design a WiHVR method. To this
end, a deep learning-based WiHVR method is proposed in purpose
of analyzing the effects of CSI on the performance of WiHVR in
different application scenarios.

3.1. System overview

The overview of the proposed WiHVR based on a lightweight
wireless sensing attention-based deep learning model (LW-WADL)
is shown in Figure 3. The proposed WiHVR contains three key
modules: Data collection, CSI preprocessing, and Deep feature
extraction and classification. The data collection module consists of a

pair of WTPs, both of which are made up of an ESP32 module, so as to
collect CSI data of different road users in WTPs sensing area. The CSI
preprocessing module includes CSI filtering, CSI augmentation, CSI
subcarriers selection, and CSI segmentation. The core deep feature
extraction and classification module, i.e., the proposed LW-WADL
method consisting of a CBAM module and three depthwise separable
convolution blocks, followed by a global average-pooling (GAP) layer
for reducing computational complexity. In addition, GAP essentially
is an average pooling operation which is intended to replace fully
connected layers in classical CNNs. Thus, GAP is a special kind of
average pooling where the sliding window of the average operation
expands to the entire feature maps. Besides, after completing the final
feature representations of the GAP layer, a C-class vector (C is the
number of categories) is output through the Softmax function.

3.2. Data collection

As shown in Figure 3, this paper captures the CSI data in space
through the developed WTP. To extract CSI data, a threshold-based
road user detection algorithm is exploited in this paper. The purpose
of road user detection is to find out whether there are dynamic
targets in the sensing area. According to the analysis in Section
“2. Preliminaries,” it can be found that when there are no road
users in the wireless environment, the CSI patterns stabilize around
a reference value. Once a road user passes through the wireless

FIGURE 2

The specific process of CSI extraction.
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Overview of the proposed WiHVR based on a lightweight wireless sensing attention-based deep learning model (LW-WADL).
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environment, the amplitude of CSI patterns will drop sharply.
Therefore, the presence of road users in the region of interest can be
detected by the following threshold-based algorithm:

Xdet ection[k+ 1] = (5)
Static, Xdet ection[k] = Detected and∏k

n=k−W+1 sign(|x[n] − xstatic[n]| < Tobject) > 0
Detected, Xdet ection[k] = Static and∏k

n=k−W+1 sign(|x[n] − xstatic[n]| ≥ Tobject) > 0

where x[n] (n > 0) represents the n-th CSI reading. xstatic[n] is the
average of CSI readings when there are no road users in the wireless
environment, namely, CSI baseline. Tobject is the decision threshold
to determine whether there is a road user (dBm). Here, Tobject is set
to 4 dBm in this work. W is the size of the judgment window, and
is set to 50 when the sampling rate is 50 Hz. Xdet ection[] is the object
detection result. “Detected” indicates that there are road users in the
range of interest, and otherwise “Static” denotes no road users.

Moreover, the environmental factors such as rain, fog,
temperature, etc., can affect the CSI baseline xstatic[]. Thus, to
improve the performance of the above-mentioned fluctuation
detection algorithm, an adaptive baseline adjustment method is
proposed, which can be calculated by:

xstatic[n+ 1] =


β · xstatic[n] + (1− β) · x[n+ 1],

Xdet ection[n] = Xdet ection[n+ 1] = Static
xstatic[n], others

(6)

where β is a correction factor with a value of 0.96 in this paper. It
can be seen from Eq. 6 that the CSI baseline will be updated as long
as there are no road users in the wireless environment, otherwise it
will not be updated. Hence, the problem of CSI baseline drift caused
by environmental factors can be solved efficiently, as well as the
robustness of the fluctuation detection algorithm can be improved.

Finally, the CSI data extracted by WTP contains 52 subcarriers,
and each subcarrier contains amplitude and phase information. In
order to improve execution efficiency of LW-WADL, this paper
converts the raw two-dimensional CSI data containing amplitude
information into one-dimensional data. Then, one-dimensional CSI
data containing road user behavior information will be sent to the
second stage for data preprocessing.

3.3. CSI preprocessing

The CSI preprocessing module includes the following four steps:
CSI filtering, CSI augmentation, CSI subcarriers selection, and
CSI segmentation.

3.3.1. CSI filtering
To guarantee the robustness of road users recognition, smoothing

filtering is used to remove noise from the raw CSI data, as defined by:

Xfilter(n) =
1
N

N−1∑
j=1

Xraw(n− j) (7)

where Xraw represent the raw CSI data, and Xfilter(n) is the average
processed data and then the filter shift window size used is N, where
is set to five. The raw CSI waveform vs. filtered waveform is shown
in Figure 4. As can be seen from Figure 4, by applying moving

average filter, the high-frequency noise has been removed from the
CSI waveform without changing the trends of the waveform. The
waveform changes of the filtered data (Figures 4C, D) are more
pronounced than before filtering, thereby improving the efficiency
and accuracy of road user detection.

3.3.2. CSI augmentation
Channel state information augmentation aims to find a way to

enhance the CSI features without changing the raw CSI features.
According to the characteristics of the raw CSI signal waveform, this
paper proposes a novel CSI data enhancement method. This method
first calculates the average value of a set of CSI amplitude, and then
takes the absolute value of the CSI amplitude which is smaller than the
average value. In this way, the decay of the CSI amplitude is amplified,
thereby enhancing CSI features. First, the baseline Xbase of a set of CSI
data needs to be calculated, which can be expressed as:

Xbase =
1
I
·

1
T

I∑
i=1

T∑
n=1

Xcsi(i, n) (8)

where i represents the i-th CSI subcarrier, n represents the n-th
sampling point of the i-th subcarrier. I represents the number of CSI
subcarriers, which is 52 in this paper. T is the number of sampling
points of a group of CSI data. The enhanced CSI dataXcsi_aug(i, n)

can be obtained according to the CSI baseline Xcsi_base :

Xcsi_aug(i, n) =
∣∣Xcsi(i, n)− Xcsi_base

∣∣ (9)

where | | denotes the absolute value operation. According to the Eqs
8, 9, the enhanced CSI data can be obtained.

3.3.3. CSI subcarriers selection
Although CSI augmentation have enhanced CSI features related

to road users. In practical applications, different subcarriers of
CSI have different sensitivities to road users, e.g., some subcarriers
fluctuate greatly when encountering road users, while other
subcarriers fluctuate less. Therefore, to further enhance CSI data, we
design a raw CSI subcarrier selection method to remove subcarriers
with low sensitivity in CSI data. In order to evaluate the sensitivity
of CSI subcarriers, this paper calculates the SNR of the CSI data
amplitude, as expressed by:

SNR = 10 lg
∣∣∣∣ xpeak − xstatic

nnoise − xstatic

∣∣∣∣ (10)

where xpeak is the peak value of CSI with respect to a road user. xstatic
is the average of CSI readings when there are no road users within a
wireless environment. nnoise is the peak value of noise. According to
Eq. 10, the SNR Xcsi_SNR(n) of all subcarriers in a set of CSI data is
obtained:

Xcsi_SNR(n) = {xSNR(1), xSNR(2), ..., xSNR(m), ..., xSNR(n)} (11)

where xSNR(m) represents the SNR value of the m-th subcarrier.
For the convenience of calculation, it is assumed that
xSNR(n)has been arranged in descending order of SNR, that is,
{xSNR(1) > xSNR(2) > ... > xSNR(m) > ... > xSNR(n)} . According
to Eq. 11, “m” subcarriers with larger SNR are selected, where “m”
is defined as the CSI factor. The selection of the CSI factor “m” is
discussed in detail in Section “4. Experiment study.” The mean of
“m” subcarriers is calculated, which can be expressed as:

X̄csi_aug(n) =
1
m

m∑
n=1

Xcsi_aug(n) (12)
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Raw CSI waveform vs. filtered waveform. (A) The raw CSI waveform of the vehicle. (B) The raw CSI waveform of the pedestrian. (C) The filtered CSI
waveform of the vehicle. (D) The filtered CSI waveform of the pedestrian.

To demonstrate the validity of Eq. 12, we compare our proposed
method with k-subcarriers weight fusion (Kong et al., 2019) and
average-subcarriers (Wang Y. et al., 2016), as shown in Figure 5.
It can be seen that on a pedestrian and a vehicle CSI sample, our
CSI subcarrier selection method performs best, the SNR of the CSI
amplitude is 3.5 and 6.1 dB, respectively.

3.3.4. CSI segmentation
The selected CSI data X̄csi_aug(n) containing multiple CSI features

is split into certain segment-level sub-samples, each of which consists
of one complete CSI feature of a road user. Specifically, the single CSI
feature can be divided in terms of the local minimum in X̄csi_aug(n).
These local minimums are defined as decision points. Specially, xd[i]
represents the i-th decision point, xd[i] can be calculated as:

xd[i] = min
s·i-w+1≤n≤s·i

X̄csi_aug(n), i = 1, 2, 3, ..., L (13)

where xd[i] is the minimize value within the value range of
X̄csi_aug(n). L is the number of decision points. w is the size of sliding
window, and is set to 50, s is the step size of the window, and is

set to 200. Additionally, the index of decision points in X̄csi_aug(n)

is represented by Pi . According to Eq. 13 and Pi, X̄csi_aug(n) can
be divided into L segments. x̃i[n] is the i-th segment, which can be
defined as:

x̃i[n] =
{

X̄csi_aug[Pi − c0], ..., X̄csi_aug[Pi], ..., X̄csi_aug[Pi + c0]
}
(14)

where c0 is the slicing factor, and is set to 100. In this case, a new
CSI dataset is developed. About 500 samples of four categories are
included in the dataset: pedestrian, bicycle, motorcycle, and car.

3.4. Deep feature extraction and
classification

According to the features of CSI signals containing time
series features, as shown in Figure 3, a lightweight wireless
sensing attention-based recognition algorithm, namely LW-WADL
is proposed for deep feature learning from CSI features on HVR
tasks. The proposed LW-WADL contains a CBAM module and three
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depthwise separable convolution modules, followed by a GAP layer,
as described below.

3.4.1. LW-WADL network structure
The overall network structure of the proposed LW-WADL is

presented in Figure 3. LW-WADL involves of Three depthwise
separable convolution blocks (DSCB_1, DSCB_2 and DSCB_3) in
series. Then, in order to focus on learning the relevant information of
feature maps while suppressing the irrelevant information, a CBAM
module is concatenated after DSCB_1. The CBAM module can
further improve the discriminating power of feature representations
learned by DSCB_1. Finally, output features in DSCB_3 are achieved
through a GAP layer.

3.4.2. CBAM attention module
The attention mechanism makes the model tend to pay attention

to some information about the auxiliary classification in the feature
map, while suppressing other useless information, thereby improving
the classification ability of the model. The CBAM module consists
of a channel attention module and a spatial attention module. The
detailed structure is shown in Figure 6.

The channel attention module first performs maxpooling and
average pooling based on the height and width of the DSCB_1 feature
map to obtain two one-dimensional vectors. Then, it is input into the
shared multi-layer perceptron (Shared MLP), and the corresponding
elements of the output features of the MLP are summed point by
point. The result is input into the Sigmoid activation function, and
then the inner product operation is performed with the initial input
feature map. The final output feature map is used as the input of the
spatial attention module.

The spatial attention module performs maxpooling and average
pooling based on the channel, and then uses the convolution
(abbreviated as Conv) operation to merge the output features on the
channel dimension. The merged features are input into a sigmoid
activation function, then an inner product operation is performed on
the obtained output features and the input of the spatial attention
module. Finally, the output of the inner product operation is
combined with the output of the DSCB_1 module to form the input
features of the DSCB_2 module.

3.4.3. Softmax classifier output
WiHVR is fundamentally a multi-classification task, so we choose

the Softmax function to produce final classification results. Through
the Softmax function, the output values of classifier can be converted
into a probability distribution in the range [0, 1].

The cross-entropy loss function is implemented as the training
objective function for LW-WADL:

Lloss = −
∑

i

ŷi log(yi) (15)

where ŷi = 1 if the class is i, otherwise ŷi = 0. yi represents the output
of the LW-WADL model, the probability that the class is i. Lloss is a
loss measure of the difference between two probability distributions.

4. Experiment study

4.1. Experiment setup

As can be seen from Figure 7, the proposed WTP prototype
contains two main components: antenna, ESP32. ESP32 is a WiFi SoC
working at a frequency of 2.4 GHz. In the experiment, the two WTP
prototypes were installed on both sides of a road with a width of 10 m,
and antenna heights is set to 1 m. In addition, for training LW-WADL
models, the Adam optimizer with a learning rate of 0.0001 is used.
The batch-size is 16 and the maximum of epochs is 200. Besides, to
explore the effects of CSI on the performance of WiHVR in different
application scenarios, the developed CSI dataset is divided into three
taxonomies according to the number of categories, namely, two-
category dataset, three-category dataset and four-category dataset.
Finally, 80% of the data in the dataset is used as the training set, while
the rest is used for testing.

4.2. Evaluation indicators

The performance of the designed LW-WADL is evaluated by
three typical metrics such as “Accuracy,” “Recall,” and “Precision.”
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Experimental scenarios and WTP installation details.

For the computational complexity analysis of deep learning methods,
two well-known computational indicators, the network parameters
(abbreviated as param.) and floating-point operations (FLOPs)
are employed. Specifically, “Accuracy” is the ratio of all correct
predictions to the whole number of predictions. “Precision” is the
ratio of correct predictions with positive values to total predictions
with positive values. “Recall” is the ratio of predicted positives to the
total number of actual positives. They are defined as:

Accuracy =
TP + TN

TP + TN + FN + TN
(16)

Precision =
TP

TP + FP
(17)

Recall =
TP

TP + FN
(18)

where TP denotes the number of true positive samples classified as
positive. FP denotes the number of true negative samples classified as
positive. FN denotes the number of true positive samples classified
as negative. TN denotes the number of true negative samples
classified as negative.
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4.3. Comparison of different methods

To verify the effectiveness of our LW-WADL for WiHVR, we
adopt the developed CSI four-category dataset, so as to compare
the performance of various deep learning models on WiHVRs
tasks. Table 1 present a performance comparison of four methods,
including full convolutional network (FCN) (Long et al., 2015),
DeepWiTraffic (Won et al., 2019), and deep residual network
(ResNet) (He et al., 2016). Among them, FCN and ResNet are
used as baseline methods to provide benchmarking performance,
whereas DeepWiTraffic is used as comparing work. Besides, FCN
is composed of three convolutional layers. ResNet contains three
residual blocks. DeepWiTraffic contains two convolutional layers and
two max pooling layers. Experimental results are shown in Table 1.

From Table 1, it can be found that the designed deep learning
model has the highest classification performance with an accuracy
of 96.26%, a precision of 96.23%, and a recall of 96.16%. Compared
with DeepWitraffic, our model not only makes an improvement of
1.67%, but also exhibits much lower computational complexity in
which 93.25% of the parameters (Param, FLOPs) can be reduced.
Moreover, the test time is just 0.0575 s, which is much less than
DeepWitraffic. This shows that our model is a lightweight model.
Additionally, compared with FCN and ResNet, our method yields an
accuracy improvement of 2.8 and 1.87%.

4.4. Selection of CSI factor m

A set of experiments are designed to investigate the effect of CSI
factor “m” on the accuracy of WiHVR. Figure 8 shows the accuracy
of the WiHVR for different “m,” where “all” represents the maximum
“m.” Experiments are performed on the CSI four-category dataset.

Each CSI factor “m” corresponds to a CSI four-category dataset, and
these datasets are identical except for the CSI factor “m.” To make
the results more reliable, the ResNet, DeepWiTraffic, FCN, and our
model are used. The experimental results are shown in Figure 8.

As shown in Figure 8, with the increase of “m,” both the ResNet,
DeepWiTraffic, FCN, and ours model show a trend of increasing
first and then decreasing, reaching the highest accuracy of 94.39,
94.59, 93.46, and 96.26% when “m” is 4, respectively. It can be found
that only one subcarrier with the highest SNR or the average of all
subcarriers cannot obtain the best HVR performance. This is because
the sensitivity of different CSI subcarriers varies greatly. Some
subcarriers are less sensitive, while some subcarriers with higher
sensitivity are too sensitive to environmental changes, resulting in
reduced recognition ability.

