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School of Engineering, Cardiff University, Cardiff, United Kingdom, 6Electrical Engineering
Department, Faculty of Engineering, Aswan University, Aswan, Egypt

This paper presents the performances of an artificial intelligent fuzzy logic controller

(FLC) basedmaximumpower point tracking (MPPT) and a conventional perturb and

observe (P&O) basedMPPT controller is presented for a stand-alone PV system and

tested in an emulated test bench experimentation. The studied system is composed

of a DC power supply emulating the PV panel, a DC/DC boost converter, a variable

resistive load and a real-time MPPT controller implemented in the dSPACE

DS1104 controller. To verify the performance of the FLC proposed, several

simulations have been performed in Matlab/Simulink environment. The

proposed method outperforms the P&O method in terms of global search

capability and dynamic performance, according to the comparison with the

P&O method. To verify the practical implementation of the proposed method,

the control of the emulated PV source and theMPPT algorithms are designed using

the simulink/Matlab environment and implemented on dSPACE DS1104 controller.

Experimental results confirm the efficiency of the proposed method and its high

accuracy to handle the resistance varying.

KEYWORDS

experimental validation, fuzzy logic control, intelligent control, stand-alone solar
energy system, DSPACE platform

1 Introduction

Photovoltaic (PV) systems are a clean energy technology that employs solar energy,

the planet’s most abundant and broadly distributed renewable energy source. PV power

generation systems have outperformed even the most optimistic predictions. The grid

linked PV system, the stand-alone PV system, and the hybrid system are the three main
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types of PV systems now being used in different parts of the

world (Mao et al., 2020). Stand-alone PV systems are utilized in

distant and specialized locations including an energy storage

system, usually installed as a battery system, although alternative

options, such as fuel cells, are available. To fulfill the increased

demand for alternative sources of energy, grid-connected PV

systems are being used. Wind, tidal, and thermal energy may be

used in conjunction with solar photovoltaic systems to create

hybrid power systems (Mohapatra et al., 2017). However, Power

fluctuations produced by atmospheric factors affect PV systems,

i.e., solar irradiation and ambient temperature. Maximum power

point tracking (MPPT) algorithms are used to harvest maximum

power from a PV panel under specific operating conditions,

allowing the generated power to be controlled (Mohapatra et al.,

2017), (Zaouche et al., 2017).

Several publications have been published to help solar power

plants extract the most power possible. In PV systems, a suitable

MPPT controller tracks the maximum power point in all

environmental conditions. In recent years, a number of MPPT

controllers have been proposed, including P&O

(Mohammadinodoushan et al., 2021; Mousa et al., 2021; İnci,

2021), incremental conductance (INC) (Nadeem and Hussain,

2021), and fuzzy logic controller (FLC) (Yang et al., 2020). A little

variance in the step size causes the control parameter to be

perturbed in the P&O approach. Due to the measurement of PV

system output power, the orientation of the step size determined

by the P&O technique is altered somewhat. When a PV system’s

output power is lowered or raised, problems might arise (Sarvi

and Azadian, 2021).

The P&O algorithm is the most commonly used MPPT

algorithm in renewable energy conversion system because it is

relatively simple to implement at low cost (Motahhir et al., 2020).

The system control commands are determined using this method

based on the difference in power output between the current and

prior system states. However, this method has given rise to

oscillations around the point of operation of MPP leading to

significant energy losses (Zaouche et al., 2017), (Vicente et al.,

2020). Furthermore, in rapidly changing atmospheric conditions,

P&O does not adapt correctly. Because it is established on the

equivalence of increment and conductance, the INC technique

enables for the search for the greatest power to be achieved

(Yilmaz et al., 2018). The P&O and INC controllers are among

the most widely used MPPT controllers, owing to their ease of

FIGURE 1
Diagram block of stand-alone photovoltaic energy
conversion system.

FIGURE 2
Modeling of a solar cell by the one-diode model.

TABLE 1 Electrical specifications of BP SX150S panel at STC.

Electrical specifications

STC rated output (PMPP) 150 W

Output power tolerance ± 5%

Rated voltage (VMPP) at STC 34.5 V

Rated current (IMPP) at STC 4.35 A

Open circuit voltage (Voc) at STC 43.5 V

Short circuit current (Isc) at STC 4.75 A

Temperature coefficient of Voc (160 ± 20)mV/°C

Temperature coefficient of Isc (0.065 ± 0.015)%/°C

Temperature coefficient of power (0.5 ± 0.05)%/°C

No. of cells 72

FIGURE 3
BP SX150S panel electrical characteristic.
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installation and straightforward design. Nonetheless, rapid

changes in weather conditions have an impact on the

controllers’ ability to function properly. Furthermore, even in

constant climatic conditions, oscillations around the MPP have

been seen using such methods. To put it another way, a decrease

in Sun irradiation can have an impact on the operation of these

controllers (Sarvi and Azadian, 2021). Recently MPPT methods

based on artificial intelligence techniques such as artificial neural

networks (ANN) and fuzzy logic controllers (FLC) have emerged

(Yang et al., 2020). The FLC is another well-known MPPT

controller that has significant advantages over traditional INC

and P&O control strategies (Youssef et al., 2018). The outputs/

inputs of these controller are fully dependent on system model

information. In (Harrag and Messalti, 2019), it is suggested that

an enhanced MPPT technique based on the SMC be used. The

suggested controller’s key advantages are its fast dynamic

response, high stability, and simplicity. A sliding mode MPPT

based improved krill herd algorithm for variable step size P&O

strategy is proposed in (Latifi et al., 2021), adaptive MPPT based

sliding mode and fuzzy controls (Miqoi et al., 2019), optimized

MPPT algorithm based on fuzzy logic control (Farajdadian and

Hosseini, 2019). Recent studies (Dorji et al., 2020; Pandey et al.,

2022) have compared between perturb and observe (P&O) and

fuzzy logic based on PV-MPPT algorithms. Simulation results

confirm the effectiveness of the FLC method.

When using a standard P&O strategy based on a

predetermined step size perturbation, output power variations

in solar systems are cancelled at the MPP, but this is not possible.

It is possible to repair a quicker dynamic response by using

greater step sizes, but this leads to huge changes with in output of

photovoltaic panels around their maximum point and increased

power loss. Small step sizes, on the other hand, lower PV array

output power fluctuation, but they might lead to a delayed

dynamic response when solar irradiation is quickly altered.

In this paper, performances of an artificial intelligent FLC

and a conventional perturb and observe (P&O) controller are

presented of a stand-alone PV system and tested in a real test

bench experimentation using dSPACE DS1104 controller card.

The studied system is composed by a DC power supply emulating

the PV panel, a DC/DC boost converter, a resistive load and a

real-time maximum power point tracking controller

implemented in the dSPACE card. Under the above test

conditions, a comparative analysis is performed for the

proposed artificial intelligent FLC and conventional P&O

control algorithm. Traditionally, the control algorithms of

power converters in real time are designed with

microcontrollers (Yang et al., 2020). But microcontrollers

suffer from a limited performance when used in control

applications requiring high operating speeds. Furthermore,

comprehending the microcontroller capabilities is difficult in

the event of complicated control structures, and programming

them becomes a time-consuming operation, resulting in poor

performance. A recent study (Altwallbah et al., 2022) presented a

hardware implementation of a P&O algorithm under the partial

shading condition on a digital signal processing controller

(TMS320F28335). The digital processing boards (DSP) with

rapid computational capacity, increased flexibility, and ease of

programming have emerged, they may now serve as an

alternative for numerical implementation of more complicated

control algorithms. In this paper the dSPACE DS1104 controller

is used to test the proposed control algorithms.

The main originality and contribution of the present work

over the related papers in the literature are summarized as given

below:

• An artificial intelligent fuzzy logic based MPPT controller

and a conventional perturb and observe controller are

presented for a stand-alone PV system, investigated and

compared to demonstrate the superiority of the FLC over

the conventional P&O.

• Extensive numerical investigations are made to

demonstrate the robustness of the proposed FLC

approach against parameter changes, external

disturbances, and the conventional P&O.

• Extensive experimental validation is performed with a real

test bench experimentation using dSPACE

DS1104 controller.

The present form organizes the present paper: in Section 2,

the system description is established. Section 3 deals with the

FIGURE 4
Structure of the Boost converter.

TABLE 2 Electrical specifications of Boost converter.

Electrical specifications

Inductor (L) 0.6 mH

Input capacitor (Ci) 500 µF

Output capacitor (Co) 2,200 µF

Switching frequency (f s) 10 kHz

IGBT SKM50GB12T4
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proposed strategy design procedure. Section 4, described in

detail the extensive numerical investigation of the proposed

candidate strategy and the extensive experimental

investigation. Finally, Section 5 deals with the main

conclusion of the present paper.

2 PV system description

Figure 1 shows the diagram block of the stand-alone

photovoltaic energy conversion system. It mainly contains a

BP SX150S panel and a variable resistive load that are

interconnected via a boost converter controlled by the MPPT

controller:

2.1 BP SX150S panel modeling

The fundamental composition element of a PV panel is the

solar cell. A cell can be assimilated to a photocell in generator

convention. The BP SX150S PV panel is composed of 72 multi-

crystalline silicon PV cells connected in series (Ns). To

comprehend and investigate the features of a solar cell,

mathematical models have been created. There are a few

different sorts of models, such as single-diode and two-diode

models (Bennett et al., 2012), (Dhaundiyal and Atsu, 2019). The

two diode model takes into consideration an additional diode in

the equivalent circuit of a single diode, this diode connected in

parallel with the first diode. The one-diode model contains few

parameters and easier to model compared to a two-diode model.

According to the article (Dhaundiyal and Atsu, 2019), the

simulation results and the experimental results of the

electrical characteristics P(V) and I(V) of the solar panel

clearly show that the results are similar. In this paper, the

FIGURE 5
Flowchart of the P&O algorithm.

TABLE 3 MPP search rules.

Case ΔP ΔV Research direction Duty ratio

1 + + Right direction D(k) � D(k − 1) − α

2 + − Right direction D(k) � D(k − 1) + α

3 − − Wrong direction D(k) � D(k − 1) − α

4 − + Wrong direction D(k) � D(k − 1) + α
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one-diode model is chosen to model the solar cell (Dhaundiyal

and Atsu, 2019).

The electrical circuit equivalent to a one-diode model is

presented in Figure 2. The chosen model is efficient, less

complex to model and reproduces the electrical characteristic

of the BP SX150S panel, as shown in Figure 3. The mathematical

equation of the PV panel model is given by the current Ipv versus

the voltage Vpv in Eq. 1:

Ipv � IPh − Is(exp(Vpv + IpvRs

NsVT
) − 1) − (Vpv + IpvRs

Rsh
) (1)

where VT (equal to (a.k.T/q)) is the diode thermal voltage, k is

the Boltzmann constant, q is the electron charge, a is the diode

ideality factor and T is the temperature in Kelvin. IPh is the light

generated current, Is is the diode saturation current, Rs and Rsh

are the series and parallel equivalent resistances.

Table 1 lists the electrical parameters of the BP SX150S panel

used in this study, which are reported at Standard Test Condition

(STC ie. 1000 W/m2 and 25°C).

2.2 Boost converter modeling

Figure 4 shows the boost converter’s construction, which is

used to boost the PV output voltage (Vo) for a resistive load. It

controls the input source to load power transmission through a

Pulse Width Modulation (PWM) technology provided by a high

frequency regulating device called an Insulated Gate Bipolar

Transistor (IGBT). A 10 kHz PWM signal is injected into the

converter’s switch S by a controlling device.

The PWM signal’s duty cycle D may be changed in real-time

to follow the PV panel’s highest available power and extract as

much of it as possible. The parameter values of the designed

boost converter are listed in Table 2. The equations

characterizing these parameters are given as follows (Weng

et al., 2019):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vo � 1
1 −D

Vpv

L � Vpv × (Vo − Vpv)
ΔIripple × fs × Vo

Co � Io × D

fs × ΔVripple

(2)

where ΔIripple is the inductor ripple current and ΔVripple is the

output voltage ripple.

3 MPPT algorithms

3.1 Conventional perturb and observe
algorithm

The P&O algorithm uses current and voltage sensors to

measure the solar array’s output power. Because of its

simplicity, the conventional P&O algorithm has been widely

used. The algorithm mechanism has been depicted in Figure 5.

After a prolonged process of data collection of perturbation and

observation, the operating point converges to the MPP. The

algorithm forecasts the time to approach MPP by comparing the

power and voltages of time (k) with the sample at a time (k − 1).
If the power change is positive, a little voltage fluctuation affects

the power of the solar panel, and the voltage perturbation

FIGURE 6
Fuzzy controller structure.

TABLE 4 Rule base table for fuzzy MPPT controller.

e Δe

NB NS ZE PS PB

NB Rule 1 ZE Rule 2 ZE Rule 3 PB Rule 4 PB Rule 5 PB

NS Rule 6 ZE Rule 7 ZE Rule 8 PS Rule 9 PS Rule 10 PS

ZE Rule 11 PS Rule 12 ZE Rule 13 ZE Rule 14 ZE Rule 15 NS

PS Rule 16 NS Rule 17 NS Rule 18 NS Rule 19 ZE Rule 20 ZE

PB Rule 21 NB Rule 22 NB Rule 23 NB Rule 24 ZE Rule 25 ZE
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continues in the same direction. However, if delta power is

negative, the MPP is far away, and the perturbation must be

reduced to approach it (Yanarates et al., 2021). The P&O

algorithm is summarized in Table 3. As a result, the entire PV

curve is examined by minor perturbations to discover the MPP,

which increases the algorithm’s response time. When the

perturbation size is increased, steady state oscillations around

the MPP result. To alleviate the response time problem and

steady state oscillations, many researchers have proposed other

algorithms.

3.2 The proposed fuzzy controller based
MPPT algorithm

The MPPT algorithm based on a fuzzy logic controller (FLC)

is an intelligent way of tracking the maximum power point in a

PV system. It makes use of fuzzy set theory rather than a rigorous

mathematical model. It is made up of a step-by-step adaptive

search that achieves rapid convergence. Fuzzification, inference

engine and defuzzification are functional blocks of the fuzzy

controller. Figure 6 shows the main components of the Mamdani

type fuzzy controller (Shiau et al., 2015).

MFs are used to convert actual input values back to linguistic

values during the fuzzification process. The “if-then” rules that

make up the heuristic engine link the input and output. The

defuzzification step is used to return the output linguistic variable

to its original state of the clear output. The slope of the power-

voltage curve (Ppv − Vpv) is the most common input to the fuzzy

controller in PV systems (Guenounou et al., 2021), (Zaouche

et al., 2016).

In this case, triangular and trapezoidal MFs are used as input

and output because they are simple to implement and reduce

computational complexity. These functions are simple to

implement. For the linguistic variables depicted in Figure 10,

P denotes positive and N denotes negative. Furthermore, the

letters B, S, and ZE stand for Big, Small, and Zero. In Figure 9,

each input variable, e(k) and Δe(k), is assigned to one of five

FIGURE 7
The PV system under MATLAB/Simulink.
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different linguistic variables. As a result, the proposed fuzzy rules

set contains 25 distinct fuzzy rules. Table 4 contains the entire set

of fuzzy rules.

The error and error variation are the two inputs variables that

are described at a sampling instant k by following:

e(k) � Ppv(k) − Ppv(k − 1)
Vpv(k) − Vpv(k − 1) (3)

Δe(k) � e(k) − e(k − 1) (4)

The FLC determines the next operating point based on these

two inputs, using MFs and a rule table. Depending on whether E

is negative or positive, the operating point will be on the right or

left side of the MPP. The MPP is reached that E is equal to zero.

The Δe input determines whether or not the operating point

moves along the MPP direction.

A fuzzy-based PI controller is considered in this work, with a

duty ratio D computed as given below:

D(k) � GD × ΔDN(k) +D(k − 1) (5)
where, GD represents the factor’s scaling output and ΔDN is the

normalized incremental change of the duty cycle.

4 Results and discussion

4.1 Simulation section

The simulation tests of the PV system depicted in Figure 1

have been performed under MATLAB/Simulink environment.

The panel’s maximum output power is 150W. The output

capacitance and the series input inductance of the boost

converter are Co = 1100 µF and L = 0.6mH, respectively. A

variable resistive load is connected to the boost’s output. The

Simulink diagram of the studied system is shown in Figure 7,

where the DC-DC boost converter is implemented using the

MathWorks Simscape library.

The FLC output variable (D) and input variables (e and Δe )
are both computed by five membership functions. The variation’s

ranges are [−50,50] for Δe [−35,5] for e, and [−1.5,1] for the

output. In order to determine these intervals, the maximum

values permitted are used for our PV system in the testing

environment for each variable.

The factor’s scaling output is set to 0.04. The increment step

of the P&O method is set at 0.02.

The standard test conditions (STC) are adopted for the

simulations, which are STC: S = 1000W/m2 and T = 25°C.

Due to the lack of place, the impact of the variation of

atmospheric conditions will be studied in future work.

The system is simulated in a 1s total time with a 50 µs fixed

step size. At time 0.5 s, a variation of the load from R = 20Ω to

R = 14Ω was performed to test the MPPT’s performance.

4.1.1 Simulation results discussion
Figure 8 shows the results of the generated PV currents for

each the proposed FLC and the P&O method (Motahhir et al.,

2020). In the presented results during the transient load step of

R = 20Ω between 0 and 0.5 s, it can be seen that the proposed

FLC generates a current which is around the rated value 4.35 A

with a tracking error of 4% and with extremely reduced

oscillations (the minimal generated current is 4.2 A as shown

in the zoom on the current given in Figure 8B). Contrary to the

conventional P&Omethod, which generates a current around the

rated value with an important tracking error of 27% and it

presents a high oscillation (a minimal current value of 3.2 A is

FIGURE 8
Generated PV currents for FLC and P&O controls. (A) current
response. (B) Zoom on the current response.

FIGURE 9
Generated PV voltages for FLC and P&O controls.
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observed). In the second transient load step of R = 14Ω between

0.5 and 1s, it is clearly observed that the proposed FLC shows the

better current generation, which much perfectly the rated value

4.35 A as depicted in Figure 8. Contrary to the conventional

P&O, which shows the lowest oscillations compared to the first

step but a tracking error of 2% is observed (minimal current value

of 4.26 A).

Figure 9 shows the results of the generated PV voltages for

each the proposed FLC and the conventional P&O. In the

presented results during the transient load step of R = 20Ω

between 0 and 0.5 s; it can be seen that the P&O generates a

voltage which is around the value 37 V which diverge from the

maximum power point (MPP) voltage of 34.5 V as given in

Table 1. Contrary to the proposed FLC method, which generates

a voltage around the rated MPP voltage value. In the second

transient load step of R = 14 Ω between 0.5 and 1s, it is clearly

observed that both proposed FLC and P&O generate a voltage

which much perfectly the MPP voltage value 34.5 V as depicted

in Figure 9.

Figure 10 shows the results of the generated PV powers for

each the proposed FLC and the conventional P&O. In the

presented results during the transient load step of R = 20Ω
between 0 and 0.5 s; it is observed that the proposed FLC

generates a power which is around the rated value 150 W

with a tracking error of 6 W under the rated value and 1 W

after the rated value which represents an error of 4.66% with

extremely reduced oscillations. Contrary to the conventional

P&O method, which generates power with an important

tracking power error of 28.66% and it presents a high

oscillation. In the second transient load step of R = 14Ω
between 0.5 and 1 s, it is clearly observed that the proposed

FLC shows better power generation, which much perfectly the

rated value 150 W as depicted in Figure 10. Contrary to the

conventional P&O, which shows the lowest oscillations

compared to the first step but a power loss of 1.26% is observed.

4.2 Experimental section

Figure 11 shows the experimental test bench of the emulated

PV system. The hardware implementation has been developed in

the GREAH laboratory - France. Different components of

experimental test bench of the emulated PV system have been

discussed in this section by giving a list of components and their

specifications.

The suggested MPPT controller is implemented on a

dSPACE DS1104 platform, which allows real-time testing.

An Emulated PV Source (EPVS) was linked to a variable

DC load using a boost converter which specifications are

listed in Table 2. To generate the necessary PWM signal, a

DS1104SL-DSP-PWM block is used. This later is depicted in

Figure 12B. For the measurement of both the current and the

voltage of the EPVS, two sensors have been used: Cleqee

A622 for the current and TA057 for the voltage. The

measured voltage and current are subsequently transformed

to digital signals using a DSP Analog Digital Converter (ADC)

interface that operates over a voltage range of −10 V to +10 V

and filtered with implemented digital filters. By multiplying

the instant current and voltage, the instantaneous power is

computed. A gain scale of 10 and a gain scale of 20 are

respectively programmed to rescale the measured current

and voltage signals. Figure 12A shows the used Digital

Analog Converter (DAC) blocks providing calculated

FIGURE 10
Generated PV powers for both FLC and P&O controls. (A)
Power response. (B) Zoom on power response.

FIGURE 11
Laboratory experimental setup of the emulated PV system.
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EPVS’s current and voltage references that will be injected into

the programmable DC source. In this study, the sampling step

time is programmed equal to 50 µs

4.2.1 Emulated PV source
A DC power supply Elgar 5,500 which is programmable is

used to generate the output characteristics of a BP SX150S PV

panel (Weng et al., 2019). This emulation makes it possible to

compensate for the lack of the PV panel and facilitates the

emulation of weather changes. The used Simulink model of

the PV panel is implemented in a dSPACE DS1104 controller

using a 50 µs sampling time. This last generates the PWM signals

controlling the boost converter with a 10 kHz switching

frequency. The analog signal (0–10 V range) required to

control the DC power supply is generated from a DAC

output. Figure 13 shows the practical characteristics of the

EPVS obtained by varying the output current of the power

DC supply.

4.2.2 Experimental results discussion
In the experimental steps, the system is also tested in a 1s

total time with a 50 µs fixed step size. At time 0.5s, a variation

FIGURE 12
(A) ADC and DAC conversion blocks of the EPVS current and voltage, (B) PWM generation block.
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of the load from R = 20 Ω to R = 14 Ω was performed to test

the MPPT’s performance is also applied in this testing part.

Figure 14 shows the experimental current generated by the

emulated PV system due to the proposed FLC and the

conventional P&O. It is observed that the proposed FLC

offers the best results as it shows extremely lowest

oscillations compared to the P&O at the transient load step

R = 20Ω and more important the current is maintained close

to the rated value with the FLC than the second one at the

transient load step R = 14Ω.

Figure 15 presents the experimental generated voltage by

both the FLC and P&O. Here also it is clearly shown that the

first control maintains the generated voltage very close to the

rated value with the fastest convergence than the P&O.

Figure 16 shows the experimental generated power by the

test bench. It is is clearly observed that the FLC offers the

highest power generation and performance than the

conventional control. In fact, the power generated by the

FLC converges progressively to the MPP with a fast

criterion, as can be seen at 0s where the conventional

control shows oscillations between 0 and 0.2 s which is not

good for the dynamic of the test bench.

The comparative analysis of the proposed FLC and the

conventional P&O shows that the FLC ensures fast

convergence, high stability, and lowest tracking errors in

comparaison to the conventional P&O. In a general way,

the proposed method outperforms the P&O method in

terms of global search capability. Thus, from the

previous simulation and experimental results, the proposed

method validates the objective mentioned in the

introduction part which is to shows that the FLC

based MPPT guarantee efficient, secure, and

reliable power to the load side than the conventional

MPPT methods.

5 Conclusion

This paper presents a simulation and experimental

validation of a stand-alone photovoltaic system. A DC

FIGURE 13
Electrical characteristics of the PV panel BP SX150S.

FIGURE 14
Experimental currents for both FLC and P&O controls.

FIGURE 15
Experimental voltages for both FLC and P&O controls.

FIGURE 16
Experimental power for both FLC and P&O controls.
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power supply imitating a solar panel, a DC/DC boost

converter, a resistive load, and a real-time maximum power

point tracking controller built-in a dSPACE DS1104 controller

make up the investigated system. In the details of the work,

performances of an intelligent FLC and a P&O controller are

presented. Both simulated and experimental results are given

to demonstrate the obtained performances. The

main highlights of the present work are summarized as

follows:

• The comparative analysis shows that the FLC proposed

ensures fast convergence, high stability, and the lowest

tracking errors in comparison to P&O method.

• The FLC proposed reacts quickly to load variations and

keeps power at its highest level.

• The proposed FLC shows the lowest transitional state

response time, and the steady state variations are

significantly minimized over the P&O algorithm, which

shows an overtaking.

The practical results obtained in the different tests show

the effectiveness of the proposed method. The proposed

method is a solution for solving the problem of MPP

tracking and the study carried out in this paper answers the

questions studied. This work can be used to implement

different practical applications of solar energy conversion

systems.
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Sustainable, inexhaustible, economical, and clean energy has become a vital

prerequisite to replace fossil fuel sources for power production. In such a

context, countries like Pakistan, which are heavily skewed towards fossil fuel-

fired plants, are diverting attention to install more and more indigenous

renewable energy sources projects such as solar-photovoltaic and wind

turbine power plants. In order to harness the maximum energy of wind

turbines, it is crucial to factually and precisely assess system performance,

which is traditionally inferred by energy analysis (first law analysis). Nevertheless,

this analysis only computes the nominal power generation output and ignores

the effect of meteorological variables that can lead to some serious errors

during the energy planning phase. Consequently, this case study presents both

the energy and exergy analysis of a wind farm located in Gharo town of Thatta

District along the coastline of the Indus Delta. Energy analysis is carried out to

quantify energy efficiency, while exergy analysis computes exergy efficiency by

taking into account the effect of pressure, temperature, and wind speed.

Comparisons of both efficiencies are provided, and the result substantiates

that exergy efficiency turns out to be lower than energy efficiency. However,

exergy is a more viable index due to the inclusion of exergy destruction, and in

comparison to the energy indicator, it presents the actual performance of a

thermodynamic system. The monthly energy and exergy efficiency of the

general electric wind turbines are maximum in July having values of 0.5 and

0.41, respectively.

KEYWORDS

energy analysis and exergy analysis, renewable energy, wind energy, Pakistan,
efficiency

1 Introduction

The tremendous increase in energy demands due to extensive population growth,

technological development, and industrialization is primarily met by prevalent fossil fuel

sources (Rapier, 2020; Tahir and Haoyong, 2020). Recently, the atmosphere is witnessing

worse global warming because of over-reliance on these finite and polluted fossil fuel

sources (Tahir et al., 2020; Welsby et al., 2021). In order to meet energy demands with
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minimal detrimental environmental impact, researchers are

heading toward renewable energy source integration into the

power grid (Alves et al., 2020; Tahir et al., 2021a). Amongst

various renewable energy sources such as water, solar, and

geothermal, wind energy utilization has increased manifolds

due to its ease of availability, abundance, cost-competitiveness,

and environmentally benign features (Wagner andMathur, 2018;

Tahir et al., 2019a).

Pakistan, being a third world country and the fifth most

populated country in the world, is facing a demand-supply gap

that led to several blackouts during the last decade (Tahir and Saqib,

2016). Similar to the rest of the world, Pakistan’s energy mix is

heavily dependent on costlier thermal power plants, fired by

imported fuel. Fuel import not only declines the foreign

exchange reserves but also worsens climate issues. For that

reason, the Pakistan government has established the Alternative

Energy Development Board (AEDB) to improve the integration of

renewable energy sources in a grid for reducing dependency on

polluted finite fossil fuel sources. According to the renewable energy

leap-forward development policy, AEDB issued letters of intent to

various private and government companies to install renewable

energy projects in the country. Two of the provinces (Sindh and

Balochistan) are more suitable for wind turbine installation as these

are closer to the coastline. At present, the Government entails

painstaking attention to Sindh province as it is the second most

populated province of the country and has plenty of vacant space

available for wind farm projects. Furthermore, this province has

suffered prolonged power outages and blackouts due to various

reasons in the present electric grid infrastructure.

Most of the research activities regarding wind energy are

about harnessing maximum energy (Minaeian et al., 2017;

Abdolkhalig et al., 2018), overcoming stochastic nature (Yuan

et al., 2014; Jabir et al., 2017), and cost and size optimization

(Fetanat and Khorasaninejad, 2015; Johnston et al., 2015; Tahir

et al., 2019b; Sun et al., 2020). Conversely, these studies do not

present the accurate behavior of wind power generation because

conventionally wind power systems use energy analysis. The

energy analysis computes energy efficiency by nominal power

generation, the ratio of energy generation to wind potential or in

other words how much kinetic energy is converted to electricity.

On the contrary, it ignores the prominent feature that wind

speed/energy is dependent on many meteorological variables

(such as temperature, pressure, air density, and humidity),

and changes in wind speed due to these meteorological

variables will result in different energy production. Hence,

exergy analysis (also known as second law analysis) takes into

account the effect of the above variables, wherein internal

irreversibilities and external losses are included while assessing

wind energy generation. Exergy is defined as the maximum work

potential of a systemwhen it comes to equilibriumwith respect to

the reference environment (Gaggioli, 1998; Tahir et al., 2021b;

Tahir et al., 2022). Recently, exergy analysis has also been

employed on other renewable energy technologies such as

solar photovoltaic plants (Shukla et al., 2016a; Shukla et al.,

2016b; Kumar et al., 2017) and biomass (Mehrpooya et al., 2018;

Yang et al., 2020); however, wind energy power plants are gaining

more attention due to its widespread usage and large capacity. A

few of the most pertinent studies pertaining to second law

analysis for wind energy systems are briefly elaborated below.

Horizontal and vertical axis wind turbine energy and exergy

efficiency are evaluated by (Pope et al., 2010) for four different

wind turbines such as NACA 63 (2)-215 Airfoil, FX 63-

137 Airfoil, Savnious VAWT, and Zephyr VAWT.

Subsequently, four different definitions of outlet velocity (V2)

are outlined while efficiencies (energy and exergy) are computed

by varying inlet velocity (V1) against four different V2. Ozgener

et al. (Ozgener and Ozgener, 2007; Ozgener et al., 2009)

concluded that exergy efficiency varies between 0 and 48.7%

depending on wind speed while Jia et al. (Guang-Zheng et al.,

2004) analyzed that exergy efficiency fluctuates between 35 and

45% when wind speeds are between 5 and 9 m/s.

In addition, meteorological variable effects on the exergy

efficiency of wind turbines are contemplated in (Baskut et al.,

2010). Baskut et al., (2011) employed exergy analysis on a wind

farm in Turkey, wherein they pointed out that a decrease in the

reference temperature results in considerable energetic and exegetic

losses. However, for computing exergy efficiency, only the pressure

differences between the inlet and outlet of wind turbines are taken

into account while temperature and humidity differences are

ignored. Exergy analysis of wind turbines for the location of

Tehran is performed by Mehdi et al. (Ehyaei and Assad, 2021),

which is given in the 13th chapter of book “Design and Performance

Optimization of Renewable Energy Systems”, while Adel

Mohammed Redha et al. (Redha et al., 2011) employed

thermodynamic analysis (exergy analysis) for computing Sharjah-

based VESTAS V52 wind turbine exergy efficiency for 3 months

(January–March). Unlike Omer et al., it exploited the temperature

differences but ignored the pressure and humidity differences when

employing exergy analysis. Furthermore, Diyoke, (2020).

investigated the exergy performance of wind turbines at four

different sites in Nigeria, while Koroneos et al., (2003)

investigated the exergy analysis of renewable energy sources

including wind turbines, but wind speeds greater than 9 m/s are

assumed as zero, which is not true in a practical world.

In a nutshell, most of the preliminary studies did not conduct

a long term energy and exergy analysis as conducted by Baskut

et al., (2011), which utilized 11-months data, while most of the

aforementioned studies either used temperature differences or

pressure differences when evaluating exergy efficiency. Herein, to

fill this substantial and core pivotal gap, this study takes into

account both the temperature and pressure differences for

performing exergy analysis of the whole year. Afterward,

pressure and temperature differences against the wind speed

are exploited by observing the last 10 years (2009–2019) weather

pattern. To the best of our best knowledge, this is the first time

when energy and exergy analysis are carried out for any Pakistan
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location. This case study provides the technical characteristics of

the wind farm installed in Gharo town, Sindh province (taken

from the National Electric Power Regulatory Authority (NEPRA)

(National Electric Power Regulatory Authority, 2021)) and

observes meteorological variables (Online, 2021) to compute

the wind speed of the year 2020. This study furthermore

computes energy and exergy efficiency of wind turbine for a

whole year, demonstrates the in-depth comparison of both

efficiency, and finally, investigates the variation in exergy

efficiency by varying temperature and pressure in an attempt

to accurately assess the performance of the wind power plant at a

given site. The limitations and assumptions used throughout this

study are listed as follows.

i) Wind flow is assumed to be uni-dimensional, steady, and

incompressible

ii) Temperature and pressure differences at the inlet and outlet

of a wind turbine are taken into account

iii) Heat transfer or phase changes are not considered

iv) The effect of humidity is ignored

The rest of the article is structured as follows. Section 2

elaborates on the case study, and Section 3 provides an energy

and exergy analysis investigation on the given case study. Section

4 demonstrates results and discussion, while significant findings

summary and future work scope are given in Section 5.

FIGURE 1
Wind farm location map.

FIGURE 2
Side view of the horizontal axis three-blade wind turbine.

TABLE 1 Wind farm micrositting layout for 13.8 MW (6*2.3).

Turbine number Easting [m] Northing [m]

1 379067 2735698

2 379099 2736089

3 379493 2735343

4 379689 2735823

5 379646 2736214

6 379589 2736558
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2 Case study

The present case study of a 14 MW wind farm in the Gharo

wind corridor, District Thatta, and province Sindh, is being

installed by Burj Wind Energy Limited, a UAE-based

company. Sindh province has a 290 km long coastline that

makes it apt for wind power generation. Gharo (Latitude

24.7409° or 24° 44′ 27.2″ north, Longitude 67.581° or 67° 34′
51.6″ east), a small town close to the coastline and not so far from

the two biggest cities of Sindh province (Karachi and

Hyderabad), is an ideal place for wind power plant

generation. Wind farm location map and micrositting layout

are shown in Figure 1 and Table 1 respectively.

The nacelle contains the main shaft (low-speed shaft),

gearbox, high-speed shaft, bearing, and generator. Usually,

wind turbines start to turn at a very low speed, but these low-

speed rotations are not enough to generate electricity. Thus,

speed is increased with the help of a gearbox in the nacelle, and a

TABLE 2 Technical specifications of the Gharo wind farm.

Wind farm capacity, configuration, and location

Wind farm location Gharo, District Thatta, Sindh province, Pakistan

Land 25 acres

Wind turbine type, make, and
model

General Electric GE 2.3–116

Installed capacity 13.8 MW

Generation capacity 5.6 MW

Number of wind turbine units/
size of each unit

06*2.3

Installation Onshore

Life expectancy 25 years

Rotor

Number of blades 3

Swept area 10568 m2

Rotor diameter 116 m

Rated power at 12.5 m/s air density of 1.225 kg/m3

Power regulation Combination of blade pitch angle adjustments
and generator/convertor torque control

Rotor speed 8–15.7 rpm

Cut-in speed 3 m/s

Cut-out speed 22 m/s

Survival speed 52 m/s

Pitch regulation Electric motor drives a ring gear mounted to the
inner race of the blade pitch bearing

Blades

Type description Pitching blade

Blade length 56.9 m

Material Glass fiber reinforced polyester, PVC, and balsa
foam

Weight 11,000 kg (per piece)

Gear box

Type Planetary/Helical

Gear ratio 1:104

Main shaft Cast iron GGG 700/400

Oil quantity 440 L

Main shaft bearing Roller bearing mounted in a pillow block
housing arrangement

Generator

Power 2385 kW

Type Doubly fed induction

Speed Rated speed 1820 rpm, range 1000–1820 rpm,
and synchronous speed 1500

Enclosure class IP 54

Voltage 690 V

Coupling Flexible coupling

Efficiency >97
Weight 8450 kg

Power factor +/-0.95

Tower

Hub height 94 m

Type Tubular steel tower

(Continued in next column)

TABLE 2 (Continued) Technical specifications of the Gharo wind farm.

Wind farm capacity, configuration, and location

Shape Conical
Control system

Type Automatic or manually controlled

Grid connection Via back-to-back AC–DC–AC power electronics
converter connected to rotor winding

Scope of monitoring Remote monitoring of temperature sensors,
pitch parameters, speed, generator torque, wind
speed, and direction

Recording Production data, event list, long- and short-term
trends

Brake

Design Electromechanical pitch control for each blade
(3 self-contained systems)

Operational brake Aerodynamic brake achieved by feathering
blades

Secondary brake Hydraulic parking brake

Yaw system

Type description Active electrical motor power through geared
ground with bolt bearings and hydraulic breaks

Yaw bearing Roller bearing

Brake Planetary yaw drives

Yaw driving device 4 planetary yaw drives

Speed 0.5°/s

Miscellaneous

Annual full load hours 3600

Average wind turbine
generator availability

97%

Total gross generation 62.7

Array and miscellaneous
losses (GWh)

8.67

Net capacity factor 41.1%
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high-speed shaft is connected to a generator for imperative rpms

(which are usually 1000–1800 rpms) to produce power.

Wind speed is not distributed uniformly; therefore, yaw control

makes sure to rotate the nacelle about the vertical axis of the tower to

always align with the wind. On the other hand, there is also a chance

of excessive wind speed that can damage the turbine, in such context,

rotation of turbine blades about their axis can be used to control

wind speed, which is known as pitch control. Based on these two

control mechanisms, two types of breaks exist.

i) Pitch (rotor) brake: prevents the rotor blades from spinning

too fast during high wind speed. It can be deployed during

emergency operations and for maintenance purposes.

ii) Yaw brake: is used to move the nacelle away from the

excessive wind that might cause torsional oscillation in a

tower.

An anemometer and wind wanemounted on top of the nacelle

determine wind speed and direction, respectively. For large wind

turbines, a steel tubular tower is preferred over lattice towers, and it

shapes like a conical as shown in Figure 1. This figure depicts the

major components of the horizontal wind axis turbine under

study. Horizontal axis turbines (shown in Figure 2) are superior

to vertical axis because of its ability to cover a larger swept area.

The speed at which wind turbines start generating power,

attaining maximum power, and before shutting down is known

as cut-in (6–9 mph), rated (25–35 mph), and cut-out speeds

(45–55 mph), respectively.

The International Electrochemical Commission (IEC)

institution sets four different classes of wind turbines

depending on the wind speed, gusts, and turbulence. In

addition, wind pressure in a wind turbine installation place is

also important to consider, which is covered by the wind zone

section. Other than the wind zone and class, the height of the

tower is also a prominent factor to infer wind speed. The taller the

towers, the higher the wind velocity changes, but it suffers the

transportation issues and greater costs.

General Electric (GE) companywas chosen for awind turbine that

is considered one of the top manufacturers in the wind industry. After

the feasibility study, the optimized size of the proposed wind farm was

found out to be 13.8MW,with six turbines of 2.30MWeach.Over the

last 15 years, the wind turbine generators (WTGs) have seen a lot of

improvement in their design. Though wind energy is considered to be

clean, but it causes soil, water, and noise pollution during construction

and operation. In particular, noise pollution (after project completion)

makes it difficult for communities to live nearby anywind farm. In this

regard, turbine blades by airfoil design help to attainmaximum energy

production at an economical expedient level withminimumnoise, but

still a lot of work needs to be done to eradicate such pollution. All of

these technical specifications are enlisted in Table 2, and the wind

turbine power curve is depicted in Figure 3.

Thrust coefficient, as shown in Figure 3, is generally used to

describe the wakes of wind turbines because the wind exiting the

turbine has lower energy content in comparison to the wind

entering the turbine. Consequently, wind turbines create a wind

shade in the form of turbulent and slowed-down wind trail in the

downwind direction, which is known as the wake of a turbine.

Such effect is characterized by the power/thrust coefficient which

is a nondimensional quantity; it is the axial force applied to the

flow by the turbine in comparison to the flow’s incoming

momentum, and it can be computed by using thefollowing

equation (Martínez-Tossas et al., 2022):

CT � F
1
2 ρAv

2∞
, (1)

where F, ρ,A, and v are the thrust force, fluid density, rotor swept

area, and upstream velocity, respectively. Higher thrust

coefficient due to the initial change in wind velocity (in the

range of 3.5 m/s to 8 m/s velocity) indicates higher wake

turbulence near the rotor, and in such cases, more recovery

and effective control are needed. It can be seen that the lower the

wake turbulence or lower the thrust coefficient between cut-in

and cut-out velocity, the higher the power production.

3 Energy and exergy analysis
formulation

3.1 Energy analysis

General energy balance for a control volume can be

represented as

Ein � Eout →
dECV

dt

� Qcv −Wcv +∑
i

mi(h + v2

2
+ gz)

i

−∑
o

mo(h + v2

2
+ gz)

o

,

(2)

FIGURE 3
2.3 MW general electric wind turbine power curve.
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where dECV
dt is the time rate of change of energy under control

volume, andWcv is work effects like generating power in terms of

mechanical energy by rotating shaft or electrical energy with the

help of a synchronous generator. h, v , and z represents enthalpy,

velocity, and elevation, respectively. In the case of a wind energy

system under steady-state conditions, the above equation reduces

to the below expression.
Under steady-state conditions, dECV

dt � 0.

Work is measured only in terms of generated power, and heat

transfer is ignored. Qcv � 0, Wcv � Pe.

There is no height difference between the inlet and outlet of a

wind turbine (z � 0). Now, the equation reduces to the following

expression:

m1h1 +m1
v2

2
� m2h2 +m2

v2

2
. (3)

The air is assumed to be incompressible for a wind turbine

system that makes the inlet and outlet air mass flow rates equal.

(mi � mo). As a result, power generation in the case of wind

turbine systems is only related to converting mechanical power

(kinetic energy) to electrical energy as shown below. The energy

balance between the inlet and outlet of a wind turbine can be

expressed as

KE1 � KE2 + Powe, (4)
Ein � EKE � ΔKE � KE1 − KE2, (5)

Eout � Powe. (6)

FIGURE 4
Average temperature and pressure of the Gharo site.

FIGURE 5
Wind variation for the Gharo site.
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Kinetic energy is generally evaluated as

KE � 1
2
mv2. (7)

It is cumbersome to compute the mass of wind; therefore, it

can be computed in terms of density of air shown as follows:

ρ � m

V
, (8)

m � ρ × V, (9)
where V � A × L, and L � vt. By putting these values in (9), the

following equation is generated:

m � ρAvt. (10)

Now, putting values of m in Equation 7 results in

KE � 1
2
ρAtv3, (11)

η � Eout

Ein
. (12)

3.2 Exergy analysis

Exergy has four types: potential, kinetic, physical, and

chemical exergy. In case of the wind turbine system, chemical

and potential exergy are ignored due to no chemical affinity

involvement and non-significant height difference between the

inlet and outlet of the turbine, respectively. Additionally, kinetic

energy and exergy share the same value as this is considered high

quality energy. Though kinetic energy in energy balance covers

the wind velocity, but it ignores the paramount parameters which

effect or vary wind velocity such as temperature difference

(chilling effect), pressure difference (velocity effect), and

humidity. Usually, the air is assumed to be dry and the role

of humidity is ignored, but temperature and pressure differences

play a decisive role in evaluating the true performance of the

wind energy system, which is provided by exergy analysis.

Exout � Exin + Exdest. (13)

Exdest represents exergy destruction.

The wind pressure effect is determined by Bernoulli’s

equation, while the wind-chill effect leads to temperature

differences, which are attributed to enthalpy and entropy

components.

Exin � ExKE + Exphy, (14)
ExKE � Ein, (15)

Exphy � (H −Ho) + To(S − So), (16)
ΔH � mCp(T2 − T1), (17)

ΔS � mTo(C ln(T2

T1
) − R ln(P2

P1
) − Qloss

To
). (18)

T1, and T2 are the wind chill temperatures at the outlet of

turbine. P1, and P2 are the pressure differences at the inlet and

outlet of the wind turbine, respectively. C and Qloss represents

heat capacity the wind turbine heat losses,

respectively. (∴Qloss � mC(To − Tavg))
The total input wind exergy is represented as

Exw
in � Exw

e +mC(T2 − T1)+
mTo(Cp ln(T2

T1
) − R ln(P2

P1
) − Qloss

To
)︸���������������︷︷���������������︸

Exergy destruction/Irreversibilities

, (19)

FIGURE 6
Monthly energy and exergy efficiency quantification of GE-wind turbine.
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ψ � Exout

Exin
. (20)

The variations of meteorological variables that encompass

average low temperature, average high temperature, and average

pressure are represented in Figure 4. Furthermore, maximum

wind, average wind, and average gust speeds in km/h are

demonstrated in Figure 5.

4 Results and discussion

The Gharo wind farm comprises six wind turbines of 2.3 MW

each, generating electricity at a capacity of around 5.6 MW.GEwind

turbine models with 10568 m2 rotor swept area, 116 m rotor

diameter, and 56.8 blade length are installed around 25 acres of

land on a given site. The understudy (GE 2.3–116MW) wind

turbine swept area is 27% more than GE 1.7 MW, which helps

to generate 26% more energy annually. In addition, a wind turbine

having 56.7 m blade length with state of the art airfoil design

guarantees higher energy production with a reduced noise level

at a lower cost for Class II/III sites.

The energy and exergy analysis of wind turbines is conducted

to compute energy and exergy efficiency by using (10) and 18.

These analyses are intended to evaluate the effectiveness of wind

turbines by observing how much wind KE is converted into

power generation. Air density, reference temperature, and

pressure are assumed as 1.225 kg/m3, 27°C (300.15 K), and

1 bar (100 kPa), respectively. The average monthly energy and

exergy efficiency of the GE-wind turbine according to the

weather data of the Gharo site is plotted in Figure 6.

Though energy and exergy efficiency follows the same trend

throughout the year but exergy efficiency tends to be lower than

energy efficiency as energy efficiency is overestimated. Energy

efficiency cannot provide the precise performance of a system,

which often leads to inaccurate results and misguide us from the

factual assessment. This is due to the fact that energy efficiency

only takes into account the effect of nominal power generation

depending on the conversion of kinetic energy to electrical

energy. Contrarily, it ignores the foremost fact that kinetic

energy conversion is influenced by wind speed, and this wind

speed is dependent on meteorological variables such as

temperature and pressure.

Accordingly, variation in exergy efficiency can be

understood by the three most predominant parameters: 1)

change in speed/velocity; 2) change in temperature; and 3)

change in pressure.

Wind velocity is categorized into three types: cut-in,

rated, and cut-out velocity. No power is generated below

cut-in speed (3 m/s) and after cut-out speed (22 m/s),

controllers are designed to shut down turbines to protect

wind turbines. For that reason, it does not make sense to talk

about efficiency when there is no power generation below cut-

in and after cut-out, whereas fluctuating efficiency trends are

being observed that usually following the linear trend with a

velocity between the cut-in and cut-out range. In this regard,

the higher the wind velocity, the more exergetically efficient a

wind turbine is. Nonetheless, the change in velocity is

influenced by the change in temperature and pressure. The

increase in exergy efficiency is associated with a rise in

temperature that increases wind velocity (follow the direct

relation).

FIGURE 7
Exergy efficiency variation with changing temperature, pressure, and wind speed.
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Exergy efficiency is maximum during the month of July

because the wind is blowing at maximum speed during this

month. Furthermore, the temperature is also higher during

this month though not maximum. This can be understood by

taking into account the effect of pressure as high pressure

differences result in low exergy efficiency (follow the inverse

relation). In particular, the difference between temperature

and pressure is greatest in July due to high wind velocity that

ultimately results in the least exergy destruction and higher

exergy efficiency. The thermodynamic assessment of GE

2.3–116 MW is better comprehended by the illustration of

change in wind speed, temperature, and pressure effect on

exergy efficiency as presented in Figure 7.

In short, energy analysis ignores environmental

conditions, internal irreversibilities, enthalpy, and entropy

contributions that result in the overestimation of energy

efficiency. To this end, exergy efficiency computation

becomes increasingly critical in order to determine the

actual performance by taking into account the effect of

meteorological variables such as temperature, pressure, and

wind speed. In comparison to temperature and pressure,

variation of wind speed plays an indispensable role in

exergy efficiency since wind energy fluctuation is

proportional to the cube of wind velocity (see Eq. 9).

Exergy analysis identifies that only 40% of wind energy can

be converted to useful work that is producing power while the

rest of 60% is destroyed (termed as anergy), which is

accounted as exergy destruction. Though exergy efficiency

turns out to be lower than energy efficiency but it depicts the

true thermodynamic assessment of the proposed system by

addressing the Frontier issue of meteorological variables and

exergy losses effect on efficiency quantification. Therefore,

higher exergy destruction means lower exergy efficiency and

vice versa, as it is corroborated in Figure 8, wherein depicts

that exergy destruction is lowest during the month of July,

resulting in the highest exergy efficiency during this month.

5 Conclusion

Being a third world country, Pakistan is giving priority to

indigenous renewable energy sources such as wind turbines to

diversify the country’s energy portfolio. It enhances the energy

security of the country, thereby reducing the dependence on

imported furnace oil and carbon emissions by generating clean

electricity. This study investigates one of the wind power plant

projects in a small town, Gharo (along the coastline of Sindh

province, Pakistan) by employing energy and exergy analysis.

Energy analysis computes the energy efficiency by just evaluating

the conversion of kinetic energy to electrical energy, but exergy

analysis also takes into account the effect of pressure,

temperature, and wind speed to compute exergy efficiency.

The results substantiate that both efficiencies (energy and

exergy) are maximum during the month of July, while exergy

efficiency varying between 18 and 41% turns out to be lower than

energy efficiency that lies within 24–50%. Maximum exergy

efficiency during the month of July is corroborated by

maximum exergy destruction during this month. According to

the local weather data, a comparative performance assessment

reveals that the exergy analysis results are inferior to energy

analysis, but it demonstrates factual assessment and performance

of wind turbines that can help engineers and government

administrators to formulate policies accordingly in order to

foster the actual performance of wind energy plants.

FIGURE 8
Monthly exergy destruction variation.
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This study can be further extended to envisage advanced

exergy analysis, with a focus to include avoidable and

unavoidable losses. There is also a scope of presenting

insightful results by evaluating hidden exergy destruction costs

and the environmental impact of wind turbines with the aid of

exergoeconomic and exergoenvironment assessment.
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Nomenclature

Abbreviations

AEDB Alternative Energy Development Board

GE General Electric

IES International Electrochemical Commission

NEPRA National Electric Power Regulatory

WTG Wind turbine generator

Symbols

Subscripts
o Ambient

avg Average

cv Control volume

dest Destruction

e Electricity

i or 1 Inlet of wind turbine

KE Kinetic energy/exergyKinetic energy/exergy [J/kg]

loss Losses

o or 2 Outlet of wind turbine

phy Physical

Superscripts

w Wind

Constants and variables

E Energy [kJ]

Ex Exergy [kJ]

T Temperature [K]

P Pressure [kPa]

Q Heat transfer

W Work done [kJ]

C Heat capacity [kJ/kg]

KE Kinetic energy/exergyKinetic energy/exergy [J/kg]

η Wind turbine energy efficiency

ψ Wind turbine exergy efficiency

CT Thrust coefficient

H Enthalpy [kJ]

S Entropy [kJ/K]

v Velocity [m/s]

g Gravitational force [m/s2]

z Elevation [m]

ς Exergy factor

m Mass flow [kg]

Pow Power generation [kW]

F Thrust force [N]

To Absolute temperature [K]

ρ Air density [kg/m3],L ,V swept area [m2], length [m], and

volume [m3]
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Electric power industry is continually adopting new techniques to improve the

reliability and efficiency of the energy system and to cope with the increasing

energy demand and the associated technical challenges. In recent years, the

maturation of Artificial Intelligence (AI) led researchers to solve various

problems in the power system by using AI techniques. Voltage Source

Converter is the result of advancements in the field of power electronics

and semiconductors technology, which holds a promising future for the

realization of smart grid, renewable energy integration, and HVDC

transmission system. Usually hit and trial method or the design engineer’s

experience is used for the manual tuning of the PI controllers, which cannot

yield superior performance. The process becomes more complicated when

multiple grids are involved, such as in VSC-based MTDC grids. This research

article use a deep learning optimization technique for the tuning of the VSC

controllers, which resulted in quick settling time, better slew rate, less

undershoot and low overshoot. The deep learning neural network is trained

through the Particle Swarm Optimization (PSO) algorithm to produce the best

possible tuned or optimally tuned parameters for the controllers. The optimal

tuning of the controller will result in an overall better performance of the

converter and the grid. A four-layered deep learning neural network and a

three-terminal MTDC grid were designed and simulated in MATLAB/SIMULINK

environment.

KEYWORDS

optimization, artificial intelligence, deep learning, smart grid, voltage source
converter, particle swarm optimization (PSO), smartgrid

1 Introduction

The power system is undergoing revolutionary changes due to technological

advancement, high computational resources, increasing demand, and focus on green

energy. Many countries such as China, E. U. members, Australia, etc., are working to shift

a significant proportion of their energy consumption from conventional to renewable

sources. As a result, there is an increased influx of renewable energy into the system.

However, the system cannot readily absorb and distribute this incoming energy. Unlike
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conventional sources, renewable energy sources cannot be

scheduled and are sometimes connected directly to the

distributed system instead of the transmission system (Freris

and Infield, 2008). The integration of such time variables and

distributed sources into the electrical network requires special

consideration.

Multi-terminal direct current (MTDC) grids are overlaying

their counterparts due to the advantages and flexibility in terms

of large-scale integration of remotely located renewable energy

resources into the existing AC grids (RODRIGUEZ and

ROUZBEHI, 2017). Energy conversion is done through

converters such as the matured line commutated converters,

the recent voltage source converter, the advanced modular

multilevel converter, etc., VSC is a developing technology

because of its benefits, such as independent power control,

low power loss, dynamic response, etc., (Reed et al., 2003).

Inside the VSC converter, PI controllers are used to control

the operation of the converter. PI controller is very famous in

industrial systems due to its ease of implementation and

robustness. The PI controller helps drive the system variables

to their target values through the variation of l gain and time

constant (O’Dwyer, 2009). The performance of the converter

depends on how accurately the controller is tuned. Typically, no

specialized or intelligent technique is adopted for the tuning

process; instead, the hit and trial method or the engineer’s

experience is used to tune the PI controller manually.

However, the situation becomes complex when multiple grids

are interconnected, such as in MTDC grids. So, with the

advancement in grid interconnection, an intelligent technique

must be adopted to tune the PI controllers, which can lead to

better response and performance. In this research article, a deep

learning technique is applied for the tuning of the controllers to

yield the best responses in terms of slew rate, settling time,

undershoot and overshoot. Although the transformation rate of

power generation, transmission, and distribution technology is

relatively slow, the power industry researchers are trying to apply

AI to every possible section of the power system. For instance, AI

has proven to be of great help in power system planning,

scheduling, and control (Madan and Bollinger, 1997; Yousaf

et al., 2021; Sharma et al., 2022).

2 Literature review

The majority of the industrial processes use PI controllers

due to their robustness and reliable performance. The recent

industrial advancement leads to the development of systems with

multipThele and complex closed-loop systems. The performance

of these systems greatly depends on how small is the error. So, the

tuning of the PI controller is important and directly impacts the

overall performance. The control loops for which random tuning

may not be sufficient are subjected to various tuning and

optimization techniques. A model predictive-based tuning

technique was presented in (O’Dwyer, 2003) which was

primarily designed to produce quarter decay responses. The

Direct Synthesis method (Seborg et al., 2004) is becoming

popular amongst engineers due to its ability to tune through a

single tuning parameter which has a significant effect on the

performance of the closed-loop. The AMIGO tuning rule is based

on the 63% step response experiment (Åström et al., 2006) The

objective of this method is to minimize error and disturbances.

The SIMC optimization or tuning method was obtained through

the reduction of the higher models using the half rule approach

(Skogestad, 2003).

In (He et al., 2000) an optimal tuning technique based on

LQR (Linear Quadratic Regulator) approach is presented. This

method is useful for the process that involves time delay and is of

low order. The proposed LQr criteria lead to the desired natural

frequency and damping ratio. In (Kookos et al., 1999) an online

PI controller tuning method for dead time processes is explained,

specifically suitable for various chemical processes. This model is

an approximation of various complex models such as the first-

order plus dead time model having large time constants. A

fractional-order proportional and derivative (FOPD) was

explained in (Li et al., 2010). This method is specifically

beneficial for the application of fractional-order controllers

having complicated closed loop. For closed loops systems a

droop control optimization (Khan and Ahmed, 2020)

technique is also widely used but it doesn’t involve

optimization on the controller level.

Moreover, Literature depicts multiple classical and modern

optimization or tuning techniques for the PI controller. Due to

the widespread industrial applications of the PI or PID controller,

it is a well-searched area. More than ninety percent of the

industrial system still uses PI or PID controllers due to its

ease of implementation and robustness.

Classical techniques are based on assumptions about the

plant and output. These assumptions help the controller to reach

the optimal setting (Liu and Ansari, 2020). However, classical

optimization techniques seem simple and robust, but the desired

response may not be obtained due to the assumptions involved.

Ziegler Nichols and Cohen Coons methods are among the

classical introductory techniques discovered. The Nichols

technique was based on the assumption (Izci, 2021), (Araki

and Unbehauen, 2020), while the Coons method involved the

FOLPD model (Ziegler and B Nichols, 1942), (Salunkhe et al.,

2018). Coons method was built on a better model, but there is no

significant difference between the performance of both methods.

Specifically, the Nichols method cannot evaluate system

parameters in an environment with noisy conditions. The

drawback associated with the Coons method under abnormal

conditions is the fact that it pushes the system towards instability.

It is evident from the literature that complex, intelligent

techniques were built from simple logic, such as the Immune

algorithm was inspired by the vertebrate immune system. It is a

system that protects the internal system from foreign objects. The
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optimum response is generated based on Learning about the

antigen to generate an optimized response (Sebtahmadi et al.,

2017).

Ant Colony Optimization technique was inspired by an ant

colony and is based on a meta-heuristic approach. This algorithm

works like insects looking out for food by following the optimal path

(Al-Mogren, 2008), (Dai et al., 2017). Genetic Algorithm (G.A.)

navigates the search, similar to the pattern of evolution in nature. It

utilizes cost functions and probabilistic rules (Gonçalves et al., 2018).

The name genetic comes from the fact that the solution is

represented in binary format which is similar to genetic

representation (Oshaba et al., 2017). The Differential Evolution

(D.E.) technique is used for problems that require numerical

optimization. This problem gradient is not known in detail to

complete this procedure. The need for a gradient is eliminated

because it works in a way that doesn’t require the need for a gradient

and results in quality (Geweda et al., 2017).

Another global optimization technique is Evolutionary

Programming (E.P.) which involves the steps of initialization,

mutation, competition, and reproduction. A quasi-random

sequence (QRS) is applied to generate the initial sequence

(Liang et al., 2020). Annealing (Badar et al., 2022), Vector

Support Machine (SVM) (Kumar et al., 2008) and Surface

Method response (Reynoso-Meza et al., 2016) are among the

other methods which are not too popular because these are very

specifically used for a narrow category of applications.

In one of the popular methods called Particle Swarm

Optimization, in search for the optima, a particle population

moves through the solution, while keeping track best solution

(local and global) (Najeeb et al., 2017). PSO leads to better

responses than G.A. The drawback of PSO is its property falls

into a local optimum. In this research, the PSO algorithm is used

to train the deep learning neural network. The normal way to

train the neural network is through the data sets, but in this

particular application due to the unavailability of the data set and

due to the nature of the problem PSO algorithm is used to train

the neural network (Zhao et al., 2015).

Inspired by the biological neural network, in Artificial Neural

Network (ANN) there are artificial neurons that can be

multilayered. To process the data, a connectionist approach is

applied (Ilten and Demirtaş, 2016). AI technology is based

fundamentally on ANN, extending to the concepts of deep

learning and machine learning. ANN is applied to solve

complex nonlinear problems. This research adopted a deep

learning technique due to its self-learning capability. The

successful implementation of deep learning networks depends

upon two key parameters, i.e., hidden layers and neurons in each

hidden layer. The performance of the deep learning network

depends upon the setting of these two key parameters. However,

setting themmanually or through the grid searchmethod is time-

consuming. PSO algorithm has a great potential to optimize

parameter settings (Behera et al., 2016). Apart from industrial

processes the applications relating to power system can be found

in the literature this research is focused on the power system

application and optimization (Ehsan et al., 2021; Shehzad et al.,

2021; Chi et al., 2021; Autonomous, 2021; Guasti Junior and

Santos, 2021; Lau and Lim, 2018; Fan et al., 2019; Hu and

Eberhart, 2002; Dashtdar et al., 2022; Soliman et al., 2021).

The novelty of this research lies in the selection of

optimization techniques, i.e., deep learning. The deep neural

network is trained through a particle swarm optimization (PSO)

algorithm. Previously deep Learning has been applied for image

processing, signal processing, computer vision, power system

planning, etc., But it has never been applied to the optimization

of a VSC controller in a power system setting. This research

focuses on the application of deep Learning for power system

optimization in a VSC-MTDC grid system.

This work can also be considered an improved version of our

previous work, in which fuzzy logic was applied to optimize such

systems (Qolomany andMaabreh, 2017). The results of this deep

learning optimization are much better than the fuzzy logic

technique, so it forms the foundation for applying the

artificial intelligence techniques for power system optimization

and control. The key contributions of this paper include:

1) An AI-based optimization technique has been exploited for

the optimization of power converters Controller (PI

tuning).

2) Optimization of the weights and biases of the neural network

has been undergone using the Particle Swarm Optimization

technique.

3) A step forward towards the application of AI on power systems.

4) Improved performance of the converter in terms of overall

stability, overshoot, undershoot, settling time, and slew rate.

5) Increased reliability of the system by combining the benefits

of AI-based optimization with the robustness of PI controller.

The paper is structured as follows:

The introduction section focuses on the background and the

need for an intelligent and self-learning optimization method for

power converters. The second section which is a literature review

covers all the significant work already done in this domain. It

includes all the optimization techniques that are reported and

can be applied to power system problems. It also mentions the

drawback of every technique and that is why need to improve the

existing techniques. In the third section of the methodology, we

covered the steps involved to realize our proposed solution. It

focuses on the construction of the deep learning network,

mathematical modeling, and how the PSO algorithm is applied

to optimize the weights and biases of the neural network itself.

The result and analysis section compares and analyzes the

obtained simulated results. From the graphs and table, the

superior performance of the proposed solution is proved as

compared to other traditional techniques.

The conclusion concludes the contribution of the proposed

strategy and it also mentions the future potential research areas
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in this domain to extend this optimization approach to other

converters.

3 Methodology

The deep Learning-based optimization process involves the

following steps and methodology.

3.1 Constructing a deep learning
algorithm

Deep Learning algorithms process the data through various

layers of neural network algorithms. In simple words, deep

learning refers to the training of the neural network. The

neural network consists of several neurons. A neuron can be

understood as a building block of a neural network. A network

comprises three layers, i.e., input layer, hidden layer, and output

layer. The two key hyperparameters that control the network

topology include the number of layers and the number of nodes

inside each hidden layer.

The input layer is responsible for passing on the initial

information to the network. The hidden layer is located

between the input and output layer, where all the

computations are performed. The outer layer is responsible

for producing the results based on the inputs and

computations. In the research problem investigated in this

article, we have two inputs [error (e) and the derivative of

error (de)]. We have three hidden layers, and each hidden

layer contains four neurons. The outputs are the optimized

parameters for the PI controller, i.e., “Kp” and “Ki.” Figure 1

shows the architecture of the constructed network.

The target value of the error is set at 1 × 10−4. It implies

that the network will keep searching for the PI controller’s

optimized parameters until the error value reaches the target

value.

3.2 Mathematical modeling

A feed-forward network architecture was chosen while

constructing the neural network (Babaie et al., 2019),

(Shehzad et al., 2021). In a feed-forward neural network, the

node connections don’t form a cycle. In this case, multiple layers

of computational units are connected in a feed-forward manner.

Figure 2 shows the interconnections of a feed-forward network

with two inputs (x1 � error, x2 � derivative of error), three

hidden layers (4 neurons in each layer) and two outputs

(y1 � kp and y2 � ki). “a” represents the pre-activation

function which is a weighted sum of inputs plus the bias. “h”

represents the activation function of a neuron which is a sigmoid

function.

A mathematical representation can help to understand the

whole interconnected network and the interaction of these

neurons with each other easily. Going forward, the format

used to indicate the weights and biases associated with a

neuron is as follows

W(layer number)(neuron number)(Input number)
b(layer number)(Bias number for that input)

Here, we have two inputs and four neurons in each hidden

layer. So, the corresponding weighted matrixes can be written as

(Chi et al., 2021),

W1 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
w111 w112

w121 w122

w131 w132

w141 w142

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

W2 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
w211 w212

w221 w222

w231 w232

w241 w242

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)

W3 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
w311 w312

w321 w322

w331 w332

w341 w342

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3)

FIGURE 1
Designed deep learning neural network.
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W1, W2 andW3 represent the weighted matrixes of the

three hidden layers, respectively. The input matrix “X” is

shown in Eq. 4.

X � [x1

x2
] (4)

To compute the pre-activation functions for each neuron of

each hidden layer, consider the generic expression of the pre-

activation function shown in Eq. 5.

ai(x) � Wihi−1(x) + bi (5)

The activation at each layer is equivalent to applying a

sigmoid function to the pre-activation of that respected layer.

The expression for activation at each layer is depicted in Eq. 6.

hi(x) � g(ai(x)) (6)

Where “g” is called the activation function.

We can compute the pre-activation for each neuron of each

layer in the following manner (Autonomous, 2021).

a11 � w111x1 + w112x2 + b11 (7)
a12 � w121x1 + w122x2 + b12 (8)
a13 � w131x1 + w132x2 + b13 (9)
a14 � w141x1 + w142x2 + b14 (10)

Eqs 7, 8, 9, 10 represent the pre-activation for the four

neurons in the first hidden layer.

In short, the pre-activation of the first layer is given by

(Guasti Junior and Santos, 2021)

a1 � W1*x + b1 (11)

W1 is the matrix containing individual weights, and b1 is the

vector containing the individual bias associated with sigmoid

neurons. The activation for the first layer is

h1 � g(a1) (12)

Similarly, the pre-activation and activation functions for the

remaining layers can be computed following the above topology.

The normalized mean square error (NMSE) approach is used

to optimize the error values. The pseudo-code showing the input

arguments to the NMSE handle and the error calculation is given

by (Qolomany and Maabreh, 2017).

h = @ (x) NMSE (x, net, inputs, targets);

NMSE = mean (error.̂2)/mean [var (target′,1)];

Figure 3 represents the error histogram generated after the

training of a controller.

FIGURE 2
Interconnections of the designed network.

FIGURE 3
Error histogram.
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3.3 Particle swarm optimization

Considering the nature of the research problem, which

involves MTDC grids, many variables keep on varying. To

improve the accuracy of the deep learning algorithm, a PSO

algorithm is used to find the optimum values for the weights and

biases of the neural network. It also optimizes the computational

time and the fitting regression, along with minimizing the mean

square error. PSO was inspired form the swarm movement,

which depends upon the individual and neighboring

experience. PSO algorithm can be understood via four steps

approach. The first step is the initiation and selection of a random

population and particle, respectively. In the second step, the

fitness of the previous(Ppi) and the next(Pni) value is compared

to the search for the optimized solution in the space. The third

step is the selection of a local best and a global best(Gbi). The
positions are recorded for the next step. Mathematically (Najeeb

et al., 2017), it can be expressed through Eqs 13, 14.

Vk+1
i � w pVk

i + r1c1(Pni −Xk
i ) + r2c2(Gbi −Xk

i ) (13)
Xk+1

i � Xk
i + Vk

i (14)

WhereXi is the current position,Vi Is the speed of the particle, i

is the optimization vector, and k refers to the number of iterations.w

is the inertia weight factor. c1 is the cognitive coefficient, c2 is the

social coefficient. r1 and r2 are the random velocity values in the

search space. In the last step, the best particle is evaluated and saved;

this process continues until the end of the iteration. Eq. 15 presents

the objective function of the controller.

Of(X) � ∑n
i�1
mifi(X) (15)

fi is the performance index for the ith,mi is the weighting

factor applied to the ith sub-objective. Figure 4 represents

the pseudo-code of the PSO algorithm. The number of

iterations are directly related to the accuracy of the

optimized rersults. The optimized weight and biases are

the result of the PSO.

4 Result and analysis

A three-terminal VSC MTDC system with radial topology

has been built in SIMULINK to test the proposed optimization

strategy. The whole test system comprises of three AC grids

synchronized and connected with each other. The goal of the

system is do generate a stable DC output for a HVDC system

to ensure the reliable performance. The layout is shown in

Figure 5.

The system consists of three AC grids. The apparent power is

200 MVA, 230 kV, and the frequency is 50 Hz.

This section verifies the superior performance of the deep

Learning-based optimized PI controller by comparing it with a

randomly tuned PI controller. The performance parameters for the

designed system include DC voltage, active power, and reactive

power. We will compare the parameters like overshoot, undershoot,

settling time, etc., to verify the optimal performance.

FIGURE 4
PSO algorithm.

TABLE 1 Shows a comparison of an AI-based optimized PI controller
and a PI controller. It is verified from the values of the
performance parameters that the responses of the optimized
controller are better regarding the mentioned parameters in Table 1.

Parameter Value

Rated Aparent Power 200 MVA

Nominal Voltage 230 KV

Nominal Frequency 50 Hz

Carrier Frequency 1350 Hz

Number of Levels 3 level NPC converter

Length of Transmission Cable 100 Km

DC Cable Resistance 0.0195 Ω/Km

DC Cable Inductance 19 mH/Km

DC Cable Capacitance 220 nF/Km
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4.1 DC voltage

A smooth output DC voltage ensures the stable operation

of the HVDC system and good power quality. To test our

designed system for the worst-case scenario, faults were

created. Figure 6 shows the response of the DC voltage for a

randomly tuned PI controller. While Figure 7 shows the curve

FIGURE 5
Three terminal VSC-MTDC system.

TABLE 2 Comparison of voltage.

Quantity Optimized PI Simple PI

Max overshoot 34.40% 35.07%

Settling time 0.159 s 0.278 s

Undershoot 1.958% 3.48%

Rise time 4.493 ms 1.921 m s

Slew rate 17.522 V/µs 16.809 µs

TABLE 3 Comparison of active power.

Quantity Optimized PI Simple PI

Max overshoot 8.107% 11.446%

Settling time 0.22 s 0.24 s

Undershoot 34.4% 7.93%

Rise time 218.567 ms 514.37 ms

Slew rate 16.846 V/s 1.393 V/s

FIGURE 6
Voltage Curve for a simple PI controller.

FIGURE 7
Voltage curve for the proposed controller.
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obtained after optimizing the PI controller using the proposed deep

learning strategy. It is evident that the performance of deep learning

optimization is superior in terms of various parameters, as shown in

Table 1.

Considering the time axis at t = 1.5 s, a −0.1p. u step is

introduced to the ref, DC voltage. At 2.5 s, a 3-phase to ground

fault is created. The proposed deep Learning-based optimized

system recovers in 0.083 s, whereas the simple controller

recovers in 0.205 s, confirming the superiority of the deep

learning optimization PI. Both these graphs show that for a

randomly tuned PI controller, the response is not smooth and

is oscillating, which can also lead to severe system damage. But

after applying the proposed strategy, the graph becomes stable

and smooth, even after the fault, ensuring a reliable and stable

system.

It should be noted that the simple PI in this paper refers to the

classic PI controller which is tuned by hit and trial method or

according to the experience of the design engineer. The

comparison is between the randomly tuned and the one tuned

with the proposed strategy. Other PI tuning techniques are

discussed in Section 1 of this paper along with their

advantages and disadvantages. Applying all those techniques

to pour specific converter problem and then comparing it

TABLE 4 Compares the performance parameters of the two reactive
power curves. It is evident that the optimized controller yields a
better response regarding the mentioned parameters in Table 3.

Quantity Optimized PI Simple PI

Max overshoot 3.719% 1.326%

Settling time 0.323 s 0.499 s

Undershoot 1.68 % 2.87 %

Rise time 13.048 ms 12.18 ms

Slew rate 12.536 V/s 11.7 V/s

TABLE 5 Comparison of reactive power.

Quantity Optimized PI Simple PI

Max overshoot 3.719% 1.326%

Settling time 0.323 s 0.499 s

Undershoot 1.68% 2.87%

Rise time 13.048 ms 12.18 ms

Slew rate 12.536 V/s 11.7 V/s

FIGURE 10
Reactive Power Curve for a simple PI Controller.

FIGURE 11
Reactive power curve for the proposed controller.

FIGURE 8
Active Power Curve for a simple PI Controller.

FIGURE 9
Active power curve for the proposed controller.
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would result in complexity, so the shortcomings of those

methods are highlighted.

4.2 Active and reactive power

The active and reactive power curves are crucial in

determining the power quality, reliability, and system stability.

The system is tested under transient conditions to verify the

reliability of the proposed controller. Figures 8, 9 show the active

power responses for a typical PI controller and deep learning-

based optimized PI controller, respectively.

It is evident from Table 2 that the performance parameters

of deep Learning-based optimized PI controllers are much

better than a randomly tuned PI controller. The smooth and

constant supply of active and reactive power is crucial for the

loads. In the randomly tuned case, the graph shows very

unsettling behavior, which is not good for the load and the

overall system. By implementing our proposed strategy, In

Table 3 we saw that the graph is now better and more stable

than the previous version, thus ensuring a more reliable,

efficient, and stable system.

Figures 10, 11 depict the reactive power responses for an AI-

based optimized and a normal PI controller, respectively. it can be

observed that in Table 4 and Table 5 the response of the AI-based

optimized controller is smooth and contains less distortion, which

helps to maintain the power stability of the system.

Figure 12 shows the real simulated system configuration.

5 Conclusion

A deep learning optimization technique for the VSC-MTDC

was proposed and tested in this article. The proposed technique

combines the benefits of artificial intelligence with the PI controller

to achieve the best possible system response. A 200MVA systemwas

tested and the PI controllers were tuned using the deep learning

algorithm. Performances with the classical tuning methods were

compared and it was confirmed that the proposed strategy yields the

best results in terms of overshoot, undershoot etc. To test the

reliability of the proposed controllers, the system was tested

under normal and transient operating conditions. Results and

analysis of the performance parameters confirm the superior

performance of the optimized PI controller using deep Learning.

As a future trend in the development of a super grid or flexible

distribution network, deep learning or AI can be applied to various

other aspects of the power systems. This research is limited to two-

level VSC topology and cannot be readily applied to MMC or any

other converter without proper research and exploration. As a future

goal, the optimization of MMC needs further research and

exploration.
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FIGURE 12
Three terminal MTDC network.
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Many studies have been made on the double-fed induction generator wind

turbine system (DFIG-WTS) in recent decades due to its power management

capability, speed control operation, low converter cost, and minimized energy

losses. In contrast, induction machine control is a more complex task because

of its multivariable and nonlinear nature. In this work, a new robust nonlinear

generalized predictive control (RNGPC) is developed to maximize the extracted

energy from the wind without the use of aerodynamic torquemeasurements or

an observer. The aim of the predictive control is to produce an anticipated

impact by employing explicit knowledge of the present condition. By revisiting

the cost function of the conventional nonlinear generalized predictive control

(NGPC), which is based on Taylor series expansion, in that way, the resilience of

the system is improved. An integral action is included in the nonlinear predictive

controller. As a result, if the closed loop system is stable, the suggested

controller totally eliminates the steady state error, even if unknown

perturbations and mismatched parameters are present. The output locating

error’s convergence to the source is utilized to show the locked system’s

stability. Simulation results demonstrate and verify the efficiency, the good

performance, and robustness of this proposed control technique.
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DFIG wind turbine systems, robust generalized predictive control, doubly fed
induction generator, wind, controller

OPEN ACCESS

EDITED BY

Dongran Song,
Central South University, China

REVIEWED BY

Feihhang Zhou,
Xi’an University of Posts and
Telecommunications, China
Jian Yang,
Central South University, China

*CORRESPONDENCE

Kamel Ouari,
kamel.ouari@univ-bejaia.dz
Salah Kamel,
skamel@aswu.edu.eg

†These authors have contributed equally
to this work

SPECIALTY SECTION

This article was submitted to Smart
Grids,
a section of the journal
Frontiers in Energy Research

RECEIVED 17 July 2022
ACCEPTED 01 August 2022
PUBLISHED 23 September 2022

CITATION

Ouari K, Belkhier Y, Djouadi H, Kasri A,
Bajaj M, Alsharef M, Elattar EE and
Kamel S (2022), Improved nonlinear
generalizedmodel predictive control for
robustness and power enhancement of
a DFIG-based wind energy converter.
Front. Energy Res. 10:996206.
doi: 10.3389/fenrg.2022.996206

COPYRIGHT

© 2022 Ouari, Belkhier, Djouadi, Kasri,
Bajaj, Alsharef, Elattar and Kamel. This is
an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Energy Research frontiersin.org01

TYPE Original Research
PUBLISHED 23 September 2022
DOI 10.3389/fenrg.2022.996206

40

https://www.frontiersin.org/articles/10.3389/fenrg.2022.996206/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.996206/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.996206/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.996206/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.996206/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2022.996206&domain=pdf&date_stamp=2022-09-23
mailto:kamel.ouari@univ-bejaia.dz
mailto:skamel@aswu.edu.eg
https://doi.org/10.3389/fenrg.2022.996206
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2022.996206


Introduction

Due to its multiple advantages over other types of wind

turbines, the doubly fed induction generator (DFIG) is becoming

more common in wind generation. In general, the system is

designed to operate in a 33% slip range. In this situation, the

power requirement of the rotor converter is 25% of themaximum

power of the wind turbine (Malik et al., 2021). The supply of the

rotor by a converter, with variable frequency, makes it possible to

separate the mechanical speed of the rotor from the frequency of

the electrical grid. The control system for an induction machine

is more complicated because it is a multivariable, nonlinear, and

highly linked system. Techniques like voltage-field-oriented

control and power-torque direct control, which use a linear

conventional controller like the proportional-integral-

predictive (PID) controller, have not always achieved flawless

results (Tamalouzt et al., 2021).

An important number of nonlinear controls have appeared

in the literature to ensure better performances control of a DFIG-

based wind turbine. In Gupta and Shukla, 2022, an algorithm is

proposed for the improvement of the DFIG by sharing between

the converters (machine-side and grid-side) an optimal reactive

power. An active disturbance rejection control with important

robustness properties to design the current control law is

developed in Beltran-Pulido et al., 2018 to enhance the ride-

through low voltage. A coordinated super-twisting sliding mode

control is investigated in Xiong et al., 2019 for grid

synchronization and power optimization of the conversion

system. A new exponential reaching law-based sliding mode

control is proposed in Liu et al., 2018 for hastening the

approaching process and lowering the system chattering

phenomena. A multi-objective particle swarm optimization

algorithm in studied in Aguilar et al., 2020, improving

dynamic stability under electrical disturbances and thereby

assisting the ride-through low voltage.

However, to ensure higher performances of the DFIG-based

wind energy converter, it requires the utilization of advanced

nonlinear controllers. Indeed, model predictive control (MPC)

emerged in the late 70s (Mahmoud and Oyedeji, 2019), and since

then, it has evolved into a variety of forms such as model

algorithmic control, predictive functional control (Nosratabadi

et al., 2019), generalized predictive control (Wang and Li, 2022),

extended horizon adaptive control (Younesi et al., 2022), and

robust model predictive control (Pradhan et al., 2022).

The MPC is a plant model-based feedback control approach

that forecasts future plant outputs over a specific time horizon.

These predictions are then utilized to choose the optimum

control by solving an optimization problem while adhering to

a set of constraints (Schwenzer et al., 2021). To deal with the

features and control needs of specific types of variable-speed

wind turbines, a revisiting variant of a recent adaptive second-

order sliding algorithm is presented in Evangelista et al., 2016.

Robust adaptive MPC constructed through linear matrix

inequality and obtained estimation with a nonlinear observer

is designed in Zhang et al., 2019a for the optimal, effective, and

robust operation of the conversion system. Based on an analysis

of the effectiveness of nonlinear MPC with a fixed weight

coefficient under various wind conditions, a fuzzy regulator is

created to update the weight coefficient of the cost function, and

an improved multi-objective marine predator algorithm is

proposed in Song et al., 2022b for optimization on energy

capture and generator torque fluctuation. A DFIG wind

system based on balanced and unbalanced network conditions

is proposed using a universal and low-complexity model

predictive direct power control (Zhang et al., 2019b). To

handle high-voltage ride through, a P-Q coordination-based

MPC is developed in Zhou et al., 2021. On the basis of

intelligent scenario generation (ISG), a stochastic model

predictive yaw control (SMPYC) technique is suggested in

Song et al., 2022a. Here, the ISG approach is suggested to

develop scenarios that define the uncertainty of wind direction

prediction. Then, the yaw action is improved using the suggested

scenario-based SMPYC to increase the energy capture

effectiveness of WTs.

For mechanical sensorless control technology of induction

machines, several solutions have been developed. A direct torque

control associated with an artificial neural network was applied to

a dual power induction motor (Tamalouzt et al., 2022). This

strategy is carried out without a mechanical sensor using the

extended Kalman filter as an observer. In order to ensure the

estimation of the five-phase induction motor rotor speed, the

authors, in Tamalouzt et al., 2022, performed two approaches:

the first is based on the adaptive flux and speed observer, the

second, on the other hand, is based on a model reference adaptive

system estimator. A disturbance observer is constructed to

estimate the aerodynamic torque in Ouari et al., 2014a, and a

nonlinear generalized predictive control for wind energy

conversion systems is proposed to achieve the controller’s

robustness. For induction motor drives, a load torque observer

based on a second-order sliding mode technique is suggested (El

Daoudi et al., 2021).

The present study is aimed to design a robust controller in

order to maximize the amount of energy taken from the wind

without the use of an observer or aerodynamic torque

measurements. The system’s robustness is increased by

revising the cost function of the traditional nonlinear

generalized predictive control (NGPC), which is based on

Taylor series expansion. The nonlinear predictive controller

includes an integral action. As a result, assuming that the

closed loop system is stable, the proposed controller

completely eliminates the steady state error, even in the

presence of unknown disturbances and mismatched

parameters. The convergence of the output locating error to

the source is used to demonstrate the stability of the locked

system. The validation of the trajectory following and

perturbation rejection of the applied control using simulation
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results of the dynamic behavior of the researched system was

performed under Matlab/Simulink.

The paper is organized as follows: in the Introduction section,

the DFIG wind turbine system is described, and in theDFIG wind

turbine system description and energy conversion section, the

DFIG modeling is examined. The Proposed robust nonlinear

generalized predictive control section develops the proposed

structure controller. Finally, in the Simulation results Section,

the simulation results are presented.

DFIG wind turbine system description
and energy conversion

The DFIG wind turbine system is depicted schematically in

Figure 1. The stator is directly linked to the three-phase power

grid, while the rotor is fed at a variable frequency through the

AC-DC-AC converter (Tamalouzt et al., 2021).

Modeling of the wind turbine

Only a small portion of the acquired wind energy can be

converted by a wind turbine; thus, the wind’s mechanical power

is calculated as follows (Soliman et al., 2021; Belkhier et al., 2022):

Pt � 1
2
ρaπR

2Cp(λ, β)v3 (1)

where Pt is the wind energy extracted (power), ρa is the air

density (kg/m3), R is the blade radius (m), v is the wind speed

(m/s), and Cp(λ, β) is the turbine power coefficient as a function
of speed ratio λ and blade pitch angle β given as

Cp(β, λ) � (0.3 − 0.0167β) sin (π(λ + 0.1)
10 − 0.3β

)
− 0.00184(λ − 3)β (2)

The blade’s tip-speed ratio λ is defined as follows:

λ � ΩtR

]
(3)

It is preferable for the generator to have a power

characteristic that follows the maximum Cp−max line

(Figure 2) in order to convert the maximum amount of wind

power. For a speed ratio λopt � 8, the power coefficient Cp

achieves a maximum of 0.5506 for a blade pitch angle of β = 0°.

The control block’s rotor speed and active power references

were provided by maximum power point tracking (MPPT), while

the reactive power was set to zero to obtain a unity power factor

(Belkhier et al., 2022).

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Pgrid−ref � 1

2
ρaπR

2Cp−maxv
3

Ωr−ref � λopt
R

v

(4)

where Pgrid−refis the electrical grid’s active power reference, Ωr−ref

is the rotor speed reference, λopt is the optimal speed ratio, and

Cp−max is the maximal power coefficient.

FIGURE 1
DFIG-based wind energy converter.

FIGURE 2
Power coefficient Cp (λ, β).
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Model of the DFIG

The DFIGmodel is commonly characterized by the following

state equations in the synchronous orientation frame when the

d-axis is aligned with the stator flow vector (Figure 3) and by

disregarding the stator resistance (Pradhan et al., 2022):

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

didr
dt

� − Rr

σLr
idr + sωsiqr + 1

σLr
Vdr

diqr
dt

� − Rr

σLr
iqr − sωsidr + s

MVs

σLrLs
+ 1
σLr

Vqr

(5)

where σ � 1 − M2

LrLs
, s � ωs−ωr

ωs
, Vdr, Vqr, idr and iqr are the dq rotor

voltage and current components, respectively. Rr is the resistance

of the rotor winding, and Lr is the rotor winding inductance. ωs

and ωr are, respectively, the stator and the rotor angular

velocities. s and σ are, respectively, the generator slip and

dispersion ratio.

In the Park transformation of the rotor quantities, the relative

angle between the rotor and the Park reference (dq-axis) is used,

which is determined as θ � θs − θr, whereωr � PΩr, ωs � 2π

fs, θr � ∫ωrdt, θs � ∫ωsdt, Ωr is themechanical rotor speed,

ωr is the angular rotor speed, P is thepole number, andfs is the

grid frequency.

The generator torque can then be expressed by

Tem � P
MVs

ωsL
iqr (6)

The following formulas give active and reactive stator

powers:

⎧⎪⎪⎨⎪⎪⎩
Ps � −M

Ls
VsIqr

Qs � V2
s

ωsLs
− M

Ls
VsIdr

(7)

The mechanical equation is

J
dΩr

dt
� Tem − Tr − frΩr (8)

where fr is the turbine total external damping, J is the turbine

total inertia, Tem is the electromagnetic torque, andTr is the

aerodynamic torque after the gearbox.

Proposed robust nonlinear
generalized predictive control

The predictive control idea is to create an anticipatory effect

using the explicit knowledge of the current state (Ouari et al.,

2014b; Tamalouzt et al., 2022). The classical cost function is

given as

I(x, u) � ∫t

0
[yr(t + δ) − y(t + δ)]T[yr(t + δ) − y(t + δ)]dδ

(9)
In this study, a robust nonlinear generalized predictive

control (RNGPC) is suggested to solve the robust control

problem by revising the classical cost function (9). Consider

the nonlinear multivariable system:

{ _x(t) � f(x) + B(x)u(t)
yi(t) � hi(x)i � 1, . . . , m

(10)

where x and u ∈ Rn are the state vector and control,

respectively. The function f(x) and h(x)are assumed to be

continuously differentiable a sufficient number of times, and

B(x)is a continuous function of x. The predictive command will

be optimal if the novel cost function I(x,u) is minimized.

I(x, u) � 1
2
Γ(t + τ)TΓ (t + τ) (11)

Γ(t) � ∫t

0
[yr(δ) − y(δ)]dδ (12)

with

⎧⎪⎪⎨⎪⎪⎩
Γ(δ) � (Γ1(t)Γ2(t)Γm(t))T
y(t) � (y1(t)y2(t)ym(t))T

yr(t) � (yr1(t)yr2(t)yrm(t))T
To solve the nonlinear optimization problem (11), the

predicted term Γi(t + τ)Γ(t + T) is expanded into a (ρi + 1)th

order Taylor series expansion.

Γi(t + τ) � Γi(t) + ∑ρi+1
k�1

τk

k!
Γ(k)
i (t) (13)

Replacing (12) in (13)

Γi(t + τ) � Γi(t) + ∑ρi+1
k�1

τk

k!
∫t

0
[y(k)

ri (δ) − y(k)
i (δ)]dδ (14)

Since ρi stands for the output′s relative degree foryi(t), it

follows that

FIGURE 3
Voltage and flux vectors settings.
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⎧⎪⎪⎨⎪⎪⎩
yi(t) � hi(x)
y(k)
i (t) � Lk

fhi(x)
y(ri)
i (t) � Lri

fhi(x) + LBL
(ρi−1)
f hi(x)u(t)

(15)

The Lie derivation of function h(x) along a vector field f(x) is

indicated by
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Lfhi(x) � zhi
zx

f(x)
Lk
fhi(x) � Lf(Lk−1

f hi(x))
LBLfhi(x) � zLfhi

zx
Bu(x)

(16)

Invoking (15) and (16) with (14) yields

Γ i(t + τ) � Γi(t) + ∑ρi+1
k�1

τk

k!
e(k−1)i (t) + τ(ρi+1)

(ri + 1)!LBL
(ρi−1)
f hi(x) u(t)

(17)
with e(k)i (t) � y(k)

ri (t) − Lkfhi(x)
It is possible to write (17) in the following format:

Γ i(t + τ) � (1 τ .
τk

k!
.

τ(ρi+1)
(ri + 1)!)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Γi

ei
.

e(k−1)i

.
e(ρi)i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

01*n
01*n
.

01*n
.

Gi(x)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
u

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(18)

where Gi(x)1*n � LBL
(ρi−1)
f hi(x)

If all output systems have the same relative degree r,

Γ(t + τ) � �T(τ)[�E(t) − �M(u) ] (19)

where

⎧⎪⎪⎨⎪⎪⎩
�T(τ) � [�T1(τ)�T2(τ)�T3(τ) . . . ..�Tρi+1(τ)]

�E(t) � [∫t

0
e(t)dt e(t)e(1)(t) . . . .e(ρi)(t)]T

�M(u) � [0m*n0m*n0m*n . . . .Gu(x)] u(t)
and

⎧⎪⎪⎨⎪⎪⎩
�Tk(τ) � τ(k)

(k)!�Id
Gu(x) � [G1(x)G2(x) . . .Gm(x)]T

, �Id is the diagonal of

the matrix identity.

Replacing (19) in (11), the expression of the novel cost

function will be

I(x, u) � 1
2
[�E(t) − �M(u)]T �Ψ(τ)[�E(t) − �M(u)] (20)

where �Ψ(τ) � �T(τ)T �T(τ)
The condition that must be met in order to achieve optimal

control is given by
zI(x, u)

zu
� 0 (21)

According to (20) and (21), the optimal control is calculated

as follows:

u(t) � −( �MT �Ψ(τ) �M(x))−1 �MT
Ψ(τ)�E(t) (22)

If n = m, then the optimal control can be indicated as follows:

u(t) � −Gu(x)−1Ψ(τ)�E(t) (23)
where

Ψ(τ) � ((ρi + 1)!
τ(ρi+1)

�Id
(ρi + 1)!

τρi
�Id ..

(ρi + 1)!
(k)!τ(ρi+1−k)

�Id.. �Id) k � 0..ρi

An integral action is included in the nonlinear predictive

controller (23). As a result, the suggested controller completely

eliminates the steady state error even in the presence of unknown

perturbations.

The control system’s proposed topology consists of two

loops: an inner loop that controls torque and direct current

and an outside loop that controls DFIG speed (Figure 4). The

rotor speed reference is specified in (4). To reduce the control

effort, the reference speed signal is passed via a second-order

linear filter, which is provided by

F(s) � w2
n

s2 + 2ζ ωn + w2
n

(24)

where wn = 5 and ζ =0.7.

Predictive control of electromagnetic
torque and current (inner loop)

The electromagnetic torque reference is calculated from the

speed controller (outer loop), and to keep the DFIG reactive

power at zero, the d-axis rotor current reference is determined.

From (5), the electrical equations are written in the matrix form

as follows:

{ _x(t) � f(x) + gu(x)u(t)
y � h(x) (25)

with x � (idriqr)T, u � (Vdr−refVqr−ref)T , and u � (Tem idr)T

f(x) �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− Rr

σLr
idr + sωsiqr

− Rr

σLr
iqr − sωsidr + s

Vs

σLrLs

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ and gu(x)

�
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
σLr

0

0
1
σLr

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The following are the outputs that will be regulated in the

inner loop:

⎧⎪⎪⎨⎪⎪⎩
y1 � h1(x) � Tem � P

MVs

ωsLs
iqr

y2 � h2(x) � idr

(26)
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The relative degrees ρ1 and ρ2 of the outputsy1 andy2 are

equal to 1; it follows that

_y(t) � Lfh(x) + Gu1(x)u(t) (27)

with Gu1 � ( LguLfh1(x) 0
0 LguLfh2(x)), h(x) � ( h1(x)

h2(x))
� (Tem

Idr
) andyr � (yr1

yr2
) � (Tem−ref

idr−ref
)

Thus, as follows, the predicted term is expanded into a

second-order Taylor series expansion:

Γ(t + τ) � �Ψ[�E(t) − �Mu(t)] (28)
where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�Ψ � ⎡⎣ 2

T2
p1

2
Tp1

1⎤⎦�Id

�E(t) � ⎡⎢⎢⎢⎢⎢⎣∫t

0
e(δ)dδ e(t)_e(t)⎤⎥⎥⎥⎥⎥⎦

T

�M(u) � [ �O2*2
�O2*2 Gu1(x)]Tu(t)

e(k)(t) � ( e(k)1 (t)
e(k)2 (t))⎛⎝

y(k)
r1 (t) − Lk

fh1(x)
y(k)
r2 (t) − Lk

fh2(x)
⎞⎠

where k � 0, 1 and �Id�Id is the diagonal of the matrix identity

(2*2). Replacing (28) in (23), the optimal nonlinear control law is

determined as

u(t) � −Gu1(x)−1[ ki1 ∫t

0
e(δ)dδ kp1e(t) Kd1 _e(t)] (29)

where Ki1 � 2
T2
p1
,Kp1 � 2

Tp1
,Kd1 � 1.

Predictive control of the speed (outer loop)

The DFIG’s mechanical dynamics are given by the equation

below:

{ _x(t) � f(x) + gu(x)u(t)
y � h(x) (30)

where x(t) � Ωr, u(t) � Tem, y(t) � Ωr, yr(t) � Ωr−ref,
f(x) � −fr

JΩr, and gu(x) � 1
J.

We do not consider the aerodynamic torque in the

mechanical Equation 8. The relative degree of the outputs

y(t) is equal to 1, and it follows that

_y(t) � Lfh(x) + Gu2(x)u(t) (31)

where Gu2(x) � LguLfh(x).
A second-order Taylor series expansion is used to expand the

expected term Γ(t + τ):
Γ(t + T) � �Ψ[�E(t) − �Mu(t)]�E(t) (32)

where

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ψ(τ) � [ 2

T2
p2

2
Tp2

1]
�E(t) � [ ∫t

0
e(δ)dδ e(t) _e(t) ]T

�M

(u) �

[ 00 Gu2(x) ]Tu(t)e(k)(t) � y(k)
r (t) − Lkfh(x)k � 0, 1

FIGURE 4
Block Diagram of the proposed RNGPC applied to the RSC.
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Replacing (32) in (23), the optimal control is calculated as

u(t) � −Gu2(x)−1[Ki2 ∫t

0
e(δ)dδ Kp2e(t) Kd2 _e(t)] (33)

where Ki2 � 2
T2
p2
, Kp2 � 2

Tp2
, Kd2 � 1

Closed-loop system stability

The convergence of the output tracking error to the origin

can be used to demonstrate the closed-loop system’s stability.

Substituting control law (33) into Equation 31 yields

Ki2∫t

0
e(δ)dδ + Kp2e(t) + Kd2 _e(t) � 0 (34)

where Kp is the proportional gain,Ki is the integral gain, and Kd is

the derivative gain.

As a result of (34), the closed loop system’s characteristic

polynomial equation is given as

Kd2s
2 +Kp2s + Ki2 � 0 (35)

Computing the solutions of Equation 35 may be used to

determine the stability condition that is given as follows:

s1,2 � −1 ± j

T
(36)

The true parts of the roots (36) are positive because the

predicted time T is positive can be proven to be negative.