4.5. Comparison of CSI subcarrier
selection methods

To verify the performance of the proposed CSI subcarrier
selection method, we conduct comparative experiments on the
CSI four-category dataset. Recently-merged CSI subcarrier selection
methods such as k-subcarrier weight fusion (Kong et al., 2019) and
averaged subcarriers (Wang Y. et al., 2016) are used for comparative
experiments. The recognition accuracy of FCN, DeepWiTraffic,
ResNet, and our LW-WADL under different CSI subcarrier selection
methods are shown in Table 2.

As shown in Table 2, the four used models perform best under
our CSI subcarrier selection method, and the accuracy of HVR
is 93.46, 94.59, 94.39, and 96.26%, respectively. The results show
the superiority of our CSI subcarrier selection method, which is
consistent with the conclusion drawn in Figure 5. In addition, the

TABLE 1 Performance comparison of different methods on four-category dataset.

Method Accuracy (%) Precision (%) Recall (%) Param (M) FLOPs (M) Testing time(s)

FCN 93.46% 93.34% 93.46% 1.6451 3.2888 0.2019

DeepWiTraffic 94.59% 94.45% 94.59% 0.2090 0.4176 0.1398

ResNet 94.39% 95.28% 94.39% 0.7427 1.5047 0.2982

Ours 96.26% 96.23% 96.16% 0.0123 0.0282 0.0575

The bold values represent the indicator with the best performance, that is, the highest Accuracy, Precision, and Recall as well as the lowest Param, FLOPs, and Testing time.

FIGURE 8

The classification accuracy of different CSI factors “m” on the CSI four-category dataset.
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TABLE 2 Accuracy of different subcarrier selection methods.

CSI subcarrier
selection
methods

FCN DeepWiTraffic ResNet LW-WADL

k-subcarrier weight
fusion

89.17% 90.86% 90.77% 93.01%

Averaged subcarriers 82.09% 87.89% 83.36% 90.53%

Ours 93.46% 94.59% 94.39% 96.26%

The bold values represent that our subcarrier selection method achieves the highest accuracy
among the four compared deep learning models.

TABLE 3 Performance evaluation of different classification tasks.

Tasks FCN DeepWiTraffic ResNet LW-WADL

2 100% 100% 100% 100%

3 95.12% 96.86% 96.21% 97.96%

4 93.46% 94.59% 94.39% 96.26%

The bold values indicate that the designed deep learning model (LW-WADL) outperforms on
different classification tasks.

k-subcarrier weight fusion and averaged subcarriers methods will not
remove those CSI subcarriers with too low or too high sensitivity,
which may have a negative impact on CSI waveform. In this case, the
accuracy of the above two methods in Table 2 is lower than that of
our proposed method.

4.6. Performance evaluation of different
classification tasks

To explore the performance of CSI signals on different
classification tasks, three groups of experiments are set up,
namely two-classification tasks, three-classification tasks, and four-
classification tasks. Each group of experiments selects four methods
to test, FCN, DeepWiTraffic, ResNet, and our LW-WADL,
respectively, so that the results are more credible. The experimental
results are shown in Table 3.

The results of Table 3 shows that the compared methods perform
best and the same on the two-classification task, and the accuracy
of HVR reaches 100%. However, with the increase of road user
categories, the classification accuracy of the used four methods
decrease. For three-classification task, the classification accuracy of
four methods are 95.12, 96.86, 96.21, and 97.96%, respectively. For
four-classification task, the classification accuracy of four methods
is 1.66, 2.27, 1.82, and 1.73% lower than three-classification task.
Overall, our method achieves more than 96% accuracy in different
classification tasks.

4.7. CSI confusion matrices

To further display the recognition accuracy for each class of
road users, Figure 9 shows confusion matrices of the classification

FIGURE 9

Confusion matrices of four methods on CSI four-classification dataset. (A) CSI confusion matrix of FCN. (B) CSI confusion matrix of DeepWiTraffic.
(C) CSI confusion matrix of ResNet. (D) CSI confusion matrix of ours. P, pedestrian; B, bicycle; M, motorcycle; C: car.
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results, when FCN, DeepWiTraffic, ResNet, and our LW-WADL
methods obtain 93.46, 94.59, 94.39, and 96.26% accuracy. As shown
in Figure 9, the “car” category is well-recognized for most of used
methods. Among all the models, only ResNet incorrectly classify the
“car” as the “pedestrian.” This may be attributed to the fact that a car
usually has a much larger volume than other road users. As a result,
the attenuation of CSI readings caused by cars is quite different from
those cases caused by other road users. For all used models, a major
part of the error arises from misclassifying “pedestrian” as “bicycle.”
This reveals that the group, i.e., “pedestrian” vs. “bicycle” is easily
confused with each other. This phenomenon is hinted by the overlap
among some real-world road user shapes.

5. Conclusion and future work

This paper has proposed a lightweight wireless sensing attention-
based deep learning model (LW-WADL). In order to evaluate the
classification ability of LW-WADL, three CSI-based datasets are
established, namely two-category dataset, three-category dataset. and
four-category dataset. The experimental results on the developed
dataset show that the classification accuracy of LW-WADL decreases
with the increase of road user categories, but it is higher than 96%. In
addition, this paper provides a novel CSI subcarrier selection method,
which calculates the SNR of all subcarriers and selects the first four
subcarriers with larger SNR for fusion. Besides, a new CSI data
enhancement method is exploited to preprocess the change trend of
CSI data to one direction, thereby enhancing CSI data.

In future, the performance of other advanced deep learning-
based WiHVR methods will be investigated. It is also significant to
explore the human-vehicle recognition task based on multiple sets of
WTPs. Additionally, it is meaningful to explore the applications of
the proposed methods in real scenarios such as multi-lane roads.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

MS was responsible for the writing of the manuscript and
some experiments. RZ was responsible for some experiments of
the manuscript. XC was responsible for the data collection and
processing of the manuscript. CZ was responsible for the revision
of the manuscript. LL provided the fund support for this project.
All authors contributed to the article and approved the submitted
version.

Funding

This work was supported by Zhejiang Provincial National Science
Foundation of China under Grant No. LGG22F030009 and partially
supported by Taizhou Science and Technology Plan Project under
Grant No. 21gya29.

Conflict of interest

RZ was employed by China United Network Communications
Co., Ltd., Taizhou Branch.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the reviewers.
Any product that may be evaluated in this article, or claim that may
be made by its manufacturer, is not guaranteed or endorsed by the
publisher.

References

Abdelnasser, H., Harras, K., and Youssef, M. (2018). A ubiquitous WiFi-based fine-
grained gesture recognition system. IEEE Trans. Mobile Comput. 18, 2474–2487. doi:
10.1109/TMC.2018.2879075

Arshad, S., Feng, C., Elujide, I., Zhou, S., and Liu, Y. (2018). “SafeDrive-Fi: A
multimodal and device free dangerous driving recognition system using WiFi,” in
Proceedings of the 2018 IEEE international conference on communications (ICC) (Kansas
City, MO: IEEE), 1–6. doi: 10.1109/ICC.2018.8422431

Bhat, S. A., Mehbodniya, A., Alwakeel, A. E., Webber, J., and Al-Begain, K. (2020).
“Human motion patterns recognition based on rss and support vector machines,”
in Proceedings of the 2020 IEEE wireless communications and networking conference
(WCNC) (Seoul: IEEE), 1–6. doi: 10.1109/WCNC45663.2020.9120797

Chen, Z., Zhang, L., Jiang, C., Cao, Z., and Cui, W. (2018). WiFi CSI based passive
human activity recognition using attention based BLSTM. IEEE Trans. Mobile Comput.
18, 2714–2724. doi: 10.1109/TMC.2018.2878233

Chollet, F. (2017). “Xception: Deep learning with depthwise separable convolutions,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, Honolulu,
HI, 1251–1258. doi: 10.1109/CVPR.2017.195

Choy, J. L. C., Wu, J., Long, C., and Lin, Y.-B. (2020). Ubiquitous and low power
vehicles speed monitoring for intelligent transport systems. IEEE Sens. J. 11, 5656–5665.

de Oliveira, L. F. P., Manera, L. T., and Da Luz, P. D. G. (2020). Development of a
smart traffic light control system with real-time monitoring. IEEE Internet Things J. 8,
3384–3393. doi: 10.1109/JIOT.2020.3022392

Du, Y., Qin, B., Zhao, C., Zhu, Y., Cao, J., and Ji, Y. (2021). A novel spatio-
temporal synchronization method of roadside asynchronous MMW radar-camera for
sensor fusion. IEEE Trans. Intell. Transp. Syst. 23, 22278–22289. doi: 10.1109/TITS.2021.
3119079

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, Las Vegas, NV, 770–778. doi: 10.1109/CVPR.2016.90

Huang, Q., Cai, Z., and Lan, T. (2020). A new approach for character recognition of
multi-style vehicle license plates. IEEE Trans. Multimed. 23, 3768–3777. doi: 10.1109/
TMM.2020.3031074

Jiang, Y., Shuai, Y., He, X., Wen, X., and Lou, L. (2021). An energy-efficient street
lighting approach based on traffic parameters measured by wireless sensing technology.
IEEE Sens. J. 21, 19134–19143. doi: 10.1109/JSEN.2021.3089208

Jin, J., and Ma, X. (2019). A multi-objective agent-based control approach with
application in intelligent traffic signal system. IEEE Trans. Intell. Transp. Syst. 20,
3900–3912. doi: 10.1109/TITS.2019.2906260

Frontiers in Neuroscience 11 frontiersin.org117

https://doi.org/10.3389/fnins.2023.1135986
https://doi.org/10.1109/TMC.2018.2879075
https://doi.org/10.1109/TMC.2018.2879075
https://doi.org/10.1109/ICC.2018.8422431
https://doi.org/10.1109/WCNC45663.2020.9120797
https://doi.org/10.1109/TMC.2018.2878233
https://doi.org/10.1109/CVPR.2017.195
https://doi.org/10.1109/JIOT.2020.3022392
https://doi.org/10.1109/TITS.2021.3119079
https://doi.org/10.1109/TITS.2021.3119079
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/TMM.2020.3031074
https://doi.org/10.1109/TMM.2020.3031074
https://doi.org/10.1109/JSEN.2021.3089208
https://doi.org/10.1109/TITS.2019.2906260
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1135986 February 4, 2023 Time: 19:12 # 12

Song et al. 10.3389/fnins.2023.1135986

Kong, H., Lu, L., Yu, J., Chen, Y., Kong, L., and Li, M. (2019). “Fingerpass: Finger
gesture-based continuous user authentication for smart homes using commodity wifi,” in
Proceedings of the twentieth ACM international symposium on mobile ad hoc networking
and computing, Catania, 201–210. doi: 10.1145/3323679.3326518

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521, 436–444.
doi: 10.1038/nature14539

Liu, J., Wang, L., Guo, L., Fang, J., Lu, B., and Zhou, W. (2017). “A research
on CSI-based human motion detection in complex scenarios,” in Proceedings of
the 2017 IEEE 19th international conference on e-health networking, applications
and services (Healthcom) (Dalian: IEEE), 1–6. doi: 10.1109/HealthCom.2017.821
0800

Long, J., Shelhamer, E., and Darrell, T. (2015). “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, Boston, MA, 3431–3440. doi: 10.1109/CVPR.2015.729
8965

Ma, X., Zhao, Y., Zhang, L., Gao, Q., Pan, M., and Wang, J. (2019). Practical device-
free gesture recognition using WiFi signals based on metalearning. IEEE Trans. Industr.
Inform. 16, 228–237. doi: 10.1109/TII.2019.2909877

Otter, D. W., Medina, J. R., and Kalita, J. K. (2020). A survey of the usages of deep
learning for natural language processing. IEEE Trans. Neural Netw. Learn. Syst. 32,
604–624. doi: 10.1109/TNNLS.2020.2979670

Pan, X., Jiang, T., Li, X., Ding, X., Wang, Y., and Li, Y. (2019). “Dynamic hand gesture
detection and recognition with WiFi signal based on 1d-CNN,” in Proceedings of the 2019
IEEE international conference on communications workshops (ICC Workshops) (Shanghai:
IEEE), 1–6. doi: 10.1109/ICCW.2019.8756690

Park, J.-K., Choi, I.-O., and Kim, K.-T. (2021). Length prediction of moving vehicles
using a commercial FMCW radar. IEEE Trans. Intell. Transp. Syst. 23, 14833–14845.
doi: 10.1109/TITS.2021.3134408

Santos, P. M., Rodrigues, J. G. P., Cruz, S. B., Lourenço, T., d’Orey, P. M., Luis, Y., et al.
(2018). PortoLivingLab: An IoT-based sensing platform for smart cities. IEEE Internet
Things J. 5, 523–532. doi: 10.1109/JIOT.2018.2791522

Singh, R., Saluja, D., and Kumar, S. (2021). R-comm: A traffic based approach for joint
vehicular radar-communication. IEEE Trans. Intell. Vehicles 7, 83–92. doi: 10.1109/TIV.
2021.3074389

Sliwa, B., Piatkowski, N., and Wietfeld, C. (2020). The channel as a traffic sensor:
Vehicle detection and classification based on radio fingerprinting. IEEE Internet Things
J. 7, 7392–7406. doi: 10.1109/JIOT.2020.2983207

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016). “Rethinking
the inception architecture for computer vision,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, Las Vegas, NV, 2818–2826. doi: 10.1109/CVPR.
2016.308

Tavanti, E., Rizik, A., Fedeli, A., Caviglia, D. D., and Randazzo, A. (2021). A short-range
FMCW radar-based approach for multi-target human-vehicle detection. IEEE Trans.
Geosci. Remote Sens. 60, 1–16. doi: 10.1109/TGRS.2021.3138687

Wang, F., Gong, W., and Liu, J. (2018). On spatial diversity in WiFi-based human
activity recognition: A deep learning-based approach. IEEE Internet Things J. 6, 2035–
2047. doi: 10.1109/JIOT.2018.2871445

Wang, J., Zhao, Y., Fan, X., Gao, Q., Ma, X., and Wang, H. (2018). Device-free
identification using intrinsic CSI features. IEEE Trans. Vehicular Technol. 67, 8571–8581.
doi: 10.1109/TVT.2018.2853185

Wang, Q., Zheng, J., Xu, H., Xu, B., and Chen, R. (2017). Roadside magnetic sensor
system for vehicle detection in urban environments. IEEE Trans. Intell. Transp. Syst. 19,
1365–1374. doi: 10.1109/TITS.2017.2723908

Wang, W., Liu, A. X., and Shahzad, M. (2016). “Gait recognition using wifi signals,” in
Proceedings of the 2016 ACM international joint conference on pervasive and ubiquitous
computing, Heidelberg, 363–373. doi: 10.1145/2971648.2971670

Wang, Y., Wu, K., and Ni, L. M. (2016). Wifall: Device-free fall detection by wireless
networks. IEEE Trans. Mobile Comput. 16, 581–594. doi: 10.1109/TMC.2016.2557792

Wilby, M. R., González, A. B. R., Pozo, R. F., and Díaz, J. J. V. (2020). Short-term
prediction of level of service in highways based on bluetooth identification. IEEE Trans.
Intell. Transp. Syst. 23, 142–151. doi: 10.1109/TITS.2020.3008408

Won, M., Sahu, S., and Park, K.-J. (2019). “DeepWiTraffic: Low cost WiFi-based
traffic monitoring system using deep learning,” in Proceedings of the 2019 IEEE 16th
international conference on mobile ad hoc and sensor systems (MASS) (Monterey, CA:
IEEE), 476–484. doi: 10.1109/MASS.2019.00062

Won, M., Zhang, S., and Son, S. H. (2017). “WiTraffic: Low-cost and non-intrusive
traffic monitoring system using WiFi,” in Proceedings of the 2017 26th international
conference on computer communication and networks (ICCCN) (Vancouver, BC: IEEE),
1–9. doi: 10.1109/ICCCN.2017.8038380

Woo, S., Park, J., Lee, J.-Y., and Kweon, I. S. (2018). “Cbam: Convolutional block
attention module,” in Proceedings of the european conference on computer vision (ECCV),
Munich, 3–19. doi: 10.1007/978-3-030-01234-2\_1

Zhang, S., Zhang, S., Huang, T., and Gao, W. (2017). Speech emotion recognition using
deep convolutional neural network and discriminant temporal pyramid matching. IEEE
Trans. Multimed. 20, 1576–1590. doi: 10.1109/TMM.2017.2766843

Zhang, X., Tang, C., Yin, K., and Ni, Q. (2021). WiFi-based cross-domain gesture
recognition via modified prototypical networks. IEEE Internet Things J. 9, 8584–8596.
doi: 10.1109/JIOT.2021.3114309

Zhao, L., and Huang, Z. (2021). A moving object detection method using deep
learning-based wireless sensor networks. Complexity 2021:5518196. doi: 10.1155/2021/
5518196

Zhao, L., Wang, J., Liu, J., and Kato, N. (2019). Routing for crowd management in
smart cities: A deep reinforcement learning perspective. IEEE Commun. Mag. 57, 88–93.
doi: 10.1109/MCOM.2019.1800603

Frontiers in Neuroscience 12 frontiersin.org118

https://doi.org/10.3389/fnins.2023.1135986
https://doi.org/10.1145/3323679.3326518
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/HealthCom.2017.8210800
https://doi.org/10.1109/HealthCom.2017.8210800
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/TII.2019.2909877
https://doi.org/10.1109/TNNLS.2020.2979670
https://doi.org/10.1109/ICCW.2019.8756690
https://doi.org/10.1109/TITS.2021.3134408
https://doi.org/10.1109/JIOT.2018.2791522
https://doi.org/10.1109/TIV.2021.3074389
https://doi.org/10.1109/TIV.2021.3074389
https://doi.org/10.1109/JIOT.2020.2983207
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/TGRS.2021.3138687
https://doi.org/10.1109/JIOT.2018.2871445
https://doi.org/10.1109/TVT.2018.2853185
https://doi.org/10.1109/TITS.2017.2723908
https://doi.org/10.1145/2971648.2971670
https://doi.org/10.1109/TMC.2016.2557792
https://doi.org/10.1109/TITS.2020.3008408
https://doi.org/10.1109/MASS.2019.00062
https://doi.org/10.1109/ICCCN.2017.8038380
https://doi.org/10.1007/978-3-030-01234-2\_1
https://doi.org/10.1109/TMM.2017.2766843
https://doi.org/10.1109/JIOT.2021.3114309
https://doi.org/10.1155/2021/5518196
https://doi.org/10.1155/2021/5518196
https://doi.org/10.1109/MCOM.2019.1800603
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


Frontiers in Psychology 01 frontiersin.org

Deep learning-based EEG emotion 
recognition: Current trends and 
future perspectives
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Automatic electroencephalogram (EEG) emotion recognition is a challenging 
component of human–computer interaction (HCI). Inspired by the powerful feature 
learning ability of recently-emerged deep learning techniques, various advanced 
deep learning models have been employed increasingly to learn high-level feature 
representations for EEG emotion recognition. This paper aims to provide an up-
to-date and comprehensive survey of EEG emotion recognition, especially for 
various deep learning techniques in this area. We provide the preliminaries and basic 
knowledge in the literature. We review EEG emotion recognition benchmark data sets 
briefly. We review deep learning techniques in details, including deep belief networks, 
convolutional neural networks, and recurrent neural networks. We describe the state-
of-the-art applications of deep learning techniques for EEG emotion recognition in 
detail. We  analyze the challenges and opportunities in this field and point out its 
future directions.

KEYWORDS

human–computer interaction, electroencephalogram, emotion recognition, deep learning, 
survey

1. Introduction

Emotion recognition (or detection) is a major scientific problem in affective computing, 
which mainly solves the problem of computer systems accurately processing, recognizing, and 
understanding the emotional information expressed by human beings. Affective computing 
requires interdisciplinary knowledge, including psychology, biology, and computer science. As 
emotion plays a key role in the field of human–computer interaction (HCI) and artificial 
intelligence, it has recently received extensive attention in the field of engineering research. 
Research of emotion recognition technology can further promote the development of various 
disciplines, including computer science, psychology, neuroscience, human factors engineering, 
medicine, and criminal investigation.

As a complex psychological state, emotion is related to physical behavior and physiological 
activities (Cannon, 1927). Researchers have conducted numerous studies to enable computers 
to correctly distinguish and understand human emotions. These studies aim to enable 
computers to generate various emotional features similar to human beings, so as to achieve 
the purpose of natural, sincere, and vivid interaction with human beings. Some of these 
methods mainly use non physiological signals, such as speech (Zhang et al., 2017; Khalil et al., 
2019; Zhang S. et al., 2021), facial expression (Alreshidi and Ullah, 2020), and body posture 
(Piana et  al., 2016). However, their accuracy depends on people’s age and cultural 
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characteristics, which are subjective, so accurately judging the true 
feelings of others is difficult. Other methods use physiological 
activities (or physiological clues), such as heart rate (Quintana et al., 
2012), skin impedance (Miranda et al., 2018), respiration (Valderas 
et al., 2019) or brain signals, functional magnetic resonance imaging 
(Chen et al., 2019a), magnetoencephalography (Kajal et al., 2020), 
and electroencephalography, to identify emotional states. Some 
studies have shown that physiological activities and emotional 
expression are correlated, although the sequence of the two 
processes is still debated (Cannon, 1927). Therefore, the method 
based on calculating physiological signals is considered an effective 
supplement to the recognition method based on nonphysiological 
signals. The subject cannot control the automatically generated 
electroencephalogram (EEG) signal. For those who cannot speak 
clearly and express their feelings through natural speech or have 
physical disabilities and cannot express their feelings through facial 
expressions or body postures, emotion recognition of voice, 
expression, and posture becomes impossible. Therefore, EEG is an 
appropriate means to extract human emotions, and studying 
emotional cognitive mechanisms and recognizing emotional states 
by directly using brain activity information, such as EEG, are 
particularly important.

From the perspective of application prospects, EEG-based 
emotion recognition technology has penetrated into various fields, 
including medical, education, entertainment, shopping, military, 
social, and safe driving (Suhaimi et al., 2020). In the medical field, 
timely acquisition of patients’ EEG signals and rapid analysis of 
their emotional state can help doctors and nurses to accurately 
understand the patients’ psychological state and then make 
reasonable medical decisions, which has an important effect on the 
rehabilitation of some people with mental disorders, such as autism 
(Mehdizadehfar et  al., 2020; Mayor-Torres et  al., 2021; Ji et  al., 
2022), depression (Cai et al., 2020; Chen X. et al., 2021), Alzheimer’s 
disease (Güntekin et  al., 2019; Seo et  al., 2020), and physical 
disabilities (Chakladar and Chakraborty, 2018). In terms of 
education, the emotion recognition technology based on EEG 
signals can enable teaching staff to adjust teaching methods and 
teaching attitudes in a timely manner in accordance with the 
emotional performance of different trainees in class, such as 
increasing or reducing the workload (Menezes et al., 2017). In terms 
of entertainment, such as computer games, researchers try to detect 
the emotional state of players to adapt to the difficulty, punishment, 
and encouragement of the game (Stavroulia et  al., 2019). In the 
military aspect, the emotional status of noncommissioned officers 
and soldiers can be captured timely and accurately through EEG 
signals, so that the strategic layout can be  adjusted in time to 
improve the winning rate of war (Guo et al., 2018). In terms of social 
networks, we can enhance barrier-free communication in the HCI 
system, increase the mutual understanding and interaction in the 
human–machine–human interaction channel, and avoid some 
unnecessary misunderstandings and frictions through the 
acquisition of emotional information (Wu et al., 2017). In terms of 
safe driving, timely detection of EEG emotional conditions can 
enable a vehicle to perform intelligent locking during startup to 
block driving or actively open the automatic driving mode to 
intervene in the vehicle’s motion trajectory until parking at a safe 
position, thereby greatly reducing the occurrence of accidents (Fan 
et al., 2017).

Recently, automatic recognition of emotional information from 
EEG has become a challenging problem, and has attracted extensive 
attention in the fields of artificial intelligence and computer vision. The 
flow of emotion recognition research is shown in Figure 1. Essentially, 
human emotion recognition using EEG signals belongs to one type of 
pattern recognition research.

In the early EEG-based automated emotion recognition 
literature, a variety of machine learning-based studies, such as 
support vector machine (SVM; Lin et al., 2009; Nie et al., 2011; Jie 
et  al., 2014; Candra et  al., 2015), k-nearest neighbor (KNN; 
Murugappan et  al., 2010; Murugappan, 2011; Kaundanya et  al., 
2015), linear regression (Bos, 2006; Liu et al., 2011), support vector 
regression (Chang et al., 2010; Soleymani et al., 2014), random forest 
(Lehmann et  al., 2007; Donos et  al., 2015; Lee et  al., 2015), and 
decision tree (Kuncheva et  al., 2011; Chen et  al., 2015), have 
been developed.

Although the abovementioned hand-crafted EEG signal features 
associated with machine learning approaches can produce good 
domain-invariant features for EEG emotion recognition, they are still 
low-level and not highly discriminative. Thus, obtaining high-level 
domain-invariant feature representations for EEG emotion recognition 
is desirable.

The recently-emerged deep learning methods may present a possible 
solution to achieve high-level domain-invariant feature representations 
and high-precision classification results of EEG emotion recognition. 
The representative deep leaning techniques contain recurrent neural 
networks (RNNs; Elman, 1990), long short-term memory (LSTM; 
Hochreiter and Schmidhuber, 1997; Zhang et al., 2019), deep belief 
networks (DBNs; Hinton et  al., 2006), and convolutional neural 
networks (CNNs; Krizhevsky et  al., 2012). To date, deep learning 
techniques have shown outstanding performance on object detection 
and classification (Wu et al., 2020), natural language processing (Otter 
et  al., 2020), speech signal processing (Purwins et  al., 2019), and 
multimodal emotion recognition (Zhou et al., 2021) due to its strong 
feature learning ability. Figure 2 shows the evolution of EEG emotion 
recognition with deep learning algorithms, emotion categories 
and databases.

Inspired by the lack of summarizing the recent advances in 
various deep learning techniques for EEG-based emotion 
recognition, this paper aims to present an up-to-date and 
comprehensive survey of EEG emotion recognition, especially for 
various deep learning techniques in this area. This paper highlights 
the different challenges and opportunities on EEG emotion 
recognition tasks and points out its future trends. In this survey, 
we have searched the published literature between January 2012, 
and December 2022 through Scholar. google, ScienceDirect, 
IEEEXplore, ACM, Springer, PubMed, and Web of Science, on the 
basis of the following keywords: “EEG emotion recognition,” 
“emotion computing,” “deep learning,” “RNNs,” “LSTM,” “DBNs,” 
and “CNNs.” There is no any language restriction for the 
searching process.

In this work, our contributions can be summarized as follows:

 1. We provide an up-to-date literature survey on EEG emotion 
recognition from a perspective of deep learning. To the best of 
our knowledge, this is the first attempt to present a comprehensive 
review covering EEG emotion recognition and deep learning-
based feature extraction algorithms in this field.
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 2. We analyze and discuss the challenges and opportunities faced to 
EEG emotion recognition and point out future directions in 
this field.

The organization of this paper is as follows. We first present the 
preliminaries and basic knowledge of EEG emotion recognition. 
We  review benchmark datasets and deep learning techniques in 

FIGURE 1

Flowchart of emotion recognition using EEG signals.
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FIGURE 2

The evolution of EEG emotion recognition with deep learning algorithms, emotion categories and databases.
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detail. We  show the recent advances of the applications of deep 
learning techniques for EEG emotion recognition. We give a summary 
of open challenge and future directions. We  provide the 
concluding remarks.

2. Preliminaries and basic knowledge

2.1. Definition of affective computing

Professor Picard (1997) of the MIT and his team clearly defined 
affective computing, that is, the calculation of factors triggered by 
emotion, related to emotion, or able to affect and determine 
emotional change. In accordance with the research results in the field 
of emotion, emotion is a mechanism gradually formed in the process 
of human adaptation to social environment. When different 
individuals face the same environmental stimulus, they may have the 
same or similar emotional changes or they may have different 
emotional changes due to the difference in individual living 
environment. This psychological mechanism can play a role in 
seeking advantages and avoiding disadvantages. Although computers 
have strong logic computing ability, human beings cannot 
communicate more deeply when interacting with computers due to 
the lack of psychological mechanisms similar to human beings. 
Emotion theory is an effective means to solve this problem. 
Therefore, an effective method to realize computer intelligence is to 
combine logical computing with emotional computing, which is a 
research topic that many researchers focus on at present (Zhang 
S. et al., 2018).

2.2. Classification of emotional models

Many researchers cannot reach a unified emotional classification 
standard when conducting emotional computing research due to the 
high complexity and abstractness of emotion. At present, researchers 
usually divide emotion models into discrete model and dimensional 
space model.

In the discrete model, each emotion is distributed discretely, and 
these discrete emotions combine to form the human emotional world. 
In the discrete model, designers have different definitions of emotions, 
and they are divided into different emotional categories. American 
psychologist Ekman and Friesen (1971) divided human emotions into 
six basic emotions, namely, anger, disgust, fear, happiness, sadness, and 
surprise, by analyzing human facial expressions. Lazarus (Lazarus, 
1993), one of the modern representatives of American stress theory, 
divided emotions into 15 categories, such as anger, anxiety and 
happiness, and each emotional state has a corresponding core related 
theme. Psychologist Plutchik (2003) divided emotions into eight basic 
categories: anger, fear, sadness, disgust, expectation, surprise, approval, 
and happiness. These discrete emotion classification methods are 
relatively simple and easy to understand, and have been widely used in 
many emotion recognition studies.

The dimensional space model of emotion can be divided into 2D 
and 3D. The 2D expression model of emotion was first proposed by 
psychologist Russell (1980). It uses 2D coordinate axis to describe the 
polarity and intensity of emotion. Polar axis is used to describe the 
positive and negative types of emotion, and intensity coordinate axis 
refers to the intensity of emotion. The 2D emotion model is consistent 

with people’s cognition of emotion. Currently, the VA model that divides 
human emotions into two dimensions is widely used, which are the 
valency dimension and arousal dimension, as shown in Figure 3.

Considering that the 2D space representation of emotions cannot 
effectively distinguish some basic emotions, such as fear and anger, 
Mehrabian (1996) proposed a 3D space representation of emotions, and 
its three dimensions are pleasure, activation, and dominance, as shown 
in Figure 4. Centered on the origin, pleasure (P) represents the difference 
between positive and negative emotions; arousal (A) indicates the 
activation degree of human emotions; dominance (D) indicates the 
degree of human control over current things. At the same time, the 
coordinate values of the three dimensions can be  used to describe 
specific human emotions.

2.3. Deep learning techniques

2.3.1. DBNs
DBNs proposed by Hinton et al. (2006) are a generative model aim 

to train the weights among its neurons and make the entire neural 
network generate training data in accordance with the maximum  
probability.

At present, DBN has been applied to many areas of life, such as 
voice, graphics, and other visual data classification tasks, and achieved 
good recognition results. Tong et  al. used a DBN model to classify 
hyperspectral remote sensing images, improved the training process of 
DBN, and used the hyperspectral remote sensing image dataset Salinas 
to verify the proposed method (Tong et  al., 2017). Compared with 
traditional model classification methods, the classification accuracy of 
DBN model can reach more than 90%. In the text classification event, 
Payton L et al. proposed an ME learning algorithm for DBN (Payton 
et al., 2016). This algorithm is specially designed to deal with limited 
training data. Compared with the maximum likelihood learning 
method, the method of maximizing the entropy of parameters in DBN 
has more effective generalization ability, less data distribution deviation, 
and robustness to over fitting. It achieves good classification effect on 
Newsgroup, WebKB, and other datasets. The DBN model also achieves 
good classification results in speech classification events. Wen et al. tried 
to recognize human emotions from speech signals (Wen et al., 2017) 
using a random DBN (RDBN) integrating method. The experimental 
results on the benchmark speech emotion database show that the 
accuracy of RDBN is higher than that of KNN and other speech emotion 
recognition methods. Kamada S and Ichimura T extended the learning 
algorithm of adaptive RBM and DBN to time series analysis by using the 
idea of short-term memory and used the adaptive structure learning 
method to search the optimal network structure of DBN in the training 
process. This method was applied to MovingMNIST, a benchmark 
dataset for video recognition, and its prediction accuracy exceeded 90% 
(Kamada and Ichimura, 2019).