Simulation results

The operation performance of the DFIG wind system and

control scheme has been investigated using Matlab/Simulink

software. Table 1 lists the system’s parameters. The prediction

horizon is set to Tp1 = 0.5 ms (inner loop) and Tp2 = 5 ms (outer

loop). Figure 5 depicts the wind speed profile utilized in the

simulation.

FIGURE 5
Wind speed profile.

FIGURE 6
Rotor speed response.

TABLE 1 Parameter values.

Parameter Value

Generator rated power 1.5 Mw

Nominal voltage 690v

Nominal frequency 50 hz

Poles 2

Rotor resistance 0.021 Ω
Stator resistance 0.012 Ω
Rotor inductance 0.0137 H

Stator inductance 0.0137 H

Mutual inductance 0.0135 H

Coefficient of friction 0.0071

Moment of inertia 50 kg m2

Turbine diameter 60 m

number of blades 3

hub height 85 m

Rayon 36.5 m

Gearbox 90

Filter resistance 1Ω
Filter inductance 30 mH

Capacitance 500 µF

Nominal voltage 500v
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Reference tracking test performance

Figures 6, 7 show that the rotor speed and electromagnetic

torque follow their references correctly and with good

performance. Figure 8 depicts the DFIG slip’s’. As a

consequence, in Figure 9, the DFIG active power flawlessly

tracks its reference to enhance the conversion efficiency. From

Figure 10, it can be noticed that the DFIG reactive power is kept

at zero, which helps to adjust for the grid power factor. The rotor

voltage-current at sub-synchronous (s > 0), synchronous (s = 0),

and hyper-synchronous modes (s < 0) is plotted in Figure 11.

These results clearly show that the proposed RNGPC algorithm

provides great performance in both steady state and dynamic

modes.

Robustness under DFIG’s parameter and
prediction horizon variations

The values for the parameter variations included in the DFIG

model are as follows: 10% in the coefficient of friction at t = 7s

and 25% in the rotor resistance at t = 10s. This test is also used to

assess the controller’s performance when the prediction horizon

is changed. Only the outer loop Tp2 prediction horizon is lowered

from 15 ms to 1.5 ms. These variations are not taken into account

in the controller.

Figures 12, 13 show that despite the DFIG’s parameter

fluctuation, the system response converges to the reference

values. Indeed, the speed and the electromagnetic torque track

perfectly their references. From Figures 14, 15, the control effort

is limited by the speed filter; thus, a smaller prediction horizon

results in faster disturbance rejection.

FIGURE 9
DFIG active power.

FIGURE 10
DFIG reactive power.FIGURE 7

Electromagnetic torque.

FIGURE 8
DFIG slip.
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FIGURE 12
Speed tracking underprediction horizon change: (A) for Tp2 = 15 ms and (B) for Tp2 = 1.5 ms.

FIGURE 11
(A) Rotor voltage and current, (B) sub-synchronous mode, (C) synchronous mode, and (D) super-synchronous mode.
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FIGURE 13
Speed tracking error under prediction horizon change: (A) for Tp2 = 15 ms and (B) for Tp2 = 1 ms.

FIGURE 14
Electromagnetic torque tracking underprediction horizon change: (A) for Tp2 = 15 ms and (B) for Tp2 = 1.5 ms.

FIGURE 15
Electromagnetic torque tracking error underprediction horizon change: (A) for Tp2 = 15 ms and (B) for Tp2 = 1.5 ms.
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Conclusion

A robust nonlinear generalized predictive controller for a

DFIG wind turbine system has been devised in this study. A novel

finite horizon cost function is introduced into the control law to

ensure robustness against aerodynamic torque and parameter

fluctuations without the necessity for an aerodynamic torque

observer. The active power delivered to the grid varies with wind

speed and follows the optimal wind power precisely. The

simulation results show that the control architecture is

resistant to unknown aerodynamic torques. This supports the

suggested control’s efficiency and dependability in tracking the

projected references. The RNGPC’s efficacy and resilience are

confirmed by simulation results under a variety of operating

conditions and DFIG parameter variations.
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Nomenclature

Ωt Ωr Turbine, generator speed (rd/s)

Tt,Tr Aerodynamic and generator torque(N.m)

Ωr-ref Reference generator speed

G Gear ratio

Pgrid -ref Reference grid active power (W)

η System (wind turbine + DFIG) efficiency

Pr, Qr Active and reactive rotor power (W,Var)

Vs Stator voltages (v)

Rr, Lr Per-phase rotor resistance and self-inductance

M, P Mutual inductance, number of pole pairs

J, fr Moment of inertia, coefficient of friction

s,σ Generator slip and dispersion ratio

Tp Predictive time

ρ1 Relative degree of output i
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Given the greater penetration of wind power, the impact of wind generators on

grid electricity reliability imposes additional requirements. One of the most

common technologies in wind power generating schemes is the permanent

magnet synchronous generator (PMSG) converter. However, the controller

calculation is difficult due to the nonlinear dynamical and time-varying

characteristics of this type of conversion system. This study develops a

unique intelligent controller approach based on the passivity notion that

tracks velocity and maintains it functioning at the optimum torque. To

address the robustness issues encountered by traditional generator-side

converter (MSC) strategies such as proportional-integral (PI), this suggested

scheme integrates a passivity-based procedure with a fuzzy logic control (FLC)

methodology for a PMSG-based wind power converter. The suggested

controller is distinguished by the fact that the nonlinear features are

compensated in a damped manner rather than canceled. To achieve the

required dynamic, the fuzzy controller is used, which ensures quick

convergence and global stability of the closed loop system. The

development of the maximum power collected, the lowered fixed gains, and

the real-time application of the control method are the primary contributions

and novelties. The primary objectives of this project are to manage DC voltage

and attain adequate reactive power levels in order to provide dependable and

efficient electricity to the grid. The proposed scheme is being used to regulate

the MSC, while the grid-side employs a traditional proportional-integral

method. The efficiency of the suggested technique is investigated

numerically using MATLAB/Simulink software. Furthermore, the processor-

in-the-loop (PIL) tests are carried out to demonstrate that the suggested

regulator is practically implementable.
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Introduction

Sustainable energy source innovations are turning into an

expanding option to address the issues of environmental change.

One of the most promising types of renewable energy is wind

energy. Wind power has been in full industrial growth for some

years. Indeed, it has several advantages: first and foremost, it is a

non-polluting renewable energy source that helps to improve air

quality and the reduction of greenhouse gas emissions. It is also a

form of energy that makes use of domestic resources and so helps

to energy independence and supply security, its high-power

density, and a high potential for electricity generation

(Soliman et al., 2021). The role of a wind turbine is to convert

the kinetic energy of the wind into electrical energy. Its various

elements are designed to maximize this energy conversion. There

are several technologies that are used to capture the energy of the

wind (vertical axis or horizontal axis), and also, different

configurations of a wind turbine system (fixed speed and

variable speed). Therefore, wind turbines are considered with

variable power generators, connected to the electrical grid. The

amount of energy recovered by variable speed wind energy

conversion systems (VS-WECS) depends on the accuracy of

the maximum power point tracking (MPPT) search and also

on the type of generator used. The associated power conversion

chains often use a PMSG (Soliman et al., 2021), (Mohammadi

et al., 2019). This type of machine allows making it possible to get

rid of the problem of the excitation current supply, which is

difficult to manage in a conventional synchronous machine

(Mohammadi et al., 2019). However, due to unknown

modeling inaccuracy, dynamic characteristics, and non-

linearities, control system computation for the PMSG remains

a difficult task (Wang and Wang, 2020). In the literature, there

has been several research studies related to the nonlinear control

of PMSG. In the study by Saidi et al. (2019), a tip-speed ratio

technique associated with an integral backstepping controller is

suggested. A mechanical sensorless control strategy-based

nonlinear observer is proposed (Fantino et al., 2016). In the

work of Zargham and Mazinan (2019), a super-twisting sliding

mode controller is designed. A new direct torque of a fault-

tolerant direct-driven PMSG controller is developed (Jlassi and

Cardoso, 2019). To achieve direct power control, an optimal

voltage vector-based modulated model predictive control is

developed in Bigarelli et al. (2020). Further, in the study by

Haq et al. (2020), a maximum power extraction-based feed-

forward neural network and generalized global sliding mode

controller are investigated. Meanwhile, an autonomous PMSG-

based wind conversion system is controlled by using a cascade

neural networks algorithm (Chandrasekaran et al., 2020). More

recently, a nonlinear model predictive control with the fuzzy

regulator is proposed in Song et al. (2022a), for the optimization

of the energy capture and torque fluctuation of wind turbines. In

the study by Song et al. (2022b), a stochastic model predictive

yaw control strategy based on intelligent scenario generation is

proposed to improve the energy capture efficiency of wind energy

converters. A chaos-opposition-enhanced slime mould

algorithm to minimize energy cost for the wind turbines on

high-altitude sites is developed in Rizk-Allah et al. (2022), the

proposedmodel is established based on rotor radius, rated power,

and hub height needed to achieve an optimal design model.

However, as stated in Yang et al. (2013), most of such controls are

dependent on signals and therefore do not consider the structural

properties of the PMSG when building the regulator.

The present article investigates a new control approach based

on the passivity notion, a new fuzzy passivity-based control

(PBC) to design an optimal controller for the PMSG, which

tracks speed and maintains it functioning at the optimal torque.

Inherent advantages of the PBC method are that the nonlinear

terms are adjusted in a damped manner rather than being

eliminated that the assured stability, as well as the promised

robustness qualities (Nicklasson et al., 1994), (Belkhier et al.,

2022). The study’s major goal is to highlight a hybrid control

method for VS-WECS, to enable efficient power integration to

the grid and increase the PMSG operational speed.

Several techniques have been reported in the literature based

on the passivity control method to improve the performance of

the PMSG and increase the efficiency of wind energy conversion

systems. A sliding mode strategy (SMC) associated with PBC is

adopted in Yang et al. (2018a). However, as the authors point out,

the provided coupled PBC-SMC controlling employs over six

fixed gains, making it hard to find their ideal settings. A passivity-

based linear feedback current control approach is developed for a

PMSG in Belkhier and Achour (2020a), where the authors

proposed PBC with an orientation of the flux, where the

desired current is computed by a PI controller. However, the

use of the PI implies fixed gains, which brings a significant

sensitivity to disturbances that can affect the functioning of the

system. In Subramaniam and Joo (2019), a PBC-SMC and fuzzy

controller is proposed. However, the suggested combined

strategy’s controller design is complex due to mathematical

constraints; passivity-based linear feedback control is explored

in Yang et al. (2018b). However, nonlinear properties and the

robustness due to parameter changes of the PMSG have not been

evaluated. In Belkhier and Achour (2020b), a passivity-based

backstepping is proposed. However, due to mathematical

limitations, the controller design of the proposed combination

method is complicated.

As it was mentioned before, several aspects were neglected by

the works carried out. In order to make more improvements and
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contributions to what was performed. The present work is split

into two sections. First, a fuzzy-PBC system is used to ensure that

the PMSG receives continuous power from the wind source,

increase the PMSG operational speed, and rectify non-linearities,

external disturbances, and parametric fluctuations in the PMSG.

The second is devoted to applying the classical PI control to

regulating the grid-side power and voltage. A special focus is

given to the control of the PMSG, by synthesizing the new

suggested control scheme while considering the complete

dynamic of the PMSG. In addition, the resilience over

parameter variations has received considerable consideration.

Also, experimental testing of the investigated strategy is

conducted using a DSP card, and the results show clearly that

the present system is applicable practically.

The contribution and novelty of the present article are

summarized as follows:

• A novel control technique based on hybrid fuzzy-PBC for

optimum efficiency of the PMSG is presented to ensure a

quick convergence of the locked system and energy

extraction.

• By simulating the unstructured dynamics of the PMSG, the

fuzzy manager is employed for gain adjustment, which

meets the requirements produced by incorrect variables to

calculate the appropriate dynamics and considerably

enhances the resilience of the system.

• Numerous numerical studies are conducted to show how

resilient the suggested technique is to parameter changes

and outside disruptions. In addition, analytical proof of the

closed-stability loop’s and exponential convergence has

been provided.

• The novelty of the proposed control lies in its structure,

which is really very simple and contains only one

fixed gain, which is the damping gain of the control,

which makes it particularly robust and increases

resilience and global stability, as demonstrated in the

results section.

• Experimental validation of the proposed control schemes is

conducted using processor-in-the loop (PIL) and the

results show clearly that the present system is applicable

practically.

The current article is arranged in the following manner:

Introduction establishes the system description. The proposed

strategy calculation is discussed in Introduction. Concerning

Introduction, grid-side converter (GSC) voltage and

management is presented. In Introduction, simulation

experimental results are exposed. Finally, Introduction finishes

with the main findings and recommendations for future research.

System description

Figure 1 shows the setup of the MATLAB/Simulink-based

wind energy converter, which includes a wind turbine, PMSG,

AC-DC-AC converter, and main electrical network.

Wind power

The wind energy converter model is represented as follows

(Fantino et al., 2016; Belkhier et al., 2020):

FIGURE 1
Wind power system.
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Pm � 1
2
ρCp(β, λ)Av3s , (1)

Tm � Pm

ωt
, (2)

Cp(β, λ) � 0.5(116
λi

− 0.4β − 5)e−(
21
λi
)
, (3)

λ−1i � (λ + 0.08β)−1 − 0.035(1 + β3)−1, (4)
λ � ωtR

vs
, (5)

where Pm depicts the wind power captured, Tm is the wind

turbine output torque, A depicts the blades’ area, ρ is fluid

density, λ is speed ratio, vs denotes the wind speed, β depicts

pitch angle, ωt depicts turbine speed, R is the blades’ radius, and

Cp is power coefficient.

Permanent magnet synchronous
generator modeling

The PMSG modeling according to αβ-frame is needed to

design the proposed technique, which is formulated as (Soliman

et al., 2021; Belkhier et al., 2022):

Lαβ
diαβ
dt

+ ψαβ(θe)pωm � vαβ − Rαβiαβ, (6)

C
dωm

dt
� Tm − Te(iαβ, θe) − ffvωm, (7)

Te(iαβ, θe) � ψT
αβ(θe)iαβ, (8)

where p denotes the pair pole numbers, J represents the moment

of the inertia, iαβ � [ iα
iβ
] indicates the current, Te indicates

electromagnetic torque, Lαβ � [ Lα 0
0 Lβ

] indicates induction’s

FIGURE 2
Schematic of the proposed controller.
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stator, ffv indicates viscosity parameter, θe indicates electrical

angular, vαβ � [ vα
vβ

] indicates stator’s voltage, Rαβ � [RS 0
0 Rs

]
indicates the resistance, ψαβ(θe) � ψf[−sin(θe)

cos(θe) ] indicates

linkages’ flux, and ωm indicates motor speed.

Proposed controller computation

Several stagesmust be validated in order to build the developed

technique: at first, the passivity attribute of the PMSGmodel must

be demonstrated so that the suggested approach may be used.

Second, the PMSG must be broken down into two passive

subsystems with negative feedback. Finally, in order to

construct a controller with a simple structure, the non-

dissipative variables in the PMSG model must be formulated.

Figure 2 depicts the explored strategy computing process, which

has two distinct components: the first phase consists in designing

the reference current using the computed electromagnetic torque

and the high order sliding mode control (HSMC) technique, and

the needed current is subsequently calculated using the required

torque. In the second portion, the controller law is computed using

the created method-based HSMC.

PMSG αβ-model interconnected
subsystems decomposition

From Eq. 6, the following relationship is formulated:

∑
e
: Ve � [ vαβ

−ωm
] → Ye � [ iαβ

Tm
]. (9)

From Eqs 7, 8, the following relationship is formulated:

∑
m
: Vm � (−Te + Tm) → Ye � −ωm � (−Te + Tm)

Js + ffv
. (10)

According to (9) and (10) the upcoming lemma is yield:

Lemma 1: according to the aforementioned conditions, the

PMSG in the dq-model can be decomposed into feedback

interconnected two passive subsystems, electrical subsystem ∑e

and mechanical subsystem ∑m.

Proof: from (9), the following PMSG total energy He is

given as:

He � 1
2
iTαβLαβiαβ + ψT

αβiαβ. (11)

The time derivative of He along (6), yields:

_He � −iTαβRαβiαβ + YT
e Ve + d

dt
(ψT

αβiαβ). (12)

Integrating on both sides of (12) along [ 0 Te ], gives:

He(Te) −He(0)︸︷︷︸
Stored Energy

� −∫Te

0
iTαβRαβiαβdτ︸︷︷︸

Dissipated Energy

+∫Te

0
YT

e Vedτ + [ψT
αβiαβ]Te

0︸︷︷︸
Supplied Energy

.

(13)
Here, He(Te)≥ 0 and He(0) indicate stored energy initially. By

Increasing Eq. 13, the following inequality dissipation is

formulated:

∫Te

0
YT

e Vedτ ≥ λmin{Rαβ}∫Te

0

����iαβ����2dτ − (He(0) + [ψT
αβiαβ]Te

0
),
(14)

where ‖.‖ indicates Euclidian norm’s vector.

It is clearly indicated that ∑e is passive. Then, from ∑m, the

transfer function Fm(s) is deduced and formulated as:

Fm(s) � Ym(s)
Vm(s) �

1
Js + ffv

. (15)

It can be deduced that ∑m is passive, since Fm(s) is strictly
positive. Thus, the PMSG model is decomposable into two

passive subsystems.

PMSG passivity property

Lemma 2: the model (6)–(8) is passive, when Y � [vTαβ, Te]T
and X � [iTαβ, ωm]T are chosen as the PMSG outputs and inputs,

respectively.

Proof: first, the PMSG Hamiltonian Hm is defined as:

Hm( _iαβ,ωm) � 1
2
_i
T

αβLαβ
_iαβ + 1

2
_i
T

αβLαβ
_iαβ︸︷︷︸

Electrical Energy

+ 1
2
Jω2

m︸︷︷︸
Mecanical Energy

. (16)

Derivative along (6)–8) of Hm, gives:

dHm( _iαβ,ωm)
dt

� −d(_i
T

αβR _idq)
dt

+ yT] + d

dt
(ψT

αβ
_iαβ), (17)

where R � diag{Rαβ, ffv}. Integrating (17) along [0 Tm],

gives:

Hm(Tm) −Hm(0)︸︷︷︸
Stored Energy

� −∫Tm

0

_i
T

αβR _iαβ dτ︸︷︷︸
Dissipated Energy

+∫Tm

0
yT] dτ + [ψT

αβ
_iαβ]Tm

0︸︷︷︸
Supplied Energy

,

(18)

where Hm(0) is the stored initial energy and Hm(Tm)≥ 0.

Integrating (18) yields:

∫Tm

0
yT] dτ ≥ λmin{R}∫Tm

0

����_iαβ����2dτ − (Hm(0) + [ψT
αβ
_iαβ]Tm

0
).
(19)

Then, relationship M is passive, which is the same for

the PMSG.
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Controller law design process

According to the model (6)–(8), one can formulate the

reference dynamics given as follows:

v*αβ � Lαβ

di*αβ
dt

+ ψαβ(θe)pωm + Rαβi
*
αβ, (20)

Tm � J
dω*

m

dt
− T*

e(i*αβ, θe) − ffvω
*
m, (21)

where i*αβ represents the reference current, v*αβ represents the

reference voltage, ω*
m denotes speed of the turbine, and T*

e

denotes the reference torque. To ensure zero error

convergence of between the reference and the measured

dynamics, it is aimed to compute vαβ. Thus, the error

between the desired model (20)–(21) and the measured model

(6)–(8) is formulated as:

vαβ − v*αβ � Lαβ
dεi
dt

+ Rαβ(i*αβ − iαβ) (22)

J
dω*

m

dt
− T*

e(i*αβ, θe) − ffv(ω*
m − ωm) � 0. (23)

Let us define the function V*
f(εi), which represents the

reference energy given as:

V*
f(εi) �

1
2
εTi (Lαβεi ), (24)

where εi � (i*αβ − iαβ) denotes the tracking error of the current.

Derivative of V*
f(εi) along (22), gives:

_V
*

f(εi) � −εTi (Rαβεi + (vαβ − v*αβ)). (25)

Thus, the controller law is deduced as follows:

vαβ � v*αβ − Biεi, (26)

where Bi � biI2 and I2 denotes the matrix identity.

Remark 2: the term Biεi expressed by Eq. 26 represents the

damping term which is injected to make the PMSG strictly

passive, where a suitable choice of the gain bi permits to

matrix Bi to improves the tracking error convergence

and addresses the parameter disturbances faced by the

closed loop.

The proof of the convergence is given as follows:

Considering Eq. 25, where according to Lαβ and the Rayleigh,

it yields the inequality given as follows:

0≤ λmin{Lαβ}‖εi‖2 ≤V*
f(εi)≤ λmax{Lαβ}‖εi‖2 , (27)

where λmax{Lαβ} and λmin{Lαβ} denotes maximum and minimum

eigenvalues of Lαβ.

According to dissipation term Rαβ + Bi and the Rayleigh

quotient, the derivative of (28) along (26) and (27) yields the

inequality given as follows:

V*
f(εi) � −εTi (Rαβ + Bi)εi ≤ − λmin{Rαβ + Bi}‖εi‖2, ∀t≥ 0, (29)

where λmin{Rαβ + Bi}> 0 denotes minimum eigenvalue of the

matrix Rαβ + Bi.

From (28) and (29), it yields:

_V*
f(εi) � −r1V*

f(εi), (30)

where r1 � λmin{Rαβ+Bi}
λmax{Lαβ} > 0.

Integrating (30), yields:

_V*
f(εi)≤V*

f(0)e−r1t. (31)

From (28) and (31), we get:

‖εi‖≤ r2‖εi‖e−r1t, (32)
where r2 �

������
λmin{Lαβ}
λmix{Lαβ}

√
> 0.

Thus, εi is exponentially decreasing with convergence of r1.
To forces the PMSG works at an optimal torque, the

reference current is chosen as follows (Yang et al., 2018a):

i*αβ �
2T*

e

3pψf

[−sin(θe)
cos(θe) ]. (33)

From Equation 23, the reference torque is formulated as

follows:

T*
e � J

dω*
m

dt
− ffv(ω*

m − ωm), (34)

where εm � (ω*
m − ωm) denotes the tracking error between

the turbine and PMSG. The suitable dynamic is to reduce this

speed tracking error as much as possible. As can be seen from the

aforementioned Eq. 34, the desired torque T*
e has two drawbacks:

the dependence of its convergence on the PMSG mechanical

parameters (J, ffv), and it is in open-loop (Belkhier et al., 2022).

To address these issues, in Belkhier et al. (2020), the term (f fv)
was removed, and T*

e was computed by a PID controller.

However, the authors mentioned this strategy still has a

drawback with the change of J due to the fixed gains of the

PID. Thus, to address this inconvenient, an FLC is introduced to

replace the PID loop to solve the problem caused by imprecise

FIGURE 3
Desired torque computation.
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parameters, to guarantee convergence of εm, eliminates the static

error, and ensures robustness. The design process of Tp
e is

depicted by Figure 3.

The fuzzy manager is used for gain adjustment, which

satisfies the requirements induced by inaccurate variables. The

fuzzy values are either the speed error εm in the instance of the

regulator equation calculation in (34) or its derivation. Fuzzy

controller rules are exposed in Table 1, which are defined as: zero

(Z), negative small (NS), positive small (PS), positive big (PB),

positive medium (PM), negative medium (NM), and negative big

(NB). To choose the membership functions shown in Figure 4,

symmetrical and equally distributed triangular and trapezoidal

types are utilized. The mechanism for splitting these functions is

provided according to Lee and Takagi (Michael and Takagi,

1993) and Yubazaki et al. (1995). Their approach is predicated on

the notion that many membership functions might share a single

parameter. The benefit of this approach is that it significantly

reduces the number of parameters required by the membership

functions. The center of gravity defuzzication approach is used to

generate the crisp outputs, and amax–min fuzzy inference is used

to produce the decision-making output.

Grid-side model and PI controller

The GSC is modelized as given in Figure 5. The classical PI

method is selected to regulate the GSC, which is formulated as

(Yang et al., 2018a; Belkhier et al., 2020):

[Vd

Vq
] � Rf[ idf

iqf
] +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Lf

didf
dt

− ωLfiqf

Lf
diqf
dt

+ ωLfidf

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + [Vgd

Vgq
], (35)

where ω indicates the angular frequency, Vgd and Vgq are the

grid voltages, idf and iqf indicate the currents, Lf indicates the

inductance, Vd and Vq indicate inverter voltages, and Rf

indicates resistance of the filter. The mathematical formalism

TABLE 1 Fuzzy logic rules.

Δεm NB NS Z PS PB

εm

NB NB NB NS NS Z

NS NB NB NS Z PS

Z NS NS Z PS PS

PS NS Z PS PB PB

PB Z PS PS PB PB

FIGURE 4
Fuzzy rules. (A) Function’s inputs (B) Outputs function.
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for the converter link voltage is given by (Subramaniam and Joo,

2019):

C
dVdc

dt
� 3
2

vgd
Vdc

idf + idc, (36)

where C is the DC-link capacitance, idc is the line current, and

Vdc is the DC-link voltage. The PI loop designs are as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

VPI
gd � kdgp(irefdf − idf) − kdgi∫t

0
(irefdf − idf)dτ

VPI
gq � kqgp(irefqf − iqf) − kqgi∫t

0
(irefqf − iqf)dτ , (37)

irefqf � kdcp(Vdc ref − Vdc) − kdci∫t

0
(Vdc ref − Vdc)dτ, (38)

where kdgp > 0, kdgi > 0, k
q
gp > 0, kqgi > 0, kdcp > 0, and kdci > 0. The

active and reactive powers are given as:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Pg � 3

2
Vgdidf

Qg � 3
2
Vgdiqf

. (39)

Extensive numerical investigation and
experimental validation

For the simulation of the system, the average value of the

wind speed is fixed at 12 m/s, and the reference of the wind

FIGURE 5
GSC PI controller schematic.
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turbine speed ref is estimated from the generator. The reference

of the reactive power is set to 0 kVAr. The parameter values of the

system are given in Table 2. The reference of the DC-bus voltage

is set to 1150 V. The network is assumed to have infinite power,

which allows the injection of all the production without

constraints. The damping value is bi � 250. The fixed gains

are kdcp � 5, kdci � 500, kdgp � kqgp � 9, and kdgi � kqgi � 200.

For a better analysis of the performance of the adopted

strategy, a comparison with other techniques was illustrated,

with the conventional (PI) method, passivity-based current

control (PBCC) proposed in Belkhier et al. (2020), and the

SMC. The suggested approach is put to the test in two

situations: First, the suggested regulator is evaluated using the

PMSG’s starting settings and evaluated to the standard

controllers. The next aim is to analyze the resilience of this

suggested fuzzy-EBC in the face of fluctuation. Finally,

TABLE 2 Parameters of the system.

Parameter Value

Air density (ρ) 1.24 kg/m2

Stator resistance (Rs) 0.006 Ω

Turbine radius (R) 33.5 m

Stator inductance (Ldq) 0.3 mH

Pole pairs number (p) 48

Flux linkage (ψf) 1.48 Wb

Total inertia (J) 35,000 kg m2

DC-link capacitor (C) 2.9 F

Grid voltage (Vg) 574 V

DC-link voltage (Vdc) 1150 V

Grid-filter resistance (Rf) 0.3 pu

Grid-filter inductance (Lf) 0.3 pu

FIGURE 6
Wind speed.

FIGURE 7
DC-link voltage.

FIGURE 8
DC-link response compared with conventional controls.

FIGURE 9
Reactive power response of the tested controls.
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experimental analysis utilizing PIL testing is performed to

establish the practicality of the proposed system.

Fixed parameters performance analysis

Figure 6 indicates the wind velocity profile applied on the

conversion mechanism. Figure 7 depicts the DC-bus trailing

behavior with exceptionally low error (ε (Vdc)). The suggested

method produces transitory deflates of -0.005 and messes up of

+0.005. The DC power reaction owing to suggested fuzzy-PBC,

SMC, PBCC, and PI benchmarks is indicated in Figure 8.

Transient undershoots of -0.02, -0.2, and -0.2 are recorded

with the PBCC, PI, and SMC techniques, respectively, and

transient messes up of +0.02, +0.2, and +0.2 are noted with

the PBCC, PI, and SMC methodologies, respectively.

Figure 9 depicts the tracking error (ε (Qg)) caused by the

examined fuzzy-EBC, PBCC, PI, and SMC, with intermittent

underneath and messes up of -4e-5, -5e-5, -8e-5, -7e-5, and +4e-5,

+5e-5, +8e-5, +7e-5, correspondingly. Therefore, the recommended

methodology, as shown in Table 3, has the smallest underneath and

overreach. Furthermore, the suggested approach (0.3s) outperforms

the PBCC (1s), PI (0.6s), and SMC (0.55s) in terms of relatively stable

inaccuracy and converging ratio, as demonstrated in Figure 9; Table 3.

It is deduced that the suggested PBC guaranteed faster response time,

greater productivity, and lower following faults as compared to the

standard nonlinear techniques studied.

Parameter changes performance analysis

In the present sub-section, simultaneous changes of +100%

Rs and J are applied on the PMSG model to illustrate the

robustness properties of the present method. Figure 10

indicates Te behavior under fixed and varied conditions. It is

TABLE 3 Results comparison of the control strategies.

Control Proposed PBCC PI SMC

Variation Rs, J 2 Rs 2J Rs, J 2 Rs 2J Rs, J 2 Rs 2J Rs, J 2 Rs 2J

ε (Vdc) ±0.005 ±0.005 ±0.02 ±0.04 ±0.2 ±0.4 ±0.2 ±0.3

ε (Qg) ±4e-5 ±4e-5 ±5e-5 ±5.5e-5 ±8e-5 ±9e-5 ±7e-5 ±8e-5

Convergence speed (Vdc) 0.6 s 0.6 s 1 s 1.2 s 1.4 s 1.8 s 1.6 s 1.8 s

Convergence speed (Qg) 0.6 s 0.6 s 0.6 s 0.8 s 1 s 1.2 s 0.55 s 0.8 s

FIGURE 10
Zoom on convergence speed of the reactive power.

FIGURE 11
Electromagnetic torque under parameter changes.

FIGURE 12
DC-link voltage under parameter changes.
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evident that at t = 1–8s, the investigated fuzzy-EBC generate a

higher torque with a constant steady-state under variation

conditions (0.14 pu) than the one generated under initial

parameter conditions (0.12 pu), an increase on the generated

Te of 16.53%. Figure 11 depicts Vdc answer caused by the

suggested alternative within every scenario, in which error ε
(Vdc) answer and monitoring inaccuracy equal to 0 are almost

observed, that is, 0.05 as per Table 3.

Figure 12 indicates the resemblance monitoring reaction of Qg

to Rs and J perturbations. According to the findings, the suggested

fuzzy-EBC demonstrates the same Q g behavior including both

variable and fixed attribute values, where the recorded Qg error ε
(Qg) is approximately the same as in case 1, that is, ±4.5e-5. The

measured values of both Vdc and Qg are tabulated in Table. 3.

Figure 13 depicts the Vdc response for all the PBCC, PI, SMC,

and proposed fuzzy-PBC. As indicated in Table 3, the PBCC has a

path loss of ±0.04, the PI has a path loss of ±0.4, and the SMC has a

path loss of ±0.3. As shown in Table 3, the suggested technique

obviously provides a constantVdc error and greater trajectory tracking

ratewhen opposed to the other competitors, that are either susceptible

to combined perturbations of Rs and J. The Q g answer for all of the

investigated controllers is indicated in Figure 14.

As per the reported findings, the suggested fuzzy-EBC has a

lower tracking error below these variations than PBCC (5.5e-5), PI

(9e-5), and SMC (8e-5), as shown in Table 3. Moreover, the

suggested fuzzy-PBC clearly outperforms the other alternatives in

terms of velocity position error ε (Qg) although when exposed to

simultaneous perturbations, as demonstrated in Figure 14 and

Table 3. Hence, based on the actual analysis and Table 4, the

suggested alternative outperforms the other comparable

methodologies of resilience, quick reaction and rapid converging,

and effectiveness. This verified the theoretical findings of parameter

changes performance analysis. Furthermore, as shown in Figures

15–17, the closed loop operates at full power and integrates an

effective electricity to the network.

Experimental testing

The processor-in-the-loop testing (PiL) is the process of

testing and validating embedded software on the processor

before it is utilized in the electronic control unit (ECU).

Algorithms and functions are often created on a PC in a

development environment. More details about processor-in-

FIGURE 13
Reactive power response under parameter changes.

FIGURE 14
DC-link response of the tested controls under parameter
changes.

FIGURE 15
Reactive power response of the tested controls under
parameter changes.
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the loop experimentation are reported in Ullah et al. (2020);

Ullah et al. (2021a); Ullah et al. (2021b). PiL tests are run to

ensure that the built code also runs on the target CPU. The

control algorithms for the PiL test are often run on a device

known as an evaluation board. PiL testing is sometimes run on

the actual ECU. Both types use the controller’s actual processor

rather than the PC as in software-in-loop (SiL) testing. The target

processor offers the advantage of detecting compiler issues. As a

result of the preceding work, the suggested control systems are

evaluated utilizing PIL investigation, and the block diagram of

the setup is illustrated in Figure 18. In the PIL investigation, the

DSP command board is physically interconnected with the

simulated converter system. The control board is made up of

a double core processor TMS320F379D that was developed using

the Simulink planet’s simple synthesis approach. Simulink is used

to create discontinuous versions of the described devices, and the

output or hex file is loaded into the processor’s random-access

memory (RAM).

In PiL testing, “in-the-loop” indicates that the controller is

integrated in physical machine and the program during test’s

surroundings is emulated. The wind profile utilized in the PIL

testing is depicted in Figure 19. Figures 20 and 21, which

demonstrate the experimental findings for DC-link voltage,

active, and reactive powers obtained using the PIL approach.

FIGURE 16
Zoom on reactive power response of the tested controls under parameter changes

TABLE 4 Performance comparisons of the tested controls.

Controls Proposed PBCC SMC PI

Response speed Extremely fast (0.8e-3 s) Very fast (1e-3 s) Fast (1.2e-3 s) Slow (2e-3 s)

Stability Highly stable (fluctuations free) Very stable (fluctuations free) Stable (with fluctuations) Poor stability (with fluctuations)

Robustness High robustness Robust Not robust Not robust

Performance Higher Good Low Low

FIGURE 17
Active and reactive powers response.
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Based on the provided data, the proposed fuzzy-EBC is definitely

applicable in practice.

6 Conclusion

For a PMSG in awindpower converter, a new fuzzy energy-based

controller is presented. To obtain the maximum power out of wind

energy, utilize the suggested strategy where the entire dynamics of the

PMSG is considered when designing the control law. A fuzzy

controller is selected to guarantee the overall-rated speed operation

of the PMSG, and then compute a higher reference torque. Dynamic

FIGURE 18
Experimental Step.

FIGURE 19
Wind profile used for the PIL experiment.

FIGURE 20
PIL testing DC voltage.

FIGURE 21
PIL testing grid powers.

Frontiers in Energy Research frontiersin.org13

Jaiswal et al. 10.3389/fenrg.2022.966975

65

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.966975


simulations of the studied system under parameter changes have

taken special attention, and the results have been compared to

conventional methods, which show a quick track of the DC

voltage and reactive energy to their set values over the compared

controls. All of the conversion system’s flaws have been fixed, and the

goals have been met. The designed control approach offers optimum

performance as well as increased resilience. Moreover, the PIL

experiment is conducted to prove that the proposed controller is

practically implementable. Future works will be focused on:

• Experimental validation of the proposed control on a real

wind energy system.

• The adaptation of the damping fixed gain by introducing

an optimization algorithm.
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The accurate estimation of power signal parameters allows smart grids to

optimize power delivery efficiency, improve equipment utilization, and

control power flow among generation nodes and loads. However, practically

it becomes a challenging task because of the presence of harmonic distortions.

In this study, a parameter estimation of the power system harmonics is

investigated through swarm intelligence–based optimization strength of the

cuckoo search algorithm. The performance evaluation is conducted in detail for

different generations and particle sizes and for different signal-to-noise ratios.

The simulation results reveal that the cuckoo search optimization heuristic

accurately estimates the amplitude and phase parameters of the power system

harmonics and is robust against different signal-to-noise ratios.

KEYWORDS

cuckoo search, swarm optimization, harmonics, parameter estimation, smart grid

1 Introduction

The control of the power systems and synchronization of grid-connected electrical

devices require parameters of voltage and current signals, such as amplitude, frequency,

and phase (Baradarani et al., 2014; Jafarpisheh et al., 2016). Accurate information on these

signal parameters allows smart grids to optimize power delivery efficiency, improve

equipment utilization, and control power flow among generation nodes and loads (Sun

et al., 2019). However, practically the presence of harmonics and inter-harmonic

distortions in power signals complicates the situation because the amplitude and

phase estimations of harmonics is challenging for evaluating the quality of service

characteristics in smart grids (Rivas et al., 2020). Thus, it is imperative to investigate
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the development of accurate, robust, and stable estimation

methods to mitigate the adverse effects of harmonics in smart

grid efficiency.

Different researchers have investigated the domain of

estimating power system harmonics and proposed various

techniques. For example, Das et al. (2020) developed the

ADALINE-based least mean square (LMS) algorithm and

compared its performance with the recursive least square,

while Elnady et al. (2020) presented the novel smooth variable

structure filters for voltage harmonics and voltage imbalance.

Santos et al. (2020) introduced the filter bank–based ESPRIT

approach for increased efficiency in harmonics detection and

estimation. Enayati and Moravej (2017) developed a hybrid

estimation scheme by combining recursive least squares with

the iterated extended Kalman filter, and Shuai et al. (2018)

presented the frequency shifting/filtering method. Xu et al.

(Xu and Ding, 2018; Xu and Song, 2020) investigated the

parameter estimation of power signals using iterative/

recursive methods, such as multi-innovation stochastic

gradient (Xu and Ding, 2017), separable multi-synchronous

multi-innovation gradient (Xu et al., 2022), separable Newton

recursive (Xu, 2022a), separable multi-innovation Newton

iterative (Xu, 2022b), and hierarchical principle-based

recursive least squares (Xu et al., 2021). Chaudhary et al.

introduced fractional gradient-based estimation algorithms

for power signals, such as fractional LMS (Chaudhary et al.,

2017) and innovative fractional order LMS (Chaudhary et al.,

2020), while Zubair et al. (2018) presented the momentum

term–based fractional scheme. Mehmood et al. (2020),

Mehmood et al. (2021) had applied evolutionary and

swarming heuristics for parameter estimation of power

signals.

The schemes based on swarm and evolutionary heuristics

have established their significance through effective application

in solving various challenging optimization tasks (Francesca and

Birattari, 2016; Jana et al., 2019; Sabir et al., 2020; AbdelAty et al.,

2022; Altaf et al., 2022) such as power system harmonics

estimation (Ray and Subudhi, 2012; Elvira-Ortiz et al., 2020;

Ray and Subudhi, 2015; Kabalci et al., 2018;

doNascimentoSepulchro et al., 2014; Singh et al., 2016). Yang

and Deb (2009), Yang and Deb (2014) introduced a

metaheuristic inspired by the search mechanism of cuckoo

called the cuckoo search optimization (CSO) algorithm. The

CSO has been used extensively for effective solutions in a number

of engineering and applied problems with many variants (Li and

Yin, 2015; Cuong-Le et al., 2021), such as photovoltaic model

(Gude and Jana, 2020), social media sentiment analysis (Pandey

et al., 2017), path planning (Song et al., 2020), power control in

salt reactors (Karahan, 2021), damage detection infrastructures

(Tran-Ngoc et al., 2019), chemoinformatics (Houssein et al.,

2020), economic load dispatch (Yu et al., 2020), and many others.

The effective performance of CSO in illustrated applications

motivated us to explore parameter estimation power system

harmonics through well-established optimization strength of

the CSO. In this study, parameters of power system

harmonics are estimated through CSO for different generation

and particle size. Detailed and in-depth performance analyses are

conducted to check the accuracy, diversity, and robustness of the

CSO for harmonics estimation.

The remaining article is set as follows: the estimation model

for power system harmonics along with the optimization

procedure of CSO is described in Section 2. The results of

simulation studies are elaborated in Section 3. The

conclusions and future works are listed in Section 4.

2 Materials and methods

The system model for power harmonics signal is first

introduced, then the proposed methodology for optimization

of the fitness function for the estimation of the harmonic signal is

presented in this section. The overall flow diagram of the

proposed scheme is presented in Figure 1 by means of

different process block structures.

2.1 System model

The general harmonic signal in terms of its constituent

parameters (Malik et al., 2022) is defined as

s(t) � ∑K
k�1

αk sin(βkt + γk) + δ(t)h(t) � ∑J
j�1
aj sin(bjt + cj) + d(t),

(1)
and the variables in Eq. 1 are defined as J represents harmonic

order, aj is amplitude, bj is angular frequency represented as

bj � 2πf0 with f0 as fundamental frequency, cj is phase, and d is

AWGN. Then, by writing a discrete version of Eq. 1 after

sampling with period p, tn � np, and by assuming

h(tn) � h(n), Eq. 1 is rewritten as

h(tn) � ∑J
j�1
aj sin(bjtn + γk) + d(tn),

h(n) � ∑J
j�1
aj sin(βjn + ck) + d(n).

(2)

Expanding Eq. 2 through the fundamental trigonometric

identity

h(n) � ∑J
j�1
[aj cos(bjn) sin cj + aj sin(bjn) cos cj] + d(n), (3)

with the assumption that

uj � aj cos cj   and vj � aj sin cj, (4)

using the assumptions given in Eq. 4 into Eq. 3 gives Eq. 5:
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h(n) � ∑J
j�1
[uj sin(bjn) + vj cos(bjn)] + d(n). (5)

The harmonics estimation model with information-vector ψ

and parameter-vector ζ is written as

h(n) �ψT(n)ζ+d(n),
ψ(n) � [sin(b1n), cos(b1n), sin(b2n), cos(b2n), ..., sin(bjn), cos(bjn)],

ζ � [u1,v1,u2,v2, ...,uj,vj].
(6)

The aim is to estimate the amplitude and phase parameters of

the harmonics through minimizing the error-based criterion

function defined as

δ(n) � mean[h(n) − ~h(n)]2 � [h(n) − ψT(n)~ζ]2, (7)

h(n) is the actual signal, ~h(n) is an estimated harmonic signal

calculated through estimated parameter-vector ~ζ by using the

proposed CSO-based heuristic. The relationship between the

intermediate variables and the actual parameters is given by

aj �
�����������
(uj)2 + (vj)2

√
, cj � tan−1vj

uj
. (8)

2.2 Optimization method: Cuckoo search
optimization algorithm

Yang and Deb (2009), Yang and Deb (2014) introduced a

metaheuristic inspired by the search mechanism of cuckoo called

CSO with exhaustive applications in different fields of

engineering design and optimization. The formulation of the

CSO is based on three fundamental concepts: firstly, each cuckoo

lays a single egg in a single instance of time, while dumping the

respective egg in an arbitrary selected nest; secondly, the nests

with the best fitness, i.e., having the best quality of eggs, proceed

to the next generations; and thirdly, the number of host nests is

fixed, and the probability of discovery of next by the host cuckoo

is set between 0 and 1. The basis of these three fundamental steps

in the CSO is proposed with the process flow structure as shown

in Figure 1.

FIGURE 1
Process flow structure of the CSO algorithm.
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Proceeding by the actual behavior of the cuckoo,

mathematical models were introduced by Yang et al.; by

taking the new candidate solution xi(t+1) that represents an

i-th cuckoo at t flight/iteration index and considering the

Levy flight, we have the following expression iterative update

of CSO as

xi(t + 1) � xi(t) + α ⊙ Levy(λ), (9)

TABLE 1 Results of parameter estimates of Example 1 for G = 500.

d p a1 a2 a3 a4 a5 c1 c2 c3 c4 c5 δ

30 50 1.5028 0.4903 0.2059 0.1384 0.1010 1.3943 1.0096 0.7530 0.5487 0.5573 9.46E-04

100 1.4904 0.4991 0.1894 0.1581 0.0975 1.4002 1.0211 0.7449 0.6339 0.5726 9.70E-04

150 1.5087 0.4904 0.2023 0.1463 0.0967 1.3955 1.0529 0.7615 0.6934 0.6441 8.64E-04

60 50 1.5026 0.4985 0.1989 0.1496 0.0982 1.3965 1.0456 0.7820 0.6432 0.5329 1.02E-05

100 1.5003 0.5008 0.1978 0.1507 0.1007 1.3967 1.0410 0.7978 0.6495 0.5096 1.79E-05

150 1.5005 0.5010 0.2018 0.1537 0.1005 1.3956 1.0455 0.7833 0.6221 0.5477 1.38E-05

90 50 1.4988 0.5024 0.1988 0.1486 0.0999 1.3964 1.0468 0.7795 0.6266 0.5078 7.40E-06

100 1.4988 0.5009 0.1997 0.1483 0.1006 1.3954 1.0426 0.7934 0.6270 0.5264 7.11E-06

150 1.4991 0.4975 0.2018 0.1504 0.1006 1.3965 1.0449 0.7793 0.6296 0.5074 8.01E-06

1.5000 0.5000 0.2000 0.1500 0.1000 1.3960 1.0470 0.7850 0.6280 0.5230 0

TABLE 2 Results of parameter estimates of Example 1 for G = 1,000.

d p a1 a2 a3 a4 a5 c1 c2 c3 c4 c5 δ

30 50 1.4952 0.4968 0.2042 0.1611 0.0934 1.4038 1.0503 0.7960 0.5386 0.5653 7.11E-04

100 1.4977 0.4896 0.1984 0.1546 0.1018 1.3969 1.0433 0.7826 0.6401 0.5742 7.17E-04

150 1.5014 0.5028 0.2011 0.1480 0.0941 1.3938 1.0509 0.8318 0.6224 0.6175 7.12E-04

60 50 1.5000 0.5000 0.1998 0.1501 0.1000 1.3961 1.0470 0.7862 0.6260 0.5211 7.07E-07

100 1.4999 0.5004 0.2002 0.1500 0.1001 1.3959 1.0468 0.7881 0.6290 0.5188 8.60E-07

150 1.5001 0.4998 0.1999 0.1497 0.0997 1.3963 1.0468 0.7855 0.6267 0.5263 8.06E-07

90 50 1.5000 0.5000 0.2000 0.1500 0.1000 1.3960 1.0470 0.7849 0.6280 0.5227 2.65E-09

100 1.5000 0.5000 0.2000 0.1500 0.1000 1.3960 1.0471 0.7850 0.6280 0.5229 3.54E-09

150 1.5000 0.5000 0.2000 0.1500 0.1001 1.3960 1.0470 0.7850 0.6281 0.5228 5.67E-09

1.5000 0.5000 0.2000 0.1500 0.1000 1.3960 1.0470 0.7850 0.6280 0.5230 0

TABLE 3 Results of parameter estimates of Example 1 for G = 1,500.

d p a1 a2 a3 a4 a5 c1 c2 c3 c4 c5 δ

30 50 1.5062 0.5012 0.2063 0.1391 0.1015 1.3967 1.0482 0.7961 0.6084 0.4847 6.81E-04

100 1.4972 0.5052 0.1938 0.1573 0.1014 1.3949 1.0526 0.7824 0.6144 0.5761 6.08E-04

150 1.4962 0.5003 0.1958 0.1505 0.0907 1.3955 1.0315 0.8229 0.6524 0.5335 6.34E-04

60 50 1.5000 0.5001 0.1999 0.1501 0.0997 1.3961 1.0472 0.7848 0.6273 0.5270 6.83E-07

100 1.5000 0.5001 0.1997 0.1498 0.1001 1.3961 1.0467 0.7847 0.6292 0.5218 6.23E-07

150 1.5000 0.5000 0.2000 0.1498 0.0998 1.3961 1.0467 0.7841 0.6268 0.5203 6.57E-07

90 50 1.5000 0.5000 0.2000 0.1500 0.1000 1.3960 1.0470 0.7850 0.6279 0.5230 6.68E-10

100 1.5000 0.5000 0.2000 0.1500 0.1000 1.3960 1.0470 0.7850 0.6280 0.5230 7.68E-10

150 1.5000 0.5000 0.2000 0.1500 0.1000 1.3960 1.0470 0.7850 0.6280 0.5231 7.82E-10

1.5000 0.5000 0.2000 0.1500 0.1000 1.3960 1.0470 0.7850 0.6280 0.5230 0
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here α represents the step size based on the scale of the

optimization problem, and generally its value is set equal to

unit value in most of the cases and the Levy flight is represented

with a random walk procedure on the basis of Levy

distribution as

Levy(λ) ~ u � t(−λ), (10)

TABLE 4 Results of parameter estimates of Example 1 for G = 2000.

d p a1 a2 a3 a4 a5 c1 c2 c3 c4 c5 δ

30 50 1.5024 0.5020 0.2011 0.1462 0.0958 1.3909 1.0393 0.7911 0.6087 0.5671 6.10E-04

100 1.4909 0.4982 0.2001 0.1471 0.0913 1.3968 1.0594 0.7639 0.5954 0.6038 5.51E-04

150 1.4930 0.5076 0.2050 0.1453 0.1043 1.3977 1.0479 0.8170 0.5725 0.5632 6.00E-04

60 50 1.5001 0.4999 0.2000 0.1502 0.1001 1.3959 1.0468 0.7849 0.6286 0.5216 5.94E-07

100 1.5002 0.4999 0.2001 0.1498 0.0999 1.3960 1.0475 0.7848 0.6282 0.5219 5.74E-07

150 1.5000 0.5003 0.1999 0.1498 0.0999 1.3959 1.0467 0.7848 0.6292 0.5194 6.15E-07

90 50 1.5000 0.5000 0.2000 0.1500 0.1000 1.3960 1.0470 0.7850 0.6280 0.5229 6.59E-10

100 1.5000 0.5000 0.2000 0.1500 0.1000 1.3960 1.0470 0.7850 0.6280 0.5230 6.67E-10

150 1.5000 0.5000 0.2000 0.1500 0.1000 1.3960 1.0470 0.7850 0.6280 0.5230 6.59E-10

1.5000 0.5000 0.2000 0.1500 0.1000 1.3960 1.0470 0.7850 0.6280 0.5230 0

TABLE 5 Results of parameter estimates of Example 2 for G = 500.

d p a1 a2 a3 a4 a5 c1 c2 c3 c4 c5 δ

30 50 1.1894 0.8090 0.2030 0.1721 0.0846 1.3078 0.9609 0.8036 0.6879 0.6185 7.91E-04

100 1.1887 0.8069 0.1964 0.1717 0.1024 1.3088 0.9683 0.6965 0.7246 0.5261 9.62E-04

150 1.1867 0.7975 0.1961 0.1844 0.1074 1.3148 0.9610 0.7408 0.6736 0.4660 8.57E-04

60 50 1.2029 0.8000 0.2001 0.1829 0.1022 1.3100 0.9597 0.7827 0.6976 0.5053 1.34E-05

100 1.2018 0.7972 0.2015 0.1777 0.0971 1.3077 0.9612 0.7884 0.6951 0.5268 1.58E-05

150 1.1984 0.7962 0.2008 0.1790 0.0979 1.3080 0.9620 0.7898 0.6939 0.5613 2.19E-05

90 50 1.1987 0.7990 0.1996 0.1796 0.0997 1.3095 0.9583 0.7956 0.7191 0.5277 1.14E-05

100 1.1974 0.7991 0.2004 0.1790 0.0983 1.3075 0.9591 0.7817 0.7046 0.5416 1.01E-05

150 1.2008 0.7975 0.2042 0.1780 0.1001 1.3100 0.9559 0.7866 0.6948 0.5428 2.01E-05

1.2000 0.8000 0.2000 0.1800 0.1000 1.3090 0.9590 0.7850 0.6980 0.5230 0

TABLE 6 Results of parameter estimates of Example 2 for G = 1,000.

d p a1 a2 a3 a4 a5 c1 c2 c3 c4 c5 δ

30 50 1.2096 0.8051 0.2019 0.1866 0.0936 1.3101 0.9696 0.8023 0.6930 0.5116 7.02E-04

100 1.1960 0.8067 0.1974 0.1822 0.1000 1.3079 0.9672 0.7963 0.7429 0.5082 7.32E-04

150 1.1969 0.8024 0.1955 0.1762 0.1092 1.3089 0.9584 0.8046 0.6871 0.4465 6.98E-04

60 50 1.1998 0.8001 0.1998 0.1802 0.0997 1.3092 0.9590 0.7865 0.6978 0.5212 7.53E-07

100 1.2000 0.8002 0.1998 0.1800 0.1005 1.3094 0.9586 0.7861 0.7009 0.5285 8.08E-07

150 1.2001 0.8001 0.2000 0.1802 0.1001 1.3088 0.9593 0.7865 0.6980 0.5252 8.10E-07

90 50 1.2000 0.8000 0.2000 0.1800 0.1000 1.3090 0.9590 0.7850 0.6980 0.5229 1.45E-09

100 1.2000 0.8000 0.2000 0.1800 0.1000 1.3090 0.9590 0.7848 0.6981 0.5231 2.16E-09

150 1.2000 0.8000 0.2000 0.1800 0.1000 1.3090 0.9591 0.7851 0.6983 0.5229 4.69E-09

1.2000 0.8000 0.2000 0.1800 0.1000 1.3090 0.9590 0.7850 0.6980 0.5230 0
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here λ is a constant taken between 1 and 3, and the Levy flight

has an infinite mean and variance. Further details on the

mathematical terms, convergence proofs, and applications

can be referred from citations mentioned therein: Yang

and Deb (2009); Yang and Deb (2014); Li and Yin (2015);

Pandey et al. (2017); Tran-Ngoc et al. (2019); Gude

and Jana (2020); Houssein et al. (2020); Song et al. (2020);

Yu et al. (2020); Cuong-Le et al. (2021); Karahan (2021).

Inspired by the optimization performance of the CSO

algorithm, we have implemented the CSO for optimization

of parameters of the system models presented in Eqs.

1–8. The CSO algorithm was implemented in the

presented research based on the routine available at the

MATLAB Central File Exchange (Yang, 2022). The

optimization strength of the CSO may be enhanced by

integrating it with the kernel theory (Arqub, 2016; Arqub,

2018; Arqub, 2020; Arqub and Al-Smadi, 2020; Sweis et al.,

2022).

3 Results and discussion

Harmonics estimation of power systems is carried out in this

research work by applying the CSO algorithm to two examples, and

the results are given in a tabular form with the necessary discussion

along with graphs. The simulations are conducted using MATLAB

with a sampling frequency of 2 KHz. Three levels of additive white

Gaussian noise dwith 30DB, 60 DB, and 90DB are introduced in the

system to check the heftiness of the proposed scheme. The

investigation is carried out by considering four generation (G) sizes

and three particle (P) sizes in the CSO. The considered values of G are

500, 1000, 1,500, and 2000, while the values of P are 50, 100, and 150.

Example 1: The harmonic signal (Malik et al., 2022) considered

in the first simulation study is

h(t) �[1.5sin(2πf1t+1.396)+0.5sin(2πf3t+1.047)+0.2sin(2πf5t+0.785)
+0.15sin(2πf7t+0.628)+0.1sin(2πf11t+0.523) ].

(11)

TABLE 7 Results of parameter estimates of Example 2 for G = 1,500.

d p a1 a2 a3 a4 a5 c1 c2 c3 c4 c5 δ

30 50 1.1985 0.8005 0.2013 0.1755 0.0949 1.3134 0.9585 0.7586 0.6795 0.5023 6.40E-04

100 1.1909 0.8036 0.1962 0.1757 0.1137 1.3091 0.9548 0.7750 0.6668 0.6236 6.61E-04

150 1.2013 0.8014 0.1918 0.1790 0.0984 1.3135 0.9679 0.8190 0.7242 0.6072 6.39E-04

60 50 1.2001 0.8000 0.1999 0.1799 0.1000 1.3089 0.9589 0.7858 0.6976 0.5225 6.91E-07

100 1.1998 0.7997 0.2000 0.1802 0.0999 1.3091 0.9591 0.7847 0.6988 0.5215 6.82E-07

150 1.1999 0.7999 0.2002 0.1800 0.1001 1.3091 0.9588 0.7866 0.6979 0.5224 6.11E-07

90 50 1.2000 0.8000 0.2000 0.1800 0.1000 1.3090 0.9590 0.7850 0.6980 0.5230 6.71E-10

100 1.2000 0.8000 0.2000 0.1800 0.1000 1.3090 0.9590 0.7850 0.6980 0.5230 6.73E-10

150 1.2000 0.8000 0.2000 0.1800 0.1000 1.3090 0.9590 0.7850 0.6980 0.5230 7.60E-10

1.2000 0.8000 0.2000 0.1800 0.1000 1.3090 0.9590 0.7850 0.6980 0.5230 0

TABLE 8 Results of parameter estimates of Example 2 for G = 2000.

d p a1 a2 a3 a4 a5 c1 c2 c3 c4 c5 δ

30 50 1.1992 0.7993 0.1921 0.1931 0.1024 1.3071 0.9623 0.8177 0.7112 0.5600 5.57E-04

100 1.1976 0.8012 0.2052 0.1809 0.1048 1.2983 0.9477 0.8055 0.7149 0.5158 5.55E-04

150 1.2013 0.8022 0.2006 0.1794 0.1015 1.3068 0.9566 0.7844 0.7002 0.6340 6.02E-04

60 50 1.2001 0.8000 0.2002 0.1802 0.0999 1.3092 0.9590 0.7843 0.6989 0.5230 6.11E-07

100 1.1999 0.8002 0.2000 0.1800 0.1001 1.3090 0.9591 0.7845 0.6993 0.5232 6.04E-07

150 1.2001 0.8001 0.1998 0.1802 0.0998 1.3090 0.9594 0.7859 0.6976 0.5214 6.33E-07

90 50 1.2000 0.8000 0.2000 0.1800 0.1000 1.3090 0.9590 0.7850 0.6980 0.5230 6.67E-10

100 1.2000 0.8000 0.2000 0.1800 0.1000 1.3090 0.9590 0.7850 0.6980 0.5230 6.73E-10

150 1.2000 0.8000 0.2000 0.1800 0.1000 1.3090 0.9590 0.7850 0.6980 0.5230 6.45E-10

1.2000 0.8000 0.2000 0.1800 0.1000 1.3090 0.9590 0.7850 0.6980 0.5230 0
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FIGURE 2
Convergence plots of Example 1: (A) G = 500, (B) G = 500, (C) G = 500, and (D) G = 500.

FIGURE 3
Convergence plots of Example 1: (A) G = 500, (B) G = 500, (C) G = 500, and (D) G = 500.
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Ten parameters are taken under consideration in this problem.

Five phase and five amplitude parameters that were taken are

given below, while, f1, f3, f5, f7, and f11 are the frequencies

with values 50 Hz, 150 Hz, 250 Hz, 350 Hz, and 550 Hz,

respectively:

ζ � [a1, a2, a3, a4, a5, c1, c2, c3, c4, c5]
� [1.50, 0.50, 0.20, 0.15, 0.10, 1.396, 1.047, 0.785, 0.628, 0.523].

(12)

Example 2: The harmonic signal considered in the second

simulation study is

h(t) � [1.2sin(2πf1t+1.309)+0.8sin(2πf3t+0.959)+0.2sin(2πf5t+0.785)
+0.18sin(2πf7t+0.698)+0.1sin(2πf11t+0.523) ].

(13)

The parameter-vector consisting of five amplitude and five

phase parameters is

ζ � [a1, a2, a3, a4, a5, c1, c2, c3, c4, c5]
� [1.20, 0.80, 0.20, 0.18, 0.10, 1.309, 0.959, 0.785, 0.698, 0.523].

(14)
The results of Example 1 in terms of parameter estimates

through the CSO along with the MSE value are given in Tables

1–4 for G = 500, 1,000, 1,500, and 2,000, respectively. While the

respective results in the case of Example 2 are presented in Tables

5–8. The learning curves for Example 1 are given in Figure 2,

while for Example 2, the convergence plots are provided in

Figure 3. The results clearly indicate that the CSO gives a

better accuracy for 90 dB SNR than it does for 60 dB and

30 dB. Moreover, the accuracy of the CSO for harmonics

estimation increases by increasing the generation size.

4 Conclusion

This study exploits a swarm intelligence–based cuckoo

search optimization, CSO, heuristic for parameter

estimation of power system harmonics. The CSO

accurately estimates the amplitude and phase parameters

associated with the first, third, fifth, and eleventh harmonic

components. Simulation studies conducted on the mean

square error–based evaluation metric indicate that the

accuracy of the CSO increases with an increase in the

generation size, while increasing particle size has not

shown a significant rise in the accuracy level. Moreover,

the CSO has shown a robust performance in estimating

the parameters of power system harmonics for different

scenarios of additive white Gaussian noise.

Future studies may investigate the applying of the CSO

algorithm for real-time harmonics estimation and for other

engineering optimization problems (Phannil et al., 2018;

Montoya et al., 2019; Beleiu et al., 2020; Yang et al., 2020;

Chaudhary et al., 2021).
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Microgrid (MG) technologies offer users attractive characteristics such as

enhanced power quality, stability, sustainability, and environmentally friendly

energy through a control and Energy Management System (EMS). Microgrids

are enabled by integrating such distributed energy sources into the utility grid.

The microgrid concept is proposed to create a self-contained system

composed of distributed energy resources capable of operating in an

isolated mode during grid disruptions. With the Internet of Things (IoT) daily

technological advancements and updates, intelligent microgrids, the critical

components of the future smart grid, are integrating an increasing number of

IoT architectures and technologies for applications aimed at developing,

controlling, monitoring, and protecting microgrids. Microgrids are composed

of various distributed generators (DG), which may include renewable and non-

renewable energy sources. As a result, a proper control strategy andmonitoring

system must guarantee that MG power is transferred efficiently to sensitive

loads and the primary grid. This paper evaluates MG control strategies in detail

and classifies them according to their level of protection, energy conversion,

integration, benefits, and drawbacks. This paper also shows the role of the IoT

and monitoring systems for energy management and data analysis in the

microgrid. Additionally, this analysis highlights numerous elements,

obstacles, and issues regarding the long-term development of MG control

technologies in next-generation intelligent grid applications. This paper can be

used as a reference for all new microgrid energy management and monitoring

research.
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1 Introduction

Real-time power flow management is a contemporary topic

in scientific literature. It is gaining prominence to boost the

intelligence and adaptability of multi-energy systems, such as

smart grids, microgrids, smart homes, and hybrid electric

vehicles (George and Ravindran, 2019; George and Ravindran,

2020; George et al., 2021). Microgrid (MG) is a small-scale grid

that may unite consumers, conventional power sources,

distributed renewable energy sources, and energy storage

technologies to form a flexible, self-sufficient, and ecologically

beneficial system. A microgrid can operate on AC, DC, or a

combination of the two (hybrid mode), and it can be connected

to the main grid in parallel or as an isolated power island (George

and Ravindran, 2019; George and Ravindran, 2020).

In grid-connected mode, microgrids manage the voltage and

frequency of the main power grid. The renewable energy sources

are operated in maximum power point mode, supplying the

system with the maximum electricity. In islanded mode, the

microgrid disconnects from the main grid and relies on

distributed energy resources (DERs) to supply load (Sen and

Kumar, 2018; Ortiz et al., 2019). In all forms of operation, the

balance between power supply and demand is one of the most

critical factors governing the microgrid. In grid-connected mode,

the main grid is necessary to maintain balance. In island mode,

the microgrid must balance the load by increasing its generating

capacity or distributing the burden (Kang et al., 2021).

Reduced greenhouse gas emissions, reactive power

assistance for enhanced voltage profiles, decentralization of

energy supply, heat load integration for cogeneration,

auxiliary services, and demand response are among the

benefits given by MGs. In addition, it reduces transmission

and distribution system interruptions and line losses (Hirsch

et al., 2018).

RESs have a high investment cost, whereas MGs have various

constraints, including optimal energy consumption, control

concerns, a lack of system protection and regulatory

standards, and consumer privacy (Azeroual et al., 2020). Due

to the increasing deployment of RERs that are intrinsically

intermittent and the introduction of probabilistic controlled

loads into MGs, research has centered on overcoming its

energy management issues. To ensure that a MG operates

economically, sustainably, and reliably, its EMS includes both

supply- and demand-side control and system limits (Ghiasi,

2019). EMS provides various benefits, from generation

dispatch to energy savings, reactive power support to

frequency management, reliability to loss cost reduction,

energy balancing to lower GHG emissions, and customer

engagement to customer privacy (España et al., 2021).

Numerous studies have addressed several MG-related

subjects, such as reactive power compensation procedures in

MGs, control techniques for enhancing microgrid stability, and

MG protection and control schemes. In addition, they studied

droop control strategies, voltage, frequency regulation methods,

and control strategies for inverter-based MGs (Boujoudar et al.,

2020; Vaikund and Srivani, 2021).

They investigated the modeling, design, planning, and

designs of hybrid microgrids (Ortiz et al., 2019) and an

overview of AC and DC microgrids (Andishgar et al., 2017).

In addition, they examined energy management control systems

for microgrids (Malik et al., 2017; Tayab et al., 2017). In addition,

the literature included evaluations of homeostatic control-based

energy-efficient micro generation systems (Amrr et al., 2018),

methods for MG uncertainty quantification (Ghiasi et al., 2021a),

and a review of network technology-based energy efficiency in

buildings and micro generation systems (Fotopoulou et al.,

2021). Table 1 contains a compilation of reviews of MG’s

energy management.

Unlike other literature studies, this study presents a

comprehensive and critical analysis of microgrid energy

management systems and control technologies. In addition,

the protection and management of Internet of Things-based

microgrid monitoring systems are investigated. Several

uncertainty quantification approaches are discussed to handle

renewable energy resources’ volatile and irregular nature and

load demand.

The main goals of this review are to study the development of

the MG and EMS as well as to investigate the MG’s components,

implementation, classification, objective functions, quality, and

protection mechanisms. This study discusses both the present

technology and the issues that are addressed with MGs and

EMSs. This paper includes an extensive literature review covering

themost recent developments in the field of networkedMGs. The

most important parts of this article are summarized here.

1) A comprehensive discussion on the advantages of MGs as

well as their architecture, energy management functions, and

topologies in MGs.

2) A comprehensive analysis of the bilateral EMS schemes in

MMG, taking into account resilience and transactive

operations.

3) Energy management system control techniques used with

advantages and drawback of each methods.

4) Microgrid monitoring system using IoT based

communication and bulk integration of power sources in

MGs. Brief explanations of the most used techniques

SACADA system and Thingspeak.

The remainder of the paper will be organized in the following

manner: In Section 2, we will discuss the Microgrid control

structure and demerits as well as its different functionalities and

review the control schemes of the MG and the objectives of an

EMS. Section 3 will examine the Microgrid Monitoring systems,

which provides an overview of these approaches. Section 4

presents the perspective and discussion. Finally, the

Conclusion is documented in Section 5.
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2 Microgrid control structure

“A computer system comprising a software platformproviding

basic support services and a set of applications providing the

functionality needed for the effective operation of electrical

generation and transmission facilities to assure adequate

security of energy supply at minimum cost” (Coelho et al.,

2017) is how the International Electrotechnical Commission

defines an EMS in the standard IEC 61970 on EMS application

program interface in power systems management.

TABLE 1 The reviews related to energy management of MG.

References Details

Fotopoulou et al. (2021) The writers examine the field of microgrid energy management in depth and offer insightful commentary. This article summarizes
many uncertainty quantification methodologies to manage the intermittent and unpredictable nature of renewable energy supply and
load demand

George et al. (2021) An in-depth analysis of the various MG controls is presented. Mainly, you can classify them into one of four management structures:
centralized, decentralized, distributed, or hierarchical

Soliman et al. (2021) The capabilities of multiagent systems concerning energy management, MG system operation, security, and stability are thoroughly
explored

Sen and Kumar, (2018) The authors defined amicrogrid and painted a detailed picture of current microgrid motivators, practical applications, challenges, and
future potential

Kumar and Saravanan, (2017) The research delves further into the protection issues and potential solutions related to three distinct types of microgrid architectures:
alternating current (AC), direct current (DC), and hybrid. Both AC and DC microgrid protection methods are evaluated, as are the
challenges inherent to defending microgrids in both configurations

Albarakati et al. (2021) The authors comprehensively analyze MG control systems, categorizing them based on features like protection, energy conversion,
integration, benefits, and limitations. Both simple and complex methods of control for efficient energy use in MG applications are
discussed

FIGURE 1
The microgrid structure.
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These features are typical of an MG EMS, including

decision-making strategy modules. Optimal decisions are

transmitted to each generating, storing, and loading unit

thanks to DERs/load forecasting, control, supervisory,

energy management, and data acquisition modules, among

others (Dagar et al., 2021).

MGs can be controlled in ways other parts of the distribution

system cannot, making this an important area of study and

application. It isn’t easy to centrally manage MGs due to their

dual functionality (grid-connected and islanded as represented in

Figure 1) (Al Alahmadi et al., 2021). Therefore, separate

management systems are often developed for each operation

mode. Because there are typically multiple DERs and loads

connected to a microgrid, coordination challenges arise. When

applied consistently, MG control is highly successful (Su and

Wang, 2012).

Therefore, a necessary control technique is needed to allow a

seamless transition and automation in the event of a sudden

disconnection. This is essential for achieving the goal mentioned

above regarding power flow between MGs and the power system.

In addition, a suitable control strategy is necessary to handle the

stochastic generating behavior of DG units in MGs.

The main object of the control strategy is to ensure the

microgrid balance during all changes in meteorological

conditions and load demands. Stabilizations of voltage and

frequency transduce the microgrid balance. Therefore, all

proposed techniques in the literatures use frequency or

voltage control to ensure the microgrid balance as described.

Below, we will break down the several types of traditional

control that can be used to boost MG systems’ effectiveness and

dependability to the delight of their clientele.

Various control techniques outlined in Figure 2 (Albarakati

et al., 2021) present MG control types typically employed in MG

to improve MG’s power and operations. The microgrid control

regulates reactive power and MG output voltage.

2.1 Conventional microgrid control
techniques

Conventional control methods have been utilized extensively

in MGs to maintain voltage and frequency stability and

regulation, especially during network failures. MG

management is a multi-objective, complicated control system

encompassing multiple technical domains, periods, and physical

levels. Several areas of interest include load power sharing,

voltage/frequency and power quality regulation, market

participation, short- and long-term scheduling, etc. (Singh

et al., 2020; Singh et al., 2021).

To appropriately handle these challenges, a hierarchical

control scheme has been designed and widely regarded as a

standard method for efficient MGs management. For example,

(Han et al., 2016), describes secondary control for energy

management functions and third-level control for multiple

MG interactions. Hierarchical control has three levels of

control: tertiary, secondary, and primary. Due to the need to

FIGURE 2
Classification of microgrid control techniques.
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maintain real-time frequency and voltage stability in the case of a

disruption, primary control levels are considered the most

challenging (Zahraoui et al., 2021):

Local electricity, voltage, and current are regulated at the

main level. It often executes control operations over interface PCs

by adhering to the configuration points specified by upper-level

control.

• Secondary level: In the current system, secondary control is

positioned above primary control. Along with other things,

it handles harmonic compensation, voltage imbalance, and

voltage/frequency restoration. Additionally, it is in charge

of synchronizing and exchanging electricity with the main

grid and other MGs.

• Tertiary management seeks to incorporate intelligence

throughout the entire system. Thus, tertiary control will

optimize the MG operation in light of competing interests,

particularly efficiency and economics. In order to carry out

the optimization activities, Information and

Communication Technology (ICT) is a significant

enabling tool, as it facilitates the acquisition of

knowledge from both the MG side and the external

grid. Decision-Making (DM) algorithms are used to

examine data and decide what steps to take next.

The conventional control approaches in the microgrid are

summarized in Table 2.

2.2 Advanced MG control techniques

Improved control performance is a common goal for MG

control systems. Hence, sophisticated control techniques are

routinely used in these systems. These methods include, for

TABLE 2 The conventional control approaches in the microgrid.

Control method Parameters Technique Advantages

Virtual output impedance
Mahmoud et al. (2017)

Voltage, reference, voltage
impedance, active, and reactive

power

Summation of virtual output impedance to
balance reactive and Q power-sharing

Provides proper active and reactive power
sharing transient response with no frequency

variations

Droop control Kaur et al.
(2016)

Voltage, frequency, active, and
reactive power

Balanced load current sharing is achieved under-
voltage v/s current droop characteristics by
modifying output voltage and frequency

Allows active power-sharing of DERs, which
improves system stability and flexibility by

eliminating the need for a communication link
in decentralized control

Multiagent system (MAS)-
based control Ahmethodzic

and Music, (2021)

Voltage, current, frequency, and
power

The MS or load can function as a separate agent,
communicating with others in the system to

coordinate efforts and share knowledge

Economics and voltage regulation are at the
heart of EMS. makes MG controls more robust,

secure, and adaptable; addresses MG
coordination control issues

Maximum Power Point
Tracking (MPPT) control Sahri

et al. (2021)

DC/DC converter, solar
irradiance, temperature, load
power, voltage, and current

The DC/DC converter between the PV panel
and the batteries can regulate normal operations

like MPP looking

Determine the output RESs’ maximum power
given irradiance, temperature, and load

profiles; act as a converter to fine-tune the duty
cycle and input impedance of control signals;
boost the effectiveness of renewable energy

installations

TABLE 3 Comparisons related procedures (De Santis et al., 2017; Albarakati et al., 2021)].

Method Parameter Applications Advantages

Adaptive PID Controller
De Santis et al. (2017)

Voltage and courant An adaptive PID controller’s gain parameter is
determined through optimal tuning

Simple to implement; does not necessitate
system dynamics to be realized; There are

only three variables to optimize

Adaptive Sliding Mode
Controller Hussein and

Shamekh, (2019)

Voltage and frequency; power quality
control

Changing the control structure allows the
approach to track the system output within
predetermined limitations. low tracking error

in steady-state

Fast dynamic response; non-linear
controller; robustness under system

parameter changes and external and internal
aberrations

Model predictive control
Umuhoza et al. (2017)

MG operations control the inverter output
voltage references of power electronic
converters for consistent power-sharing

Fast dynamic response; can accommodate
restrictions; no modulator and variable
switching frequency; no pulse width

modulator is required

A lot of computational power is required
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instance, intelligent and adaptive approaches to optimizing

the parameters involved in control systems to generate

resilient controllers. In the following, we will go over some

methods that can be used for MG management. Supervisory

controllers in MG energy management can be categorized

into three subfields: centralized, decentralized, and

distributed. The objective is to improve system

performance by adding intelligence while delivering critical

functions like power quality monitoring. The relevant group

of supervisory controllers is discussed in the next section

(Tayab et al., 2017).

2.2.1 Centralized control scheme
The brain of the operation, so to speak, is what we mean

when we talk about centralized control schemes. A centralized

control management system makes it easy to build and monitor

the system in real-time to provide a safe environment. The MG

component data and an external grid for the optimization

process are necessary for effective operation. We investigated

the concept of secondary control for a centralized MG controller

in (Jimeno et al., 2011). Hierarchical control, which includes the

system’s primary, secondary, and tertiary levels, provides an

explanation for the MGs’ centralized control (Atawi and

Kassem, 2017).

Centralized microgrid controls are illustrated as a

hierarchical network in Figure 3. One Central Processing Unit

(CPU) makes all the important decisions in a centralized control

setup. It communicates them to the rest of the system’s

components based on data and calculations it has received

from those components. The MG’s main controller handles

every single control and measurement. Local Controllers (LC)

obey orders and depend on the MGCC (microgrid central

controller) when operating in grid-connected mode but

operate autonomously in islanded mode.

2.2.2 Decentralized controls
Decentralized MG administration (Figure 4) has emerged in

MG systems, enhancing flexibility and scalability. Due to its plug-

and-play functionality, this controller gives great operational

flexibility and avoids a single point of failure. Due to

decentralization, frequency and voltage regulation, DER

coordination, and energy management may all be

decentralized (Roslan et al., 2019). In decentralized control,

local controllers are primarily responsible for optimizing their

production for demand satisfaction and exportation to grids,

given current market prices. Multi-Agent Systems (MAS) for

decentralized energy management represent an intriguing aspect

of supervisory controller research (Sahoo et al., 2021). AMAS is a

FIGURE 3
Architecture of centralized control.
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system composed of several intelligent agents that give local

information and interact with one another to pursue various

objectives (Khorsandi et al., 2014; Sabri et al., 2019)

autonomously. Moreover, a MAS for real-time MG operation

is implemented, focusing on generation scheduling and demand-

side management, as described in (Al-Saadi et al., 2021).

Consequently, there are numerous approaches to the MAS

method for the decentralized control of MGs, as explained in

detail in (Roslan et al., 2022).

2.2.3 Distributed controls
The distributed control scheme for microgrid

management and stability can be described as a method in

which local controllers connect with a central controller via

communication and networking channels. The central

controller is in charge of system monitoring and control,

while the local controllers are in order of the other MG

components individually (Raya-Armenta et al., 2021).

The following are some of the many advantages of taking this

strategy:

• Enhanced sturdiness.

• Improved decision making and system analysis.

• A common control law that can be easily implemented at

the central and local levels.

• System monitoring and real-time communication.

According to some studies, the tertiary control level in an

MG system may be dispersed. During the deployment of

distributed control to compensate for a voltage imbalance in

the crucial bus, a current study found power quality disturbances

on the generator side and the local bus.

2.3 Microgrid intelligent techniques

A range of intelligent solutions in power system applications

can increase control system performance and power source

stability. Furthermore, as the number of DG units in MGs

increases, so does the complexity of fine-tuning the system’s

control settings. Many complex strategies have also been

employed to control such parameters in MGs, considering

economic load dispatch in MG systems (Azeroual et al.,

2022). EMS solutions based on artificial intelligence have been

used to increase the efficiency and performance of MG systems,

allowing them to fulfill demand while generating the most energy

FIGURE 4
Architecture of decentralized control.
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(Chaudhary et al., 2021). Fuzzy logic and neural network

techniques consider anticipated values and improve battery

lifetime and grid energy trading. These methods are the most

commonly employed in microgrid energy management (Pan

et al., 2021).

2.3.1 Artificial neural network controller
Data is sent to the central processor via a neural network

controller at a delayed rate, much like the human brain. A closed-

loop design is used to transfer information to each other while

minimizing the error or intended function. The fundamental

architecture contains an input/output layer, activation function,

weights, and hidden later. Allowing for greater flexibility and a

simpler implementation for a variety of operating situations,

neural networks are a more intelligent and self-learning

controller. MG’s stability is further aided by neural networks’

resilient behavior and swift decision-making capabilities while

they are working. In the area of research, Neural Networks (NNs)

have gotten a lot of interest. ANNs are among the most successful

strategies for optimizing, controlling, and identifying system

parameters (Justo et al., 2013).

Furthermore, in MG systems, NNs can tackle difficulties with

non-linear data techniques in large-scale systems. Fault

tolerance, stability systems, prediction, parametric

optimization and identification, self-learning, and load sharing

are all examples of NN applications. Furthermore, in grid-

connected mode, the main utility grid determines and

maintains the nominal voltage and frequency of the entire

system. The ANC is used to control the bidirectional DC-DC

converter by generating the duty cycle to keep the DC Bus voltage

at the reference voltage value in the DC microgrid (Ali and Choi,

2020).

2.3.2 Fuzzy logic controller
The original proposal of the fuzzy theory may be found in

(Zia et al., 2018), which was created to provide numerical values

for intangible ideas. Fuzzy-logic reasoning is used in the design of

a controller in a fuzzy-control system. So-called fuzzy logic aims

to create a gray area between zero and one by breaking down

logical problems into smaller, more manageable chunks. Figure 5

is a schematic representation of the foundations upon which

fuzzy logic control rests. Fuzzification, membership, rule base,

fuzzy inference, and defuzzification are all part of the FLC.

Distributed control systems have recently incorporated fuzzy

logic controllers to choose optimal distributed controller

parameters for MG system performance (Rangu et al., 2020).

Fuzzy Logic Control (FLC) is an interesting method for MG

systems. Many researchers have explored the potential of fuzzy

logic methods for resolving the parameters of MG systems. The

automatic definition of a fuzzy rule for a fuzzy controller is

proposed in (Singh et al., 2022), based on the Tabu search

algorithm scheme. A study presented a GA-based fuzzy gain

scheduling technique for load frequency regulation in power

systems. The GA will construct a fuzzy system without any

manual input from the user, saving time and effort that would

otherwise be spent on designing and writing fuzzy rules (Hafsi

et al., 2022).

The foundations of fuzzy logic control are depicted in

Figure 5 as a schematic. The FLC includes fuzzification,

membership, rule base, fuzzy inference, and defuzzification.

2.4 Microgrid adaptive techniques

In recent years, adaptive control strategies have been a

popular research area. These strategies can be used to

maintain system stability, robustness convergence, and

optimization in MG applications. Furthermore, these

strategies are primarily employed in MG applications to

solve and cater to uncertainty parameters and disturbance

occurrences. The following section examines a few adaptive

approaches often used in MG applications to regulate voltage

and frequency variations and hence attain optimum power

generation values as summarized in Table 3.

FIGURE 5
Fuzzy logic control system.
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3 Microgrid monitoring system

The monitoring system checks all the equipment’s real-time

running status and controls all the equipment to ensure it is safe

and stable. Ensuring that the monitor system is always up to date

is essential. We ensure that the system is always running in real-

time through the software and hardware in this micro-grid.

3.1 IoT

Future network technology, known as the IoT connects

information about people, things, and processes to the

Internet to create, gather, exchange, and use data. The IoTdid

not appear overnight; it has been there for a while. Many other

names have referred to it, and as technology develops, so do its

technologies and ideas. Machine-to-Machine (M2M) and Radio

frequency Identification (RFID) are two examples of good ideas

(object intelligence communication). Everything is connected to

the Internet through a concept known as the “Internet of

Things.” However, why should items be connected to the

Internet, not how should they be connected to the Internet?

The ultimate objective of the Internet of Objects is to intelligently

connect everything in our environment to the Internet, automate

it with minimal human involvement, and then deliver knowledge

and improved services to people through information fusion

across several connections. For assessing and disseminating the

resulting information, it is essential to connect human, physical,

geographic, and intangible data (Siddique et al., 2019).

The term “Internet of Things” describes a notion that

integrates real objects and labor. Put another way, it includes

everything we come into contact with daily, such as people,

machines, electrical equipment, bicycles, glasses, watches,

clothing, cultural artifacts, animals, and plants. A solid

connection to the information network, intelligent interfaces,

and physical and virtual entities with distinct identifiers and

attributes are other components of the IoT (Roy et al., 2020).

IoT devices may interact with and respond to objects,

environments, data, and environmental information as active

participants in business, news, and social activities. Whether a

human is directly involved, an object responds autonomously to

a physical event in the real world or runs a process that creates a

service or starts a certain activity. The interface of the service type

enables Internet-based communication with such smart devices

and searches for or exchanges data relevant to the status of the

items while taking security and privacy concerns into account

(Hu et al., 2021).

Microgrids’ dependability, stability, security, and

environmental sustainability are all guaranteed by the IoT.

With the help of the Internet of Things, a futuristic network

technology, data generated by people, things, processes, and

other objects can be produced, gathered, shared, and used.

IoT technologies have recently gained popularity due to their

development and use in SMG applications. Bidirectional

connectivity, self-healing, decentralization, and smart metering

are crucial IoT technologies. A flexible and intelligent EMS must

monitor and control all SMG variables in real-time (Vermesan

et al., 2011).

3.2 Microgrid monitoring system using IoT

MG energy management systems will become substantially

more efficient due to collecting and analyzing data from power

sources via IoT. Additionally, utilities may perform operational

duties such as shortening outage investigation times, optimizing

load balancing, optimizing line voltage, finding faults, decreasing

service costs, and restoring services more quickly. Additionally,

using IoT technology for smart homes, Energy Storage Systems

(ESS), Electric Vehicles (EVs), charging stations, and variable

loads increases the flexibility and dependability of the SMG

(Ahmad et al., 2017). As seen in Figure 6, IoT may improve

energy efficiency by managing Demand Response (DR),

collecting data, sharing, and trading energy. An optimum

DSM system built on the IoT is necessary to address energy

conservation andmanagement challenges. This technique should

provide a continuous energy supply while preventing power

surges in the future (Zamfir et al., 2016).

The microgrid is equipped with various sensors for data

collection (current, voltage, power, temperature). The data

collected from these sensors is analyzed in real-time to

determine the optimal control strategy based on current

conditions (occupancy, energy consumption-production,

and weather conditions data). Additionally, this data must

be saved for subsequent study, notably to build predictive

control techniques (Elmouatamid et al., 2019). In addition,

multiple platforms that incorporate IoT technologies are

installed for data collecting, processing, and visualization,

and with the upcoming generation of wireless. In the

present day, a smart microgrid is all about electronic

communication networks, electronic billing systems, and

smart meters. The smart microgrid will be equipped with

automated distribution and secure DER administration and

generation on the road to 5G. Automatic power generation

and distribution via real-time load balancing and massively

distributed generation services (Sedhom et al., 2021) is the

focus of a smart microgrid in the 5G age. The IoT is used in

various applications, including smart grid, microgrids,

intelligent buildings, and intelligent control devices, to

monitor and track essential information about the target

environment. Numerous studies have used IoT solutions

for energy management and system monitoring in a

microgrid (Sylcloud Smart Micro Grid, 2022).

Reference (Khan et al., 2018) proposes a communication

platform that may operate in both central and dispersedmodes in

the event of a communication hierarchy failure. This research
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explores the effect of a hybrid communication system with

communication delay on the MMG EMS. In other words, the

hierarchical communication system supports the EMS in

reducing MMG’s operating expenses.

The authors of (Draft, 2016) demonstrate the importance of

the IoTin building and deploying intelligent microgrids,

including their benefits, difficulties, and hazards and several

processes, techniques, and procedures for controlling and

protecting intelligent microgrids.

In (Ali and Choi, 2020), the authors study the real-time

features of security mechanisms for IoT connectivity. In addition,

the influence of IoT protocols on the real-time needs of smart

grid operations are investigated (protection, control, and

monitoring).

The authors of (Moghimi et al., 2018) employed an IoT

system to monitor company energy use. The monitoring

platform incorporated various technologies, including

digital instrumentation, communication networks, software,

and databases, with the aims of central administration,

decentralized control, and remote monitoring.

In (Ghiasi et al., 2022), authors have created a remote

energy monitoring system based on the IoT to control, plan,

optimize, and conserve energy in smart grids and homes. A

system that efficiently collects energy resource information in

the house reduces energy wastage and provides information

for analyzing energy consumption patterns.

In (Kondoro et al., 2021), the authors propose an EMS

based on an advanced IoT system. The framework system was

implemented in the building to unify and standardize the

things that comprise the built environment. Appropriate

guidelines are developed with intelligent energy

management and smart Buildings’ available mode of

operation.

The authors of (Khoa et al., 2021) present a real-time

monitoring system using web server technology for the

microgrid. The Arduino embedded system was used as a

control core, and an Ethernet network module was used for

the data acquisition and the wireless transmission.

In this study, an IoT system was used to measure, track, and

record a few power quality (PQ) aspects of a microgrid system

(Ku et al., 2017). PQ parameters are measured in the hardware

unit by three PZEM-004T modules that have non-invasive

Current Transformer (CT) sensors installed. The sensors’ data

is gathered simultaneously by an Arduino WeMos

D1 R1 ESP8266 microcontroller and transmitted to the server

through the Internet.

FIGURE 6
Applications of IoT in intelligent power grids (Khatua et al., 2020).
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3.3 Microgrid monitoring system using
SCADA

A Supervisory Control and Data Acquisition (SCADA)

system is another option for microgrid monitoring and energy

management in small and large-scale buildings (Residential,

Commercial and Industrial). A SCADA system comprises two

components: a hardware system for data collection,

communication, control, and operation, and a software system

for data storage, elaboration, visualization, optimization, and

careful management (Figure 7). The SCADA system, a type of

middleware used in intelligent monitoring systems, is discussed

in this section. The SCADA system is mostly used to read

bundled microgrid data. The SCADA system accesses the

microgrid data before saving it in the MySQL database

(Marinakis and Doukas, 2018).

Four major kinds of SCADA hardware functions exist. The

first is the Remote Terminal Unit (RTU), whose primary role is to

gather data for the SCADA system. The second role is the

communication platform, which facilitates the establishment

of data links between devices (Zhuang et al., 2017). The third

function is the Programmable Logic Controller (PLC), which is

needed to ensure that the MG operates properly in grid-

connected and island modes (Khoa et al., 2021).

The Human Machine Interface (HMI), a software

component of the SCADA system, is critical for controlling

and monitoring. The SCADA component’s conventional

structure is server-client, with the primary SCADA application

FIGURE 7
SCADA Monitoring system for microgrid (Marinakis and Doukas, 2018).
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operating on the server and the HMI running on the client.

Numerous articles examined various aspects of SCADA use in

MGs. By comparison, this work is unusual because it employs all

four SCADA elements to accomplish a new aim of intelligent

energy management (Ali et al., 2021).

3.4 Microgrid monitoring system using
cloud computing

Another approach to microgrid monitoring is based on the

communication between powers sources and the monitoring

platform using the cloud. The measured data is sent directly to

the cloud by measurement unit as shown in Figure 8.

Cloud computing and the IoT have evolved independently

thus far. Non-etheless, their integration into microgrids has

demonstrated significant reciprocal benefits. The cloud, in

particular, can provide an efficient and practical option for

administering IoT services and offering some applications to

help in data analysis. Many researchers have been used this

structure of monitoring due to its benefits in high-quality data

transmission (Ghiasi et al., 2021b).

The authors in (Kermani et al., 2020) present a real-time

design of efficient monitoring and control of grid power systems

using the remote cloud server to improve the universal control

and response time, with a new security approach in access to user

authentication.

The authors of (Gupta and Rastogi, 2021) provide a cloud

computing platform for microgrid power management. The

strategy links the system’s current computer and storage

capabilities with external computing devices, enhancing data

processing and interaction and providing a cost-effective and

rapid mechanism for microgrids to meet their computational

requirements.

The authors in (Gui and MacGill, 2018) use a low-cost IoT-

based innovative communication platform to implement an

optimal energy management technique for microgrid systems.

The suggested system’s energy monitoring and control

architecture is built on a cloud-based Remote Monitoring

Unit (RMU) that communicates via a Message Queuing

Telemetry Transport (MQTT) server and Thingspeak

Middleware.

Thingspeak is a cloud-based IoT analytics platform that lets

users visualize and analyze real-time data streams. It can do

online data stream analysis and processing and immediately

visualize data presented by system gateways. Thingspeak is

frequently used in IoT systems that require analytics for

prototyping and proof of concept (Khatua et al., 2020).

Thingspeak is an IoT platform that stores data delivered by

apps or devices via channels. You have numerous options for

FIGURE 8
Microgrid monitoring using Cloud computing.
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writing data to your Thingspeak platform: HTTP requests

through the REST API, MQTT. Thingspeak is frequently used

in IoT systems that require analytics for prototyping and proof of

concept (Figure 9).

Due to the development of the connection between Matlab

and Thingspeak by adding the IoTMatlab toolbox. Thingspeak is

the most used platform during the simulation of the power

system at Matlab/Simulink. The quality of communication

and microgrid monitoring depends on the sensors used for

measurement (Bera et al., 2014).

To make an intelligent distribution system functional, many

networks and devices must come together to create a dependable

system. The IoT and smart meters are the significant components

that will transform the traditional link between consumer and

operator into an innovative interdependent system capable of

quicker and more reliable communication (Karthick et al., 2021).

In recent years, disc-type meters have been phased out in favor of

electronic integrated circuit embedded meters, which

distribution utility companies effectively employ to provide

consumers with authentic and electronic invoicing (Chen

et al., 2019). The requirement for enhanced flexible billing

and management of billing information in the case of two-

way power flow necessitates intelligent meter technology. In

commercial and industrial settings, smart meter technology

gives customers daily market values for their energy use

(Mehrizi-Sani and Iravani, 2010). Historically, Automated

Meter Reading (AMR) technology collected data on

customers’ and utilities’ energy use, resulting in a one-way

flow of energy and communication. The AMR, a recent

advancement in Advanced Metering Infrastructure (AMI),

enables bidirectional communication and power flow between

the meter and the central control system (Mohanty et al., 2016).

A smart grid is a novel approach to transmission and

distribution, and intelligent meters play a critical role in

connecting with consumers and collecting data as an essential

element of the smart grid. The smart meter comprises three

major components: network management, advanced metering

element, and data management unit (Vuddanti and Salkuti,

2021). The smart meter has a memory chip that enables users

to monitor their energy consumption using a software interface,

allowing it to communicate in two directions (Zheng et al., 2013).

The smart meter regulates the functioning of the distribution

system’s switches and recloses, ensuring an efficient and reliable

delivery system. Due to the smart meter’s two-way

communication capability and energy interface, it is possible

to regulate distribution infrastructure by sending directives to the

control center, a process known as distribution automation at the

load end (Guo et al., 2015). The benefit of the smart meter is that

it enables central control to intervene quickly when tampering

occurs, based on the accessible rapid report supplied by the smart

meter as part of the data collection process (Barai et al., 2015).

This contributes to reducing power theft while also enhancing

the security of the power system. The availability of daily billing

information to consumers enables them to regulate their loads

and save money using the smart meter (Avancini et al., 2021).

4 Perspective and discussion

This work presents an extensive literature analysis of the

issues of stability, control, and power management of AC, DC,

and hybrid AC/DC microgrids. According to the research, AC

and DC microgrids are both very common. Still, hybrid AC/

DC microgrids are gaining popularity due to their lower

conversion losses, greater reliability, and increased

efficiency. The microgrids use a hierarchical control

architecture that features main, secondary, and tertiary

controllers in the chain of command. The primary control,

FIGURE 9
The architecture of IoT connectivity with Thingspeak.
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often known as the LC, is built into the DER to guarantee

dependable operation by preserving stable voltage and

frequency levels and regulating power. Secondary control

regulates microgrid communication protocols to improve

power quality by reducing steady-state voltage and

frequency mistakes created by primary control. The main

control caused these faults. The tertiary management

manages the power flow between the main grid and the

microgrid to ensure that the system operates cost-

effectively. Nevertheless, possibilities to develop improved

planning, operation, and control strategies. It is possible to

do extensive studies in these areas to improve microgrids’

development, operation, and control.

• The microgrids require accurate system modeling for

efficient planning and operation. Considering the

stochastic character of the integrated DGs in microgrids,

a new or enhanced model can be designed to reduce

planning and operation expenses.

• It is possible to redesign or develop several advanced

control approaches, such as adaptive control, model

predictive control, robust control, and optimum control,

to ensure that microgrids have efficient DC and AC buses

voltage management and concurrent power sharing.

• Integrating renewable sources in microgrids lowers the

overall inertia of DC microgrids, decreasing the

microgrids’ voltage control performance. Even though

certain control strategies have been established to deal

with such a scenario, more work should be undertaken

in this regard because the DC microgrid is becoming a

system based entirely on renewable energy.

• In the future, MGs may use various energy sources, such as

large-scale decentralized resources, to be flexible and fit

their needs. The way energy is made and moved could

change because of energy storage systems.

• Future MGs could improve at finding faults and fixing

themselves, which would cut down on recovery time, get

more loads back online, and find gaps between research

and implementation.

• The IoT makes it easier for real-time platforms to form and

connect

• decentralized and transactional energy markets in a very

important way. From their previous research, the

authors also know that two-way energy exchanges

between customers and producers will likely be the

most difficult in the future. However, new

technologies are likely to solve this problem.

• Deep learning, like ANN, could be used in MGs instead

of classical and mathematical methods to achieve

dynamic changes in energy flow, lower GHG

emissions, and better protection for MGs. Blockchains

and smart contracts should be used in MGs to ensure

that energy transactions and DER operations are safe

(Zahraoui et al., 2021).