2.3.2. CNNs
The concept of neural networks originated from the neural 

mathematical model first proposed in 1943 (Mcculloch and Pitts, 1943). 
However, the artificial neural networks confined to the shallow network 
architecture fell into a low tide in the late 1960s due to the constraints of 
early computing power, data and other practical conditions. The real rise 
of neural network method began with AlexNet (Krizhevsky et al., 2012) 
proposed by Hinton et al. (2012). This CNN model won the Image Net 
Large Scale Visual Recognition Challenge (Deng et al., 2009) with a huge 
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advantage of 10.9%. Therefore, deep neural networks (DNNs) have 
gradually attracted extensive attention from the industry and academia. 
In a broad sense, the DNNs can be divided into feedforward neural 
networks (Rumelhart et al., 1986; Lecun and Bottou, 1998) and RNNs 
(Williams and Zipser, 1989; Yi, 2010; Yi, 2013) in accordance with the 
difference in connection modes between neurons. In accordance with 
the differences in use scenarios and HCI methods, the DNNs can 

be divided into single input networks and multi-input networks, which 
are continuously extended to a variety of HCI scenarios and have 
achieved breakthrough results (Wang et al., 2018), allowing AI products 
to be actually implemented in practical applications.

2.3.3. RNNs
Compared with CNNs, RNNs are better in processing data with 

sequence characteristics and can obtain time-related information in data 
(Lecun et al., 2015). Researchers have widely used RNNs in natural 
language processing, including machine translation, text classification, 
and named entity recognition (Schuster and Paliwal, 1997). RNNs have 
achieved outstanding performance in audio-related fields and made 
great breakthroughs. They have been widely used in speech recognition, 
speech synthesis, and other fields. Considering that RNN only considers 
the preorder information and ignores the postorder information, a 
bidirectional RNN (BRNN) was proposed (Schuster and Paliwal, 1997). 
To solve the problems of gradient disappearance and gradient explosion 
in the training process of the long sequence of RNN, researchers 
improved the structure of RNN and built a LSTM (Hochreiter and 
Schmidhuber, 1997). LSTM has modified the internal structure of RNN 
in the current time step, making the hidden layer architecture more 
complex, which can have a better effect in longer sequences and is a 
more widely used RNN in the general sense.

The bidirectional LSTM (BILSTM) can be obtained by combining 
LSTM and BRNN (Graves and Schmidhuber, 2005). It replaces the 
original RNN neuron structure in BRNN with the neuron structure of 
LSTM and combines the forward LSTM and backward LSTM to form a 
network. BILSTM retains the advantages of BRNN and LSTM at the 
same time. It can retain the context information of the current time 
node and record the relationship between the front and back features. 
Therefore, BILSTM improves the generalization ability of the network 

FIGURE 3

Two-dimensional model for valence–arousal.

FIGURE 4

PAD 3D emotional model.
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model and the ability to handle long sequences, and avoids the problem 
of gradient explosion and gradient disappearance according to the 
difference of connection modes between neurons.

In recent years, gated recurrent unit (GRU) networks (Cho et al., 
2014) were proposed. They discard the three LSTM gated (force gate, 
input gate, and output gate) networks, selects reset gate and update gate, 
and combines the current state of neurons and the hidden layer state, 
which are uniformly expressed as ht. Compared with LSTM, the GRU 
model is simpler, with fewer parameters and easier convergence.

3. Benchmark datasets

The proposed EEG emotion recognition algorithms should 
be verified on EEG data with emotion ratings or labels. However, some 
researchers are limited by conditions and cannot build a special 
experimental environment. Most researchers are interested in verifying 
their algorithms and comparing with relevant studies on the recognized 
benchmark datasets. Hence, a variety of open-source EEG emotion 
databases have been developed for EEG emotion recognition. Table 1 
presents a brief summary of existing speech emotion databases. In this 
section, we  describe briefly these existing EEG emotion databases 
as follows.

3.1. Database for emotion analysis using 
physical signals

DEAP is a large multimodal physiological and emotional database 
jointly collected and processed by Koelstra and other research 
institutions of four famous universities (Queen Mary University in 
London, Twente University in the Netherlands, Geneva University in 
Switzerland, and Swiss Federal Institute of Technology; Koelstra et al., 
2012). The collection scene for the DEAP database is shown in 
Figure  5, and it is an open-source data set for analyzing human 
emotional states. The DEAP database collected 32 participants for the 
experiment, where 16 of them were male and 16 were female. In the 
experiment, the EEG and peripheral physiological signals of the 
participants were collected, and the frontal facial expression videos of 
the first 22 participants were recorded. The participants read the 
instructions of the experiment process and wore the detection 
equipment before starting the data acquisition experiment. Each 
participant watched 40 music video clips with a duration of 1 min in 
the experiment. The subjective emotional experience in induction 
experiments was self-evaluated and rated on assessment scales that 

cover four emotional dimensions, namely, arousal, valence, 
dominance, and like. During self-assessment, the participants saw the 
content displayed on the screen and clicked to select the option that 
matched their situation at that time. The EEG and peripheral 
physiological signals were recorded by using a Biosemi ActiveTwo 
system. The EEG information was collected by using electrode caps 
with 32 AgCl electrodes. The EEG sampling rate was 512 Hz. The data 
set recorded 40 channels in total, the first 32 channels were EEG 
signal channels, and the last 8 channels were peripheral 
signal channels.

3.2. Multimodal database for affect 
recognition and implicit tagging

MAHNOB-HCI is a multimodal physiological emotion database 
collected by Soleymani et al. (2014) through a reasonable and normal 
experimental paradigm. The MAHNOB-HCI dataset collected EEG 
signals and peripheral physiological signals from 30 volunteers with 
different cultural and educational backgrounds using emotional 
stimulation videos. Among the 30 young healthy adult participants, 17 
were women and 13 were men, and the age ranged from 19 to 40. Thirty 
participants watched 20 different emotional video clips selected from 
movies and video websites. These video clips can stimulate the subjects 
to have five emotions: disgust, amusement, fear, sadness, and joy. The 
duration of watching videos was 35 to 117 s. The participants evaluated 
the arousal and potency dimensions rated on assessment scales after 
watching each video clip. In the data collection experiment, six cameras 
were used to record the facial expressions of the subjects at a frame rate 
of 60 frames per second. The collection scene for the MAHNOB-HCI 
database is shown in Figure 6.

3.3. SJTU emotion EEG dataset

The SEED is an EEG emotion dataset released by the BCMI 
Research Center in Shanghai Jiaotong University (SJTU; 
Zheng and Lu, 2015), and the protocol used in the emotion experiment 
is shown in Figure 7. The SEED dataset selected 15 people (7 men and 
8 women) as the subjects of the experiment and collected data of 62 EEG 
electrode channels from the participants. In the experiment, 15 clips of 
Chinese movies were selected for the subjects to watch. These videos 
contained three types of emotions: positive, neutral, and negative. Each 
genre had five clips, and each clip was about 4 min. Clips containing 
different emotions appeared alternately. In the experiment, the subjects 

TABLE 1 Description of public datasets.

Name Participants Documented Signals Stimulus Task models/ Emotions

DEAP 32 EEG, EMG, EOG, GSR, Temperature, and Face Video 40 Video clips VAD model

MAHNOB-HCI 27 EEG, ECG, GSR, ERG, Respiration Amplitude, Skin 

Temperature, Face Video, Audio Signals, and Eye Gaze

20 Video clips and 

Pictures

VAD model

SEED 15 EEG, Face Video, and Eye tracking 15 Video clips Positive, Neutral, and Negative

DREAMER 23 EEG, ECG 18 Video clips VAD model

SEED-IV 15 EEG, and EM 168 Video clips Happiness, Sadness, Fear and Neutrality

MPED 23 EEG、ECG、RSP、and GSR 28 Video clips Joy, Funny, Anger, Fear, Disgust, Sadness, and 

Neutrality
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had a 5-s prompt before watching each video. The subjects conducted a 
45 s self-assessment, followed by a 15 s rest. During the experiment, the 
subjects were asked to complete three experiments repeatedly in a week 

or even longer. Each subject watched the same 15 clips of video and 
recorded their self-evaluation emotions.

3.4. Dreamer

The Dreamer database (Katsigiannis and Ramzan, 2018) is a 
multimodal physiological emotion database released by the University 
of Western Scotland in 2018. It contains 18 audio-visual clips during the 
emotion induction experiments and collects the EEG and 
electrocardiogram (ECG) signals simultaneously. The video duration is 
between 65 and 393 s, with an average duration of 199 s. Twenty-three 
subjects with an average age of 26.6 years were invited to participate in 
the experiment. The subjects were asked to conduct a self-assessment 
between 1 and 5 points in the emotional dimensions of valence, arousal, 
and dominance after each emotional induction experiment.

3.5. Seed-iv

SEED-IV is another version of the SEED dataset released by SJTU 
(Zheng et al., 2018), which has been widely used in recent related work. 
The protocol of SEED-IV for four emotions is shown in Figure 8. Forty-
four participants (22 women, all college students) were recruited to self-
evaluate their emotions during the induction experiment, and 168 film 
clips were selected as the material library of four emotions (happiness, 
sadness, fear, and neutrality). It follows the experimental paradigm 
adopted in SEED, 62-channel EEG of 15 selected subjects were recorded 
in the three tests. They chose 72 film clips with four different emotional 
labels (neutral, sad, fear, and happy). Each subject watched six film clips 
in each session, resulting in 24 trials in total.

3.6. Multi-modal physiological emotion 
database

The MPED contains four physiological signals of 23 subjects (10 
men and 13 women) and records seven types of discrete emotion (joy, 
funny, anger, fear, disgust, sadness, and neutrality) when they watch 28 

FIGURE 5

Collection scene for the Deap database (Koelstra et al., 2012). 
Reproduced with permission from IEEE. Licence ID: 1319273-1.

FIGURE 6

Collection scene for the MAHNOB-HCI database (Soleymani et al., 2014). 
Reproduced with permission from IEEE. Licence Number: 5493400200365.

FIGURE 7

Protocol used in the emotion experiment (Zheng and Lu, 2015). Reproduced with permission from IEEE. Licence Number: 5493480479146.
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video clips (Song et al., 2019). The experiments are divided into two 
sessions with an interval of at least 24 h. Twenty-one EEG data are used 
as training data, and the remaining 7 EEG data are used as test data.

4. Review of EEG emotion recognition 
techniques

4.1. Shallow machine learning methods for 
EEG emotion recognition

The emotion recognition method of EEG signals based on machine 
learning is usually divided into two steps: manual feature extraction 
and classifier selection (Li et al., 2019). The feature extraction methods 
mainly include time domain analysis, frequency domain analysis, time 
frequency domain analysis, multivariate statistical analysis, and 
nonlinear dynamic analysis (Donos et al., 2018; Rasheed et al., 2020). 
Principal component analysis, linear discriminant analysis (LDA; 
Alotaiby et al., 2017), and independent component analysis (Ur et al., 
2013; Acharya et al., 2018a; Maimaiti et al., 2021) are widely used 
unsupervised time-domain methods to summarize EEG data. 
Frequency domain features include spectral center, coefficient of 
variation, power spectral density, signal energy, spectral moment, and 
spectral skewness, which can provide key information about data 
changes (Yuan et al., 2018; Acharya et al., 2018a). The abovementioned 
time-domain or frequency-domain methods have limitations and 
cannot provide accurate frequency or time information at a specific 
time point. Wavelet transformation (WT) is usually used to decompose 
EEG signals into their frequency components to express the 
relationship between signal information and time. Time frequency 
signal processing algorithms, such as discrete wavelet transform 
analysis and continuous wavelet transform, are a necessary means to 
solve different EEG behavior, which can be described in the time and 
frequency domains (Martis et al., 2012; UR et al., 2013). Statistical 
parameters, such as mean, variance, skewness, and kurtosis, have been 
widely used to extract feature information from EEG signals. Variance 
represents the distribution of data, skewness represents the symmetry 
information of data, and kurtosis provides the peak information in 
data (Acharya et al., 2018a).

In classifier selection, previous work mainly used shallow machine 
learning methods, such as LDA, SVM, and KNN, to train emotion 
recognition models based on manual features. Although the method of 
“manual features+shallow classifier” has made some progress in previous 
emotion recognition systems, the design of manual features requires 

considerable professional knowledge, and the extraction of some 
features (such as linear features) is time consuming.

4.2. Deep learning for EEG emotion 
recognition

Traditional machine learning techniques extract EEG features 
manually, which not only have high redundancy in the extracted 
features, but also have poor universality. Therefore, manual feature 
extraction techniques can not achieve the ideal results in EEG emotion 
recognition. Obviously, with the increasing progress of deep learning 
technology (Chen B. et al., 2021), EEG emotion recognition research 
ground on various neural networks has gradually become a research 
hotspot. Different from shallow classifier, deep learning has the 
advantages of strong learning ability and good portability, which can 
automatically learn good feature representations instead of manually 
design. Recently, various deep learning models, such as DNN, CNN, 
LSTM, and RNN models, were tested on public datasets. Compared 
with CNN, RNN is more suitable for processing sequence-related tasks. 
LSTM has been proven to be capable of capturing time information in 
the field of emotion recognition (Bashivan et al., 2015; Ma et al., 2019). 
As a type of sequence data, most studies on EEG are based on RNN 
and LSTM models. Li et al. (2017) designed a hybrid deep learning 
model by combining CNN and RNN to mine inter-channel correlation. 
The results demonstrated the effectiveness of the proposed methods, 
with respect to the emotional dimensions of Valence and Arousal. 
Zhang T. et al. (2018) proposed a spatial–temporal recurrent neural 
network (STRNN) for emotion recognition, which integrate the feature 
learning from both spatial and temporal information of signal sources 
into a unified spatial–temporal dependency model, as shown in 
Figure 9. Experimental results on the benchmark emotion datasets of 
EEG and facial expression show that the proposed method is 
significantly better than those state-of-the-art methods. Nath et al. 
(2020) compared the emotion recognition effects of LSTM with KNN, 
SVM, DT, and RF. Among them, LSTM has the best robustness 
and accuracy.

EEG signals are essentially multichannel time series signals. Thus, 
a more effective method for emotional recognition of EEG signals is to 
obtain the long-term dependence of EEG signals based on RNN. Li 
et  al. (2020) proposed a BILSTM network framework based on 
multimodal attention, which is used to learn the best time 
characteristics, and inputted the learned depth characteristics into the 
DNN to predict the emotional output probability of each channel. A 

FIGURE 8

Protocol of SEED-IV for four emotions (Zheng et al., 2018). Reproduced with permission from IEEE. Licence Number: 5493600273300.
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decision-level fusion strategy is used to predict the final emotion. The 
experimental results on AMIGOS dataset show that this method is 
superior to other advanced methods. Liu et al. (2017) proposed an 
emotion recognition algorithm model ground on multi-layer long 
short-term memory recurrent neural network (LSTM-RNN), which 
combines temporal attention (TA) and band attention (BA). 
Experiments on Mahnob-HCI database demonstrate the proposed 
method achieves higher accuracy and boosts the computational 
efficiency. Liu et al.(2021) studied an original algorithm named three-
dimension convolution attention neural network (3DCANN) for EEG 
emotion recognition, which is composed of spatio-temporal feature 
extraction module and EEG channel attention weight learning module. 
Figure 10 presents the details of the used 3DCANN scheme. Alhagry 
et al. (2017) proposed an end-to-end deep learning neural network to 
identify emotions from original EEG signals. It uses LSTM-RNN to 

learn features from EEG signals and uses full connection layer for 
classification. Li et al. (2022) proposed a C-RNN model using CNN and 
RNN, and used multichannel EEG signals to identify emotions. 
Although the method based on RNN has great advantages in processing 
time series data and has made great achievements, it still has 
shortcomings in the face of multichannel EEG data. GRU or LSTM can 
connect the relationship between different channels through 
multichannel fusion, but this processing ignores the spatial distribution 
of EEG channels and cannot reflect the dynamics of the relationship 
between different channels.

Among various network algorithms, CNNs have a good ability to 
extract features of convolution kernels. They can extract information 
features by transferring each part of the image with multiple kernels. 
They have been widely used in image processing tasks. For EEG signal, 
they can process raw EEG data well and can be  used for spectrum 

FIGURE 9

The used STRNN framework for EEG emotion recognition (Zhang T. et al., 2018). Reproduced with permission from IEEE. Licence Number: 5493591292973.