5 Conclusion

This article examines recent research on the various

energy management techniques proposed for microgrids,

including classical, heuristic, and intelligent algorithms.

Additionally, this article discusses the design of microgrids,

their many classifications, the components of a microgrid, the

communication technologies utilized, and the auxiliary

services necessary in a microgrid. It addresses significant

energy management applications, data management, and

control structure. Additionally, this article provides a brief

examination of monitoring methods used for the data analysis

of the microgrid. The EMS is vital to the MG’s proper

operation. An overview of MG control and various energy

management schemes has been studied to optimize and

stabilize the MG’s functioning while optimizing the use of

renewable energy resources. The developed hardware and

software for the computer control and monitoring system

for electricity generation allows the process to provide

continuous user access to sensor data regardless of the state

of the external power supply, to unify the approach to data

collection via the use of an intermediate data aggregation

node, and to provide convenient access to data processing via

a diverse set of client interfaces. The impacts of the integration

of electric vehicles on microgrid stability and balance and

microgrid energy management during cybersecurity attacks

represent the topics of our future works.
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Nomenclature

AMI Advanced metering infrastructure

ANN Artificial neural network

AMR Automated Meter Reading

CANADA Supervisory control and data acquisition

CT Current transformer

DER Distributed energy resources

DG Distributed generators

DR Demand response

EMS Energy management system

ESS Energy storage system

ESS Energy Storage Systems

FL Fuzzy logic

GA Genetic algorithm

GHG Greenhouse gas

HMI Human machine interface

IoT Internet of things

LC Local controller

M2M Machine to machine

MAS Multiagent system

MG Microgrid

MGCC Microgrid central controller

MMG Multi-microGrid

MQTT Message queuing telemetry transport

PID Proportional–integral–derivative

PLC Programmable logic controller

PQ Power quality

PSO Particle swarm optimization

RER Renewable energy resource

RMU Remote monitoring unit

RTU Remote terminal unit

SMG Smart grid
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Arabia

Non-technical loss is a serious issue around the globe. Consumers manipulate

their smart meter (SM) data to under-report their readings for financial

benefit. Various manipulation techniques are used. This paper highlights

novel false data injection (FDIs) techniques, which are used to manipulate

the smart meter data. These techniques are introduced in comparison to

six theft cases. Furthermore, various features are engineered to analyze the

variance, complexity, and distribution of the manipulated data. The variance

and complexity are created in data distribution when FDIs and theft cases

are used to poison SM data, which is investigated through skewness and

kurtosis analysis. Furthermore, to tackle the data imbalance issue, the proximity

weighted synthetic oversampling (ProWsyn) technique is used. Moreover,

a hybrid attentionLSTMInception is introduced, which is an integration of

attention layers, LSTM, and inception blocks to tackle data dimensionality,

misclassification, and high false positive rate issues. The proposed hybrid

model outperforms the traditional theft detectors and achieves an accuracy of

Abbreviations: ADASYN, adaptive synthetic; ADASYNENN, adaptive synthetic edited nearest neighbor
neural network; AMI, advanced metering infrastructure; ANFIS, adaptive neural fuzzy inference
system; ANN, artificial neural network; AUC, area under the curve; DSN, deep siamese network;
DWMCNN, day week month convolutional neural network; ETD, electricity theft detection; FDI,
false data injection; FIS, fuzzy interface system; FPR, false positive rate; FRESH, feature extraction
and scalable hypothesis; GRU, gated recurrent unit; KNN, K-nearest neighbor; LLE, locally linear
embedded; NAN, neighborhood area network; NCA, neighborhood component analysis; NTLs,
non technical losses; PCA, principal component analysis; ProWsyn, proximity weighted synthetic
oversampling; RE, reconstruction error; RESNet, residual network; SAGAN, self attention generative
adverserial neural network; SCADA, supervisory control and data acquisition; SMs, smart meters;
SMOTE, syntheticminority oversampling technique; TPR, true positive rate; 1− DCNN, 1 dimensional
convolutional neural network.
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0.95%, precision 0.97%, recall 0.94%, F1 score 0.96%, and area under-the-curve

(AUC) score 0.98%.

KEYWORDS

inception module, AttLSTM, false data injection, electricity theft detection, time series data

1 Introduction

Smart grids are serially interconnected networks having
resilient features of unity power factor, self-healing, system
monitoring, load balancing, and two-way communication.
The communication channel is a delicate part of the power
network. Network stability is interrupted when it is interfaced
with a wrong information flow (Rawat and Bajracharya, 2015).
Various types of cellular technologies, wireless sensor protocols,
WLAN, and WAN are used for the purpose of communication
in smart grids (Parikh et al., 2010), (Djennadi et al., 2021a).
The world is moving towards the development of smart grids
for efficient and reliable smart energy where different types
of energy-production sources are integrated for optimal and
reliable operations (Cai et al., 2017), (Djennadi et al., 2021b).
The survival of societies is based on economic growth and
an uninterrupted electrical energy supply. Losses are of two
types: technical losses (TLs) and non technical losses (NTLs)
(Jeyaraj et al., 2020), (Guo et al., 2018). An almost as large
portion of the losses in the electrical system are NTLs. TLs
are the inherent losses of the electrical power system, whereas
NTLs occur due to the problems of double tapping, by-passing
of smart meters (SMs), and tampering with SM readings,
etc., in order to under-report the consumed electrical energy
(Buzau et al., 2019), (Somefun et al., 2019). The deployment of
smart grids can easily regulate customers’ consumption behavior.
Detection of NTLs secures the smart grids against anomalies
and optimal flow of energy is managed (Rodriguez et al., 2017),
(Arqub, 2018).

Advanced metering infrastructure (AMI) is an intelligent
infrastructure to detect NTLs, however, it is a hardware-
based architecture with multiple architectural flaws. False
Data injections (FDIs) of novel nature are used to manipulate
in SMs data, which are difficult to investigate and detect
by AMI architecture. FDIs are novel techniques, which are
used to manipulate the data of SM readings to gain illegal
financial benefit. AMI collects the data with the help of a
neighborhood area network (NAN). NAN is a useful architecture
designed to manage energy in order to forecast short-term
load and to investigate the optimal energy scheduling by the
utility providers (UPs) (Depuru et al., 2011), (Arqub, 2020).
Traditional grids use supervisory control and data acquisition
(SCADA) in order to monitor grid operations and ensure
security (Yasakethu and Jiang, 2013), (Sweis et al., 2022).
Conventional machine learning techniques are used for the

detection of NTLs, however, techniques such as support vector
machine (SVM), random forest (RF), and 1D-convolutional
neural network (1D-CNN) have low detection accuracy
in classification scenarios (Glauner et al., 2016). Henceforth,
classifiers with high detection and low false positive rate (FPR)
are required to mitigate the problem of misclassification.

1.1 Motivation

Electricity theft is extant worldwide. Utility providers look
for problems in their consumers’ premises due to NTLs.
Consumers opt for various electricity theft techniques in order
to under-report their consumption. Some of these techniques
are (Rawat and Bajracharya, 2015) tampering with the data
with shunt devices (Parikh et al., 2010), double tapping of SMs,
and (Djennadi et al., 2021a) electronic faults. These traditional
approaches capture the behavior of NTLs where various hand-
drafted mechanisms are developed due to a lack of clear
mathematical formulations. Developing such solutions for each
individual theft case is very expensive and time-consuming
due to their relience on expert knowledge. In order to tackle
such issues we propose a deep-learning based architecture
that self-learns features of the observed data and automatically
detects NTLs. Such architecture is operated in less time in
order to mitigate the need for experts and excessive costs.
Moreover, false data injection techniques (FDIs) are introduced
in this paper, which can be used in real-time applications
to manipulate SM readings. These manipulating techniques
are highly intensive in nature and they can manipulate the
data accordingly to the consumer’s choice. So highlighting the
detection of such intensive techniques improves the detection
scenarios and minimizes the chances of theft. Consideration
of such FDIs in detection scenarios minimizes NTLs, and
manipulated patterns found with attributes of such theft traces
can easily be identified as theft. Moreover, an efficient model
should be used to detect and segregate fraudulent and benign
consumers in such scenarios with minimal FPR. Minimal FPR
is an effective parameter and minimizes excessive on-site costs
for verification of fraudulent consumers.

2 Literature review

This section provides an overview of the existing literature
related to electricity theft detection (ETD) in smart grids.
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In (Takiddin et al., 2020), an ensemble detector is proposed,
which is a combination of deep auto encoders with attention-
gated recurrent units (GRU) and feed-forward neural networks.
Similarly, (Kocaman and Tümen, 2020) proposes an LSTM
classifier for the detection ofmalicious customers. Data selection,
normalization, and weights updating mechanisms are used as
preprocessing mechanisms in both of the proposed solutions.
Architectures of the LSTM classifier contain LSTM cells, dropout
layers, relu activation function, and softmax classifier. Precision,
accuracy, and recall matrix is used to evaluate the performance
of the proposed models.

Study in (Li et al., 2019) uses a convolutional neural network
and random forest (CNN-RF) as a novel hybrid classifier
for the detection of NTLs. CNN is used as a down-sampler
to extract key features of the time series data. The featured
data is inputted to RF for further classification in order to
identify anomalous consumers. Similarly (Javaid et al., 2021a),
uses adaptive synthesis (ADASYN) for the provision of balanced
data. A hybrid module of CNN and LSTM is proposed to
detect ill-intent within consumers’ profiles. CNN is used to
extract abstract features from weekly time series data, however,
LSTM is trained on the inputted data of the CNN. Integration
of CNN-LSTM is named deep siamese network (DSN), which
segregates honest and thieving customers. In (Pereira and
Saraiva, 2021), data augmentation techniques are analysed to
evaluate the performance of various minority over-sampler
techniques. A pool of data augmentation techniques enlisting
cost-sensitive learning, random over-sampling, K-medoids over-
sampling, cluster-based over-sampling, and synthetic minority
over-sampling technique (SMOTE) are used to balance the
imbalanced data. The balance data is inputted to CNN.
The performance of CNN is evaluated on each of the data
augmentation techniques, respectively. Furthermore, CNN is
used as a binary classifier for data classification, and area under
the curve (AUC) is used as a performance matrix to evaluate
the classifier’s performance. Literature in (Blazakis et al., 2020)
uses an adaptive neural fuzzy inference system (ANFIS), which
is a combination of artificial neural network (ANN) and fuzzy
set theory in order to investigate NTLs. ANFIS utilizes back
propagation learning of ANN and sugeno fuzzy inference
system (FIS) to detect maliciousness in time series data of
SMs. To maximize the efficiency of the classifier, neighborhood
component analysis (NCA) is used to select the optimal ranking
of the important features such as mean, medium, entropy, and
load factor. Furthermore, accuracy, precision, F1 score, and AUC
score are used to evaluate the performance of the classifier.

Similarly, in (Himeur et al., 2021) an ensemble model based
on genetic optimization is developed to detect anomaly. SMOTE,
a data over-sampling technique, is used to balance the data
distribution. Afterward, features of the anomalous consumers are
extracted using principal component analysis (PCA) along with
the data dimensionality reduction. The abstract information of

customers’ behavior is extracted using AdaBoost technique and
architectural optimization of the deep neural network is analysed
through genetic algorithms. Moreover (Hussain et al., 2021),
presents a novel supervised learning solution, which is an
integration of catboost and SMOTETOMEK algorithms. Data
preprocessing is tackled by K-nearest neighbor (KNN) in order
to fill missing values, while data augmentation is carried out
using SMOTETOMEK in order to mitigate biasness towards
a majority class. Furthermore, to extract key features of
highly dense time series data feature extraction and scalable
hypothesis (FRESH) is used. The extracted data is inputted into
catboost classifier for classification and a tree-SHAP algorithm
is used as a decision-maker for theft identification. Study in
(Cheng et al., 2021) proposes RF based classifier for the detection
of an anomaly in a time series data. To reduce heavily dense
time series data K-means method is used, whereas, a neural
network of day, week, and month convolutional neural network
(DWMCNN) is used to analyse the SMs’ consumption data and
to extract key features. To evaluate the performance AUC score
is used as a performance metric. In order to segregate the honest
and fraudulent consumers (Javaid et al., 2021b) proposes two
supervised learning models. One of the models is an integration
of self-attention generative adversarial network (SAGAN) and
CNN. Important features of the time series data are extracted
using the locally linear embedding technique (LLE) technique
and to tackle the class imbalance issue adaptive synthetic edited
nearest neighbor (ADASYNENN) is utilized. Furthermore, an
ensemble model ERNET is developed, which consists of an
efficient net residual network (ResNet) and gated recurrent unit
(GRU). ResNet and GRU hybrid model is used as a second
classifier to detectNTLs. Robust learning rate anddata imbalance
issues are tackledwith rootmean square propagation (RMSProP)
and SMOTE edited the nearest neighbor, respectively.

Various proposed solutions have been presented in the
literature, however, slow computations in RNN, the need for
bulk training data in the case of CNN, performance declination
in AFNIS due to the provision of less training data, and
non-availability of intrinsic evaluation metric for SAGAN, we
propose the AttentionLSTMInception model to overcome all
these issues. Moreover, the Attention layer memorizes the large
sequence of data. LSTM has more additional units which can
hold information longer. An additional number of parameters
such as learning rate, input and output biases, updating of
weights, and backpropagationmake themodelmore flexible.The
inceptionmodule is added for better utilization of the computing
resources in order to avoid excessive computational load.
These are deeper networks, which are used for dimensionality
reduction with stacked convolutions. Furthermore, the proposed
hybrid model utilizes the attributes of long-term memorization
of information and backpropagation of LSTM, data filtering
for dimensionality reduction of CNN, and cognitive attention
towards the prominent features of the attention layers, we
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are integrating them to introduce a novel hybrid model
AttenLSTMInception for the detection of NTLs. The proposed
hybrid model tackles issues of long-termmemory dependencies,
vanishing grading, under-fitting, over-fitting, and high FPR.

2.1 Paper organization

The rest of the paper is organized as follows. Section 3
provides a list of contributions and their mapped solutions.
Section 4 determines the importance of feature engineering.
Section 5 and Section 6 provide a detailed study of the system
model and its workings, respectively. Section 7 highlights
performance evaluation and section 8 is simulations results.
Finally, a conclusion is drawn in section 9.

3 List of contributions

The contributions of the study are enlisted as follows.

• Diversity and dense variability in data distribution confuse
the classification scenario and require special filtering
mechanisms, which are tackled in this paper.
• Novel false data injection techniques (FDIs) are investigated,
whichmanipulate the SMs data extremely and remained still
undetectable in literature.
• A problem of high FPR due to extensive misclassification is
tackled, which causes financial overburdens.
• To tackle data reductionality issues, inception, attention,
and filtering mechanisms are introduced to hybridize the
existing classifying architectures.
• In order to retain long-term memorization, the inputted
data is overlapped through segmented attributes of sliding
windows to adopt cognitive learning of the data.
• Data synthesizing through ineffective balancing techniques
mimic resembled, overlapped, and replicated data, which is
tackled by introducing a novel proximity-weighted synthetic
oversampling (ProWsyn) technique.

3.1 Dataset

SMs installed on consumer premises record the electricity
consumption for the consumed energy. Consumed energy is
recorded in the form of time series data. In this paper, a
realistic dataset, named as state grid corporation of China
(SGCC) is used which contains 42,372 consumers. We are
considering 6 months of data from 1500 benign consumers
only for data classification and manipulation due to the limited
resources of our machine (Punmiya and Choe, 2019). Our
machine specifications are intel(R) core (TM) M-5y10c, CPU@

0.80 GHz 1.00GHz, RAM 4 GB. Moreover, the simulator is
google CoLab. The dataset contains a few missing readings,
which are due to the mal-operation and malfunctioning of the
sensors deployed over the installed SMs. Such erroneous readings
create ambiguity over the classification scenario and ultimately
result in a low detection rate. A straightforward approach to
eliminating such readings disrupts the time series data’s sequence
and integrity. Considering optimal data filling techniques and
operating such techniques over the perspective rows provide
refined and complete consumption data of each consumer. A
24-h time series data for every consumer is recorded by an
SM. A unique consumer ID is assigned to each consumer. A
label is indexed for the identification of honest and fraudulent
consumption. A binary representation of 0 and 1 is used where
0 represents benign class data and 1 represents fraudulent class
data. Due to the rarity of theft class data, we are proposing
false data injection techniques (FDIs) to manipulate the benign
class data in order to synthesize fraudulent class data. FDIs are
proposed in comparison to theft cases (Sha et al., 2022), which
are shown in Eqs. 1, 2. Moreover, the dataset is online available
at: https://github.com/henryRDlab/ElectricityTheftDetection.

3.2 Data preprocessing

Electricity consumption time series data is a series of
numeric values, which is monitored by the installed SMs on
the consumers’ premises. Such time series data contain missing
values and outliers due to the mal-operation andmalfunctioning
of the deployed SMs. Filling in the missing values and removing
the outliers are necessary steps. A simple Imputer technique is
used to fill in the missing values and to remove the outliers.
To fill in the missing values, a mean-based strategy is operated
row-wise. Furthermore, data normalization is carried out to
normalize the data into a specific range. The normalized data is
the input data, which is then transformed and scaled to carry out
further operations.

3.3 Data augmentation

The problem of skewness towards the majority class by the
classifier is a serious issue, which needs proper attention. To
tackle the data imbalance issue, synthetic data is synthesized
by oversampling minority class data. Weight value-based
approaches transform the data into equal distribution, however,
most of the techniques synthesize inappropriate data, which
ultimately results in a poor distribution of the classes. To
overcome such problems, this paper proposes a proximity-
weighted synthetic oversampling technique (ProWsyn) (Islam
and Belhaouari, 2022). ProWsyn targets the minority class
samples to balance the data. The proximity information of
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TABLE 1 Mapping of limitations and proposed solutions.

Sr Limitation Identified Solution Number Proposed Solution Validations

L1 Misclassification due to the dense variability of the
distributed data

S1 Addition of Inception module for filtering abstract
features

V1: Table 2

L2 Lack of theft class data samples S2 Synthesizing through novel FDIs V2: Eq.1
L3 High FPR S3 Hybrid model architecture to tackle extensive

misclassification
V3: Figure 6

L4 Problem of short term information memorization S4 Data segmentation and overlapping V4: Figure 1
L5 Imbalance data and model’s skewness towards the

majority class
S5 ProWsyn data resampling technique V5: Algorithm 2

each sample is measured based on the distance from the
decision boundary. Distance-based proximity helps to generate
the effective weights for theminority class samples. Such effective
weights of the minority samples normalize the data distribution,
which mitigates the skewness of the model towards the majority
class samples. The data is balanced and synthetic samples are
generated. ProWsyn is a clustering-based technique, which
operates in two steps.

• In the first step, the distance between the residing position of
the sample and the decision boundary is monitored for each
of the minority samples. All the samples are partitioned (P)
upon the splitting.
• In the second step, the partitioned data samples are assigned
a proximity level (L).

The proximity level is directly proportional to the distance.
A smaller proximity level gives more important samples,
whereas, a greater proximity level gives less important samples.
Algorithm 2 shows the operating mechanism of the ProWsyn
technique.

In step 1 of Algorithm 2, input parameters are defined.
Step 2 considers new sampling based on EU. New samples are
synthesized and considered if EU of the corresponding sample is
less than the corresponding cluster and weight of the sample is
updated accordingly. However, if the EU is greater it is ignored.
Finally, in step 3, the number of honest consumers and fraudulent
consumers is balanced.

{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{
{

FDI1 =
mean (E)*random (0.1− 0.9)

E
whereE > 1 ≤ mean

FDI2 = √(mean(E)) * random (0.1− 0.9)

FDI3 = √(E) * random (0.1− 0.9)
FDI4 =mean (E) − (γ)
where γ is a constant consumption and
γ ≤ mean
FDI5 = E− γi
where i = 0,…,Emax
FDI6 = E (t− d) = 0 i f t < d and 1 i f t ≥ d
where t,d is time and di f ference, respectively.

(1)

1 Step 1: Defining fraudulent and honest

consumers:

2 Input: Honest Consumers HEc,

Fradulent Consumers FEc Sample Si, Euclidean

distance EU, Decision Boundary $DB$,

Weight W

3 Step 2: Introducing FDIs:

4 FEc > HEc ;

5 Si if EU is geater ignore Si;

6 update W;

7 consider Si if EU is less;

8 skip: and go to next sample

9 Step 3: Balancing :

10 FEc = HEc

11 STOP

12 Output:Target (Proximity Si having EU >),

Skip (Proximity Si having EU <)

Algorithm 1. Data Augmentation using proWsyn Technique.

{{{{{{{
{{{{{{{
{

T1(Et) = Et * random (0.1,0.9)
T2(Et) = Et * Et (Et = random (0.1,0.9))
T3(Et) = Et * random [0,1]
T4(Et) =mean(Et) * random (0.1,1.0)
T5(Et) =mean(Et)

(2)

4 Feature engineering

The data distribution analysis is presented in Table 2.
Effective classification is based on the data’s nature. Complex
data is very difficult to be learned and classified by weak
models. Such complexity is based on the variance among the
data samples that need special attention before deploying any
model to tackle the classification problem. Various types of
features are engineered, which include min, max, standard
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TABLE 2 Data distribution analysis.

Data Manipulation Scheme Kurtosis Skewness

FDIs 6 46
Theft Cases 1 10

deviation,mean, rootmean square error, skew, kurtosis, quantile,
and rolling mean. Mean, min, max and standard deviation
are basically the stochastical features, whereas, root mean
square error, skew, kurtosis, quantile, and rolling mean are the
static features based on the dynamics of the time series data.
Stochastical features show the randomness and variations in the
data, which helps to know the complexity of the distributed data.
Whereas, the root mean square responds to the provision of the
actual information of variations and distribution in the data.
Skewness factor (Sk) judges the symmetry and resemblance of
the data. In literature, it is represented as three-point plotting.
One point is a central point and the other two lies on the left
and the right of the central point, respectively. A symmetric
distribution is the same to the left and right of the central point.
Mathematically it can be represented as:

{
{
{

Sk =
∑M

j=1
(Wj−W−)3/(M)

q3
, (3)

The kurtosis parameter helps to investigate the problems
associated with the outliers and the data’s distribution. It shows
the difference between each and every point within the data
whether it is symmetric or un-symmetric. Mathematically, it can
be represented as:

{
{
{

Kurtosis =
∑M

j=1
(Wj−W−)4/(M)

q4
− 3, (4)

Where W− is the mean, q is the standard deviation and M
is the number of data samples. Positive kurtosis represents
a heavy-tailed distribution, whereas, negative kurtosis is a
light tailed distribution. Normal data distribution has a zero
kurtosis. Quantile concludes the shape of the distribution.
It distributes the observations in the same number of
samples based on the probability distribution.Rolling mean
(Rm) is a computing window, which computes the mean
on a piece of the data slab. The rolling window rolls on
continuous time series data and computes for a subset. The
computed subset is the rolling average for that specific slab
of the data. It basically accesses the stability within the data
distribution. Mathematically, it is represented as (Blanca et al., 
2013):

{ Rm =
Et +Et−1 +Et−2 +⋯+Et−n + 1

M
, (5)

4.1 Data manipulation

Novel FDI techniques are proposed in comparison to six theft
cases for data manipulation (Pamir et al., 2022a).

• FDI 1 under-reports the consumption by manipulating the
SM’s data as shown in Figure 1A. The total consumption is
aggregated into a mean. A random number is multiplied by
the aggregated mean, which ranges between (0.1–0.9). The
product is divided by a number greater than 1 and less than
a number equal to the aggregated mean, which vanishes the
consumed energy reading and limits it to a zero reading.
• FDI2 targets the mean and a random number’s product,
which is squarely rooted in order to inject false reading by
manipulating SM’s consumption data.This data subjectively
minimizes the consumption of energy almost by 1/2 of the
total consumed energy as shown in Figure 1B.
• FDI3 is the periodic bulk manipulation of the total
consumed energy over monthly and weekly based. It is
a specific defined time period manipulation. The square-
rooted consumption is multiplied by a random number
ranging between (0.1–0.9) in order to get more financial
benefits as shown in Figure 2A.
• FDI4 is a two-phase manipulation. One is mean-based
manipulation and the second one is a constant numeric
number subtraction-based manipulation. The mutual
difference between both strategies the SM’s consumption
data under-reports the original consumption as shown in
Figure 2B.
• FDI5 is the manipulation of the SM’s data during off-
peak and off-peak hours. A γ factor is a difference-based
manipulation variable, which is represented by a simple
numeric number. The variable is subtracted from the
recorded readings to under-report the consumed energy as
shown in Figure 3A.
• FDI6 is a unit-step function-based manipulation at the
consumer’s end. It manipulates the consumption with a
choice to operate it at any time stamp or periodically. It can
steal 100% of the consumed energy in the extreme.However,
in the case of equilibrium, a 50% of the theft is expected.
During such modes of manipulation, the consumption is
limited to 0 or 1 where 1 shows the original consumption
and 0 shows the manipulated consumption as shown in
Figure 3B.

4.2 Model’s architecture

The input data is segmented into various data subsets in
form of slabs through a dynamic sliding window. The dynamic
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FIGURE 1
(A) Theft Case 1 vs. FDI 1. (B) Theft Case 2 vs. FDI 2.

FIGURE 2
(A) Theft Case 3 vs. FDI 3. (B) Theft Case 4 vs. FDI 4.

sliding widow overlaps the input data by 50%. Data’s subsets
contain resizing strategy over k = 20 where 10 previous and 10
next records are buffered. Every next sliding slab selects the data
starting from the data point residing on the 10th index of the
previous slab.The data is resized in similar fashion until the very
end of the array is reached. The same phenomenon is repeated
consecutively for the oncoming next slab. The 50% overlapping
of the data is a linear traversal of the data, which minimizes
the complexity of the dense time series data and finds an
optimized data resizing strategy for the input data.Thedeveloped
hybrid model is a delicately structured architecture, which is
a multivariate model and inspired by the long-term short-
term memory and fully convolutional network (LSTM-FCN).
In order to retain recurrent information of the time series data

the modules are integrated in parallel where the LSTM module
is connected to an inception time network with additional
layers of attention (Abbasimehr and Paki, 2022). Novel FDI
techniques are proposed in comparison to six theft cases for data
manipulation (Dua et al., 2022). AttenLSTMInception model is
a multivariate resolution feature of the time series data. The
ultimate goal is to capture and analyse the variance between
the classes’ data. In order to retain the information LSTM-
Inception model contains two residual blocks. Information
propagation between the residual blocks is initiated by an
ultimate short linear connection where inputs are added to the
next block. Such schematics mitigate the vanishing gradient
problem due to the direct flow of the gradient. Stacking the
inception modules, the first inception component is named
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FIGURE 3
(A) Theft Case 5 vs. FDI 5. (B) Theft case 6 vs. FDI 6.

FIGURE 4
The proposed system model.

the bottleneck layer, which performs sliding operation over the
data. Such layers reduce the data’s dimensionality due to the
sliding operation of the filters. Integrating networks in such
scenarios mitigate the over-fitting issue, model’s complexity,
and complex dimensionality. It is necessary to mention that
the bottleneck technique maximizes filter length in terms of

pulling, which helps in reducing the computational complexity.
The max-pooling generates sequential attributed data, which
is concatenated with the inception modules’ output. The
hierarchical latent features are extracted via stacking and
backpropagation mechanisms. The global pooled output of the
inceptionmodule andAttenLSTMblock are concatenated, which
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FIGURE 5
Working of flowchart.

is connected to the inception layer and classification operator
function.

5 Proposed system model

The limitations with the proposed solutions are presented
in Table 1. While the system model in Figure 4 represents
our proposed solution for the aforementioned limitations. It
is divided into five sections (1) Data preprocessing (2) Data
manipulation (3)Data augmentation (4) Feature engineering and
(5) Classification. The data distribution analysis is presented in
Table 2.

• Initially in section (1), data is preprocessed where the
missing values and outliers are filled and removed by
the simple Imputer technique, respectively. A row-wise
operation is carried out on the data to tackle such issues.
• In data manipulation section (2), consumers are defined
based on their provided SM’s readings, which are labeled
with a binary representation of 0 and 1, where 0 stands

1 Step 1: Defining fraudulent and honest

consumers:

2 Input: Honest Consumers HEc, Fradulent

Consumers FEc

3 Step 2: Introducing FDIs:

4 FDI1=
mean(E)*random(0.1−0.9)

E
;

5 FDI2=√(mean(Ec))*random(0.1−0.9));

6 FDI3=√(Ec)*random(0.1−0.9);

7 FDI4=mean(E) − (γ);

8 FDI5 = E− γi;

9 FDI6 = E(t−d) = 0 if t < d and 1 if t >= c;

10 Step 3: Data Augmentation and

Concatenation:

11 Concat( FFDI1 + FDI2 + FDI3 + FDI4

12 + FDI5 + FDI6 )

13 FEc = FDIi + ... +FDIn: where i = 1, ...,6.

14 ECT = HEc + FEc

15 Step 4: Data Equilibrium:

16 HEc = FEc ;

17 FEc > HEc ; apply proWsyn to HEc .

18 HEc = FEc .

19 Step 5: Feature Engineering:

20 ECT = HEc + FEc

21 skewness(mean(ECT))

22 kurtosis(mean(ECT))

23 Step 6: Classification

24 Output:Ec ε FXc ;

25 Ec ε HXc

Algorithm2. AttenLSTMInception based Electricity Theft Detection Scheme.

for honest consumers and 1 for fraudulent consumers.
Honest consumer data is manipulated in order to synthesize
fraudulent consumers’ data by applying FDI techniques.
Data is synthesized due to the rare availability of the theft
class data. Synthesized data by such FDI techniques show
fraudulent consumers’ data. The defined FDI techniques
result in six variants for each benign sample.

• In section (3), data balancing is required in order tomitigate
the Model’s biasness and skewness towards a majority class.
Dense skewness poisons the model’s classification, which
tends to increase the false positive rate (FPR). A data
augmentation technique is required to mitigate such issues
(Ullah et al., 2021), (Asif et al., 2021a), (Asif et al., 2021b),
(Kabir et al., 2021). ProWsyn based data augmentation
strategy is applied in the proposed work to balance
fraudulent and benign class samples.
• In section (4), the balanced data is observed by the feature
engineeringmodule where the data’s nature and distribution
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FIGURE 6
(A) Performance analysis of the benchmark and proposed model (B) Performance comparison.

are studied. Stochastical features, which contain mean,
min, max, and standard deviation are generated to study
the data’s distribution. In addition, the skewness factors,
kurtosis, quantile, root mean square and rolling features
are engineered, which shows the distribution symmetry and
its deviation. Such investigating factors result in deciding
the model’s complexity and deepness for the classification
scenario. Highly skewed, defused and un-symmetric data
needs a heavily featured classifying model for effective class
segregation and classification.
• In section (5), to classify the samples effectively
a hybrid model AttLSTM-FCNInception model is
adopted, which is an integration of attention layers
(Pustokhin et al., 2020), LSTMmodule (Yu et al., 2019) and
Inception (Yang et al., 2019). Two of the Inception modules
and attention layers are integrated into LSTM. The model
is fed with the affine preprocessed data, which is suitable
to tackle complex and un-symmetric data. Algorithm 1
defines a summary of the whole system model.

6 Working of the system model

Theworking of the whole classification scenario is defined in
Figure 5.

• Initially in step 1, the SMs’ time series data is analyzed and
benign samples are considered only due to non-availability
of the theft class samples.
• In step 2, the benign class data is manipulated by six FDIs,
and six new variants are synthesized for a single benign
sample. Such variants for a single benign sample disrupt
the data balancing, which requires balancing techniques to
balance the data.

• In step 3, a ProWsynminority class oversampling technique
is opted to balance the data. Each sample is considered
on a proximity basis where EU distance is measured by
assigning weights to the samples. The nearest sample of
the cluster to the decision boundary is weighted greater,
whereas, the sample with a large EU distance from the
perspective cluster is weighted less. The assigned weights
help to mitigate the issues of misclassification and high
FPR.
• In step 4, various features are engineered in order to
investigate the complexity and distribution of the data.
Two major mean-based synthesized features are targeted
to investigate the complexity and distribution of the data.
Kurtosis and skewness are the mean-based engineered
features, which visualize the data’s symmetry and far-tailed
numeric outliers.
• In step 5, in order to enhance the data memorization,
a sliding window segments the data with a 50%
overlap, which carries the previous and next step
information segments of the input data. Such translation
of the available information flows back and forth,
which increases the memorization capability of the
model.
• In step 6, the segmented data is fed to a hybrid
AttenLSTMInception model for classification. The fed data
is classified and fraudulent consumers are detected with a
low FPR, effectively.

7 Performance evaluation

ETD is a binary classification problem where benign and
fraudulent classes are represented as positive and negative,
respectively. In a binary classification scenario, the positive class
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TABLE 3 Performance comparison of the proposed and existingmodels.

Classifier Accuracy Precision Recall F1 Score AUC Score

Proposed AttLSTMInception 0.95 0.97 0.94 0.96 0.98
LSTMCNN 0.59 0.59 0.80 0.68 0.70
SVM 0.65 0.65 0.76 0.70 0.65
RF 0.72 0.72 0.65 0.71 0.72
DT 0.47 0.47 0.48 0.49 0.47

is labeled as 0 and the negative is labeled as 1. Precision,
detection rate (DR), accuracy, AUC, and F1 score are used to
evaluate the performance of the model. AUC is the area under
the curve with two distinguishing parameters, TPR and FPR.
TPR is the detection sensitivity of the model and FPR is the
specificity. A comparative investigation between the accurate
identification of true positive samples and true negative samples
constructs AUC. Four parametric attributes are collectively
mapped to measure the sensitivity and specificity of the model.
Sensitivity is DR and specificity is the FPR of the model.
Mathematically, it can be represented as (Jones and Athanasiou., 
2005):

DR = TP
TP+ FN

, (6)

FPR = TN
TN+ FN

, (7)

Where TP, TN, FP, and FN represent true positive, true negative,
false positive, and false negative, respectively. TP, TN, FP, and
FN are the confusion matrix attributes, which investigate binary
classification.

8 Simulation results

In order to compare the proposed AttLSTMInception
model with the existing models DT, RF, SVM, and LSTMCNN,
a comparative analysis is shown in Figure 6A, Figure 6B.
Accuracy, precision, recall, F1 score, and AUC are the
performance parameters, which are considered to investigate the
performance of the models. The results in Table 3 show that the
proposedmodel outperforms the rest of themodels.The effective
performance of the proposed model is due to the attention and
inception modules. The attention module mimics cognitive
attention, which focuses on the prominent and important
features rather than non-useful data. The inception module
adds the properties of efficient computations and dimensionality
reduction by using multiple data filtering sizes. The addition
of the inception module tackles the problem of over-fitting
and computational complexity. RF (Nguyen and Phan, 2021),
SVM (Lin et al., 2021), DT, and LSTMCNN (Hasan et al., 2019)
perform very badly. They cannot perform on complex time
series data and cause overfitting issues. Furthermore, the
performance of the proposed model is enhanced by using

dropout regularization and adam optimization. Figure 6 shows
the AUC of various models against the proposed model. The
proposed model outperforms the rest of the models. Initially,
the proposed model classifies the time series data of the honest
and fraudulent consumers with zero FPR, however, at an AUC
score of 0.92 a minimal FPR is reported. The slight change
in reporting FPR is due to the increased data complexity.
LSTMCNN performs efficiently with a slight FPR, however,
it reduces its performance over the increased complexity of
the data. Figures 6A,B shows that the low FPR is achieved
by the proposed model as compared to other models, which
means that the fraudulent and honest consumers are accurately
classified. Similarly, the AUC score of the conventional machine
learning techniques SVM (Pamir et al., 2022b), RF, and DT
(Munawar et al., 2021) is very bad and reports high FPR.
Figure 6 shows the accuracy, precision, recall, F1 scores, and
AUC scores of themodels. It can be seen that the proposedmodel
outperforms the rest of the models in each of the performance
parameters.

9 Conclusion and future work

In this paper, novel FDIs techniques are proposed in
comparison to theft cases. The proposed FDIs manipulate the
data severely as compared to the theft cases. The variations and
complexity in data distribution caused by the proposed FDIs and
theft cases are investigated through data distribution techniques.
The analysis shows that the proposed FDIs are severe in nature
while manipulating data of SMs’ as compared to theft cases. FDIs
observe minimal skewness and complexity in data distribution
as compared to the theft cases data. Furthermore, six variants
are synthesized for each of the honest consumers. A novel
data balancing technique, ProWsyn is used to balance the data.
Moreover, the attLSTMInception model is proposed, which is an
integration of LSTM, attention layers, and inception modules.
The proposed model outperforms the rest of the existing models
and achieves an accuracy of 0.95%, precision 0.97%, recall 0.94%,
F1 score 0.96%, and AUC score 0.98%. In future work, we will
investigate the extraction of abstract features for dimensionality
reduction and the addition of more memory modules for
long-term dependencies of the data in our proposed model to
reduce FPR furthermore.
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doi:10.1007/s12046-020-01512-0, no.

Li, S., Han, Y., Yao, X., Song, Y., Wang, J., and Zhao, Q. (2019). Electricity theft
detection in power grids with deep learning and random forests. J. Electr. Comput.
Eng. 2019, 1–12. doi:10.1155/2019/4136874

Lin, G., Feng, X., Guo, W., Cui, X., Liu, S., Jin, W., et al. (2021). Electricity
theft detection based on stacked autoencoder and the undersampling and
resampling based random forest algorithm. IEEE Access 9 (2021), 124044–124058.
doi:10.1109/access.2021.3110510

Munawar, S., Asif,M., Kabir, B., Ullah, A., and Javaid, N. (2021). “Electricity theft
detection in smart meters using a hybrid Bi-directional GRU Bi-directional LSTM
model,” in Conference on complex, intelligent, and software intensive systems (Cham:
Springer), 297–308.

Nguyen, T. H. T., and Phan, Q. B. (2021). “Electricity theft detection in power
grid with a hybrid convolutional neural network-support vector machine model,”
inThe 5th international conference on future networks & distributed systems, 24–30.

Pamir, N. J., Javaid, S., Asif, M., Umar Javed, M., Adamu, S. Y., Aslam, S., et al.
(2022). Synthetic theft attacks and long short term memory-based preprocessing
for electricity theft detection using gated recurrent unit. Energies 15 (8), 2778.
doi:10.3390/en15082778

Pamir, N. J., Qasim, U., Adamu, S. Y., Alkhammash, E. H., and Hadjouni,
M. (2022). Non-technical losses detection using autoencoder and bidirectional gated
recurrent unit to secure smart grids. IEEE Access.

Parikh, P. P., Kanabar, M. G., and Sidhu, T. S. (2010). “Opportunities and
challenges of wireless communication technologies for smart grid applications,” in
IEEE PES general meeting (IEEE), 1–7.

Pereira, J., and Saraiva, F. (2021). Convolutional neural network applied to detect
electricity theft: A comparative study on unbalanced data handling techniques.
Int. J. Electr. Power & Energy Syst. 131, 107085. doi:10.1016/j.ijepes.2021.
107085

Punmiya, R., and Choe, S. (2019). Energy theft detection using gradient
boosting theft detector with feature engineering-based preprocessing.
IEEE Trans. Smart Grid 10 (2), 2326–2329. doi:10.1109/tsg.2019.
2892595

Pustokhin, D. A., Pustokhina, I. V., Dinh, P. N., Van Phan, S., Gia, N. N., Joshi, G.
P., et al. (2020). An effective deep residual network based class attention layer with
bidirectional LSTM for diagnosis and classification of COVID-19. J. Appl. Statistics,
1–18. doi:10.1080/02664763.2020.1849057

Rawat, D. B., and Bajracharya, C. (2015). “Cyber security for smart grid systems:
Status, challenges and perspectives,” in SoutheastCon 2015, 1–6.

Rodriguez, V., Esther, J. D. S., Oregi, I., Bilbao, M. N., and Gil-Lopez, S. (2017).
Detection of non-technical losses in smart meter data based on load curve profiling
and time series analysis. Energy 137, 118–128. doi:10.1016/j.energy.2017.07.008

Sha, Y., Faber, J., Gou, S., Liu, B., Li, W., Schramm, S., et al. (2022).
An acoustic signal cavitation detection framework based on XGBoost with
adaptive selection feature engineering. Measurement 192 (2022), 110897.
doi:10.1016/j.measurement.2022.110897

Somefun, T. E., Awosope, C. O. A., and Chiagoro, A. (2019). Smart prepaid
energymetering system to detect energy theft with facility for real timemonitoring.
Int. J. Electr. Comput. Eng. 9 (5), 4184. doi:10.11591/ijece.v9i5.pp4184-4191

Sweis, H., Shawagfeh, N., and Arqub, O. A. (2022). Fractional crossover
delay differential equations of Mittag-Leffler kernel: Existence, uniqueness,
and numerical solutions using the Galerkin algorithm based on shifted
Legendre polynomials. Results Phys. 41, 105891. doi:10.1016/j.rinp.2022.
105891

Takiddin, A., Ismail, M., Zafar, U., and Serpedin, E. (2020). Robust electricity
theft detection against data poisoning attacks in smart grids. IEEETrans. Smart Grid
12 (3), 2675–2684. doi:10.1109/tsg.2020.3047864

Ullah, A., Munawar, S., Asif, M., Kabir, B., and Javaid, N. (2021). “Synthetic
theft attacks implementation for data balancing and a gated recurrent unit based
electricity theft detection in smart grids,” in Conference on complex, intelligent, and
software intensive systems (Cham: Springer), 395–405.

Yang, S., Lin, G., Jiang, Q., and Lin, W. (2019). A dilated inception
network for visual saliency prediction. IEEE Trans. Multimed. 22 (8), 2163–2176.
doi:10.1109/tmm.2019.2947352

Yasakethu, S. L. P., and Jiang, J. (2013). “Intrusion detection viamachine learning
for SCADA system protection,” in 1st international symposium for ICS & SCADA
cyber security research 2013 (ICS-csr 2013), 1, 101–105.

Yu, Y., Si, X., Hu, C., and Zhang, J. (2019). A review of recurrent neural networks:
LSTM cells and network architectures. Neural Comput. 31 (7), 1235–1270.
doi:10.1162/neco_a_01199

Frontiers in Energy Research 13 frontiersin.org

108

https://doi.org/10.3389/fenrg.2022.1043593
https://doi.org/10.1109/access.2021.3092645
https://doi.org/10.1016/j.jpdc.2021.03.002
https://doi.org/10.1002/2050-7038.12521
https://doi.org/10.1016/j.athoracsur.2004.09.040
https://doi.org/10.1007/s12046-020-01512-0
https://doi.org/10.1155/2019/4136874
https://doi.org/10.1109/access.2021.3110510
https://doi.org/10.3390/en15082778
https://doi.org/10.1016/j.ijepes.2021.107085
https://doi.org/10.1016/j.ijepes.2021.107085
https://doi.org/10.1109/tsg.2019.2892595
https://doi.org/10.1109/tsg.2019.2892595
https://doi.org/10.1080/02664763.2020.1849057
https://doi.org/10.1016/j.energy.2017.07.008
https://doi.org/10.1016/j.measurement.2022.110897
https://doi.org/10.11591/ijece.v9i5.pp4184-4191
https://doi.org/10.1016/j.rinp.2022.105891
https://doi.org/10.1016/j.rinp.2022.105891
https://doi.org/10.1109/tsg.2020.3047864
https://doi.org/10.1109/tmm.2019.2947352
https://doi.org/10.1162/neco_a_01199
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


TYPE Original Research
PUBLISHED 16 January 2023
DOI 10.3389/fenrg.2022.1009812

OPEN ACCESS

EDITED BY

Salah Kamel,
Aswan University, Egypt

REVIEWED BY

Youcef Belkhier,
Maynooth University, Ireland
Muhammad Asad,
Dalhousie University, Canada

*CORRESPONDENCE

Yuanqing Xia,
xia_yuanqing@bit.edu.cn

SPECIALTY SECTION

This article was submitted to Smart Grids,
a section of the journal Frontiers in Energy
Research

RECEIVED 02 August 2022
ACCEPTED 21 October 2022
PUBLISHED 16 January 2023

CITATION

Samad MA, Xia Y, Manzoor T, Mehmood K,

Saleem A, Milyani AH and Azhari AA (2023),

Composite model predictive control for the

boost converter and two-phase interleaved

boost converter.

Front. Energy Res. 10:1009812.

doi: 10.3389/fenrg.2022.1009812

COPYRIGHT

© 2023 Samad, Xia, Manzoor, Mehmood,
Saleem, Milyani and Azhari. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Composite model predictive
control for the boost converter
and two-phase interleaved
boost converter

Muhammad Adnan Samad1, Yuanqing Xia1*, Tayyab Manzoor2,
Kashif Mehmood3, Adeel Saleem3, Ahmad H. Milyani4 and
Abdullah Ahmed Azhari5

1Key Laboratory of Intelligent Control and Decision of Complex Systems, School of Automation,
Beijing Institute of Technology, Beijing, China, 2School of Automation Science and Engineering,
South China University of Technology, Guangzhou, China, 3Department of Electrical Engineering,
Fergana Polytechnic Institute, Fergana, Uzbekistan, 4Department of Electrical and Computer
Engineering, Center of Research Excellence in Renewable Energy and Power Systems, King
Abdulaziz University, Jeddah, Saudi Arabia, 5The Applied College, King Abdulaziz University, Jeddah,
Saudi Arabia

This article compares the conventional model predictive control (MPC) and

active disturbance rejection control (ADRC) with a novel MPADRC technique

for controlling a non-minimumphase behavior in the DC–DCboost converter.

The control of the boost converter is challenging as it is nonlinear, and it shows

non-minimum phase behavior in a continuous conduction mode (CCM).

Moreover, in this article, the comparison is presented for the boost converter

and the two-phase interleaved boost converter using MPC and ADRC, and the

effectiveness of the interleaving technique is shown. Finally, it is proved that the

interleaving method has much more efficiency and less output ripple than the

simple boost converter. To conclude, a novel technique has been introduced

that combines both the techniques, that is, MPC and ADRC, in the outer and

inner loop with a boost converter, respectively, and the response is clearly the

best when compared to the said techniques individually. The overall impact of

this technique includes the advantages of both the techniques, that is, the use

of MPC allows us to optimize the current value by predicting the future values,

and the use of ADRC ensures that the disturbance factor is well tackled and

cancels the effect caused by all the disturbances including ignored quantities

as well.

KEYWORDS

boost converter, interleaved boost converter, model predictive control (MPC), active disturbance

rejection control (ADRC), MPADRC

1 Introduction
1.1 Literature review

Boost converters are mainly used to get a higher regulated output voltage from a
lower unregulated input voltage. To implement it and fully understand its step response,
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first, the simple boost converter is implemented in MATLAB
using a state space model and analyzed. Upon analysis, the
step response parameters, that is, rise time, settling time,
percentage overshoot, and steady-state error are found to be
highly undesirable, so there should be a technique, that is, a
controller that should be used in conjunction with a boost
converter to make its step response parameters better. In search
of a controller, initially, PID (proportional integral derivative),
PD, and PI controllers were found to be appropriate and used, but
later on, the results, that is, step response parameters obtained
using PID, PD, and PI, were also found to be the non-optimal
ones, so the search for a better controller continued. Finally,MPC
(model predictive controller) and ADRC (active disturbance
rejection control) were found to be the best among all, while
PID did not consider the future associations of the current
control strategies. On the other hand, MPC unambiguously
computes the predicted output over some horizon. The control
of simple boost converters using the unconstrained nonlinear
optimization technique to tune the parameters of PID is an
advancement as compared to conventional techniques in many
research articles but still has a chance to increase the efficiency.
In recent days, there have been many research studies that cover
all of these advancements. Nowadays, MPC is considered a new
control technique forDC–DCconverters. It can be used to obtain
a better step response and step response parameters. The main
theme of MPC is to predict future output by looking into present
or past input values (Murali et al., 2010; Rossiter, 2022).