FIGURE 10

The flow of the 3DCANN algorithm (Liu et al.,2021). Reproduced with permission from IEEE. Licence Number: 5493600805113.
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diagram. Considering that the use of CNN to train EEG data can reduce 
the effect of noise, most studies use CNN for the emotional recognition 
of EEG signals to reduce the complexity of training. Thodoroff et al. 
(2016) combined CNN and RNN to train robust features for automatic 
detection of seizures. Shamwell et  al. (2016) explored a new CNN 
architecture with 4 convolutional layers and 3 fully connected layers to 
classify EEG signals. To reduce the over fitting of the model, Manor and 
Geva (2015) proposed a CNN model based on spatiotemporal 
regularization, which is used to classify single track EEG in RSVP (fast 
serial visual rendering). Sakhavi et  al. (2015) proposed a parallel 
convolutional linear network, which is an architecture that can represent 
EEG data as dynamic energy input, and used CNN for image 
classification. Ren and Wu (2014) applied convolutional DBN to classify 
EEG signals. Hajinoroozi et al. (2017) used covariance learning to train 
EEG data for driver fatigue prediction. Jiao et al. (2018) proposed an 
improved CNN method for mental workload classification tasks. Gao 
et al. (2020) proposed a gradient particle swarm optimization (GPSO) 
model to achieve the automatic optimization of the CNN model. The 
experimental results show that the proposed method based on the 
GPSO-optimized CNN model achieve a prominent classification 
accuracy. Figure 11 presents the details of the used GPSO scheme.

CNN can use EEG to identify many human diseases. Antoniades 
et al. (2016) used deep learning to automatically generate features of 
EEG data in time domain to diagnose epilepsy. Page et  al. (2016) 
conducted end-to-end learning through the maximum pool convolution 
neural network (MPCNN) and proved that transfer learning can be used 
to teach the generalized characteristics of MPCNN raw EEG data. 
Acharya et al. (2018b) proposed a five-layer deep CNN for detecting 
normal, pre seizure, and seizure categories.

The summary of recent state-of-the-art methods related to 
EEG-based emotion recognition system using machine learning and 
deep learning approaches is given in Table 2.

5. Open challenges

To date, although a number of literature related to EEG emotion 
recognition using deep learning technology is reported, showing its 
certain advance, a few challenges still exist in this area. In the following, 
we discuss these challenges and opportunities, and point out potential 
research directions in the future.

5.1. Research on the basic theory of affective 
computing

At present, the theoretical basis of emotion recognition mainly 
includes discrete model and continuous model, as shown in Figure 3. 
Although they are related to each other, they have not formed a unified 
theoretical framework. The relationship between explicit information 
(such as happy, sad, and other emotional categories) and implicit 
information (such as the signal characteristics of different frequency 
bands of EEG signals corresponding to happy, sad, and other emotional 
categories) in emotional computing is worthy of further study. Digging 
out the relationship between them is extremely important for 
understanding the different emotional states represented by 
EEG signals.

5.2. EEG emotion recognition data sets

For EEG-based emotion recognition, most publicly available 
datasets for affective computing use images, videos, audio, and other 
external methods to induce emotional changes. These emotional 
changes are passive, which are different from the emotional changes that 
individuals actively produce in real scenes and may lead to differences 

FIGURE 11

The schematic diagram of the GPSO algorithm (Gao et al., 2020). Reproduced with permission from Elsevier. Licence Number: 5493610089714.
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TABLE 2 Summary of EEG emotion recognition papers using Deep learning methods from 2017 to 2022.

Year References Stimulus Classification methods Emotion Acc.(%)

2017 Alhagry et al. (2017) DEAP LSTM-RNN Valence, Arousal, and Liking Arousal: 85.65, Valence: 85.45, Liking: 

87.99

2017 Li et al. (2017) DEAP CNN + RNN Arousal and Valence Arousal: 72.06, Valence: 74.12

2017 Liu et al. (2017) Mahnob-HCI LSTM-RNN Valence, Arousal, and F1-score Arousal: 73.1, Valence: 74.5;

F1-score:

Arousal: 72.3, Valence: 73.0

2018 Zhang T. et al. (2018) SEED and CK+ STRNN Positive, Negative, and Neutral SEED:

Overall Accuracy: 89.5

CK+:

Overall Accuracy: 95.4

2018 Jiao et al. (2018) The Sternberg 

memory task

Deep CNN Types of mental load Fused CNNs 1: 91.32

Fused CNNs 2: 92.37

2018 Song et al. (2018) SEED and 

DREAMER

DGCNN Positive, neutral and negative;

Arousal, Valence, and Dominance

SEED: 90.40, DREAMER:

Arousal: 84.54 Valence: 86.23

Dominance: 85.02

2018 Salama et al. (2018) DEAP 3D-CNN Arousal and Valence Arousal: 88.49 Valence: 87.44

2019 Chao et al. (2019) DEAP CapsNet Valence, Arousal and Dominance Valence: 66.73

Arousal: 68.28

Dominance: 67.25

2019 Gonzalez et al. (2019) DEAP, IAPS and 

DREAMER

CNN Valence and Arousal Single subject:

Valence: 70.26

Arousal: 72.42

2019 Garg et al. (2019) DEAP Merged LSTM Arousal, Valence, Liking and 

Dominance

Arousal: 83.85, Valence: 84.89

Liking: 80.72 Dominance: 84.37

2019 Wang et al. (2019) SEED DNNs Positive, Negative, and Neutral Overall Accuracy: 93.28

2019 Chen et al. (2019b) DEAP Bagging Tree (BT), SVM, LDA, 

Bayesian LDA, Deep CNN

Valence and Arousal Valence: 99.97 (using CVCNN), 

Arousal: 99.58

(using GSLTCNN)

2019 Ma et al. (2019) DEAP multimodal residual LSTM Arousal and Valence Valence: 92.30

Arousal: 92.87

2019 Pandey and Seeja 

(2019)

DEAP DNN Arousal and Valence Arousal: 61.25 Valance: 62.50

2020 Nakisa et al. (2020) Audio-video Clips ConvNet long short-term memory 

(LSTM; early and late fusion)

Low Arousal Positive, High Arousal 

Positive,

Low Arousal Negative, High 

Arousal Negative

Overall accuracy:

Early fusion:71.61

Late fusion: 70.17

2020 Nath et al. (2020) DEAP LSTM Arousal and Valence Valence: 94.69

Arousal: 93.13

2020 Gao et al. (2020) Film clips GPSO-optimized CNN Fear, happiness, and sadness Overall accuracy: 92.44 ± 3.60

2020 Joshi and Ghongade 

(2020)

Own dataset BiLSTM Positive, neutral and negative Overall Accuracy:72.83

2020 Wei et al. (2020) SEED SRU Positive, neutral and negative Overall Accuracy:80.02

2020 Sharma et al. (2020) DEAP and SEED LSTM Arousal and

Valence

Positive, neutral and negative

DEAP:

4 classes: 82.01

Arousal: 85.21 Valance: 84.16

SEED: 90.81

2020 Alhalaseh and 

Alasasfeh (2020)

DEAP CNN, k-NN, NB, DT Valence and

Arousal

Overall accuracy:

95.20 (using CNN)

2020 Cui et al. (2020) DEAP and 

DREAMR

Regional- Asymmetric 

Convolutional Neural Network

(RACNN)

Valence and Arousal Overall accuracy:

96.65 (Valence),

97.11 (Arousal)

(Continued)
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in their EEG signals. Therefore, how to solve the difference between the 
external-induced emotional change and the internal active emotional 
change is a subject worthy of study.

Different individuals may not induce the same emotion for the 
same emotion-inducing video due to the differences in the physiology 
and psychology between different subjects. Although the same emotion 
is generated, the EEG signals will have some differences due to the 
physiological differences between individuals. To effectively solve the 
problem of individual differences, we  can build a personalized 
emotional computing model from the perspective of individuals. 
However, building an emotion recognition model with better 
generalization ability is a relatively more economical solution because 

the collection and annotation of physiological signals will bring about 
a large cost. An effective method to improve the generalization ability 
of affective computing models is transfer learning (Pan et al., 2011). 
Therefore, how to combine the agent independent classifier model with 
the transfer learning technology may be a point worth being considered 
in the future.

The privacy protection of users’ personal information is an 
important ethical and moral issue in the Internet era. The EEG and other 
physiological signals collected in emotional computing belong to users’ 
private information, so privacy protection should be paid attention. At 
present, research in this area has only started (Cock et al., 2017; Agarwal 
et al., 2019).

TABLE 2 (Continued)

Year References Stimulus Classification methods Emotion Acc.(%)

2020 Hassouneh et al. 

(2020)

Own dataset LSTM Happy, fear, anger, sad, Surprise 

and disgust

Overall accuracy: 7.25

2020 Liu et al. (2020) SEED DECNN Positive and negative Overall accuracy: 97.56

2020 Li et al. (2020) AMIGOS Bidirectional LSTM-RNNs Valence and Arousal Arousal:

F1-Score: 61.3, ACC: 73.5;

Valence:

F1-Score: 58.3, ACC: 67.8

2021 Topic and Russo 

(2021)

DEAP,DREAMER, 

SEED and 

AMIGOS.

CNN + SVM Arousal and

Valence;

Positive and negative

DEAP:

Arousal:77.7 andValence: 76.6

DREAMER:

Arousal: 90.4 andValence: 88.2

AMIGOS:

Arousal: 90.5 andValence: 78.4

SEED: 88.5

2021 Liu and Fu (2021) DEAP multi-channel feature fusion SROCC and PLCC SROCC: 78.9,

PLCC: 84.3

2021 Sakalle et al. (2021) Own dataset, 

DEAP and SEED

LSTM Disgust, sadness, surprise, and 

anger

Positive, negative, and neutral

DEAP: 91.38 SEED: 89.34

Own dataset:

4 class: 94.12

3 class: 92.66

2021 Huang et al. (2021) DEAP BiDCNN Arousal and Valence Subject-dependent

Arousal:94.72 Valence: 94.38

Subject-independent

Arousal: 63.94 Valence: 68.14

2022 Chowdary et al. 

(2022)

Own dataset RNN, LSTM, and GRU positive, negative, and neutral average accuracy:

RNN: 95, LSTM: 97, GRU:96

2022 Algarni et al. (2022) DEAP Bi-LSTM arousal, valence and liking average accuracy:

valence: 99.45, arousal: 96.87, liking: 

99.68

2022 Tuncer et al. (2022) DREAMER LEDPatNet19 arousal, dominance, and valance valence: 94.58,

arousal: 92.86,

arousal: 94.44

2022 Li et al. (2022) DEAP and SEED ensemble learning arousal and valence DEAP average accuracy:

Arousal: 65.70, valence: 64.22

SEED average accuracy: 84.44

2022 He et al. (2022) DREAMER and 

DEAP

adversarial discriminative-

temporal convolutional networks 

(AD-TCNs)

arousal and valence DEAP average accuracy:

Arousal: 64.33, valence: 63.25

DREAMER average accuracy:

Arousal: 66.56, valence: 63.69

2022 Wang et al. (2022) DEAP 2D CNN arousal and valence Average accuracy:

Arousal: 99.99, valence: 99.98
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5.3. EEG signal preprocessing and feature 
extraction

In the EEG signal acquisition experiment, many equipment are 
needed, and the noise acquisition should be minimized. However, 
EEG signal acquisition is more complex, and the acquisition results 
are often vulnerable to external factors. Therefore, collecting EEG 
signals with high efficiency and quality is an important part of 
affective computing. Effective preprocessing can remove the noise 
in the original EEG signal, improve the signal quality, and help 
feature extraction, which is another important part for affective  
computing.

The common features of EEG signal include power spectral density, 
differential entropy, asymmetric difference of differential entropy, 
asymmetric quotient of differential entropy, discrete wavelet analysis, 
empirical mode decomposition, empirical mode decomposition sample 
entropy (EMD_SampEn), and statistical features (mean, variance, etc.). 
How to extract appropriate features or fuse different features will have 
an important effect on affective computing models.

6. Conclusion

Multiple recent studies using deep learning have been conducted for 
EEG emotion recognition associated with promising performance due 
to the strong feature learning and classing ability of deep learning. This 
paper attempts to provide a comprehensive survey of existing EEG 
emotion recognition methods. The common open data sets of 
EEG-based affective computing are introduced. The deep learning 
techniques are summarized with specific focus on the common methods 
of emotional calculation of EEG signals, related algorithms. The 
challenges faced by emotional computing based on EEG signals and the 
problems to be solved in the future are analyzed and summarized.
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Introduction: As a biomarker of depression, speech signal has attracted the

interest of many researchers due to its characteristics of easy collection and

non-invasive. However, subjects’ speech variation under different scenes and

emotional stimuli, the insufficient amount of depression speech data for deep

learning, and the variable length of speech frame-level features have an impact

on the recognition performance.

Methods: The above problems, this study proposes a multi-task ensemble

learning method based on speaker embeddings for depression classification. First,

we extract the Mel Frequency Cepstral Coefficients (MFCC), the Perceptual Linear

Predictive Coefficients (PLP), and the Filter Bank (FBANK) from the out-domain

dataset (CN-Celeb) and train the Resnet x-vector extractor, Time delay neural

network (TDNN) x-vector extractor, and i-vector extractor. Then, we extract

the corresponding speaker embeddings of fixed length from the depression

speech database of the Gansu Provincial Key Laboratory of Wearable Computing.

Support Vector Machine (SVM) and Random Forest (RF) are used to obtain the

classification results of speaker embeddings in nine speech tasks. To make full

use of the information of speech tasks with different scenes and emotions, we

aggregate the classification results of nine tasks into new features and then obtain

the final classification results by using Multilayer Perceptron (MLP). In order to take

advantage of the complementary effects of different features, Resnet x-vectors

based on different acoustic features are fused in the ensemble learning method.

Results: Experimental results demonstrate that (1) MFCC-based Resnet x-vectors

perform best among the nine speaker embeddings for depression detection; (2)

interview speech is better than picture descriptions speech, and neutral stimulus is

the best among the three emotional valences in the depression recognition task;

(3) our multi-task ensemble learning method with MFCC-based Resnet x-vectors

can effectively identify depressed patients; (4) in all cases, the combination of

MFCC-based Resnet x-vectors and PLP-based Resnet x-vectors in our ensemble

learning method achieves the best results, outperforming other literature studies

using the depression speech database.

Discussion: Our multi-task ensemble learning method with MFCC-based Resnet

x-vectors can fuse the depression related information of different stimuli
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effectively, which provides a new approach for depression detection. The

limitation of this method is that speaker embeddings extractors were pre-trained

on the out-domain dataset. We will consider using the augmented in-domain

dataset for pre-training to improve the depression recognition performance

further.

KEYWORDS

depression detection, Resnet x-vectors, speaker embeddings, ensemble learning, speech
task stimuli

1. Introduction

Depression is a common and recurrent mood disorder
accompanied by functional disability, significantly impacting the
individual’s physical and mental health and daily activities (Spijker
et al., 2004). More than 300 million people worldwide suffer from
depression, equivalent to 4.4% of the world’s population (World
Health Organization, 2017). The latest scientific brief shows a
dramatic 25% increase in the global prevalence of anxiety and
depression in the first year of the Coronavirus 2019 (COVID-
19) pandemic (World Health Organization, 2022). At present,
the diagnostic methods for depression detection mainly rely on
psychiatrists and scales. The accuracy of diagnostic results is
affected by subjective factors such as doctors’ clinical experience
and whether patients can fully describe their physiological and
psychological conditions.

On the other hand, in China, only 7.1% of depression patients
who seek treatment in mental health institutions receive adequate
treatment (Lu J. et al., 2021). The lack of medical resources
leads to many patients being unable to see a doctor in time.
Therefore, exploring objective and effective new techniques to
identify depression has attracted much attention. Researchers have
focused on seeking objective biological markers [i.e., gut hormones
(Rajkumar, 2021)], physiological markers [i.e., EEG (Cai et al.,
2020)] and eye movement (Shen et al., 2021), and behavioral
markers [i.e., speech (Othmani et al., 2021) and facial expressions
(Guo et al., 2021)] to aid in the diagnosis of depression. Among
these markers, speech signal has become an important research
direction for auxiliary diagnosis of depression due to its advantages
of acquisition, non-invasion, non-disturbance, low cost, and a large
amount of information.

Depression patients are typically sluggish (Beck and Alford,
2009), with longer pauses (Szabadi et al., 1976; Greden and
Carroll, 1980) and a lack of rhythm (Alpert et al., 2001). The
research showed that the percentage of pause time, the standard
deviation of fundamental frequency distribution, the standard
deviation of fundamental frequency change rate, and speech speed
are correlated with the clinical status of patients with depression
(Nilsonne, 1987). There is a strong correlation between speed,
percent pause, pitch variation, and scale score (Cannizzaro et al.,
2004). Depressed people treated and improved had more significant
variation in pitch cycles, fewer pauses, and faster speech (Mundt
et al., 2007). Thus, depressed people and healthy people have
different pronunciations.

In order to make full use of the influence of speech tasks
with different scenes and different emotional stimuli on speech

of depressed patients and normal subjects, we designed a multi-
task ensemble learning method with speaker embeddings in our
depression speech dataset containing 9 speech tasks, and proved
the effectiveness of this method from the accuracy, F1-D and F1-H.

The organization of the paper is as follows. The second
section briefly reviews some related studies. The two datasets
used in this paper are introduced in the third section. Next, the
fourth section describes the multi-task ensemble learning method
using speaker embeddings for depression recognition proposed
in this study. Afterward, in the fifth section, the experimental
results are presented. Finally, the conclusions and future works are
summarized in the sixth section.

2. Related works

At present, there have been many approaches for depression
recognition based on speech processing. Searching for effective
acoustic features has always been an important research direction.
Manual features such as spectral, source, prosodic, and formant
features are commonly employed when analyzing depression and
suicidality (Cummins et al., 2015). Moreover, these features are also
regarded as inputs to deep neural networks (Lang and Cui, 2018;
Lu X. et al., 2021). Studies have shown that the advanced features
generated by MFCC feeding into the Short Long-Term Memory
(LSTM) can preserve information related to depression (Rejaibi
et al., 2022). PLP, and MFCC, called the low-level descriptors, are
used to train the multiple classifier systems (Long et al., 2017). The
input of the network model is a 3D feature made up of FBANK,
the first-order and second-order differences to use the information
in speech signals entirely (Wang et al., 2021). The findings of the
aforementioned study illustrate that MFCC, PLP, and FBANK as
front-end features can refine enough speech details.

Speaker embeddings such as i-vectors, d-vectors, and x-vectors
have shown their superiority in speaker recognition (Variani
et al., 2014; Wang et al., 2017), and depression detection (Egas-
López et al., 2022). Scholars have found that speaker embeddings
cannot only solve the variable length problem of frame-level
features but also encode the speaker identity and the speech
content to a large extent (Wang et al., 2017). In addition,
speaker embeddings we extracted are based on the pre-trained
speaker recognition model, which can be used for depression
recognition tasks. The i-vectors, the low-dimension compact
representations, were first proposed for speaker verification (Dehak
et al., 2010). Afterward, the i-vector framework was widely
applied in speaker recognition (Kanagasundaram et al., 2012),
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emotion recognition (Vekkot et al., 2019), Alzheimer’s disease
(AD) detection (Egas López et al., 2019), Parkinson’s disease
(PD) detection (Garcia et al., 2017), and depression detection
(Cummins et al., 2014; Rani, 2017; Afshan et al., 2018; Mobram
and Vali, 2022). Furthermore, the correlation between MFCC
i-vectors and MFCC features has been determined, and the
effectiveness of i-vectors has been examined in diagnosing major
depressive disorder (MDD) (Di et al., 2021). A comparison of
various i-vectors based on spectral features, prosodic features,
formants, and voice quality for clinical depression detection during
the interview discovered that spectral feature i-vectors gained
the highest accuracy in distinguishing between the speech of
depressed and control (Xing et al., 2022). I-vectors can limit
speaker and channel variability, which helps the model focus
more on depression detection. With the development of the
embedding technique, Deep Neural Network (DNN) embeddings,
fixed-dimensional speaker embeddings extracted from a feed-
forward DNN outperformed i-vectors for text-independent speaker
verification on short speech segments (Snyder et al., 2017).
X-vectors, the new state-of-the-art speaker embeddings, have been
applied in speaker recognition (Snyder et al., 2017, 2018, 2019;
Garcia-Romero et al., 2019). The encoder networks of x-vectors
include the following categories: TDNN (Waibel et al., 1989),
Extended TDNN architecture (E-TDNN) (Snyder et al., 2019),
the factorized TDNN (F-TDNN) with skip connections (Povey
et al., 2018), and Resnet 2D (He et al., 2016). Experiments show
that x-vectors can capture spoken content and channel-related
information (Raj et al., 2019). Furthermore, the TDNN x-vectors
or F-TDNN x-vectors based on MFCC have demonstrated better
performance than PLP i-vectors for the automatic detection of
PD (Moro-Velazquez et al., 2020). Besides, the x-vector technique
has been used as an advanced method for emotion recognition
(Pappagari et al., 2020b), AD detection (Pappagari et al., 2020a),
and depression detection (Dumpala et al., 2021, 2022; Egas-López
et al., 2022). Consequently, depression detection is carried out in
this study using the x-vector approach with the i-vector framework
as the baseline.

One unavoidable problem is that the amount of depression
data limits that model training. Publicly available and commonly
used depression speech datasets are the Audio-Visual Emotion
Recognition Challenge and Workshop (AVEC) 2013 (Valstar
et al., 2013), including 340 video clips from 292 subjects, and
AVEC 2014 (Valstar et al., 2014), including 150 files of 84
speakers. DNN trained on such data would lead to under-
fitting; consequently, the classification result needs to be more
convincing. One workable solution to the above problem is to
pre-train a model on extensive data followed by leveraging the
model’s knowledge to downstream tasks [e.g., speaker recognition
(Snyder et al., 2018), PD detection (Moro-Velazquez et al., 2020),
depression detection (Zhang et al., 2021)]. Primarily, results in
Zhang et al. (2021) showed that the larger out-domain (e.g., speech
recognition) dataset for audio embedding pre-training generally
improves performance better than the relatively little in-domain
(depression detection) dataset. Therefore, we pre-trained speaker
embedding extractors on CN-Celeb (Fan et al., 2020), a large-
scale Chinese speaker recognition dataset, followed by extracting
corresponding embeddings on our Chinese depression speech
dataset.

The method of training models with classification algorithms
has occurred frequently in depression detection. SVM and RF were
used for depression classification not only on low-level descriptors
(LLD) and related functionals in Tasnim and Stroulia (2019) but
also on i-vectors in Xing et al. (2022). On the other hand, the
results of Saidi et al. (2020), comparing the baseline CNN model
with the model combining CNN and SVM, have shown that the
SVM classifier improved the classification accuracy. An exploratory
study (Espinola et al., 2021), which compared experimental
results of MLP, Logistic Regression (LR), RF, Bayes Network,
Naïve Bayes, and SVM with different kernels, concluded that
RF provided the highest accuracy among all classifiers for MDD
detection. Therefore, SVM and RF were preferred as classification
algorithms to evaluate speaker embeddings’ performance in our
study comprehensively.

There have been studies showing that there are differences
between depressed and normal subjects’ speech under different
speech task stimuli. The collection of spontaneous and read
speech from 30 depressed and 30 control subjects was
used to extract acoustic features (Alghowinem et al., 2013).
DEPression and Anxiety Crowdsourced corpus (DEPAC)
(Tasnim et al., 2022), which has a diversity of speech tasks
(Phoneme fluency, Phonemic fluency, Picture description,
Semantic fluency, and Prompted narrative), has been published
recently as a depression and anxiety detection corpus.
Furthermore, the classification results in Long et al. (2017)
based on the corpus of three speech types (reading, picture
description, and interview), each of which corresponds to three
emotional valences (negative, neutral, and positive), showed
that speaking style and mood had a significant influence on
depression recognition. From the theory of ensemble learning,
combining multiple learners makes a whole’s generalization
ability usually much more robust than a single learner
(Zhou, 2021). Also, multiple speech modes with different
affective valence are natural learners. As a result, this study
combined the information of nine speech tasks under multiple
scenes and emotional valences using the ensemble learning
method to improve the depression recognition ability of the
model.

The proposed depression detection system was based on the
speaker embedding framework and a multi-task ensemble learning
approach. The whole process was divided into two stages. The first
stage is the process of pre-training speaker embedding extractors.
Nine speaker embedding extractors that differed in the front-
end features and framework were trained on CN_Celeb. Three
front-end feature sets contained MFCC, PLP, and FBANK. Three
embedding frameworks contained i-vector, TDNN, and Resnet. In
this stage, each speaker embedding extractor could change frame-
level features of different lengths into fixed lengths and, more
importantly, overcome the challenge of insufficient depression
data volume. The second stage is to extract speaker embeddings
of the depression dataset and make further classification. The
same front-end features were extracted for the depression data
of nine tasks, and we obtained the corresponding speaker
embeddings using the pre-trained extractors. The depression
classification percentage of nine utterances from one subject
attained by the SVM classifier were aggregated into integrated
features. The final results were then obtained using MLP based on
the new features.
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The main contributions of this paper are as follows:

1. The speaker embedding extractors were pre-trained on the
large-scale out-domain dataset to alleviate the problem of
insufficient depression data for depression recognition.

2. We have proved that based on MFCC, PLP, and FBANK,
Resnet x-vectors, which are first used to detect depression,
outperform TDNN x-vectors, and i-vectors.

3. In the depression detection task, interview speech caught more
acoustic differences between depressed and normal subjects
than picture description speech. Neutral stimuli performed
better compared to positive and negative stimuli.

4. The effectiveness of our multi-task ensemble learning
approach was verified on multiple speaker embeddings.
Moreover, our multi-task ensemble learning method with
Resnet x-vectors can effectively identify depressed patients.

3. Database

Two speech corpora were employed in this study: the first,
CN-Celeb, is an extensive Chinese speaker recognition dataset
collected ‘in the wild’ for training i-vector, TDNN x-vector, and
Resnet x-vector extractors; the other, the depression speech dataset,
is a corpus containing recordings from normal and depressed
subjects and was utilized to extract speaker embeddings (i-vectors,
TDNN x-vectors, and Resnet x-vectors) and to train back-end
classifiers and multi-task ensemble learning models to evaluate
their performance in automatic depression detection.

3.1. CN-Celeb

CN-Celeb (Fan et al., 2020) contains more than 130,000
utterances from 1,000 Chinese celebrities, covering 11 different
speech scenarios. We chose CN-Celeb for three reasons: its large
quantity, which is an indispensable part of the pre-trained model;
the language of all recordings is Chinese, which is the same as
that of the depression dataset; and its rich speech genres, some
of which match the tasks of the depression dataset. Because the
task type of the depression speech dataset used in this experiment
is interview and picture description, which are all spontaneous
speech, the average length of each utterance is longer than 10 s.
Based on the comprehensive consideration of speech modes and
average duration of each utterance, we select all the speech in
the interview and speech scenes of CN-Celeb. The subset includes
67,718 utterances from 902 Chinese celebrities with a total length
of 171.99 h. The interview scenario contains 780 subjects with
59,317 utterances and lasts 135.77 h. As for the speech genre,
8,401 utterances from 122 speakers were collected, with a length
of 36.22 h. All of them were sampled at 16 kHz.

3.2. Depression speech database

We collected speech data from Beijing Anding Hospital,
Lanzhou University Second People’s Hospital, and Tianshui Third
People’s Hospital. All subjects were aged between 18 and 55,
native Chinese speakers, and had a primary school education

TABLE 1 Details of nine tasks.

Task Genres Valences Problems

Task1 Interview Positive If you have a vacation to travel, please
describe your travel plans.

Task2 Interview Positive Please share what you think is a good
memory and briefly describe the scene.

Task3 Interview Neutral How are you feeling these days? How does
this affect your life?

Task4 Interview Neutral How is your health these days? How has it
affected your life?

Task5 Interview Neutral How do you rate yourself?

Task6 Interview Negative Describe an event that caused you great
pain.

Task7 Picture
description

Positive Describe the positive facial expression, and
guess the reason for the expression.

Task8 Picture
description

Neutral Describe the neutral facial expression, and
guess the reason for the expression.

Task9 Picture
description

Negative Describe the negative facial expression, and
guess the reason for the expression.

or above. The patients were required to meet DSM-IV criteria
(American Psychiatric Association, 1994) with the Patient Health
Questionnaire-9 (PHQ-9) (Kroenke et al., 2001) score of 5 or
greater and not to have taken any psychotropic drugs during the
first 2 weeks of enrollment. In comparison, the control subjects
had no definite mental disorder diagnosis and regular mental
activity. In order to obtain high-quality speech data, the experiment
was conducted in a room with good sound insulation and no
electromagnetic interference, and the ambient noise was ensured to
be lower than 60 dB. For the purpose of avoiding the distortion of
the voice data, a high-precision sound card and microphone were
used. The recordings were saved in Waveform Audio File Format
(WAV) with a sampling rate of 44.1 kHz and a sampling width of
24 bit. The preprocessing steps of speech signal mainly included
pre-emphasis, frame segmentation, and endpoint detection.

This dataset followed two different experimental paradigms
whose intersection contained 9 identical speech tasks, including
six interview tasks and three picture description tasks with three
emotions (positive, neutral, and negative). The specific tasks are
listed in Table 1. With regard to the evaluation of the valence
of interview questions, we recruited 33 volunteers to score the
valence and arousal of these questions, respectively, and then
divided them into three types according to the degree of pleasure:
positive, neutral and negative. The face images displayed in the
picture description scene were taken from the Chinese facial
affective picture system (CAPS) (Gong et al., 2011), which contains
870 facial images of seven emotions: anger, disgust, fear, sadness,
surprise, happiness, and calm. The evaluation is conducted from
the three dimensions of pleasure, arousal, and dominance. We
selected three female face images of happiness, calm, and sadness
as the picture description materials of positive, neutral, and
negative stimuli. After Voice Activity Detection (VAD) to all
recordings, data from 536 subjects, including 226 normal subjects
and 310 depressed subjects, were preprocessed and retained.
Each participant contained nine speech segments. Details of the
depression speech dataset used in this study are shown in Table 2,
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TABLE 2 Details of subjects’ information.

Subject
type

Gender Subject
numbers

Utterance
numbers

Age mean (standard
deviation)

PHQ-9 mean (standard
deviation)

Utterance duration
mean(s)

Depression Male 142 1,278 37.03 (10.88) 14.49 (7.15) 20.74

Female 168 1,512 38.23 (12.14) 14.85 (8.24)

Normal Male 119 1,071 36.00 (10.82) 1.47 (2.31) 15.50

Female 107 963 33.36 (10.53) 1.42 (0.69)

FIGURE 1

General methodology diagram of the proposed depression detection system. The acoustic feature could be MFCC, PLP, or FBANK. The speaker
embedding extractor type can be i-vector, TDNN x-vector, and Resnet x-vector, and the speaker embedding type is derived from the extractor type.
n represents the number of training subjects. The subjects are divided into 10 folds according to the 10-fold cross-validation rule, in which nine
folds are used for training and onefold for testing.

including the subject number, utterance number, age, PHQ-9 score,
and the average duration of each utterance in the two groups.

4. Methodology

The method proposed in this paper aims to improve depression
classification performance using integrated learning combined with
a pre-trained speaker embedding system and multiple speech task
stimuli. Figure 1 shows a general block diagram of the depression
detection system used in this study.

Firstly, the speech features are extracted from the preprocessed
utterances (Section “4.1. Acoustic feature extraction”). Next, the
speaker embedding extractors are pre-trained based on acoustic
features of the out-domain dataset, and speaker embeddings of the
multi-task in-domain dataset are extracted (Section “4.2. Speaker
embedding extraction”). In order to take advantage of the effects
of nine tasks, the multi-task integrated learning approach is carried
out in Section “4.3. Multi-task ensemble learning method.” These
are described in detail below.

4.1. Acoustic feature extraction

Three acoustic feature sets, including MFCC, PLP, and FBANK,
were extracted from each utterance of both CN-Celeb and
our depression speech dataset in this study. This process was

implemented by Kaldi Toolbox (Povey et al., 2011). We used
three kinds of frame-level representations: 60-dimensional MFCCs,
60-dimensional PLPs, and 60-dimensional FBANKs, all with a
Hamming window, a frame-length of 25 ms, and a frame-shift of
10 ms.

Mel Frequency Cepstral Coefficients was proposed based on
the acoustic characteristics of the human ear, which could be
understood as the energy distribution of speech signals in different
frequency ranges. MFCC often serves as a standard to fit i-vector
models (Di et al., 2021) or x-vector models (Egas-López et al., 2022),
or other deep network models (Rejaibi et al., 2022). The literature
results convince us that MFCC can contribute to the training of
speaker embedding systems.

PLP was proposed using the results obtained from human
auditory experiments, and it was beneficial to extract anti-noise
speech features. The results of Moro-Velazquez et al. (2020)
comparing the i-vector extractors based on PLP and the x-vector
extractors based on MFCC showed that the two systems had their
advantages in PD detection. Therefore, we extracted PLP for a
comparative study of depression recognition.