Recently, many used techniques incorporate detailed
mathematical modeling to control these types of converters,
but the need of the hour is to explore some other techniques
as well that can predict, estimate, and reject the future
disturbances (Chen et al., 2016) as ADRC. It was first introduced
and discovered by Han (1999) and Han (2009) to work on
both internal and external disturbances by estimating their
mutual effect via an ESO (extended state observer), and much
literature is presented on the said technique (Zhou et al., 2009;
Zheng et al., 2012; Huang and Xue, 2014; Madoński and
Herman, 2015; Feng and Guo, 2017). ADRC is also used recently
to control these types of converters, and there have been
different ADRC techniques from linear to high control gain
and generalized ADRC (Saif and Ahmad, 2019).

State space representation is the most used representation
for DC–DC converters to implement their step response,
especially in MPC. First, the control problem is formulated,
and then it is taken as the optimal problem to solve it using a
predictive controller.Themain objective is to regulate the output
voltage despite changes in the input voltage or load resistance
(Wang, 2009). Although the boost converter is very useful in
many power applications, the interleaving technique has also
become more effective than a simple boost converter. Basically,
an interleaved boost converter is made by combining more
than one boost converter. Moreover, the interleaving method

is more suitable than the simple boost converter topology. The
main objectives of interleaving are to improve the efficiency,
reduce the component size, and reduce the current ripple and
obviously the transient response. The benefits of interleaving
are high power ability, improved efficiency, modularity, reduced
size, and reliability, but there is a trade-off that the number of
overall components will be increased (Kosai et al., 2009). The
poor dynamic response caused by the use of conventional PI
control requires a voltage feedforward compensator with MPC
(Li et al., 2017; Li et al., 2018). To overcome this problem, the
advanced technique ADRC is proposed in this work.

As compared to low-power applications, the use of
interleaving for high-power applications has many advantages
like increasing the output power and decreasing the output
ripple, but the current sharing between the parallel paths is
really worth considering (Lee et al., 2000).

The interleaving technique has many more advantages as
compared to a conventional boost converter, that is, a slight
modification in an interleaved boost converter can result in
a voltage gain far better than a conventional boost converter
(Gustavo et al., 2010). With these features, the interleaved boost
converter is considered the best converter used in many
applications. It is most suitable where a large step-up power is
demanded in which the renewable energy resource application is
on the top list.

Somemore applications of the interleaving technique include
high-power applications. It is a multidevice interleaved boost
converter (MDIBC) that basically forms an interface between
fuel cells and hybrid electric vehicles. The main advantages of
this technique include the reduction of input ripple current,
the ripples of output voltage, and finally the size of the
passive components with high efficiency as compared to the
other available techniques (Omar et al., 2012). Moreover, the
interleaving technique can include a minimum of two boost
converters in parallel up to n, where n can be any integer level
according to the requirements of the controller and plant.

Some more optimization techniques like predictive function
control can be used to regulate the temperature-efficient energy
consumption (Nassima et al., 2021). Furthermore, the limitation
of a proportional integral (PI) controller can be resolved by
using some advanced expert approaches (Ahmed et al., 2022;
Kim et al., 2014). For tuning the control parameters, there is a
need for advanced optimization techniques so that we can get
better system response parameters (Khan et al., 2022). Finally,
the comparison of PID and ADRC is presented in Han (2009),
which clearly shows the effectiveness of ADRC on PID and its
shortcomings.

1.2 Contribution

While talking about DC converters, specifically a non-
minimum phase system like boost converters, much work has
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FIGURE 1
DC/DC boost converter.

FIGURE 2
ON state.

FIGURE 3
OFF state.

FIGURE 4
Two-phase interleaved boost converter.

been carried out in terms of its use in stepping up techniques and
its control using conventional and some advanced techniques. In
this work, the two-way approach has been used; first, not only
the boost converter but also the two-phase boost converter is
used to attain maximum efficiency. Second, the proposed work
uses two control techniques, namely, the MPC and the ADRC,

FIGURE 5
Q1 and Q2 are ON.

FIGURE 6
Q1 is ON and Q2 is OFF.

FIGURE 7
Q1 is OFF and Q2 is ON.

in the outer and inner loops, respectively. The results clearly
show that controlling these types of converters alone by using
any technique has less efficiency as compared to using a novel
MPADRC technique.

1.3 Organization and notations

The article is organized in the following way: Section 1
gives the introduction and literature review. Section 2 covers the
detailed mathematical modeling of boost and interleaved boost
converters. Section 3 briefly states the problem that is going to
be solved. Section 4 outlines the control and design approach
opted for this research. Finally, the simulation is presented
in Section 5 which shows and proves the effectiveness of this
proposed controller design. In the end, the conclusion and future
work are presented in Section 6.
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FIGURE 8
Q1 and Q2 are OFF.

2 Mathematical modeling

2.1 Mathematical modeling of the
DC/DC boost converter

The basic circuit diagram of a DC/DC boost converter,
which can enhance the voltage level, is shown in Figure 1.
The basic topology consists of a voltage source, an inductor,
a switch, a diode, and a capacitor with an output load in
parallel. There can be different possibilities to implement this
type of converter (reference). Some techniques (reference) can
easily handle its both modes of conduction, that is, CCM
and DCM, and some have only taken CCM for the sake of
simplicity (reference). This research only includes CCM for
the sake of simplicity. In addition, the parasitic resistances
for both the inductor and capacitor are also included. The
different states associated with the DC/DC boost converter are
shown in Figures 2, 3, representing the ON state and OFF state,
respectively. During theON state, the inductor current increases,
and during theOFF state, this inductor current decreases to fulfill
the load requirements. Initially, KCL and KVL have been used to
formulate the basic current and voltage equations, and then, for
averaging, the state space modeling is being used and expressed
as follows:

dx (t)
dt
= {

A1x (t) +Bv (t) , S = 1,
A2x (t) +Bv (t) , S = 0

, (1)

y (t) = C.x (t) , (2)

where
x(t) = [iL(t) vo(t)] and
v(t) = [vin(t) io(t)]. Also, the matrices A1, A2, and B

are given by A1 = [
− rL

L
0

0 − 1
RC

], A2 = [
− rL

L
− 1
L

1
C
− 1
RC

], and

B = [
1
L

0
0 0
].

Finally, averaging and combining the state space
representation for ON time and OFF time as given in the
following equation, A = A1d+A2(1− d), B = B1d+B2(1− d),

C = C1d+C2(1− d), and D = D1d+D2(1− d), yield

A = [

[

− rLL −(1− d) 1L
(1− d) 1C

−1
RC
]

]
,

B = [
1
L 0
0 0
],

where vin is the input voltage, vc is the voltage across the
capacitor, vo is the output voltage, iL is the inductor current,
L is the inductance, C is the capacitance, and R is the load
resistance.

2.2 Mathematical modeling of the
DC/DC interleaved boost converter

2.2.1 Two-phase interleaved boost converter
Nowadays multiphase converter topologies are in high

demand as they can be very useful, especially in high-
performance applications. This research work includes the
interleaving technique to increase efficiency and reduce the
input and output ripples as compared to simple topologies.
Moreover, improvement in switching stress and low EMI can
also be achieved. Starting from two to n boost converters, they
can be connected in parallel to form an n-phase interleaved
boost converter. Initially, a two-phase interleaved boost
converter is presented in detail with two switches and four
states.

The basic circuit diagram of a two-phase interleaved DC/DC
boost converter is shown in Figure 4.The basic topology consists
of two boost converter stages in parallel. Again, the CCM for
the sake of simplicity is being taken into consideration, and the
parasitic resistances for both the inductor and capacitor are also
included.

The different states associated with the DC/DC boost
converter are shown in Figures 5–8 representing the four states,
respectively. Then, using basic rules of KCL and KVL and
depending upon switch states, the current and voltage equations
of all states have been formulated, and the average state space is
modeled as follows, while the matrices A1, A2, A3, A4, and B of
all four states, respectively, are given by

A1 =
[[[[[

[

−
RL1
L1

0 0

0 −
RL2
L2

0

0 0 − 1
RoC

]]]]]

]

,

A2 =
[[[[[

[

−
RL1
L1

0 0

0 −
RL2
L2
− 1L2

0 1
C − 1

RoC

]]]]]

]

,

Frontiers in Energy Research 04 frontiersin.org

112

https://doi.org/10.3389/fenrg.2022.1009812
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Samad et al. 10.3389/fenrg.2022.1009812

FIGURE 9
Main control approach.

A3 =
[[[[[

[

−
RL1
L1

0 − 1L1
−
RL2
L2

0 0
1
C 0 − 1

RoC

]]]]]

]

,

A4 =
[[[[[

[

−
RL1
L1

0 − 1L1
0 −

RL2
L2
− 1L21

C
1
C − 1

RoC

]]]]]

]

,

B =
[[[[

[

1
L1

0
1
L2

0

0 0

]]]]

]

.

Finally, averaging and combining the state space
representation for all the states using

A = [A1 +A3]*d+ [A2 +A4]*(1/N− d) yields

A =

[[[[[[

[

−
RL1
L1

0 − 1
2L1

−D
RL2
L2
(D− 1)

RL2
L2
(D− 1) 1L2

1
2C (2D+ 1) 1C − 1

RoC

]]]]]]

]

,

B =
[[[[

[

1
L1

0
1
L2

0

0 0

]]]]

]

,

where vin is the input voltage, vc is the voltage across the capacitor,
vo is the output voltage, iL1 and iL2 are the inductor currents with
L1 and L2 as the inductances, respectively, C is the capacitance,
and R is the load resistance.

FIGURE 10
(A) Bode diagram without a controller. (B) Bode diagram with a
controller.

3 Problem statement

While talking about DC/DC converters, the output should
regulate to follow the given reference, while the input voltage
or the output load keeps changing. In the presented case of the
boost converter and interleaved boost converter, the input to
the converter is the unregulated DC voltage, and the output is
the regulated DC voltage. One more prominent and challenging
factor while controlling these types of converters is its non-
minimum phase behavior that tries to destabilize the close
loop response due to the right half plane zero in its transfer
function, which is mainly because of the inductor attached
to the input. This specific type of system shows an inverse
phenomenon as the output initially moves in the opposite
direction of the reference (Forouzesh et al., 2017). In many
practical applications, the uncertainties in different parameters,
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FIGURE 11
MPC block diagram.

FIGURE 12
Structure of the ADRC.

especially ESR contributes to the poor performance, and the
importance of ESR (effective series resistance) in DC boost
converters is detailed in Yao et al. (2016). The steady-state error
due to ESR of an inductor is more prominent than that due
to the ESR of a capacitor. In short, the main objective of
this study is to regulate the output voltage under input and
load variations as quickly as possible while eliminating the
steady-state error using model predictive control along with
ADRC.

TABLE 1 Initial values.

Parameter Value

Input voltage 12V
Output voltage 24V
Duty ratio 0.5
Switching frequency 20Khz
Load resistance 100Ω
Inductance 50mH
Conductance 1,000μF
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4 Control and design approach

This section incorporates the controller and its novel design
while using the model predictive controller and ADRC in
the outer and inner loops, respectively. The detailed control
diagram is shown in Figure 9. Initially, an objective function
is defined, and then this function is minimized based on the
control law techniques. As it can be seen in the figure, the
control includes two loops: the inner ADRC loop for tracking the
current to its reference and the outer MPC loop for producing
a reference current. Thus, the ADRC scheme for the inner loop
is designed to track the current according to limk→∞iL(k) = iref ,
while the outer loop is an addition to further tune the response
by taking the collective advantage of ADRC and MPC. For
stability check and to see the effectiveness of the proposed
controller, the Bode diagram of the plant without any controller
and with an MPADRC controller is analyzed in Figure 10.
The Bode diagram of the DC–DC boost converter without any
controller is shown in Figure 10A, and the Bode diagram of
the said converter with the proposed controller is shown in
Figure 10B.

4.1 Model predictive controller

The standardMPC technique solves a finite horizon problem
and an optimal control problem based on a linear prediction
model of the process (Bemporad et al., 2002; Mayne, 2014). In
the field of power supplies, the use and interest of MPC
keep growing as it has the ease of handling multivariable
systems, introducing input/output constraints, and an intuitive
design process (Vazquez et al., 2014; Karamanakos et al., 2014).
Moreover, the MPC is an efficient control technique that
works on the principle of receding horizon control (Belda
and Vosmik, 2016; Judewicz et al., 2016). The major benefits of
MPC include the following: it can control the MIMO system,
it can well handle the input/output constraints, and it can
make an advanced prediction of the model response. For all
the aforementioned benefits, the applications of MPC have
been investigated in different sectors such as power electronic
converters, aerospace, renewable energy, and food processing.
(Vazquez et al., 2014; Anang and Leksono, 2016; Raziei and
Jiang, 2016; Zhao et al., 2017). A general block diagram of MPC
is shown in Figure 11.

In this work, the MPC scheme is proposed in the outer
loop, especially to control the current for controlling theDC–DC
boost and multistage interleaved boost converters. The main
purpose of using MPC is to control the output voltage by
controlling the switch.

The main procedure of MPC is to formulate an objective
function according to system dynamics and constraints and then
minimize at each step over a set prediction horizon, which
increases by one sampling interval at each step.

FIGURE 13
Plant output using MPADRC.

FIGURE 14
Plant inputs.

FIGURE 15
Plant output using the ADRC controller only.
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FIGURE 16
Interleaved plant output using the ADRC controller only.

4.2 Active disturbance rejection control

Active disturbance rejection control (ADRC) is first
introduced by Jingqing Han in the 1980s as an unconventional
design strategy. Since then, it has been considered an effective
control strategy in the absence of proper models and in the
presence of model uncertainty. Its effectiveness is shown in
Han (2009) over conventional PID. In this study, ADRC is
implemented in the inner loop to control the voltage of these
DC converters and to generate a current reference to further
feed into the inner loop for current tracking. The disturbance
on load basically brings an error to the input in summer with
the reference value, and then ADRC is applied to correct the
error by adjusting its parameters as shown in Figure 12, where
y is the output of the ADRC control and z is the estimates
of different states. The nominal model used in this case can
be of the nth order, where n is the order of the system to be
controlled. The need of the hour is to check the deviation from
the nominal suggested structure, and each and every deviation
will be considered a disturbance. The extended state observer
(ESO) is used to estimate the state and the “total disturbance.”

4.3 Objective function

This is the main part in controlling any type of plant.
When working on the objective function, the deviation should
be well taken care of for the variables from the predicted
value to the desired value over the set horizon N. The
input to be controlled at any time instant kTs can be easily
obtained by minimizing the particular function while taking
into consideration the optimization variable, that is, specifically,
the sequence of switching states over the entire horizon
U(k) = [u(k)u(k+ 1)…u(k+N− 1)]T . Thus, the optimal solution
is represented by U* which can be calculated by minimizing
the objective function; u*(k) is applied at the input of the
converter and used as the first element of the whole sequence.
This procedure is repeated at the consecutive sampling instants

based on the newlymeasured values, and the remaining elements
are discarded. In this work, the control problem is obtained
and formulated as a current regulation problem, which mainly
accounts for the deviation of the inductor current from its set
reference, which is defined as follows:

iL,err (k) = iL,ref − iL (k) . (3)

While working on these types of objective functions, there can
be several possibilities to describe the error, that is, the average
value of the current or the RMS value of the current can be
considered. In this particular work, the average current error is
used as described in the following section.

4.3.1 Average current error
At any particular time-step k, the average current error over

the prediction interval N*Ts can be represented by

iL, err,avg (k) =
1

N∗Ts
∫
(k+N)Ts

kTs

|iL, err (t ∣ k)|dt. (4)

Using the fact that the current slope remains constant in
between the sampling instants and changes only at the sampling
instants, the aforementioned integral can be rewritten as
follows:

iL,err,avg (k) =
1
N

k+N−1

∑
ℓ=k

iL,err (ℓ ∣ k) + iL, err (ℓ+ 1 ∣ k)
2

. (5)

Based on these equations, the objective function can be
written as follows:

Javg (k) =
k+N−1

∑
ℓ=k

1
N
| ̄iL,erx (ℓ ∣ k)| . (6)

4.4 Optimization problem

After describing the objective function, the optimization
problem can be formulated and solved at each sampling instant,
and it has the form,

minimize J (k) , (7)

subject to the mathematical model of the converters. The
aforementioned optimization problem is solved using these
possible combinations of the switching state, that is, (u = 0
or u = 1) over the entire prediction horizon N, which yields
the switching sequences U. For each switching sequence, that
is, 2 power N, the evolution of the variables of concern is
formulated, and the objective function is evaluated. The most
cost-effective switching sequence is chosen as the optimal one,
U*. Hence, the control input at time-step k is obtained by
minimizing the corresponding objective function, and it is
given by

U* (k) = arg min J (k) . (8)
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FIGURE 17
Plant output using the MPC controller only.

FIGURE 18
Interleaved plant output using the MPC controller only.

5 Simulation results

To investigate the effectiveness of the proposed novel
MPADRC, the following simulations in the presence of
disturbances are carried out. The initial values of all the
parameters are shown in Table 1, and the target condition is
to track the set point value with less overshoot and improved
steady-state error.

To show the effectiveness of the proposed MPADRC
scheme, the input also includes the disturbance parameter in
Figure 14. Also, the respective output is shown in Figure 13.The
effectiveness of the proposed scheme is shown in comparison to
the previous conventional schemes.

Furthermore, the response of ADRC to both the boost and
two-phase interleaved boost converters is shown in Figures 15,
16, respectively. Meanwhile, the responses of MPC to both the
boost and two-phase interleaved boost converters are shown
in Figures 17, 18, respectively, to further show the improved
result of the proposed composite schemeMPADRC for the boost
converter.

To demonstrate the accuracy, we can readily see and compare
the results of the said and the proposed schemes for boost and
interleaved boost converters.

The tracking performance of MPADRC is already shown in
Figure 13. It is obvious that the tracking performance of the
boost converter under the proposed controller is better than that
of the other two methods while used individually.

As shown in Figures 13–18, it is evident that the proposed
algorithm MPADRC for the boost converter is much more
accurate and has less ripples than others.

6 Conclusion

A novel MPADRC technique that is basically a combination
of MPC and ADRC as the outer loop and the inner loop,
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respectively, is presented for a non-minimum phase behavioral
boost converter. Also, its effectiveness is shown with the
said techniques individually as used previously. Moreover, the
response of interleaving is shown in this article, especially
for the two-phase interleaved converter, and one can readily
observe the difference between a simple boost converter and an
interleaved boost converter. The work motivates the control of
DC converters using advanced optimization techniques rather
than conventional techniques. Moreover, the future work will
include the higher phases of the interleaving technique and
also some other converters, that is, buck, SEPIC, and Cuk
converters.
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High-impedance fault (HIF) is always a threat and the biggest challenge in the
power transmission and distribution system (PTDS). For a PTDS to operate
effectively, HIF diagnosis is essential. However, given the HIF’s nature and the
involved complexity, detection, identification, and fault location are difficult. This
will be even more complicated in conventional PTDSs as they are inefficient and
highly vulnerable. Given the importance and urgent need for HIF diagnosis in
PTDS, this study reviews state-of-the-art HIF phenomenon and detection
techniques and proposes the use of “various signal processing techniques for
fault feature extraction” and “ different classifiers for identifying HIF.” First, HIF
current/voltage signals are analyzed using signal processing techniques, which
include the discrete wavelet transform (DWT), pattern recognition, Kalman
filtering, TT transform, mathematical morphology (MM), S transform (ST), fast
Fourier transform (FFT), principal component analysis (PCA), linear discriminant
analysis (LDA), and wavelet transforms, such as dual-tree, maximum overlap
discrete wavelet transform (MODWT), and lifting wavelet transform (LWT).
Second, the various HIF and non-HIF faults are classified using intelligent
classifiers. The intelligent classifiers include artificial neural networks (ANNs),
probabilistic neural networks (PNNs), genetic algorithms (GAs), fuzzy logic,
adaptive neuro-fuzzy interface system, support vector machine (SVM), extreme
learningmachine (ELM), adaptive resonance theory, random forests (RFs), decision
trees (DTs), and convolution neural networks (CNNs). In addition to the
comparative discussion of various classifier techniques, their evaluation
criterion and performance are prioritized. Third, this review also studied
different test systems, such as radial distribution network, mesh distribution
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network, IEEE 4 node, IEEE 13 node feeder, IEEE 34 node feeder, IEEE 39 node
feeder, IEEE 123 node feeder, Palash feeder, and test microgrid systems, to assess
the pertinence of various HIF detection schemes and the behavior along with
methods to locate the HIF. Overall, we believe this review would serve as a
comprehensive compendium of advanced techniques for HIF diagnosis in
different test systems.

KEYWORDS

high-impedance fault, power system protection, signal processing, artificial neural
networks, feature extraction, HIF detection, intelligent classifier, electrical test systems

1 Introduction

Faults are often observed in electrical power transmission and
distribution systems (PTDSs). The faults in a PTDS will distract
the current from the intended path (Ali et al., 2014; Russell and
Benner, 1995). The fault causes an irregular condition that
decreases the strength of insulation between the conductors
(Russell and Benner, 1995; Theron et al., 2018). There are
numerous fault types, among which high-impedance faults
(HIFs) are critical. HIF occurs when a conductor touches a
tree with a high impedance or when a broken conductor
touches the ground (Chen et al., 2013; Aljohani and
Habiballah, 2020a). The HIF draws non-predictable currents
from the distribution network, sometimes leading to arcing
(Chen et al., 2013). This is visually represented and shown in
Figure 1. Such faults can impose fire risks and cause an electrical
shock that endangers electrical system operators, engineers, live
stocks, and individuals' lives (Aljohani and Habiballah, 2020a;
Sultan et al., 1994). In industrial applications, HIF detection is
inevitable to ensure the safety of working persons and equipment
and continuity in the service for critical loads. Thus, HIF

detection and diagnosis are vital to ensure safety and
continuous PTDS operation. However, its detection is quite
challenging because HIFs are often not recorded as faults;
hence, the reported cases are fewer than the observed ones
(Ali et al., 2014). As the fault current draws less current, it
remains unnoticed and persists for days. Owing to small fault
currents, HIFs are difficult to detect using traditional protection
relays and should be addressed through algorithms. HIF depends
on various factors, such as the ground surface type, humidity,
type of conductor, environmental conditions, and voltage degree,
of which surface humidity and surface materials are the most
influenced (Sedighizadeh et al., 2010). Many HIFs have similar
features that can be represented because of differences in the arc
parameters, such as conductance and time constant (Vyshnavi
and Prasad, 2018; Chen et al., 2016). Low impedance fault (LIF)
(Kavaskar and Mohanty, 2019; Kannan and Rathinam, 2012) is
short-circuiting, followed by a high current that is sensed by a
breaker.

Arc type fault (HIF) usually occurs when a current-carrying
conductor touches the ground or with another conductor
through a high-impedance medium for a short time. HIF is a
disturbance in a power system of approximately 15–25 kV that
blocks the current required to trip the overcurrent relay (Ali et al.,
2014; Calhoun et al., 1982). The voltage–current characteristics
are highly dependent on various materials (Ali et al., 2014),
including tree branches, lawns, gravel, stout gravel, asphalt,
concrete, crushed stone, board blocks, and cement (Russell
et al., 1988). Furthermore, deteriorated insulators due to
cracks, dust, humidity, and ice, among others, are some of the
main triggers of HIF in PTDSs (Langeroudi and Abdelaziz, 2020).
The long-term persistence of HIF is undesirable for profitable
and smooth operations (Langeroudi and Abdelaziz, 2020).
Various faults and incorrect operations can cause blackouts
(Kjølle et al., 2006). Various vulnerable surfaces to HIF with
the corresponding fault currents as indicated by Sedighizadeh
et al. (2010) and Tengdin et al. (1996) are wet sand 15A, dry sod
20A, dry grass 25A, wet sod 40A, wet grass 50A, reinforced
concrete 75A, dry asphalt <1A, and dry sand <1A. HIFs are sub-
classified into active and passive faults (Jota and Jota, 1999).
Active faults possess fault currents below the threshold values of
protection relays accompanied by an electric arc. An electric arc
does not follow passive faults. They are challenging to detect as
there is no indication of the energization of the conductor and
can be detected by phase unbalance analysis. The studies
evaluated that approximately 10% of the distribution faults in
power systems are HIF, of which 25%–32% of the down

FIGURE 1
HIF in the downed conductor. (A) Arcing in the downed
conductor. (B) Source end and load end conductors (Roberts et al.,
2001; Suliman and Ghazal, 2019).

Frontiers in Energy Research frontiersin.org02

Varghese P et al. 10.3389/fenrg.2023.1114230

121

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1114230


conductors are not detected with overcurrent relays (Sultan and
Swift, 1992). Hence, the detection and isolation of HIF become
important. Studies show that conventional protection methods
identify only 17.5% of staged HIFs, but the introduction of hybrid
energies to distribution grids made the HIF detection demand
necessary. An efficient detection method of HIF became
necessary to eliminate false tripping and stabilize the power
supply. Unlike other faults that endanger electrical appliances,
HIF threatens human life. The formation of flammable gases after
a HIF interception, which is near flammable material, can cause a
fire or explosion. HIF can be caused by a broken or unbroken
conductor. Figure 2 shows ice and a tree causing HIF in unbroken
and broken conductors (Theron et al., 2018).

As shown by Gururajapathy et al. (2017), faults in power
systems can be broadly classified into symmetrical or
asymmetrical faults and balanced or unbalanced faults, among
which unbalanced loads are more frequent and can be
categorized as series and shunt faults. Series faults are caused
by broken conductors or otherwise unbalanced series
impedances. These faults can be recognized by an increase in
voltage and frequency and a reduction in the current of the faulty
feeder. However, in the shunt fault, there will be a fall in
frequency and voltage and a rise in current, which is common
in power systems. The percentage of occurrence in the power
system for a single-line-to-ground fault (SLGF) is 70% which, is
less severe. In line-to-line fault (LLF), it is 15%, and the severity is
less. In LLF, it is 10% and less severe, whereas the triple-line-to-
ground fault (LLLGF) is more severe, and occurrence is only 5%.
When any phase of the transmission system comes in contact
with the ground or neutral wire, an SLGF occurs due to wind and
tree falling, among others. In LLF, the occurrence can be due to
heavy wind or when two conductors contact each other, which
can happen in overhead and underground systems. The variation
of impendence spreads over a wide range in this case, and it is
difficult to predict the upper and lower limits. Double-line-to-
ground fault (DLGF) occurs when a tree falls on the two phases of
the transmission system connecting the ground, which is
considered asymmetric and a severe event if not cleared in a
certain time. LLLGF is symmetrical owing to equipment failure
or a tower falling on the transmission line. This is considered a
serious situation as the voltages become zero, and the current
may be too high. Low fault current resulting from contact with
the high-impedance surface, asymmetry (Sultan et al., 1994)
resulting from the presence of silica on the contact surface,

randomness (Benner et al., 1989) resulting from rapid
electrical discharges and floating conductors on the surface
of the field, and non-linearity resulting from the different
soil layer resistivity (Ali et al., 2014) are the key
characteristics of the HIF. The non-linearity results from the
fact that the HIF characteristic curve of the voltage–current is
non-linear. Low-frequency components are present in the
voltage and current waveform due to the non-linearity of
HIF, which can range up to 600 Hz for current and 300 Hz
for voltage. The fault current has different waveforms, and a
disparity in the peak value and shape is called asymmetry for the
positive and negative half periods. HIF is called an arcing fault
because it is preceded by an arc, producing a few cycles of
conduction followed by cycles of non-conduction. The current
HIF value increases for a few cycles and holds a constant value.
The current range changes over time, making it non-stationary.
Random values are both the current magnitude during
conduction and non-conduction periods. Arc results in the
present waveform’s high-frequency components, and because
of the non-linearity of the HIF waveform, it contains harmonics.
HIF normally occurs at medium voltages and becomes severe at
low voltages and less severe at a high voltage above 25 kV. HIF is
influenced by several factors, such as feeder configuration,
voltage level, weather conditions, and load type (Louis,
2015). HIF detectors find it hard to detect conductors in run-
out conditions or undergo severe weather conditions, tree
contacts, and a history of excessive breakage. Researchers
working on HIF detection concentrated on lab-based staged
fault studies. Owing to the critical nature of the faults, industry
and academia focus more on simulations and software studies.
Early and accurate fault detection will reduce interruption time
and increase the safety and reliability of the power system.
Advanced signal processing techniques depend on specialized
knowledge and the accuracy of the measured data. The modern
power system is currently challenged by the growing volumes of
data of different natures, the need for data storage, the
introduction of distributed generations, and technological
advancements. However, the simulation techniques are still
in their developing state. During the signal processing
analysis, the hidden characteristics of the measured data are
revealed, such as randomness, non-linearity, and asymmetry.
Machine learning techniques can acquire hidden data from the
measured data, thus providing a promising way to meet the
challenges in the power system. These fault characteristics are

FIGURE 2
(A) Ice and a tree causing HIF in unbroken conductors (Theron et al., 2018). (B) HIF arcing on grass (Sedighizadeh et al., 2010) and concrete
(Carpenter et al., 2005). (C) Unbroken conductors (Louis, 2015).

Frontiers in Energy Research frontiersin.org03

Varghese P et al. 10.3389/fenrg.2023.1114230

122

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1114230


used by the classifiers to discriminate HIFs from other
disturbances.

2 HIF detection

The power system network generally has a healthy state and a
faulty state. The fault identification task has three main steps:
measurements (current, voltage, current and voltage, and
magnetic field intensity), feature extraction, and classification
(Carr, 1981). Signal processing techniques are frequently used to
increase the effectiveness of HIF detection techniques. The signal
processing techniques’ characteristics extracted their hidden
characteristics and measured the three-phase voltage/current
signals for HIF detection, improving versatility, stability, and
economy. Based on these extracted features, the classifier
discriminates whether the HIF event occurred.

Figure 3 shows the basic steps involved in HIF detection using
signal processing techniques. The signal processing techniques
commonly used for HIF detection schemes are discrete wavelet
transform (DWT) (Elkalashy et al., 2007a; Elkalashy et al., 2008;
Elkalashy et al., 2007b; Ibrahim et al., 2010a), principal component
analysis (PCA) (Sarlak and Shahrtash, 2008), linear discriminant
analysis (LDA) (Sarlak and Shahrtash, 2008), continuous wavelet
transform (CWT), extended Kalman filter (EKF) (Soheili et al.,
2018), time–time transform (TTT) (Nikoofekr et al., 2013), dual-tree

complex wavelet transform (DTWT) (Moravej et al., 2015), S
transform (ST) (Routray et al., 2016), maximum overlap discrete
wavelet transform (MODWT) (Kar and Samantaray, 2017), fast
Fourier transform (FFT) (Bin Sulaiman et al., 2017), Stockwell
transform (Balser et al., 1982), mathematical morphology filters
(MMF) (Sekar and Mohanty, 2018), and lifting wavelet transform
(LWT) (Narasimhulu et al., 2020). The description of these signal
processing tools used in HIF detection techniques is discussed in
Section 2.3, emphasizing time-domain analysis, frequency-domain
analysis, and time–frequency-domain analysis. The selected features
are extracted from the input signal and then compared to a threshold
value in signal processing techniques for HIF detection. Setting the
threshold value is challenging because HIF would not be detected if
the threshold is set too high. If it is set to an extremely low value, the
relay will trip even with light disturbances. This issue can be resolved
by introducing intelligent classifiers along with signal processing
techniques.

Commonly used intelligent classifiers in signal processing-based
HIF detection techniques are probabilistic neural network (PNN)
(Samantaray et al., 2008), artificial neural network (ANN) (Baqui
et al., 2011), adaptive resonant theory (ART) neural network and
Fuzzy ARTMAP (Nikoofekr et al., 2013), extreme learning machines
(ELMs) (Reddy et al., 2013), genetic algorithm (GA) (Xie et al.,
2013a), support vector machine (SVM) (Bhongade and Golhani,
2016), adaptive neuro-fuzzy inference system (ANFIS) (Veerasamy
et al., 2018), decision tree (DT) (Sekar and Mohanty, 2018), random
forest (RF) (Sekar and Mohanty, 2020), convolution neural network
(CNN) (Fan and Yin, 2019), and fuzzy logic control (FLC) (Suliman
and Ghazal, 2019) explained in Section 4. These intelligent classifiers
improved the efficiency, speed, and accuracy of signal processing-
based procedures by detecting HIFs without the use of threshold
settings.

The practical detection of HIFs was explained by Kistler et al.
(2019), who used two relay-based HIF detection algorithms. The
former uses the odd-harmonic contents of phase current, whereas
the latter uses the inter-harmonic contents. The first algorithm uses
total odd harmonic content from phase currents using the FIR filter.
A threshold value was set, and the odd harmonic contents were
compared. If the difference is more significant than the threshold,
the counter increments, and the alarm is set. The second algorithm
uses the sum of the difference of inter harmonic content that uses a
reference and compares it to the measured sum of difference
currents to detect the increase in the sum of difference currents
during an HIF. The second algorithm was more successful for HIF
detection, mainly on grassy surfaces, and slightly less for fully
contact good insulators that do not cause an arc. The algorithm’s
performance was tested in a live conductor by the Electric Power
Research Institute and PPL electric utilities (SEL, 2007).

Mitigation of forest fires and human safety issues were addressed
by Gashteroodkhani et al. (2021) through the practical detection of
HIFs. Two strategies for fault current detection, one based on the
non-harmonic content of fault currents and the other on the odd-
harmonic content of fault currents, are explained and evaluated in a
hardware-in-the-loop (HIL) platform employing a real-time digital
simulator (RTDS). With 1,736 relay events reported, the first
algorithm detected 95% of the HIFs, whereas the second detected
only 5% of HIFs. The test system chosen was from a distribution
network in the Northern Nevada area with a 14.4-kV three-phase

FIGURE 3
Steps involved in pattern classification of HIF detection.
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three-wire feeder. Chakraborty and Das (2019) explained that smart
meters are installed for voltage measurements compared with a
threshold value to detect the presence of HIFs. It is tested in six
different situations of three broken and three unbroken conductors.
The method is implemented along with a single-phase energy meter
capable of detecting the presence of HIFs, voltage sag-swells,
capacitor/load switching (Panigrahi et al., 2018; Prasad et al.,
2022), transformer and feeder energization (Biswal et al., 2022),
power electronic loads, arc furnace loads, and distributed generators
(DG). The method gives satisfactory results in HIF detection. The
detection methods proposed in previous studies (Lima et al., 2018;
Yang et al., 2006; Sedighi et al., 2005a; Abdelgayed et al., 2017; Wang
et al., 2019) also experimented on real-time systems discussed in
the various sections of the manuscript. Discrimination of HIF
along with cross-country faults was explained by Ashok and Yadav
(2021). A simulation model of the IEEE 13-bus system is used to
obtain the three-phase current signals, and MODWPT is used for
feature extraction. The real-time field data from Chhattisgarh State
Power Transmission Network are collected and tested using the
same algorithm. Classification of HIF, non-HIF boundary fault
conditions, capacitor switching, reactor string switching, load
switching, power swing effects, the effect of noise, lightly load
conditions, and electric arc furnace effects in PTDSs is done. The
classification is conducted by setting a threshold value for the energy
envelop index. The response time of the proposed method for each
case is recorded, which is less than 14.3 m. When compared with
earlier studies (Ghaderi et al., 2017; Sedighizadeh et al., 2010;
Vyshnavi and Prasad, 2018, this study gives an insight into
various test systems used for testing various HIF detection
methods and studies the nature of HIF, which is discussed in
Section 3.

2.1 Measurements

Measurements such as current measurement, voltage
measurement, and both current-voltage measurements extract
features for fault analysis. An HIF is accompanied by the
intermittence of arc (Chen et al., 2013). The arcing fault contains
low- and high-frequency components in the current frequency
spectrum. The low frequency-based technique results in lower-
order harmonics with even, odd, and intermittent harmonics
extracted for HIF detection. High frequency-based techniques
show short variations in the HIF current.

Voltage measurement is performed by extracting three-phase
voltage signals proposed by Ali et al. (2014) during the HIF
phenomenon in an underground distribution network. Bakar
et al. (2014) performed a voltage measurement at the primary
substation and compared fault features with the database
generated from the simulation. The method has a single
measurement and multiple branches that can detect multiple
faulty sections. Detection of HIFs by voltage measurement is
efficient only when there is a voltage drop between the relay and
fault location. The proposed method by Wang et al. (2018) used the
discriminant vector of negative and zero sequence current and
voltage in the substation.

Current and voltage measurement has improved reliability
compared to the latter measurements. Magnetic field intensity

measurement increases the cost and complexity of the detection
technique (Bahador et al., 2018).

2.2 Signal processing techniques and feature
extraction

Signal processing techniques are widely used to improve the
effectiveness of high-impedance defect detection approaches.
Signal processing techniques extract the hidden properties of
observed three-phase signals for HIF detection, enhancing
adaptability, stability, and cost-effectiveness. More informative
data are obtained using various analyses based on these extracted
data, such as time-domain analysis, frequency-domain analysis,
and time–frequency analysis (Chen et al., 1990; Sarlak and
Shahrtash, 2013). Table 1 gives a detailed comparison of
various signal processing techniques for HIF detection using
intelligent classifiers.

2.3 Domain analysis

2.3.1 Time-domain analysis
The time-domain analysis uses the measure of zero-sequence

voltage and current for feature extraction of HIF. The time-domain
analysis is based on arc current waveform. Time-domain takes out
the temporary irregularities in the HIF waveform, making the
system computationally complex (Lee and Bishop, 1985).

Nezamzadeh-Ejieh and Sadeghkhani (2020) proposed that
Kullback–Leibler divergence extracts the non-linearity and
asymmetry characteristics of two half-cycles of the current
waveform from the substation in a time-domain detection of
HIF. The method is tested in 13-node and IEEE 34 systems (the
Institute of Electrical and Electronics Engineers). Without any
harmonic component analysis or training set, the method can
identify an HIF by calculating the energization of feeders, voltage
swag, and swell.

Mathematical morphology (MM) is a signal processing
technique applied to issues in the power system illustrated in the
literature (Sekar and Mohanty, 2018; Panigrahi et al., 2018). MM
uses simple arithmetic operations, such as set theory and integral
geometry, and due to its simple calculations, the processing time
is less.

The basic functions in MM are dilation and erosion (Kavaskar
and Mohanty, 2019). MM is non-linear, and it is time-domain
processing of the signal widely used to extract high- and low-
frequency signals. Here, the proposed MM, along with data
mining DT, is used for HIF detection. Statistical features are
extracted, which serve as input to DT and RF for discriminating
with non-HIF conditions (load switching, capacitor switching, and
inrush current).

The morphology gradient filter extracts statistical features from
the features. A rule set is created using RF, which will accept the crisp
inputs using a fuzzy-based algorithm proposed by Sekar and
Mohanty (2020). This method detects HIFs and normal events
with high dependability. The chosen sampling rate was
60 samples/cycle, requiring less memory space and less
computational time.
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TABLE 1 Comparison of various signal processing techniques for HIF detection using intelligent classifiers.

Ref. No. Feature extraction
approach

Classifier Test system Year Remarks

Samantaray et al.
(2009a)

Adaptive extended
Kalman filter (AEKF)

Feedforward neural network
and PNN

i) Radial distribution feeder,
15 kV
ii) Mesh distribution network,
15 kV

2009 Detection time, 0.01 s

PNN classification rate is 99.11%, whereas
for FNN, it is 96.51%

Cui et al. (2017) Discrete Fourier
transform (DFT) and
Kalman filter

Pattern recognition Benchmark test system 25 kV 2017 An effective feature set algorithm is
introduced to the feature extracted and
compared with Naive Bayes, support vector
machine, KNN, J48, and RF, of which
J48 and RF give better results

Bhongade and
Golhani (2016)

DWT Support vector machine Radial distribution system,
400 kV

2017 The traveling wave method is used for
locating the fault. Good accuracy as the %
error is below 1.22%

Chen et al. (2014) DWT-MRA Simple detection criterion IEEE 13-node test 2014 Efficient and fast method. Economical since
voltage signal measurement is needed

Yeh et al. (2019) DWT Digital signal processor Distribution network at
Southern California Edison,
12 kV

2019 Detection time 32.9 m. Effective and
flexible method. Tested on real-time data

Akorede and
Katende (2010)

DWT Pattern classifier The radial distribution
network, 11 kV

2010 Moving window approach. Two-class
classification only

Baqui et al. (2011) DWT ANN Radial distribution, 13.8 kV,
Basque Country (Spain)

2011 Discriminates HIF, LIF, and switching
events. Multilayer perceptron network and
Levenberg–Marquardt backpropagation
algorithm are the learning algorithms used

Ali et al. (2014) DWT Short distance algorithm and
matching approach

38-Node underground
distribution, 132/11 kV,
Malaysia

2014 Locating time required is less compared to
conventional methods

Xie et al. (2013a) Dual-tree complex
wavelet transforms

PNN IEEE 34-node test feeder 2014 PNN requires no iteration. Detection time
1.5 m. The error of detection of 1.4%

Ibrahim et al. (2008) DWT Moving window-based pattern
recognition

JMARTYmodel 500 kV, Egypt 2007 Simple, accurate, and fast technique. EHV
transmission lines

Tag Eldin et al.
(2009)

DWT An algorithm based on a
recursive method (Clark’s
transformation)

ATP/EMTP model for real
CCVT, 500 kV, 150 km,
500 kV transmission line

2009 Accurately detect HIF detection in EHV
transmission lines. Independent of the HIF
model. Detects HIF in ¾th of a cycle

Lai et al. (2005) DWT and pattern
recognition

Nearest neighboring rule 25 kV power distribution
networks

2005 Error range 2.52% and 45.4%. It will not
indicate the physical properties of the
output coefficient

i) Distribution network with a
single branch of a non-linear
load

ii) Radial distribution network
iii) Meshed network

Xie et al. (2013b) Extended Kalman filter Support vector machine Radial distribution feeder,
13.8 kV

2009 Classification accuracy of 98%. Excellent
results under noisy conditions also

Wali et al. (2018) FFT Power spectrum (PS) technique Radial distribution feeder,
13.8 kV

2018 Detection accuracy of 100%, simple
technique, requires less time because
training is not needed

Tawafan et al. (2012) FFT ANFIS Radial distribution feeder,
13.8 kV

2012 Mean squared value of 0.084. ANFIS is
based on subtractive clustering. The
classification rate is above 96.4%

Yeh et al. (2014) FFT and
Walsh–Hadamard
transforms (WHTs)

Threshold and shape of the
magnitude and phase responses
of orthogonal transforms

Official websites of DOE/EPRI
National Database Repository
of Power System Events

2015 Detection time is 0.033 s. The performance
of the method is correct and precise

Narasimhulu et al.
(2020)

LWT ANN Radial distribution network,
400 kV

2020 Efficiency is 98%. Superior to GA-fuzzy,
GSA-ANN, and ALO

(Continued on following page)
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TABLE 1 (Continued) Comparison of various signal processing techniques for HIF detection using intelligent classifiers.

Ref. No. Feature extraction
approach

Classifier Test system Year Remarks

Sekar and Mohanty
(2017)

MM DT IEEE 13, IEEE 34-node feeder 2017 Detection time 30 m, accuracy 98.33%

Gautam and Brahma
(2013)

MM Implemented on overcurrent
relay

IEEE 13-node test feeder 2012 Detection time 1 s. The success rate of
detection and classification is 100%

Panigrahi et al.
(2018)

MM Detection algorithm IEEE PSRC Working
Group D15

2020 Detection time 0.8 s

Kavaskar and
Mohanty (2019)

MM Simple rule-based algorithm EPDS 11 kV radial
distribution, Chennai

2019 Detection time 80 m

Security and dependability 100%

HIF, LIF, load, and capacitor switching are
classified

Sarlak and Shahrtash
(2013)

MM SVM Palash feeder in southwestern
Tehran, radial distribution

2013 HIF indicator is introduced, which is based
on magnetic field strength signals

Sekar and Mohanty
(2018)

MM DT EPDS 11 kV radial
distribution system, Chennai

2018 Detection time 30.66 m

Accuracy 99.34%

Sekar and Mohanty
(2020)

Morphology
gradient (MG)

Fuzzy rule base EPDS distribution, Chennai,
33 kV

2020 Accuracy of 99.3%. Less computation time

Gadanayak and
Mallick (2019)

MODWT Knot-based EMD CERTS microgrid system 2019 Detection time is 0.12 s Accuracy of 100%.
The current from the proposed algorithm
cannot be used in a mesh network

Kar and Samantaray
(2017)

MODWT DT Test microgrid system 2017 Classification accuracy of 99.77%. Highly
reliable for microgrid distribution systems.
The test is also performed in islanded mode

Sarlak and Shahrtash
(2011)

Multi-resolution MG MLPNN Palash feeder in the southwest
of Tehran, simulation,
distribution

2011 Superior to other feature extraction
techniques like DWT, DFT, discrete
s-transform (DST), discrete time–time
(DTT) transform. Security 92.8%,
dependability 96.4%

Sarlak and Shahrtash
(2008)

PCA and LDA SVM IEEE four-node test feeders 2008 Better accuracy of 97.5% compared to
Bayes and Parzen classifiers

Samantaray et al.
(2009b)

S and TT transform PNN and FNN i) Three-phase radial
distribution feeder
ii) Three-phase mesh network.
Both have 15 kV

2009 The classification rate of PNN is 98.02% as
it is 94.04% for FNN for the radial network.
The testing time is 0.3 s for FNN and
0.01 s for PNN

Lima et al. (2019) Stockwell transform Probabilistic analysis Brazilian utility, 13.8 kV real
distribution

2019 Accuracy rate of 94.4%. Detection time is
166 m. Tested on six different surfaces, and
detection time is measured

Mishra et al. (2016) Stockwell transform ANN and SVM Radial and Mesh distribution
system, 138 kV

2016 Comparison of ANN with SVM. ANN in
the radial network gives 93.7% accuracy as
SVM with 86.25% in the mesh network

Naik and Yadav
(2018)

DFT Fuzzy interface system IEEE 15-bus system 2018 Effective classification of HIF, symmetrical
and unsymmetrical faults in less than
8.33 m

K. Chaitanya and
Yadav (2020)

EWT-SVD SVM Modified IEEE 13-node
system

2020 Classification accuracy of 99% for 60 dB
noisy environment

Chaitanya et al.
(2020)

Variational mode de-
composition (VMD)

SVM IEEE 13-node system 2020 Effective classification of HIF, LIF, and
non-faulty conditions with a classification
accuracy of 99% and response time for LIF
is 16.67 m, and that for HIF is 166.7 m

Routray et al. (2016) Stockwell transform ANN Radial distribution system,
138 kV

2015 Accuracy of 98.75%

(Continued on following page)
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The adaptive extended Kalman filter (AEKF) estimates the
harmonic components in fault currents for non-linear loading
conditions (Samantaray et al., 2009a). The harmonic components
estimated by the technique are fundamental, third, fifth, seventh,
eleventh, and thirteenth harmonics. Based on the Kalman filtering
principle, Girgis et al. (1990) built an approach based on the time-
varying existence of the fundamental and harmonic components to
obtain the best estimate of the time variations of the harmonic
components. Faridnia et al. (2012) presented a partial co-relation
function for HIF detection from voltage and current relays. The
method is tested in a radial feeder system with two HIF models in
PSCAD/EMTDC. Twelve indices-based correlation function is
implemented and tested on a wide data set to obtain accurate
results for HIF detection.

2.3.2 Frequency-domain analysis
Frequency-domain analysis extracts harmonics in the current

spectrum. In the current spectrum, an HIF event will produce low-
and high-frequency components. Low-frequency components are
based on non-linearity results, whereas high-frequency components
are based on sudden and random changes in a non-stationary HIF
current waveform. FFT extracts the current signal data after the
simulation is applied to a power spectrum (PS) technique that can
detect an HIF and distinguish it from non-faulty conditions, such as
capacitor banks, non-linear loads, and linear loads, which have the

same features (Wali et al., 2018). FFT is used to calculate the impulse
response of the frequency domain (Scott, 1994). Aucoin and Russell
(1982) utilized high-frequency current components to detect HIF.
The low-frequency spectrum is compared with the harmonics of the
current waveform measured in the primary substation over a week
(Emanuel et al., 1990).

2.3.3 Time–frequency domain
The wavelet methods are more potent as they extract the

frequency and instant or position for signal analysis.
Time–frequency analysis (TFA) could effectively detect
discontinuities, repeated patterns, and non-stationary aspects of
signals. It measures the energy of the signal at each moment of
time and frequency coordinates. TFA has been successfully applied
to various power system applications, such as the evaluation of
power efficiency, security of power systems, and pathfinding for
disturbances of capacitor switching.

Lima et al. (2018) proposed a method that uses a short-time
Fourier transform for feature extraction that extracts harmonic
components of phase current as of the magnitude and phase of
the third harmonic component and magnitude of second and fifth
harmonics to identify the presence of HIFs. The window length
chosen is directly proportional to frequency resolution and inversely
proportional to time resolution. The sampling frequency is
15.6 kHz. A Brazilian distribution feeder of 13.8 kV is used to

TABLE 1 (Continued) Comparison of various signal processing techniques for HIF detection using intelligent classifiers.

Ref. No. Feature extraction
approach

Classifier Test system Year Remarks

Ghaderi et al. (2015) Time freq. analysis SVM The test was conducted in a
real-time, high-current
research laboratory

2013 Simple, reliable, and efficient. Accuracy
of 93.6%

Nikoofekr et al.
(2013)

TT transform ART neural networks and Fuzzy
ARTMAP

Palash feeder in the southwest
region of Tehran

2013 Accuracy of 99.18%. Five-class
classification

Yang et al. (2006) Wavelet transform Pattern recognition-based ANN Tai-16 distribution feeder
system 11.4 kV from Taishi
substation

2006 Detection rate of 81%. More accurate than
unintelligent algorithms

Yunlin

Hubana et al. (2018) DWT ANN i) Two-bus test distribution
system of the city of Mostar
(Bosnia and Herzegovina), 35/
10 kV

2018 A two-bus system gives a classification
accuracy of 92.5%, and an eight-bus system
gives 90.19%. Highly effective with good
noise removal capability

ii) Eight-bus system with the
same specifications, including
underground cables,
substations

Lima et al. (2018) STFT Blackman–Harris window,
spectrogram analysis

Brazilian utility, 13.8 kV, real
distribution

2018 Tested in simulated data and real-time
oscilloscopic data, which gave the best
results

Gashteroodkhani
et al. (2020)

TT Deep belief neural network IEC microgrid 61,850-7-420,
25 kV

2020 Tested in grid-connected as well as an
islanded mode of operation. The accuracy
of the proposed system for fault detection is
99.8%, and fault classification is 99.32%

Abdelgayed et al.
(2017)

DWT DT and KNN CERTS microgrid system 2017 The experimental result of DT is 100%, and
that of KNN is 95%

Gashteroodkhani
et al. (2019)

TT and S transform SVM Transmission line, 230 kV 2019 Fault identification is 98%
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evaluate the methodology. A Blackman–Harris window with five
cycles is chosen for this method, and the spectrum analysis is
performed. The method was tested in sand, asphalt, gravel, grass,
cobblestones, and local soil. The detection time is less than 200 ms.

The ST is an extended wavelet transform class based on
Gaussian window shifting and scalable localizing. The S
transform has absolute phase information and good
time–frequency resolution for all frequencies. Unlike wavelet
transformation, the ST is extremely resistant to noise (Mishra
et al., 2016). Morlet wavelet transform differentiates between
HIFs and regular switching events and investigates faults for
different surfaces, including Portland cement, wet soil, and grass
(Huang and Hsieh, 1999). DWT decomposes time-domain signals
into different harmonics in the time–frequency domain, and the
extracted features are used to train ANN (Baqui et al., 2011). The
mother wavelet of Daubechies is superior to others, such as Morlet,
symet, and rbior, as it can accurately detect low-amplitude signals.
The method was also verified on various wet and dry surfaces.

The proposed method uses DWT, and high- and low-frequency
voltage components at various system points are measured (Santos
et al., 2017). The energy spectrum of the detailed and approximation
coefficient is calculated. The method is evaluated using a 13.8-kV
Brazilian distribution feeder with a signal-to-noise ratio (SNR) of
60 dB, and the two-time varying resistances HIF model is used. The
method requires no monitoring devices and information about the
feeder and load parameters. The method is reliable and efficiently
identifies the HIF with a 70% search field reduction obtained.

Wavelet transform decomposes and extracts the features, PCA
performs feature selection, and the Bayesian classifier discriminates
the HIF with normal events (Sedighi et al., 2005a). Various tests were
conducted on wet and dry surfaces. A pattern recognition system is
proposed and is simulated using EMTP software. A real-time
experiment is performed in Qeshm island, Iran, and an HIF is
created in 8,209 m and 8,446 m locations from the site. The
sampling rate of the data is 24.67 kHz, and the classifier success
rate is 97.6%.

In (Li and Li, 2005) arc fault detection with automatically
modified time windows to differentiate arc fault from non-arc
fault is done using wavelet packet transform-based. At level
3 decomposition, db10 is used at a sampling frequency of
12.5 kHz. The window length in this study is 1/2 cycle (1.25 ms
in 400 Hz for an airplane). The size of the moving window is 1/
4 cycle (0.625 m in 400 Hz), such that Δt = 0.625 m. The proposed
method is powerful with simple calculations.

Michalik et al. (2006) proposed an approach in which a wavelet-
based measurement is performed for zero-sequence voltage and
current signals. This method gave fast and reliable HIF detection and
location and obtained better performance compared to conventional
methods. ANN is used for classification, and the decision module is
implemented in real-time using a single neuron. The proposed
method gives good results with low-impedance permanent
ground faults.

Lazkano et al.’s (2004) method is based on the decomposition of
three-phase unbalanced current data utilizing wavelet transform
techniques. Arc phenomena linked with an HIF can be detected due
to the WT’s time-frequency characteristic, and the signal is broken
down into frequency sub-bands. The Db4 mother wavelet was
chosen for the four-level decomposition of the arc current signal.

A 20-kV Tuejar feeder of Spain is selected and simulated to test the
proposed method, which gives satisfactory results.

De Alvarenga Ferreira and Mariano Lessa Assis (2019)
illustrated a novel approach for HIF detection in smart grids
using multi-resolution signal decomposition to decompose the
DWT coefficient. The HIF model used for testing is the Kizilcay
arc model. The IEEE 13-node test feeder simulated in PSCAD/
EMTP is used to evaluate the proposed method. Level
3 decomposition with db8 mother wavelet function is adopted
for the proposed work. Various conditions are illustrated with
HIF and non-HIF conditions, such as capacitor switching. The
method provides robust, fast, and reliable HIF detection.

Features of Earth faults due to leaning trees are extracted from
the phase currents and voltages using the DWT (Elkalashy et al.,
2007b; Elkalashy et al., 2007a; Elkalashy, 2007). The detailed
coefficient of current and voltage is used, whose product is taken
to compute power. A positive polarity of power gives a healthy
feeder, and negative polarity gives a faulty feeder. The method has
been tested on a leaning tree in a laboratory setup.

The wavelet-based algorithm is used to detect HIF detection
(Michalik et al., 2007). The algorithm works great for ground fault
currents above 3A, irrespective of phase and location. The method is
tested in the Next-Generation Power Technology Center and
KEPCo, South Korea. The sampling rate is 10k Hz, and the
detection time ranges from 0.2 to 0.7s depending on the distance.

Stockwell’s transform extracts the parameters in both the time
and frequency domains proposed by Lima et al. (2019) that select the
statistical features discussed in Table 1. The simulated data and real-
time field data (from the substation) provide the two databases for
the method validation that can discriminate an HIF with other
power system disturbances. The method is efficient and accurate in
action.

Balser et al. (1982) utilized Hilbert transform (HT) for HIF
detection in transmission lines in which an uncompensated line,
series compensated line, single-pole tripping situation, and a load
change are tested. The method is simulated in MATLAB/
SIMULINK, and the data sampling rate is 1 kHz. An HIF
detector is placed in certain locations that indicate whether a
fault occurred. The method gives good accuracy and consistency.
The HIF detection method using optimal transient extracting
transform (OTET) was proposed by Prasad et al. (2022) and can
be used in grid-connected and islanded mode systems, and is also
reliable in unbalanced and harmonic contaminated signals. Biswal
et al. (2022) reconstructed the features extracted from the current
signals using the Savitzky–Golay filter (SGF) using the matrix pencil
method (MPM), and the Teager energy of the error is estimated. The
proposed method is verified in the Aalborg test feeder and modified
IEEE 30-bus test systems and proven with an accuracy of 98.6%.

3 Test systems

In this section, various test systems are discussed for HIF
detection. The various standard test systems were selected and
simulated using MATLAB/SIMULINK, PSCAD, EMTP-RV,
EMTP-ATP, and a real-time laboratory setup to investigate the
performance of the different algorithms for HIF location and
detection. Faults at the distribution system are a priority because

Frontiers in Energy Research frontiersin.org09

Varghese P et al. 10.3389/fenrg.2023.1114230

128

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1114230


TABLE 2 Comparison of various test systems.

Test system with ratings Methodology used Remarks

IEEE PSRC distribution of radials 11 KV (Panigrahi et al.,
2018)

MM employs morphology gradient, and the statistical
features are obtained from dilation and erosion

Identify HIF occurrence in 0.08 s

Radial 13.8 kV distribution feeder (Wali et al., 2018) FFT extracts features, which are then subjected to power
spectrum analysis

Power spectrum identifies the HIF occurrence with
100% accuracy

Radial 13.8 kV distribution feeder (Tawafan et al., 2012) FFT extracts features, and the classifier used is ANFIS. The success rate of detecting HIF cases was 97.8%, and
that of non-HIF cases was 99%

Radial distribution system, 115 kV feeder (Wang et al.,
2018)

VCCP-based disturbance detection approach The wavelet correlation coefficient was calculated for
various surfaces and was less than 0.966 for a healthy
feeder

Radial distribution system, 138 kV (Soheili et al., 2018) Two approaches were compared. 1) Kalman filter and RF
and 2) DT with FFT

RF proved to be the best, with 93.56% accuracy and
94.56% dependability

Radial distribution network, 13.8 kV (Veerasamy et al.,
2018)

Feature extraction by CWT and DWT Accuracy 100%

Radial distribution system, 138 V (Routray et al., 2016) Stockwell transform with ANN Accuracy 98.75%

Radial distribution system, 138 kV (Mishra et al., 2016) Stockwell transform for feature extraction. ANN and SVM
as classifier

For the ideal case, ST with ANN and ST with SVM give
100% accuracy, whereas with SNR 30 dB, ST with
ANN gives 93.7% and ST with SVM gives 92.15%
accuracy

Radial distribution system, 15 kV (Samantaray et al.,
2008)

S transform and TT transform with PNN and FNN PNN with ST features provides a classification rate of
up to 98.06%. PNN with features from TT transform
provides a classification rate of up to 98.05%. FNN and
S transform combination gives 93.04%, and that with
TT transform gives 94.16% accuracy

Radial distribution system, 33 kV (Sarwagya et al., 2018) Measuring the residual voltage at the substation and
negative sequence current flowing through the feeders

The presence of the HIF is detected at 3 s

Distribution system, 12.5 kV (Shahrtash and Sarlak,
2006)

Pattern recognition-based algorithm and DT as the
classifier

For different values of the sampling frequency, data
window, and preprocessing time interval, the accuracy
of the method is 99.4%

Radial distribution network with 63 kV (Vahidi et al.,
2010)

DWT extracts the features, and ANN is the classifier used
along with the denoising method

Accuracy is 99%

Medium voltage distribution system from the city of
Mostar with two-bus and eight-bus systems of 33 kV
(Hubana et al., 2018)

Voltage phase difference algorithm and a combination of
DWT with ANN

Two-bus systems, the accuracy obtained is 92.5%,
whereas the eight-bus system is 90.19%

Electric power distribution system, Chennai, 33 kV
(Sekar and Mohanty, 2020)

MG with fuzzy rule base algorithm Accuracy is 99.3%, and the computational time
required is less

Mesh distribution network, 25 kV (Samantaray et al.,
2009a)

AEKF with PNN and FNN The accuracy rate of PNN is 99.11% compared to FNN
with 96.51%

Mesh distribution network, 138 kV (Soheili et al., 2018) Two approaches were compared. 1) Kalman filter and RF
and 2) DT with FFT

RF proved to be the best with 93.56% accuracy and
94.56% dependability

Mesh distribution network, 25 kV (Lai et al., 2005) DWT and pattern recognition Error range 2.52% and 45.4%. It will not indicate the
physical properties of the output coefficient

Mesh distribution network, 138 kV (Mishra et al., 2016) Stockwell transform for feature extraction. ANN and SVM
as classifiers

For the ideal case, ST with ANN and ST with SVM give
100% accuracy, whereas with SNR 30 dB, ST with
ANN gives 81% and ST with SVM gives 86% accuracy

Mesh distribution network, 15 kV (Samantaray et al.,
2008)

S transform and TT transform with PNN and FNN The accuracy of the mesh network with S transform
and FNN is 92.86%, and that with TT transform and
FNN is 93.55%. S transform and PNN combination
gives 97.85% accuracy, and TT transform with PNN
gives 97.09%

IEEE 13-node test systems, 4.16 kV (Fan and Yin, 2019) CNN and transfer learning algorithm The accuracy obtained was 95.06%

IEEE 13-node test systems, 4.16 kV (Silva et al., 2020) Wavelet packet-based feature extraction along with
EuFNN classifier

97.14% accuracy

(Continued on following page)
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TABLE 2 (Continued) Comparison of various test systems.

Test system with ratings Methodology used Remarks

IEEE 13-node test systems, 4.16 kV (Sarwar et al., 2020) PCA, Fisher discriminant analysis, binary and multi-
class SVM

Security and dependability of 100%

IEEE 13-node test systems, 4.16 kV (Soheili et al., 2018) FFT approach and harmonic analysis of the sum of all
three-phase currents

Detection time is 1.5 s

IEEE 13-node test systems, 4.16 kV (Sekar and Mohanty,
2017)

MM and DT The detection time is 30 m. Performance indices are
99%. Accuracy is 98.33%

IEEE 13-node test systems, 4.16 kV (Gautam and
Brahma, 2013)

MM that can be implemented on a conventional over
current relay

The success rate of detection and classification is 100%

IEEE 13-node test systems (Chen et al., 2014) DWT with MRA Fast, economical, and efficient

IEEE 13-node test systems (Wang et al., 2019) Variational mode decomposition (VMD) and
Teager–Kaiser energy operators (TKEOs)

Calculation time is 0.0028 s

IEEE 34-node test system, 24.9 kV (Moravej et al., 2015) Dual-tree complex wavelet transforms for feature
extraction and PNN for classification

PNN requires no iteration. Detection time 1.5 m. The
error of detection is 1.4%. The proposed algorithm
gives an accuracy of 98.88%

IEEE 34-node test system, 24.9 kV (Fan and Yin, 2019) CNN and transfer learning algorithm The accuracy of CNN obtained is 99.52%

IEEE 34-node test, 24.9 kV (Sekar and Mohanty, 2017) MM and DT The detection time is 30 m. Performance indices are
99%. Accuracy is 98.33% at lightly loaded conditions

IEEE 34-node test, 24.9 kV (Wang et al., 2019) Variational mode decomposition (VMD) and
Teager–Kaiser energy operators (TKEOs)

Calculation time is 0.0028 s

IEEE 13-node test systems (Chen et al., 2014) DWT with MRA Fast, economical, and efficient

IEEE four-node test feeder, 12.47 kV (Sarlak and
Shahrtash, 2008)

PCA and LDA with SVM Accuracy is 97.5% compared to Bayes and Parzen
classifiers

IEEE-123 distribution feeder, 4.16 kV (Tonelli-Neto et al.,
2017)

DWT with a fuzzy interference system and Fuzzy
ARTMAP neural network combination based on
Dempster–Shafer evidence theory

The accuracy of FANN is 97.69%, and that of FIS is
99.25%

Palash feeder, Tehran, 63 kV (Sarlak and Shahrtash,
2011)

TT transform, ART neural networks, and Fuzzy
ARTMAP

Accuracy of 99.18%. Five-class classification

Palash feeder, Tehran, 63 kV (Sarlak and Shahrtash,
2013)

MM and SVM Security of 96.9% and dependability of 97.2%

Palash feeder, Tehran, 63 kV (Nikoofekr et al., 2013) Multi-resolution MG and MLPNN Superior to other feature extraction techniques, such as
DWT, DFT, DST, and DTT. Security of 92.8%,
dependability of 96.4%

Palash feeder, Tehran, 63 kV (Soheili et al., 2018) FFT approach and harmonic analysis of the sum of all
three-phase currents

Detection time is 1.13 s

CERTSmicrogrids, 480 V (Gadanayak andMallick, 2019) MODWT and Knot-based EMD Classification accuracy of 99.77%. The mean detection
time is 0.12 s

Test microgrid system, 120 kV (Kar and Samantaray,
2017)

MODWT and DT The detection time is 0.12 s. Accuracy of 100%

IEC standard microgrid,
25 kV (Gashteroodkhani et al., 2020)

Deep-belief neural network with time–time transform Accuracy of 99.74% and 99.46% radial network with
grid-connected and islanded modes, respectively, and
100% for mesh topology in both modes of operation

Test microsystem (CERTS), 13.8 kV (Abdelgayed et al.,
2017)

DWT, DT, and k-nearest neighbor The experimental result of DT is 100%, and that of
KNN is 95%

JMARTY model test system, 500 kV (Eldin et al., 2007) DWT and moving window-based pattern recognition Simple, accurate, and fast technique for EHV
transmission lines. The algorithm can be applied to an
already existing digital relay microprocessor

JMARTYmodel test system, 500 kV (Ibrahim et al., 2008) DWT and moving window-based pattern recognition Simple, accurate, and fast technique for EHV
transmission lines. The algorithm can be applied to an
already existing digital relay microprocessor

Tai-16 feeder, 11.4 kV (Yang et al., 2006) Wavelet transforms and pattern recognition-based feature
extraction with backpropagation ANN

The detection rate is 81%

(Continued on following page)
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the risk is greater relative to HIFs at the transmission level. An
acceptable test system is selected for a suitable case study for
simulation purposes and performance validation of the proposed
methods. Proper data signals from the power system must be
obtained under various possible operating scenarios to validate
the proposed approaches. For technological and economic
reasons, field fault testing on actual power systems is known to
be difficult, with field test findings often having certain limitations.
PDS must be correctly modeled because of these reasons. Table 1
gives a detailed discussion of various signal processing techniques
for HIF detection using intelligent classifiers with various test
systems used. Table 2 gives a comparison of various test systems
used in HIF detection.

3.1 Radial distribution network

Shahrtash and Sarlak (2006) used a pattern recognition-based
approach for HIF detection with DT as the classifier. The power
distribution system is illustrated in which the system voltage is
12.5 kV, the short circuit level (at the infinite bus) is 866MVA, and a
time constant of 45 ms is shown in Figure 4A. The following data
about transmission lines are given inductance of transmission line of
825 nH/m, resistance of transmission of 313Ω/m, and line length of
33 km. The loads connected are a capacitor load rated 4.08 MVAr,
transformer (10/0.4 kV) connected in delta-star, three-phase
thyristor converter as harmonic load, and nominal load current
of 630 A. The best results are obtained in even, odd, and in-between
harmonics below 400 Hz. The classification factor is based on
entropy, which is the effectiveness of an attribute in classifying
data. A total of 2,583 and 1,331 cases were used for training and
testing purposes, respectively. For different values of the sampling
frequency of 2 kHz, a data window size of 2 cycles, and a pre-
processing-time interval of 30 cycles, the accuracy of the proposed
method was 99.4%.

Vahidi et al. (2010) used the DWT technique to extract the
features, and ANN classifies the faulty cases with other power system
disturbances. A three-phase radial distribution network is modeled
using the PSCAD/EMTDC software used as the test system. The
power system frequency is 50 Hz, and the power is supplied at 63 kV
from a 30-MVA transformer (wye/delta). The transformers and line
parameters are shown in Figure 4C. Line currents during the HIF
have high-frequency components and are used for feature
extraction. The extracted features are decomposed into two levels
of detailed and approximation coefficients at six cycles. The
performance of the DWT-based denoising technique depends on
the threshold value γ, which can be divided into hard thresholding
and soft thresholding. A large value of γ will shrink most of the

coefficients to zero and for small values, denoising outcomes are
inefficient. The extracted data are trained and compared with six
different types of mother wavelet transforms: haar, coif2, dmey, db9,
bior2.6, and sym8. Sym8 gives the best performance and accuracy.
The sampling rate chosen is 20 kHz. Amulti-layer perceptron neural
network (MLPNN) with a Levenberg–Marquardt algorithm is used.
The effect of SNR on the proposed algorithm is also studied. The
HIF model is introduced to buses 2 and 3 to mimic the HIFs that
exist on different ground conditions, such as sand, wet soil, dry soil,
asphalt, and grass, giving an accuracy of 99%.

The system tested by Tawafan et al. (2012) is a 115-kV
distribution feeder comprised of a substation, and three radial
network distribution feeders are shown in Figure 4B. The
generator is 30 kV and 10 MV connected to the 30/13.8-kV and
10-MV transformers. The 6-pulse rectifier is used for the
representation of the non-linear load. The simulation models are
created using PSCAD, and the sampling rate is 15.36 kHz. FFT is the
feature extraction technique used, with an algorithm based on the
adaptive neural Takagi–Sugeno–Kang (TSK) fuzzy modeling
scheme, where the HIF detection is performed by taking the
amplitude of the ratio of the second and odd harmonics to
fundamental harmonics of the current signals that serve as input
to ANFIS. The fundamental harmonics are decreased when the fault
has occurred. A total of 570 cases are taken, among which 138 cases
are HIFs and 432 are non-HIFs. The mean squared error value of the
model is 0.1163, and based on the output of ANFIS, if the HIF
current is greater than 0.6 it indicates HIF conditions and if it is less
than 0.4; it is non-HIF conditions. The detection accuracy of HIF
cases is 97.8%, and non-HIFs is 99%. The method was proposed by
Soheili et al. (2018). The harmonic components of the third, fifth,
seventh, eleventh, and thirteenth HIF current are preprocessed in an
EKF, and 12 features are extracted. These features of one-, two-, and
three-cycle windows are considered the input to train the RF. RF is
trained with 20,580 and 8,820 data sets. The SNR chosen is 20 dB.
Two separate, three-phase sources are connected through
transformers to a transmission line of length 100 km. The
transmission lines are 138 kV, and the transformers are 50 MVA,
supplying at 138/25 kV to the distribution network (Figure 4D).

The distribution feeders (pi sections of 20 km each) work at
25 kV and are connected with shunt capacitors, linear loads, and a 2-
MVA 6-pulse rectifier load (non-linear load). The resistance,
inductance, and capacitance of positive and zero sequences of
transmission lines are as follows: R1 = 0.01273 Ω/km, X1 =
0.9337 mH/km, C1 = 0.0012 lF/km and R0 = 0.3864 Ω/km, X0 =
4.1264 mH/km, and C0 = 0.0075 lF/km, respectively. The resistance,
inductance, and capacitance of distribution lines (pi-section) are
R1 = 0.2568Ω/km, X1 = 2.0 mH/km, and C1 = 0.0086, respectively.
The total percentage impedance of the transformers is 6.75%. The

TABLE 2 (Continued) Comparison of various test systems.

Test system with ratings Methodology used Remarks

Benchmark system, 25 kV (Cui et al., 2017) The signal processing technique of DFT and Kalman
filtering estimation and classifiers such as Native Bayer’s,
SVM (Gaussian kernel), KNN, RF, and J48 are compared

RF and J48 proved to be the best, with 99% accuracy
for both

Test system, 38 nodes, 132 kV (Ali et al., 2014) DWT for feature extraction and matching approach
technique is used for classification

Identify the faulty section in four or five iterations
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simulation models are developed using PSCAD (EMTDC), and the
sampling rate chosen is 1.0 kHz on a 50-Hz base frequency
(20 samples per cycle). RF proved to be the best, with 93.56%

accuracy and 94.56% dependability. A multi-feeder radial
distribution system was proposed by Sarwagya et al. (2018) to
detect and segregate HIFs. It consists of a 30-MVA, 33-kV

FIGURE 4
(Continued)
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substation, and five numbers of 11 kV radial distribution feeders.
The positive-sequence impedance of the distribution line is 0.3 +
j0.25 Ω/km. The discrimination of the HIF is performed based on
two criteria. The first is based on the maximum value of the one-
cycle sum of superimposed components of negative-sequence
current for faulty feeder identification, and the second is based on
the one-cycle sum of superimposed components of residual
voltage for HIF detection. The substation bus provides the
residual voltage. The negative sequence current of all the
feeders is compared, and the maximum value of the negative
sequence will be for the feeder where HIF has occurred. The HIF
is accurately detected in 3 s with the proposed method. The
performance of the method with HIF during unbalanced loading,
unbalanced loading conditions, capacitor switching, and
occurrence of an HIF in various feeders is analyzed. Sarlak
and Shahrtash (2011) compared two approaches for HIF
identification: the voltage phase difference algorithm and a
combination of DWT and ANN. The test system chosen is
from Bosnia and Herzegovina, a distribution system like in
Europe. The article includes two test systems: a two-bus feeder
system and the other is an eight-bus system. The two-bus system
is a simple one with a main transformer of 35/10 kV, whereas the
latter one is more complex, consisting of 8 feeders fed from 35/
10 kV, with underground cables and a transformer at the end
consumers rating at 10/0.4 kV. Figures 4E, G represent two- and
eight-bus systems, respectively. The sampling frequency is
3.2 kHz. The first method DWT is applied to the measured
voltage signals. Each voltage has four detailed coefficients and
one approximation coefficient. An algorithm is proposed in

which DWT signals are combined, representing a signature for
symmetrical and unsymmetrical faults. These data are then used
to train and test the ANN. A total of 1,600 cases are simulated,
including non-faulty conditions and three types of fault
conditions. The method gives an accuracy of 100% for the
20–600 Ω range of fault resistances and at different fault
locations. In the second method, a voltage measurement is
performed, and the Hilbert transform is applied to obtain the
best features. The best feature is an instantaneous frequency,
which represents the time rate of change of the instantaneous
phase angle. The phase difference is calculated by the difference
between the instantaneous phases of voltage signals. The voltage
phase difference algorithm calculates the PD during normal and
fault conditions. At normal working operation, the phase
difference will be 1200, and during each fault condition, the
phase difference will be different. This parameter is used to
detect and classify the fault. With 2,000 cases in two-bus
systems, the accuracy obtained is 92.5%, whereas the eight-bus
system showed 90.19%. Panigrahi et al. (2018) used the IEEE
Power System Relaying Committee Working Group at medium
voltage levels. A simple 11-kV radial distribution feeder with
eight nodes is shown in Figure 4F. MATLAB/SIMULINK
program is selected and modeled, and the line impedance
(positive sequence) is chosen as 0.3 Ω/km + j 0.25 Ω/km. At a
distance of 5 km, nodes are isolated from each other, in which
nodes 1, 3, 5, and 7 are connected to linear capacity loads of
1 MVA each at power factor 0.9/phase, and nodes 2, 4, 6, and
8 are linked to linear capacity loads of 2 MVA each at power
factor 0.9/phase. The method discussed the MM gradient for HIF

FIGURE 4
(Continued). (A) Radial 12.5 kV distribution feeder. (B) Three-phase distribution feeder. (C) Radial distribution network with three buses. (D) Single-
line diagram of radial distribution 138 kV Feeder. (E) Single-line representation of a 2-bus system from the city of Mostar. (F) Typical IEEE PSRC radial
distribution. (G) Single-line representation of an eight-bus system from the city of Mostar. (H) Radial 13.8 kV distribution feeder single-line diagram. (I)
Single-line diagram of EPDS Chennai. (J) Radial 115 kV distribution feeder. (K) Representation of a 20-kV typical radial feeder system in Qeshm
Island, Iran.
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detection and classified HIF, LIF, capacitor switching, and load
switching (balanced and unbalanced).

The proposed method measures the three-phase voltage at a
relay location and evaluates the residual voltage. The
morphology gradient is used to extract the irregularities in
the voltage signal. The extracted feature index is determined
from the zero-energy index at NC and compared with a
predefined threshold value. The extracted feature index value
will jump slightly for HIF, LIF, and other disturbances for faulty
conditions. An HIF is created at nodes 1, 4, and 9, and the
occurrence will be for 1 s. The method accurately detects HIF
occurrence in 0.8 s. The test system model proposed by Wali
et al. (2018) is a 13.8-kV radial distribution feeder simulated by
MATLAB/SIMULINK under different scenarios, such as linear
load, non-linear load, and several other conditions. Figure 4H
shows a single-line representation, a three-phase transformer,
and a 13.8-kV distribution network. The non-linear load is
represented by a 6-pulse rectifier that creates non-linear
features in the feeder. The method used for HIF detection is
FFT for feature extraction, and the power spectrum technique is
used to identify the fault, which gives an accuracy rate of 100%,
the time required is less, and that does not require any level of
training. FFT extracts the feature of the current signal from the
faulty feeder, and the power spectrum of the time signal is
determined using the function FFT. If PS is less than 0.005,
then a HIF occurs. HIF of 250 cases and other power system
disturbances of 750 cases have been analyzed in this study. The
method distinguishes events due to capacitor banks, non-linear
loads, linear loads, and HIF.

The test system used for HIF detection (Veerasamy et al., 2018)
consists of a grid source of 50 MVA/30 kV, a distribution
transformer (12 MVA, 30 kV/13.8 kV), a common bus of
13.8 kV, and five radial type distribution feeders, integrated into
the load facility. An Emanuel two-diode model consisting of two
variable DC voltage sources of 1–10 kV connected to anti-parallel
diodes by non-linear resistors of 50–500 Ω is considered an HIF
model with non-linear arc characteristics. The method is proposed
by extracting the features using CWT and DWT and classifying the
extracted features by ANFIS. CWT gives the region at which the
fault has occurred, and DWT can locate it by calculating the
standard deviation (SD) using a five-level decomposition. The
extracted SD values of different fault conditions with different
values of fault resistance from the detailed and approximation
coefficients are obtained, which are used to train classifiers FLS
and ANFIS. Various faults, such as symmetrical, unsymmetrical,
and HIFs, were tested using MATLAB/SIMULINK. The
classification rate of ANFIS is 100%, which proved more effective
than FLS. Wang et al. (2018) proposed that an HIF detection
algorithm identifies the non-linear voltage–current characteristic
profiles (VCCP) for identifying an HIF in the MV distribution
system. During HIF, the zero-sequence current is less than the
positive-sequence current. The slope of the VCCP is the numerical
difference between voltage data from current sample data, and the
least square linear fitting method is proposed. The wavelet
correlation coefficient (WCC) is considered to improve the
reliability of the algorithm. If WCC is greater than 0.966, the
metered data are from a faulty feeder, and if less than the value,
it is a healthy feeder. The radial distribution system is the test system

in Figure 4J that uses EMTP/ATP program. The typical Mayr arc
model is simulated and drawn in series with constant resistance
using a switcher and parallel branches. The simulation time stage
was set at 2 μs field-metered data from KEPCo, South Korea, and
HIF experiments were performed on a 22.9-kV no-load overhead
feeder to check the simulations. As it is a no-load feeder, the zero-
sequence current and phase voltage were used at a faulty feeder
outlet to correctly estimate the fault point voltage and fault branch
current. The faults have been tested on various dry surfaces. The
algorithm showed excellent results in real-time digital simulator
tests. The test system proposed by Sedighi et al. (2005b) for HIF tests
and data collection is a radial feeder of 20 kV at Qeshm Island, Iran,
as shown in Figure 4K. The feeder is energized from another 20-kV
feeder by two distribution transformers (20/0.4 kV, 100 kV A)
connected back-to-back. The HV and LV connections of the
transformers are delta/star connected. The HV sides of the
transformers are connected to feeders, and the LV sides are
connected to the low-voltage switch. Three-phase voltages and
currents were monitored and recorded using Hall effect current
transformers, potential transformers (PT), power analyzers, and
computers. The sampling rate of the recorded data was
24,670 kHz for each test, and the overall recorded time was 15 s.
The method used for HIF detection uses WT for feature extraction
with a three-level decomposition of current signals. The first method
uses GA for feature vector reduction, and the Bayes classifier is used
for classification. In the first method, coefficients of three-level
decomposition are used for feature extraction. They are divided
into 10, 5, and 5 segments. In GA, each segment is mapped to a 20-
dimensional space. A space with 20 dimensions is mapped to a space
with five dimensions. The Bayes classifier is used to classify the
mapped space. In the second method, WT transforms are also
applied for the current signals, PCA is used for feature vector
reduction, and NN is the classifier. The coefficients of three-level
decomposition are used for feature extraction, divided into 10, 5, and
5 segments. Means of the absolute value of each segment were
chosen as features, and the extracted signals were mapped to a 20-
dimensional space. Using PCA, space was reduced to a 7-
dimensional space. A perceptron NN using backpropagation
discriminates between HIF, isolator leakage current, and other
power system transients. Sekar and Mohanty (2020) stated that
morphology gradient extracts the features of which a rule is set by RF
and then fed to a fuzzy rule-based algorithm for HIF detection. The
electric power distribution system (EPDS) was modeled using
MATLAB/SIMULINK. A three-phase shunt capacitor of 1 Mvar
has been connected to the busbar to improve power quality and
output. The inrush current of a transformer produces an
asymmetrical current signal that may serve as a transient signal
generated by switching that may be like the HIF current waveform.
An induction motor is connected as a load to study the motor
operation impacts. The EPDS uses linear and non-linear loads to
simulate the loading scenario, as shown in Figure 4I. One cycle
window length of the current signal is measured, the impulsive
feature of the signal is extracted, and a rule set is created from the
statistical features of RF. The sampling frequency is 1,000 Hz, and
the signal length is 0.5 s. The periodic signal has third- and fifth-
order harmonics, and other harmonics that are negligible make the
filter closer to HIF detection. The method effectively detects an HIF
from other power system disturbances.
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3.2 Mesh distribution network

The test system proposed by Lai et al. (2005) consists of two
50 MVA generators with 25 kV lines, two transformers, and linear
and non-linear loads. In DWT, db4 was chosen as the mother
wavelet, with a downsampling frequency chosen as 9,600 Hz, used to
extract the detailed and approximation coefficients from the signals
of the HIF and non-fault. The current and voltage signals at a
targeted circuit breaker are measured. The RMS values of the
measured quantities at various frequencies are analyzed and
given as input to the nearest neighbor to classify fault signals.

The HIF and non-HIF cases (1,000 cases each) were simulated
with HIF and LIF models. The range of total error corresponding to
the RMS value of the voltage wavelet coefficient is from 2.52% to
45.4% and will not indicate the physical properties of the output
coefficient.

Samantaray et al. (2008) reported that S transform and TT
extract the features, and FNN and PNN classify the faulty and non-
faulty conditions of the HIF. The ST features are extracted from the
HIF and normal fault current signals for half-cycle current signals
after fault inception. The energy and SD of time and frequency
information are considered feature sets. These features are used to
train and test the FNN for radial and mesh networks. TT transform
also extracts energy and SD of the TT-counter and time index after
fault inception for the first half-cycle of the fault current. A total of
500 cases are simulated for training and testing the classifier. The
system is modeled in MATLAB/SIMULINK, and the sampling rate
chosen is 1 kHz. The PNN classification is based on the distribution
values of the probability density function. The classification rate of a
radial network with PNN using ST features is up to 98.06%. PNN
with TT transform features gives a classification rate of up to 98.05%.
The accuracy of the FNN and S transform combination is 93.04%,
and the accuracy of the TT transform is 94.16%. The proposed
method is also tested in a mesh network. The accuracy of the mesh
network with S transform and FNN is 92.86%, and that with TT
transform and FNN is 93.55%. The S transform and PNN
combination gives 97.85% accuracy, and the TT transform and
PNN combination gives 97.09% accuracy.

The HIF detection method used by Samantaray et al. (2009a) is a
combination of AEKF with FNN and PNN. The schematic diagram
of the test system chosen is given in Figure 5. The base voltage of the
distribution network is 25 kV, and the generator is 10 MVA, 15 kV
capacity. The harmonic components estimated by the AEKF are
fundamental, third, fifth, seventh, eleventh, and thirteenth
harmonics for the HIF and NF under non-linear loads. The
AEKF calculates the harmonic component within half a cycle of
the fault occurrence, with the peak of the estimated harmonic
component considered that inputs to PNN and FNN. The PNN

FIGURE 5
Three-phase meshed network.

FIGURE 6
Palash feeder single-line diagram.
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classification is based on the probability density function’s
distribution values. PNN is analyzed using a data set with an
SNR of 20 dB, 300 data sets for training, and 200 data sets for
testing. For the classification, PNN takes 0.1 s time, whereas FNN
takes 0.2 s. Fault and non-fault conditions with non-linear switching
(a six-pulse rectifier is used) are checked using various models of
MATLAB/SIMULINK, and the sampling rate chosen is 1.6 kHz. The
accuracy rate of PNN is 99.11% compared with FNN having 96.51%.

The detection of HIF described by Routray et al. (2016) uses a
test system with a generator of 50 MVA supplying 138 KV of
voltage to the utility sector through a transmission line 100 km
long, and a 138/25-kV star/delta transformer is considered for
testing the method. The method uses ST for feature extraction

and ANN for discriminating the HIF with load switching,
capacitor switching, and NC. The time and frequency
information is extracted from the S matrix, and the amplitude
factor is calculated from current signals. A total of 4,010 cases
were considered, of which 60% is used for training and 40% for
testing. The overall accuracy of classifiers for normal fault is
98.75%, 96.4%, 94.06%, and 92.60% for normal (without noise)
and noisy conditions.

Samantaray (2012) studies two test systems: one with a radial
feeder mentioned in Figure 5 and the other with a mesh feeder given
in Figure 7C. The test system studied is connected to a 50-MVA
generator and a transformer of 138/25 kV from a transmission line
of 138 kV and a length of 100 km. Loads are connected with linear

FIGURE 7
(A) Single-line diagramof the IEEE 13-node system. (B) Single-line representation of the IEEE four-node test system. (C) IEEE-123 distribution feeder.
(D) IEEE 34-node test system.
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and non-linear loads. The resistance, inductance, and capacitance of
positive and zero sequences of transmission lines are R1 =
0.01273Ω/km, X1 = 0.9337 mH/km, C1 = 0.0012 lF/km and R0 =
0.3864 Ω/km, X0 = 4.1264 mH/km, and C0 = 0.0075 lF/km,
respectively. The resistance, inductance, and capacitance of
distribution lines (pi-section) are R1 = 0.2568 Ω/km, X1 =
2.0 mH/km, and C1 = 0.0086, respectively. The total percentage
impedance of the transformers is 6.75%. The simulation models are
developed using PSCAD (EMTDC), and the sampling rate chosen is
1.0 kHz on a 50-Hz base frequency (20 samples per cycle). RF
proved to be the best, with 93.56% accuracy and 94.56%
dependability. On the distribution feeder, the HIF faults are
generated at 25 kV, 20 km, pi section. Different simulation
conditions are also considered, such as three-phase loadings,
single-phase loadings, transformer energizations, shunt capacitor
switching, and HIF by varying DC voltage sources. Two
combinations of the HIF detection technique are proposed: the
first is an EKF and RF and the latter is DT with FFT. The harmonic
components of the third, fifth, seventh, eleventh, and thirteenth HIF
current are preprocessed in an EKF, and 12 features are extracted.
These features of one-, two-, and three-cycle windows are
considered in this work. Considering the two-cycle window and
with SNR set at 20 db. The simulation models are developed using
PSCAD (EMTDC), and the sampling rate chosen is 1.0 kHz. RF is
trained with 20,580 data sets, and 8,820 data sets are tested. RF
proved to be the best, with 93.56% accuracy and 94.56%
dependability compared with DT.

Mishra et al. (2016) used S transform with ANN and SVM to
discriminate the HIF from other power system disturbances. A total
of 4,000 cases, including HIF, normal, load switching, capacitor
switching, and normal faults, are taken. Features are extracted from
three-phase currents measured from the bus, and the best feature
vector is selected. MLPNN with backpropagation NN and SVM
along with ST is used, with 60% data for training and 40% for testing.
The distribution model with a radial pattern of a 50-MVA generator
is connected to a 100-km-long transmission line and a 138/25-kV
star/delta transformer to supply 138 kV voltage to the utility sector.
For the ideal case, ST with ANN and ST with SVM give 100%
accuracy, whereas with SNR 30 dB, ST with ANN gives 93.7% and
ST with SVM gives 92.15% accuracy. For the ideal case with the
mesh network, ST with ANN and ST with SVM give 100% accuracy,
whereas with SNR 30 dB, ST with ANN gives 81% and ST with SVM
gives 86% accuracy.

3.3 Palash feeder, Tehran

Detection of the HIF using a combination of MLPNN based on
multi-resolution morphological gradient features of the current
waveform is described by Sarlak and Shahrtash (2011). The
MMG features of the current signals (for three half-cycles) of
broken and unbroken conductors are considered, and the
features from DFT, DTT, DST, and DWT are compared. The
morphology gradient is the difference between the dilation and
erosion functions. Data acquisition is performed using the
ION7650 meter, and the input port of the meters is connected to
the outputs of the current transformers at the 63/20-kV substation.
The sampling rate of the current waveform is 1.6 kHz. A disturbance

detection module is based on MMG-extracted features of any
subwindow with a predefined threshold. Three MLPNNs (A, B,
and C) are trained individually by applying the time-based features
obtained from the first, second, and third sub-windows. Then, their
decisions are concatenated to make the final decision. The proposed
algorithm gives security of 96.3% and dependability of 98.3%.

Nikoofekr et al. (2013) used a test system from Tehran, Iran,
which has a 63/20-kV transformer feeder with 30 MVA apparent
power, and the HV side has been grounded with a zigzag
transformer and variable resistance adjusted at 29.5Ω. Moreover,
two 2.4-MVAR capacitor banks are connected through the HV
circuit breakers. The ION 7,650-meter tests the HIF current and
non-HIF current signals, such as insulator leakage current (ILC) and
harmonic load current, with a sampling rate of 64 samples per cycle
at the site. The method uses ST for phase correction in CWT, which
localizes the phase and amplitude spectrum. TT transform extracts
the features of the measured signals. Five different ART neural
networks are used to classify the HIF and tested with broken
conductors in asphalt, concrete, gravel surfaces and unbroken
conductor on trees and under no fault conditions. This study
uses five types of ART networks, namely, ART1, ART2, ART2-A,
Fuzzy ART, and Fuzzy ARTMAP. The different features extracted
were energy, SD, and median absolute deviation. The performance
of the ART network is based on the vigilance parameter ρ whose
value ranges from 0 to 1. For lower values of ρ, the classification is
rough, and categories are less, and for higher values of ρ the
categories are more, and classification is fine. In the basic ART
training process, the input pattern is delivered to the input layer,
which activates F2 neurons via bottom-up weights. Because the
F2 layer is a competitive layer, the neurons compete with each other
to learn the input vector, and the larger neuron wins. All other
F2 units’ activations (outputs) are set to zero. Then, the top-down
weights of the winner neuron are sent back to the F1 layer. Figure 6
shows the Palash feeder in Tehran. From the total 6,437 data taken,
60% were used for training and 40% for testing. The result of the
network shows an accuracy of ART1 of 91.61%, ART2 of 98.65%,
ART2-A of 99%, Fuzzy ART of 99.18%, and Fuzzy ARTMAP of
99.18%.

MMG is the feature extraction used by Sarlak and Shahrtash
(2013) and tested on the Palash feeder in the Southwestern Tehran
distribution network, as shown in Figure 6. An HIF indicator is
installed in various poles that detect HIF at various locations. The
HIF indicators are installed in the feeder based on the processing of
the magnetic-field strength signal. The fitness evaluation combines
three goals: accuracy, number of training samples, and the weighting
factor. The impulse response of magnetic response in the frequency
domain is calculated in terms of the electric hertz vector. By
simulation, a 978-feature vector for the HIF and 852 non-HIF is
calculated. The dependability and security of the proposed system
are best above the 20 db SNR. To evaluate the proposed method,
MMG extracts a magnetic field strength signal, which is given to
SVM for classification. The proposed algorithm has 96.9% security
and 97.2% dependability.

The real-time experiments are performed in the Palash
feeder, Tehran (Soheili et al., 2018). The modified FFT
approach is used to detect the HIF concerning non-linear
loads. In the proposed method, the measured three-phase
current is analyzed by FFT. These currents are continuously
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monitored for non-linear loads, abnormal conditions, and HIF
detection. HIF currents during non-linear loading conditions
and different ground types are recorded. The proposed
algorithm has divided the output into three levels: 0, 0.5, and
1. NC, pickup, and HIF, respectively, are represented by these
levels. Various scenarios in the simulated data are considered,
including high current three-phase feeder, low current three-
phase feeder, low current single-phase feeder, and capacitor
switching events. The distribution network is energized via a
63-kV/20-kV three-phase transformer with a rated power of
30 MVA. Data recording has been conducted using the ION
7650, with a sampling rate of 64 samples per cycle (3.2 kHz).
The various surfaces where real-time experiments are
conducted are concrete with 20 cm in no-load conditions,
concrete with 10 cm in 55% full load conditions, and asphalt
with 2 cm under 55% full load conditions. The HIF detection
time of the proposed method was 1.13 s.

3.4 IEEE test systems

There are various IEEE test systems, such as the single-line
diagram of the IEEE 13-node system (Figure 7A), the single-line
representation of the IEEE four-node test system (Figure 7B), the
IEEE-123 distribution feeder (Figure 7C), and the IEEE 34-node test
system (Figure 7D).

3.4.1 IEEE 13-node systems
The illustration given by Gautam and Brahma (2013) used an

HIF detection tool using MM that can be implemented along with
the conventional overcurrent relays in the substation. Both IEEE
13- and IEEE 34-node test feeders are used to validate the
approach. Closing Opening Difference Operation effectively
detects a disturbance in waveforms. A low sampling rate of
3,840 Hz (64 samples per cycle) was chosen to reduce
computing time. The dilation and erosion function of MM
and its difference will effectively detect the disturbance in the
waveform. Voltage waveforms measured at substations are used
in the procedure. The fault detection time is less than 1 s, and the
method is fast and reliable. The two-test system gives 100%
accuracy in detecting and classifying unbroken, broken
conductors, capacitor switching, and load switching. A
modified FFT approach based on HIF detection is proposed
by Soheili et al. (2018), in which non-linear loading
conditions are also considered. At node 630 of the IEEE 13-
node system, the type of feeder, point of common coupling
(PCC), and the current rate are considered, and the recording
devices are installed at this node to resemble the real-world
scenario. The feeder connected between 650 and 632 is
considered the three-phase high current feeder with 300 A,
606 m long. The feeder between 692 and 675 is considered a
low-current three-phase feeder with 80 A. The main factors
considered include high and low three-phase currents and low
current single-phase feeders. The scheme successfully
distinguishes the HIF with load switching and capacitor bank
switching in 1.15 s. Wang et al. (2019) used variational mode
decomposition (VMD) and Teager–Kaiser energy operators
(TKEOs) to identify the HIF. The method is tested in radial,

IEEE 13-node, IEEE 34-node, and test microgrid systems, as well
as experimental field tests. Three-phase current signals are
measured, and VMD is performed on transient zero sequence
currents (TZSCs) to obtain the intrinsic mode functions (IMFs).
Then, the IMFs with the largest kurtosis value were selected as the
characteristic IMFs. Second, the characteristic IMFs are
calculated to obtain TKEOs and divided into subintervals of
TKEOs waveform to calculate the time entropy values. The
HIF detection criterion is when the time entropy value is 0;
then, CS or LS has occurred. When the entropy value is not 0, it is
judged as an HIF. The calculation time taken is 0.0028 s.