The response of the human ear to the sound spectrum is
nonlinear. FBANK is a front-end processing algorithm that can
improve speech recognition performance by processing audio
similarly to the human ear. The literature demonstrated that
FBANK was more effective than MFCC in x-vector training for the
Escalation SubChallenge (José Vicente et al., 2021) and depression
assessment (Egas-López et al., 2022). Consequently, FBANK was
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FIGURE 2

The block diagram of the Resnet x-vector extraction process.

also extracted in this study for subsequent training of speaker
embedding extractors.

4.2. Speaker embedding extraction

In this study, three frameworks were performed to train
different types of speaker embedding extractors based on the
acoustic characteristics of CN-Celeb. The task of pre-training is to
improve the performance of speaker recognition. We transferred
the knowledge learned in the pre-training process to the depression
recognition task, that is, to retain the extractors obtained in
the upstream task. We applied them to the speaker embedding
extraction on phonetic features of the depression speech database.
Note that i-vectors served as a classic baseline method without
deep learning and TDNN x-vectors served as a DNN baseline.
We focused on a new state-of-the-art speaker recognition method:
the Resnet x-vectors in depression detection. The procedure of
i-vector extraction was carried out using Kaldi. At the same
time, the extraction of TDNN x-vectors and Resnet x-vectors was
implemented on ASV-Subtools (Tong et al., 2021).

4.2.1. I-vector extraction
The i-vector framework can map speech recordings of arbitrary

duration to low dimensional space, and a compact representation
of fixed length is obtained. Acquiring the Universal Background
Model (UBM) is to train a diagonal covariance matrix and a full
matrix on all training subjects’ speech data. UBM is a speaker–and
channel-independent Gaussian Mixture Model (GMM), which can
be regarded as the unified reference coordinate space of the training
set. When initializing UBM, the number of Gaussian components,
denoted as C, must be set. The ith (i = 1, 2, ..., C) Gaussian
component includes a weight (wi), a mean vector (µi), and a
covariance matrix (6i). Thus, the Gaussian mean supervector
(m) of UBM can be obtained. Furthermore, the Gaussian mean
supervector (M) of the utterance (h) from the speaker (s) is defined
as follows:

Ms,h = m+ Tωs,h (1)

Different from the two spaces (a speaker subspace and a session
subspace) included in the Joint Factor Analysis (JFA) model,

the total variability space (T), which contains the speaker and
channel effects simultaneously, is employed in the i-vector model
(Dehak et al., 2010). ω is the total variability space factor, and its
maximum-a-posteriori (MAP) point estimate is the i-vector. After
UBM training, the Baum-Welch statistics of each speaker in the
training set are calculated, and T is iteratively estimated by the
Expectation-Maximization (EM) algorithm. Ms,h is obtained using
MAP adaptation followed by the estimation of i-vectors based on
ωs,h. More details on the calculation of Baum-Welch statistics and
i-vector estimation can be sought out in Dehak et al. (2010).

In this study, we set the number of Gaussian components as 256
and the i-vector dimension as 256.

4.2.2. TDNN x-vector extraction
The TDNN x-vector approach provides a fixed-dimensional

utterance-level representation by using a time-delay neural network
and the features of variable-length speech. Extracting TDNN
x-vectors contains several steps. Firstly, the TDNN architecture
runs at the frame level. The current time step is represented by t.
The input to the next frame-level layer is concatenated from the
current frame and its context of past and future frames. Therefore,
the next layer of frame-level representation condenses the temporal
context information. As the network deepens gradually, the scope
of the temporal context becomes wider. After three time-delay
operations, one frame in the fourth layer corresponds to 15 frames
in the context of the first layer. The stats pooling layer aggregates
all the frames of the speech segment and calculates the mean and
standard deviation. Finally, TDNN x-vectors are obtained in the
segment-level layer.

Time delay neural network x-vectors and Resnet x-vector
extractors were trained on the Pytorch framework. The speech
utterances were divided into chunks of 200 frames, and we set
the batch size as 64. Moreover, the dimension of TDNN x-vectors
and Resnet vectors was 256, the same as that of i-vectors. The
process of the Resnet x-vector extraction is detailed in Section
“4.2.3. Resnet x-vector extraction.” We used a ralamb optimizer
containing LookAhead and RAdam optimizer with Layer-wise
Adaptive Rate Scaling (LARS). The learning rate was set to 0.001,
attenuating every 400 steps and an attenuation factor of 0.7. The
number of training sessions was 18.
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TABLE 3 Resnet encoder architecture.

Layer Input Output Down sample Kernel Stride Channels Blocks

Conv1 F × T F × T False 7× 7 1 32 –

Resblock1 F × T F × T False 3× 3 1 32 3

Resblock2 F × T F
2 ×

T
2 True 3× 3 2 64 4

Resblock3 F
2 ×

T
2

F
4 ×

T
4 True 3× 3 2 128 6

Resblock4 F
4 ×

T
4

F
8 ×

T
8 True 3× 3 2 256 3

Stats pooling F
8 ×

T
8

F
4 × 1 – – – 256 –

TDNN affine F
4 × 1 1× 1 – F

4 × 1 1 256 –

F is the feature dimension (F = 60 for MFCC, PLP, and FBANK), and T is the sequence length.

4.2.3. Resnet x-vector extraction
Residual learning was proposed to simplify training for deeper

networks (He et al., 2016). We followed the Resnet34 encoder
described by Villalba et al. (2020) to train Resnet x-vector
extractors. Figure 2 shows the block diagram of the Resnet x-vector
extraction process. Specific architecture of the Resnet encoder
is listed as Table 3. The repetition times of the four residual
blocks are 3, 4, 6, and 3, respectively, and the number of residual
block channels is gradually doubled from 32 to obtain deeper
information. The dimension of acoustic features and the number
of speech frames are denoted as F and T, respectively. When the
stride is set to 2, the dimensions of F and T to the output are halved.
Due to the addition operation in residual blocks, the input needs
to be downsampled to ensure the same dimensions before adding.
Finally, each speech segment can obtain Resnet x-vectors of fixed
length after the average pooling layer.

In this study, Adam Weight Decay Regularization optimizer
was used in Resnet, and the learning rate was set to 0.001.
The attenuation factor was 1.0, and the number of training
sessions was 21.

4.3. Multi-task ensemble learning
method

In the front-end of the multi-task ensemble learning method,
nine speaker embeddings with nine task stimuli were extracted
from three acoustic features. The symbolic marks of speaker
embeddings are shown in Table 4. The acoustic features can

TABLE 4 The denotation of speaker embeddings.

Denotation Description

R_m Resnet x-vectors based on MFCC

R_p Resnet x-vectors based on PLP

R_f Resnet x-vectors based on FBANK

T_m TDNN x-vectors based on MFCC

T_p TDNN x-vectors based on PLP

T_f TDNN x-vectors based on FBANK

I_m I-vectors based on MFCC

I_p I-vectors based on PLP

I_f I-vectors based on FBANK

be MFCC, PLP, and FBANK. The types of speaker embedding
extractors in pre-training can be i-vector, TDNN x-vector, and
Resnet x-vector. Speaker embeddings are extracted according
to the speaker embedding extractors. In the back-end part,
Speaker Embeddings(j) and pi

(j) represent speaker embeddings of
the jth speech task and the SVM classification result of the jth
speech task from the ith (i = 1, 2, ..., n) subject, respectively.
Then, all the training set results are spliced and transposed into the
matrix. The same operation is performed for the testing set, and the
results of this fold are obtained by using MLP.

4.4. Combination of different Resnet
x-vectors in multi-task ensemble
learning method

This study also combined different Resnet x-vectors in our
proposed multi-task ensemble learning method. Resnet x-vectors
based on different speech features contain different acoustic
information, which may play a complementary role in depression
recognition. Figure 3 shows that the classification results of three
Resnet x-vectors (R_m, R_p, and R_f) on the training partition
using SVM are fused into new features in nine tasks, and MLP is
carried out to train the optimal model on the training set.piR_m(j),
piR_p(j), and piR_f (j) represent the SVM classification result of the
jth speech task from the ith (i = 1, 2, ..., n) subject based on R_m,
R_p, and R_f, respectively. Although Figure 3 shows the fusion
process of three Resnet x-vectors, the experiment also carries out
fusion cases of two Resnet x-vectors. Additionally, the figure only
shows the result of one test fold; the final result is the average of 100
repetitions of 10-fold cross-validation.

5. Experimental results

Our experiments have done the following work: In Section
“5.1. Results of nine speaker embeddings for depression detection,”
we use SVM and RF to compare the performance of nine
speaker embeddings in nine tasks. We analyze the performance
difference of the Resnet x-vector extractor compared with the
TDNN x-vector extractor and the i-vector extractor, the impact
of different acoustic features on the three speaker embedding
extractors, and the impact of different speech task types and
emotional valences on speaker embeddings. In Section “5.2. Results
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FIGURE 3

Resnet x-vector fusion of the proposed depression detection system. n denotes the number of the training subjects.

of multi-task ensemble learning methods with speaker embeddings
for depression detection,” we compare the performance of our
multi-task ensemble learning method and the other two literature
methods in nine speaker embeddings. Moreover, the best effect
is obtained by fusing Resnet x-vectors based on different features
in the integrated learning method and then compared with the
proposed literature studies.

In order to fully evaluate the performance of multiple
speaker embeddings and ensemble learning methods in depression
detection, we used accuracy, F1-D, and F1-H as performance
metrics. F1-D and F1-H are F1 scores of depressed and healthy
classes, respectively. For the binary problem in this paper, the four
categories in the confusion matrix are True Positive (TP), False
Negative (FN), False Positive (FP), and True Negative (TN). The
accuracy, F1-D, and F1-H could be calculated as follows.

accuracy =
TP + TN

TP + FN + FP + TN
(2)

F1− D =
2× TP

2× TP + FP + FN
(3)

F1−H =
2× TN

2× TN + FP + FN
(4)

Besides, 100 repetitions of 10-fold cross-validation were employed
to examine the algorithm’s performance. A total of 536 subjects
(310 depressed and 226 normal) in the depression speech dataset
were divided into 10 non-overlapping folds according to the
proportions of the two classes. Six folds were 54 subjects (31
depressed and 23 normal), and the four folds were 53 subjects (31
depressed and 22 normal). We used ninefolds for training and the
remaining fold for testing. This way, the same utterance would not
appear in two different folds. The KFold function of the Scikit-
learn toolbox (Pedregosa et al., 2011) (sklearn) was performed to
partition the training and testing sets. The result of each repetition
was an average of 10 test folds. In order to assess the generalizability
of our approach, the final result was the average of 10-fold cross-
validation for 100 times with different random_state (Mobram and
Vali, 2022) has used this experimental scheme.

5.1. Results of nine speaker embeddings
for depression detection

After the implementation of the front-end part of the
experimental framework in Figure 1, nine speaker embeddings

in nine speech tasks were obtained. Two classifiers, SVM and
RF, were used to evaluate the depression recognition performance
of nine speaker embeddings comprehensively. We trained SVM
classifiers with a Gaussian kernel function and tuned the SVR
hyper-parameters. Similarly, n_estimators, which represented the
number of trees in the forest, were optimized when training RF
classifiers. Concerning the experiments of speaker embeddings on
each task, the training partition was used to train models, and the
results were calculated on the testing partition. The experiments
followed the 10-fold cross-validation rule and were repeated 100
times with different randomizations. The accuracies of nine speaker
embeddings under nine tasks using SVM and RF were reported
in Table 5. The detailed meanings of the nine speaker embedding
nicknames in this table are shown in Table 4. We also calculated the
corresponding F1-D and F1-H, but they were too long to be listed.
However, they would be used in the subsequent comparison of the
algorithm’s performance.

5.1.1. The effects of different speaker embedding
extractors on depression detection system

Figure 4 showed classification accuracy, F1-D, and F1-H of
speaker embeddings based on three extractors and the performance
differences between SVM and RF. This boxplot was drawn by
the results of speaker embeddings under different extractors, as
described in Section “5.1. Results of nine speaker embeddings for
depression detection.” For instance, the accuracy boxplot under the
i-vector extractor using SVM in Figure 4A was made based on all
results of I_m, I_p, and I_f under nine tasks in Table 5.

The accuracies shown in Figure 4A indicated that the Resnet
x-vector extractor provided the best scores, followed by the TDNN
x-vector extractor and the i-vector extractor in both SVM and RF.
In detail, regardless of whether SVM or RF was used, the upper
limit, median and lower limit of the Resnet x-vector extractor
were highest, while those of the i-vector extractor were lowest.
Although the maximum accuracy of TDNN x-vectors in SVM
reached 74.51%, this number was judged as an outlier based on the
overall distribution of the boxplot. Additionally, it clearly showed
that the box of Resnet x-vectors was overall above the other two.
Figure 4B, F1-D of Resnet x-vectors and i-vectors were close, while
TDNN x-vectors were slightly inferior. Figure 4C showed that the
ranking of F1-H of the three extractors was consistent with that of
accuracies.

As could be seen from the results of three assessment
criteria under the two classifiers, the Resnet x-vector extractor
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TABLE 5 Accuracy comparison of nine speaker embeddings under nine speech tasks using SVM or RF classifier.

SVM I_m I_p I_f T_m T_p T_f R_m R_p R_f

Task1 58.89% 57.71% 57.31% 62.06% 61.26% 62.45% 68.58% 60.67% 67.59%

Task2 61.46% 60.47% 60.67% 62.65% 59.29% 64.62% 63.83% 60.87% 62.45%

Task3 64.62% 65.81% 63.44% 66.01% 67.39% 68.38% 67.79% 62.06% 65.02%

Task4 70.36% 72.33% 67.79% 71.74% 71.34% 74.51% 70.75% 71.74% 71.34%

Task5 57.71% 58.30% 62.25% 67.39% 62.45% 62.85% 65.81% 62.65% 62.06%

Task6 57.71% 60.08% 59.68% 62.06% 61.66% 60.47% 64.82% 60.67% 60.47%

Task7 60.67% 62.25% 60.08% 61.46% 62.06% 61.07% 63.04% 59.88% 65.42%

Task8 62.85% 58.89% 58.70% 59.29% 62.25% 59.29% 64.23% 60.47% 62.06%

Task9 64.43% 61.66% 61.86% 59.68% 59.88% 59.09% 64.23% 61.26% 64.23%

RF I_m I_p I_f T_m T_p T_f R_m R_p R_f

Task1 61.07% 60.28% 58.50% 61.66% 63.04% 61.26% 66.80% 59.29% 65.81%

Task2 60.28% 61.26% 59.68% 60.67% 59.88% 59.68% 64.23% 60.47% 60.67%

Task3 63.64% 62.85% 62.45% 66.40% 67.59% 66.60% 64.43% 62.25% 64.23%

Task4 66.21% 67.98% 64.52% 70.95% 73.72% 72.33% 68.18% 67.79% 68.58%

Task5 58.89% 60.28% 60.28% 62.85% 61.07% 63.83% 63.04% 60.47% 61.07%

Task6 60.28% 59.09% 61.07% 63.44% 58.70% 58.89% 64.82% 59.68% 59.29%

Task7 61.86% 59.49% 60.08% 61.46% 63.64% 61.66% 66.40% 62.85% 66.01%

Task8 59.49% 57.31% 61.07% 59.09% 60.47% 59.49% 64.03% 59.49% 62.25%

Task9 60.67% 60.89% 62.25% 58.30% 60.47% 58.50% 64.43% 61.66% 63.24%

FIGURE 4

The result comparison of speaker embeddings based on three extractors in nine speech tasks between SVM and RF. (A) Accuracy boxplot. (B) F1-D
boxplot. (C) F1-H boxplot.

outperformed the TDNN x-vector extractor, which indicated that
the ability of upstream knowledge learned by Resnet to transfer
to depression screening was stronger than TDNN. Moreover, the
DNN embeddings (Resnet x-vectors and TDNN x-vectors) could
utilize speakers’ traits to build more effective depression models
than i-vectors. The results of Egas-López et al. (2022) comparing
the performance of DNN embeddings and i-vectors for depression
discrimination also supported the above conclusion. It was worth
noting that in the three charts of Figure 4, almost all upper
limit, upper quartile, and median of the three extractors’ whole
measurement indicators in SVM were higher than RF. This point
was consistent with the deduction of experiments that compared
classification results of SVM and RF in various i-vectors (Xing
et al., 2022). Consequently, we only contrasted the results of speaker
embeddings under SVM in the subsequent analysis. On the other

hand, we opted for SVM to train classifiers as the back-end part
of the framework displayed in Figure 1 and then integrated nine
speech tasks.

5.1.2. The effects of different acoustic features on
depression detection system

This part was to find out the most suitable phonetic features for
each speaker embedding extractor. The accuracy, F1-D, and F1-H
of three speaker embedding extractors based on MFCC, PLP, and
FBANK over nine tasks using SVM were plotted in Figure 5. In
terms of i-vectors, the medians of three evaluation indicators of
the MFCC-based systems exceeded those of systems based on PLP
or FANK, and in Figure 5A, the upper limit and upper quartile
of the accuracy of MFCC i-vectors were supreme among three
i-vector extractors based on different characteristics. Accordingly,
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FIGURE 5

The result comparison of speaker embeddings based on different acoustic features in nine speech tasks using SVM. (A) Accuracy boxplot. (B) F1-D
boxplot. (C) F1-H boxplot.

FIGURE 6

(A) The result comparison of each extractor based on the most matching feature set in nine speech tasks using SVM. (B) The result comparison of
speaker embeddings in speech tasks of different genres using SVM. (C) The result comparison of speaker embeddings in speech tasks of different
emotions using SVM. (D) The result comparison of three ensemble learning methods with speaker embeddings combined with nine tasks.

MFCC was more suitable for i-vectors. In addition, (Di et al., 2021)
demonstrated the effectiveness of MFCC i-vectors in the clinical
diagnosis of MDD. From the comprehensive analysis of the three
boxplots in Figure 5, FBANK outperformed the other feature sets
in TDNN x-vectors slightly. Although the accuracies of TDNN
x-vectors based on the three feature sets were similar, the median
of F1-D and the upper limit of F1-H of FBANK-based systems
had advantages. It could also be seen in Egas-López et al. (2022)
that TDNN x-vector extractors fitted with FBANK outperformed
MFCC, which our results supported. As for the Resnet x-vector

extractor, it could be observed that accuracy, F1-D, and F1-H of
MFCC-based systems performed better than the other two. As far
as we know, there is a lack of research on the befitting phonetic
features of these speaker embedding extractors. The results of our
experiment can provide some reference for this problem.

Since the i-vector and Resnet x-vector extractors best matched
MFCC and the TDNN x-vector extractor best matched FBANK,
Figure 6A showed the results of three speaker embeddings
(I_m, T_f, and R_m) using SVM in nine tasks for depression
classification. It was worth noting that five characteristic values
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of the accuracy of R_m were optimal, and its data is the most
centralized. The upper limit and lower quartile of F1-D of R_m
were significantly higher, and other characteristic values were not
lower. The characteristic values of F1-H of R_m, except for the
upper limit, were obviously better than others. As a result, R_m
provided the most vital ability to recognize depression in nine tasks
among nine speaker embeddings. However, the accuracy and F1-
H of TDNN x-vectors were slightly better than those of i-vectors.
Therefore, the performance of the three speaker embeddings was
sorted from good to bad: R_m, T_f, and I_m. This conclusion
could correspond to the performance ranking of three speaker
embedding extractors in Section “5.1.1. The effects of different
speaker embedding extractors on depression detection system.”

5.1.3. The effects of different speech tasks on
depression detection system

This series of analyses were conducted to investigate the
influence of different genres and emotions of speech tasks on
depression discrimination results of speaker embeddings. As
mentioned in Table 1, there were nine tasks of the depression
speech database covering two genres and three emotional valences.
Table 6 integrated the accuracy of the same emotion in the same
scenario in Table 5. Specifically, the accuracies of Int-Pos were
the average of those of task1 and task2. The accuracies of Int-Neu
were the average of those of task3 to task5. Also, the values of
Int-Neg, Pic-Pos, Pic-Neu, and Pic-Neg corresponded to task6 to
task9, respectively. F1-D and F1-H of six task types also performed
similar operations. This operation ensured that the data volume of
the six task types was the same and that the data distribution could
be fairly compared through boxplots. Figure 6B and Figure 6C
showed the results of nine speaker embeddings in the interview or
picture description tasks and positive, neutral, or negative emotions
using SVM. Moreover, the accuracy boxplots of both figures were
plotted according to Table 6.

The results of Figure 6B presented that the interview scene had
more considerable fluctuations of accuracy and F1-D. However, the
upper limit, median, and upper quartile of the three assessment
criteria were significantly higher than the picture description scene.
Even all indexes of the F1-H boxplot of the interview were superior
to the picture description. Overall, interview speech performed
better than picture description speech using speaker embeddings in
depression detection. Although both interview speech and picture
description speech were considered as spontaneous voice, we
inferred from our experimental results that subjects were more
likely to express their true feelings in the interview scene, and
interview voice contained more information related to emotional

states than picture description. This view coincides with the
conclusion of Long et al. (2017).

It could be seen from Figure 6C that the accuracy, F1-D,
and F1-H of neutral stimulus materials were evidently superior to
positive and negative materials. Although F1-H of positive speech
had no advantage over negative speech, all indexes of its accuracy
were slightly higher than the negative, and five characteristic
values other than the upper limit of F1-D were higher than the
negative. In addition, the fluctuation of F1-D of negative speech
was also the smallest. Hence, it could be concluded that neutral
stimulus materials performed best, followed by positive materials
and negative materials. This discovery was consistent with (Liu
et al., 2017), which showed that neutral stimuli performed best
among three emotional valences when using speaker embeddings
for depression detection.

5.2. Results of multi-task ensemble
learning methods with speaker
embeddings for depression detection

The back-end part of Figure 1 was conducted on nine
speaker embeddings, and each integrated nine speech tasks. We
implemented MLP using the GridSearchCV function from sklearn,
which performed grid optimization of the parameters on the
training set and then applied the optimal model on the training
partition to the prediction of the testing partition. Note that the
result in Figure 1 was just the result of a test fold, and our method’s
final result was the average of 10 test folds across 100 times.

Our approach was compared with two other ensemble
methods. The first method (Mobram and Vali, 2022) was to classify
speaker embeddings on nine speech tasks using cosine similarity
and then a majority vote based on the results of nine tasks.
The second method (Xing et al., 2022) used SVM on speaker
embeddings over nine tasks and selected tasks with significant
accuracy differences using paired T-test. Then the results of
the different tasks were integrated into new features for SVM
classification. The final results of these two methods were also the
average of 100 repetitions of ten-fold cross-validation.

The experimental results in Table 7 indicated that three
ensemble learning methods performed best on MFCC-based
Resnet x-vectors, which were remarked as R_m among nine
speaker embeddings, which illustrated the effectiveness of R_m in
depression recognition tasks. In addition, our approach provided
the best accuracy (73.94%), F1-D (76.09%), and F1-H (71.30%) on
R_m with improvement by 2.99, 0.15, and 7.96% compared with

TABLE 6 Accuracy comparison of nine speaker embeddings under interview or picture description tasks with different emotions using SVM classifier.

Task I_m I_p I_f T_m T_p T_f R_m R_p R_f

Int-Pos 60.18% 59.09% 58.99% 62.36% 60.28% 63.54% 66.21% 60.77% 65.02%

Int-Neu 64.23% 65.48% 64.49% 68.38% 67.06% 68.58% 68.12% 65.48% 66.14%

Int-Neg 57.71% 60.08% 59.68% 62.06% 61.66% 60.47% 64.82% 60.67% 60.47%

Pic-Pos 60.67% 62.25% 60.08% 61.46% 62.06% 61.07% 63.04% 59.88% 65.42%

Pic-Neu 62.85% 58.89% 58.70% 59.29% 62.25% 59.29% 64.23% 60.47% 62.06%

Pic-Neg 64.43% 61.66% 61.86% 59.68% 59.88% 59.09% 64.23% 61.26% 64.23%
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TABLE 7 Performance comparison of three methods with speaker embeddings combined with nine tasks.

Speaker
embeddings

Accuracy F1-D F1-H

Our
approach

Mobram
and Vali,

2022

Xing et al.,
2022

Our
approach

Mobram
and Vali,

2022

Xing et al.,
2022

Our
approach

Mobram
and Vali,

2022

Xing et al.,
2022

I_m 65.04% 67.39% 65.22% 67.88% 75.91% 74.79% 61.61% 49.54% 43.95%

I_p 67.83% 65.42% 66.01% 71.25% 74.07% 76.24% 63.37% 48.07% 40.28%

I_f 67.23% 65.61% 63.45% 69.82% 74.56% 74.76% 64.07% 46.95% 33.69%

T_m 67.19% 67.00% 66.20% 73.31% 73.62% 74.21% 57.44% 55.94% 51.00%

T_p 70.36% 66.21% 67.39% 73.40% 73.73% 75.63% 66.52% 52.63% 50.75%

T_f 69.96% 69.17% 66.63% 76.03% 75.55% 74.89% 59.79% 58.29% 50.15%

R_m 73.94% 70.95% 68.99% 76.09% 75.94% 74.64% 71.30% 63.34% 60.05%

R_p 71.15% 65.42% 63.24% 74.74% 72.78% 73.12% 66.36% 52.57% 41.88%

R_f 67.25% 65.81% 65.05% 70.25% 72.05% 73.30% 63.44% 55.98% 49.28%

(Mobram and Vali, 2022) and 4.95, 1.45, and 11.25% over (Xing
et al., 2022) on three assessment criteria. Figure 6D was drawn
according to the data in Table 7, reflecting the performance of three
methods over 9 speaker embeddings. It could be seen that the upper
limit, median, and upper quartile of the accuracy of our method
were higher than those of the rest two methods. Although F1-D
of our approach was slightly lower than others, all indexes of F1-
H of our approach were far superior to others. On the whole, the
ensemble learning method we proposed performed well.

5.2.1. Combining different Resnet x-vectors in
multi-task ensemble learning method

Since the advantages of Resnet x-vector extractors compared
to TDNN x-vector and i-vector extractors had been explained in
Section “5.1.1. The effects of different speaker embedding extractors
on depression detection system,” we would fuse different Resnet
x-vectors (R_m, R_p, or R_f) in the multi-task integrated learning
method as shown in Figure 3. The experiment was to examine the
effect of this fusion on the performance of depression detection. It
was not difficult to find fromTable 8 that when R_m was eliminated
from R_m + R_p + R_f, the accuracy, F1-D, and F1-H were
reduced by 1.77, 1.19, and 3.17%, respectively. MFCC simulates
the audio system of the human ear, which can suppress high-
frequency signals, and reduce the interference of environmental
noise. Therefore, R_m (MFCC-based Resnet x-vectors) did well
in our experiment and provided a significant performance boost
during the integration process. Moreover, the results in Table 8
indicated that R_m + R_p provided the highest accuracy (74.72%),
F1-D (76.90%), and F1-H (72.05%), with the improvement of 0.78,
0.81, and 0.75% compared with R_m, and with the improvement
of 3.57, 2.16, and 5.69% compared with R_p. PLP uses a linear
prediction autoregressive model to obtain cepstrum coefficients,
which is different from the compression coefficient used by
MFCC. PLP also has good noise robustness. The combination of
R_m and R_p should have better noise robustness than speaker
embeddings before the combination. In this experiment, the
speaker embeddings for depression recognition were based on
the pre-trained model of out-domain data. It is very important

TABLE 8 Performance of ensemble fusion system of Resnet x-vectors
based on different feature sets.

Ensemble fusion Accuracy F1-D F1-H

R_m + R_p 74.72% 76.90% 72.05%

R_m + R_f 73.76% 75.42% 71.76%

R_p + R_f 69.60% 72.60% 65.78%

R_m + R_p + R_f 71.37% 73.79% 68.95%

TABLE 9 Performance comparison of other literature studies on the
depression speech dataset.

Method Accuracy F1-D F1-H

Giannakopoulos, 2015 67.98% 74.77% 56.22%

Di et al., 2021 66.40% 72.93% 55.73%

Egas-López et al., 2022 68.18% 75.42% 54.90%

Xing et al., 2022 71.89% 77.27% 63.08%

Our proposed system 74.72% 76.90% 72.05%

to alleviate the interference of noise for the performance of the
depression recognition model.

5.2.2. Comparison with other proposed methods
on the depression speech dataset

This section compares the proposed multi-tasking integrated
learning method incorporating different Resnet x-vectors with
other literature studies, as shown in Table 9. Since the depression
speech dataset used in this study was collected by the Gansu
Provincial Key Laboratory of Wearable Computing, the results
in Table 9 were obtained by implementing the methods in other
papers based on this data. Note that the depression dataset was
fairly divided into ten portions. Nine portions were for training,
and one portion was for testing, which was unseen data. The final
result of each method was the average of 100 repetitions of 10-fold
cross-validation.

Our result in Table 9 is the best one of the completed outcomes:
the fusion of the MFCC-based Resnet x-vectors and the PLP-based
Resnet x-vectors in the multi-task ensemble learning method, with
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an accuracy of 74.72%, F1-D of 76.90%, and F1-H of 72.05%.
Furthermore, our system increases accuracy by 6.74%, F1-D by
2.13%, and F1-H by 15.83% compared to Giannakopoulos (2015),
which classified short-term and mid-term voice features from
depressed and normal subjects using the SVM classifier with RBF
kernel. Also, we improved accuracy by 8.32%, F1-D by 3.97%, and
F1-H by 16.32% compared to Di et al. (2021), which only used
MFCC i-vectors for depression detection and improved accuracy
by 6.54%, F1-D by 1.48%, and F1-H by 17.15% compared to
Egas-López et al. (2022) which used pre-trained DNN embeddings
based on FBANK for SVM classification. Finally, compared to
Xing et al. (2022), which was the hierarchical classification method
of combined i-vectors based on several speech features that we
published earlier, our accuracy is improved by 2.83% and F1-H by
8.97%, while F1-D is slightly lower.

In general, compared with other literature methods, the
accuracy of our method has been improved to some extent,
and F1-D, which presents the classification performance of the
depressed class, also maintains a reasonable level. Particularly, F1-
D, which shows the classification performance of the healthy class,
has been significantly improved. This impressive result shows the
effectiveness of our proposed method on the gender-independent
depressive speech dataset.

6. Conclusion and future works

In order to find the optimal speaker embeddings for depression
recognition, this paper compared the performance of three speaker
embedding extractors based on different acoustic feature sets for
depression detection in a multi-task depression speech database.
The comprehensive performance of the new state-of-art Resnet
x-vector extractor applied to depression recognition for the first
time is better than that of the TDNN x-vector extractor and
i-vector extractor, indicating that it can extract more depression-
related information than the other two. Finally, nine speaker
embeddings on three extractors (Resnet x-vector extractor, TDNN
x-vector extractor, and i-vector extractor) based on MFCC, PLP,
and FBANK were obtained. We concluded that MFCC was suitable
for the i-vector extractor, FBANK for the TDNN x-vector extractor,
and MFCC for the Resnet x-vector extractor. Moreover, MFCC-
based Resnet x-vectors provided the best recognition among nine
speaker embeddings.

Since our depression speech dataset consisted of nine speech
tasks covering two genres (interview and picture description),
and three emotional valences (positive, neutral, and negative), we
explored the effects of different scenes and different emotional
stimuli on depression recognition. The conclusion is that the
difference in speech information between the two types of subjects
in the interview task is more significant than that in the picture
description task. The effect of neutral stimulus materials is better
than that of positive and negative materials.

To make full use of the information from different scenes and
emotions, we designed a multi-task ensemble learning method
using speaker embeddings on the depression speech dataset
containing nine tasks. The accuracy and F1-H of our method
were significantly better than that of the other two literature
studies, and F1-D maintained a similar level. In addition, the

MFCC-based Resnet x-vectors among nine speaker embeddings
performed best in our proposed integration approach. Our multi-
task ensemble learning method based on R_m + R_p achieved
best results than other literature studies using the depression
speech database, indicating that MFCC-based Resnet x-vectors and
PLP-based Resnet x-vectors were complementary in depression
recognition, and information from 9 speech tasks was also utilized
in the integrated system.

In this study, we used the out-domain dataset to train the pre-
trained model to alleviate the problem of insufficient data volume
in deep learning. We are also constantly collecting the depression
speech dataset to expand the data volume. Then we will consider
using the augmented in-domain dataset for pre-training to improve
the depression recognition performance further.
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