A data-driven technique includes PCA, Fisher discriminant
analysis, and binary and multi-class SVM for HIF detection.
Compared with PCA, FDA can classify and locate the HIF
successfully (Sarwar et al., 2020). PCA utilizes Hotelling’s T2

statics for HIF discrimination (see Eq. 1). The IEEE 13-node
system is used for testing:

T2
α �

m n + 1( ) n − 1( )
n n −m( )Fα m, n −m( ), (1)

where Fα (m, n-m) is the F distribution withm; (n–m) is the degree of
freedom; T2 ≤ T2

α means no-fault condition; and T2 > T2
α means

faulty condition.
The SVM uses a discriminant function to differentiate

various classes. Non-linear classification is based on a kernel
function from kernelized SVM. Figure 7A shows the single-line
diagram of the IEEE 13-node system. Multiclass SVM gives the
best results, with dependability and security at 100%. Silva et al.
(2020) performed a wavelet packet-based feature extraction with
a three-level decomposition of signals at 2.5 kHz along with the
EuFNN classifier. The IEEE 13-bus system is considered for
testing the method, which is a highly charged compact feeder
with a rating of 4,053 kV A and a power factor of 0.85, and an
extension of approximately 1.5 km from bus 650 to bus 680.
Several line configurations, such as three-phase and single-phase
lines, overhead, and underground sections, are considered.
Different families of wavelet transform, namely, Haar, Symlet,
Daubechies, Biorthogonal, and Coiflet, used to extract features
from a one-cycle time window of current signals were chosen.
The RMS and the entropy values calculated for Daubechie-8 give
the best discrimination rate. Various WPT families, the MLP,
learning vector quantization (LVQ), SVM, and EFuNN classifiers
were compared, among which MLPNN gave the least accuracy,
and all other classifiers gave an average of 97.14% accuracy.
Nezamzadeh-Ejieh and Sadeghkhani (2020) performed the time-
domain HIF detection algorithm by analyzing the substation
current employing Kullback-divergence that measures the
similarity between asymmetry and non-linearity of two
consequent half cycles. Both IEEE 13-node and IEEE 34-node
feeders are used to test the approach. The amplitude of the fault
current of 15 A is approximately 3% of the normal feeder current.
An intelligent electronic device samples the signals at 4.8 kHz
and measures the current in each phase. The current vector
measurement is formed by

Mj � ij t0 + Ts( ) ij t0 + 2Ts( ) ij t0 + KTs( )[ ]T, (2)
Mij � ij t0 + Ts( )∣∣∣∣ ∣∣∣∣ . . . ij t0 + K/2( )Ts( )∣∣∣∣ ∣∣∣∣[ ]T, (3)
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Mij � ij t0 + K/2( )Ts( )∣∣∣∣ ∣∣∣∣ . . . ij t0 + K/Ts( )∣∣∣∣ ∣∣∣∣[ ]T, (4)

DKL,j M1,j

����M2,j( ) � ∑N

r�1M1,j r( ) logM1,j r( )
M2,j r( ). (5)

During normal operation, there is no change in the waveforms
of two consecutive half-cycles DKL = 0, and during a fault
occurrence, there will be asymmetry and non-linearity in the
half-cycles and DKL ≠ 0. During the HIF, the third harmonic
current will be greater than the fifth harmonic current. The
occurrence of an HIF is when > ξth, where ξth is the disturbance
detection threshold. A small threshold will decrease the accuracy of
the system and a high value will reduce the detection speed. The
method effectively detects the presence of an HIF.

3.4.2 IEEE 34-node test system
Moravej et al. (2015) used an IEEE 34-node test feeder for

testing, as given in Figure 7D, and simulated it in EMTP-RV
software. There are four different conductors, in which the
system is characterized by heavily and lightly loaded with a
feeder voltage of 24.9 kV. Two-line regulators and one
transformer (24.9/4.16 kV) are present in the feeder. There are
single-phase and three-phase feeders and two shunt capacitors in
the system. Dual-tree complex wavelet transforms is used for feature
extraction and PNN for classifying the faulty and healthy conditions.
In the method, various steps involved in HIF detection include

disturbance detection, disturbance feature extraction, HIF detection,
frequency tracking, over-current protection, and the main feeder
break detection. In the first step, the fundamental frequency current
of the three-phase current is calculated using the DFT algorithm.
The post-disturbance and pre-disturbance data windows are saved
in memory, and both are decomposed into five levels by DT-CWT.
The detailed components of the post-disturbance data window are
subtracted from those of the pre-disturbance, and after obtaining the
detailed component of the disturbance signal, the proper feature is
selected. The SD and normalized energy of the detailed coefficients
of level 2–level 5 three-phase currents and residual current were
selected as the features for the HIF detection algorithm. The
algorithm is fast and detects the disturbance in 1.88 ms, giving
an accuracy of 98.88%. Sekar and Mohanty (2017) proposed that
MM extracts features, such as energy, mean, and SD, which train the
DT (data mining based). The three-phase current signal is pre-
processed by a dilation and erosion morphological filter. The data
mining-based DT using software package “R” is used, as well as post-
disturbance data window length of current signals at feeder
processed through the MM filter and chosen data window. The
IEEE 34-node test system with light loads is also used. The total
number of cases considered is 300, of which 70% are used for
training and 30% for testing. The accuracy is 98.83%, dependability
is 98.88%, and security is 100%, with a detection time of 30 ms. The
proposed method is also tested using the IEEE 13-node system, in

FIGURE 8
(A) Test microgrid system. (B) Representation of CERTS microgrid system structure. (C) Single-line representation of IEC microgrid.
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which the total cases considered are 300, of which 70% are used for
training and 30% for testing. The accuracy is 98.83%, dependability
is 98.88%, and security is 100%, with a detection time of 30 ms.

Fan and Yin (2019) used a convolutional neural network and
transfer learning-based approach for HIF detection. The method is
tested with 5,000 data sets, of which 2,500 are HIF data and 2,500 are

non-HIF conditions in an IEEE 34-node feeder. From the data set,
80% was taken for training and 20% for testing. The sampling rate
was 15 kHz, and there were 300 samples in the input data. Among
the four layers of the CNN, each layer of the CNN model has
convolution, rectified linear unit (ReLU), and max-pooling
functions. The accuracy of the CNN obtained was 99.52%, and

FIGURE 9
(A) Single-line representation of the JMARTY model transmission line test system. (B) Single-line representation of TAI-16 feeder distribution
networks. (C) Single-line diagram of the 38-node test system. (D) Single-line representation of the benchmark system.
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the computational cost was low compared with the traditional
MLPNN (91.13%). Fewer data sets (<300) were in the IEEE 13-
node system with 50% training and 50% testing data. The accuracy
obtained for the CNN was 95.06% compared to CNNs, with 74.69%.

3.4.3 IEEE four-node test feeder
The test system used is the IEEE four-node system, as shown in

Figure 7B. Three-phase load switching, capacitor switching, no-load
transformer switching (energizing and de-energizing the
transformer at various cycle times), harmonic loads (e.g., an
unregulated four-pulse rectifier and induction motors), arc
furnaces, and down-conductor and undowned conductor HIFs
are discriminated using this method. The method of HIF
detection (Sarlak and Shahrtash, 2008) uses PCA and LDA and
is used along with SVM to detect the HIF, which gives 97.5%
accuracy. PCA refers to the linear feature extraction method that
computes m eigenvectors corresponding to n-dimensional patterns.
PCA extracts uncorrelated features. Hence, it is more appropriate
compared to other classification techniques. LDA measures the
Fisher criterion that finds the m eigenvectors of the scatter
matrix that discriminates HIFs from non-HIFs. The extracted
features are sampled at the rate of 12.5 kHz. The feature set is
divided into a training set of 66% and a testing set of 34%. The
polynomial and radial bias function of SVM is used, in which the
linear kernel function has the best classification accuracy.

3.4.4 IEEE-123 distribution feeder
An IEEE-123 distribution feeder as a test system is illustrated,

characterized by unbalanced phases modeled with EMTP-RV
software. Figure 7D displays the IEEE-123 distribution feeder.
Some of the feeder buses are connected to smart meters in three-
phase sections and not in single- and two-phase sections. Tonelli-

Neto et al. (2017) found that the method uses WT along with
ANN and fuzzy interference systems for HIF detection. Three-
phase current signals are analyzed and sampled at a frequency of
15.36 kHz. An application of DWT, multi-resolution analysis
extracts the features from the current signals using Daubechies
mother wavelet with fourth-order filter (db4). An energy concept
is applied to the features to increase efficiency and minimize the
number of coefficients. The energy concept is used for the third-
level detail coefficients because of the high number of coefficients
created in MRA. Fuzzy ARTMAP neural networks and fuzzy
interface systems are used for HIF classification. Each bus, where
the signals are obtained, has a FIS responsible for identifying and
qualifying the feeder operating condition in the detection based
on FIS. The results combine a normal case, HIF phase a, HIF
phase b, and HIF phase c. The detection method based on the
fuzzy art neural network (FANN) is as follows: the vectors
obtained are normalized for use as inputs to multiple neural
networks. This normalization is performed by identifying the
maximum current value of each analyzed vector. Comparing
both FANN and FIS, the accuracy of FANN is 97.69%, and that of
FIS is 99.25%.

3.5 Test microgrid system

The test microgrid system is used for HIF detection (Kar and
Samantaray, 2017), as shown in Figure 8A. The base power of the
test system is chosen as 10 MVA. The rated short-circuit of the
utility is 1,000 MVA with f = 60 Hz, rated 120 kV. Distribution
generations, DG1 and DG3, are rated as follows: synchronous
generator rated at 9 MW and rated voltage of 2.4 kV, and DG2 is
a wind farm consisting of three wind turbines (2 MW each), rated
kV = 575 V. The transformer ratings used in this study are as
follows: Transformer 1: 15 MVA, 120/25 kV. Transformers 2 and
4 are rated at 12, kV = 2.4 kV/25 kV, while Transformer 3 is rated
at 2.5, kV = 575 V/25 kV. The distribution lines (DL) are DL1,
DL2, DL3, and DL4: PI-Section, 20 km each. The total load is
20 MW, 10 MVAR, a sum of L1–L5. The MODWT is the feature
extraction technique, and DT is the classifier used. The proposed
method is tested in both grid-connected and islanded modes. The
MODWT scaling filter and the wavelet filter related to the DWT
filter are calculated, and the scaling coefficients of MODWT are
obtained. The detailed approximation coefficient is obtained
from the MODWT, and DT does accurate classification. The
total cases are 1,493, of which 973 are HIF cases and 520 are faulty
conditions. In the method proposed, 12 feature sets are
considered, among which five were taken for classification.
The training set (70%) and testing (30%) assess the
performance. The software package “R” generates data mining
for the DT. The detection accuracy, dependability, and security
are 100% for the grid-connected mode, whereas for the islanded
mode, the accuracy is 99.23%, security is 98.23%, and
dependability is 100%.

Microgrid is considered while integrating distributed energy
systems (Abdelgayed et al., 2017). The Consortium for Electric
Reliability Technology Solutions (CERTS) was used for the case
study of microgrids in this article. The microgrid system has two
modes of operation: grid-connected and islanded mode of

FIGURE 10
Emmanuel arcmodel of HIF. The Vn, Vp, Rn, and Rp values of wet
sand are 4.5 V, 2.5 V, 400 ± 5 Ω, and 350 ± 5 Ω, respectively. For dry
sod, the values are 4 V, 2 V, 300± 5 Ω, and Rp 250± 5 Ω. Thewet grass
Vn, Vp, Rn, and Rp values are 2.75 V, 1 V, 150 ± 5 Ω, and 125 ± 5 Ω,
respectively. The Vn, Vp, Rn, and Rp values are 2.5 V, 0.75 V, 100 ± 5 Ω,
and 75 ± 5 Ω, respectively, for reinforced concrete.
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operation. CERTS microgrid consists of a distribution system fed
from three-phase distribution transformers rated at 13.8/0.48 kV,
consisting of two solar photovoltaic sources and one battery
energy storage source. Four loads are considered long in the
distribution system. The method employs a semi-supervised
machine learning strategy to handle labeled and unlabeled
data. DWT extracts the hidden properties of voltage and
current and applies them to a harmony search algorithm to
find the HIF parameters. The DT and KNN classifiers are used
to discriminate the HIF events. The overall accuracy of the DT is
100%, and that of the KNN is 95%.

The test system is a CERTS microgrid with two inverter-
interfaced DG units and one synchronous generator-based DG
unit (Gadanayak and Mallick, 2019). The representation CERT
microgrid system is shown in Figure 8B. For HIF detection, the
test system consists of five distribution lines and five relay units.
MATLAB-SIMULINK is used to simulate the model, with a
simulation sampling rate of 0.5 MHz. The MODWT approach for
feature extraction and knot-based empirical mode decomposition is
included in the methodology. The program recognized 855 cases of
HIFs and 801 cases of non-HIFs. The average time to detect a fault was
0.12175 s. The test system used by Gashteroodkhani et al. (2020) was
performed in a 25-kV IEC standardmicrogrid that gave high accuracy
and robustness in noisy environments. The single-line representation
of the IECmicrogrid is represented in Figure 8C. A deep-belief neural
network with TT-transform is employed where an intelligent relaying
scheme-based real-time digital simulator is used, integrated with
MATLAB. The process involves the measurement of three-phase
currents at both ends and the feature extraction by Clark’s
transformation and TTT, which is sent to the DBNN. Six features
are used for feature extraction, including energy, SD, and median
absolute deviation. Microgrid models with grid-connected, islanded,
radial, and mesh topologies are used to test the approach. With
3,600 fault situations and 3,125 no-fault cases, the sampling rate was
set to 1.2 kHz. The proposed method gives 99.74% and 99.46%
accuracy for a radial network with grid-connected and islanded

modes, respectively, and 100% for mesh topology in both modes
of operation.

3.6 JMARTY model test system

Eldin et al. (2007) considered the JMARTY model with
Egyptian transmission line parameters, such as a transmission
line length of 125 km and a resistive load of 600 MW, as shown in
Figure 9A. DWT’s feature extraction technique with classifier
moving window pattern recognition is used in HIF detection in
extra-high voltage transmission. The sampling rate is
250 samples/cycle at 50 Hz. In order to distinguish HIF from
non-HIF events, the proposed technique uses high-frequency
information from wavelet analysis db4. The effect of fault
location, fault interception angle, fault type, switching of
loads, switching of the HIF, and sudden load rejection is
studied. The algorithm can be added to the existing digital
relay microprocessor; it is fast, accurate, and simple.

Ibrahim et al. (2008) described two approaches: the first uses
DWT analysis and the second analyses three-phase voltages
using a high-frequency tap coupling capacitor voltage
transformer. The chosen sampling rate is 20,000 Hz. A 100-
m-long 345-kV double-end transmission line system is
considered. The effect of fault location, fault type, fault
interception angle, switching of loads, and switching of HIF
are studied. The method is independent of load variations and
unbalanced conditions. The algorithm is fast, accurate, and
simple; it can be added to an existing digital relay
microprocessor (Eldin et al., 2007).

3.7 TAI-16 feeder

In Yang et al.’s method (2006), the HIF was tested in a real-
time Tai-16 feeder, Taishi substation near Mailiao, as shown in

TABLE 3 Performance evaluation of classifiers.

Criterion Equation Function

Accuracy (A) Overall precision

Dependability (D) Faulty state detection precision

Security (S) Healthy state detection precision

Safety (S) Safety-related criterion

Sensibility (SN) Sensitive load-related criterion

Speed (v) Detection speed

Note: TP, true positive; TN, true negative; FN, false negative; FP, false positive; Tonecycle, time for one cycle; TDetection, time for detection.
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Figure 9B. The fault was staged at pole #61 under grounded and
ungrounded conditions, with dry and wet ground conditions.
Data from the Shand-Ding substation and the She-Zi substation
were considered to train the NN. The analog-to-digital recorder
ADX-3000 was installed to monitor the neutral line current of the
faulted feeder in the substation. A cross-linked polyethylene-
covered conductor, a bare copper conductor, and ACSR
conductors are used. A wavelet transform and pattern
recognition-based feature extraction scheme is used and
applied to backpropagation ANN for HIF detection. The
detection of the HIF is carried out by introducing an
intelligent HIF detector applied to a neutral line current,
giving an 81% detection rate. A self-tuning algorithm based
on the chi-square algorithm is applied to find the variations in
neural current. A statistical confidence scheme is applied for
neutral current estimation. For calculating the threshold of
neutral current, a 95% confidence interval is applied.

3.8 Test system—38 nodes

A typical 11-kV distribution network in Malaysia is
composed of 38 nodes serving 34-line sections, as shown in
Figure 9C, displaying the single-line diagram of a 132/11-kV
distribution network. The test unit has a frequency of 50 Hz, with
a sampling frequency of 6.4 kHz, and delivers 128 samples/cycle.
The feeder bus is simulated using the PSCAD program. Ali et al.
(2014) proposed that DWT-based MRA is the feature extraction
technique, and a matching approach technique is used for
classification in the underground distribution system. The
simulation tests of the three-phase voltage signal are obtained
at a measurement point using the DWT-based multi-resolution
technique. The voltage signal was decomposed into 128 samples
and analyzed by Daubechies fourth order of DWT. The first level
of the detailed coefficient, d1, detects the HIF by observing
changes in the characteristics taken from three-phase voltage
data. The sum of the first-level approximation coefficients
obtained from the normal cycle, known as the approximation
ratio, is divided by the sum of first-level approximation
coefficients obtained from the normal cycle to classify the fault:

Approximation Ratio � ∑a HIF( )∑a normal( ). (6)

The approximation ratio is considered for distinguishing
SLGF, LLGF, LLLF, and LLF. If the ratio is less than 1 for one
phase and greater for the other two phases, then an SLG fault has
occurred. The three-phase ratios will be the same for LLLF. For
locating the HIF, a matching technique based on the shortest
distance is used. For each line section, the SD between the
measured signal and the line section is computed. The
summation of the detailed coefficients of voltage signals is
done in three coordinate systems and represented in three-
dimensional space. The SD of each section is calculated, and
the average value is calculated. The average value is compared
with the SD values of each section. Each section is then arranged
in ascending order of its SD values, which list the possibility of a
faulty section. The method successfully located the fault after
four or five iterations.

3.9 Benchmark system

In Cui et al. (2017), the test system chosen is a benchmark system
in a remote Canadian community with 25 kV 60 Hz, distribution
feeders that serve an 11-MW load built by McGill Power Laboratory,
as shown in Figure 9D. An L-G HIF at t = 0.3 s is implemented in a
hybrid distribution system. The feeder’s PCC (CB-1) will collect all the
data where the HIF detector is located, two DGs at locations A and B,
respectively. Three types of distribution systems are also possible to
model: 1) the synchronous generator (SG) system is constructed by
connecting the SG to location A without DG in location B; 2) the
inverter-interfaced system is connected to location B with only type
4 wind turbines at location A and without DG; and 3) the hybrid DG
system has an SG connected to location A and wind turbine
generators at location B. The rated voltage is 4.17 kV for the SG,
and 9 MVA is the power. Three wind turbine generators provide wind
power, each rated at 575 V and 2.2 MVA. The proposed method was
tested in hybrid systems, and inverter-based systems are grounded, as
well as ungrounded conditions. HIF and non-HIF events of
1,944 cases each have been considered for testing and training.
The method proposes an algorithm to rank the effective feature
sets using a signal processing technique of DFT and Kalman
filtering estimation. The effective feature set is derived from
information gain or entropy. The information gain of each feature
is calculated, and a calculation variable is obtained. Such calculated
variables are compared and then ranked for further assessment inHIF
detection. By measuring the currents and voltages at the point of the
common coupling, 246 electrical features are obtained. Classifiers,
such as Native Bayer’s, SVM (Gaussian kernel), k-nearest neighbor
(KNN), RF, and J48, are compared, among which RF and J48 proved
to be the best with 99% accuracy for both.

3.10 Modeling of HIF

Researchers provide numerous HIF models because of
stochastic behavior and complicated properties. In order to
acquire a good representation of the HIF, it is necessary to
develop a model that specifies the features and the harmonic
content of the HIF. Because arcing, which has yet to be fully
modeled, is involved in most HIF events, an HIF is a difficult
example to model. HIFs are non-linear and asymmetric,
according to some earlier studies, and random and dynamic
arcing features should be used in modeling (Zamanan and
Sykulski, 2014). The arc is a continuous luminous discharge of
electricity in which many free electrons and ions in an insulating
medium are converted into a conducting medium. The arc was
first studied as a continuous luminous discharge of electricity
through an insulating medium that becomes a conducting
medium due to the presence of a large number of free
electrons and ions. The arc was first researched about circuit
breaker disruption capabilities, with arc models used to improve
circuit breaker testing (Elkalashy, 2007). The Emanuel model
replicates zero periods of arcing and asymmetry by connecting
two DC sources anti-parallel with two diodes (see Figure 10).
Variable resistors vary the fault resistance, and a voltage supply
with random values mimics HIF unpredictability. Some of the
other HIF models are, two-time varying series resistors with
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different characteristics (Nam et al., 2001), Kizilcay’s model
(Zhang et al., 2016; Mishra and Panigrahi, 2019) and
Matthews arc model (Gammon and Matthews, 2001).

4 Classifiers for identifying the healthy
and faulty conductors

This section discusses classifiers, which distinguish between
faulty and non-faulty conditions. Classifiers set a boundary
between healthy and faulty conductors. In the classification
process, two types of data are to be considered: training data
consisting of information relating to known patterns and testing
data, which are a collection of information relating to unknown
patterns. Table 3 presents the performance evaluation of various
classifiers with various criteria, such as accuracy, dependability,
security, sensibility, speed, and safety.

The appropriate classifier is chosen depending on the
application where it is being used. The various classification
conditions are capacitor switching, load switching, noises
(Christie et al., 1993), disturbances (Russell and Benner, 1995),
and voltage spikes. Faulty conditions include L-L, L-G, L-L-L, LIF,
HIF (Barnard and Pahwa, 1993), and non-linear load conditions
(Sultan and Swift, 1992). A knowledge-based system (Sedighizadeh
et al., 2010), microprocessor (Kwon et al., 1991), signature-based
detection (Wester, 1998), mechanical detection (Balser et al., 1986),
burst noise signals (Aucoin and Russell, 1987), and DSP were
previously used in classification. Different classifiers, such as
neural networks (Vyshnavi and Prasad, 2018), SVM (Mishra
et al., 2016), fuzzy logic, ANN (Baqui et al., 2011), GA
(Zamanan et al., 2007), PNN (Samantaray et al., 2008), ELM
(Reddy et al., 2013), ANFIS (Abdel Aziz et al., 2011), and DT
(Kar and Samantaray, 2017) are compared and discussed.

4.1 Neural networks

NN (Snider and Yuen, 1998) models are grouped according to
their architecture (Sultan et al., 1992) (which gives the neural
connection), processing (describes the production of output
corresponding to weight and input), and training (explains the
adaption of NN weight for every training vector). The
architecture consists of the input, hidden, and output layers. The
processed information of the NN is obtained at the output layer. NN
architecture types are single-layer networks, such as an MLPNN
(Sarlak and Shahrtash, 2011), a Hopfield network, and a Kohonen
network (Ebron et al., 1990). ANN implementation is easy but is
subject to the amount and quality of trained data. The ANN
algorithm needs to be re-trained when there is a change in the
data set, and the number of neurons and learning rate are found by
the trial-and-error method.

An NN using a relay mechanism with HIF detection is described
by Sharaf et al. (1993). The approach of a feed-forward network with
backpropagation of one hidden layer and 15 neurons is used, which
employs the discriminant vector of negative and zero sequence
current and voltage in the substation. Twenty-two cases were
taken for training and 10 cases for validation. They are noise-
tolerant, require less detection time, and are economical. NN

algorithm-based relaying scheme, implemented using NN
hardware chips or software, promptly detects HIFs using Fourier
analysis of lower-order harmonic vectors of measurements used as
the input to the perceptron feed-forward network (Snider and Shan,
1998). The Emanual arc model is used as the HIFmodel. Logsigmoid
hidden layers of three numbers with 10 neurons make the structure.
As only lower-order harmonics are utilized for detection, the scheme
is more feasible and flexible and has a high detection rate. The
scheme is tested using simulation and real-time field measurements.
A microprocessor-based pattern recognition technique is developed
(Al-Dabbagh and Al-Dabbagh, 1999), which uses DFT to analyze
signals. The scheme describes a sensitive Earth fault protection that
is comparatively slow but gives better performance. The scheme is
not tested with real-time data; only relaying current and voltage
signals from the ATP simulation package are tested. Keyhani et al.
(2001) used a subband decomposition method for current, which
uses the energy of the subband to feed the input vector to the NN.
The system is less noise-sensitive and can detect HIFs efficiently at
high noise levels. The SNR chosen was 0–14 db. Emanuel and
Gulachenski’s HIF model is used for testing. A total of 800 cases
were taken, and 16 neurons were used for fault analysis. Two NNs,
namely, perceptron and FNN, are used; both give similar results with
close to 100% accuracy. The scaling and translation characteristics of
DWT are used to discriminate the transient and stable features of
current signals (Yang et al., 2004). The extracted features of voltage
and current signals and dissimilarity of wavelet component
coefficients are calculated, which is used to train the NN and
determine HIFs from the switching operations. The SD and
mean are the features considered, with 20 neurons in the first
hidden layer and 10 in the second hidden layer. A total of
600 events were taken, of which 500 are used for training and
100 for testing. The combination of the NN with DWT gives a good
performance. Bansal and Pillai (2007) explained that FFT is the
feature extraction technique used for 320 events taken. The
magnitude of the third and fifth current harmonics is used for
feature vector LVQ network classifiers for HIF detection. The output
layer of LVQ contains two linear neurons. In comparison with the
feed-forward network with backpropagation, LVQ gives a quicker
response. LVQ gives the best results in random and selected
subclasses if the subclass chosen is 10.

ANN and DWT are used for HIF detection (Vahidi et al., 2010).
Distorted waveforms similar to fault current waveforms are generated,
and DWT is used to denoise the signal and obtain signals with a high
SNR. Sym8 wavelet function is used for detection, which gives 99%
accuracy. The Levenberg–Marquardt algorithm is used for training
the network, with 8-5-3-1 Baqui et al. (2011). The method is robust; it
uses modified HIF models and discriminates between a wide range of
signals, such as HIFs. The PNNmodel uses a probabilistic model, such
as Bayesian classifiers and a supervised learning network, a type of
feedforward network (FFN) that uses exponential activation
functions. The PNN structure has four layers: the input layer,
pattern layer (hidden layer), summation layer, and output layer. In
the network used, the initial weights and the learning process are not
required (Chen et al., 2016). Fan and Yin (2019) used the
convolutional neural network that overcomes the disadvantages of
conventional MLPNN; for example, the spatial structure of data is not
considered, and large data sets are not required for training purposes.
The four layers of CNN are convolution, rectified linear unit, and
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max-pooling functions. Here, the classic HIF model with two anti-
parallel DC sources, diodes, and variable resistors is used. Two
separate conditions were studied using the proposed system: the
first was tested with 5,000 data sets, of which 2,500 are HIF data
sets and 2,500 are non-HIF conditions in an IEEE 34-node feeder.
From the data set, 80%was taken for training and 20% for testing. The
sampling rate was 15 kHz, and the input data contained 300 samples.
The accuracy of the CNN obtained was 99.52% compared with the
traditional MLPNN of 91.13%. The second case was performed with
fewer data sets (<300) in the IEEE 13-node system with 50% training
and 50% testing data. The accuracy obtained was 95.06% compared to
conventional neural networks, with 74.69%. ELM is extracted from
neural networks that improve feed-forward neural networks’
efficiency. ELM is a single-layer neural network, which is hidden
and does not need be tuned. In ELM, input weights and biases of
hidden layers are selected randomly, and the output weights are
chosen analytically (Mishra et al., 2017). FFT extracts the third and
fifth harmonics current and voltage magnitudes and trains the ELM
(Reddy et al., 2013). The number of events is 320, and 20 neurons with
unipolar sigmoidal activation functions are used for training the
algorithm. Here, ELM is used for fault classification and section
identification. The scheme is faster with less human intervention
and gives accurate classification and less training time compared to
neural networks such as LVQ andMLP.DWT is the feature extraction
technique that studies the cross-countryside HIF detection applied to
the transmission and distribution systems (AsghariGovar et al., 2019).
Three-phase current signals are extracted at both ends of the line for
fault detection and identification. The Emanual arc model is used as
the HIF model, and the IEEE 13-node system is tested. The hidden
layer contains 20 nodes, with the number of inputs and outputs as one.
Faulty conditions and other power system disturbances are classified
by ELM. The novel protection algorithm is independent of
interception angle, power swing, fault location, power system
topology, and noise.

4.2 Genetic algorithm

A GA is an intelligent technology that detects faults (Kim et al.,
1990). The behavior of the HIF is affected by many environmental
parameters, and hence, a parameter-based generic technique
method can be used. Detection of the HIF in a distribution
system using a real coded genetic algorithm (RCGA) to analyze
the tracking harmonics and current phase angles of the fault current
signals was proposed by Zamanan et al. (2007). A fitness function is
used by the GA that differentiates the performance between different
strings. The scheme gives accurate results in differentiating
harmonics and current angles of HIF. For GA, the simulation
time is high, and as the processes are random, this cannot be
used for fault location. GA cannot be used for online analysis
because there is a possibility of inaccurate results.

Two methods for HIF detection have been compared (Sedighi
et al., 2005b): the first method is the GA and Bayes classifier, where
GA is used for feature vector reduction and Bayes for classification.
The second method uses PCA and a NN for HIF identification. PCA
and wavelet transform are used for feature extraction, for which GA
gives the best results compared to the NN. The mother wavelet used
is rbior3, with a sampling frequency of 24.67 kHz. It discriminates

HIFs from non-HIFs, such as isolator leakage current, capacitor
switching, and load switching. The tests were conducted 8.20 and
8.44 km from the source at different types of surfaces. The overall
success rate of the Bayes classifier is 98.33%.

4.3 Support vector machine

SVM is a significant classifier commonly used in issues related to
different power systems and environmental fields that find
application in regression analysis, prediction, and classification.
SVM is a non-linear kernel-based function that maps data from
one space region to another (Veerasamy et al., 2018). Different types
of kernel functions are the linear kernel, polynomial kernel, radial
basis kernel, and sigmoid kernel. SVM provides a distinctive training
algorithm to optimize the boundaries between different groups.
Optimal parameter selection is highly important to obtain successful
classification outcomes. The classifier of the support vector is mainly
a binary linear classifier. Theoretically, SVM was derived from the
principle of statistical learning. The linear classification algorithm
for the SVM applies the training set to find the segregated
hyperplane. The SVM algorithm calculates the number of
support vectors for SVM (no training is required), which makes
SVM a better algorithm for classification than ANNs
(Gururajapathy et al., 2017). The elements of the training sets
that characterize the dividing hyperplane are support vectors.
Even for a large data set, SVM is quick in classification with
fewer heuristics. Gashteroodkhani et al. (2019) proposed a
method that uses TT transform and ST for feature extraction
from the transient voltage signal measured at one end. The
classification is conducted using SVM optimized by a particular
swan optimization and is tested over the headline and underground
cable. Bewley’s lattice diagram identifies the fault location. The total
number of cases was 2,376, of which 70% were used for training and
30% for testing the SVM. Compared with ST, the TT transform
achieves 99.8% accuracy. Sahoo and Baran’s method (2014) uses the
DWT technique for feature extraction, which considers the SD and
is tested in the radial distribution feeder at 138 kV. Maximum value
and energy are decomposed into two parts. Mary’s model for HIFs is
used. Various classifiers, such as fuzzy, Bayes ANFIS, SVM (Kernel
trick function is used), and MLPNN, are compared, among which
ANFIS and SVM give the best results. A data-driven technique
includes PCA, Fisher discriminant analysis, and binary and multi-
class SVM for HIF detection. Compared with PCA, FDA can classify
and locate HIFs successfully (Sarwar et al., 2020). PCA utilizes
Hotelling’s T2 statistics for HIF discrimination. The IEEE 13-node
system is used for testing. Diode-resistance source is the HIF model
used, with opposite polarity. Vp = 1 kV and Vn = 0.5 kV with ±10%.
Rp and Rn range from 1,000 to 1,500Ω, with random variation. In
the proposed method, multiclass-SVM gives the best results. MM is
the feature extraction (Sarlak and Shahrtash, 2013) and was tested
on the Palash feeder in the Southwestern Tehran distribution
network. An HIF indicator is installed in various poles that
detect HIFs at various locations. The dependability and security
of the proposed system are best above the 20 db SNR. To evaluate
the proposed method, a DST, DTT is used along with PNN, as well
as DWT along with SVM. The proposed algorithm has 96.9%
security and 97.2% dependability.
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4.4 Adaptive neuro-fuzzy inference system

ANFIS includes the benefits of ANN and fuzzy logic principles
in a single platform. ANFIS trains the fuzzy inference system to
create fuzzy rules for IF-THEN and evaluate membership features
for input and output variables. A NN trains the membership
functions to minimize the error in fault classification. Tawafan
et al. (2012) and Abdel Aziz et al. (2011) used the FFT for
feature extraction, which was then tested in a radial 13.8-kV
distribution feeder. Third harmonics, the magnitude of current,
and phase of current are extracted, of which the first parameter is
essential for HIF detection and the latter for HIF classification. It is
noted that the HIF current is < 0.05 for NCs and >0.9 for HIF
conditions. The main disadvantage is determining the global
minimum using the membership function and enhancing feature
extraction using the algorithm. The SD values drawn from the DWT
are used to train fuzzy, Bayes, MLPNN, ANFIS, and SVM and
compare the performances in Veerasamy et al. (2019). DWT with
ANFIS and SVM classifiers discriminates between HIFs, SLGF, LLF,
and DLGF, giving superior results. Apart from this, certain
performance indices, such as absolute error, root mean square
error, kappa statistic, success rate, and discrimination rate, were
compared. In Veerasamy et al. (2018), DWT extracts SD features
from a three-phase current and is used to train ANFIS. For fault
analysis, a sampling rate of 20 kHz is considered. The mother
wavelet used is Daubichies’s wavelet (Db9). A radial distribution
system is used for testing in MATLAB/SIMULINK. The fuzzy
logic system discrimination rate is 66.6%, but ANFIS gives 100%.
When discrimination rates of the fuzzy logic system and ANFIS
are compared, ANFIS proves to be superior by 33.3%. The
fundamental component (e.g., magnitude and phase) of
current is used (Aziz et al., 2012; Abdel Aziz et al., 2012) for
HIF detection, classification (LG, LL, LLG, LLLG, and HIF), and
location. The fundamental component, such as third harmonics,
plays an essential role in HIF detection and location. The ANFIS
classifier unit gives correct output for faulty and non-faulty
conditions. In fuzzy logic, the concept of possibility is used
rather than the concept of probability. Jota and Jota (1999)
explained the application of neo-fuzzy neurons trained to
identify the SD responses where FFT is used for feature vector
extraction. After the training, the neuron set becomes a decision
core of the supervisory system. The method identifies the HIF in a
real-time feeder, which works better for not very close fault
instants. The correction index is 100% for very close faults
and 81% for faults at a distance of less than 10 m. The field
chosen is Caratinga in Brazil for data analysis. Silva et al. (1995)
explained the HIF testing in both real-time feeders and
simulation. The real-time feeder chosen was Caratinga in
Brazil. The method is based on the traveling wave technique.
Detection with fuzzy rules in normal and faulty cases was carried
out, and faults within 10 m were identified. The SD of noise was
identified to input the fuzzy. The method is focused on passive
faults, which effectively work with harmonic frequencies. The
feature extraction technique DWT (Silva et al., 2020) with neuro-
fuzzy classifier is tested in the IEEE distribution test 13-bus feeder
and the IEEE distribution test 34-bus feeder, which incorporates
an evolving fuzzy neural network (EuFNN) that has an “adapt
itself” ability and is excellent in terms of accuracy and robustness.

Wavelet packet-based feature extraction is used with a neuro-
fuzzy classifier. Different families of wavelet packet transform,
namely, Haar, Symlet, Daubechies, Biorthogonal, and Coiflet,
were used to extract features from a one-cycle time window of
current signals. LVQ, MLP, SVM, and evolving fuzzy neural
networks are compared with RMS and entropy values
coefficients. Apart from other advantages, EuFNN gives a
membership function for the possibility of fault occurrence.
The method will not identify the fault location. DWT with a
fuzzy interference system and Fuzzy ARTMAP neural network
combination based on Dempster–Shafer evidence theory is tested
in the IEEE-123 distribution feeder (Tonelli-Neto et al., 2017).
The classification results show that the system is robust, efficient,
and reliable. The Emanuel arc model is used for HIF modeling,
where Vp ranges from 500 to 2,000 V and Vn from 2,000 to
2,500 V. Any new type of fault can be included in the classifier
with ease. The method gives a classification efficiency of 97.69%.
FFT extracts features from the signal, and fuzzy logic classifies
HIF and non-HIF events (Suliman and Ghazal, 2019). The
detection is performed by analyzing the third and fifth
harmonics of magnitude and phase angle. The method is
tested in three phase-4 wires of a 400-V radial distribution
feeder in a downed conductor and wet sand. The third and
fifth harmonics are extracted to train the classifier. The
classifier is trained with real-time data from the practical test
performed in the laboratory. By using a neuro-fuzzy interference
system, tuning of the algorithm is performed.

4.5 Decision tree

DT represents the learned function in DT learning, which is a
technique for approximating discrete-valued target functions. One
of the possible values of this attribute corresponds to each branch
that descends from the node. The DT-based method uses phase
current (in RMS) and second, third, and fifth harmonic magnitudes
to detect HIF (Samantaray, 2012). Shahrtash and Sarlak (2006) used
pattern recognition with the DT algorithm, which has efficient
training time and gives excellent results in even, odd, and
between harmonics up to 400 Hz. Two cases are considered for
HIFs: the first is when a broken conductor touches the ground and
the other is when an energized conductor touches another object.
The specified tree is constructed using the J48 algorithm in WEKA
software. The classification factor is considered based on entropy
that gives the variations in the data set. This study concludes that a 2-
kHz sampling frequency and 30-cycle time interval using a small
energy DT can give accurate results. EKF is used for feature
extraction and ensemble DT (RF) for fault classification,
compared with the DT algorithm (Samantaray, 2012). The
method is tested in radial and mesh networks. The reliability and
accuracy of RF is compared and is best in the two cycle window. The
method is also tested in one- and three-cycle windows. For data with
SNR 20, the reliability is more than 99%. The DT algorithm (Sheng
and Rovnyak, 2004) can differentiate between the HIFs from normal
switching, such as capacitor switching and transformer inrush
currents. FFT is used for feature extraction and is tested in a
radial distribution feeder. DT discriminates the extracted features
for classification, which, compared with other pattern recognition
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tools, gives better results. Current signals of each phase are sampled
at 1,920 Hz, with a total number of cases of 5,700. The Emmanuel
arc model is used, and the system is simulated in EMTP.

4.6 Miscellaneous HIF detection schemes

Several other HIF detection schemes, aside from these methods,
play a crucial role in HIF detection. Using signal processing and
pattern recognition techniques in the device relaying architecture
with expert systems, Don Russell (1990) explained low current
faults. Mamishev et al. (1996) suggested using fractal geometry to
analyze the chaotic properties of high-impedance defects and RMS
current values are used to classify the behavior of the temporal
system, resulting in a relatively short time series usable for study.
Sharaf et al. (1996) used a relay-based mechanism for HIF detection.
The scheme utilizes the ripple frequencies and sub- and super-
harmonics usually associated with the HIF phenomenon. Eldin et al.
(2007) introduced two methods for detecting HIFs in extra-high-
voltage transmission lines. Both approaches investigated the origins
and dynamics of HIF-related arcing. The former employs DWT
analysis, whereas the latter employs the coupling capacitor voltage
transformer’s high-frequency tap. The effects of fault location,
interception angle, fault type, switch-off, and operations are
analyzed. Both approaches are accurate and require less time.

5 Locating high impendence faults

HIF detection and identification are essential, and locating the
fault accurately is the next step. Many methods are used for locating
HIFs, such as the matching technique (Ali et al., 2014), intelligent
algorithms (Chen et al., 2016), synchronized harmonic phasors
(Farajollahi et al., 2017), phase shift measurement of a high-
frequency magnetic field (Bahador et al., 2018), the advanced
distortion detection technique (Bhandia et al., 2020), smart
meters (Radhakrishnan, 2019), power line communication
systems (Milioudis et al., 2012), and power line carriers (Chen
et al., 2010), which will be elaborated in this section. A transient
power direction-based method is used for locating HIFs in MV
distribution systems, as proposed by Elkalashy et al. (2008). DWT
extracts the features of the residual current and voltage of the
measuring nodes. The product of DWT detailed coefficient d3 of
residual current and voltage will give the polarity of the frequency
band power (12.5–6.25 kHz). Wireless sensors placed at the
measuring nodes will process the detailed coefficients of DWT in
the distribution network. Daubechies wavelet 14 (db14) is effectively
located at the fault. An unearthed 20-kV distribution system is
simulated using ATP and HIFs because leaning trees are mimicked
using a universal arc model to test the proposed method. Ali et al.
(2014) used the matching technique and analyzed the three-phase
voltage signals using DWT-basedMRA. Approximately 128 samples
are taken and analyzed using Daubechies’ fourth order (Daub4). The
fault location is identified by the smallest SD values. By iteration, the
exact location can be found. A surge generator is used to pinpoint
the exact location that injects a high-voltage DC pulse of 30 kV. The
highest amplitude flash over with acoustic noise gives the exact
location of a fault.

HIF detection by measurement of voltage imbalance in primary
distribution feeder by smart energy meter was illustrated by Leite
(2019). The proposed method is tested in a typical distribution
feeder of 13.8 kV that gave accurate and robust results when tested
in broken and unbroken conductors at the load or source side. The
faulty section is identified by a parameter “K” factor when a situation
of voltage unbalance threshold is crossed. The three-phase smart
meters will calculate the voltage imbalance and locate the presence of
the HIF. The voltage across the distribution feeder is measured by
Thomas et al. (2016), as well as the voltage sequence components.
Three HIF models were investigated (a high resistance model, a
simpler two-diode model, and an arcing model), as well as several
grounding options, such as a securely grounded network, a resistive
grounded network, an ungrounded network, and a resonant
grounded network. The method is tested in two identical feeders
of 16 km in length and divided into four identical sections. The
detection is based on the positive sequence voltage drop and the
percentage of negative and zero sequences voltage
drop. Chakraborty and Das (2019) found that the detection is
based on the even harmonics present in the voltage waveform
using smart meters called the even harmonic distortion index
and evaluated in a PSCAD simulation and experimental
setup. The communication interface of the smart meter will
inform the detection of the HIF to the nearby substation. The
two-diode model of the HIF is used, and the test system used is
IEEE 13-node feeder. The performance of the proposed system is
compared with the existing schemes based on MM, wavelet
transform, and harmonics-based detection, in which the
proposed method gives satisfactory results with an execution
time of 3.98 ms. A two-terminal-based numerical algorithm for
location estimation and arcing voltage calculation with
synchronous phasors is proposed by Balser et al. (1986). Phasor
measurement units are installed at either end of the transmission
lines at a distance of 100 km. In the study, a 10-km fault distance
along with an arcing voltage of 4.5 kV is calculated, and after 20 ms
of fault inception, the synchronous phasors detect the location. ETP
simulation is used for testing the algorithm. Ibrahim et al. (2010b)
located the fault by computing the system offline zero and negative-
sequence impedance as a function of fault location, which is
dependent on the unsynchronized root mean square (RMS) value
of the sending and receiving end zero-sequence currents for ground
faults or the RMS value of the sending and receiving end negative-
sequence currents for line faults. The method is independent of any
HIF model, and the test system for evaluation chosen is a 345-kV
double-end transmission-line system. The accuracy error does not
exceed ±2% for accurate line parameters with different fault
conditions, such as LG, LLG, LL, and LLLG. Radhakrishnan
(2019) proposed installing smart meters for locating HIFs in the
distribution system, including distribution systems, power electronic
loads, and electric arc furnaces. Smart meters are introduced in each
load point that measures the load current and second harmonic
content of load voltage. The method is tested on the LV 906-bus
European distribution network and IEEE 39-bus system using
PSCAD simulation to evaluate the performance of the smart
meters under various grid conditions. The method proposed
gives satisfactory results in all the investigated conditions. As an
HIF alarm is generated, test signals are fed into the power grid, and
the location of the fault can be calculated using impulse responses

Frontiers in Energy Research frontiersin.org28

Varghese P et al. 10.3389/fenrg.2023.1114230

147

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1114230


recorded by PLC devices (Milioudis et al., 2012). A frequency range
of 3–95 kHz is used, and the method accurately locates the fault
throughout the line. Lin et al. (2004) used a phasor measurement
unit-based detection and locating system for permanent and arcing
nature faults. PMUs installed on both terminal sides simultaneously
monitor three-phase voltage and current phasors. The study
proposes a communication link from the fault location. The
measured phasors are communicated via communication
channels to a central computer. However, only harmonic phasors
are transmitted to the central computer after fault detection to
reduce the burden of the communication channels. Santos et al.
(2013) proposed the traveling wave method, which sends a high-
frequency signal from one end of the terminal and is received at the
other end. The amount of equipment required is high, and the
method is expensive. A 90-bus feeder is used to test the proposed
method.

6 Conclusion

This study reviewed most of the methods for feature
extraction, classification, location, and test systems that have
been produced over time, repeatedly, and the latest research
developments used to detect HIFs in power distribution
systems. Approximately 161 studies from the major referenced
journals in the field of HIF detection have been discussed with
primary importance on various test systems with different signal
processing techniques and classification techniques. The feature
extraction techniques using signal processing techniques include
FFT, DWT, LWT, MODWT, LDA, PCA, MM, CWT, EKF, TT,
DTWT, ST, and MODWPT. Different classifiers used to
discriminate the HIF from non-HIF events, such as ANN,
SVM, GA, ELM, PNN, FLC, ART, ANFIS, DT, RF, and CNN,
are discussed. Various test systems, such as radial and mesh
distribution networks, IEEE 4-, 13-, 34-, 39-, 123-node systems,
Palash feeder, test microgrid, JMARTY, and Tai-16, are discussed
in Section 3, with IEEE standards. Fault locating techniques are

discussed, such as the traveling wave method, phasor
measurement unit method, and the matching technique. This
review also highlighted the basic principles, advantages, and
disadvantages of frequently used works related to HIFs. We
also highlight that the conventional HIF detection methods
are simple, have easy measurement setups, and consume less
computation time. Still, they are inaccurate when used in large
power system networks. Overall, we suggest a combination of
signal processing techniques along with an intelligent classifier
for the HIF detection scheme as they improve system reliability
and power quality in distribution systems.
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Nomenclature

ANFIS Adaptive neuro-fuzzy inference system

AEKF Adaptive extended Kalman filter

ANN Artificial neural network

CWT Continuous wavelet transform

CNN Convolution neural network

CERTS Consortium for Electric Reliability Technology Solutions

DLGF Double-line-to-ground fault

DWT Discrete wavelet transform

DTWT Dual-tree complex wavelet transform

DG Distributed generators

DT Decision tree

ELM Extreme learning machines

EKF Extended Kalman filter

FFT Fast Fourier transform

FFN Feedforward network

FLC Fuzzy logic control

FANN Fuzzy art neural network

GA Genetic algorithm

HT Hilbert Transform

HIF High-impedance fault

HIL Hardware-in-loop

ILC Insulator leakage current

IMF Intrinsic mode functions

KNN k-Nearest neighbor

LLF Line-to-line fault

LDA Linear discriminant analysis

LWT Lifting wavelet transform

LVQ Learning vector quantization

MODWT Maximum overlap discrete wavelet transform

MMF Mathematical morphology filters

MG Morphology gradient

MLPNN Multi-layer perceptron neural network

MWT Morlet wavelet transform

PNN Probabilistic neural network

PCA Principal component analysis

PTDS Power transmission and distribution system

PCC Point of common coupling

RTDS Real-time digital simulator

RF Random forest

RCGA Real coded genetic algorithm

ReLU Rectified linear unit

SLGF Single-line-to-ground fault

ST S transform

SVM Support vector machine

SNR Signal-to-noise ratio

SD Standard deviation

STFT Short-time Fourier transform

SG Synchronous generator

TFA Time-frequency analysis

TSK Takagi–Sugeno–Kang

TZSCs Transient zero sequence currents

LLLGF Triple-line-to-ground fault

TTT Time–time transform

VCCP Voltage–current characteristic profiles

WCC Wavelet correlation coefficient

WHTs Walsh–Hadamard transforms
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